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Abstract 

This research presents the maximum likelihood estimation of a three-parameter Gamma distribution 

with application to four types of average rainfall intensities in Nigeria. These data sets are average 

half-yearly, yearly, quarterly and monthly rainfall intensities. The fitted three-parameter Gamma is 

compared to a two-parameter Gamma distribution using empirical distribution function (EDF) 

tests. The tests used are Cramér-von Mises, Anderson-Darling and Kolmogorov-Smirnov statistics. 

Based on the results obtained at 10% significance level both the two-parameter and three-parameter 

Gamma distributions are of good fit to only the average yearly rainfall intensity data. A kernel 

density plot revealed that the average half-yearly, quarterly and monthly rainfall intensity data sets 

are multi-modal in nature hence a reason for both Gamma distributions poor fit to the data sets. 

Also, the PDF, CDF and Q-Q plots are presented which supported the outcome of the analysis. 

Keywords: Gamma distribution, Anderson-Darling, Cramér-von Mises, Kernel 

density, Kolmogorov-Smirnov, Maximum likelihood estimation  

1. Introduction

Classical analysis of statistical data in most fields including meteorology and hydrology has 

assumed that the data being analyzed may be reasonably modeled by distribution with somewhat 

light tailed where the tail of the density function approaches zero like some kind of exponential 

function (Arshad, Rasool & Ahmad, [1]). One of the most difficult problems in rainfall modeling is 

often the fitting of theoretical models to rainfall data (Richard, [10]). According to Hughes [8], the 

primary objective of modeling is frequently to generate a long representative time series of stream 

flow volumes from which water supply schemes can be designed. Wolfram [14] stated that 

Gamma distribution is a general type of statistical distribution that is related to the Beta 

distribution and arises naturally in processes for which the waiting times between Poisson 

distributed events are relevant. According to Alghazali & Alawadi [2], the two-parameter Gamma 

distribution is widely known and used in hydrological analysis. However, Chow et al., [4] stated 

that the two-parameter Gamma distribution has a lower bound at zero, this condition handicaps its 

application to hydrological variables with lower bound larger than zero.  

In the theory of probability and statistics, the gamma distribution is a two-parameter family of 

continuous probability distributions. It has a shape and scale parameters, say α and β respectively. 

If β is an integer, then the distribution represents the sum of β independent exponentially 

distributed random variables, each of which has a mean of α [which is equivalent to a rate 
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parameter of α-1] (Wackerly et al., [12]). It often appear as solution to problems in Statistical 

Physics, for example, the energy density of classical ideal gas or the Wien (Vienna) distribution is 

an approximation to the relative intensity of black radiation as a function of the frequency (Crooks, 

[5]).  The disadvantage of Gamma distribution is that the cumulative distribution function cannot 

be plotted. The 1-parameter gamma distribution is very limited in hydrological analysis due to its 

relative inflexibility in fitting to frequency distributions of hydrologic variation (Aksoy, [5]). 

Gamma distribution is widely used in many fields like reliability, survival analysis, hydrology, 

ecology, etc. (Dikko, et al., [7]) Many variant of the gamma distribution exist and different 

estimation techniques have been used for estimating the gamma distribution parameters. These 

estimation techniques include methods of moment (MOM), percentile method, graphical 

estimation technique, maximum likelihood estimation (MLE), etc, with different modifications of 

the estimating techniques. The objective of this research is to present the estimation of the three 

parameters Gamma distribution using MLE and its application to four average rainfall intensity 

data sets for Nigeria. 

2. Methods

In this section, the Gamma distribution assumptions for its applicability are presented. The 

probability density function (PDF) for the Gamma distribution is presented and its parameter 

estimation is presented using the maximum likelihood estimation technique. Four average rainfall 

intensity data sets which span for 115 years (1901 – 2015) are fitted for this research. The first data 

set is a quarterly data while the second data set used was obtained by collapsing the quarterly data 

to first half (FH) of the year and second half (SH) of the year, that is, average of first and second 

quarters to produce FH and average of third and fourth quarters to produce SH. The yearly rainfall 

intensity was used as the third data set and the monthly rainfall intensity data was used as the 

fourth. Data used was obtained from climate knowledge portal, 

https://climateknowledgeportal.worldbank.org.  

