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Abstract

A conformal curvature tensor and con-circular curvature tensor in an SP-Kenmotsu manifold are
derived in this article which admits a quarter-symmetric metric connection. Conclusively, we verified
our results by considering a case of 3-D SP-Kenmotsu manifold.

Keywords: #-Einstein manifold,SP-Kenmotsu manifold, con-circular curvature tensor, Quarter-
symmetric metric connection, Ricci tensor, conformal curvature tensor.
2010 Mathematics Subject Classification: 53C07, 53C25

I. INTRODUCTION

A M, (Riemannian manifold) is symmetrical locally if V.R = 0 and symmetric if R(X,Y).R =0
where R(X,Y)Z = VxVyZ - VyVxZ — Vx,y)Z appears as a derivation. If R(X,Y).R =0, then
M, is turns to be the pseudo symmetric space that is defined with the criteria R.R = L(g, R).
A manifold M, is conformally symmetric if V.C = 0 and if R.C = 0, it is said to be Weyl semi
symmetric which are characterised by the condition R.C = LcQ(g, C).

Schouten & Friedman proposed the concept of semi-symmetric linear connection on a differ-
entiable manifold. Some of the semi-symmetric curvature criteria in Riemannian manifolds are
given by Yano [12].

Semi symmetric metric connection plays a very significant part in the geometry of Riemannian
manifolds. For instance, a semi-symmetric metric is the displacement of the earth’s surface after
a fixed point. A quarter-symmetric connection is a linear connection V on an n-dimensional
Riemannian manifold (M,,g) if T is T(X,Y) = 5(Y)¢pX — n(X)¢Y.

Sato [8] proposed concepts of almost para contact Riemannian manifold. In 1977, Matsumoto
and Adati [1] characterized special para-Sasakian as well as para-Sasakian manifolds as a par-
ticular type of almost contact Riemannian manifolds. Before Sato, Kenmotsu [6] characterized
a type of this manifold. In 1995, Sinha and Sai Prasad [9] characterized a type of almost para
contact metric manifolds mainly para-Kenmotsu and special para-Kenmotsu manifolds. For the
literature, on Para-Kenmotsu manifolds one can refer to Balga [2], Srivastava and Srivastava [10],
Olszak [7] .

On the other hand, various geometers of Riemannian manifolds and specifically, SP-Sasakian
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manifolds were widely explored for the quarter-symmetric metric connections [3, 4, 5]. Inspired
by these studies, in this work, we explore a class of special para-Kenmotsu manifolds that allow-
ing the quarter-symmetric metric connection.

The current study is arranged as follows: Section 2 has certain prerequisites. In relation to
the quarter symmetric metric connection in an SP-Kenmotsu manifold, we derive the equations
for the Ricci tensor S & Riemannian curvature tensor R in Section 3. The equations in relation to
quarter symmetric metric connection are also derived in an SP-Kenmotsu manifold M, for con-
circular curvature tensor Z in Section 4. It is illustrated that the manifold M, is #-Einstein given
the concircular curvature tensor Z meets either of these conditions R(&, U).Z = 0, Z(¢&,U).R = 0,
Z(&U).Z =0, Z(X,Y).S = 0. Section 5 is intended to define and analyse the curvature prop-
erties in the quarter-symmetric metric connection of the Weyl-conformal curvature tensor C, of
form (0,4), of SP-Kenmotsu manifold M,,. Finally, an illustration of a 3d SP-Kenmotsu manifold
is considered in Section 6.

II. PRELIMINARIES

Suppose M, be an n-dimensional differentiable manifold provided with structure tensors (®, &, 1)

such that
(a) n(¢) =1

(b) @*(X) = X —(X)¢; X = OX. @

M, is called an almost para contact manifold.

Suppose that g be a Riemannian metric such that, for all vector fields X and Y on M,

(a) g(X,¢) = n(X)
(b)) @ =0, y(PX) =0, rank P =n—1 (2
(€) g(PX, ®Y) = g(X,Y) = n(X)y(Y).

