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Abstract

The objective of this study is to develop an extension of the Burr-III distribution which is achieved
by adopting the inverse Weibull-G family of distribution and is referred as inverse Weibull-Burr III
distribution (IWB-III) to evaluate complicated data. Different structural characteristics of the suggested
distribution have been determined and analysed. Distinct plots depict the behaviour of the probability
density function (pdf) and the cumulative distribution function (cdf). The maximum likelihood estimation
method is applied to estimate the stated distribution parameters. To assess and investigate the efficacy of
estimators in terms of bias, variance, and mean square error (MSE), a simulation study was conducted.
Lastly, the effectiveness of the stated distribution is proven by an actual data set relevant to survival rates
in animals.

Keywords: Inverse Weibull-G family; Burr-III distribution; moments, Renyi entropy; simulation;
maximum likelihood estimation.

1. Introduction

Over numerous decades, academics have been attempting to develop a number of novel distribu-
tions to satisfy certain realistic demands. The rationale is that conventional distributions have
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generally been shown to lack fit in actual applications, such as medicinal research, engineering,
hydrology, environmental science, and many more. In particular, the objective of creating novel
distributions or generalisations is to construct adaptable statistical models effective at dealing
with complicated real-world data. This adaptability may be obtained in a straightforward manner
by introducing new parameters to the standard distribution.

The Weibull distribution has been utilised in a variety of disciplines and applications. The
hazard function of the Weibull distribution can only be monotonic in nature. As a result, it can
not be employed to simulate lifespan data with a bathtub-shaped hazard function.

Let X be a random variable that follows the Weibull distribution with parameters α and β.
Then its probability density function (pdf) is defined as

ψ(x, α, β) = αββxβ−1e−αβxβ
; x > 0, α, β > 0

The transformation T = 1
X , yields the inverse of the Weibull distribution. As a result, the

probability density function (pdf) of the inverse Weibull distribution assumes the following
structure.

h(t, α, β) = αββt−(β+1)e−αβt−β
; t > 0, α, β > 0 (1)

In this work, we construct the inverse Weibull-Burr III distribution, which is an expansion of the
Burr-III distribution. Burr, I.W [4] advocated a family of twelve cumulative distribution functions
for simulating lifespan data. Burr-type III and Burr-type XII distributions were two prevalent
members of the family. The Burr-III distribution has been studied thoroughly and employed in a
range of aspects of research. Daniyal et al [9], Al-Dayian et al [10] and B.A. para et al [6] provide
further information on the characteristics of the Burr-III distribution. The probability density
function (pdf) of Burr-III distribution is stated as.

g(y, θ, λ) = θλy−θ−1
(

1 + y−θ
)−λ−1

; y > 0, θ, λ > 0 (2)

The associated cumulative distribution function (cdf) of equation (1.2) is given as

G(y, θ, λ) =
(

1 + y−θ
)−λ

; y > 0, θ, λ > 0 (3)

In recent decades, researchers have concentrated on discovering novel generators from continuous
conventional distributions. As an outcome, the resulting distribution enhances the efficacy and
adaptability of data analysis. The following are some generated families of distribution: the beta-
G family of distribution investigated by Eugene et al [11], the gamma-G family by Zagrofos and
Balakrishana [13], the kumaraswamy-G family by Cordeiro et al [8], the transformedtransformer(T-
X) by Alzaatrh et al [1], the Weibull-G by Bourguignon et al [3],Brito et al. [5] created the
Topp-Leone odd log-logistic family of distributions, Morad Alizadeh et al. [12] constructed the
Gompertz-G distribution family, and Amal S. Hassan et al. [2] established the inverse Weibull-G
distribution.
T-X family of distributions defined by Alzaatreh et al [1] is given by

F(y) =
∫ W[G(y)]

0
r(t)dt (4)

Where r(t) be the probability density function of a random variable Tand W[G(y)] be a function
of cumulative density function of random variable Y.
Suppose G(y, φ),denotes the baseline cumulative distribution function, which depends on parame-
ter vector φ. Now using T-X approach, the cumulative distribution function F(y) of inverse Weibull
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generator (IWG) can be derived by replacing r(t) in equation (1.4) with (1.1) and W[G(y)] = G(y,φ)
Ḡ(y,φ) ,

where Ḡ(y, φ) = 1− G(y, φ) which follows

F(y, φ) =
∫ G(y,φ)

