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Abstract 

 

In this study a periodically inspected system is analyzed which is subject to imperfect 

maintenance policy. The considered system is inspected and maintained periodically and passes 

through a fixed number of imperfect repairs before being replaced. The imperfect effect of the 

preventive maintenance is modelled on the basis of the increasing failure rate of the system. 

Since the preventive maintenance is imperfect, it brings the considered system to an operating 

state which lies between two states, namely the “as bad as old state” and “as good as new state”. 

The distribution of the failure time of the system and that of the repair times are assumed to be 

arbitrary. The times required for the preventive maintenance of the system and its replacement 

are further assumed to be negligible. Incorporating the given facts, the reliability of the 

periodically inspected system is evaluated. Also, various reliability measures like availability, 

steady-state availability are estimated. An optimal interval of inspection is estimated so that 

the total cost in minimized. With the help of a case study on Nuclear Power Plant System 

(NPPS) the derived results are illustrated.    

 

Keywords: reliability, imperfect preventive maintenance, steady-state availability. 

 

 

I. Introduction 
 

Maintenance systems are of utmost importance for various equipments to operate as desired, to 

facilitate them to function as required etc. Maintenance has a major impact on delivery, quality and 

cost of various systems. If maintenance is optimized, it can play a very significant role to improve 

the ability of an organization to fulfil its objectives. Maintenance includes preventive and corrective 

actions so as to reduce the chance of failure which not only further enhances reliability of the system 

but also reduces operation cost. There are four major categories of maintenance namely, perfect, 

minimal, imperfect, worst repair. Last few decades have seen a considerable amount of attention 

being paid to the area of maintenance modelling in various fields of reliability. For instance, Levitin 

and Lisnianski [10] considered a multi-state system and generalized a preventive maintenance 

policy to optimize it. In order to estimate the reliability of the system many techniques including 

universal generating function have been incorporated. Also, a genetic algorithm has been used for 

the optimization purpose. El-Ferik and Ben-Daya [7] investigated an age-based model (hybrid) 

subject to imperfect preventive maintenance. The model involves two types of failure modes namely, 

maintainable and non-maintainable. Also, both the hazard rate and the age (effective) have been 
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incorporated in the study. The optimal number of maintenance actions have been found out so that 

the expected cost is minimized.  Castro [2] investigated a system which can fail due to two possible 

failure modes namely, maintainable mode and non-maintainable mode. Also, at the instance of 

failure a minimal repair is carried out.  Preventive maintenances are conducted at regular intervals 

with the system being replaced after a fixed number of maintenance cycles. The basic problem was 

to find a feasible length between consecutive maintenance cycles so that cost rate is minimized. 

Bartholomew et al. [1] in their study dealt with the notion of scheduling the imperfect preventive 

maintenance of the system. The model was based on Kijima where each application of maintenance 

reduces the age of the system. Also, a numerical study illustrates the optimum schedule for different 

measures of the age-based model. Soro et al. [17] in their paper examined a multi-state system which 

is subject to preventive maintenance (imperfect) and estimated its availability, reliability etc. The 

minimal repair brought back the system to the previous state without impacting the rate of failure. 

The system has been modeled as a Markov process to evaluate the various performance measures. 

Liu et al. [11] in their paper proposed a model for the maintenance of mission-oriented systems 

which are exposed to continuous shocks and degradation. The degradation of the system has been 

modelled as a Weiner process. Also, an optimal policy for the maintenance of the system has been 

developed. Mercier and Castro [13] considered a degrading system and compared two models 

subject to imperfect repair. The level of degradation has been modelled by a Gamma process (non- 

homogeneous). A comparison has been made between both the models based on stochastic property. 

Furthermore, optimal strategies for maintenance have been explored. 

All the aforementioned models have been studied in one or the other way to improve the availability 

and reliability of the systems. There has been an extensive study on the reliability models in the past. 

