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Abstract 

This paper mainly interested in studying the wider range behavior of the Marshall-Olkin extended 
inverted Kumaraswamy distribution. The parameters of model are estimated by various estimation 
methods. A reliability sampling plan is proposed which can save the test time in practical situations. 
Some tables are also provided for the new sampling plans so that this method can be used 
conveniently by practitioners. The developed test plan is applied to ordered failure times of software 
release to provide its importance in industrial applications 

Keywords: Reliability Test Plan, Kumaraswamy Distribution, Marshall-Olkin Family, 
Method of Maximum Likelihood, Method of Percentiles 

I. Introduction

In statistical literature, there are numerous distributions but still remain many 
important problems where the real data does not follow any of the existing probability 
models . Because of this, significant strive has been taken in the development of 
generalizations of standard probability distributions along with relevant statistical 
methodologies. Kumaraswamy distribution introduced by Kumaraswamy (1980) is 
derived from beta distribution after fixing some parameters posses a closed-form cdf 
(cumulative density function) which is invertible. This distribution is applicable to many 
natural phenomena related to which outcomes have lower and upper bounds. The inverted 
Kumaraswamy model is the probability distribution of a random variable whose reciprocal 
has a Kumaraswamy distribution proposed by Abd AL-Fattah et al. (2017). Further, Iqbal 
et al. (2017) derived generalized form of inverted Kumaraswamy distribution by inserting 
another parameter to inverted Kumaraswamy distribution. 

The method of addition of parameters has used to enhance the properties of existing 
family of distributions. This added new parameter improves the goodness-of-fit of the 
generated family. Parameters can be introduced by various methods, then we have new 
families such as exponentiated family of distributions  (Gupta et al., 1998), transformed-
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transformer (T-X) family of distributions (Alzaatreh, 2011), Kumaraswamy family 
distributions (Cordeiro and Castro, 2011), geometric exponential-Poisson family family of 
distributions (Nadarajah et al., 2013), etc. Many researchers used the Marshall-Olkin 
method introduced by Marshall-Olkin (1997) to propose new distributions and established 
their distinct properties and characteristics.  

This paper mainly focus on different methods of estimation and the reliability test 
plan for the Marshall-Olkin extended inverted Kumaraswamy distribution. The paper is 
organized as follows: Section 2 deals with the basic concepts of Marshall-Olkin Extended 
(MOE) inverted Kumaraswamy distribution (Tomy and Gillariose, 2017). Different 
methods of estimation discussed in Section 3. The reliability test plan is conducted in 
Section 4. This work is concluded in Section 5.  
. 

II. Inverted Kumaraswamy Distribution

The cdf and probability density function (pdf) of MOE inverted Kumaraswamy 
(MOEIKum) distribution, respectively, are given by  

𝐺(𝑥, 𝛼, 𝛽, 𝛾) = ("#("$%)!")#

('$("#')("#("$%)!")#)
, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0 (2.1) 

and 

𝑔(𝑥, 𝛼, 𝛽, 𝛾) = '()("$%)!("%&)("#("$%)!")#!&

['$("#')("#("$%)!")#](
, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0 (2.2) 

The hazard rate function of the MOEIKum distribution is given by  the following 
equation  

ℎ(𝑥, 𝛼, 𝛽, 𝛾) = ()("$%)!("%&)("#("$%)!")#!&

['$("#')("#("$%)!")#]["#("#("$%)!")#]
, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0 

The different shapes of the pdf and hazard rate function of the MOEIKum 
distribution are displayed in Figure 1 for selected values of 𝛼, 𝛽 and 𝛾. From the figure we 
can see that hazard rate function accommodates increasing, decreasing, and unimodal 
shaped forms, that depend basically on the values of the shape parameters. This 
distribution can be expressed as a limiting case of some existing distributions and also from 
this distribution we can derive a number of sub-models for example, Lomax distribution, 
MOE Lomax distribution, log-logistic distribution etc. Consider the following theorem, 
which establish behavior of the MOEIKum distribution. 

