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Abstract

In this paper, we describe a novel technique for creating distributions based on logarithmic
functions, which we referred the Log Exponentiated Transformation (LET). The LET technique is
then applied to Rayleigh distributions, resulting in a new distribution known as the Log
Exponentiated Rayleigh distribution (LERD). Several distributional properties of the formulated
distribution have been discussed. The expressions for ageing properties have been derived and
discussed explicitly. The behaviour of the pdf, cdf and hazard rate function has been illustrated
through different graphs. The parameters are estimated through the technique of MLE. A
simulation analysis was conducted to measure the effectiveness of all estimators. Eventually the
versatility and the efficacy of the formulated distribution have been examined through real life
data set.
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I. Introduction

The adoption of an efficient statistical model is critical in a variety of practical analyses. This is
especially inconvenient for specific data studies, because the typically employed distributional
models are inadequate for producing a plausible fit. Several approaches, such as the generation of
families of adaptable distributions, have been presented in recent times. Most of them attempt to
increase the effectiveness of a baseline distribution by utilising diverse mathematical expansion
approaches. As a result, the related models may incorporate some extra characteristics that provide
sufficient flexibility to examine real-life data in many areas of study, such as reliability, survival
analysis, computer science, finance, biological research, medicine, and so on. Academics have recently
been concerned with developing new techniques for creating new families of distributions so that real
data can be adequately analysed and explored. Among them are Marshall and Olkin [9], Eugene et
al.[4] , Mudholkar et al. [11], Nadrajah and Kotz [12], Alzaatreh et al. [2], Mahdavi and Kundu [9], ljaz
et al. [8], Anwar Hassan et al.[3]. Based on the argumentation stated above, we suggest a novel family
of distributions that adds versatility to the provided family and entitles it Log Exponentiated
Transformation (LET). We give a thorough explanation of its fundamental mathematical
characteristics, and subsequently employ the Rayleigh distribution as an application.
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II. Log Exponentiated Transformation (LET)

This section demonstrates a novel generating family of probability distributions termed as log
Exponentiated transformation, abbreviated as LET. If X' is a continuous random variable, then the
cumulative distribution function (cdf) of the log Exponentiated transformation is described as

F(x:£,0)=1-logle +2(G(x; ;))9) ;xeR,0,¢>0 (1)
Where G(x; 4 ) denotes the cdf of baseline distribution and M =g(x:¢).
X
The associated probability density function (pdf) is described as
(e= 1) NGl )
;6,0)= ;x€R, 60,4 >0 2
S e e 2)

The survival function s(x; g, 9), hazard rate function h(x; Z, 49) and cumulative hazard rate function
H (x; ¢, 0) are stated as respectively
s(x;§,9):10g(e+é( ( 'g))g)
h(x; Z, 9) (e glﬁ(x gXG( g))
(e+eG x 4’ XIOg(eJre(G( )) »
H(x; <, ) =— log(log(e + e »

III. Mixture Form

This section provides an expression for the mixture form of the probability density function.
Equation (2) can be written as

1(52,0)= (el )0 (s e vl )f )
:@eg<x;;>G9-l<x;g>(l+§<G<x;¢>>9j o)

We know that 1+ z ; |zl <1, using it in equation (3), we have
& q
p=0

0 P
-1
e e Y S e
p=0
After simplification, we obtain the mixture form of pdf as
p+l

fx:c.0 :Zi‘; f’“[_] fe(x: £ NGl ) )