2.1. PDF for A 3-Parameter Gamma Distribution 

According to Aksoy [5], the Gamma distribution function is of three different types, 1-parameter, 

2-parameters and 3-parameters Gamma distributions. If the continuous random variable x fits to

the probability density function of:

11
( ) 0

( )
k xf x x e ; x

k
− −=     (1) 

it is said that the variable x is 1-parameter Gamma distributed, with the shape parameter k. The 

Gamma function )k( in equation (1) is generally expressed as: 

1
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when k = 1, equation (1) becomes a simple exponential distribution function. If x is replaced by 

x   in equation (1) the 2-parameter Gamma distribution (2-PGD) with k being the shape 

parameter and β being the scale parameter is obtained as: 
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which can easily return to 1-parameter Gamma distribution for β =1. Gamma distribution with two 

parameters k and β denoting the shape and the scale parameters respectively are commonly used 

in hydrological studies (Alghazali & Alawadi, [2]). The shape of the rainfall distribution is 
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regulated by the shape parameter and the scale parameter controls the variation of rainfall 

intensity series which is specified in the same unit as the random variable x (Suhaila, & Jemain, 

[11]). If x is replaced by ( )x  −  in equation (1) the 3-parameter Gamma distribution (3-PGD) 

with k,   and  being the shape, scale and location parameters respectively is obtained as: 
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2.2. Parameter Estimation with Maximum Likelihood Estimation Technique 

The likelihood function: 

1

( ) ( )
n

i

Lg x, g x, 
=

=    (5) 

Applying the likelihood function of equation (5) to equation (4) we have 
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Taking the logarithm (ln) of equation (6) we get 
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Differentiating equation (7) with respect to   and setting the derivative to zero, we have 
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Multiply both sides of equation (8) by ( ) 21


−
nk  we have 

( ) ( )
1 1

x nk nk 
− −

= −

( )  
1ˆ nk x 
−

= −    (9) 

Differentiating equation (7) with respect to   and setting the derivative to zero, we have 
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(10) 

Multiply both sides of equation (10) by ( )2n −  we have
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Differentiating equation (7) with respect to k and setting the derivative to zero, we have 
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where D in equation (12) is the derivative, this implies 
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where   is the Euler-Mascheroni constant and it is given as 
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Substituting the value of   in equation (14) into equation (13) we have 
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Substituting equation (15) into equation (12) and inserting the estimates of ̂  and ̂  we have 

( ) ( )
1 1

1 1

1 1
0 58

1

n

i i

i i

ˆ ˆ ˆ. ln x n k n nk x nk
i i k

  


− −

= =

  
− + − = − + − +  

+ −   
   (16) 

Equation (16) does not exist in a closed form hence the estimation of k can only be obtained 

through numerical solution. This can be accomplished using any statistical software. In this 

research, Statistical Analytical System (SAS) version 9.4 is used to fit both the 2-PGD and 3-PGD. 

2.3. Goodness of Fit Test 

The goodness-of-fit tests based on empirical distribution function (EDF) are used in this research 

work. The EDF tests offer advantages over traditional chi-square goodness-of-fit test, including 

improved power and invariance with respect to the histogram midpoints (D'Agostino and 

Stephens, [6]). The empirical distribution function is defined for a set of n independent 

observations X1, ... ,Xn with a common distribution function F(x).  If we Denote the observations 

ordered from smallest to largest as X(1), ... ,X(n). The empirical distribution function, Fn(x), is defined 
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as: 
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Note that Fn(x) is a step function that jump [1/n] in height at each observation, but in the case 

where two observations or more are equal, that is, when there are nj observations at xj, then  Fn(x) 

becomes a step function that jump [nj/n] in height at each observation xj. This function estimates 

the distribution function F(x). At any value x, Fn(x) is the proportion or fraction of observations less 

than or equal to x, while F(x) is the probability of an observation less than or equal to x. EDF 

statistics measure the discrepancy between Fn(x) and F(x) which are used to conclude whether the 

empirical distribution Fn(x) fit the hypothesize distribution F(x). In this research, three EDF tests 

are used in testing the goodness of fit of each distribution fitted to the average monthly, quarterly, 

half-yearly and yearly rainfall intensity data. The EDF are Kolmogorov-Smirnov, Anderson-

Darling and Cramer-von Mises. These GOF tests are presented below as follows. 

