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Abstract   
  

 The paper considers a competing risk model based on two Weibull distributions, one 

with increasing and the other with decreasing hazard rate. It then considers both classical 

and Bayesian analysis of the model, the later development utilizes the informative but 

weak priors for the parameters. The analysis is facilitated by the fact that a competing 

risk model can be considered as an incomplete data model even if the situation allows all 

the observations on the test to be made available although the results are extended for 

censored data cases as well. The paper uses the expectation-maximization algorithm for 

classical maximum likelihood estimation and Gibbs sampler algorithm for posterior 

based inferences. It is shown that the likelihood function offers unique and consistent 

maximum likelihood estimates. The results are illustrated based on a real data example. 

Finally, the compatibility of the model is examined for the considered real data set using 

some standard tools of Bayesian paradigm.  

 

Keywords: Competing risk, Weibull distribution, Right censoring, Expectation-

maximization algorithm, Gibbs sampler, Predictive p-value.  

 

 

 

1  Introduction 
 

 In real life situations, it is quite frequent that an item is exposed to experience failure due to 

more than one cause at the same point of time. Say for instance, in reliability experiment, an item 

may fail due to one of several possible causes, such as breakdown, manufacturing defects, etc. 

Similarly, in medical experiment, a patient suffering from several diseases may die because of the 

one that relapses first. Such situations usually come under the purview of competing risk scenario 

where an item or organism is subject to several competing causes and the failure may occur 

because of any cause that arises first. A traditional approach for modelling failure time data in 

presence of competing risks is to assume that there is a latent failure time associated with each of 

the causes to which the item is exposed and the realized failure time of the item is lowest among 

these latent failure times. Moreover, these latent failure times are assumed to be independent of 
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each other following some distributions, either same or different (see [5]).  

The simplest case of competing risk model arises when failure of an item is subject to two 

possible causes. In this case, a competing risk model is defined considering the distribution of 

minimum of two different failure times. The analysis of such competing risk models based on two 

failure time distributions is considered by several authors. [10] studied a competing risk model 

defined on the basis of exponential and Weibull failures to model failures due to shock and wear 

out, respectively, and discussed the properties of maximum likelihood (ML) estimates of resulting 

model parameters. [21] proposed both parametric and non-parametric estimation techniques for a 

two-component competing risk model under the assumption that the component failure times are 

exponentially distributed. [4] proposed a competing risk model for a situation where the 

population is exposed to wear out failures but a fraction of population is also exposed to early 

failures. The authors obtained ML estimates of model parameters under the assumption that 

failure modes follow either Weibull or lognormal distributions. [2] considered both classical and 

Bayesian analyses of a model based on minimum of Weibull and exponential failures assuming 

that former results in failures due to ageing and the latter results in accidental failures as the two 

competing causes. More recently, [22] suggested an alternative competing risk model based on 

gamma and exponential distributions to model ageing and accidental failures, respectively, and 

provided complete classical as well as Bayesian analyses of the resulting competing risk model.  

This paper models a situation where infancy and ageing work together to induce failures. 

Such a situation may occur where an item having an initial birth defect is also subject to failure due 

to ageing. Many real life situations can be found in practice that may include items from 

automobile segment, high-power transmitting tubes and computer disk-drives, etc. Obviously, to 

deal with such situations, one may consider, among various other choices, a model based on two 

distributions, one with decreasing hazard rate and other with increasing hazard rate. The resulting 

failure time can then be considered as the minimum of two failure times, one corresponding to 

decreasing hazard rate distribution and the other corresponding to increasing hazard rate 

distribution. One can, of course, consider a number of models to define decreasing and increasing 

hazard rate behaviour. We, however, consider a competing risk model defined on the basis of two 

Weibull distributions, one corresponding to decreasing hazard rate situation and the other 

corresponding to increasing hazard rate situation. 

The Weibull distribution is an important failure time distribution that encompasses both 

increasing and decreasing hazard rate behaviour and, perhaps because of its enormous scope and 

flexibility, it has been used to describe both initial as well as ageing failures (see, for example, 

Lawless (2002)). The probability density function (pdf) of its simplest two-parameter form 

(𝒲(𝜃, 𝛽)) can be written as  

     𝑓𝑊(𝑡|𝜃, 𝛽) =
𝛽

𝜃
(
𝑡

𝜃
)
𝛽−1

exp [− (
𝑡

𝜃
)
𝛽

] ;     𝑡 > 0,    𝜃 > 0,    𝛽 > 0, (1) 

 

 where 𝜃 and 𝛽 are scale and shape parameters, respectively. It is actually the shape parameter that 

results in different characteristics of the model. Say, for instance, 𝛽 < 1.0 defines a decreasing 

hazard rate distribution that can be considered to model early birth defects. Similarly, 𝛽 > 1.0 

defines increasing hazard rate behavior, a situation that can be very well used for defining failures 

due to ageing. Although, not of importance in the present work, the distribution reduces to 

constant hazard-rate exponential distribution when 𝛽 = 1.0. The important reliability 

characteristics such as the reliability at time t, the hazard rate and the mean time to failure (MTF) 

for 𝒲(𝜃, 𝛽) can be written as 

 

 𝑅𝒲(𝑡) = exp [− (
𝑡

𝜃
)
𝛽

], (2) 

  

 ℎ𝒲(𝑡) =
𝛽

𝜃
(
𝑡

𝜃
)
𝛽−1

, (3) 

 and  
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 𝑀𝑇𝐹𝒲 = 𝜃Γ(1 + 1/𝛽), (4) 

 respectively. 

 As mentioned, the proposed model is defined on the basis of two Weibull distributions, one 

with 𝛽 < 1.0 and the other with 𝛽 > 1.0. A similar model, named as Bi-Weibull (ℬ𝒲) distribution, 

was also entertained by [1] but they did not impose any restriction on the corresponding shape 

parameters. The authors considered the model as a particular case of poly-Weibull model and 

analyzed in a Bayesian framework using Gibbs sampler algorithm. The illustration was, however, 

based on a simulated data set. The unrestricted model was later analyzed by a number of authors 

including [16], [6] and [17]). Whereas [16] provided complete parametric characterization of the 

model in a three dimensional parameter space, [6] analyzed the model for real as well as generated 

data sets using both classical and Bayesian tools. In fact, [6] mentioned that the likelihood of the 

model could be obtained in a simple manner and there was no need of using Gibbs sampler 

algorithm. The authors rather used standard likelihood method to obtain classical inferences and 

both Laplace’s method and sampling-importance resampling technique for Bayesian inferences. 

Recently [17] considered various characterizations of (ℬ𝒲) model in its four-parameter setup 

and obtained ML estimates of model parameters with observed information matrix. The authors 

then used the results on asymptotic normality of ML estimators to derive approximate confidence 

intervals and confidence regions for the model parameters. The results obtained by [17] are 

certainly extensive but inferential aspects are comparatively meagre as compared to various 

characterizations of the model. Moreover, the model considered by the authors is a simplified 

version that separates the two parameters of the Weibull model and it is often considered for 

mathematical convenience. 

The present paper can be considered as an extension of previous work where two Weibull 

distributions with form given in (1) are used to define the competing risk model. Since the shape 

parameters of the corresponding components are restricted, we shall call the resulting competing 

risk model as restricted Bi-Weibull (ℬ𝒲ℛ) model. The paper then considers not only the complete 

Bayes analysis using weak proper priors but also the ML estimation of model parameters using 

expectation-maximization (EM) algorithm. It is shown that there exists a unique consistent solution 

of the likelihood function, a result that may be considered significant for the likelihood form 

arising from ℬ𝒲ℛ  model. Throughout the inferential developments are done for both complete 

and censored data cases, the latter situation is, of course, important in failure time data analysis 

but not considered in any of the previous references. 

The plan of the paper is as follows. The next section introduces the proposed ℬ𝒲ℛ model and 

provides a few important characteristics for the same. Some of the results provided in this section 

are given in slightly different forms in [17] but we have reproduced them for a ready reference and 

also because of the fact that the model form for the Weibull distribution used by [17] is different 

from the one considered by us in this paper. Section 3 details the ML estimation of the model 

parameters for the considered ℬ𝒲ℛ  model using EM algorithm. Since the competing risk model as 

considered in the paper is an incomplete data model in the sense that we do not have the actual 

cause of failures, the EM algorithm happens to be an important choice for such situations. Section 4 

provides the Bayesian model formulation for the considered likelihood and prior combinations. 

The resulting posterior is not easy to deal with and, therefore, we have considered the use of Gibbs 

sampler algorithm for drawing the posterior based inferences. The section also provides a brief 

discussion of the Gibbs sampler algorithm and its implementation details for the model in hand. 

Throughout the censored data cases are also considered and appropriate implementation details 

for the same are given. Section 5 is given for completeness that provides a few important tools for 

model compatibility study in Bayesian paradigm. These tools are used in the next section where 

we have considered a real data set for numerical illustration and provided the compatibility of the 

data with ℬ𝒲ℛ  to justify our analysis. Finally, a conclusion is given in the last section along with 

the proof of theorems in the Appendix. 
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2  The Proposed 𝓑𝓦𝓡 Model 
 

 Let 𝑇1 be a random variable following 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0, and 𝑇2 be another random variable 

following 𝒲(𝜃2, 𝛽2), 𝛽2 > 1.0. A competing risk ℬ𝒲ℛ  model based on random variable 𝑇 =

min(𝑇1, 𝑇2) can be characterized by four parameters 𝜃1, 𝜃2, 𝛽1 and 𝛽2 where 𝜃1 > 0, 𝜃2 > 0, 𝛽1 < 1.0 

and 𝛽2 > 1.0. The hazard rate of ℬ𝒲ℛ(𝜃1, 𝜃2, 𝛽1, 𝛽2) model can be expressed as sum of hazard rates 

of its components, which can be given as  

  

 ℎ𝐵𝑊𝑅
(𝑡) =

𝛽1

𝜃1
(
𝑡

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡

𝜃2
)
𝛽2−1

. (5) 

 The hazard rate of general ℬ𝒲 model is discussed by several authors. A few important 

references include [16], [6] and [17]. Truly speaking, the hazard rate of ℬ𝒲 model may be 

characterized by its shape parameters 𝛽1 and 𝛽2. If min(𝛽1, 𝛽2) > 1.0, the hazard rate is increasing; 

if max(𝛽1, 𝛽2) < 1.0, the hazard rate is decreasing; and for 𝛽1 < 1.0 and 𝛽2 > 1.0, the hazard rate is 

bathtub shaped. On the other hand, the hazard rate curve for ℬ𝒲ℛ  model is always bathtub 

shaped since one of its shape parameters is less than unity. The hazard rate curve, however, 

changes its shape with different choices of 𝛽1 and 𝛽2. The change-point for bathtub shaped hazard 

rate for the model ℬ𝒲ℛ  can be obtained as  

 𝑡∗ = [
𝛽1(1−𝛽1)×𝜃2

𝛽2

𝛽2(𝛽2−1)×𝜃1
𝛽1
]

1

𝛽2−𝛽1
. (6) 

 

 

Figure  1: Hazard rate curves corresponding to 𝓑𝓦𝓡 model for different values of 𝜷𝟏. 

 
   

It can be seen that 𝑡∗ is always positive since 𝛽1 is less than unity and the other shape parameter 

𝛽2 is greater than unity. Moreover, it can be seen that the change point increases as 𝛽1 approaches 

towards zero. The first derivative of h(t) can be shown to be negative(positive) for values of t 

less(greater) than 𝑡∗ and, therefore, the hazard rate is always decreasing(increasing) for values of t 

less(greater) than 𝑡∗ and finally approaching to infinity both when t approaches to zero or infinity.     

The hazard rate curves corresponding to ℬ𝒲ℛ  model are shown in Figures 1-2 for some 

arbitrary choices of the parameters. Since the shape parameters are only responsible for changing 

the hazard rates shapes, both the scale parameters 𝜃1 and 𝜃2 are fixed at unity. It is obvious from 

the figures that the curves exhibit convex shapes in every case with a unique minimum given by 

(6). Rest of the conclusions are same that have been detailed in the preceding paragraph. 
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Figure  2: Hazard rate curves corresponding to 𝓑𝓦𝓡 model for different values of 𝜷𝟐.

 
The reliability function corresponding to ℬ𝒲ℛ  model can be obtained as product of reliability 

functions of its component models. The expression for the same can be written as  

 𝑅ℬ𝒲ℛ
(𝑡) = exp [− (

𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. (7) 

 

  Using (5) and (7), one can easily obtain the pdf corresponding to ℬ𝒲ℛ  model. The same can be 

written as  

 𝑓ℬ𝒲ℛ
(𝑡) = [

𝛽1

𝜃1
(
𝑡

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡

𝜃2
)
𝛽2−1

] × exp [− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. (8) 

 

  Fortunately, the moments of ℬ𝒲ℛ  distribution exist in closed forms and the corresponding 

expression for the 𝑠𝑡ℎ moment (see also [17]) can be written as  

         
𝜇′𝑠 =

𝛽1𝜃2
𝑠

𝛽2
∑∞𝑚=0 (−1)

𝑚 (
𝜃2

𝜃1
)
(𝑚+1)𝛽1

Γ(
𝑠+(𝑚+1)𝛽1

𝛽2
)

              +𝜃2
𝑠 ∑∞𝑚=0 (−1)

𝑚 (
𝜃2

𝜃1
)
𝑚𝛽1

Γ(
𝑠+𝑚𝛽1

𝛽2
+ 1).

 (9) 

 

 Another important characteristic of interest is the probability of failure due to one of the 

causes. The corresponding expression for the probability of failure due to early birth defect can be 

written as 

 𝑃𝑟(𝑡 = 𝑡1) = ∫
∞

0

𝛽1

𝜃1
(
𝑡

𝜃1
)
𝛽1−1

exp [− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] 𝑑𝑡, 

which, on simplification, reduces to  

     𝑃𝑟(𝑡 = 𝑡1) =
𝛽1

𝛽2
∑∞𝑚=0 (−1)

𝑚 (
𝜃2

𝜃1
)
(𝑚+1)𝛽1

Γ(
(𝑚+1)𝛽1

𝛽2
). (10) 

 

Obviously, the probability of failure due to ageing can be written as complimentary probability 

of (10).  

 

3  The ML Estimation 
 

 Let n items having failure time distribution given in (8) be put on test and let 𝑦: (𝑦𝑖 =

(𝑡𝑖, 𝛿𝑖); 𝑖 = 1,2, . . . , 𝑛) denote the corresponding observations. We use 𝑡𝑖 to denote the failure time of 

𝑖𝑡ℎ unit and 𝛿𝑖 as an associated censoring indicator such that 𝛿𝑖 = 0 indicates that 𝑖𝑡ℎ observation is 

right censored at time 𝑡𝑖 and 𝛿𝑖 = 1 indicates that 𝑡𝑖 is the observed failure time of 𝑖𝑡ℎ item. The 

corresponding likelihood function (LF) can be written as  
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 𝐿(𝑦|𝜽) = ∏𝑛
𝑖=1 [𝑓ℬ𝒲ℛ

(𝑡𝑖)]
𝛿𝑖[𝑅ℬ𝒲ℛ

(𝑡𝑖)]
1−𝛿𝑖 , 

 

which, using (7) and (8), becomes  

  𝐿(𝑦|𝜽) = ∏𝑛
𝑖=1 {

𝛽1

𝜃1
(
𝑡𝑖

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡𝑖

𝜃2
)
𝛽2−1

}
𝛿𝑖

exp [− (
𝑡𝑖

𝜃1
)
𝛽1
− (

𝑡𝑖

𝜃2
)
𝛽2
], (11) 

 

where 𝜽 is used to denote the parameter vector (𝜃1, 𝜃2, 𝛽1, 𝛽2). It is important to mention here that 

the LF corresponding to complete data case can be written as a special case of (11) when all 𝛿𝑖s are 

taken to be unity. The LF for complete data case can, therefore, be written as 

 

  𝐿(𝑦|𝜽) = ∏𝑛
𝑖=1 [

𝛽1

𝜃1
(
𝑡𝑖

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡𝑖

𝜃2
)
𝛽2−1

] exp [− (
𝑡𝑖

𝜃1
)
𝛽1
− (

𝑡𝑖

𝜃2
)
𝛽2
]. (12) 

 

The ML estimates are usually obtained by maximizing the LF, but in high dimensional case 

direct maximization of LF may be often difficult and, sometimes, may also lead to unstable results. 

Fortunately, in our case, we are in a position to verify that the corresponding likelihood equations 

offer unique and consistent solutions both for complete and censored data cases (the details of our 

proof are given in the Appendix). Instead of direct maximization of the LF, we propose to obtain 

ML estimates of model parameters using EM algorithm. It may be noted that the EM algorithm is 

an iterative method proposed by [7] for computing ML estimates of model parameters, especially 

in the situations where data or model can be viewed as incomplete. This is perhaps the reason that 

the implementation of EM algorithm is facilitated in a competing risk scenario simply because the 

data corresponding to a competing risk model are always incompletely specified in the sense that 

we do not know exact cause of failure for a particular item (see also [23]). The algorithm is lucid 

and simple in the sense that it does not require calculation of the Jacobian matrix which is 

normally required in other optimization techniques like Newton-Raphson, etc. (see also [20] and 

[18]). 

 For implementing the EM algorithm, we rather work with an alternative formulation of the 

LF by introducing missing observations in the form of indicator variables (see also [2] since each 

observation 𝑡𝑖 has a missing component in the sense that it is not known exactly which of the two 

causes, early birth defect or ageing, is responsible for producing 𝑡𝑖. Similarly, each observation 𝑡𝑖 

can either be a failure time or censoring time as governed by the censoring indicator 𝛿𝑖. Thus to 

provide an alternative formulation of the LF, we associate with each 𝑡𝑖 a missing cause indicator 𝑧𝑖 

with components of 𝑧𝑖 as (𝑧𝑖
1, 𝑧𝑖

2), 𝑖 = 1,2, . . . , 𝑛. We may then define 𝑧𝑖
1=1 and 𝑧𝑖

2=0 as an indication 

that 𝑡𝑖 is an observed failure time arising from 𝒲(𝜃1, 𝛽1) and, similarly, 𝑧𝑖
1 = 0 and 𝑧𝑖

2 = 1 as an 

indication that 𝑡𝑖 is an observed failure time arising from 𝒲(𝜃2, 𝛽2). Obviously, for each censored 

observation 𝑡𝑖 (𝛿𝑖 = 0), we can define associated 𝑧𝑖
1 and 𝑧𝑖

2 both equal to zero, 𝑖 = 1,2, . . . , 𝑛. 

Moreover, since failure can arise due to only one of the two competing causes, both 𝑧𝑖
1 and 𝑧𝑖

2 

cannot take value unity simultaneously. 

With the assumptions as given above, the pdf for each observation can be written as 

 

     
𝑓(𝑥𝑖) = [𝑓𝒲(𝑡𝑖, 𝜃1, 𝛽1)]

𝑧𝑖
1
[𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)]

1−𝑧𝑖
1
[𝑓𝒲(𝑡𝑖, 𝜃2, 𝛽2)]

𝑧𝑖
2
[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]

1−𝑧𝑖
2

           = [ℎ𝒲(𝑡𝑖 , 𝜃1, 𝛽1)]
𝑧𝑖
1
[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)]

𝑧𝑖
2
𝑅𝒲(𝑡𝑖, 𝜃1, 𝛽1)𝑅𝒲(𝑡𝑖, 𝜃2, 𝛽2),

 (13) 

 

where 𝑓𝒲, ℎ𝒲 and 𝑅𝒲 denote the pdf, hazard function and the reliability function of Weibull 

model, respectively, and 𝑥𝑖 = (𝑡𝑖 , 𝑧𝑖), 𝑖 = 1,2, . . . , 𝑛. Obviously, the corresponding LF based on a set 

of 𝑛 observations can be written as 

 

 𝐿(𝑥|𝜽) ∝ ∏𝑛
𝑖=1 [ℎ𝒲(𝑡𝑖, 𝜃1, 𝛽1)]

𝑧𝑖
1
[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)]

𝑧𝑖
2
𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2), (14) 

 

and the associated log likelihood can be written as 
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 𝑙(𝑥|𝜽) = ∑𝑛𝑖=1 {𝑧𝑖
1ln[ℎ𝒲(𝑡𝑖 , 𝜃1, 𝛽1)] + 𝑧𝑖

2ln[ℎ𝒲(𝑡𝑖 , 𝜃2, 𝛽2)] + ln[𝑅𝒲(𝑡𝑖, 𝜃1, 𝛽1)] +

                                                              ln[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]}.                                        (15) 

 

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛). Once the log likelihood is specified as in (15), the EM algorithm can 

proceed as usual in two steps, the expectation (E) step and the maximization (M) step. The E step 

may involve the calculation of expected value of the log likelihood based on the complete data and 

the current realization of model parameters. The M step, on the other hand, intends to find the 

values of model parameters that maximizes the expected log likelihood function evaluated at E 

step. 

To clarify, suppose 𝜽̃ = (𝜃̃1, 𝜃̃2, 𝛽1, 𝛽2) is the current realization of parameter vector 𝜽 at a 

particular iteration then the expected log LF {(= 𝐸[𝑙(𝑥|𝜽)|𝑡, 𝜽̃]), 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)} denoted by 

𝐴𝑙(𝜽|𝑡, 𝜽̃), say, can be obtained as 

 

𝐴𝑙(𝜽|𝑡, 𝜽̃) = ∑𝑛𝑖=1 {𝐸(𝑧𝑖
1|𝑡𝑖, 𝜽̃)ln[ℎ𝒲(𝑡𝑖, 𝜃1, 𝛽1)] + 𝐸(𝑧𝑖

2|𝑡𝑖, 𝜽̃)ln[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)] (16) 
                       +ln[𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)] + ln[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]}, 

 

where 𝐸(𝑧𝑖
1|𝑡𝑖, 𝜽̃) = 𝑝(𝑡𝑖 ,𝒲(𝜃̃1, 𝛽1)) and 𝐸(𝑧𝑖

2|𝑡𝑖 , 𝜽̃) = 𝑝(𝑡𝑖 ,𝒲(𝜃̃2, 𝛽2). 𝑝(𝑡𝑖,𝒲(𝜃̃1, 𝛽1))   [𝑝(𝑡𝑖, 

𝒲(𝜃̃2, 𝛽2))] gives the probability that the observation 𝑡𝑖 is arising from 𝒲(𝜃̃1, 𝛽1) [𝒲(𝜃̃2, 𝛽2)] given 

the current realization of parameters. These probabilities can be obtained as 

 

𝑝(𝑡𝑖 ,𝒲(𝜃̃1, 𝛽1)) = 𝑃𝑟(𝑧𝑖
1 = 1|𝑡𝑖 , 𝜽̃) = (

0  𝑖𝑓   𝛿𝑖 = 0
ℎ𝒲(𝑡𝑖,𝜃̃1,𝛽̃1)

ℎ𝒲(𝑡𝑖,𝜃̃1,𝛽̃1)+ℎ𝒲(𝑡𝑖,𝜃̃2,𝛽̃2)
 𝑖𝑓   𝛿𝑖 = 1,

 (17) 

and  

𝑝(𝑡𝑖 ,𝒲(𝜃̃2, 𝛽2)) = 𝑃𝑟(𝑧𝑖
2 = 1|𝑡𝑖, 𝜽̃) = (

0  𝑖𝑓   𝛿𝑖 = 0
ℎ𝒲(𝑡𝑖,𝜃̃2,𝛽̃2)

ℎ𝒲(𝑡𝑖,𝜃̃1,𝛽̃1)+ℎ𝒲(𝑡𝑖,𝜃̃2,𝛽̃2)
 𝑖𝑓   𝛿𝑖 = 1

 (18) 

 

respectively. From (16), one can see that 𝐴𝑙(𝜽|𝑡, 𝜽̃) can be split into two parts as given below 

 

 𝐴𝑙(𝜽|𝑡, 𝜽̃) = 𝐴𝑙
1(𝜽|𝑡, 𝜽̃)) + 𝐴𝑙

2(𝜽|𝑡, 𝜽̃), (19) 

where 

 

𝐴𝑙
1(𝜽|𝑡, 𝜽̃) = ∑𝑛𝑖=1 {𝑝(𝑡𝑖 ,𝒲(𝜃̃1, 𝛽1))ln[ℎ𝒲(𝑡𝑖, 𝜃1, 𝛽1)] + ln[𝑅𝒲(𝑡𝑖 , 𝜃1, 𝛽1)]}, (20) 

and 

 

𝐴𝑙
2(𝜽|𝑡, 𝜽̃)) = ∑𝑛𝑖=1 {𝑝(𝑡𝑖,𝒲(𝜃̃2, 𝛽2))ln[ℎ𝒲(𝑡𝑖, 𝜃2, 𝛽2)] + ln[𝑅𝒲(𝑡𝑖 , 𝜃2, 𝛽2)]}. (21) 

 

From (20) and (21), it is obvious that both 𝐴𝑙
1(𝜽|𝑡, 𝜽̃) and 𝐴𝑙

2(𝜽|𝑡, 𝜽̃) depend separately on (𝜃1, 𝛽1) 

and (𝜃2, 𝛽2), respectively, and, therefore, 𝐴𝑙(𝜽|𝑡, 𝜽̃) in (19) can be maximized by maximizing 

separately the two terms 𝐴𝑙
1(𝜽|𝑡, 𝜽̃) and 𝐴𝑙

2(𝜽|𝑡, 𝜽̃). This partitioning has an obvious advantage in 

the sense that it reduces a four-dimensional optimization problem into a two-dimensional 

optimization problem and thereby resulting into an increased efficiency of the algorithm. Thus 

differentiating (20) with respect to 𝜃1 and 𝛽1 and (21) with respect to 𝜃2 and 𝛽2 and equating all the 

derivatives to zero, we get the following set of equations 

 

 
1

𝛽̂1
+

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃1,𝛽̃1))ln(𝑡𝑖)

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃1,𝛽̃1))
−

∑𝑛𝑖=1 𝑡𝑖
𝛽̂1ln(𝑡𝑖)

∑𝑛𝑖=1 𝑡𝑖
𝛽̂1

= 0, (22) 

 

 𝜃̂1 = (
∑𝑛𝑖=1 𝑡𝑖

𝛽̂1

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃1,𝛽̃1))
)

1

𝛽̂1

, (23) 
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1

𝛽̂2
+

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃2,𝛽̃2))ln(𝑡𝑖)

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃2,𝛽̃2))
−

∑𝑛𝑖=1 𝑡𝑖
𝛽̂2ln(𝑡𝑖)

∑𝑛𝑖=1 𝑡𝑖
𝛽̂2

= 0, (24) 

 

 𝜃̂2 = (
∑𝑛𝑖=1 𝑡𝑖

𝛽̂2

∑𝑛𝑖=1𝑝(𝑡𝑖,𝒲(𝜃̃2,𝛽̃2))
)

1

𝛽̂2

. (25) 

  The value of 𝜽̂ = (𝜃̂1, 𝜃̂2, 𝛽̂1, 𝛽̂2) can be obtained by solving the above system of equations. 

Moreover, once 𝜽̂ is obtained, we update 𝜽̃ by 𝜽̂ for the next iterations. The process is repeated 

unless the systematic pattern of convergence or desired level of accuracy is achieved. 

 

4  Bayesian Model Formulation 
 

 In order to provide the Bayesian model formulation for analyzing the model in (8), let us 

begin with specifying the prior distributions for the four parameters involved in the model. We 

consider independent uniform priors for the two shape parameters 𝛽1 and 𝛽2 and independent 

conditional priors for 𝜃1 and 𝜃2 such that for given 𝛽1 and 𝛽2, the parameters 𝜃1
𝛽1  and 𝜃2

𝛽2  have 

inverted gamma ℐ𝒢(𝑎, 𝑏) and ℐ𝒢(𝑐, 𝑑) distributions, respectively (see also [1]). The first term in the 

parenthesis represents the shape parameter of ℐ𝒢 distribution while the second term is the scale 

parameter. The considered priors for the parameters can be written as  

  

 

𝜋1(𝛽1) ∝ 1;                       0 < 𝛽1 ≤ 1

𝜋2(𝛽2) ∝
1

𝛽2𝑢−1
;                1 ≤ 𝛽2 ≤ 𝛽2𝑢

𝜋3(𝜃1|𝛽1) ∝
1

𝜃1
𝛽1𝑎+1

exp [
−𝑏

𝜃1
𝛽1
] ;          𝜃1, 𝑎, 𝑏 > 0

𝜋4(𝜃2|𝛽2) ∝
1

𝜃2
𝛽2𝑐+1

exp [
−𝑑

𝜃2
𝛽2
] ;         𝜃2, 𝑐, 𝑑 > 0.