IV. Log Exponentiated Rayleigh Distribution with properties

The Rayleigh distribution, named after the Lord Rayleigh, is a continuous probability distribution.
Due to its wide range of applications, researchers have extended Rayleigh distribution for instance
Exponentiated Rayleigh distribution by Voda [13], Weibull-Rayleigh distribution by Faton Merovci et
al.[5], transmuted generalized Rayleigh distribution by Faton Merovci [6], Topp-Leone Rayleigh
distribution with application by Fatoki O [7] and inverse Weibull Rayleigh distribution by Aijaz et al.
[1]. The probability density function (pdf) of Rayleigh distribution with scale parameter & is defined
by

a
_7x2

gla)=axe 27 ;x>0,a>0 (5)
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The related cumulative distribution function (cdf) is given by
_a
G(x;a)=1—e 2 :x>0,a>0 (6)
The cumulative distribution function (cdf) of the formulated distribution can be obtained by
substituting the value of equation (6) in equation (1), which follows

o 2

F(x;a,0)=1-log e+ée| 1-e 2 ;x>0,0,0>0 (7)

The related probability density function is stated as

2y _a !
able—1)xe 2 |1-e 2
f(x;a,@)z 5 ;x>0,a,0>0 (8)

Equation (8) may be stated in mixture form by substituting equations (5) and (6) in equation (4).
(p+1)0-1
2 a 2

f(xa,0)= i P“() aaxez l—e 2 )
(

p=0
= b- 1
Smce 1 z = Z( 1) |z| <1, using it in equation (9), we have
q

a5 >ﬂ+{P“> 2 e

p=0¢=0
0o © (q+l)
=35, e 2 (10)
p=0¢=0
Where
(p + 1)9 pH
8,q= 1)"*‘1[ . [ej 0

Figures (1.1), (1.2), (1.3), and (1.4) depict several probable pdf and cdf layouts of LERD for distinct
parameter selections.
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Figure 1.1:pdf of LERD under different values to parameters Figure 1.2:pdf of LERD under different values to parameters
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V. Mathematical Properties of LER Distribution

1. Moments of LER Distribution

Let suppose X denotes random variable follows LERD. Then " moment denoted by 4, is given as

o0

,u,.' :E( ’)zj‘xrf(x;a,@}lx

0

Using equation (10), we have

After solving the integral, we get

o0 00

u = ZZ&M%(ﬁJZ F(%H)

p=04¢=0
II. Moment Generating Function of LER Distribution

Let X be a random variable follows LERD. Then the moment generating function of the distribution
denoted by M (t) is given

00

My (t)= E(e’x>: J‘e'x (x;cx, O )dx

0
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Using Taylor’s series

:T(l+tx+%+%+m}(x;a,e)dx

0

r

I—I ’f(x; a, H)clx
0

7!

r

~

s T(__w)Mss

)

Ii
[=]
3

r

=235 5005 ) 5

p=0¢g=0 r=0 q + 1)

III. Quantile Function of LER Distribution

The quantile function of any distribution may be described as follows:
Olu)=x, =F(u)
Where Q(u) denotes the quantile function of F (x) forue (0,1)

Let us suppose

Fx)=1- log(e+e(1 e Z#JJ:L{ (11)

After simplifying equation (l 1), we obtain quantile function of LER distribution as

1
2 el
Q(u):Xq = —zlog 1—[ j

e

VI. Mean Deviation From Mean and Median of LE R Distribution

The entirety of deviations is apparently a measure of amount of dispersion in a population. Let X be a
random variable from LER distribution with mean 4 . Then the mean deviation from mean is defined
as.

Dlu)=E(X -4

[l s

=2uF ()~ ZTxf(x)dx (12)
Now O
I (xyx iépqajﬁxze =
o)

Making substitution =zsothat0<z< @ yz , we have

2
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a (q +1)
u 1 o
xf(xpx = z2e7%dz
»[f y ZZ pq[ q+1} (q+l] I
p=04=0 0

After solvmg the integral, we have

jxfxyx S Yol qﬂjl[qlﬂjy@ elosl) ) 03)

p=04=0
Substituting Value of equation (7) and (13) in equation (12), we get

D(u)= 2,U1—10g[e+e[1—e2 D _222 ( qHJl[quV(%’a(q;l)”zj

p=0¢=0
Let X be a random variable from LER distribution with median M . Then the mean deviation
from median is defined as.