2.3.1. Kolmogrov-Smirnov (D) Statistic 

According to Wilks [13], the Kolmogorov-Smirnov (D) Statistic is defined as 

)()( xFxFSupD nx −=  (18) 

The Kolmogorov-Smirnov statistic belongs to the supremum class of empirical distribution 

function (EDF) statistics. This class of statistics is based on the largest vertical difference between 

F(x) and Fn(x). The Kolmogorov-Smirnov statistic is computed as the maximum of D+ and D-, 

where D+ is the largest vertical distance between the EDF and the distribution function when the 

EDF is greater than the distribution function, and D- is the largest vertical distance when the EDF is 

less than the distribution function.  

),max( −+= DDD (19) 

D represents the maximum difference between the empirical and theoretical distributions over all 

real numbers x, and is referred to as the Kolmogorov-Smirnov value. Fn(x) is the empirical 

cumulative probability of observing a value less than or equal to y and 1/np is added for each 

observation (xi) that is greater than zero and less than or equal to y. F(x) is the theoretical 

cumulative probability at x described by the estimated gamma distribution parameters ( , ,k)  . 

Fn(x) and F(x) are given as (Husak et al., [9])      
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A smaller value of D implies a better fit between the observed and theoretical distributions for a 

fixed number of observations, n. 

2.3.2. Anderson-Darling Statistic 

The Anderson-Darling statistic and the Cramér-von Mises statistic belong to the quadratic class of 

EDF statistics. This class of statistics is based on the squared difference ( )2
)()( xFxFn − . Quadratic

statistics have the following general form:  

( )


−
−= )()()()(

2
xdFxxFxFnQ n  (22)
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where, )(x  is the weight function for the squared differences ( )2)()( xFxFn − .

When the weight function   1
)(1)(()(
−

−= xFxFx , then the Anderson-Darling Statistic denoted 

by A2 is defined as: 
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The Anderson-Darling statistic (A2) is computed as follows. 
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where, 
)(iU is the ith order Statistic.

2.3.3. Cramer-von Mises Statistic 

Explained the Cramér-von Mises statistic as similar to Anderson-Darling Statistic, but in the case of 

Cramér-von Mises statistic, the weights function 1)( =x . The Cramér-von Mises statistic denoted 

by (W2) is defined by:  
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The Cramér-von Mises Statistic (W2) is computed as: 
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where, 
)(iU is the ith order Statistic.

3. Results

Results from the fitted distributions are presented below. Table 1 presents the empirical 2-PGD 

and 3-PGD mean and standard deviation (Std. Dev) values for the average half-yearly rainfall 

intensity, average yearly rainfall intensity, average quarterly rainfall intensity, and average 

monthly rainfall intensity data sets, that is, AHYRI, AYRI, AQRI, and AMRI respectively. It is 

observed that for all the data sets, the 2-PGD and 3-PGD estimates for the mean is the same as the 

empirical mean estimate. However, both fitted distributions estimates for the standard deviation 

are different from the empirical standard deviation for each data set except for the AYRI data set. 

Therefore, both the 2-PGD and 3-PGD estimated equivalent mean and standard deviation values to 

the that of the empirical mean and standard deviation values of 96.4014 and 7.7945 respectively.  

Table 1: Summary Statistics for the Rainfall Data 

Data 

Type 

Statistic Observed 2-Gamma

Estimate

3-Gamma

Estimate

AHYRI Mean 96.401398 96.4014 96.4014 

Std. Dev 32.162844 32.74474 35.61137 

AYRI Mean 96.401398 96.4014 96.4014 

Std. Dev 7.7944973 7.87561 7.860996 

AQRI Mean 96.401398 96.4014 96.4014 

Std. Dev 78.321223 86.39379 90.5222 

AMRI Mean 96.401398 96.4014 96.4014 

Std. Dev 85.00559 110.8792 113.5311 

The results from the summary statistics clearly give a clue that both the 2-PGD and 3-PGD will fit 

the average yearly rainfall intensity data better. However, such conclusion cannot be for certain  
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until the fitted distributions are subjected to goodness of fit tests described earlier in section 2.3. 