Liu and Kapur [12] studied a multistate system and developed various reliability measures. It was 

assumed that the considered system follows Markov process. Also, it was focused on evaluating 

considered systems for system designing. Singh [16] considered a system which consists of two 

subsystems. Subsystem-1 is a k-out of n subsystem while subsystem-2 consists of two units arranged 

in a parallel configuration. The failure rates have been assumed to be constant while the repair is 

governed by general and exponential distributions. Various performance measures like reliability, 

cost have been evaluated with the technique of supplementary variable, Laplace and copula 

methodology.  Fan et al. [9] developed a model for estimating the reliability dependent of a system 

subject to failure processes which often results in the shock dependence. The method of Monte Carlo 

simulation has been used to calculate the various reliability measures. A real-time application has 

been demonstrated to study the dependent behavior of the failures. Song et al. [18] in their study 

considered a multi-state system whose components are dependent. In the proposed study stochastic 

multi valued models have been presented and a comparative analysis has been done to illustrate the 

model. Cha et al. [4] studied a model in consideration to the systems which operate in a given 

environment. The system is subject to a Poisson process of shocks where each of the shocks has a 

double effect on the system. Hence, the considered system is bivariate and the study is illustrated 

with numerical examples. Dong et al. [6] investigated a parallel system with redundance comprising 

of various components which are non-identical. Also, a self-healing mechanism is developed with 

respect to the damage load and numbers of shock arrivals. In this study reliability model is proposed 

to evaluate the closed form expressions for reliability and preventive maintenance. Furthermore, a 

Nelder-Mead simplex method has been applied to find the feasible age of replacement of the system. 

Nautiyal et al. [14] in their study considered a k out of n network and focused on evaluating 

reliability and its other measures. The method of Gumbel- Hougaard has been applied to obtain the 

various performance measures. Eloy and Dawabsha [8] considered a multistate system with warm 

standby. There are two major states in which the system has been partitioned namely, internal 

degradation and shocks. The process of repair comprises of more than one repairperson. The 

proposed model is presented and built in an algorithm form which makes its implementation to be 
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easier. Cao et al. [3] examined a multi-state system having multiple components and explored how 

the process of ageing affects the process of failure in the considered system. The analysis of reliability 

and its various measures is done on the basis of a semi-Markov chain. With the help of an example 

of a transformer the proposed method has been demonstrated. Pan et al. [15] in their study desired 

to model a method for the evaluation of reliability. To model the parameter for obtaining the 

reliability the Wiener process has been incorporated. Then after Copula function has been effectively 

used to demonstrate the proposed method. Chen et al. [5] investigated about multi-layer systems 

and studied the behavior of the failure in the system. Further, a simulation method has been 

proposed in order to estimate the reliability of the system along with a maintenance cost model.   

In this paper, we have restricted our study to imperfect preventive maintenance in which the health 

of the considered system lies between “as good as new” and “as bad as old.” Also, we have 

considered a system which is inspected at regular constant intervals and is subject to a fixed number 

of maintenance cycles before being replaced. The motivation for performing inspections periodically 

arises from the fact that it may reduce the cost which is involved in continuous monitoring of the 

system. Some real-life instances where systems are inspected periodically are gas detectors, safety 

valves etc. Also, a perfect repair might require high costs, thus various imperfect repairs are done 

before the system is actually replaced. The failure rate model has been used to model the effect of 

imperfect maintenance system. Also, corrective maintenance is carried out whenever there is a 

failure in the system. Hence, the proposed model extends the contribution to the existing literature 

since it allows the effect of imperfect maintenance on the periodically inspected system which is 

followed by a corrective repair at the occurrence of every failure.  

 

II. Model description and notations  
 

II.I System Description  
 

In this section we discuss the failure rate model for a periodically inspected system which has been 

used as a modelling framework of imperfect maintenance. For this we assume that the   lifetime of 

the considered system follows general distribution with the corresponding failure rate function 

being denoted by σ(t). Based on these assumptions, following observations are made: 

• The failure rate σ(t) of the system increases strictly after every mth imperfect preventive 

maintenance and becomes lmσ(t) when it was σ(t) before the preventive maintenance took 

place.  

• Thus, Lm σ(t) is the failure rate in the mth preventive maintenance where Lm = l0 l1*l2*……*lm-

1 and 1 = l0 < l1 < l2 < ………. < lQ-1 

II.II Assumptions 

 
 1. At time t = 0 the system is operational. 

 2. The system is inspected at regular intervals and is preventively maintained.   

 3. The failure rate σm (t) is strictly increasing. 

 4. The failure is detected only at the time of inspection and the system is subject to corrective repair 

at the instance of a failure.  

 5. The times required for preventive maintenance and replacement of the considered system is 

assumed to be negligible.  