 (26) 

where 𝑎, 𝑏, 𝑐, 𝑑and 𝛽2𝑢 are the hyperparameters. The choice of prior hyperparameters is always 

crucial and in case of non-availability of any specific information, either subjective or objective, one 

can consider vague or weak priors for the parameters and allow inferences to remain data 

dependent. This can be done, for instance, by taking a large choice of 𝛽2𝑢 in case of 𝛽2. Similarly, in 

case of 𝜃1 and 𝜃2, one can consider choices of 𝑎, 𝑏, 𝑐 and 𝑑 in such a way that resulting ℐ𝒢 

distribution becomes more or less flat. It is important to mention here that the standard non-

informative priors suggested for the parameters of Weibull distribution cannot be used here as 

such priors lead to improper posterior in a situation where all the observations arise from one of 

the two Weibull components in the model (8) (see also [1]). 

The prior hyperparameters can also be specified on the basis of experts’ opinion if the same 

are available. Say, for instance, while specifying 𝛽2𝑢 associated with 𝛽2 of 𝒲(𝜃2, 𝛽2) model, the 

expert conveys that the hazard rate is not increasing abruptly with a steep rise in its behaviour 

rather rises in such a way that the slope of the hazard rate curve increases from the beginning 

itself, say at a constant rate. The expert also conveys that the choice of 𝛽2 is such that the 

corresponding Weibull distribution is exhibiting skewed behaviour with slightly high variability. 

It is to be noted that for large values of shape parameter, the Weibull distribution approaches to 

symmetry (close to normality) with very low variability. As such, the expert feels that 𝛽2 cannot be 

too large and in any case cannot go beyond (say) 10.0, that is, a value suggested for 𝛽2𝑢. Similarly, 

for the ℐ𝒢 prior, the expert can be asked to specify at least two characteristics of the prior model so 

that two of its hyperparameters can be made known using these two specified characteristics. The 

characteristics can be simply mean and variance of the ℐ𝒢 distribution or two of its quantiles, etc. 

Finally, it is essential to mention that the prior of 𝛽1 does not involve any hyperparameter so we do 

not need any opinion from the expert in this case. 

To proceed further, let n items with failure time distribution given in (8) be put on test and let 
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𝑡: 𝑡1, 𝑡2, . . . , 𝑡𝑛 be the observed failure times. Combining the priors in (26) with the LF in (12) via 

Bayes theorem yields the corresponding posterior distribution and the same can be written up to 

proportionality as  

 

𝑝(𝜃1, 𝜃2, 𝛽1, 𝛽2|𝑡) ∝ {∏
𝑛
𝑖=1 [

𝛽1

𝜃1
(
𝑡𝑖

𝜃1
)
𝛽1−1

+
𝛽2

𝜃2
(
𝑡𝑖

𝜃2
)
𝛽2−1

]} exp [−∑𝑛𝑖=1 (
𝑡𝑖

𝜃1
)
𝛽1
− ∑𝑛𝑖=1 (

𝑡𝑖

𝜃2
)
𝛽2
]

                                     ×
1

𝜃1
𝛽1𝑎+1

exp [
−𝑏

𝜃1
𝛽1
] ×

1

𝜃1
𝛽1𝑎+1

exp [
−𝑏

𝜃1
𝛽1
] × 𝐼(0,1)(𝛽1) × 𝐼(1,𝛽2𝑢)(𝛽2);

                                                                                                                         𝜃1 > 0, 𝜃2 > 0,

(27) 

 

where 𝐼(𝜈1,𝜈2)(𝜉) is an indicator function that takes value unity if 𝜉 lies in the interval (𝜈1, 𝜈2) and 

zero otherwise. It can be easily seen that the form of the posterior given in (27) is difficult to offer 

closed form solution and, therefore, one can proceed with sample based approaches. The Gibbs 

sampler is, however, difficult since the corresponding full conditionals from (27) are not available 

for easy sample generation. We may, therefore, recommend Metropolis-Hastings algorithm by 

defining a four-dimensional appropriately centred and scaled candidate generating density (see, 

for example, [25]) and proceed with ML estimates and the corresponding Hessian based 

approximation as the initial values for running the chain. 

Alternatively, one can use the augmented data structure as given in Section 3 and resort to 

implementation of the Gibbs sampler algorithm in a routine manner. Following (14), the 

corresponding likelihood for augmented data structure can be written as  

 𝐿(𝑥|𝜽) ∝
𝛽1
∑𝑛𝑖=1𝑧𝑖

1

𝛽2
∑𝑛𝑖=1𝑧𝑖

2

𝜃1
𝛽1 ∑

𝑛
𝑖=1𝑧𝑖

1

𝜃2
𝛽2 ∑

𝑛
𝑖=1𝑧𝑖

2∏
𝑛
𝑖=1 [𝑡𝑖

𝛽1−1]
𝑧𝑖
1

∏𝑛
𝑖=1 [𝑡𝑖

𝛽2−1]
𝑧𝑖
2

exp [−
∑𝑛𝑖=1 𝑡𝑖

𝛽1

𝜃1
𝛽1

−
∑𝑛𝑖=1 𝑡𝑖

𝛽2

𝜃2
𝛽2

], (28) 

 

where 𝑧𝑖 (= (𝑧𝑖
1, 𝑧𝑖

2)) is a binary indicator vector associated with 𝑡𝑖, 𝑖 = 1,2, . . . , 𝑛, such that 𝑧𝑖 =

(1,0) conveys that associated 𝑡𝑖 is coming from 𝒲(𝜃1, 𝛽1) and 𝑧𝑖 = (0,1) results in 𝑡𝑖 coming from 

𝒲(𝜃2, 𝛽2). Also, in case of no censoring 𝑧𝑖
1 and 𝑧𝑖

2 are related as 𝑧𝑖
1 = 1 − 𝑧𝑖

2 since our assumption 

confirms that an observed 𝑡𝑖 will certainly come from one of the two Weibull distributions. Next, 

let us consider the same priors as given in (26) and obtain the joint posterior up to proportionality 

by combining (26) with (28) via Bayes theorem. This posterior can be written as  

 

 

𝑝1(𝜃1, 𝜃2, 𝛽1, 𝛽2|𝑡, 𝑧) ∝
𝛽1
∑𝑛𝑖=1𝑧𝑖

1

𝜃1
(∑𝑛𝑖=1𝑧𝑖

1+𝑎)𝛽1+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽1+𝑏

𝜃1
𝛽1

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽1−1]
𝑧𝑖
1

                                             ×
𝛽2
∑𝑛𝑖=1𝑧𝑖

2

𝜃2
(∑𝑛𝑖=1𝑧𝑖

2+𝑐)𝛽2+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽2+𝑑

𝜃2
𝛽2

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽2−1]
𝑧𝑖
2

;

                                              𝜃1 > 0, 𝜃2 > 0, 0 ≤ 𝛽1 ≤ 1, 1 ≤ 𝛽2 ≤ 𝛽2𝑢 ,

 (29) 

where 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛). 

Before we proceed further, let us briefly comment on the Gibbs sampler algorithm. Gibbs 

sampler is a Markovian updating mechanism for extracting samples from (often) high-dimensional 

posteriors specified up to proportionality by extracting samples from all univariate (or lower 

dimensional) full conditionals. The generation begins with some appropriately chosen initial 

values and proceeds in a cyclic frame-work covering all the full conditionals and each time using 

the most recent values of conditioning variates. The values obtained after one complete cycle 

represent a state of a Markov chain. This process is repeated until a systematic pattern of 

convergence is achieved by the generating chain. Once the convergence is achieved, one can either 

pick up equidistant observations in a single long run of the chain or pick up observations from 

various parallel chains to form independent and identically distributed samples from the 

concerned posterior. For details about the Gibbs sampler algorithm, its implementation and 

convergence diagnostic issues, one can refer to [12], [24] and [25], etc. 

Thus in order to apply the Gibbs sampler algorithm, we need to specify all possible full 

conditionals corresponding to posterior (29). The incomplete specification of data can be resolved 

by using additional full conditionals corresponding to different indicator variables. We shall begin 
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with a comment on this latter full conditionals and the corresponding generations. Since 𝑧𝑖
1, 𝑖 =

1,2, . . . , 𝑛, is a binary indicator variable, it can be considered to follow a Bernoulli distribution with 

parameter 𝑝𝑖̃, where  

 

 𝑝𝑖̃ = 𝑃𝑟[𝑧𝑖
1 = 1] =

ℎ𝒲(𝑡𝑖,𝜃1,𝛽1)

ℎ𝒲(𝑡𝑖,𝜃1,𝛽1)+ℎ𝒲(𝑡𝑖,𝜃2,𝛽2)
. 

 

Moreover, using the fact that each 𝑧𝑖
1 is independent of all other 𝑧𝑖

1s, we can generate it 

independently corresponding to each 𝑡𝑖 at the current realization of parameters (𝜃1,𝜃2,𝛽1,𝛽2) and 

for each generated 𝑧𝑖
1, we can obtain corresponding 𝑧𝑖

2 using the relationship 𝑧𝑖
2 = 1 − 𝑧𝑖

1. Rest of 

the full conditionals corresponding to (29) can be obtained up to proportionality as 

 

 𝑝2
∗(𝜃1|𝜃2, 𝛽1, 𝛽2, 𝑡, 𝑧) ∝

1

𝜃1
(∑𝑛𝑖=1𝑧𝑖

1+𝑎)𝛽1+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽1+𝑏

𝜃1
𝛽1

] ;      𝜃1 > 0 (30) 

  

 𝑝3
∗(𝜃2|𝜃1, 𝛽1, 𝛽2, 𝑡, 𝑧) ∝

1

𝜃2
(∑𝑛𝑖=1𝑧𝑖

2+𝑐)𝛽2+1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽2+𝑑

𝜃2
𝛽2

] ;      𝜃2 > 0 (31) 

  

 𝑝4
∗(𝛽1|𝜃1, 𝜃2, 𝛽2, 𝑡, 𝑧) ∝

𝛽1
∑𝑛
𝑖=1𝑧𝑖

1

𝜃1
(∑𝑛𝑖=1𝑧𝑖

1+𝑎)𝛽1
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽1+𝑏

𝜃1
𝛽1

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽1]
𝑧𝑖
1

;  0 < 𝛽1 ≤ 1 (32) 

  

 𝑝5
∗(𝛽2|𝜃1, 𝜃2, 𝛽1, 𝑡, 𝑧) ∝

𝛽2
∑𝑛𝑖=1𝑧𝑖

2

𝜃2
(∑𝑛𝑖=1𝑧𝑖

2+𝑐)𝛽2
exp [−

∑𝑛𝑖=1 𝑡𝑖
𝛽2+𝑑

𝜃2
𝛽2

]∏𝑛
𝑖=1 [𝑡𝑖

𝛽2]
𝑧𝑖
2

;   1 < 𝛽1 ≤ 𝛽2𝑢. (33) 

 

Full conditionals (30) and (31) appear to be the kernels of ℐ𝒢 distribution. Hence by 

considering transformation 𝜆1 = 𝜃1
𝛽1, one can show that 𝜆1~ℐ𝒢(∑

𝑛
𝑖=1 𝑧𝑖

1 + 𝑎,∑𝑛𝑖=1 𝑡𝑖
𝛽1 + 𝑏). Similarly, 

𝜆2 = 𝜃2
𝛽2  can be shown to follow ℐ𝒢(∑𝑛𝑖=1 𝑧𝑖

2 + 𝑐, ∑𝑛𝑖=1 𝑡𝑖
𝛽2 + 𝑑). Hence both 𝜃1 and 𝜃2 can be 

generated using any standard routine for inverse gamma generator (see, for example,[8]). The full 

conditionals (32) and (33) can be shown to be logconcave hence both 𝛽1 and 𝛽2 can be simulated 

easily using (say) adaptive rejection sampling (ARS) algorithm proposed by [14]. 

 

 

4.1  Implementation of Gibbs sampler in case of censored data 
 

 An appreciable property of Gibbs sampler algorithm is that it can be easily extended to deal 

with censored data situations. The idea is very simple in the sense that the algorithm proceeds 

with exactly the same posterior as specified for the complete data case but assumes censored 

observations as further unknowns. Thus, in censored data case, the Gibbs sampler algorithm has 

additional full conditionals corresponding to censored observations. Obviously, the full 

conditionals for the other parameters will remain same to those obtained for the complete data 

case whereas the full conditionals for the independent censored observations will be the parent 

sampling distributions truncated in the appropriate regions (for details, see [26]). 

As mentioned in Section 3, each 𝑡𝑖 is associated with an indicator variable 𝛿𝑖 such that if 𝛿𝑖 =

0, 𝑡𝑖 is the right censoring time and if 𝛿𝑖 = 1, 𝑡𝑖 is the observed failure time corresponding to the 

item 𝑖, 𝑖 = 1,2, . . . , 𝑛. Obviously, the full conditionals corresponding to 𝑧, 𝜃1, 𝜃2, 𝛽1 and 𝛽2 are same 

that were obtained earlier for complete data case. The additional full conditionals correspond to 

censored observations that can be generated from the left truncated ℬ𝒲ℛ distribution. The 

generation can be simple and the variate value 𝑡𝑖 can be retained if it lies in the constrained region 

(𝑡𝑖, ∞). For the generation from truncated ℬ𝒲ℛ  model, a simple two-step algorithm can be 

designed based on the following theorem.  
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Theorem 1  Suppose 𝑇1 and 𝑇2 be two random variables following 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0 and 𝒲(𝜃2, 𝛽2), 

𝛽2 > 1.0, respectively, and suppose both are truncated from left at the same point c. If we define a random 

variable 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2), then 𝑇 will follow left truncated ℬ𝒲ℛ  distribution with parameters 

(𝜃1, 𝜃2, 𝛽1, 𝛽2), the point of truncation from left is at c.  

 

Proof. The proof of the Theorem (1) is added to Appendix given at the end.  

 

The generation of random variable 𝑇 from truncated ℬ𝒲ℛ  distribution involves the following 

two steps. First, generate 𝑇1 and 𝑇2 from left truncated 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0 and 𝒲(𝜃2, 𝛽2), 𝛽2 > 1.0, 

respectively. Second, take 𝑇 = min(𝑇1, 𝑇2). The resulting 𝑇 will follow left truncated ℬ𝒲ℛ  

distribution. 

 

 

5  Model Compatibility 
 

 Model compatibility study is an important concept in any statistical data analysis which 

provides an assurance that the entertained model is rightly used for the data in hand. If the model 

is compatible with the data, the analysis is of course justified. In case of poor resemblance with the 

data, it is desired to consider an alternative model that best represents the entertained data. The 

model compatibility study can be performed in a variety of ways. The classical statisticians, of 

course, use tail area probabilities based on a discrepancy measuring statistic to provide agreement 

or disagreement of data with the model. 

Bayesian statistics offers a number of tools for studying model compatibility. The simplest 

and an informal approach may involve checking predictive capability of the model with regard to 

some of its important characteristics possibly using graphical tools (see, for example,[19]). A 

practical approach to implement this idea in reliability studies may entail investigating the 

empirical plots of observed data based and some of the posterior predictive data based reliability 

characteristics on the same graphical scale. Some of the important reliability characteristics in this 

context may be considered as hazard rate function, reliability function, mean time to failure, etc. 

Thus one can consider plotting the observed data based entertained characteristic and 

correspondingly the predictive data based same characteristic where predictive data are generated 

from the posited model. Such a graphical tool will not only provide an informal assessment of 

discrepancy between the model and the data but also sometimes help in improving the model (see 

also Upadhyay et al. (2001)). 

Bayesian study on model compatibility can also be extended in an objective manner using tail 

area probability or the p-value based on a discrepancy measuring statistic under the assumption 

that the considered model is true for data. A number of versions of Bayesian p-values are defined 

in the literature based on several considerations, each having its own merit or demerit. We shall 

not discuss these details here due to space restriction rather refer to Bayarri and Berger (1998) for a 

systematic accountability. In this paper, we shall use posterior predictive p-value based on chi-

square discrepancy measure (see also Upadhyay et al. (2001)). Although the posterior predictive p-

value (PPV) has its own disadvantages, the most important being double use of data, we shall use 

it for its inherent simplicity and also because of the fact that it is easily computable for any choice 

of prior. A brief review about the PPV is given in the next subsection. 

 

 

 

5.1  Posterior predictive p-value 
 

 [15] proposed the use of p-value based on the posterior predictive distribution of model 
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departure statistics (see also [26]). The idea is very simple. To begin with, let us define the chi-

square statistic as a measure of discrepancy given by  

                      𝜒2 =
∑𝑛𝑖=1 (𝑡𝑖−𝐸(𝑡𝑖|𝜽))

2

𝑉(𝑡𝑖|𝜽)
,                                       (34) 

 

where 𝐸(. ) denoets the operation of taking expectation and 𝑉(. ) denotes the variance. 

Accordingly, the PPV based on 𝜒2 discrepancy measure can be obtained as  

 

             𝑃𝑃𝑉 = ∫ 𝑃𝑟[𝜒2
2 > 𝜒1

2|𝑓, 𝜽]𝑝(𝜽|𝑡)𝑑𝜽, (35) 

 

where 𝜒1
2 and 𝜒2

2 are the calculated values of 𝜒2 for the observed and predictive data sets, 

respectively, 𝑝(𝜽|𝑡) is posterior distribution of 𝜽 and 𝑓 is the entertained model. For complete data 

case, PPV can be calculated using the procedure suggested by [26] (see also [13]) which consists of 

two steps. The first step is to draw 𝜽 from 𝑝(𝜽|𝑡) and calculate 𝜒1
2 based on the given data set. The 

second step is to extract predictive data sets each of same size as that of given data from the model 

𝑓 using the simulated 𝜽 and calculate 𝜒2
2 based on these predictive data sets. We then calculate 

𝑃𝑟[𝜒2
2 > 𝜒1

2|𝑓, 𝜽] as the number of times 𝜒2
2 exceeds 𝜒1

2. These steps are repeated a number of times 

with different simulated 𝜽 and PPV is estimated as the posterior expectation of 𝑃𝑟[𝜒2
2 > 𝜒1

2|𝑓, 𝜽].  

 In order to evaluate PPV in situation where data set has some right censored observations, 

one can first complete the data set by replacing all censored observations with the maximum of 

their respective censoring times and predictive means (see [11]). The PPV can then be calculated 

using this completed data set in the same way as described above for complete data case.  

 

6  Numerical Illustration 
 

 For analyzing the proposed ℬ𝒲ℛ  model, we considered a real data set reported initially by [9]. 

The dataset consists of failure times of 58 electrodes (segments cut from bars) which were put on a 

high-stress voltage endurance life test. Observations on failure time from voltage endurance test 

are given in Table 1. First, fourth and seventh columns of the table list the observations on failure 

times of electrodes in hours whereas second, fifth and eighth column represent failure modes, that 

is, the causes of failures. The failures were attributed to one of two modes (causes) which are as 

under. The first cause is the insulation defect due to a processing problem (mode E) which tends to 

occur early in life. The second cause, on the other hand, is degradation of the organic material 

(mode D) which typically occurs at a later stage. Third, sixth and ninth columns of the table 

indicate completely observed or censored failure times. 𝛿 = 0 indicates observed failure times 

while 𝛿 = 1 indicates censored failure times. Since, for censored observations, failure cause is 

unknown, we have denoted the missing cause by ’∗’ (see Table 1). 

In order to analyze the model for the assumed dataset, we first considered only those 

observations which were completely observed and left those observations which were censored. 

As such, we formed a new sample where all the failure times are completely observed. Besides, we 

also omitted the two causes of failures (E and D) so that the observations can be treated 

appropriate for the considered competing risk model with latent (unknown) causes of failures. We 

next considered the entire sample treating it as a case of censored data problem but omitted the 

two causes of failures (E and D) for the appropriateness of proposed competing risk model with 

latent causes of failures.  

 In the first part of our analysis, we considered obtaining ML estimates of ℬ𝒲ℛ  parameters 

using EM algorithm after visualizing the model as an incomplete data model and introducing 

missing indicator variables 𝑧1 for failure mode E and 𝑧2 for failure mode D as described in Section 

3. The ML estimates for the parameters 𝜃1, 𝜃2, 𝛽1 and 𝛽2 were found to be 885.030(1209.506), 

341.553(343.841), 0.613(0.629) and 5.545(5.592), respectively. The values in parenthesis correspond 

to the estimates of parameters for censored data case.  
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Table 1: Voltage endurance life test results of 58 electrodes. 

 

Hours Failure 

Mode 

𝛿 

 
Hours Failure 

Mode 

𝛿 

 
Hours Failure 

Mode 

𝛿 

 

2 

3 

5 

8 

13 

21 

28 

31 

31 

52 

53 

64 

67 

69 

76 

78 

104 

113 

119 

135 

E 

E 

E 

E 

* 

E 

E 

E 

* 

    * 

    * 

    E 

    * 

    E 

    E 

    * 

    E 

    * 

    E 

* 

0 

0 

0 

0 

1 

0 

0 

0 

1 

1 

1 

0 

1 

0 

0 

1 

0 

1 

0 

1 

144 

157 

160 

168 

179 

191 

203 

211 

221 

226 

236 

241 

257 

261 

264 

278 

282 

284 

286 

298 

E 

* 

E 

D 

* 

D 

D 

D 

E 

D 

E 

* 

* 

D 

D 

D 

E 

D 

D 

D 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

303 

314 

317 

318 

320 

327 

328 

328 

348 

348 

350 

360 

369 

377 

387 

392 

412 

446 

E 

D 

D 

D 

D 

D 

D 

D 

* 

D 

D 

D 

D 

D 

D 

D 

D 

D 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

For Bayesian analysis of the model, we first consider specification of prior hyperparameters of 

the considered prior distributions. In this context, we begin with the choice of 𝛽2𝑢 = 7.0 following 

the argument given in Section 4 so that the shape of the hazard rate curve is increasing at a 

constant rate from the beginning itself and the Weibull distribution does not approach to normality 

in a real sense. We next assume that given 𝛽1, the expert has provided two characteristics of 

ℐ𝒢(𝑎, 𝑏) distribution, that is, the expert specifies the mean and variance of 𝜃1
𝛽1  to be 200 and 1000, 

respectively. Similarly, we assume that given 𝛽2, the expert specifies both mean and variance of 

𝜃2
𝛽2  to be very large, say of order 1.0 e+10. It may be noted that since the expert is not available in a 

real sense when specifying mean and variance of 𝜃1
𝛽1  and 𝜃2

𝛽2 , we have taken help of ML estimates 

of various parameters as well. Utilizing ML estimates is certainly an objective consideration but 

there is no harm if data based information is used in forming the appropriate priors. Also, the large 

variability for both 𝜃1
𝛽1  and 𝜃2

𝛽2  convey a kind of vagueness in the choice of priors. Based on these 

choices, the prior hyperparameters 𝑎 and 𝑏 were evaluated to be 5.0 and 600.0, respectively. 

Similarly, the prior hyperparameters 𝑐 and 𝑑 were found to be 6.0 and 5.0e+08, respectively. 

In order to provide the posterior based inferences of model (8), the posterior samples were 

extracted using the Gibbs sampler algorithm as described in Section (4) for complete data case and 

Subsection 4.1 for censored data case. In each case, we considered a single long run of Gibbs chain 

using the ML estimates of the parameters as the starting values for running the chain. For censored 

case, we also used known censoring time for each censored observation as the initial value of the 

corresponding censored observation. Convergence of the chain was monitored using the ergodic 

averages at about 20K iterations in each case. Once the convergence was achieved a sample of size 

2K was taken from the corresponding posterior distribution by picking up equidistant 

observations (at a gap of 10). The gap was chosen to make the serial correlation among the 

generating variates negligibly small (see also [26]). It may be noted that the assessment of a specific 

risk in the presence of other risk factors is of particular interest in a competing risk scenario and, 

therefore, we also obtained a sample of size 2K for the probability of failure due to insulation 
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defects (mode E) at each iterated value of posterior variates (see also (10)). 

Some of the important sample based estimated posterior characteristics were obtained based 

on the final sample of size 2K. We do not report here all the characteristics except the estimated 

posterior modes and the highest posterior density (HPD) intervals with coverage probability 0.95 

for all the parameters considering both complete and censored data cases (see Table 2). However, 

while writing the conclusion, some other characteristics, not reported in the paper, may be taken 

into account as well. Posterior modes are given because these are the most probable values and can 

be reasonably considered to be the Bayes estimates. Similarly, HPD limits will provide to a large 

extent the overall idea of the estimated posterior densities. Table 2 also provides the corresponding 

estimates for censored data case and these estimates are shown in parentheses. Besides the model 

parameters, the table also exhibits the estimated posterior modes and HPD limits for the 

probability of failure due to mode E (see (10)). 

   

Table 2: Estimated posterior modes and HPD limits with coverage probability 0.95 

for 𝓑𝓦𝓡 parameters 

Parameters Estimated 

posterior mode 

HPD limits 

lower    upper 

𝜃1 702.131 

(950.466 ) 

289.561    3819.390 

(345.505)    (5734.279) 

𝛽1 0.663 

(0.610) 

0.497    0.823 

(0.500)    (0.845) 

𝜃2 340.758 

(342.718 ) 

317.392     375.069 

(319.954)    (372.495) 

𝛽2 5.311 

(5.594 ) 

5.138    5.562 

(5.415)    (5.824) 

𝑃𝑟(𝑡 = 𝑡1) 0.349 

(0.310 ) 

0.189    0.546 

(0.199)    (0.557) 

Values in parentheses correspond to censored data case. 

 

 It can be seen that the Bayes estimates in both complete and censored data cases are more or 

less similar to the classical ML estimates except in case of 𝜃1 for censored data case where ML 

estimate appears to be slightly overestimated value. The finding, therefore, confirms the vague 

consideration of priors with choice of hyperparameters guided to some extent by ML estimates. 

Based on the HPD limits and the estimated posterior modes, it can be concluded that the 

parameters 𝜃2, 𝛽1 and 𝛽2 are more or less symmetric with small variability whereas the parameter 

𝜃1 is highly positively skewed with very large variability (see Table 2). This last conclusion was 

also confirmed by the characteristics such as estimated posterior means and medians, the values of 

which are not shown in the paper. A word of remark: since the posterior variability of 𝜃1 is quite 

large and the variability is appreciably increased for censored data case, the difference between 

Bayes and ML estimates, especially for censored data case, can be considered marginal only. 

Another important and striking conclusion is that the censoring does not cause appreciable loss of 

information as the estimates corresponding to complete and censored data case are quite close to 

each other although we have considered only 22 % observations to be censored. The Table 2 also 

shows the estimated posterior mode and HPD limits with coverage probability 0.95 for 𝑃𝑟(𝑡 = 𝑡1). 

It can be seen that nearly 35% of the observations (31% for censored data case) are failed due to 

initial birth defect, a conclusion that appears to be quite close to the true entertained values 

reported in Table 1. 

 

Figure  3: Estimated posterior densities and bi-variate characteristics  

for complete data case.
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Figure  4: Estimated posterior densities and bi-variate characteristics  

for censored data case.

 
   

We also worked out for the bivariate posterior characteristics for both complete and censored 

data cases, which are shown in Figures 3 and 4 in the form of scatter plots and estimated posterior 

correlations although the figures also display the estimated marginal posterior densities. As far as 
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the marginal densities are concerned, the conclusions are same that are discussed in the previous 

paragraph and, therefore, we do not need to interpret these estimated densities anymore. Based on 

the scatter plots and the estimated correlations, it can be concluded that the parameters 𝜃1 and 𝛽1 

are highly correlated a posteriori, the estimated correlation being -0.68. Similarly, the parameters 𝜃2 

and 𝛽2 are also exhibiting good correlation, the estimated value for the same being -0.33. In this 

very sense the conditional priors for 𝜃1 and 𝜃2 given in (26) are justified to some extent. The 

remaining parameter combinations (𝜃1, 𝜃2), (𝜃1, 𝛽2), (𝛽1, 𝜃2) and (𝛽1, 𝛽2) are, however, having 

relatively low estimated correlations, the estimated values being -0.21(-0.19), 0.03(0.04), 0.26(0.23) 

and -0.03(-0.06), respectively. Again the values within parentheses correspond to censored data 

case. 

