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Abstract

In this article, we propose the estimators for the parameters of exponentiated exponential distribution
under generalized progressive hybrid censoring scheme obtained through different methods of estimations
like maximum likelihood, Maximum product spacing, Bootstrap and Bayesian. Asymptotic confidence,
Bootstrap and HPD intervals have also been computed. Moreover, Stress Strength reliability estimation
is also discussed. The performance of the estimators have been studied in terms of their MSEs. Bayesian
prediction of future observations has also been attempted. For illustrating the proposed methodology, a
real data set is taken into account.

Keywords: Exponentiated Exponential distribution, generalized progressive hybrid censoring
scheme, Stress-Strength Reliability, Bayes estimates, Bayesian prediction.

1. Introduction

The progressive hybrid censoring schemes has gained considerable attention in past few years.
[1] and [2] have considered progressive hybrid type-I censoring scheme. In PHT-I, n units are
put on test with progressive censoring scheme (R1, R2, ···, Rm) and the time of termination of the
experiment is fixed as T∗ = min{Xm:m:n, T}(Xm:m:n denotes mth order failure time), T ∈ (0, ∞)
and 1 ≤ m ≤ n are prefixed constants. In PHT-I,test can never exceed T which facilitates reduction
in time and cost of the experimentation. The problem arises when the unknown average life time
is higher than the stopping time that results to a status with less than m failures to be observed.
It ultimately reduces the efficiency of the inference based on the censored data.

[2] further proposed progressive hybrid type-II censoring scheme. In PHT-II, the experiment
is terminated at time T∗ = max{Xm:m:n, T} which assures at least m number of failures (see [2]).
When Xm:m:n > T, the experiment is terminated at mth failure with withdrawals occurring at each
failure according to pre-specified progressive scheme (R1, R2, ···, Rm) that may lead to significant
increase in the time of termination. On the other hand, when Xm:m:n < T, we observe failure
upto time T. The termination time in this censoring scheme is unknown to the experimenter.
From the above discussion, we note that PHT-I censoring keeps the termination time of the
experiment below prefixed value by compromising the efficiency where as PHT-II censoring
ensures efficiency more than the prefixed level but compromises the termination time. Therefore,
need for a censoring scheme controlling termination time and efficiency simultaneously was felt.
Keeping this point in mind, [3] introduced a censoring scheme called generalized progressive
hybrid (GPH) censoring scheme.

RT&A, No 2 (68) 
Volume 17, June 2022 

291

mailto:arundevkauhsik@gmail.com
mailto:akritibhu@gmail.com 
mailto:singhsk64@gmail.com 


A. Pandey, A. Kaushik & S. K. Singh
ESTIMATION AND PREDICTION UNDER GPH CENSORING

The paper envisages exponentiated exponential distribution(EED) as a lifetime distribution
which was introduced by [4]. Many author studied the EED, see [5], [6] and [7].

The probability density function of EED is given as

f (x|α, β) = αβe−βx(1 − e−βx)α−1; x ≥ 0, α, β > 0. (1)

where α and β are the shape and scale parameters and the cumulative distribution function is
given by

F(x|α, β) = (1 − e−βx)α. (2)

The requisition for the prediction of future sample on the basis of current information started
burgeoning demand since it has found application in a wide range of activities including science,
engineering, statistics, social sciences and other applied areas. Predictive inference facilitates to
infer about future lifetimes using observed data. This impetus is welcomed by many authors and
they made successful effort to draft the problem of Bayesian prediction of future observations
based on various types of censored data from different lifetime models. A lot of research paper is
available in literature on the prediction problem in case of censored as well as complete data (see
[8], [9],[10], [11],[12]).

The paper is organized as follows. Section 2 describes the censoring scheme in detail. Section
3 provides estimates through different methods of estimation i.e. Maximum Likelihood estimates,
estimates through Maximum product spacing method, Bootstrap estimates and Bayesian Estimates.
Section 4 is about Bayesian Prediction of future observations based on GPH censored data in
which both one sample prediction and two sample prediction has been attempted. It also contains
stress strength reliability estimates. In section 5, a real data set is considered to demonstrate
the applicability of the methodology. In section 6, a simulation study is conducted. Finally,
conclusions are summarized in section 7.

2. The Censoring Scheme

Let the experiment begins with n units. The lifetime of the sample units X1, X2, · · ·, Xn are
supposed to be independent and identically distributed random variables from a distribution
with cumulative density function (cdf) F(·) and probability density function (pdf) f (·). we
have prefixed integers k, m ∈ {1, 2, · · ·, n} such that k < m. Let Ri denotes the number of units
which are randomly removed from the experiment at ith failure obeying the condition that
∑m

i=1 Ri + m = n. The test is terminated at the stopping time T∗ = max{Xk:m:n, min{Xm:m:n, T}}.
It may be noted that this scheme guarantees a bare minimum number of k failures. Let D be the
number of observed failures up to time T. Then for observed observations, following three cases
arise under this scheme:

Case-I: X1:m:n, · · · , X2:m:n, · · · , Xk:m:n, if T < Xk:m:n,

Case-II: X1:m:n, · · · , Xk:m:n, · · · , XD:m:n, if Xk:m:n < T < Xm:m:n,

Case-III: X1:m:n, · · · , Xk:m:n, · · · , Xm:m:n, if Xk:m:n < Xm:m:n < T.

A schematic representation of this censoring scheme is given in figure 1. Note that for the
Case-I, Xk+1:m:n, · · ·, Xm:m:n are not observed; likewise for the Case-II, XD+1:m:n, · · ·, Xm:n:n are not
observed. Given a generalised progressive censored sample, the likelihood function for Case-I,
Case-II and Case-III denoted by LI(α, β), LI I(α, β)and LI I I(α, β) is given below:

Case-I: LI(α, β) = K1

k−1

∏
j=1

f (xj:m:n)[1 − F(xj:m:n)]
Rj f (xk:m:n)[1 − F(xk:m:n)]

R∗
k ,

Case-II: LI I(α, β) = K2

D

∏
j=1

f (xj:m:n)[1 − F(xj:m:n)]
Rj [1 − F(T)]R

∗
D+1 ,

Case-III: LI I I(α, β) = K3

m

∏
j=1

f (xj:m:n)[1 − F(xj:m:n)]
Rj ,

(3)
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Figure 1: Schematic representation of generalised progressive hybrid censoring Scheme

where K1 = [∏k
j=1 ∑m

k=j(Rk + 1)], K2 = [∏D
j=1 ∑m

k=j(Rk + 1)], K3 = [∏m
j=1 ∑m

k=j(Rk + 1)], R∗
k =

[n − k − ∑k−1
i=1 Ri] and R∗

D+1=[n − D − ∑D
i=1 Ri].