The results for the parameter estimates from the 2-PGD and 3-PGD are presented in Table 2 and 

Figure 1, 2, 3, and 4 shows the histogram plots, the 2-PGD, and 3-PGD curves with the kernel 

density curve as well for the AHRI, AYRI, AQRI, and AMRI data sets.  

Table 2: Maximum Likelihood Parameter Estimates Results 

Data Type Parameter 2-PGD Estimate 3-PGD Estimate

AHYRI 

Location **** 41.0887 

Scale 11.12243 22.92728 

Shape 8.667296 2.412528 

AYRI 

Location **** -10.213

Scale 0.643406 0.579615

Shape 149.8298 183.9402

AQRI 

Location **** 4.125437 

Scale 77.42508 88.80176 

Shape 1.245093 1.039123 

AMRI 

Location **** 0.4245 

Scale 127.5312 134.296 

Shape 0.755904 0.714667 

 Figure 1: Fitted Curve for AHYRI Data set  Figure 2: Fitted Curve for AYRI Data set 

 Figure 3: Fitted Curve for AQRI Data set       Figure 4: Fitted Curve for AMRI Data set 
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From the figures displayed, it can be seen that the two and three parameter Gamma distributions 

fits the AYRI data set (Figure 2) better compared to the AHYRI, AQRI, and AMRI data sets. 

Figure 2 shows a peaked shape with one mode compared to Figure 1, 2, and 3 with two modes, 

three modes and two modes respectively as depicted by the kernel density curve. To ascertain the 

2-PGD and 3-PGD goodness of fit for all data sets, Table 3 presents Cramér-von Mises (W2),

Anderson-Darling (A2), and Kolmogorov-Smirnov (D) statistics results for assessing the fitted

distributions.

Table 3: Criterion for Assessing Goodness of Fit 

Data Type and 

GOF Methods 

Goodness of Fit Estimate (P-Values) 

2-PGD 3-PGD

AHYRI 

D 0.1809663(<0.001) 0.1972426(<0.001) 

W2 2.3407958(<0.001) 2.0138826(<0.001) 

A2 12.7906188(<0.001) 11.0297705(<0.001) 

AYRI 

D 0.06071233(>0.250) 0.05959971(>0.250) 

W2 0.08224762(0.194) 0.07871282(0.217) 

A2 0.54769583(0.161) 0.52514845(0.184) 

AQRI 

D 0.1095454(<0.001) 0.1179290(<0.001) 

W2 1.9423611(<0.001) 1.6980158(<0.001) 

A2 12.1566899(<0.001) 10.5830877(<0.001) 

AMRI 

D 4.18050(<0.001) 4.78650(<0.001) 

W2 6.45624(<0.001) 6.00624(<0.001) 

A2 38.67804(<0.001) 37.57614(<0.001) 

    Bold p-values imply good fit 

From Table 3 above, it is clearly seen that the 2-PGD and 3-PGD are poor fit to Nigeria average 

half-yearly, quarterly, and monthly rainfall intensity data sets. The reason is that D, W2 and A2 

statistic values produced p-values less than 0.01 but they produced p-values greater than 10% 

significance level for average yearly rainfall intensity. Therefore, it is clear from the goodness of fit 

statistics p-values that both the 2-PGD and 3-PGD are good fit to only the average yearly rainfall 

intensity data. To buttress the results discussed thus far, the cumulative density function (CDF), 

quantile estimates, and quantile plots (Q-Q plots) are presented. The CDF plots presented in Figure 

5, 6, 7, 8, 9, 10, 11 and 12 clearly shows that only the 2-PGD and 3-PGD CDF plots for the AYRI 

data has a well fitted S-shape as seen in figure 7 and 8 respectively.  