To proceed further, we estimated the change point as given in (6) based on the final posterior 

samples of size 2K. The change point is certainly an important characteristic which differentiates 

between the two modes of failure. That is, the units having failure times less than the change point 

can be said to have failed due to early birth defect and the failure of units with failure times 

exceeding it can be attributed to degradation failure. The estimated posterior mode and HPD 

limits with coverage probability 0.95 for 𝑡∗ were found to be 107.240{109.467} and [92.269, 

125.235]{[95.320, 125.764]}, respectively, where the values in curly parentheses correspond to 

censored data case. In addition to these estimates, we also obtained the posterior estimates of 

hazard rate at different time points including at the change point. The estimates in the form of 

posterior modes based on a sample of size 2K are given in Table 3. It can be seen that the estimated 

hazard rate is least at the change point time and increasing as we move away from the change 

point time in either direction, a conclusion that was expected too. 

 

Table  3: Posterior estimates of hazard rate at different times 

t=80 t=100 t=𝑡∗ t=150 t=200 

0.121e-02 0.115e-02 0.113e-02 0.125e-02 0.224e-02 

(0.147e-02) (0.141e-02) (0.139e-02) (0.147e-02) (0.254e-02) 

Values in parentheses correspond to censored data case.  

  

Before we end the section, let us examine the compatibility of the model with the entertained 

data based on the ideas discussed in Section 5. For this purpose, we first generated a posterior 

sample of size 20 using the Gibbs sampler algorithm (subsection 4.1) and correspondingly obtained 

20 predictive samples each of same size as that of informative data. We then considered the non-

parametric empirical hazard rate estimates for both observed and predictive data sets at the time 

corresponding to the two data sets. Since some of the observations in the original data are 

censored, we implemented our procedure after completing the data by replacing the censored 

observations by the maximum of their predictive means and censoring times. The corresponding 

plots are shown in Figure 5 where solid line represents the informative data based estimated 

hazard rate and the dotted lines represent the predictive data based estimated hazard rate.  

A similar strategy was used to draw observed data and correspondingly predictive data based 

estimates of reliability function. This latter plot is shown in Figure 6. It can be seen that in both the 

cases the solid line is well superimposed by the dotted lines (see Figures 5-6) giving us a clear cut 

conclusion that the model is justified for the data in hand. 

We next obtained the numerical summary of model compatibility study in the form of PPV 

discussed in Section 5. To calculate the same, we first considered 100 posterior samples 

corresponding to the model ℬ𝒲ℛ  using the Gibbs sampler algorithm (subsection 4.1) and then 

obtained 𝜒1
2 for the given data set for each generated posterior sample of 𝜽. As a second step, we 

simulated 1K predictive samples from (8), each of size exactly similar to that of the observed data, 

for each value of 𝜽 and calculated 𝜒2
2 based on these predictive data sets. Our next step calculated 

𝑃𝑟[𝜒2
2 > 𝜒1

2] for each given 𝜽. Finally, the above steps were repeated to calculate PPV as described 

in Section 5. The estimated PPV was found to be 0.331, a value that again confirms the 
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compatibility of the model (8) with the observed data set. A word of remark: for the compatibility 

study considered here, we do not report the results corresponding to complete data case by 

omitting the censored observations as it was done earlier in obtaining other estimates. The results 

for the complete data case were more or less similar and, therefore, avoided due to space 

restriction. 

 

Figure 5: Estimated hazard rate plots corresponding to observed (solid line)  

and predictive data sets. 

 
Figure  6: Estimated reliability plots corresponding to observed (solid line)  

and predictive data sets.

 
   

7  Conclusion 
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 The paper considers a ℬ𝒲ℛ  model, a model that is quite popular in a competing risk scenario. 

Our assumption, however, considers two competing causes, the initial birth defect and ageing 

effect, that work together to induce failure of a unit. The considered model is analyzed in both 

classical and Bayesian frameworks although the classical analysis focuses on ML estimates only. 

The important feature of the corresponding likelihood function is that it offers unique consistent 

solution in the form of ML estimates. The paper finally shows how the idea of visualizing the 

competing risk model as an incomplete data model facilitates both classical and Bayesian analyses 

of the considered model not only for complete case but also for censored data situation. The 

applicability of model is also justified by conducting a Bayesian compatibility study of the model 

with a real data set involving a voltage endurance life test with two different failure modes. 
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Appendix 
  

Proof of Theorem 1 

 

Proof. Let 𝑇1 and 𝑇2 follow 𝒲(𝜃1, 𝛽1), 𝛽1 < 1.0 and 𝒲(𝜃2, 𝛽2), 𝛽2 > 1.0, respectively, where both 

are truncated from left at a point c. The densities of 𝑇1 and 𝑇2 can be written as 

 

 𝑓𝑊1
𝑐 (𝑡1|𝑡1 > 𝑐) =

𝛽1

𝜃1
(
𝑡1

𝜃1
)
𝛽1−1

exp [− (
𝑡1

𝜃1
)
𝛽1
+ (

𝑐

𝜃1
)
𝛽1
], 

 

 𝑓𝑊2
𝑐 (𝑡2|𝑡2 > 𝑐) =

𝛽2

𝜃2
(
𝑡2

𝜃2
)
𝛽2−1

exp [− (
𝑡2

𝜃2
)
𝛽2
+ (

𝑐

𝜃2
)
𝛽2
], 

respectively. Similarly, the cumulative distribution functions of 𝑇1 and 𝑇2 can be written as  

 𝐹𝑊1
𝑐 (𝑡1|𝑡1 > 𝑐) = 1 − exp [− (

𝑡1

𝜃1
)
𝛽1
+ (

𝑐

𝜃1
)
𝛽1
], 

 

 𝐹𝑊2
𝑐 (𝑡2|𝑡2 > 𝑐) = 1 − exp [− (

𝑡2

𝜃2
)
𝛽2
+ (

𝑐

𝜃2
)
𝛽2
]. 

 

If we define a random variable 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2|𝑇1, 𝑇2 > 𝑐) then the cumulative distribution function 

of T can be obtained as  

 𝐹ℬ𝒲ℛ

𝑐 (𝑡) = 1 − [1 − 𝐹𝑊1
𝑐 (𝑡|𝑡 > 𝑐)][1 − 𝐹𝑊2

𝑐 (𝑡|𝑡 > 𝑐)], 

which simlifies to  

 𝐹ℬ𝒲ℛ

𝑐 (𝑡) = 1 − exp [− (
𝑡

𝜃1
)
𝛽1
+ (

𝑐

𝜃1
)
𝛽1
] exp [− (

𝑡

𝜃2
)
𝛽2
+ (

𝑐

𝜃2
)
𝛽2
]. 

 

Now differentiating 𝐹ℬ𝒲ℛ

𝑐 (𝑡) with respect to 𝑡, we can obtain the density function of 𝑇 as  

 𝑓ℬ𝒲ℛ

𝑐 (𝑡) =
[
𝛽1
𝜃1
(
𝑡

𝜃1
)
𝛽1−1

+
𝛽2
𝜃2
(
𝑡

𝜃2
)
𝛽2−1

]exp[−(
𝑡

𝜃1
)
𝛽1
−(

𝑡

𝜃2
)
𝛽2
]

exp[−(
𝑐

𝜃1
)
𝛽1
−(

𝑐

𝜃2
)
𝛽2
]

. 

 

which is the density of ℬ𝒲ℛ  distribution with parameters (𝜃1, 𝜃2, 𝛽1, 𝛽2), truncated from left at 

point c. Hence we can say that 𝑇 = 𝑚𝑖𝑛(𝑇1, 𝑇2) follows ℬ𝒲ℛ(𝜃1, 𝜃2, 𝛽1, 𝛽2), left truncated at point c.  

 

 

Existence of Unique and Consistent Roots of Likelihood Equations 

 

Theorem 2 (see [3]). Let 𝑓(𝑡|𝜈) be the pdf with parameter vector 𝜈 = (𝜈1, 𝜈2, . . . , 𝜈𝑘), then the solution 

of the likelihood equation for the observation vector 𝑡  

 
∂∑𝑛𝑖=1 𝑙𝑛(𝑓(𝑡𝑖|𝜈))

∂𝜈𝑟
= 0, 

will be unique and consistent if the following three conditions hold. For the sake of brevity, we 

shall write f for 𝑓(𝑡|𝜈) and 𝑓𝑖 for 𝑓(𝑡𝑖|𝜈).  

(i). For almost all t and 𝜈 ∈ Θ, 
∂ln(𝑓)

∂𝜈𝑟
, 
∂2ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠
, 

∂3ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤
 exist for all r,s,w = 1,2,...,k.  

(ii). For almost all t and 𝜈 ∈ Θ, |
∂𝑓

∂𝜈𝑟
| < 𝐹𝑟(𝑡), |

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑠
| < 𝐹𝑟𝑠(𝑡), |

∂3𝑓

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤
| < 𝐻𝑟𝑠𝑤(𝑡), where 

𝐻𝑟𝑠𝑤(𝑡) is such that ∫
∞

−∞
𝐻𝑟𝑠𝑤(𝑡)𝑓𝑑𝑡 < 𝐶𝑀 < ∞ and 𝐹𝑟(𝑡) and 𝐹𝑟𝑠(𝑡) are bounded for all t. 

(iii). For all 𝜈 ∈ Θ, the matrix J = ((𝐽𝑟𝑠(𝜈))), where  

                      𝐽𝑟𝑠(𝜈) = ∫
∞

−∞

∂ln(𝑓)

∂𝜈𝑟

∂ln(𝑓)

∂𝜈𝑠
𝑓𝑑𝑡 

is positive-definite and that |𝐽| is finite.  

 

Now the conditions of above theorem may be verified for the likelihood equations 

corresponding to ℬ𝒲ℛ  model as follows. (It may be noted that the following proof verifies 
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𝐶ℎ𝑎𝑛𝑑𝑎’s theorem for the likelihood equations corresponding to right censored data case as well 

since for the censored observation, the expression of density for ℬ𝒲ℛ  model becomes 𝑓(𝑐1) =

exp [−(
𝑐1

𝜃1
)𝛽1 − (

𝑐1

𝜃2
)𝛽2] instead of (8) where 𝑐1 denotes the censoring time (see also [2])). 

Let us denote 𝑓 for 𝑓ℬ𝒲ℛ
(𝑡). The function 𝑓 is differentiable with respect to all the parameters 

𝜃1, 𝜃2, 𝛽1 and 𝛽2 any number of times. Under the assumption that all these parameters are positive 

and finite, any arbitrary ℓ𝑡ℎ order partial derivative of 𝑓 (let it be denoted by g) can only produce 

term of the following form  

 𝑔 = [∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)]exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
];

𝑗 = 0,1, . . . , ℓ; 𝑘 = 0,1, . . . , ℓ,

 (36) 

 

 where Φ𝑗𝑘(𝑡)s are polynomials in t, hence continuous and bounded in any closed interval. ln(𝑡) is 

also continuous for 𝑡 > 0, which indicates that the term [∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)] is 

continuous and bounded for t in any closed interval. For large values of 𝑡, behavior of 

[∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)] is dominated by the term exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] and also 

exp [− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] → 0 as 𝑡 → ∞. Hence,  

 |[∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)]exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]| < ∞. 

 

With this we can say that all partial derivatives of density 𝑓 exist. Now for verifying condition (𝑖) 

of Theorem 2, we have to show that all the first, second and third order partial derivatives of ln(𝑓) 

exist. These partial derivatives can be written as  

 
∂ln(𝑓)

∂𝜈𝑟
=

1

𝑓

∂𝑓

∂𝜈𝑟
 (37) 

 

 
∂2ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠
=

1

𝑓

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑠
−

1

𝑓2

∂𝑓

∂𝜈𝑟

∂𝑓

∂𝜈𝑠
 (38) 

 

 

 

∂3ln(𝑓)

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤
= 2

1

𝑓3

∂𝑓

∂𝜈𝑟

∂𝑓

∂𝜈𝑠

∂𝑓

∂𝜈𝑤
−

1

𝑓2

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑠

∂𝑓

∂𝜈𝑤
−

1

𝑓2

∂2𝑓

∂𝜈𝑠 ∂𝜈𝑤

∂𝑓

∂𝜈𝑟

−
1

𝑓2

∂2𝑓

∂𝜈𝑟 ∂𝜈𝑤

∂𝑓

∂𝜈𝑠
+

1

𝑓

∂3𝑓

∂𝜈𝑟 ∂𝜈𝑠 ∂𝜈𝑤

 (39) 

 

 All the partial derivatives of 𝑓 that are involved in the above expressions are earlier shown to exist 

and since 0 < 𝑓 < ∞ for 𝑡 > 0. Hence the derivatives in (37)-(39) exist and the condition (𝑖) is 

verified.  

 Since for 𝑡 > 0, ln(𝑡) < 𝑡, hence by replacing ln(𝑡) by 𝑡 and negative signs in Φ𝑗𝑘(𝑡)s by positive 

signs in expression (36), we can always find a function 𝐴(𝑡) = [𝑎1𝑡
𝛼1+. . . +𝑎𝑘𝑡

𝛼𝑘] and a positive 

number 𝑁 such that  

 |[∑ℓ𝑗,𝑘=0,𝑗+𝑘≤ℓ (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)]| < 𝐴(𝑡) 

and  

 exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] ≤ 𝑒−𝑁𝑡 . 

From these, we have  
 |𝑔| < 𝐴(𝑡)𝑒−𝑁𝑡 

and 𝐴(𝑡)𝑒−𝑁𝑡 is bounded for all 𝑡 > 0. Therefore, the two parts of condition (𝑖𝑖) are satisfied. For 

proving the third part of condition (𝑖𝑖), we have the third order partial derivatives of 𝑓 with 

respect to the parameters which are of the following form  
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∂3𝑓

∂𝜈1 ∂𝜈2 ∂𝜈3
; 2.0𝑐𝑚𝜈𝑗𝜀{𝜃1, 𝜃2, 𝛽1, 𝛽2},0.5𝑐𝑚𝑓𝑜𝑟0.1𝑐𝑚𝑗 = 1,2,3. 

On similification, it can produce a form  

 [∑3𝑗,𝑘=0,𝑗+𝑘≤3 (ln (
𝑡

𝜃1
))

𝑗

(ln (
𝑡

𝜃2
))

𝑘

Φ𝑗𝑘(𝑡)] × exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. 

Again, corresponding to each 
∂3𝑓

∂𝜈1 ∂𝜈2 ∂𝜈3
, we can easily find a polynomial 𝐴1(𝑡) such that  

 |
∂3𝑓

∂𝜈1 ∂𝜈2 ∂𝜈3
| < 𝐴1(𝑡) × exp[− (

𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
]. 

Let us denote 𝐴1(𝑡) × exp[− (
𝑡

𝜃1
)
𝛽1
− (

𝑡

𝜃2
)
𝛽2
] by 𝐻(𝑡). For 𝐻(𝑡), we can write  

 ∫
∞

0
𝐻(𝑡)𝑓(𝑡)𝑑𝑡 = ∫

∞

0
𝐴1
′ (𝑡)exp[−2 (

𝑡

𝜃1
)
𝛽1
− 2(

𝑡

𝜃2
)
𝛽2
]𝑑𝑡, 

 

where 𝐴1
′ (𝑡) = [𝑏1𝑡

𝛾1+. . . +𝑏𝑚𝑡
𝛾𝑚]. Since 𝑡 ≥ 0 and 𝜃1 > 0, 𝜃2 > 0, hence replacing exp[−2 (

𝑡

𝜃2
)
𝛽2
] by 

its maximum value, which is 1, we can write  

 ∫
∞

0
𝐻(𝑡)𝑓(𝑡)𝑑𝑡 < ∫

∞

0
[𝑏1𝑡

𝛾1+. . . +𝑏𝑚𝑡
𝛾𝑚]exp[−2 (

𝑡

𝜃1
)
𝛽1
]𝑑𝑡. (40) 

 Let us consider a integral of the following type  

 ∫
∞

0
𝑡𝛾𝑗exp[−2 (

𝑡

𝜃1
)
𝛽1
]𝑑𝑡 =

𝜃1
𝛾𝑗+1

𝛽12

(𝛾𝑗+1)

𝛽1

Γ(
𝛾𝑗+1

𝛽1
) = 𝛿𝑗(𝑠𝑎𝑦), 

 

where 𝛿𝑗 is a moment of generalized 𝑔𝑎𝑚𝑚𝑎 density and exists for all 𝛾𝑗 > −1, 𝛽1 > 0 and 𝜃1 > 0. 

Hence, each term in integral of right hand side of inequality (40) results in constant multiple of 

moment of generalized 𝑔𝑎𝑚𝑚𝑎 density, which exist. If we denote ∑𝑚𝑗=1 𝑏𝑗𝛿𝑗 by 𝐶𝑀, we can write  

 ∫
∞

0
𝐻(𝑡)𝑓(𝑡)𝑑𝑡 < 𝐶𝑀 < ∞. 

With this, third part of condition(𝑖𝑖) is verified. 

 For verifying condition (𝑖𝑖𝑖), we need to prove the matrix 𝐽= ((𝐽𝑟𝑠(𝜈))) positive definite. 

The matrix 𝐽 can be written as  

 

 𝐽 = ∫
∞

𝑡=0

[
 
 
 
 
 
 
 (
∂ln(𝑓)

∂𝜃1
)2 (

∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝜃2
) (

∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝛽2
)

(
∂ln(𝑓)

∂𝜃2
)(
∂ln(𝑓)

∂𝜃1
) (

∂ln(𝑓)

∂𝜃2
)2 (

∂ln(𝑓)

∂𝜃2
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝜃2
)(
∂ln(𝑓)

∂𝛽2
)

(
∂ln(𝑓)

∂𝜃1
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝛽1
)(
∂ln(𝑓)

∂𝜃2
) (

∂ln(𝑓)

∂𝛽1
)2 (

∂ln(𝑓)

∂𝛽1
)(
∂ln(𝑓)

∂𝛽2
)

(
∂ln(𝑓)

∂𝛽2
)(
∂ln(𝑓)

∂𝜃1
) (

∂ln(𝑓)

∂𝛽2
)(
∂ln(𝑓)

∂𝜃2
) (

∂ln(𝑓)

∂𝛽2
)(
∂ln(𝑓)

∂𝛽1
) (

∂ln(𝑓)

∂𝛽2
)2

]
 
 
 
 
 
 
 

𝑓𝑑𝑡 (41) 

 

 

 𝐽 = ∫
∞

𝑡=0

{
 
 
 

 
 
 

[
 
 
 
 
 
 
 
∂ln(𝑓)

∂𝜃1
∂ln(𝑓)

∂𝜃2
∂ln(𝑓)

∂𝛽1
∂ln(𝑓)

∂𝛽2

]
 
 
 
 
 
 
 

× [
∂ln(𝑓)

∂𝜃1

∂ln(𝑓)

∂𝜃2

∂ln(𝑓)

∂𝛽1

∂ln(𝑓)

∂𝛽2 ]

}
 
 
 

 
 
 

𝑓𝑑𝑡. (42) 

 Let 
∂ln(𝑓)

∂𝜈
 denotes the vector of all first order partial derivatives of ln(𝑓) with respect to parameters 

𝜈 = (𝜃1, 𝜃2, 𝛽1, 𝛽2) and can be written as  
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∂ln(𝑓)

∂𝜈
=

[
 
 
 
 
 
 
 
∂ln(𝑓)

∂𝜃1
∂ln(𝑓)

∂𝜃2
∂ln(𝑓)

∂𝛽1
∂ln(𝑓)

∂𝛽2

]
 
 
 
 
 
 
 

. 

Mathematically, any matrix 𝐴 that can be written as 𝐴 = 𝐵𝐵′ , where 𝐵 may be square or 

rectangular, is at least positive semidefinite. Hence matrix in the integral of equation (41) is at least 

positive semidefinite. The matrix 𝐽 is expected value of the matrix (
∂ln(𝑓)

∂𝜈
)(
∂ln(𝑓)

∂𝜈
)′. Thus 𝐽 has a 

covariance structure and such a structure can be singular only when two or more elements in 

vector 
∂ln(𝑓)

∂𝜈
 are linearly related. But in our case, the elements are partial derivatives of same 

function with respect to different parameters, that is, 
∂ln(𝑓)

∂𝜈𝑗
 ; 𝑗 = 1,2,3,4 and all 𝜈𝑗s are independent 

of each other. Hence there is no linear relationship among the elements 
∂ln(𝑓)

∂𝜈𝑗
. Obviously, 𝐽 is 

nonsingular or in other words 𝐽 is positive definite. Again since all the first order partial derives of 

ln(𝑓) are shown to exist and finite, hence determinant of matrix 𝐽 is also finite. 

Therefore, we can say that the density 𝑓 offers unique and consistent ML estimates of the 

parameters. 
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Abstract 
 

The authors here try to forecast the Effort in Person Months for developing Agile and 

the traditional way of software development including Prototyping. The comparison 

is made on the basis of considering both Agile and traditional software development 

methodologies in addition to the crowdsourcing paradigm applied to both 

approaches. DNA Matcher (DNAM) has been developed using both prototyping and 

Agile software development with crowd sourcing. For Agile development, first of all 

COCOMO II Model is applied on it utilizing the crowdsourcing technique. The 

authors have determined that Agile development proves to be considerably 

economical when both techniques use crowdsourcing. The case study used here is 

DNAM. First DNAM was developed using traditional prototyping methods. During 

its analysis, costing is done. This is done in accordance with the crowdsoursing used 

in parallel to the Prototyping method. The time and effort in Person Months (PM) was 

known. Then AGILE development methodology is used in the development of 

DNAM. Agile is used along with the crowdsourcing paradigm. As soon as the 

analysis phase is completed, Simple Build-up Approach forecasts the time and effort 

in terms of Number of Iterations and Person Months and we compare the results of 

Effort and Cost of both the techniques. The Agile method is found to be both, less in 

cost and effort, thereby increasing the Effectiveness and Efficiency of the progression 

of Software development.     

 

Keywords: Crowdsourcing, Genomic Information Retrieval, Agile software 

development, COCOMO, Simple Build-up Method 

 

 

1. Introduction 
 

The DNAM System [1] comprises of 4 Modules that are refined though roles that came into 

existence though the Goals which are at first identified and for the most basic step in prototype 

design. The DNAM (Genomic Information Retrieval) System takes as input a DNA Pattern that has 

to be searched in the varied heterogeneous databases. Some even consisting of plain Text Files or 

Excel Sheets [3]. Here, the authors inspect the pertinence of Crowdsourcing and a couple of 

procedures from Open Innovation to the intelligent technique and major science in a non-

advantage condition [4], discover a U-shaped association between the convenience time and 

winning in the two sorts of difficulties. Social capital lifts the probability of winning a gathering 

assessed challenge just if the social capital is enough high [5], report a preliminary give an account 

of crowdsourcing testing for informational endeavors. We introduce three business programming 
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things as enlightening testing wanders, which are crowdsourced by our indicating candidly strong 

system. We call this "Semi Crowdsourcing Test" (QCT) in light of the fact that the contender 

workers are understudies, who have certain social relations. The examination occurs are 

encouraging and show to be favorable to both the understudies and industry in QCT wanders. [6], 

Revolves just around a legitimate perspective and on the frameworks available to these affiliations. 

The consequent estimations are pre choice of supporters, accessibility of partner responsibilities, 

collection of duties, and pay for responsibilities. By gathering the strategies of 46 crowdsourcing 

outlines, we perceive 19 unmistakable process creates. A resulting group examination exhibits 

general cases among these sorts and demonstrates an association with particular usages of 

crowdsourcing. [7], will demonstrate that the crowdsourcing model of research can make hurt 

individuals, controls the part into continued with help, and uses individuals as exploratory 

subjects. We assume that traditions relying upon this model require institutional review board 

(IRB) examination. [8], attempts to get an unrivaled appreciation of what crowdsourcing systems 

are and what general arrangement points are considered in the change of such structures. In this 

paper, the maker drove a ponder composing review in the space of crowdsourcing structures. 

[10], portrayed the qualities of some conventional and agile techniques that are generally 

utilized as a part of software development. I have likewise talked about the qualities and 

shortcoming between the two contradicting procedures and furnished the difficulties related with 

actualizing agile procedures in the software industry. This episodic confirmation is rising with 

respect to the adequacy of agile methodology in specific situations; however there have not been 

much gathering and investigation of observational proof for agile products. Notwithstanding, to 

help my exposition I led a poll, requesting criticism from programming industry professionals to 

assess which approach has a superior achievement rate for various sizes of software development. 

As per our discoveries dexterous procedures can give great advantages to little scaled and medium 

scaled undertakings yet for substantial scaled activities customary strategies appear to be 

overwhelming. 

UI Module deals with taking the DNA pattern (Consisting of four letters, A,C,T and G 

sequences) [3]. It forwards this to the module which by looking at the routing information 

forwards the segmented sub-patterns to the various “source modules”. The source agents 

construct a local ontology and the patterns are searched in those ontologies. Then the results are 

combined to form a merged ontology and the links to the data sources are sent back to the user. 

 

OBJECTIVE 

DNA SEQUENCING 

 

A genome contains the complete set of DNA including all the genes. And this includes all the 

information required to build and uphold that organism[23]. A great amount of Genetic material is 

similar between organisms [13]. Understanding the relationship of an unknown gene or DNA 

sequence to known sequences is the key to assigning its function.  

The main theme of interest for a Computer Science Researcher in the field of Genetics can be given 

as under:- 

The Nucleotide Bases are used to identify the characteristics of all the species. The Nucleotide 

Bases [16] comprise of the following elements:  

 

1) Thymine (T) 

2) Cytosine (C) 

3) Guanine (G) 

4) Adenine (A) 

 

It is agreed that we have a big, monolithic anthology of heterogeneous and distributed databases 

containing the Nucleotide Base Sequences of many species. But, the size and divergence of this raw 
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information makes it very difficult for the Biologists to search for a “Pattern of some sequence” in 

these databases. The Biologists or Life Science Experts need to search for a specific sequence in the 

existing sequences stored in the databases. This pattern matching is done in order to find 

homologous patterns. This is helpful because if suppose there is a mutation in DNA of an 

organism and this mutated DNA is the reason for some problem eg. a type of cancer in that 

organism. Now if this mutated pattern matches with some other organism, and that organism got 

treated with some enzyme, the research can be directed to that hormone and can be used to 

remedy the cancer in the original organism. The DNAM project is taken as a case study for 

comparison of Agile with crowdsourcing and traditional prototyping also assisted by 

crowdsourcing. 

 

CROWDSOURCING WITH TRADITIONAL PROTOTYPING 

 

The work of Prototyping with crowd sourcing begins with identification of goals that need to be 

accomplished. The goal diagram is the best pictorial representation for what needs to be done at 

different levels of abstraction. The goals are broken down into sub tasks and this phenomenon is 

called task reduction resulting into Work breakdown Structure (WBS). The sub divided goals need 

someone to take the responsibility to put them into action. Once the Goal diagram is drawn we 

assign different goals to the identified Roles as shown in the figure 2.  

Now the process of assigning Roles to various identified crowd sourcing worker needs to be 

executed. 

The various crowd sourcing workers work on these segmented modules: 

• Initiator 

This module deals with the starting up of the system eg: reading the configuration file etc. 

• User Interface 

Deals with sub-modules like the way the end user will interact with the system. 

• Wrapper  

Deals with modules for routing the DNA Pattern over the network. 

• Source 

The sub-modules in Source module take care of platform transparency such that 

information from heterogeneous data sources can be extracted ad the DNA Pattern be 

searched.  

This is shown in figure 3. 

 

 
 

Fig. 1 DNAM Goal Diagram 
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Fig. 2. DNAM Role Diagram 

 

 

 
 

 

Fig. 3. DNAM CrowdSourced Worker Task Assignment Diagram 
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Fig. 4. Interactions and Messages Exchanged Between Modules 

 

 

 
 

Fig. 5. DNAM State Diagram 
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2. COST ESTIMATION MODEL COCOMO II in Traditional (Prototyping) 

Software Development approaches combined with CrowdSourcing 
 

There are many mathematical formulae used to forecast Effort required in developing a 

Software System in different methodologies like Waterfall, Spiral or Incremental and Agile 

Approaches. I have used COCOMO II Early Design Model [15] using 5 scale factors and 7 Effort 

Multipliers to project size (SLOC), effort (Person Months) and time (Months). The scale factors and 

Effort Multipliers are derived from the Analysis done in a traditional case study involving the 

same Project DNAM(Genomic Information Retrieval) accompanied by Crowdsourcing.  

 

 
 

Fig. 6. Coagulation of Traditional Software Engineering and CrowdSourcing 

 

The diagrams are refined from Highest Level of Abstraction to Lowest Level of Abstraction. 

