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Abstract 
 

The aim of this paper is to investigate the performance of a single server batch queueing model 
with second optional service under transient and steady state domain. It is assumed that the 
customers arrive in groups as per compound Poisson process and the server gives two types of 
services, First Essential Service (FES), which is mandatory for all arriving customers and Second 
Optional Service (SOS), which is given to some customers those who request it. Both FES and 
SOS are provided in batches of maximum 𝑏 capacity. The transient and steady state probabilities 
of the model are obtained by using probability generating function and Laplace transform 
techniques. Finally, some numerical examples are presented to study the effect of the parameters 
on the system performance measures. 

 
Keywords: Batch Queueing Model, First Essential Service, Second Optional Service, 

Transient State, Steady State 
 
 

I. Introduction 
 

In real-life situations, one encounter numerous examples of queueing models wherein a 
server gives FES to all arriving customers, and a few of them may only demand the auxiliary 
service after the completion of the essential service. For instance, all arriving ships at a harbor may 
need unloading service on arrival but only a few of them may demand re-loading service 
immediately after the unloading. The concept of SOS was first introduced by [8] where numerous 
practical applications of SOS were given. [8] presented an 𝑀/𝐺/1 queue with SOS, whereby the 
service time distribution of the FES is general and the SOS is exponentially distributed. Later on, 
[9] generalized the concept of [8] in which the service time for both FES and SOS are independent 
having a general distribution. [16] studied the SOS in correlated reneging with working vacations. 
They use matric geometric method to obtain the steady state probabilities distribution of the 
queueing system size. 

Queueing models with bulk input have broad applications in manufacturing, computer 
networks, communication systems, etc., where the arrivals at a service point (e.g., a switch) may 
occur in bunches of distinctive sizes. The notation of batch arrival appeared in the queueing theory 
in the work of [10] who considered the single server queue with fixed size batch Poisson arrivals in 
transient domain. Similar work of batch arrival has been carried out in [19]. They presented a bulk 
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input queueing model with single working vacation and they obtained the stationary queue length 
distribution using the matrix analysis method and probability generating function. [14] and [15] 
analyzed a bulk arrival queueing model with variant working vacations. The probability 
generating functions are derived in the stationary state and achieved the expressions of the model 
when the server is operating in various states. Related studies on the analysis of queueing model of 
bulk arrival are found in [3], [7], [12], [17], etc., 

Batch service queues have a motivation on numerous applications such as in group testing of 
blood samples for detecting corona/HIV viruses, in mobile crowd-sourcing app for smart cities, 
eliminate defective items in manufacturing system, etc. The batch service queueing models has 
been analyzed by many authors. [11] investigated the batch service queueing model with servers’ 
variant vacations and obtained the steady state solutions using shifting operator and recursive 
technique. [6] discussed a single server queue with additional optional service in batches and 
server vacation. They have applied probability generating function method to obtain the queue 
length in stationary state. The analysis of bulk service queueing system with two heterogeneous 
servers in a discrete time has been presented in [5] with the help of displacement operator method 
and obtained closed form expressions for the limiting probabilities at arbitrary epoch. 

In this model, we consider the transient state due to its importance especially in 
manufacturing system with regular beginning up periods and transportation frameworks with 
time fluctuating interest; for instance, airport terminal runway activities in major airports [4]. The 
analytical solutions of the transient behavior of queueing systems are very rare due to the 
complexity of getting analytical solutions. However, there are few works carried out in transient 
states such as [10], [2], [1], etc. 

At the moment, most of the studies including [3], [7], [12], [13], [18] and many other are 
devoted to a single server batch queueing model with SOS in steady state, whereby customers 
arrive in groups as per Poisson process and served with general service distribution for both FES 
and SOS. However, in this paper, we consider a batch queueing model by involving the concept of 
SOS and investigated in both transient and steady state domains. We computed the probabilities 
and expected queue lengths when the server is busy in FES or SOS using probability generating 
function with the help of Laplace transform techniques. The advantage of expressions in Laplace 
transform is that it can be easily used for numerically transforming into time domain. 

The remainder of this paper is structured as follows. In section 2, we present the model 
description and mathematical formulation. In section 3, we discuss the transient state equations 
and solving using probability generating function on the Laplace transforms equations. The steady 
state analysis is obtained by applying the Tauberian property in section 4. Measures of 
performance are discussed in section 5. Numerical analysis and discussions are presented in 
section 6 and in section 7, we conclude the paper. 

