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Abstract 

 

The Lindley and Weibull are the two most commonly used distributions for analyzing 

lifetime data. These distributions have several desirable properties and nice physical 

interpretations. This paper introduces a new distribution, which generalizes the well-

known Lindley and Weibull distribution, having Bathtub shaped failure rate. The 

Statistical properties of this distribution are discussed in this paper. Applications in 

reliability study are discussed. A real data set is analyzed and it is observed that the 

present distribution can provide a better than some other very well known distributions. 
 

 

Keywords: Reliability, Bathtub shaped failure rate, Weibull distribution, Lindley 

distribution. 

 

 

I. Introduction 
 

In order to apply suitable maintenance activities to a system or to apply reliability 

improvement procedures, one should know the dynamic behaviors of system reliability 

[2]. Increasing, decreasing and Bathtub curves are usually adopted to represent the failure 

rate of the system. Many statistical distributions are proposed in literature to model the 

Bathtub behavior of failure rate. The problem of getting optimal burn in time for the 

industrial burn in process is the major concern of industrial engineers. The failure rate of 

some engineering systems over time follows what is called the "bathtub" curve.  There is a 

high rate of infant mortality initial failures.  Then the failure rate drops, only to increase at 

the end of life due to wear out failures [3].  The reliability of a part can be enhanced by 

providing a burn-in at elevated temperatures prior to usage.  This burn-in is typically 

done at pre specified time.   It is also good to monitor the part performance during 

burning, so that the time point of failures can be detected.  That data can be used to set the 

optimum burn-in length. A continuous distribution with a bathtub-shaped failure rate 

function with desirable characteristics is quite appropriate in this context, [9,7]. 

In analyzing lifetime data one often uses the Exponential, Generalized Lindley and 

Weibull distributions. It is well known that Exponential can have only constant hazard 

function, Generalized Lindley has a bathtub shape hazard function whereas Weibull can 

have constant or monotone (increasing/decreasing) hazard functions. Unfortunately, in 
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practice often one needs to consider non-monotonic function such as bathtub shaped 

hazard function also. In this paper we present a new simple distribution which may have 

bathtub shaped hazard function, with high initial failure rate, which decreases rapidly 

and then slowly increases. 

In this paper, we propose a new distribution whose failure rate function has 

monotone (increasing/decreasing) or bathtub shape. Section II discussed the definition of 

the Weibull-Lindley distribution (WLD). Section III discussed the statistical behaviours of 

the distribution. Section IV discussed the distribution of maximum and minimum. The 

maximum likelihood estimation of the parameters determined in section V. Section VI 

discussed three parameter Weibull-Lindley distribution (3WLD) and real data sets are 

analyzed in Section VII and the results are compared with existing distributions.  

Conclusions are given in Section VIII. 

 

II. The Weibull-Lindley Distribution 
 

Let X  be a random variable with the following cumulative distribution function (CDF) 

for 0,,   as follows; 
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Assume λ=1 and 0,  .Then, the probability density function (PDF) corresponding to 

Eq. (2.1) is given by 
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Here   is shape parameter. The distribution with PDF of form (2.2) is said to be Weibull-

Lindley distribution with parameters  ,  and will be denoted by   ,WLD . 
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Figure 1 provide the PDFs of   ,WLD  for different parameter values. From the below 

figures it is immediate that the PDFs are unimodal. 

 
Figure 1: Probability density function of the   ,WLD . 

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

f(
x
)

a=7, b=1.2
a=7, b=1.4

a=7, b=1.6
a=7, b=1.8



 
V.M.Chacko, Deepthi K S, Beenu Thomas, Rajitha C 
WEIBULL-LINDLEY DISTRIBUTION 

RT&A, No 4 (51) 
Volume 13, December 2018  

11 

 

The survival function ),(xS  reversed failure rate function )(xr  and cumulative failure rate 

function )(xH  of X  are  
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and 
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As a result, the hazard rate function of the WL distribution can exhibit monotonically increasing, 

monotonically decreasing and bathtub shapes. We can see from that 

lim
𝑥→0

ℎ(𝑥) = {

∞, 𝛽 < 1
2𝛼, 𝛽 = 1
𝛼, 𝛽 > 1

 

 

Figure 2 provide the failure rate functions of   ,WLD  for different parameter values. From the 

below figures it is immediate that the failure rate function can be increasing, decreasing or bathtub 

shaped. 

 
Figure 2: Failure rate function of the   ,WLD . 