Then it is stated that the manifold [8] M, accepts an almost para contact structure of Riemannian

(@,8,1,8)-

Furthermore, if (®, ¢, 77, g) fulfils the equations

; 3)
¢) Vx§ = ®°X = X —5(X);
d) (Vx®)Y = —g(X, ®Y)¢ — n(Y)PX;
then M, is termed a para-Kenmotsu manifold or simply a P-Kenmotsu manifold [9].
A P-Kenmotsu manifold M, permitting a 1-form # fulfilling
(@) (Vxm)Y =g(X,Y) —n(X)n(Y); @

(b) (Vxn)Y = @(X,Y);

here ¢ signifies @ associate, is termed a special para-Kenmotsu manifold or shortly SP-Kenmotsu
manifold [9].

Suppose (M;, g) be an n-dimensional, n > 3, differentiable manifold of class C* and let V
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be its connection Levi-Civita. Then curvature tensor R of class (1, 3) of the the Riemannian
Christoffel is provided by:

R(X,Y)Z =VxVyZ - VyVxZ -V xyZ. (5)
The (0,2)-tensor S? and the Ricci operator S are described as follows
2(SX,Y) =5(X,Y), (6)

and S?(X,Y) = S(SX,Y). @)

It is known [9] that the following relationship exist in the P-Kenmotsu manifold:

(@) (X, ¢) = —(n = 1)n(X),

(b) 8[R(X,Y)Z,&] = n[R(X, Y, Z)] = &(X, Z)y(Y) = g(Y, Z)n(X), ®)
(€) R(g, X)Y = g(X,Y)¢ —n(Y)X,

(d) R(X,Y)E =n(Y)X —n(X)Y; when X is orthogonal to ¢.

Almost para-contact Riemannian manifold M, is termed to be #-Einstein and form of its Ricci
tensor
S(X,Y) = ag(X,Y)+bn(X)n(Y) ©)

Fields X and Y for any vector; a and b are a few scalars on M,. In specific, if b = 0 thus M, is
considered to be an Einstein manifold.

III. CURVATURE TENSOR

A linear connection V in a Riemannian manifold M, is called a quarter-symmetric metric con-
nection [4] if their torsion tensor T(X,Y) meets

T(X,Y) = 5(Y) ®X — 5(X) DY, (10)

and N
(Vxg)(Y,Z2) =0; (11)

where @ iindicates a tensor field of the form (1, 1) and 7 is a 1-form.
A quarter-symmetric metric connection V with torsion tensor (10) is given by

VxY = VxY +7(Y) ®X — ¢(X,Y)& (12)
here, V indicates Riemannian connection.

Suppose manifold M, to be an SP-Kenmotsu manifold and ®(X) as ®X = X. Therefore the
(10) and (11) may be represented as:

T(X,Y) =n(V)X —5(X)Y (13)

(Vxg)(Y,Z) = 0. (14)

Let us choose the linear and Riemannian connection as V and V, respectively
VxY = VxY + U(X,Y),U is a tensor of type (1,2) (15)
We have [12], for V to be a quarter symmetric metric connection in M,

U(X,Y)=1/2[T(X,Y) + T'(X,Y) + T'(Y, X)), (16)
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where
S(T'(X,Y),Z) = g(T(Z,X),Y)]. (17)

Using (13) and (17), we get
T'(X,Y) = §(X)Y - (X, V)& (1s)

here 'F(X,Y) = g(X,Y),  signifies a 1-form and ¢ indicates the associated vector field.
From (13) and (16), in (18), we have
U(X,Y) = (V)X - 'F(X,V)E, (19)

and then (15) becomes N
VxY = VxY+n(Y)X — "F(X,Y)g (20)

which indicates V in an SP-Kenmotsu manifold.

