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Abstract

The continuous Bernoulli distribution is a recently introduced one-parameter distribution with support
[0, 1], finding numerous applications in applied statistics. The idea of this article is to propose a natural
extension of this distribution by adding a shape parameter through a power transformation. We introduce
the power continuous Bernoulli distribution, aiming to extend the modeling scope of the continuous
Bernoulli distribution. Basics of its mathematical properties are derived, such as the shapes of the related
functions, the determination of various moment measures, and an evaluation of the overall amount of its
randomness via the Rényi entropy. A statistical analysis of the distribution is then performed, showing
how it can be applied when dealing with data. Estimates of the parameters are discussed through the
maximum likelihood method. A Monte Carlo simulation study investigates the asymptotic behavior of
these estimates. The flexibility of the power continuous Bernoulli distribution in real-life data fitting
is analyzed using two data sets. Also, fair competitors are considered to highlight the accuracy of this
distribution. At all stages, numerous graphics and tables illustrate the findings.

Keywords: Continuous Bernoulli distribution; moments; quantiles; entropy; data fitting.

1. Introduction

In order to understand the mathematical foundation of the study, let us first present the so-called
continuous Bernoulli distribution as introduced in [19].

Definition 1. The continuous Bernoulli distribution with parameter λ ∈ [0, 1], also denoted as
CB(λ), is defined by the following probability density function (pdf):

f (x; λ) =


1, λ =

1
2

and x ∈ [0, 1],

cλλx(1− λ)1−x, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

0, x 6∈ [0, 1],

(1)

where cλ is the following constant:

cλ =
2 arctanh(1− 2λ)

1− 2λ
. (2)

Here, arctanh(x) denotes the inverse hyperbolic tangent defined by arctanh(x) = (1/2) ln[(1 +
x)/(1− x)] (as a minor remark, the following expressions are equivalent: 2 arctanh(1− 2λ) =
ln(1− λ)− ln(λ) = ln(1/λ− 1)).
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Alternatively, the CB(λ) distribution can be defined by its cumulative distribution function
(cdf), which is given by

F(x; λ) =



0, x < 0,

x, λ =
1
2

and x ∈ [0, 1],

λx(1− λ)1−x + λ− 1
2λ− 1

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

1, x > 1.

(3)

Thus, the CB(λ) distribution, like the power distribution, is a one-parameter continuous
distribution with support of [0, 1]. It is useful in a variety of fields, including probability theory,
statistics, with an emphasis on machine learning. In particular, it is good at simulating the pixel
intensities of natural images in deep learning and computer vision, especially when putting up
variational autoencoders. We advise the reader to [19] and [13] for more information on these
topics.

More broadly, bounded support distributions have proven useful in modeling real-world data,
particularly in scenarios where the data are measured in percentages and proportions. So when
the observations take on value within the unit interval [0, 1]. In recent decades, the beta and
Kumaraswamy distributions have gained more popularity in this regard. However, there are
situations where these classical distributions provide poor fit in data analysis. This has become a
quest for many researchers to develop alternative bounded distributions with better flexibility
in real-life data fitting. With this in mind, [12] introduced the log-Lindley distribution, [21]
developed the unit-logistic distribution, [1] created the log-Xgamma distribution, [20] proposed
the unit-Gompertz distribution, [23] developed the Kumaraswamy unit-Gompertz distribution,
[16] examined the unit-Burr XII distribution, [15] introduced the unit-Chen distribution, [26]
developed the transmuted Marshall-Olkin extended Topp-Leone distribution, [6] proposed the
log-XLindley distribution, [2] studied the unit-Rayleigh distribution, etc. The CB(λ) distribution
belongs to the list.

In this paper, by including a shape parameter, we hope to increase the flexibility of the CB(λ)
distribution for a variety of applications. In other words, for a random variable X following the
CB(λ) distribution, we consider the distribution of the power random variable Y = X1/α, where
α > 0. In this way, we introduce the power continuous Bernoulli distribution with parameters α
and λ, PCB(α, λ) distribution for short. The used power scheme is somewhat classic in statistics,
and allows to flexibilize various “rigid distributions”. We may mention the Weibull distribution,
which is the power version of the exponential distribution, the power Lindley distribution by [9],
which is the power version of the Lindley distribution (see [18]), etc. Recent examples include
the power beta distribution by [5], the power Lomax distribution by [28], the power Ailamujia
distribution by [14], etc.

