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Abstract   
  

 The paper considers a competing risk model based on two Weibull distributions, one 

with increasing and the other with decreasing hazard rate. It then considers both classical 

and Bayesian analysis of the model, the later development utilizes the informative but 

weak priors for the parameters. The analysis is facilitated by the fact that a competing 

risk model can be considered as an incomplete data model even if the situation allows all 

the observations on the test to be made available although the results are extended for 

censored data cases as well. The paper uses the expectation-maximization algorithm for 

classical maximum likelihood estimation and Gibbs sampler algorithm for posterior 

based inferences. It is shown that the likelihood function offers unique and consistent 

maximum likelihood estimates. The results are illustrated based on a real data example. 

Finally, the compatibility of the model is examined for the considered real data set using 

some standard tools of Bayesian paradigm.  

 

Keywords: Competing risk, Weibull distribution, Right censoring, Expectation-

maximization algorithm, Gibbs sampler, Predictive p-value.  

 

 

 

1  Introduction 
 

 In real life situations, it is quite frequent that an item is exposed to experience failure due to 

more than one cause at the same point of time. Say for instance, in reliability experiment, an item 

may fail due to one of several possible causes, such as breakdown, manufacturing defects, etc. 

Similarly, in medical experiment, a patient suffering from several diseases may die because of the 

one that relapses first. Such situations usually come under the purview of competing risk scenario 

where an item or organism is subject to several competing causes and the failure may occur 

because of any cause that arises first. A traditional approach for modelling failure time data in 

presence of competing risks is to assume that there is a latent failure time associated with each of 

the causes to which the item is exposed and the realized failure time of the item is lowest among 

these latent failure times. Moreover, these latent failure times are assumed to be independent of 
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each other following some distributions, either same or different (see [5]).  

The simplest case of competing risk model arises when failure of an item is subject to two 

possible causes. In this case, a competing risk model is defined considering the distribution of 

minimum of two different failure times. The analysis of such competing risk models based on two 

failure time distributions is considered by several authors. [10] studied a competing risk model 

defined on the basis of exponential and Weibull failures to model failures due to shock and wear 

out, respectively, and discussed the properties of maximum likelihood (ML) estimates of resulting 

model parameters. [21] proposed both parametric and non-parametric estimation techniques for a 

two-component competing risk model under the assumption that the component failure times are 

exponentially distributed. [4] proposed a competing risk model for a situation where the 

population is exposed to wear out failures but a fraction of population is also exposed to early 

failures. The authors obtained ML estimates of model parameters under the assumption that 

failure modes follow either Weibull or lognormal distributions. [2] considered both classical and 

Bayesian analyses of a model based on minimum of Weibull and exponential failures assuming 

that former results in failures due to ageing and the latter results in accidental failures as the two 

competing causes. More recently, [22] suggested an alternative competing risk model based on 

gamma and exponential distributions to model ageing and accidental failures, respectively, and 

provided complete classical as well as Bayesian analyses of the resulting competing risk model.  

This paper models a situation where infancy and ageing work together to induce failures. 

Such a situation may occur where an item having an initial birth defect is also subject to failure due 

to ageing. Many real life situations can be found in practice that may include items from 

automobile segment, high-power transmitting tubes and computer disk-drives, etc. Obviously, to 

deal with such situations, one may consider, among various other choices, a model based on two 

distributions, one with decreasing hazard rate and other with increasing hazard rate. The resulting 

failure time can then be considered as the minimum of two failure times, one corresponding to 

decreasing hazard rate distribution and the other corresponding to increasing hazard rate 

distribution. One can, of course, consider a number of models to define decreasing and increasing 

hazard rate behaviour. We, however, consider a competing risk model defined on the basis of two 

Weibull distributions, one corresponding to decreasing hazard rate situation and the other 

corresponding to increasing hazard rate situation. 

The Weibull distribution is an important failure time distribution that encompasses both 

increasing and decreasing hazard rate behaviour and, perhaps because of its enormous scope and 

flexibility, it has been used to describe both initial as well as ageing failures (see, for example, 

Lawless (2002)). The probability density function (pdf) of its simplest two-parameter form 

(𝒲(𝜃, 𝛽)) can be written as  

     𝑓𝑊(𝑡|𝜃, 𝛽) =
𝛽

𝜃
(
𝑡

𝜃
)
𝛽−1

exp [− (
𝑡

𝜃
)
𝛽

] ;     𝑡 > 0,    𝜃 > 0,    𝛽 > 0, (1) 

 

 where 𝜃 and 𝛽 are scale and shape parameters, respectively. It is actually the shape parameter that 

results in different characteristics of the model. Say, for instance, 𝛽 < 1.0 defines a decreasing 

hazard rate distribution that can be considered to model early birth defects. Similarly, 𝛽 > 1.0 

defines increasing hazard rate behavior, a situation that can be very well used for defining failures 

due to ageing. Although, not of importance in the present work, the distribution reduces to 

constant hazard-rate exponential distribution when 𝛽 = 1.0. The important reliability 

characteristics such as the reliability at time t, the hazard rate and the mean time to failure (MTF) 

for 𝒲(𝜃, 𝛽) can be written as 

 

 𝑅𝒲(𝑡) = exp [− (
𝑡

𝜃
)
𝛽

], (2) 

  

 ℎ𝒲(𝑡) =
𝛽

𝜃
(
𝑡

𝜃
)
𝛽−1

, (3) 

 and  
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 𝑀𝑇𝐹𝒲 = 𝜃Γ(1 + 1/𝛽), (4) 

 respectively. 

 As mentioned, the proposed model is defined on the basis of two Weibull distributions, one 

with 𝛽 < 1.0 and the other with 𝛽 > 1.0. A similar model, named as Bi-Weibull (ℬ𝒲) distribution, 

was also entertained by [1] but they did not impose any restriction on the corresponding shape 

parameters. The authors considered the model as a particular case of poly-Weibull model and 

analyzed in a Bayesian framework using Gibbs sampler algorithm. The illustration was, however, 

based on a simulated data set. The unrestricted model was later analyzed by a number of authors 

including [16], [6] and [17]). Whereas [16] provided complete parametric characterization of the 

model in a three dimensional parameter space, [6] analyzed the model for real as well as generated 

data sets using both classical and Bayesian tools. In fact, [6] mentioned that the likelihood of the 

model could be obtained in a simple manner and there was no need of using Gibbs sampler 

algorithm. The authors rather used standard likelihood method to obtain classical inferences and 

both Laplace’s method and sampling-importance resampling technique for Bayesian inferences. 

Recently [17] considered various characterizations of (ℬ𝒲) model in its four-parameter setup 

and obtained ML estimates of model parameters with observed information matrix. The authors 

then used the results on asymptotic normality of ML estimators to derive approximate confidence 

intervals and confidence regions for the model parameters. The results obtained by [17] are 

certainly extensive but inferential aspects are comparatively meagre as compared to various 

characterizations of the model. Moreover, the model considered by the authors is a simplified 

version that separates the two parameters of the Weibull model and it is often considered for 

mathematical convenience. 

The present paper can be considered as an extension of previous work where two Weibull 

distributions with form given in (1) are used to define the competing risk model. Since the shape 

parameters of the corresponding components are restricted, we shall call the resulting competing 

risk model as restricted Bi-Weibull (ℬ𝒲ℛ) model. The paper then considers not only the complete 

Bayes analysis using weak proper priors but also the ML estimation of model parameters using 

expectation-maximization (EM) algorithm. It is shown that there exists a unique consistent solution 

of the likelihood function, a result that may be considered significant for the likelihood form 

arising from ℬ𝒲ℛ  model. Throughout the inferential developments are done for both complete 

and censored data cases, the latter situation is, of course, important in failure time data analysis 

but not considered in any of the previous references. 

The plan of the paper is as follows. The next section introduces the proposed ℬ𝒲ℛ model and 

provides a few important characteristics for the same. Some of the results provided in this section 

are given in slightly different forms in [17] but we have reproduced them for a ready reference and 

also because of the fact that the model form for the Weibull distribution used by [17] is different 

from the one considered by us in this paper. Section 3 details the ML estimation of the model 

parameters for the considered ℬ𝒲ℛ  model using EM algorithm. Since the competing risk model as 

considered in the paper is an incomplete data model in the sense that we do not have the actual 

cause of failures, the EM algorithm happens to be an important choice for such situations. Section 4 

provides the Bayesian model formulation for the considered likelihood and prior combinations. 

The resulting posterior is not easy to deal with and, therefore, we have considered the use of Gibbs 

sampler algorithm for drawing the posterior based inferences. The section also provides a brief 

discussion of the Gibbs sampler algorithm and its implementation details for the model in hand. 