 6. The system becomes as good as new after every replacement. 

 7. The probability density function of service times θm corresponding to the mth imperfect 

maintenance obeys general distribution Y(t).  

 8. The cost rate associated with every inspection, preventive maintenance is denoted by IFC and CCPM   
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respectively.  The cost associated with every system replacement is given by CREPL. The cost rate 

during the system downtime is denoted by DC. The CM expense (cost) rate corresponding to the 

failure of the system is represented by CRC.  

 

 

 

II.III Notations  
A(t)  System’s instantaneous availability 

R(t)  System’s reliability 

CM   Corrective Maintenance 

σ(t)  Failure Rate of the system. 

i.i.d.  Identically and independently distributed 

Q             Number of Preventive maintenance cycles 

ηm  Failure times corresponding to the mth preventive maintenance 

Bm(t)             Distribution function of ηm, m =1, 2, ..., Q-1. 

bm(t)  Probability density function of ηm, m =1, 2, 3…., Q-1. 

θm  Repair times during the mth preventive maintenance, m = 1, 2…, Q-1. 

Y(t)  cdf of repair times. 

y(t)  Probability density function for repair time   

H  Periodicity of inspection 

NT  Number of inspections performed in every system restoration  

LC  Total length of cycle requires for restoration of the system 

IFC  Fixed cost of the inspection 

CCPM                 Preventive maintenance cost 

CREPL                Cost associated with the replacement of the system 

DC  Cost rate(penalty) while system is in downtimes 

TCR  Total cost in a cycle (renewal) when the system is restored 

 

III. Reliability of the periodically inspected system 
 

The current section develops expressions to evaluate the reliability and availability of the 

periodically inspected system with imperfect maintenance modelled in the previous section. Thus, 

the function for the estimation of the reliability is derived as follows: 
1 1

1 1

( ) ( ) ( )
Q Q

m m

m m

R t P t R t
− −

= =

=   =   

 
Thus, proposition-1 which is given below helps to calculate the instantaneous/point availability of 

the periodically inspected system based on the renewal theorem. 

III.1 Instantaneous Availability Analysis 

Proposition-1: A periodically inspected system is maintained such that the failure rate of the system 

is modelled by an imperfect preventive maintenance policy. The failure times ηm are governed by a 

general distribution function Bm(t) in the mth preventive maintenance (m =1, 2, …., Q-1) respectively. 

Service times θm are assumed to follow general distributionY(t). Thus, the expression for the 

instantaneous availability of the considered periodically inspected system can be derived as follows: 
( 1) ( 1)1 1[ / ] 1

0 11 0

( ) ( ) ( ) ( ) ( ( 1) ) ( )

j H t j HQ Qt H

m m

j mm jH

A t R t l t R t A t j H z y z dz
+ − +− −−

= ==

= + − + −     
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Proof. There can be two possible states for the considered periodically inspected system, namely the 

down-state, which corresponds to Ω (t) = 0, or in the up-state, which implies Ω (t) = 1.  

Based on the assumption that the system is operable at t = 0 and no inspection and preventive 

maintenance has been performed in the first interval, i.e. [0, H).  

Thus, from the fundamental definition of availability we have the following:  

Since the system is replaced at Qth cycle, hence, Q -1= J (say) will be the total number of inspections 

performed till the time system gets replaced. Furthermore, the time of failure for the periodically 

inspected system Ω are related as, (J −1) H < Ω < J H. Consequently, the probability mass function of 

J is given as  

( ) ( ) (( 1) )P J j R jH R j H= = − +  (2) 

 

Therefore, equation (1) becomes  

 (3)                               

The probability that the first failure of the system happens to be in [(j − 1) H, jH] is expressed by the 

first half of the above equation and the system gets repaired/restored at time jH, where j = 2, 3, 

…while the second half of (3) directs toward the event that system survives before time t and is 

represented as given below: 

( ( ) 1, [ / ]) ( )P t J t H P t =  =   (4) 

Since there are Q maintainable cycles, the failure rate in mth preventive maintenance cycle shall be 

σm(t), m = 1, 2, …, (Q -1), hence the first half of equation (3) becomes 
1[ / ] 1 [ / ] 1

0 0 1

( ( ) 1, ) ( ( ) 1, , ) ( , )
Qt H t H

j j m

P t J j P t J j M m P J j M m
−− −

= = =

 = = =  = = = = =    
 

(5) 

The event {J = j, M = m} implies no failure has occurred in [0, jH] and it is only in the consequent 

interval, i.e. [jH, (j +1) H] there is a probability of the failure of the considered system.  

