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Abstract

In this paper, we introduce a flexible extension of the Maxwell distribution for modeling various practical
data with non-monotone failure rate. Some main properties of this distribution are obtained, and then the
estimation of the parameters for the proposed distribution has been addressed by maximum likelihood
estimation method and Bayes estimation method. The Bayes estimators have been obtained under gamma
prior using squared error loss function. Also, a simulation study is gained to assess the estimates
performance. A real-life applications for the proposed distribution have been illustrated through different
lifetime data.

Keywords: Family of Maxwell distributions, Entropy, Classical and Bayes estimation, Interval
estimation, Asymptotic confidence length.

1. Introduction

The Maxwell distribution has broad application in statistical physics, physical chemistry, and
their related areas. Besides Physics and Chemistry it has also a good number of applications in
reliability theory. At first, the Maxwell distribution was used as lifetime distribution by [1]. The
inferences based on generalized Maxwell distribution have been discussed by [2]. [3] considered
the estimation of reliability characteristics for Maxwell distribution under Bayes paradigm. [4]
discussed the prior selection procedure in case of Maxwell distribution. [5] studied the distri-
butions of the product |XY| and ratio |X/Y|, where X and Y are independent random variables
having the Maxwell and Rayleigh distributions, respectively. [6] proposed the Bayesian estimation
of the Maxwell parameters. [7] discussed the estimation procedure for the Maxwell parameters
under progressive type-I hybrid censored data. Furthermore, several generalizations based on
Maxwell distribution are advocated and statistically justified. Recently, two more extensions
of Maxwell distribution has been introduced by [8], [9] and discussed the classical as well as
Bayesian estimation of the parameter along with real-life applications.

A random variable Z follows the Maxwell distribution (MaD) with scale parameter α, denoted
as Z ∼ MaD(α), if its probability density function (PDF) and cumulative distribution function
(CDF) are given by

f (z, α) =
4√
π

α
3
2 z2e−αz2

z ≥ 0, α > 0 (1)
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and

F(z, α) =
2√
π

Γ
(

3
2

, αz2
)

, (2)

respectively, where Γ(a, z) =
∫ z

0 pa−1e−pdp is the incomplete gamma function.

In this article, we propose a flexible extension of the Maxwell distribution. The objective of this
article is to get some main properties of this distribution for showing its merit in modeling various
practical data, and then estimate the unknown parameters using classical and Bayes estimation
methods. Other motivations regarding the advantages of the distribution comes from its flexibility
to model the data with non-monotone failure rates. The former aim is justified, where the
proposed distribution provides better fit to the reliability/survival data comparing to the some
known and recent versions of the Maxwell distribution. Further, the distribution is that having the
nature of platykurtic, mesokurtic and leptokurtic, hence it can be used to model skewed and sym-
metric data as well. Also, the Bayes procedure under informative prior provides the more efficient
estimates as compared to the maximum likelihood estimates (MLEs) concerning the estimation
point of view. Another motivation for the confidence interval of the distribution parameters is
that increasing the sample size decreases the width of confidence intervals, because it decreases
the standard error, and this justified by simulation study and using sizes of four practical data sets.

The reminder of the considered work has been structured in the following manner. Section 2
provides some statistical properties related to the proposed model for purpose of data modeling.
In Section 3, some types of entropy are investigated. The maximum likelihood (ML) and Bayes
estimation procedures have been discussed in Section 4. Also, a simulation study is carried out to
compare the performance of Bayes estimates with MLEs. In Section 5, we illustrate the application
and usefulness of the proposed model by applying it to four practical data sets. Section 5 offers
some concluding remarks.

2. The model and some of its properties

This section provides another generalization of the MaD using power transformation of Maxwell
random variates for estimations issues of the distribution parameters and modeling practical

data. For this purpose, consider the transformation X = Z
1
β , where Z ∼ MaD(α), hence the

resulting distribution of X is called as power Maxwell distribution (for short PMaD) and denoted
by X ∼ PMaD(α, β), where, α and β are the scale and shape parameters, respectively. The PDF
and CDF of the PMaD are given by

f (x, α, β) =
4√
π

α
3
2 βx3β−1e−αx2β

, x ≥ 0, α, β > 0, (3)

F(x, α, β) =
2√
π

Γ
(

3
2

, αx2β

)
, (4)

respectively. Plots of the PDF are given by Figure 1 for different choices of α and β. The plots
show different kurtosis, positive skewness and symmetric shapes.

