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Abstract

We classify Lorentzian para-Kenmotsu manifolds which satisfy the curvature conditions W,.C = 0,
Z.C = LcQ(g,C), Wo.Z — ZWy = 0 and Wp.Z + Z.W, = 0, where Wy is the Weyl- projective
tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor. We study and have
shown that the manifold M is y-Einstein provided that the Weyl-projective curvature tensor Wy meets
the condition Wp.Z — Z.W, = 0, and it is an Einstein manifold if Wy.Z + Z.W, = 0. Finally, in
this article, we derive the conditions in relation to conformally flatness of the manifold, whenever the
LP-Kenmotsu manifold satisfies the condition Z.C = LcQ(g, C).
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I. INTRODUCTION

In 1989, K. Matsumoto [7] introduced the notion of Lorentzian paracontact and in particular,
Lorentzian para-Sasakian (LP-Sasakian) manifolds. Later, these manifolds have been widely
studied by many geometers Matsumoto and Mihai [8], Mihai and Rosca [6], Mihai, Shaikh and
De [5], Venkatesha and Bagewadi [15], Venkatesha, Pradeep Kumar and Bagewadi [16, 17] and
obtained several results of these manifolds.

In 1995, Sinha and Sai Prasad [2] defined a class of almost paracontact metric manifolds namely
para-Kenmotsu (briefly P-Kenmotsu) and special para-Kenmotsu (briefly SP-Kenmotsu) mani-
folds in similar to P-Sasakian and SP-Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra
Prasad defined a class of Lorentzian almost paracontact metric manifolds namely Lorentzian
para-Kenmotsu (briefly LP-Kenmotsu) manifolds [1] and they studied ¢-semisymmetric LP-
Kenmotsu manifolds with a quarter-symmetric non-metric connection admitting Ricci solitons
[13].

On the other hand, In 1970 [4], Pokhariyal and Mishra introduced new tensor fields, called
the Weyl-projective curvature tensor W, of type (1,3) and the tensor field E on a Riemannian

manifold. The Weyl-projective curvature tensor W, with respect to Riemannian connection on a
Riemannian manifold M is given by:

Wa(X, Y)W = R(X, Y)W + L [g(X, W)QY — g(Y, W)QX], )
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where QX = (n — 1) X, which plays an important role in the theory of the projective transforma-
tions of connections.

Further, Pokhariyal [3] studied the properties of these tensor fields on a Sasakian manifold. Mat-
sumoto, lanus and Mihai extended these concepts to almost para-contact structures and studied
para-Sasakian manifolds admitting these tensor fields [9] in 1986 and these results were gener-
alised by De and Sarkar, in 2009 [14]. Sai Prasad and Satyanarayana studied the W,-tensor field
in an SP-Kenmotsu manifold [10]. In our earlier work, we consider LP-Kenmotsu manifolds
admitting the Weyl-projective curvature tensor W, and shown that these manifolds admiting a
Weyl-flat projective curvature tensor, an irrotational Weyl-projective curvature tensor and a con-
servative Weyl-projective curvature tensor are an Einstein manifolds of constant scalar curvature
[11, 12].

Inspired by these studies, in the present work, we explore a class of Lorentzian para-Kenmotsu
manifolds that admits certain curvature conditions. The current study is arranged as follows:
Section 2 has certain prerequisites. In section 3, it is illustrated that the manifold M is #-Einstein
provided that the Weyl-projective curvature tensor W, meets the condition Wp.Z — Z.W, = 0,
and it is an Einstein manifold if W».Z + Z.W, = 0. Finally, we derive the conditions in rela-
tion to conformally flatness of the manifold, whenever the L P-Kenmotsu manifold satisfying the
condition Z.C = LcQ(g, C), where the concircular curvature tensor Z(X,Y) is given by:

Z(X, Y)W = R(X, Y)W — [g(Y, W)X — g(X, W)Y]. 2)

n(n—1)

II. PRELIMINARIES

An n-dimensional differentiable manifold M admitting a (1, 1) tensor field ¢, contravariant vec-
tor field &, a 1-form # and the Lorentzian metric g(X,Y) satisfying

P*X = X +1(X)E, g(PX,¢Y) = g(X,Y) +n(X)n(Y) 3)

and
1) =-1, ¢ =0, n(¢X) =0, g(X,¢) =n(X), rank¢ =n—1. 4)

is called Lorentzian almost paracontact manifold [7].

In a Lorentzian almost paracontact manifold, we have
P(X,Y) =D(Y,X), (5)

where ®(X,Y) = g(X, ¢Y).

A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmotsu manifold if
[1]
(Vx9)Y = —g(¢X, Y)E —n(Y)¢X, 6)

for any vector fields X and Y on M and V is the operator of covariant differentiation with respect
to the Lorentzian metric g.