Throughout the censored data cases are also considered and appropriate implementation details 

for the same are given. Section 5 is given for completeness that provides a few important tools for 

model compatibility study in Bayesian paradigm. These tools are used in the next section where 

we have considered a real data set for numerical illustration and provided the compatibility of the 

data with ℬ𝒲ℛ  to justify our analysis. Finally, a conclusion is given in the last section along with 

the proof of theorems in the Appendix. 
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2  The Proposed 𝓑𝓦𝓡 Model 
 

 Let 𝑇1 be a random variable following 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0, and 𝑇2 be another random variable 

following 𝒲(𝜃2, 𝛽2), 𝛽2 > 1.0. A competing risk ℬ𝒲ℛ  model based on random variable 𝑇 =

min(𝑇1, 𝑇2) can be characterized by four parameters 𝜃1, 𝜃2, 𝛽1 and 𝛽2 where 𝜃1 > 0, 𝜃2 > 0, 𝛽1 < 1.0 

and 𝛽2 > 1.0. The hazard rate of ℬ𝒲ℛ(𝜃1, 𝜃2, 𝛽1, 𝛽2) model can be expressed as sum of hazard rates 

of its components, which can be given as  

  

 ℎ𝐵𝑊𝑅
(𝑡) =

𝛽1

𝜃1
(
𝑡

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡

𝜃2
)
𝛽2−1

. (5) 

 The hazard rate of general ℬ𝒲 model is discussed by several authors. A few important 

references include [16], [6] and [17]. Truly speaking, the hazard rate of ℬ𝒲 model may be 

characterized by its shape parameters 𝛽1 and 𝛽2. If min(𝛽1, 𝛽2) > 1.0, the hazard rate is increasing; 

if max(𝛽1, 𝛽2) < 1.0, the hazard rate is decreasing; and for 𝛽1 < 1.0 and 𝛽2 > 1.0, the hazard rate is 

bathtub shaped. On the other hand, the hazard rate curve for ℬ𝒲ℛ  model is always bathtub 

shaped since one of its shape parameters is less than unity. The hazard rate curve, however, 

changes its shape with different choices of 𝛽1 and 𝛽2. The change-point for bathtub shaped hazard 

rate for the model ℬ𝒲ℛ  can be obtained as  

 𝑡∗ = [
𝛽1(1−𝛽1)×𝜃2

𝛽2

𝛽2(𝛽2−1)×𝜃1
𝛽1
]

1

𝛽2−𝛽1
. (6) 

 

 

Figure  1: Hazard rate curves corresponding to 𝓑𝓦𝓡 model for different values of 𝜷𝟏. 

 
   

It can be seen that 𝑡∗ is always positive since 𝛽1 is less than unity and the other shape parameter 

𝛽2 is greater than unity. Moreover, it can be seen that the change point increases as 𝛽1 approaches 

towards zero. The first derivative of h(t) can be shown to be negative(positive) for values of t 

less(greater) than 𝑡∗ and, therefore, the hazard rate is always decreasing(increasing) for values of t 

less(greater) than 𝑡∗ and finally approaching to infinity both when t approaches to zero or infinity.     

The hazard rate curves corresponding to ℬ𝒲ℛ  model are shown in Figures 1-2 for some 

arbitrary choices of the parameters. Since the shape parameters are only responsible for changing 

the hazard rates shapes, both the scale parameters 𝜃1 and 𝜃2 are fixed at unity. It is obvious from 

the figures that the curves exhibit convex shapes in every case with a unique minimum given by 

(6). Rest of the conclusions are same that have been detailed in the preceding paragraph. 
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Figure  2: Hazard rate curves corresponding to 𝓑𝓦𝓡 model for different values of 𝜷𝟐.

 
The reliability function corresponding to ℬ𝒲ℛ  model can be obtained as product of reliability 

functions of its component models. The expression for the same can be written as  

 𝑅ℬ𝒲ℛ
(𝑡) = exp [− (

𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. (7) 

 

  Using (5) and (7), one can easily obtain the pdf corresponding to ℬ𝒲ℛ  model. The same can be 

written as  

 𝑓ℬ𝒲ℛ
(𝑡) = [

𝛽1

𝜃1
(
𝑡

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡

𝜃2
)
𝛽2−1

] × exp [− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. (8) 

 

  Fortunately, the moments of ℬ𝒲ℛ  distribution exist in closed forms and the corresponding 

expression for the 𝑠𝑡ℎ moment (see also [17]) can be written as  

         
𝜇′𝑠 =

𝛽1𝜃2
𝑠

𝛽2
∑∞𝑚=0 (−1)

𝑚 (
𝜃2

𝜃1
)
(𝑚+1)𝛽1

Γ(
𝑠+(𝑚+1)𝛽1

𝛽2
)

              +𝜃2
𝑠 ∑∞𝑚=0 (−1)

𝑚 (
𝜃2

𝜃1
)
𝑚𝛽1

Γ(
𝑠+𝑚𝛽1

𝛽2
+ 1).

 (9) 

 

 Another important characteristic of interest is the probability of failure due to one of the 

causes. The corresponding expression for the probability of failure due to early birth defect can be 

written as 

 𝑃𝑟(𝑡 = 𝑡1) = ∫
∞

0

𝛽1

𝜃1
(
𝑡

𝜃1
)
𝛽1−1

exp [− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] 𝑑𝑡, 

which, on simplification, reduces to  

     𝑃𝑟(𝑡 = 𝑡1) =
𝛽1

𝛽2
∑∞𝑚=0 (−1)

𝑚 (
𝜃2

𝜃1
)
(𝑚+1)𝛽1

Γ(
(𝑚+1)𝛽1

𝛽2
). (10) 

 

Obviously, the probability of failure due to ageing can be written as complimentary probability 

of (10).  

 

3  The ML Estimation 
 

 Let n items having failure time distribution given in (8) be put on test and let 𝑦: (𝑦𝑖 =

(𝑡𝑖, 𝛿𝑖); 𝑖 = 1,2, . . . , 𝑛) denote the corresponding observations. We use 𝑡𝑖 to denote the failure time of 

𝑖𝑡ℎ unit and 𝛿𝑖 as an associated censoring indicator such that 𝛿𝑖 = 0 indicates that 𝑖𝑡ℎ observation is 

right censored at time 𝑡𝑖 and 𝛿𝑖 = 1 indicates that 𝑡𝑖 is the observed failure time of 𝑖𝑡ℎ item. The 

corresponding likelihood function (LF) can be written as  
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 𝐿(𝑦|𝜽) = ∏𝑛
𝑖=1 [𝑓ℬ𝒲ℛ

(𝑡𝑖)]
𝛿𝑖[𝑅ℬ𝒲ℛ

(𝑡𝑖)]
1−𝛿𝑖 , 

 

which, using (7) and (8), becomes  

  𝐿(𝑦|𝜽) = ∏𝑛
𝑖=1 {

𝛽1

𝜃1
(
𝑡𝑖

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡𝑖

𝜃2
)
𝛽2−1

}
𝛿𝑖

exp [− (
𝑡𝑖

𝜃1
)
𝛽1
− (

𝑡𝑖

𝜃2
)
𝛽2
], (11) 

 

where 𝜽 is used to denote the parameter vector (𝜃1, 𝜃2, 𝛽1, 𝛽2). It is important to mention here that 

the LF corresponding to complete data case can be written as a special case of (11) when all 𝛿𝑖s are 

taken to be unity. The LF for complete data case can, therefore, be written as 

 

  𝐿(𝑦|𝜽) = ∏𝑛
𝑖=1 [

𝛽1

𝜃1
(
𝑡𝑖

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡𝑖

𝜃2
)
𝛽2−1

] exp [− (
𝑡𝑖

𝜃1
)
𝛽1
− (

𝑡𝑖

𝜃2
)
𝛽2
]. (12) 

 

The ML estimates are usually obtained by maximizing the LF, but in high dimensional case 

direct maximization of LF may be often difficult and, sometimes, may also lead to unstable results. 

Fortunately, in our case, we are in a position to verify that the corresponding likelihood equations 

offer unique and consistent solutions both for complete and censored data cases (the details of our 

proof are given in the Appendix). Instead of direct maximization of the LF, we propose to obtain 

ML estimates of model parameters using EM algorithm. It may be noted that the EM algorithm is 

an iterative method proposed by [7] for computing ML estimates of model parameters, especially 

in the situations where data or model can be viewed as incomplete. This is perhaps the reason that 

the implementation of EM algorithm is facilitated in a competing risk scenario simply because the 

data corresponding to a competing risk model are always incompletely specified in the sense that 

we do not know exact cause of failure for a particular item (see also [23]). The algorithm is lucid 

and simple in the sense that it does not require calculation of the Jacobian matrix which is 

normally required in other optimization techniques like Newton-Raphson, etc. (see also [20] and 

[18]). 

 For implementing the EM algorithm, we rather work with an alternative formulation of the 

LF by introducing missing observations in the form of indicator variables (see also [2] since each 

observation 𝑡𝑖 has a missing component in the sense that it is not known exactly which of the two 

causes, early birth defect or ageing, is responsible for producing 𝑡𝑖. Similarly, each observation 𝑡𝑖 

can either be a failure time or censoring time as governed by the censoring indicator 𝛿𝑖. Thus to 

provide an alternative formulation of the LF, we associate with each 𝑡𝑖 a missing cause indicator 𝑧𝑖 

with components of 𝑧𝑖 as (𝑧𝑖
1, 𝑧𝑖

2), 𝑖 = 1,2, . . . , 𝑛. We may then define 𝑧𝑖
1=1 and 𝑧𝑖

2=0 as an indication 

that 𝑡𝑖 is an observed failure time arising from 𝒲(𝜃1, 𝛽1) and, similarly, 𝑧𝑖
1 = 0 and 𝑧𝑖

2 = 1 as an 

indication that 𝑡𝑖 is an observed failure time arising from 𝒲(𝜃2, 𝛽2). Obviously, for each censored 

observation 𝑡𝑖 (𝛿𝑖 = 0), we can define associated 𝑧𝑖
1 and 𝑧𝑖

2 both equal to zero, 𝑖 = 1,2, . . . , 𝑛. 

Moreover, since failure can arise due to only one of the two competing causes, both 𝑧𝑖
1 and 𝑧𝑖

2 

cannot take value unity simultaneously. 