Some main mathematical and statistical properties of PMaD have been obtained in the
following.

2.1. Behaviour with some reliability functions

This subsection, described the asymptotic nature of density and survival functions for the pro-
posed distribution. To illustrate asymptotic behaviour, at first, we will show that lim

x→0
f (x, α, β) = 0

and lim
x→∞

f (x, α, β) = 0 . Therefore, using (2.1)

lim
x→0

f (x, α, β) =
4√
π

α
3
2 β lim

x→0
x3β−1e−αx2β

= 0,
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Figure 1: Density function and hazard function plot for different choices of α and β.

and
lim

x→∞
f (x, α, β) =

4√
π

α
3
2 β lim

x→∞
x3β−1 lim

x→∞
e−αx2β

= 0

The characteristics based on reliability function and hazard function are very useful to study
the pattern of any lifetime phenomenon. Let X be a random variable with PDF (2.1) and CDF (2.2),
different reliability measures for the proposed distribution are obtained by following equations.

The reliability function R(x) is given by

R(x) = P(X > x) = 1− 2√
π

Γ
(

3
2

, αx2β

)
(5)

The mean time to system failure M(x) is

M(x) = E(x) =
2√
π

(
1
α

) 1
2β

Γ
(

3β + 1
2β

)
(6)

The hazard function H(x) is given as

H(x) =
f (x, α, β)

1− F(x, α, β)
=

4α
3
2 βx3β−1e−αx2β

√
π − 2Γ

( 3
2 , αx2β

) (7)

The plots, in Figure 1, show that the proposed density is unimodel and positively skewed with
monotone failure rate function for the different combination of the model parameters. The
comparative behavior of the random variables can be measured by stochastic ordering concept
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that is summarized in the next proposition.

Proposition: Let X ∼ PMaD(α1, β1) and Y ∼ PMaD(α2, β2), then the likelihood ratio is

Φ =
fX(x)
fY(x)

=

(
α1

α2

) 3
2
(

β1

β2

)
x3(β1−β2)e−(α1x2β1+α2x2β2 ).

Therefore,

Φ
′
= log

(
fX(x)
fY(x)

)
=

1
x

[
3(β1 − β2)− (α1x2β1 + α2x2β2)

]
If β1 = β2 = β, then Φ

′
< 0, which implies that the random variable X is a likelihood ratio order

than Y, that is X ≤lr Y. Also, if α1 = α2 = α and β1 < β2, then again Φ
′
< 0, which shows that

X ≤lr Y. Other stochastic orderings behaviour follow using X ≤lr Y, such as hazard rate order
(X ≤hr Y), mean residual life order (X ≤mrl Y) and scholastically greater (X ≤st Y).

2.2. Moments and some conditional ones

Let x1, x2, · · · xn be random observations from the PMaD(α, β). The rth moment, µ
′
r, about origin

is

µ
′
r =

∫ ∞

x=0
xr f (x, α, β) dx =

2√
π

(
1
α

) r
2β

Γ
(

3β + r
2β

)
, r > 1.

The coefficient of skewness and kurtosis measure the convexity of the curve and its shape.
Using the moments above, the two earlier measures are obtained by moments based relations
suggested by Pearson and given by

β1 =

[
µ
′
3 − 3µ

′
2µ
′
1 + 2

(
µ
′
1

)3
]2

[
µ
′
2 −

(
µ
′
1
)2
]3

and

β2 =
µ
′
4 − 4µ

′
3µ
′
1 + 6µ

′
2

(
µ
′
1

)2
− 3

(
µ
′
1

)4

[
µ
′
2 −

(
µ
′
1
)2
]2 .

Numerical values of some measures above are calculated in Table 1 for different combination of
the model parameters, and it is observed that the shape of the PMaD is right skewed and almost
symmetrical for some choices of α, β. Also, it can has the nature of platykurtic, mesokurtic and
leptokurtic, thus PMaD may be used to model skewed and symmetric data as well.

The mode (M0) for PMaD (α, β) is obtained by solving the following expression
d

dx
f (x, α, β)|M0 =

0, which yields

M0 =

(
3β− 1

2αβ

) 1
2β

.