Suppose R and R be the curvature tensors of the connections V and V correspondingly, we
get B L o _

R(X,Y)Z =VxVyZ-VyVxZ -V X,Y|Z (21)
Using (20) and (5) in (21), we have

R(X,Y)Z=R(X,Y)Z+g(Y,Z)X — g(X,Z)Y. (22)

If we describe R(X,Y,Z,U) as g(R(X,Y)Z,U) and R(X,Y,Z,U) as g(R(X,Y)Z,U); then (22)
becomes

R(X,Y,Z,U) = R(X,Y,Z,U) +g(Y, Z)g(X, U) — g(X, Z)g(Y, U). (23)

The above expression (23) denotes the relation between R(X,Y)Z of M, w.r.t. V and R(X,Y)Z
w..rt. V.

Put X = U = ¢; in (23), where ¢; be an orthonormal basis of the tangent space at any point
of the manifold and taking summation over i (1 < i <n), we get

S(Y,2) =S(Y,Z) +n g(Y,Z) — n(Y)y(Z); (24)

here S and § signifies the Ricci tensors of V and V.
From (24), by using Y = Z = ¢;, we obtain

F=r4+n®—1; (25)

here 7 and r indicates the scalar curvatures of V and V correspondingly.

Theorem 3.1: Suppose that S be the Ricci tensor & R be the curvature tensor in an SP-Kenmotsu
manifold M, w.r.t. V, then

(@) R(X,Y)Z+R(Y,Z)X +R(Z,X)Y =0,

(b) R(X,Y,Z,U)+R(X,Y,U,Z) =0,

(©) R(X,Y,Z,U)— R(Z,U,X,Y) =0,
(d) R(X,Y,Z,¢) =2R(X,Y,Z,),

(e) S(X, &) =25(X,¢).
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Proof: Using first Bianchi identity and eq.(22) w.r.t. the Riemannian connection, we obtain (a).
From eq. (23), we obtain (b) & (c). By putting U = ¢ in (23) and by using (8) we have (d).
By using Y = Z = ¢; in equation (d) as well as summation with i, we obtain (e).

Theorem 3.2: The Ricci tensor S in an SP-Kenmotsu manifold M, w.rt. the connection for
the quarter-symmetric metric is symmetrical.

Proof: The theorem-proof is based on the eq. provided in (24).

IV. CONCIRCULAR CURVATURE TENSOR

The n-dimensional Riemannian manifold M, is provided by the concircular curvature tensor
Z(X,Y) [11,13]:

r

Z(X,Y)U = R(X,Y)U — T

[g(Y, U)X —g(X, U)Y] (26)
forall X,Y, U e TM.
The concircular curvature tensor w.r.t. V in an SP-Kenmotsu manifold is Z.

Therefore, using the equations (22) and (26), we get

- 1

Z(X,)uU=2Z(X,Y)U - ;[g(Y, U)X —g(x,u)yj, 27)
which denotes the relation between the concircular curvature tensors w.r.t. V and V.

Theorem 4.1: If Z wrt. V in an SP-Kenmotsu manifold satisfies R(&,U).Z = 0, the mani-
fold is #-Einstein.

Proof: Suppose R(&, U).Z(X,Y)& = 0, in an SP-Kenmotsu manifold.

Then
(R(&,U).Z(X,Y)E) — Z(R(&, U)X, Y)E — Z(X,R(&,U)Y)E — Z(X,Y).R(Z,U)g =0.  (28)

Also, from (8) and (22), we get

R(X,Y)& =2[p(V)X — 4(X)Y] and (29)

R(g,X)U = 2[g(X, U)E — n(U)X]. (30)
Then, by using (28), (29) and (30), we get

Z(X,Y)U = 0. (31)
Now, using the equations (26) and (27), the equation (31) reduces to

r+n—1
n(n—1)

We obtain with the above equation w.r.t. X,

R(X,Y,U) = [g(Y, U)X — ¢(X, U)Y]. (32)

S(Y,U) = ;(T_‘l)l[ng(n U)X — g (¥)y(U)], (33)
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which on further contracting, we get
r=1-rn2 (34)

Using (34), the expression (33) becomes
S(Y,U) = n(Y)y(U) —ng(Y, U); (35)
which proves y-Einstein manifold.

