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Reliability Assessment of the Digital Relay Protection 

System 
 

Michael Uspensky 

• 
Komi SC UB RAS, Syktyvkar, Russian Federation. 

uspensky@energy.komisc.ru 

 
Abstract 

 

The quantitative assessment attempt of reliability indicators for the specific digital 

structure of the relay protection system by analogy with an assessment of similar digital 

systems in other industries is given in this work. The reliability models of system 

components are provided. The calculation sequence is shown. Calculation results give 

an optimistic evaluation of such protection creation and indicate the influence of the 

number of autonomous protection blocks reserved by the central protection and 

recovery time on the system availability. 

 

Keywords: relay protection, digital system, reliability, availability. 

 

 

1. Accepted Abbreviations 
 

The list of the accepted abbreviations in article is included below,  

 

IED Intellectual Electronic Device executes control functions and protection of substation 

equipment according to the specified algorithms. 

SW Switch works with an Ethernet network, creating transmission channels of digital 

information. 

MU Merging Unit accepts input analog signals from CT/PT, creates digital synchronized time 

sampling of the measured values and transfers them to numerous IEDs on a substation local 

network. 

PT Potential Transformer measures analog voltage values in substation buses. 

CT Current Transformer measures analog current values in substation branches. 

PB Process Bus provides information exchange between connected IEDs. 

BC Breaker Controller controls  the power circuit-breaker. 

PS Power Supply provides electronics with the electric power. 

CB Circuit Breaker is intended for power network switching. 

 

2. Introduction 
 

One of the most important characteristics of the relay protection is its reliability. Many 

researches have been done in this area. However, at the present a complete digital relay protection 

is developed and implemented, which is completely different from the traditional protection. 

Nevertheless, requirements for reliability remain the same.  

Mainly, typical complete digital protection system integrates the merging units, timing sources, 

digital protective relays and communication devices. Both relay devices and signal outputs of 

measuring transformers are digital in such system. These digital signals are transmitted by the 
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digital relay via the process bus that integrates interaction of digital blocks. Complete digital 

protection has more components, than a traditional one that should have a certain influence on its 

reliability.  

Example of the similar protection is the protection system for a distribution network of 

110/35/10 kV with digital converting of power system [1]. In this work, the structure and 

functioning of protection system on substation are considered in detail. Feature of structure offered 

by the authors is redundancy of the autonomous digital protection for a substation segment (the 

transformer, bus system section) by the centralized digital protection and control device. Thus, an 

important function of the substituting protection reservation for joining that should increase 

protection reliability in general. Other feature is redundancy failure circuit current measurement 

by its value determination on a segment under the first Kirchhoff’s law. 

It is necessary to estimate reliability of such a protection structure. As its hardware basis is 

made by the electronic digital elements, unlike traditional protection with estimates of 

unnecessary, false operations and failure in operation here it is possible to estimate the protection 

system availability to operation, as well as at similar electronic digital systems in other industries. 

 

3. Protection Models of Functioning Reliability  
 

Let's consider the reliability indicators on the example of the structural diagram for the 

protection and control module of bus section 35 kV (fig. 1, a) and of the transformer section (fig. 1, 

b). As it was noted above, autonomous protection (IEDA) failure has two consequences for the 

centralized protection (IEDC): 1) results of failure protection measurements can be used; 2) results 

of failure protection measurements cannot be used. In the second case, the first Kirchhoff’s law 

determines the current of the protected element. Reliability of such definition is connected with all 

m  

IEC 61850-8-1, IEC 61850-9-2

Feeder protection Feeder protectionFeeder protection

IDR-F IDR-F IDR-F

IDR-BB

IDR-En

CT

CT

CT

CTZS

CT

CTZS

CT

CTZS

1BS 35 kV

Centralized digital 

protection for 

1BS 35kV

IEC 61850-8-1, IEC 61850-9-2

Centralized 
digital 

protection 
for TR

User indoor 
switchgear 

CT

CT

CT

IDR-HV

Fig. 1a. Block diagram of the protection module and 
control section for the bus 35 kV. IDR-interposing 
digital relay, F-feeder, En-entrance, BB-bus-tie 
breaker, CTZS-zero phase sequence current 
transformer. 

Fig. 1b. Block diagram of the protection 

and control module for the transformer 

section. IDR-interposing digital relay, 

HV-high voltage, 

 
CT Link MU IEDA

m(CT) m(Lk) m(MU)

Measurement channel backup

IEDC

BC PSP
 B

CB
BC PS

Fig. 2. Reliability block diagram of protection. 
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intact measuring channels. The general diagram of component communications for separate IEDA 

with the centralized IEDC, and measuring and executive channels is given in fig. 2 in terms of 

reliability. The breaker controller (BC) is entered behind the process bus (PB) and in the same place 

the power supply (PS) block as it is included consistently with all scheme is entered in terms of 

reliability.  

 

 

Let's select structures of communications between components when protection functions in 

different situations. At operable autonomous protection, the model of its reliability is given in fig. 

3a. It consists from series-connected components of the autonomous protection, and PB switch λ-s 

integrate with its λ-s on number of connections. Since equivalent failure rate is equal to the sum of 

element failure rate in series connection  

           𝜆𝑒 = ∑ 𝜆𝑖
𝑛
𝑖=1 ,                                                                    (1) 

and equivalent renewal rate is equal to mean value of separate indicators [2]  

          𝜇𝑒 = 𝜆𝑒 ∑
𝜆𝑖

𝜇𝑖

𝑛
𝑖=1⁄ ,                                                             (2) 

where n is component quantity in model chains, protection reliability indicators are defined for 

this case (fig. 3a) as: 

model (a)       𝜆𝑚𝑑𝑙 𝐴 = 𝜆𝐶𝑇 + 𝜆𝐿𝑘 + 𝜆𝑀𝑈 + 𝜆𝐼𝐸𝐷 + 𝜆𝑃𝐵, 

𝜇𝑚𝑑𝑙 𝐴 = 𝜆𝑚𝑑𝑙 𝐴 (𝜆𝐶𝑇 𝜇𝐶𝑇 + 𝜆𝐿𝑘 𝜇𝐿𝑘⁄⁄ + 𝜆𝑀𝑈 𝜇𝑀𝑈⁄ + 𝜆𝐼𝐸𝐷 𝜇𝐼𝐸𝐷⁄ + 𝜆𝑃𝐵 𝜇𝑃𝐵⁄ )⁄ .        (3)  

At IEDA failure, but at its operational measurement channel (a case 1) the IEDC work model is 

reflected in fig. 3b. Its reliability indicators is 

model (b)      𝜆𝑚𝑑𝑙 𝐵 = 𝜆𝐶𝑇 + 𝜆𝐿𝑘 + 𝜆𝑀𝑈 + 𝜆𝑃𝐵 + 𝜆𝐼𝐸𝐷 + 𝜆𝑃𝐵, 

𝜇𝑚𝑑𝑙 𝐵 = 𝜆𝑚𝑑𝑙 𝐵 (
𝜆𝐶𝑇

𝜇𝐶𝑇
+

𝜆𝐿𝑘

𝜇𝐿𝑘
+

𝜆𝑀𝑈

𝜇𝑀𝑈
+

𝜆𝑃𝐵

𝜇𝑃𝐵
+

𝜆𝐼𝐸𝐷

𝜇𝐼𝐸𝐷
+

𝜆𝑃𝐵

𝜇𝑃𝐵
)⁄ .                                            (4) 

In the second case, when the y measurement channel of the autonomous protection is fault, the 

IEDC work model corresponds fig. 3c and its reliability indicators is 

model (c)      𝜆𝑚𝑑𝑙 𝐶 = (𝜆𝐶𝑇 + 𝜆𝐿𝑘 + 𝜆𝑀𝑈 + 𝜆𝑃𝐵) ∙ (𝑚 − 1) + 𝜆𝐼𝐸𝐷 + 𝜆𝑃𝐵, 

𝜇𝑚𝑑𝑙 𝐵 = 𝜆𝑚𝑑𝑙 𝐶 [(
𝜆𝐶𝑇

𝜇𝐶𝑇
+

𝜆𝐿𝑘

𝜇𝐿𝑘
+

𝜆𝑀𝑈

𝜇𝑀𝑈
+

𝜆𝑃𝐵

𝜇𝑃𝐵
) ∙ (𝑚 − 1) +

𝜆𝐼𝐸𝐷

𝜇𝐼𝐸𝐷
+

𝜆𝑃𝐵

𝜇𝑃𝐵
]⁄ ,                         (5) 

where m is a block number of the substation autonomous protection for section. m = 5 for bus 

section (fig. 1a) and m = 2 for transformer section (fig. 1b). 

Let's consider a mutual work of a and c models for an availability quotient determining 

according to fig. 2 as the worst in reliability sense option. 

The model of breaker circuit and PS block represents a redundant serial circuit, and its 

reliability indicators is 

𝜆𝑏𝑟.𝑐𝑖𝑟𝑐. = 𝜆𝐵𝐶 + 𝜆𝑃𝑆,   𝜇𝑏𝑟.𝑐𝑖𝑟𝑐. = 𝜆𝑏𝑟.𝑐𝑖𝑟𝑐. (𝜆𝐵𝐶 𝜇𝐵𝐶⁄ + 𝜆𝑃𝑆 𝜇𝑃𝑆⁄ )⁄ .                            (6) 

Then we define the Markov equations for reliability models of a protection complex a and c in 

state space S1-S4 (fig. 4) [3]. Here possible statuses are defined by digit at S, i.e. 4 states are 

possible. Up at a letter points to up state of the corresponding model, and Down - disabled.  

 

Fig. 3. Reliability block diagram for various component states. 

(a) The IEDA is available 

 

(b) The IEDC is available, IEDA 

measurement channel is operable 

 

(c) The IEDC is available, IEDA 

measurement channel is failing 

Link MU IEDA PBCT

CCT Link MU PB IED PB

m( Lk.) m(MU)

Measurement channel backup

Cm(CT) PBPB IED
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The corresponding state transition array given in (7). 

𝑻 =

[
 
 
 
1 − (𝜆𝑎 + 𝜆𝑐) 𝜆𝑎 𝜆𝑐                      0

𝜇𝑎 1 − (𝜇𝑎 + 𝜆𝑐)  0                        𝜆𝑐
𝜇𝑐
0

0
𝜇𝑐

1 − (𝜇𝑐 + 𝜆𝑎)
𝜇𝑎

𝜆𝑎
1 − (𝜇𝑎 + 𝜇𝑐)]

 
 
 

.                         (7) 

From Markov's principle that probabilities of boundary statuses do not change in further process 

of transition, i.e. TP = P,  where Pi is probability of i-th state, T  is state transition array, the 

equation (7) is written as 

[
 
 
 
−(𝜆𝑎 + 𝜆𝑐) 𝜇𝑎 𝜇𝑐                      0

𝜆𝑎 −(𝜇𝑎 + 𝜆𝑐)    0                      𝜇𝑐
𝜆𝑐
0

0
𝜆𝑐

−(𝜇𝑐 + 𝜆𝑎)   
𝜆𝑎

 
  𝜇𝑎

−(𝜇𝑎 + 𝜇𝑐)]
 
 
 

[

𝑃1
𝑃2
𝑃3
𝑃4

] = [

0
0
0
0

].                                (8) 

We replace the first equation on ∑ 𝑃𝑖 = 14
𝑖=1 , i.e. the sum of all states is equal to 1, and Markov’s 

equation system takes the form (9) where the penultimate column reflects probabilities of the 

corresponding states, 

[

1 1 1                     1
𝜆𝑎 −(𝜇𝑎 + 𝜆𝑐)    0                      𝜇𝑐
𝜆𝑐
0

0
𝜆𝑐

−(𝜇𝑐 + 𝜆𝑎)   
𝜆𝑎

 
  𝜇𝑎

−(𝜇𝑎 + 𝜇𝑐)

] [

𝑃1
𝑃2
𝑃3
𝑃4

] = [

1
0
0
0

],                                               (9) 

hence the probabilities corresponding to the states are equal 

𝑃1 =
𝜇𝑎𝜇𝑐

(𝜇𝑎+𝜆𝑎)(𝜇𝑐+𝜆𝑐)
 ,                                                                              (10) 

𝑃2 =
𝜆𝑎𝜇𝑐

(𝜇𝑎+𝜆𝑎)(𝜇𝑐+𝜆𝑐)
 ,                                                                              (11) 

𝑃3 =
𝜇𝑎𝜆𝑐

(𝜇𝑎+𝜆𝑎)(𝜇𝑐+𝜆𝑐)
 ,                                                                              (12) 

𝑃4 =
𝜆𝑎𝜆𝑐

(𝜇𝑎+𝜆𝑎)(𝜇𝑏+𝑐)
 .                                                                                (13) 

For the model of breaker controller and PS block, Markov’s equation system is constructed 

similarly. 

[

1 1 1                     1
𝜆𝐵𝐶 −(𝜇𝐵𝐶 + 𝜆𝑃𝑆)    0                      𝜇𝑃𝑆
𝜆𝑃𝑆
0

0
𝜆𝑃𝑆

−(𝜇𝑃𝑆 + 𝜆𝐵𝐶)   
𝜆𝐵𝐶

 
  𝜇𝐵𝐶

−(𝜇𝐵𝐶 + 𝜇𝑃𝑆)

] [

𝑃1
𝑃2
𝑃3
𝑃4

] = [

1
0
0
0

] ,                                  (14) 

whence 

 

 

𝑃1 =
𝜇𝐵𝐶𝜇𝑃𝑆

(𝜇𝐵𝐶+𝜆𝐵𝐶)(𝜇𝑃𝑆+𝜆𝑃𝑆)
 ,                                                                           (15) 

𝑃2 =
𝜆𝐵𝐶𝜇𝑃𝑆

(𝜇𝐵𝐶+𝜆𝐵𝐶)(𝜇𝑃𝑆+𝜆𝑃𝑆)
 ,                                                                           (16) 

𝑃3 =
𝜇𝐵𝐶𝜆𝑃𝑆

(𝜇𝐵𝐶+𝜆𝐵𝐶)(𝜇𝑃𝑆+𝜆𝑃𝑆)
 ,                                                                           (17) 

 
λа  

μа  

λа  

μа  

μc  

μc  

λc  

λc  

S1

S2

S3

S4

a-Up, c-Down

a-Down, c-Downa-Up, c-Up

a-Down, c-Up

Fig. 4. State space diagram of models a and c 
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𝑃4 =
𝜆𝐵𝐶𝜆𝑃𝑆

(𝜇𝐵𝐶+𝜆𝐵𝐶)(𝜇𝑃𝑆+𝜆𝑃𝑆)
 .                                                                           (18) 

Here, as well as in the previous case, the probability Pi is probability for the corresponding i-th 

state. The probability of the fourth state (𝑃4
(1) in the first (13) and 𝑃4

(2) in the second (18) case) is 

necessary for determination of protection set availability at failure of all model components. Then 

protection set availability from the measuring transformers to trip signal output is defined as 

𝐴𝑠𝑒𝑡 = (1 − 𝑃4
(1))(1 − 𝑃4

(2)).                                                                      (19) 

Since the centralized protection reserves m sets, the availability quotient 𝐴𝑀𝑑𝑙 of the entire 

protection module is equal 

𝐴𝑀𝑑𝑙 = (𝐴𝑠𝑒𝑡)
𝑚 .                                                                                         (20) 

 

4. Calculation of the Hardware Digital Protection Availability 
 

The failure rate values of the components are taken as the average from several sources, since 

the statistics of the actual digital protection is still insufficient to determine such values, and they 

are taken according to the statistics of electronic equipment involved in industrial control 

processes [4–9]. The reliability indicators of individual model components on this basis are 

summarized in Table 1, where in the last column are these average values. For the process bus, λ is 

given in parentheses with regard to the switches.  

 

Table 1 

Component failure rates 

Component λi, year-1 λi, year-1 λi, year-1 λi, year-1 λi, year-1 λi, year-1 λe, year-1 

IED 0.00833 0.00100 0.00966 0.00667 0.00150 0.00330 0.005077 

Software 0.00444      0.00444 

Networks 0.00333 0.00300     0.003165 

PT, CT 0.00200      0.002 

Opt. PT, CT 0.00333   0.003   0.003165 

Wire 0.00020     0.01000 0.0051 

BC  0.01000 0.00333 0.00667 0.00077 0.02280 0.008714 

PB  0.01000  0.01000   0.01(0.07) 

PS   0.00912  0.03924  0.02418 

Opt. fiber   0.00333   0.01000 0.006665 

SW  0.01000 0.00869 0.02000  0.01000 0.01217 

Server   0.06993    0.06993 

Splitter   0.00947    0.00947 

CB 0.01000   0.01000   0.01 

MU 0.00200 0.01000   0.02545 0.00330 0.010188 

Source [4] [5] [6] [7] [8] [9]  

 

The equivalent failure rates of the models (a and c) are summarized in Table 2, with μ2h = 8760/2 

= 4380 year-1; μ48h = 8760/48 = 182.5 year-1. The failure rate of the breaker controller λBC = 0.008714 

year-1. 

Regarding the intensity of restoration (repair or replacement of the failed component), in the 

known literature one of the following approaches is used, or the repair time is taken at 2 hours 

[11], or the replacement time is 48 hours [4-9]. In the latter case implies delivery if necessary to 

replace the failed module. One from cases, when all values of the components λi are taken equal to 

0.0701 year-1, is based on the time between failures of 125 thousand hours [11]. 

It can be seen from the first half of the Table 2, the transition from traditional devices and 

measurement circuits to optoelectronic slightly increases the failure rate. It is clear that an increase  

in the failure rates of the components to 0.0701 year-1 increases the equivalent intensities of the 
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models by 3-4 times. 

Table 3 shows the failure probability of the protection set 𝑃4
(1), the probability of failure of the 

switch controller set 𝑃4
(2) and the protection module availability 𝐴𝑀𝑑𝑙 for the 35 kV busbar section 

and for the transformer. 

 

Table  2 

Model reliability indicators 

Model λ35кВ,  year-1 λтр.,  year-1 Model λ35кВ,  year-1 λтр.,  year-1 

According to table 1,  measurements by 

traditional transformers, wire communication 

According to table 1,  measurements by 

optotransformers, optical fiber communication 

а 0.092364 0.092364 а 0.095094 0.095094 

c 0.511514 0.0249651 c 0.525164 0.255112 

According to [11],  measurements by traditional 

transformers, wire communication 

According to [11],  measurements by 

optotransformers, optical fiber communication 

а 0,3504 0,3504 а 0,3504 0,3504 

c 1.5416 0.7007 c 1.5416 0.7007 

 

From Table 3, it can be seen that, in general, the approach proposed in [1] ensures sufficient 

reliability of the digital protection operation.  

 

Table 3 

Module availability in various conditions 

Measurements by traditional transformers, wire communication 

Para-

metr 

According to table 1 According to [11] 

Bus 35 kV Transformer Bus 35 kV Transformer 

with μ-1= 2 

h 

with μ-1= 48 

h 

with μ-1= 2 

h 

with μ-1= 48 

h 

with μ-1= 2 

h 

with μ-1= 48 

h 

with μ-1= 2 

h 

with μ-1= 48 

h 

𝑃4
(1)

 2.46237E-09 1.41384E-06 
1.20187E-

09 
6.91033E-07 

2.81449E-

08 
1.60518E-05 

1.27951E-

08 
7.32948E-06 

𝑃4
(2)

 1.09830E-11 6.32514E-09 
1.09830E-

11 
6.32514E-09 

2.56138E-

10 
1.47427E-07 

2.56138E-

10 
1.47427E-07 

𝐴𝑀𝑑𝑙 0.9(7)876 0.9(5)2899 0.9(8)757 0.9(5)860 0.9(6)858 0.9(4)190 0.9(7)739 0.9(4)850 

Measurements by optotransformers, optical fiber communication 

Para-

metr 

According to table 1 According to [11] 

Bus 35 kV Transformer Bus 35 kV Transformer 

with μ-1= 2 

h 

with μ-1= 48 

h 

with μ-1= 2 

h 

with μ-1= 48 

h 

with μ-1= 2 

h 

with μ-1= 48 

h 

with μ-1= 2 

h 

with μ-1= 48 

h 

𝑃4
(1)

 2.60279E-09 1.49434E-06 
1.26445E-

09 
7.26985E-07 

2.81449E-

08 
1.60518E-05 

1.27951E-

08 
7.32948E-06 

𝑃4
(2)

 1.09830E-11 6.32514E-09 
1.09830E-

11 
6.32514E-09 

2.56138E-

10 
1.47427E-07 

2.56138E-

10 
1.47427E-07 

𝐴𝑀𝑑𝑙 0.9(7)869 0.9(5)249 0.9(8)745 0.9(5)853 0.9(6)858 0.9(4)190 0.9(7)739 0.9(4)850 

 A record of the form 0.9 (8) 437 indicates that after zero there are 8 nines followed by other digits, it’s 

437 in the example, i.e. the record would look like 0.99999999437 with a wide table column. 

 

 

A certain decrease in the availability of its work causes an increase in the number of redundant 

devices (6 protection devices per 35 kV bus section) and recovery time (2 hours or 48 hours). 

However, even in the worst conditions, protection availability with redundancy is within 

acceptable limits. With the known repair rates and the famous formula, 1 − 𝐴𝑀𝑑𝑙 = 𝜆 (𝜆 + 𝜇)⁄  the 



M. Uspensky 
RELIABILITY ASSESSMENT OF THE DIGITAL RELAY PROTECTION 
SYSTEM 

RT&A, No 3 (54) 
Volume 14, September 2019 

 

16 

failure rate of the protection module λM is defined as 

𝜆𝑀 =
𝜇𝑟𝑟(1−𝐴𝑀𝑑𝑙)

𝐴𝑀𝑑𝑙
,                                                                 (21) 

where 𝜇𝑟𝑟 is specified repair rate. Then in the worst case, with λi = 0.0701 and μ48h = 182.5 𝜆𝑀 = 

0.014784 for 35 kV buses and 𝜆𝑀 = 0.0027375 for a transformer. Here the number of autonomous 

protection blocks of a substation segment m is reflected more clearly. 

 

5. Conclusions 
 

In modern electric power industry, digital protection systems are widely used. One of 

important indicators is the reliability of its functioning. Its reliability assessment, in contrast to 

traditional relay protection, is performed by analogy with digital devices in other industries. In the 

given work, the reliability indicators of the original backup structure for a specific digital 

protection system were assessed, at that its hardware was assessed without taking into account the 

software reliability. The software reliability, unlike the technical part, does not wear out over time, 

but only improves. The study takes into account traditional measuring transformers with the 

transmission of information in analog form by wire and optoelectronic measuring transformers 

with information converting in digital form via optical fiber to the relay hall. The assessment did 

not include the circuit breaker reliability, as external to the protection component. Reliability is also 

not taken into account associated with communication traffic. Reliability indicators of individual 

protection components are mainly taken from similar electronic digital devices with built-in 

diagnostics, which is used in other industries, as there are not enough statistics on digital 

protection components. 

Calculations of the availability for the considered protection system show that the proposed 

scheme with the stipulated conditions provides an acceptable level of the availability for its 

operation. It should be noted that the availability to some extent depends on the number of 

reserved sets m by the central protection and the recovery time trr. The measuring circuit 

redundancy has a small effect, worsening this indicator with an increasing m. It can be assumed 

that the accuracy of the current measurement, determined by the errors of all replacement sets, 

more affects on this parameter. The transition to fiber optic technology does not have any 

noticeable effect in terms of reliability. In general, the calculations show values of the availability 

for protection complex in the worst case at four nines after the point, which meets the 

requirements for relay protection. 
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Abstract 

 

Double fed induction machines, made on the base of wound rotor machines, thanks to 

the rapid progress in the converter equipment (due to widespread use of fully 

controlled thyristors and power transistors) nowadays are widely used as generators 

(wind power and small hydropower) as well as the motor-where relatively small speed 

adjustment range (30-40%) is required, by restrictions of the frequency inverter on the 

installed capacity. There are cases when the technology of their application as a 

generator and motor mode imposes their long-term operation in sub-synchronous 

rotational speed, i.e, without speed control. In this case, it is proposed to use only the 

rectifier side of the frequency inverter feeding the rotor winding of a double fed 

induction machines, switch into a synchronous mode of operation. This will greatly 

increase the delivery of reactive power into the grid and use the generator more 

efficiently. Presented a developed mathematical model of double fed induction 

machines, which allows to study of all operation modes of double fed induction 

machines in single set-up–by immediate designation (sub- and super-synchronous 

speed control); in synchronous generator mode with a significant reactive power output 

into the grid, as well as in squirrel cage induction generator mode. 

   

Keywords: double fed machine, synchronous operation mode, simulation, method of 

conversion. 

 
 

Introduction 
 

In recent years the double fed asynchronous machines (DFAM) are widely used as the 

generators of wind power plants [1, 2, 3].  They are also recommended for using as the generators 

in hydraulic units of small hydroelectric power plants (HPP) [4,5].   

Range of their application as the motors is also extensive: they are in demand where the 

rotational frequency of drive mechanism needs to be controlled in relatively small ranges (30-40% 

of the rated one) under the limited power of frequency converter, supplying the rotor's winding of 

DFAM.  

However, the cases often occur depending on the requirements of either electric power 

generation technology with DFAM operating in generator mode or the technology of drive 

mechanism operating with DFAM as a motor, when within a long time it is not required to control 

the rotational frequency of either turbine (driving motor) or operating mechanism.  For example, 

when the hydraulic units of small HPSs are equipped with propeller turbines, it needs to control 

the rotational frequency of generator with essential increase (or decrease) of the water flow.  

 

mailto:gasanovalg@mai..ru
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Exactly with this change of water flow (discharge) the control of rotational frequency of the 

hydraulic unit's shaft proportionally with the change of this water discharge by force of AMDP 

allows raising the efficiency of hydraulic turbine, and in addition to that the output power of 

hydraulic unit supplying the electric power network. When water discharge is constant (and this 

period may go on for a long time), it is reasonable the rotational frequency to remain constant. 

With frequency converter in rotor's circuit of AMDP it can be implemented by the following 

ways: either to remove the frequency converter from the operating mode, and then to short-circuit 

the rotor windings of DFAM, thereby this machine will be converted into squirrel-cage 

asynchronous generator, or to leave the frequency converter in operation with adjusting it so, that 

the rotational frequency of generator will be nearly equal to synchronous one. In the first case it is 

clear that the power factor of generator will be the low one, i.e. generator will consume the 

significant reactive power from the network. In the second case, the power factor will be in the 

limits of cosφ≈1, (i.e. generator doesn't consume, but also doesn't output the reactive power).. 

 

1. Statement of a problem  
 

To increase the output of reactive power into network a rotor winding of DFAM is offered to 

connect to a power source of direct current, i.e. to convert DFAM into operating mode of 

synchronous machine. This will allow providing with reactive power the load center of power 

system, to which the DFAM is connected, in addition the machine can be loaded up to full rated 

power. 

The electrical schematic diagram of conversing of DFAM with frequency converter in rotor 

circuit into synchronous operating mode can be presented in the view, shown in Fig.1:  

 

 
 

Figure.1 Electrical diagram of conversing of DFAM with frequency converter in rotor circuit 

into synchronous operating mode 

 

Here WT–is a driving turbine (e.g. water one), it is aggregated by force of the gearbox Gb 

with the shaft of generator, carried out on the basis of double fed machine DFAM, Tr–a three-

winding transformer, supplying the stator and rotor windings of DFAM, En–electric power 

network (system), I-R and R-I–inverter–rectifier, carried out on the basis of fully controlled IGBT–

transistors, or GTO–thyristors, Sk1, Sk2–switching keys (switches). 