In fact, at the time of writing, no extensions of the CB(λ) distribution exist, and the PCB(α, λ)
distribution is a strong contender for being useful from both theoretical and applied perspectives.
After a detailed presentation, we investigate its main features, such as the related probability
functions, moments of various kinds, and entropy (Rényi entropy). Then, we examine the practice
on the statistical side. We estimate the PCB(α, λ) distribution parameters, i.e., α and λ, by the
maximum likelihood (ML) method. A Monte Carlo simulation study is then conducted to validate
the asymptotic behavior of these estimates. We present significant applications of the PCB(α, λ)
distribution in a data fitting context, with the use of two real-life data sets: one containing trade
share data, and the other containing tensile strength of polyester fibers. In addition, several
distributions are considered for fair comparison in terms of efficiency in fitting. Illustrations, via
tables and graphics, are given to support the findings. We have thus laid the foundation for the
use of the PCB(α, λ) distribution for statistical purposes.

The organization of the paper is as follows: Section 2 describes the PCB(α, λ) distribution,
including its underlying functions of interest. A moment analysis is performed in Section 3. The
entropy is studied in Section 4. Parameter estimation, simulation study and real-life data fitting
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are developed in Section 5. A conclusion is given in Section 6.

2. Power continuous Bernoulli distribution

The PCB(α, λ) distribution is defined below through its related probabilistic functions.

Definition 2. Based on its stochastic definition and the functions (1) and (3), the PCB(α, λ)
distribution with α > 0 and λ ∈ [0, 1] is defined by the following cdf:

F(x; α, λ) = F(xα; λ)

=



0, x < 0

xα, λ =
1
2

and x ∈ [0, 1],

λxα
(1− λ)1−xα

+ λ− 1
2λ− 1

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

1, x > 1,

(4)

or, equivalently, by the following pdf:

f (x; α, λ) = αxα−1 f (xα; λ)

=


αxα−1, λ =

1
2

and x ∈ [0, 1],

cλαxα−1λxα
(1− λ)1−xα

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

0, x 6∈ [0, 1],

(5)

where cλ is the constant defined in (2).

Basically, by taking α = 1 into (4) and (5), we obtain the cdf and pdf of the CB(λ) distribution,
as described in (3) and (1), respectively.

It is important to note that the PCB(α, λ) distribution has one mode in the case λ ∈ (1/2, 1),
and it is given by the following mathematical formula: x = [(α− 1)/(2α arctanh(1− 2λ))]1/α. In
this case, the PCB(α, λ) distribution is unimodal, and the mode differs from 0 if, and only if,
α ∈ [0, 1), i.e., α 6= 1. So by considering the power version of the CB(λ) distribution, we introduce
a unimodality property that can be used quite efficiently for statistical aims, including data fitting
purposes.

Figure 1 presents the plots for f (x; α, λ) in order to illustrate the effect of the parameter α on
its possible shapes.

(a) (b)

Figure 1: Pdf plots of the PCB(α, λ) distribution at different choices of the parameter settings: (a) (α, λ) ∈
{(3, 0.2), (4, 0.3), (0.5, 0.1), (0.1, 0.4), (9, 0.6)} and (b) (α, λ) ∈ {(5, 0.1), (3.5, 0.1), (0.2, 0.3), (1.5, 0.1)}
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Clearly, we observe that the pdf of the PCB(α, λ) distribution accommodates decreasing
(reversed-J) or increasing, left-skewed, right-skewed and symmetric shapes.

As a complementary function to the pdf, the hazard rate function (hrf) of the PCB(α, λ)
distribution is given as

h(x; α, λ) =
f (x; α, λ)

1− F(x; α, λ)

=


αxα−1

1− xα
, λ =

1
2

and x ∈ [0, 1],

c∗λαxα−1λxα
(1− λ)1−xα

λ− λxα(1− λ)1−xα , λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1],

0, x 6∈ [0, 1],

where c∗λ = (2λ− 1)cλ = −2 arctanh(1− 2λ). The graphical representation of this function is
displayed in Figure 2.