3. Estimation

3.1. Classical Estimation

3.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation is one of the most felicitous method in classical paradigm to
obtain the estimates of the parameters of proposed distribution. In this section, we will find the
MLEs of α and β of the considered distribution. The MLEs α̂ and β̂ of α and β, respectively can be
obtained by maximising the likelihood function. Using the equations (1) and (2), the likelihood
can be written as :

L(α, β) ∝ (αβ)J
J

∏
j=1

(1 − e−βxj)α−1e−βxj [1 − (1 − e−βxj)α]Rj × W(α, β), (4)

where W(α, β) =

{
1, if J = k, m[
1 − (1 − e−βT)α

]R∗
D+1 , if J = D.

and hence log-likelihood equation will be

l(α, β) ∝J × ln(αβ) + (α − 1)
J

∑
j=1

ln(1 − e−βxj)

+
J

∑
j=1

Rj ln[1 − (1 − e−βxj)α]− β
J

∑
j=1

xj + ln W(α, β),

(5)
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Differentiating it with respect to the parameters α and β respectively, we get :

∂l(α, β)

∂α
=

J
α
+

J

∑
j=1

ln(1 − e−βxj )−
J

∑
j=1

Rj(1 − e−βxj )α ln(1 − e−βxj )

1 − (1 − e−βxj )α
+

∂ ln W(α, β)

∂α
(6)

∂l(α, β)

∂β
=

J
β
+ (α − 1)

J

∑
j=1

xje
−βxj

(1 − e−βxj )
−

J

∑
j=1

Rjα(1 − e−βxj )α−1xje
−βxj

1 − (1 − e−βxj )α
−

J

∑
j=1

xj +
∂ ln W(α, β)

∂β
(7)

where ∂ ln W(α,β)
∂α = −

R∗D+1(1−e−βT )α

1−(1−e−βT )α
× ln(1− e−βT) and ∂ ln W(α,β)

∂β = −
R∗D+1α(1−e−βT )α−1

1−(1−e−βT )α
×Te−βT, if J = D and zero otherwise.

The MLE of α and β can be obtained by solving likelihood equations (6) and (7) simultaneously.
But it may be noted that explicit solutions of the above equations are difficult to find. Therefore,
we propose the use of numerical method to obtain the solution for the above two non linear
equations.

3.1.2 Maximum Product Spacing Method

It has underscored that for small samples MPS often perform better than MLE. The asymptotic
behaviour of both MPS and MLE methods is same. In this section the method of product of
spacings is proposed for point estimation of parameters of EED under GPH censoring scheme.
The product spacing, denoted as G, is defined as product of the probabilities of an observation
lying in the intervals induced by the sample observations and MPS estimates are values of
the parameters that maximizes G . The expressions for G and corresponding equations whose
solutions provide the MPS estimates are given below:
For Case I and Case III:

G ∝
J+1

∏
i=1

[F(xi)− F(xi−1)]
J

∏
i=1

[1 − F(xi)]
Ri

∝
J+1

∏
i=1

[(1 − e−βxi )α − (1 − e−βxi−1)α]
J

∏
i=1

[1 − (1 − e−βxi )α]Ri

The logarithm of G is

logG ∝
J+1

∑
i=1

log[(1 − e−βxi )α − (1 − e−βxi−1)α] +
J

∑
i=1

Rilog[1 − (1 − e−βxi )α] (8)

The partial derivatives with respect to the parameters when equated to zero gives the following:

dlogG
dα

=
J+1

∑
i=1

(1 − e−βxi )αlog(1 − e−βxi )− (1 − e−βxi−1)αlog(1 − e−βxi−1)

[(1 − e−βxi )α − (1 − e−βxi−1)α]

−
J

∑
i=1

Ri
(1 − e−βxi )αlog(1 − e−βxi )

[1 − (1 − e−βxi )α]
= 0

(9)

dlogG
dβ

=
J+1

∑
i=1

α(1 − e−βxi )α−1e−βxi xi − α(1 − e−βxi−1)α−1e−βxi−1 xi−1

[(1 − e−βxi )α − (1 − e−βxi−1)α]

−
J

∑
i=1

Ri
α(1 − e−βxi )α−1e−βxi xi

[1 − (1 − e−βxi )α]
= 0

(10)

For Case II:

G ∝
D

∏
i=1

[F(xi)− F(xi−1)](F(T)− F(D))(1 − F(T))
D

∏
i=1

[1 − F(xi)]
Ri [1 − F(T)]R

∗
D+1

∝
D

∏
i=1

[(1 − e−βxi )α − (1 − e−βxi−1)α][(1 − e−βT)α − (1 − e−βD)α][1 − (1 − e−βT)α]

D

∏
i=1

[1 − (1 − e−βxi )α]Ri [1 − (1 − e−βT)α]R
∗
D+1
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and

logG ∝
D

∑
i=1

log[(1 − e−βxi )α − (1 − e−βxi−1)α] + log[(1 − e−βT)α − (1 − e−βD)α]

+ log[1 − (1 − e−βT)α] +
D

∑
i=1

Rilog[1 − (1 − e−βxi )α] + R∗
D+1log[1 − (1 − e−βT)α]

The resulting equations are

dlogG
dα

=
D

∑
i=1

(1 − e−βxi )αlog(1 − e−βxi )− (1 − e−βxi−1)αlog(1 − e−βxi−1)

[(1 − e−βxi )α − (1 − e−βxi−1)α]

+
(1 − e−βT)αlog(1 − e−βT)− (1 − e−βD)αlog(1 − e−βD)

[(1 − e−βT)α − (1 − e−βD)α]

− (1 − e−βT)αlog(1 − e−βT)

[1 − (1 − e−βT)α]
−

D

∑
i=1

Ri
(1 − e−βxi )αlog(1 − e−βxi )

[1 − (1 − e−βxi )α]

− R∗
D+1

(1 − e−βT)αlog(1 − e−βT)

[1 − (1 − e−βT)α]
= 0

(11)

dlogG
dβ

=
D

∑
i=1

α(1 − e−βxi )α−1e−βxi xi − α(1 − e−βxi−1)α−1e−βxi−1 xi−1

[(1 − e−βxi )α − (1 − e−βxi−1)α]

+
α(1 − e−βT)α−1e−βTT − α(1 − e−βD)α−1e−βDD

[(1 − e−βT)α − (1 − e−βD)α]

− α(1 − e−βT)α−1e−βTT
[1 − (1 − e−βT)α]

−
D

∑
i=1

Ri
α(1 − e−βxi )α−1e−βxi xi

[1 − (1 − e−βxi )α]

− R∗
D+1

α(1 − e−βT)α−1e−βTT
[1 − (1 − e−βT)α]

= 0

(12)

Similar to the likelihood equations, MPS equations are also non-linear equations, thus an
approach similar to that proposed for MLE is to used here also.

3.1.3 Bootstrap Estimates

The asymptotic confidence intervals are generally expected not to perform well when the effective
sample size is small. The key provision that seeks to address such problems is re-sampling
technique such as bootstrap. This tool provides a tactical way as it would give more accurate
approximate confidence interval. Basically a couple of methods are available in literature to find
bootstrap confidence intervals for the parameter of interest. One is percentile bootstrap (Boot-p)
confidence interval given by [13] and another one is student’s t bootstrap (Boot-t) confidence
interval suggested by [14]. The generation algorithm for GPH censored sample is discussed in
section 6. We propose to use the following algorithm to generate parametric bootstrap samples,
suggested by [15] as given below.
Algorithm:

Step 1. Compute α̂ and β̂ which is nothing but the ML estimate of the parameter α and β
respectively based on GPH censored sample x = (x1:J:n, x2:J:n, · · ·, xJ:J:n).

Step 2. Generate the bootstrap GPH censored samples x∗ = (x∗1:J:n, x∗2:J:n, · · ·, x∗J:J:n) from EED
with parameters α̂ and β̂ by using algorithm given in section 6. From these data, we compute
bootstrap estimates say, α̂∗ and β̂∗.