Ḡ(y,φ)

0
αββt−(β+1)e−αβt−β

dy

=e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

; y > 0, α, β, φ > 0 (5)

where Ḡ(y, φ) = 1− G(y, φ)
The associated pdf of (1.5) is given as

f (y, α, φ) =αββg(y, φ)
(G(y, φ))−β−1

(Ḡ(y, φ))−β+1 e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

; y > 0, α, β, φ > 0 (6)

In addition, Reliability function denoted as F̄(y, φ), hazard rate function denoted as h(y, φ) and
cumulative hazard rate function denoted as H(y, φ) are respectively given as

F̄(y, φ) =1− e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

h(y, φ) =
αββg(y, φ) (G(y,φ))−β−1

(Ḡ(y,φ))−β+1 e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

1− e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

H(y, φ) =− ln[F̄(y, φ)] = −ln

{
1− e

−αβ
(

G(y,φ)
Ḡ(y,φ)

)−β
}

1.1. Usefull Expansions

Applying Taylor series expansion to the exponential function of the pdf in equation (1.6) we have

e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β

=
∞

∑
s=0

(−1)s

s!
αsβ

(
G(y, φ)

Ḡ(y, φ)

)−βs
(7)

substituting equation (1.7) in equation (1.6), we have

f (y, φ) =
∞

∑
s=0

(−1)s

s!
αβ(s+1)

βg(y, φ)
(G(y, φ))−β(s+1)−1

(Ḡ(y, φ))
−β(s+1)+1

(8)

=
∞

∑
s=0

(−1)s

s!
αβ(s+1)

βg(y, φ) (G(y, φ))−β(s+1)−1 (1− G(y, φ))β(s+1)−1 (9)

using generalised binomial theorem, we have

(1− z)a−1 =
∞

∑
p=0

(−1)p
(

a− 1
p

)
zp

(Ḡ(y, φ))
−β(s+1)+1

=(1− G(y, φ))β(p+1)−1 =
∞

∑
p=0

(−1)p
(

β(p + 1)− 1
p

)
(G(y, φ))p

=
∞

∑
s=0

∞

∑
p=0

(−1)s+p

s!

(
β(s + 1)− 1

p

)
αβ(s+1)

βg(y, φ)(G(y, φ))p−β(s+1)−1

=
∞

∑
s=0

∞

∑
p=0

ζs,pg(y, φ)(G(y, φ))p−β(s+1)−1 (10)

where

ζs,p =
(−1)s+p

s!

(
β(s + 1)− 1

p

)
αβ(s+1)

β
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Now using equation (2) and (3) in equation (10), we obtain pdf of formulated distribution in
mixture form, as follows

f (y, α, β, θ, λ) =
∞

∑
s=0

∞

∑
p=0

ζs,pθλy−θ−1
(

1 + y−θ
)−λ−1 [

(1 + y−θ)−λ
]p−β(s+1)−1

; y > 0, α, β, θ, λ > 0 (11)

2. Inverse Weibull-Burr III Distribution

In this part, we’ll investigate the inverse Weibull-Burr III distribution and look at aspects of
its statistical characteristics. We derive the cumulative distribution function (cdf) of the given
distribution using equation (3) in equation (5) as follows.

F(y, α, β, θ, λ) = e−αβ((1+y−θ)λ−1)β
(12)

Figure 1: Expounds some of possible layouts of the cdf of IWB-III distribution for distinct choice
of parameters
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Figure 1: plots of cdf for IWB-III distribution

The associated pdf of (12) is given as

f (y, α, β, θ, λ) = αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β
(13)

; α > 0, β > 0, θ > 0, λ > 0

Figure 2: Expounds some of possible layouts of the pdf of IWB-III distribution for distinct choice
of parameters

3. Reliability Measures of (IWB-III) Distribution

This section is focused on researching and developing distinct ageing indicators for the formulated
distribution.
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Figure 2: plots of pdf for IWB-III distribution