The circuit diagram of connection of rotor windings of asynchronous machine with phase-

wound rotor, shown in Fig.1, is known from [6], the originality of this diagram lies in the fact that, 

the rotor windings are suppled in a synchronous mode from a link of direct current of frequency 

converter, assigned for controlling of rotational frequency of aggregate in operating mode 

controlled from the rotor side of DFAM. 
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2. Mathematical model for study  
 

Let's demonstrate the performance of above proposal on previously developed by us the 

mathematical model of DFAM (system is supplemented with the expressions for active and 

reactive powers of stator and rotor) [1]. Equations of DFAM, frequency controlled from the rotor 

side, are presented in the view [in relative units]: 

 

 𝑝𝛹𝑑𝑠 = −𝑈𝑠 ⋅ 𝑠𝑖𝑛𝜃 + 𝜓𝑞𝑠(1 − 𝑠) − 𝑟𝑠 ⋅ 𝑖𝑑𝑠
𝑝𝛹𝑞𝑠 = 𝑈𝑠 ⋅ 𝑐𝑜𝑠𝜃 − 𝜓𝑑𝑠(1 − 𝑠) − 𝑟𝑠 ⋅ 𝑖𝑞𝑠

𝑝𝜓𝑑𝑟 = −𝑘𝑢𝑟 ⋅ 𝑠𝑖𝑛(𝑘𝑓𝑟 ⋅ 𝜏) − 𝑟𝑟 ⋅ 𝑖𝑑𝑟

𝑝𝜓𝑞𝑟 = ±𝑘𝑢𝑟 ⋅ 𝑐𝑜𝑠(𝑘𝑓𝑟 ⋅ 𝜏) − 𝑟𝑟 ⋅ 𝑖𝑞𝑟

𝑝𝑠 =
1

𝑇𝑗
𝑚
1

𝑇𝑗𝑒𝑚𝑊𝑇
𝑝𝜃 = 𝑠
𝑚𝑒𝑚 = 𝜓𝑑𝑠 ⋅ 𝑖𝑞𝑠 − 𝜓𝑞𝑠 ⋅ 𝑖𝑑𝑠
𝑝𝑠 = 𝑈𝑑𝑠 ⋅ 𝑖𝑑𝑠 + 𝑈𝑞𝑠 ⋅ 𝑖𝑞𝑠
𝑞𝑠 = 𝑈𝑞𝑠 ⋅ 𝑖𝑑𝑠 − 𝑈𝑑𝑠 ⋅ 𝑖𝑞𝑠
𝑝𝑟 = 𝑈𝑑𝑟 ⋅ 𝑖𝑑𝑟 + 𝑈𝑞𝑟 ⋅ 𝑖𝑞𝑟
𝑞𝑟 = 𝑈𝑞𝑟 ⋅ 𝑖𝑑𝑟 − 𝑈𝑑𝑟 ⋅ 𝑖𝑞𝑟
𝑖𝑑𝑠 = 𝑘𝑠 ⋅ 𝜓𝑑𝑠 − 𝑘𝑚 ⋅ 𝜓𝑑𝑟
𝑖𝑞𝑠 = 𝑘𝑠 ⋅ 𝜓𝑞𝑠 − 𝑘𝑚 ⋅ 𝜓𝑞𝑟
𝑖𝑑𝑟 = 𝑘𝑟 ⋅ 𝜓𝑑𝑟 − 𝑘𝑚 ⋅ 𝜓𝑑𝑠
𝑖𝑞𝑟 = 𝑘𝑟 ⋅ 𝜓𝑞𝑟 − 𝑘𝑚 ⋅ 𝜓𝑞𝑠
𝑝𝑡𝑜𝑡 = 𝑝𝑠 + 𝑝𝑟
𝑞𝑡𝑜𝑡 = 𝑞𝑠 + 𝑞𝑟 }

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 (1) 

 

In the system of equations (1) the following designations: Ψds, Ψqs, Ψdr, Ψqr  – are accordingly 

the flux linkages of stator and rotor circuits on direct and quadrature axes; ids, iqs, idr, iqr  – currents of 

stator and rotor windings on d and q axes; Us – amplitude of voltage applied to the stator winding 

of machine; kur, kfr – amplitude and frequency of controlled by frequency converter voltage, 

supplied to the rotor windings of machine; s – slip of the machine equal to s=1 ωr; ωr – angular 

frequency of revolution; θ – angle between the axis of rotor and synchronously rotating axis (with 

speed 1s ); mwт, mem – driving torque of the driven motor (e.g. water turbine) and 

electromagnetic torque of DFAM; Uds= Us·sin(θ) and Uqs=Us·cos(θ) – components of stator voltage 

on d and q axes;  Udr= kur·sin(kfr·τ), Uqr=kur·cos(kfr·τ) – components of rotor voltage on d and q axes; 

ps, pr – values of active powers of stator and rotor circuits; qs, qr – values of reactive powers of stator 

and rotor; ptot, qtot – total active and reactive powers of DFAM; Tj – inertia constant of the rotating 

parts of driving motor and DFAM; τ=314·t – synchronous time [in rad.].  

Furthermore, the factors ks, kr and km are determined from the following correlations: 

 

 𝑘𝑠 =
𝑥𝑟

𝑥𝑟⋅𝑥𝑠−𝑥𝑚
2 ; 𝑘𝑟 =

𝑥𝑠

𝑥𝑟⋅𝑥𝑠−𝑥𝑚
2 ; 𝑘𝑚 =

𝑥𝑚

𝑥𝑟⋅𝑥𝑠−𝑥𝑚
2  (2) 

 

DFAM parameters: rs, rr – resistances of stator and rotor windings; xs, xr – full inductive 

reactances of stator and rotor circuits; xm – mutual induction reactance between stator and rotor 

circuits (they are the analogous of corresponding inductivities). 

It should be noted that the system of equations (1) is written in d, q, axes, rotating with rotor 

speed ωr of the machine. Exactly this circumstance allows realizing in one structure of 

mathematical model the operating modes of all conversions of double fed machine into squirrel-

cage asynchronous machine, synchronous machine with the implementation of excitation system 
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on one of axes (d axis). 

The calculations have been performed for DFAM with the following parameters: Pn=110 kW; 

Mn=727.25 Nm; cosφ=0.9; η=0.95; Ubase=311 V; Ibase=285 A; Zbase=1.09 ohm; J=0.86 kgm2.  The winding 

data (in relative units) rs=0.01; rr=0.03; xs=4.878; xr=4.9; xm=4.8; xσs=0.078; xσr=0.1 (resistances and 

reactances of leakage of stator and rotor windings).  

Algorithm of solution (Mathcad program) with the numerical data is presented below: 

 

 

𝑫(𝝉, 𝒀) =

[
 
 
 
 
 
 

−𝟏 ⋅ 𝒔𝒊𝒏(𝒀𝟔) + 𝒀𝟐 − 𝒀𝟓 ⋅ 𝒀𝟐 − 𝟎. 𝟎𝟏 ⋅ (𝟓. 𝟔𝟗 ⋅ 𝒀𝟏 − 𝟓. 𝟓𝟔 ⋅ 𝒀𝟑)

𝟏 ⋅ 𝒄𝒐𝒔(𝒀𝟔) − 𝒀𝟏 + 𝒀𝟓 ⋅ 𝒀𝟏 − 𝟎. 𝟎𝟏 ⋅ (𝟓. 𝟔𝟗 ⋅ 𝒀𝟐 − 𝟓. 𝟓𝟔 ⋅ 𝒀𝟒)

−𝒌𝒖𝒓 ⋅ 𝒔𝒊𝒏(𝒌𝒇𝒓 ⋅ 𝝉) − 𝟎. 𝟎𝟑 ⋅ (𝟓. 𝟔𝟔 ⋅ 𝒀𝟑 − 𝟓. 𝟓𝟔 ⋅ 𝒀𝟏)

±𝒌𝒖𝒓 ⋅ 𝒄𝒐𝒔(𝒌𝒇𝒓 ⋅ 𝝉) − 𝟎. 𝟎𝟑 ⋅ (𝟓. 𝟔𝟔 ⋅ 𝒀𝟒 − 𝟓. 𝟓𝟔 ⋅ 𝒀𝟐)

𝟎. 𝟎𝟎𝟓 ⋅ 𝒎[𝒀𝟏 ⋅ (𝟓. 𝟔𝟗 ⋅ 𝒀𝟐 − 𝟓. 𝟓𝟔 ⋅ 𝒀𝟒) − 𝒀𝟐 ⋅ (𝟓. 𝟔𝟗 ⋅ 𝒀𝟏 − 𝟓. 𝟓𝟔 ⋅ 𝒀𝟑)]𝑾𝑻
𝒀𝟓 ]

 
 
 
 
 
 

 (3) 

 

where: Y1=Ψds; Y2=Ψqs; Y3=Ψdr; Y4=Ψqr; Y5=s; Y6=θ. The initial values of all variables Y0=0, besides 

Y05=1  (slip s0=1). 

 

3. Study of Double Fed Induction Machine in Synchronous Operation Mode 
 

As it was mentioned above, in a long-time operating mode two options are possible in a 

range near synchronous rotational frequency. In the first option the frequency converter can be 

removed from the operation (Fig.1) and rotor windings short-circuited, thus DFAM converts into 

squirrel-cage asynchronous generator. In this case, equations (3) and (4) of the system (1) will 

appear as: 

 𝒑𝝍𝒅𝒓 = −𝒓𝒓 ⋅ 𝒊𝒅𝒓
𝒑𝝍𝒒𝒓 = −𝒓𝒓 ⋅ 𝒊𝒒𝒓

} (4) 

Since Udr  and Uqr, kur and kfr are equal to zero, the equations for pr and qr will also disappear 

from the system (1) (i.e. equations 9 and 10). 

In the second option, which is the most reasonable one, DFAM could be converted into the 

synchronous generator, thereto in the system of equations (1) the same equations (3) and (4) should 

be written as: 

 𝒑𝝍𝒅𝒓 = 𝑼𝒅𝒇 − 𝒓𝒅𝒇𝒊𝒅𝒓
𝒑𝝍𝒒𝒓 = −𝒓𝒒𝒓 ⋅ 𝒊𝒒𝒓

} (5) 

That is, the system (1) as a whole is transformed into the Park-Gorev equations with the 

implementation of excitation Udf  on direct axis d of the machine .   

According to Fig.1, a constant voltage is supplied to start Udf  of rotor winding of phase A, 

and to joined together the starts of phases B and C, and the ends of these windings are joined 

together (zero point), i.e. phases B and C are connected in parallel to each other and serially with 

the phase A. When aligning the direct axis d with axis of winding of A phase, it can be considered 

with a certain error, that windings’ axes of B and C phases are on the quadrature axis q.  

In consequence of such connection the resistances rdf = rdr of the expression (4) should be 

increased by 1.5 times, i.e. rrf =rdr=1.5·rr, and the resistance rqr will be equal to rrq=2·rr. With a 

fractional error it can be considered that the leakage reactances of rotor circuits xσdr=1.5·xσr change 

in the same ratio; xσqr=2·xσr. This naturally will entail the changes of rotor circuits' impedances xdr  

and xqr, and values ks, kr and km in the system of equations (1).  

With taking into account the parameters of machine and circuit diagrams of rotor winding 

according to Fig.1 the connection of currents with flux linkages in this mode will appear in the 

following digital form: 

 𝒊𝒅𝒔 = 𝟒. 𝟓 ⋅ 𝝍𝒅𝒔 − 𝟒. 𝟑𝟔 ⋅ 𝝍𝒅𝒓

𝒊𝒒𝒔 = 𝟑. 𝟕 ⋅ 𝝍𝒒𝒔 − 𝟑. 𝟓𝟓 ⋅ 𝝍𝒒𝒓

𝒊𝒅𝒓 = 𝟒. 𝟒𝟑 ⋅ 𝝍𝒅𝒓 − 𝟒. 𝟑𝟔 ⋅ 𝝍𝒅𝒔

𝒊𝒒𝒓 = 𝟑. 𝟔𝟏 ⋅ 𝝍𝒒𝒓 − 𝟑. 𝟓𝟓 ⋅ 𝝍𝒒𝒔}
 

 

 (6) 
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Let's demonstrate the above calculations on the same structure of mathematical model of 

DFAM.  

There are presented in the Fig.2 (а, b, c, d, e, f, g, h) accordingly the electromagnetic torque of 

the machine mem, its rotational frequency ωr, active and reactive powers of generator ps and qs and 

stator's currents ids and iqs and rotor's ones idr and iqr. 

 

 
 

 

 
Figure.2 The fluktogrammas of change of double fed asynchronous machine's operating conditions 

when operating in synchronous mode. 

 

Startup is carried out with taking into account the friction torque equal to mwт=0.01 (i.e. 

practically without load) in the time period of from τ=0 to τ=1000 radian. Wherein the rotation 
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frequency ωr=0.999. From τ=1000 rad. to τ=2000 rad. the machine operates in asynchronous 

generator mode, with short-circuited rotor's windings when the driving torque of driven motor 

(turbine) is equal to mwт= 0.5 (minus sign indicates generator mode). In this mode the 

electromagnetic torque mem= 0.5  (Fig.2, a), rotational frequency ωr=1.0155 (Fig.2, b), (ωr>1which 

indicates the machine operation in generator mode). Active and reactive powers ps and qs equal to 

ptot and qtot in this mode reach the values ps= 0.496 and qs=0.276, and the reactive power is positive, 

i.e. generator consumes reactive power from the network (Fig.2, c and d).  Stator currents ids and iqs 

and rotor ones idr and iqr in this mode are variables, the amplitude of stator currents does not 

exceed the values ids=iqs=0.566, and the rotor ones idr=iqr=0.508 (Fig.2, e, f and i, j).  

On the fluktogrammas of the same figure in the time range of from τ =2000 rad. to τ =3000  

rad. conversion into  synchronous operating mode of the machine is carried out, i.e. equations (2) 

and (3) of the system (1) are formed according to the ratios (4) and (5).  In this range the drive 

torque remains the same, i.e. mwт= 0.5, according to it mem = 0.5, rotational frequency is strictly 

equal to ωr=1, which indicates the synchronous mode. For this machine the constant value of 

excitation voltage in the equations (4) is chosen to be equal to Udf  = 0.04.  In this process the active 

power value is equal to ps= 0.495 (Fig.2, c) and reactive one is qs= 0.512 (Fig.2, d). That is, the 

machine operates in synchronous mode with output to the network both an active and the reactive 

powers, and the value of reactive power is a little bit more than active one. Power factor has 

capacitive character and reaches the value of cosφst≈0.7. 

In synchronous mode the stator and rotor currents (Fig.2, e, f) does not exceed the 

permissible limits. Excitation current idr=idf sets at a level of idr=idf= 0.889 (Fig.2, g), and current idr in 

this mode is naturally equal to iqr=0 (Fig.2, h). It must be noted that operating mode of DFIM in 

near synchronous mode, values of the control parameters will be kur=kfr=0.01 when mwт=0.5. 

The electromagnetic torque sets at the value of  mem= 0.5, the rotational frequency is equal to 

ωr=1.01, the active and reactive powers are accordingly equal to ptot= 0.49, qtot ≈ 0.03. Thus, DFIM 

operates in a design mode, and output of reactive power is almost equal to zero, i.e. generator 

operates with power factor equal to cosφ ≈1. 

Summarizing the above-stated, the following algorithm of DFAM operation can be 

recommended under the long-term operating conditions (month, season) in a range of near 

synchronous speed for the average values of driving torque of driven motor: when a considerable 

reactive power output to network is required, AMDP should be transfered into operating mode of 

a purely synchronous generator with excitation from controlled rectifier (Fig.1), in this process the 

inverter (I-R) is removed from the circuit; when DFAM operating on partially compensated with 

reactive power the electric power network it is necessary to leave the circuit of frequency converter 

unchanged; to secure the near synchronous rotational frequency by the values of the control 

parameters (kur=kfr), in this process the reactive power (cosφ≈1) isn't output to the network and isn't 

consumed from the network; and finally with significant compensation of reactive power to the 

electric network it is necessary to remove completely the frequency converter from the operating 

mode and to convert DFAM into squirrel-cage asynchronous generator mode, in this case the 

reactive power will be consumed from the network. 

 

Conclusions 
 

1. The presented notation of the equations of controlled double fed asynchronous machine 

allows relatively easy studying of the mathematical model of DFAM in one structure, conversion 

of the machine into the modes of synchronous generator and squirrel-cage asynchronous 

generator. 

2. When DFAM operating on the uncompensated electric power networks and under the 

appropriate processing conditions it is advisable to convert its operation into a synchronous mode, 

connecting and powering the rotor windings according to the diagram on Fig.1 from the rectifier 
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part of frequency converter. This allows significant increasing of output of reactive power by 

generator into the network, while the value of the leading cosφ constitutes cosφ ≈0.7. 
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Abstract 
 

One of the basic problems of development of intellectual control systems of 

maintenance service and repair of the equipment and devices of electro power systems 

is increase of reliability of methodical recommendations. The risk of the erroneous 

decision exists, first of all, because of presence among statistical data of operation of 

gross blunders, abnormal values. If to that still to add difference not casual samples 

statistical data of operation from theoretical representative samples random variables 

from a general data set, to consider multivariate character of statistical data of operation 

and absence of methods of the analysis small samples multivariate data, difficulty of the 

decision of this problem becomes obvious. The method which on the basis of fiducially 

the approach and theories of check of statistical hypotheses is capable to reveal 

abnormal realizations is developed. And application the express train-methods of 

calculation of critical fiducially values an interval for the chosen significance value, 

allows to solve this problem without special tables and the COMPUTER. 

 

Keywords: Reliability, faultlessness, statistical data, methods, fiducially approach, 

abnormal realizations, the importance. 

 

 

 

I. Introduction 
 

Statement of the problem  
Development of computer technologies, transition from information to intellectual systems, 

an objective quantitative estimation of individual reliability, profitability and safety of objects of 

electro power systems are indissolubly connected with the requirement of a safety and a 

faultlessness of initial data [1]. 

The problem of safety of data as a whole can be solved by reservation of objects of a database 

with the closed access [2]. Presence of abnormal data, i.e. infringement of faultlessness, caused 

mainly human factor and is concrete mistakes of operators. Process of recognition of abnormal 

data is many-sided and, first of all, depends on type of the equipment and devices that is why 

demands development of specialized methods of the statistical analysis. The general, thus, 

multidimensionality and small number of statistical data of operation is. In clause the analysis of 

the traditional approach is resulted, inadmissibility of neglect marked by conditions of application 

of existing criteria, the new method offered. The method based on fiducially approach, the theory 

of check of statistical hypotheses, express train-methods of calculation of critical values of analyzed 

parameters. 
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II. Methods of recognition of abnormal data in small samples. 
 

In [3,4,5] as a result of the analysis for number of realizations of sample nS≤10 are allocated as the most 

effective three methods: N.V.Smirnov, Shovenes and Dickson. We shall take advantage of this 

recommendation.  

First of all, we shall note, that these three methods assume all, that considered small samples concern to 

representative samples of set of normally distributed random variables. It is known, that characteristic for EPS 

small samples of statistical data about reliability are received from set of multivariate data, by classification of 

this set on some versions of an attribute, for example, on a class of a pressure. And, as it is often done, we 

"shall close eyes" to a degree of their conformity to the normal law. And three criteria are chosen because the 

last century B.V.Gnedenko recommended to apply at check of hypotheses not less than two criteria [6]. 

It is established [7], that each of criteria usually reflects the importance of concrete statistical property of 

sample. We shall result a known example: samples can differ casually on size of average arithmetic value of 

realizations and essentially to differ on disorder and on the contrary.  

We shall consider sample of monthly average values of the charge of the electric power (W) for own 

needs (o.n.) boiler installations of power units 300 МWt on gas black oil fuel, in %, with number of 

realizations n=5. It {30,4; 2,38; 2,14; 2,44; 2,48}. We shall estimate with a significance value α =0,1 presence of 

abnormal realizations. For this purpose: 

 range realizations Won in ascending order. Sample gets a kind {2,14; 2,32; 2,44; 2,48; 3,04}; 

 define average arithmetic value of realizations М*(Won)=2,5% 

 define average quadratic value of realizations of sample *(Won)=0,318% 

 N.V Smirnov's criterion provides calculation: 

 the greatest deviation Δ*Won=0,54% 

 Statistics 
*

* on
*on

on

(W )
(W ) 1,7(in  relative units)

(W )


  


  

 definition of critical value ρ0,1=1,79 

As ρ*(Won)<ρ0,1, with a significance value even α=0,1, the assumption of presence of abnormal 

realizations is rejected 

Criterion Shovenes also assumes calculation of statistics ρ*(Won). Further: 

 on tabulated values of integrated function of standard normal distribution value of function is defined 

F[ρ*(Won)]=0.955 

 Shovenes statistics is calculated Sh*(Won)=2·n{1- F[ρ*(Won)]}=0.45 

 critical value of statistics Shc is defined. For α=0,1 and n=5 value Shc=0.40 

 Since Sh*(Won)>Shc, that is accepted the assumption of presence of abnormal realization Won,5=3,04% 

 The criterion of Dickson provides: 

 calculation of statistics r(Won)=max{r1(Won); r2(Won)} 

where:    𝑟1(𝑊𝑜𝑛) =
𝑊𝑜𝑛,2−𝑊𝑜𝑛,1

𝑊𝑜𝑛,5−𝑊𝑜𝑛,1
=

2,32−2,14

3,04−2,14
= 0,2  

    𝑟2(𝑊𝑜𝑛) =
𝑊𝑜𝑛,5−𝑊𝑜𝑛,4

𝑊𝑜𝑛,5−𝑊𝑜𝑛,1
=

3,04−2,48

3,04−2,14
= 0,62 

 definition of critical value rk. For α=0,1 and n=5 value rc=0.40 

 comparison r(Won) and rc. As r(Won) is more rc, that is accepted the assumption of presence of abnormal 

supervision Won,5.  

 Thus, from three criteria two confirm presence of abnormal supervision. 

 

III. The recommended method. 
 

 The recommended method based on criterion of recognition of the importance of distinction 

of parameters of reliability calculated on set of multivariate data and not casual sample of this set 

[5]. For example, there is some data set about reliability of switches 110-500 kV. After it possible to 

estimate average duration idle time in emergency repair (as average temperature on hospital). We 

shall assume, that us switches 110 kV interest. In the first this sample not random, and in the 

second, on former, includes multivariate data (as average temperature of patients in surgical 

branch). These comments in brackets we, first of all, wish to pay attention to that fact, that both to a 

data set, and to sample it is impossible to apply methods of recognition of the mistakes, stipulated 
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for one-dimensional data representative samples. 

 The enlarged block diagram of algorithm of the control of a faultlessness of sample is present 

on fig.1. 

 

1       8 

 

 

 
 

2       9 

 

 

 
 

3       10   yes     11       no 

 

 
 

 

4       7   yes         no 

 

 

 

 
 

5       6        yes 

 

 
           no 

 

 
Fig.1. The integrated block diagram of algorithm of recognition of abnormal realizations 

  

 The algorithm (sequence of calculations) provides: 

 

The block 1. As initial data sample of random variables (parameters) in volume n serves. Such sizes 

can be time of a finding in emergency repair, monthly average relative value of the charge of the 

electric power for own needs of boiler installation of the power unit, size of the fifth harmonic on 

trunks of substation, etc. It is necessary to evaluate the accuracy of these data; 

 

The block 2. First of all, it is necessary to arrange these data in ascending order (to range); 

The block 3. Average arithmetic value of realizations is calculated. We shall designate it as M*(P); 

The block 4. Boundary values of fiducially an interval are defined [М(П);М(П) ].They can be 

calculated a method of imitating modelling on the COMPUTER for any significance value [7]. But, 

is much easier for of some the parameters calculated as an average arithmetic random variables, or 

the probability of occurrence of event, or relative duration of a condition, boundary values 

fiducially an interval to define the express train-method under the formula approximating 

interrelation of critical values, a significance value and number of realizations [8]. For example, for 

M*(P) the top boundary value fiducially interval is defined under the formula 
*М(P) М (P)(1 A n)  , and the bottom boundary value - under the formula 

Recognition of abnormal realizations. 

Initial data 
Calculation  

 

Ranking of realizations 

{Pi}n 
  

Definition of an average  

values М*(P) 
НН0 НН1 

Calculation of boundary fiducially 

values an interval 

[ ] 

 

 

 Definition maximal 

deviations [δP]max 
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*М(P) М (P)(1 А n)  . If n=5, that for α=0,1; 0,05 and 0,01 relative deviation A n  be 

accordingly equal 42,4%; 50,4 and 63,5%; 

The block 5. The maximal relative deviation 1-th and n-th realizations of random variables of 

sample from average value under the formula pays off: [δP]max=max{δ(P1);δ(P2)}, where δP1=|[P1-

М*(P)]|; δPn=|[Pn-М*(P)]|; 

The block 6. The parity of realization Pm and M*(P) is checked Here Pm realization on which the size 

[δP]max defined. If Pm>M*(P) in the block 7 check of an accessory of realization Pm to set of possible 

values {M(P)} is spent, casually differing M*(P) and being an interval [𝑀∗(𝑃) ;𝑀(𝑃)]. If Pm belongs 

to this set, our assumption (H) about it abnormal (Н1) is erroneous and НН0 (see the block 10). 

Otherwise - Pm it is possible to consider abnormal, and assumption Н0 - erroneous (see the block 11) 

with risk of the erroneous decision α. If 𝑃𝑚 < М∗(𝑃), management is transferred the block 8 where 

the size М(𝑃𝑚)pays off; 

The block 9. Here the accessory of M*(P) to set of possible realizations {M(P)m}, casually differing 

from Pm and being in an interval [𝑃𝑚; 𝑀(𝑃𝑚)] is checked. Therefore, if M*(P) does not enter into this 

interval НН1. Otherwise, НН0, i.e. it is possible to consider the assumption of abnormal 

character Pm erroneous. In conformity with the block diagram of algorithm, the criterion of check 

of assumption НН1 looks like: 

 

 if Pm>М*(P), and М(𝑃) < 𝑃𝑚, then НН1 

 and if Pm<М*(P) и М(𝑃𝑚) < 𝑀
∗(𝑃), then НН1                                (1) 

 otherwise НН0 

  

But, naturally, the expert has a question: why conditions of the control differ at Pm>M*(P) and 

Пm<M*(P)? The answer to this question is given in the graphic form on fig. 2 and 3. As an example 

is used the same sample of realizations of the charge of the electric power for own needs of boiler 

installation Win in volume n=5 a kind {2,14; 2,38; 2,44; 2,48; 3,04}.  

 On fig. 2 the illustration of the decision of a question on a faultlessness of value Won of the 

power unit with Won=3,04% and with artificial increase Won at value δ, which changes in an interval 

[0,1] is resulted.  

 

    
  a)        b) 

 

Fig. 2. An illustration of parities fiducially intervals at M*(Won,δ)<Won,5(δ). 

a) - dependence of boundary values fiducially intervals from δ; 

b) - parities of boundary values fiducially intervals 
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   a)       b) 

 

Fig. 3. An illustration of parities fiducially intervals at M*(Won; δ)>Won,1(δ); 

a) - dependence of boundary values fiducially intervals from δ; 

b) - parities of boundary values fiducially intervals 

  

 First of all, these figures evidently testify what even at α=0,1 Won=3,04% does not concern to 

gross blunders. Erroneous decisions at use of criteria Shovenes and Dickson are natural, since we 

"have closed eyes" and have broken conditions of their application. Therefore important not only 

to apply in calculations not less than two criteria but also in any a measure not break a condition of 

application of the chosen criteria.  