Step 3. Repeat step 2, B times to obtain a set of bootstrap GPH censored samples of α and β as
(α̂∗1 , α̂∗2 , · · ·, α̂∗B) and (β̂∗

1, β̂∗
2, · · ·, β̂∗

B).
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From the bootstrap samples generated from the above algorithm, the bootstrap confidence
intervals for the parameters α and β can be obtained by Boot-p method which is as follows: Let
G(x) = Prob(α̂∗ ≤ x) be the cdf of α̂∗. Define α̂Boot(x)=G−1(x) for given x. The 100(1 − ζ)%

bootstrap percentile interval for α is given by
(

α̂Boot

(
ζ
2

)
, α̂Boot

(
1 − ζ

2

))
, which is ζ

2 and (1 − ζ
2 )

quantiles of bootstrap sample α̂∗1 , α̂∗2 , · · ·, α̂∗B. In the similar fashion we can obtain bootstrap
percentile interval for β.

3.2. Bayesian Estimation

This section contains the method of obtaining Bayes estimates of the parameters α and β based
on GPH censored data with prefixed removals. In order to obtain Bayes estimators, we assume
that the parameters α and β are random variables which are independently distributed having
prior distribution as:

g1(α) =
λν1

1
Γν1

e(−λ1α)αν1−1; 0 < α < ∞, λ1 > 0, ν1 > 0 (13)

g2(β) =
λν2

2
Γν2

e(−λ2β)βν2−1; 0 < β < ∞, λ2 > 0, ν2 > 0 (14)

respectively. Combining the priors given by (13) and (14) with likelihood function in (4), we

obtain the joint posterior density function of α and β given as π(α, β|x, R) =
J1

J0
, where

J1 =
λν1

1
Γν1

λν2
2

Γν2
e−(λ1α+λ2 β)α(J+ν1−1)β(J+ν2−1)

J

∏
j=1

(1 − e−βxj )(α−1)[1 − (1 − e−βxj )α]Rj e−βxj (15)

and J0 =
∫ ∫

J1dαdβ. Bayes estimators α̂E and β̂E of α and β under SELF(squared error loss
function) can be obtained as

α̂B =
∫ ∞

0

∫ ∞

0
απ1(α|x, R)dαdβ, β̂B =

∫ ∞

0

∫ ∞

0
βπ2(β|x, R)dαdβ (16)

The integrals involved in equation (16) can not be simplified in any standard form. So we use
MCMC numerical technique to obtain the estimates. We have used Metropolis-Hastings within
Gibbs sampling. The full conditional posterior distribution of parameters α and β are

π1(α|x, R) =
λν1

1
Γν1

λν2
2

Γν2
e−(λ1α)α(J+ν1−1)

J

∏
j=1

(1 − e−βxj )(α−1)[1 − (1 − e−βxj )α]Rj W(α, β) (17)

π2(β|x, R) =
λν1

1
Γν1

λν2
2

Γν2
e−(λ2 β)β(J+ν2−1)

J

∏
j=1

(1 − e−βxj )(α−1)[1 − (1 − e−βxj )α]Rj e−βxj W(α, β) (18)

The algorithm consists of following steps:
1. Set i=1 and initial guesses of α and β say the are α0 and β0.

2. Using Metropolis algorithm, Generate (αi, βi) from π(α, β, x, R).

3. Repeat steps 2-4, N number of times and obtain (α1, β1),(α2, β2)· · · (αN , βN).

4. Obtain the Bayes estimates of α and β under SELF as [E(α|data)] =

[
1

N − N0
∑N

i=N0+1 αi

]
and

[E(β|data)] =
[

1
N − N0

∑N
i=N0+1 βi

]
. Where N0 is the burn in period.

5. The HPD credible intervals for α and β can be obtained by using algorithm given by [16]. Let
the ordered MCMC sample be (α[1], α[2], · · ·, α[N]) and (β[1], β[2], · · · , β[N]). Futher 100(1 − ζ)%
credible intervals of the parameters are constructed say (α⌊1⌋, α⌊N(1−ζ)⌋), · · · , (α⌊Nζ⌋, α⌊N⌋) and
(β⌊1⌋, β⌊N(1−ζ)⌋), · · · , (β⌊Nζ⌋, β⌊N⌋). Where⌊x⌋ denotes the greatest integer less than or equal to
x. The HPD credible interval of α and β is that interval which has shortest length.
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4. Bayesian Prediction

4.1. One Sample Prediction

The Bayes prediction of an unknown observation which belongs to the future sample based on
the current information available to us, would be a great tool to have an idea about lifetime
of unobserved data. The one sample facilitates us to predict the lifetime of future ordered
observation which may not be observed due to censoring. In the current section, we have derived
the predictive posteriors for the future observations from EED using the informative sample that
has been observed under GPH censoring scheme.

Let x(1), x(2), · · ·, x(i) be the ordered observed sample and y(1:r1)
, y(2:r2)

, · · ·, y(s:ri)
be future

ordered sample from same parent population where s = 1, 2, · · ·, ri and i = 1, 2, · · ·, J (J = k for
case-II, J = D for case-I, and J = m for case-III) . From [17], the conditional PDF of y(s:ri)

given
x(i) is obtained as

f (y(s:ri)
|x(i)) =


(n − i)!

(s − 1)!(n − i − s)!

[1 − F(y(s:ri )
)]n−i−s

[1 − F(x(i) )]
n−i [F(y(s:ri )

)− F(x(i) )]
s−1 f (y(s:ri )

);

for case-I and case-III

(n − i)!
(s − 1)!(n − i − s)!

[1 − F(y(s:ri )
)]n−i−s

[1 − F(T)]n−i [F(y(s:ri )
)− F(T)]s−1 f (y(s:ri )

);

for case-II.

(19)

After putting the pdf and cdf from equations (1) and (2), we get

f (y(s:ri)
|x(i)) =



(n − i)!
(s − 1)!(n − i − s)!

[1 − (1 − exp(−βy(s:ri)
))α]n−i−s

[1 − (1 − exp(−βx(i)))α]n−i

[(1 − exp(−βy(s:ri)
))α − (1 − exp(−βx(i)))

α]s−1

αβexp(−βy(s:ri)
)(1 − exp(−βy(s:ri)

))α−1; for case I and case-III

(n − i)!
(s − 1)!(n − i − s)!

[1 − (1 − exp(−βy(s:ri)
))α]n−i−s

[1 − (1 − exp(−βT))α]n−i

[(1 − exp(−βy(s:ri)
))α − (1 − exp(−βT))α]s−1

αβexp(−βy(s:ri)
)(1 − exp(−βy(s:ri)

))α−1; for case-II.

(20)

Then, the predictive posterior density of future observation under GPH censoring scheme can be
obtained as

f1(y(s:ri)
|x̃) =

∫ ∞

0

∫ ∞

0
f (y(s:ri)

|α, β, x̃)π(α, β|x̃)dαdβ. (21)

Since the integrals involved in the expression can not be simplified to closed form suggest to use
the numerical methods.