Thus, we have  

P (J = j, M = m) = P {jH < Ω < (j+1) H, Ωm = min (Ω1, Ω2, Ω3, …., ΩQ-1)} 

 
( 1)

( ) ( )

j H

m

jH

R t l t dt
+

=   

 

(6) 

In the considered model, it is assumed that the failure rate of the periodically inspected system 

becomes lmσ(t) after the mth preventive maintenance when it was σ(t) before the mth preventive 

maintenance. The repair rate of the system remains unchanged. Thus, the probability associated with 

the failure of the considered system in the mth imperfect preventive maintenance cycle can be 

obtained from equation (6) as  

1 2 1

0

( min( , ,.......... )) ( ) ( )m Q mP R t l t dt


− =    =   
 
(7) 

The total sojourn repair time θm elapsed in the restoration of the system due to system failure in the 

mth preventive maintenance is governed by the distribution function Y(z). After the sojourn time to 

repair is elapsed the operating unit is functional again and the process repeats itself. Furthermore, 

the same process is repeated every time. Then, we have,  

 

A(t) = P (the system is available at an instant t) =P (Ω(t) = 1)  (1) 

[ / ] 1

0 [ / ]

( ) ( ( ) 1, ) ( ( ) 1, )
t H

j j t H

A t P t J j P t J j
− 

= =

=  = = +  = = 
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( 1)

0

( ( ) 1| , ) ( ( ) 1| , , ) ( )

t j V

mP t J j M m P t J j M m z y z dz
− +

 = = = =  = = = =  

( 1)

0

( ( 1) ) ( )

t j H

A t j H z y z dz

− +

= − + −  

 

(8) 

 
Using the equations (7) and (8), the expression (5) becomes 

( 1) ( 1)1[ / ] 1 [ / ] 1

0 0 1 0

( ( ) 1), ) ( ) ( ) ( ( 1) ) ( )

j H t j HQt H t H

m

j j m jH

P t J j R t l t A t j H z y z dz

+ − +−− −

= = =

 = = = − + −    
 

 

(9) 

 

Substituting the equations (8) and (9) in (3), the instantaneous availability of the periodically 

inspected system is obtained as  

 
( 1) ( 1)1 1[ / ] 1

0 11 0

( ) ( ) ( ) ( ) ( ( 1) ) ( )

j H t j HQ Qt H

m m

j mm jH

A t R t l t R t A t j H z y z dz
+ − +− −−

= ==

= + − + −   
               (10) 

III.II Long-run availability  
The following proposition gives the expression for estimating the steady-state availability of the 

periodically inspected system subject to imperfect maintenance. 

Proposition-2: The availability of the proposed periodically inspected system in the steady state is 

obtained as follows: 

 

0

1

0
0 1

( )

( 1) ( ( ) ( 1) ) ( ) ( ) ( )
Q

m m

j m

R t dt
A

j H R jH R j H E R t l t dt 



− 

= =

=

+ − + +



  
 

Proof: With the help of the renewal theorem the long-run availability of the considered periodically 

inspected system is derived as the ratio of expectation of the uptime of the system and the sum of 

the expectations of the system uptimes and downtimes. 

Thus, based on Proposition 1, the expectation of the uptimes of the considered periodically inspected 

system is obtained as follows: 

E (Up times) = E(Ω) (11) 

the length(expected) of each restoration cycle (E(LC)) is calculated on the basis of the probability 

decomposition method which is obtained as given below: 

1

0 1 0

( ) ( 1) ( ( ) ( 1) ) ( ) ( ) ( )
Q

m m

j m

E LC j H R jH R j H E R t l t dt 
−

= =

= + − + +    
 

(12) 

The first half of equation (12) corresponds to the expected time between any unexpected/sudden 

failures to the time it has been restored again. The second half of equation (12) denotes the expected 

time for restoration. 

On combining equations (11) and (12) the expression for the availability (in the steady state) of the 

considered periodically inspected system is derived as 
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0

1

0
0 1

( )

( 1) ( ( ) ( 1) ) ( ) ( )
Q

m m

j m

R t dt
A

j H R jH R j H R t l t dt 


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= =

=

+ − + +



  

 
 

 

(13) 

Corollary 2.1: Here the bounds for the steady state availability, i.e., the upper bound and lower bound 

availability denoted by AU and AL respectively for the risk system are obtained as follows: 

Clearly, equations (15) and (14) signify that the lower bound of availability is less than the 

availability of the considered system which is further less than the upper bound of availability. 