 
II. Model Description and Mathematical Formula 

 
We consider an 𝑀!/𝑀[#]/1 queueing model with FES and SOS. Customers arrive in batches with 
rate  𝜆 > 0 conforming to a compound Poisson process. Let 𝑋 be a batch size random variable and 
𝑋%, 𝑋&, . . ., are corresponding batch sizes of arriving customers which are independently and 
identically distributed (i.i.d.) random variables, with probability mass function 𝑃{𝑋' = 𝑘} = 𝐶( , 𝑘 =
1, 2, 3, … . The service time distribution of both FES and SOS are exponential with rate	µ% and µ&, 
respectively and the services are given in batches of size not more than 𝑏 such that if the server 
finds the customers less or equal to 𝑏 in the waiting queue, the server takes all of them in the batch 
for service, but if the server finds the customers more than 𝑏 waiting in the queue, then she or he 
takes a batch of size 𝑏 while others remain waiting in the queue. The FES is required by all arriving 
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customers and after completing FES, they may opt SOS with probability	𝑟 or may depart from the 
system with probability 1 − 𝑟. Figure	1 below shows the transition rate diagram of various 
transition states of the model. 

 
Figure 1: Transition rate diagram for 𝑛 = 6, 𝑏	 = 	3, 𝑘	 = 	2. 

 
I. Formulation of Mathematical Model 

 
Suppose 𝐿(𝑡) be the length of the queue at time	𝑡, and 𝐽(𝑡) is the server state with 

𝐽(𝑡) = B
1, 		𝑖𝑓	𝑡ℎ𝑒	𝑠𝑒𝑟𝑣𝑒𝑟	𝑖𝑠	𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔	𝐹𝐸𝑆
2, 	𝑖𝑓	𝑡ℎ𝑒	𝑠𝑒𝑟𝑣𝑒𝑟	𝑖𝑠	𝑝𝑟𝑜𝑣𝑖𝑑𝑖𝑛𝑔	𝑆𝑂𝑆. 

The stochastic process {(𝐿(𝑡), 𝐽(𝑡)); 	𝑡	 ≥ 	0}	is a two-dimensional Markov Chain with the state 
space: 

Ω = {(𝑛, 𝑖); 		𝑛 ≥ 0; 		𝑖 = 1, 2}. 
Further, let the transient probabilities are defined as 

𝑃),'(𝑡) = 𝑃𝑟{𝐿(𝑡) = 𝑛, 𝐽(𝑡) = 𝑖}; 	𝑛 ≥ 0; 	𝑖 = 1, 2. 
Here, 	𝑃),'(𝑡) is the transient probability that there are 𝑛 units in the queue at time 𝑡 and the server 
is providing FES and SOS service, and 𝑄(𝑡) is the probability when the queue is empty and the 
server is idle at time 𝑡. Using Markov theory, the differential-difference equations of the model are 
as follows: 

 
III. Transient Solution of the Model 

 
In this section, the transient system size probability of the expected queue length when the server 
is idle and busy are presented by using Laplace transform (L.T) and probability generating 
functions. Let us assume that time is figured from the moment the server has taken a batch for 

 𝑄+(𝑡) = −𝜆𝑄(𝑡) + (1 − 𝑟)µ%𝑃,,%(𝑡) + µ&𝑃,,&(𝑡), (1) 

 
𝑃+,,%(𝑡) = −(𝜆 + µ%)𝑃,,%(𝑡) + 𝜆𝑄(𝑡) + (1 − 𝑟)µ%W𝑃',%

#

'-%

(𝑡) + µ&W𝑃',&

#

'-%

(𝑡), (2) 

 
𝑃!",$(𝑡) = −(𝜆 + µ$)𝑃",$(𝑡) + 𝜆3𝑃"%&,$(𝑡)

"

'($

𝐶& + (1 − 𝑟)µ$𝑃")*,$(𝑡) + µ+𝑃")*,+(𝑡), 𝑛 ≥ 1, (3) 

 𝑃+,,&(𝑡) = −(𝜆 + µ&)𝑃,,&(𝑡) + 𝑟µ%𝑃,,%(𝑡), (4) 