High Abstraction deals with Goals and Plans and Lowest deal with the State Machines and coding 

and implementation. 

 

 
 

 

Fig. 7. Cumulative growth of Crowdsourced Software Engineering studies published before April 

2015. 

 

2. 1 Effort Estimation 
 

The values for A, B, EMi and SFj in COCOMO II in Agile are standardized values taken from 

the effort of 161 projects in the model database. The formula for Effort can referred from Boehm 

(2000:13). In case of DNAM only 7 Effort multipliers are used to remove confusion. 
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2.1.1 DNAM through Prototyping (Traditional SDLC) 

                                                  (1) 

                                                        (2) 

 

The values and calculations provided in the charts shown under represent the analysis done 

on Agile Development techniques involving crowdsoursing.  

 

Table 1 

Details identified of Agents Through UML Design Toolkit in Prototype Model 

Element DNAM (Prototype) 

Total No. of Interactions with other modules 6 

Tot. No. of messages interchanged 9 

Tot. No. of Roles 8 

Tot. No. of Requirements 8 

Tot. No. of Events 9 

Total no. of state machines applied 4 

Tot. No. of states in every machine. 4 

  

 

Rules identified in DNAM  

R1: Maximum Time Limit: 30ns 

R2: ONLY A, C, T, or G characters can be used to represent a DNA Pattern.  

R3: The search string cannot contain white spaces, hyphens or any special character or numbers. 

R4: Max Length of a search pattern can be set but assumed to be 1024 chars. 

R5: Break-up size of search pattern can be set but assumed to be 11 chars. 

R6: Patterns not conforming to P1, P2, P3 and P4 will be immediately discarded. 

R7: Total time from query submission to result display can be maximum 8.00 secs. 

R8: Queries from Agile to crowds failing to meet R6 will be held for resubmission. 

 

Table 2 

Statistical Data About Functional Behaviour 

Element DNAM (Prototype) 

Tot. No. of Roles R 8 

Tot. No. of Events E 9 

Tot. No. of State Machines S 4 

Total number of types of entities (R+E+S) 21 

Rules dedicated to management of entities 8 

  

 

 

 



 
Himanshu Pandey 
COMPARISON OF USAGE OF CROWDSOURCING SOFTWARE 

RT&A, No 3 (50) 
Volume 13, September 2018  

39 

Table 3 

Scale Factors Applied To The Projects(Both in Agile and Traditional S/W Development) 

 

Scale Factors Range (DNAM Prototype) Value (DNAM Prototype) 

Precedentness Nominal 3.72 

Development Flexibility Low 6.24 

Architecture/ Risk Resolution Low 6.24 

Team Cohesion Low 2.19 

Process Maturity Low 6.24 

  18.110 

 

2. 1.2 Scale Factors  

The exponential part of the application is governed by five scale factors (SF) that describe 

relative economies or diseconomies of scale. A project has economies of scale if the exponent is less 

than 1. if Exponent=1 then  Economies and diseconomies of scale are in balance. If the exponent is 

more than one the project has diseconomies (Boehm 2000:30). 

 

Table 4 

Cost Drivers 

Cost Drivers Range(Prototype) Value(Prototype) 

Product Reliability and 

Complexity 

High 1.10 

Reusability Nominal 1.00 

Platform difficulty Low 1.10 

Personnel Capability Nominal 1.00 

Personnel Experience Nominal 1.00 

 Facilities Nominal 1.00 

Required Development Schedule Low 1.14 

ΠVal=1.38 

 

In addition to the scale factors there are other relevant factors that affect the efforts done by 

the developer, called cost drivers [15]. These are: 

 

1. Product Reliability and Complexity (RCPX) is the combination of Software Reliability 

(RELY), Database Size (DATA), Software Complexity (CPLX) and Documentation (DOCU).  

2. Reusability (RUSE)  

3. Platform Difficulty (PDIF) is the combination of Time Constraint (TIME), Main Storage 

Constraint (STOR) and Platform Volatility (PVOL).  

4. Personnel Capability (PERS) is Analyst Capability (ACAP), Programmer Capability 

(PCAP) and Personnel Continuity (PCON).  

5. Personnel Experience (PREX) combines Analyst Experience (AEXP), Programmer 

Experience (PEXP) and Language and Tools Experience (LTEX).  

6. Facilities (FCIL) combines Uses of Software Tools (TOOL) and Site Environment (SITE)  

7. Required Development Schedule (SCED)  

 

The values for scale and cost factors are taken from the COCOMO Manual 

http://csse.usc.edu/csse/research/COCOMOII/cocomo2000.0/CII_modelman2000.0.pdf 
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Table 5 

Equivalence Of Each  Elements Into Sloc 

Element Element Count 

DNAM(Prototype) 

SLOC / Element 

(Prototype) 

SLOC(Prototype) 

Event 9 100 900 

Rule 8 80 640 

Goal 8 200 1600 

Task 8 100 800 

State 

Machines 

4 150 600 

TOTAL SLOC -------------------- --------------------- 4540 

   4.5 KSLOC 

• KSLOC decreases in Agile development due to the modern languages like PYTHON, 

RUBY, etc where we just need the required Tools (.dll files) that get easily integrated with our 

project. 

Now Through Eq. 2: 

 

 

 
Eprototype = 0.91+ 0.01*(18.110) = 1.091 

PMprototype = 2.94*(4.5)1.091*(1.38)=20.94PM 

This means that a single croudsourced worker can complete the whole process in nearly 21 

months. 

If there are n workers the job can be accomplished in 21/n months. 

 

 

3 Analysis and Estimation of DNAM project using Agile with Crowdsourcing 
 

3.1 Terminology 
 

3.1.1 User Story 

 

A "User Story" is a simple statement about what a user wants to do with a feature and the value 

the user will gain from that feature. 

1. The User 

2. What the user wants to do with a feature 

3. Value gained by the user 

4. Acceptance Criteria 

5. Front and back of a card 

 

3.1.2 Story Points  

A story Point represents a value given to a user story that is used to measure the effort required to 
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implement the story. 

It is a number that represents story size based on how hard a story is to implement. 

 

3.1.3 Story Point Velocity 

Velocity measures how much of something can be achieved over a fixed period of time; e.g. how 

many Story Points are completed during a Sprint. 

 

3.1.4 Simple Buildup Approach for Agile Project Cost Estimation 

 

Velocity(V)=Iteration Duration / Completed Total SP………….......................1 

Iterations needed = Total SP / Velocity                   ……………………………..2 

 

In most cases a story point uses one of the following scales for sizing: 

• 1,2,4,8,16 

• X-Small, Small, Medium, Large, Extra-Large ( known as “T-Shirt Sizing”) 

• Fibonacci sequence: 1,2,3,5,8,13,21 

 

3.1.5 Crowdsourcing the Agile Software Development 

 

 
 

Fig. Agile with Crowdsourcing 

 

The process of crowdsourcing Agile Software development begins with the construction of Work 

Break-down Structure, also called Task Reduction. Figure 2 shows this process. Now when the 

work is decomposed into tasks, Goals are identified by grouping similar tasks together. It is not 

always the case that multiple tasks unite to form a goal. A standalone task can result into a single 

goal as well. 
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3.2 Identifying Stories 

Login                                                 SP=1 

 

> Registered user can log into the 

system. 

 

> Unsuccessful Login should be 

prompted with an Error Message. 

 

> User should be allowed login 

attempts upto 3 times 

 

Accept DNA pattern                                 SP=1 

 

> DNA Input must only contain ‘A’, ‘C’,’T’ or ‘G’ 

characters. 

> No whitespaces, special symbols or digits are 

permissible. 

> The input DNA Pattern’s length must only be 11 

characters. 

  

 

Forward Pattern to Wrapper module        SP= 

2 

 

> Route patterns to source modules. 

>  Refer ontology 

> Merge results 

> Return matched results back to UI module 

 

 

 

Receival of Pattern by Source Module               SP=2 

 

> Convert local database to XML 

> search local repository 

> Find matches 

> Pass matched DNA content to Wrapper Module 

 

User Interface                                           SP=1 

 

> Accept matched DNA sources 

> Return matched DNA sources list to the 

end      user 

> Ready to accept new DNA patterns as 

query 

 

 

 

The authors have developed first two User Stories. 

By equation 1 and 2, 

 

Velocity(V)=2/2=1;  

Total Iterations needed=Total SP/V=7/1=7;  

if 1 iteration is assumed to be 2 weeks, then there are total 14weeks=3.11months and team 

size is 4. 

 

In case of Prototype Model used along with crowdsourcing, we got the total time needed for 

development=21/n 

Since in Agile with crowdsourcing we took the team size to be equal to 4, 

Time consumed by Prototype with Crowdsourcing=21/4= 5.25 months 

 

This represents a significant increase in efficiency of the Agile developers in crowdsourced 

projects. As regarding the quality of these types of methods a brief theoretical comparison is 

shown under:  

 

Costs & Benefits attached with Crowdsourcing  

 

❖ Concerns with regard to cost:  
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❖ Reduced overhead Cost (OC) 

❖ Increased Development Cost (DC) 

❖ Schedule 

❖ The problem with scheduling traditional software development is project 

completion dates vary with different developers. The cool undertaking does sometimes incur 

greater cost and time. Let us say, costs through scheduling to be CS. 

 

Concerns with regard to Quality 

 

Practical Quality of the software is thought to be met, when the predetermined necessities 

are met. The prerequisites ought to be successfully assembled. In conventional software 

development, the dispersal of assignments amid the arranging stage is less demanding when 

contrasted with crowdsourcing software development. Likewise coordinating distinctive modules 

after their advancement is finished is moderately less complex. Quality confirmation in 

crowdsourcing software development can be extremely testing. It turns out to be exceptionally 

troublesome and wrong to expel the bugs in the later phase of the software lifecycle. A portion of 

the difficulties experienced while keeping up the nature of software are: partitioning expansive 

work into little assignments, sorting out and conveying successfully. Plainly the general 

population associated with crowdsourcing is not a piece of any comparable association 

subsequently there is an issue of contradiction. 

 

4. Conclusion and Future Scope  
 

This paper tries to apply Effort Forecasting in Genomic Information Retrieval (DNAM) 

taken as case study for comparing Traditional and Agile System currently developing under 

crowdsorucing. The authors predicted that Agile is better in reducing development time thereby 

increasing efficiency greater as compared to traditional SDLC Models. The estimation in 

prototyping is done using COCOMO II Model amalgamating crowdsoucing. The estimation of 

Agile with crowdsourcing is done using Simple Buildup Approach. In this paper the authors have 

tried to calculate the Effort required for a developer in manifesting the DNAM project thereby 

projecting the overall time taken in completion of the project by both software development 

methodologies.  
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Abstract 

 
 In this paper, we consider Markovian model of a two-station tandem network with 

the following feedback admission control policy: the first station rejects new arrivals 

when the queue size in the second station exceeds a certain threshold 𝑁. We provide 

necessary stability conditions of this model. Each station operates as a multiserver 

queuieng system, and thus work in part generalizes the results from the paper [1] in 

which single-server stations have been considered. The analysis is based on the 

Burke’s theorem and stochastic monotonicity of the Birth-Death process describing 

the number of customers in the second station.  

 

Keywords: queuing system, ergodicity, input flow, feedback 

 

 

  

 

I  Introduction 
 

We consider the following two-station queueing system with a feedback admission control policy. 

The input flow in this system is Poisson with the parameter 𝜆. Station 𝑖 has 𝑁𝑖 servers, and the 

service time of each server in station 𝑖 is exponentially distributed with parameter 𝜇𝑖 , 𝑖 = 1,2. 

We consider a  feedback admission control when the 1st station closes the admission gate 

provided the  queue size (number of customers) in the 2nd station exceeds a fixed threshold 𝑁 ≥ 1. 

When the queue length of the 2nd station falls below the threshold, admission gate opens again. 

With this non-idling control policy, the system losses arrivals during the period when the gate is 

closed. We assume the FIFO service discipline at both stations. (In general, under the same 

conditions, stability of the system holds true for any work-conserving service discipline.) The 

detailed motivation of this model can be found in [1].  

Our analysis is based on the dependencies between the rates of the flows, in particular, 

input rate and output rate from the first station, in stationary regime. Also the analysis is heavily 

based on the Burke’s theorem stating the equality of the input and output rates in the stationary 

(non-overloaded) multiserver first station. Finally, we apply stochastic monotonicity of the Birth-

Death (BD) process, describing the multiserver queuing system. 
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II Stability Conditions 
 

In this section, we establish the necessary stability conditions of the basic model described shortly 

above. 

First of all, we give more detailed description of the model. We consider the described 

above two-station tandem system with Piosson input with rate 𝜆 and feedback admission control, 

assuming that the first station operates as a queueing system 𝑀|𝑀|𝑁1 with 𝑁1 identical servers and 

infinite buffer. The second station is the system 𝑀|𝑀|𝑁2, also with infinity capacity buffer. The 

service rate is 𝜇𝑖 at each server of station 𝑖 = 1,2. Because all governing distributions are 

exponential, this feedback system is completely defined by the parameters 𝜆, 𝜇𝑖, 𝑁𝑖 , 𝑁. 

The dynamics of this model can be described by a continuous-time discrete-valued 

Markov process 𝑍(𝑡) =: (𝑧1(𝑡), 𝑧2(𝑡)), 𝑡 ≥ 0, where component 𝑧𝑖(𝑡) is the number of customers at 

station 𝑖 at instant 𝑡, 𝑖 = 1,2. Denote 𝑦(𝑡) the number of arrivals in the interval (0, 𝑡], 𝑦(0) = 0, in 

the Poisson input flow (with the intensity 𝜆), and define 𝑥(𝑡), the  actual number of arrivals to the 

1st station in interval (0, 𝑡], 𝑥(0) = 0. 

The following statement generalizes the necessary stability conditions found in [1] for the 

single-server stations. 

 Theorem 1.  Assume the Markov process 𝑍 is ergodic. If i) 𝑁1𝜇1 < 𝑁2𝜇2, then 𝜆 < 𝐹𝑁(𝑁1𝜇1); 

ii) otherwise, if 𝑁1𝜇1 ≥ 𝑁2𝜇2, that there are no other restrictions except 𝜆 < ∞. 

 Proof. Assume that the Markov process 𝑍 is in steady state, and denote 𝑃𝑁 = 𝑃(𝑧2(𝑡) > 𝑁) 

the stationary probability that there are at least 𝑁 customers in the 2nd station. The Poisson 

arrivals with the intensity 𝜆 enter the 1st station. Then, at an arrival instant a transition 𝑦(𝑡) →

𝑦(𝑡) + 1 happens , and moreover, transition 𝑥(𝑡) → 𝑥(𝑡) + 1 happens if and only if 𝑧2(𝑡) ≤ 𝑁. Thus, 

the transition rate 𝑥(𝑡) → 𝑥(𝑡) + 1 equals 𝜈:= 𝜆𝑃𝑁 . 

Therefore, for each 𝑡 and constant 𝑇, the number of customers entering the 1st station in 

interval [𝑡, 𝑡 + 𝑇) does not depend on the number of customers arriving in interval (0, 𝑡], 𝑡 > 0. 

Then it follows from [2], [3] that the rate of the arrivals entering the 1st station equals 𝜈 = 𝜆𝑃𝑁 as 

well. Since the flow of arrivals entering the 1st station is Poisson with rate 𝜈 and the process 𝑍 is 

ergodic, then the process 𝑧1(𝑡), 𝑡 ≥ 0, turns out to be ergodic also. As a result , the process 𝑧1(𝑡) is 

distributed as a BD process with the birth rate 𝜈 and the death rates 𝜇𝑘 = min(𝑘, 𝑁1)𝜇1 [§ 1.2][4]. It 

then follows from Karlin – McGregor criterion [6], we obtain the inequality 𝜈 < 𝑁1𝜇1. Because the 

stationary output from the 1st station is also Poisson process with the rate 𝜈 = 𝜆𝑃𝑁, then we may 

notation 𝑃𝑁 = 𝑃𝑁(𝜈) which is heavily used below. 

Apply now a similar analysis to the 2nd station. Since the input to the 2nd station (output 

from the 1st station) is Poisson with rate 𝜈, and the process 𝑍 is ergodic then the process 𝑧2(𝑡), 𝑡 ≥

0, is ergodic also. 

As above then the process 𝑧2(𝑡) is distributed as a BD process with the birth rate 𝜈 and the 

death rates 𝜓𝑘 = min(𝑘, 𝑁2)𝜇2. Then, as above it follows from Karlin – McGregor criterion, that the 

inequality 𝜈 < 𝑁2𝜇2 holds. Thus, we obtain the following relations:  

 𝜈 = 𝜆𝑃𝑁 , 𝜈 < 𝑁1𝜇1, 𝜈 < 𝑁2𝜇2. (1) 

 Consider another BD process 𝑧2
′ (𝑡), 𝑡 ≥ 0, with the same death rates {𝜓𝑘} and a birth rate 𝜈′ > 𝜈. 

Moreover, we assume the same initial state in both processes, that is 𝑧2(0) = 𝑧2
′ (0). Then it follows 

from Theorem 4.2.1 in [8], that the following inequality holds:  

 lim
𝑡→∞

𝑃(𝑧2(𝑡) > 𝑁) = 𝑃𝑁(𝜈) ≥ lim
𝑡→∞

𝑃(𝑧2
′ 𝑡) > 𝑁) =: 𝑃𝑁(𝜈

′). (2) 

 Because 𝜓𝑗 = min(𝑗, 𝑁2)𝜇2, 𝑗 ≥ 1, then it follows from [5] (Chapter 2, Section 3), that for each fixed 

𝑁 > 0 and for all 𝜈, 0 < 𝜈 < 𝑁2𝜇2, the function 𝑃𝑁(𝜈) has the following explicit expression  

 𝑃𝑁(𝜈) = 1 + ∑
𝑁
𝑘=1 𝜈

𝑘/∏𝑘
𝑗=1 𝜓𝑗1 + ∑

∞
𝑘=1 𝜈

𝑘/∏𝑘
𝑗=1 𝜓𝑗 , 

and moreover, is monotonically decreasing (2) and continuous in 𝜈. Because, under condition 𝜈 ≥

𝑁2𝜇2, the process 𝑧2(𝑡) is not ergodic, then we obtain 𝑃𝑁(𝜈) = 0 for 𝜈 ≥ 𝑁2𝜇2. Therefore, for the 

fixed 𝑁 > 0, the function  

 𝐹𝑁(𝜈) =
𝜈

𝑃𝑁(𝜈)
 (3) 
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 is continuous and monotonically increases in 𝜈, as long as 0 < 𝜈 < 𝑁2𝜇2, while we put 𝐹𝑁(𝜈) = ∞ if 

𝜈 ≥ 𝑁2𝜇2. Then the equality  
 𝜈 = 𝜆𝑃𝑁(𝜈) = 𝐹𝑁(𝜈)𝑃𝑁(𝜈) 

in (1) can be rewritten as 𝜈 = 𝐹−1(𝜆), where 𝐹−1 is the inverse function to function 𝐹. Hence, by the 

monotonicity, we obtain from (1) that, for 𝑁1𝜇1 < 𝑁2𝜇2,  

 𝜆 < 𝐹𝑁(𝑁1𝜇1). (4) 

 Assume that 𝑁1𝜇1 ≥ 𝑁2𝜇2. Take an arbitrary 𝜀 ∈ (0, 𝑁2𝜇2). Then, by the ergodicity of the Markov 

process 𝑍(𝑡), 𝑡 ≥ 0, the inequality 𝜈 < 𝑁2𝜇2 − 𝜀 < 𝑁1𝜇1 follows, which in turn, is equivalent to the 

inequality 𝜈 < 𝑁2𝜇2 − 𝜀. The latter inequality implies 𝜆 < 𝐹𝑁(𝑁2𝜇2 − 𝜀) by the monotonicity of 

function 𝐹𝑁. Because 𝜀 is arbitrary and  
 𝐹𝑁(𝑁2𝜇2 − 𝜀) → 𝐹𝑁(𝑁2𝜇2) = ∞, 𝜀 → 0, 

then (4) becomes 𝝀 < ∞, and the proof is completed. 

 

III  A Generalization 
 

 In the paper [1], also the following more general 𝑚-station system, 𝑚 ≥ 2, is considered: the 

external input (with rate 𝜆) is rejected at the first station, if the number of customers 𝑧𝑘(𝑡) in each 

remaining station 𝑘 exceeds a given threshold 𝑁(𝑘). Moreover, the output from station 𝑘 is the 

input to station 𝑘 + 1, 𝑘 = 1,… ,𝑚 − 1. Denote 𝑧𝑘(𝑡) the number of customers at station 𝑘 at instant 

𝑡. In more detail, keeping other notation, consider an 𝑚 - station exponential queueing system, in 

which station 𝑘 has 𝑁𝑘 (stochastically equivalent) servers with exponential service time with rate 

𝜇𝑘, 𝑘 = 1,… ,𝑚. It is assumed that a customer of the external Poisson input is rejected if the 

following inequalities hold true:  

 𝑧2(𝑡) > 𝑁
(2), … , 𝑧𝑚(𝑡) > 𝑁(𝑚). 

The dynamics of this system is described by the following 𝑚-dimensional Markov process  
 𝑍 = (𝑧1(𝑡), … , 𝑧𝑚(𝑡)), 𝑡 ≥ 0. 

 Theorem 2.  Assume the process 𝑍 is ergodic. If  
 𝑁1𝜇1 < min

2≤𝑘≤𝑚
𝑁𝑘𝜇𝑘, 

then 𝜆 < 𝐹𝑁(𝑁1𝜇1). Otherwise, if  
 𝑁1𝜇1 ≥ min

2≤𝑘≤𝑚
𝑁𝑘𝜇𝑘, 

that only requirement is 𝜆 < ∞. 

 Proof. Denote 𝜈 the output rate of the (Poisson) flow of each station 1,… ,𝑚. (This rate is 

the same for all stations by the ergodicity.) By the product-form theorem for stationary regime [9], 

the joint stationary distribution of the basic process satisfies  

 𝑃(𝑧2(𝑡) > 𝑁(2), … , 𝑧𝑚(𝑡) > 𝑁
(𝑚)) = ∏𝑚

𝑘=2 𝑃(𝑧𝑘(𝑡) > 𝑁(𝑘)) =: 𝑃𝑁(2),…,𝑁(𝑚)(𝜈). (5) 

 The component processes 𝑧2(𝑡), … , 𝑧𝑚(𝑡) are the BD processes. Moreover, the process 𝑧𝑘(𝑡) has the 

birth rate 𝜈 and, if 𝑧𝑘(𝑡) = 𝑖, the death rate 𝜇𝑘,𝑖 = min(𝑖, 𝑁𝑘)𝜇𝑘 , 𝑘 = 2,… ,𝑚. It follows by Theorem 

4.2.1 [8] and from analysis of the proof of Theorem 1 above, that the 𝑘th multiplier 𝑃(𝑧𝑘(𝑡) > 𝑁
(𝑘)) 

in (5) (as function of 𝜈) is continuous and decreases for all 𝜈, 0 < 𝜈 < 𝑁𝑘𝜇𝑘, 𝑘 = 2,… ,𝑚. Thus, 

function 𝑃𝑁(2),…,𝑁(𝑚)(𝜈) is monotonically decreasing (and continuous) in 𝜈 as long as  

 0 < 𝜈 < min
2≤𝑘≤𝑚

𝑁𝑘𝜇𝑘. 

Because the process 𝑍 is ergodic, then the rate of the (Poisson) process entering the 1st station is 

𝜈 = 𝜆𝑃𝑁(2),…,𝑁(𝑚) . Furthermore, the output flows of all stations in the system are Poisson with the 

same rate 𝜈. Now, repeating the arguments used in the proof of Theorem 1, we obtain the 

following relations  

 𝜈 = 𝜆𝑃𝑁(2),…,𝑁(𝑚)(𝜈), 𝜈 < 𝑁1𝜇1, … , 𝜈 < 𝑁𝑚𝜇𝑚. (6) 

 At that, the equality  
 𝜈 = 𝜆𝑃𝑁(2),…,𝑁(𝑚)(𝜈) =: 𝐹𝑁(2),…,𝑁(𝑚)(𝜈) 

in (6) can be rewritten as  

 𝜈 = 𝐹
𝑁(2),…,𝑁(𝑚)
−1 (𝜆), 

where 𝐹
𝑁(2),…,𝑁(𝑚)
−1  is the inverse function to function 𝐹𝑁(2),…,𝑁(𝑚) . Now, by the monotonicity, we 



 
Morozov E., Tsitsiashvili G. 
STABILITY CONDITIONS OF A TANDEM SYSTEM WITH FEEDBACK 

RT&A, No 3 (50) 
Volume 13, September 2018  

48 

obtain from (6), for 𝑁1𝜇1 < min2≤𝑘≤𝑚𝑁𝑘𝜇𝑘, the following inequality  

 𝜆 < 𝐹𝑁(2),…,𝑁(𝑚)(𝑁1𝜇1). (7) 

 If 𝑁1𝜇1 ≥ min2≤𝑘≤𝑚𝑁𝑘𝜇𝑘, then again repeating arguments used in the proof of Theorem 1, we 

obtain finally the inequality 𝜆 < ∞, which completes the proof. 

 

IV  Conclusion 
 

The necessary stability conditions of the Markovian model of a two-station tandem queueing 

network with a special type of feedback are found. Under this feedback, the input to the first 

station is rejected as long as the queue size in the second station exceeds a predefined fixed level. 

The analysis is based on the introduction of a function expressing the dependence between the 

rates of input and output at the first station. We apply stochastic monotonicity of the Birth-Death 

process describing the dynamics of the system, to obtain the necessary conditions in an explicit 

form. Analysis of the two-station system is then generalized to multi-station system. 
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Abstract 
 

This paper considers a maintenance scheduling model by using the concepts of 

failure free warranty policy. In this model, all the repairs during warranty are 

cost-free to the users, provided failures are not due to the negligence of the 

users. However, the users will have to repair the failed unit at their own 

expenses beyond warranty. During their formulation, the failure rate of the 

system is considered to be negative exponential distribution while the 

preventive maintenance (PM), repair and replacement time distributions are 

taken to be arbitrary with different probability density functions. Under these 

assumptions, using the supplementary variable technique, the various 

expressions which depict the behavior of the system such as reliability of the 

system, Mean Time to System Failure (MTSF), availability and profit function 

have been derived. Further, steady-state behavior of the system has also been 

derived. To substantiate the proposed approach, the effect of the parameters of 

the system has been analyzed through the system reliability, and expected 

profit through an illustrative example.  

 

Keywords: Warranty, Reliability, Maintenance, Inspection, degradation, Mean 

Time to System Failure 

 

 

1. Introduction 
 

In the present era of industrial growth, the optimal efficiency and minimum hazards are more 

challengeable to maintain. To overcome these issues, reliability technology can play an important 

role. Reliability is measured as the ability of a system to perform its intended function, 

successfully, for a specified period, under predetermined conditions. This attribute has far-

reaching consequences on the durability, availability, and life cycle cost of a product or system and 

is of great importance to the end user/engineer [8]. Typically, high-reliability targets or 

specifications are set for the system, and ways to achieve them are then examined, taking into 

account resource constraints. Apart from the limitations of resources, the targets set may be in 

dispute. For instance, high reliability generally means a high cost, weight, and volume. Also at the 

same time the unfortunate penalty of low availability and high maintenance cost need to be 

improved for their survival. To achieve this end, availability and reliability of equipment in the 

process must be maintained at the higher order. Thus, reliability and maintainability concepts are 

mainly applicable at the design stage of a machinery or plant layout, while the availability concept 

is mostly applicable after commissioning the plant or after a steady state of production is reached 
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[6, 7].  Modern technology has developed a tendency to design and manufacture equipment and 

systems of greater capital cost, sophistication, complexity, and capacity. In the literature, a variety 

of methods exists for failure analysis which includes reliability block diagrams, Markov Modeling, 

failure mode and effect analysis, Petri nets, fault tree analysis, and so forth [1, 4, 6, 7, 10, 11]. 