In the Lorentzian para-Kenmotsu manifold, the following relations hold good:

Vx€ = —¢*X = - X —5(X)¢ 7)

and
(Vxn)Y = —g(X,Y)¢ —n(X)n(Y). ®)
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Further, on a Lorentzian para-Kenmotsu manifold M, the following relations hold [1]:

8(R(X,Y)Z,8) = n(R(X,Y)Z) = g(Y, Z)n(X) — (X, Z)y(Y), ©)
R(G X)Y = g(X, V)¢ = n(Y)X, (10)

R(X,Y)¢ =n(Y)X —n(X)Y; when X is orthogonal to ¢, (11)
R(Z, X)¢ = X +1(X)g, (12)

5(X,¢) = (n=1)n(X), (13)

$(¢X,9Y) = S(X,Y) + (n = 1)n(X)y(Y). (14)

A Lorentzian para-Kenmotsu manifold M is said to be an -Einstein manifold if its Ricci tensor
S(X,Y) is of the form

S(X,Y) =ag(X,Y) +bn(X)n(Y), (15)

where a and b are scalar functions on M.
Next we define endomorphisms R(X,Y) and X A4 Y by

R(X, Y)W = VxVyW — VyVxW — VX, Y]W, (16)
(XAAY)W = A(Y, W)X — A(X, W)Y, 17)

A is the symmetric (0,2)- tensor.

For a (0, k)-tensor field T, K > 1, on (M,, g) we define W,.T, Z.T and Q(g, T) by

(Wa(X,Y).T(X1, X2, ..., Xg) = — T(Wa(X, Y) X1, X2, ..., X)
— T(X1, Wa(X,Y)Xa, ..., Xi) (18)
— = T(Xq, Xp, s Wa (X, Y) Xy),

(Z(X,Y).T(X1, X2, .., X¢) = — T(Z(X,Y) X1, X2, .y Xi)
—T(X1,Z(X,Y)Xa, ... Xi) (19)

— . —T(X1,X2,..., Z(X,Y) Xg),
Q(g, T)(Xl, X2, ooy X X, Y) =— T((X VAN Y)Xl,XZ, ey Xk)

— T (X1, (XAY)X, ..., Xk) (20)
— = T(X1, Xo, .., (XAY)X),

respectively.

By definition the Weyl Conformal curvature tensor C is given by

C(X,Y)Z =R(X,Y)Z — % [S(Y,Z)X —S(X,Z)Y + g(Y,Z)QX — §(X, Z)QY]
B 21

r

m[g(Y,Z)X -8(X,2)Y],

where Q denotes the Ricci operator, i.e., S(X,Y) = ¢(QX,Y) and r is scalar curvature. The Weyl
conformal curvature tensor C is defined by C(X,Y,Z,W) = ¢(C(X,Y)Z,W). If C = 0,n > 4,
then M is conformally flat.
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II. MAIN RESULTS

In the present section we consider the LP-Kenmotsu manifold satisfying the curvature condi-
tions Wr.C =0, Z.C = LcQ(g, C), Wr.Z — ZW5 =0, and W,.Z + Z.W, = 0.

First we give the following proposition.

Proposition 1. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. If the condition
W5.C = 0 holds on M, then

(X, U) = (n—1)(r = 2)(X)p(U) + (r+n —2)S(U, X) — (n — Dg(X, 1)

is satisfied on M, where S?(X,U) = S(QX, U).

Proof: Assume that M is an n-dimensional, n > 3, LP-Kenmotsu manifold satisfying the condi-

tion W,.C = 0. From (18) we have

(WL (V, X).C)(Y, )W = — Wo(V, X)C(Y, U)W

—C(Wo(V, X)Y, U)W — C(Y, Wo(V, X)U)W (22)
—C(Y,U)Wp(V, X)W =0,

where X,Y,U,V,W € x(M). Taking V = ¢ in (22), we have
— C(W2(S, X)Y, U)W — C(Y, Wa (¢, X)U)W (23)
—C(Y, U)W(¢, X)W =0,

Furthermore, substituting (1), (9), (13), (21) into (23) and multiplying with ¢, we get.

— (X, C(Y, )W) — g(X, V)i (C(&, U)W +5(Y)y(C(X, U)W)

—g(X, U)n(C(Y, )W) + ( ) (C(Y, X)W) — g(X, W)n(C(Y, U)E)

+ (W) (C(Y, U)X) + ——= [(C(Y, )W) — (Y)5(C(QX, )W) (24)
+8(X,Y)p(C(QE, U)W > (X, u)n(C (Y QOW) — (U)W(C(Y,QX)W)

— (W)y(C(Y, U)QX) + g(X, W)n(C(Y,U)Q¢)] =

Thus replacing W with ¢in (24), we have

— 8(X,CY,U)E) — (€Y, W)X) + = [n(C(¥,1)QX)] =0. 25)

Again taking Y = ¢ in (25)and after some calculations, since n > 3, we get
S2(U,X) = (n—=1)(r—2)n(X)n(U) + (r+n—2)S(U, X) — (n — 1)g(X, U).