Figure  1: Graphs of pdf and hazard rate function of the MOEIKum distribution for 
different values of 𝛼, 𝛽 and 𝛾. 
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Theorem: 1Let {𝑋, , 𝑖 ≥ 1} be a sequence of i.i.d. random variables with common survival 
function 𝐹(𝑥). Let 𝑁 be a geometric random variable independently distributed of {𝑋, , 𝑖 ≥ 1} such 
that 𝑃(𝑁 = 𝑛) = 𝑝(1 − 𝑝)-#", 𝑛 = 1,2, … ,0 < 𝑝 < 1. Let 𝑈. = 𝑚𝑖𝑛"/,/-𝑋,. Then {𝑈.} is 
distributed as MOEIKum(𝑝, 𝛽, 𝛾) iff {𝑋,} follows 𝐼𝐾𝑢𝑚(𝛽, 𝛾) .  

 Proof: The survival function of the random variable 𝑈. is 
𝑊(𝑥) = 𝑃(𝑈. > 𝑥) 
= ∑0-1" 𝑃(𝑈- > 𝑥)𝑃(𝑁 = 𝑛) 
= ∑0-1" [𝐹(𝑥)]-𝑝(1 − 𝑝)-#" 
= 23(%)

"#("#2)3(%)

𝑊(𝑥) =
(1 − (1 + 𝑥)#))(

(𝑝 + (1 − 𝑝)(1 − (1 + 𝑥)#))()
which is cdf of  a random variable with MOEIKum(𝑝, 𝛽, 𝛾) distribution.  
Remark: 1 Let {𝑋, , 𝑖 ≥ 1} be a sequence of i.i.d. random variables with common survival function 
𝐹(𝑥). Let 𝑁 be a geometric random variable independently distributed of {𝑋, , 𝑖 ≥ 1} such that 
𝑃(𝑁 = 𝑛) = 𝑝(1 − 𝑝)-#", 𝑛 = 1,2, … ,0 < 𝑝 < 1. Let 𝑉. = 𝑚𝑎𝑥"/,/-𝑋,. Then {𝑉.} is distributed 
as MOEIKum("

2
, 𝛽, 𝛾) iff {𝑋,} follows 𝐼𝐾𝑢𝑚(𝛽, 𝛾) distribution.

III. Estimation

This section describes different estimation methods for estimating the parameters 
𝛼, 𝛽, and 𝛾 of the MOEIKum distribution.   

I. Method of Maximum Likelihood
Let 𝑋", 𝑋4, . . . , 𝑋- is a random sample of size n from MOEIKum(𝛼, 𝛽, 𝛾), then the log 

likelihood function is given by  

𝑙𝑜𝑔𝐿(𝛼, 𝛽, 𝛾) = 𝑛𝑙𝑜𝑔(𝛼𝛽𝛾) − (𝛾 + 1)∑!"#$ 𝑙𝑜𝑔(𝑥") + (𝛽 − 1)∑!"#$ 𝑙𝑜𝑔(1 − (1 +
𝑥")%&) 

−2∑-,1" 𝑙𝑜𝑔(1 − 𝛼[1 − [1 − (1 + 𝑥,
#))](])
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The partial derivative of the log likelihood functions with respect to the parameters are 

56789
5'

= -
'
− 2∑-,1"

"#["#("$%)
!")]#

"#'["#["#("$%)
!")]#]

 

56789
5(

= -
(
+ ∑-,1" 𝑙𝑜𝑔(1 − (𝑥, + 1)#)) − 2𝛼∑-,1"

["#("$%)
!")]#:;<("#["$%)

!"])
"#'["#["#("$%)

!")]#]
 

56789
5)

= -
)
+ ∑-,1" 𝑙𝑜𝑔(𝑥,) + (𝛽 − 1)∑-,1"

["#("$%)
!")]:;<("#("$%)

!"))
["#("$%)

!")]

−2∑-,1"
["#("$%)

!")]:;<("#("$%)
!"))

"#'["#["#("$%)
!")]#]

 

 The maximum likelihood estimates can be numerically obtained by solving the 
equations56789

5'
= 0, 56789

5(
= 0, 56789

5)
= 0. 

II. Methods of Ordinary and Weighted Least-Squares
A regression based method estimators of the unknown parameters suggested by 

Swain et al. (1988) to estimate the parameters of beta distributions. Let 𝑋", 𝑋4, . . . , 𝑋- is a 
random sample of size 𝑛 from a distribution function with cdf G(x) and 𝑋("), 𝑋(4), . . . , 𝑋(-) 
denote the order statistics of the observed sample. It is well-known that 𝐺(𝑋(,)) behaves 
like the 𝑖=> order statistics of a sample of size n from U(0,1), therefore we have  

𝐸M𝐺(𝑋(?))N =
?

