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Abstract 
 

In the paper we study a discrete-time multichannel queueing system with heterogeneous 

servers, regenerative input flow, and interruptions. The breakdowns of servers may occur at 

any time even if they are not occupied by customers. Consecutive moments of breakdowns 

are defined by a renewal process, but we do not assume blocked and available periods to be 

independent. We consider the preemptive repeat different service discipline as well as 

preemptive resume service discipline. We exploit the regeneration property of the input 

flow and renewal structure of the processes describing the servers’ breakdowns to organise 

synchronisation of the input and service flows. This approach helps to establish the 

necessary and sufficient stability condition of the system. Generally, for preemptive repeat 

different service discipline this stability condition can not be expressed it terms of moments 

of service and interruption processes. Therefore, we derive the sufficient but not necessary 

condition, which can be expressed through these moments, and show that it coincides with 

condition obtained in existing literature for simpler queueing systems.  

 

Keywords: Multichannel system, Regenerative input flow, Ergodicity, Interruption, 

Vacation, Unreliable servers 

  

1  Introduction 
 

 Queueing systems with unavailable servers can be a useful abstraction in modelling of 

some real-life service operation. Such models may arise naturally as models of many computer, 

communication and manufacturing systems. Servers interruptions may result from resource 

sharing, server breakdowns, priority assignment, vacations, some external events, and others. For 

instance, if we concern the system with customers priority, the service of secondary customers is 

equivalent to the service interruption of the primary customers during this period. 

Systems with unreliable servers have been intensively investigated for a long time. The 

main point was focused on the single-server case. There are some review papers, that cover most 

of the literature in these sphere. Some of the important papers on the single-server case are 

presented in [12]. Concerning systems with servers vacations it should be mentioned [10] and [17]. 
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The most exhaustive literature survey on systems with interruptions is in [19], where non-

Markovian multichannel systems were also covered. The are some other articles with extensive 

literature survey as well [24], [22]. 

Synchronization method combined with the regenerative theory is one of the powerful 

approach to obtain stability results for multichannel systems with discrete-time and service 

interruptions. Basing on this method the multichannel queueing system with identical service 

distribution function for all servers, renewal input flow, alternating renewal-type servers’ 

interruptions in the discrete-time case was considered in [22]. Authors established some sufficient 

conditions of stability for the preemptive repeat different and preemptive resume service 

disciplines. In paper [2] this approach helps to implement asymptotic analysis of the single-server 

system with a regenerative input flow. The similar approach was applied in [27] to study the 

stability condition of the multichannel system with heterogeneous servers and a regenerative input 

flow in a random environment, which breaks all the servers simultaneously. 

In this paper we consider a discrete-time queueing system with regenerative input flow 

and heterogeneous servers that may suffer independent interruptions. Consecutive moments of 

breakdowns are defined by a renewal process and do not depend on the system state. The 

preemptive repeat different service discipline as well as preemptive resume service discipline [14] 

are considered. The former case implies that the service is repeated from the beginning with 

different independent service time after restoration of the server. In the latter case the service of a 

customer is continued after restoration. The necessary and sufficient stability condition is 

established. The key element of our analysis is synchronization of the processes under the 

consideration. This method is based on the regeneration property of the input flow and renewal 

structure of the processes describing the servers’ breakdowns (see, e.g [2]). 

Let us also mention the fluid approximation approach to the stability analysis of queueing 

systems [8], [7], [9]. See also [13] for a survey of various approaches to stability of queueing 

systems with a focus on the fluid approach. Nevertheless, in the present paper we do not rely on 

fluid approximation since ergodic conditions cannot be expressed in terms of expected values for 

preemptive repeat different service discipline and regenerative method turns out to be suitable to 

obtain complete and transparent proofs. 

The model under consideration is similar to the system that was investigated in [22]. 

However, there is essential generalisation that lead us to consider different processes. Firstly, we 

employ the regenerative flow as an input flow. Secondly, service distribution functions may differ 

for different servers. In this paper the necessary and sufficient condition for stability of the queue-

length process is established, whereas in [22] only sufficient conditions for these service disciplines 

are proved. 

The article is organised as follows. In the next section the model is described in detail. In 

the third section auxiliary service flows are introduced and the traffic rate is defined. In the next 

two sections we conduct the synchronization of the input and service flows. The sections 6-8 are 

devoted to the (in)stability problem. In the ninth section we provide some comments and make 

conclusion in the final section. 

 

2  Model description 
 

We consider a system with 𝑚 heterogeneous servers and a common queue. Service times 

of customers by the 𝑖th server constitute a sequence {𝜂𝑖,𝑛}𝑛=1
∞  of independent identically distributed 

(iid) random variables that does not depend on input flow and service times by other servers. Let 

𝐵𝑖(𝑡) be a distribution function (d.f.) of 𝜂𝑖,𝑛 and 𝑏𝑖 = 𝐄𝜂𝑖,𝑛 < ∞ (𝑖 = 1,𝑚). We assume that the 

servers may be unavailable for service from time to time. The breakdowns of the servers may occur 

at any time even if they are not occupied by customers. Let {𝑠𝑖,𝑛
(2)
}𝑛=0
∞  be moments of breakdowns 

and {𝑠𝑖,𝑛
(1)
}𝑛=1
∞  be moments of restoration for the 𝑖th server. Here 0 = 𝑠𝑖,0

(2)
< 𝑠𝑖,1

(1)
< 𝑠𝑖,1

(2)
< 𝑠𝑖,2

(1)
…. Then 
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𝑢𝑖,𝑛
(1)
= 𝑠𝑖,𝑛

(1)
− 𝑠𝑖,𝑛−1

(2)
 and 𝑢𝑖,𝑛

(2)
= 𝑠𝑖,𝑛

(2)
− 𝑠𝑖,𝑛

(1)
 denote the length of the 𝑛th blocked and 𝑛th available 

period of the 𝑖th server respectively (𝑖 = 1,𝑚). The sequence {𝑢𝑖,𝑛
(1)
, 𝑢𝑖,𝑛
(2)
}𝑛=1
∞  consists of iid random 

vectors (for all 𝑖 = 1,𝑚) that do not depend on the input flow and service times. However, for each 

𝑛 and 𝑖,random variables 𝑢𝑖,𝑛
(1)

 and 𝑢𝑖,𝑛
(2)

 are not assumed to be independent. Let 𝑢𝑖,𝑛 = 𝑢𝑖,𝑛
(1)
+ 𝑢𝑖,𝑛

(2)
 be 

the length of the 𝑛th cycle for server 𝑖. A cycle consists of a blocked period followed by an 

available period. We assume that 𝐄𝑢𝑖,𝑛
(1)
= 𝑎𝑖

(1)
< ∞, 𝐄𝑢𝑖,𝑛

(2)
= 𝑎𝑖

(2)
< ∞, 𝑎𝑖 = 𝑎𝑖

(1)
+ 𝑎𝑖

(2)
 (𝑖 = 1,𝑚). 

Server is free if it is neither serving a customer nor interrupted. If server becomes free and there are 

customers in the queue, a new customer enters the server. It is possible that more than one server 

becomes free simultaneously. Then customer in the queue chooses an idle server according to 

some algorithm, possibly random. For definiteness we assume that a customer chooses a free 

server with the least number. It is possible that an unavailable period starts while a customer is 

receiving service. Then service of the customer is immediately interrupted. There are various 

disciplines for continuation of the service after server restoration [14]. Here we consider the 

preemptive repeat different service discipline (𝐷1) and preemptive resume service discipline (𝐷2). 