 
𝑃+),&(𝑡) = −(𝜆 + µ&)𝑃),&(𝑡) + 𝜆W𝑃).(,&(𝑡)

)

'-%

𝐶( + 𝑟µ%𝑃),%(𝑡), 𝑛 ≥ 1. (5) 
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service, leaving none in the queue. i.e., 𝑃,,%(0) 	= 	1. Let 𝑄∗(𝑠), 𝑃),'∗ (s) denote the L.T of 𝑄(𝑡), 𝑃),'(𝑡),
𝑖	 = 	1, 2, respectively. Taking L.T of equations from equation (1) to (5), we get 
 
 (𝑠 + 𝜆)𝑄∗(𝑠) = (1 − 𝑟)µ%𝑃,,%∗ (s) + µ&𝑃,,&∗ (𝑠),  (6) 

 
(𝑠 + 𝜆 + µ%)𝑃,,%∗ (s) = 1 + 𝜆𝑄∗(𝑠) + (1 − 𝑟)µ%W𝑃',%∗ (s)	

#

'-%

+ µ&W𝑃',&∗ (s),
#

'-%

 (7) 

 
(𝑠 + 𝜆 + µ%)𝑃),%∗ (s) 	= 𝜆W𝑃).(,%∗ (𝑠)𝐶(

)

'-%

+ (1 − 𝑟)µ%𝑃)0#,%∗ (s) 	+ µ&𝑃)0#,&∗ (s)	,			𝑛 ≥ 1, (8) 

 (𝑠 + 𝜆 + µ&)𝑃,,&∗ (s) = 	𝑟µ%𝑃,,%∗ (𝑠),  (9) 

 
(𝑠 + 𝜆 + µ&)𝑃),&∗ (s) 	= 𝜆W𝑃).(,&∗ (𝑠)𝐶(

)

'-%

+ 𝑟µ%𝑃),%∗ (s)	,			𝑛 ≥ 1. (10) 

Let us define the probability generating functions as: 
 
 

𝑃%(𝑠, 𝑧) = W𝑃),%∗ (𝑠)𝑧)
1

)-,

, 𝑃&(𝑠, 𝑧) = W𝑃),&∗ (𝑠)𝑧)
1

)-,

	  

 
The probability generating function of arrival batch size 𝑋 is defined as: 
 
 

𝐶(𝑧) = W𝐶(𝑧(
)

(-%

	 ; 	 |𝑧| ≤ 1; 		𝑘 = 1,2,3… (11) 

 
Multiplying equations (7) and (8) by 𝑧)	 and taking summation from 𝑛	 = 	0 to 𝑛	 = 	∞ then, 
adding to (6) and after simplification, we have 
 
 

𝑃%(s, z) =
𝑧#(𝑠𝑄∗(𝑠) − 1) + (1 − 𝑧#)𝐴(𝑠, 𝑧) − µ&𝑃&(𝑠, 𝑧)

𝜆𝐶(𝑧)𝑧# − (𝑠 + 𝜆 + µ%)𝑧# + (1 − 𝑟)µ%
, (12) 

where 

𝐴(𝑠, 𝑧) = `(1 − 𝑟)µ%W𝑃),%∗ (𝑠)𝑧) + µ&W𝑃),&∗ (𝑠)𝑧)
#.%

)-,

#.%

)-,

a. 

Similarly, from equation (9)	and (10), we get 
 
 

𝑃&(s, z) =
−𝑟µ%𝑃%(𝑠, 𝑧)

𝜆𝐶(𝑧) − (𝑠 + 𝜆 + µ&)
. (13) 

 
Substituting equation (13) in (12), we obtain 
 
 

𝑃%(s, z) =
(𝜆𝐶(𝑧) − (𝑠 + 𝜆 + µ&))[𝑧#(𝑠𝑄∗(𝑠) − 1) + (1 − 𝑧#)𝐴(𝑠, 𝑧)]

(𝜆𝐶(𝑧))&𝑧# − 𝜆𝐶(𝑧)(2𝑠 + 2𝜆 + µ% + µ&)𝑧# + 𝐵
, (14) 

where 
𝐵 = (𝑠 + 𝜆 + µ%)(𝑠 + 𝜆 + µ&)𝑧# + 𝜆𝐶(𝑧)(1 − 𝑟)µ%𝑧 − (𝑠 + 𝜆 + µ&)(1 − 𝑟)µ% − 𝑟µ%µ&. 