 In fig. 2 and 3 average value of realizations for set δ was calculated under the formula 

 М∗[𝑊𝑜𝑛 , 𝛿] = 𝑀
∗(𝑊𝑜𝑛)[1 +

𝛿

𝑛
)                        (2) 

at δ=0, М*(Won)=2,5% 

 As the greatest deviation Won with i=1,5 from M*(Won) took place for Won=3,04%, i.e. 

M*(Won)<Won,5 (as it was required to establish), dependence of this size from δ analogy to M*(Won;) 

it is linear and pays off under the formula: 

Won,5(δ)= Won,5(1+δ)                  (3) 

 The top boundary values fiducially interval for M*(Won) at δ=0 and α=0,1 equaled 

М∗(𝑊𝑜𝑛) = (1 + 𝛿𝑐) ⋅ 𝑀
∗(𝑊𝑜𝑛). 

 And at δ>0 - under the formula: 

М∗(𝑊𝑜𝑛 , 𝛿)𝑐 = (1 + 𝛿𝑐) ⋅ 𝑀
∗(𝑊𝑜𝑛 , 𝛿)                           (4) 

 The bottom boundary value фидуциального an interval for M*(Won;δ)=Won,5(δ) it is calculated 

under the formula: 

М∗(𝑊𝑜𝑛, 5; 𝛿) = (1 − 𝛿𝑐) ⋅ 𝑀
∗(𝑊𝑜𝑛, 5, 𝛿)                           (5) 

 The analysis of a parity fiducially intervals of possible realizations of M*(Won;) and M*(Won,5;δ) 

shows, that at performance of conditions Won,5>M*(Won) (see the block 6) and М∗(𝑊𝑜𝑛 , 𝛿) > 𝑊𝑜𝑛, 5(𝛿) 

(see the block 7) is necessarily carried out also a condition М∗(𝑊𝑜𝑛, 5; 𝛿) < 𝑀
∗(𝑊𝑜𝑛 , 𝛿), but not on 

the contrary. It is distinctly presented on fig. 2b. Here top fiducially the interval is an interval 

{М[𝑊𝑜𝑛, 5; 𝛿];М[𝑊𝑜𝑛, 5; 𝛿]}, and bottom is an interval {М[𝑊𝑜𝑛; 𝛿];М[𝑊𝑜𝑛; 𝛿]}. For δ=0,25 condition 

М(𝑊𝑜𝑛 , 𝛿) > 𝑊𝑜𝑛, 5(𝛿) it is not carried out, and the condition М∗(𝑊𝑜𝑛, 5; 𝛿) < 𝑀
∗(𝑊𝑜𝑛 , 𝛿) is carried 

out.  

 Therefore, to check this condition there is no necessity. We shall pass now to a case, when  

Pm<M*(P). Calculations we shall lead for sample {3,04; 2,42; 1,90; 2,64; 2,47} Here too the 

M*(Won)=2,5, and abnormal is supposed size Won,1=1,9%. Formulas for calculation of boundary 

values fiducially interval in functions from it will a little transform and looks like: 

М*[Won,δ]= М*(Won)·(1 - δ/n) 

Won,1(δ)= Won,1·(1 – δ) 
М[𝑊𝑜𝑛 , 𝛿] = 𝑀

∗[𝑊𝑜𝑛 , 𝛿] ⋅ (1 − 𝛿𝑐) 

М[𝑊𝑜𝑛, 1; 𝛿] = 𝑀
∗[𝑊𝑜𝑛, 1; 𝛿] ⋅ (1 + 𝛿𝑐) 

 According to data fig. 3а and 3b, if a condition of M*[Won;δ] it is less, than the top 



Farhadzadeh E.M., Muradaliyev A.Z., Rafiyeva T.K., Rustamova A.A. 

MAINTENANCE OF RELIABILITY OF METHODICAL SUPPORT OF 

THE MANAGEMENT OF OBJECTS EPS 

RT&A, No 3 (54) 
Volume 14, September 2019 

 

30 

boundary value fiducially interval М[𝑊𝑜𝑛, 1; 𝛿] that corresponds to assumption НН0 conformity 

to this assumption it is observed and for a parity М∗[𝑊𝑜𝑛; 𝛿] and Won,1(δ). Therefore, to check it 

there is no necessity. On fig. 3b δ=0 both conditions are satisfied, and already δ=0,2 condition of 

M*[Won;δ]<М[𝑊𝑜𝑛, 1; 𝛿] it is not carried out, and condition Won(δ)>М∗[𝑊𝑜𝑛; 𝛿] is carried out, that 

confirms sufficiency of the control of the first condition. 

 The algorithm of transition to correct sample is simple: 

 if presence of abnormal supervision is established, it is replaced in sample by an average 

arithmetic estimation of M*(P); 

 considering probability of presence more than one abnormal realization, in sample control 

check (n-1) realizations spent also. Calculation comes to the end at performance of a 

condition of criterion 1, at which НН0 

 The automated system so simplifies the decision of a question on presence of abnormal 

supervision in small sample of multivariate data that allows to hope for development of one more 

step of a problem of a faultlessness of methodical recommendations. 

 

Conclusion 
 

 The urgency of a problem of maintenance of a faultlessness of a database of intellectual 

systems and their methodical recommendations in due course increases: 

1. The quality monitoring of presence in small samples of the multivariate given abnormal 

realizations is developed. The method based on fiducially approach and the theory of check of 

statistical hypotheses;  

2. Basis of a method there is a recommended criterion of check of uniformity of sample; 

3. Application the express train-methods of calculation of critical values fiducially interval allows 

to translate the decision of a problem on absence of abnormal supervision group of problems 

successfully solved on calculators. 
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Abstract 
 

The present paper studies a two non-identical units system model arranged in parallel 

with inspection and preparation time for replacement under multi failures. Initially, 

first unit (A) is in operative mode and other unit (B) is kept as warm standby. The first 

unit is subjected to two types of failures, i.e. minor failure and major failure.  On failure 

of the first unit, it will be sent for inspection to check the type of failure i.e. whether 

minor or major failure. If some minor failure is found, it will be repaired and on major 

failure, the unit will be replaced by the new unit. However, the system will take some 

preparation time for replacement. Further, the standby unit may also fail during the 

standby mode. There is a single repairman which is always available with the system. 

Different measures of reliability have been obtained to study the effectiveness of the 

system such as transition probabilities, mean time to system failure, availability, busy 

period of repairman and net profit incurred and various system parameters are 

analysed graphically. 

 

Keywords: inspection, preparation time, replacement, minor failure, major failure. 

 

 

1. Introduction 
 

Reliability is considered as important characteristic for the system design and plays a vital role in 

the planning of system expansion, operation and maintenance. Quality of supply can be improved 

by reliability. To obtain useful results from system reliability assessments, reasonable values of 

component reliability parameters need to be used. However, the required accuracy of the 

reliability depends on the system design, its performance and the failure phenomenon of the 

system components. However, the components failure rates may vary with component, time and 

the environmental conditions. Therefore, it is sometimes not accurate to assign identical failure rate 

to all components of a particular type. Each component is treated as an individual with a unique 

failure rate. Many authors had worked in the reliability modelling field with different failure rates 

and disciplines. Rander, Kumar and Tuteja [8] have discussed a two unit cold standby system with 

major and minor failure and preparation time in case of major failure. El-Damcese and Temraz[7]  

carried out the analysis for a parallel repairable system with different failure modes and Chander, 

Chand and Singh[2] has studies  stochastic analysis of an operating system with two types of 

inspection subject to degradation. Further  Bhatti, Chitkara and Bhardwaj [1] studied the profit 

analysis of two unit cold standby system with two types of failure under inspection policy and 

discrete distribution and  Dhankhar and Malik[5] analyse the cost-benefit analysis of a system 

reliability models with server failure during inspection and repair while  Chib, Joorel and Sharma 

[3,4] have worked on MTSF and profit analysis of a two unit warm standby system with inspection 

mailto:nehasharma131091@gmail.com
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and  they also worked on the analysis of a two non-identical unit cold standby system with partial 

and total failure and priority and El-Damcese and Sharma [6] investigated  reliability and 

availability analysis of a repairable system with two type of failure.  

The present paper studies a two non-identical units system model arranged in parallel with 

inspection and preparation time for replacement under multi failures. Initially, first unit (A) is in 

operative mode and other unit (B) is kept as warm standby. The first unit is subjected to two types 

of failures, i.e. minor failure and major failure.  On failure of the first unit, it will be sent for 

inspection to check the type of failure i.e. whether minor or major failure. If some minor failure is 

found, it will be repaired and on major failure, the unit will be replaced by the new unit. However, 

the system will take some preparation time for replacement. Further, the standby unit may also fail 

during the standby mode. There is a single repairman which is always available with the system. 

Different measures of reliability have been obtained to study the effectiveness of the system such 

as transition probabilities, mean time to system failure, availability, busy period of repairman and 

net profit incurred and various system parameters are analysed graphically. 

 

2. Assumptions 
 

1. All the times associated with different events are random variables and independent. 

2. Failure time distribution of both the units is exponential but with different parameters. 

3. Inspection time distribution is also exponential. 

4. Repair time distribution of both the units is taken as general but with different cdfs and 

replacement time distribution of first unit is also general. 

5. On failure of both the units, the system will break down. 

6. Switch over time is negligible. 

 

3. Notations 

 
𝛼                           inspection rate for unit A 

β                          failure rate of unit B 

α1                         rate of minor / major failure in unit A with probability p and q 

α2                         rate of completion of preparation for replacement 

h1(t)/H1(t)            p.d.f and c.d.f of repair time of unit A 

h2(t)/H2(t)         p.d.f and c.d.f of replacement time of unit A 

g(t)/G(t)               p.d.f and c.d.f of  repair time of unit B 

𝜋𝐼(∙)                     c.d.f of time to system failure when 𝑆𝑖𝜖𝐸. 

𝐴𝑖(𝑡)                     Pr [starting from𝑆𝑖𝜖𝐸  , the system is up at time t]. 

𝐵𝑖(𝑡)                     Pr [Repairman   is busy at time t\𝐸0 = 𝑆𝑖𝜖𝐸]. 

𝑉𝑖(𝑡)                     Expected number of visits by repairman in (0,t]. 

𝜇𝑖                          Mean sojourn time in state 𝑆𝑖𝜖𝐸. 

 

Following Symbols are used to study the proposed model: 

 

Ao/Bo                 unit A/B is operative                               

 Ar/Br                 unit A/B is under repair                                          

AI                        unit A is under inspection and                                  

 APR/AR              unit A is under replacement or  preparation for  replacement                 

Bws                      unit B is in warm standby  mode 

Bwr                      unit B is waiting for repair 
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Different possible states of the system are described and shown by Fig.: 1 

Up states                                                                            Down states 
𝑆0: (𝐴0, 𝐵𝑤𝑠)   𝑆2: (𝐴𝑟 , 𝐵𝑜)     𝑆4: (𝐴𝑅, 𝐵𝑜)                        𝑆6 = (𝐴𝐼 , 𝐵𝑤𝑟)    𝑆8: (𝐴𝑃𝑅, 𝐵𝑤𝑟)                                               
𝑆1: (𝐴𝐼 , 𝐵𝑜)     𝑆3: (𝐴𝑃𝑅, 𝐵𝑜)    𝑆5: (𝐴𝑜, 𝐵𝑟)                        𝑆7: (𝐴𝑟 , 𝐵𝑤𝑟)      𝑆9: (𝐴𝑅, 𝐵𝑤𝑟)                

                                           
                                                       𝐅𝐢𝐠. : 𝟏 𝐓𝐫𝐚𝐧𝐬𝐢𝐭𝐢𝐨𝐧 𝐃𝐢𝐚𝐠𝐫𝐚𝐦                                                                                                        

 
                                                                                                                                                      

4. Transition Probabilities and Mean Sojourn Time 
 

If T1, T2,T3 … denote the epochs at which the system enter any state and 𝑋𝑛  denotes the state 

visited at point  𝑇𝑛+ , i.e. just after the transition at  𝑇𝑛 then the transient and steady state transition 

probabilities are defined as Qij(t) = P[Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i] and 𝑝𝑖𝑗 = 𝑙𝑖𝑚
𝑡→∞

𝑄𝑖𝑗(𝑡) 

respectively. The following steady state transition probabilities of the system are obtained: 

 𝑝01 =
𝛼

𝛼+𝛽
                 𝑝17

6 =
𝛽𝑝1

𝛼1+𝛽
                    𝑝34 =

𝛼2

𝛼2+𝛽
                   𝑝45

9 = 1 − ℎ2
∗(𝛽)    

𝑝05 =
𝛽

𝛼+𝛽
                  𝑝18

6 =
𝛽𝑞1

𝛼1+𝛽
                    𝑝38 =

𝛽

𝛼2+𝛽
                   𝑝50 = 𝑔

∗(𝛼)       

𝑝12 =
𝑝𝛼1

𝛼1+𝛽
                𝑝20 = ℎ1

∗(𝛽)                  𝑝39
8 =

𝛽

𝛼2+𝛽
                    𝑝56 = 1 − 𝑔∗(𝛼)    

𝑝13 =
𝑞𝛼1

𝛼1+𝛽
                𝑝27 = 1 − ℎ1

∗(𝛽)          𝑝40 = ℎ2
∗(𝛽)                  𝑝67 = 𝑝1   

𝑝16 =
𝛽

𝛼1+𝛽
                𝑝25

7 = 1 − ℎ1
∗(𝛽)          𝑝49 = 1 − ℎ2

∗(𝛽)          𝑝68 = 𝑞1     

𝑝75 = 𝑝89 = 𝑝95 = 1                                                                                                            (1)  
                                                   

It may be noted that  ∑ 𝑝𝑖𝑗  =  1,𝑗    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑖                                 (2)  

                                                                                                                                                                                                                                                      

Further, if Ti denotes the sojourn time in state 𝑆𝑖 then mean sojourn time is defined as the time of 

stay in state 𝑆𝑖 before transiting to any other state and is denoted by µi . Following are the 

expressions for mean sojourn time:  

𝜇0 =
1

𝛼+𝛽
                            µ3 =

1

𝛼2+𝛽
                              µ6 =

1

𝛼1
                    µ9 = ∫ 𝐻2(𝑢)

∞

0
𝑑𝑢    

µ1 =
1

𝛼1+𝛽
                           µ4 =

1

𝛽
[1 − ℎ2

∗(𝛽)]              µ7 = ∫ 𝐻1(𝑢)
∞

0
𝑑𝑢            

µ2 =
1

𝛽
[1 − ℎ1

∗(𝛽)]           µ5 =
1

𝛼
[1 − 𝑔∗(𝛼)]              µ8 =

1

𝛼2
                                     (3)    

                                            

 

 

5. Mean Time To System Failure 
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The distribution function of time to system failure is obtained by considering the failed states as 

absorbing state and the time taken by the system to reach in the failed state for the first time is 

known as time to system failure and is denoted by 𝑇𝑖  and 𝜋𝑖(𝑡) denotes its expected value which is 

known as the mean time to system failure.  

The following result for mean time to system failure is obtained by using Laplace transformation. 

MTSF=
α[(α2+β)β+pα1β(θ+α){1−h1

∗ (β)}(α2+β)+qα1{β+α2{1−h1
∗ (β)}}(θ+α)]+β(α2+β){1−g

∗(β)}
                                                                                                                                                                                          (α1+β)

(α1+β)(α2+β)(β+α)−α{pα1h1
∗ (α)(α2+β)+qα1α2h2

∗ (β)}−β(α1+β)g
∗(α)(α2+β)                                                                                                                                                                                                         

                

                                                                                                                    (4) 

 

6. Availability Analysis 
 

𝐴𝑖 (𝑡) is defined as the probability that a system will be in operational service during a scheduled 

operating period i.e., probability that the system is up at epoch ‘t’ given that initially it starts from  

state 𝑆𝑖 without transiting to any non-regenerative state. By using simple probabilistic concepts, 

recurrence relations among 𝐴𝑖 (𝑡)
′𝑠 are obtained and on solving those equations by using the 

Laplace- transformation following results hold: 

𝐴0
∗(𝑠) =

𝑁2(𝑠)

𝐷2(𝑠)
  

where, 
𝑁2(𝑠) = [𝑀0

∗ + 𝑞01
∗ (𝑀1

∗ + 𝑞12
∗ 𝑀2

∗ + 𝑞13
∗ 𝑀3

∗ + 𝑞13
∗ 𝑞34

∗ 𝑀4
∗)](1 − 𝑞56

∗ 𝑞67
∗ 𝑞75

∗ − 𝑞56
∗ 𝑞68

∗ 𝑞89
∗ 𝑞95

∗ ) +  

              M5
∗[q05

∗ + q01
∗ (q12

∗ q25
(7)∗

+ q13
∗ q34

∗ q45
(9)∗ + q13

∗ q39
(8)∗q95

∗ + q18
(6)∗q89

∗ q95
∗ + q17

(6)∗q75
∗  

                                                                                                                       (5) 
𝐷2(𝑠) = (1 − 𝑞56

∗ 𝑞67
∗ 𝑞75

∗ − 𝑞56
∗ 𝑞68

∗ 𝑞89
∗ 𝑞95

∗ )[1 − 𝑞01
∗ (𝑞12

∗ 𝑞20
∗ + 𝑞13

∗ 𝑞34
∗ 𝑞40

∗ )] − 𝑞50
∗ [𝑞05

∗ + 𝑞01
∗   

               (q12
∗ q25

∗(7) + q13
∗ q39

∗(8)q95
∗ + q18

∗(6)q89
∗ q95

∗ + 𝑞17
∗(6)𝑞75

∗ )] 

                                                                                                                        (6) 

Steady state availability of the system starting from state 𝑠0 is obtained as follows: 

𝐴0 = lim
𝑡→∞

𝐴0 (∞) = lim
𝑠→0

𝑠𝐴0
∗ (𝑠) =

𝑁2(0)

𝐷2
′(0)

                                            (7) 

 

A0 = 

[(α1+β)(α2+β)β+α(α1+β)(α2+β)β+pα1(α1+β)α(α2+β){1−h2
∗ (β)}+qα1β(α+β)+qα1α2(α+β){1−h2

∗ (β)}

g∗(α)α+{1−g∗(α)}β[(α1+β)(α2+β)+α{pα1β(α2+β){1−h1
∗ (β)}(α+β)+qα1α2β{1−h2

∗ (β)}(α+β)+qβα1(α+β)

+(α+β)(α2+β)β}]θ2 α2                                                                                                                                                                            

g∗(α)[(α1+β)(α2+β)βαα2θ2+α(α2+β)αβα2θ2+pα1(α2+β)α{1−h
∗(β)}α2θ2α+qαα1θ2αβ+qαα1θ2α2

2θ2
α{1−h1

∗ (β)}]+[{1−g∗(α)}α+β][(α+β)β(α1+β)(α2+β)α−α{p(α2+β)h1
∗ (α) α1+qβα1α2h2

∗ (α){1−g∗(α)}]θ2α2 

+ ∫ H̅1(u)[αp1{1−g
∗(α)}(α1+β)(α2+β)(α+β)−α{pα1h2

∗ (β)(α2+β)+qα1α2βh2
∗ (β)}+αg∗(α)βp1α1α(α2+β)

+αq1{1−g
∗(α)}[(α1+β)(α2+β)(α+β)−pαα1g

∗(α)(α2+β)+qβα1α2{1−h2
∗ (β)}+α2q1β(α2+β)]+α

2β∫ H̅1(u)

[q1(α1+β){1−g2
∗ (α)}(α2+β)(α+β)−α{pα1(α2+β)g2

∗ (α)h2
∗ (β)+qα1α2β}+α{1−g

∗(α)}{qβα1+βp1(α2+β)}]              

  

                                                                                                                          (8) 

                      

7. Busy Period Analysis 
 

𝐵𝑖 (𝑡) is the probability that the repairman is busy due to repair of the unit at an instant ‘t’ given 

that system entered state Si at t=0. Now we will determine these probabilities. To illustrate the 

calculations we consider 𝐵0(𝑡) and similar arguments may be employed for other probabilities.  

𝐵0
∗(𝑠) =

𝑁3(𝑠)

𝐷2(𝑠)
  

 

N3(s) = 𝑞01
∗ (𝑀1

∗ + 𝑞12
∗ 𝑀2

∗ + 𝑞13
∗ 𝑞34

∗ 𝑀4
∗ + 𝑞13

8 𝑞39
(8)∗𝑀9

∗ + 𝑞16
(8)∗𝑀8

∗ + 𝑞16
(8)∗𝑞89

∗ 𝑀9
∗)(1 − 𝑞56

∗ 𝑞67
∗   

              q75
∗ − 𝑞56

∗ 𝑞68
∗ 𝑞89

∗ 𝑞95
∗ ) + (𝑀5

∗ + 𝑞56
∗ 𝑀6

∗ + 𝑞56
∗ 𝑞68

∗ 𝑀8
∗ + 𝑞56

∗ 𝑞68
∗ 𝑞89

∗ 𝑀9
∗)[𝑞01

∗ (𝑞12
∗ 𝑞25

∗(7) + 

              q13
∗ q34

∗ q45
∗(9)

+ q13
∗ q39

∗(8)
q95
∗ + q18

∗(6)
q89
∗ q95

∗ + q17
∗(6)

q75
∗ ) + q05

∗ ]                              

                                                                                                                                        (9) 
𝐷2(𝑠) = (1 − 𝑞56

∗ 𝑞67
∗ 𝑞75

∗ − 𝑞56
∗ 𝑞68

∗ 𝑞89
∗ 𝑞95

∗ )[1 − 𝑞01
∗ (𝑞12

∗ 𝑞20
∗ + 𝑞13

∗ 𝑞34
∗ 𝑞40

∗ )] − 𝑞50
∗ [𝑞05

∗ + 𝑞01
∗   

               (q12
∗ q25

∗(7) + q13
∗ q39

∗(8)q95
∗ + q18

∗(6)q89
∗ q95

∗ + 𝑞17
∗(6)𝑞75

∗ )]                                           (10) 
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Therefore, busy period analysis for repairman is given by: 

B0(0) =
𝑁3(0)

𝐷2
′(0)

                                                                                                                      (11) 

 

B0 =

α[{(α1+β)β(α2+β)α2+(α+β)(α2+β)pα2α1{1−h1
∗ (β)}+(α+β){1−h2

∗ (β)}qα1α2
2}+α1βα2(α+β) ∫ H̅2(u)q+q1β

(α+β)(α2+β)+q1β(α1+β)(α2+β) ∫ H̅2(u)(α+β)]g
∗(α)α+[α[{α1α2θ2+α2αθ2+αα1q1θ2+αq1}+(α1+β)

(α2+β)(α+β)][α{pα1βθ2(α2+β){1−h1
∗ (β)}+qβα1α2α2{1−h2

∗ (β)}+qβα1+q1β(α2+β)α2+p1β(α2+β)α2]

+(α1+β)β(α2+β)]                                                                                                                                                                                 

g∗(α)[(α1+β)(α2+β)βαα2θ2+α(α2+β)αβα2θ2+pα1(α2+β)α{1−h
∗(β)}α2θ2α+qαα1θ2αβ+qαα1θ2α2

2θ2
α{1−h1

∗ (β)}]+[{1−g∗(α)}α+β][(α+β)β(α1+β)(α2+β)α−α{p(α2+β)h1
∗ (α) α1+qβα1α2h2

∗ (α){1−g∗(α)}]θ2α2 

+ ∫ H̅1(u)[αp1{1−g
∗(α)}(α1+β)(α2+β)(α+β)−α{pα1h2

∗ (β)(α2+β)+qα1α2βh2
∗ (β)}+αg∗(α)βp1α1α(α2+β)

+αq1{1−g
∗(α)}[(α1+β)(α2+β)(α+β)−pαα1g

∗(α)(α2+β)+qβα1α2{1−h2
∗ (β)}+α2q1β(α2+β)]+α

2β∫ H̅1(u)

[q1(α1+β){1−g2
∗ (α)}(α2+β)(α+β)−α{pα1(α2+β)g2

∗ (α)h2
∗ (β)+qα1α2β}+α{1−g

∗(α)}{qβα1+βp1(α2+β)}]              

  

                                                                                                                                              (12) 

 

 8. Expected Number of Visits by Repairman 
 

𝑉𝑖(𝑡) is the expected number of visits by the repairman to the system to repair the failed unit, when 

the system initially starts from regenerative state 𝑆𝑖 . By probabilistic reasoning the recurrence 

relations for 𝑉𝑖(𝑡) are obtained and solving those relations by using Laplace transformation, we 

have, 

𝑉0
∗(𝑠) =

𝑁4(𝑠)

𝐷2(𝑠)
  

N4(s) = [(q01
∗ + q05

∗ ) + q01
∗ (q13

∗ q34
∗ + q18

∗(6)
q89
∗ )][1 − q56

∗ q67
∗ q75

∗ − q56
∗ q68

∗ q89
∗ q95

∗ ] + 𝑞56
∗   

            q67
∗ q75

∗ [q05
∗ + q01

∗ (q12
∗ q25

∗(7)
+ q13

∗ q34
∗ q45

∗(9)
+ q13

∗ q39
∗(8)

q95
∗ + q16

∗(8)
q89
∗ q95

∗ + q17
∗(6)

q75
∗ )] 

                                                                                                                           (13) 
𝐷2(𝑠) = (1 − 𝑞56

∗ 𝑞67
∗ 𝑞75

∗ − 𝑞56
∗ 𝑞68

∗ 𝑞89
∗ 𝑞95

∗ )[1 − 𝑞01
∗ (𝑞12

∗ 𝑞20
∗ + 𝑞13

∗ 𝑞34
∗ 𝑞40

∗ )] − 𝑞50
∗ [𝑞05

∗ + 𝑞01
∗   

               (q12
∗ q25

∗(7) + q13
∗ q39

∗(8)q95
∗ + q18

∗(6)q89
∗ q95

∗ + 𝑞17
∗(6)𝑞75

∗ )]                         (14) 

 

In steady state, the number of times the repairman visits the system is given by:  

𝑉0
∗ = lim

𝑆→0
𝑠𝑉0(𝑠) =

𝑁4(0)

𝐷2
′(0)

                                                                               (15)                                          

 

𝑉0 =

[(α1+β)(α+β)(α2+β)+αα1α2q+q1β(α+β)(α2+β)]+q1{1−𝑔
∗(𝛼)}[β(α1+β)(α2+β)+α{(α1+β)(θ1+β)−pα1

g2
∗ (α)}−qα1α2h2

∗ (β)]𝑔∗(𝛼)                                                                                                                                                                 

g∗(α)[(α1+β)(α2+β)βαα2θ2+α(α2+β)αβα2θ2+pα1(α2+β)α{1−h
∗(β)}α2θ2α+qαα1θ2αβ+qαα1θ2α2

2θ2
α{1−h1

∗ (β)}]+[{1−g∗(α)}α+β][(α+β)β(α1+β)(α2+β)α−α{p(α2+β)h1
∗ (α) α1+qβα1α2h2

∗ (α){1−g∗(α)}]θ2α2 

+ ∫ H̅1(u)[αp1{1−g
∗(α)}(α1+β)(α2+β)(α+β)−α{pα1h2

∗ (β)(α2+β)+qα1α2βh2
∗ (β)}+αg∗(α)βp1α1α(α2+β)

+αq1{1−g
∗(α)}[(α1+β)(α2+β)(α+β)−pαα1g

∗(α)(α2+β)+qβα1α2{1−h2
∗ (β)}+α2q1β(α2+β)]+α

2β∫ H̅1(u)

[q1(α1+β){1−g2
∗ (α)}(α2+β)(α+β)−α{pα1(α2+β)g2

∗ (α)h2
∗ (β)+qα1α2β}+α{1−g

∗(α)}{qβα1+βp1(α2+β)}]              

  

                                                                                                                             (16) 

 

9. Profit Analysis 
 

The profit in steady state generated by proposed model may be obtained as follows: 

The expected profits incurred in (0,t] = expected total revenue in (0,t] – expected total repair in (0,t] 

–expected cost of visit by repairman in (0,t] 

Therefore, profit analysis of the system can be written as: 
𝑃1 = 𝐾0𝐴0 − 𝐾1𝐵0 − 𝐾2𝑉0 

where, 
K0 = revenue per unit up time of the system,  
K1 = Cost per unit time for which the repair is busy  
K2 = Cost  per unit visits by the repairman  

The expressions for A0, B0 and V0 are given by equations (8), (12)and (16) respectively. 