Moreover, the median (Md) of the proposed distribution can be calculated by using the empirical
relation among the mean, median and mode. Thus, the median is,

Md =
1
3

M0 +
2
3

µ
′
1 =

1
3

[(
3β− 1

2αβ

) 1
2β

+
4√
π

(
1
α

) 1
2β

Γ
(

3β + 1
2β

)]
.

The moment generating function (mgf) MX(t) for a PMaD random variable X is obtained as

MX(t) = E(etx) =
2√
π

∞

∑
i=0

1
j!

(
t

α2β

)r
Γ
(

3β + r
2β

)
.
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Table 1: Values of mean, variance, skewness, kurtosis, mode and coefficient of variation for different α, β

α, β
µ
′
1 µ2 β1 β2 x0 CV

when α fixed and β varying
0.5, 0.5 3.0008 5.9992 2.6675 7.0010 1.0000 0.8162
0.5, 1.0 1.5962 0.4530 0.2384 3.1071 1.4142 0.4217
0.5, 1.5 1.3376 0.1499 0.0102 2.7882 1.3264 0.2894
0.5, 2.5 1.1780 0.0445 0.0481 2.7890 1.2106 0.1792
0.5, 3.5 1.1204 0.0211 0.1037 2.4351 1.1533 0.1298

when β fixed α varying
0.5, 0.75 1.9392 1.1443 0.7425 3.8789 1.4057 0.5516
1.0, 0.75 1.2216 0.4541 0.7425 3.8789 0.8855 0.5516
1.5, 0.75 0.9323 0.2645 0.7425 3.8789 0.6758 0.5516
2.5, 0.75 0.6632 0.1338 0.7425 3.8789 0.4807 0.5516
3.5, 0.75 0.5299 0.0855 0.7425 3.8789 0.3841 0.5516

when both varying
1, 1 1.1287 0.2265 0.2384 3.1071 1.0000 0.4217
2, 2 0.8723 0.0372 0.0102 2.7895 0.8891 0.2212
3, 3 0.8484 0.0163 0.0831 2.6907 0.8736 0.1506
4, 4 0.8509 0.0094 0.1069 1.9643 0.8750 0.1140
5, 5 0.8586 0.0062 0.0677 0.1072 0.8805 0.0915

For lifetime distributions, the conditional moments are of interest in prediction. Another appli-
cation of conditional moments is the mean residual life (MRL). For this purpose, let X observed
from PDF(2.1), the conditional moments, E(Xr|X > k) and the conditional mgf E(etx|X > k) are
obtained as follows;

E(Xr|X > k) =

∫
x>k xr f (x, α, β)dx∫

x>k f (x, α, β)dx
=

2
(

1
α

) r
2β Γ

(
3β + r

2β
, αk2β

)
√

π − 2Γ
( 3

2 , αk2β
)

and

E(etx|X > k) =

∫
x>k etx f (x, α, β)dx∫

x>k f (x, α, β)dx

=

2 ∑∞
i=0

ti

i!

(
1
α

) r
2β Γ

(
3β + r

2β
, αk2β

)
√

π − 2Γ
( 3

2 , αk2β
) ,

respectively. The MRL is the expected remaining life X− x, given that the equipment has survived
to time k. The MRL function in terms of the first conditional moments is given as

m(x) = E[X− x|X > k] =
2
(

1
α

) 1
2β Γ

(
3β + 1

2β
, αk2β

)
√

π − 2Γ
( 3

2 , αk2β
) − x

3. Entropy measurements

In information theory, entropy measurement plays a vital role to study the uncertainty associated
with the random variable. In this section, we discuss the different entropy measures for PMaD.
For more detail about entropy measurement, see [10].
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3.1. Renyi entropy

Renyi entropy of a r.v. X with PDF (2.1) is given as

RE =
1

(1− ∈) ln

[∫ ∞

x=0

{
4√
π

α
3
2 βx3β−1e−αx2β

}∈
dx

]
Hence, after some algebra, we get

RE =
1

(1− ∈)

[
λ ln 4− λ

2
ln π + λ ln β− 1− λ− 2β

2β
ln α− 3λβ− λ + 1

2β
ln λ + ln

(
3βλ− λ + 1

2β

)]
.

3.2. ∆-entropy

The ∆ entropy is also known as β entropy. The ∆ entropy for a random variable X having PDF
(2.1) is defined as

∆E =
1

∆− 1

[
1−

∫ ∞

x=0
f ∆(x, α, β)dx

]
.