 
We assume that arrival batch size 𝑋 follows a geometric distribution with parameter 𝑞 as given by. 
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 𝑃(𝑋 = 𝑘) = 𝐶( = (1 − 𝑞)(.%𝑞; 		0 ≤ 𝑞 ≤ 1; 			𝑘 = 1,2,3… (15) 

 
Using (11) and (15), we obtain 
 
 𝐶(z) =

𝑞𝑧
1 − 𝑧 + 𝑞𝑧. (16) 

 
Substitute (16) into (14), we obtain 
 
 

𝑃%(s, z) =
𝐵%(1 − 𝑧 + 𝑞𝑧)[𝑧#(𝑠𝑄∗(𝑠) − 1) + (1 − 𝑧#)𝐴(𝑠, 𝑧)]

(𝜆𝑞)&𝑧#0& − 𝜆𝑞(1 − 𝑧 + 𝑞𝑧)(2𝑠 + 2𝜆 + µ% + µ&)𝑧#0% + 𝐵&
, (17) 

 
where 

𝐵% = (𝜆𝑞𝑧 − (𝑠 + 𝜆 + µ&)(1 − 𝑧 + 𝑞𝑧), 
𝐵& = (1 − 𝑧 + 𝑞𝑧)&(𝑠 + 𝜆 + µ%)	(𝑠 + 𝜆 + µ&)𝑧# + 𝜆𝑞𝑧(1 − 𝑧 + 𝑞𝑧)(1 − 𝑟)µ% 

                        −(1 − 𝑧 + 𝑞𝑧)&	(𝑠 + 𝜆 + µ&)(1 − 𝑟)µ% − (1 − 𝑧 + 𝑞𝑧)&	𝑟µ%µ&. 
 
We notice that the denominator of 𝑃%(𝑠, 𝑧) has 𝑏	 + 2 zeros. Using Rouche’s theorem to the 
denominator, it follows that 𝑏 of these roots lie on or inside the unit circle. One zero of the 
denominator is 𝑧	 = 	1 and other 𝑏	 − 1 zeros lie within and should harmonize with those of 
numerator for 𝑃%(𝑠, 𝑧) to converge, so that when a zero shows up in the denominator, it is dropped 
by one in the numerator. The remaining two zeros of the denominator lie outside the unit circle. 
Let the roots be 𝑧, and 𝑧%, we have 
 
 

𝑃%(s, z) =
(1 − 𝑧 + 𝑞𝑧)[𝜆𝑞𝑧 − (𝑠 + 𝜆 + µ&)(1 − 𝑧 + 𝑞𝑧)](1 − 𝑧#)𝐷(𝑠)

(𝑧 − 1)(𝑧 − 𝑧,)(𝑧 − 𝑧%)
, (18) 

where 𝐷(𝑠) is a function independent of 𝑧.  
For 𝑧	 = 	1 in (13) and using L’Hospital rule at 𝑧	 = 	1 in (18), we get 
 
 

𝑃%(s, 1) =
𝑞&(𝑠 + µ&)𝑏𝐷(𝑠)
(1 − 𝑧,)(1 − 𝑧%)

, (19) 

 
𝑃&(s, 1) =

𝑟µ%𝑃%(𝑠, 1)
(𝑠 + µ&)

. (20) 

 
Using the normalization condition 𝑃%(𝑠, 1) + 𝑃&(𝑠, 1) + 𝑄∗(𝑠) 	= 	

%
2
	, we have 

 
𝑃%(s, 1) =

h1 − 𝑠𝑄∗(𝑠)i(𝑠 + µ&)
𝑠(𝑠 + 𝑟µ% + µ&)

. (21) 

 
Using (19) and (21)	one can determine the function of 𝐷(𝑠) as 
 
 

𝑃%(s, 1) =
h1 − 𝑠𝑄∗(𝑠)i(1 − 𝑧,)(1 − 𝑧%)

𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏
. (22) 

 
Substitute (22) into (18), we get 
 
 