In the former case service is repeated from the start and the service time after restoration is 

independent of the original service time. In the latter case service continues after restoration. In the 

both cases, customers remain with the same server until service completion. For the service 

discipline 𝐷1 in order to ensure the service process for the 𝑖th server we have to assume that  

 𝐏(𝜂𝑖,1 ≤ 𝑢𝑖,1
(2)
) > 0    forall    𝑖 = 1,𝑚. (1) 

 If this condition does not hold for some server 𝑖, then for discipline 𝐷1 the 𝑖th server has to be 

excluded since it is always busy by service of the single customer. Without loss of generality in the 

rest of the paper we also assume  

 𝐏(𝜂𝑖,1 = 0) = 0    and    𝐏(𝑢𝑖,1
(2)
= 0) = 0    forall    𝑖 = 1,𝑚. (2) 

 

We consider a discrete-time system, i.e. time is divided into fixed length intervals or slots 

and all arrivals, departures, interruptions (restorations) are synchronized with respect to slot 

boundaries. Moreover, in the case of synchronization of some events at one slot these events are 

ordered as follows: arrival, departure, and interruption (restoration). System is observed at the end 

of a slot, when all events of the slot are realized. 

We assume that the input flow 𝑋(𝑡) is a regenerative one [2]. Suppose an integer-valued 

stochastic process {𝑋(𝑡), 𝑡 ≥ 0} is defined on some probability space (Ω, ℱ, 𝑃) and 𝑋(𝑡) has 

nondecreasing right-continuous sample paths and 𝑋(0) = 0. Assume that there exists a filtration 

{ℱ≤𝑡
𝑋 }𝑡≥0, (ℱ≤𝑡

𝑋 ⊆ ℱ for all 𝑡 ≥ 0) such that 𝑋(𝑡) is measurable with respect to {ℱ≤𝑡
𝑋 }𝑡≥0.  

Definition 1  The stochastic flow 𝑋(𝑡) is called regenerative if there is an increasing sequence of 

Markov moments {𝜃𝑖 , 𝑖 ≥ 0}, 𝜃0 = 0 (with respect to {ℱ≤𝑡
𝑋 }𝑡≥0) such that the sequence  

 {ù𝑖}𝑖=1
∞ = {𝑋(𝜃𝑖−1 + 𝑡) − 𝑋(𝜃𝑖−1), 𝜃𝑖 − 𝜃𝑖−1, 𝑡 ∈ (0, 𝜃𝑖 − 𝜃𝑖−1]}𝑖=1

∞  

consists of independent identically distributed random elements on (Ω, ℱ, 𝑃).  

 The random variable 𝜃𝑖 is said to be the 𝑖th regeneration point of 𝑋(𝑡) and 𝜏𝑖 = 𝜃𝑖 − 𝜃𝑖−1 is 

the 𝑖th regeneration period (𝑖 = 1,2,…). Let 𝜉𝑖 = 𝑋(𝜃𝑖) − 𝑋(𝜃𝑖−1) be the number of arrived 

customers during the 𝑖th regeneration period. Assume that 𝐸𝜏1 < ∞, 𝐸𝜉1 < ∞. The limit 𝜆𝑋 =

lim𝑡→∞
𝑋(𝑡)

𝑡
 with probability one (w.p.1) is called the intensity of 𝑋(𝑡). It is easy to prove that 𝜆𝑋 =

𝐸𝜉1

𝐸𝜏1
 (e.g., see [2]). Class of regenerative flows contains most of fundamental flows that are exploited 

in the queueing theory [4]. Firstly, the doubly stochastic Poisson process [15], where random 

intensity is a regenerative process [25]. There are many other examples of regenerative flows, for 

instance, semi-markovian, Markov-modulated, Markov-arrival, and other processes [1]. Important 

properties of regenerative flows are given in [2]. 
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3  Auxiliary processes 
 

 In this section we define auxiliary processes 𝑌𝑖
(𝑑)
(𝑡) (𝑖 = 1,𝑚, 𝑑 = 1,2) that will be used 

later. Here 𝑑 = 1 for the service discipline 𝐷1 and 𝑑 = 2 for the service discipline 𝐷2. We think of 

𝑌𝑖
(𝑑)
(𝑡) (𝑖 = 1,𝑚) as the number of customers, that can be served by the 𝑖th server during its 

available period within interval [0, 𝑡], if there are always customers for service. In order to 

construct the processes 𝑌𝑖
(1)
(𝑡) we introduce the collection {{𝜂𝑖,𝑛

(𝑗)
}𝑛=1
∞ }

𝑗=1

𝑚

 of independent sequences 

{𝜂𝑖,𝑛
(𝑗)
}𝑛=1
∞  consisting of iid random variables with d.f. 𝐵𝑖(𝑥). Let 𝐾𝑖,𝑗(𝑡) be the counting process 

associated with the sequence {𝜂𝑖,𝑛
(𝑗)
}𝑛=1
∞ , i.e. 𝐾𝑖,𝑗(𝑡) = max{𝑘: ∑

𝑘
𝑛=1 𝜂𝑖,𝑛

(𝑗)
≤ 𝑡} (𝐾𝑖,𝑗(0) = 0) and 𝑁𝑖(𝑡) be 

the number of cycles for the 𝑖th server during [0, 𝑡], i.e.  

 𝑁𝑖(𝑡) = max{𝑗: ∑
𝑗
𝑛=1 𝑢𝑖,𝑛 ≤ 𝑡}    (𝑁𝑖(0) = 0). (3) 

 Then the processes 𝑌𝑖
(1)
(𝑡) and 𝑌𝑖

(2)
(𝑡) are defined by the relations  

 𝑌𝑖
(1)
(𝑡) = ∑

𝑁𝑖(𝑡)
𝑗=1 𝐾𝑖,𝑗(𝑢𝑖,𝑗

(2)
) + 𝐾𝑖,𝑁𝑖(𝑡)+1 (max [0, 𝑡 − 𝑠𝑖,𝑁𝑖(𝑡)+1

(1)
]) . (4) 

  

 𝑌𝑖
(2)
(𝑡) = 𝐾𝑖,1 (∑

𝑁𝑖(𝑡)
𝑗=1 𝑢𝑖,𝑗

(2)
+max [0, 𝑡 − 𝑠𝑖,𝑁𝑖(𝑡)+1

(1)
]) . (5) 

 

By 𝐻𝑖(𝑡) denote the renewal function for 𝐾𝑖,𝑗(𝑡), i.e. 𝐻𝑖(𝑡) = 𝐄𝐾𝑖,𝑗(𝑡). 

 

Lemma 1  There exist the limits  

 
lim
𝑡→∞

𝑌𝑖
(1)
(𝑡)

𝑡
=
𝐄𝐻𝑖(𝑢𝑖,𝑛

(2)
)

𝑎𝑖
= 𝜆

𝑌𝑖
(1)  w. p. 1,

lim
𝑡→∞

𝑌𝑖
(2)
(𝑡)

𝑡
=
𝑎𝑖
(2)

𝑏𝑖𝑎𝑖
= 𝜆

𝑌𝑖
(2)  w. p. 1.