3.1. Survival function

Suppose Y be a continuous random variable with cdf F(y).Then its Survival function which is
also called reliability function is defined as

S(y) = pr(Y > y) =
∫ ∞

y
f (y)dy = 1− F(y)

Therefore, the survival function for IWB-III distribution is given as

S(y, α, β, θ, λ) =1− F(y, α, β, θ, λ)

=1− e−αβ((1+y−θ)λ−1)β
(14)

3.2. Hazard rate function

The hazard rate function of a random variable y is denoted as

h(y, α, β, θ, λ) =
f (y, α, β, θλ)

F(y, α, β, θλ)
(15)

using equation (12) and (13) in equation (15), then the hazard rate function of IWB-III distribution
is given as

h(y, α, β, θλ) =
αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

1− e−αβ((1+y−θ)λ−1)β
(16)

Figure 3: Expounds some of possible layouts of the hazard function of IWB-III distribution for
distinct choice of parameters

3.3. Cumulative hazard rate function

The cumulative hazard rate function of a random variable y is given as

H(y, α, β, θ, λ) =− ln[F̄(y, α, β, θ, λ)] (17)

using equation (12) in equation (17), then we obtain cumulative hazard rate function of IWB-III
distribution

H(y, α, β, θ, λ) =− ln
{

1− e−αβ((1+y−θ)λ−1)β
}

(18)
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Figure 3: plots of hazard function for IWB-III distribution

3.4. Mean residual function

The mean residual lifetime is the predicted residual life or the average completion period of the
constituent after it has exceeded a certain duration y. It is extremely significant in reliability
investigations.
Mean residual function of random y variable can be obtained as

m(y, α, β, θ, λ) =
1

S(y, α, β, θ, λ)

∫ ∞

y
t f (t, α, β, θ, λ)dt− y

=
1{

1− e−αβ((1+y−θ)λ−1)β
} ∞

∑
s=0

∞

∑
p=0

ζs,pθλ

×
∫ ∞

y
t−θ

(
1 + t−θ

)−λ−1 [
(1 + t−θ)−λ

]p−β(s+1)−1
dt− y

Making substitution (1 + t−θ)−λ = z, sothat (1 + y−θ)−λ ≤ z ≤ 1, we have

m(y, α, β, θ, λ) =
∫ 1

(1+y−θ)−λ
zp−β(s+1)+ 1

λθ−1(1− z
1
λ )−

1
θ dz

After solving the integral, we get

B
(

1− (1 + y−θ)−1, (p− β(s + 1))λ +
1
θ

, 1− 1
θ

)
Where B(x, a, b) =

∫ x
0 ua−1(1− u)b−1denotes incomplete beta function

4. Statistical Properties Of (IWB-III) Distribution

This section is devoted to derive and examine disttinct properties of IWB-III
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4.1. Moments

Let y denotes a random variable, then the rth moment of IWB-III is denoted as µ
′
r and is given by

µ
′
r =E(yr) =

∫ ∞

0
yr f (y, α, β, θ, λ)dy

=
∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ ∞

0
yr(1 + y−θ)−λ−1

[
(1 + y−θ)−λ

]p−β(s+1)−1
dy

Making substitution (1 + y−θ)−λ = z, so that 0 < z < 1, we have

µ
′
r =

∞

∑
s=0

∞

∑
p=0

ζs,p

∫ 1

0
zp−β(s+1)+ r

λθ−1
(

1− z
1
λ

)−r
θ dy

After solving the integral, we have

µ
′
r =

∞

∑
s=0

∞

∑
p=0

ζs,pλB
(
(p− β(s + 1))λ +

r
θ

, 1− r
θ

)
Where B(.) denotes incomplete beta function.

4.2. Moment generating function

suppose Y denotes a random variable follows IWB-III distribution. Then the moment generating
function of the distribution denoted by MY(t)is given

MY(t) = E(ety) =
∫ ∞

0
ety f (y, α, β, θ, λ)dy

=
∫ ∞

0

(
1 + ty +

(ty)2

2!
+

(ty)3

3!
+ ....

)
f (y, α, β, θ, λ)dy

=
∞

∑
r=0

tr

r!