   

 In a system where a certain amount of failures is allowed, the efficient repair and/or 

replacement of these failures is critical to the continued usefulness of the system. This repair and 

replacement of failures are called maintenance. Maintenance has a definite influence on operating 

costs, either through its own (maintenance) labor or through its effect of system downtime and 

efficiency. In reliability, maintainability can also be used to increase the probability that a system 

will continue to operate efficiently, given that it is allowed a certain amount of downtime of 

repairs. The purpose of maintainability is to return a failed or deteriorating system to a satisfactory 

operating state. To do this, there are two extreme maintenance policies that can be applied. The 

first is to unplanned (corrective) maintenance while the second one is planned (preventive) 

maintenance. In unplanned, corrective strategy, no maintenance action is carried out until the 

component or structure breaks down or when its cost of operation becomes creeping or wear-out 

failures. This is called corrective maintenance (CM) or emergency repair. A study on the effect of 

CM in maintenance policies was done by Samrout et al. [35]. However, to avoid failures at 

occasions that have high cost consequences preventive maintenance (PM) is normally chosen. The 

main function of planned maintenance is to restore equipment to the “as good as new” condition; 

periodical inspections must control equipment condition and both actions will ensure equipment 

availability. PM of the systems is necessary after a pre-specific period of time not only to maintain 

the operational power but may also reduce the failure rate. A study on the effect of PM on a single-

unit system was done by Kapur et al. [19]. PM can increase the performance of two or more unit 

system model if it starts for an operative unit only when the other unit is in standby as discussed 

by Gupta [12].  

 Since the importance of PM during the reliability analysis, various authors have put forth the 

different approaches to enhance the reliability of the system. For instance, Mokaddis et al. [25] 

developed a three-unit standby redundant system with repair and PM. Yanagi and Sasaki [38] 

evaluated the availability of a parallel system with PM.  Rander et al. [33] examined cost analysis 

of a two dissimilar cold standby system with preventive maintenance and replacement of standby. 

Hadidi and Rahim [13] analyzed the reliability for multiple units adopting sequential imperfect 

maintenance policies. Jin et al. [15] presented an option model for joint production preventive 

maintenance system. Garg et al. [9] presented different PM models to analyze the reliability of the 

system. Liao [22] evaluated optimum policy for a production system with major repair and 

preventive maintenance. Malik [24] studied reliability modeling of a computer system with 

preventive maintenance and priority subject to maximum operation and repair times while 

Kadyan [18] analyzed reliability and profit of a single-unit system with PM subject to maximum 

operation time. Apart from these, in the literature, numerous attempts have been made by the 

researchers to analyze the reliability of the system using different approaches [20, 18, 38, 32, 17, 17, 

27]. 

 

From the above study, it is revealed that most of the above mentioned work considered that the 

unit works as new after PM and repair. Since, the working capability and efficiency of a unit 

after repair depend more or less on the quality of the unit and repair mechanism adopted, so in 

general, the assumption of considering the unit as good as new after repair is not always true. 

Moreover, continuous operation and ageing of the systems gradually reduce the performance of 

a system and repair action cannot bring the system to the good stage, but can make it 

operational [30]. Further, in such a situation, unit after its repair works with reduced capacity. 

To minimize the error in the study, Kumar et al. [20] and Malik [23] analyzed a single-unit 

system with degradation and maintenance by using degraded unit. Eryilmaz [5] studied a three 
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state reliability model in which degradation rates are random and statistically dependent. Apart 

from all these work, in our day-today life, there is always occur a situation where the repair of 

the failed degraded systems is neither possible nor economical to both manufacturer and the 

user due to wearout and other unforeseen conditions. In such cases, inspection can play an 

important role to see the feasibility of repair. On system reliability models, the concept of 

inspection with different maintenance policies has been discussed by various researchers such 

as Tuteja and Malik [36], Hariga [14], Leung [21], Zequeira and Berenguer [39], Nailwal and 

Singh [26], Pietruczuk and Wojciechowska [31], and Wang et al [37].  

Since all the above system models are analyzed without considering the concept of failure free 

warranty policy. Under failure free warranty policy, the items are replaced/repaired free of cost 

to the users during warranty. Customers need assurance that the product they are buying will 

perform satisfactorily and warranty provides such assurance. Providing warranty to the system 

for a certain period of operation is one of the effective ways to ensure reliability of a sold 

product (or system) [29]. Also, it is an essential part of sale for commercial and industrial 

products. With these objectives, Kadyan and Niwas [16] and Niwas et al. [29] discussed 

reliability models of a single-unit system with warranty and different repair policies by using 

Supplementary Variable Technique [3]. Further, Niwas et al. [28] analyzed that replacement of 

failed degraded unit by new one is not economically beneficial. However, the unit or product 

can be restored to operate the required functions by repairing it rather than replacing the entire 

product.  

Keeping these views in mind here we proposed a single-unit repairable system model with 

the concept of failure free Warranty Policy with PM and inspection for feasibility of repair of 

degraded unit by using Supplementary Variable Technique. In the proposed approach, to avoid 

unnecessary expenses on replacement of the entire product, inspection can be done to see the 

feasibility of repair of the degraded unit. On the other hand, if repair is feasible then the failed 

degraded unit will be repaired by the repairman otherwise it is replaced by a new one. Due to 

failure free warranty policy, users are secure about early failures of the products/system because 

all the repairs are cost free during warranty. Further, after expiration of failure free warranty 

policy, PM is conducted to improve the condition of the deteriorated product/system. The concepts 

of PM, degradation and inspection are conducted beyond warranty. So, these factors do not have 

any impact on failure free warranty policy but they have an impact on the overall performance of 

the system/product. And, for users prospective by using these concepts after expiration of 

warranty, can improve the overall performance of the product/system. 

The remainder of this paper is organized as follows. Section 2 gives the description of the 

System containing the assumptions of the model, state-specifications and Notations related to the 

proposed system model, Section 3 presents the model analysis in which different system 

performance measures are computed such as steady-state behavior of the system, reliability and 

MTSF of the system, Section 4 shows the results and discussion with special case containing 

availability of the system and profit analysis of the user and provides a numerical result for these 

special cases. Finally, Section 5 presents concluding remarks.  

 

2. Description of the System 

 

2.1.Assumptions 
(i) The system has a single unit. 

(ii) There is a single repairman, who is always available with the system to do repair or 

replacement, PM and inspection of the failed unit. 

(iii) The cost of repair during warranty is borne by the manufacturer provided failures are not 

due to the negligence of users such as cracked screen, accident, misuse, physical damage, 

damage due to liquid and unauthorized modifications etc.  
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(iv) Beyond warranty, the unit goes under PM and works as new after PM but works with 

some reduced capacity after its repair and so is called a degraded unit. 

(v) Repairman inspects the failed degraded unit to see the feasibility of repair. 

(vi) The distribution of failure time is taken as negative exponential while the PM, repair and 

replacement times are considered as arbitrary. 

 

2.2. State-Specification 

0 1/s s    :   The unit is operative under warranty/ beyond warranty. 

2 4/s s   : The unit is in failed state under warranty/ beyond warranty. 

3s         :   The unit is under PM. 

5s           :    The degraded unit is operative. 

6s           :   The failed degraded unit is under inspection. 

 

2.3.  Notations 

1/    Constant failure rate of the new unit within/beyond warranty. 

2                                Constant failure rate of the degraded unit beyond warranty. 

m           Transition rate with which a unit goes under PM for improvement. 

  Transition rate with which warranty of the system is completed. 

/p q                                  Probability that repair is feasible/not feasible. 

1 1( ), ( ) / ( ), ( )x S x x S x   Repair rate of the unit and probability density function, for the 

elapsed repair time x  within/ beyond warranty. 

2 2( ), ( )y S y   PM rate of the unit and probability density function, for the elapsed 

PM time y .  

3( ), ( )h z S z                               Inspection rate of the failed unit and probability density function, for 

the elapsed inspection time z . 

0 1( ) / ( )p t p t  Probability density that at time t , the system is within/ beyond     

warranty and in good state. 

( , )ip x t  Probability density that at time t , the system is in state , 2,4iS i   

and the system is under repair with elapsed repair time x . 

3( , )p y t  Probability density that at time t , the system is in state 3s  and the 

unit is under PM with elapsed PM time y . 

5( )p t           Probability density that at time t , the system is operable and in      

degraded state. 

6 ( , )p z t  Probability density that at time t , the system is in state 6s  and the 

failed degraded unit is under inspection with elapsed inspection time 

z. 

( )p s        Laplace transform of function ( )p t  

)(xS                     =                
0

( )

( ) e

x

x dx

x



 
 
 

 

)(1 xS                    =                
1

0
( )

1( ) e

x

x dx

x



 
 
 

 

)(2 yS                   =                 
2

0
( )

2 ( ) e

y

y dy

y



 
 
 
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)(3 zS                     =                
0

( )

( )e

z

h z dz

h z

 
 
 

 
 

3. Model Analysis 
 

The system model consists of a single-unit in which there is a single repairman who always 

remains with the system and monitoring its performance. Initially, the unit is in operating within 

warranty and when it fails within warranty then it goes to repair with free of cost. On the other 

hand, if warranty is completed due to negligence of the users then system remain in working 

condition. In this case, the unit goes under PM and works as new after PM but with some reduced 

capacity after its repair and so is called a degraded unit. Degraded unit is inspected for feasibility 

of repair after its failure. It has been assumed the failure times of the system follow a negative 

exponential distribution while during the PM, replacement and/or repair time, its distribution is 

taken as arbitrary. The transition diagram of this system by considering all the states, namely up 

(i.e., good or working), failed and degrade states is shown in Fig. 1 

 

 

 
 

 

Figure 1: Transition diagram of the model 

 

 

3.1. Formulation of mathematical model    
Based on this diagram, we can formulate the difference-differential equations by using the 

probabilistic arguments of each state of the system and are summarized as follows [3], [29]:

 

0 2

0

( ) ( ) ( , )
d

p t x p x t dx
dt

  


 
   

 
                                      (1) 
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1 1 0 6 2 3

0 0

( ) ( ) ( ) ( , ) ( ) ( , )m

d
p t p t q h z p z t dz y p y t dy

dt
   

 
 

     
 

                        (2) 

2( ) ( , ) 0x p x t
t x


  
     

                                             (3) 

2 3( ) ( , ) 0y p y t
t y


  

   
  

                                             (4) 

1 4( ) ( , ) 0x p x t
t x


  
     

                                             (5) 

2 5 1 4

0

( ) ( ) (  )  ,  
d

p t x p x t dx
dt

 


 
  

 
                                   (6) 

6( ) ( , ) 0h z p z t
t z

  
     

                                                (7) 

Whereas, the boundary conditions [Ошибка! Источник ссылки не найден.] for the system are  

2 0(0, ) ( )p t p t ,                                                                   (8)    

3 1(0, ) ( )mp t p t                                                                     (9) 

4 1 1 6

0

(0, ) ( ) ( ) ( , )p t p t p h z p z t dz


   ,                                                (10) 

6 2 5(0, ) ( )p t p t                                                               (11) 

and the initial conditions are 









0;0

0;1
)0(

i

i
pi                                                                               (12) 

 

3.2.Solution of the equations 
In order to solve the above formulated Eqs. (1) – (11), we use the Laplace transforms corresponding 

to initial condition given in Eq. (12) and get 

  0 2

0

( ) 1 ( ) ( , )s p s x p x s dx  


                         (13) 

  1 1 0 6 2 3

0 0

( ) ( ) ( ) ( , ) ( ) ( , )ms p s p s q h z p z s dz y p y s dy   
 

                      (14)             

2( ) ( , ) 0s x p x s
x


 
    

                                         (15) 

2 3( ) ( , ) 0s y p y s
y


 

   
 

                                       (16) 

1 4( ) ( , ) 0s x p x s
x


 
    

                                        (17) 

 2 5 1 4

0

( ) ( )    ( , )s p t x p x s dx 


                                 (18) 

6( ) ( , ) 0s h z p z s
z

 
    

                                          (19)          

2 0(0, ) ( )p s p s                                        (20) 

3 1(0, ) ( )mp s p s                                        (21) 
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4 1 1 6

0

(0, ) ( ) ( ) ( , )p s p s p h z p z s dz


                                 (22) 

6 2 5(0, ) ( )p s p s                                                             (23) 

Thus, by integrating Eq. (15) and further using Eq. (20) we get 

0
( )

2 2( , ) (0, )

x

sx x dx

p x s p s e


 
  
 

                  (24) 

 

Similarly, by integrating Eqs. (16), (17) and (19) and using their corresponding Eqs. (21), (22) and 

(23) respectively, then we get  

2
0

( )

3 3( , ) (0, )

y

sy y dy

p y s p s e


 
  
 

                    (25) 

1
0

( )

4 4( , ) (0, )

x

sx x dx

p x s p s e


 
  
 

                    (26) 

0
( )

6 6( , ) (0, )

z

sz h z dz

p z s p s e

 
  
 

                                   (27) 

 

Further, by using Eq. (24), Eq. (13) yields 

  0
( )

0 2

0

( ) 1 (0, ) ( )

x

sx x dx

s p s p s x e dx


  
 
  
 

      

                          01 ( ) ( )p s S s                         (28) 

 0

1
( )

( )
p s

T s
       (29)  

Where  ( ) 1 ( )T s s S s                                              (30) 

 

Now, by using Eq. (27), the Eq. (22) yields 

0
( )

4 1 1 6

0

(0, ) ( ) ( ) (0, )

z

sz h z dz

p s p s ph z p s e
 
  
 

    

4 1 1 2 5 3(0, ) ( ) ( ) ( )p s p s p p s S s                                                      (31) 

Using Eq. (31), Eq. (26) yields 

 
1

0
( )

4 1 1 2 5 3( , ) ( ) ( ) ( )

x

sx x dx

p x s p s p p s S s e


 
 
  
 

                               (32)                                                                                               

On the other hand, by using Eq. (32), Eq. (18) yields 

   
1

0
( )

2 5 1 1 2 5 3 1

0

    ( ) ( ) ( ) ( ) ( )

x

sx x dx

s p s p s p p s S s x e dx


   
 
  
 

     

5 1    ((   ) ) ( )A s p sp s                                                                 (33)  

Where,
 

1 1

2 2 1 3

( )
( )

( ) ( )

S s
A s

s p S s S s



 


 
                                                 (34)                                                                                                                                                 

 

Now, the Eq. (14) can be simplified by using Eqs. (25), (27) and (33) and get  

 
2

0 0
( ) ( )

1 1 0 6 3 2

0 0

( ) ( ) (0, ) ( ) (0, ) ( )

z y

sz h z dz sy y dy

ms p s p s qp s h z e p s y e


   
    
      
    

       

1

( )
( )

( )

B s
p s

T s
                                                                      (35)                                    
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Where, 
 1 2 2 3

( )
( ) ( ) ( )m m

B s
s S s q A s S s



   


   
                            (36) 

Using Eq. (35) in Eq. (33), we get 

5

( ) ( )
( )

( )

A s B s
p s

T s
                                                        (37) 

Now, the Laplace transform of the probability that the system is in the failed state is given by 

 
2 2 0

0

1 ( )
( ) ( , ) ( )

S s
p s p s x dx p s

s


 
   

2

( )
( )

( )

C s
p s

T s


         (38) 

Where   
 1 ( )

( )
S s

C s
s


                             (39) 

Similarly   
 2

3 3 1

0

1 ( )
( ) ( , ) ( )m

S s
p s p s y dy p s

s


 
    

3

( ) ( )
( )

( )

mB s D s
p s

T s


            (40) 

Where   
 21 ( )

( )
S s

D s
s


            (41) 

Similarly    
 1

4 4 1 1 2 5 3

0

1 ( )
( ) ( , ) ( ) ( ) ( )

S s
p s p s x dx p s p p s S s

s
 

 
    

 1 2 3

4

( ) ( ) ( ) ( ) ( )
( )

( )

B s p B s A s S s E s
p s

T s

 
     (42) 

Where   
 11 ( )

( )
S s

E s
s


              (43) 

Now, 
 3

6 6 2 5

0

1 ( )
( ) ( , ) ( )

S s
p s p s z dz p s

s


 
   

 2

6

( ) ( ) ( )
( )

( )

A s B s F s
p s

T s


                                                       (44)                                                                                                           

Where,
 31 ( )

( )
S s

F s
s


                                                  (45) 

It is worth noticing that 

0 1 2 3 4 5 6

1
( ) ( ) ( ) ( ) ( ) ( ) ( )p s p s p s p s p s p s p s

s
                               (46) 

 

3.3.Evaluation of Laplace transforms of up and down state probabilities  
The Laplace transforms of the probabilities that the system is in up (i.e. good State) and down (i.e. 

failed State) at time t are as follows 

( )Av s or 
0 1 5( ) ( ) ( ) ( )upP s p s p s p s    

 1 ( ) ( ) ( )
( )

( )

A s B s A s
Av s

T s

 
           (47) 

2 3 4 6( ) ( ) ( ) ( ) ( )downP s p s p s p s p s     
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  1 2 3 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

m

down

C s B s D s p S s A s B s E s B s A s F s
P s

T s

       
   (48) 

 

 

3.4.Steady-State Behavior of the System 

Using Abel’s Lemma [26] i.e.,    
0

lim ( ) lim ( )
s t

s F s F t F
 

 
     

 

in Eqs. (47) and (48), Provided the limit on the right hand side exists, the following time independent 

probabilities have been obtained. 

 
1 2

' ' '

1 2 2 2 1 2 1 1 2 3(0) (0) (0)m

q
Av

q q S S S

 

       




   
          (49)                                  

 

' ' '

2 2 1 2 1 1 2 3

' ' '

1 2 2 2 1 2 1 1 2 3

(0) (0) (0)

(0) (0) (0)

m
down

m

q S S S
p

q q S S S

     

       

  


   
             (50) 

 

3.5. Reliability of the system 
Reliability, )(tR  is the probability that the system functions well in a specified period of time. 

Using the method similar to that in section 3.1, the differential–difference equations for reliability 

are [4]: 

 0 ( ) 0
d

p t
dt

 
 

   
 

                                                     (51) 

1 1 0( ) ( )m

d
p t p t

dt
  

 
   

 
                                              (52) 

Taking Laplace transforms of Eqs. (51) and (52) and using Eq. (12) we get 

  0 ( ) 1s p s                                                (53)        

  1 1 0( ) ( )ms p s p s                                                    (54) 

Using the initial conditions, the solution can be written as 

 
0

1
( )p s

s  


 
                         (55) 

  
1

1

( )
m

p s
s s



   


   
                                  (56) 

0 1( ) ( ) ( )R s p s p s 
    1

1

ms s s



     
 

     
 

Taking inverse Laplace transform, we get 

 
   

   
 11

1 1

( ) m tt m

m m

R t e e
      

       

  
    

    
        

            (57)     

 

Now, based on Eq. (57), the Mean Time to System Failure (MTSF) is defined as:  

 
0

( )MTSF R t dt


   

 
   

   
 11

0
1 1

m tt m

m m

e e dt
      

       

   
      

                  
  
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 

  
1

1

m

m

  

     

  
  

       1 1m m



     

 
  

    
                                      (58) 

 

 

4. Results and discussions 
 

In this section, firstly, we have deduced the expression of the availability and the cost-benefit 

analysis by taking a particular case of the distribution function of the component of the system.  

 

4.1. Availability of the system Av(t) 
Assume that the repairs, PM and Inspection time follow negative exponential distribution i.e., 

   
1

1

1

( ) , ( )S s S s
s s



 
 

 
, 

 
2

2

2

( )S s
s







 and  

 
3( )

h
S s

s h



 where , and 1 are 

constant repair rates,
 2  is constant PM rate and h  is constant inspection rate. Putting these 

values in Eqs. (28)-(37) we get  

0

1
( )

( )
p s

I s
                                                                    (59) 

Where  
 

 

2 ( )
( )

s s
I s

s

   



   



                                            (60) 

1

( )
( )

( )

J s
p s

I s
                                                             (61) 

Where  

 
  

       
2

1 2 2 2 2

( )
( )m m

s h s
J s

s s s h s h qh K s s

 

      

  
  

        

                        (62) 

5

( ) ( )
( )

( )

J s K s
p s

I s
                                                             (63) 

Where 

 

   
1 1

1 2 2 1

( )
s h

K s
s s s h ph

 

   

 
  

    
                                    (64) 

( )vA s or 
0 1 5( ) ( ) ( ) ( )upP s p s p s p s    

 
 
   

5 4 3 2

4 3 2 1 0

2 4 3 2

3 2 1 0

( )s b s b s b s b s b s

s s s s s a s a sa a



   

      
 

         

                         (65) 

Where 

   4 1 1 2 2 mb h            ,  

1 1 1 2 1 2 1 2 2 2 1 2 2 1 2

3

1 1 2 2 1 2m m m

h h h
b

h h h

              

           

        
  

        
, 

1 1 2 1 2 1 2 2 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 2

2

1 2 1 2 2 1 1 2 1 2 2 2 2 1 1m m m

h h h h h h
b

h h h h h

                       

                      

         
  

          
,

1 2 1 2 1 2 2 2 1 2 1 2 1 2 2 1

1

2 1 2 2 2 1 1 1 1 2 1 2 2 1

m mh h ph p h h
b

h h h p h

                 

             

     
  

        
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and  0 2 1 2 1 1 2b qh h          

and  3 1 2 1 2 ma h          , 

1 1 1 1 1 2 1 2 1 2 2

2

2 2 1 2 1 2 2m m m

h h h
a

h h

          

         

      
  

      
, 

1 1 2 1 2 1 2 2 2 1 2 1 2 1 1 2

1

1 1 2 1 2 1 2 1 2 2 1 2m m m

h h h h h
a

h h h

               

              

      
  

      
  

and 

 0 1 2 1 2 2 1 2 1 2 2 2 1 2 1 2 1 2m ma h h h ph p h                         

Taking inverse Laplace transforms of Eq. (65) we get 

   
      

 
       

1

2

5 4 3 2
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5 4 3 2 5
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( )

( )

z t

v

z t

z b z b z b z b z b zq h h
A t e

z z z z z z z z z z z z z z z z z

z b z b z b z b z b z z b z
e

z z z z z z z z z z z

       



        
   

      
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e
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 
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             
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       
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(66) 

 1z and 2z are roots of the equation   2 0s s          and 3z , 4z , 5z and 6z  are roots 

of the equation 
4 3 2

3 2 1 0 0s s a s a sa a    
 

 

4.2. Profit analysis of the user 

Suppose that the warranty period of the system is  0,w  includes the second state. Since the 

repairman is always available with the system, therefore beyond warranty period, it remains busy 

for time  t w  during the interval  ,w t . Let 1K be the revenue per unit time and 2K   be the 

repair cost per unit time respectively, then the expected profit  H t during the interval  0, t  is 

given by [29] 1 2
0

( ) ( ) ( )
t

vH t K A t dt K t w   .  

By using Eq. (66) and after solving, we get 
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To analyze the behavior of the system, we conducted an analysis where we vary the values of 

the parameter such as failure rates ( and 1 ), transition rate ( m ) and transition rate of 

completion of warranty ( ). Based on it, the ranges of the system reliability and profit are 

computed and depicted in Tables 1 and 2 respectively.  Further, to investigate the effect of 

individual component onto the system reliability, we vary the parameter   from 0.01 to 0.03 and 

then further to 0.05 by fixing other parameters. By doing this, we compute that at time say 15 units, 

reliability of system decreased by 25.58% and further to 25.51% respectively. However, the 

complete variation of reliability with   is summarized in Figure 2(a). On the other hand, if we 

increase the parameter 
1  from 0.02 to 0.04 and further to 0.06 then reliability of the system 

decreases with the passage of time from 0.849405 to 0.84619 and then further to 0.843514 for the 

time 15units. The complete variation of this parameter is shown in Figure 2(b). However, Figures 

2(c) and 2(d) respectively depicts the variation of the reliability with respect to the parameters   

and m .From these graphs, we conclude that the effect of  is more on to the system reliability 

than m . 

 

Table-1: Effect of failure rates ( and 1 ), transition rate ( m ) and transition rate of completion of 

warranty ( ) on Reliability of the system   R t  

 

Table 2: Effect of repair cost ( 2K ), PM rate ( 2 ), transition rate of completion of warranty ( ), 

inspection rate ( h ) and failure rate of degraded unit ( 2 ) on expected profit (  H t ) 

 Time 

 t  

 =0.01, 

 =0.2, 

2 =0.04,
 
 
 m

=0.04, 

 =0.003, 

1 =0.02, 

p =0.6, 1 =0.1 

q =0.4 2 =0.4, 

h =0.5, w =3, 

1K =500 

 =0.01,
 
 =0.2, 

1 =0.02, 

2 =0.04,
 m

=0.04,
 
 

 =0.003, 

p =0.6, 1 =0.1 

q =0.4 2 =0.4, 

h =0.5, w =3, 

1K =500 

 =0.01, 

1 =0.02, 

2 =0.04,
  

m =0.04,
 
 

2K =150, 

 =0.003, 

p =0.6, 1 =0.1 

q =0.4,
 
 =0.2, 

h =0.5, w =3, 

1K =500 

 =0.01, 

1 =0.02, 

2 =0.04,
 m

=0.04, 

2K =150, p

=0.6, 

1 =0.1, =0.2

q =0.4, 2 =0.4 

h =0.5, w =3, 

1K =500 

 =0.01, 

1 =0.02, 

2 =0.04,
 m

=0.04,
 1 =0.1,

 
 =0.2, 

2K =150,  

 =0.003,
 

q =0.4, 2 =0.4

p =0.6, w =3, 

1K =500 

 =0.01, 

1 =0.02, 

 =0.2,
 m

=0.04,
 1 =0.1,

 
h

=0.5, 

2K =150, 

=0.003,
 

q =0.4, 2 =0.4

p =0.6, w =3, 

1K =500 

 H t   H t    H t    H t  

(For =0.006) 

 H t    H t   

Time 

 t  

1 =0.02, 

 =0.003, 

m =0.04 

1 =0.02, 

 =0.003, 

m =0.04 

 =0.01, 

 =0.003, 

m =0.04 

 =0.01, 

1 =0.02, 

m =0.04 

 =0.01, 

1 =0.02, 

 =0.003 

 R t  (for

=0.01) 

 R t  (for

=0.03) 

 R t  (for 1

=0.04) 

 R t  

(for  =0.005) 

 R t  

(for m =0.06) 

10 0.899114 0.7378251 0.897294 0.895363 0.897294 

11 0.889088 0.7154459 0.886992 0.884676 0.886992 

12 0.8791 0.6937016 0.876723 0.873994 0.876723 

13 0.869154 0.672577 0.866496 0.863327 0.866496 

14 0.859254 0.652057 0.856317 0.852681 0.856317 

15 0.849405 0.6321266 0.846192 0.842066 0.846192 

16 0.83961 0.6127712 0.836125 0.831487 0.836125 

17 0.829873 0.5939763 0.826122 0.820952 0.826122 
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(For 2K =150) (For 2K =100) (For 2 =0.45) (For h =0.7) (For 2 =0.02) 

10 3984.972 4334.972 4211.116 3803.535 3801.078 3846.46 

11 4293.353 4693.353 4563.899 4119.926 4101.091 4157.451 

12 4593.596 5043.596 4908.402 4430.105 4393.336 4462.041 

13 4885.589 5385.589 5244.42 4733.752 4677.603 4760.034 

14 5169.253 5719.253 5571.809 5030.638 4953.735 5051.281 

15 5444.534 6044.534 5890.476 5320.608 5221.625 5335.673 

16 5711.41 6361.41 6200.37 5603.571 5481.207 5613.137 

17 5969.883 6669.883 6501.481 5879.487 5732.451 5883.631 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2: Effect of the parameters 1, , , m     on to the system reliability ( )R t  

 

On the other hand, if we analyze the effect of the various parameters on to the expected profit 

 H t
during the interval 

 0, t
as given in Eq. (67). Firstly, we fix the different parameters as 

=0.01, 1 =0.02, 2 =0.03, m =0.04,  =0.003,  =0.2, p =0.7, 1 =0.1, q =0.3 2 =0.3, h =0.4, w =3, 

1K
=500. Now, the effect of the parameters 2K

,  2 ,   and h  is analyzed   on 
 H t

are analyzed 

with the passage of the time. For it, firstly if we decrease the repair cost 2K
 from 150 to 100 and 

then to 50, then the expected profit at a time 15 units is increased from 5444.534 to 6044.534 and to 

6644.534.  The complete variation of the profit is summarized in Figure 3(a). On the other hand, the 
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expected profit increases by 8.19% and further to 8.03% when value of 2  changes from 0.4 to 0.45 

then further to 0.5. The variation corresponding to this is given in Figure 3(b). Finally, in Figures 

3(c) and 3(d) respectively give the variation of the profit values with   and h . From these graphs, 

it is interpreted that the expected profit increases if i decrease the values of   and h  and 

conclude that the effect of h is more on to expected profit 
 H t

than . Also, Table 2 depicts that 

whenever the failure rate of degraded unit ( 2 ) changes from 0.04 to 0.02 then expected profit 

 H t
 decreases from 5444.534 to 5335.763 corresponding to time 15 units. Similar observations 

have been found for different time periods in it. 