D(M)=E(x -M]) = T|X ~ MIf(x)dx = p— szf(x)dx (14)

Now
q+1) 2

J x)dx z&l,qajxei

p=0¢q=0

alg+1)
2

Making substitution =z sothatO0<z< M?, we have

a(q + 1)
2

a(q+1)M2

.[xfx}fx ZZ pq( q-{-l]l[q-ll-lj -([ ;e ks

p=04=0
After solvmg the integral, we have

jxfx)dx 33, [ qﬂjl[qlﬂjy@ a(q;l)Mz] (15)

p=0¢=0
Substituting Value of equation (15) in equation (14), we get

23Sl () 25

p=04g=0

VII. Ageing Properties of LER Distribution

Suppose X be a continuous random variable with cdf F' (x), x20. Then its reliability function which

is also known survival function is stated as
S(x)=p, (X >x)= jf(x)dx =1-F(x)

Therefore, the survival function for LER distribution is given as
S(x, a, 6’)= l—F(x, a, 0)

= log[e + E[l - e_%x2 H (1 6)

The hazard rate function of a random variable x is given as

h(x,a,0)= % (17)
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Using equation (8) and (16) in equation (17), we have

_a _a 2 o
ab(e—1)xe 2 [l—e 2 J

a o o a 2
B -—x | —x
e+e[1—e 2 } log] e+e[l—e 2 J

Figures (1.5) and (1.6) depict several probable hazard rate function layouts of LERD for distinct
parameter selections.
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The cumulative hazard rate function of a continuous random variable x is defined as

H(x,a,0)= —log[F(x;a,é’)] (1 8)
Using equation (16) in equation (18), we obtain the cumulative hazard rate function of LER
distribution

an
H(x,a,0)=—log| log e+§(l—e 2 ]

VIII. Renyi Entropy of LER Distribution

If X denotes a continuous random variable having probability density function f (x) Then Renyi

entropy is stated as
TA&):%log J.f‘g(x)dx , where §>0 and 0 #1
0

Thus, the Renyi entropy of LER distribution is given as

IR I ) 2 s (s i
H0 g [ el J )

0

:Llog{@—1>5e-5eéT<g<x;;>>5<G<x;;))<9-1>5(1+€<G<x;4»9)_5dx} (19)

1-6 e
0
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Since (1+ z)fb = Z(— 1y (b TP 1]2” ; |7| <1, using it in equation (19), we have
p=0

p

TR<5>=—log{<e R Yol B <G<x;g>wdx}

1-0 0 p=0
1 = o p+o-1 ’”‘5 Tl N (ol Npe0)-0
-mlog{;(—l)p e e et tatsere
Using equation (5) and (6), we have
- CS_TY 5\ o s @, 0(p+6)-6
ws(pro-1)e -
TR(5):ﬁlog ;(—1)” 5( » j(;j 495_([[(1% 2 J (l—e 2 J dx (20)

Smce 1 z i (bj ;

Z| <1, using it in equation (20), we have

q=0 q
© p+o b 0’(‘1+5) 2
)] g{ZZ p+q+5(p+5 1][a(p+5) 5](_] g™ dx}
-6 "|=55 p q ¢ 0
| o o 5 _a(q+6)x2
:ﬁlog Za)pq_[x e 2 dx
p=0g= 0
Where
_\p+6
p+q+é [p j( p+5) 5}(Ejp+ 95(15
e
Making substitution < x =z so that0 <z <, we have

5-1
X 0 5+1

T =—10g Zprq ’ — J.ZT_le_Zdz

r0a0  (a (q+5))

After solving the integral, we get
5-1

Tx( =—10g Zzwpq : 541 F[S;rlj

p=04=0 (aq+5))

IX. Maximum Likelihood Estimation of LER Distribution

Let X, X,,..,X,be arandom sample of size n from LERD then its likelihood function is given by

l:ﬁf(y;,aae)
i=l

=

The log likelihood function is given as

59



Aijjaz Ahmad, Muzamil Jallal, Afaq Ahmad
A NOVEL APPROACH FOR CONSTRUCTING DISTRIBUTIONS RT&A, No 1 (67)
WITH AN EXAMPLE OF THE RAYLEIGH DISTRIBUTION Volume 17, March 2022