∫ ∞

0
yr f (y, α, β, θ, λ)dy

=
∞

∑
r=0

tr

r!
E(yr)

=
∞

∑
r=0

∞

∑
s=0

∞

∑
p=0

tr

r!
ζs,pλB

(
(p− β(s + 1))λ +

r
θ

, 1− r
θ

)
The characteristics function of the IWB-III distribution denoted as φY(t) can be yeild by replacing
t = it where i =

√
−1

φY(t) =
∞

∑
r=0

∞

∑
s=0

∞

∑
p=0

(it)r

r!
ζs,pλB

(
(p− β(s + 1))λ +

r
θ

, 1− r
θ

)

4.3. Incomplete moments

The general expression for incomplete moments is given as

m(y) =
∫ y

0
yr f (y, α, β, θ, λ)dy

=
∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ y

0
yr−θ−1

(
1 + y−θ

)−λ−1 [
(1 + y−θ)−λ

]p−β(s+1)−1
dy
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Making substitution
(
1 + y−θ

)−λ
= z, so that 0 ≤ z ≤

(
1 + y−θ

)−λ, we have

=
∞

∑
s=0

∞

∑
p=0

ζs,p

∫ (1+y−θ)−λ

0
zj−β(s+1)+ r

θλ−1
(

1− z
1
λ

)− r
θ dy

After solving the integral, we get

m(y) =
∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + y−θ)−1; (p− β(s + 1))λ +
r
θ

, 1− r
θ

)
where B(.) denotes the incomplete beta function.

4.4. Quantile function

The quantile function of a random variable Y, where Y ∼ IWB− I I I distribution can be obtained
by inverting equation (12), we have

yq =


[

1 +
(
− 1

αβ
log(q)

) 1
β

] 1
λ

− 1


− 1

θ

In particular, the median of the distribution can be obtained by setting q = 0.5, we have

y0.5 =


[

1 +
(
− 1

αβ
log(0.5)

) 1
β

] 1
λ

− 1


− 1

θ

4.5. Random number generation

Suppose y denotes a random variable with pdf given in equation (2.1) . The random number of
IWB-III distribution can be generated as

F(y) =u =⇒ y = F−1(u)

y =


[

1 +
(
− 1

αβ
log(u)

) 1
β

] 1
λ

− 1


− 1

θ

Where u is the uniform random variable defined in an open interval (0,1) .

4.6. Mean deviation about mean and median

The quantity of scattering in a population is evidently measured to some extent by the totality of
the deviations.
Let Y be a random variable from IWB-III distribution with mean µ. Then the mean deviation
from mean is defined as.

D(µ) =E (|Y− µ|)

=
∫ ∞

0
|Y− µ| f (y)dy

=
∫ µ

0
(µ− y) f (y)dy +

∫ ∞

µ
(y− µ) f (y)dy

=2µF(µ)− 2
∫ µ

0
y f (y)dy (19)
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Now ∫ µ

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ µ

0
y−θ−1

(
1 + y−θ

)−λ−1
[(

1 + y−θ
)−λ−1

]p−β(s+1)−1
dy

Making substitution
(
1 + y−θ

)−λ
= z, so that 0 ≤ z ≤

(
1 + µ−θ

)−λ, we have

∫ µ

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,p

∫ (1+µ−θ)−λ

0
zp−β(s+1)+ 1

θλ−1
(

1− z
1
λ

)− 1
θ dz

After solving the integral, we get∫ µ

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + µ−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
(20)

Where B(.) denotes incomplete beta function.
Substitute equation (20) in equation (19), we have

D(µ) =µe−αβ((1+µ−θ)λ−1)β −
∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + µ−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
Let Y be a random variable from IWB-III distribution with median M. Then the mean deviation
from median is defined as.