Theorem 4.2: If Z with respect to V in an SP-Kenmotsu manifold satisfies Z (¢, U).ﬁ = 0, the
manifold is an #-Einstein.

Proof: Suppose that Z (¢ U).R(X,Y)& = 0, in an SP-Kenmotsu manifold.

Then

(Z(&,U).R(X,Y)2) - R(Z(&, U)X, Y)E — R(X, Z(&,U)Y)E — R(X, Y) Z(EU)E =0 (36)
Also, from (8), (26) and (27), we have

r

2wy = oo+ 5 — 1] [sw vz -yl @7)

and
’

~ 1
Z(X,Y)E = [m +- - 1] [U(X)Y - q(y)x]. (38)
By substituting the values from (29), (30), (37) and (38) in the expression (36), we obtain
R(X, VU = g(U,Y)X — g(U, X)Y +(U)[1 — n(X)]Y. (39)
Using (22), the above eq. becomes
RX,V)U = n(U)[1 =5 (X)]Y; (40)
and it proves.

Theorem 4.3: If the Z w.rt. V in an SP-Kenmotsu manifold meets Z(¢,U).Z = 0, the mani-
fold is y#-Einstein.

Proof: The theorem-proof is trivial by the use of the the fact that Z(&,U).Z indicates Z (&, U)
was acting on Z as a derivation.

Theorem 4.4: If Z (concircular curvature tensor) with respect to V(quarter symmetric metric
connection) in an SP-Kenmotsu manifold fulfills Z(X, Y).S = 0, the manifold signifies #-Einstein.

Proof: Let Z(X,Y).S(U,V) = 0 in an SP-Kenmotsu manifold.

Then it means N B
S(Z(X,Y)U,V)+S(U,Z(X,Y)V) = 0. (41)
By choosing X = ¢ in (41) and on using the equations (37) and (24), we obtain

r

b@fﬂ+f—Q{ (U)S(Y, V) = nyg(U)g(Y, V) +25(U)5 (V)5 (Y)

(42)
— 1 (V)S(U,Y) = mp(V)g(U, Y) | =
Again by using U = ¢ in the eq. (42), we get
S(Y, V) =n(Y)n(V) —ng(Y,V); (43)

which provides the required result.
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V. CONFORMAL CURVATURE TENSOR

The Weyl conformal curvature tensor C of the type (0,4) of a manifold M, w.r.t. a Riemannian
connection provided by [12, 13]:

C(X,Y,Z,U) = R(X,Y,Z,U) (Y, Z)g(X, U) — S(X, Z)g(Y, U)

n-2
+2(Y,2)S(X,U) — g(X,Z2)S(Y, U)] (44)

.
T D 82X ) —g(X, 2)g(v, W)}

Analogous to this, we define C i.e.Weyl conformal curvature tensor of the type (0,4), of an
SP-Kenmotsu manifold w.r.t. the quarter-symmetric metric connection as:

G(X,Y,7,U) =R(X,Y, Z,U) — %[g(Y,Z)g(X, u) — §(x, 2)g(Y, U)

+g(Y,2)S(X,U) — g(X,Z)S(Y,U)] (45)

+ m[g(Y,Z)g(X, u) —g(X,2)g(y, U)].

Then, using the equations (23), (24), (25), (44) and (45), we get
C(X,Y,Z,U) =C(X,Y,ZU), (46)
which implies the following statement:

Theorem 5.1: The conformal curvature tensors of V and V are equal in an SP-Kenmotsu mani-
fold.