Using PDF (2.1) and after simplification, the expression for β-entropy is given by;

∆E =
1

∆− 1

1−
(

4√
π

)∆
β∆
(

1
α

)1− ∆− 2β

2β

Γ
(

3∆β− ∆ + 1
2β

)

∆

3∆β− ∆ + 1
2β


 . (8)

3.3. Generalized entropy

The generalized entropy is defined by

GE =
νλµ−λ − 1
λ(λ− 1)

; λ 6= 0, 1,

where, νλ =
∫ ∞

x=0 xλ f (x, α, θ)dx and µ = E(X). After some algebra, we get

GE =

(
4
π

) 1−λ
2


Γ
(

3β + λ

2β

){
Γ
(

3β + 1
2β

)}−λ

λ(λ− 1)

 , λ 6= 0, 1. (9)

4. Parameter estimation with a simulation study

Here, we describe the maximum likelihood estimation method and Bayes estimation method
for estimating the unknown parameters α, β of the PMaD. The estimators obtained under these
methods are not in nice closed form; thus, numerical approximation techniques are used to get
the solution. Further, the performances of these estimators are studied through a Monte Carlo
simulation.

4.1. Maximum likelihood estimation

The most popular and efficient method of classical estimation of the parameter(s) is maximum
likelihood estimation. The estimators obtained by this method passes several desirable properties
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such as consistency, efficiency etc. Let X1, X2, · · · , Xn be an iid random sample of size n taken
from PMaD (α, β), then the likelihood function is

L(α, θ) =
n

∏
i=1

4√
π

α
3
2 βx3β−1

i e−αx2β
i =

4n

πn/2 α
3n
2 βne−α ∑n

i=1 x2β
i

(
n

∏
i=1

x3β−1
i

)
,

hence the corresponding log-likelihood function is written as

ln L(α, θ) = l = n ln 4− n
2

ln π +
3n
2

ln α + n ln β− α
n

∑
i=1

x2β
i + (3β− 1)

n

∑
i=1

ln xi. (10)

The MLEs of α and β are the solution of
∂l
∂α

= 0 and
∂l
∂β

= 0, hence

3n
2α
−

n

∑
i=1

x2β
i = 0 (11)

n
β
− 2α

n

∑
i=1

x2β
i ln xi + 3

n

∑
i=1

ln xi = 0. (12)

The MLEs of the parameters are obtained by solving the two equations above simultaneously,
and non-linear maximization techniques is used to get the solution.

4.1.1 Uniqueness of MLEs

The uniqueness of the MLEs discussed in the previous section can be checked by using following
propositions.

Proposition 1: If β is fixed, then α̂ exists and is unique.

Proof: Let Lα =
3n
2α
−∑n

i=1 x2β
i , since Lα is continuous and it has been verified that lim

α→0
Lα = ∞

and lim
α→∞

Lα = −∑n
i=1 x2β

i < 0. This implies that Lα will have at least one root in interval (0, ∞)

and hence Lα is a decreasing function in α. Thus, Lα = 0 has a unique solution in (0, ∞).

Proposition 2: If α is fixed, then β̂ exists and is unique.

Proof: Let Lβ =
n
β
− α ∑n

i=1 x2β
i ln xi + 3 ∑n

i=1 ln xi, since Lβ is continuous and it has been

verified that lim
β→0

Lβ = ∞ and lim
β→∞

Lβ = −2 ∑n
i=1 ln xi < 0. This implies, as above, β̂ exists and it

is unique.

4.1.2 Fisher Information Matrix

Here, we derive the Fisher information matrix for constructing 100(1−Ψ)% asymptotic confidence
interval for the parameters using large sample theory. The Fisher information matrix can be
obtained, by using equations (4.2) and (4.3), as

I(α̂, β̂) = −E

lαα lαβ

lβα lββ


(α̂,β̂)

(5.2.1)

where,

lαα = − 3n
2α2 , lαβ = −2

n

∑
i=1

x2β
i ln xi, lββ = − n

β2 − 4α
n

∑
i=1

x2β
i (ln xi)

2.
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The above matrix can be inverted and the diagonal elements of I−1(α̂, β̂) provide the asymptotic
variance of α and β, respectively. Now, two sided 100(1−Ψ)% asymptotic confidence interval for
α, β can be obtained as

α ∈ [α̂− Z1− Ψ
2

√
var(α̂), α̂ + Z1− Ψ

2

√
var(α̂)],

β ∈ [β̂− Z1− Ψ
2

√
var(β̂), β̂ + Z1− Ψ

2

√
var(β̂)],

respectively.