The MCMC sample {(αi, βi), i = 1, 2, · · ·, M} obtained from π(α, β|x̃) using Gibbs algorithm
can be utilized to obtain consistent estimate of f1(y(s:ri)

|x̃) as

f ∗1 (y(s:ri)
|x̃) = 1

M − M0

M−M0

∑
i=1

f (y(s:ri)
|αi, βi, x̃) (22)

Where M0 denotes the burn-in-period of Markov Chain. Furthermore, the Survival Function of
the future sample can be obtained as

Sy(s:ri)
(T) =1 −

∫ T

y(s:ri)
=x(J)

f1(y(s:ri)
|x̃)dy(s:ri)

=1 −
∫ T

y(s)=x(J)

∫ ∞

0

∫ ∞

0
f (y(s:ri)

|α, β, x̃)π(α, β|x̃)dαdβdy(s:ri)

(23)

Moreover, the two sided 100(1 − δ)% prediction intervals (Ls:ri , Us:ri ) for y(s:ri)
can be obtained by

solving the following two equations P(y(s:ri)
> Us:ri |x̃) = δ

2 and P(y(s:ri)
> Ls:ri |x̃) = 1 − δ

2 . The
confidence interval can be obtained by any iterative method as the above equations can not be
solved analytically.
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4.2. Two Sample Prediction

There may occur a situation, where the distribution of kth order statistics is independent of the
informative sample i.e. f (y(k)|α, β, x̃) is same as f (y(k)|α, β). This is the case of two sample
prediction problem. The experimenter is interested in kth failure time of a future sample of size N
following the same lifetime distribution. The PDF of kth order statistics is given by: (see [17])

p(y(k)|α, β) =
N!

(k − 1)!(N − k)!
[F(y(k))]

k−1[1 − F(y(k))]
N−k f (y(k)). (24)

after putting the pdf and cdf from equations (1) and (2), we get

p(y(k)|α, β) =
N!

(k − 1)!(N − k)!
(1 − exp(−βy(k)))

α(k−1)[1 − (1 − exp(−βy(k)))
α]N−k

αβexp(−βy(k))(1 − exp(−βy(k)))
α−1

(25)

The predictive posterior density of future observations under GPH censoring scheme is given by

p1(y(k)|x̃) =
∫ ∞

0

∫ ∞

0
p(y(k)|α, β, x̃)π(α, β|x̃)dαdβ. (26)

Since the above equation can not be solved analytically. Therefore we use MCMC method along
with Gibbs algorithm to obtain the consistent estimator of p1(y(k)|x̃) is given by

p∗1(y(k)|x̃) =
1

M − M0

M−M0

∑
i=1

p(y(k)|αi, βi), (27)

where M0 is the burn-in-period. The survival function of future sample can be defined as

Sy(k)(T) =1 −
∫ T

y(k)=0
p1(y(k)|x̃)dy(k)

=1 −
∫ T

y(k)=0

∫ ∞

0

∫ ∞

0
p(y(k)|α, β, x̃)π(α, β|x̃)dαdβdy(k).

(28)

The two sided 100(1 − δ)% prediction interval (Lk, Uk) for y(k) can be obtained by solving the
equations P(y(k) > Uk|x̃) = δ

2 and P(y(k) > Lk|x̃) = 1 − δ
2 . The confidence interval can be

obtained by any iterative method as the above equations can not be solved analytically.

4.3. Stress Strength Reliability

The problem of stress strength reliability estimation is not new rather it has a long history. The
term stress strength was first introduced by [18]. Since then, a lot of works have been done in this
direction including parametric and non-parametric in nature. One may navigate through some
recent works as [19] and [20]. This section discusses the inferential procedure of stress strength
reliability R = P(X < Y), when X and Y are independent and following EED with parameters
(α1, β1) and (α2, β2) respectively. In a reliability study, let X denotes the strength of the unit and
Y denotes the magnitude of stress applied to the unit by operating environment. A unit will
function well if its strength is greater than the stress imposed on it. The stress-strength reliability
R of the system is defined as

R =Pr[X < Y] =
∫ ∞

0

∫ ∞

y
fX(x) fY(y)dxdy

=
∫ ∞

0
fY(y)(1 − FX(y))dy

=
∫ ∞

0
α2β2e−β2y(1 − e−β2y)α2−1[1 − (1 − e−β1y)α1 ]dy

=1 − α2

∞

∑
i=0

(α1

i

)
(−1)iB

(
α2,

iβ1

β2
+ 1

)
(29)
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In a special case, when β1 = β2, this reduced to R =
α1

α1 + α2
. Further, one can compute the

estimate of R by using the method discussed in section 3.

5. Real Data Illustration

This section deals with real life applicability of proposed methodology. The data set comprises
survival times of two groups of patients suffering from head neck cancer disease which was
reported by [21]. First group of patients are treated with radiotherapy whereas second group of
patients are treated with both radiotherapy and chemotherapy. The data set is as follows:
Data-1(X): 6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 64, 83, 84, 91, 108,
112, 129, 133,133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160, 165,
173, 176, 218, 225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417.
Data-2(Y): 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47,
81, 43, 84, 92,94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319,
339, 432, 469, 519, 633, 725,817, 1776.
Before advancing further, we first check the validity of EED for the above data sets. The summary
of data fit is quoted here:

Data Set p-value KS-distance LogL AIC BIC α̂ML SE(α̂ML) β̂ML SE(β̂ML)
RT 0.0646 0.1720 -372.3767 748.7535 752.8743 1.0636 0.1851 0.0046 0.0007

RT+CT 0.2505 0.1498 -281.9551 567.9101 571.4785 1.0730 0.2178 0.0047 0.0009
So, it is clear that EED fits to the above two data sets. For illustrating the proposed methodology,
we have generated censored data for a prefixed m, k, T and number of removals. We have
considered different removal patterns by fixing values of R1, R2, · · · , Rm for a set of values of m,
k and T. The schemes those have been considered are as follows:

Sm:n
(1): All the removals are at the last failure, i.e. Rm = n − m.

Sm:n
(2): All the removals are at the first failure, i.e. R1 = n − m.

Sm:n
(3): The removals are at the first and last failure, i.e. R1 = Rm = (n − m)/2.

Sm:n
(4): The removals are at middle failure, i.e. Rm/2 = Rm/2+1 = (n − m)/2.
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Figure 2: Contour plot for parameters α(Left) and β(Right) based on generated censored dataset-2.4.

Thus, generated censored datasets are given in Table 1. As mentioned earlier, the likelihood,
product spacing equations and posterior integral do not have explicit solutions, therefore, numer-
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ical approach coupled with R software is maneuvered. Basically optim(·) function is used here to
find the ML and MPS estimates of the parameters. We have used contour plot which is shown in
figure 2 to provide initial guess to the optim(·) function. For more details reader may see [22].
Using the concept of large sample theory, the asymptotic confidence interval for α and β are also
computed and variance of the estimates evaluated by inverse of estimated Fisher Information
matrix. The point and asymptotic confidence interval estimates, thus obtained, are summarized
in table 2.

Table 1: The censored datasets generated from real datasets by considering different choices of k, m, T and removal
patterns

k m T Scheme Generated data-points Data Name
Data-1(RT)

25 40 600 S(4) (6.53, 7, 10.42, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 53.62, 63,
64, 83, 84, 91, 108, 112, 129, 133, 140, 140, 146, 154, 160, 160, 160,
165, 218, 225, 241, 248, 273, 417, 523, 594)

1.1

25 40 600 S(3) (6.53, 7, 10.42, 14.48, 16.1, 22.7, 41.55, 42, 45.28, 53.62, 63, 64, 84,
91, 108, 112, 129, 133, 133, 140, 146, 146, 149, 154, 154, 157, 157,
160, 160, 160, 160, 165, 165, 173, 176, 218, 225, 241, 248, 273)

1.2

25 40 600 S(2) (6.53, 10.42, 14.48, 16.1, 22.7, 41.55, 42, 45.28, 49.4, 63, 64, 84, 91,
112, 133, 139, 140, 146, 146, 149, 157, 157, 160, 160, 160, 165, 173,
218, 225, 241, 248, 273, 277, 297, 405, 420, 583, 594)