With the assumptions as given above, the pdf for each observation can be written as 

 

     
𝑓(𝑥𝑖) = [𝑓𝒲(𝑡𝑖, 𝜃1, 𝛽1)]

𝑧𝑖
1
[𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)]

1−𝑧𝑖
1
[𝑓𝒲(𝑡𝑖, 𝜃2, 𝛽2)]

𝑧𝑖
2
[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]

1−𝑧𝑖
2

           = [ℎ𝒲(𝑡𝑖 , 𝜃1, 𝛽1)]
𝑧𝑖
1
[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)]

𝑧𝑖
2
𝑅𝒲(𝑡𝑖, 𝜃1, 𝛽1)𝑅𝒲(𝑡𝑖, 𝜃2, 𝛽2),

 (13) 

 

where 𝑓𝒲, ℎ𝒲 and 𝑅𝒲 denote the pdf, hazard function and the reliability function of Weibull 

model, respectively, and 𝑥𝑖 = (𝑡𝑖 , 𝑧𝑖), 𝑖 = 1,2, . . . , 𝑛. Obviously, the corresponding LF based on a set 

of 𝑛 observations can be written as 

 

 𝐿(𝑥|𝜽) ∝ ∏𝑛
𝑖=1 [ℎ𝒲(𝑡𝑖, 𝜃1, 𝛽1)]

𝑧𝑖
1
[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)]

𝑧𝑖
2
𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2), (14) 

 

and the associated log likelihood can be written as 
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 𝑙(𝑥|𝜽) = ∑𝑛𝑖=1 {𝑧𝑖
1ln[ℎ𝒲(𝑡𝑖 , 𝜃1, 𝛽1)] + 𝑧𝑖

2ln[ℎ𝒲(𝑡𝑖 , 𝜃2, 𝛽2)] + ln[𝑅𝒲(𝑡𝑖, 𝜃1, 𝛽1)] +

                                                              ln[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]}.                                        (15) 

 

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Once the log likelihood is specified as in (15), the EM algorithm can 

proceed as usual in two steps, the expectation (E) step and the maximization (M) step. The E step 

may involve the calculation of expected value of the log likelihood based on the complete data and 

the current realization of model parameters. The M step, on the other hand, intends to find the 

values of model parameters that maximizes the expected log likelihood function evaluated at E 

step. 

To clarify, suppose 𝜽̃ = (𝜃̃1, 𝜃̃2, 𝛽1, 𝛽2) is the current realization of parameter vector 𝜽 at a 

particular iteration then the expected log LF {(= 𝐸[𝑙(𝑥|𝜽)|𝑡, 𝜽̃]), 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)} denoted by 

𝐴𝑙(𝜽|𝑡, 𝜽̃), say, can be obtained as 

 

𝐴𝑙(𝜽|𝑡, 𝜽̃) = ∑𝑛𝑖=1 {𝐸(𝑧𝑖
1|𝑡𝑖, 𝜽̃)ln[ℎ𝒲(𝑡𝑖, 𝜃1, 𝛽1)] + 𝐸(𝑧𝑖

2|𝑡𝑖, 𝜽̃)ln[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)] (16) 
                       +ln[𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)] + ln[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]}, 

 

where 𝐸(𝑧𝑖
1|𝑡𝑖, 𝜽̃) = 𝑝(𝑡𝑖 ,𝒲(𝜃̃1, 𝛽1)) and 𝐸(𝑧𝑖

2|𝑡𝑖 , 𝜽̃) = 𝑝(𝑡𝑖 ,𝒲(𝜃̃2, 𝛽2). 𝑝(𝑡𝑖,𝒲(𝜃̃1, 𝛽1))   [𝑝(𝑡𝑖, 

𝒲(𝜃̃2, 𝛽2))] gives the probability that the observation 𝑡𝑖 is arising from 𝒲(𝜃̃1, 𝛽1) [𝒲(𝜃̃2, 𝛽2)] given 

the current realization of parameters. These probabilities can be obtained as 

 

𝑝(𝑡𝑖 ,𝒲(𝜃̃1, 𝛽1)) = 𝑃𝑟(𝑧𝑖
1 = 1|𝑡𝑖 , 𝜽̃) = (

0  𝑖𝑓   𝛿𝑖 = 0
ℎ𝒲(𝑡𝑖,𝜃̃1,𝛽̃1)

ℎ𝒲(𝑡𝑖,𝜃̃1,𝛽̃1)+ℎ𝒲(𝑡𝑖,𝜃̃2,𝛽̃2)
 𝑖𝑓   𝛿𝑖 = 1,

 (17) 

and  

𝑝(𝑡𝑖 ,𝒲(𝜃̃2, 𝛽2)) = 𝑃𝑟(𝑧𝑖
2 = 1|𝑡𝑖, 𝜽̃) = (

0  𝑖𝑓   𝛿𝑖 = 0
ℎ𝒲(𝑡𝑖,𝜃̃2,𝛽̃2)

ℎ𝒲(𝑡𝑖,𝜃̃1,𝛽̃1)+ℎ𝒲(𝑡𝑖,𝜃̃2,𝛽̃2)
 𝑖𝑓   𝛿𝑖 = 1

 (18) 

 

respectively. From (16), one can see that 𝐴𝑙(𝜽|𝑡, 𝜽̃) can be split into two parts as given below 

 

 𝐴𝑙(𝜽|𝑡, 𝜽̃) = 𝐴𝑙
1(𝜽|𝑡, 𝜽̃)) + 𝐴𝑙

2(𝜽|𝑡, 𝜽̃), (19) 

where 

 

𝐴𝑙
1(𝜽|𝑡, 𝜽̃) = ∑𝑛𝑖=1 {𝑝(𝑡𝑖 ,𝒲(𝜃̃1, 𝛽1))ln[ℎ𝒲(𝑡𝑖, 𝜃1, 𝛽1)] + ln[𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)]}, (20) 

and 

 

𝐴𝑙
2(𝜽|𝑡, 𝜽̃)) = ∑𝑛𝑖=1 {𝑝(𝑡𝑖,𝒲(𝜃̃2, 𝛽2))ln[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)] + ln[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]}. (21) 

 

From (20) and (21), it is obvious that both 𝐴𝑙
1(𝜽|𝑡, 𝜽̃) and 𝐴𝑙

2(𝜽|𝑡, 𝜽̃) depend separately on (𝜃1, 𝛽1) 

and (𝜃2, 𝛽2), respectively, and, therefore, 𝐴𝑙(𝜽|𝑡, 𝜽̃) in (19) can be maximized by maximizing 

separately the two terms 𝐴𝑙
1(𝜽|𝑡, 𝜽̃) and 𝐴𝑙

2(𝜽|𝑡, 𝜽̃). This partitioning has an obvious advantage in 

the sense that it reduces a four-dimensional optimization problem into a two-dimensional 

optimization problem and thereby resulting into an increased efficiency of the algorithm. Thus 

differentiating (20) with respect to 𝜃1 and 𝛽1 and (21) with respect to 𝜃2 and 𝛽2 and equating all the 

derivatives to zero, we get the following set of equations 

 

 
1

𝛽̂1
+

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃1,𝛽̃1))ln(𝑡𝑖)

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃1,𝛽̃1))
−

∑𝑛𝑖=1 𝑡𝑖
𝛽̂1ln(𝑡𝑖)

∑𝑛𝑖=1 𝑡𝑖
𝛽̂1

= 0, (22) 

 

 𝜃̂1 = (
∑𝑛𝑖=1 𝑡𝑖

𝛽̂1

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃1,𝛽̃1))
)

1

𝛽̂1

, (23) 
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1

𝛽̂2
+

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃2,𝛽̃2))ln(𝑡𝑖)

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃2,𝛽̃2))
−

∑𝑛𝑖=1 𝑡𝑖
𝛽̂2ln(𝑡𝑖)

∑𝑛𝑖=1 𝑡𝑖
𝛽̂2

= 0, (24) 

 

 𝜃̂2 = (
∑𝑛𝑖=1 𝑡𝑖

𝛽̂2

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃2,𝛽̃2))
)

1

𝛽̂2

. (25) 

  The value of 𝜽̂ = (𝜃̂1, 𝜃̂2, 𝛽̂1, 𝛽̂2) can be obtained by solving the above system of equations. 

Moreover, once 𝜽̂ is obtained, we update 𝜽̃ by 𝜽̂ for the next iterations. The process is repeated 

unless the systematic pattern of convergence or desired level of accuracy is achieved. 

 

4  Bayesian Model Formulation 
 

 In order to provide the Bayesian model formulation for analyzing the model in (8), let us 

begin with specifying the prior distributions for the four parameters involved in the model. We 

consider independent uniform priors for the two shape parameters 𝛽1 and 𝛽2 and independent 

conditional priors for 𝜃1 and 𝜃2 such that for given 𝛽1 and 𝛽2, the parameters 𝜃1
𝛽1  and 𝜃2

𝛽2  have 

inverted gamma ℐ𝒢(𝑎, 𝑏) and ℐ𝒢(𝑐, 𝑑) distributions, respectively (see also [1]). The first term in the 

parenthesis represents the shape parameter of ℐ𝒢 distribution while the second term is the scale 

parameter. The considered priors for the parameters can be written as  

  

 

𝜋1(𝛽1) ∝ 1;                       0 < 𝛽1 ≤ 1

𝜋2(𝛽2) ∝
1

𝛽2𝑢−1
;                1 ≤ 𝛽2 ≤ 𝛽2𝑢

𝜋3(𝜃1|𝛽1) ∝
1

𝜃1
𝛽1𝑎+1

exp [
−𝑏

𝜃1
𝛽1
] ;          𝜃1, 𝑎, 𝑏 > 0

𝜋4(𝜃2|𝛽2) ∝
1

𝜃2
𝛽2𝑐+1

exp [
−𝑑

𝜃2
𝛽2
] ;         𝜃2, 𝑐, 𝑑 > 0.