 

It is clear that the PDF and the failure rate function have many different shapes, which allows this 

distribution to fit different types of lifetime data. For fixed  , the failure rate function is (a) non-

decreasing function if ,1  and (b) non-increasing and bathtub function if .1  
 

III. Statistical Properties 
 

In this section, we study the statistical properties for the Weibull-Lindley distribution, specially 

Quantile function and Median, Mode, Moments etc 
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thp  percentile, 
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Setting 5.0p  in Eq. (3.1), we get the median of WLD as follows. 
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px is the solution of above monotone increasing function. Software can be used to obtain the 

Quantiles/Percentiles 

Mode: Mode can be obtained as solution of  
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It is not possible to get an analytic solution in x to Eq. (3.3) in the general case. It has to be obtained 

numerically by using methods such as fixed-point or bisection method. 

Moments: If X  has WLD, we obtain the rth moment of WLD in the form 
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(3.3)

 If (3.3) is a convergent series for any 0r , therefore all the moments exist and for integer values 

of   and   (3.4) can be represented as a finite series representation. Therefore putting 1r , we 

obtain the mean as 
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and putting 2r , we obtain the second moment as 
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which in turn can be used to obtained the higher central moments and variance. 

 

Moment Generating Function and Characteristic function 

 

The moment generating function, ),(tM X  is 
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IV. Distribution of Maximum and Minimum 
 

Series, Parallel, Series-Parallel and Parallel-Series systems are general system structure of many 

engineering systems. The theory of order statistics provides a use-full tool for analysing life time 

data of such systems. Let X1, X2,...,Xn be a simple random sample from WLD with CDF and PDF as 

in (2.1) and (2.2), respectively. Let X(1), X(2),…, X(n) denote the order statistics obtained from this 

sample. The CDF of  rX  is given by, 
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Reliability of a series system having n components with independent and identically distributed 

(iid) WLD distribution is  
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V. Parameter Estimation 
 

In this section, point estimation of the unknown parameters of the WLD are derived by using the 

method of maximum likelihood based on a complete sample data.  First partial derivatives of the 

log-likelihood function with respect to the two-parameters are 
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Setting the left side of the above two equations to zero, we get the likelihood equations as a system 

of two nonlinear equations in   and  . Solving this system in   and   gives the maximum 

likelihood estimates (MLE) of   and  . It is very easy to obtain estimates using R software by 

numerical methods. 

 

Asymptotic Confidence bounds 

 

In this section, we derive the asymptotic confidence intervals of these parameters when 0  and 
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The second partial derivatives as follows 
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We can derive the   %1001   confidence intervals of the parameters 𝛼 and 𝛽 by using variance 

matrix as in the following forms 

  
ˆˆ

2

VarZ ,   
ˆˆ

2

VarZ  

where 

2

Z  is the upper 

th










2


 percentile of the standard normal distribution. 

 

VI. Three parameter Weibull-Lindley Distribution 
 

In order to address scaling problem, as given in (2.1), this section considered the CDF of Three 

parameter Weibull-Lindley Distribution (3WLD), for 0,,   as follows; 
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exF , 0x                                 (6.1) 

The probability density function (PDF) corresponding to Eq. (6.1) is given by 
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                                                                                                                                        (6.2) 

Here   is shape parameter and   is scale parameter. The distribution of this form with 

parameters ,,  and   and will be denoted by   ,,3WLD . 

The survival function ),,;( xS , failure rate function ),,;( xh , reversed failure 

rate function ),,;( xr  and cumulative failure rate function ),,;( xH of X are    
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and   

                                      

x

xexdtthxH
0

)(1),,;(),,;(
                         (6.6) 

respectively. 

 

Figure 3 and Figure 4 provide the PDFs and the failure rate functions of ),,( GoED for 

different parameter values. From the below figures it is immediate that the PDFs can be unimodel 

and the failure rate function can be increasing, decreasing or bathtub shaped 
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.  

Figure 3: Probability density function of the   ,,3WLD . 

 

It is clear that the PDF and the failure rate function have many different shapes, which allows this 

distribution to fit different types of lifetime data.   

 
Figure 4: Failure rate function of the   ,,3WLD . 

 

For fixed , the failure rate function is (a) non-decreasing function (IFR) if 1  and ,1  and (b) 

non-increasing (DFR) and bathtub function if 1 and .1  
 

Parameter Estimation 

 

In this section, point estimation of the unknown parameters of the 3WLD are derived by using the 

method of maximum likelihood based on a complete sample data. The first partial derivatives of 

the log-likelihood function with respect to the three-parameters are 
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and 
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Setting the left side of the above three equations to zero, we get the likelihood equations as a 

system of three nonlinear equations in  , and .  Solving this system in  , and   gives the 

maximum likelihood estimates (MLE) of  , and .  It is very easy to obtain estimates using R 

software by numerical methods. 