 

10. Particular cases 
As we have assumed that the repair time and replacement time distribution is general, so firstly we 
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convert it into exponential with parameters θ, θ1 and θ2. We have assumed  

G(t) =  θe−θt, H1(t) = θ1e
−θ1t, H2(t) = θ2e

−θ2t  

So under these assumptions the expressions for different transitions with their mean sojourn time, 

MTSF, availability and profit function are obtained as: 

 

Transition probabilities  

𝑝20 =
𝜃1

𝜃1+𝛽
           𝑝27 =

𝛽

𝜃1+𝛽
         𝑝25

7 =
𝛽

𝜃1+𝛽
         𝑝40 =

𝜃2

𝜃2+𝛽
          𝑝49 =

𝛽

𝜃2+𝛽
       

𝑝45
9 = 

𝛽

𝜃2+𝛽
          𝑝50 = 

𝜃

𝜃+𝛼
          𝑝56 = 

𝛼

𝜃+𝛼
          𝑝95 = 1   

 

Mean Sojourn Time 

µ2 =
1

𝜃1+𝛽
           µ4 =

1

𝜃2+𝛽
           µ5 =

1

𝜃+𝛼 
          µ7 =

1

𝜃1
             µ9 =

1

𝜃2
    

 

Mean time to system failure 

MTSF=

α[(θ1+β)(α2+β)(θ2+β)+pα1β(θ+α)(α2+β)(θ2+β)+qα1{(θ2+β)+α2β}(θ+α)(θ2+β)]+αβ(θ1+β)(α2+β)

(α1+β)(θ2+β)                                                                                                                                                                                            
(α1+β)(θ1+β)(α2+β)(θ2+β)(θ+α)(β+α)−α{pα1θ1(α2+β)(θ2+β)+qα1α2θ2(θ1+β)(θ+α)}−βθ(α1+β)

(θ1+β)(α2+β)(θ2+β)                                                                                                                                                                        

 

 

Availability 

A0 = 

[(α1+β)(α2+β)(θ1+β)(θ2+β)+α(α1+β)(θ1+β)(θ2+β)(α2+β)β+pα1(α1+β)α(θ2+β)(α+β)+qα1(α+β)

(θ1+β)(θ2+β)β+qα1α2(α+β)α]θ+[(α1+β)(α2+β)(θ1+β)(θ2+β)+α{pα1β(α2+β)(θ2+β)(α+β)+qα1α2
β(α+β)(θ1+β)+qβα1(α+β)(θ1+β)(θ2+β)+(α+β)(θ1+β)(θ2+β)(α2+β)β}]                                                       

α2θθ2[(α1+β)(θ1+β)(θ2+β)(α2+β)+α(α2+β)(θ1+β)(θ2+β)θ2α+pα1(α2+β)(θ2+β)+(θ2+β)q(θ1+β)

αα2θ2α+(θ1+β)qαα1θ2α2
2θ2α]+[2α+β][(α+β)β(α1+β)(α2+β)(θ1+β)(θ2+β)−α{p(θ2+β)(α2+β) α1 

+qβα1α2(θ1+β))]θ2α2+[αp1(α1+β)(θ1+β)(θ2+β)(α2+β)(α+β)−α{pα1(α2+β)θ1(θ2+β)+(θ2+β)qα1
α2β}+αβp1α1αθ(α2+β)(θ1+β)(θ2+β)+αq1[(α1+β)(α2+β)(α+β)(θ1+β)(θ2+β)(θ+α)−pαα1θ1(α2+β)

(θ2+β)+qβα1α2(θ1+β)+α
2q1β(α2+β)(θ1+β)(θ2+β)]+α

2β[q1(α1+β)(α2+β)(θ1+β)(θ2+β)(α+β)−α{pα1
θ1(α2+β)+qα1α2β(θ1+β)}+α{qβα1+βp1(α2+β)}]                                                                                                                               

  

 

Busy period 

B0 =

α[(α1+β)β(α2+β)(θ1+β)(θ2+β)α2+(α+β)(θ2+β)(α2+β)pα2α1+(θ1+β)(α+β)qα1α2
2+α1(θ1+β)(θ2+β)β

α2(α+β)q+q1β(α+β)(α2+β)(θ2+β)+q1β(α1+β)(θ1+β)(θ2+β)(α2+β)(α+β)]θ+[{α1α2θ2+α2αθ2+αα1q1
θ2+αq1}(θ1+β)(θ2+β)(α1+β)(α2+β)(α+β)][αα2{pα1βθ2(α2+β)(θ2+β)+qβα1α2α2(θ1+β)+qβα1(θ1+β)

(θ2+β)+q1β(α2+β)(θ1+β)(θ2+β)α2+p1β(θ1+β)(θ2+β)(α2+β)α2θ2]                                                                            

α2θθ2[(α1+β)(θ1+β)(θ2+β)(α2+β)+α(α2+β)(θ1+β)(θ2+β)θ2α+pα1(α2+β)(θ2+β)+(θ2+β)q(θ1+β)

αα2θ2α+(θ1+β)qαα1θ2α2
2θ2α]+[2α+β][(α+β)β(α1+β)(α2+β)(θ1+β)(θ2+β)−α{p(θ2+β)(α2+β) α1 

+qβα1α2(θ1+β))]θ2α2+[αp1(α1+β)(θ1+β)(θ2+β)(α2+β)(α+β)−α{pα1(α2+β)θ1(θ2+β)+(θ2+β)qα1
α2β}+αβp1α1αθ(α2+β)(θ1+β)(θ2+β)+αq1[(α1+β)(α2+β)(α+β)(θ1+β)(θ2+β)(θ+α)−pαα1θ1(α2+β)

(θ2+β)+qβα1α2(θ1+β)+α
2q1β(α2+β)(θ1+β)(θ2+β)]+α

2β[q1(α1+β)(α2+β)(θ1+β)(θ2+β)(α+β)−α{pα1
θ1(α2+β)+qα1α2β(θ1+β)}+α{qβα1+βp1(α2+β)}]                                                                                                                               

  

 

Expected number of repairs 

𝑉0 =

𝜃[(α1+β)(α+β)(α2+β)+αα1α2q+q1β(α+β)(α2+β)](θ1+β)(θ2+β)+q1α[β(α1+β)(θ1+β)(θ2+β)(α2+β)+

α{(α1+β)(θ1+β)−pα1θ1}−qα1α2θ2]                                                                                                                                            

α2θθ2[(α1+β)(θ1+β)(θ2+β)(α2+β)+α(α2+β)(θ1+β)(θ2+β)θ2α+pα1(α2+β)(θ2+β)+(θ2+β)q(θ1+β)

αα2θ2α+(θ1+β)qαα1θ2α2
2θ2α]+[2α+β][(α+β)β(α1+β)(α2+β)(θ1+β)(θ2+β)−α{p(θ2+β)(α2+β) α1 

+qβα1α2(θ1+β))]θ2α2+[αp1(α1+β)(θ1+β)(θ2+β)(α2+β)(α+β)−α{pα1(α2+β)θ1(θ2+β)+(θ2+β)qα1
α2β}+αβp1α1αθ(α2+β)(θ1+β)(θ2+β)+αq1[(α1+β)(α2+β)(α+β)(θ1+β)(θ2+β)(θ+α)−pαα1θ1(α2+β)

(θ2+β)+qβα1α2(θ1+β)+α
2q1β(α2+β)(θ1+β)(θ2+β)]+α

2β[q1(α1+β)(α2+β)(θ1+β)(θ2+β)(α+β)−α{pα1
θ1(α2+β)+qα1α2β(θ1+β)}+α{qβα1+βp1(α2+β)}]                                                                                                                               

  

 

11.  Graphical Study of the System Model 
 

In order to have a graphical analysis of the above discussed model, we graphed these 

characteristics i.e., MTSF, availability and profit function. Firstly we have obtained the values of 

MTSF, availability and profit function with respect to failure and repair rates using C++ language 

and then we have plotted those values using STATISTICA. Firstly graphs are plotted for MTSF, 

Availability and Profit with respect to failure rate  α1 for different values of repair rate 

θ1, θ2 & 𝜃 keeping all other parameters constant as α = 0.5,  α2 = 0.25, β = 0.35, k0 = 1000, k1 =
300, k2 = 200, p = 0.5, q = 0.5, p1 = 0.5, q1 = 0.5    
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                                                                                       Fig.: 4 

From Fig 2, 3 & 4, we have observed that MTSF, availability and profit function respectively, 

decreases with the increase in the failure rate of the system and these characteristics shows an 

increase, as we increase the repair rate of the system. Therefore, we can conclude here that the 
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expected lifetime of the system can be increased by providing the proper repair facility to the 

system, as regular repair of the units improves the reliability and effectiveness of the system. 
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Abstract 

 

Systems connected to an external supporting device for their operations viewed as 

hybrid systems have been manufactured to meet the demand of industries, economic 

growth and populace in general. Companies and organizations heavily rely on these 

systems to conduct their business. The paper deals with the reliability and availability 

characteristics of four different systems requiring external supporting device for their 

operation. The system consists of main unit connected to the cold standby supporting 

devices. The failure and time of both main unit and supporting device are assumed to 

be exponentially distributed. Markov models are developed and differential difference 

equations are derived to obtain explicit expressions for the steady-state availability and 

mean time to failure and perform analytical and numerical comparisons. Comparisons 

show that system with five cold standby supporting devices is the most reliable system.    
 

Keywords: Availability, mean time to failure, supporting device, single unit 
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1. Introduction 
 

High system reliability and availability play a vital role towards industrial growth as the profit is 

directly dependent on production volume which depends upon system performance. Thus the 

reliability and availability of a system may be enhanced by proper design, optimization at the 

design stage and by maintaining the same during its service life. Because of their prevalence in 

power plants, manufacturing systems, and industrial systems, many researchers have studied 

reliability and availability problem of different systems. Hajeeh (2012) deals with availability of a 

system with different repair options. Hu et al. (2012) presents availability analysis and design 

optimisation for a repairable series-parallel system with failure dependencies. Jain and Rani (2013) 

studied the availability analysis for repairable system with warm standby, switching failure and 

reboot delay. Wang et al. (2012) performed comparative analysis of availability between two 

systems with warm standby units and different imperfect coverage. Wang and Chen (2009) 

performed comparative analysis of availability between three systems with general repair times, 

reboot delay and switching failures. 
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 In real-life situations we often encounter cases where the systems that cannot work without the 

help of external supporting devices connect to such systems. These external supporting devices are 

systems themselves that are bound to fail. Such systems are found in power plants, manufacturing 

systems, and industrial systems. Large volumes of literature exist on the issue relating to 

prediction of various systems performance connected to an external supporting device for their 

operations. Yusuf (2014) performed comparative analysis of profit between three dissimilar 

repairable redundant systems using supporting external device for operation. Yusuf et al (2016) 

performed reliability computation of a linear consecutive 2-out-of-3 system in the presence of 

supporting device. Yusuf (2016) presents reliability evaluation of a parallel system with a 

supporting device and two types of preventive maintenance. The problem considered in this paper 

is different from the work of discussed authors above. In this paper, a single unit system connected 

to cold standby external supporting device is considered. The objectives of this paper are: to derive 

the explicit expressions for the availability and mean time to failure, to determine the optimal 

system. The organization of the paper is as follows. Section 2 contains a description of the system 

under study. Section 3 presents formulations of the models. The results of our analytical 

comparison between the systems are presented in section 4. Numerical examples are presented in 

section 5. Finally, we make some concluding remarks in Section 6. 

 

2. Description and States of the System 
 

In this paper, a single unit system connected to an external cold standby supporting devices is 

considered. It is assumed that the system most work with one supporting device. System I has 

main unit with five cold standby supporting devices, system II has four cold standby supporting 

devices, system III has three cold standby supporting devices, system IV has two cold standby 

supporting devices.  It is also assumed that the switching from standby to operation is perfect. 

Both the unit and supporting devices are assumed to be repairable. Each of the primary supporting 

devices fails independently of the state of the other and has an exponential failure distribution 

with parameter
1 . Whenever a primary supporting device fails, it is immediately sent to repair 

with parameter 
1  and a standby supporting device is switch to operation. System failure occurs 

when the unit has failed with parameter 0  and it is sent for repair with parameter with 

parameter 0  or the failure of all supporting device. 

 

                           Table 1: Transition rate table 

 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 

𝑆0 0 𝜆1 0 0 0 𝜆0 0 0 0 0 0 

𝑆1 𝜇1 0 𝜆1 0 0 0 0 𝜆0 0 0 0 

𝑆2 0 𝜇1 0 𝜆1 0 0 0 0 𝜆0 0 0 

𝑆3 0 0 𝜇1 0 𝜆1 0 0 0 0 𝜆0 0 

𝑆4 0 0 0 𝜇1 0 0 𝜆1 0 0 0 𝜆0 

𝑆5 𝜇0 0 0 0 0 0 0 0 0 0 0 

𝑆6 0 0 0 0 𝜇1 0 0 0 0 0 0 

𝑆7 0 𝜇0 0 0 0 0 0 0 0 0 0 

𝑆8 0 0 𝜇0 0 0 0 0 0 0 0 0 

𝑆9 0 0 0 𝜇0 0 0 0 0 0 0 0 

𝑆10 0 0 0 0 0 0 0 0 0 0 0 



Ibrahim Yusuf, Surajo Mahmud Umar 

RELIABILITY MODELLING AND ASSESSMENT OF MULTI STANDBY 

HYBRID SYSTEM 

RT&A, No 3 (54) 
Volume 14, September 2019 

 

41 

 

3. Formulation of the Models  
 

In order to analyse the system availability of system I, we define ( )iP t to be the probability 

that the system at  0t   is in state , 0,1,2,3,...,10iS i  . Also let ( )P t  be the row vector of 

these probabilities at time t . The initial condition for this problem is:  

 
𝑃(0) = [𝑝0(0), 𝑝1(0), 𝑝2(0), . . . , 𝑝10(0)] = [1,0,0,0,0,0,0,0,0,0,0] 

 

Following Trivedi (2007), Wang et al. (2000), and Wang et al. (2006), we obtain the following 

differential equations from Figure 1: 

𝑝0
′ = (𝜆0 + 𝜆1)𝑝0(𝑡) + 𝜇1𝑝1(𝑡) + 𝜇0𝑝5(𝑡) 

𝑝1
′(𝑡) = −(𝜆0 + 𝜆1 + 𝜇1)𝑝1(𝑡) + 𝜆1𝑝0(𝑡) + 𝜇1𝑝2(𝑡) + 𝜇0𝑝7(𝑡) 

𝑝2
′(𝑡) = −(𝜆0 + 𝜆1 + 𝜇1)𝑝2(𝑡) + 𝜆1𝑝1(𝑡) + 𝜇1𝑝3(𝑡) + 𝜇0𝑝8(𝑡) 

𝑝3
′(𝑡) = −(𝜆0 + 𝜆1 + 𝜇1)𝑝3(𝑡) + 𝜆1𝑝2(𝑡) + 𝜇1𝑝4(𝑡) + 𝜇0𝑝9(𝑡) 

𝑝4
′(𝑡) = −(𝜆0 + 𝜆1 + 𝜇1)𝑝4(𝑡) + 𝜆1𝑝3(𝑡) + 𝜇1𝑝6(𝑡) + 𝜇0𝑝10(𝑡) 

𝑝5
′(𝑡) = −𝜇0𝑝1(𝑡) + 𝜆0𝑝0(𝑡) 

𝑝6
′(𝑡) = −𝜇1𝑝6(𝑡) + 𝜆1𝑝4(𝑡) 

𝑝7
′(𝑡) = −𝜇0𝑝7(𝑡) + 𝜆0𝑝1(𝑡) 

𝑝8
′(𝑡) = −𝜇0𝑝8(𝑡) + 𝜆0𝑝2(𝑡) 

𝑝9
′(𝑡) = −𝜇0𝑝9(𝑡) + 𝜆0𝑝3(𝑡) 

𝑝10
′(𝑡) = −𝜇0𝑝10(𝑡) + 𝜆0𝑝4(𝑡)                                                                                                               (1) 

This can be written in the matrix form as 

𝑷′ = 𝑸𝑷,                                                                                                                               (2)   

where 
𝑄

=

(

 
 
 
 
 
 
 
 
 

−(𝜆0 + 𝜆1) 𝜇1 0 0 0 𝜇0 0 0 0 0 0
𝜆1 −(𝜆0 + 𝜆1 + 𝜇1) 𝜇1 0 0 0 0 𝜇0 0 0 0
0 𝜆1 −(𝜆0 + 𝜆1 + 𝜇1) 𝜇1 0 0 0 0 𝜇0 0 0
0 0 𝜆1 −(𝜆0 + 𝜆1 + 𝜇1) 𝜇1 0 0 0 0 𝜇0 0
0 0 0 𝜆1 −(𝜆0 + 𝜆1 + 𝜇1) 0 𝜇1 0 0 0 𝜇0
𝜆0 0 0 0 0 −𝜇0 0 0 0 0 0
0 0 0 0 𝜆1 0 −𝜇1 0 0 0 0
0 𝜆0 0 0 0 0 0 −𝜇0 0 0 0
0 0 𝜆0 0 0 0 0 0 −𝜇0 0 0
0 0 0 𝜆0 0 0 0 0 0 −𝜇0 0
0 0 0 0 𝜆0 0 0 0 0 0 −𝜇0)

 
 
 
 
 
 
 
 
 

 

 

Let 𝑇
 
denote the time-to-failure of the system. We use the following procedure to develop the 

steady-state availability. The steady-state availability (the proportion of time the system is in a 

functioning condition or equivalently, the sum of the probabilities of operational states) is given by  
𝐴𝑇1(∞) = 𝑝0(∞) + 𝑝1(∞) + 𝑝2(∞) + 𝑝3(∞) + 𝑝4(∞) = 

𝜇0𝜇1
5+𝜇0𝜇1

4𝜆1+𝜇0𝜇1
3𝜆1
2+𝜇0𝜇1

2𝜆1
3+𝜇0𝜇1𝜆1

4

𝜇1𝜆0𝜆1
4+𝜇1

2𝜆0𝜆1
3+𝜇1

3𝜆0𝜆1
2+𝜇1

4𝜆0𝜆1+𝜇1
5𝜆0+𝜇0𝜆1

5+𝜇0𝜇1𝜆1
4+𝜇0𝜇1

2𝜆1
3+𝜇0𝜇1

3𝜆1
2+𝜇0𝜇1

4𝜆1+𝜇0𝜇1
5                                   (3)                                                                      

To develop the explicit expression for mean time to failure, we use the concept of Trivedi (2002), 

Wang and Kuo (2000) and Wang et al. (2006) as follows:

 The procedures require deleting rows and columns of absorbing states of matrix Q and take the 

transpose to produce a new matrix, say𝑀. The expected time to reach an absorbing state is 

obtained from  

𝐸[𝑇𝑃(0)→𝑃(𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔)] = 𝑃(0)(−𝑀
−1)(1,1,1,1,1)𝑡                                                (4)  

where the initial conditions are given by 𝑃(0) = [𝑝0(0), 𝑝1(0), 𝑝2(0), 𝑝3(0), 𝑝4(0)] = [1,0,0,0,0] and  
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 𝑀 =

(

 
 

−(𝜆0 + 𝜆1) 𝜆1 0 0 0

𝜇1 −(𝜆0 + 𝜆1 + 𝜇1) 𝜆1 0 0
0 𝜇1 −(𝜆0 + 𝜆1 + 𝜇1) 𝜆1 0

0 0 𝜇1 −(𝜆0 + 𝜆1 + 𝜇1) 𝜆1
0 0 0 𝜇1 −(𝜆0 + 𝜆1 + 𝜇1))

 
 

 

The explicit expression for is given by 𝑀𝑇𝑇𝐹1 

𝑀𝑇𝑇𝐹1 =
𝑁1

𝐻1
                                                          (5) 

where 
𝑁1 = (𝜇1

4 + 4𝜆0𝜇1
3 + 𝜆1𝜇1

3 + 𝜆1
2𝜇1

2 + 6𝜆0𝜆1𝜇1
2 + 6𝜆0

2𝜇1
2 + 6𝜆0𝜆1

2𝜇1 + 𝜆1
3𝜇1 + 4𝜆0

3𝜇1 + 9𝜆0
2𝜆1𝜇1 + 𝜆0

4

+ 4𝜆0𝜆1
3 + 𝜆1

4 + 6𝜆0
2𝜆1

2) + 
𝜆1(𝜆0

3 + 3𝜆0
2𝜆1 + 3𝜆0

2𝜇1 + 3𝜆0𝜆1
2 + 4𝜆0𝜆1𝜇1 + 3𝜆0𝜇1

2 + 𝜆1
3 + 𝜆1

2𝜇1 + 𝜆1𝜇1
2 + 𝜇1

3)
+ 𝜆1

2(𝜆0
2 + 2𝜆0𝜆1 + 2𝜆0𝜇1 +𝜆1

2 + 𝜆1𝜇1 + 𝜇1
2) 

+𝜆1
3(𝜆0 + 𝜆1 + 𝜇1) 

𝐻1 = (𝜆0𝜇1
4 +2𝜆0𝜆1𝜇1

3 + 4𝜆0
2𝜇1

3 + 6𝜆0
3𝜇1

2 + 3𝜆0𝜆1
2𝜇1

2 + 9𝜆0
2𝜆1𝜇1

2 + 4𝜆0𝜆1
3𝜇1 + 12𝜆0

3𝜆1𝜇1 + 12𝜆0
2𝜆1

2𝜇1
+ 4𝜆0

4𝜇1 + 
10𝜆0

3𝜆1
2 + 𝜆0

5 + 𝜆1
5 + 5𝜆0

4𝜆1 + 10𝜆0
2𝜆1

3 + 5𝜆0𝜆1
4) 

 

Special Cases: 
Case I: Availability and mean time to failure of system requiring four  cold standbys supporting 

devices 

𝐴𝑇2(∞) =
𝜇0𝜇1

4+𝜇0𝜇1
3𝜆1+𝜇0𝜇1

2𝜆1
2+𝜇0𝜇1𝜆1

3

𝜇1𝜆0𝜆1
3+𝜇1

2𝜆0𝜆1
2+𝜇1

3𝜆0𝜆1+𝜇1
4𝜆0+𝜇0𝜆1

4+𝜇0𝜇1𝜆1
3+𝜇0𝜇1

2𝜆1
2+𝜇0𝜇1

3𝜆1+𝜇0𝜇1
4                (6) 

𝑀𝑇𝑇𝐹2 =
𝑁2

𝐻2
                                                                       (7) 

where 
𝑁2 = (𝜆0

3 + 3𝜆0
2𝜆1 + 3𝜆1

2𝜇1 + 3𝜆0𝜆1
2 + 4𝜆0𝜆1𝜇1 + 3𝜆0𝜇1

2 + 𝜆1
3 + 𝜆1

2𝜇1 + 𝜆1𝜇1
2 + 𝜇1

3)
+ 𝜆1(𝜆0

2 + 2𝜆0𝜆1 + 2𝜆0𝜇1 +𝜆1
2 + +𝜆1𝜇1 + 𝜇1

2) + 𝜆1
2(𝜆0 + 𝜆1 + 𝜇1) + 𝜆1

3 
𝐻2 = 𝜆0

4 + 4𝜆0
3𝜆1 + 3𝜆0

3𝜇1 + 6𝜆0
2𝜆1

2 + 6𝜆0
2𝜆1𝜇1 + 3𝜆0

2𝜇1
2 + 4𝜆0𝜆1

3 + 3𝜆0𝜆1
2𝜇1 + 2𝜆0𝜆1𝜇1

2 + 𝜆0𝜇1
2 + 𝜆1

4 

 

Case II: Availability and mean time to failure of system requiring three  cold standbys supporting 

devices
 

𝐴𝑇3(∞) =
𝜇0𝜇1

3+𝜇0𝜇1
2𝜆1+𝜇0𝜇1𝜆1

2

𝜇1𝜆0𝜆1
2+𝜇1

2𝜆0𝜆1+𝜇1
3𝜆0+𝜇0𝜆1

3+𝜇0𝜇1𝜆1
2+𝜇0𝜇1

2𝜆1+𝜇0𝜇1
3                                              (8) 

𝑀𝑇𝑇𝐹3 =
𝜆0
2+2𝜆0𝜆1+2𝜆0𝜇1+2𝜆1

2+𝜆1𝜇1+𝜇1
2+𝜆1(𝜆0+𝜆1+𝜇1)

𝜆0
3+3𝜆0

2𝜆1+2𝜆0
2𝜇1+3𝜆0𝜆1

2+2𝜆0𝜆1𝜇1+𝜆0𝜇1
2+𝜆1

3                                           (9) 

Case III: Availability and mean time to failure of system requiring two  cold standbys supporting 

devices

 

𝐴𝑇4(∞) =
𝜇0𝜇1

2+𝜇0𝜇1𝜆1

𝜇1𝜆0𝜆1+𝜇1
2𝜆0+𝜇0𝜆1

2+𝜇0𝜇1𝜆1+𝜇0𝜇1
2                                                                        (10) 

𝑀𝑇𝑇𝐹4 =
2𝜆1+𝜆0+𝜇1

𝜆0
2+2𝜆0𝜆1+𝜆0𝜇1+𝜆1

2                                                                                              (11) 

 

4. Comparison between the systems 
 

MAPLE software package was used to program the analytical comparison in this study. The 

results are presented below. 