 (26) 

where 𝑎, 𝑏, 𝑐, 𝑑and 𝛽2𝑢 are the hyperparameters. The choice of prior hyperparameters is always 

crucial and in case of non-availability of any specific information, either subjective or objective, one 

can consider vague or weak priors for the parameters and allow inferences to remain data 

dependent. This can be done, for instance, by taking a large choice of 𝛽2𝑢 in case of 𝛽2. Similarly, in 

case of 𝜃1 and 𝜃2, one can consider choices of 𝑎, 𝑏, 𝑐 and 𝑑 in such a way that resulting ℐ𝒢 

distribution becomes more or less flat. It is important to mention here that the standard non-

informative priors suggested for the parameters of Weibull distribution cannot be used here as 

such priors lead to improper posterior in a situation where all the observations arise from one of 

the two Weibull components in the model (8) (see also [1]). 

The prior hyperparameters can also be specified on the basis of experts’ opinion if the same 

are available. Say, for instance, while specifying 𝛽2𝑢 associated with 𝛽2 of 𝒲(𝜃2, 𝛽2) model, the 

expert conveys that the hazard rate is not increasing abruptly with a steep rise in its behaviour 

rather rises in such a way that the slope of the hazard rate curve increases from the beginning 

itself, say at a constant rate. The expert also conveys that the choice of 𝛽2 is such that the 

corresponding Weibull distribution is exhibiting skewed behaviour with slightly high variability. 

It is to be noted that for large values of shape parameter, the Weibull distribution approaches to 

symmetry (close to normality) with very low variability. As such, the expert feels that 𝛽2 cannot be 

too large and in any case cannot go beyond (say) 10.0, that is, a value suggested for 𝛽2𝑢. Similarly, 

for the ℐ𝒢 prior, the expert can be asked to specify at least two characteristics of the prior model so 

that two of its hyperparameters can be made known using these two specified characteristics. The 

characteristics can be simply mean and variance of the ℐ𝒢 distribution or two of its quantiles, etc. 

Finally, it is essential to mention that the prior of 𝛽1 does not involve any hyperparameter so we do 

not need any opinion from the expert in this case. 

To proceed further, let n items with failure time distribution given in (8) be put on test and let 
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𝑡: 𝑡1, 𝑡2, . . . , 𝑡𝑛 be the observed failure times. Combining the priors in (26) with the LF in (12) via 

Bayes theorem yields the corresponding posterior distribution and the same can be written up to 

proportionality as  

 

𝑝(𝜃1, 𝜃2, 𝛽1, 𝛽2|𝑡) ∝ {∏
𝑛
𝑖=1 [

𝛽1

𝜃1
(
𝑡𝑖

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡𝑖

𝜃2
)
𝛽2−1

]} exp [−∑𝑛𝑖=1 (
𝑡𝑖

𝜃1
)
𝛽1
− ∑𝑛𝑖=1 (

𝑡𝑖

𝜃2
)
𝛽2
]

                                     ×
1

𝜃1
𝛽1𝑎+1

exp [
−𝑏

𝜃1
𝛽1
] ×

1

𝜃1
𝛽1𝑎+1

exp [
−𝑏

𝜃1
𝛽1
] × 𝐼(0,1)(𝛽1) × 𝐼(1,𝛽2𝑢)(𝛽2);

                                                                                                                         𝜃1 > 0, 𝜃2 > 0,

(27) 

 

where 𝐼(𝜈1,𝜈2)(𝜉) is an indicator function that takes value unity if 𝜉 lies in the interval (𝜈1, 𝜈2) and 

zero otherwise. It can be easily seen that the form of the posterior given in (27) is difficult to offer 

closed form solution and, therefore, one can proceed with sample based approaches. The Gibbs 

sampler is, however, difficult since the corresponding full conditionals from (27) are not available 

for easy sample generation. We may, therefore, recommend Metropolis-Hastings algorithm by 

defining a four-dimensional appropriately centred and scaled candidate generating density (see, 

for example, [25]) and proceed with ML estimates and the corresponding Hessian based 

approximation as the initial values for running the chain. 

Alternatively, one can use the augmented data structure as given in Section 3 and resort to 

implementation of the Gibbs sampler algorithm in a routine manner. Following (14), the 

corresponding likelihood for augmented data structure can be written as  

 𝐿(𝑥|𝜽) ∝
𝛽1
∑𝑛𝑖=1𝑧𝑖

1

𝛽2
∑𝑛𝑖=1𝑧𝑖

2

𝜃1
𝛽1 ∑

𝑛
𝑖=1𝑧𝑖

1

𝜃2
𝛽2 ∑

𝑛
𝑖=1𝑧𝑖

2∏
𝑛
𝑖=1 [𝑡𝑖

𝛽1−1]
𝑧𝑖
1

∏𝑛
𝑖=1 [𝑡𝑖

𝛽2−1]
𝑧𝑖
2

exp [−
∑𝑛𝑖=1 𝑡𝑖

𝛽1

𝜃1
𝛽1

−
∑𝑛𝑖=1 𝑡𝑖

𝛽2

𝜃2
𝛽2

], (28) 

 

where 𝑧𝑖 (= (𝑧𝑖
1, 𝑧𝑖

2)) is a binary indicator vector associated with 𝑡𝑖, 𝑖 = 1,2, . . . , 𝑛, such that 𝑧𝑖 =

(1,0) conveys that associated 𝑡𝑖 is coming from 𝒲(𝜃1, 𝛽1) and 𝑧𝑖 = (0,1) results in 𝑡𝑖 coming from 

𝒲(𝜃2, 𝛽2). Also, in case of no censoring 𝑧𝑖
1 and 𝑧𝑖

2 are related as 𝑧𝑖
1 = 1 − 𝑧𝑖

2 since our assumption 

confirms that an observed 𝑡𝑖 will certainly come from one of the two Weibull distributions. Next, 

let us consider the same priors as given in (26) and obtain the joint posterior up to proportionality 

by combining (26) with (28) via Bayes theorem. This posterior can be written as  

 

 

𝑝1(𝜃1, 𝜃2, 𝛽1, 𝛽2|𝑡, 𝑧) ∝
𝛽1
∑𝑛𝑖=1𝑧𝑖

1

𝜃1
(∑𝑛𝑖=1𝑧𝑖

1+𝑎)𝛽1+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽1+𝑏

𝜃1
𝛽1

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽1−1]
𝑧𝑖
1

                                             ×
𝛽2
∑𝑛𝑖=1𝑧𝑖

2

𝜃2
(∑𝑛𝑖=1𝑧𝑖

2+𝑐)𝛽2+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽2+𝑑

𝜃2
𝛽2

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽2−1]
𝑧𝑖
2

;

                                              𝜃1 > 0, 𝜃2 > 0, 0 ≤ 𝛽1 ≤ 1, 1 ≤ 𝛽2 ≤ 𝛽2𝑢 ,

 (29) 

where 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛). 

Before we proceed further, let us briefly comment on the Gibbs sampler algorithm. Gibbs 

sampler is a Markovian updating mechanism for extracting samples from (often) high-dimensional 

posteriors specified up to proportionality by extracting samples from all univariate (or lower 

dimensional) full conditionals. The generation begins with some appropriately chosen initial 

values and proceeds in a cyclic frame-work covering all the full conditionals and each time using 

the most recent values of conditioning variates. The values obtained after one complete cycle 

represent a state of a Markov chain. This process is repeated until a systematic pattern of 

convergence is achieved by the generating chain. Once the convergence is achieved, one can either 

pick up equidistant observations in a single long run of the chain or pick up observations from 

various parallel chains to form independent and identically distributed samples from the 

concerned posterior. For details about the Gibbs sampler algorithm, its implementation and 

convergence diagnostic issues, one can refer to [12], [24] and [25], etc. 

Thus in order to apply the Gibbs sampler algorithm, we need to specify all possible full 

conditionals corresponding to posterior (29). The incomplete specification of data can be resolved 

by using additional full conditionals corresponding to different indicator variables. We shall begin 



 
Gupta A., Ranjan R., Upadhyay S.K. 
CLASSICAL AND BAYES ANALYSIS OF A COMPETING RISK MODEL 

RT&A, No 3 (50) 
Volume 13, September 2018  

18 

with a comment on this latter full conditionals and the corresponding generations. Since 𝑧𝑖
1, 𝑖 =

1,2, . . . , 𝑛, is a binary indicator variable, it can be considered to follow a Bernoulli distribution with 

parameter 𝑝𝑖̃, where  

 

 𝑝𝑖̃ = 𝑃𝑟[𝑧𝑖
1 = 1] =

ℎ𝒲(𝑡𝑖,𝜃1,𝛽1)

ℎ𝒲(𝑡𝑖,𝜃1,𝛽1)+ℎ𝒲(𝑡𝑖,𝜃2,𝛽2)
. 