1.3

25 40 600 S(1) (6.53, 7, 10.42, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 53.62, 63,
64, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140, 140, 146, 146, 149,
149, 154, 154, 157, 157, 160, 160, 160, 160, 165, 165, 173)

1.4

Data-2(RT+CT)
20 30 600 S(4) (12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 43, 47.38, 55.46, 58.36,

63.47, 68.46, 74.47, 78.26, 84, 92, 119, 127, 133, 140, 146, 173, 179,
194, 195, 209, 281, 339, 519)

2.1

20 30 600 S(3) (12.2, 23.56, 23.74, 25.87, 31.98, 37, 43, 47.38, 55.46, 58.36, 63.47,
68.46, 74.47, 81, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 159,
179, 194, 195, 209, 249)

2.2

20 30 600 S(2) (12.2, 23.56, 23.74, 25.87, 37, 43, 63.47, 68.46, 74.47, 78.26, 81, 84,
92, 110, 112, 119, 127, 133, 146, 155, 159, 173, 179, 194, 209, 249,
319, 469, 519)

2.3

20 30 600 S(1) (12.2, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 43, 47.38, 55.46, 58.36,
63.47, 68.46, 74.47, 78.26, 81, 84, 92, 94, 110, 112, 119, 127, 130, 133,
140, 146, 155, 159, 173)

2.4
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Figure 3: Iteration and density plot of MCMC sample for parameters α (Left) and β (Right) for dataset-2.4.

To compute Bayes estimates for considered dataset, we have used MCMC technique discussed
in Section 3.2. Following [23], we ran three MCMC chains with initial values selected as MLE,
MLE - (asymptotic standard deviation) and MLE + (asymptotic standard deviation), respectively.
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Table 2: ML, MPS, Bayes and Bootstrap estimates with their respective 95% CI of parameters (within bracket) for
generated censored datasets

Datasets α̂ML α̂MP α̂B α̂Boot
1.1 0.9116(0.5719,1.2443) 0.8971(0.5889,1.2346) 0.8955(0.5912,1.2341) 0.9003(0.5892,1.2800)
1.2 1.3696(0.8197,1.9074) 1.2563(0.8332,1.9063) 1.2674(0.8572,1.9057) 1.3119(0.8329,2.0743)
1.3 1.0873(0.6322,1.5072) 1.0305(0.6688,1.5061) 1.2249(0.6933,1.4851) 1.0344(0.6688,1.5021)
1.4 1.5528(0.8724,2.1812) 1.4249(0.9307,2.1751) 1.4378(0.9512,2.1749) 1.4689(0.9355,2.2880)
2.1 1.6421(0.8167,2.4140) 1.5305(0.8729,2.4106) 1.4925(0.8728,2.1817) 1.5491(0.7875,2.4105)
2.2 2.3914(1.1093,3.5832) 2.2012(1.2013,3.5812) 2.4258(1.2016,3.2355) 2.1641(1.1022,3.5816)
2.3 1.3544(0.6903,1.9820) 1.3471(0.7367,1.9713) 1.4143(0.7366,1.8731) 1.3384(0.6989,1.9716)
2.4 1.8013(0.8838,2.7044) 1.6441(0.9086,2.6934) 1.7765(0.9084,2.6250) 1.9375(0.9082,2.6942)

Datasets β̂ML β̂MP β̂B β̂Boot
1.1 0.0032(0.0001,0.0123) 0.0032(0.0010,0.0044) 0.0033(0.0013,0.0045) 0.0031(0.0001,0.0115)
1.2 0.0069(0.0034,0.0121) 0.0068(0.0040,0.0094) 0.0067(0.0036,0.0093) 0.0069(0.0033,0.0116)
1.3 0.0047(0.0017,0.0163) 0.0047(0.0017,0.0065) 0.0049(0.0021,0.0065) 0.0049(0.0018,0.0155)
1.4 0.0078(0.0042,0.0148) 0.0078(0.0048,0.0108) 0.0077(0.0041,0.0107) 0.0081(0.0038,0.0145)
2.1 0.0084(0.0047,0.0176) 0.0081(0.0046,0.0120) 0.0091(0.0051,0.0120) 0.0082(0.0045,0.0169)
2.2 0.0124(0.0072,0.0195) 0.0116(0.0064,0.0171) 0.0114(0.0067,0.0171) 0.0115(0.0056,0.0181)
2.3 0.0065(0.0031,0.0134) 0.0065(0.0031,0.0093) 0.0068(0.0032,0.0093) 0.0071(0.0021,0.0126)
2.4 0.0094(0.0040,0.0210) 0.0093(0.0048,0.0134) 0.0101(0.0043,0.0135) 0.0095(0.0042,0.0219)
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Figure 4: Density plot of one sample predicted order statistics with their respective 95% confidence interval.

Figure 3 shows the iterations and density plot of samples generated from the posterior distribution
using the MCMC technique. From this figure, we see that all the three chains have converged and
are well mixed. It is further noted that the posterior of α is approximately symmetric, but the
posterior of β is left skewed. Utilizing these MCMC samples, we computed the Bayes estimates,
following the method discussed in Section 3.2. The ML, MPS, Bayes and bootstrap estimates
of α are denoted by α̂ML, α̂MP, α̂B and α̂Boot respectively. Similarly, the ML, MPS, Bayes and
bootstrap estimates of β are denoted by β̂ML, β̂MP, β̂B and β̂Boot respectively. The point and HPD
interval estimates, thus obtained, are summarized in table 2. In the table 3, we have provided the
ML, MPS, Bayes and bootstrap estimates of stress-strength reliability for various combination of
censored real dataset.

One and two sample predictive densities along with prediction interval for the future ob-
servations are presented in figures 4 and 5, respectively. From figure 4, it is observed that the
proposed predictive interval for ordered observations contain the observed sample observations
and it verifies the applicability of the prediction techniques for real problems.
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Figure 5: Density plot of two sample predicted order statistics with their respective 95% confidence interval.

Table 3: ML, MPS, Bayes and Bootstrap estimates of reliability i.e. P[X < Y] and their respective 95% CI (within
bracket) for generated censored datasets

X-data Y-data MLE MPS Bayes Bootstrap
1.1 2.1 0.3878(0.1787,0.5288) 0.3654(0.1924,0.4988) 0.4060(0.1824,0.5277) 0.3813(0.1705,0.5355)

2.2 0.3526(0.1606,0.5766) 0.3301(0.1708,0.5361) 0.3328(0.1736,0.5652) 0.3377(0.1530,0.5715)
2.3 0.4149(0.2216,0.5831) 0.4046(0.2226,0.5489) 0.4084(0.2640,0.5470) 0.4071(0.2203,0.5587)
2.4 0.3765(0.2414,0.5330) 0.3479(0.2480,0.5074) 0.3707(0.2725,0.5292) 0.3613(0.2388,0.5508)

1.2 2.1 0.4814(0.2659,0.6414) 0.4356(0.2925,0.6119) 0.4864(0.2869,0.5833) 0.5050(0.2615,0.6333)
2.2 0.4389(0.2341,0.6136) 0.3978(0.2566,0.6091) 0.4169(0.2526,0.5616) 0.4512(0.2279,0.6179)
2.3 0.5116(0.3238,0.6443) 0.4713(0.3539,0.6079) 0.4821(0.3366,0.6337) 0.5153(0.3193,0.6693)
2.4 0.4683(0.3082,0.6499) 0.4289(0.3259,0.6055) 0.4426(0.3256,0.5865) 0.4846(0.3013,0.6371)