4.2. Bayes estimation

In this subsection, the Bayes estimation procedure for the PMaD parameters has been developed.
Here, we consider two independent gamma priors for both shape and scale parameter. The
considered prior is very flexible due to its flexibility of assuming different shape. Thus, the joint
prior g(α, β) is given by;

g(α, β) ∝ αa−1βc−1e−bα−dβ ; α, β > 0, (13)

where a, b, c and d are the hyper-parameters of the considered priors. Using likelihood function
of PMaD and equation above, the joint posterior density function π(α, β|x) is derived as

π(α, β|x) = L(x|α, β)g(α, β)∫
α

∫
β L(x|α, β)g(α, β)dα dβ

=
α

3n
2 +a−1βn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
∏n

i=1 x3β−1
i

)
∫

α

∫
β α

3n
2 +a−1βn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
∏n

i=1 x3β−1
i

)
dα dβ

.

(14)

In the Bayesian analysis, the specification of proper loss function plays an important role. We
talk most frequently used the square error loss function (SELF) to obtain the estimators of the
parameters, which defined as

L(φ, φ̂) ∝
(
φ− φ̂

)2 , (15)

where φ̂ is estimate of φ. Bayes estimators under SELF is the posterior mean and evaluated by

φ̂SELF = [E(φ|x)] , (16)

provided the expectation exist and finite. Thus, the Bayes estimators based on equation no. (4.5)
under SELF are given by

α̂bs = Eα,β|x(α|β, x) = η−1
∫

α

∫
β

α
3n
2 +aβn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
n

∏
i=1

x3β−1
i

)
dα dβ, (17)

and

β̂bs = Eα,β|x(β|α, x) = η−1
∫

α

∫
β

α
3n
2 +a−1βn+ce−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
n

∏
i=1

x3β−1
i

)
dα dβ, (18)

where η−1 =
∫

α

∫
β α

3n
2 +a−1βn+c−1e−α

(
b+∑n

i=1 x2β
i

)
e−dβ

(
∏n

i=1 x3β−1
i

)
dα dβ.

From equations (4.8) and (4.9), it is easy to observe that the posterior expectations are appearing
in the form of the ratio of two integrals. Thus, the analytical solution of these expectations are
not presumable. Therefore, any numerical approximation techniques may be implemented to
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secure the solutions. Here, we used one of the most popular and quite effective approximation
technique suggested by [11]. The detailed description is as follows.

(α̂, β̂)Bayes =

∫
α

∫
β u(α, β)eρ(α,β)+l dαdβ∫
α

∫
β eρ(α,β)+l dαdβ

(19)

= (α̂, β̂)ml +
1
2
[(uαα + 2uαρα)ταα + (uαβ + 2uαρβ)ταβ + (uβα + 2uβρα)τβα

+ (uββ + 2uβρβ)τββ] +
α

β
[(uαταα + uβταβ)(l111ταα + 2l21ταβ + l12τββ)

+ (uατβα + uβτββ)(l21ταα + 2l12τβα + l222τββ)], (20)

where u(α, β) = (α, β), ρ(α, β) = ln g(α, β) and l = ln L(α, β|x),

lab =
∂3l

∂αa∂βb , a, b = 0, 1, 2, 3 a + b = 3, ρα =
∂ρ

∂α
, ρβ =

∂ρ

∂β

uα =
∂u
∂α

, uβ =
∂u
∂β

, uαα =
∂2u
∂α2 , uββ =

∂2u
∂β2 , uαβ =

∂2u
∂α∂β

,

ταα =
1

l20
, ταβ =

1
l11

= τβα, τββ =
1

l02
.

Since u(α, β) is the function of α, β,

• If u(α, β) = α in (4.11), then

uα = 1, uβ = 0, uαα = uββ = 0, uαβ = uβα = 0.

• If u(α, β) = β in (4.11), then

uβ = 1, uα = 0, uαα = uββ = 0, uαβ = uβα = 0,

and the rest derivatives based on likelihood function are obtained as

l30 =
3n
α3 , l11 = −2

n

∑
i=1

x2β
i ln xi, l03 =

2n
β3 − 8α

n

∑
i=1

x2β
i (ln xi)

3

l12 = −4
n

∑
i=1

x2β
i (ln xi)

2 = l21.