 

                                             

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. Effect of the parameters 2K , 2 ,  , and h   on expected profit  H t  

 

As compared to the existing model proposed by Kadyan and Ramniwas [16], when we set 

parameters hqpm ,,,,, 22  are all zero i.e., when beyond warranty, the system does not go 

under PM, there is no inspection of failure unit and the unit works as like a new unit after its 

repair, then the proposed model reduced to Kadyan and Niwas [16]. Additionally, it is observed 

that when parameters 022  m  i.e., the unit neither maintained nor works with reduced 

capacity, then the current model reduces to Niwas et al. [29] model. Thus, it is clearly seen that the 

proposed model is an extension of these existing model. Therefore, the study reveals that after 
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getting PM beyond warranty, a system in which unit works with reduced capacity after its repair 

will be economically beneficial; if failed degraded unit is inspected for feasibility of repair. So, our 

studying model is more reasonable and advance than the existing models. 

 

5. Conclusion 
 

In the present paper, we have proposed an approach for analyzing a maintenance scheduling 

model using failure free warranty policy. In it, all the repairs during warranty are cost-free to the 

users, provided failures are not due to the negligence of users. For improving the performance of 

system PM is conducting beyond warranty and the unit works as new after PM but becomes 

degraded after its repair. Degraded unit is inspected by the repairman for feasibility of repair after 

its failure. Further, the effect of the various parameters on to system reliability and expected profit 

have been analyzed and found that by varying 2 , h  and  , expected profit is increased. Based 

on it, the system analyst may focus on 2  
, h  and  parameters so as to increase the performance 

and productivity of the system. In future work, we shall extend our work to different approaches 

such as reliability-cost optimization model, fuzzy reliability, and geometric process for two or 

more unit system models using Weibull- Gnedenko distribution [2, 34].  
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Abstract 
Inliers (instantaneous or early failures) are natural occurrences of a life 

test, where some of the items fail immediately or within a short time of the 

life test due to mechanical failure, inferior quality or faulty construction of 

items and components. The inconsistency of such life data is modeled 

using a nonstandard mixture of distributions; where degeneracy can 

happen at discrete points at zero and one. In this paper, parameters 

estimation based on Type-II censored sample from a Pareto type II 

distribution with a discrete mass at zero and one is study. The Maximum 

Likelihood Estimators (MLE) are developed for estimating the unknown 

parameters. The Fisher information matrix, as well as the asymptotic 

variance-covariance matrix of the MLEs, are derived. Uniformly Minimum 

Variance Unbiased Estimate (UMVUE) of model parameters as well as 

UMVUE of the density function, reliability function, and some other 

parametric function are obtained along with the standard error of 

estimators. The model is implemented on various real data sets and 

compared with Weibull inliers model. 

 

Keywords: early failures; failure time distribution; infant mortality rate; 

inliers; instantaneous failures; type-II censored sample. 

 

I. Introduction 
 
There are a plethora of examples of phenomena concerning nature, life and human activities where 

the real data do not conform to the standard distributions. In such cases, we either use mixtures of 

standard distributions of similar types or non-standard mixtures of degenerate distribution and a 

standard distribution, which may be again a discrete or continuous one. Since inliers are 

inconsistent observations, which are generally the results of instantaneous and early failures, 

modeling with inliers involve non-standard mixtures of distributions. In the former case, the 

random variable will have a discrete probability mass at the origin (that is life will be zero) and 

some positive lifetimes, and in the latter case, the failure times may be smaller in relation to other 

lifetimes. These occurrences may be due to mechanical failure, inferior quality or faulty 

construction or defective parts of items and components. Such failures usually discard the 

assumption of a single mode distribution and hence the usual method of modeling and inference 

procedures may not be accurate in practice. [2] was the first to discuss the inference problem of 

instantaneous failures in life testing. The author has provided the efficient estimation of parametric 

functions under various probability models. [13] have introduced the term inliers in connection 

with the estimation of (𝑝, 𝜃) of early failure model with modified failure time distribution (FTD) 

being an exponential distribution with mean 𝜃 assuming 𝑝 known. Later on, many authors have 
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studied these kinds of models (see [18], [13] and [15]).    

There are many practical contexts, where inliers can be natural occurrences of the specific 

situations involved and degeneracy can happen at two discrete points and a positive distribution 

for the remaining lifetimes. Some of the situations are as follows: 

1. The size of tumor lesions is of interest to treat Hematologic malignancy patients. The 

measurement effect is zero who have lesions absent (or due to disappearance of tumor 

during treatment), though who have lesions present at baseline that are measurable but do 

not meet the definitions of measurable disease may be considered as measurement 1, 

otherwise lesions can be accurately measured as longest diameter to be recorded in at least 

one dimension by chest x-ray, with CT scan or with calipers by clinical examination. 

Similarly, in studies like Bone lesions, leptomeningeal disease, ascites, pleural/pericardial 

effusions, lymphangitis cutis/pulmonitis, inflammatory breast disease, and abdominal 

masses, either the effect is absent or present but not followed by CT or MRI, are considered 

as non-measurable otherwise accurately measurable on a continuous scale. 

2. In the mass production of technological components of hardware, intended to function 

over a period of time, some components may fail on installation and therefore have zero 

life lengths, some component that does not fail on installation but fails with negligible life 

(may be coded as one for simplicity), and others that will have a life length a positive 

random variable whose distribution may take different forms. 

3. In a clinical trial laboratory, a particular drug is designed and given to certain species of 

hens so that the new chicks have a weight greater than usual. The possible weight of 

chicks may be modeled as a continuous distribution, with discrete mass at ‘zero’ and ‘one’,  

where zero measures those chicks having no gain of weight, and one measures those 

chicks with negligible gain of weight than usual, and the remaining chicks having weight 

gain in some continuous measurement. 

4. The rainfall measurement at a place recorded during a season is modeled as a continuous 

distribution, with a discrete mass at ‘zero’ where zero measures those days having no 

rainfall, and at ‘one’, one measures those days with no rain but humid and cloudy 

conditions, and a continuous variable having some positive amount of rain. 

5. In the studies of genetic birth defects, children can be characterized by three variables: 

first, a discrete variable to indicate whether a child is affected and born dead; second, a 

child is affected and has a neonatal death; and third, a continuous variable measuring the 

survival time of affected children born alive. We may consider this as a nonstandard 

mixture of the mass point at “zero” (for children born dead), at “one” (for children born 

and neonatal death), and a nontrivial continuous distribution for other surviving children. 

Similarly, one can contemplate many such examples in practical situations involving 

degeneracy at two or more points and positive configurations of observations. Authors [16] and 

[17], have modeled the above situation using exponential distribution and Weibull distribution 

respectively. In this article, we model the inliers situation using the type-II censored lifetime data 

from a Pareto II distribution. As per the scheme, if  𝑛 units are placed on the test and the 

experiment is terminated after a prefixed number of failures say, 𝑐 < 𝑛, then the observed failure 

times are 𝑋(1), 𝑋(2), … , 𝑋(𝑐) where 𝑋(𝑐) < 𝑋(𝑛). The remaining 𝑛 − 𝑐 items are regarded as censored 

data. The family of the Pareto distribution is well known in the literature for its capability in 

modeling the heavy-tailed distributions. The Pareto Type II distribution (also called Lomax 

distribution with location parameter zero) has the probability distribution function (pdf)  

 

𝑓(𝑥, 𝛼) =
𝜃𝛽𝜃

(𝑥+𝛽)(1+𝜃)
, 𝑥 > 0, 𝛽 > 0, 𝜃 > 0      (1) 

 

where 𝛼 = (𝛽, 𝜃), 𝛽 > 0 is a scale parameter and 𝜃 > 0 is a shape parameter. The Pareto 

distribution has been used in connection with studies of income, property values, insurance risk, 

migration, size of cities and firms, word frequencies, business mortality, service time in queuing 
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systems, etc. The paper by [1] contains a detailed list of important areas where heavy-tailed 

distributions are found applicable. There are also recent applications of the Pareto distribution in 

data sets on earthquakes, forest fire areas, fault lengths on Earth and Venus, and on oil and gas 

fields sizes, see [22] for details.  

 The presentation of the paper is as follows: The model description is given in Section II. In 

Section III, we derive the MLE of the unknown parameters along with the interval estimation of 

parameters. The UMVU estimation of model parameters and various parametric functions are 

given in Section IV. For illustration, we consider four real datasets for implementing the proposed 

model in Section V.   

  

II. Model description 
 
If 0 and 1 are natural occurrence of a life test as described above with other positive observations, 

then the distribution function of such a inliers model can be written as: 

 

𝐻(𝑥; 𝑝1, 𝑝2, 𝛼) =

{
 
 

 
 
0,                                                                      𝑥 < 0        
𝑝1 ,                                                                     0 ≤ 𝑥 < 1
𝑝1 + 𝑝2,                                                            𝑥 = 1        

𝑝1 + 𝑝2 + (1 − 𝑝1−𝑝2)
𝐹(𝑥; 𝛼) − 𝐹(1; 𝛼)

1 − 𝐹(1; 𝛼)
,    𝑥 ≥ 1        

         (2) 

 

The fact is that the probability measure generated by H(.) is composed of three measures, say 𝜇1, 

𝜇2, and 𝜇3, where 𝜇3 is absolutely continuous with respect to the Lebesgue measure on 𝑅 and 𝜇1 

and 𝜇2 are singular with respect to the Lebesgue measure on 𝑅. The corresponding likelihood 

function of the model is 

 

ℎ(𝑥; 𝑝1, 𝑝2 , 𝛼) = {

𝑝1,                                            𝑥 = 0
𝑝2,                                            𝑥 = 1

(1 − 𝑝1−𝑝2)
𝑓(𝑥; 𝛼) 

1 − 𝐹(1; 𝛼)
,       𝑥 > 1

    (3) 

 

where 𝑝1 and 𝑝2 are the proportion of 0 and 1 observations respectively.  For 𝛽 =1, the Pareto Type 

II inliers distribution has the likelihood function  

 

ℎ(𝑥; 𝑝1, 𝑝2, 𝜃) = {

𝑝1 ,                                                        𝑥 = 0
𝑝2,                                                        𝑥 = 1

(1 − 𝑝1−𝑝2)
𝜃

(1+𝑥)
(

2

(1+𝑥)
)
𝜃

,          𝑥 > 1

   (4) 

 

The parameter estimates are obtained in the next section.  

 

III. The Maximum Likelihood Estimation of 𝜽 = (𝒑𝟏, 𝒑𝟐, 𝜽) 

 
Suppose 𝑛 items placed on life test, where 𝑟1 items have life zero where as 𝑟2 items have life 1 and 

remaining 𝑛 − 𝑟1 − 𝑟2 items have life greater than 1, is denoted by 𝑋1, 𝑋2, … , 𝑋𝑛−𝑟1−𝑟2 . By applying 

the technique of ‘Type-II censored sample’, the experiment terminates after prefixed number of 

failures 𝑛 − 𝑟1 − 𝑟2 − 𝑐 out of 𝑛 − 𝑟1 − 𝑟2 items, where, 𝑛 − 𝑟1 − 𝑟2 − 𝑐 < 𝑛 − 𝑟1 − 𝑟2. Clearly, if 𝑛 −

𝑟1 − 𝑟2 − 𝑐 = 𝑛 − 𝑟1 − 𝑟2, then the experiment is not terminated and all 𝑛 − 𝑟1 − 𝑟2 lifetimes are 

observed. Let 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗ = min (𝑛 − 𝑟1 − 𝑟2 − 𝑐, 𝑛 − 𝑟1 − 𝑟2) and 𝑋(1), 𝑋(2), … , 𝑋(𝑛−𝑟1−𝑟2−𝑐∗) 

denote ordered observed failure time of these 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗ items from ℎ ∈ ℋ as given in (4). 

Then the likelihood equation can be written as 

 

𝐿(𝑥; 𝜃) = ∏ ℎ(𝑥𝑖; 𝜃)
𝑛
𝑖=1   
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If we define 

 𝐼1(𝑥) = {
1,              𝑥 = 0           
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝐼2(𝑥) = {
1,              𝑥 = 1          
0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Then the likelihood equation can be written as 

= 𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
(𝑛−𝑟1−𝑟2)

(𝑛 − 𝑟1 − 𝑟2)!

𝑐∗!
 𝜃𝑛−𝑟1−𝑟2−𝑐

∗
∏

1

1+ 𝑥(𝑖)

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1

 

  

𝑒
−𝜃{∑ [log(

1+𝑥(𝑖)

2
)]

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 +𝑐∗[log(
1+𝑥(𝑛−𝑟1−𝑟2−𝑐

∗)

2
)]}

  
 (5) 

  

where 𝑟1 = ∑ 𝐼1(𝑥(𝑖))
𝑛
𝑖=1  and  𝑟2 = ∑ 𝐼2(𝑥(𝑖))

𝑛
𝑖=1 , denotes the number of zero and one observations 

respectively. We now investigate the following four possible cases of likelihood estimates: 

 

Case (i). 𝑟2 = 0, that is 𝑟1 = 𝑛. The likelihood function simply reduces to 𝐿(𝑥; 𝜃) = 𝑝1
𝑛. Obviously, 

this is maximum when 𝑝1 = 1. This corresponds to the maximum likelihood estimator 𝑝̂1 =
𝑟1

𝑛
 . 

Since 𝐿(𝑥; 𝜃) = 𝑝1
𝑛 is free from the other parameters, the maximum likelihood estimator of other 

parameters do not exist. 

Case (ii). 𝑟1 = 0, that is 𝑟2 = 𝑛. The likelihood function simply reduces to 𝐿(𝑥; 𝜃) = 𝑝2
𝑛. Obviously, 

this is maximum when 𝑝2 = 1. This corresponds to the maximum likelihood estimator 𝑝̂2 =
𝑟2

𝑛
 . 

Since 𝐿(𝑥; 𝜃) = 𝑝2
𝑛 is free from the other parameters, the maximum likelihood estimator of other 

parameters do not exist. 

Case (iii). 𝑟1 < 𝑛, 𝑟2 < 𝑛 but  𝑟1 + 𝑟2 = 𝑛 . The likelihood function simply reduces to 𝐿(𝑥; 𝜃) = 𝑝1
𝑟1𝑝2

𝑟2 . 

Here 𝑝1 + 𝑝2 < 𝑛. Then the likelihood function 𝐿(𝑥; 𝜃) < (
𝑥1

𝑛
)
𝑟1
(
𝑥2

𝑛
)
𝑟2

  So 𝑝̂1 =
𝑟1

𝑛
 and 𝑝̂2 =

𝑟2

𝑛
. The 

maximum likelihood of other parameters do not exist. 

Case (iv). 𝑟1 + 𝑟2 < 𝑛. The log-likelihood function is given by 

 

log 𝐿(𝑥; 𝜃) = 𝑟1 log 𝑝1 + 𝑟2 log 𝑝2 +(𝑛 − 𝑟1 − 𝑟2) log(1 − 𝑝1 − 𝑝2) + log(𝑛 − 𝑟1 − 𝑟2)!  

−log 𝑐∗! + (𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗) log 𝜃 − ∑ log(1 + 𝑥(𝑖))

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1

 

−𝜃 {∑ [log (
1+𝑥(𝑖)

2
)]

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 + 𝑐∗ [log (
1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗)

2
)]}   (6) 

 

The maximum likelihood estimator of parameter 𝜃 = (𝑝1, 𝑝2, 𝜃) is obtained by solving the 

following likelihood equations: 

 
𝜕 log 𝐿(𝑥;𝜃 )

𝜕𝑝1
= 

𝑟1

𝑝1
−

𝑛−𝑟1−𝑟2

1−𝑝1−𝑝2
= 0       (7) 

 
𝜕 log 𝐿(𝑥; 𝜃)

𝜕𝑝2
= 

𝑟2

𝑝2
−

𝑛−𝑟1−𝑟2

1−𝑝1−𝑝2
= 0       (8) 

and 

   
𝜕 log 𝐿(𝑥; 𝜃)

𝜕𝜃
= 

𝑛−𝑟1−𝑟2−𝑐
∗

𝜃
− {∑ [log (

1+𝑥(𝑖)

2
)]

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 + 𝑐∗ [log (
1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗)

2
)]} = 0 (9) 

 

Solving (7) and (8) simultaneously, we get 

𝑝̂1 =
𝑟1

𝑛
            (10) 

𝑝̂2 =
𝑟2

𝑛
           (11) 

 From (9), the estimate of θ is 
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𝜃 =
𝑛−𝑟1−𝑟2−𝑐

∗

∑ [log(1+𝑥(𝑖))−log 2]
𝑛−𝑟1−𝑟2−𝑐

∗

𝑖=1
 + 𝑐∗[log(1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗))−log 2]

    (12) 

 

The approximate (1 − 𝛼)% confidence interval for 𝑝1,  𝑝2 and 𝜃 are respectively given by 

 

 𝑝̂1 ± 𝑧𝛼 2⁄   √
𝑝1(1−𝑝1)

𝑛
 , 𝑝̂2 ± 𝑧𝛼 2⁄   √

𝑝2(1−𝑝2)

𝑛
  and 𝜃̂ ± 𝑧𝛼

2⁄   √
𝜃̂2

(𝑛−𝑐∗) 𝑝∗
  where, 𝑝̂∗ = 1 − 𝑝̂1 − 𝑝̂2. 

 

IV. Unbiased estimation 
 
Many authors have studied the problem of minimum variance unbiased estimation for different 

classes of distributions. [23], [12] and [5] have studied the estimation problem for power series 

distribution, [20] has studied the same for generalized power series distribution, [7] and [5] have 

studied for modified power series distribution. [19] has studied the UMVUE of parameters for the 

multivariate modified power series distribution. All these studies include discrete distributions 

only. [9] has studied the problem of MVU estimation in one parameter exponential family of 

distributions which includes power series distribution, modified power series distribution and 

univariate continuous distributions. Further, a characterization property of power series 

distribution using one and two moments was given by [14]. [8] extended this for the one-

parameter exponential family of distribution which includes all earlier cases. [10] have further 

studied MVU estimation in the multi-parameter exponential family of distributions.  Here, we 

propose the distributional properties of complete sufficient statistic and study UMVU estimation 

for various parametric functions of the model. 

The model in (4) can be expressed as 

 

ℎ(𝑥; 𝜃) = (
1

(1+𝑥)
)
(1−𝐼1(𝑥)−𝐼2(𝑥)) (

𝑝1 

𝜃(1−𝑝1−𝑝2)
)
𝐼1(𝑥)

(
 𝑝2 

𝜃(1−𝑝1−𝑝2)
)
𝐼2(𝑥)

(𝑒−𝜃)
{[log(

1+𝑥
2 )](1−𝐼1(𝑥)−𝐼2(𝑥))}

(
1

𝜃(1−𝑝1−𝑝2)
)

 =

(𝑎(𝑥))(1−𝐶1(𝑥)−𝐶2(𝑥))
∏ (ℎ𝑖(𝜃))

𝐶𝑖(𝑥)3
𝑖=1

𝑔(𝜃)
     (13) 

 

where, 𝑎(𝑋) =
1

(1+𝑋)
; ℎ1(𝜃) =

𝑝1 

𝜃(1−𝑝1−𝑝2)
; ℎ2(𝜃) =

 𝑝2 

𝜃(1−𝑝1−𝑝2)
; ℎ3(𝜃) = 𝑒

−𝜃; 𝑔(𝜃) =
1

𝜃(1−𝑝1−𝑝2)
; 𝐶1(𝑋) =

𝐼1(𝑋); 𝐶2(𝑋) = 𝐼2(𝑋) and 𝐶3(𝑋) = [log (
1+𝑋

2
)] (1 − 𝐼1(𝑋) − 𝐼2(𝑋)). Also 𝑎(𝑋) > 0, 𝐶𝑖(𝑋), 𝑖 = 1,2 and 3 

are nontrivial real- valued statistics, 𝑔(𝜃) and ℎ𝑖(𝜃) are at least twice differentiable functions of 

𝜃𝑖, 𝑖=1,2 and 3. Here  𝑔(𝜃) = ∫ (𝑎(𝑥))(1−𝐶1(𝑥)−𝐶2(𝑥))∏ (ℎ𝑖(𝜃))
𝐶𝑖(𝑥)3

𝑖=1 𝑑𝑥
𝑥>1

. The density in (13) so 

obtained is defined with respect to a measure 𝜇(𝑥) which is the sum of Lebesgue measure over 

(1,∞) a well-known form of a three parameter exponential family with natural parameters 

(𝜂1, 𝜂2, 𝜂3) = (log (
𝑝1 

𝜃(1−𝑝1−𝑝2)
)  , log (

 𝑝2 

𝜃(1−𝑝1−𝑝2)
)  , log(𝑒−𝜃)) generated by underlying indexing 

parameters 𝜃 = (𝑝1 , 𝑝2, 𝜃).  Hence 𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) = (𝐼1(𝑋), 𝐼2(𝑋), [log (
1+𝑋

2
)] (1 −

𝐼1(𝑋) − 𝐼2(𝑋))) is jointly complete sufficient for 𝜃 = (𝑝1, 𝑝2, 𝜃). The distributional properties of 

𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) are presented in appendix A. We now propose some uniformly 

minimum variance unbiased estimators for parameters and some parametric function of the model 

(13) in various subsections below.  

 

I. Uniformly Minimum Variance Unbiased Estimation of parameters 

For the Type-II censored sample discussed in the previous section, consider the following 

transformation 

𝑌1 = (𝑛 − 𝑟1 − 𝑟2) ([log (
1+𝑥(𝑖)

2
)]),  
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and 

𝑌𝑖 = (𝑛 − 𝑟1 − 𝑟2 − 𝑖 + 1) {[log (
1+𝑥(𝑖)

2
)] − [log (

1+𝑥(𝑖−1)

2
)]} ;      

       𝑖 = 2,3, … , 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗  (14) 

It can be seen that 

 

∑ 𝑌𝑖
𝑛−𝑟1−𝑟2−𝑐

∗

𝑖=1 = ∑ [log (
1+𝑥(𝑖)

2
)] 

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 +  𝑐∗ [log (
1+𝑥(𝑛−𝑟1−𝑟2−𝑐∗)

2
)]    

and 

|𝐽| =
𝑐∗!  ∏ (1+𝑥(𝑖))

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1     

(𝑛−𝑟1−𝑟2)!
       

 (15)  

 

Using (14) and (15), 

 

ℎ (𝑦; 𝜃) = 𝑝1
𝑟1𝑝2

𝑟2  (1 − 𝑝1 − 𝑝2)
(𝑛−𝑟1−𝑟2) 𝜃(𝑛−𝑟1−𝑟2−𝑐

∗)  𝑒−θ ∑ 𝑦𝑖
𝑛−𝑟1−𝑟2−𝑐

∗

𝑖=1  (16) 

 

=
(

 𝑝1 

𝜃(1−𝑝1−𝑝2)
)
𝑧1
(

𝑝2 

𝜃(1−𝑝1−𝑝2)
)
𝑧2
(𝑒−𝜃)

𝑧3
(1−𝑝1−𝑝2)

𝑐∗

(
1  

𝜃(1−𝑝1−𝑝2)
)
𝑛−𝑐∗    

where  

 𝑍1 = ∑ 𝐶1(𝑋𝑖) = ∑ 𝐼1(𝑌𝑖) = 𝑟1
𝑛−𝑐∗

𝑖=1
𝑛
𝑖=1  

𝑍2 =∑𝐶2(𝑋𝑖) = ∑ 𝐼2(𝑌𝑖) = 𝑟2

𝑛−𝑐∗

𝑖=1

𝑛

𝑖=1

 

and  

𝑍3 = ∑ 𝐶3(𝑋𝑖) =
𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1   

 

Hence by Neyman Factorization theorem  𝑍 = (𝑍1, 𝑍2, 𝑍3) is jointly sufficient for  𝜃 = (𝑝1, 𝑝2, 𝜃).  

Also, 

 

ℎ (𝑦; 𝜃) =
𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
 (𝑛−𝑟1−𝑟2)

𝜃(𝑛−𝑟1−𝑟2−𝑐
∗)

(
𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
)
 𝑒−𝜃∑ 𝑦𝑖

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1    

 
=  P(𝑍1 = 𝑟1, 𝑍2 = 𝑟2)  ℎ(𝑦; 𝜃|𝑍1 = 𝑟1, 𝑍2 = 𝑟2)   

 

Here distribution of (𝑍1, 𝑍2) is trinomial and is a complete family of distribution and 

ℎ (𝑦; 𝜃|𝑍1 = 𝑟1, 𝑍2 = 𝑟2) =
𝜃(𝑛−𝑟1−𝑟2−𝑐

∗) 𝑒
−𝜃∑ 𝑦𝑖

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1
 

(
𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 
)

  

 

which belongs to the one-parameter exponential family. Hence 𝑍3|𝑍1, 𝑍2 is complete sufficient for 𝜃 

and also a member of the exponential family. The distribution of 𝑍3|𝑍1, 𝑍2 is Gamma with 

parameter (𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗, 𝜃) with pdf  

 

ℎ(𝑧3; 𝜃|𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗) =

𝑧3
(𝑛−𝑟1−𝑟2−𝑐

∗−1) 𝜃𝑛−𝑟1−𝑟2−𝑐
∗
 𝑒−𝜃 𝑧3

Γ𝑛−𝑟1−𝑟2−𝑐
∗ , 𝑧3 > 0;  𝜃 > 0   

 

which depends only on 𝜃 and is also a complete family of distribution. Therefore, using result of 

[11] 𝑍 = (𝑍1, 𝑍2, 𝑍3) is complete sufficient for 𝜃 = (𝑝1, 𝑝2, 𝜃). The Joint distribution of 𝑍 = (𝑍1, 𝑍2, 𝑍3) 

is 
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ℎ𝑍(𝑧; 𝜃) =  
𝑛!

𝑟1!   𝑟2!  (𝑛 − 𝑟1 − 𝑟2)! 
𝑝1
𝑟1𝑝2

𝑟2(1 − 𝑝1 − 𝑝2)
 (𝑛−𝑟1−𝑟2)

𝑧3
(𝑛−𝑟1−𝑟2−𝑐

∗−1)

Γ𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗
𝜃𝑛−𝑟1−𝑟2−𝑐

∗
 𝑒−𝜃 𝑧3 ,

                                                                     0 ≤ 𝑟1, 𝑟2 ≤ 𝑛 − 𝑐
∗;  𝑧3 > 0;  0 ≤ 𝑝1, 𝑝2 ≤ 1;  𝜃 > 0

 

 = 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) 

∏ (ℎ𝑖(𝜃))
𝑧𝑖3

𝑖=1

𝑔(𝜃)
𝑛−𝑐∗ (1 − 𝑝1 − 𝑝2)

𝑐∗ 

where 

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) = {

𝑛!

𝑟1!  𝑟2! (𝑛−𝑟1−𝑟2)! 

𝑧3
(𝑛−𝑟1−𝑟2−𝑐

∗−1)

Γ𝑛−𝑟1−𝑟2−𝑐
∗ ,  𝑧3 > 0; 𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗

1,                                                             𝑧3 = 0;  𝑟1 = 0  𝑜𝑟 𝑟2 = 0

(17) 

 

𝑧𝑖 ∈ 𝑇(𝑛 − 𝑐
∗) ⊆ ℝ, 𝜃 ∈ Ω.  Here  𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  and 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) are such that 

 

𝑔(𝜃)
𝑛−𝑐∗

(1−𝑝1−𝑝2)
𝑐∗ = ∫ ∫ ∫ 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)
𝑧3∈𝑇(𝑛−𝑐

∗)𝑧2∈𝑇(𝑛−𝑐
∗)𝑧1∈𝑇(𝑛−𝑐

∗)
∏ (ℎ𝑖( 𝜃 ))

𝑧𝑖3
𝑖=1 𝑑𝑧1 𝑑𝑧2 𝑑𝑧3  

 

Since (𝐶1(𝑥)) = 𝑝1, 𝐸(𝐶2(𝑥)) = 𝑝2 and 𝐸(𝐶3(𝑥)) =
(1−𝑝1−𝑝2)

𝜃
 (see Appendix A for details). Hence, 

𝐸(𝑍1) = 𝐸(∑ 𝐶1(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 (𝐼1(𝑦𝑗))

𝑛−𝑐∗

𝑗=1 = (𝑛 − 𝑐∗) 𝑝1, 

𝐸(𝑍2) = 𝐸(∑ 𝐶2(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸 (𝐼2(𝑦𝑗))

𝑛−𝑐∗

𝑗=1 = (𝑛 − 𝑐∗) 𝑝2, 

and 

𝐸(𝑍3) = 𝐸(∑ 𝐶3(𝑥𝑗)
𝑛
𝑗=1 ) = ∑ 𝐸(𝑌𝑖)

𝑛−𝑟1−𝑟2−𝑐
∗

𝑖=1 = (𝑛 − 𝑐∗)
(1−𝑝1−𝑝2)

𝜃
 , 

 

which in turn give UMVUE’s of 𝑝1, 𝑝2 and 𝜃 as 

 𝑝̂1 =
𝑍1

𝑛−𝑐∗
= 

𝑟1

𝑛−𝑐∗
         (18) 

𝑝̂2 =
𝑍2

𝑛−𝑐∗
= 

𝑟2

𝑛−𝑐∗
         (19) 

and 

𝜃̂ =
(𝑛−𝑐∗)(1−𝑝1−𝑝2)

𝑍3
        

 (20) 

 

For variance computation, see Appendix A. Note that, the likelihood estimate and minimum 

variance unbiased estimate of the parameters coincides everywhere when 𝑐∗=0. 