1.3 2.1 0.4359(0.2384,0.5971) 0.4134(0.2535,0.5661) 0.4201(0.2575,0.5614) 0.4424(0.2502,0.5871)
2.2 0.3963(0.1921,0.6534) 0.3776(0.2043,0.6376) 0.4115(0.2257,0.6047) 0.3915(0.1931,0.6517)
2.3 0.4646(0.2676,0.6356) 0.4570(0.2764,0.5951) 0.5066(0.3044,0.6284) 0.4526(0.2723,0.6223)
2.4 0.4234(0.2299,0.6457) 0.3895(0.2320,0.5831) 0.4316(0.2562,0.6262) 0.4115(0.2274,0.6610)

1.4 2.1 0.4913(0.2661,0.6446) 0.4572(0.2873,0.5917) 0.4515(0.2743,0.6207) 0.4774(0.2763,0.6586)
2.2 0.4477(0.2258,0.6491) 0.4205(0.2358,0.6083) 0.4763(0.2534,0.6061) 0.4638(0.2280,0.6809)
2.3 0.5221(0.3798,0.6829) 0.4964(0.3917,0.6572) 0.4962(0.4234,0.6533) 0.4970(0.3979,0.6771)
2.4 0.4778(0.2264,0.7030) 0.4654(0.2479,0.6595) 0.4398(0.2321,0.7011) 0.4642(0.2253,0.7258)

6. Simulation Study

A simulation study is conducted here to study the performance of the estimates of the parameters
α and β on the basis of MSEs under considered censoring scheme. It is to be mentioned here
that the exact expressions for the MSEs cannot be obtained because the estimators are not found
in explicit form. Therefore, the MSEs of the estimators are estimated on the basis of simulation
study of 5, 000 samples. It may be noted here that the MSEs of the estimators will depend on
values of n, k, m, T, α and β, and hence various choices have been made to study the effect thereof.
To generate a GPH censored sample from the considered distribution, see [24].

Here, we considered a number of values for sample size n. For an informative prior, the
hyper-parameters are chosen on the basis of information possessed by the experimenter. In most
cases, the experimenter can have a notion of what are the expected value of the parameter and
can always associate a degree of belief to this value. In other words, the experimenter can specify
the prior mean and prior variance for the parameters. The prior mean reflects the experimenter’s
belief about the parameter in the form of its expected value, and the prior variance reflects his
confidence in this expected value. Keeping this point in mind, we have chosen hyper-parameters
in such a way that the prior mean is equal to the true value of the parameter, and the belief in
the prior mean is either strong or weak, i.e. the prior variance is small or large, respectively;
for details see [25]. The average ML, MPS, Bayes and bootstrap estimates of parameter with
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corresponding MSEs are given in table 4 and table 5. The bias and MSEs of ML, MPS, Bayes and
bootstrap estimates of reliability function are given in table 6.

Table 4: Average estimate and MSE (within bracket) of different estimators of parameters for varying n and m

n m Scheme α̂ML α̂MP α̂B β̂ML β̂MP β̂B

90 80 S(1) 2.0683(0.1029) 2.0159(0.1025) 2.0686(0.0930) 2.0430(0.0583) 1.9429(0.0577) 2.0516(0.0522)
S(2) 2.0659(0.1029) 1.9642(0.1026) 2.0753(0.0928) 2.0514(0.0581) 1.9653(0.0575) 2.0457(0.0521)
S(3) 2.0615(0.1013) 2.0304(0.1008) 2.0572(0.0911) 2.0229(0.0562) 1.9410(0.0562) 2.0213(0.0506)
S(4) 2.0572(0.1147) 2.0421(0.1132) 2.0529(0.1027) 2.0499(0.0586) 1.9735(0.0582) 2.0524(0.0527)

90 60 S(1) 2.0716(0.1157) 2.0028(0.1146) 2.0665(0.1041) 2.0496(0.0599) 2.0306(0.0591) 2.0474(0.0536)
S(2) 2.0533(0.1136) 2.0070(0.1139) 2.0597(0.1025) 2.0423(0.0578) 1.9675(0.0580) 2.0427(0.0522)
S(3) 2.0493(0.1116) 1.9896(0.1120) 2.0566(0.1007) 2.0215(0.0579) 1.9366(0.0577) 2.0391(0.0520)
S(4) 2.0437(0.1205) 1.9697(0.1197) 2.0608(0.1081) 2.0347(0.0620) 1.9715(0.0616) 2.0378(0.0557)

90 30 S(1) 2.0427(0.1213) 2.0220(0.1212) 2.0542(0.1094) 2.0419(0.0633) 2.0297(0.0633) 2.0290(0.0571)
S(2) 2.0526(0.1190) 2.0442(0.1184) 2.0556(0.1066) 2.0381(0.0620) 1.9808(0.0615) 2.0414(0.0556)
S(3) 2.0597(0.1253) 1.9608(0.1238) 2.0517(0.1124) 2.0275(0.0592) 1.9911(0.0592) 2.0227(0.0534)
S(4) 2.0652(0.1288) 2.0557(0.1279) 2.0645(0.1159) 2.0332(0.0621) 1.9379(0.0619) 2.0346(0.0561)

70 60 S(1) 2.0788(0.1344) 2.0575(0.1334) 2.0653(0.1205) 2.0415(0.0862) 1.9671(0.0861) 2.0381(0.0779)
S(2) 2.0941(0.1319) 2.0183(0.1311) 2.0906(0.1187) 2.0525(0.0852) 1.9892(0.0846) 2.0499(0.0766)
S(3) 2.0459(0.1311) 1.9820(0.1299) 2.0457(0.1176) 2.0458(0.0855) 1.9620(0.0848) 2.0502(0.0768)
S(4) 2.0779(0.1334) 2.0621(0.1332) 2.0878(0.1202) 2.0640(0.0856) 1.9870(0.0852) 2.0706(0.0773)

70 36 S(1) 2.0863(0.1379) 2.0374(0.1373) 2.0739(0.1238) 2.0470(0.0885) 1.9673(0.0886) 2.0562(0.0798)
S(2) 2.0689(0.1368) 2.0609(0.1361) 2.0622(0.1233) 2.0355(0.0874) 1.9803(0.0870) 2.0365(0.0790)
S(3) 2.0585(0.1399) 1.9804(0.1399) 2.0544(0.1260) 2.0425(0.0868) 1.9478(0.0870) 2.0445(0.0783)
S(4) 2.0668(0.1344) 2.0540(0.1332) 2.0738(0.1205) 2.0424(0.0864) 2.0032(0.0863) 2.0434(0.0777)

70 26 S(1) 2.0771(0.1433) 1.9734(0.1414) 2.0694(0.1284) 2.0490(0.0895) 1.9615(0.0889) 2.0585(0.0806)
S(2) 2.0553(0.1459) 2.0013(0.1454) 2.0697(0.1308) 2.0335(0.0889) 1.9611(0.0885) 2.0396(0.0803)
S(3) 2.0675(0.1478) 2.0608(0.1462) 2.0672(0.1324) 2.0371(0.0880) 1.9804(0.0875) 2.0302(0.0792)
S(4) 2.0822(0.1544) 2.0206(0.1539) 2.0721(0.1391) 2.0393(0.0901) 1.9362(0.0892) 2.0475(0.0809)