Figure 5: 2-Parameter Gamma CDF Curve  Figure 6: 3-Parameter Gamma CDF Curve 
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 Figure 7: 2-Parameter Gamma CDF Curve   Figure 8: 3-Parameter Gamma CDF Curve 

 Figure 9: 2-Parameter Gamma CDF Curve    Figure 10: 3-Parameter Gamma CDF Curve 

 Figure 11: 2-Parameter Gamma CDF Curve  Figure 12: 3-Parameter Gamma CDF Curve 

The estimated quantile presented in Table 4 shows that the 2-PGD and 3-PGD estimated quantiles 

are similar to the empirical quantiles for AYRI compared to AHRI, AQRI and AMRI data sets. 
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Table 4: Quantile Estimates from the three Distributions for the four Quarters 

PERCENTAGE OBSERVED 2-Gamma 3-Gamma

AHYRI 

1.0 51.2246 36.7578 46.8728 

5.0 54.7701 49.5577 53.2972 

10.0 59.2066 57.5328 58.4083 

25.0 65.4879 72.7802 70.2148 

50.0 91.8013 92.7203 88.9753 

75.0 126.9564 116.0211 114.5791 

90.0 135.8106 140.0208 144.0947 

95.0 140.9320 155.8089 164.8805 

99.0 147.9636 188.3987 210.4818 

AYRI 

1.0 76.5994 79.0310 78.9703 

5.0 81.2038 83.8231 83.8090 

10.0 86.9932 86.4562 86.4594 

25.0 91.0947 90.9790 90.9992 

50.0 96.7386 96.1870 96.2083 

75.0 101.4315 101.5901 101.5931 

90.0 106.8712 106.6221 106.5916 

95.0 109.5241 109.7110 109.6526 

99.0 111.5782 115.6631 115.5364 

AQRI 

1.0 7.98870 2.14038 5.20545 

5.0 11.63405 8.06373 9.32423 

10.0 13.95009 14.59845 14.54737 

25.0 24.26035 33.88568 31.70857 

50.0 67.92154 72.16883 69.04598 

75.0 156.24420 133.05217 132.00585 

90.0 220.33728 210.27723 214.59713 

95.0 228.02246 267.51252 276.84191 

99.0 245.61700 398.36593 420.96745 

AMRI 

1.0 0.97407 0.25860 0.61226 

5.0 2.58519 2.19311 2.22199 

10.0 3.91610 5.56936 5.22762 

25.0 12.62992 19.93095 18.76462 

50.0 80.51468 58.62833 56.97441 

75.0 171.20598 132.96517 132.42207 

90.0 223.01040 237.61879 240.17013 

95.0 240.39757 319.16261 324.67099 

99.0 266.14557 512.60240 526.04011 

The quantile plots for the 2-PGD and 3-PGD are presented in Figure 13, 14, 15, 16, 17, 18, 19 and 20. 

The 2-PGD and 3-PGD Q-Q plots for the AYRI data set showed almost all points fall on the 

reference straight line. This implies that the quantiles of the theoretical and data distribution agree 

for AYRI data set only. 
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Figure 13: AHYRI 2-P-Gamma Q-Q Plot  Figure 14: AHYRI 3-P-Gamma Q-Q Plot 

Figure 15: AYRI 2-P-Gamma Q-Q Plot Figure 16: AYRI 3-P-Gamma Q-Q Plot 

Figure 17: AQRI 2-P-Gamma Q-Q Plot Figure 18: AQRI 3-P-Gamma Q-Q Plot 
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Figure 19: AMRI 2-P-Gamma Q-Q Plot Figure 20: AMRI 3-P-Gamma Q-Q Plot 

4. Conclusion

In this research, the maximum likelihood parameter estimation of a 3-PGD is presented. Also, its 

application to four different average rainfall intensity data sets was performed and compared to a 

2-PGD. A goodness of fit test was performed using three criterions, that is, Cramér-von Mises (W2),

Anderson-Darling (A2) and Kolmogorov-Smirnov (D) statistics. Based on the results obtained it is

concluded that among the four data sets fitted, the 2-PGD and 3-PGD are good fit to Nigeria yearly

rainfall intensity data set only. The PDF curves with kernel density curves, CDF curves and Q-Q

plots showed supporting evidence as the goodness of fit statistics (W2, A2 and D) results. The

kernel density curves showed that AHYRI, AQRI and AMRI data sets are multi-modal data sets

and it is a major reason both the 2-PGD and 3-PGD fitted the data sets poorly. Hence, distributions

that handle multi-modal data will be more suitable for fitting the AHYRI, AQRI and AMRI data

sets.
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