
 
Zhulenev S. 
OPTIMAL SHOPING PROBLEM,, P2 

RT&A, No 2 (49) 
Volume 13, June 2018  

79 

 

On another approach to the analysis of the known problem 

of optimal stopping, p.2 
  

S.V. Zhulenev 
 • 

 Lomonosov Moscow State University  

 mailto: szhulenev@yandex.ru  

 

  

Abstract 

 
Part 2 implements the idea mentioned earlier in part 1 in the case of the small and odd 

horizon n = 5. Again, the desired relationship between the objective function of the 

roblem and the optimal moment of stopping time was very interesting and simple.  
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1  Introduction 
 

In part 1 of the work it was said that for any particular 𝑛 there is a connection between the 

form of the function 𝑓, i.e. the surface 𝑦 = 𝑓(𝑠, 𝑡), defined in the region 𝐷 of the integer lattice of the 

plane (𝑠, 𝑡), and the optimal stopping moment corresponding to it is an integer 𝑘, 0 ≤ 𝑘 ≤ 𝑛, in its 

a simplified analogue of the known optimal stopping problem (look [1]):  

 
 𝑉 = max

0≤𝑘≤𝑛
𝑉𝑘,      𝑉𝑘 = 𝐸𝑓(𝑆𝑘 , 𝑀𝑛). 

 

Here this is shown in the special case of 𝑛 = 5, 𝑝 = 𝑞, under the assumption that 𝑓(𝑠, 𝑡) > 0 at 

∀  (𝑠, 𝑡) ∈ 𝐷, ie discharged condition for 𝑓 to guarantee the optimality of any integer 𝑘, 0 ≤ 𝑘 ≤ 5. 

Moreover, the change of the specified surface depending on the change of the optimal 𝑘 is quite 

eloquent and this is also illustrated at the end of the article.  

 

2  Preliminary observations 
 

For recording the desired conditions sufficient to write all 6 expressions 𝑉𝑘 , 0 ≤ 𝑘 ≤ 5. 

Let’s use the formula for the conditional mathematical expectation  

 

 𝑉𝑘 = ∑  𝑘
𝑙=0 𝑓(2𝑙 − 𝑘, 𝑡)𝑃(𝑆𝑘 = 2𝑙 − 𝑘,𝑀𝑛 = 𝑡). 

 

But the event (𝑆𝑘 = 2𝑙 − 𝑘,𝑀𝑛 = 𝑡) in the General case when 0 < 𝑘 < 𝑛 record is not easy. And for 

extreme 𝑘, i.e. formulas for 𝑉0 and 𝑉𝑛 are easy to write:  

 
 𝑛 = 2𝑚 + 1:  2𝑛𝑉0 = ∑  𝑛

𝑡=0 𝐶𝑛
𝑚+𝑢+1𝑓(0, 𝑡);       𝑛 = 2𝑚:  2𝑛𝑉0 = ∑  𝑛

𝑡=0 𝐶𝑛
𝑚+𝑣𝑓(0, 𝑡), 

 

where 𝑢 = [𝑡/2], 𝑣 = [(𝑡 + 1)/2] (these formulas are given in p.1), and  
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 2𝑛𝑉𝑛 = ∑  𝑛
𝑙=0 ∑  𝑙

𝑡=(2𝑙−𝑛)+ 𝑓(2𝑙 − 𝑛, 𝑡)[𝐶𝑛
𝑛−𝑙+𝑡 − 𝐶𝑛

𝑛−𝑙+𝑡+1]. 

 

In the case of 𝑛 = 5, this can be done easily for any 𝑘, using the particle motion tree or table of part 

1. In addition, the expressions 𝑉𝑘 are written here for 1 ≤ 𝑘 ≤ 4, because for 𝑘 = 0 or 𝑛 they are 

higher:  
 𝑉1 = 2

−5{[𝑓(−1,0)(𝐶4
4 + 𝐶4

3 + (𝐶4
2 − 𝐶4

4)) + 𝑓(−1,1)(𝐶4
4 + (𝐶4

3 − 𝐶4
4)) 

 
 +𝑓(−1,2) + 𝑓(−1,3)] + [𝑓(1,1)(𝐶4

4 + (𝐶4
3 − 𝐶4

4) + (𝐶4
2 − 𝐶4

3)) 