𝑃%(s, z) =
(1 − 𝑧 + 𝑞𝑧)𝐵%(1 − 𝑧#)h1 − 𝑠𝑄∗(𝑠)i(1 − 𝑧,)(1 − 𝑧%)

𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏(𝑧 − 1)(𝑧 − 𝑧,)(𝑧 − 𝑧%)
. (23) 
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When 𝑧	 = 	0, equation (23) and (13), respectively becomes 
 
 

𝑃,,%∗ (s) =
h1 − 𝑠𝑄∗(𝑠)i(𝑠 + 𝜆 + µ&)(𝑟, − 1)(𝑟% − 1)

𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏
, (24) 

 
𝑃,,&∗ (s) =

𝑟µ%h1 − 𝑠𝑄∗(𝑠)i(𝑟, − 1)(𝑟% − 1)
𝑠(𝑠 + 𝑟µ% + µ&)𝑞&𝑏

, (25) 

 
where 𝑧, = 1 𝑟,⁄ , 𝑧% 	= 	 1 𝑟%⁄ .  
From equation (6), we can determine the value of 𝑄∗(𝑠) by using (24) and (25), we have 
 
 

𝑄∗(s) =
𝐵3	(𝑠)

𝑠[(𝑠 + 𝜆)(𝑠 + 𝑟µ% + µ&)𝑞&𝑏 + 𝐵3	(𝑠)]
, (26) 

 
where 

𝐵3(𝑠) = [(1 − 𝑟)µ%(𝑠 + 𝜆 + µ&) + 𝑟µ%µ&](𝑟, − 1)(𝑟% − 1). 
 
Equation (26) represents the L.T of the state probability that the queue is empty and the server is 
idle. It is obtained from the equation (6) by using the equations (24) and (25).		In the following 
section, we obtain the stationary probabilities by using the Tauberian property. 
 

IV. Steady State Solution of the Model 
 

In this part, we obtain the closed form solutions of the limiting state probabilities for the length of 
the queue size when the server is idle or busy in FES and SOS by using the Tauberian property as 
defined below: 
 
 𝑄 = lim

4→1
𝑄(𝑡) = lim

2→,
𝑠𝑄∗(𝑠), (27) 

 𝑃),% = lim
4→1

𝑃),%(𝑡) = lim
2→,

𝑠𝑃),%∗ (𝑠), (28) 

 𝑃),& = lim
4→1

𝑃),&(𝑡) = lim
2→,

𝑠𝑃),&∗ (𝑠). (29) 

 
If the limit exists, the steady state probabilities of (24), (25) and (26) are: 
 
 

𝑃,,% =
(1 − 𝑄)(𝜆 + µ&)(𝑟, − 1)(𝑟% − 1)

(𝑟µ% + µ&)𝑞&𝑏
. (30) 

 
𝑃,,& =

𝑟µ%(1 − 𝑄)(𝑟, − 1)(𝑟% − 1)
(𝑟µ% + µ&)𝑞&𝑏

, (31) 

 
𝑄 =

𝐵3	
𝜆(𝑟µ% + µ&)𝑞&𝑏 + 𝐵3

, (32) 

where 
𝐵3 = [(1 − 𝑟)µ%(𝜆 + µ&) + 𝑟µ%µ&](𝑟, − 1)(𝑟% − 1). 

 
 

V. Performance Measures 
 
Practical applicability of any mathematical model can be accessed in terms of its measures of 

231



 
P. Vijaya Laxmi , Andwilile Abrahamu George and E. Girija Bhavani 
BATCH QUEUEING MODEL WITH SECOND OPTIONAL SERVICE 
UNDER TRANSIENT AND STEADY STATE DOMAIN 

RT&A, No 4 (65) 
Volume 16, December 2021  

 

performance. In this paper different execution measures of the queue are calculated such as 
probability that the server is active and the expected queue size when the server is active in FES or 
SOS. The performance measures are carried out in both transient and steady state as follows: 
 
I. Performance Measures in Transient State 

 
The busy probability in FES is given by: 

𝑃[𝐹𝐸𝑆](𝑠) = W𝑃),%∗ (𝑠).
1

)-,

 

The busy probability of the server in FES is obtained by setting 𝑧	 = 	1 in equation (23) and 
applying L’Hospital rule, we get 
 
 