 

VII. Application 
 

In this section, we present the analysis of a real data set using the ),( WLD and ),(3 WLD  

model and compare it with the other bathtub models such as Generalized Lindley distributions 

(GLD), [7], Exponentiated Weibull distribution (EW), [9], using Kolmogorov-Smirnov (K-S) 

statistic. We considered the data sets are obtained strengths of 1.5 cm glass fibres data [10] and 

infection for AIDS data [4] to estimate the parameter values. 

 

Data Set 1: The data are the strengths of 1.5 cm glass fibres [10], measured at the National Physical 

Laboratory, England. Unfortunately, the units of measurement are not given in the paper. This 

data set 1 is in Table 1.  

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 

1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84, 

2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 

1.61, 1.63, 1.67, 1.7, 1.78 and 1.89. 

 

Table 2 gives MLEs of parameters of the WLD, GLD, EW and 3WLD and goodness of fit statistics. 

 

Table 2: MLEs of parameters, Log-likelihood. 

 

Model MLEs of parameters  log L K-S p-value 

WLD 
𝛼̂ = 0.02852 

𝛽̂= 1.8927 
-16.63882 0.13681 0.189 

GLD 
𝛼̂ = 26.17181 

𝜆̂ = 2.990087 
-30.61986 0.22639 0.003136 

EW 

𝛼̂ = 7.2847 

𝛽̂ = 0.67122 

𝜆̂ =0.58203 

-14.67552 0.14623 0.1352 

3WLD 

𝛼̂ = 0.000212 

𝛽̂=0.83783 

𝜆̂ =5.32574 

-14.42277 0.12564 0.273 

 

3WLD gives the largest Log-likelihood value and largest p value based on the KS statistic. 

The second largest Log-likelihood value and p value based on the KS statistic is given by the EW 

distribution. The third largest Log-likelihood value and p value based on the KS statistic is given 

by the WL distribution.  
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Figure 5 gives the form of the failure rate for the WLD and 3WLD which are used to fit the data 

after replacing the unknown parameters. 

 
Figure 5: Failure rate function for WLD and 3WLD 

 

 
Figure 6: Fitted pdfs of the three best fitting distributions for data set 1. 

 

 

 
 

Figure 7: PP plots of the three best fitting distributions for data set 1. 
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Data Set 2: The second data set are times to infection for AIDS for two hundred and ninety five 

patients. The data were taken from Section 1.19 of Klein and Moeschberger [4]. The two 

distributions were fitted to this data. The parameter estimates and the goodness of fit statistics are 

given in Table 3.  Table 3 gives MLEs of parameters of the WLD, GLD, EW and 3WLD and 

goodness of fit statistics. 

 

Table 3: MLEs of parameters, Log-likelihood 

 

Model MLEs of parameters log L K-S p-value 

WLD 
𝛼̂ = 0.03552611 

𝛽̂= 0.57122324 
-457.3015 0.077618 0.08931 

GLD 
𝛼̂ = 2.4144951 

𝜆̂ =  0.8924887 
-453.523 0.71652 2.22 10-16 

EW 

𝛼̂ = 1.9565778 

𝛽̂ = 0.9598033 

𝜆̂ = 0.3212501 

-450.1305 0.063912 0.2426 

3WLD 

𝛼̂ = 8.751896 10-04 

𝛽̂ = 0.2994  

𝜆̂ = 15.0999 

-451.8749 0.061941 0.2755 

 

Here, EW gives the largest Log-likelihood value and largest p value based on the KS 

statistic. The second largest Log-likelihood value and p value based on the KS statistic is given by 

the 3WL distribution. The third largest Log-likelihood value and p value based on the KS statistic 

is given by the WL distribution. 

Figure 8 and 9 gives the form of the failure rate for the WLD and 3WLD which are used to 

fit the data after replacing the unknown parameters. 

 

        
 

 Figure 8: Failure rate function for WLD 
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Figure 9: Failure rate function for 3WLD 

                                                                                   

 
 

Figure 10: Fitted pdfs of the three best fitting distributions for data set 2. 

 

 

 
 

Figure 11: PP plots of the three best fitting distributions for data set 2. 
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It is observed that 3WLD fits the best in the first data set whereas EW fits the best in the 

second data in terms of likelihood and in terms of KS Statistic. Therefore, it is not guaranteed the 

3WLD will behave always better than WLD or EW or GLD but at least it can be said in certain 

circumstances 3WLD might work better than WLD or EW or GLD. 

 

VIII. Conclusion 
 

A new distribution, Weibull-Lindley distribution (WLD), has been proposed and its properties 

studied. Three parameter Weibull-Lindley distribution (3WLD) is introduced for avoid scale 

problem. We have studied maximum likelihood estimators and the parameters estimation is 

carried out in the presence of real data. We present two real life data sets, where in one data set it is 

observed that 3WLD has a better fit compare to EW or WLD or GLD but in the other the EW has a 

better fit than 3WLD or WLD or GLD. 
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