 

  

 Proof. We start with the discipline 𝐷1. Let 𝑔𝑖
(1)
(𝑛) = ∑𝑛𝑗=1 𝐾𝑖,𝑗(𝑢𝑖,𝑗

(2)
). From (4) we get the 

inequalities  

 𝑔𝑖
(1)
(𝑁𝑖(𝑡)) ≤ 𝑌𝑖

(1)
(𝑡) ≤ 𝑔𝑖

(1)
(𝑁𝑖(𝑡) + 1). (6) 

 Since {𝐾𝑖,𝑗(𝑢𝑖,𝑗
(2)
)}𝑗≥1 is a sequence of iid random variables with a finite mean by the strong law of 

large numbers (SLLN) we have 𝑛−1𝑔𝑖
(1)
(𝑛)

𝑛→∞
→   𝐄𝐻𝑖(𝑢𝑖,𝑗

(2)
) w.p.1. In view of independence 

{{𝜂𝑖,𝑛
(𝑗)
}𝑛=1
∞ }𝑗=1

𝑚  and {𝑢𝑖,𝑛
(1)
, 𝑢𝑖,𝑛
(2)
}𝑛=1
∞  one can obtain the convergence  

 
𝑔𝑖
(1)
(𝑁𝑖(𝑡))

𝑁𝑖(𝑡) 𝑡→∞
→  𝐄𝐻𝑖(𝑢𝑖,1

(2)
)    w. p. 1. 

It follows from the renewal theory that  

 𝑡−1𝑁𝑖(𝑡)
𝑡→∞
→  𝑎𝑖

−1    w. p. 1. (7) 

 Now the proof of the lemma for 𝐷1 follows from (6). 

Consider the discipline 𝐷2. Let 𝑔𝑖
(2)
(𝑛) = 𝐾𝑖,1(∑

𝑛
𝑗=1 𝑢𝑖,𝑗

(2)
). From (5) we have the inequalities  

 𝑔𝑖
(2)
(𝑁𝑖(𝑡)) ≤ 𝑌𝑖

(2)
(𝑡) ≤ 𝑔𝑖

(2)
(𝑁𝑖(𝑡) + 1). (8) 

 Since 𝑡−1𝐾𝑖,1(𝑡)
𝑡→∞
→  𝑏𝑖

−1 w.p.1, we get 𝑛−1𝑔𝑖
(2)
(𝑛)

𝑛→∞
→   𝑏𝑖

−1𝑎𝑖
(2)

 w.p.1. Thus (7) and (8) conclude the 

proof for the discipline 𝐷2. + 

Let 𝑌(𝑑)(𝑡) = ∑𝑚𝑖=1 𝑌𝑖
(𝑑)
(𝑡) (𝑑 = 1,2). From Lemma 1 we have  

 𝜆𝑌(𝑑) = lim𝑡→∞
𝑌(𝑑)(𝑡)

𝑡
= ∑𝑚𝑖=1 𝜆𝑌𝑖

(𝑑)     w. p. 1    (𝑑 = 1,2). (9) 

 We think of 𝜆𝑋 and 𝜆𝑌(𝑑)  as the arrival and service rate respectively. Intuitively, it is clear that 

traffic rates 𝜌(𝑑) of the system have to be determined as  

 

𝜌(1) =
𝜆𝑋

∑𝑚𝑖=1

𝐄𝐻𝑖(𝑢𝑖,𝑛
(2)
)

𝑎𝑖

,

𝜌(2) =
𝜆𝑋

∑𝑚𝑖=1
𝑎
𝑖
(2)

𝑏𝑖𝑎𝑖

.
 (10) 
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At first sight the traffic rate 𝜌(1) for discipline 𝐷1 can not be expressed in terms of the first 

moments of random variables defining the model. It is true if we consider the means of service 

times, available and block periods only. However, we may introduce random variables 𝜁𝑖
(𝑛)

 which 

is the number of served customers by the 𝑖th server during the 𝑛th cycle (𝑖 = 1,𝑚, 𝑛 = 1,2, … ) 

under condition that there are always customers on the server. Putting 𝛼𝑖 = 𝐄𝜉𝑖
(𝑛)

 we get from (10)  

 𝜌(1) = 𝜆𝑋[∑
𝑚
𝑖=1

𝛼𝑖

𝑎𝑖
]−1. 

 In applications one may estimate these parameters basing on statistical data. 

 

4  Synchronization of regenerative flows 
 

First we obtain the result concerning synchronization of general regenerative aperiodic 

flows in a discrete-time case. Let 𝑍1(𝑡) and 𝑍2(𝑡) be independent regenerative flows with 

regeneration points {𝜃1,𝑗}𝑗=1
∞  and {𝜃2,𝑗}𝑗=1

∞  respectively (𝜃𝑖,0 = 0; 𝑖 = 1,2). As usually, aperiodicity 

means that the greatest common divisor (GCD)  

 𝐺𝐶𝐷{𝑘: 𝐏(𝜃𝑖,1 = 𝑘) > 0} = 1,    𝑖 = 1,2. (11) 

 Define common points of regeneration for 𝑍1(𝑡) and 𝑍2(𝑡) by the relation  

 𝑇𝑘 = min{𝜃1,𝑗 > 𝑇𝑘−1: ⋃
∞
𝑙=1 {𝜃2,𝑙 = 𝜃1,𝑗}},    𝑇0 = 0. (12) 

 

 

Lemma 2  Let condition (11) be fulfilled and 𝐄(𝜃𝑖,1) < ∞ (𝑖 = 1,2). Then the sequence {𝑇𝑘}𝑘=1
∞  

consists of regeneration points for 𝑍1(𝑡) and 𝑍2(𝑡) and  

 𝐄𝑇1 = 𝐄𝜃1,1 ⋅ 𝐄𝜃2,1 < ∞. (13) 

  

 Proof. The first statement of the Lemma follows from the definition of 𝑇𝑘. To prove the 

second statement we put  
 𝜈𝑘 = min{𝑗 > 𝜈𝑘−1: ⋃

∞
𝑙=1 {𝜃1,𝑗 = 𝜃2,𝑙}},    𝜈0 = 0, 

so that 𝑇𝑘 = 𝜃1,𝜈𝑘. Then {𝜈𝑘 − 𝜈𝑘−1}𝑘=1
∞  is a sequence of iid random variables. In accordance with 

Wald’s identity [11] we get 𝐄𝑇1 = 𝐄𝜃1,1 ⋅ 𝐄𝜈1. Therefore, we need to prove the finiteness of 𝐄𝜈1. Let 

ℎ2(𝑡) (ℎ(𝑡)) be the mean of the number of renewals at time 𝑡 for the renewal process {𝜃2,𝑛}𝑛=1
∞  

({𝜈𝑘}𝑘=1
∞ ), so that ℎ2(𝑡) = ∑

∞
𝑙=0 𝐏(𝜃2,𝑙 = 𝑡) and ℎ(𝑡) = ∑∞𝑘=0 𝐏(𝜈𝑘 = 𝑡). Taking into account (11) from 

Blackwell’s theorem [26] we get  

 ℎ2(𝑡)
𝑡→∞
→  

1

𝐄𝜃2,1
,    ℎ(𝑡)

𝑡→∞
→  

1

𝐄𝜈1
. (14) 

 In view of independence 𝑍1(𝑡) and 𝑍2(𝑡)  

 ℎ(𝑗) = 𝐏{⋃∞𝑙=0 {𝜃1,𝑗 = 𝜃2,𝑙}} = 𝐄(∑
∞
𝑙=0 𝐏{𝜃1,𝑗 = 𝜃2,𝑙|𝜃1,𝑗}) = 𝐄ℎ2(𝜃1,𝑗). (15) 

 Since 𝜃1,𝑗
𝑗→∞
→  ∞ w.p.1, then ℎ2(𝜃1,𝑗)

𝑗→∞
→  

1

𝐄𝜃2,1
 w.p.1. Thus from (14), (15) and Lebesgue’s dominated 

convergence theorem we obtain 𝐄𝜈1 = 𝐄𝜃2,1 < ∞. + 

 

5  Synchronization of renewal points for input and service flows 
 

 To exploit Lemma 2 for synchronization of flows 𝑋(𝑡) and 𝑌𝑖
(𝑑)
(𝑡) we consider the 

counting processes 𝑁𝑖(𝑡) (𝑖 = 1,𝑚) defined by (3) and introduce a counting process 𝑁0(𝑡) for the 

input flow by the relation  
 𝑁0(𝑡) = 𝑚𝑎𝑥{𝑘: 𝜃𝑘 ≤ 𝑡}. 