Using these derivatives the Bayes estimators of (α, β) are obtained by expressions

α̂bl =α̂ml +
1
2
[(2uαρα)ταα + (2uαρβ)ταβ] +

1
2
[(uαταα)(l30ταα + 2l21ταβ + l12τββ)

+ (uατβα)(l21ταα + 2l12τβα + l03τββ)],
(21)

β̂bl = β̂ml +
1
2
[(2uβρα)τβα + (2uβρβ)τββ] +

1
2
[(uβταβ)(l30ταα + 2l21ταβ + l12τββ)

+ (uβτββ)(l21ταα + 2l12τβα + l03τββ)].
(22)

4.3. Simulation study

In this section, a Monte Carlo simulation study has been performed to assess the performance of
the obtained estimators in terms of their mean square errors (MSEs). The MLEs of the parameters
are evaluated by using nlm() function, and also the MLEs of reliability characteristics are obtained
by using invariance properties. The Bayes estimates of the parameters are evaluated by Lindley’s
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approximation technique. The hyper-parameters values are chosen in such a way that the prior
mean is equal to the true value, and prior variance is taken as very small, say 0.5. All the
computations are done by R3.4.1 software. At first, we generated 5000 random samples from
the PMaD (α, β) using the Newton-Raphson algorithm for different variation of sample sizes
as n = 10 (small), n = 20, 30 (moderate), n = 50 (large) for fixed (α = 0.75, β = 0.75) and
secondly for different variation of (α, β) when sample size is fixed (n = 20), respectively. Average
estimates and mean square error (MSE) of the parameters are calculated for the above mentioned
choices, and the corresponding results are reported in Table 2. The asymptotic confidence interval
(ACI) and asymptotic confidence length (ACL) are also obtained and presented in Table 3. From
this simulation study, it has been observed that the precision of MLEs and Bayes estimator are
increasing when the sample size is increasing while average ACL is decreasing. The Bayes
estimates under informative prior is more precise as compared to the MLEs especially for small
sample sizes while for large sample the precision of the estimators is almost same for all the
considered parametric choices.

Table 2: Average estimates and mean square errors (in each second row) of the parameters and reliability characteristics
based on simulated data.

n α, β αml βml M(t)ml R(t)ml H(t)ml αbl βbl

10

0.75,0.75

0.5070 1.1598 1.5119 0.9691 0.1663 0.5063 1.1028
0.0631 0.2588 0.0164 0.0049 0.0947 0.0631 0.2027

20
0.6560 0.8848 1.4922 0.9343 0.2965 0.6521 0.8647
0.0098 0.0326 0.0093 0.0014 0.0703 0.0105 0.0263

30
0.7096 0.8064 1.4883 0.9163 0.3504 0.7058 0.7951
0.0022 0.0103 0.0071 0.0004 0.0010 0.0025 0.0087

50
0.7542 0.7453 1.4869 0.8988 0.3968 0.7514 0.7397
0.0003 0.0031 0.0046 0.0001 0.0003 0.0003 0.0031

for fixed n and different α, β

20

0.5,0.75
0.6603 0.6832 1.7380 0.9044 0.3400 0.6574 0.6716
0.0261 0.0125 0.0585 0.0017 0.0099 0.0252 0.0117

0.5, 1.5
0.7290 0.3033 4.6222 0.7871 0.3556 0.7258 0.3229
0.0528 1.4330 11.9171 0.0402 0.1139 0.0513 1.3866

1.5, 0.5
0.5090 2.9297 1.1531 0.9983 0.0207 0.5517 2.8634
0.9907 6.6465 0.0242 0.1274 26.0695 0.9087 6.3006

2.5,2.5
1.0448 0.5958 1.4084 0.7953 0.6393 1.2825 0.6727
2.1402 3.6573 0.3860 0.0373 0.3553 1.5058 3.3715

Table 3: Interval estimates and asymptotic confidence length (ACL) of the parameters.