-$"
, 𝑉𝑎𝑟M𝐺(𝑋(?))N =

?(-#?$")
(-$")((-$4)

, 𝑓𝑜𝑟𝑖 < 𝑗 (3.1) 

Therefore, from equation (3.1) the least squares estimators of the unknown 
parameters 𝛼, 𝛽, and 𝛾 of MOEIKum(𝛼, 𝛽, 𝛾), can be obtained by minimizing  

R
-

,1"

S𝐺(𝑋(,)) −
𝑗

𝑛 + 1T
4
=R

-

,1"

U
(1 − (1 + 𝑋(,))#))(

(𝛼 + (1 − 𝛼)(1 − (1 + 𝑋(,))#))()
−

𝑗
𝑛 + 1

V
4

with respect to 𝛼, 𝛽, and 𝛾. 
By equation (3.1), the weighted least squares estimators of the unknown parameters 

of 
MOEIKum(𝛼, 𝛽, 𝛾) can be obtained by minimizing 

∑-,1"
"

@ABCD(E()))F
W𝐺(𝑋(,)) −

?
-$"

X
4
= ∑-,1"

(-$")((-$4)
?(-#?$")

S
("#("$E()))!")#

('$("#')("#("$E()))!")#)
− ?

-$"T
4
 

 with respect to 𝛼, 𝛽, and 𝛾. 

𝑥 = Y1 + Z𝐹(𝑥; 𝛼, 𝛽, 𝛾)𝛼 −
𝛼

1 + 𝛼
\
&
#]
#&"
− 1.
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Let 𝑋(,) denoted as the 𝑖=> order statistic 𝑋(") < 𝑋(4) <. . . < 𝑋(-). If 𝑝, =
,

-$"
 denotes 

some estimate of 𝐹(𝑥; 𝛼, 𝛽, 𝛾), then the estimates of 𝛼, 𝛽, and 𝛾 can be obtained by 
minimizing  

∑-,1" ^𝑋(,) − _1 + Z𝐹(𝑥; 𝛼, 𝛽, 𝛾)𝛼 −
'

"$'
\
&
#`

#&"
+ 1a

4

with respect to 𝛼, 𝛽, and 𝛾. These estimates of 𝛼, 𝛽, and 𝛾 were obtained by using R 
in method of maximum likelihood, methods of ordinary and weighted least-squares and 
Method of Percentiles.  

III. Acceptance Sampling Plans

Reliability sampling plans are used for determining the acceptability of any 
product. In this section, we develop reliability test plan with the life time governed by an 
IMOEKu distribution with cdf  

𝐺(𝑥, 𝛼, 𝛽, 𝛾) = ("#("$%)!")#

('$("#')("#("$%)!")#)
, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0 (4.1) 

 If a scale parameter 𝜃 > 0 is introduced, the distribution function of IMOEKu is given by 

𝐺(𝑥, 𝛼, 𝛽, 𝛾, 𝜃) = ("#("$%/H)!")#

('$("#')("#("$%/H)!")#)
, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0 (4.2) 

A common practice in life testing is to terminate the life test by a pre-determined time t and 
note the number of failures (assuming that a failure is well-defined). One of the objectives 
of these experiments is to set a lower confidence limit on the average life. It is then desired 
to establish a specified 

average life with a given probability of at least 𝑝∗. The decision to accept the 
specified average life occurs if and only if the number of observed failures at the end of the 
fixed time t does not exceed a given number c called the acceptance number. The test may 
get terminated before the time t is reached when the number of failures exceeds c in which 
case the decision is to reject the lot. For such a truncated life test and the associated decision 
rule, we are interested in obtaining the smallest sample sizes necessary to achieve the 
objective. Here, it is assume that 𝛼, 𝛽 and 𝛾 are known while 𝜃 is unknown. So, average life 
time depends only on 𝜃. A sampling plan consists of  

• the number of units n on test,
• the acceptance number c,
• the maximum test duration t, and
• the ratio =

H*
 where 𝜃J is the specified average life. 