 We assume throughout the following condition to be fulfilled.  

Condition 1  The distributions of 𝜃1, 𝑢𝑖,1, 𝜂𝑖,1 (𝑖 = 1,𝑚) are aperiodic ones, i.e. (11)are fulfilled for 

these random variables.  

 Let us define subsequence {𝑇𝑘
(1)
}𝑘=0
∞  of the sequence {𝜃𝑗}𝑗=1

∞  by the recurrent relation  
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 𝑇𝑘
(1)
= 𝑚𝑖𝑛{𝜃𝑗 > 𝑇𝑘−1

(1)
: ⋂𝑚𝑖=1 {𝑁𝑖(𝜃𝑗) − 𝑁𝑖(𝜃𝑗 − 1) = 1}},    (𝑇0

(1)
= 0). (16) 

 In other words 𝑇𝑘
(1)

 is a point of regeneration of 𝑋(𝑡) such that all the servers get out of the order 

simultaneously at this moment. This means that {𝑇𝑘
(1)
}𝑘≥0 are the common regeneration points for 

the input flow 𝑋(𝑡) and 𝑁𝑖(𝑡) (𝑖 = 1,𝑚). For 𝐷1 service discipline {𝑇𝑘
(1)
}𝑘≥0 constitutes the sequence 

of regeneration points for 𝑌𝑖
(1)
(𝑡) (𝑖 = 1,𝑚) and 𝑌(1)(𝑡) as well, but for 𝐷2 this is not the case. For 𝐷2 

we introduce a subsequence {𝑇𝑛
(2)
}𝑛≥0 of the sequence {𝑇𝑘

(1)
}𝑘≥0 as follows  

 𝑇𝑛
(2)
= min{𝑇𝑗

(1)
> 𝑇𝑛−1

(2)
:  ⋂𝑚𝑖=1 {𝑌𝑖

(2)
(𝑇𝑗
(1)
) − 𝑌𝑖

(2)
(𝑇𝑗
(1)
− 1) = 1}}, (𝑇0

(2)
= 0). (17) 

 Thus, 𝑇𝑛
(2)

 is a general point of regeneration for 𝑋(𝑡) and 𝑌𝑖
(2)
(𝑡) (𝑖 = 1,𝑚) since the following 

conditions are fulfilled:   

    • 𝑇𝑛
(2)

 is a regeneration point for 𝑋(𝑡);  

    • at time 𝑇𝑛
(2)

 all the servers complete the service;  

    • at time 𝑇𝑛
(2)

 all the servers become unavailable.  

 

 

Lemma 3  Let Condition 1 be fulfilled. Moreover, assume relations (1) for 𝐷1 and (2) for the both 

disciplines take place. Then  

 𝐄𝑇1
(𝑑)
< ∞,    (𝑑 = 1,2). (18) 

  

 Proof. Since 𝐄𝜏1 < ∞ and 𝐄(𝑢𝑖,1) = 𝑎𝑖 < ∞, it follows that for discipline 𝐷1 this lemma is 

the consequence of Lemma 2 and therefore  

 𝐄𝑇1
(1)
=

1

𝐄𝜏1
∏𝑚𝑖=1 𝑎𝑖

−1 < ∞. 

 

Let us consider discipline 𝐷2. For server 𝑖 (𝑖 = 1,𝑚) we introduce the sequence  

 𝑠𝑖,𝑘 = min{𝑠𝑖,𝑗
(2)
> 𝑠𝑖,𝑘−1: 𝑌𝑖

(2)
(𝑠𝑖,𝑗
(2)
) − 𝑌𝑖

(2)
(𝑠𝑖,𝑗
(2)
− 1) = 1}, 𝑠𝑖,0 = 0. (19) 

 Note that {𝑠𝑖,𝑘}𝑘≥0 is the sequence of breakdown moments for the 𝑖th server such that the flow 

𝑌𝑖
(2)
(𝑡) has a jump at every of these moments. Hence {𝑠𝑖,𝑘}𝑘≥0 are regeneration points for 𝑌𝑖

(2)
(𝑡). If 

we show that 𝐄(𝑠𝑖,1) < ∞ for any 𝑖 = 1,𝑚, then Lemma 2 provides the finiteness of 𝐄𝑇1
(2)

. 

Let  

 𝜈𝑖,𝑘 = min{𝑗 > 𝜈𝑖,𝑘−1: 𝑌𝑖
(2)
(𝑠𝑖,𝑗
(2)
) − 𝑌𝑖

(2)
(𝑠𝑖,𝑗
(2)
− 1) = 1},    𝜈𝑖,0 = 0,    (𝑖 = 1,𝑚). 

Then {𝜈𝑖,𝑘 − 𝜈𝑖,𝑘−1}𝑘=1
∞  is a sequence of iid random variables and  

 𝐄(𝑠𝑖,𝑘 − 𝑠𝑖,𝑘−1) = 𝐄𝑢𝑖,1 ⋅ 𝐄𝜈𝑖,1. (20) 

 Since {𝑠𝑖,𝑗}𝑗≥1 does not depend on service times we have from the key renewal theorem [26]  

 lim
𝑗→∞

𝐏{𝑌𝑖
(2)
(𝑠𝑖,𝑗
(2)
) − 𝑌𝑖

(2)
(𝑠𝑖,𝑗
(2)
− 1) = 1} =

1

𝐸𝜈𝑖,1
, (21) 

 where 
1

𝐄𝜈𝑖,1
= 0 if 𝐄𝜈𝑖,1 = ∞. 

Let 𝑈𝑖,𝑗
(2)
= ∑

𝑗
𝑛=1 𝑢𝑖,𝑛

(2)
 be the total available time of the 𝑖th server during 𝑛 cycles. Then  

 𝛿𝑖,𝑗 = 𝐏{𝑌𝑖
(2)
(𝑠𝑖,𝑗
(2)
) − 𝑌𝑖

(2)
(𝑠𝑖,𝑗
(2)
− 1) = 1} = 𝐄 (𝐏 (⋃∞𝑘=1 {∑

𝑘
𝑙=1 𝜂𝑖,𝑙 = 𝑈𝑖,𝑗

(2)
}|𝑈𝑖,𝑗

(2)
)) = 

 

 = 𝐄 (∑∞𝑘=1 𝐏(∑
𝑘
𝑙=1 𝜂𝑖,𝑙 = 𝑈𝑖,𝑗

(2)
|𝑈𝑖,𝑗
(2)
)) = ∑∞𝑛=1 ∑

∞
𝑘=1 𝐏(∑

𝑘
𝑙=1 𝜂𝑖,𝑙 = 𝑛)𝐏(𝑈𝑖,𝑗

(2)
= 𝑛). 