 

II. Uniformly Minimum Variance Unbiased Estimation of parametric functions 

Let 𝑋1, 𝑋2, … , 𝑋𝑛−𝑐∗ be Type-II censored random sample from (13), then there exists an UMVUE of 

Φ( 𝜃 ) if and only if Φ( 𝜃 )[𝑔(𝜃)]
𝑛−𝑐∗

 can be expressed in the form 

Φ( 𝜃 )[𝑔(𝜃)]
𝑛−𝑐∗

(1 − 𝑝1 − 𝑝2)
𝑐∗

= ∫ ∫ ∫ 𝛼(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

𝑧3∈𝑇(𝑛−𝑐
∗)𝑧2∈𝑇(𝑛−𝑐

∗)𝑧1∈𝑇(𝑛−𝑐
∗)

∏(ℎ𝑖( 𝜃 ))
𝑧𝑖

3

𝑖=1

𝑑𝑧1 𝑑𝑧2 𝑑𝑧3 

 

Thus, the UMVUE of a function  Φ( 𝜃 ) of  𝜃 in ℎ(𝑥; 𝜃) is given by 

 

𝜓(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) =

𝛼(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛)

𝐵(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛)

, 𝐵(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) ≠ 0 

 

The following results are now obvious. 

Result 1 The UMVUE of ∏ (ℎ𝑖(𝜃))
𝑘𝑖 = (

1

𝜃(1−𝑝1−𝑝2)
)
𝑘1+𝑘2

𝑝1
𝑘1 𝑝2

𝑘2𝑒−𝜃𝑘33
𝑖=1   is given by 

𝐻𝑘1,𝑘2,𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1 − 𝑘1,  𝑧2 − 𝑘2,  𝑧3 − 𝑘3, 𝑐
∗, 𝑛)

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

 

    =
(𝑟1)𝑘1  (𝑟2)𝑘2   (1−

𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2−𝑐

∗−1)
  (𝑧3−𝑘3)

𝑘1+𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘1+𝑘2[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1+𝑘2

, 
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where  𝑘1 ≤ 𝑟1;  𝑘2 ≤ 𝑟2;  𝑘3 ≤ 𝑧3;  𝑘1 + 𝑘2 ≤ 𝑛 −  𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗, and (𝑟)𝑘 =
𝑟!

(𝑟−𝑘)!
 , 

[𝑟]𝑘 =
Γ𝑟+𝑘

Γ𝑟
. 

 

Corollary 1 If  𝑘1 ≠ 0,  𝑘2 = 0 and  𝑘3 = 0, then UMVUE of  (ℎ1(𝜃))
𝑘1
= (

 𝑝1

𝜃(1−𝑝1−𝑝2)
)
𝑘1

 is given by 

𝐻𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1−𝑘1,𝑧2,𝑧3,𝑐
∗,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑐
∗,𝑛)

   

                      =
(𝑟1)𝑘1   𝑧3

𝑘1

[𝑛−𝑟1−𝑟2+1]𝑘1[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1

, 

𝑘1 ≤ 𝑟1;  𝑘1 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;   𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗  

 

Corollary 2 If  𝑘1 = 0, 𝑘2 ≠ 0 and 𝑘3 = 0, then UMVUE of (ℎ2(𝜃))
𝑘2
= (

𝑝2

𝜃(1−𝑝1−𝑝2)
)
𝑘2

is given by 

𝐻𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1,𝑧2−𝑘2,𝑧3,𝑐
∗,𝑛)

𝐵(𝑧1,𝑧2,𝑧3,𝑐
∗,𝑛)

  

 =
(𝑟2)𝑘2   𝑧3

𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘2[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘2

, 𝑘2 ≤ 𝑟2;  𝑘2 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Corollary 3 If 𝑘1 = 0, 𝑘2 = 0 and 𝑘3 ≠ 0, then UMVUE of (ℎ3(𝜃))
𝑘3
= 𝑒−𝜃𝑘3  is given by 

𝐻𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1, 𝑧2, 𝑧3 − 𝑘3, 𝑐
∗, 𝑛)

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

 

= (1 −
𝑘3

 𝑧3
)
𝑛− 𝑟1− 𝑟2−𝑐

∗−1

, 𝑘3 ≤ 𝑧3;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Result 2 The UMVUE of the variance of 𝐻𝑘1,𝑘2,𝑘3(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by  

𝑣𝑎𝑟̂[𝐻𝑘1,𝑘2,𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘1,𝑘2,𝑘3

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘1,2𝑘2,2𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= [
(𝑟1)𝑘1(𝑟2)𝑘2   (1−

𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2−𝑐

∗−1)
(𝑧3−𝑘3)

𝑘1+𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘1+𝑘2[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1+𝑘2

]

2

     

            −
(𝑟1)2𝑘1(𝑟2)2𝑘2   (1−

2𝑘3
𝑧3
)
(𝑛−𝑟1−𝑟2−𝑐

∗−1)
(𝑧3−2𝑘3)

2(𝑘1+𝑘2) 

[𝑛−𝑟1−𝑟2+1]2(𝑘1+𝑘2)[𝑛−𝑟1−𝑟2−𝑐
∗]2(𝑘1+𝑘2)

,

   

where 2𝑘1 ≤ 𝑟1;  2𝑘2 ≤ 𝑟2;  2𝑘3 ≤ 𝑧3;  2(𝑘1 + 𝑘2) ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;   𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗.  

 

Corollary 4 The UMVUE of the variance of 𝐻𝑘1(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by 

𝑣𝑎𝑟̂[𝐻𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘1

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘1(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= [
(𝑟1)𝑘1   𝑧3

𝑘1

[𝑛−𝑟1−𝑟2+1]𝑘1[𝑛−𝑟1−𝑟2−𝑐
∗]𝑘1
]
2

−
(𝑟1)2𝑘1     𝑧3

2𝑘1

[𝑛−𝑟1−𝑟2+1]2𝑘1[𝑛−𝑟1−𝑟2−𝑐
∗]2𝑘1

’  

2𝑘1 ≤ 𝑟1;  2𝑘1 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗ 

  

Corollary 5 The UMVUE of the variance of 𝐻𝑘2(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by  

 𝑣𝑎𝑟̂[𝐻𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘2

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘2(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= [
(𝑟2)𝑘2   𝑧3

𝑘2

[𝑛−𝑟1−𝑟2+1]𝑘2  [𝑛−𝑟1−𝑟2−𝑐
∗]𝑘2
]
2

−
(𝑟2)2𝑘2     𝑧3

2𝑘2

[𝑛−𝑟1−𝑟2+1]2𝑘2    [𝑛−𝑟1−𝑟2−𝑐
∗]2𝑘2

,  

2𝑘2 ≤ 𝑟2;  2𝑘2 ≤ 𝑛 − 𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Corollary 6 The UMVUE of the variance of 𝐻𝑘3(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛), is given by  

𝑣𝑎𝑟̂[𝐻𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝐻𝑘3

2 (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) − 𝐻2𝑘3(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛)  

= (1 −
𝑘3

 𝑧3
)
2(𝑛− 𝑟1− 𝑟2−𝑐

∗−1)

− (1 −
2𝑘3

 𝑧3
)
𝑛− 𝑟1− 𝑟2−𝑐

∗−1

,  

       2𝑘3 ≤ 𝑧3;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗   

 

Result 3 The UMVUE of [𝑔(𝜃)]
𝑘
= (

1

𝜃(1−𝑝1−𝑝2)
)
𝑘

, 𝑘 ≠ 0   as per the model given in (13) is 
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𝐺𝑘(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) =

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛 + 𝑘)

𝐵(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)

 

   =
[𝑛+1]𝑘     𝑧3

𝑘

[𝑛−𝑟1−𝑟2+1]𝑘    [𝑛−𝑟1−𝑟2−𝑐
∗]𝑘

, 𝑘 ≤ 𝑛−𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Result 4 The UMVUE of the variance of  𝐺𝑘(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) is given by 

𝑣𝑎𝑟̂[𝐺𝑘(𝑧1, 𝑧2, 𝑧3, 𝑛)] = 𝐺𝑘
2(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛) − 𝐺2𝑘(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)  

=[
[𝑛+1]𝑘       𝑧3

𝑘

[𝑛−𝑟1−𝑟2+1]𝑘    [𝑛−𝑟1−𝑟2−𝑐
∗]𝑘
]
2

−
[𝑛+1]2𝑘       𝑧3

2𝑘

[𝑛−𝑟1−𝑟2+1]2𝑘    [𝑛−𝑟1−𝑟2−𝑐
∗]2𝑘
 , 

2𝑘 ≤ 𝑛−𝑟1 − 𝑟2 − 𝑐
∗;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗   

 

Result 5 For fixed x, the UMVUE of the density given in (13) is  

𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) = 𝑎(𝑥)

𝐵(𝑧1−𝐶1(𝑥), 𝑧2−𝐶2(𝑥), 𝑧3−𝐶3(𝑥),𝑐
∗,𝑛−1)

𝐵(𝑧1,𝑧2,𝑧3,𝑐
∗,𝑛)

  

= (
1

1+𝑥
)
(𝑟1)𝐼1(𝑥) (𝑟2)𝐼2(𝑥) (𝑛−𝑟1−𝑟2)(1−𝐼1(𝑥)−𝐼2(𝑥)) 

(𝑛−𝑟1−𝑟2−𝑐
∗−1)(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛 [ 𝑧3−[log(
1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))]

(1−𝐼1(𝑥)−𝐼2(𝑥))   

(1 −
[log(

1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)

(𝑛−𝑟1−𝑟2−𝑐
∗−1)

, 𝑧3 > [log (
1+𝑥

2
)] ;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗  

 

Result 6 The UMVUE of the variance of 𝜙𝑥(𝑍1, 𝑍2, 𝑍3, 𝑐
∗, 𝑛) is given by 

𝑣𝑎𝑟̂[𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)] = 𝜙𝑥

2(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛)  

−𝜙𝑥(𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛) 𝜙𝑥(𝑧1 − 𝐶1(𝑥),  𝑧2 − 𝐶2(𝑥),  𝑧3 − 𝐶3(𝑥), 𝑐

∗, 𝑛 − 1) 

 = 𝜙𝑥
2(𝑧1, 𝑧2, 𝑧3, 𝑐

∗, 𝑛) − (
1

1+𝑥
)
2

 
(𝑟1)2𝐼1(𝑥) (𝑟2)2𝐼2(𝑥) (𝑛−𝑟1−𝑟2)2(1−𝐼1(𝑥)−𝐼2(𝑥))

 (𝑛−𝑟1−𝑟2−𝑐
∗−1)2(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛(𝑛−1)[ 𝑧3−2[log(
1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥)]

2(1−𝐼1(𝑥)−𝐼2(𝑥))
  

(1 −
2[log(

1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)

(𝑛−𝑟1−𝑟2−𝑐
∗−1)

, 𝑧3 > 2 [log (
1+𝑥

2
)] ;   𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗   

    

Result 7 For a fixed  𝑧 =  (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛), the UMVUE of the survival function  𝑆(𝑥)  =  𝑝(𝑋 > 𝑥),

𝑥 ≥ 0 is obtained as 

 𝑆̂(𝑥) = (
(𝑟1)𝐼1(𝑥)(𝑟2)𝐼2(𝑥)(𝑛−𝑟1−𝑟2)(1−𝐼1(𝑥)−𝐼2(𝑥))

(𝑛−𝑟1−𝑟2−𝑐
∗−1)(1−𝐼1(𝑥)−𝐼2(𝑥))

𝑛 [(𝑛−𝑟1−𝑟2−𝑐
∗)−(1−𝐼1(𝑥)−𝐼2(𝑥))] 

) 

(𝑍3 − [log (
1+𝑥

2
)] (1 − 𝐼1(𝑥) − 𝐼2(𝑥)))

(𝐼1(𝑥)+𝐼2(𝑥))

(1 −
[log(

1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑍3
)

(𝑛−𝑟1−𝑟2−𝑐
∗−1)

,    

𝑍3 > [log (
1+𝑥

2
)] ;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐∗  

 

Result 8 For the fixed 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑐
∗, 𝑛), the UMVUE of the 𝑣𝑎𝑟(𝑆̂(𝑥)), is obtained as 

𝑣𝑎𝑟̂(𝑆̂(𝑥)) = [𝑆̂(𝑥)]
2
− 

1

𝑛(𝑛−1)
(1 −

2[log(
1+𝑥

2
)](1−𝐼1(𝑥)−𝐼2(𝑥))

𝑧3
)

(𝑛−𝑟1−𝑟2−𝑐∗−1)

  

(
(𝑟1)2𝐼1(𝑥)(𝑟2)2𝐼2(𝑥)(𝑛−𝑟1−𝑟2)2(1−𝐼1(𝑥)−𝐼2(𝑥))

 (𝑛−𝑟1−𝑟2−𝑐−1
∗)2(1−𝐼1(𝑥)−𝐼2(𝑥))

[(𝑛−𝑟1−𝑟2−𝑐
∗)−2(1−𝐼1(𝑥)−𝐼2(𝑥))][(𝑛−𝑟1−𝑟2−𝑐

∗+1)−2(1−𝐼1(𝑥)−𝐼2(𝑥))]
)  

( 𝑧3 − 2 [log (
1+𝑥

2
)] (1 − 𝐼1(𝑥) − 𝐼2(𝑥))

2(𝐼1(𝑥)+𝐼2(𝑥))

 , 

𝑍3 > 2 [log
(1+𝑥)

2
] ;  𝑟1 + 𝑟2 − 1 < 𝑛 − 𝑐

∗  

 

III. Real data illustration 

 

In this section, we have considered four inliers prone data set to illustrate our proposed work. The 

motivation behind considering a different variety of data sets is to show the flexibility of the 

proposed model in different situations. The detailed description regarding the data sets is given 

below: 

 

Dataset 1: The data in Table 1 shows the loss ratios (yearly data) for earthquake insurance in 
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California from 1971 through 1993. The data are taken from [6] and also used by [4] for their study. 

Note that, for four years there was no loss for earthquake insurance and the information where 

loss of less than 1 billion dollars per year is considered as 1, for simplicity. The analysis of this data 

is carried out at the end of this section. 

 

 

 

Table 1. California earthquake insurance data 

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 

Loss ratios 17.4 0.0 0.6 3.4 0.0 0.0 0.7 1.5 2.2 9.2 0.9 0.0 

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993  

Loss ratios 2.9 5.0 1.3 9.3 22.8 11.5 129.8 47.0 17.2 12.8 3.2  

 

Dataset 2: The National Family Health Survey (NFHS) is a large-scale, multi-round survey 

conducted in a representative sample of households throughout India. The First National Family 

Health Survey (NFHS-1) was conducted in 1992-93, the Second National Family Health Survey 

(NFHS-2) was conducted in 1998-99 and the Third National Family Health Survey (NFHS-3) was 

carried out in 2005-06. The survey is based on a sample of households that is representative at the 

national and state levels. The NFHS-3 fieldwork, conducted by 18 research organizations between 

December 2005 and August 2006, interviewed women at age 15-49. We consider the data on child’s 

age at death from the woman’s questionnaire of NFHS-3. For comprehensive data, one may visit 

[24]. For Gujarat state, there are 15 stillbirths (the death of a baby before or during the birth after 28 

weeks of gestation) considered as observation 0, 37 neonatal deaths (the death of a baby within the 

first 28 days of life) considered as observation 1 and other observations of age at death in days as: 

30, 30, 30, 31, 31, 60, 62, 62, 62, 90, 90, 90, 92, 93, 150, 182, 213, 242, 272, 273, 300, 303, 333, 334, 335, 

356, 360, 365, 366, 450, 730, 731, 732, 732 and 1462. This is a perfect data for inliers model with two 

discrete point at zero and one. Authors of this paper had already modeled this data using 

exponential and Weibull distribution. The analysis based on Pareto Type II distribution is 

presented below. 

Dataset 3: [23] have analyzed and quantified forest burnt area in India using AWiFS data for the 

year 2014. The burnt area map from AWiFS data involves Forest type map of 2013 at 56 m 

resolution prepared as part of the national carbon project. India has a geographical area of about 

3,287,263 sq. km. It comprises 29 states and 7 union territories. The country has 21% of the 

geographical area under forest cover. Forest fires occur in India mainly between January and June. 

They are more frequent between February and May in different biogeographic zones of India. 

State/Union Territory-wise analysis of the percentage of forest burnt area (area in sq. km) is 

available in [23], page 1531. We consider State/Union Territory burnt area from February to May 

2014. There are six State/Union Territory (Delhi, Andaman and Nicobar, Chandigarh, Daman and 

Diu, Lakshadweep and Pondicherry) having burnt area zero, five State/Union Territory (Goa(0.04) 

, Jammu and Kashmir (0.11), Dadra and Nagar Haveli (0.23), Punjab (0.85) and Himachal Pradesh 

(0.91)) having percentage burnt area less than 1 sq. Km. conveniently considered here as 

observation 1, and the remaining 25 State/Union Territory burnt area in sq. Km. are: 6611.86, 

102.70, 941.11, 1773.22, 4606.69, 487.81, 1.84, 2587.40, 1920.35, 82.01, 3342.66, 5066.66, 1974.23, 

457.50, 421.03, 975.79, 8186.46, 364.17, 2.50, 4275.64, 2955.23, 739.00, 459.07, 42.01 and 386.37. The 

analysis is reported below. 

Dataset 4: This data is about the amount of snowfall in all 50 states of US. According to the 

National Climatic Data Center, the data were populated considering the average snowfall for 

almost three decades from 1981 to 2010, available at [25]. The average amount snowfall per year (in 

inches) for 50 states of US are: 5.2, 0.5, 1.6, 74.5, 0.3, 0.0, 19.1, 40.5, 20.2, 0.0, 0.7, 0.0, 19.2, 24.6, 25.9, 

34.9, 14.7, 12.5, 0.0, 61.8, 20.2, 43.8, 51.1, 54, 0.9, 17, 38.1, 25.9, 21.8, 60.8, 16.5, 9.6, 123.8, 7.6, 51.2, 

27.5, 7.8,3, 28.2, 33.8, 43.9, 6.3, 1.5, 56.2, 81.2, 10.3, 5.0, 62.0, 50.9 and 91.4. It is observed that there 

https://www.ncdc.noaa.gov/
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are three decades having an average amount of snowfall zero and for four states having decades 

average amount of snowfall less than 1 inches (coded as observation1).  

For all the data sets above we have calculated parameter estimates, goodness-of-fit criteria 

values, goodness-of-fit statistics and corresponding 𝑝-values (see Table 2 for details) for positive 

observations only. It may be noted from the table that for all the considered data sets, the Pareto 

Distribution fits well (see 𝑝-values).  

 

 

 

Table 2. The parameter estimates, goodness-of-fit criteria and corresponding 𝑝-value for various datasets 

(Pareto distribution). 

Data MLE (SE) AIC BIC 
K-S 

(𝑝-value) 

CVM 

(𝑝-value) 

AD 

(𝑝-value) 

Earthquak

e 

insurance  

𝛽̂= 19.5743 (19.2742) 

𝜃̂= 2.0113 (1.4153) 
124.7323 126.2778 

0.1213 

(0.9498) 

0.0362 

(0.9563) 

0.2901 

(0.9448) 

NFHS-3 
𝛽̂=18557.4806 (34321.4861) 

𝜃̂= 65.5015 (119.8512) 
470.3576 473.4683 

0.1210 

(0.6848) 

0.0898 

(0.6400) 

0.6150 

(0.6327) 

Forest 

burnt area  

𝛽̂=3418.3510 (4828.3362) 

𝜃̂= 2.6249 (2.7363) 
431.6623 434.1000 

0.1446 

(0.6214) 

0.0984 

(0.5964) 

1.0663 

(0.3236) 

Snow fall 
𝛽̂=2907.8650 (8293.9850) 

𝜃̂= 87.5320 (247.1416) 
383.029 386.5043 

0.1049 

(0.7447) 

0.0933 

(0.6208) 

0.5532 

(0.6922) 

 
(* Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K-S)  

        Statistic, Cramer-Von Mises (CVM) statistics, Anderson-Darling (AD) statistic). 

 

 

The plot of pdf, ℎ(𝑥) and survival function, 𝑆(𝑥) for all four datasets under study, is displayed in 

Figure 1 and Figure 2 respectively for varying censoring schemes under Pareto II and the Weibull 

distribution. For the data sets under study, the summary of the various estimates of parameters 

and parametric functions along with their standard error (shown in bracket) and 95 % confidence 

interval considering censoring schemes at value 𝑐∗ is given in Table 3.  Whereas Table 4 shows, the 

UMVU estimate of pdf and survival function with Pareto II and the Weibull distribution for 

varying censoring schemes. It is observed that Pareto distribution has a heavier tail than Weibull.   
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Fig. 1 Density plot to various data sets censored at value 𝑐∗ 

 

 
 

 

Fig. 2 Survival function plot to various data sets censored at value 𝑐∗ 
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Table 3. Summary of estimates of parameters/parametric functions of Pareto II distribution censored at 𝑐∗. 

Parameter/Parametric function 

Earthquake 

insurance data 
NFHS-3 data 

Forest fire burnt 

area data 
Snowfall data 

𝑐∗=1 𝑐∗=5 𝑐∗=1 𝑐∗=2 

MLE (SE) of 𝑝1 0.17391 (0.07904) 0.17241 (0.04050) 0.16667 (0.06212) 0.08000 (0.03837) 

MLE (SE) of 𝑝2 0.13043 (0.07022) 0.42529 (0.05300) 0.13889 (0.05764) 0.08000 (0.03837) 

MLE (SE) of 𝜃 0.61420 (0.15857) 0.19539 (0.03402) 0.16667 (0.03380) 0.38550 (0.06095) 

95% CI of  𝑝1 (0.01901, 0.32882) (0.09304, 0.25179) (0.04493, 0.28841) (0.00480, 0.15520) 

95% CI of 𝑝2 (0.00000, 0.26807) (0.32140, 0.52917) (0.02592, 0.25186) (0.00480, 0.15520) 

95% CI of 𝜃 (0.30648, 0.92191) (0.12871, 0.26206) (0.10041, 0.23292) (0.26651, 0.50449) 

UMVUE (SE) of 𝑝1 0.18182 (0.08223) 0.18293 (0.04269) 0.17143 (0.06370) 0.08333 (0.03989) 

UMVUE (SE) of 𝑝2 0.13636 (0.07317) 0.45122 (0.05495) 0.14286 (0.05915) 0.08333 (0.03989) 

UMVUE (SE) of 𝜃 0.61420 (0.13812) 0.19539 (0.02791) 0.16667 (0.02967) 0.38550 (0.05643) 

95% CI of UMVUE 𝑝1 (0.02065, 0.34299) (0.09925, 0.26660) (0.04657, 0.29629) (0.00515, 0.16152) 

95% CI of UMVUE of 𝑝2 (0.00000, 0.27976) (0.34351, 0.55892) (0.02693, 0.25879) (0.00515, 0.16152) 

95% CI of UMVUE 𝜃 (0.34348 0.88492) (0.14069, 0.25008) (0.10850, 0.22483) (0.27489, 0.49610) 

∏(ℎ𝑖(𝜃))
𝑘𝑖

3

𝑖=1

= (
𝜃

1 − 𝑝1 − 𝑝2
)
2

𝑝1𝑝2𝑒
−
1
𝜃 

𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 1 

0.04992 (0.04299) 8.62541 (4.73007) 1.240801 (0.89610) 3.07667 (0.02775) 

ℎ1(𝜃) =
𝜃 𝑝1

1−𝑝1−𝑝2
, 𝑘1 = 1, 𝑘2 = 0, 𝑘3 = 0 0.38309 (0.22204) 2.13250 (0.74236) 1.38463 (0.66351) 0.24131 (0.12880) 

ℎ2(𝜃) =
𝜃 𝑝2

1−𝑝1−𝑝2
, 𝑘1 = 0, 𝑘2 = 1, 𝑘3 = 0 0.28732 (0.18391) 5.26018 (1.52329) 1.15386 (0.58886) 0.24131 (0.12880) 

ℎ3(𝜃) = 𝑒
−
1

𝜃, 𝑘1 = 0, 𝑘2 = 0, 𝑘3 = 1 0.55693 (0.08844) 0.82738 (0.00109) 0.85191 (0.02856) 0.68545 (0.04162) 

𝑔(𝜃) =
𝜃

1−𝑝1−𝑝2
, 𝑘 = 1 2.29856 (0.64068) 12.51070 (2.73276) 8.53853 (1.92013) 3.07667 (0.51361) 

 

Table 4. Summary of estimates of pdf and reliability function of the various data sets censored at 𝑐∗. 