 
 +(𝑓(1,2) + 𝑓(1,3))((𝐶4

4 + (𝐶4
3 − 𝐶4

4)) + 𝑓(1,4) + 𝑓(1,5)]}, 

 
 𝑉2 = 2−5{[𝑓(−2,0)(𝐶3

3 + 𝐶3
2 + 𝐶3

1) + 𝑓(−2,1)] + [𝑓(0,0)(𝐶3
3 + (𝐶3

2 − 𝐶3
3)) 

 
 +𝑓(0,1)(𝐶3

3 + 𝐶3
2 + (𝐶3

2 − 𝐶3
3) + 𝐶3

3 + (𝐶3
2 − 𝐶3

3)) + (𝑓(0,2) + 𝑓(0,3))𝐶2
1] 

 
 +[(𝑓(2,2) + 𝑓(2,3))(𝐶3

3 + (𝐶3
2 − 𝐶3

3)) + 𝑓(2,4) + 𝑓(2,5)]}, 

 
 𝑉3 = 2−5{𝑓(−3,0)22 + [𝑓(−1,0)(𝐶3

2 − 𝐶3
3)(𝐶2

2 + 𝐶2
1) + 𝑓(−1,1)((𝐶3

2 − 𝐶3
3) 

 
 +22)] + [𝑓(1,1)(𝐶3

2 − 𝐶3
3)(𝐶2

2 + (𝐶2
1 − 𝐶2

2)) + 𝑓(1,2)((𝐶2
2 + 𝐶2

1) + 

 
 (𝐶3

2 − 𝐶3
3)) + 𝑓(1,3)𝐶3

1] + [𝑓(3,3)(𝐶2
2 + (𝐶2

1 − 𝐶2
2)) + 𝑓(3,4) + 𝑓(3,5)]}, 

 
 𝑉4 = 2

−5{𝑓(−4,0)2 + [𝑓(−2,0)(𝐶4
3 − 𝐶4

4)2 + 𝑓(−2,1)2] + 

 
 +[𝑓(0,0)2 + 𝑓(0,1)((𝐶4

3 − 𝐶4
4)2 + (𝐶4

2 − 𝐶4
3)) + 𝑓(0,2)2] 

 
 +[𝑓(2,2)(𝐶4

3 − 𝐶4
4) + 𝑓(2,3)((𝐶4

3 − 𝐶4
4) + 2)] + 𝑓(4,4) + 𝑓(4,5)}, 

 

But each of the 6 representations of 𝑉𝑘 for our purposes is symbolic let us present below as a set of 

integer nodes lattice plane (3 diagrams indicate 2 of these sets).  
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It is convenient first of all because such representation written out expressions equivalent, 

but much easier and clearer. And, means, will help deal with optimality. Take, for example, the 

bold nodes-the points of the first chart, representing 𝑉1, and of them a node (𝑠, 𝑡) = (1,3), with 

number 4 next for example. The meaning of this representation is simple: in the expression for 𝑉1 

there is a summand 4𝑓(1,3). Other nodes with such or other numbers next to each other are 

associated with expressions for 𝑉𝑘 similarly.  

 Remarks. 1. As it is easy to see, for any 𝑘 the total number of trajectories defining price 

value 𝑉𝑘 and passing through nodes of level 𝑡, 0 ≤ 𝑡 ≤ 5 (in number from 1 to 3), equals to the 

value of  

 
 𝐶5
𝑚,          𝑚 = [(5 − 𝑡)/2].  

 

 In other words, the numbers 10, 5, 1 are given for the levels 0,1;   2,3;   4,5. This fact can be 

be generalized to any horizon of 𝑛 using the table part 1. But here it just flows out of expressions 

for 𝑉𝑘 above.  

2. A total of 6 nodes for all sets of nodes "sweep" region 𝐷 definitions of the function 𝑓(𝑠, 𝑡) 

from part 1, which is clearly seen in the diagrams.  

 

3  Optimality condition 
 

Of course, the time of a stop of 𝜏 = 𝑘 is optimal if in some conditions on 𝑓  

 
 𝑉𝑘 > max𝑙≠𝑘𝑉𝑙 .  