Theorem 2. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. If the condition

Z.C = LcQ(g,C) holds on M, then either M is conformally flat or Lc = n(nil) —1.

Proof. Let M be an LP-Kenmotsu manifold. So we have
(Z(V,X).C)(Y, U)W = LcQ(g, C)(Y, U, W; V, X).
Then from (19) and (20) we can write,
Z(V,X)C(Y, U)W = C(Z(V,X)Y, U)W — C(Y, Z(V, X)U)W
—C(y,u)z(V,X)W
= Lc[(VAX)C(Y, U)W —-C((VAX)Y, U)W
—C(Y,(VAX) U)W — C(Y, U)(V A X)W].

(26)
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Therefore, replacing v with ¢ in (26), we have

Z(& X)C(Y, U)W — C(Z(& X)Y, U)W — C(Y, Z(& X)U)W
—C(y,u)Z(E&, X)W

=Lc[(EAX)C(Y, U)W —-C((EANX)Y, U)W @7)
—C(Y, (EAX)U)W — C(Y, U)(E A X)W].
Using (20), (9) and taking the inner product of (27) with ¢, we get
1= gy — Ll (X SO W) = (X)n(C(Y, W)
— (X, Y)5(C(&, )W) + 1 (X)n(C(X, L)W) 9
—8(X, W)n(CY, )W) +n(U)y(C(Y, X)W) + 7 (W)y(C(Y, U)X)] = 0.
Putting X = Y in (28), we have
1= =y~ Ll s COntw) + g (W (C (v, L) )
=&Y, Y)n(C(G, )W) — g(Y, U)y(C(Y,5)W)] = 0.
A contraction of (29) with respect to Y gives us
1= oy~ Lenc@wm) =o. (30)
IfLe#1- ﬁ, then eq.(30) is reduced to
n(C(E,U)W) =0, (31)
which gives
(U, W) = (G gy~ D8 W) + (g ogy — mn(Wy (W), (32)

Therefore, M is a i-Einstein manifold. So, using (31) and (32), we have eq. (28) in the form
C(y,u,w,X)=0o,
which means that M is conformally flat.

ﬁ — Lc = 0, which gives Lc = 1 — "=

If Lc # 0 and U(C(g, U)W) # 0, then 1 — n(n—1)"

This completes the proof of the theorem.

Corollary 3. Every n-dimensional (n > 3) nonconformally flat LP-Kenmotsu manifold satis-
fies Z.C = (1- ;145)Q(8, ©).

Theorem 4. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. M satisfies the condi-
tion

WoZ — Z.Wp = 0

if and only if M is a #-Einstein manifold.
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Proof. Let M satisfy the condition W,.Z — Z.W, = 0. Then we can write

Wa.Z — ZW, =R(V, X)R(Y, U)W + % [g(V, R(Y, U)W)QX — g(X, R(Y, U)W)QV]

mg(
ﬁg(ﬁ W) [R(V, X)U + ﬁ (8(V, QX —g(X, U)QV)]

— R(V, X)R(Y, U)W +

- U, W) [R(V, X)Y + = (3(V, Y)QX — g(X,Y)QV)]
+

, (33)

nin—1) [
~ Y WIR(Y, 00U = S (X, 0V —5(, Q)

+ %g(u, W) [R(V, X)QY — ﬁ

X, R(Y,U)W)V — g(V,R(Y, U)W)X]

(8(X,QY)V —g(V,QY)X)] =0.

Therefore, replacing V with ¢ in (33), we have

Wo.Z — Z.Ws :ﬁ [g(& R(Y, U)YW)QX — g(X, R(Y, U)W)Q¢]

U WRE XY+ (5 QX ~ g(X V18]

r

g8 WR(E XU + 52 (816 LQX ~ (X, 1)Q7)]

+n(n—

. (34)

w(n—1) [
— g8 WR(E X)QU = 2l (81, QU)E — 5(2,QU) )]

~ R(EX)R(Y, L)W + X,R(Y, U)W)E — g(& R(Y, )W)X]

g W) [R(E, X)QY 7 (X, Q)8 =56, QV)X)] =0.