𝐴𝑇1(∞) − 𝐴𝑇2(∞) =
𝜇0
2𝜇1

5𝜆1
4

𝐷1𝐷2
                                                                                                             (12) 

𝐴𝑇2(∞) − 𝐴𝑇3(∞) =
𝜇0
2𝜇1

4𝜆1
3

𝐷2𝐷3
                                                                                                            (13) 

𝐴𝑇3(∞) − 𝐴𝑇4(∞) =
𝜇0
2𝜇1

3𝜆1
2

𝐷3𝐷4
                                                                                                           

(14) 

𝑀𝑇𝑇𝐹1 −𝑀𝑇𝑇𝐹2 = 
𝜆1
4(𝜆0

4 +4𝜆0
3𝜆1 + 4𝜆0

3𝜇1 + 6𝜆0
2𝜆1

2 + 9𝜆0
2𝜆1𝜇1 + 6𝜆0

2𝜇1
2 + 4𝜆0𝜆1

3 + 6𝜆0𝜆1
2𝜇1 + 6𝜆0𝜆1𝜇1

2 + 4𝜆0𝜇1
3 + 𝜆1

4 + 𝜆1
3𝜇1 + 𝜆1

2𝜇1
2 + 𝜆1𝜇1

3 + 𝜇1
4)

𝐻1𝐻2
(15) 
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𝑀𝑇𝑇𝐹2 −𝑀𝑇𝑇𝐹3 =
(𝜆1
3(𝜆0

3+3𝜆0
2𝜆1+3𝜆0

2𝜇1+3𝜆0𝜆1
2+4𝜆0𝜆1𝜇1+3𝜆0𝜇1

2+𝜆1
3+𝜆1

2𝜇1+𝜆1𝜇1
2+𝜇1

3))

𝐻2(𝜆0
3+3𝜆0

2𝜆1+2𝜆0
2𝜇1+3𝜆0𝜆1

2+2𝜆0𝜆1𝜇1+𝜆0𝜇1
2+𝜆1

3)
                        (16)  

𝑀𝑇𝑇𝐹3 −𝑀𝑇𝑇𝐹4

=
𝜆1
2(𝜆0

2 + 3𝜆0
2𝜆1 +3𝜆0

2𝜇1 + 3𝜆0𝜆1
2 + 4𝜆0𝜆1𝜇1 + 3𝜆0𝜇1

2 + 𝜆1
3 + 𝜆1

2𝜇1 + 𝜆1𝜇1
2 + 𝜇1

3)

(𝜆0
3 + 3𝜆0

2𝜆1 + 2𝜆0
2𝜇1 + 3𝜆0𝜆1

2 + 2𝜆0𝜆1𝜇1 + 𝜆0𝜇1
2 + 𝜆1

3)(𝜆0
2 + 2𝜆0𝜆1 + 𝜆0𝜇1 + 𝜆1

2)
                (17) 

where 
𝐷4 = 𝜇1𝜆0𝜆1 + 𝜇1

2𝜆0 + 𝜇0𝜆1
2 + 𝜇0𝜇1𝜆1 + 𝜇0𝜇1

2 
𝐷3 = 𝜇1𝜆0𝜆1

2 + 𝜇1
2𝜆0𝜆1 + 𝜇1

3𝜆0 + 𝜇0𝜆1
3 + 𝜇0𝜇1𝜆1

2 + 𝜇0𝜇1
2𝜆1 + 𝜇0𝜇1

3 
𝐷2 = 𝜇1𝜆0𝜆1

3 + 𝜇1
2𝜆0𝜆1

2 + 𝜇1
3𝜆0𝜆1 + 𝜇1

4𝜆0 + 𝜇0𝜆1
4 + 𝜇0𝜇1𝜆1

3 + 𝜇0𝜇1
2𝜆1
2 + 𝜇0𝜇1

3𝜆1 + 𝜇0𝜇1
4 

𝐷1 = 𝜇1𝜆0𝜆1
4 + 𝜇1

2𝜆0𝜆1
3 + 𝜇1

3𝜆0𝜆1
2 + 𝜇1

4𝜆0𝜆1 + 𝜇1
5𝜆0 + 𝜇0𝜆1

5 + 𝜇0𝜇1𝜆1
4 + 𝜇0𝜇1

2𝜆1
3 + 𝜇0𝜇1

3𝜆1
2 + 𝜇0𝜇1

4𝜆1 +
𝜇0𝜇1

5

From (12) to (17)   
𝐴𝑇1(∞) > 𝐴𝑇2(∞) > 𝐴𝑇3(∞) > 𝐴𝑇4(∞)  

𝑀𝑇𝑇𝐹1(∞) > 𝑀𝑇𝑇𝐹2(∞) > 𝑀𝑇𝑇𝐹3(∞) > 𝑀𝑇𝑇𝐹4(∞) 
∀𝜆0, 𝜆1, 𝜇0, 𝜇1 > 0 

 

 

5. Numerical example 
 

Numerical examples are presented to demonstrate the impact of repair and failure rates on steady-

state availability and mean time to failure of the system based on given values of the parameters. 

MATLAB software package was used to program the numerical comparison in this study. The 

results are presented below. For the purpose of numerical example, the following sets of parameter 

values are used:𝜆1 = 0.3, 𝜆0 = 0.2, 𝜇1 = 0.6, 𝜇1 = 0.6 for Figures 2 and 3 and 𝜆1 = 0.4,𝜆0 = 0.1, 𝜇1 =

0.05 for Figures 4 and 5. 

 

 
Figure 1: Availability against supporting device failure rate𝜆1 

 
Figure 2: Availability against supporting device repair rate 𝜇1 
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Figure 3: mean time to failure against supporting device failure rate 𝜆1 

 

 
Figure 4: mean time to failure against supporting device repair rate 𝜇1 

 

Figures 1 and 3 show the results availability and mean time to failure for the four systems against 

the failure rate 1 . It is clear from the figures that system I (system with five standby supporting 

device) has higher availability and mean time to failure as compared to the other three systems. 

Similar observation is also depicted in Figures 2 and 4 with respect to repair rate 1 . It is evident 

from these figures that system I (system with five standby supporting device) has higher 

availability and mean time to failure as compared to the other three systems. These tend to suggest 

that system I is better than the other systems. 

 

Conclusion 
 

This paper studied a single system connected to two types of supporting device type I and II for its 

operation. Explicit expression for the steady-state availability was derived. Comparative analysis 

was performed analytically along with numerically example in this study. It is enough to mention 

first that the optimal system is system with five cold standbys supporting devices.   

 

Thus, 
𝐴𝑇1(∞) > 𝐴𝑇2(∞) > 𝐴𝑇3(∞) > 𝐴𝑇4(∞) 

𝑀𝑇𝑇𝐹1(∞) > 𝑀𝑇𝑇𝐹2(∞) > 𝑀𝑇𝑇𝐹3(∞) > 𝑀𝑇𝑇𝐹4(∞) 
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On the basis of the analytical and numerical results obtained f, it is suggested that the system 

reliability can be improved significantly by: 

 

(i) Adding more cold standby units. 

(ii) Increasing the repair rate. 

(iii) Reducing the failure rate of the system by hot or cold duplication method. 

(iv) Exchange the system when old with new one before failure. 

 

The system can further be developed into system with more standbys in solving reliability and 

availability problems.  

 

The present study is important to system designers, engineers, maintenance managers and plant 

management for proper maintenance analysis, decision and safety of the system as a whole. The 

study will also assist engineers, decision makers and plant management to avoid an incorrect 

reliability assessment and consequent erroneous decision-making, which may lead to unnecessary 

expenditures, incorrect maintenance scheduling and reduction of safety standards. 
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Abstract 

In this paper a two-parameter lifetime distribution named, ‘Shukla distribution’ which 

includes several one parameter  lifetime distributions including exponential, Shanker, 

Ishita, Pranav ,Rani and Ram Awadh as particular cases, has been proposed and 

investigated. Its moments have been obtained. The hazard rate function, mean residual 

life function and stochastic ordering of the distribution have been discussed. Maximum 

likelihood estimation has been explained for estimating the parameters of the 

distribution. Applications of the distribution have been explained through real life time 

data and its fit has been found satisfactory over well-known one parameter and two-

parameter lifetime distributions. 

 

Keywords: Lifetime distributions, Moments, Hazard rate function, Mean residual life 

function, Maximum likelihood estimation, Goodness of fit. 

 

 

 

 

1. Introduction 
 

In the new era of the world, it is important to study through the model for systematic approach 

and statistical approach. In this case approach of distribution theory is crucial to develop statistical 

model for knowing the occurrence of some event and their interest for some populations of 

individuals in almost every field of knowledge.  The statistical modeling and their studies along 

with lifetime data has been drawn interest to researchers in engineering, biomedical science, 

insurance, finance, amongst others. Applications of lifetime distributions range from investigations 

into the endurance of manufactured items in engineering to research involving human diseases in 

biomedical sciences. 

 

In the recent past years, a number of one parameter and two-parameter lifetime distributions for 

modeling lifetime data have been proposed by different statisticians.  As we know that classical 

one parameter exponential distribution including other popular distribution such as Lindley, 

Akash, Shanker, Ishita, Pranav, Rani, Ram Awadh distributions are proposed and applied on life 

time data from various field. The two-parameter lifetime distributions popular in statistics are 

gamma, Weibull, Power Lindley, Quasi Lindley and Exponentiated exponential.  

 

The probability density function (pdf) along with introducer (year) of exponential, Lindley, Akash, 

Shanker, Pranav and Ram Awadh distributions are presented in table 1. 

 

 

 

mailto:shankerrama2009@gmail.com;%20kkshukla22@gmail.com
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Table 1: The pdf of exponential, Lindley, Shanker, Pranav, Rani and Ram Awadh distributions 

 

Distributions pdf  Introducer 

(Year) 

Exponential 𝑓(𝑥; 𝜃) = 𝜃𝑒−𝜃𝑥  

Lindley 
𝑓(𝑥) =

𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥

 

Lindley (1958) 

Shanker 
𝑓(𝑥) =

𝜃2

𝜃2 + 1
(𝜃 + 𝑥)𝑒−𝜃𝑥 

Shanker (2015 

a) 

Akash  
𝑓(𝑥; 𝜃) =

𝜃3

𝜃2 + 2
(1 + 𝑥2)𝑒−𝜃𝑥

 

Shanker (2015 

b) 

Ishita 
𝑓(𝑥; 𝜃) =

𝜃3

𝜃3 + 2
(𝜃 + 𝑥2)𝑒−𝜃𝑥 

Shanker and 

Shukla (2017) 

Pranav 
𝑓(𝑥; 𝜃) =

𝜃4

𝜃4 + 6
(𝜃 + 𝑥3)𝑒−𝜃𝑥 

Shukla (2018) 

Rani 
𝑓(𝑥; 𝜃) =

𝜃5

𝜃5 + 24
(𝜃 + 𝑥4)𝑒−𝜃𝑥 

Shanker  

(2017) 

Ram Awadh 
𝑓(𝑥; 𝜃) =

𝜃6

𝜃6 + 120
(𝜃 + 𝑥5)𝑒−𝜃𝑥

 

Shukla(2018) 

 

Ghitany et al (2008) have discussed various statistical properties, estimation of parameter and 

application of Lindley distribution to model waiting time data in a bank and showed that Lindley 

distribution is a suitable model over exponential distribution. Shanker et al (2015) have detailed 

comparative and critical study on applications of exponential and Lindley distributions for modeling 

real lifetime datasets from biomedical science and engineering and showed that in majority of 

datasets exponential distribution shows satisfactory fit over Lindley distribution.  

 

Recently, Shanker and Shukla (2019) proposed a two-parameter lifetime distribution named Rama-

Kamlesh distribution (RKD) defined by its pdf and survival function as 

 

  𝑓(𝑥; 𝜃, 𝛼) =
𝜃𝛼+1

𝜃𝛼+𝛤(𝛼+1)
(1 + 𝑥𝛼)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0                                 (1.1) 

  𝑆(𝑥; 𝜃, 𝛼) =
𝜃𝛼(1+𝑥𝛼)𝑒−𝜃𝑥+𝛼𝛤(𝛼,𝜃𝑥)

𝜃𝛼+𝛤(𝛼+1)
; 𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0,                           (1.2) 

 

where 𝛤(𝛼, 𝜃𝑥) is the lower incomplete gamma function defined as 

  

                                        𝛤(𝛼, 𝑧) = ∫ 𝑒−𝑡𝑡𝛼−1
𝑧

0
𝑑𝑡                                                               (1.3) 

 

It has been mentioned by Shanker and Shukla (2019) that RKD includes several one parameter 

lifetime distributions. Various interesting properties, estimation of parameters and application of the 

distribution have been given in Shanker and Shukla (2019). 

 

The main aim of the present paper is to introduce two-parameter lifetime distribution named Shukla 

distribution (SD)’ which includes many one parameter distributions including exponential 

distribution as particular case. Several other one parameter lifetime distributions can also be 

generated from SD. Its moments about origin and the variance have been obtained. The hazard rate 

function and stochastic ordering have been discussed. Maximum likelihood estimation has been 

discussed for estimating the parameters of the distribution. Applications of the distribution have 

been discussed with real lifetime dataset and the goodness of fit of the distribution has been 
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compared with well known one parameter and two-parameter lifetime distributions. 

 

2. Shukla Distribution 
 

The pdf of Shukla distribution (SD) having parameters   and   can be defined as 

 

            𝑓(𝑥; 𝜃, 𝛼) =
𝜃𝛼+1

𝜃𝛼+1+𝛤(𝛼+1)
(𝜃 + 𝑥𝛼)𝑒−𝜃𝑥; 𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0                             (2.1) 

   

It can be easily verified that exponential, Shanker, Ishita, Pranav, Rani and Ram Awadh 

distributions are particular cases of SD for 0  , 1  , 2  , 3  , 4   and 5 

respectively. The pdf (2.1) can be shown as a convex combination of exponential    and gamma

 ,  distributions. We have  

𝑓(𝑥; 𝜃, 𝛼) = 𝑝𝑔1(𝑥; 𝜃) + (1 − 𝑝)𝑔2(𝑥; 𝛼, 𝜃), 

 where  

 

1

1
,

1
p







 






 
𝑔1(𝑥; 𝜃) = 𝜃𝑒

−𝜃𝑥, 𝑔2(𝑥; 𝛼, 𝜃) =
𝜃𝛼+1

𝛤(𝛼+1)
𝑒−𝜃𝑥𝑥𝛼+1−1. 

𝑆(𝑥; 𝜃, 𝛼) = 𝑃(𝑋 > 𝑥) = ∫ 𝑓(𝑡; 𝜃, 𝛼)𝑑𝑡 =
∞

𝑥

𝜃𝛼+1

𝜃𝛼+1 + 𝛤(𝛼 + 1)
∫ (𝜃 + 𝑡𝛼)

∞

𝑥

𝑒−𝜃𝑡𝑑𝑡 

                                                   =
𝜃𝛼+1

𝜃𝛼+1+𝛤(𝛼+1)
[𝜃 ∫ 𝑒−𝜃𝑡𝑑𝑡

∞

𝑥
+ ∫ 𝑒−𝜃𝑡

∞

𝑥
𝑡𝛼𝑑𝑡] 

 

                                                   =
𝜃𝛼+1

𝜃𝛼+1+𝛤(𝛼+1)
[
𝑒−𝜃𝑥

1
+

𝑒−𝜃𝑥(𝜃𝑥)𝛼+𝛼𝛤(𝛼,𝜃𝑥)

𝜃𝛼+1
] 

                                                   =
𝜃𝛼(𝜃+𝑥𝛼)𝑒−𝜃𝑥+𝛼𝛤(𝛼,𝜃𝑥)

𝜃𝛼+1+𝛤(𝛼+1)
, 

 

 Thus the corresponding cdf of SD can be obtained as 

  

𝐹(𝑥; 𝜃, 𝛼) = 1 − 𝑆(𝑥; 𝜃, 𝛼) = 1 −
𝜃𝛼(𝜃+𝑥𝛼)𝑒−𝜃𝑥+𝛼𝛤(𝛼,𝜃𝑥)

𝜃𝛼+1+𝛤(𝛼+1)
; 𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0          (2.2) 

 

Behaviors of pdf and survival function of SD for varying values of parameters and  have been 

shown in figures 1 and 2, respectively.  
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Fig.1: Behavior of the pdf of SD for varying values of parameters  and   

 

 

 
Fig.2: Behavior of the S(x) of SD for varying values of parameters  and   
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3. Moments 

The r th moment about origin,  
r     of Shukla distribution(SD) can be obtained as       

𝜇𝑟
′ =

𝜃𝛼+1

𝜃𝛼+1 + 𝛤(𝛼 + 1)
∫ 𝑥𝑟

∞

0

(𝜃 + 𝑥𝛼)𝑒−𝜃𝑥𝑑𝑥 

=
𝜃𝛼+1𝛤(𝑟 + 1) + 𝛤(𝛼 + 𝑟 + 1)

𝜃𝑟{𝜃𝛼+1 + 𝛤(𝛼 + 1)}
; 𝑟 = 1,2,3, . .. 

Thus the first four moments about origin of SD are obtained as 

  

𝜇1
′ =

𝜃𝛼+1 + 𝛤(𝛼 + 2)

𝜃{𝜃𝛼+1 + 𝛤(𝛼 + 1)}
 

 

𝜇2
′ =

2𝜃𝛼+1 + 𝛤(𝛼 + 3)

𝜃2{𝜃𝛼+1 + 𝛤(𝛼 + 1)}
 

 

𝜇3
′ =

6𝜃𝛼+1 + 𝛤(𝛼 + 4)

𝜃3{𝜃𝛼+1 + 𝛤(𝛼 + 1)}
 

 

𝜇3
′ =

24𝜃𝛼+1+𝛤(𝛼+5)

𝜃4{𝜃𝛼+1+𝛤(𝛼+1)}
. 

The variance of SD can be obtained as 

𝜇2 = 𝜇2
′ − (𝜇1)

2 =
{2𝜃𝛼+1 + 𝛤(𝛼 + 3)}{𝜃𝛼+1 + 𝛤(𝛼 + 1)} − {𝜃𝛼+1 + 𝛤(𝛼 + 2)}2

𝜃2{𝜃𝛼+1 + 𝛤(𝛼 + 1)}2
 

                               

Taking 1,2,3 and 4r  , the first four moments about origin,
r   of SD can be obtained. It should 

be noted that the r th moment about origin, 
r of exponential, Shanker, Ishita, Pranav, Rani and 

Ram Awadh distribution can be obtained from the 
r   of SD by taking 0,1,2,3,4, and 5  .  

 

4. Hazard Rate Function and Mean Residual Life Function 
 

For a continuous random variable X  having pdf  f x and cdf  F x , the hazard rate function 

(also known as the failure rate function) ,  h x , is defined as 

ℎ(𝑥) = 𝑙𝑖𝑚
𝛥𝑥→0

𝑃(𝑋<𝑥+𝛥𝑥|𝑋>𝑥)

𝛥𝑥
=

𝑓(𝑥)

1−𝐹(𝑥)
 . 

Thus, hazard rate function,  h x of Shukla distribution can be expressed as ℎ(𝑥) = ℎ(𝑥; 𝜃, 𝛼) =

𝑓(𝑥;𝜃,𝛼)

1−𝐹(𝑥;𝜃,𝛼)
=

𝜃𝛼+1(𝜃+𝑥𝛼)𝑒−𝜃𝑥

𝜃𝛼(𝜃+𝑥𝛼)𝑒−𝜃𝑥+𝛼𝛤(𝛼,𝜃𝑥)
; 𝑥 > 0, 𝜃 > 0, 𝛼 ≥ 0 

 

The mean residual life function,  m x  of Shukla distribution can be obtained as 

𝑚(𝑥; 𝜃, 𝛼) =
1

𝑆(𝑥; 𝜃, 𝛼)
∫ 𝑡𝑓(𝑡; 𝜃, 𝛼)

∞

𝑥

𝑑𝑡 − 𝑥 

=
𝜃𝛼+1 + 𝛤(𝛼 + 1)

𝜃𝛼(𝜃 + 𝑥𝛼)𝑒−𝜃𝑥 + 𝛼𝛤(𝛼, 𝜃𝑥)
∫ 𝑡

𝜃𝛼+1

𝜃𝛼+1 + 𝛤(𝛼 + 1)
(𝜃 + 𝑡𝛼)𝑒−𝜃𝑡

∞

𝑥

𝑑𝑡 − 𝑥 

 

=
𝜃𝛼+1

𝜃𝛼(𝜃 + 𝑥𝛼)𝑒−𝜃𝑥 + 𝛼𝛤(𝛼, 𝜃𝑥)
[𝜃 ∫ 𝑒−𝜃𝑡𝑡𝑑𝑡 + ∫ 𝑒−𝜃𝑡𝑡𝛼+1

∞

𝑥

𝑑𝑡
∞

𝑥

] − 𝑥 
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=
𝜃𝛼+1

𝜃𝛼(𝜃 + 𝑥𝛼)𝑒−𝜃𝑥 + 𝛼𝛤(𝛼, 𝜃𝑥)
[
𝑒−𝜃𝑥(𝜃𝑥 + 1)

𝜃
+
𝑒−𝜃𝑥(𝜃𝑥)𝛼(𝜃𝑥 + 𝛼 + 1) + 𝛼(𝛼 + 1)𝛤(𝛼, 𝜃𝑥)

𝜃𝛼+2
] − 𝑥 

=
𝑒−𝜃𝑥{𝜃𝛼+1+(𝛼+1)(𝜃𝑥)𝛼}+𝛼(𝛼+1−𝜃𝑥)𝛤(𝛼,𝜃𝑥)

𝜃{𝜃𝛼(𝜃+𝑥𝛼)𝑒−𝜃𝑥+𝛼𝛤(𝛼,𝜃𝑥)}
. 

Note that ℎ(0) =
𝜃𝛼+2

𝜃𝛼+1+𝛤(𝛼+1)
= 𝑓(0) and 𝑚(0) =

𝜃𝛼+1+𝛤(𝛼+2)

𝜃{𝜃𝛼+1+𝛤(𝛼+1)}
= 𝜇1

′.  The behaviors of  h x  and 

 m x  of SD for varying values of parameters  and   have been shown in figures 3 and 4 

respectively.     

 

 

Fig.3: Behavior of  h x  of SD for varying values of parameters  and   

 

Fig. 4: Behavior of  m x  of SD for varying values of parameters  and   
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5. Stochastic Ordering 
 

Stochastic ordering of positive continuous random variables is an important tool for judging their 

comparative behavior. A random variable X is said to be smaller than a random variable Y in the  

(i) stochastic order (𝑋 ≤𝑠𝑡 𝑌)if 𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥)for all x  

(ii) hazard rate order (𝑋 ≤ℎ𝑟 𝑌)if ℎ𝑋(𝑥) ≥ ℎ𝑌(𝑥) for all x  

(iii) mean residual life order (𝑋 ≤𝑚𝑟𝑙 𝑌)if 𝑚𝑋(𝑥) ≤ 𝑚𝑌(𝑥)for all x  

(iv) likelihood ratio order (𝑋 ≤𝑙𝑟 𝑌)if 
𝑓𝑋(𝑥)

𝑓𝑌(𝑥)
 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known for establishing 

stochastic ordering of distributions 
𝑋 ≤𝑙𝑟 𝑌 ⇒ 𝑋 ≤ℎ𝑟 𝑌 ⇒ 𝑋 ≤𝑚𝑟𝑙 𝑌 
⇓

𝑋≤𝑠𝑡𝑌
 

KRD is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the following 

theorem: 

 

Theorem: Let 𝑋   RKD(𝜃1, 𝛼1) and 𝑌 Y   RKD(𝜃2, 𝛼2)(𝜃2, 𝛼2). If 𝛼1 ≤ 𝛼2 and 𝜃1 > 𝜃2 , then 

𝑋 ≤𝑙𝑟 𝑌and hence𝑋 ≤ℎ𝑟 𝑌, 𝑋 ≤𝑚𝑟𝑙 𝑌and𝑋 ≤𝑠𝑡 𝑌. 

Proof: We have  

                    
𝑓𝑋(𝑥;𝜃1,𝛼1)

𝑓𝑌(𝑥;𝜃2,𝛼2)
=

𝜃1
𝛼1+1(𝜃2

𝛼2+1+𝛤(𝛼2+1))

𝜃2
𝛼2+1(𝜃1

𝛼1+1+𝛤(𝛼1+1))
(
𝜃1+𝑥

𝛼1

𝜃2+𝑥
𝛼2
) 𝑒−(𝜃1−𝜃2)𝑥;  𝑥 > 0           

Now  

                 𝑙𝑛
𝑓𝑋(𝑥;𝜃1,𝛼1)

𝑓𝑌(𝑥;𝜃2,𝛼2)
= 𝑙𝑛 [

𝜃1
𝛼1+1(𝜃2

𝛼2+1+𝛤(𝛼2+1))

𝜃2
𝛼2+1(𝜃1

𝛼1+1+𝛤(𝛼1+1))
] + 𝑙𝑛 (

𝜃1+𝑥
𝛼1

𝜃2+𝑥
𝛼2
) − (𝜃1 − 𝜃2)𝑥 

  .         

  This gives        
𝑑

𝑑𝑥
𝑙𝑛

𝑓𝑋(𝑥;𝜃1,𝛼1)

𝑓𝑌(𝑥;𝜃2,𝛼2)
=

𝛼1𝜃2𝑥
𝛼1−1−𝜃1𝛼2𝑥

𝛼2−1+(𝛼1−𝛼2)𝑥
𝛼1+𝛼2−1

(1+𝑥𝛼1)(1+𝑥𝛼2)
− (𝜃1 − 𝜃2)                                                                             

                                                                                 

 Thus, for𝛼1 ≤ 𝛼2 and 𝜃1 > 𝜃2 ,
𝑑

𝑑𝑥
𝑙𝑛

𝑓𝑋(𝑥;𝜃1,𝛼1)

𝑓𝑌(𝑥;𝜃2,𝛼2)
< 0. This means that 𝑋 ≤𝑙𝑟 𝑌and hence𝑋 ≤ℎ𝑟 𝑌, 

𝑋 ≤𝑚𝑟𝑙 𝑌and𝑋 ≤𝑠𝑡 𝑌. This shows flexibility of SD over one parameter exponential, Shanker, Ishita, 

Pranav, Rani and Ram Awadh distributions. 

 

6. Maximum Likelihood Estimation 
 

Let (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) be a random sample from SD (2.1). The likelihood function, L of (2.1)  can be 

expressed as  

𝐿 = (
𝜃𝛼+1

𝜃𝛼+1 + 𝛤(𝛼 + 1)
)

𝑛

∏(𝜃 + 𝑥𝑖
𝛼)

𝑛

𝑖=1

𝑒−𝑛𝜃𝑥̄ 

   The natural log likelihood function is thus obtained as 

 𝑙𝑛 𝐿 = 𝑛 𝑙𝑛 (
𝜃𝛼+1

𝜃𝛼+1+𝛤(𝛼+1)
) + ∑ 𝑙𝑛(𝜃 + 𝑥𝑖

𝛼)𝑛
𝑖=1 − 𝑛𝜃𝑥̄ 

    

                 = 𝑛[(𝛼 + 1) 𝑙𝑛 𝜃 − 𝑙𝑛(𝜃𝛼+1 + 𝛤(𝛼 + 1))] + ∑ 𝑙𝑛(𝜃 + 𝑥𝑖
𝛼)𝑛

𝑖=1 − 𝑛𝜃𝑥̄. 

 

The maximum likelihood estimates (MLEs)  ˆ ˆ,   of parameters  ,   of SD are the solution of 

the following nonlinear log likelihood equations 

𝜕 𝑙𝑛 𝐿

𝜕𝜃
=
𝑛(𝛼 + 1)

𝜃
−

𝑛(𝛼 + 1)𝜃𝛼

𝜃𝛼+1 + 𝛤(𝛼 + 1)
+∑

1

𝜃 + 𝑥𝑖
𝛼

𝑛

𝑖=1

− 𝑛𝑥̄ = 0 
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𝜕 𝑙𝑛 𝐿

𝜕𝛼
= 𝑛 𝑙𝑛 𝜃 −

𝑛[𝜃𝛼+1 𝑙𝑛 𝜃 + 𝜓(𝛼 + 1)]

𝜃𝛼+1 + 𝛤(𝛼 + 1)
+∑

𝑥𝑖
𝛼 𝑙𝑛(𝑥𝑖)

𝜃 + 𝑥𝑖
𝛼

𝑛

𝑖=1

= 0 

 where x  is the sample mean and 𝜓(𝛼 + 1) =
𝑑

𝑑𝛼
𝑙𝑛 𝛤 (𝛼 + 1) is the digamma function. These two 

natural log likelihood equations do not seem to be solved directly, because they cannot be expressed 

in closed forms. The (MLE’s) (𝜃̂, 𝛼̂) of  ( , )   can be computed directly by solving the natural log 

likelihood equation using Newton-Raphson iteration available in R-software till sufficiently close 

values of ˆ ˆand   are obtained.  