10gl—n10ga+n10g9+n10g(e l ——Zx +210g

i=1
., PRY (21)
6’ IZIOg[l e ? '} Zlog e+e[l e ? l}

Differentiate equation (21), partially with respect parameters, we have

-1
2 [1 —e 2 } e 2
Ologl _ £—1§:x+a@9lizjfé;7—a9 (22)

oa a 2

a 2 o a 2
Y {l—ezx‘ ] log{l—ezli ]
alogl " +Zlog(l e 2 J+EZ (23)

The equations (22) and (23) are non-linear equations and hence cannot be expressed in compact form.
Therefore to solve these equations explicitly for @ and ¢ is difficult. So we can apply iterative methods
such as Newton-Raphson method, secant method, Regula-falsi method etc. The MLE of the
parameters denoted as é(o}, é)of g(a,@) can be obtained by using the above methods.

For interval estimation and hypothesis tests on the model parameters, an information matrix is

required. The 2 by 2 observed matrix is
2 2
£ 0~ log! £ 0” log!
oa’ 006

I¢)= 2 2
E 0” logl £ 0° logl
0oa 06*

The elements of above information matrix can obtain by differentiating equations (22)and (23) again

partially. Under standard regularity conditions when »n— o the distribution of¢can be

approximated by a multivariate normal N (O, I (é) _1) distribution to construct approximate confidence
interval for the parameters.
Hence the approximate 100(1 —l//)% confidence interval for «,0 and A are respectively given by
& +2,\1,,(¢) and 0 £2,15(¢)
2

Where Z,, denotes the ¢™ percentile of the standard normal distribution.
2

I\)

X. Simulation Analyses

In this segment, a Monte Carlo simulation analysis was performed using R software to evaluate the
consistency of the MLE's. This analysis was performed 500 times using sample sizes of n=30, 50, 150,
250,350 and 450 and various parameter combinations (0.5, 0.7) and (0.7, 0.5) created from LERD. In
each case, the bias, variance, and mean square errors (MSEs) were calculated. Table 10.1 shows the
simulation findings. In particular, we see that, pursuant to the theory, the MSEs and bias decrease as
sample size increases.
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Table 1: Average bias, variance and MSEs of 500 simulations of LERD for different parameter combinations.

Sample Parameters a=0.5 . 6=0.7 a=0.7 . 8=0.5
Sizen Bias Variance MSE Bias Variance = MSE
30 a 0.04106 0.01906 0.02075 0.06495 0.04404 0.04826
2 0.08050 0.05995 0.06643 0.04658 0.02140 0.02357
50 a 0.01797 0.00826 0.00858 0.03166 0.02274 0.02375
0 0.03925 0.02402 0.02556 0.02152 0.01128 0.01175
150 a 0.01085 0.00321 0.00333 0.01693 0.00608 0.00637
o 0.01481 0.00729 0.00751 0.01100 0.00305 0.00317
250 a 0.00280 0.00186 0.00187 0.00456 0.00366  0.00368
o 0.00702 0.00401 0.00406 0.00280 0.00169 0.00170
350 a 0.00219 0.00102 0.00102 0.00461 0.00271 0.00273
o 0.00175 0.00232 0.00232 0.00296 0.00123 0.00124
450 a 0.00309 0.00088 0.00089 -0.0002  0.00200 0.00200
o 0.00311 0.00222 0.00223 0.00188 0.00102 0.00103

XI. Data Analysis

This section assesses the effectiveness of the stated distribution using real-world data. We fitted the
LER distribution to many other models for comparative purposes, including Weibull distribution
(WD), Exponentiated exponential distribution (EED), Frechet distribution (FD), inverse Burr
distribution (IBD), Rayleigh distribution (RD) and exponential distribution (EXD).