 

Moreover, using the fact that each 𝑧𝑖
1 is independent of all other 𝑧𝑖

1s, we can generate it 

independently corresponding to each 𝑡𝑖 at the current realization of parameters (𝜃1,𝜃2,𝛽1,𝛽2) and 

for each generated 𝑧𝑖
1, we can obtain corresponding 𝑧𝑖

2 using the relationship 𝑧𝑖
2 = 1 − 𝑧𝑖

1. Rest of 

the full conditionals corresponding to (29) can be obtained up to proportionality as 

 

 𝑝2
∗(𝜃1|𝜃2, 𝛽1, 𝛽2, 𝑡, 𝑧) ∝

1

𝜃1
(∑𝑛𝑖=1𝑧𝑖

1+𝑎)𝛽1+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽1+𝑏

𝜃1
𝛽1

] ;      𝜃1 > 0 (30) 

  

 𝑝3
∗(𝜃2|𝜃1, 𝛽1, 𝛽2, 𝑡, 𝑧) ∝

1

𝜃2
(∑𝑛𝑖=1𝑧𝑖

2+𝑐)𝛽2+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽2+𝑑

𝜃2
𝛽2

] ;      𝜃2 > 0 (31) 

  

 𝑝4
∗(𝛽1|𝜃1, 𝜃2, 𝛽2, 𝑡, 𝑧) ∝

𝛽1
∑𝑛
𝑖=1𝑧𝑖

1

𝜃1
(∑𝑛𝑖=1𝑧𝑖

1+𝑎)𝛽1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽1+𝑏

𝜃1
𝛽1

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽1]
𝑧𝑖
1

;  0 < 𝛽1 ≤ 1 (32) 

  

 𝑝5
∗(𝛽2|𝜃1, 𝜃2, 𝛽1, 𝑡, 𝑧) ∝

𝛽2
∑𝑛𝑖=1𝑧𝑖

2

𝜃2
(∑𝑛𝑖=1𝑧𝑖

2+𝑐)𝛽2
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽2+𝑑

𝜃2
𝛽2

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽2]
𝑧𝑖
2

;   1 < 𝛽1 ≤ 𝛽2𝑢. (33) 

 

Full conditionals (30) and (31) appear to be the kernels of ℐ𝒢 distribution. Hence by 

considering transformation 𝜆1 = 𝜃1
𝛽1, one can show that 𝜆1~ℐ𝒢(∑

𝑛
𝑖=1 𝑧𝑖

1 + 𝑎,∑𝑛𝑖=1 𝑡𝑖
𝛽1 + 𝑏). Similarly, 

𝜆2 = 𝜃2
𝛽2  can be shown to follow ℐ𝒢(∑𝑛𝑖=1 𝑧𝑖

2 + 𝑐, ∑𝑛𝑖=1 𝑡𝑖
𝛽2 + 𝑑). Hence both 𝜃1 and 𝜃2 can be 

generated using any standard routine for inverse gamma generator (see, for example,[8]). The full 

conditionals (32) and (33) can be shown to be logconcave hence both 𝛽1 and 𝛽2 can be simulated 

easily using (say) adaptive rejection sampling (ARS) algorithm proposed by [14]. 

 

 

4.1  Implementation of Gibbs sampler in case of censored data 
 

 An appreciable property of Gibbs sampler algorithm is that it can be easily extended to deal 

with censored data situations. The idea is very simple in the sense that the algorithm proceeds 

with exactly the same posterior as specified for the complete data case but assumes censored 

observations as further unknowns. Thus, in censored data case, the Gibbs sampler algorithm has 

additional full conditionals corresponding to censored observations. Obviously, the full 

conditionals for the other parameters will remain same to those obtained for the complete data 

case whereas the full conditionals for the independent censored observations will be the parent 

sampling distributions truncated in the appropriate regions (for details, see [26]). 

As mentioned in Section 3, each 𝑡𝑖 is associated with an indicator variable 𝛿𝑖 such that if 𝛿𝑖 =

0, 𝑡𝑖 is the right censoring time and if 𝛿𝑖 = 1, 𝑡𝑖 is the observed failure time corresponding to the 

item 𝑖, 𝑖 = 1,2, . . . , 𝑛. Obviously, the full conditionals corresponding to 𝑧, 𝜃1, 𝜃2, 𝛽1 and 𝛽2 are same 

that were obtained earlier for complete data case. The additional full conditionals correspond to 

censored observations that can be generated from the left truncated ℬ𝒲ℛ distribution. The 

generation can be simple and the variate value 𝑡𝑖 can be retained if it lies in the constrained region 

(𝑡𝑖, ∞). For the generation from truncated ℬ𝒲ℛ  model, a simple two-step algorithm can be 

designed based on the following theorem.  
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Theorem 1  Suppose 𝑇1 and 𝑇2 be two random variables following 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0 and 𝒲(𝜃2, 𝛽2), 

𝛽2 > 1.0, respectively, and suppose both are truncated from left at the same point c. If we define a random 

variable 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2), then 𝑇 will follow left truncated ℬ𝒲ℛ  distribution with parameters 

(𝜃1, 𝜃2, 𝛽1, 𝛽2), the point of truncation from left is at c.  

 

Proof. The proof of the Theorem (1) is added to Appendix given at the end.  

 

The generation of random variable 𝑇 from truncated ℬ𝒲ℛ  distribution involves the following 

two steps. First, generate 𝑇1 and 𝑇2 from left truncated 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0 and 𝒲(𝜃2, 𝛽2), 𝛽2 > 1.0, 

respectively. Second, take 𝑇 = min(𝑇1, 𝑇2). The resulting 𝑇 will follow left truncated ℬ𝒲ℛ  

distribution. 

 

 

5  Model Compatibility 
 

 Model compatibility study is an important concept in any statistical data analysis which 

provides an assurance that the entertained model is rightly used for the data in hand. If the model 

is compatible with the data, the analysis is of course justified. In case of poor resemblance with the 

data, it is desired to consider an alternative model that best represents the entertained data. The 

model compatibility study can be performed in a variety of ways. The classical statisticians, of 

course, use tail area probabilities based on a discrepancy measuring statistic to provide agreement 

or disagreement of data with the model. 

Bayesian statistics offers a number of tools for studying model compatibility. The simplest 

and an informal approach may involve checking predictive capability of the model with regard to 

some of its important characteristics possibly using graphical tools (see, for example,[19]). A 

practical approach to implement this idea in reliability studies may entail investigating the 

empirical plots of observed data based and some of the posterior predictive data based reliability 

characteristics on the same graphical scale. Some of the important reliability characteristics in this 

context may be considered as hazard rate function, reliability function, mean time to failure, etc. 

Thus one can consider plotting the observed data based entertained characteristic and 

correspondingly the predictive data based same characteristic where predictive data are generated 

from the posited model. Such a graphical tool will not only provide an informal assessment of 

discrepancy between the model and the data but also sometimes help in improving the model (see 

also Upadhyay et al. (2001)). 

Bayesian study on model compatibility can also be extended in an objective manner using tail 

area probability or the p-value based on a discrepancy measuring statistic under the assumption 

that the considered model is true for data. A number of versions of Bayesian p-values are defined 

in the literature based on several considerations, each having its own merit or demerit. We shall 

not discuss these details here due to space restriction rather refer to Bayarri and Berger (1998) for a 

systematic accountability. In this paper, we shall use posterior predictive p-value based on chi-

square discrepancy measure (see also Upadhyay et al. (2001)). Although the posterior predictive p-

value (PPV) has its own disadvantages, the most important being double use of data, we shall use 

it for its inherent simplicity and also because of the fact that it is easily computable for any choice 

of prior. A brief review about the PPV is given in the next subsection. 

 

 

 

5.1  Posterior predictive p-value 
 

 [15] proposed the use of p-value based on the posterior predictive distribution of model 
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departure statistics (see also [26]). The idea is very simple. To begin with, let us define the chi-

square statistic as a measure of discrepancy given by  

                      𝜒2 =
∑𝑛𝑖=1 (𝑡𝑖−𝐸(𝑡𝑖|𝜽))

2

𝑉(𝑡𝑖|𝜽)
,                                       (34) 

 

where 𝐸(. ) denoets the operation of taking expectation and 𝑉(. ) denotes the variance. 

Accordingly, the PPV based on 𝜒2 discrepancy measure can be obtained as  

 

             𝑃𝑃𝑉 = ∫ 𝑃𝑟[𝜒2
2 > 𝜒1

2|𝑓, 𝜽]𝑝(𝜽|𝑡)𝑑𝜽, (35) 

 

where 𝜒1
2 and 𝜒2

2 are the calculated values of 𝜒2 for the observed and predictive data sets, 

respectively, 𝑝(𝜽|𝑡) is posterior distribution of 𝜽 and 𝑓 is the entertained model. For complete data 

case, PPV can be calculated using the procedure suggested by [26] (see also [13]) which consists of 

two steps. The first step is to draw 𝜽 from 𝑝(𝜽|𝑡) and calculate 𝜒1
2 based on the given data set. The 

second step is to extract predictive data sets each of same size as that of given data from the model 

𝑓 using the simulated 𝜽 and calculate 𝜒2
2 based on these predictive data sets. We then calculate 

𝑃𝑟[𝜒2
2 > 𝜒1

2|𝑓, 𝜽] as the number of times 𝜒2
2 exceeds 𝜒1

2. These steps are repeated a number of times 

with different simulated 𝜽 and PPV is estimated as the posterior expectation of 𝑃𝑟[𝜒2
2 > 𝜒1

2|𝑓, 𝜽].  

 In order to evaluate PPV in situation where data set has some right censored observations, 

one can first complete the data set by replacing all censored observations with the maximum of 

their respective censoring times and predictive means (see [11]). The PPV can then be calculated 

using this completed data set in the same way as described above for complete data case.  

 

6  Numerical Illustration 
 

 For analyzing the proposed ℬ𝒲ℛ  model, we considered a real data set reported initially by [9]. 

The dataset consists of failure times of 58 electrodes (segments cut from bars) which were put on a 

high-stress voltage endurance life test. Observations on failure time from voltage endurance test 

are given in Table 1. First, fourth and seventh columns of the table list the observations on failure 

times of electrodes in hours whereas second, fifth and eighth column represent failure modes, that 

is, the causes of failures. The failures were attributed to one of two modes (causes) which are as 

under. The first cause is the insulation defect due to a processing problem (mode E) which tends to 

occur early in life. The second cause, on the other hand, is degradation of the organic material 

(mode D) which typically occurs at a later stage. Third, sixth and ninth columns of the table 

indicate completely observed or censored failure times. 𝛿 = 0 indicates observed failure times 

while 𝛿 = 1 indicates censored failure times. Since, for censored observations, failure cause is 

unknown, we have denoted the missing cause by ’∗’ (see Table 1). 

In order to analyze the model for the assumed dataset, we first considered only those 

observations which were completely observed and left those observations which were censored. 