 

 To justify 6 of these statements, we present the prices in the form of sums  

 

 

25𝑉5 = 𝑉50 + 𝑉51 + 𝑉52 + 𝑉53 + 𝑉54 + 𝑉55
25𝑉4 = 𝑉40 + 𝑉41 + 𝑉42 + 𝑉43 + 𝑉44 + 𝑉45
25𝑉3 = 𝑉30 + 𝑉31 + 𝑉32 + 𝑉33 + 𝑉34 + 𝑉35
25𝑉2 = 𝑉20 + 𝑉21 + 𝑉22 + 𝑉23 + 𝑉24 + 𝑉25
25𝑉1 = 𝑉10 + 𝑉11 + 𝑉12 + 𝑉13 + 𝑉14 + 𝑉15
25𝑉0 = 𝑉00 + 𝑉01 + 𝑉02 + 𝑉03 + 𝑉04 + 𝑉05

                                  (1) 

 

where 𝑉𝑙𝑡 is the sum of functions 𝑓(2𝑠 − 𝑙, 𝑡) with the coefficients from the expression for 25𝑉𝑙 for 

all 𝑠 corresponding to a given 𝑡. In this case, all 36 items 𝑉𝑙𝑡 is positive as above, we we assumed 

that the function 𝑓(𝑠, 𝑡) is positive. The matrix 𝑉 = (𝑉𝑙𝑡) of these terms given below and divided 

into 2 parts forcedly 
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𝑙\𝑡 0 1 

5 𝑓(−5,0) + 4𝑓(−3,0) + 5𝑓(−1,0) 𝑓(−3,1) + 4𝑓(−1,1) + 5𝑓(1,1) 

4 2𝑓(−4,0) + 6𝑓(−2,0) + 2𝑓(0,0) 2𝑓(−2,1) + 8𝑓(0,1) 

3 4𝑓(−3,0) + 6𝑓(−1,0) 6𝑓(−1,1) + 4𝑓(1,1) 

2 7𝑓(−2,0) + 3𝑓(0,0) 𝑓(−2,1) + 9𝑓(0,1) 

1 10𝑓(−1,0) 4𝑓(−1,1) + 6𝑓(1,1) 

0 10𝑓(0,0) 10𝑓(0,1) 

 

𝑙\𝑡 2 3 4 5 

5 𝑓(−1,2) + 4𝑓(1,2) 𝑓(1,3) + 4𝑓(3,3) 𝑓(3,4) 𝑓(5,5) 

4 2𝑓(0,2) + 3𝑓(2,2) 5𝑓(2,3) 𝑓(4,4) 𝑓(4,5) 

3 5𝑓(1,2) 3𝑓(1,3) + 2𝑓(3,3) 𝑓(3,4) 𝑓(3,5) 

2 2𝑓(0,2) + 3𝑓(2,2) 2𝑓(0,3) + 3𝑓(2,3) 𝑓(2,4) 𝑓(2,5) 

1 𝑓(−1,2) + 4𝑓(1,2) 𝑓(−1,3) + 4𝑓(1,3) 𝑓(1,4) 𝑓(1,5) 

0 5𝑓(0,2) 5𝑓(0,3) 𝑓(0,4) 𝑓(0,5) 

 

(this matrix is easier to obtain using 3 diagrams with nodes higher than the expressions for 𝑣𝑙) we 

will use this matrix to determine the relationship between the surface type 𝑦 = 𝑓(𝑠, 𝑡) and the 

optimality the stop point of 𝑘. Proof the following lemmas say about this. In them for write 

reductions are always assumed to be (𝑠, 𝑡) ∈ 𝐷. 

Everywhere below, the function 𝑓(𝑠, 𝑡) in the 𝐷 region takes 2 values, when justifying 

lemmas the second page charts are used, and 𝑎 > Δ > 0.  

 Lemma 1. 𝑉5 > max𝑙≠5𝑉𝑙  if  

 
 𝑓(𝑠, 𝑡) ≡ 𝑎, (𝑠, 𝑡) ∈ {𝑠 + 5 = 2𝑡};       𝑓(𝑠, 𝑡) ≡ 𝑎 − Δ     𝑜𝑢𝑡  𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡  𝑙𝑖𝑛𝑒 .  

 

Proof. In the table numbers inside 𝑏𝑙𝑡 = 𝑉5𝑡 − 𝑉𝑙𝑡 , 𝑙 ≠ 5, 0 ≤ 𝑡 ≤ 5.  