We will use certain measures to evaluate which of the competitive models is the strongest, including
AIC (Akaike Information Criterion), CAIC (Consistent Akaike Information Criterion), BIC (Bayesian
Information Criterion) and HQIC (Hannan-Quinn Information Criterion). Such criteria can be
represented mathematically by

AIC =2k -2Inl CAIC = 2hn

n—-k-1

BIC=kInn-2Inl/ and HQIC=2kIn(In(n))-2In!

—21Inl

We compute Anderson-Darling (A*), Cramer-Von Misses (W¥), Kolmogorov-Smirnov Statistic, and P-
value in addition to the aforementioned goodness of measures. The model with the lowest value of
these indicators and the greatest p-value is considered the best among the competing models.

Data Set: The data set was originally reported by Bader and Priest (1982), on failure stresses (in GPa)
of 65 single carbon fibres of lengths 50 mm, respectively. The data set is given as follows

1.339,1.434,1.549,1.574,1.589,1.613,1.746,1.753,1.764,1.807,1.812,1.84,1.852,1.852,1.862,1.864,1.931,1.952,1
.974,2.019,2.051,2.055,2.058,2.088,2.125,2.162,2.171,2.172,2.18,2.194,2.211,2.27,2.272,2.28,2.299,2.308,2.33
5,2.349,2.356,2.386,2.39,2.41,2.43,2.458,2.471,2.497,2.514,2.558,2.577,2.593,2.601,2.604,2.62,2.633,2.67,2.68
2,2.699,2.705,2.735,2.785,3.02,3.042, 3.116, 3.174.

Table 2: The Min Q1 Med. Mean Qs Kurt. Skew. Max descriptive statistics
for data set

1.339 1914 2271 2241 2563 25270 0.0419 3.174
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Table 3: The ML Estimates

for data set

Model

LERD
WD
EED
FD
RD
IBD
EXD

ML Estimates

Standard
Error

A

o

1.3473
0.0059
2.3310
1.9940
0.3849
5.0822
0.4462

A

o

0.1356
0.0022
0.2045
0.0530
0.0481
0.4311
0.0557

0
3.7652
0.4026
46.011
0.4439

(standard error in parenthesis)

Table 4: Comparison criterion and goodness of fit statistics for data set

Model —2log/ AIC CAIC BIC HQIC
LERD 69.712 73.712 73909 78.030 75.413
WD 70.756 74.756 74952  79.073  76.457
EED 76.657  80.657 80.853 84.974  82.358
FD 86.443 90.443 90.642 94.761 92.144
RD 149.168 151.16 151.23 153.32 152.01
IBD 85.506 89.506 89.702 93.824 91.207
EXD 231.29 23329 233.35 23545 234.14

Table 5: Other goodness of fit statistics criterion for data set

Model w A K-S value p-value
LERD 0.04714  0.2987 0.0670 0.9357
WD 0.0590  0.3836  0.0787 0.9181
EED 0.1173 0.7114 0.1006 0.5363
FD 0.2547 1.5484 0.1221 0.2949
RD 0.0834  0.3266  0.3501 3.054e-07
IBD 0.2428 1.4748 0.1186 0.3288
EXD 0.04735 0.3986 0.4677 1.374e-12
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Density

In this study, a novel technique known as log exponentiated transformation (LET) is suggested. As an
illustration, the Rayleigh distribution is employed as the baseline distribution, and a novel two-
parameter log exponentiated Rayleigh distribution (LERD) which proved more flexible has been
studied. Several mathematical aspects of the newly developed distribution are deduced and analysed.
The MLE approach is used to acquire the parameters. From table 8.3 and 8.6 it is evident that the

1.0

08
1

06
1

04

02
1

00
L

Volume 17, March 2022

Fig. 1.7 :Estimated pdf's of the fitted models for data set Fig 1.8 Empirical cdf versus fitted cdf's for data set
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XII. Conclusions

formulated distribution outranks than compared ones.
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