n α, β αL αU ACLα βL βU AClβ

10 0.75,0.75 0.0874 0.9266 0.8393 0.5711 1.7485 1.1775
20 0.75,0.75 0.3209 0.9911 0.6703 0.5525 1.2171 0.6646
30 0.75,0.75 0.4263 0.9928 0.5665 0.5555 1.0574 0.5019
50 0.75,0.75 0.5290 0.9794 0.4505 0.5631 0.9275 0.3644

for fixed n and different α, β

20

0.5, 0.75 0.3255 0.9951 0.6696 0.4142 0.9523 0.5381
0.5, 1.5 0.3794 1.0785 0.6991 0.4819 1.7425 1.2429
1.5, 0.5 0.4206 1.7812 0.76058 0.2260 1.8334 1.3807
2.5, 2.5 0.5804 2.9509 0.9788 0.54133 2.7783 1.1365
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Figure 2: Empirical cumulative distribution function and QQ plot for the data set-I.

5. Practical data modeling

This section demonstrates the practical applicability of the proposed model in real-life scenario,
especially for the survival/reliability data taken from different sources. The proposed distri-
bution is compared with Maxwell distribution (MaD) and its different generalizations, such as,
length biased Maxwell distribution (LBMaD), see [9], area biased Maxwell distribution (ABMaD),
see [9], extended Maxwell distribution (EMaD), see [8] and generalized Maxwell distribution
(GMaD), see [2]. For these models the estimates of the parameter(s) are obtained by method of
maximum likelihood and the compatibility of PMaD has been discussed using model selection
tools (which depend on the MLE) such as log-likelihood (-log L), Akaike information criterion
(AIC), corrected Akaike information criterion (AICC), Bayesian information criterion (BIC) and
Kolmogorov Smirnov (K-S) test. In general, the smaller values of these statistics indicate the
better fit to the data.

The data sets description is as follows.
Data Set-I (Bladder cancer data): This data set represents the remission times (in months) of

a 128 bladder cancer patients, and it was initially used by [12]. The same data set is used to show
the superiority of extended Maxwell distribution by [8].

Data Set-II (Item failure data): This data set is taken from [13]. It shows 50 items put into
use at initial time t = 0 and failure items recorded in weeks.

Data Set-III (Airborne communication transceiver): The data set was initially considered by
[14]. It represent the 46 repair times (in hours) for an airborne communication transceiver.

Data Set-IV (Flood data). The data are the exceedances of flood peaks (in m3/s) of the
Wheaton River near Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for
the years 1958-1984, rounded to one decimal place. This data set was analyzed by [16].

Summary of the considered data sets is given in Table 5 and it can be seen that skewness is
positive for all data sets which indicates that they have positive skewness which appropriately
suited to the proposed model. This table also shows platykurtic, mesokurtic and leptokurtic
nature of the data, which proves again the suitability of the proposed model to the data.
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Table 4: Goodness of fit values for different model.

Bladder cancer data N=128
Model α̂ β̂ -logL AIC AICC BIC K-S
PMaD 0.7978 0.1637 366.3820 736.7639 732.8599 742.4680 0.3675
MaD 0.0076 – 1014.4440 2030.8870 2028.9190 2033.7400 0.4144

LBMaD 98.6386 – 669.3668 1340.7340 1338.7650 1343.5860 0.4906
ABMaD 78.9109 – 767.8122 1537.6240 1535.6560 1540.4770 0.5608
ExMaD 0.8447 1.4431 412.1232 828.2464 824.3424 833.9504 0.8265
GMaD 0.7484 527.2314 426.6019 857.2037 853.2997 862.9078 0.7086

Item failure data N=50
Model α̂ β̂ -logL AIC AICC BIC K-S
PMaD 0.8339 0.1820 135.8204 275.6407 271.8961 279.4648 0.2625
MaD 0.0104 – 367.8528 737.7056 735.7890 739.6177 0.4268

LBMaD 72.1146 – 315.1624 632.3248 630.4081 634.2368 0.5112
ABMaD 57.6917 – 374.1247 750.2494 748.3328 752.1615 0.5825
ExMaD 0.6186 1.0139 151.2998 306.5996 302.8550 310.4237 0.7327
GMaD 0.5400 534.1569 151.2643 306.5287 302.7840 310.3527 0.3920

Airborne communication transceiver N=46
Model α̂ β̂ - logL AIC AICC BIC K-S
PMaD 0.8735 0.2709 101.9125 207.8249 204.1040 211.4822 0.2136
MaD 0.0406 – 245.1383 492.2766 490.3675 494.1052 0.5027