As such, we formed a new sample where all the failure times are completely observed. Besides, we 

also omitted the two causes of failures (E and D) so that the observations can be treated 

appropriate for the considered competing risk model with latent (unknown) causes of failures. We 

next considered the entire sample treating it as a case of censored data problem but omitted the 

two causes of failures (E and D) for the appropriateness of proposed competing risk model with 

latent causes of failures.  

 In the first part of our analysis, we considered obtaining ML estimates of ℬ𝒲ℛ  parameters 

using EM algorithm after visualizing the model as an incomplete data model and introducing 

missing indicator variables 𝑧1 for failure mode E and 𝑧2 for failure mode D as described in Section 

3. The ML estimates for the parameters 𝜃1, 𝜃2, 𝛽1 and 𝛽2 were found to be 885.030(1209.506), 

341.553(343.841), 0.613(0.629) and 5.545(5.592), respectively. The values in parenthesis correspond 

to the estimates of parameters for censored data case.  
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Table 1: Voltage endurance life test results of 58 electrodes. 

 

Hours Failure 

Mode 

𝛿 

 
Hours Failure 

Mode 

𝛿 

 
Hours Failure 

Mode 

𝛿 

 

2 

3 

5 

8 

13 

21 

28 

31 

31 

52 

53 

64 

67 

69 

76 

78 

104 

113 

119 

135 

E 

E 

E 

E 

* 

E 

E 

E 

* 

    * 

    * 

    E 

    * 

    E 

    E 

    * 

    E 

    * 

    E 

* 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

1 

0 

1 

0 

0 

1 

0 

1 

0 

1 

144 

157 

160 

168 

179 

191 

203 

211 

221 

226 

236 

241 

257 

261 

264 

278 

282 

284 

286 

298 

E 

* 

E 

D 

* 

D 

D 

D 

E 

D 

E 

* 

* 

D 

D 

D 

E 

D 

D 

D 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

303 

314 

317 

318 

320 

327 

328 

328 

348 

348 

350 

360 

369 

377 

387 

392 

412 

446 

E 

D 

D 

D 

D 

D 

D 

D 

* 

D 

D 

D 

D 

D 

D 

D 

D 

D 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

For Bayesian analysis of the model, we first consider specification of prior hyperparameters of 

the considered prior distributions. In this context, we begin with the choice of 𝛽2𝑢 = 7.0 following 

the argument given in Section 4 so that the shape of the hazard rate curve is increasing at a 

constant rate from the beginning itself and the Weibull distribution does not approach to normality 

in a real sense. We next assume that given 𝛽1, the expert has provided two characteristics of 

ℐ𝒢(𝑎, 𝑏) distribution, that is, the expert specifies the mean and variance of 𝜃1
𝛽1  to be 200 and 1000, 

respectively. Similarly, we assume that given 𝛽2, the expert specifies both mean and variance of 

𝜃2
𝛽2  to be very large, say of order 1.0 e+10. It may be noted that since the expert is not available in a 

real sense when specifying mean and variance of 𝜃1
𝛽1  and 𝜃2

𝛽2 , we have taken help of ML estimates 

of various parameters as well. Utilizing ML estimates is certainly an objective consideration but 

there is no harm if data based information is used in forming the appropriate priors. Also, the large 

variability for both 𝜃1
𝛽1  and 𝜃2

𝛽2  convey a kind of vagueness in the choice of priors. Based on these 

choices, the prior hyperparameters 𝑎 and 𝑏 were evaluated to be 5.0 and 600.0, respectively. 

Similarly, the prior hyperparameters 𝑐 and 𝑑 were found to be 6.0 and 5.0e+08, respectively. 

In order to provide the posterior based inferences of model (8), the posterior samples were 

extracted using the Gibbs sampler algorithm as described in Section (4) for complete data case and 

Subsection 4.1 for censored data case. In each case, we considered a single long run of Gibbs chain 

using the ML estimates of the parameters as the starting values for running the chain. For censored 

case, we also used known censoring time for each censored observation as the initial value of the 

corresponding censored observation. Convergence of the chain was monitored using the ergodic 

averages at about 20K iterations in each case. Once the convergence was achieved a sample of size 

2K was taken from the corresponding posterior distribution by picking up equidistant 

observations (at a gap of 10). The gap was chosen to make the serial correlation among the 

generating variates negligibly small (see also [26]). It may be noted that the assessment of a specific 

risk in the presence of other risk factors is of particular interest in a competing risk scenario and, 

therefore, we also obtained a sample of size 2K for the probability of failure due to insulation 



 
Gupta A., Ranjan R., Upadhyay S.K. 
CLASSICAL AND BAYES ANALYSIS OF A COMPETING RISK MODEL 

RT&A, No 3 (50) 
Volume 13, September 2018  

22 

defects (mode E) at each iterated value of posterior variates (see also (10)). 

Some of the important sample based estimated posterior characteristics were obtained based 

on the final sample of size 2K. We do not report here all the characteristics except the estimated 

posterior modes and the highest posterior density (HPD) intervals with coverage probability 0.95 

for all the parameters considering both complete and censored data cases (see Table 2). However, 

while writing the conclusion, some other characteristics, not reported in the paper, may be taken 

into account as well. Posterior modes are given because these are the most probable values and can 

be reasonably considered to be the Bayes estimates. Similarly, HPD limits will provide to a large 

extent the overall idea of the estimated posterior densities. Table 2 also provides the corresponding 

estimates for censored data case and these estimates are shown in parentheses. Besides the model 

parameters, the table also exhibits the estimated posterior modes and HPD limits for the 

probability of failure due to mode E (see (10)). 

   

Table 2: Estimated posterior modes and HPD limits with coverage probability 0.95 

for 𝓑𝓦𝓡 parameters 

Parameters Estimated 

posterior mode 

HPD limits 

lower    upper 

𝜃1 702.131 

(950.466 ) 

289.561    3819.390 

(345.505)    (5734.279) 

𝛽1 0.663 

(0.610) 

0.497    0.823 

(0.500)    (0.845) 

𝜃2 340.758 

(342.718 ) 

317.392     375.069 

(319.954)    (372.495) 

𝛽2 5.311 

(5.594 ) 

5.138    5.562 

(5.415)    (5.824) 

𝑃𝑟(𝑡 = 𝑡1) 0.349 

(0.310 ) 

0.189    0.546 

(0.199)    (0.557) 

Values in parentheses correspond to censored data case. 

 

 It can be seen that the Bayes estimates in both complete and censored data cases are more or 

less similar to the classical ML estimates except in case of 𝜃1 for censored data case where ML 

estimate appears to be slightly overestimated value. The finding, therefore, confirms the vague 

consideration of priors with choice of hyperparameters guided to some extent by ML estimates. 

Based on the HPD limits and the estimated posterior modes, it can be concluded that the 

parameters 𝜃2, 𝛽1 and 𝛽2 are more or less symmetric with small variability whereas the parameter 

𝜃1 is highly positively skewed with very large variability (see Table 2). This last conclusion was 

also confirmed by the characteristics such as estimated posterior means and medians, the values of 

which are not shown in the paper. A word of remark: since the posterior variability of 𝜃1 is quite 

large and the variability is appreciably increased for censored data case, the difference between 

Bayes and ML estimates, especially for censored data case, can be considered marginal only. 

Another important and striking conclusion is that the censoring does not cause appreciable loss of 

information as the estimates corresponding to complete and censored data case are quite close to 

each other although we have considered only 22 % observations to be censored. The Table 2 also 

shows the estimated posterior mode and HPD limits with coverage probability 0.95 for 𝑃𝑟(𝑡 = 𝑡1). 

It can be seen that nearly 35% of the observations (31% for censored data case) are failed due to 

initial birth defect, a conclusion that appears to be quite close to the true entertained values 

reported in Table 1. 

 

Figure  3: Estimated posterior densities and bi-variate characteristics  

for complete data case.
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Figure  4: Estimated posterior densities and bi-variate characteristics  

for censored data case.

 
   

We also worked out for the bivariate posterior characteristics for both complete and censored 

data cases, which are shown in Figures 3 and 4 in the form of scatter plots and estimated posterior 

correlations although the figures also display the estimated marginal posterior densities. As far as 
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the marginal densities are concerned, the conclusions are same that are discussed in the previous 

paragraph and, therefore, we do not need to interpret these estimated densities anymore. Based on 

the scatter plots and the estimated correlations, it can be concluded that the parameters 𝜃1 and 𝛽1 

are highly correlated a posteriori, the estimated correlation being -0.68. Similarly, the parameters 𝜃2 

and 𝛽2 are also exhibiting good correlation, the estimated value for the same being -0.33. In this 

very sense the conditional priors for 𝜃1 and 𝜃2 given in (26) are justified to some extent. The 

remaining parameter combinations (𝜃1, 𝜃2), (𝜃1, 𝛽2), (𝛽1, 𝜃2) and (𝛽1, 𝛽2) are, however, having 

relatively low estimated correlations, the estimated values being -0.21(-0.19), 0.03(0.04), 0.26(0.23) 

and -0.03(-0.06), respectively. Again the values within parentheses correspond to censored data 

case. 

To proceed further, we estimated the change point as given in (6) based on the final posterior 

samples of size 2K. The change point is certainly an important characteristic which differentiates 

between the two modes of failure. That is, the units having failure times less than the change point 

can be said to have failed due to early birth defect and the failure of units with failure times 

exceeding it can be attributed to degradation failure. The estimated posterior mode and HPD 

limits with coverage probability 0.95 for 𝑡∗ were found to be 107.240{109.467} and [92.269, 

125.235]{[95.320, 125.764]}, respectively, where the values in curly parentheses correspond to 

censored data case. In addition to these estimates, we also obtained the posterior estimates of 

hazard rate at different time points including at the change point. The estimates in the form of 

posterior modes based on a sample of size 2K are given in Table 3. It can be seen that the estimated 

hazard rate is least at the change point time and increasing as we move away from the change 

point time in either direction, a conclusion that was expected too. 