 

 

7. Data Analysis 
 

The applications of SD have been discussed with the following dataset relating to engineering from 

Fuller et al (1994).This data set is the strength data of glass of the aircraft window reported by Fuller 

et al (1994): 

 

18.83 20.8 21.657 23.03 23.23 24.05 24.321  25.5 25.52 25.8 26.69 26.77    

26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 34.76 35.75 35.91    

36.98 37.08 37.09 39.58 44.045 45.29 45.381   

 

For the above dataset, SD has been fitted along with two- parameter distributions including Power 

Lindley distribution (PLD) proposed by Ghitany et al (2013), Weibull distribution suggested by 

Weibull distribution(1951), gamma distribution, Quasi Lindley distribution introduced by Shanker 

and Mishra (2013)  and generalized exponential distribution proposed by Gupta and Kundu (1999), 

RKD and one parameter lifetime distributions including exponential, Lindley, Shanker, Akash, 

Ishita, Pranav, Rani and Ram Awadh . The ML estimates, value of 2log L , Akaike Information 

criteria (AIC),  K-S statistics and p-value  of the fitted distributions are presented in tables 2 and 3. 

The AIC and K-S Statistics are computed using the following formulae: 𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿 + 2𝑘 and  

K-S = Sup
𝑥
|𝐹𝑛(𝑥) − 𝐹0(𝑥)|, where k  = the number of parameters, n  = the sample size , 𝐹𝑛(𝑥)is the 

empirical (sample) cumulative distribution function, and 𝐹0(𝑥) is the theoretical cumulative 

distribution function. The best distribution is the distribution corresponding to lower values of 

2log L , AIC, and K-S statistics and higher p-value 

 

Table 2: MLE’s, Standard Errors, - 2ln L, AIC, K-S and p-values of the fitted distributions for 

dataset 1 

 

Distributions ML Estimates 2log L  AIC BIC K-S p-value 

SD ˆ 0.6144   208.23 212.23 216.05 0.134 0.580 

ˆ 17.9299   

PLD ˆ 0.00243   220.14 224.14 226.13 0.198 0.152 

 ˆ 1.9439   

RKD ˆ 0.61361   208.23 212.23 216.05 0.134 0.580 

ˆ 17.9060   

Gamma ˆ 0.61482   208.22 212.22 216.05 0.134 0.578 

ˆ 18.9433   

Weibull ˆ 0.00203   241.61 245.61 247.61 0.353 0.000 

ˆ 1.80566   



Kamlesh Kumar Shukla, Rama Shanker 

SHUKLA DISTRIBUTION AND ITS APPLICATION 

RT&A, No 3 (54) 
Volume 14, September 2019  

54 

QLD ˆ 0.03416   274.45 278.45 281.32 0.458 0.000 

ˆ 18.9393   

GED ˆ 0.16531   208.27 212.27 215.13 0.135 0.581 

ˆ 92.0017   

Exponential 0. 25ˆ 03   274.53 276.53 277.96 0.459 0.000 

Lindley 0. 29ˆ 06   253.99 255.99 257.42 0.333 0.000 

Akash 0. 70ˆ 09   240.68 242.68 244.11 0.296 0.006 

Shanker 0.0 71ˆ 64   252.35 254.35 255.78 0.357 0.000 

Ishita ˆ 0.09732   240.48 242.48 243.48 0.297 0.006 

Pranav ˆ 0.1298   232.77 234.77 235.77 0.253 0.030 

Rani ˆ 0.1623   277.25 229.25 230.24 0.220 0.080 

Ram Awadh ˆ 0.19471   223.07 225.07 226.07 0.197 0.155 

 

 

It is obvious from the goodness of fit given in tables 2 that SD competes well with considered one-

parameter and two-parameter lifetime distributions. Therefore, SD can be considered an important 

two-parameter lifetime distribution as.  

 

8. Conclusions 
 

In this paper a two-parameter lifetime distribution named, ‘Shukla distribution (SD)’ which 

includes one parameter lifetime distributions including exponential, Shanker, Ishita, Pranav, Rani  

and Ram Awadh as particular cases, has been proposed and studied. Its moments have been 

obtained. The hazard rate function, mean residual life function and stochastic ordering have been 

discussed. The estimation of its parameters using maximum likelihood estimation has been 

discussed. Goodness of fit has been presented with a real lifetime dataset and fit found quite 

satisfactory over all well- known considered lifetime distributions. 
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Abstract 

 

In classical set theory there exist only two possibility of any element belonging to the set 

yes or no, that is its probability of belonging to the set either 0 or 1, but this theory is fail 

to predictable in many system where the possibility of an element belonging to set is 

not exact, that is there exist some vagueness about the element affecting the system. 

Therefore L. A. Zadeh gives a new theory of fuzzyness, where the belongingness of an 

element can except 0 or 1 and take any value between [0, 1]. This new approach give us 

much benefit to modelling the real situation and find the reliability of any system. This 

theory also useful to find the most critical event in any fault tree model. Fuzzy theory 

are applicable in many areas industrial, technical, engineering, medical etc. 

 

Keywords: Healthcare system, Fault tree, Pentagonal-triangular intervalued fuzzy 

numbers,  - cut, signed distance, COG. 

 

 

I. Introduction 
 

In this article we consider a new intervalued pentagonal-triangular fuzzy number with the help of 

converting intervalued trapezoidal fuzzy numbers and find out reliability of mixed system. 

According to WHO (World Health Organization) ‘Healthcare system goals are good health for 

citizens responsiveness to the expectation of the population and fair means of funding operation. 

Other dimension for the evaluation of health system include quality, efficiency, acceptability and 

equity. Butnariu developed a neuron model with the help of fuzzy analysis, Acoustico-vestibulary 

nerve as a fuzzy automation describe with this help. Similarly Rocha has been developed nervous 

system using fuzzy logic. The most  extensive application of fuzzy theory in the area of medical 

diagnosis, in diagnosis process we mapped symptoms with diseases, the relation between 

symptom and disease are imprecise due to various stage of disease  We know that in healthcare 

system there are many uncertainty, To determine reliability of whole system we use COG and 

signed distance method as defuzzification. Here we use interval valued fuzzy numbers which 
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belongs to  , ,  0 . This study used level  ,  interval valued fuzzy numbers to 

determine fuzzy reliability of mixed healthcare system. Fault tree analysis (FTA) have been applied 

for patient safety risk modelling in healthcare [1-2],[7],[10],[12]. Fault tree analysis also extensively 

used as a powerful technique in health related risk analysis from both qualitative and quantitative 

perspectives [2],[6].[12]. Hyman and Johnson [9] present a FTA of the patient harm-related clinical 

alarms failures. Park and Lee [2] constructed a FTA of hand washing process to investigate the 

causes for faults in hygiene management, the possibility of failure of the top event is calculated 

from the possibilities of failure of its components according to the extension principle [3],[6]. 

 

II. Fuzzy Sets 
 

A fuzzy set is defined by a membership function from the universal set to the interval [0,1], as 

given below;    

 𝜇𝐴(𝑥): 𝑋 → [0,1] (1) 

, here )(xA gives the degree of belongingness of x  in the set A. A fuzzy set A can be expressed as 

follows: 

                                                    𝐴
~

= {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}        (2)         

 

III. Level (𝝀, 𝝆)Inter-Valued trapezoidal Fuzzy Numbers 
 

The i-v fuzzy set A
~

   indicates that, when the membership grade of x belongs to the interval 

 )(),( ~~ xx UL AA
 the largest grade is )(~ xUA

  and the smallest grade is )(~ xLA
    

 

𝜇𝐴𝐿(𝑥) =

{
 
 

 
 
𝜆(𝑥−𝑏)

𝑐−𝑏
𝑏 ≤ 𝑥 ≤ 𝑐

𝜆𝑐 ≤ 𝑥 ≤ 𝑑
𝜆(𝑒−𝑥)

𝑒−𝑑
𝑑 ≤ 𝑥 ≤ 𝑒

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                       

(3) 

 

Therefore, 𝐴̃𝐿 = (𝑏, 𝑐, 𝑑, 𝑒: 𝜆)𝑏 < 𝑐 < 𝑑 < 𝑒 

 

   𝜇𝐴̃𝑈(𝑥) =

{
 
 

 
 
𝜌(𝑥−𝑎)

𝑐−𝑎
𝑎 ≤ 𝑥 ≤ 𝑐

𝜌𝑐 ≤ 𝑥 ≤ 𝑑
𝜌(𝑓−𝑥)

(𝑓−𝑑)
𝑑 ≤ 𝑥 ≤ 𝑓

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                      

(4) 

 

 

Therefore 𝐴̃𝑈 = (𝑎, 𝑐, 𝑑, 𝑓: 𝜌), 𝑎 < 𝑐 < 𝑑 < 𝑓, Consider the case in which 0 < 𝜆 ≤ 𝜌 ≤ 1 and 𝑎 < 𝑏 <
𝑐 < 𝑑 < 𝑒 < 𝑓.  

 

From (3) and (4) we obtain ]
~

,
~

[
~ UL AAA  [𝑏, 𝑐, 𝑑, 𝑒; 𝜆), (𝑎, 𝑐, 𝑑, 𝑓; 𝜌)][𝑏, 𝑐, 𝑑, 𝑒; 𝜆), (𝑎, 𝑐, 𝑑, 𝑓; 𝜌)]  , Which 

is called the level(𝜆, 𝜌)𝑖 −  v trapezoidal fuzzy number. The intervalued trapezoidal fuzzy numbers 

shown in fig1. 
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Fig1. Intervalued trapezoidal fuzzy numbers 

 

 

IV. Level (𝝀, 𝝆)Inter-Valued Pentagonal-Triangular Fuzzy Numbers 
 

The  i-v pentagonal-triangular  fuzzy numbers indicates that, when the membership grade of x 

belongs to the interval  [𝜇𝐴𝐿(𝑥), 𝜇𝐴𝑈(𝑥)]the largest grade is 𝜇𝐴𝑈(𝑥) and the smallest grade is 𝜇𝐴𝐿(𝑥) 

is given by following equations. 

 

 𝜇𝐴𝐿(𝑥) = {

𝜆(𝑥−𝑎)

𝑐−𝑎
𝑎 ≤ 𝑥 ≤ 𝑐

𝜆(𝑒−𝑥)

𝑒−𝑐
𝑐 ≤ 𝑥 ≤ 𝑒

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                (5) 

 

Therefore, 𝐴̃𝐿 = (𝑎, 𝑐, 𝑒: 𝜆)𝑎 < 𝑐 < 𝑒 

 

𝜇𝐴𝑈(𝑥) =

{
 
 
 

 
 
 
𝜆(𝑥−𝑎)

𝑏−𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

𝜆 +
𝑥−𝑏

𝑐−𝑏
(𝜌 − 𝜆)𝑏 ≤ 𝑥 ≤ 𝑐

𝜆 +
𝑥−𝑑

𝑐−𝑑
(𝜌 − 𝜆)𝑐 ≤ 𝑥 ≤ 𝑑

𝜆(𝑒−𝑥)

(𝑒−𝑑)
𝑑 ≤ 𝑥 ≤ 𝑒

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                             (6)  

 

Therefore ,),:,,,,,(
~

edcbaedcbaAU    .Consider the case in which 10    and 

.edcba   from (5) and (6) we obtain ]
~

,
~

[
~ UL AAA   );,,,,(,);,,(  edcbaeca  , Which is 

called the level   v),( i pentagonal-triangular intervalued  fuzzy numbers.  

 

The intervalued pentagonal-triangular fuzzy numbers is shown in fig2. )(U

iA  indicate left upper 𝛼 

- cut  )(L

lA  for left lower 𝛼 - cut , )(L

rA   for right lower  - cut and )(U

rA indicate right upper 𝛼 - 

cut. 
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Fig2. Intervalued pentagonal-triangular fuzzy numbers 

 

Corresponding to each curve, the x coordinate corresponding to 𝛼 - cut and y coordinate given by  

𝑥1 = 𝑎 +
𝛼

𝜆
(𝑏 − 𝑎)                          𝑦1 = 𝜆 (

𝑥−𝑎

𝑏−𝑎
)                                                                                    

𝑥2 = 𝑏 +
𝛼−𝜆

𝜌−𝜆
(𝑐 − 𝑏)  𝑦2 = {𝜆 +

𝑥−𝑏

𝑐−𝑏
(𝜌 − 𝜆)}                      

𝑥3 = 𝑑 +
𝛼−𝜆

𝜌−𝜆
(𝑐 − 𝑑)  𝑦3 = {𝜆 +

𝑥−𝑑

𝑐−𝑑
(𝜌 − 𝜆)}                          

𝑥4 = 𝑒 +
𝛼

𝜆
(𝑑 − 𝑒)  𝑦4 = 𝜆 (

𝑥−𝑒

𝑑−𝑒
)                                                   

𝑥5 = 𝑎 +
𝛼

𝜆
(𝑐 − 𝑎)  𝑦5 = 𝜆 (

𝑥−𝑎

𝑐−𝑎
)                                                    

𝑥6 = 𝑒 +
𝛼

𝜆
(𝑐 − 𝑒)  𝑦6 = 𝜆 (

𝑥−𝑒

𝑐−𝑒
)      (7) 

 

V. - cut and Signed Distance of Pentagonal Triangular Intervalued Fuzzy 

Numbers [11]: 

 

   if 0 ≤ 𝛼 0 ˂  then   cut of A
~

 is 𝐴(𝛼) = {𝑥/𝜇𝐴𝑈(𝑥) ≥ 𝛼} − {𝑥/𝜇𝐴𝐿(𝑥) ≥ 𝛼} =

[𝐴𝑙
𝑈(𝛼), 𝐴𝑙

𝐿(𝛼)] ∪ [𝐴𝑟
𝐿(𝛼), 𝐴𝑟

𝑈(𝛼)]; Otherwise, for𝜆 ≤ 𝛼 ≤ 𝜌, the   cut of A
~

 is[𝐴𝑙
𝑈(𝛼), 𝐴𝑟

𝑈(𝛼)] 

𝑑∗(𝑎, 0) = 𝐴𝑙
𝑈(𝛼), 𝑑∗(𝐴𝑙

𝐿(𝛼),0) = 𝐴𝑙
𝐿(𝛼), 𝑑∗(𝐴𝑟

𝐿(𝛼),0) = 𝐴𝑟
𝐿(𝛼), 𝑑∗(𝐴𝑟

𝑈(𝛼),0) = 𝐴𝑟
𝑈(𝛼). 

Therefore the signed distance [11] of the interval  )(),(  L

l

U

l AA  from 0 can be defined as follows: 

𝑑∗([𝐴𝑙
𝑈(𝛼), 𝐴𝑙

𝐿(𝛼)],0) =
1

2
(𝑑∗(𝐴𝑙

𝑈(𝛼),0) + 𝑑∗(𝐴𝑙
𝐿(𝛼),0)) =

1

2
(𝐴𝑙

𝑈(𝛼), 𝐴𝑙
𝐿(𝛼)) =

1

2
[𝑎 + (𝑏 − 𝑎)

𝛼

𝜆
+ 𝑎 +

(𝑐 − 𝑎)
𝛼

𝜌
] =

1

2
[2𝑎 +

𝛼

𝜆
(𝑏 + 𝑐 − 2𝑎)]                    (8) 

Similarly  𝑑∗([𝐴𝑟
𝐿(𝛼), 𝐴𝑟

𝑈(𝛼),0]) =
1

2
[𝑒 +

𝛼

𝜆
(𝑑 − 𝑒) + 𝑒 +

𝛼

𝜆
(𝑐 − 𝑒)] =

1

2
[2𝑒 +

𝛼

𝜆
(𝑑 + 𝑐 − −2𝑒)]  

    

(9) 

When  [𝐴𝑙
𝑈(𝛼), 𝐴𝑙

𝐿(𝛼)] ∩ [𝐴𝑟
𝐿(𝛼), 𝐴𝑟

𝑈(𝛼)] = 𝛷, the signed distance of [𝐴𝑙
𝑈(𝛼), 𝐴𝑙

𝐿(𝛼)] ∪ [𝐴𝑟
𝐿(𝛼), 𝐴𝑟

𝑈(𝛼)] 

from 0 can be defined as 𝑑∗([𝐴𝑙
𝑈(𝛼), 𝐴𝑙

𝐿(𝛼)] ∪ [𝐴𝑟
𝐿(𝛼), 𝐴𝑟

𝑈(𝛼)], 0) =
1

2
[𝑑∗([𝐴𝑙

𝑈(𝛼), 𝐴𝑙
𝐿(𝛼)], 0) +

𝑑∗([𝐴𝑟
𝐿(𝛼), 𝐴𝑟

𝑈(𝛼)], 0)]                                                      =
1

4
[2(𝑎 + 𝑒) +

𝛼

𝜆
(𝑑 + 2𝑐 − 2𝑎 + 𝑏 − 2𝑒)]                                                                          

                

(10) 

For   , then the signed distance from A
~

 to 0  is  

𝑑([𝐴𝑙
𝑈(𝛼), 𝐴𝑟

𝑈(𝛼): 𝛼], 0) =
1

2
[(𝑏 + 𝑑) +

𝛼−𝜆

𝜌−𝜆
(2𝑐 − 𝑏 − 𝑑)]                                                                      

(11)                                             
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V(I). Defintion  Let 𝐴̃ = [(𝑎, 𝑏, 𝑐, 𝑑, 𝑒; 𝜌), (𝑎, 𝑐, 𝑒; 𝜆)] ∈ 𝐹𝐼𝑉(𝜆, 𝜌), PF0
~ , the signed distance of A

~
 

from 0
~

 is defined as follows: 

For  10    

𝑑(𝐴̃, 0̃) =
1

𝜆
∫

1

4
[2(𝑎 + 𝑒) +

𝛼

𝜆
(𝑑 + 2𝑐 − 2𝑎 + 𝑏 − 2𝑒)]

𝜆

0

𝑑𝛼

+
1

𝜌 − 𝜆
∫

1

2
[(𝑏 + 𝑑) +

𝛼 − 𝜆

𝜌 − 𝜆
(2𝑐 − 𝑏 − 𝑑)]

𝜌

𝜆

𝑑𝛼 

 =
1

4
[2𝑎 + 2𝑒 + (𝑑 + 2𝑐 + 𝑏 − 2𝑎 − 2𝑒)

𝜆

2
] +

1

2
[(𝑏 + 𝑑) +

1

2
(2𝑐 − 𝑏 − 𝑑)(𝜌 − 𝜆)]          

   dbceadbdbea  2)2233()(2
4

1
                                                       

(12)                                                            

Now we set  0
~

,
~

2

1
Ad  as the defuzzified value of fuzzy numbers 

Now using definition we obtained the following estimate of the reliability of system is  

=
1

8
[2(𝑎 + 𝑒 + 𝑏 + 𝑑) + (3𝑏 + 3𝑑 − 2𝑎 − 2𝑒)𝜆 + 2(𝑐 − 𝑏 − 𝑑)𝜌]              (13) 

V(II). COG method: COG method is one of the most applicable method to defuzzified the fuzzy 

numbers and is given by  

dx
x

xx
x

A

A






)(

)(

~

~
*



  

𝑥∗𝑈

= {
∫ 𝑥. 𝜆 (

𝑥 − 𝑎
𝑏 − 𝑎

) 𝑑𝑥 + ∫ 𝑥 {𝜆 +
𝑥 − 𝑏
𝑐 − 𝑏

(𝜌 − 𝜆)} 𝑑𝑥 + ∫ 𝑥 {𝜆 +
𝑥 − 𝑑
𝑐 − 𝑑

(𝜌 − 𝜆)} 𝑑𝑥 + ∫ 𝑥. 𝜆 (
𝑥 − 𝑒
𝑑 − 𝑒

) 𝑑𝑥
𝑒

𝑑

𝑑

𝑐

𝑐

𝑏

𝑏

𝑒

∫ . 𝜆 (
𝑥 − 𝑎
𝑏 − 𝑎

)𝑑𝑥 + ∫ {𝜆 +
𝑥 − 𝑏
𝑐 − 𝑏

(𝜌 − 𝜆)} 𝑑𝑥 + ∫ {𝜆 +
𝑥 − 𝑑
𝑐 − 𝑑

(𝜌 − 𝜆)} 𝑑𝑥 + ∫ . 𝜆 (
𝑥 − 𝑒
𝑑 − 𝑒

) 𝑑𝑥
𝑒

𝑑

𝑑

𝑐

𝑐

𝑏

𝑏

𝑒

} 















































































 

 
c

a

e

c

c

a

e

cL

dx
ec

ex
dxdx

ac

ax

dx
ec

ex
xdxdx

ac

ax
x

x





..

..
*

 

𝑥∗𝑈 =
1

6
[𝜆(3𝑐2+𝑒2+𝑏𝑐+𝑒𝑑−𝑎2−3𝑑2−𝑎𝑏−𝑐𝑑)+𝜌(𝑑2+𝑐𝑑−𝑏2−𝑏𝑐)]

1

2
[𝜆(𝑐+𝑒−𝑑−𝑎)+𝜌(𝑑−𝑏)]

             (14) 

𝑥∗𝐿 =
1

6
𝜆(𝑒2−𝑎2+𝑒𝑐−𝑎𝑐)

1

2
𝜆(𝑒−𝑎)

 , simplify this we obtain                   (15) 

𝑥∗𝐿 =
1

3
(𝑎 + 𝑐 + 𝑒)                      

(16) 

Then mean of both defuzzified value is the estimate failure probability and is given by  

 𝑥∗ =
1

2
(𝑥∗𝑈 + 𝑥∗𝐿)                     

(17) 

(
0.001551120,0.00205181,0.0030079695,0.003964129,0.004705971
0.001551120,0.0030079695,0.004705971

: 1
: 0.8

) 

 

TABLE 1: Fuzzy operation of two intervalued pantagonal-triangular fuzzy numbers  

OPERATION PENTAGONAL-TRIANGULAR FUZZY INTERVALUED 

NUMBERS 

MULTIPPLICATION (
𝒂𝟏, 𝒃𝟏, 𝒄𝟏, 𝒅𝟏, 𝒆𝟏: 𝝆
𝒂𝟏, , 𝒄𝟏, 𝒆𝟏: 𝝀

) ×

(
𝒂𝟐, 𝒃𝟐, 𝒄𝟐, 𝒅𝟐, 𝒆𝟐: 𝝆

𝒂𝟐, 𝒄𝟐, 𝒆𝟐: 𝝀
)=(

𝒂𝟏.𝒂𝟐, 𝒃𝟏𝒃𝟐, 𝒄𝟏𝒄𝟐, 𝒅𝟏𝒅𝟐, 𝒆𝟏𝒆𝟐: 𝝆
𝒂𝟏.𝒂𝟐, 𝒄𝟏𝒄𝟐, 𝒆𝟏𝒆𝟐: 𝝀

) 

COMPLEMENT   𝟏 − (
𝒂, 𝒃, 𝒄, 𝒅, 𝒆: 𝝆
𝒂, 𝒄, 𝒆: 𝝀

) = (
𝟏 − 𝒆, 𝟏 − 𝒅, 𝟏 − 𝒄, 𝟏 − 𝒃, 𝟏 − 𝒂:𝝆

𝟏 − 𝒆, 𝟏 − 𝒄, 𝟏 − 𝒂: 𝝀
) 
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Definition 1 Let ), e ,c ),(ae, d, c, baA  ::,(
~

11111111 and ), e, c ),(ae, d, c, baB  ::,(
~

22222222  

be two i-v pentagonal-tringular fuzzy numbers then the failure possibility 

 BAF
~~

(  ) for A
~

 ˃ 0 and B
~

 ˃ 0 can be defined using OR operator [8] as  

    )
~

(1)
~

(11)
~

( BFAFBAF
wwww TTTT          

 

Definition 2 Let ), e ,c ),(ae, d, c, baA  ::,(
~

11111111 and ), e, c ),(ae, d, c, baB  ::,(
~

22222222  

be two i-v pentagonal-tringular fuzzy numbers then the failure possibility )
~~

( BAF    for A
~

 ˃ 0 

and B
~

 ˃ 0 can be defined using AND operator [8] as  
)

~
()

~
()

~
( BFAFBAF

wT                                                                                          

 

VI. Example 

 
FTA of a medication pump failing to deliver medication [4]                                                    

The FTA of a medication pump failing to deliver medication to a patient is shown in Fig.3[4]. This 

fault tree has four combination of failures i.e. medication not delivered to patient, immediately 

below the top event is an OR gate meaning that any individual item below the gate is sufficient by 

itself to cause the next higher level failure state. For example, pump failure, clamp not removed 

from tube, pump not activated, and tubing kinked by patient movement are each independently 

work. In this example, the pump and the alarm work together. Pump failure event occurs due to 

two events (the pump stops and the alarm does not alert to the practitioner regarding the pump 

stopping) connected by an AND gate. The pump stops due to either an electrical power failure, a 

pump motor failure, or tubing occlusion. In this fault tree, we have considered three human errors 

plus one patient factor. Marx and slonim[1] considered the values of failure probabilities of  all the 

basic events as 0.001( column 3 of table 4) However, this could not be possible for real system, and 

so we have considered these values as different pentagonal triangular intervalued fuzzy numbers  

as given in table 4(column 4). 

 

Table 4. Failure probability in pentagonal triangular intervalued fuzzy numbers 

Basic event      Failure possibility        Crisp value            TPFNs representation 

A                         Aq~                             0.001              









8.0:,0015.0,001.0,0006.0

1:0015.0,0012.0,001.0,0008.0,0006.0
 

B                         Bq~                            0.001        









8.0:,0015.0,001.0,0006.0

1:0015.0,0012.0,001.0,0008.0,0006.0
 

C                         Cq~                            0.001               









8.0:0014.0,001.0,00055.0

1:0014.0,0013.0,001.0,0007.0,00055.0
 

D                         Dq~                           0.001               









8.0:00145.0,00095.0,0006.0

1:00145.0,0012.0,00095.0,0007.0,0006.0
 

E                         Eq~                            0.001               









8.0:0016.0,001.0,0005.0

1:0016.0,0013.0,001.0,0007.0,0005.0
 

F                          Fq~                          0.001          









8.0:0016.0,001.0,0005.0

1:0016.0,0013.0,001.0,0007.0,0005.0
 

G                          Gq~                          0.001              









8.0:0015.0,000975.0,00055.0

1:0015.0,0130.0000975.0,00065.0,00055.0
 

H                          Hq~                         0.001       









8.0:0016.0,001.0,0005.0

1:0016.0,0013.0,001.0,0007.0,0005.0
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Fig.3. A medication pump fault tree with human error factor failing to deliver medication [1] 

 

Mathematical expression of event is given by 
𝑇 = 𝐾 ∪ 𝐹 ∪ 𝐺 ∪ 𝐻 
= (𝐼 ∩ 𝐽) ∪ 𝐹 ∪ 𝐺 ∪ 𝐻 

= ((𝐴 ∪ 𝐵 ∪ 𝐶) ∩ (𝐷 ∪ 𝐸)) ∪ 𝐹 ∪ 𝐺 ∪ 𝐻                                                  (14) 

And mathematical formula of this expression is given as : 

1Tq     =    1 − [(1 − 𝑞𝐾) × (1 − 𝑞𝐹) × (1 − 𝑞𝐺) × (1 − 𝑞𝐻)] 

         =     1 − [(1 − 𝑞𝐼 × 𝑞𝐽) × (1 − 𝑞𝐹) × (1 − 𝑞𝐺) × (1 − 𝑞𝐻)] 

         =     1 − [(1 − (1 − (1 − 𝑞𝐴) × (1 − 𝑞𝐵) × (1 − 𝑞𝐶)) 
                × (1 − (1 − 𝑞𝐷) × (1 − 𝑞𝐸))) × (1 − 𝑞𝐹) × (1 − 𝑞𝐺) × (1 − 𝑞𝐻)]                                                    

(15)  

 

VII. Result 

 
By the fuzzy operation with the help of table 1 and table 2  we have the failure probability of top 

event is  

(
0.001551120,0.00205181,0.0030079695,0.003964129,0.004705971
0.001551120,0.0030079695,0.004705971

: 1
: 0.8

) 










8.0;99844888.0,9969920305.0,9955294029.0

1;99844888.0,99794819.0,9969920305.0,996035871.0,9955294029.0
 

VII(I). Conclusion1:  Defuzzification by signed distance method, we obtain failure probability of 

top event from equation 13 is 

0028696286.0* x  and reliability of top event is 0.97130371 

And by COG method we obtain failure probability of top event from equation (15), (16),and  (17) is  

0016765622.0* 
L

x  

0022540335.0* 
U

x  
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Now  0022540335.00016765622.0
2

1* x                                              (18) 

VII(II). Conclusion2.: Therefore by COG method the failure probability of top event  

0039305957.0* x  and reliability of top event is 0.996069404 

VII(III). Difference Error:   the difference in both method is about 0.1060967 % which imply that 

the COG method and Signed distance method are give similar result. 