Figure 2: Hrf plots of the PCB(α, λ) distribution at different choices of the parameter settings: (α, λ) ∈
{(5, 0.1), (0.1, 0.9), (0.6, 0.7), (2, 0.9)}

Figure 2 indicates that the PCB(α, λ) distribution exhibits increasing and bathtub-shaped
hazard properties. These are demanded properties for data analysis purposes with values in
[0, 1].

As the inverse function of the cdf, the quantile function (qf) of the PCB(α, λ) distribution is
given as

Q(x; α, λ) = F−1(x; α, λ)

=


x1/α, λ =

1
2

and x ∈ [0, 1],{
ln[(2λ− 1)x + 1− λ]− ln(1− λ)

ln(λ)− ln(1− λ)

}1/α

, λ ∈ (0, 1)/
{

1
2

}
and x ∈ [0, 1].

(6)

By inserting x = 1/2 in (6), we obtain the median of the PCB(α, λ) distribution, which is given
by

M =


2−1/α, λ =

1
2

,{
ln(2) + ln(1− λ)

2 arctanh(1− 2λ)

}1/α

, λ ∈ (0, 1)/
{

1
2

}
.

Traditionally, the qf and random values from the uniform distribution over [0, 1] can be used to
generate random values from a random variable Y following the PCB(α, λ) distribution. Table 1
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shows some quantiles from the PCB(α, λ) distribution using the expression in (6) as illustrative
numerical examples.

Table 1: Some values of the qf of the PCB(α, λ) distribution.

x α = 0.5, λ = 0.3 α = 0.5, λ = 0.8 α = 1, λ = 0.3 α = 1, λ = 0.8
0.05 0.0012 0.0102 0.0342 0.1008
0.1 0.0048 0.0358 0.0694 0.1893
0.2 0.0205 0.1149 0.1432 0.3390
0.3 0.0493 0.2144 0.2219 0.4630
0.4 0.0938 0.3235 0.3063 0.5688
0.5 0.1577 0.4369 0.3971 0.6610
0.6 0.2455 0.5516 0.4955 0.7427
0.7 0.3635 0.6661 0.6029 0.8161
0.8 0.5199 0.7793 0.7210 0.8828
0.9 0.7264 0.8907 0.8523 0.9438

The quantile values of the PCB(α, λ) distribution fall into [0, 1] for different parameter values.
On the other hand, based on the qf, advanced quantile modeling can be performed. For more

information, see [10].

3. Moments

The moment measures of the PCB(α, λ) distribution are of interest to describe it in an in-depth
manner in terms of central, dispersion, and form parameters, and reveal some statistical features.

The following proposition is about the mathematical expressions of the moments of a random
variable following the PCB(α, λ) distribution.

Proposition 1. Let Y be a random variable following the PCB(α, λ) distribution and m be an
integer. Then the m-th moment (or raw moment) of Y is given by

Mm = E(Ym)

=



α

α + m
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]m/α+1 γ−
[m

α
+ 1, 2 arctanh(1− 2λ)

]
, λ ∈

(
0,

1
2

)
,

(1− λ)cλ

[−2 arctanh(1− 2λ)]m/α+1 γ+

[m
α
+ 1,−2 arctanh(1− 2λ)

]
, λ ∈

(
1
2

, 1
)

,

where

γ−(x, u) =
∫ u

0
tx−1e−tdt, γ+(x, u) =

∫ u

0
tx−1etdt. (7)

Proof. For the case λ = 1/2, we have

Mm =
∫ +∞

−∞
xm f (x; α, λ)dx = α

∫ 1

0
xmxα−1dx =

α

α + m
.

For the case λ ∈ (0, 1)/ {1/2}, by introducing a random variable X with the CB(λ) distribution,
we have

Mm = E(Xm/α) =
∫ +∞

−∞
xm/α f (x; λ)dx = cλ

∫ 1

0
xm/αλx(1− λ)1−xdx.