60 50 S(1) 2.1001(0.1649) 2.0472(0.1631) 2.0961(0.1479) 2.0675(0.0938) 2.0571(0.0941) 2.0819(0.0846)
S(2) 2.0895(0.1657) 2.0075(0.1641) 2.0825(0.1488) 2.0349(0.0946) 1.9453(0.0941) 2.0524(0.0847)
S(3) 2.1037(0.1668) 2.0851(0.1670) 2.1047(0.1505) 2.0471(0.0941) 1.9920(0.0936) 2.0618(0.0845)
S(4) 2.1348(0.1621) 2.0864(0.1602) 2.1254(0.1452) 2.0286(0.0944) 1.9679(0.0939) 2.0310(0.0846)

60 30 S(1) 2.1312(0.1714) 2.1120(0.1699) 2.1313(0.1542) 2.0852(0.0970) 2.0561(0.0963) 2.0740(0.0868)
S(2) 2.1003(0.1721) 2.0910(0.1718) 2.0911(0.1550) 2.0643(0.1087) 1.9843(0.1084) 2.0733(0.0976)
S(3) 2.0848(0.1877) 1.9918(0.1862) 2.0852(0.1691) 2.0417(0.0969) 2.0095(0.0963) 2.0417(0.0869)
S(4) 2.0903(0.1707) 2.0684(0.1693) 2.0889(0.1531) 2.0698(0.0964) 2.0126(0.0965) 2.0588(0.0868)

60 20 S(1) 2.0772(0.1917) 1.9855(0.1908) 2.0894(0.1728) 2.0512(0.1004) 1.9888(0.1001) 2.0654(0.0907)
S(2) 2.0738(0.1928) 2.0258(0.1910) 2.0671(0.1735) 2.0656(0.1136) 2.0601(0.1128) 2.0578(0.1018)
S(3) 2.0822(0.1991) 2.0537(0.1981) 2.0764(0.1792) 2.0573(0.1026) 1.9807(0.1023) 2.0581(0.0927)
S(4) 2.0578(0.1989) 1.9652(0.1975) 2.0492(0.1783) 2.0851(0.1135) 2.0743(0.1128) 2.0853(0.1019)

In the table 4, we have computed average ML, MPS and Bayes estimates of the considered
parameters and their corresponding MSEs for different choices of n, m and censoring schemes
with fix values of parameters α = 0.5 and β = 0.5 and T = 10. Here, three choices of n i.e.
n=60(small), 70(moderate), 90(large) are considered. The value of k are set to be 50% of n
respectively. From this table, we can note that in general, the MSEs decrease as n or m increases
in all the considered cases. It can also be seen that the MSE of the MLE is more than that of
the corresponding MPS and Bayes estimate in all cases; but the difference between the MSEs
of the Bayes and ML estimates decreases for increases in the value of n. Further, MSE of the
Bayes estimate is least among all the considered estimators. For small number of removals i.e. for
large m, the MSEs of both the parameters is less for the removal pattern Sm:n

(2) in comparison to
Sm:n

(1) and MSEs under Sm:n
(3) is observed to be lesser than that for Sm:n

(4). For large number of
removals; the MSEs of both the parameters under removal pattern Sm:n

(1) are lesser than those
under Sm:n

(2) and MSEs under Sm:n
(4) are observed to be less than those for Sm:n

(3) i.e. the trend
shows a reversal from small number of removals.

Table 5 shows the performances of estimates(ML, MPS, Bayes and bootstrap) in terms of MSEs
for varying parameters α and β under GPH censoring scheme for various choices of n and fixed
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Table 5: Average estimate and MSE (within bracket) of different estimators of parameters for varying α and β.

CensoringScheme α β α̂ML α̂MP α̂B β̂ML β̂MP β̂B

n=30,k = 15, m = 22, T = 10, R = (0*10,4*2,0*10)

0.5 0.5 0.5403(0.0107) 0.5348(0.0103) 0.5377(0.0095) 0.5576(0.0278) 0.5511(0.0261) 0.5542(0.0256)
1 0.5421(0.0108) 0.5365(0.0098) 0.5370(0.0100) 1.1394(0.1274) 1.1275(0.1232) 1.1365(0.1209)
2 0.5391(0.0110) 0.5336(0.0103) 0.5363(0.0099) 2.2996(0.5353) 2.2757(0.5192) 2.3057(0.5080)

1 0.5 1.0861(0.0558) 1.0748(0.0532) 1.0935(0.0526) 0.5476(0.0180) 0.5416(0.0171) 0.5493(0.0171)
1 1.0786(0.0572) 1.0673(0.0547) 1.0867(0.0540) 1.0979(0.0736) 1.0859(0.0705) 1.1050(0.0691)
2 1.1054(0.0637) 1.0940(0.0618) 1.1054(0.0597) 2.1994(0.3117) 2.1769(0.3018) 2.1887(0.2957)

2 0.5 2.2099(0.2964) 2.1874(0.2868) 2.2053(0.2812) 0.5402(0.0125) 0.5339(0.0119) 0.5384(0.0116)
1 2.1867(0.3161) 2.1644(0.3061) 2.1925(0.2993) 1.0775(0.0509) 1.0666(0.0489) 1.0775(0.0474)
2 2.2146(0.3599) 2.1921(0.3485) 2.2202(0.3413) 2.1547(0.2041) 2.1330(0.1976) 2.1725(0.1934)

n=50, k = 25, m = 36,T = 10, R =(0*17,7*2,0*17)

0.5 0.5 0.5151(0.0058) 0.5092(0.0048) 0.5151(0.0049) 0.5404(0.0214) 0.5344(0.0203) 0.5416(0.0196)
1 0.5247(0.0067) 0.5189(0.0060) 0.5251(0.0061) 1.0995(0.0801) 1.0878(0.0774) 1.1063(0.0754)
2 0.5267(0.0068) 0.5213(0.0061) 0.5243(0.0055) 2.1800(0.3354) 2.1573(0.3245) 2.1724(0.3184)

1 0.5 1.0615(0.0358) 1.0504(0.0346) 1.0690(0.0337) 0.5350(0.0116) 0.5292(0.0110) 0.5326(0.0101)
1 1.0605(0.0362) 1.0493(0.0342) 1.0659(0.0337) 1.0738(0.0474) 1.0629(0.0455) 1.0715(0.0450)
2 1.0651(0.0379) 1.0539(0.0362) 1.0750(0.0357) 2.1568(0.1843) 2.1344(0.178) 2.1626(0.1743)

2 0.5 2.1991(0.1615) 2.1763(0.1560) 2.1869(0.1529) 0.5335(0.0082) 0.5280(0.0076) 0.5341(0.0068)
1 2.1376(0.1696) 2.1159(0.1641) 2.1168(0.1608) 1.0350(0.0269) 1.0240(0.0259) 1.0341(0.0251)
2 2.1527(0.1754) 2.1310(0.1697) 2.1387(0.1663) 2.1274(0.1095) 2.1058(0.1061) 2.1468(0.1033)

n=100, k = 50, m = 72, T = 10, R = (0*35,14*2,0*35)

0.5 0.5 0.5094(0.0027) 0.5040(0.0025) 0.5081(0.0020) 0.5183(0.0081) 0.5129(0.0077) 0.5176(0.0069)
1 0.5058(0.0028) 0.4998(0.0025) 0.508(0.0021) 1.0371(0.0337) 1.0263(0.0319) 1.0391(0.0320)
2 0.5134(0.0028) 0.5075(0.0026) 0.5107(0.0019) 2.0918(0.1205) 2.0706(0.1164) 2.0924(0.1139)