_r
nn—1
Using (10), (13), we get

Wo.Z — Z.W» :% [9(&, R(Y, U)W)QX — (X, R(Y, UI)W)QZ]

_ ﬁg(uw) [2(X, Y)E — n(Y)X] - n(%_l)

n(nr_ Ty 8(UW)g(X, )¢ + n(%_l)g(% W)[g(X, )¢ —n(L)X]
r

S WX = g (Y WR(X W)

! (35)
ooy S ROGUWIE - (& RO UW)X

~ Gy W (S0 QUIE — H(QUX] + g, Wg(X, QU)E

U W)n(Y)X

_|_

r

mg(lﬂ W)n(QU)X + (nl_l)g(u, W)[g(X,QY)¢ —n(QY)X]

- mg(ww)g(& QY)¢ - ﬁg(& W) (QY)X = 0.
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Again, taking U = ¢ in (35), we get
1
n—1

[8(2,8(Y, W)E = n(W)Y)(n — 1)X = g(X,g(Y,W)& — n(W)Y)(n — 1)¢]

T BXE = n(N)X] = (W)X

r

+ mg(x, Y)n(W)E + T 1)g(Y, W) [(X)& + X]

Y, W)n(U)X — Y, W)g(X,U)¢

B n(n—l)g( n(n—l)g(
r

o R WIX R (L W (08 36)

Ty (S (X800 WE =g (W)Y)E = (8,80, W)E — (W)Y
— S W) = D(X)8 = (1= 1)X] + S0, W) (08

_|_

~ S WX+ W) [(n = DS Y)E ~ (= 1 (V)X]

m’?(w)ﬂ(y)x =0.

r r

- mn(W)S(X,Y)@—

Taking the inner product of (36) with ¢, we find

=27 (W)y(Y)y(X) = 2n(W)g(X,Y) + ﬁn(w)g(xf Y)+ n(nzil)v(W)U(Y)n(X)
(37)
+ n(nzil)n(X)g(Y, W) + ﬁﬂ(W)S(x, Y)=0.
Again, taking W = ¢ and using (4) in (37), we get
5(x,) = 2=y + P00 gy (38)

So, M is a 5-Einstein manifold.

Conversely, if M is a #-Einstein manifold, then it is easy to show that W>.Z — Z.W, = 0. Our
theorem is thus proved.

Theorem 5. Let M be an n-dimensional (n > 3) LP-Kenmotsu manifold. M satisfies the condi-
tion
Wo.Z +ZW; =0

if and only if M is an Einstein manifold.

Proof. Let M satisfy the condition W,.Z + Z.W, = 0. Then from (33) and (34) we can write

2R(V, X)R(Y, U)W + % [g(V, R(Y, U)W)QX — g(X, R(Y, L)W)QV]

L _g(UW)[R(V, X)Y + %(g(V, Y)QX — g(X,Y)QV)]

)
o8 WRV.X0U + L (5(V,U)QX — g(X, U)QV)]

39
~ ) BEROLUWY = (V,R(Y, )W) x] (39)

+ g, W) [R(V, X)QU - o =) 80 QUV — & (v, QU)X)]

1
n—1

ﬁ (¢(X,QY)V —g(V,QY)X)] =0.

(U, W)[R(V, X)QY —
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Therefore, replacing V with ¢ in (39), we have

2R(E X)R(Y, LYW + 2 [g(&, R(Y, )W) QX — g(X, R(Y, U)W)Q]

Ca(n—1)
nn—1)
Ca(n—1)

+ %g(lf, W)[R(E, X)QU —

§(U W) [R(EX)Y + - (3(6,Y)QX — g(X, V) Q8)]
$0V, W) [R(E X)U + 1 (5(E U)QX — g(X,U)QF)]

n—

+
(40)
[$(X,R(Y,)W)G — g(, R(Y, U)W)X]

w1 (80 QUIE — (6, QU)X)]
1
— S W)REX)QY — s (3(X,QV)E - g(E,QV)X)] =0,
Again, taking Y = ¢ in (40), we get

2R(&, X)R(G, U)W + (2, R(S, I)W)QX — g(X, R(Z, U)W)QZ]

L n(X)Qg]

n—

n—1
r

- mg(ur W) [R(E, X)¢ - ﬁQX -

1y WIRE XU + ﬁq(mgx - ﬁg@g 1)Qe]

r

—m[g(

1
—1(W)[R(E, X)QU — AT

(41)
X, R(, U)W)E — g(&,R(§, U)W)X]

ST+ g (= D (W (X))

+
n

1 r
— 78U W)[(n =R, X)§ - m(ﬂ = Dn(X)¢ - ] (n-1)X] =0.

n(n—1
Taking the inner product of (41) with ¢ and using (7), (10), we get
r 1 r
eta(W)g(X,U) — m’?(w)g(?{, U) — —n(W)S(X, U) + ms(xf u)y=0. (42
Again, taking W = ¢ and using (4) in (42), we get

r

mS(X, u) = 0. (43)

(X, U) — ﬁg(x, ) + L S(X,U) +

Thus, from (43), we have
S(X,U) = (n—1)g(X, U) (44)

So, M is an Einstein manifold.

Conversely, if M is an Einstein manifold, then it is easy to show that Wp.Z + Z.W, = 0. Our
theorem is thus proved.
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