The fuzzy failure probability and fuzzy reliability in pentagonal-triangular intervalued fuzzy 

numbers are in fig4 and fig5 respectively. 

 
Fig 4.Fuzzy pentagonal-Triangular failure probability 

 
Fig 5.Fuzzy pentagonal-Triangular reliability probability 
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Abstract 

 

In this paper, we choose such a particular formulation of the problem of calculating 

linear regression coefficient, when the moments of observation form an arithmetic 

progression. It is proved that the variance of the trend estimation in this case decreases 

proportionally to the third degree of the length of the series of observations. If the 

estimation of a linear trend is based on several independent samples, the integral 

estimation of the trend is constructed and its variance is determined by special 

optimization procedure. This procedure is based on simple geometric consideration.  

 

Keywords: linear regression coefficient, variance calculating, independent samples of 

observations. 

 

  

1  Introduction 
 

The problem of studying the variance of the linear trend estimation and its dependence on 

the length of the time series on which this estimate is based is of both theoretical and practical 

interest. This problem is closely related to the problem of small samples in mathematical statistics. 

In reliability theory, this problem arises when using linear regression analysis to predict the safety 

margin of a technical system (see, for example, [1], [2]). This task can be extended to the case when 

there are several time series, in particular for small-scale production. In this paper we choose such 

a particular formulation of this problem when the moments of observation form an arithmetic 

progression. It is proved that the variance of the trend estimation in this case decreases 

proportionally to the third degree of the length of the series of observations. This makes it possible 

to use short series of observations to estimate the linear trend. If the estimation of a linear trend is 

based on several independent samples, the integral estimation of the trend is constructed and its 

variance is determined. 

 

2  The variance of the estimate of linear trend for a single series of observations 
 

 Consider the following linear regression model 𝑥(𝑡) = 𝑦(𝑡) + 𝜀(𝑡), 𝑦(𝑡) = 𝑎𝑡 + 𝑏. Assume 

that at times 𝑡1, … , 𝑡𝑛, 0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁, measured values are 𝑦(𝑡1), … , 𝑦(𝑡𝑁) with random 

errors 𝜀1, … , 𝜀𝑁. The random variables 𝜀1, … , 𝜀𝑁 are assumed to be independent, equally distributed 

with zero mean and variance 𝜎2. 

To solve this problem, replace the variable 𝑡̃ = 𝑡 − 𝑇𝑁 , 𝑇𝑁 =
∑𝑁𝑘=1 𝑡𝑘

𝑁
, and define a linear 

function  
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 𝑦̃(𝑡) = 𝑦(𝑡 + 𝑇𝑛) = 𝑎𝑡 + 𝑏 + 𝑎𝑇𝑁 = 𝑎𝑡 + 𝑏̃ ,    ∑
𝑁
𝑘=1 𝑡̃𝑘 = 0,    𝑏̃ = 𝑏 + 𝑎𝑇𝑁 . 

 

To do this, we compute 𝑡̃𝑘, 𝑘 = 1,… , 𝑁, and construct the least squares [3], [4] estimates of the 

coefficients 𝑎, 𝑏̃ of the linear regression function 𝑦̃(𝑡) = 𝑎𝑡 + 𝑏̃ from observations  

 
 𝑥1 = 𝑦̃(𝑡̃1) + 𝜀1, … , 𝑥𝑁 = 𝑦̃(𝑡̃𝑁) + 𝜀𝑁 . 

 

The solution to this problem is a random vector consisting of estimates  

 

 𝑎̂𝑁 =
∑𝑁𝑘=1𝑥𝑘𝑡𝑘

∑𝑁𝑘=1 𝑡𝑘
2 , 𝑏̂𝑁 =

∑𝑁𝑘=1𝑥𝑘

𝑁
 

 

of coefficients 𝑎, 𝑏̃ of linear function 𝑦̃(𝑡). The components of this vector have the following 

averages, variances, and covariance coefficient:  

 

 𝑀𝑎̂𝑁 = 𝑎, 𝑀𝑏̂𝑁 = 𝑏̃, 𝐷𝑎̂𝑁 =
𝜎2

∑𝑁𝑘=1 𝑡𝑘
2 , 𝐷𝑏̂𝑁 =

𝜎2

𝑁
, 𝑐𝑜𝑣(𝑎̂𝑁, 𝑏̂𝑁) = 0. (1) 

 

Of greatest interest to us is the denominator 𝑆(𝑁) = ∑𝑁𝐾=1 𝑡̃𝑘
2 in Formula (1) in the 

definition of the variance 𝐷𝑎̂𝑁 . To simplify the calculations, assume that 𝑡̃𝑘+1 − 𝑡̃𝑘 = 1,…𝑁 − 1. By 

induction at 𝑛 = 1,2, …, it is easy to obtain equalities  

 

 𝑆(2𝑛 + 1) =
2𝑛3

3
+ 𝑛2 +

𝑛

3
, 𝑆(2𝑛) =

2𝑛3

3
−

𝑛

6
. (2) 

 

Indeed, the definition implies that 𝑆(2𝑛 + 1) = 2𝑅(𝑛), 𝑅(𝑛) = ∑𝑛𝑘=1 𝑘
2. Looking for 𝑅(𝑛) in 

the form 𝑅(𝑛) = 𝑎0 + 𝑎1𝑛 + 𝑎2𝑛
2 + 𝑎3𝑛

3. Then we have the equality 𝑅(𝑛 + 1) = 𝑅𝑛 + (𝑛 + 1)
2 and 

so obtain the relation  

 
 𝑎0 + 𝑎1𝑛 + 𝑎2𝑛

2 + 𝑎3𝑛
3 + (𝑛 + 1)2 = 𝑎0 + 𝑎1(𝑛 + 1) + 𝑎2(𝑛 + 1)

2 + 𝑎3(𝑛 + 1)
3. 

 

Removing the parentheses and leading like that, we get the following equalities:  

 
 𝑎0 + 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3, 𝑎1 + 2 = 𝑎1 + 2𝑎2 + 3𝑎3, 𝑎2 + 1 = 𝑎2 + 3𝑎3. 

 

The solution of this system of linear algebraic equations is 𝑎1 =
1

6
, 𝑎2 =

1

2
, 𝑎3 =

1

3
. Since 𝑅(1) = 1, 

then 𝑎0 = 0. The first equality in Formula (2) is proved. 

Now calculate 𝑆(2𝑛) =
2𝑄(𝑛)

22
 , 𝑄(𝑛) = 12 + 32 +⋯+ (2(𝑛 − 1) + 1)2. Looking for 𝑄(𝑛) in 

the form of 𝑄(𝑛) = 𝑏0 + 𝑏1𝑛 + 𝑏2𝑛
2 + 𝑏3𝑛

3. Then the equalities 𝑄(𝑛 + 1) = 𝑄(𝑛) + (2𝑛 + 1)2 are 

true and the following equalities are fulfilled  

 
 𝑏0 + 𝑏1𝑛 + 𝑏2𝑛

2 + 𝑏3𝑛
3 + (2𝑛 + 1)2 = 𝑏0 + 𝑏1(𝑛 + 1) + 𝑏2(𝑛 + 1)

2 + 𝑏3(𝑛 + 1)
3. 

 

Removing the parentheses and leading like that, we get the following equality:  

 
 𝑏0 + 1 = 𝑏0 + 𝑏1 + 𝑏2 + 𝑏3, 𝑏1 + 4 = 𝑏1 + 2𝑏2 + 3𝑏3, 𝑏2 + 4 = 𝑏2 + 3𝑏3. 

 

The solution to this system of linear algebraic equations is 𝑏1 = −
1

3
, 𝑏2 = 0, 𝑏3 =

4

3
. Because 𝑄(1) =

1, then 𝑏0 = 0 and means  

 

 𝑏0 = 0, 𝑏1 = −
1

3
, 𝑏2 = 0, 𝑏3 =

4

3
. 
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The second equality in the formula (2) is also proved. 

Formula (2) leads to asymptotic relations:  

 

 𝑆(2𝑛)~𝑆(2𝑛 + 1)~
2𝑛3

3
, 𝑛 → ∞. (3) 

 

 However, in the applied plan the values 𝑆(2𝑛), 𝑆(2𝑛 + 1) are of great interest for small values 𝑛. 

We now give the results of numerical calculations in the following tables.  

  

𝑁 2 3 4 5 6 7 8 9 10 11 12 13 

𝑆(𝑁) 0.5 2 5 10 17.5 28 42 60 82.5 110 143 182 

 

𝑁 14 15 16 17 18 19 20 21 22 23 

𝑆(𝑁) 227.5 280 340 408 484.5 570 665 770 885.5 1012 

 

 Tables of 𝑆(𝑁)  

  

4  Estimation of linear regression coefficient on several independent samples 
  

Assume that there are 𝑚 independent samples 𝑖 = 1,… ,𝑚. The sample 𝑖 has volume 𝑁𝑖 .  

The estimate 𝑎̂(𝑖) of linear regression coefficient 𝑎 satisfies the equalities  

 

 𝑎̂(𝑖) = 𝑎, 𝐷𝑎̂(𝑖) = 𝑑𝑖 =
𝜎2

𝑆(𝑁𝑖)
, 𝑖 = 1, … ,𝑚. (4) 

 

 We will look for an estimate of 𝑎̂ of the linear regression coefficient 𝑎 in the form  

 

 𝑎̂ = ∑𝑚𝑖=1 𝑐𝑖𝑎̂
(𝑖), ∑𝑚𝑖=1 𝑐𝑖 = 1, 𝐷𝑎̂ = ∑

𝑚
𝑖=1 𝑐𝑖

2𝑑𝑖 . (5) 

 

 Choice of coefficients 𝑐𝑖 , 𝑖 = 1, … ,𝑀, are produced from the minimum condition  

 

 min(∑𝑚𝑖=1 𝑐𝑖
2𝑑𝑖 :  ∑

𝑚
𝑖=1 𝑐𝑖 = 1). (6) 

 

 Make the change of variables 𝑓𝑖 = 𝑐𝑖√𝑑𝑖 , 𝑖 = 1, … ,𝑚 and we can rewrite the optimization problem 

(6) in the form  

 

 min (∑𝑚𝑖=1 𝑓𝑖
2 = 𝐹: ∑

𝑓𝑖

√𝑑𝑖

𝑚
𝑖=1 = 1). (7) 

 

 
Fig 1. Geometric interpretation of the optimization problem.  
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From simple geometric considerations we obtain the following solution to the 

optimization problem (7): for 𝑖 = 1,… ,𝑚  

 

 𝑓𝑖 = 𝑑𝑖
−1/2(∑𝑚𝑘=1 𝑑𝑘

−1)−1, 𝑐𝑖 = 𝑑𝑖
−1(∑𝑚𝑘=1 𝑑𝑘

−1)−1, ∑𝑚𝑖=1 𝑐𝑖
2𝑑𝑖 = (∑𝑚𝑘=1 𝑑𝑘

−1)−1. (8) 

 

 Thus, from Formulas (5), (8) we finally obtain:  

 

 𝑎̂ = ∑𝑚𝑖=1 𝑑𝑖
−1(∑𝑚𝑘=1 𝑑𝑘

−1)−1𝑎̂(𝑖) =
∑𝑚𝑖=1 𝑆(𝑁𝑖)𝑎̂

(𝑖)

∑𝑚𝑘=1𝑆(𝑁𝑘)
, 𝐷𝑎̂ = (∑𝑚𝑘=1 𝑑𝑘

−1)−1 =
𝜎2

∑𝑚𝑘=1𝑆(𝑁𝑘)
. (9) 

 

  

4  Conclusion 
  

The results show that the coefficient of linear regression has a variance significantly lower 

than the variance of the free term. This makes it possible to raise the question of the evaluation of 

this coefficient separately from the evaluation of the free member. The resulting estimate can be 

used to predict relatively short series of observations. 

The results of the estimation of the linear regression coefficient for several independent 

series of observations suggest that it is possible to estimate the linear trend coefficient fairly 

economically and accurately for a small group of series of observations. This result is obtained by 

simple geometric considerations that are based on the basic properties of the variance of a random 

variable. 
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Abstract 

 

The simulation of cascading effects in networks of critical infrastructures (CIs) can be 

approached in various ways, all of which at some point call for the specification of (numeric) 

model parameters. Taking stochastic models as one popular class of methods, finding proper 

settings for the values that determine the stochastic models can be a challenge. In this work, 

we describe a method of graphical specification of a probability value on a qualitative scale, 

and how to convert and use the obtained value as a prior for Bayesian statistics. The 

connection is made to the point of having the initial value specified only as an “initial guess”, 

which can be refined using Bayesian statistics. Eventually, under consistency conditions 

depending on the application, this amounts to an online learning approach that takes the 

parameter to convergence towards their true values, based on the user’s subjective initial 

guess, but never challenging a person to give a reliable number for a probabilistic parameter. 

 

Keywords: simulation, cascading effect, risk management, stochastic model, security 

 

I. Introduction 
 

Among the biggest challenges in stochastic models is probability. Scientists often provide people 

with sophisticated model having beautiful theoretical properties, but left with the highly nontrivial 

challenge of finding proper values for a set of parameters, many of which are probabilities. What if 

the person simply does not have these values or cannot reliably estimate them? This work 

proposes to avoid the issue of pulling numbers “out of the air”, by instead resorting to purely 

graphical method and machine learning to poll or estimate probabilities.  

Probabilistic models have the appeal of being often easy to define and plausible to use, yet the 

intuitiveness of the model specification turns into a difficulty when creating a model instance in 

many cases. Suppose that the model includes some probability parameter 𝑝 that “simply” 

quantifies the likelihood of some event to occur; for example, the impact of an incident on related 

parts in a system (e.g., a dependent infrastructure). Likewise, we may use a parameter 

(probability) 𝑝 to describe the likelihood of a threat along risk analysis, or call 𝑝 the likelihood for 

mailto:stefan.rass@aau.at
mailto:stefan.schauer@ait.ac.at
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human error to bring the human element into a model. How do we set such values in practice? It is 

tempting to use them in a model because they are easy to argue and statistics enjoys a solid 

mathematical fundament, but the practitioner facing the challenge of assigning some reasonable 

value to the variable 𝑝 may find this to be an almost impossible task to accomplish reliably. In 

many cases, the setting of such parameters thus resorts to choices on qualitative scales, say, 

defining the probability just to be “low” or “high”, with the meaning of these values remaining 

vague or defined by representative standard values specified elsewhere. In many practical cases 

when people try to apply or use (not define or invent) stochastic models, the choice of probability 

parameters is a matter of asking experts for numbers that they simply do not have. This can 

practically limit the applicability of such models despite any theoretical beauty. 

Statistics has lots to offer to people seeking to estimate parameters of stochastic models, since 

the whole theory of point- and interval estimation is dedicated to the problem of finding values or 

ranges of values for unknown quantities. Common to most of these techniques is their use of 

empirical data to compute the estimators. In risk management, and particularly in the context of 

critical infrastructures (CIs), the situation is just not satisfying the assumptions: data is scarce, and 

we cannot expect having hundreds of data samples from past incidents in a critical infrastructure 

(simply because the CI would not have survived the necessary lot of incidents to gather enough 

data for a statistically reliable estimation). 

Instead, we need to come up with a reasonable initial guess for the probabilistic parameters 

and look for a way to refine that value upon continuous experience. Bayesian estimation thus 

appears as a reasonable way to go, and this work describes a very straightforward and easy to 

implement version of such a Bayesian estimation approach, where we explicitly exploit the 

absence of much prior knowledge as an advantage. Indeed, if there is not too much robust prior 

knowledge about how a probability parameter should be set numerically, this also means that any 

choice is as good as the other. While it would not make sense to step forward by just picking 

parameter values at random, the Bayesian method is much more elegant in letting us choose a 

prior distribution to our own convenience, and – realistically reflecting the uncertainty of the person 

instantiating the model – leaving the parameter 𝑝 actually unspecified in the beginning. The actual 

value for 𝑝 is then obtained from the prior distribution in first place, and iteratively refined by 

bringing in experience about the model performance to continuously refine it towards an accurate 

setting for the real model. 

To the end of using that method for model parameterization, we thus have to devise (i) a 

method to pick a reasonable initial guess for some (generic) probability parameter 𝑝 (Section II will 

describe an example model for illustration), and (ii) describe a method to define that guess, which 

assures that we will eventually end up with the correct value for 𝑝 over the long run. We dedicate 

Section III to this.  

As a running example, we will pick a specific model to describe critical infrastructure 

dependencies, to study cascading effects by simulation. Our choice of the CERBERUS model [1] is 

arbitrary here, and can be replaced by any other stochastic model based on Markov chains, 

percolation theory, or others. The palette is rich, and we refer the reader to [2–11] for models to 

which our work may offer an aid to get a practical instance, meaning concrete numeric settings, for 

the involved probability parameters. 

 

II. The CERBERUS Risk Simulation Model 

 
Consider a network of interdependent critical infrastructures that we represent as a directed graph 

𝐺 = (𝑉, 𝐸) with edges 𝐴 → 𝐵 meaning that CI 𝐵 somehow depends on CI 𝐴. For example, 𝐴 could 

provide energy, water, food, transport, etc. for 𝐵. To all infrastructures in the (node) set 𝑉, we 
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assign one out of 𝑘 possible operational states, reflecting their degree of “health”. Typically, this 

state ranges from “fully functional” (state 1) to “outage” (state 𝑘), with intermediate states from 2 

to 𝑘 − 1 corresponding to ascending limitations in a CI’s service(s). The dependency of a CI 𝐵 on 

one or more of its providers may be of arbitrary form and dynamic. For example, a CI may have 

providers that it vitally depends on, or whose service can be substituted for a limited period of 

time (e.g., emergency power generators can cover a power outage for some time, until they run out 

of fuel). Other dynamics of dependency may involve the kind of service more explicitly, say, if CI 

𝐵 relies on online-services of 𝐴 (e.g., an outsourced data center) in order to coordinate the shipping 

of goods from another provider C to 𝐵. 

Commonly, authors distinguish the type of dependency here, dividing it into physical 

dependencies (e.g., supply with physical utilities), cyber-dependencies (e.g., communication and 

data exchange), geographic dependency (often physical proximity or reachability), and others (cf. 

[6,12–15]), including temporal dependencies (that are outside our scope here since we look for the 

setting of probability parameters). 

To study cascading effects in such models, we thus need to describe what happens to an 

infrastructure if its providers fail. While there is lots of work on understanding dependencies (see 

[16] for a considerable collection of respective references), quantitative studies on how to describe 

the parameter value for some stochastic model are rare (not so the models themselves; see the 

references in the introduction). In this context, we want to highlight the work in [16], where an 

empirical study on how strong the impact of several critical infrastructures may be on others is 

provided. 

The CERBERUS model uses precisely such information to describe an infrastructure model 

and cascading effects therein in the following way: 

 The behavior of a CI 𝐵 is described by a bipartite graph (see Figure 1): 

o The top layer has exactly 𝑘 nodes, one for each operational state in which the CI 

can be 

o The bottom layer has 𝑘 nodes per CI 𝐴 that CI 𝐵 depends on. That is, each supplier 

CI 𝐴 is represented in the graph model as its own set of 𝑘 nodes, one per 

operational state of CI 𝐴, and every other supplier of 𝐵 having its own copy of 

these 𝑘 input nodes. 

 The bipartite inner graph is complete, meaning that there is an edge from each state node 

of each supplier to the overall state node of CI 𝐵. These edges are annotated by 

probabilities, indicating how likely it is that CI 𝐵 moves into state 𝑗, if infrastructure 𝐴 is in 

state ℓ. For each ℓ ∈ {1,2, … , 𝑘}, we thus have to specify a probability 𝑝ℓ𝑗 = Pr (CI B is put 

into state 𝑗| CI 𝐴 is in state ℓ). If the change is a (deterministic) fixed consequence, we can 

put 𝑝ℓ𝑗 ≔ 1 to model this. 

 Since the edges connect only two nodes at a time (the model is a graph, not a hypergraph), 

the effects of a supplier on 𝐵 are independent on what other suppliers do. Moreover, 𝐵 can 

be put into distinct operational states upon different of its providers changing their state 

individually. Intuitively, this reflects the real world quite well, since a problem at provider 

𝐴1 may cause only slight stress for CI 𝐵, while another (independent) problem at provider 

𝐴2 may have a substantial impact on 𝐵’s functionality. Thus, there is an aggregation 

function being applied on the states that probabilistically follow from the supplier states, 

which in the simplest case is just the maximum of all possible states that the suppliers may 

put 𝐵 into. For example, if provider 𝐴1’s failure puts 𝐵 into state “normal” (i.e., no 

immediate effect), but supplier 𝐴2’s outage causes severe problems in 𝐵, the overall state of 

𝐵 is the worst of the two, set to be “severe problems”. 

This kind of maximum-aggregation assumes that higher state indices correspond to more 

severe problems (taking the lowest state as the best). Logically, it corresponds to an OR, since 𝐵 

has troubles if at least one of its critical providers fails. This logic can be changed into an AND by 



S. Rass, S. Schauer 

REFINING STOCHASTIC MODELS OF CRITICAL INFRASTRUCTURES 

BY OBSERVATION 

RT&A, No 3 (54) 
Volume 14, September 2019 

 

72 

resorting to a minimum-value aggregation, causing the state of 𝐵 to remain “healthy”, unless all of 

its providers fail. The proper choice per infrastructure is up to the application. 

 

 

Figure 1 CERBERUS Model (picture adapted from [1]) 

The CERBERUS model includes this simplification to avoid a combinatorial explosion of 

parameters that would need specification otherwise. For example, the most powerful description 

of dependency (that includes the above OR/AND dependencies as trivial special cases) is that of a 

Bayesian network [17]. This approach is similar to the CERBERUS model, however, requires a 

worst-case exponential number of parameters specified to describe the dependency as a full-

fledged conditional distribution. The above reduces that number to “only” polynomially many 

(exactly 𝑘 ⋅ 𝑛 conditional probability values, if 𝑘 states are used and the CI depends on 𝑛 other CIs). 

Since both, 𝐴 and 𝐵 have a common set of possible states, the transition regime can be described as 

a matrix of the general form: 

 

  State of CI 𝐵 (depending on 𝐴’s state) 

  1 2 … 𝑘 

S
ta

te
 i

f 

C
I 
𝐴

 

1 𝑝11
𝐴  𝑝12

𝐴  … 𝑝1𝑘
𝐴  

2 𝑝21
𝐴  𝑝22

𝐴  ⋱ 𝑝2𝑘
𝐴  

⋮ ⋮ ⋮ ⋮ ⋮ 
𝑘 𝑝𝑘1

𝐴  𝑝𝑘2
𝐴  … 𝑝𝑘𝑘

𝐴  

 

The superscript 𝐴 is here only a reminder that these transitions relate to infrastructure 𝐴, and 

more such matrices would be required to describe the dependency of 𝐵 on other CIs. The 

specification is very much like (though not identical) to a transition matrix of a Markov chain, since 

in each row, there has to be one target state for CI 𝐵. Our problem in the following will thus be the 

specification of these (many) values, using an initial guess and online learning to refine it. 

Again, we stress that the choice of this model for illustration is arbitrary, and replaceable by others. 

The reader feeling more familiar with Markov chains or other models is safe to think along these 

lines during the remainder of this work. Indeed, we will become more general than the above in 

considering the estimation of a whole vector of probability values, constrained to form a 

probability distribution (thus covering the more complex case of Bayesian network specification 

too). 

 

III. Model Parameterization: Initial Guesses 

 
In absence of empirical data, the best that we can do is resorting to domain expertise, subjective 

experience and empirical studies as far as they are available (e.g., [16]). However, the problem 

remains one where experts have to provide (qualitative or better quantitative) values that are 

usually hard to obtain. One possibility is getting domain experts into discussion to agree on a 

common assessment (e.g., using systematic methods such as Delphi and/or opinion pooling [18]), 

...

...
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which generally means aggregating different assessments into an object (number) that we can start 

with – an initial guess. Lossless aggregation into a distribution is also possible and has been 

described for general risk management in [19]; however, this method is out of our scope here, but 

mentioned as another option to get a prior distribution for Bayesian updating (met later in Section 

IV) 

I. Graphical Specification of Parameters 
To avoid asking people for numbers, graphical ways of specifying probabilities and general risk 

parameters have been developed. One method aiming to help with the quantification of risk as the 

product of “likelihood” and “impact” is to let experts draw a “risk rectangle”, whose horizontal 

length reflects the person’s (subjective) assessment on a range for the unknown likelihood, and the 

vertical breadth acts as an interval estimate for the potential impacts; see Figure 2 for an 

illustration. The area of the rectangle can, but with care, be associated with the usual formula 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑖𝑚𝑝𝑎𝑐𝑡 = 𝑟𝑖𝑠𝑘, where both inputs are ranges reflecting uncertainty. Intuitively, the 

larger the rectangle is, the more uncertain would the specification be, stressing that even for small 

areas, the width and height still need consideration in their own meaning of uncertainty (a very 

thin rectangle has small area, yet may express large uncertainty about one of the coordinates). 

As an initial guess for a parameter, such a graphical method may serve as a replacement for a 

number, since the actual numeric value is easy for a computer to compile from the rectangle’s 

coordinates. 

In any case, this is just a heuristic and there is no formal or scientific reason (so far) why any 

such graphical method should deliver more reliable results than a direct specification. It is as such 

a matter of usability and convenience to specify values in this way. This potential benefit becomes 

even more evident if we transfer the idea to the specification of a whole matrix of values, say, a 

transition matrix of a Markov chain. Why not think of the matrix as a rectangular grid, on which 

our task is to place masses, proportionally to as how likely it is that state 𝑖 will take the chain into 

the target state 𝑗. Returning to the CERBERUS model above, we would, for each supplier CI A, 

have one such matrix to tell B’s target state based on A’s current state. 

Impact uncertainty
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Figure 2 Graphical Risk Specification Method (picture adapted from [20]) 

The idea is a straightforward extension of the graphical specification from before: assuming 

that the states are ordered (in ascending or descending levels of criticality), we can go and draw a 

bunch of rectangles into the grid, which may even overlap, and each of which places some mass 

onto a cell in the grid, i.e., element in the matrix. The amount of weight being placed is then a 

matter of how much the rectangle overlaps the respective region. Intuitively, if we draw a 

rectangle over several cells (horizontally and vertically), we may express something like “any state 

between 𝑖1 and 𝑖2 may put the dependent CI B into some state between 𝑗1 and 𝑗2” – not becoming 

too specific on how likely a specific transition is, but only telling what one may think is possible. 