1 0.5 1.0293(0.0145) 1.0186(0.0137) 1.0383(0.0131) 0.5131(0.0045) 0.5075(0.0042) 0.5126(0.0038)
1 1.0324(0.0151) 1.0215(0.0141) 1.0365(0.0141) 1.0438(0.0203) 1.0332(0.0197) 1.0369(0.0191)
2 1.0242(0.0159) 1.0131(0.0153) 1.0159(0.0150) 2.0526(0.0775) 2.0316(0.0746) 2.0599(0.0735)

2 0.5 2.0463(0.0779) 2.0255(0.0750) 2.0663(0.0738) 0.5101(0.0032) 0.5041(0.0027) 0.5111(0.0023)
1 2.0972(0.0798) 2.0755(0.0771) 2.0777(0.0752) 1.0324(0.0143) 1.0221(0.0137) 1.0413(0.0136)
2 2.0750(0.0808) 2.0542(0.0778) 2.0663(0.0767) 2.0466(0.0525) 2.0256(0.0507) 2.0666(0.0499)

Table 6: Bias and MSE (within bracket) of different estimators of R = P[X < Y] when α = 0.5, β = 0.5, T = 10, k1
and k2 are half of sample size n1 and n2, and m1 and m2 are 80% of sample size n1 and n2 . All entries of
the table are multiplied by 103.

Scheme n1 n2 MLE MPS Bootstrap
Bayes

Large Variance Non-Informative Small Variance
S(2) 30 30 6.9337(4.8475) 6.2974(4.2886) 6.8986(4.7014) 5.8717(4.0551) 5.9223(4.1511) 5.6398(3.0416)

30 50 6.0457(4.2175) 5.4149(3.8425) 6.0143(4.3102) 5.2663(3.7421) 5.2601(3.7564) 5.0293(2.6965)
30 100 5.5791(4.0310) 4.9611(3.5106) 5.6192(3.9752) 4.9102(3.3407) 5.0089(3.3857) 4.6493(2.4892)
50 50 5.7328(4.1779) 5.1995(3.6288) 5.9919(4.1521) 5.0901(3.4534) 4.9623(3.6513) 4.7896(2.5583)
50 100 5.4295(3.6835) 4.8097(3.3036) 5.2663(3.6921) 4.6123(3.1861) 4.5537(3.2653) 4.4485(2.3702)
100 100 4.8737(3.3677) 4.3531(3.0344) 4.7554(3.4227) 4.1374(2.8558) 4.2813(2.8962) 4.0495(2.1783)

S(3) 30 30 6.9518(4.8499) 6.0947(4.2810) 6.7646(4.8703) 5.7705(4.1187) 5.9781(4.0731) 5.6565(2.9414)
30 50 6.2685(4.3231) 5.6613(3.9404) 6.1842(4.2264) 5.2618(3.5897) 5.2718(3.6786) 4.9798(2.6695)
30 100 5.6802(3.9142) 5.0137(3.6531) 5.5496(3.9760) 4.8688(3.2799) 4.8871(3.3660) 4.5926(2.5324)
50 50 5.7935(4.1735) 5.2874(3.7631) 5.7932(4.1630) 4.9381(3.5414) 5.1437(3.5796) 4.8483(2.6166)
50 100 5.4147(3.6682) 4.9194(3.3341) 5.3210(3.7371) 4.5276(3.2698) 4.6319(3.2168) 4.3927(2.3942)
100 100 4.9886(3.4919) 4.4981(3.0521) 4.9136(3.4366) 4.2458(2.8857) 4.2665(2.9377) 3.9843(2.1317)

S(1) 30 30 8.3766(5.8594) 7.3233(5.2685) 8.3944(5.8504) 6.9325(4.8481) 7.0932(5.0225) 6.5129(3.6627)
30 50 7.3513(5.2099) 6.7839(4.6143) 7.3860(5.0897) 6.2203(4.2930) 6.4552(4.3801) 5.9409(3.2971)
30 100 6.7621(4.8604) 6.0695(4.3071) 6.7758(4.8412) 5.7347(3.9563) 5.8965(4.0652) 5.4157(2.9415)
50 50 6.9321(5.0217) 6.4680(4.5044) 7.0883(4.9558) 6.0779(4.1896) 6.0609(4.2478) 5.6684(3.1288)
50 100 6.2776(4.5562) 5.9264(4.1362) 6.5143(4.5732) 5.4045(3.8858) 5.6245(3.8524) 5.1871(2.8698)
100 100 5.8052(4.1824) 5.1675(3.6788) 5.8722(4.0758) 4.9535(3.5410) 5.0076(3.5632) 4.6606(2.5188)

S(4) 30 30 7.6202(5.3718) 6.8561(4.8040) 7.3301(5.3458) 6.5334(4.4716) 6.5969(4.5147) 6.1735(3.3876)
30 50 6.8518(4.7686) 6.0057(4.2925) 6.8758(4.7493) 5.6725(4.0401) 5.8644(4.1988) 5.5385(2.9678)
30 100 6.1996(4.2686) 5.6710(3.8474) 6.2351(4.2745) 5.3898(3.7433) 5.4337(3.7927) 5.1184(2.7952)
50 50 6.3107(4.4244) 5.6776(4.0887) 6.4848(4.4322) 5.3416(3.8225) 5.6016(3.8429) 5.3026(2.8149)
50 100 6.0107(4.1180) 5.2660(3.6801) 5.8027(4.0877) 5.1367(3.5053) 5.1041(3.5395) 4.7381(2.5381)
100 100 5.3390(3.6663) 4.8599(3.3559) 5.4634(3.7267) 4.6548(3.1825) 4.5542(3.1891) 4.3599(2.4226)
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T = 10. The value of k and m are set to be 50% and 72% of n respectively. The removal pattern is
taken as Sm:n

(4) i.e. Rm/2 = Rm/2+1 = (n - m)/2. From this table, we can conclude that for fix α, as
β increases, MSE of β increases. Similarly, for fix β, as α increases, the MSE of α increases. For fix
α and β as n (for fixed proportions k, m and fixed T) increases, the MSEs of both the parameters
decrease.

In the table 6, we have presented the bias and MSE of different estimators(ML, MPS, Bayes
and bootstrap) of R = P[X < Y] when α = 0.5, β = 0.5, T = 10, k1 and k2 are half of sample size
n1 and n2, and m1 and m2 are set to be 80% of sample size n1 and n2 respectively. From this table,
it can be easily seen that as n1 or n2 increases the bias and MSE decrease for all the estimators
and for all the considered censoring schemes. Further, MSE of the Bayes estimate is least among
all the considered estimators.

7. Conclusion

The article considers the problem of estimation and prediction for exponentiated exponential
distribution from a generalised progressive hybrid censored sample. It is clear from above
discussions that the proposed estimation procedures under GPH censoring scheme can be easily
implemented with specific choice of T and m. The MPS procedure provides more precise
estimates than those obtained from maximum likelihood and bootstrap procedures. The Bayesian
procedure delivers more accurate and precise estimates of the parameters even if we consider
the vague prior. The HPD intervals for the parameters are also obtained and it is verified that
the width of the HPD interval is smaller than asymptotic and bootstrap confidence intervals.
Therefore, we may conclude that the use of HPD interval under considered situation can safely
be recommended. Moreover, Bayesian prediction of unknown future observation has far flung
applicability in different areas of applied statistics. The Bayesian approach using MCMC method
can be effectively used to solve prediction problems. Finally, we can conclude that the discussed
methodology can be extensively used in various disciplines of scientific areas where such life-tests
are needed.
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