Function 

Earthquake insurance data NFHS-3 data Forest fire burnt area data Snowfall data 

𝑐∗=1 𝑐∗=5 𝑐∗=1 𝑐∗=2 

Pareto-II Weibull Pareto-II Weibull Pareto-II Weibull Pareto-II Weibull 

pdf  

𝜙10 = 

0.01415 

(0.00185) 

𝜙10 = 

0.02091 

(0.00295) 

 

𝜙100 = 

0.00030 

(5.043e-05) 

𝜙100 = 0.0011 

(1.968e-04) 

 

𝜙650 = 

6.912e-05 

(7.524e-06) 

𝜙650 = 

0.00022 

(3.235e-05) 

 

𝜙25 = 

0.00469 

(0.00028) 

𝜙25 = 

0.01383 

(0.00114) 

 

𝜙15 = 

0.00784 

(0.00112) 

𝜙15 = 

0.01317 

(0.00113) 

 

𝜙500 = 

5.473e-05 

(7.032e-06) 

𝜙500 = 0.0003 

(6.096e-05) 

 

𝜙1350 = 

2.966e-05 

(3.199e-06) 

𝜙1350 = 

0.00012 

(8.101e-06) 

 

𝜙50 = 

0.00186 

(0.00013) 

𝜙50 = 

0.00676 

(0.00068) 

 

𝜙40 = 

0.00175 

(0.00046) 

𝜙40 = 

0.00273 

(0.00046) 

 

𝜙1000 = 

2.387e-05   

(3.185e-06) 

𝜙1000 = 

1.851e-05 

(1.282e-05) 

 

𝜙2500 = 

1.451e-05 

(1.624e-06) 

𝜙2500 = 

6.421e-05 

(3.185e-06) 

𝜙100 = 

0.00072 

(7.193e-05) 

𝜙100 = 

0.00108 

(0.00044) 

Survival 

function  

𝑆̂10 = 0.25585 

(0.07038) 

𝑆̂10 = 0.17398 

(0.05400) 

 

𝑆̂100 = 0.18996 

(0.03638) 

𝑆̂100 = 0.29777 

(0.04249) 𝑆̂650 = 0.27042 

(0.07114) 

𝑆̂650 = 0.40038 

(0.06434) 

𝑆̂25 = 

0.31647 

(0.05347) 

𝑆̂25 = 

0.43451 

(0.05291) 

 

𝑆̂15 = 20013 

(0.07279) 

 

𝑆̂15 = 0.00183 

(0.04218) 

 

𝑆̂500 = 0.13903 

(0.03296) 

𝑆̂500 = 0.05063 

(0.02039) 

 

𝑆̂1350 = 

0.23941 

(0.06868) 

𝑆̂1350 = 

0.05022 

(0.06206) 

 

𝑆̂50 = 

0.24389 

(0.05082) 

𝑆̂50 = 

0.18368 

(0.04572) 

 

𝑆̂40 = 0.10957 

(0.05592) 

𝑆̂40 = 2.139e-

06 (0.00953) 

𝑆̂1000 = 

0.12136 

(0.03136)  

 

𝑆̂1000 = 

0.00293 

(0.02039) 

 

𝑆̂2500 = 

0.21592 

(0.05811) 

𝑆̂2500 = 

0.01212 

(0.05510) 

𝑆̂100 = 

0.18692 

(0.04659) 

𝑆̂100 = 

0.02462 

(0.01331) 
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Appendix A. Distributional properties of 𝑪(𝑿) 
 

Since the moments of 𝐶(𝑋) = (𝐶1(𝑋), 𝐶2(𝑋), 𝐶3(𝑋)) are functions of 𝜃 = (𝑝1, 𝑝2, 𝜃), and 𝛽 assumed 

known, they are MVUE’s of these functions.  Hence, in order to find the moments, differentiating 

𝑔(𝜃) partially with respect to 𝑝1, 𝑝2 and 𝜃 under the regularity conditions, we get  

 

𝐺 = 𝐴 𝜇 , |𝐴| ≠ 0        (i) 

where 

𝐺 =

[
 
 
 
 
 
 
𝜕 log 𝑔(𝜃)

𝜕𝑝1
𝜕 log 𝑔(𝜃)

𝜕𝑝2
𝜕 log 𝑔(𝜃)

𝜕𝜃 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

1

1 − 𝑝1 − 𝑝2
1

1 − 𝑝1 − 𝑝2

−
1

𝜃 ]
 
 
 
 
 
 

 

 

𝜇 = [

𝐸(𝐶1(𝑥))

𝐸(𝐶2(𝑥))

𝐸(𝐶3(𝑥))

] =

[
 
 
 

𝐸(𝐼1(𝑥))

𝐸(𝐼2(𝑥))

𝐸 ([log(1 + 𝑥) − log 2](1 − 𝐼1(𝑥) − 𝐼2(𝑥)))]
 
 
 
 

and 

 𝐴 =

[
 
 
 
 
 
𝜕 log  ℎ1(𝜃)

𝜕𝑝1

𝜕 log ℎ2(𝜃)

𝜕𝑝1

𝜕 log ℎ3(𝜃)

𝜕𝑝1

𝜕 log  ℎ1(𝜃)

𝜕𝑝2

𝜕 log ℎ2(𝜃)

𝜕𝑝2

𝜕 log ℎ3(𝜃)

𝜕𝑝2

𝜕 log  ℎ1(𝜃)

𝜕𝜃

𝜕 log ℎ2(𝜃)

𝜕𝜃

𝜕 log ℎ3(𝜃)

𝜕𝜃 ]
 
 
 
 
 

=

[
 
 
 
 
1

𝑝1
+

1

1−𝑝1−𝑝2

1

1−𝑝1−𝑝2
0

1

1−𝑝1−𝑝2

1

𝑝2
+

1

1−𝑝1−𝑝2
0

−
1

𝜃
−
1

𝜃
−1]
 
 
 
 

 

 

Equation (i) gives 

𝐸(𝐶𝑖(𝑥)) =
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2 𝑎𝑛𝑑 3  

 

where 𝐴𝑖 is obtained by replacing ith column of A by the elements of 𝐺. Hence, 

 

𝜇 = [

𝐸(𝐶1(𝑥))

𝐸(𝐶2(𝑥))

𝐸(𝐶3(𝑥))

] = [

𝑝1
𝑝2

(1−𝑝1−𝑝2)

𝜃

]       (ii) 

 

Now joint moments of 𝐶1
𝑘1(𝒙),  𝐶2

𝑘2(𝑥) and 𝐶3
𝑘3(𝑥) are given as 

 

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙)) = ∫𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙) 𝑎(𝑥)
∏ (ℎ𝑖(𝜃))

𝐶𝑖(𝑥)3
𝑖=1

𝑔(𝜃)
𝑑𝑥

𝑥

 

 

which on differentiating with respect to 𝑝1, 𝑝2 and 𝜃 and using (iv), gives a system of three non-

homogeneous equations 

 

 𝐺1 = 𝐴 𝑉 , |𝐴| ≠ 0        

 (iii) 

 

where 
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𝐺1 =

[
 
 
 
 
 
 
 𝜕 log 𝐸(𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))

𝜕𝑝1

𝜕 log 𝐸(𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝜕𝑝2

𝜕 log 𝐸(𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝜕𝜃 ]
 
 
 
 
 
 
 

  

 

𝑉 =

[
 
 
 
 𝐸 (𝐶1

𝑘1+1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙)) − 𝐸(𝐶1(𝑥))𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3(𝒙))

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2+1(𝒙) 𝐶3
𝑘3(𝒙)) − 𝐸(𝐶2(𝑥))𝐸 (𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))

𝐸 (𝐶1
𝑘1(𝒙) 𝐶2

𝑘2(𝒙) 𝐶3
𝑘3+1(𝒙)) − 𝐸(𝐶3(𝑥))𝐸 (𝐶1

𝑘1(𝒙) 𝐶2
𝑘2(𝒙) 𝐶3

𝑘3(𝒙))]
 
 
 
 

= [

𝜎1(1,2,3)
𝜎2(1,2,3)
𝜎3(1,2,3)

], (say). 

 

Using Cramer’s rule for the solution of a system of linear equations (iii) gives  

 

𝜎𝑖(1,2,3) = 
|𝐴𝑖|

|𝐴|
 , 𝑖 = 1,2 𝑎𝑛𝑑 3  

 

where 𝐴𝑖 is obtained by replacing ith column of A by the elements of 𝐺1. For 𝑘𝑖 = 1 and 𝑘𝑗 = 0 ∀ 𝑖 ≠

𝑗 = 1,2 𝑎𝑛𝑑 3,  we get covariance between 𝐶𝑖(𝑥) and  𝐶𝑗(𝑥) as 

 

𝜎𝑖(1,2,3) = 
|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗

|𝐴|
.  

 

Thus, we have the variance-covariance matrix 𝑉 as 

  V = [𝜎𝑖𝑗]3×3 =
(|𝐴𝑖 |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗

)

|𝐴|
 

 

If 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗  of A, then  

 

 |𝐴𝑖  |(𝑘𝑖=1;𝑘𝑗=0),𝑖≠𝑗=1,2,3 = 𝐴1𝑖
𝜕

𝜕𝑝1
𝐸(𝐶𝑖(𝑥)) + 𝐴2𝑖

𝜕

𝜕𝑝2
𝐸(𝐶𝑖(𝑥)) + 𝐴3𝑖

𝜕

𝜕𝜃
𝐸(𝐶𝑖(𝑥)) 

and hence 

V = [

𝑝1(1 − 𝑝1) −𝑝1𝑝2 −𝜃 𝑝1(1 − 𝑝1 − 𝑝2)

−𝑝1𝑝2 𝑝2(1 − 𝑝2) −𝜃 𝑝2(1 − 𝑝1 − 𝑝2)

−
 𝑝1(1−𝑝1−𝑝2)

𝜃
−
 𝑝2(1−𝑝1−𝑝2)

𝜃

[1−(𝑝1+𝑝2)
2]

𝜃2

]    (iv) 

where |𝐴| =  
1

  𝑝1 𝑝2  (1−𝑝1−𝑝2)
. 
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Abstract 
 

In this paper the dynamic reliability behaviour in terms of common cause failures 

is studied and a state space model has been formed for the evaluation of 

performance measures of multi state system. The concept of renewal is employed 

and the Markov Regenerative Process has been used for assessment of availability 

of the system. Using proposed technique we obtain the transition kernel and 

formulas for the steady state probabilities of the system. A numerical example is 

proposed to demonstrate the real possibility of the proposed technique.  

 

Keywords: Multi state system, Common cause failures, Markov Regenerative 

Process, Availability 

  

I  Introduction 
 

Failures of multiple components of a system due to a common cause is called Common 

Cause Failures (CCF). CCF is the one of the most important issues in evaluation of system 

reliability. When compared to random failures, which affect individual components, the frequency 

of CCF has relatively low expectancy. According to Rausand and Hoyland [11] common cause 

failures is a dependent failure in which two or more component fault states exist simultaneously or 

within short time interval and are direct result of a shared cause. Beta(𝛽) factor model is the most 

commonly used model for common cause failures of the multi state system [3]. The 𝛽 factor model 

describes the correlation between the independent random component failures and common cause 

failures in a redundant multi state system. A set of powerful techniques that proved for the 

solution of non-Markovian models is based on the ideas grouped under the Markov renewal 

theory. The application of Markov renewal theory for finding reliability and availability of 

stochastic systems is discussed in [6]. Semi-Markov process is the most widely used and adopted 

non-Markovian model for evaluating reliability and availability of multi state system. A good 

reference on the semi-Markov process (SMP) is [8] which discusses the the theory of SMP very 

clearly, also gives examples which helps to understanding the theory and how to apply the model 

in many real life situations. The stationary character of Markov regeneratve process (MRGP) has 

been studied in [10]. Most of the theoretical foundations of Markov regeneratve process (MRGP) 

were discussed in [2] in which it is named as semi regenerative process. One of the first paper 

which consider semi-regenerative processes is in Russian (refer [13]). For a concise review on Semi-

regenerative, decomposable Semi-regenerative Processes and their applications one may refer to 

[12]. The transient and steady state analysis of stochastic petri nets are discussed analytically and 

numerically in [1]. MRGPs have been used to evaluating reliability and availability of the system. 

Some examples concerning reliability and availability of power plants and fault tree systems can 
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be found in [4,5,9,16]. Many other examples and applications of MRGP in the dependability 

context has been solved using SHARPE software [14] as demonstrated in [17]. Semi Markov, 

Markov regenerative models and Phase type expansion with a number of solved examples were 

discussed in [15]. The system-level reliability of a heterogeneous double redundant renewable 

system under Marshall-Olkin failure model in the case when repair times of its components have a 

general continuous distribution is studied in [7]. The mathematical model proposed therein allows 

to obtain the explicit expression in terms of Laplace transform for the system reliability function. 

 

II  Markov Regenerative Process 
 

Consider a stochastic process {𝑍(𝑡), 𝑡 ≥ 0} with state space Ω. Suppose every time a certain 

phenomena occurs, the future of the process Z after that time becomes a probabilistic replica of the 

future after time zero. Such time which is usually random is called regeneration time of Z. Such 

process is named as regeneration process. In a Markov Regenerative Process (MRGP) the stochastic 

evolution between two successive regeneration points depends only on the state of regeneration 

not on the evolution before regeneration. 

Following [1] a stochastic process {𝑍(𝑡), 𝑡 ≥ 0} on Ω is called an MRGP if there exist a 

Markov renewal sequence {(𝑌𝑛 , 𝑆𝑛), 𝑛 ≥ 0} of random variable such that all conditional finite 

dimensional distribution of {𝑍(𝑆𝑛 + 𝑡), 𝑡 ≥ 0} given {𝑍(𝑢),0 ≤ 𝑢 ≤ 𝑆𝑛 , 𝑌𝑛 = 𝑖} 𝑖 ∈ Ω are the same as 

those of {𝑍(𝑡), 𝑡 ≥ 0} given 𝑌0 = 𝑖. 

From the above definition we obtain embedded Markov chain (EMC) in {𝑍(𝑡), 𝑡 ≥ 0}. 

Global kernel 𝐾(𝑡) gives a description of the evolution of process from the Markovian regenerative 

moment without describing the happenings between regenerative moments.  
 𝐾(𝑡) = 𝐾𝑖𝑗(𝑡) = 𝑃𝑟{𝑌1 = 𝑗, 𝑆1 ≤ 𝑡/𝑌0 = 𝑖}∀𝑖, 𝑗 ∈ Ω 

 An MRGP can change states between two consecutive Markov renewal moments. 𝐸(𝑡) is the local 

kernel which explains the state probabilities of the process during the interval between successive 

Markov regenerative moments.  
 𝐸(𝑡) = 𝐸𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗, 𝑆1 > 𝑡/𝑌0 = 𝑖}∀𝑖, 𝑗 ∈ Ω 

 The matrix of conditional transition probabilities are given by  
 𝑉𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗/𝑍0 = 𝑖}∀𝑖, 𝑗 ∈ Ω 

 In many real life problems involving Markov Renewal Process our primary aim to compute 𝑉𝑖𝑗(𝑡) 

effectively and hence several performance measures of interest like Availability, Reliability based 

on 𝑉𝑖𝑗(𝑡) 

The conditional transition probabilities 𝑉𝑖𝑗(𝑡) at any instant t can be computed as  

 𝑉𝑖𝑗(𝑡) = 𝑃𝑟{𝑍(𝑡) = 𝑗, 𝑆1/𝑍0 = 𝑖} + ∑𝑘∈Ω′ ∫
𝑡

0
𝑑𝐾(𝑢)𝑉𝑘𝑗(𝑡 − 𝑢)∀𝑖, 𝑗 ∈ Ω 

A Markov renewal equation is defined by this set of integral equations. Equation can be expressed 

in Matrix form as  
 𝑉(𝑡) = 𝐸(𝑡) + 𝐾(𝑡). 𝑉(𝑡) 

 

Laplace-Steiltjes transform 𝐾(𝑠) and 𝐸(𝑠) of 𝐾(𝑡) and 𝐸(𝑡) respectively can obtained as  

 𝐾(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐾(𝑡) 

 𝐸(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑑𝐸(𝑡) 

 

Then  
 𝑉(𝑠) = 𝐸(𝑠) + 𝐾(𝑠)𝑉(𝑠) = [𝐼 − 𝐾(𝑠)]−1𝐸(𝑠) 

 

𝑉(𝑡) can be obtained by taking inverse laplace transform of 𝑉(𝑠)  
 𝑃(𝑡)1×Ω = 𝑃(0)1×Ω × 𝑉(𝑡)Ω×Ω 

 

For the purpose of the steady state analysis of an MRGP the following two matrices 𝛼 =
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[𝛼𝑖𝑗] and 𝜙 = [𝜙𝑖𝑗] should be calculated. 𝛼𝑖𝑗 is the Mean time the process from state 𝑖 spends in 

state 𝑗. 𝜙 = [𝜙𝑖𝑗] is the one step transition probability matrix of the embedded Markov chain. 

The two matrices are defined as  

 𝛼 = ∫
∞

𝑡=0
𝐸(𝑡)𝑑𝑡 = lim

𝑠→0

1

𝑠
𝐸(𝑠) (1) 

 𝜙 = lim
𝑡→∞

𝐾(𝑡) = lim
𝑠→0

𝐾(𝑠) (2) 

 To obtain the steady-state probabilities of the MRGP, at first we have to solve the steady-state 

probabilities of the embedded discrete time Markov chain by solving 

 
 𝜈 = 𝜈. 𝜙 

 
 𝜈. 𝑒 = 1 

where 𝑒 is a column vector with its elements equal to 1 and 𝜈 is a row vector. Steady state 

probability vector is  

 𝜈 = [𝜈1, 𝜈2, … 𝜈𝑘] where 𝑘 ∈ Ω  

 The steady state probability 𝜋 = [𝜋1, 𝜋2, … 𝜋𝑘] of the MRGP is given by 

 

 𝜋 =
𝜈𝛼

𝜈𝛼𝑒
 (3) 

 

Steady state Availability of system 

Let Ω = {0,1, … , 𝑘} be the set of all possible states of a system. Let Ω′ denote the subset of 

states in which the system is functioning and let 𝐹 = Ω − Ω′ denote the states in which the system 

is failed. The long term availability of the system is the mean proportion of time when the system 

is functioning. Steady state system availability can be obtained by  

 𝐴∞ = ∑𝑗∈Ω′ 𝜋𝑗 (4) 

 

 

III  Parallel System with Single Repair Facility and CCF 
 

Consider a system which consists of two components named A and B. A single repairman 

is assigned for the system with the First Come First Served (FCFS) scheduling policy for repair. 

When the components A or B fails the repairman begins to repair if he is not busy. When one 

component is already under repair and the other component fails then the second component has 

to wait for repair till the repairman is free. The lifetime of components A and B are exponentially 

distributed with the rates 𝜆𝐴 and 𝜆𝐵 respectively. The distribution function of the repair times of 

components A and B are 𝐺𝐴(𝑡) and 𝐺𝐵(𝑡) respectively. Let 𝜇𝐴(𝑡) and 𝜇𝐵(𝑡) be the respective repair 

rates of components A and B. Also in this case common cause failure involving both components A 

and B can occur with probability 𝛽. Define the stochastic process 𝑍 = {𝑍(𝑡); 𝑡 ≥ 0} to represent the 

system state at any instant t. 𝑍(𝑡) ∈ {1,2,3,4,5} 

System is in state 

1, if both components are working at time t  

2, if component A is under repair while component B is working at time t 

3, if component B is under repair while component A is working at time t 

4, if component A is under repair while component B is waiting for repair at time t 

or due to common cause failure in which the repairman randomly selects component A is 

the first to be repaired 

5, if component B is under repair while component A is waiting for repair at time t 

or due to common cause failure in which the repairman randomly selects component B is 

the first to be repaired 

We can define that all state transitions correspond to Markov renewal moments 𝑆 =

{𝑆𝑛; 𝑛 ∈ 𝑁} and the embedded Markov chain 𝑌𝑛; 𝑛 ∈ 𝑁 such that 𝑌𝑛 is the state of the system at time 
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𝑆𝑛+(i.e,𝑌𝑛 = 𝑍(𝑆𝑛+)) 

 

 
Figure  1: State transition diagram 

  

Analysis of the above reliability transition diagram shows that Z is an MRGP with an 

embedded markov chain (EMC) defined by the states 1, 2 and 3. We can observe the transition to 

states 4 and 5 do not belong to the EMC since they are non-renewal moments. System is in state 1 if 

both A and B are up states and the repairman is free. Component A can fail at rate 𝜆𝐴 and reach 

state 2. The component A is repaired with cdf 𝐺𝐴(𝑡) to bring the system back to state 1. If 

component B fell down during repair time of component A , the system jumps to state 4. When the 

component B is down the system reaches the state 3 and when B is repaired with repair time cdf 

𝐺𝐵(𝑡) to back the system state 1. But the component A fail jumping the state 3 to state 5. To find the 

distribution of Z for MRGP we have to construct kernel matrices [global kernel matrix 𝐾(𝑡)and 

local kernel matrix 𝐸(𝑡)]. 𝑅𝐴, 𝑅𝐵 be the time to repair and 𝐿𝐴 and 𝐿𝐵 be the times to failure of A and 

B respectively. 

 

 𝐾(𝑡) = (

0 𝑘12(𝑡) 𝑘13(𝑡)

𝑘21(𝑡) 0 𝑘23(𝑡)
𝑘31(𝑡) 𝑘32(𝑡) 0

), 

 

𝐾12(𝑡) = Pr{If A fails before B or common cause failures occur and repairman chose to 

repair A first and completed the repair action} 

 
 = 𝑃𝑟{𝑍(𝑆1) = 2, 𝑆1 ≤ 𝑡/𝑍0 = 1} = 𝑃𝑟{(𝐿𝐴 ≤ 𝑡 ∩ 𝐿𝐵 > 𝐿𝐴) ∪ (𝑅𝐴 ≤ 𝑡 ∩ (𝐿𝐴 = 𝐿𝐵) ≤

𝑅𝐴)} 

 = (1 − 𝛽)𝜆𝐴 ∫
𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝑑𝑢 +

𝛽

2
(𝜆𝐴 + 𝜆𝐵) ∫

𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝐺𝐴(𝑡 − 𝑢)𝑑𝑢 

 

 

 𝐾13(𝑡) = (1 − 𝛽)𝜆𝐵 ∫
𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝑑𝑢 +

𝛽

2
(𝜆𝐴 + 𝜆𝐵) ∫

𝑡

0
𝑒−(𝜆𝐴+𝜆𝐵)𝑢𝐺𝐵(𝑡 − 𝑢)𝑑𝑢 

 𝐾21(𝑡) = Pr{Repair A is finished up to time t and B has not failed during repair A} 

 

 = 𝑃𝑟{𝑍(𝑆1) = 1, 𝑆1 ≤ 𝑡/𝑍0 = 2} == 𝑃𝑟{𝑅𝐴 ≤ 𝑡 ∩ 𝐿𝐵 > 𝑅𝐴} = ∫
𝑡

0
𝑒−𝜆𝐵𝑢𝑑𝐺𝐴(𝑢) 

 

𝐾23(𝑡) = Pr{Repair A is not finished up to time t and B failed during the repair A} 

 

 = 𝑃𝑟{𝑍(𝑆1) = 3, 𝑆1 ≤ 𝑡/𝑍0 = 2} = ∫
𝑡

0
(1 − 𝑒−𝜆𝐵𝑢)𝑑𝐺𝐴(𝑢) 

  

 𝐾31(𝑡) = 𝑃𝑟{𝑍(𝑆1) = 3, 𝑆1 ≤ 𝑡/𝑍0 = 3} = ∫
𝑡

0
𝑒−𝜆𝐴𝑢𝑑𝐺𝐵(𝑢) 
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 𝐾32(𝑡) = 𝑃𝑟{𝑍(𝑆1) = 2, 𝑆1 ≤ 𝑡/𝑍0 = 3} = ∫
𝑡

0
(1 − 𝑒−𝜆𝐴𝑢)𝑑𝐺𝐵(𝑢) 

 

 

 𝐸(𝑡) = (

𝐸11(𝑡) 0 0 𝐸14(𝑡) 𝐸15(𝑡)

0 𝐸22(𝑡) 0 𝐸24(𝑡) 0
0 0 𝐸33(𝑡) 0 𝐸35(𝑡)

), 

 

𝐸11(𝑡) = Pr{Remaining state 1 until time t}  

 = 𝑃𝑟{𝑍(𝑡) = 1, 𝑆1 > 𝑡/𝑍0 = 1} = (1 − 𝛽)𝑒−(𝜆𝐴+𝜆𝐵)𝑡 

 𝐸22(𝑡)=Pr{repair A is not finished up to time t and B has not failed}  

 = 𝑃𝑟{𝑍(𝑡) = 2, 𝑆1 > 𝑡/𝑍0 = 2} = (1 − 𝐺𝐴(𝑡))𝑒
−𝜆𝐵𝑡 

  

 𝐸33(𝑡) = (1 − 𝐺𝐵(𝑡)𝑒
−𝜆𝐴𝑡 

 𝐸14(𝑡) =
𝛽

2
𝑒−(𝜆𝐴+𝜆𝐵)𝑡 

 𝐸15(𝑡) =
𝛽

2
𝑒−(𝜆𝐴+𝜆𝐵)𝑡 

 𝐸24(𝑡) =Pr{repair A is not finished up to time t and B has not failed}  

 = (1 − 𝐺𝐴(𝑡))(1 − 𝑒
−𝜆𝐵𝑡) 

  

 𝐸35(𝑡) = (1 − 𝐺𝐵(𝑡))(1 − 𝑒
−𝜆𝐴𝑡) 

 Laplace-Steiltjes transform of Global Kernel Matrix is  

 𝐾(𝑠) =

(

 
 
0

(1−𝛽)𝜆𝐴

𝑠+𝜆𝐴+𝜆𝐵
+

𝛽(𝜆𝐴+𝜆𝐵)𝐺𝐴(𝑠)

2(𝑠+𝜆𝐴+𝜆𝐵)

(1−𝛽)𝜆𝐵

𝑠+𝜆𝐴+𝜆𝐵
+

𝛽(𝜆𝐴+𝜆𝐵)𝐺𝐴(𝑠)

2(𝑠+𝜆𝐴+𝜆𝐵)

𝐺𝐴(𝑠 + 𝜆𝐵) 0 𝐺𝐴(𝑠) − 𝐺𝐴(𝑠 + 𝜆𝐵)

𝐺𝐵(𝑠 + 𝜆𝐴) 𝐺𝐵(𝑠) − 𝐺𝐵(𝑠 + 𝜆𝐴) 0

)

 
 
, 

 

Laplace-Steiltjes transform of Local Kernel Matrix is  
 𝐸(𝑠) =

(

 
 
 

(1−𝛽)𝑠

𝑠+𝜆𝐴+𝜆𝐵
0 0

𝛽𝑠

2(𝑠+𝜆𝐴+𝜆𝐵)

𝛽𝑠

2(𝑠+𝜆𝐴+𝜆𝐵)

0
𝑠

𝑠+𝜆𝐵
(1 − 𝐺𝐴(𝑠 + 𝜆𝐵)) 0

𝜆𝐵

𝑠+𝜆𝐵
− 𝐺𝐴(𝑠) +

𝑠

𝑠+𝜆𝐵
𝐺𝐴(𝑠 + 𝜆𝐵) 0

0 0
𝑠

𝑠+𝜆𝐴
(1 − 𝐺𝐵(𝑠 + 𝜆𝐴)) 0

𝜆𝐴

𝑠+𝜆𝐴
− 𝐺𝐵(𝑠) +

𝑠

𝑠+𝜆𝐴
𝐺𝐵(𝑠 + 𝜆𝐴)

)

 
 
 
, 

 

IV  Numerical Illustration 
 

Consider a numerical example wherein the components have deterministic repair-times 

with distribution functions,  
 𝐺𝐴(𝑡) = 𝑢(𝑡 − 𝜇𝐴), 𝜇𝐴 > 0 
 𝐺𝐵(𝑡) = 𝑢(𝑡 − 𝜇𝐵), 𝜇𝐵 > 0 

 where u(t) is the unit step function. The units are hours for repair-time (parameters 𝜇𝐴 and 𝜇𝐵) and 

ℎ𝑜𝑢𝑟−1 for the failure rates (parameters 𝜆𝐴 and 𝜆𝐵). The values of parameters of the system are 

given below. 

  

Component 𝜆 𝜇 

A 0.01 5 

B 0.01 5 
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 𝐾(𝑠) =

(

 
 
0

(1−𝛽)0.01

𝑠+0.02
+

𝛽0.02𝑒−5𝑠

2(𝑠+0.02)

(1−𝛽)0.01

𝑠+0.02
+

𝛽0.02𝑒−5𝑠

2(𝑠+0.02)

𝑒−5(𝑠+0.01) 0 𝑒−5𝑠 − 𝑒−5(𝑠+0.01)

𝑒−5(𝑠+0.01) 𝑒−5𝑠 − 𝑒−5(𝑠+0.01) 0
)

 
 

  

 

 
 𝐸(𝑠) =

(

  
 

(1−𝛽)𝑠

𝑠+0.02
0 0

𝛽𝑠

2(𝑠+0.02)

𝛽𝑠

2(𝑠+0.02)

0
𝑠

𝑠+0.01
(1 − 𝑒−5(𝑠+0.01)) 0

0.01

𝑠+0.01
− 𝑒−5𝑠 +

𝑠

𝑠+0.01
𝑒−5(𝑠+0.01) 0

0 0
𝑠

𝑠+0.01
(1 − 𝑒−5(𝑠+0.01)) 0

0.01

𝑠+0.01
− 𝑒−5𝑠 +

𝑠

𝑠+0.01
𝑒−5(𝑠+0.01)

)

  
 

  

 

The Steady state probability vector is  

 [
𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5

] = 

[
0.892074(1 − 𝛽),0.045738,0.045738,0.446037𝛽 + 0.008225,0.446037𝛽 + 0.008225

]  

 

Steady state Availability  

 𝐴∞ = 𝜋1 + 𝜋2 + 𝜋3 = 0.98355(1 − 𝛽) (5) 

 Impact of the common cause failures on the system is evaluated for the corresponding model. The 

MRGP steady state availability can be calculated for varying common cause failure probability 𝛽 

value. By analyzing the MRGP for the above numerical values, the graph depicted in Fig. 2 is 

obtained. 

 

 
Figure  2: Steady state availability of the system for varying 𝛽 

  The graph reveals how the steady state availability (𝐴∞) of the system varies by changing 

the common cause failure probability 𝛽 from 0 to 0.5. On viewing the graph we can observe a clear 

linear trend of the 𝐴∞ with respect to 𝛽. 

 

V  Conclusion 
 

In this paper analytical techniques based on MRGP are explored for modeling and 

evaluation of availability of multi state system. A parallel system of two components with common 

cause failures were elaborated to show the applicability of MRGP in the evaluation of performance 
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measures with numerical example. Since MRGP can overcome limitations of SMP to some extent, 

one can solve a wide range of problems in system reliability on similar lines. 
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