 

Table  3: Posterior estimates of hazard rate at different times 

t=80 t=100 t=𝑡∗ t=150 t=200 

0.121e-02 0.115e-02 0.113e-02 0.125e-02 0.224e-02 

(0.147e-02) (0.141e-02) (0.139e-02) (0.147e-02) (0.254e-02) 

Values in parentheses correspond to censored data case.  

  

Before we end the section, let us examine the compatibility of the model with the entertained 

data based on the ideas discussed in Section 5. For this purpose, we first generated a posterior 

sample of size 20 using the Gibbs sampler algorithm (subsection 4.1) and correspondingly obtained 

20 predictive samples each of same size as that of informative data. We then considered the non-

parametric empirical hazard rate estimates for both observed and predictive data sets at the time 

corresponding to the two data sets. Since some of the observations in the original data are 

censored, we implemented our procedure after completing the data by replacing the censored 

observations by the maximum of their predictive means and censoring times. The corresponding 

plots are shown in Figure 5 where solid line represents the informative data based estimated 

hazard rate and the dotted lines represent the predictive data based estimated hazard rate.  

A similar strategy was used to draw observed data and correspondingly predictive data based 

estimates of reliability function. This latter plot is shown in Figure 6. It can be seen that in both the 

cases the solid line is well superimposed by the dotted lines (see Figures 5-6) giving us a clear cut 

conclusion that the model is justified for the data in hand. 

We next obtained the numerical summary of model compatibility study in the form of PPV 

discussed in Section 5. To calculate the same, we first considered 100 posterior samples 

corresponding to the model ℬ𝒲ℛ  using the Gibbs sampler algorithm (subsection 4.1) and then 

obtained 𝜒1
2 for the given data set for each generated posterior sample of 𝜽. As a second step, we 

simulated 1K predictive samples from (8), each of size exactly similar to that of the observed data, 

for each value of 𝜽 and calculated 𝜒2
2 based on these predictive data sets. Our next step calculated 

𝑃𝑟[𝜒2
2 > 𝜒1

2] for each given 𝜽. Finally, the above steps were repeated to calculate PPV as described 

in Section 5. The estimated PPV was found to be 0.331, a value that again confirms the 
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compatibility of the model (8) with the observed data set. A word of remark: for the compatibility 

study considered here, we do not report the results corresponding to complete data case by 

omitting the censored observations as it was done earlier in obtaining other estimates. The results 

for the complete data case were more or less similar and, therefore, avoided due to space 

restriction. 

 

Figure 5: Estimated hazard rate plots corresponding to observed (solid line)  

and predictive data sets. 

 
Figure  6: Estimated reliability plots corresponding to observed (solid line)  

and predictive data sets.

 
   

7  Conclusion 
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 The paper considers a ℬ𝒲ℛ  model, a model that is quite popular in a competing risk scenario. 

Our assumption, however, considers two competing causes, the initial birth defect and ageing 

effect, that work together to induce failure of a unit. The considered model is analyzed in both 

classical and Bayesian frameworks although the classical analysis focuses on ML estimates only. 

The important feature of the corresponding likelihood function is that it offers unique consistent 

solution in the form of ML estimates. The paper finally shows how the idea of visualizing the 

competing risk model as an incomplete data model facilitates both classical and Bayesian analyses 

of the considered model not only for complete case but also for censored data situation. The 

applicability of model is also justified by conducting a Bayesian compatibility study of the model 

with a real data set involving a voltage endurance life test with two different failure modes. 
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Appendix 
  

Proof of Theorem 1 

 

Proof. Let 𝑇1 and 𝑇2 follow 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0 and 𝒲(𝜃2, 𝛽2), 𝛽2 > 1.0, respectively, where both 

are truncated from left at a point c. The densities of 𝑇1 and 𝑇2 can be written as 

 

 𝑓𝑊1
𝑐 (𝑡1|𝑡1 > 𝑐) =

𝛽1

𝜃1
(
𝑡1

𝜃1
)
𝛽1−1

exp [− (
𝑡1

𝜃1
)
𝛽1
+ (

𝑐

𝜃1
)
𝛽1
], 

 

 𝑓𝑊2
𝑐 (𝑡2|𝑡2 > 𝑐) =

𝛽2

𝜃2
(
𝑡2

𝜃2
)
𝛽2−1

exp [− (
𝑡2

𝜃2
)
𝛽2
+ (

𝑐

𝜃2
)
𝛽2
], 

respectively. Similarly, the cumulative distribution functions of 𝑇1 and 𝑇2 can be written as  

 𝐹𝑊1
𝑐 (𝑡1|𝑡1 > 𝑐) = 1 − exp [− (

𝑡1

𝜃1
)
𝛽1
+ (

𝑐

𝜃1
)
𝛽1
], 

 

 𝐹𝑊2
𝑐 (𝑡2|𝑡2 > 𝑐) = 1 − exp [− (

𝑡2

𝜃2
)
𝛽2
+ (

𝑐

𝜃2
)
𝛽2
]. 

 

If we define a random variable 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2|𝑇1, 𝑇2 > 𝑐) then the cumulative distribution function 

of T can be obtained as  

 𝐹ℬ𝒲ℛ

𝑐 (𝑡) = 1 − [1 − 𝐹𝑊1
𝑐 (𝑡|𝑡 > 𝑐)][1 − 𝐹𝑊2

𝑐 (𝑡|𝑡 > 𝑐)], 

which simlifies to  

 𝐹ℬ𝒲ℛ

𝑐 (𝑡) = 1 − exp [− (
𝑡

𝜃1
)
𝛽1
+ (

𝑐

𝜃1
)
𝛽1
] exp [− (

𝑡

𝜃2
)
𝛽2
+ (

𝑐

𝜃2
)
𝛽2
]. 

 

Now differentiating 𝐹ℬ𝒲ℛ

𝑐 (𝑡) with respect to 𝑡, we can obtain the density function of 𝑇 as  

 𝑓ℬ𝒲ℛ

𝑐 (𝑡) =
[
𝛽1
𝜃1
(
𝑡

𝜃1
)
𝛽1−1

+
𝛽2
𝜃2
(
𝑡

𝜃2
)
𝛽2−1

]exp[−(
𝑡

𝜃1
)
𝛽1
−(

𝑡

𝜃2
)
𝛽2
]

exp[−(
𝑐

𝜃1
)
𝛽1
−(

𝑐

𝜃2
)
𝛽2
]

. 

 

which is the density of ℬ𝒲ℛ  distribution with parameters (𝜃1, 𝜃2, 𝛽1, 𝛽2), truncated from left at 

point c. Hence we can say that 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2) follows ℬ𝒲ℛ(𝜃1, 𝜃2, 𝛽1, 𝛽2), left truncated at point c.  

 

 

Existence of Unique and Consistent Roots of Likelihood Equations 

 

Theorem 2 (see [3]). Let 𝑓(𝑡|𝜈) be the pdf with parameter vector 𝜈 = (𝜈1, 𝜈2, . . . , 𝜈𝑘), then the solution 

of the likelihood equation for the observation vector 𝑡  

 
∂∑𝑛𝑖=1 𝑙𝑛(𝑓(𝑡𝑖|𝜈))

∂𝜈𝑟
= 0, 

will be unique and consistent if the following three conditions hold. For the sake of brevity, we 

shall write f for 𝑓(𝑡|𝜈) and 𝑓𝑖 for 𝑓(𝑡𝑖|𝜈).  

(i). For almost all t and 𝜈 ∈ Θ, 
∂ln(𝑓)

∂𝜈𝑟
, 
∂2ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠
, 

∂3ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤
 exist for all r,s,w = 1,2,...,k.  

(ii). For almost all t and 𝜈 ∈ Θ, |
∂𝑓

∂𝜈𝑟
| < 𝐹𝑟(𝑡), |

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑠
| < 𝐹𝑟𝑠(𝑡), |

∂3𝑓

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤
| < 𝐻𝑟𝑠𝑤(𝑡), where 

𝐻𝑟𝑠𝑤(𝑡) is such that ∫
∞

−∞
𝐻𝑟𝑠𝑤(𝑡)𝑓𝑑𝑡 < 𝐶𝑀 < ∞ and 𝐹𝑟(𝑡) and 𝐹𝑟𝑠(𝑡) are bounded for all t. 

(iii). For all 𝜈 ∈ Θ, the matrix J = ((𝐽𝑟𝑠(𝜈))), where  

                      𝐽𝑟𝑠(𝜈) = ∫
∞

−∞

∂ln(𝑓)

∂𝜈𝑟

∂ln(𝑓)

∂𝜈𝑠
𝑓𝑑𝑡 

is positive-definite and that |𝐽| is finite.  

 

Now the conditions of above theorem may be verified for the likelihood equations 

corresponding to ℬ𝒲ℛ  model as follows. (It may be noted that the following proof verifies 
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𝐶ℎ𝑎𝑛𝑑𝑎’s theorem for the likelihood equations corresponding to right censored data case as well 

since for the censored observation, the expression of density for ℬ𝒲ℛ  model becomes 𝑓(𝑐1) =

exp [−(
𝑐1

𝜃1
)𝛽1 − (

𝑐1

𝜃2
)𝛽2] instead of (8) where 𝑐1 denotes the censoring time (see also [2])). 