In the last equality we used independence of {𝜂𝑖,𝑘}𝑘=1
∞  and {𝑈𝑖,𝑛

(2)
}. From Blackwell’s theorem [26] we 

have  

 ∑∞𝑘=1 𝐏(∑
𝑘
𝑙=1 𝜂𝑖,𝑙 = 𝑛) 𝑛→∞

→   
1

𝑏𝑖
, 

so one may easily verify that 𝛿𝑖,𝑗
𝑗→∞
→  

1

𝑏𝑖
. Thus, from (21) we have 𝐄𝜈𝑖,1 = 𝑏𝑖 and from (20) we get 

𝐄𝑠𝑖,1 = 𝑎𝑖𝑏𝑖 < ∞. + 

So, we have constructed the sequence {𝑇𝑘
(𝑑)
}𝑘≥0 of common regeneration points for the 

processes 𝑋(𝑡) and 𝑌(𝑑)(𝑡). Denote by Δ𝑋,𝑘
(𝑑)
= 𝑋(𝑇𝑘

(𝑑)
) − 𝑋(𝑇𝑘−1

(𝑑)
), Δ𝑌𝑖,𝑘

(𝑑)
= 𝑌𝑖

(𝑑)
(𝑇𝑘
(𝑑)
) − 𝑌𝑖

(𝑑)
(𝑇𝑘−1
(𝑑)
), and 

Δ𝑌,𝑘
(𝑑)
= ∑𝑚𝑖=1 Δ𝑌𝑖,𝑘

(𝑑)
 (𝑑 = 1,2).  



 
Afanasyeva L., Tkachenko A. 
STABILITY OF DISCRETE MULTI_SERVER QUEUEING SYSTEMS 

RT&A, No 1 (48) 
Volume 13, March 2018  

69 

Lemma 4  Let conditions of Lemma 3 take place. Then the traffic rate of the system defined by (10) 

is equal to  

 𝜌(𝑑) =
𝐄Δ𝑋,𝑘
(𝑑)

𝐄Δ𝑌,𝑘
(𝑑) ,    (𝑑 = 1,2). 

  

 The proof follows from renewal theory and SLLN. 

 

6  Instability results for 𝜌(𝑑) ≥ 1 
 

 Let 𝑄(𝑑)(𝑡) be the number of customers in the system with the service discipline 𝐷𝑑 

(including customers in the servers) at instant 𝑡 (𝑑 = 1,2).  

Theorem 1  Let conditions of Lemma 3 take place. Then   

    • 𝑄(𝑑)(𝑡)
𝑡→∞
→  ∞ w.p.1 if 𝜌(𝑑) > 1,  

    • 𝑄(𝑑)(𝑡)
𝑃
→∞ if 𝜌(𝑑) = 1.  

 Here 𝜌(𝑑) is defined by (10) (𝑑 = 1,2).  

 Proof. Denote by �̃�𝑖
(𝑑)
(𝑡) the number of customers really served by the 𝑖th server during 

the interval [0, 𝑡] and �̃�(𝑑)(𝑡) = ∑𝑚𝑖=1 �̃�𝑖
(𝑑)
(𝑡), Δ̃𝑌,𝑛

(𝑑)
= �̃�(𝑑)(𝑇𝑛

(𝑑)
) − �̃�(𝑑)(𝑇𝑛−1

(𝑑)
). Note that �̃�𝑖

(𝑑)
(𝑡) may 

contain idle periods, so it is not the same like 𝑌𝑖
(𝑑)
(𝑡). Employing the approach proposed in [5] and 

developed in [16] we can choose service times from the collection {{𝜂𝑖,𝑛
(𝑗)
}𝑛=1
∞ }𝑗≥1 by such a way that  

 �̃�(𝑑)(𝑡) ≤ 𝑌(𝑑)(𝑡)    w. p. 1, (22) 

  

 Δ̃𝑌,𝑛
(𝑑)
≤ Δ𝑌,𝑛

(𝑑)
    w. p. 1. (23) 

 Consider the case 𝜌(𝑑) > 1. Taking into account (22) we have  

 𝑄(𝑑)(𝑡) = 𝑄(𝑑)(0) − �̃�(𝑑)(𝑡) + 𝑋(𝑡) ≥ 𝑄(𝑑)(0) − 𝑌(𝑑)(𝑡) + 𝑋(𝑡), 𝑡 ≥ 0  𝑤. 𝑝. 1. (24) 

 From (10) and (24) we obtain  

 lim
𝑡→∞

𝑄(𝑑)(𝑡)

𝑡
≥ 𝜆𝑋 − 𝜆𝑌(𝑑) > 0, 𝑤. 𝑝. 1, 

which concludes the first statement of this Theorem. 

Let 𝜌(𝑑) = 1. Consider the embedded process 𝑄𝑛
(𝑑)
= 𝑄(𝑑)(𝑇𝑛

(𝑑)
) and denote 𝑍𝑘

(𝑑)
=

∑𝑘𝑗=1 (Δ𝑋,𝑗
(𝑑)
− Δ𝑌,𝑗

(𝑑)
) (𝑍0

(𝑑)
= 0). We define the auxiliary sequence {�̂�𝑘

(𝑑)
}𝑘≥0 by the recursive relation  

 �̂�𝑘
(𝑑)
= max[0, �̂�𝑘−1

(𝑑)
+ Δ𝑋,𝑘

(𝑑)
− Δ𝑌,𝑘

(𝑑)
], �̂�0

(𝑑)
= 0. 

 Since 𝑄𝑘
(𝑑)
= 𝑄𝑘−1

(𝑑)
+ Δ𝑋,𝑘

(𝑑)
− Δ̃𝑌,𝑘

(𝑑)
 from (23) we get 𝑄𝑘

(𝑑)
≥ �̂�𝑘

(𝑑)
 w.p.1 and in distribution the following 

equality is fulfilled [20].  

 �̂�𝑘
(𝑑)
= max
0≤𝑗≤𝑘

𝑍𝑗
(𝑑)
. 

 If 𝜌(𝑑) = 1, it follows from Lemma 4 that 𝐄Δ𝑋,𝑗
(𝑑)
= 𝐄Δ𝑌,𝑗

(𝑑)
. Therefore, {𝑍𝑘

(𝑑)
}𝑘≥0 is a random walk with 

zero drift. Hence, except when Δ𝑋,𝑗
(𝑑)
= Δ𝑌,𝑗

(𝑑)
= 𝑐 w.p.1 (𝑐 is a constant) max0≤𝑗≤𝑘𝑍𝑗

(𝑑) 𝑃
→∞ (see, e.g. 

[11]). It means that 𝑄𝑘
(𝑑) 𝑃
→∞ and the second statement of this Theorem holds.+ 

 

 

 

7  Stability theorem for the preemptive repeat different service discipline 
 

In this section we consider the preemptive repeat different service discipline (𝐷1). So index 

(1) will be omitted during the rest of the section, if it does not make confusion. We start with 

definitions.  

Definition 2 The process {𝑄(𝑡), 𝑡 ≥ 0} is called stochastically bounded if for any 𝜀 > 0 there exists 

𝑦 < ∞ such that for any 𝑡 > 0  
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 𝐏{𝑄(𝑡) < 𝑦} > 1 − 𝜀. 

 

 Otherwise we say that 𝑄(𝑡) is stochastically unbounded. This definition is close to the 

notion of tightness [23].  

Definition 3 Process {𝑄(𝑡), 𝑡 ≥ 0} is ergodic one if for any initial state 𝑄(0) there exists  
 lim

𝑡→∞
𝐏{𝑄(𝑡) ≤ 𝑥} = 𝐹(𝑥), 

where 𝐹(𝑥) is a distribution function and it does not depend on 𝑄(0).  