The consumer’s risk, i.e., the probability of accepting a bad lot (the one for which 
the true average life is below the specified life 𝜃J) not to exceed 1 − 𝑝∗, so that 𝑝∗ is a 
minimum confidence level with which a lot of true average life below 𝜃J is rejected, by the 
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sampling plan. For a fixed 𝑝∗ our sampling plan is characterized by (n, c, =
H*

). Here, it is 

consider sufficiently large lots so that the binomial distribution can be applied. The problem 
is to determine for given values of 𝑝∗, (0 < 𝑝∗ < 1), 𝜃J and c the smallest positive integer n 
such that  

∑K,1J W
𝑛
𝑖 X 𝑝

,(1 − 𝑝)-#, ≤ 1 − 𝑝∗ (4.3) 

holds where 𝑝 = 𝐺(𝑥, 𝛼, 𝛽, 𝛾, 𝜃J) is given by (5.2) indicates the failure probabilities before 
time t which depends only on the ratio 𝑡/𝜃J it is sufficient to specify this ratio for designing 
the experiment. If the number of observed failures before t is less than or equal to c, from 
(5.3), we have:  

𝐺(𝑡, 𝜃) ≤ 𝐺(𝑡, 𝜃J) ⟺ 𝜃 ≥ 𝜃J (4.4) 

The minimum values of n satisfying the inequality (5.4) are obtained and displayed in 
Table1 for 𝑝∗=0.75, 0.90, 0.95 and t =1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 3.0, 3.5, 4.0 and 𝛼 =
𝛽 = 𝛾 = 2. If 𝑝 = 𝐺(𝑥, 𝛼, 𝛽, 𝛾, 𝜃J) is small and n is large (as is true in some cases of our 
present work), the binomial probability may be approximated by Poisson probability with 
parameter 𝜆 = 𝑛𝑝		so that the left side of (4.3) can be written as  

∑K,1J
L!+M,

%
≤ 1 − 𝑝∗ (4.5) 

where 𝑝 = 𝐺(𝑥, 𝛼, 𝛽, 𝛾, 𝜃J). The minimum values of n satisfying (4.5) are obtained for the 
same combination of p values as those used for (4.3). The results are given in Table 2. The 
operating characteristic function of the sampling plan (n, c, 𝑡/𝜃J) gives the probability L(p) 
of accepting the lot with:  

𝐿(𝑝) = ∑K,1J W
𝑛
𝑖 X 𝑝

,(1 − 𝑝)-#,  (4.6) 

where 𝑝 = 𝐺(𝑥, 𝛼, 𝛽, 𝛾, 𝜃) is considered as a function of 𝜃, i.e., the lot quality parameter. It 
can be seen that the operating characteristic is an increasing function of 𝜃. For given 𝑝∗, 
𝑡/𝜃J the choice of c and n is made on the basis of operating characteristics. Values of the 
operating characteristics as a function of 𝜃/𝜃J for a few sampling plans are given in Table 
3. 

The producer’s risk is the probability of rejecting lot when 𝜃 > 𝜃J. We can compute 
the producer’s risk by first finding 𝑝 = 𝐹(𝑡, 𝜃) and then using the binomial distribution 
function. For a given value of the producer’s risk say 0.05, one may be interested in knowing 
what value of 𝜃/𝜃J will ensure a producer’s risk less than or equal to 0.05 if a sampling plan 
under discussion is adopted. It should be noted that the probability p may be obtained as 
function of𝜃/𝜃J, as 

𝑝 = 𝐹( =
H*

H*
H
) (4.7) 
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The value 𝜃/𝜃J is the smallest positive number for which the following inequality hold: 

∑K,1J W
𝑛
𝑖 X 𝑝

,(1 − 𝑝)-#, ≥ .95 (4.8) 

For a given sampling plan (n, c, 𝑡/𝜃J) and specified confidence level 𝑝∗. the 
minimum values of 𝜃/𝜃J satisfying the inequality (4.8) are given in Table 4. 