D(M) =E (|Y−M|)

=
∫ ∞

0
|Y−M| f (y)dy

=
∫ M

0
(M− y) f (y)dy +

∫ ∞

M
(y−M) f (y)dy

=µ− 2
∫ M

0
y f (y)dy (21)

NOW∫ M

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pθλ
∫ M

0
y−θ−1

(
1 + y−θ

)−λ−1
[(

1 + y−θ
)−λ−1

]p−β(s+1)−1
dy

Making substitution
(
1 + y−θ

)−λ
= z, so that 0 ≤ z ≤

(
1 + M−θ

)−λ, we have

∫ M

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,p

∫ (1+M−θ)−λ

0
zp−β(s+1)+ 1

θλ−1
(

1− z
1
λ

)− 1
θ dz

After solving the integral, we get∫ M

0
y f (y)dy =

∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + M−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
(22)

Where B(.) denotes incomplete beta function.
Substitute equation (22) in equation (21), we have

D(M) =µ− 2
∞

∑
s=0

∞

∑
p=0

ζs,pλB
(

1− (1 + M−θ)−1; (p− β(s + p))λ +
1
θ

, 1− 1
θ

)
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5. Renyi Entropy

Let Y be a continuous random variable with probability density functionf f (y). Then Renyi
entropy is stated as

TR(ρ) =
1

1− ρ
log
[∫ ∞

0
f ρ(y)dy

]
Where ρ > 0 and ρ 6= 1

TR(ρ) =
1

1− ρ
log

[∫ ∞

0

(
αββg(y, φ)

(G(y, φ))−(β+1)

(Ḡ(y, φ))−(β−1)
e
−αβ

(
G(y,φ)
Ḡ(y,φ)

)−β
)ρ

dy

]

=
1

1− ρ
log

[
αβρβρ

∫ ∞

0
(g(y, φ))ρ (G(y, φ))−ρ(β+1) (1− G(y, φ))ρ(β+1) e

−αβρ
(

G(y,φ)
Ḡ(y,φ)

)−β

dy

]
(23)

Using the expansion e−kx = ∑∞
s=0

(−1)s

s! (kx)s in equation (5.1), we have

=
1

1− ρ
log

[
αβρβρ

∫ ∞

0
(g(y, φ))ρ (G(y, φ))−ρ(β+1) (1− G(y, φ))ρ(β+1)

∞

∑
s=0

(−1)s

s!
(αβρ)s

(
G(y, φ)

Ḡ(y, φ)

)−βs
dy

]

=
1

1− ρ
log

[
∞

∑
s=0

(−1)s

s!
αβ(ρ+s)βρρs

∫ ∞

0
(g(y, φ))s(G(y, φ))−β(ρ+s)(1− G(y, φ))β(ρ−s)+ρdy

]
(24)

Using generalized bionomial expansion (1− z)a−1 = ∑∞
p=0(−1)p(a−1

p )zp in equation (5.2), we
have

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

(−1)s+p

s!

(
β(ρ− s) + ρ

p

)
αβ(ρ+s)(βs)ρ

∫ ∞

0
(g(y, φ))ρ(G(y, φ))p−β(ρ+s)dy

]
(25)

Using equation (12) and (13) in (25), we have

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

ζs,p(θλ)ρ
∫ ∞

0
y−ρ(θ+1)(1 + y−θ)−ρ(λ+1)

(
(1 + y−θ)−λ

)p−β(ρ+s)
dy

]

Where

ζs,p =
(−1)s+p

s!

(
β(ρ− s) + ρ

p

)
αβ(ρ+s)(βs)ρ

Making substitution (1 + y−θ)−λ = z, 0 < z < 1, we have

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

ζs,p(θλ)ρ−1
∫ 1

0
zp−β(ρ+s)+ ρ(θλ−1)+1

θλ −1(1− z
1
λ )

ρ(θ+1)
θ −1dy

]

After solving the integral, we get

TR(ρ) =
1

1− ρ
log

[
∞

∑
s=0

∞

∑
p=0

ζs,p(θλ)ρ−1λB(mλ, n)

]

Where B(.) denotes beta function and m = p− β(ρ + s) + ρ(θλ−1)+1
θλ , n = ρ(θ+1)

θ
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6. Order Statistics of (IWB-III) Distribution

Let us suppose Y1, Y2, ..., Yn be random samples of size n from IWB-III distribution with pdf f (y)
and cdf F(y). Then the probability density function of th kth order statistics is given as

fY(k) =
n!