 

Denote 𝑄𝑛 = 𝑄(𝑇𝑛
(1)
). Introduce the process  

 𝑥𝑛 = (
(𝑄𝑛 , 𝑒1(𝑛), … , 𝑒𝑚(𝑛))    if    0 < 𝑄𝑛 < 𝑚,
𝑄𝑛    if    𝑄𝑛 = 0    or    𝑄𝑛 ≥ 𝑚,

𝑛 ≥ 0, 

 where 𝑒𝑖(𝑛) = 1 if there is a customer in the 𝑖th server at time 𝑇𝑛
(1)

 and 𝑒𝑖(𝑛) = 0 otherwise. In 

view of interruption discipline 𝐷1 and properties of the moments of synchronization {𝑇𝑛
(1)
}𝑛≥1 the 

process {𝑥𝑛}𝑛≥1 is a Markov chain with countable set of states. 

 

Theorem 2  Let conditions of Lemma 3 take place and 𝐏(𝑄(0) < ∞) = 1. If 𝜌(1) < 1, then 𝑄(𝑡) is 

stochastically bounded. If, in addition, {𝑥𝑛}𝑛≥1 is an irreducible and aperiodic Markov chain, then 𝑄(𝑡) is 

ergodic.  

 Proof. Consider the 𝑖th server. We assume that service times of the customers processing 

during the 𝑘th available period [𝑠𝑖,𝑘
(1)
, 𝑠𝑖,𝑘
(2)
] (𝑘 = 1,2, …) are consequently selected from the sequence 

of iid random variables {𝜂𝑖,𝑛
(𝑘)
}𝑛≥1. Let us recall that process 𝑌𝑖(𝑡) is defined by the same sequence on 

the 𝑘th cycle with the help of (4). Introduce the event  

 𝐴𝑛 = {𝑄(𝑡) ≥ 𝑚forall𝑡 ∈ [𝑇𝑛−1
(1)
, 𝑇𝑛
(1)
]}. (25) 

 Then  

 Δ𝑌,𝑛𝐈(𝐴𝑛) = Δ̃𝑌,𝑛𝐈(𝐴𝑛)    w. p. 1, (26) 

 where 𝐈(𝐴) is an indicator of the event 𝐴. By 𝔎 denote the set of states for {𝑥𝑛}𝑛≥0. Let 𝔎0 be the set 

of unessential states and 𝔎𝔩 (𝑙 = 1, 𝑟) irreducible classes of communicating states. Since 𝜌(1) < 1 

from Lemma 4 we have 𝐄Δ𝑋,1 < 𝐄Δ𝑌,1. It yields that there exists 𝑘0 such that for any essential state 

𝑥 ∈ 𝔎𝔩 one can find 𝑛(𝑥) so that  

 𝐏(𝑄𝑛(𝑥) < 𝑚 + 𝑘0|𝑄0 = 𝑥) > 0. (27) 

 It provides the finiteness of the number of classes 𝑟, so 𝔎 = ⋃𝑟𝑙=0 𝔎𝔩. Consider the first class 𝔎1. 

Assume that it is aperiodic. Then for any 𝑥 ∈ 𝔎1, 𝑦 ∈ 𝔎1 there exists  

 lim
𝑛→∞

𝐏(𝑥𝑛 = 𝑥|𝑥0 = 𝑦) = 𝜋𝑥
(1)
. (28) 

 If  

 ∑𝑥∈𝔎1 𝜋𝑥
(1)
= 1 (29) 

 then 𝑄𝑛 is stochastically bounded under condition that 𝑄0 ∈ 𝔎1. Let us show that (29) is fulfilled 

employing Foster’s criterion [21]. For any 𝑥 ∈ 𝔎1 we define the test function 𝑓(𝑥) = 𝑞, where 𝑞 is 

the first coordinate of 𝑥. It is sufficient to show that for some 𝜀1 > 0 there exists 𝑀𝜀1  such that  

 𝐄(𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)|𝑥𝑛−1 = 𝑥) < −𝜀1 (30) 

 for all 𝑥 ∈ 𝔎1 with 𝑞 > 𝑀𝜀1 . Taking into account (??) we get  

 
𝑄𝑛 = 𝑄𝑛−1 + Δ𝑛

𝑋 − Δ̃𝑛
𝑌 = 𝑄𝑛−1 + Δ𝑛

𝑋 − Δ̃𝑛
𝑌 𝐈(𝐴𝑛) − Δ̃𝑛

𝑌 𝐈(𝐴𝑛) ≤

≤ 𝑄𝑛−1 + Δ𝑛
𝑋 − Δ𝑛

𝑌 𝐈(𝐴𝑛) = 𝑄𝑛−1 + Δ𝑛
𝑋 − Δ𝑛

𝑌 + Δ𝑛
𝑌 𝐈(𝐴𝑛).

 (31) 

 From the assumption 𝜌(1) < 1 we have  

 𝐸Δ𝑋,𝑘 − 𝐸Δ𝑌,𝑘 = −𝛿 < 0. (32) 

 Note, firstly, that for any 𝜀 > 0 there exists 𝑀𝜀 such that 𝐏(�̅�𝑛) < 𝜀 if 𝑄𝑛−1 > 𝑀𝜀 . Therefore, in view 

of integrability of random variables Δ𝑌,𝑛 one may choose 𝑀𝛿 ≥ 𝑚 such that 𝐄Δ𝑌,𝑛𝐈(𝐴𝑛) <
𝛿

2
 if 𝑄𝑛−1 >

𝑀𝛿 . Thus, we obtain from (31) and (32)  

 𝐄(𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)|𝑥𝑛−1 = 𝑥) < 𝐸Δ𝑋,𝑛 − 𝐸Δ𝑌,𝑛 +
𝛿

2
= −

𝛿

2
 

if 𝑥𝑛−1 > 𝑀𝛿 that proves (30). 
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Let 𝔎1 be a periodic class with a period ℎ. Then we consider a sequence {�̃�𝑛
(𝑙)
}𝑛≥1 (𝑙 =

0, ℎ − 1), where �̃�𝑛
(𝑙)
= 𝑥𝑛ℎ+𝑙. It is well-known [11] that Markov chain {�̃�𝑛

(𝑙)
}𝑛≥1 is irreducible and 

aperiodic. Arguing as above we prove that �̃�𝑛
(𝑙)
= 𝑄𝑛ℎ+𝑙 is stochastically bounded as 𝑛 → ∞. 

Stochastic boundedness of 𝑄𝑛 for initial state 𝑥0 = (𝑄0, 𝑒1(0), … , 𝑒𝑚(0) from other classes 𝔎𝔦 

(𝑖 = 2, 𝑟) can be similarly proved. Since the number of classes 𝑟 is finite we conclude that 𝑄𝑛 is 

stochastically bounded as 𝑛 → ∞ for any initial state of Markov chain 𝑥0 ∈ 𝔎. Hence, the process 

𝑄(𝑡) is also stochastically bounded. 