 

III. III Maintenance Analysis 
As per the maintenance policy implemented in the current study, the system may experience Q 

preventive maintenance cycles. Corrective maintenance is done whenever there is a system failure 

while preventive maintenance is carried out whenever an inspection is performed. Towards the end 

of every Qth cycle, the considered system is replaced with a new one. The expected duration of 

system replacement is assumed to be negligible. The optimal maintenance policy consists on finding 

a feasible value of the interval of inspection and the replacement period. Thus, the average 

maintenance cost rate is then a function of the both variables H and Q, and hereafter denoted by W 

(H, Q) and is defined as: 

 

 

( )
( , )

( )

RE TC
W H Q

E LC
=  

 

(16) 

where E(TCR) is the expected total cost.  

Proposition 3: For a periodically inspected system which is inspected and preventively maintained at 

regular intervals, the average rate of cost of maintenance is obtained as given below: 
1

0 0 10 0

1

0 1 0

( 1)( ( ) ( 1) ) ( 1)( ( ) ( 1) ) ( ) ( ) ( ) ( ) ( 1)

( , )

( 1)( ( ) ( 1) ) ( ) ( ) ( )

Q

FC C RCm m m CPM REPL

j j m

Q

m m

j m

I j R jH R j H D j R jH R j H R t dt C E R t l t dt Q C C

W H Q

j R jH R j H E R t l t dt

 

 

 − 

= = =

−

= =

 
+ − + + + − + − + + − +  

 =

+ − + +

   

  

 

 
Proof: In every renewal cycle when the considered system is restored then the expected(total) 

maintenance cost rate involved is given as follows:  

 

E(TCR) = IFC E (NT ) + E ( 𝐶𝑅𝐶) + DC E(Downtimes) + CCPM E(Q -1) + E(CREPL ) (17) 

Hence, the mean cost involved in the corrective maintenance (CM) in every restoration cycle is given 

as 

0

1

0
1

( )

( ) ( ) ( ) ( )

U Q

m m

m

R t dt
A

E E l t R t dt 



−


=

=

 +



 
 

 

 

(14) 

0
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0
1

( )

( ) ( ) ( ) ( )
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m

R t dt
A

E L E l t R t dt 
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−


=

=

 + +


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(15) 
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1

1 0

( ) ( ) ( )
Q

RC RCm m

m

E C C l t R t dt
−

=

=   
 

(18) 

 
where NT   = J +1   is the total count of inspections.  

Also, the expectation of the system downtime is obtained as:  

0 0

( ) ( 1)( ( ) ( 1) ) ( )
j

E Downtimes j R jH R j H R t dt



=

= + − + −   
 
(19) 

 

Therefore, the expectation of the cost (total) for every cycle when the periodically inspected system 

is restored is 

 
1

0 0 10 0

( ) ( 1)( ( ) ( 1) ) ( 1)( ( ) ( 1) ) ( ) ( ) ( ) ( ) ( 1)
Q

R FC C RCm m m CPM REPL

j j m

E TC I j R jH R j H D j R jH R j H R t dt C E R t l t dt Q C C 
 − 

= = =

 
= + − + + + − + − + + − +  

 
     

 

 
Combining the results of equation (20) and equation (11) into equation (16), the mean cost rate for 

maintenance with respect to the imperfect preventive maintenance is obtained as given below: 
1
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IV. Evaluation of Reliability Characteristics 
 

Numerical Example: An Application of Nuclear Power Plant System  

 

Background 

Nuclear power plant systems (NPPS) need unremitting and careful monitoring from time to time. 

Whenever there is a chance of unsafe conditions in the NPPS corrective measures must be taken to 

ensure proper functioning of the system. In order to control such circumstances appropriate 

knowledge of the prevailing conditions and the ones to be changed should be known at prior. The 

diagnosis of any fault in the plant should be known very soon. Thus, preventive maintenance plays 

a major role in this direction. Through such maintenance policies the plant operators and engineers 

can perform the required preventive and corrective actions, if needed. The reactor coolant pump is 

an integral part of the NPPS. It prevents and safeguards the vibrations which may lead to trippage 

of the reactor. To illustrate the various obtained results, we assume that there is a fault in the reactor 

coolant of the NPPS. The failure time of the reactor coolant is governed by the distribution Bm(t) = 1-

exp(-mt), m > 0. Thus, as per the assumptions since l0 =1, then the distribution for the failure time 

B1(t) =1-exp (-t) and the failure rate remains 1 in the interval [1,2]. Let us now suppose that l1 = 2. 