(k− 1)!(n− 1)!
f (y) [F(y)]k−1 [1− F(y)]n−1 (26)

Using equation (12) and (13) in equation (26), we have

fY(k) =
n!

(k− 1)!(n− 1)!
αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

×
[
e−αβ((1+y−θ)λ−1)β

]k−1 [
1− e−αβ((1+y−θ)λ−1)β

]n−k

The pdf of the first order statistics Y1 of IWB-III distribution is given by

fY(1) =nαββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

×
[
1− e−αβ((1+y−θ)λ−1)β

]n−1

The pdf of the nth order statistics Yn of IWB-III distribution is given by

fY(1) = nαββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β[
e−αβ((1+y−θ)λ−1)β

]n−1

7. Maximum Likelihood Estimation of (IWB-III) Distribution

Let the random samples y1, y2, y3, ..., yn are drawn from IWB-III distribution. The likelihood
function of n observations is given as

L =
n

∏
i=1

(
αββθλy−θ−1(1 + y−θ)λ−1((1 + y−θ)λ − 1)β−1e−αβ((1+y−θ)λ−1)β

)
The log-likelihood function is given as

l =nβlog(α) + nlog(β) + nlog(θ) + nlog(λ)− (θ + 1)
n

∑
i=1

logyi + (λ− 1)
n

∑
i=1

log(1 + y−θ
i )

+ (β− 1)
n

∑
i=1

log
(
(1 + y−θ

i )λ − 1
)
− αβ

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

(27)
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The partial derivatives of the log-likelihood function with respect to α, β, θ and λ are given as

∂l
∂α

=
nβ

α
− βαβ−1

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

(28)

∂l
∂β

=nlog(α) +
n
β

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)
− αβ

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

log
(
(1 + y−θ

i )λ − 1
)

− αβlog(α)
n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

(29)

∂l
∂θ

=
n
θ
−

n

∑
i=1

log(yi)− (λ− 1)
n

∑
i=1

y−θ
i

(1 + y−θ
i )

log(yi)− (β− 1)λ
n

∑
i=1

(
1 + y−θ

i

)λ−1(
1 + y−θ

i

)
− 1

y−θ
i log(yi)

+ αββλ
n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β−1 (

1 + y−θ
i

)λ−1
y−θ

i log(yi) (30)

∂l
∂λ

=
n
λ
+

n

∑
i=1

log(1 + y−θ
i ) + (β + 1)

n

∑
i=1

(
1 + y−θ

i

)λ(
1 + y−θ

i

)
− 1

log(1 + y−θ
i )− αββ

n

∑
i=1

(
(1 + y−θ

i )λ − 1
)β

×
(

1 + y−θ
i

)λ
log(1 + y−θ

i ) (31)

Clearly the equations (28),(29),(30) and (31), are non-linear equations which cannot be expressed
in compact form and it is difficult to solve them explicitly for α, β, θ and λ .By applying the
iterative methods such as Newton–Raphson method, secant method, Regula-falsi method etc.
The MLE of the parameters denoted as ξ̂(α̂, β̂, θ̂, λ̂) of ξ(α, β, θ, λ) can be obtained by using the
above methods.
For interval estimation and hypothesis tests on the model parameters, an information matrix is
required. The 3 by 3 observed matrix is

I(ξ) =
−1
n


E
(

∂2logl
∂α2

)
E
(

∂2logl
∂α∂β

)
E
(

∂2logl
∂α∂θ

)
E
(

∂2logl
∂α∂λ

)
E
(

∂2logl
∂β∂α

)
E
(

∂2logl
∂β2

)
E
(

∂2logl
∂β∂θ

)
E
(

∂2logl
∂β∂λ

)
E
(

∂2logl
∂θ∂α

)
E
(

∂2logl
∂θ∂β

)
E
(

∂2logl
∂θ2

)
E
(

∂2logl
∂θ∂λ

)
E
(

∂2logl
∂λ∂α

)
E
(

∂2logl
∂λ∂β

)
E
(

∂2logl
∂λ∂θ

)
E
(

∂2logl
∂λ2

)