To prove the second statement of the Theorem we have to assume that Markov chain 

{𝑥𝑛}𝑛≥1 is an irreducible and aperiodic. The set of states 𝔎 of {𝑥𝑛}𝑛≥1 may have some unessential 

states but all the essential states organize the unique class 𝔎1 of communicating states. It follows 

from the first statement of the Theorem that there exists the limit (28), where 𝜋𝑥
(1)
> 0 for 𝑥 ∈ 𝔎1 

and (29) is fulfilled, i.e. the Markov chain {𝑥𝑛}𝑛≥1 is ergodic. Let us take a state 𝑗0 ∈ 𝔎1, 𝑗0 ≥ 𝑚 and 

assume that 𝑥0 = 𝑗0. Denote 𝜈𝑗0 = min{𝑛 > 0: 𝑥𝑛 = 𝑗0}, so that 𝜈𝑗0  is the time of the return to the 

state 𝑗0. Since Markov chain {𝑥𝑛}𝑛≥1 is ergodic, it follows that 𝐄𝜈𝑗0 < ∞. Now consider 𝑄(𝑡). 

Subsequence {𝑇𝑛𝑘
(1)
}𝑘≥0 of {𝑇𝑛

(1)
}𝑛≥0 such that 𝑄(𝑇𝑛𝑘

(1)
) = 𝑗0 is a sequence of regeneration points for 

𝑄(𝑡). So 𝑄(𝑡) is a regenerative process. Let �̃�𝑗0  be the time of return to the state 𝑗0 for 𝑄(𝑡), i.e.  

 �̃�𝑗0 = min{𝑡 > 0: 𝑄(𝑡) = 𝑗0}, 

under assumption that 𝑄(0) = 𝑗0. Since 𝐄(𝑇𝑛
(1)
− 𝑇𝑛−1

(1)
) = 𝐄𝑇1

(1)
< ∞ (Lemma 2) from Wald’s 

identity we have 𝐄�̃�𝑗0 = 𝐄𝑇1
(1)
𝐄𝜈𝑗0 < ∞. Also, from any initial state the process 𝑄(𝑡) gets into 𝑗0 in 

finite time w.p.1. We remark that condition (11) holds for �̃�𝑗0 . Therefore, Smith’s theorem [25] will 

conclude the proof. + 

 

Remark 1 Let us note that in [22] the sufficient condition of stability for a system with a recurrent 

input flow, identically distributed service times (𝑏𝑖 = 𝑏, 𝑖 = 1,𝑚) and preemptive repeat different service 

discipline was obtained. This condition in our term has a form  

 𝜆𝑋 < ∑
𝑚
𝑖=1

𝑎𝑖
(2)
−𝑏

𝑎𝑖𝑏
. (33) 

 One can easily see that (33) is a corollary of the condition 𝜌(1) < 1 where 𝜌(1) is defined by (10). 

Indeed, taking into account the well-known inequality (see, e.g. [11])  

 𝐻𝑖(𝑡) ≥
𝑡

𝑏𝑖
− 1,    𝑡 ≥ 0 

we get from (10) and Theorem 2 the following sufficient condition of stability  

 𝜆𝑋 < ∑
𝑚
𝑖=1

𝑎𝑖
(2)
−𝑏𝑖

𝑎𝑖𝑏𝑖
. 

 This condition is the same as (33) when 𝑏𝑖 = 𝑏 (𝑖 = 1,𝑚).  

 

8  Stability theorem for the preemptive resume service discipline 
 

 We now touch upon the stability of the model with preemptive resume service discipline 

(𝐷2). As opposed to queues with preemptive repeat different interruptions, interrupted service 

continuous when the server returns from a blocked period. Since in this section we consider 

discipline 𝐷2 only, index (2) will be omitted when it will not lead to misunderstanding. 

Put 𝑄𝑛 = 𝑄(𝑇𝑛
(2)
). Let 𝑒𝑖(𝑛) = 1 if there is a customer in the 𝑖th server at time 𝑇𝑛

(2)
 and 

𝑒𝑖(𝑛) = 0 otherwise. Note that under discipline 𝐷2 the process (𝑄𝑛 , 𝑒1(𝑛), … , 𝑒𝑚(𝑛)) is not a Markov 

chain. So we will use another approach, which is based on Theorem 1 from [3]. 

Denote by 𝑡𝑛 (𝑛 = 1,2, …) the arrival instant of the 𝑛th customer at the system. Let 𝑞𝑖,𝑛 be 

the number of customers at moment 𝑡𝑛, which will be served by the 𝑖th server, 𝑞𝑛 = ∑
𝑚
𝑖=1 𝑞𝑖,𝑛 =

𝑄(𝑡𝑛). As before, �̃�𝑖(𝑡) is the number of customers that had been served by the 𝑖th server during 

time interval [0, 𝑡].  

Lemma 5  Assume that  

 𝐄𝜂𝑖,1
2 < ∞, 𝐄𝑢𝑖,1

2 < ∞. (34) 
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 If 𝑞𝑖,𝑛
𝑃
→∞, then for any 𝜀 > 0 there exists 𝑛𝜀, such that for 𝑛 > 𝑛𝜀  

 𝐄(�̃�𝑖(𝑡𝑛) − �̃�𝑖(𝑡𝑛−1)) ≥
𝛽𝑖

𝜆𝑋
− 𝜀, (35) 

 where 𝛽𝑖 =
𝑎𝑖
(2)

𝑎𝑖𝑏𝑖
.  

 Proof. This lemma can be proved similarly to Lemma 2 in [3]. The only difference is that in 

[3] system with reliable servers was considered. Therefore 𝑌𝑖(𝑡) was a renewal process 

corresponding to {𝜂𝑖,𝑛}𝑛=1
∞  of i.i.d random variables. The proof of Lemma 2 in [3] was based on 

Blackwell’s theorem for 𝐄𝑌𝑖(𝑡), i.e. on the following convergence for any ℎ > 0  

 𝐄(𝑌𝑖(𝑡 + ℎ) − 𝑌𝑖(𝑡))
𝑡→∞
→  

ℎ

𝑏𝑖
. (36) 

 For the system under consideration time intervals between jumps of the process 𝑌𝑖(𝑡) generally 

speaking are dependent random variables. Therefore, to apply Lemma 2 from [3] we have to 

obtain an analog of (36) in our case. Let  

 𝐻𝑖(𝑡) = 𝐄𝐾𝑖,1(𝑡),    𝜁𝑖(𝑡) = 𝑚𝑎𝑥(0, 𝑡 − 𝑠𝑁𝑖(𝑡)
(1)

+ 1),    𝑉𝑖(𝑡) = ∑
𝑁𝑖(𝑡)
𝑗=1 𝑢𝑖,𝑗

(2)
+ 𝜁𝑖(𝑡), 

where 𝑁𝑖(𝑡) and 𝐾𝑖,1(𝑡) are defined in Section 4. Then from (5) we get 𝑈𝑖(𝑡) = 𝐄𝑌𝑖(𝑡) = 𝐄𝐻𝑖(𝑉𝑖(𝑡)). 

Therefore we need to show that for any ℎ > 0  

 𝑈𝑖(𝑡 + ℎ) − 𝑈𝑖(𝑡)
𝑡→∞
→  𝛽𝑖ℎ. (37) 

 Our proof is based on well-known expansion for renewal functions (see, e.g. [6]). Namely, under 

condition (34)  

 
𝐻𝑖(𝑡) =

𝑡

𝑏𝑖
+ 𝑐𝑖,1 + 𝑅𝑖(𝑡),

𝐄𝑁𝑖(𝑡) =
𝑡

𝑎𝑖
+ 𝑐𝑖,2 + 𝐷𝑖(𝑡),

 (38) 

 where 𝑐𝑖,1 and 𝑐𝑖,2 are constants and 𝑅𝑖(𝑡) → 0, 𝐷𝑖(𝑡) → 0 as 𝑡 → ∞. Moreover,  

 lim
𝑡→∞

𝐄𝜁𝑖(𝑡) =
𝐄𝑢𝑖,1
2

2𝑎𝑖
. (39) 

 From decomposition (38) we have  

 

𝑈𝑖(𝑡) = 𝐄𝐄(𝐻𝑖(𝑉𝑖(𝑡)|𝑉𝑖(𝑡))) =
𝐄𝑉𝑖(𝑡)

𝑏𝑖
+ 𝑐𝑖,1 + 𝐄𝑅𝑖(𝑉𝑖(𝑡)),

𝐄𝑉𝑖(𝑡) =
𝑎𝑖
(2)

𝑎𝑖
𝑡 + 𝑎𝑖

(2)
𝑐𝑖,2 + 𝑎𝑖

(2)
𝐷𝑖(𝑡) + 𝐄𝜁𝑖(𝑡).