Example: Consider the following ordered failure times of the release of a software given in 
terms of hours from the starting of the execution of the software denoting the times at which 
the failure of the software is experienced (Wood, 1996). This data can be regarded as an 
ordered sample of size 10 with observations  
(xi , i = 1, . . . , 10) = 519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218, 5823 

Let the specified average life be 1000 hrs and the testing time be 1250 hrs, this leads 
to ratio of 𝑡/𝜃 = 1.25 with corresponding n and c as 10, 2 from Table 4.1 for 𝑝∗ = 0.9. 
Therefore, the sampling plan for the above sample data is (n=10, c=2, 𝑡/𝜃J = 1.25). Based 
on the observations, we have to decide whether to accept the product or reject it. We accept 
the product only, if the number of failures after 1250 hrs is less than or equal to 2. However 
the confidence level is assured by the sampling plan only if the given life times follow an 
MOEIKum distribution. In order to confirm that the given sample is generated by lifetimes 
following at least approximately the inverse Raleigh distribution, we have compared the 
sample quantiles and the corresponding population quantiles and found a satisfactory 
agreement. Thus, the adoption of the decision rule of the sampling plan seems to be 
justified. We see that in the sample of 10 failures there are 2 failures at 519 and 968 hrs 
before 1250 hrs. Therefore we accept the product. 

Table  1:  Minimum sample sizes necessary to assert the average life to exceed a given value 
𝑡/𝜃J with probability 𝑝∗ and the corresponding acceptance number c, 𝛼 = 𝛽 = 𝛾 = 2 using 
Binomial probabilities. 

𝒕/𝜽𝟎 
𝒑∗ c 1 1.25 1.5 1.75 2 2.25 2.5 3 3.5 4 

0 3 3 2 2 2 2 2 1 1 1 
1 6 5 4 4 4 3 3 3 3 3 
2 9 8 7 6 5 5 5 4 4 4 
3 12 10 9 8 7 7 6 6 5 5 
4 15 12 11 10 9 8 8 7 7 6 

.75 5 18 15 13 11 11 10 9 8 8 8 
6 21 17 15 13 13 11 11 10 9 9 
7 24 19 17 15 15 13 12 11 11 10 
8 27 22 19 17 16 14 14 12 12 11 
9 29 24 21 19 17 16 15 14 13 12 
10 32 26 23 20 19 17 16 16 14 14 
0 5 4 3 3 3 2 2 2 2 1 
1 9 7 6 5 5 4 4 4 3 2 
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2 12 10 8 7 7 6 5 5 5 3 
3 16 13 11 9 9 7 7 7 6 5 
4 19 15 13 11 10 8 9 9 8 6 

.90 5 22 18 15 13 12 11 11 10 9 7 
6 25 20 17 15 14 13 12 11 10 8 
7 28 23 19 17 16 15 14 12 12 9 
8 31 25 21 19 17 16 15 14 13 10 
9 34 27 24 21 19 18 17 15 14 11 
10 37 30 26 23 21 19 18 17 16 12 
0 7 5 4 4 3 3 3 2 2 1 
1 11 8 7 6 4 5 5 4 4 3 
2 15 11 10 8 8 7 6 6 5 4 
3 18 13 12 11 10 9 8 7 7 5 
4 21 17 14 13 11 11 10 9 8 6 

.95 5 25 20 17 15 13 12 11 10 10 7 
6 28 22 19 17 15 14 13 12 11 8 
7 31 25 21 19 17 16 15 13 12 9 
8 34 27 24 21 19 17 16 15 14 10 
9 37 30 26 23 21 19 18 16 15 11 
10 40 32 28 24 22 21 19 18 16 12 

Table  2:  Minimum sample sizes necessary to assert the average life to exceed a given value 
t/θ_0 with probability p^* and the corresponding acceptance number c, α=β=γ=2 using 
Poisson probabilities. probabilities. 

t/θ0 
p* C 1 1.25 1.5 1.75 2 2.25 2.5 3 3.5 4 

0 4 3 3 4 4 3 3 2 2 2 
1 7 6 5 7 6 5 5 4 4 4 
2 11 9 8 10 8 7 7 6 6 5 
3 14 11 10 12 11 9 8 8 7 7 
4 17 14 12 14 13 11 10 10 9 8 

.75 5 19 16 14 17 15 13 12 11 10 10 
6 22 19 16 19 17 15 14 13 11 11 
7 25 21 18 21 19 17 15 14 13 12 
8 28 23 21 24 21 18 17 16 14 14 
9 31 26 22 26 23 20 19 18 16 15 
10 34 28 24 28 24 22 20 19 18 16 
0 6 5 5 4 4 4 4 3 3 3 
1 10 9 8 7 6 6 6 5 5 5 
2 14 12 10 9 9 8 8 7 7 7 
3 18 15 13 12 11 10 10 9 9 8 
4 21 17 15 14 13 12 12 11 10 10 