The elements of above information matrix can be obtain by differentiating equations (28),(29),(30)
and (31) again partially. Under standard regularity conditions when n→ ∞ the distribution of ξ̂
can be approximated by a multivariate normal N(0, I(ξ̂)−1) distribution to construct approximate
confidence interval for the parameters. Hence the approximate 100(1− ψ)% confidence interval
for α, β, θ and λ are respectively given by

α̂± Z ψ
2

√
I−1
αα (ξ̂), β̂± Z ψ

2

√
I−1
ββ (ξ̂), θ̂ ± Z ψ

2

√
I−1
θθ (ξ̂) and λ̂± Z ψ

2

√
I−1
λλ (ξ̂)

8. Simulation Analysis

The MLE’S, bias and mean quare error (MSE) were all addressed to simulation analysis. From
IWB-III with N=1000, samples of size n=50,150,250,350 and 500 were obtained. The following
expression has been used to produce random numbers.

y =


[

1 +
(
− 1

αβ
log(u)

) 1
β

] 1
λ

− 1


− 1

θ
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Where u is uniform random numbers with u ∈ (0, 1) . For various parameter combinations,
simulation results have been achieved. The MLE’s bias, and MSE values are calculated and
presented in table 1 and 2. As the sample size increases, this becomes apparent that these
estimates are relatively consistent and approximate the actual values of parameters. Interestingly,
with all parameter combinations, the bias and MSE reduce as the sample size increases.

Table 1: Average values of MLEs their corresponding MSEs and Bias for different parameter values α = 0.6, β =
1.8, θ = 1.7, λ = 0.9

Sample size Parameters MLEs Bias MSE

50 α 0.96617 0.36617 0.13433
β 0.78938 -1.01061 1.02160
θ 2.28698 0.58698 0.36917
λ 0.97504 0.07504 0.03660

150 α 0.96446 0.36446 0.13040
β 0.78690 -1.00309 1.00635
θ 2.28292 0.58292 0.34793
λ 0.90522 0.00522 0.01064

250 α 0.95675 0.35675 0.14210
β 0.79891 -1.00108 1.00229
θ 2.18506 0.48506 0.24773
λ 0.89007 -0.00992 0.00780

350 α 0.94957 0.34957 0.14120
β 0.70135 -1.09864 0.99739
θ 2.18423 0.47623 0.24659
λ 0.87259 -0.02740 0.00611

500 α 0.94070 0.34070 0.14103
β 0.70123 -1.99776 0.99560
θ 2.18660 0.46960 0.24483
λ 0.86856 -0.03143 0.00485

Table 2: Average values of MLEs their corresponding MSEs and Bias for different parameter values α = 0.9, β =
1.8, θ = 1.3, λ = 1.1

Sample size Parameters MLEs Bias MSE

50 α 0.96470 0.06470 0.00444
β 0.78783 -1.01216 1.02473
θ 1.55140 0.25140 0.08037
λ 0.85433 -0.24566 0.08322

150 α 0.96430 0.064308 0.00430
β 0.78731 -1.01268 1.00554
θ 1.50394 0.20394 0.08034
λ 0.77932 -0.32067 0.01114

250 α 0.96324 0.06324 0.00421
β 0.77744 -1.02255 1.00523
θ 1.40394 0.20294 0.08009
λ 0.77879 -0.32120 0.00351

350 α 0.95853 0.04853 0.00330
β 0.60026 -1.99973 0.99958
θ 1.31691 0.11691 0.00448
λ 0.76227 -0.33772 0.00345

500 α 0.94868 0.03868 0.00245
β 0.50124 -1.99975 0.99758
θ 1.22246 0.10246 0.00370
λ 0.75697 -0.34302 0.00341
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9. Data Aanalysis

This subsection evaluates a real-world data set to demonstrate the IWB-III distribution’s appli-
cability and effectiveness. The IWB-III distribution’s adaptability is determined by comparing
its efficacy to that of other analogous distributions such as new modified Weibull distribu-
tion (NMWD), modified Weibull distribution (MWD),Topp-Leone Burr distribution (TLBD),
inverse Weibull distribution (IWD) and Burr-III distribution (B-IIID),inverse Rayleigh distribution
(IRD),inverse Lindley distributon (ILD).
To compare the versatility of the explored distribution, we consider the criteria like AIC (Akaike
information criterion), CAIC (Consistent Akaike information criterion), BIC (Bayesian information
criterion) and HQIC (Hannan-Quinn information criterion). Distribution having lesser AIC, CAIC,
BIC and HQIC values is considered better.