LBMaD 18.4603 – 237.4945 476.9890 475.0799 478.8176 0.5771
ABMaD 14.7683 – 284.7017 571.4034 569.4943 573.2320 0.6324
ExMaD 0.7290 0.8672 103.3052 210.6104 206.8895 214.2677 0.2989
GMaD 0.6015 122.7666 110.8521 225.7042 221.9833 229.3615 0.4392

River data N=72
Model α̂ β̂ - logL AIC AICC BIC K-S
PMaD 0.805185 0.1504145 212.8942 429.7884 425.9623 434.3418 0.2760
MaD 0.005032 – 610.9235 1223.847 1221.904 1226.124 0.3821

LBMaD 149.0315 – 426.3076 854.6153 852.6724 856.8919 0.4113
ABMaD 119.2252 – 493.3271 988.6543 986.7114 990.9309 0.4529
ExMaD 0.697471 1.306933 251.9244 507.8487 504.0226 512.4021 0.7487
GMaD 0.648149 919.7356 251.2767 506.5534 502.7273 511.1068 0.4998

Table 5: Summary of the data sets.

Data Min Q1 Q2 Mean Q3 Max Kurtosis Skewness
I 0.080 3.348 6.395 9.366 11.838 79.050 18.483 3.287
II 0.013 1.390 5.320 7.821 10.043 48.105 9.408 2.306
III 0.200 0.800 1.750 3.607 4.375 24.500 11.803 2.888
IV 0.100 2.125 9.500 12.204 20.125 64.000 5.890 1.473

Table 6: ML and Bayes estimates of the four data sets.

Data αml βml αbl βbl
I 0.7978 0.1637 0.7962 0.1639
II 0.8339 0.1820 0.8292 0.1821
III 0.8735 0.2709 0.8675 0.2703
IV 0.8052 0.1504 0.8023 0.1506
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Table 7: Interval estimates based on the four data sets.

Data αL αU ACLα βL βU ACLβ

I 0.6545 0.9411 0.2866 0.1373 0.1902 0.0529
II 0.5962 1.0717 0.4754 0.1376 0.2263 0.0888
III 0.6202 1.1269 0.5067 0.2081 0.3337 0.1256
IV 0.6126 0.9978 0.3852 0.1186 0.1822 0.0636
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Figure 3: Empirical cumulative distribution function and QQ plot for the data set-II.
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Figure 4: Empirical cumulative distribution function and QQ plot for the data set-III.
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Figure 5: Empirical cumulative distribution function and QQ plot for the data set-IV.

From Table 4, it is clear that the proposed model (PMaD) has least value of the model selection
tools, which reflects the merit of PMaD for modeling such four practical data sets than the the
existing versions of the Maxwell distributions. The empirical cumulative distribution function
(ECDF) plots and corresponding QQ plots for all the considered data set are plotted for PMaD,
see Figures 2-5. From ECDF and QQ plots, it is clear that the considered data sets are adequately
fitted to the proposed model. The point (ML and Bayes) estimates of the parameters for each data
set are reported in Table 6. The Bayes estimates are calculated under non-informative prior, and it
is observed that the obtained estimates (ML and Bayes) are almost same. The interval estimate of
the parameter and corresponding asymptotic confidence length are also evaluated and presented
in Table 7. This table shows that as the size of the data increases, the length of the interval is
decreases, because it decreases the standard error, which support to our simulation part.

6. Conclusion

This article proposed the power Maxwell distribution (PMaD) as a flexible extension of the
Maxwell distribution and studied some of its main properties for data modeling. We also study
the skewness and kurtosis of the PMaD and found that it is capable of modeling the positively
skewed as well as symmetric data. The unknown parameters of the PMaD are estimated by the
maximum likelihood estimation (MLE) and Bayes estimation methods. The MLEs of the reliability
function and hazard function are also obtained by using the invariance property. The 95%
asymptotic confidence interval for the parameters are constructed using Fisher information matrix.
The MLEs and Bayes estimators are compared through the Monte Carlo simulation and observed
that Bayes estimators are more precise under informative prior. Finally, medical/reliability data
have been used to show practical utility of the PMaD, and it is observed that it provides the better
fit comparing to other versions of the Maxwell distributions. Thus, it can be recommended as an
alternative model for the non-monotone failure rate models.
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