.90 5 24 20 18 16 15 14 14 12 12 11 
6 28 23 20 18 17 16 16 14 13 13 
7 31 25 22 20 19 17 17 16 15 14 
8 34 28 24 22 21 19 19 17 16 16 
9 37 30 27 24 22 21 21 19 18 17 
10 40 33 29 26 24 23 22 20 19 19 
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0 8 7 6 5 5 5 5 4 4 4 
1 13 10 9 8 8 7 6 7 6 5 
2 17 14 12 11 10 10 8 9 8 7 
3 20 17 15 13 12 12 10 10 10 8 
4 24 20 17 16 15 13 11 12 12 10 

.95 5 27 23 20 18 17 16 13 14 13 11 
6 31 26 22 20 19 18 14 16 15 13 
7 34 29 25 23 21 19 16 17 17 14 
8 38 31 27 24 23 21 17 19 18 15 
9 41 34 29 27 25 23 19 21 20 17 
10 44 34 32 29 26 25 20 22 21 18 

Table 3: Operating characteristic values of the sampling plan (n, c, 𝑡/𝜃J for given 𝑝∗ and 
𝛼 = 𝛽 = 𝛾 = 2 under MOEIKum probabilities. 

𝜽/𝜽𝟎 
𝒑∗ N c 𝑡/𝜃J 2 4 6 8 10 12 

9 2 1 0.7833 0.97365 0.9965 0.9991 0.9997 0.9998 
8 2 1.25 0.7053 0.9653 0.9934 0.9982 0.9994 0.9997 
7 2 1.5 0.6622 0.9538 0.9905 0.9973 0.999 0.9996 
6 2 1.75 0.6589 0.9496 0.9891 0.9968 0.9988 0.9995 

.75 5 2 2 0.6974 0.9546 0.9899 0.997 0.9989 0.9995 
5 2 2.25 0.6207 0.9332 0.984 0.995 0.99813 0.9991 
5 2 2.5 0.547 0.907 0.9765 0.9992 0.997 0.9988 
4 2 3 0.6169 0.9212 0.979 0.9929 0.9971 0.9987 
4 2 3.5 0.518 0.879 0.9642 0.9871 0.9946 0.9975 
4 2 4 0.4315 0.8306 0.9448 0.979 0.9909 0.9956 
12 2 1 0.6208 0.9543 0.9916 0.9978 0.9992 0.9997 
10 2 1.25 0.5583 0.9357 0.987 0.9964 0.9987 0.9995 
8 2 1.5 0.5688 0.9329 0.9857 0.9959 0.9985 0.9994 
7 2 1.75 0.5458 0.9217 0.9822 0.9947 0.998 0.9992 

.9 7 2 2 0.4389 0.8807 0.9701 0.9905 0.9964 0.9984 
6 2 2.25 0.4723 0.887 0.9709 0.9906 0.9964 0.9984 
5 2 2.5 0.547 0.9067 0.9762 0.9922 0.997 0.9986 
5 2 3 0.4158 0.8456 0.9546 0.981 0.9934 0.997 
5 2 3.5 0.3107 0.7739 0.9251 0.9715 0.9877 0.9941 
3 2 4 0.7214 0.994 0.9993 0.9939 0.9974 0.9988 
15 2 1 0.4664 0.91911 0.9841 0.9957 0.9985 0.9994 
11 2 1.25 0.4892 0.917 0.9828 0.9952 0.9983 0.9993 
10 2 1.5 0.4088 0.8809 0.9724 0.9918 0.997 0.9987 
8 2 1.75 0.4419 0.8886 0.9733 0.9918 0.997 0.9987 

.95 8 2 2 0.3338 0.8341 0.9558 0.9857 0.9945 0.9976 
7 2 2.25 0.3465 0.8324 0.9587 0.9846 0.994 0.9973 
6 2 2.5 0.3919 0.8473 0.9574 0.9856 0.9943 0.99747 
6 2 3 0.2633 0.7533 0.9214 0.9709 0.9878 0.9943 
5 2 3.5 0.3107 0.7739 0.9251 0.9715 0.9877 0.9941 
4 2 4 0.4315 0.8303 0.9448 0.979 0.9909 0.9995 