Hence the rate of failure becomes 2 in the interval [2,3]. Also, let the distribution for repair, i.e., Y (z) 

= 1- exp(-3z). We further assume that the system is replaced at 3rd cycle. Furthermore, the values of 

the relevant system parameters used to evaluate the desired results are listed below in Table 1.  

 

Table 1: System Parameter Values 

Parameter 

 

 

Parameter Values  
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H 1 time unit  

IFC 1 cost unit  

CRC1=CRC2              2 cost unit  

   

  CREPL 1 cost unit 

10 

 

DC 10 cost unit  

 

IV.1. Reliability and Availability Evaluation 
 

With respect to the imperfect maintenance policy, the results of Section 4 are well illustrated through 

the graphs plotted in Fig. 1 and Fig. 2. It is clear from the Fig. 1 that the reliability of the considered 

system decreases with the increase in time and approaches to zero over a long period of time. The 

Fig. 2 corresponds to the instantaneous availability of the system with respect to the inspection 

period H =1. It can be seen from the Fig. 2 that instantaneous availability is same as the system’s 

reliability in the time [0,1). In the consequent interval which is followed by a preventive repair at H 

=1 the system availability increases till the time t = 1.6 and then further decreases till t = 2. The failure 

rate now further increases in the interval [2,3] as the system is subject to imperfect maintenance. 

Thus, in the interval [2,3] failure is detected and repaired which increases the availability of the 

system. From this figure the steady state availability is found to be 0.2405 %. Finally, the system is 

replaced at the end of the interval [2,3] after the   preventive maintenance. Fig. 3 shows the sensitivity 

of the considered periodically inspected system with respect to the inspection period (H). It 

illustrates the availability of the system when inspection period varies for H = 1, H = 1.5, H = 2. As 

anticipated, Fig. 3 validates that when there is a longer gap between two inspection periods i.e., the 

value of H increases the system availability decreases. 

 

IV.II.  Optimal Inspection Policy 

 

Fig. 4 reflects the steady state availability of the system with respect to different periodicity of 

inspections. As seen from the figure that it is a strictly decreasing curve, i.e., larger the periodicity 

lesser is the steady-state availability of the system. The current study seeks, however, to obtain an 

optimal inspection period which will minimize the average cost rate. Fig. 5 represents the average 

long run maintenance cost rate when periodicity of inspection is H =1. It is quite evident from the 

graph that the maintenance cost rate decreases initially and eventually becomes constant. From this 

figure the minimum cost rate is attained when H = 0.8 and the cost rate is found to be 9.5327. Fig. 6 

shows the effect of varying replacement periods on the long run maintenance cost rate of the system. 

It demonstrates that as the value of Q increases the cost rate also increases. It is quite intuitive also 

since a larger gap between consecutive replacement periods will result in performing inspections 

more frequently thereby increasing the frequency of preventive maintenances. Hence, the cost rate 

of the system increases substantially. 
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Fig. 1: Reliability of the system. 

 

 

 

 

 

 
 

 

Fig. 2: Availability when two imperfect repairs are followed by a replacement: H =1. 
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Fig. 3: Sensitivity of the NPPS system 

 

 

 

 
 

 

Fig. 4: Steady-state Availability versus H. 
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Fig. 5: NPPS’s maintenance cost rate. 

 

V. Discussion 

 
The current study developed an imperfect preventive maintenance model for a periodically 

inspected system. The considered system is assumed to be inspected periodically for the detection 

of any possible failure. Imperfect preventive maintenance actions are modelled on the basis of a 

failure rate. The strictly increasing failure rate ensures and allows to represent the occurring failures 

in the system and the imperfect effect of the preventive maintenance. Furthermore, a case study on 

NPPS is then proposed and the results are illustrated with times of failure following exponential 

distribution. Also, the times to repair have been assumed to be exponentially distributed with the 

periodicity of inspection as one. 
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