The more such possibilities are supplied, the more weight accumulates on a cell, and the more 

likelihood is assigned accordingly. Figure 3 displays the idea, with some example values compiled 
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from the cumulative areas. 
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Figure 3 Graphical Specification of a transition matrix 

 

II. Prior Distribution for Online Learning 
Suppose that we have a set of probabilities 𝑝1, … , 𝑝𝑘 that jointly form a distribution, i.e., satisfy 

𝑝1 + 𝑝2 +⋯+ 𝑝𝑘 = 1. For the example of the CERBERUS model, given a dependency of CI 𝐵 on 𝐴, 

such a set would be a matrix as outlined above, or at least a single row in it.  

Most likely, the initial guess is inaccurate, subjective, not well founded on empirical data or 

experience, or suffers from other sources of vagueness. This is most naturally so, since we cannot 

expect an(y) expert to have precise or objectively reliable figures for likelihoods in a quality better 

than to the best of her/his knowledge. 

It is, however, possible to refine and “correct” these initial guesses in the long run by 

observing the system, tracking the real state changes, and refine our hypothesis iteratively, 

knowing that it will converge to the “objective” and hence correct probabilities. The mechanism is 

Bayesian updating of a properly chosen prior distribution, which makes the whole process even 

computationally efficient and trivial to implement. 

Our choice is the Dirichlet distribution, having 𝑘 ≥ 2 parameters (𝛼1, … , 𝛼𝑘) satisfying 𝛼𝑖 > 0 

for all 𝑖 = 1,… , 𝑘, and the probability density function 

𝑓𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑥1, … , 𝑥𝑘|𝛼1, … , 𝛼𝑘) =
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)
𝑘
𝑖=1

∏𝑥𝑖
𝛼𝑖−1

𝑘

𝑖=1

. 

The interesting point for our purpose is the fact that this distribution relates to a vector 𝑿 =

(𝑋1, … , 𝑋𝑘) ∈ (0,1)
𝑘 constrained by 𝑋1 +⋯+ 𝑋𝑘 = 1, so that it can be used to describe a probability 

distribution. That is, our sought probability vector, the distribution to be specified, is viewable as a 

sample of the random vector 𝑿, whose distribution is Dirichlet with the density as above. Under 

that perspective, we can equate the desired likelihoods 𝑝𝑖 ≔ 𝐸(𝑋𝑖) with 𝑋𝑖 being the 𝑖-th coordinate 

in 𝑿. 

For the Dirichlet distribution, this expectation is simply 

𝐸(𝑋𝑖) =
𝛼𝑖

∑ 𝛼𝑖
𝑘
𝑖=1

 

Now, suppose that we have an initial guess for the values 𝑝1, … , 𝑝𝑘; then even without those 

normalizing to unit sum, we can plainly specify the parameters 𝛼𝑖 as 𝛼𝑖 ≔ 𝑝𝑖 to start with, since the 

denominator in the above expression is nothing else than a normalization, so that the so-
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instantiated Dirichlet density, encodes our initial guess for the probability parameters by the 

component-wise expectations. 

Remark: The case for a single parameter is treated only slightly different; noting that above, 

we require at least two values. If there is only a single probability parameter in question, the prior 

would be the Beta distribution, having the density 𝑓𝐵𝑒𝑡𝑎(𝑥|𝛼1, 𝛼2) ≔ 𝑓𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑥, 1 − 𝑥|𝛼1, 𝛼2), with 

the expectation following the same formula as given above. The major (only) difference is that 

while the Dirichlet distribution describes a set of 𝑘 probability values, the Beta distribution 

describes only a single value that is also a probability; in both cases, the last value (𝑥2 = 1 − 𝑥 or 

𝑥𝑘 = 1 − 𝑥1 − 𝑥2 −⋯− 𝑥𝑘−1) is fixed by its predecessors (not surprisingly so, since we have the 

constraint of all these values to sum up to 1). 

 

IV. Bayesian Updating 

 
On a level of abstraction, the CERBERUS model is a set of Markov chain instances, where a state 

transition of a CI triggers another state transition of a dependent CI. Suppose that this switch is 

observable, i.e., we would note the change in reality, and can relate it to an edge in the model (see 

Figure 1). 

Adopting a Bayesian statistics perspective, the observation is nothing else than data sampled 

from a distribution whose parameters we seek to estimate. More specifically, consider only the 𝑖-th 

row 𝒑𝑖,⋅ in a transition matrix 𝑷, telling us that if the current state is 𝑖, then the next possible states 

𝑗 ∈ {1,2, … } will occur with probabilities 𝑝𝑖1, 𝑝𝑖2, …. This single row is a categorical distribution, and 

the values in it are exactly the parameters (the distribution is, in a way, not only determined, but 

actually directly represented by its parameter set). Now, suppose that an observation is made, 

which tells that out of the current state 𝑖, our system has (physically, in reality) moved into the 

state 𝑗. Formally, this is 𝒙 = (0,0, … , 1,0,0, … ), with only the 𝑗-th entry being 1, sampled from the 

aforementioned categorical distribution 𝒑𝑖,⋅ (which in turn is just the 𝑖-th row in the transition 

matrix 𝑷). 

More importantly, this view takes the incoming observations as samples from a 0/1-valued 

random variable. Such a variable is an indicator, and the expectation of an indicator variable is a 

probability, thus making the approach meaningful to estimate probability parameters. 

Now, let us put this to practice: suppose that we observed the event of our system to have 

undergone a transition from state 𝑖 into state 𝑗. If the Bayesian prior distribution is a Dirichlet (or 

Beta), with parameters 𝛼1, … , 𝛼𝑘 (in the case of a single parameter 𝑝 to be estimated, we would only 

have 𝛼1 and 𝛼2, with 𝑝 =
𝛼1

𝛼1+𝛼2
), the Bayesian update of the row 𝒑𝑖,⋅ in the transition matrix 𝑃, 

which is described by a prior distribution with parameter vector (𝛼1, … , 𝛼𝑘), proceeds via the 

assignment 

(𝛼1, … , 𝛼𝑗−1, 𝛼𝑗 , 𝛼𝑗+1, … , 𝛼𝑘) ← (𝛼1, … , 𝛼𝑗−1, 𝛼𝑗 + 1, 𝛼𝑗+1, … , 𝛼𝑘), 

i.e., only the 𝑗-th parameter gets increased by 1. What could be simpler? It essentially amounts to 

counting the occurrences of each transition! Even if several observations are collected in a data 

vector, say, 𝒅 = (𝑛1, 𝑛2, … , 𝑛𝑘) with 𝑛1 observed transitions into state 1, another 𝑛2 transitions 

observed into state 𝑛2, etc., the update to 𝜶 = (𝛼1, … , 𝛼𝑘) would simply be 𝜶 ← 𝜶 + 𝒅. 

The current estimate 𝑝̂𝑗 of the 𝑗-th (not precisely known) probability parameter 𝑝𝑗 vector is for each 

𝑗 = 1,2, … , 𝑘 given as 
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𝑝̂𝑗 = 𝐸(𝑋𝑗) =
𝛼𝑗 

𝛼1 + 𝛼2 +⋯+ 𝛼𝑘
 

Now, let us suppose that we started from initial values (guesses) 𝛼1
∗, … , 𝛼𝑘

∗ . What would 

happen in the long run? If we observe the transition into the 𝑗-th state for 𝑁 times out of 𝑀 ≫ 𝑁 

cases and let 𝑀 → ∞, then the estimator 𝑝̂𝑗 after a total of 𝑀 updates is  

𝛼𝑗
∗ + 𝑁

(1 − 𝛼𝑗
∗ +𝑀 − 𝑁) + (𝛼𝑗

∗ + 𝑁)
; 

this is easy to see from the fact that we increase the pseudo-count1 𝛼𝑗
∗ for 𝑁 times, whilst increasing 

any of the other parameters for the remaining 𝑀 −𝑁 times (whose totality is collected in the term 

1 − 𝛼𝑗
∗ +𝑀 − 𝑁). Overall, since the initial guess does not change, the limit is  

𝛼𝑗
∗ + 𝑁

(1 − 𝛼𝑗
∗ +𝑀 − 𝑁) + (𝛼𝑗

∗ + 𝑁)
→
𝑁

𝑀
= 𝑝𝑗 , 

Since this is merely the fraction of “good cases” among “all cases”, i.e., by definition the 

sought probability. The key insight here is that this limit does not depend on the initial guess! That 

is, no matter if we were wrong with our initial parameter choice (and in most cases, we may have 

been wrong), the long-run updating will asymptotically “correct” our error automatically. Of 

course, the speed of convergence depends on how far off the inaccuracy of the initial guess put us 

away from the real value of 𝑝𝑗. The closer our initial guess has been, the earlier we get into a 

reasonable proximity of the true value 𝑝𝑗. 

Let’s also take a closer look at the case of a single parameter: if we don’t have a whole Markov 

chain, but rather a single parameter that describes an event by a probabilistic value, there is no 

conceptual change to the above. The respective prior has two parameters (𝛼1, 𝛼2), which we 

update to (𝛼1 + 1, 𝛼2) if the event has been observed, or into (𝛼1, 𝛼2 + 1) if the event did not occur; 

both cases assume that the parameter 𝑝 in question describes the probability of the event’s 

occurrence (otherwise, the update would be done with the roles of 𝛼1 and 𝛼2 being switched). We 

refer to [21] for a fully detailed elaboration of this prior idea, which we here generalized. The 

reference cited treats the topic in the different direction of using the idea for predictive analytics 

(see [22] for a survey). 

 

Example for the CERBERUS Model 

 
The application of the above scheme in the CERBERUS model is straightforward, based on 

what we have: suppose that a history of cascading effects was recently observed in the network of 

critical infrastructures, or is available from documented cases of incidents or experience. Then, we 

can consider each part of the chain of events described in the following form: “CI A changed its 

state from 𝑥 to 𝑦, causing CI B to change its state from 𝑢 to 𝑣”. To update our model, we look into 

the inner model for CI B, which embodies a transition matrix 𝑷𝐴 that tells us how likely a change 

into state 𝑣 is for CI B, provided that CI A is in state 𝑦. Taking that row 𝑖 of 𝑃𝐴 that corresponds to 

state 𝑦, and associating it with its (Bayesian) Dirichlet prior 𝜶𝑖,⋅
𝐴 = (𝛼1, … , 𝛼𝑘), where 𝑘 ranges over 

the possible states of CI B, the update is simply an addition of 1 to the 𝑗-th coordinate in the vector 

𝛼, relating to the state 𝑣 that CI B turned into. The Bayesian update on this set of transitions is done 

                                                           
1 A pseudo-count is a fractional count value; this term is technically exact here since we may start from a 

fractional value 𝛼𝑗 , but add 1 upon an observation of the respective transition. Thus, although we do count, 

the counter’s value remains fractional at all times; hence it is called “pseudo”. 
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by that point.  

Note that here we did not make any use of the previous states 𝑥 of CI A or 𝑢 for CI B. This is 

due to the fact that the change of state for CI A would be subject to an according update of the 

inner model for CI A (just as described). The prior state of CI B plays indeed no role here. 

 

V. Avoiding Numbers – Asking for Ranks 
 

In some cases, we may be able to completely avoid the specification of numbers, and poll people 

only for ranks. As with CERBERUS, risk management has such cases that we will look into now. 

One use case (among other possible ones) for the CERBERUS model relates to decision making 

towards risk mitigation. Considering a framework like ISO31000, a risk manager may roughly 

follow these steps: 

1. Identification of context: this means a clear delineation of what assets we are concerned 

with, what level of protection is required, and seeks an understanding of external and 

internal factors with impact on the assets. 

2. Risk identification: this is the identification of all threats with the potential of realizing 

themselves as risks to the previously defined assets. 

3. Risk analysis: this is the actual challenge that we are concerned with here, being an 

estimation of impacts and likelihoods, so as to “quantify” risks by the well known rule of 

thumb 

risk = impact × likelihood 

 

This formula has the statistical appeal of resembling an expected value, since it is easily 

extended into a weighted sum of impacts, each related to another threat on the list from 

the risk identification step. Asking for precise numbers here is the same problem as 

asking for a general probability parameter, and asking for a value for “impact” is even 

more difficult, since this can be any number (such as for financial losses), but also just an 

indicator (such as loss of human lives, where a quantification of “damage” would induce 

substantial ethical issues beforehand).  

4. Risk Evaluation: with risks identified, the evaluation step asks for a ranking of those to 

assign priorities to risks whose mitigation is more urgent than for others. Here, we 

actually do not need to evaluate the risk formula from above, as all we require is a 

ranking of risks, based on impact and likelihood. This degree of freedom is important to 

stress, since we can create the familiar risk bubble charts like shown in Figure 4 without 

numeric information up to this point, even though the risk management process itself 

may be quantitative in the end. All we need is ranks, rather than precise numbers! 

 

 

Impact ranking: 𝑅1 < 𝑅2 < 𝑅3 < 𝑅4 < 𝑅5 

Likelihood ranking: 𝑅1 < 𝑅3 < 𝑅5 < 𝑅4 < 𝑅2 

Figure 4 Risk Bubble Chart with Induced Rankings (Example) 

 

5. Risk treatment: this is the point where we actually need to become “somewhat numeric”, 
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since decisions about mitigation actions will in most cases depend on the expected 

efficacy, or equivalently said, the return on investment for a security control. Based on the 

risk after mitigation, obtained from the formula above, we can step forward by taking 

decisions for those actions that optimize the impacts or likelihoods (or both), so as to 

optimize the risk. This is what risk treatment is about, and what the parallel task of 

“monitoring and review” prescribes as part of ISO31000, as well as a continuous 

communication of all these steps to the outside (see Figure 5). 

 

Figure 5 ISO 31000 Risk Management Process [23] 

Following Peter Drucker’s famous quote that “you can’t manage what you can’t measure”, 

evaluating the risk formula eventually becomes necessary. Or doesn’t it? The perhaps surprising 

(though well known) answer is no!  

Suppose that we ask a domain expert for an assessment of several risks at the same time, 

specifically, allowing for doing the ranking of impacts and likelihood relative to one another (and 

in an order of risks that is up to the expert’s own choice). Figure 6(b) shows how the results of such 

an assessment may look like, with four five boxes being drawn on the grid, at positions that were 

dependent on one another.   

This representation resembles that of a usual risk matrix, only offering new and interesting 

possibilities: first, we can visually inspect the picture for outliers, and remove them (manually) if 

necessary. Second, and more importantly, we could aggregate those values into a single 

representative value, which in the simplest case amounts to taking an average, or in a more 

sophisticated form, takes the variations, i.e. uncertainties (reflected in the height and width of the 

boxes) into account to weigh each value inverse proportionally to the “certainty” in the final 

average (see [18,24] for several proposals in this direction). 

Our goal, however, is not on getting numbers from the image, but rather on decision making, 

for which numbers are an aid, but not a necessity. Game theory offers the answer on how to make 

decisions based on rankings between actions (only), if we recall the very fundamental starting 

points laid by von Neumann and Morgenstern themselves [25] (and later extended by Debreu 

[26]): The important insight of these pioneers was that certain ordering relations can be expressed 

by real-valued functions, which we commonly call utility functions in game theory.  
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(a) Individual graphical risk assessment 

 
(b) Assessment of several risks relative to one another 

Figure 6 Subjective relative risk ratings 

The application of game theory to matters of decision making in risk management is simple, 

but instructive: 

 Suppose that we have a status quo in a system, and several threats in question of which one is 

most urgent to address. This (simple) decision problem only asks for ranks, not numbers, and 

a graphical specification is all we need. 

 Likewise, if there is a single threat to be addressed now by several possible countermeasures, 

their efficacy is equally well specifiable on a ranking scale, and does not require numbers per 

se. If we seek for a balance between investment and efficacy, a two-dimensional ranking such 

as in Figure 2, Figure 4 or Figure 6 is already sufficient. 

 The combination of several threats and several countermeasures to address them is the 

nontrivial case, where randomized decisions are often unavoidable. Let us consider the 

simplest example from game theory, Rock-Scissors-Paper, which despite its triviality, is 
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nonetheless a valid “template” for a risk management decision making process (just think of 

the column and row labels to be replaced with threats and countermeasures). 

 

Payoffs: (player 1, player 2) Player 2 

Rock Scissors paper 
P

la
y

er
 1

 Rock (0, 0) (1, -1) (-1, 1) 

Scissors (-1, 1) (0, 0) (1, -1) 

Paper (1, -1) (-1, 1) (0, 0) 

 

This game is straightforward to specify in the sense that we just “assign” a payoff of +1 or -1 to a 

player depending on whether it wins or loses. For security risk management, and generally many 

security models, including probabilistic ones in particular, the assignment of risks, based on 

impacts and likelihoods, also requires numbers, but which are much more difficult to obtain or 

argue. The numbers +1 and -1 in the above game matrix are just a direct specification of a utility 

function, and many (if not most) game theoretic models do give a direct such specification. 

The axiomatic roots of game theory, however, start with a proof of existence of such functions, 

which merely demands a ranking of actions, and from this starting point, constructs utility values 

to represent this ordering. The important point is that these utility functions are constructed 

explicitly by the theory, so we can repeat the steps of the proof to get utility values. Irrespectively 

of whether we are seeking values for impacts, likelihoods or other (probabilistic) variables, all we 

need is a specification of values relative to each other. Formally, let us thus generically consider a 

space (𝑅, ≤), where 𝑅 can be a set of impact, likelihood, or other values that we ought to specify. 

The simple ingredients enabling us to assign a value only concern the ordering on 𝑅; more 

generally, on its convex hull, with the ordering naturally extended; following the exposition of 

[27]: the ordering relation should be total and transitive. Furthermore, we require conservation of the 

order under indifferent alternatives, meaning that  

𝑟1 ≤ 𝑟2 and 𝛼𝑟1 + (1 − 𝛼)𝑟2 ≤ 𝛼𝑟2 + (1 − 𝛼)𝑟 should hold for all 𝑟 ∈ 𝑅, 

and connectedness (or closedness), meaning that for every 𝑟1 ≤ 𝑟2 ≤ 𝑟3, there are two values 𝛼, 𝛽 ∈

(0,1) such that 𝛼𝑟1 + (1 − 𝛼)𝑟3 ≤ 𝑟2 ≤ 𝛽𝑟1 + (1 − 𝛽)𝑟3. The last assumption implies that for any two 

𝑟1 < 𝑟2 that enclose some 𝑟 as 𝑟1 ≤ 𝑟 ≤ 𝑟2, there is a unique value 𝑣 ∈ [0,1] with 𝑟 ∼ 𝑣 ⋅ 𝑟1 + (1 − 𝑣) ⋅

 𝑟2, where the ∼-relation is induced by ≤ in the canonic way (𝑟 ∼ 𝑠 ⇔ [𝑟 ≤ 𝑠] ∧ [𝑠 ≤ 𝑟]). If the 

ordering satisfies these axioms, we can define a utility value as 

(1) 𝑈(𝑟) = 𝑣 if 𝑟2 ≤ 𝑟 ≤ 𝑟1 and 𝑟 ∼ 𝑣𝑟1 + (1 − 𝑣)𝑟2 

(2) 𝑈(𝑟) = −
𝑣

1−𝑣
 if 𝑟 ≤ 𝑟2 and 𝑟2 ∼ 𝑣𝑟1 + (1 − 𝑣)𝑟 

(3) 𝑈(𝑟) =
1

𝑣
 if 𝑟1 ≤ 𝑟 and 𝑟1 ∼ 𝑣𝑟 + (1 − 𝑣)𝑟2 

In particular, 𝑈(𝑟1) = 1 and 𝑈(𝑟2) = 0, and 𝑈 preserves the ordering ≤ on 𝑅. Indeed, 𝑈 is a 

linear function, since if 𝑟2 = 𝛼𝑟1 + (1 − 𝛼)𝑟3, we have 𝑈(𝑟2) = 𝛼𝑈(𝑟1) + (1 − 𝛼)𝑈(𝑟3). Extended to 

the convex hull of 𝑅, we need one more assumption to admit linearization: fix the range on which 

we need to specify our parameters as the interval [𝑟1, 𝑟2] and let 𝑃 be a probability measure on this 

range with 𝑃([𝑟1, 𝑟2]) = 1. With 𝛼(𝑟) ≔ (𝑈(𝑟) − 𝑈(𝑟1)) (𝑈(𝑟2) − 𝑈(𝑟1))⁄  and 𝛽 = ∫ 𝛼(𝑟)𝑑𝑃(𝑟)
𝑟2
𝑟1

, we 

need to assume that 𝑃 ∼ 𝛽𝛿𝑟2 + (1 − 𝛽)𝛿𝑟1  (where 𝛿 is the Dirac mass), i.e., if some value 𝑟 ∼

𝛼(𝑟)𝑟1 + (1 − 𝛼(𝑟))𝑟2, then this equivalence holds on average. This is nothing else than the 

assumption of “linearity” on the scale between two ratings (ranks) 𝑟1 and 𝑟2, and we have 𝛽 =
𝐸𝑃[𝑈(𝑟)]−𝑈(𝑟1)

𝑈(𝑟2)−𝑈(𝑟1)
 Mapping this back to our graphical specification, all this just formalizes that the axes 
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defining the 2D area on which the rectangles are drawn are linearly scaled. Under (all these) 

assumptions, we can use the so-constructed function 𝑈 to express the ordering (ranking) for us, 

since for any two 𝑃1, 𝑃2 ∈ 𝑐𝑜𝑛𝑣(𝑅) (where 𝑐𝑜𝑛𝑣 is the convex hull, or equivalently, set of 

randomized decisions), we have 𝑃1 ≤ 𝑃2 if and only if 𝐸𝑃1[𝑈(𝑟)] ≤ 𝐸𝑃2[𝑈(𝑟)]. Moreover, this 

function 𝑈 is unique up to affine transformations, i.e., any alternative valuation 𝑈′ would take the 

form 𝑈′(𝑟) = 𝑎 ⋅ 𝑈(𝑟) + 𝑏 for some real values 𝑎 > 0 and 𝑏. 

How do we make use of all these (old and well known) facts for our actual challenge of 

specifying numbers in absence of precise knowledge about them? The idea is to use precisely the 

“three-case” definition of 𝑈 above based on the ranking, not values, of the actions by making use 

of “linear interpolation” between them. More concretely, assuming that the axes are linearly 

scaled, we can just go ahead and take the graphical (visual) coordinates of the graphical range, 

mapped to the utility values 𝑈 and letting us compute optimal decisions by standard methods and 

algorithms from game theory. The graphical specification is herein an aid to get the utility function 

for the decision making, and backed up by the axiomatic foundation of game theory. The crucial 

point, however, is that all of this, namely 

1. The graphical ranking of actions, risks, etc. 

2. The retrieval of (graphical) coordinates of those to play the role of the utility function 

3. And the decision making as a matter of optimization (over finite sets in our example 

case even), 

works without ever asking an expert for any number! 

It is not surprising that this theoretical possibility has a number of caveats. First of all, our 

thoughts cannot be taken as formal argument or are mathematically rigorous here; the axiomatic 

approach to the existence of utilities hereby only plays the role of making our heuristic plausible, 

but do not lend themselves to proving any correctness. Numeric values obtained in this way do 

not necessarily have any particularly better semantic or accuracy than any other educated guess, 

but the main point of all this is to ease guessing, but without claiming to improve it. 

Essentially, all of the axioms to define a utility function as such can be put to question, and the 

whole field of bounded rationality [28,29] deals with observations on human decision making to 

violate one or more of these assumptions (an excellent essay about this is that of Starmer [30]). 

Propsect theory [31] for example, accounts for phenomena of over- and underrating values near 

the end of the scale. For probabilities, this amounts to the effect that, subjectively, low probabilities 

are overrated, while large probabilities are underrated potentially. Probability weighting functions 

like that of Prelec [32] try to annihilate this effect. The research prototype shown in Figure 6(a) 

allows for a similar such correction by letting subjects individually adjust the grid towards smaller 

or wider ranges of the scales (visually). 

A theoretical limitation concerns the use of multiple goals, as often occur in risk management 

applications. The existence of a utility function like the above is known under a variety of 

alternative conditions, often summarized as Debreu representation theorems. The common 

denominator therein is the continuity of the ordering, meaning that whenever a sequence (𝑟𝑛)𝑛∈ℕ 

with limit 𝑟 = lim
𝑛→∞

𝑟𝑛  satisfies 𝑠 ≤ 𝑟𝑛 , then the limit 𝑟 should also satisfy 𝑠 ≤ 𝑟. This holds for orders 

on real values, and is indeed a major reason for game theory to be done mostly within ℝ. In higher 

dimensions, we can resort to weighted sums of utilities for different goals, which leads to Pareto-

optimal decisions. However, if the ordering among the goals is “more explicit” in the sense of 

being lexicographic, then continuous utility functions no longer exist. The lexicographic order is 

indeed not continuous in the sense just stated. To see this, consider any sequence 𝑎𝑛 → 0, and take 

the limit of (0, 𝑎𝑛) as 𝑛 → ∞. Then, obviously, (𝑎𝑛 , 0) >𝑙𝑒𝑥 (0,1), but lim
𝑛→∞

(𝑎𝑛, 0) = (0,0) ≤𝑙𝑒𝑥 (0,1), 

so the ordering is discontinuous. This leads to variations of decision theory, based on non-standard 

calculus and extension fields to ℝ, such as has been done in [19,33], in which some discontinuities 



S. Rass, S. Schauer 

REFINING STOCHASTIC MODELS OF CRITICAL INFRASTRUCTURES 

BY OBSERVATION 

RT&A, No 3 (54) 
Volume 14, September 2019 

 

82 

naturally “disappear” by virtue of the richer algebraic structures. Those methods are applicable 

when multiple goals are relevant for a simultaneous optimization, or if the optimization shall be 

w.r.t. a lexicographic order (see Figure 4, where the lexicographic order would first consider 

“impact” and break ties using the “likelihood”). See [34] for an implementation of such methods in 

the R software [35]. 

 

VI. Conclusion 

 
The ideas laid out here are applicable whenever a probabilistic parameter describes an 

observable event, so that data for a Bayesian update is collectible. A practical issue can indeed be 

the speed of convergence, since the above argument is nonetheless asymptotic, and the true value 

is reached only after a hypothetic infinitude of updates. Therefore, we may need to update upon 

every incoming ticket at the IT administration office, or as often as we can, in practice.  

We also stress that the above model does not serve too well as a model of human trust: the 

updating is in some sense “symmetric” and “self-stabilizing”, meaning that (i) the likelihood 

changes eventually become smaller as more updates come in (self-stabilization), and the 

likelihoods will update with roughly comparable magnitudes in both directions. The latter is 

contrary to human subjective changes to trust, since confidence in an event to occur may 

substantially change upon recent experience and differently in the direction towards zero or 

towards one. In other words, if the probabilistic parameter is interpreted as a “trust value”, say, if 

we take it as the expectation of some event (that we rely on) to occur, then subjective trust may be 

lost upon a single incident, but may be regained only over a much longer period of positive 

experience. On the contrary, the above model would not reflect such asymmetry due to human 

pessimism. This leads to the advice of applying the above model only for the estimation of 

parameters that describe physical processes, and not subjective human factors. The latter are subject 

to much deeper psychological mechanisms for whose capture the above model may be overly 

simplistic. 

If the parameter in question, however, relates to a physical event that can be observed, then 

the Bayesian updating as described above offers a computationally efficient and elegant way of 

online learning parameters in absence of reliable domain expertise to specify a (more) accurate 

model or prior guess. 

Finally, the methods outlined here are so far conceptual and lack an empirical study on 

accuracy, subjective comfort felt in the specification methods as such and similar. While they are 

certainly viable to make a start for a Bayesian updating, open questions relate to the accuracy of 

any such “guess”, which on the one hand determines the speed of convergence as further Bayes 

updates come in, and on the other hand, have a direct influence on the accuracy for decision 

making in risk management.  
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