Table  4:  Minimum ratio of true 𝜃 and required 𝜃J for the acceptability of a lot with 
producer’s risk of 0.05 for 𝛼 = 𝛽 = 𝛾 = 2 under MOEIKum probabilities. 
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𝒑∗ c 1 1.25 1.5 1.75 2 2.25 2.5 3 3.5 4 
0 9.83 12.29 11.45 13.36 15.26 17.18 19.08 15.45 18.025 20.025 
1 4.56 5.19 5.33 6.22 7.11 6.36 7.07 8.48 9.89 11.31 
2 3.56 4.18 4.71 4.52 4.6 5.17 5.74 5.88 6.86 7.84 
3 3.14 3.22 3.23 4.33 4.03 4.54 4.52 5.43 5.32 6.08 
4 2.69 2.87 3.32 3.53 3.72 3.88 4.31 4.64 5.42 5.46 

.75 5 2.58 2.77 3.02 3.16 3.62 3.79 3.87 4.16 4.86 5.55 
6 2.47 2.6 2.86 3.02 3.03 3.41 3.79 4.23 4.42 5.05 
7 2.47 2.52 2.78 2.95 3.37 3.36 3.53 3.91 4.56 4.84 
8 2.29 2.45 2.65 2.82 3.09 3.29 3.53 3.79 4.42 4.59 
9 2.14 2.38 2.59 2.77 2.92 3.12 3.31 3.79 4.12 4.43 

10 2.14 2.32 2.52 2.66 2.93 3.02 3.2 3.79 3.97 4.54 
0 12.76 15.13 15.89 18.54 21.19 17.17 19.08 22.9 26.72 20.6 
1 5.81 6.36 6.84 7.27 8.31 8.01 8.89 10.68 9.9 8.07 
2 4.15 4.78 4.71 5.2 5.95 5.81 5.74 6.89 8.04 5.86 
3 3.56 3.93 4.24 4.33 4.95 4.54 5.04 6.05 6.33 6.08 
4 3.33 3.37 3.72 3.88 4.92 3.97 4.9 5.88 6.18 5.37 

.9 5 2.97 3.22 3.32 3.53 3.81 3.97 4.41 4.94 5.31 4.91 
6 2.82 2.97 3.12 3.43 3.62 3.88 4.03 4.55 4.86 4.59 
7 2.58 2.77 3.02 3.16 3.53 3.79 4.03 4.16 4.86 4.32 
8 2.47 2.68 2.86 3.09 3.22 3.48 3.72 4.16 5.42 4.18 
9 2.38 2.6 2.86 3.02 3.16 3.48 3.65 3.96 4.42 4.05 

10 2.38 2.52 2.78 2.95 3.16 3.29 3.47 4.03 4.42 3.39 
0 15.5 16.9 17.31 20.2 19.66 22.12 24.58 22.9 26.72 20.6 
1 6.87 6.77 7.54 7.98 7.06 8.95 9.95 10.6 12.37 13.34 
2 3.85 3.92 4.46 4.94 5.16 6.69 6.45 7.74 8.04 7.43 
3 3.86 3.93 4.46 4.94 5.16 5.57 5.54 6.05 7.06 6.07 
4 3.37 3.71 3.87 4.33 4.32 4.86 5.04 5.57 6.04 5.37 

.95 5 3.21 3.53 3.71 3.88 4.03 4.29 4.52 4.94 5.77 4.91 
6 2.92 3.16 3.38 3.62 3.86 4.07 4.26 4.833 5.23 4.59 
7 2.78 3.03 3.2 3.44 3.63 3.91 4.13 4.45 4.89 4.33 
8 2.63 2.82 3.12 3.31 3.52 3.69 3.87 4.45 4.89 4.18 
9 2.53 2.78 3.01 3.22 3.43 3.59 3.8 4.17 4.61 4.04 

10 2.46 2.68 2.89 3.03 3.22 3.52 3.63 4.17 4.42 3.93 

IV. Conclusion
In this paper, a comprehensive description of properties of MOEIKum distribution 

are provided with the hope that it will attract wider applications in the area of research. 
Different methods for estimating unknown parameters of MOEIKum distribution are 
derived. Additionally, acceptance sampling plan is developed based on the truncated life 
test when the life distribution of the test items follows an MOEIKum distribution 
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