𝑃[𝐹𝐸𝑆](𝑠) = W𝑃),%∗ (𝑠)
1

)-,

=
h1 − 𝑠𝑄∗(𝑠)i(𝑠 + µ&)
𝑠(𝑠 + 𝑟µ% + µ&)

. (33) 

 
The busy probability in SOS is given by 
 

𝑃[𝑆𝑂𝑆](𝑠) = W𝑃),&∗ (𝑠).
1

)-,

 

The busy probability in SOS is obtained by setting 𝑧	 = 	1 in equation (13) and using (33), we get 
 
 

𝑃[𝑆𝑂𝑆](𝑠) =W𝑃),&∗ (𝑠)
1

)-,

=
𝑟µ%h1 − 𝑠𝑄∗(𝑠)i
𝑠(𝑠 + 𝑟µ% + µ&)

. (34) 

 
The anticipated length of the queue size when the server is busy in FES 

𝐿[𝐹𝐸𝑆](𝑠) = W𝑛𝑃),%∗ (𝑠).
1

)-,

 

This is obtained by taking derivative of equation (23)	 with respect to 𝑧, setting 𝑧	 = 	1 and using 
L’Hospital rule. Thus we get 
 
 

W𝑛𝑃),%∗ (𝑠)
1

)-,

=
h1 − 𝑠𝑄∗(𝑠)in(𝑟, − 1)(𝑟% − 1)𝐵6(𝑠) − [𝑞(𝑠 + µ&)(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑠(𝑠 + 𝑟µ% + µ&)(𝑟, − 1)(𝑟% − 1))
, (35) 

where  𝐵6(𝑠) = n𝑞(𝑠 + µ&)(𝑏 − 1) − 2[𝜆 + (𝑠 + µ&)(2 − 2𝑞)]o. 
 
The anticipated length of the queue size when the server is busy in SOS 

𝐿[𝑆𝑂𝑆](𝑠) = W𝑛𝑃),&∗ (𝑠).
1

)-,

 

 
This is obtained by taking derivative of equation (13) with respect to 𝑧	and using (35) by setting 
𝑧	 = 	1, we get 
 
 

W𝑛𝑃),&∗ (𝑠)
1

)-,

=
𝑟µ%h1 − 𝑠𝑄∗(𝑠)in(𝑟, − 1)(𝑟% − 1)𝐵6(𝑠) − [𝑞(𝑠 + µ&)(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑠(𝑠 + 𝑟µ% + µ&)(𝑠 + µ&)(𝑟, − 1)(𝑟% − 1))

+
𝜆𝑟µ%h1 − 𝑠𝑄∗(𝑠)i

𝑞𝑠(𝑠 + µ&)(𝑠 + 𝑟µ% + µ&)
. 

(36) 
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The overall queue length is 
 
 

𝐿7(𝑠) = W𝑛𝑃),%∗ (𝑠) +W𝑛𝑃),&∗ (𝑠).
1

)-,

1

)-,

 (37) 

 
The anticipated waiting time in the queue is 
 
 

𝑊7(𝑠) =
𝑞 × 𝐿7(𝑠)

𝜆 . (38) 

 
 
II. Performance Measures in Steady State 
 
Assuming that the limit of the equations (27), (28) and (29) exist, the steady state equations 
corresponding to the equations (33) to (38), respectively are given by 
 

𝑃[𝐹𝐸𝑆] = W𝑃),%

1

)-,

=
(1 − 𝑄)µ&
𝑟µ% + µ&

, 

𝑃[𝑆𝑂𝑆] = W𝑃),&

1

)-,

=
𝑟µ%(1 − 𝑄)
(𝑟µ% + µ&)

, 

 

W𝑛𝑃),%

1

)-,

=
(1 − 𝑄)n(𝑟, − 1)(𝑟% − 1)𝐵6 − [𝑞µ&(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑟µ% + µ&)(𝑟, − 1)(𝑟% − 1)
, 

W𝑛𝑃),&

1

)-,

=
𝑟µ%(1 − 𝑄)n(𝑟, − 1)(𝑟% − 1)𝐵6 − [𝑞µ&(4𝑟,𝑟% − 2(𝑟, + 𝑟%))]o

2𝑞(𝑟µ% + µ&)µ&(𝑟, − 1)(𝑟% − 1)
+

𝜆𝑟µ%(1 − 𝑄)
𝑞µ&(𝑟µ% + µ&)

, 

𝐿7 =W𝑛𝑃),% +W𝑛𝑃),&

1

)-,

1

)-,

 

and 

									𝑊7 =
𝑞 × 𝐿7
𝜆 , 

where  𝐵6 = n𝑞µ&(𝑏 − 1) − 2[𝜆 + µ&(2 − 2𝑞)]o. 
 