Let us denote 𝑓 for 𝑓ℬ𝒲ℛ
(𝑡). The function 𝑓 is differentiable with respect to all the parameters 

𝜃1, 𝜃2, 𝛽1 and 𝛽2 any number of times. Under the assumption that all these parameters are positive 

and finite, any arbitrary ℓ𝑡ℎ order partial derivative of 𝑓 (let it be denoted by g) can only produce 

term of the following form  

 𝑔 = [∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)]exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
];

𝑗 = 0,1, . . . , ℓ; 𝑘 = 0,1, . . . , ℓ,

 (36) 

 

 where Φ𝑗𝑘(𝑡)s are polynomials in t, hence continuous and bounded in any closed interval. ln(𝑡) is 

also continuous for 𝑡 > 0, which indicates that the term [∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)] is 

continuous and bounded for t in any closed interval. For large values of 𝑡, behavior of 

[∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)] is dominated by the term exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] and also 

exp [− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] → 0 as 𝑡 → ∞. Hence,  

 |[∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)]exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]| < ∞. 

 

With this we can say that all partial derivatives of density 𝑓 exist. Now for verifying condition (𝑖) 

of Theorem 2, we have to show that all the first, second and third order partial derivatives of ln(𝑓) 

exist. These partial derivatives can be written as  

 
∂ln(𝑓)

∂𝜈𝑟
=

1

𝑓

∂𝑓

∂𝜈𝑟
 (37) 

 

 
∂2ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠
=

1

𝑓

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑠
−

1

𝑓2

∂𝑓

∂𝜈𝑟

∂𝑓

∂𝜈𝑠
 (38) 

 

 

 

∂3ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤
= 2

1

𝑓3

∂𝑓

∂𝜈𝑟

∂𝑓

∂𝜈𝑠

∂𝑓

∂𝜈𝑤
−

1

𝑓2

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑠

∂𝑓

∂𝜈𝑤
−

1

𝑓2

∂2𝑓

∂𝜈𝑠 ∂𝜈𝑤

∂𝑓

∂𝜈𝑟

−
1

𝑓2

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑤

∂𝑓

∂𝜈𝑠
+

1

𝑓

∂3𝑓

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤

 (39) 

 

 All the partial derivatives of 𝑓 that are involved in the above expressions are earlier shown to exist 

and since 0 < 𝑓 < ∞ for 𝑡 > 0. Hence the derivatives in (37)-(39) exist and the condition (𝑖) is 

verified.  

 Since for 𝑡 > 0, ln(𝑡) < 𝑡, hence by replacing ln(𝑡) by 𝑡 and negative signs in Φ𝑗𝑘(𝑡)s by positive 

signs in expression (36), we can always find a function 𝐴(𝑡) = [𝑎1𝑡
𝛼1+. . . +𝑎𝑘𝑡

𝛼𝑘] and a positive 

number 𝑁 such that  

 |[∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)]| < 𝐴(𝑡) 

and  

 exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] ≤ 𝑒−𝑁𝑡 . 

From these, we have  
 |𝑔| < 𝐴(𝑡)𝑒−𝑁𝑡 

and 𝐴(𝑡)𝑒−𝑁𝑡 is bounded for all 𝑡 > 0. Therefore, the two parts of condition (𝑖𝑖) are satisfied. For 

proving the third part of condition (𝑖𝑖), we have the third order partial derivatives of 𝑓 with 

respect to the parameters which are of the following form  
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∂3𝑓

∂𝜈1 ∂𝜈2 ∂𝜈3
; 2.0𝑐𝑚𝜈𝑗𝜀{𝜃1, 𝜃2, 𝛽1, 𝛽2},0.5𝑐𝑚𝑓𝑜𝑟0.1𝑐𝑚𝑗 = 1,2,3. 

On similification, it can produce a form  

 [∑3𝑗,𝑘=0,𝑗+𝑘≤3 (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)] × exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. 

Again, corresponding to each 
∂3𝑓

∂𝜈1 ∂𝜈2 ∂𝜈3
, we can easily find a polynomial 𝐴1(𝑡) such that  

 |
∂3𝑓

∂𝜈1 ∂𝜈2 ∂𝜈3
| < 𝐴1(𝑡) × exp[− (

𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. 

Let us denote 𝐴1(𝑡) × exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] by 𝐻(𝑡). For 𝐻(𝑡), we can write  

 ∫
∞

0
𝐻(𝑡)𝑓(𝑡)𝑑𝑡 = ∫

∞

0
𝐴1
′ (𝑡)exp[−2 (

𝑡

𝜃1
)
𝛽1
− 2(

𝑡

𝜃2
)
𝛽2
]𝑑𝑡, 

 

where 𝐴1
′ (𝑡) = [𝑏1𝑡

𝛾1+. . . +𝑏𝑚𝑡
𝛾𝑚]. Since 𝑡 ≥ 0 and 𝜃1 > 0, 𝜃2 > 0, hence replacing exp[−2 (

𝑡

𝜃2
)
𝛽2
] by 

its maximum value, which is 1, we can write  

 ∫
∞

0
𝐻(𝑡)𝑓(𝑡)𝑑𝑡 < ∫

∞

0
[𝑏1𝑡

𝛾1+. . . +𝑏𝑚𝑡
𝛾𝑚]exp[−2 (

𝑡

𝜃1
)
𝛽1
]𝑑𝑡. (40) 

 Let us consider a integral of the following type  

 ∫
∞

0
𝑡𝛾𝑗exp[−2 (

𝑡

𝜃1
)
𝛽1
]𝑑𝑡 =

𝜃1
𝛾𝑗+1

𝛽12

(𝛾𝑗+1)

𝛽1

Γ(
𝛾𝑗+1

𝛽1
) = 𝛿𝑗(𝑠𝑎𝑦), 

 

where 𝛿𝑗 is a moment of generalized 𝑔𝑎𝑚𝑚𝑎 density and exists for all 𝛾𝑗 > −1, 𝛽1 > 0 and 𝜃1 > 0. 

Hence, each term in integral of right hand side of inequality (40) results in constant multiple of 

moment of generalized 𝑔𝑎𝑚𝑚𝑎 density, which exist. If we denote ∑𝑚𝑗=1 𝑏𝑗𝛿𝑗 by 𝐶𝑀, we can write  

 ∫
∞

0
𝐻(𝑡)𝑓(𝑡)𝑑𝑡 < 𝐶𝑀 < ∞. 

With this, third part of condition(𝑖𝑖) is verified. 

 For verifying condition (𝑖𝑖𝑖), we need to prove the matrix 𝐽= ((𝐽𝑟𝑠(𝜈))) positive definite. 

The matrix 𝐽 can be written as  

 

 𝐽 = ∫
∞

𝑡=0

[
 
 
 
 
 
 
 (
∂ln(𝑓)

∂𝜃1
)2 (

∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝜃2
) (

∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝛽2
)

(
∂ln(𝑓)

∂𝜃2
)(
∂ln(𝑓)

∂𝜃1
) (

∂ln(𝑓)

∂𝜃2
)2 (

∂ln(𝑓)

∂𝜃2
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝜃2
)(
∂ln(𝑓)

∂𝛽2
)

(
∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝛽1
)(
∂ln(𝑓)

∂𝜃2
) (

∂ln(𝑓)

∂𝛽1
)2 (

∂ln(𝑓)

∂𝛽1
)(
∂ln(𝑓)

∂𝛽2
)

(
∂ln(𝑓)

∂𝛽2
)(
∂ln(𝑓)

∂𝜃1
) (

∂ln(𝑓)

∂𝛽2
)(
∂ln(𝑓)

∂𝜃2
) (

∂ln(𝑓)

∂𝛽2
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝛽2
)2

]
 
 
 
 
 
 
 

𝑓𝑑𝑡 (41) 

 

 

 𝐽 = ∫
∞

𝑡=0

{
 
 
 

 
 
 

[
 
 
 
 
 
 
 
∂ln(𝑓)

∂𝜃1
∂ln(𝑓)

∂𝜃2
∂ln(𝑓)

∂𝛽1
∂ln(𝑓)

∂𝛽2

]
 
 
 
 
 
 
 

× [
∂ln(𝑓)

∂𝜃1

∂ln(𝑓)

∂𝜃2

∂ln(𝑓)

∂𝛽1

∂ln(𝑓)

∂𝛽2 ]

}
 
 
 

 
 
 

𝑓𝑑𝑡. (42) 

 Let 
∂ln(𝑓)

∂𝜈
 denotes the vector of all first order partial derivatives of ln(𝑓) with respect to parameters 

𝜈 = (𝜃1, 𝜃2, 𝛽1, 𝛽2) and can be written as  
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∂ln(𝑓)

∂𝜈
=

[
 
 
 
 
 
 
 
∂ln(𝑓)

∂𝜃1
∂ln(𝑓)

∂𝜃2
∂ln(𝑓)

∂𝛽1
∂ln(𝑓)

∂𝛽2

]
 
 
 
 
 
 
 

. 

Mathematically, any matrix 𝐴 that can be written as 𝐴 = 𝐵𝐵′ , where 𝐵 may be square or 

rectangular, is at least positive semidefinite. Hence matrix in the integral of equation (41) is at least 

positive semidefinite. The matrix 𝐽 is expected value of the matrix (
∂ln(𝑓)

∂𝜈
)(
∂ln(𝑓)

∂𝜈
)′. Thus 𝐽 has a 

covariance structure and such a structure can be singular only when two or more elements in 

vector 
∂ln(𝑓)

∂𝜈
 are linearly related. But in our case, the elements are partial derivatives of same 

function with respect to different parameters, that is, 
∂ln(𝑓)

∂𝜈𝑗
 ; 𝑗 = 1,2,3,4 and all 𝜈𝑗s are independent 

of each other. Hence there is no linear relationship among the elements 
∂ln(𝑓)

∂𝜈𝑗
. Obviously, 𝐽 is 

nonsingular or in other words 𝐽 is positive definite. Again since all the first order partial derives of 

ln(𝑓) are shown to exist and finite, hence determinant of matrix 𝐽 is also finite. 

Therefore, we can say that the density 𝑓 offers unique and consistent ML estimates of the 

parameters. 