AIC = −2l + 2p, AICC = −2l + 2pm/(m− p− 1), BIC = −2l + p(log(m))

HQIC = −2l + 2plog(log(m)) K.S = max1≤j≤m

(
F(xj)−

j− 1
m

,
j

m
− F(xj)

)
Where ′l′ denotes the log-likelihood function,’p’is the number of parameters and’m’is the sample
size.
Data set: Bjerkedel studied the survival rates (in days) of 72 guinea pigs treated with pathogenic
turbercle bacteria [7]. The data are as follows
0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93,0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08,
1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46,1.53, 1.59, 1.6, 1.63,
1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53,
2.54, 2.78,2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55, 2.54, 0.77.
The ML estimates with corresponding standard errors in parenthesis of the unknown parameters
are presented in Table 4 and the comparison statistics, AIC, BIC, CAIC, HQIC and the goodness-
of-fit statistic for the data set are displayed in Table 5.

Table 3: Descriptive statistics for data set

Min. Max. Ist Qu. Med. Mean 3rd Qu. kurt. Skew.
0.100 5.550 1.077 1.450 1.754 2.240 4.9139 1.3282

Table 4: The ML Estimates (standard error in parenthesis) for data set

Model α̂ β̂ θ̂ λ̂ γ̂

IWB-IIID 189.54 0.1577 15.511 0.1618 ...
(172.96) (0.0159) (0.0977) (0.0584) ...

NMWD 0.0010 0.2922 1.7967 0.0010 1.7941
(0.0035) (0.0940) (5.0481) (0.0014) (0.1570)

AWD 0.0010 0.2924 1.7961 1.7962 ...
(0.0205) (0.0152) (0.1563) (0.1573) ...

TLBD 0.484 2.3688 1.8033 ... ...
(0.2556) (0.8929) (0.9392) ... ...

IWD 1.1753 1.0402 ... ... ...
(0.0849) (0.1110) ... ... ...

B-IIID ... ... 2.3189 1.8576 ...
... .... (0.2144) (0.2192) ....

IRD 0.9112 ... ... ... ...
(0.1073) ... ... ... ...

ILD 1.5540 ... ... ... ...
(0.1434) ... ... ... ...

It is observed from table 5 that IWB-IIID provides best fit than other competative models
based on the measures of statistics, AIC, BIC, AICC, HQIC and K-S statistic. Along with p-values
of each model.
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Table 5: Comparison criterion and goodness-of-fit statistics for data set

Model -l AIC AICC BIC HQIC K.S statistic p-value
IWB-IIID 93.007 194.01 194.61 203.12 197.64 0.0765 0.7933
NMWD 96.03 202.07 202.98 213.45 206.60 0.0983 0.4897

AWD 96.02 200.05 200.64 209.15 203.67 0.0982 0.4902
TLBD 97.60 201.21 201.56 208.04 203.93 0.3966 2.907e-10
IWD 117.32 238.65 238.82 243.20 240.46 0.1899 0.01109

B-IIID 97.608 199.21 199.38 203.76 201.02 0.1092 0.3565
IRD 161.85 325.71 325.77 327.99 326.61 0.4674 4.352e-14
ILD 118.93 239.86 239.92 242.14 240.77 0.3219 2.2e-16
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Figure 4: fitted pdf’s and cdf’s for the data set

10. Conclusion

In this work, we developed a novel flexible distribution known as the inverse Weibull-Burr
III distribution. Numerous mathematical characteristics are determined for this distribution,
including moments, moment generating functions, incomplete moments, order statistics, Renyi
entropy, mean deviations, and reliability analysis. The maximum likelihood estimation approach
was used to estimate the distribution’s parameters. Ultimately, it has been demonstrated by
employing a real-world data set that the stated distribution leads to a better fit than the comparable
ones.
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