Suppose that R = 0. Then S = 0 and 7 = 0.
From (45) we get that C = 0 and hence using (46), we get C = 0.
Therefore, we provide the following theorem.

Theorem 5.2: The manifold is conformally flat in an SP-Kenmotsu manifold if the conformal
curvature tensor C of V vanishes.

Let S = 0. Then 7 = 0. Hence from (24) and (25), we get

S(Y,2) =n(V)n(2) —ng(Y,Z) (47)
and
r=1-n (48)
Then by using (23), (44), (47) and (48), we obtain
R(X,Y,Z,U) =C(X,Y,Z,U). (49)

From (49), we state that
Theorem 5.3: Conformal curvature tensor C of the manifold is identical in an SP-Kenmotsu
manifold if S (Ricci tensor) of V i.e quarter-symmetric metric connection vanishes, then R i.e.
curvature tensor of V .

Using theorem (5.2) and (5.3), we state that

Theorem 5.4: If 3 of V in an SP-Kenmotsu manifold disappears, then the manifold is con-
formally flat if R of V vanishes.
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VI. ExaMmPLE OF A 3D SP-KENMOTSU MANIFOLD ADMITTING THE
QUARTER-SYMMETRIC METRIC CONNECTION

Example 6.1: Suppose that 3d manifold M = {(x,y,u) € R*}, where (x, y, u) indicates "standard
coordinates" in R3. Considering e, ex & e3 be fields of vector in M as

d L9 )

g, ey —=¢€ @, ez — @ (50)

ep =e

for each point of M are linearly independent vectors and constitute a basis of x(M).

Riemannian metric g(X,Y) is

1, ifi=j

g(eie) =
0, if i#j;ij=1234,5.
Lety(Z) = g(Z,e3), forany Z € x(M)
Let 7 be a 1-form & (1, 1)-tensor field on M expressed by & defined as
D?(e)) = e, D*(ex) = ey, D*(e3) = 0.

The g(X,Y) and linearity of ® yields that

n(es) =1, ®*(X) = X — n(X)es ;and
8(PX, @Y) = g(X,Y) = n(X)y(Y)

for all vector fields X, Y € x(M).
Thus for ez = ¢, (P, ¢, 1, g) describes an almost para-contact structure in M.

Let V be a Riemannian connection in regard to the Riemannian metric g.
[e1,e2] =0, [e1,e3] = €1, [e2, €3] = es.
The formula of Koszul’s is

29(VxY,Z)=Xg(Y,Z2)+Yg(Z,X)— Zg(X,Y)

51
(X, (Y, 2)) — g(¥, X, Z)) + §(2,[X, Y)). Gh
By taking e3 = ¢ in (51), one can get

velel = _831 Velez = O/ veleS = el;
VEZel = O/ V32€2 = —e3, v8263 = €,
Vese1 =0,Veer =0, Veez = 0.

Therefore manifold under consideration satisfies Vx& = ®?X = X — (X)&, #(¢) = 1 and the
expression (3)d.

The above expressions satisfy all the properties of SP-Kenmotsu manifold with (®,¢,7,¢) . Thus
M(®,¢,1,g) is a 3-dimensional manifold.

Further from (20), we get
661 €1 = _263/ 6E] € = O/ 661 €3 = 261;
63261 = 0, 66262 = —263, 63263 = 262}

63381 = 0, 63362 = 0, 63363 = 0,‘
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Therefore T(X,Y) of V can be expressed as:
T(ej,e;) =0, fori=1,2,3; and
T(e1,e2) =0,T(e1,e3) =e1, T (e, e3) = ea.

Also, we get N _ N
(Ve1g) (821 63) - 0/ (vezg)(€3/ el) - 0/ (v€3g) (ell 62) - O/

which proves that the manifold M under consideration admits V.
Thus it proves that M under consideration is an SP-Kenmotsu manifold and allows V.
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