 
 

VI. Numerical Investigation 
 
In this part, we perform the transient and steady state numerical analysis of the model. In transient 
state, the Laplace transform expressions given in section 5.1 are inverted into time domain using a 
software package of Mathematica. Furthermore, we study the parameters impact on the model 
performance and discussion on numerical results by taking the model parameters as: 𝑏	 = 	5, 𝜆	 =
	3, µ% 	= 	3.5, µ& = 	3, 𝑟	 = 	0.45, 𝑞	 = 	0.4, 𝑟, = 	0.9039, and 𝑟% 	= 	0.7686,	unless their values are 
mentioned in the respective places. 
 
Figures 2 and 3 show the time dependent probability of FES and SOS with variation of time points. 
We observe that the probability values in FES (Figure 2) decrease rapidly in the beginning from 
point one up to a certain value where it reaches the steady state with increasing of time while the 
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probability values in SOS (Figure 3) increase progressively from zero initially up to a certain value 
and it attains the steady state with increasing of time. In addition, it is noticed that the probabilities 
of both FES and SOS increase as the arrival rate 𝜆 increases. Figure 4 plots the transient state 
probability of empty queue and idle server versus time for different values of arrival rate. In this 
graph, we observe that the idleness probability decreases as the rate of arrivals increases. 
 
Figure 5 demonstrates the variation of arrival rate 𝜆 on the expected queue size 𝐿7 with respect to 
time. It is noticed that expected queue size increases when arrival rate increases. This is due to the 
fact that when arrival rate increases, more customers join the queue and leads to an increase in the 
length of the queue. Figure 6 shows the impact of r on the expected waiting time in queue 
(𝑊7)	and it is observed that as r increases, both 𝑊[𝐹𝐸𝑆] and 𝑊[𝑆𝑂𝑆] increase. In addition, it 
reaches a point where the waiting time in SOS is more compared to FES as 𝑟 increases. This is 
coherent with the fact that the service rate in FES is greater than that in SOS 𝑖. 𝑒., µ% >	µ&. 
 
Figures 7 and 8 show the effect of arrival rate 𝜆 on the expected queue size	𝐿7 for different batch 
size parameter 𝑞 (Figure 7) and different batch service size 𝑏 (Figure 8). It is obvious that the 
anticipated queue length increases with the increase in arrival rate 𝜆 (Figure	7). For a particular 𝜆 
𝐿7 increases as 𝑞 decreases, this is on the grounds that the mean batch size (1/𝑞) positively 
influences the number of customers in the queue. Hence, the mean queue size increases. While in 
Figure 8 we observe that the expected queue size decreases with increase of batch service size	𝑏 
and increases with increasing of arrival rate 𝜆. 
 

 
Figure 2: The probability that the server is busy in FES versus time 
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 Figure 3: The probability that the server is busy in SOS versus time 

 
Figure 4: The transient state probability of empty queue and idle server versus time 

Figure 5: Effect of variation of 𝜆 on 𝐿, with respect to time 
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Figure 6: Effect of  𝑟 on the expected waiting time in queue (𝑊,) 

 
Figure 7: Effect of variation of 𝜆 and 𝑞	on the expected queue length (𝐿,) 

 
Figure 8: Effect of variation in 𝜆 and 𝑏 on the expected queue length (𝐿,) 
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VII. Conclusion  

 
In this article, we studied a single server batch queueing model with SOS under transient and 
steady state domain. We derived the transient and steady state probabilities when the server is 
busy in FES or SOS. Furthermore, we have studied the impact of various parameters on the 
performance measures of the model and discussed the results in the form of graphs. In addition, 
the analysis of the model will motivate a useful performance evaluation tool in practical 
applications such as telecommunication network through packet switching, in group testing of 
blood samples for detecting Corona / HIV viruses, package delivery, etc. Finally, the present work 
might be extended to multi-server multi-arrival system with reneging and vacations. 
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