 

𝑙\𝑡 0 1 2 3 4 5 

4 Δ Δ Δ Δ Δ Δ 

3 Δ Δ Δ −2Δ Δ Δ 

2 Δ Δ Δ Δ Δ Δ 

1 Δ Δ Δ −3Δ Δ Δ 

0 Δ Δ Δ Δ Δ Δ 

 

From here for 𝑏𝑙 = ∑  5
𝑡=0 𝑏𝑙𝑡 , 0 ≤ 𝑙 ≤ 4, we have:  

 

𝑏𝑙\𝑙 0 1 2 3 4 

𝑏𝑙 6Δ Δ 6Δ 2Δ 6Δ 

 

But this proves the Lemma ∎  

 

 Lemma 2. 𝑉4 >   𝑚𝑎𝑥𝑙≠4𝑉𝑙  if 𝑓(𝑠, 𝑡) ≡ 𝑎, (𝑠, 𝑡) ∈ {𝑠 + 4 = 2𝑡, 𝑡 ≤ 4};  

 
 𝑓(4,5) = 𝑎;     𝑓(𝑠, 𝑡) ≡ 𝑎 − Δ     𝑖𝑛  𝑜𝑡ℎ𝑒𝑟    𝑛𝑜𝑑𝑒𝑠   𝐷.  

 

Proof. In the table numbers inside 𝑏𝑙𝑡 = 𝑉4𝑡 − 𝑉𝑙𝑡 , 𝑙 ≠ 4, 0 ≤ 𝑡 ≤ 5.  
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𝑙\𝑡 0 1 2 3 4 5 

5 2Δ 2Δ 2Δ 5Δ Δ Δ 

3 2Δ 2Δ 2Δ 5Δ Δ Δ 

2 2Δ Δ 0 2Δ Δ Δ 

1 2Δ 2Δ 2Δ 5Δ Δ Δ 

0 2Δ 2Δ −3Δ 5Δ Δ Δ 

 

From here for 𝑏𝑙 = ∑  5
𝑡=0 𝑏𝑙𝑡 , 𝑙 ≠ 4, we have:  

 

𝑏𝑙\𝑙 0 1 2 3 5 

𝑏𝑙 8Δ 13Δ 7Δ 13Δ 13Δ 

 

And this proves the Lemma ∎  

 

 Lemma 3. 𝑉3 >   𝑚𝑎𝑥𝑙≠3𝑉𝑙  if 𝑓(𝑠, 𝑡) ≡ 𝑎 − Δ       𝑖𝑛  𝑛𝑜𝑑𝑒𝑠   𝐷,  distinct  

 

  from {(−3,0), (−1,1), (1,2), (1,3), (3,4), (3,5)}, in which 𝑓(𝑠, 𝑡) ≡ 𝑎.  

 

Proof. In the table numbers inside 𝑏𝑙𝑡 = 𝑉3𝑡 − 𝑉𝑙𝑡 , 𝑙 ≠ 3, 0 ≤ 𝑡 ≤ 5.  

 

𝑙\𝑡 0 1 2 3 4 5 

5 0 2Δ Δ 2Δ 0 Δ 

4 4Δ 6Δ 5Δ 3Δ Δ Δ 

2 4Δ 6Δ 5Δ 4Δ Δ Δ 

1 4Δ 2Δ Δ −Δ Δ Δ 

0 4Δ 6Δ 5Δ 3Δ Δ Δ 

 

From here for 𝑏𝑙 = ∑  5
𝑡=0 𝑏𝑙𝑡 , 𝑙 ≠ 3, we have:  

 

𝑏𝑙\𝑙 0 1 2 4 5 

𝑏𝑙 20Δ 8Δ 20Δ 20Δ 6Δ 

 

And this proves the Lemma ∎  

 

 Lemma 4. 𝑉2 > max𝑙≠2𝑉𝑙  if 𝑓(𝑠, 𝑡) ≡ 𝑎 −   𝐷𝑒𝑙𝑡𝑎       𝑖𝑛  𝑛𝑜𝑑𝑒𝑠   𝐷,  distinct  

 

  from {(−2,0), (−2,1), (0,2), (0,3), (2,4), (2,5)}, in which 𝑓(𝑠, 𝑡) ≡ 𝑎.  

 

Proof. In the table numbers inside 𝑏𝑙𝑡 = 𝑉2𝑡 − 𝑉𝑙𝑡 , 𝑙 ≠ 2, 0 ≤ 𝑡 ≤ 5.  