 

 Therefore,  

 𝑈𝑖(𝑡 + ℎ) − 𝑈𝑖(𝑡) = 𝛽𝑖ℎ +
𝑎𝑖
(2)

𝑏𝑖
(𝐷𝑖(𝑡 + ℎ) − 𝐷𝑖(𝑡)) + 𝑏𝑖

−1(𝐄𝜁𝑖(𝑡 + ℎ) − 𝐄𝜁𝑖(𝑡)) + 

 

 +𝐄𝑅𝑖(𝑉𝑖(𝑡 + ℎ)) − 𝐄𝑅𝑖(𝑉𝑖(𝑡)). (40) 

 Since lim𝑡→∞𝐄𝑅𝑖(𝑉𝑖(𝑡)) = 0 we get (37) from (39) and (40). 

The rest of the proof of the Lemma is the same as the proof of Lemma 2 in [3]. It is based 

on limit theorems for renewal processes and some estimations that take place in our case. + 

For the ergodic theorem we will need the following assumptions.  

Condition 2  Let for some server 𝑖 the following inequalities be fulfilled   

    • 𝐏{𝑢𝑖,1
(2)
≥ 𝑥} > 0 for any 𝑥 < ∞;  

    • 𝐏{𝜉1 = 0} + 𝐏{𝜉1 = 1, 𝑡1 + 𝜂𝑖,1 + 𝑙 < 𝜏1} > 0, where 𝑡1 is a moment of the first customer 

arrival and 𝑙 = min{𝑗 ≥ 1: 𝐏{𝑢𝑖,1
(1)
= 𝑗} > 0}.  

  

 

 

Theorem 3  Let Conditions 1, 2 and relations (1), (2), (34) be fulfilled. Then the process 𝑄(𝑡) is 

ergodic if and only if 𝜌(2) < 1.  

 Proof. In view of Theorem 1 we need to consider the case 𝜌(2) < 1 only. Note that 𝑄(𝑡) and 

𝑄𝑛 are regenerative processes and moments of regeneration are the subsequence {𝑇𝑛𝑘
(2)
}𝑘≥0 of the 

sequence {𝑇𝑛
(2)
}𝑛≥0 such that 𝑄(𝑇𝑛𝑘

(2)
) = 𝑄𝑛𝑘 = 0. Let 𝑦𝑖(𝑛) be the residual service time of a customer 

in the 𝑖th server at moment 𝑇𝑛
(2)

 if there is a customer (𝑦𝑖(𝑛) = 0 if there is no customer). Under 
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Condition 2 the process 𝑄𝑛 has the following properties:   

    • 𝐏{𝑄𝑛+1 = 0|𝑄𝑛 = 0} > 0;  

    • for any 𝑗 > 0 and 𝑥 > 0 there exists 𝑚𝑗(𝑥) > 0 such that 𝐏{𝑄𝑛+𝑚𝑗(𝑥) = 0|𝑄𝑛 ≤ 𝑗, 𝑦𝑖(𝑛) ≤

𝑥, 𝑖 = 1,𝑚} > 0.  

 Under this conditions the circumstances of Theorem 1 from [3] are fulfilled, so 𝑄(𝑡) is 

either ergodic or 𝑄(𝑡)
𝑃
→∞. Assume that 𝜌(2) < 1 and 𝑄(𝑡)

𝑃
→∞. Then  

 𝑞𝑛 = ∑
𝑚
𝑖=1 𝑞𝑖,𝑛

𝑃
→∞    and    𝑞𝑖,𝑛

𝑃
→∞ (41) 

 for all 𝑖 = 1,𝑚 (see, e.g. [18]). From Lemma 5 we get that for any 𝜀 > 0 there exists 𝑛𝜀 such that for 

any 𝑛 > 𝑛𝜀  

 𝐄(�̃�(𝑡𝑛) − �̃�(𝑡𝑛−1)) ≥
𝛽

𝜆𝑋
− 𝜀 =

1

𝜌(2)
− 𝜀,    where    �̃�(𝑡) = ∑𝑚𝑖=1 �̃�𝑖(𝑡), 𝛽 = ∑

𝑚
𝑖=1 𝛽𝑖 . 

Therefore,  

 𝐄𝑞𝑛+1 = 𝐄𝑞𝑛 + 1 − 𝐄(�̃�(𝑡𝑛) − �̃�(𝑡𝑛−1) ≤ 𝐄𝑞𝑛 −
1−𝜌(2)

𝜌(2)
+ 𝜀 

and  
 𝐄𝑞𝑛+1 ≤ 𝐄𝑞𝑛 

if 𝜀 <
1−𝜌(2)

𝜌(2)
 and 𝑛 > 𝑛𝜀. It contradicts (41). Thus, 𝑄(𝑡) is ergodic. + 

Let us note that if all servers have the same distribution function of service times, then 

condition (34) in Theorem 3 can be omitted. 

 

Remark 2 So far we consider zero-delayed regenerative flows 𝑋(𝑡) and 𝑌𝑖(𝑡) assuming that  

 𝐏(𝜃0 = 0) = 𝐏(𝑠𝑖,0
(2)
= 0) = 1, (𝑖 = 1,𝑚). 

Let this condition be not fulfilled and we have delayed regenerative flows. Note that results of 

Lemmas 1 — 5 on which our proofs of Theorems 2 and 3 are based hold for delayed regenerative 

flows. We only have to claim  

 𝐏(𝜃0 < ∞) = 𝐏(𝑠𝑖,0
(2)
< ∞) = 1, (𝑖 = 1,𝑚). 

 

 

9  Conclusion 
 

 This paper we are focused on the discrete-time multichannel queueing system with 

heterogeneous servers that may be unreliable and regenerative input flow. We considered 

preemptive repeat different service disciplines as well as preemptive resume service disciplines. 

Exploiting renewal technique we proved instability theorem for queue-length process when traffic 

coefficient greater or equal than one (Theorem 1). Under some assumptions, based on the 

regenerative structure of the queue-length process, we established stability theorem, when traffic 

coefficient less than one (Theorem 2 for preemptive repeat different service disciplines and 

Theorem 3 for preemptive resume service disciplines). Note that traffic coefficient for preemptive 

repeat different service disciplines cannot be expressed in terms of moments of service and 

interruption processes. 

There are many further research topics worth conducting. First, the conjecture that 

diffusion scaled process 𝑄(𝑡) converges to the Brownian motion (diffusion process) when traffic 

coefficient greater (less) than one remains to be proved for multichannel systems (see [2] for single 

server case). Second, steady-state distribution of scaled queue-length process is not investigated for 

multichannel systems. Third, the large deviation problem is also relevant for this system. 

 This paper is partially supported by grant of Russian Foundation For Basic Research 17-

01-00468. 
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