 

𝑙\𝑡 0 1 2 3 4 5 

5 7Δ Δ 2Δ 2Δ Δ Δ 

4 Δ −Δ 0 2Δ Δ Δ 

3 7Δ Δ 2Δ 2Δ Δ Δ 

1 7Δ Δ 2Δ 2Δ Δ Δ 

0 7Δ Δ −3Δ −3Δ Δ Δ 

 

From here for 𝑏𝑙 = ∑  5
𝑡=0 𝑏𝑙𝑡 , 𝑙 ≠ 2, we have:  
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𝑏𝑙\𝑙 0 1 3 4 5 

𝑏𝑙 4Δ 14Δ 14Δ 4Δ 14Δ 

 

And this proves the Lemma ∎  

 

 Lemma 5. 𝑉1 > max𝑙≠1𝑉𝑙  if 𝑓(𝑠, 𝑡) ≡ 𝑎 − Δ     𝑖𝑛  𝑛𝑜𝑑𝑒𝑠   𝐷,  distinct  

  from {(−1,0), (−1,1), (−1,2), (1,3), (1,4), (1,5)}, in which 𝑓(𝑠, 𝑡) ≡ 𝑎.  

 

Proof. In the table numbers inside 𝑏𝑙𝑡 = 𝑉1𝑡 − 𝑉𝑙𝑡 , 𝑙 ≠ 1, 0 ≤ 𝑡 ≤ 5.  

 

𝑙\𝑡 0 1 2 3 4 5 

5 5Δ 0 0 3Δ Δ Δ 

4 10Δ 4Δ Δ 4Δ Δ Δ 

3 4Δ −2Δ Δ Δ Δ Δ 

2 10Δ 4Δ Δ 4Δ Δ Δ 

0 10Δ 4Δ Δ 4Δ Δ Δ 

 

From here for 𝑏𝑙 = ∑  5
𝑡=0 𝑏𝑙𝑡 , 𝑙 ≠ 1, we have:  

 

𝑏𝑙\𝑙 0 2 3 4 5 

𝑏𝑙 21Δ 21Δ 6Δ 21Δ 10Δ 

 

The latter Lemma can be justified similarly. But we will not prove it, because it - a 

corollary of theorem 2 of [1]. Therefore, we will only give its wording, considering it still, that 
Δ > 0, 𝑎 − Δ > 0.  

 

 Lemma 6. 𝑉0 > max𝑙≠0𝑉𝑙  if  

 
 ∀𝑡, 0 ≤ 𝑡 ≤ 5:    𝑎 − Δ = 𝑓(𝑠, 𝑡) < 𝑓(0, 𝑡) = 𝑎,       𝑓𝑜𝑟     𝑠 ≠ 0, (𝑠, 𝑡) ∈ 𝐷.  
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The results of the lemmas are illustrated in the diagrams below. In them 𝜏∗ − the optimal 

moment (OM) and black highlighted nodes areas 𝐷, in which the values of 𝑓(𝑠, 𝑡) are maximal, i.e. 

equal to 𝑎. In this connection between OM and the surface shape 𝑦 = 𝑓(𝑠, 𝑡) emphasize at least 2 

points. First, the length between projections of extreme black nodes on the horizontal axis equals 

5𝑘, 𝑘 = 𝜏∗. And secondly, the tangent of the slope angle of the line passing through the extreme 

nodes, 𝑡𝑔𝜑 = 5/2𝑘.  

 

4  Conclusion 
 

The idea expressed in [1] found its confirmation in this article for particular and small the 

odd value of 𝑛 = 5. But it is also confirmed in the case of a small even value 𝑛 = 6 in [2]. In this 

very manner the proofs allow us to hope for a relatively easy generalization to even and odd 

values of 𝑛 around 20 − 30. And this will already talk about the practical usefulness of the 

implemented idea.  

It seems that the used version of the Lemma justification turned out to be promising for a 

simple reason: it was decided use the two-digit target function 𝑓(𝑠, 𝑡). Although, of course, there 

are infinitely many different "suitable" forms. Two factors played a significant role in the proofs of 

[2] and here: 1) the geometric representation of the values of 𝑉𝑘 on the second page here and 2) 

remark 1, which characterizes one of the key properties of the situations in question.  

Finally, if we try to smooth in some way the surface 𝑦 = 𝑓(𝑠, 𝑡) 

considered in the proofs of lemmas, the resulting "mountain ranges" should have 

approximately the same height everywhere. But this and a number of other things, of interest, for 

example, 𝑝 ≠ 𝑞, naturally attributed to the next stage of research. 
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