Since m/α is not necessarily an integer, let us distinguish the case λ ∈ (0, 1/2) and the case
λ ∈ (1/2, 1).
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• In the case λ ∈ (0, 1/2), by applying the change of variable y = 2 arctanh(1− 2λ)x ≥ 0, we
obtain

Mm = cλ

∫ 1

0
xm/αex ln(λ)+(1−x) ln(1−λ)dx = (1− λ)cλ

∫ 1

0
xm/αe−x[2 arctanh(1−2λ)]dx

=
(1− λ)cλ

[2 arctanh(1− 2λ)]m/α+1

∫ 2 arctanh(1−2λ)

0
ym/αe−ydy

=
(1− λ)cλ

[2 arctanh(1− 2λ)]m/α+1 γ−
[m

α
+ 1, 2 arctanh(1− 2λ)

]
.

• In the case λ ∈ (1/2, 1), we must take into account a sign detail; by applying the change of
variable y = −2 arctanh(1− 2λ)x ≥ 0, we obtain

Mm = cλ

∫ 1

0
xm/αex ln(λ)+(1−x) ln(1−λ)dx = (1− λ)cλ

∫ 1

0
xm/αe−x[2 arctanh(1−2λ)]dx

=
(1− λ)cλ

[−2 arctanh(1− 2λ)]m/α+1

∫ −2 arctanh(1−2λ)

0
ym/αeydy

=
(1− λ)cλ

[−2 arctanh(1− 2λ)]m/α+1 γ+

[m
α
+ 1,−2 arctanh(1− 2λ)

]
.

The desired expressions are obtained, ending the proof. �

It is worth noting that the integral function γ−(x, u) corresponds to the lower incomplete
gamma function, which is implemented in most of the mathematical software.

In the case α = 1, m/α is an integer, and we have

Mm =


1

m + 1
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]m+1 γ− [m + 1, 2 arctanh(1− 2λ)] , λ ∈ (0, 1) /
{

1
2

}
,

giving the m-th moment related to the CB(α, λ) distribution, which missing in the list of properties
in [19]. In this particular case, by using the expression γ−(2, u) = 1− (1 + u)e−u, we refind the
mean of Y as precised in [19, Equation (8)]:

M1 =



1
2

, λ =
1
2

,
(1− λ)cλ

[2 arctanh(1− 2λ)]2
γ− [2, 2 arctanh(1− 2λ)]

=
λ

2λ− 1
+

1
2 arctanh(1− 2λ)

, λ ∈ (0, 1) /
{

1
2

}
.

More generally, based on the expression of the moments established in Proposition 1, we can
easily derive the mean of a random variable Y following the PCB(α, λ) distribution; it is given as

M1 =



α

α + 1
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]1/α+1 γ−

[
1
α
+ 1, 2 arctanh(1− 2λ)

]
, λ ∈

(
0,

1
2

)
,

(1− λ)cλ

[−2 arctanh(1− 2λ)]1/α+1 γ+

[
1
α
+ 1,−2 arctanh(1− 2λ)

]
, λ ∈

(
1
2

, 1
)

,

as well the moment of order 2 of Y:

M2 =



α

α + 2
, λ =

1
2

,

(1− λ)cλ

[2 arctanh(1− 2λ)]2/α+1 γ−

[
2
α
+ 1, 2 arctanh(1− 2λ)

]
, λ ∈

(
0,

1
2

)
,

(1− λ)cλ

[−2 arctanh(1− 2λ)]2/α+1 γ+

[
2
α
+ 1,−2 arctanh(1− 2λ)

]
, λ ∈

(
1
2

, 1
)

.
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The variance of Y follows from the standard formula: σ2 = M2 −M2
1. The m-th central

moment of Y is given by

M∗m = E[(Y−M1)
m] =

m

∑
k=0

(
m
k

)
(−1)m−kMkM

m−k
1 .

Based on these central moments, the skewness and kurtosis coefficients of Y are, respectively,
given by

S =
M∗3
σ3 , K =

M∗4
σ4 .

Numerical computation of the mean, variance, measures of skewness and kurtosis for the
PCB(α, λ) distribution are shown in Table 2.

Table 2: Theoretical moment measures of the PCB(α, λ) distribution

α λ M1 σ2 S K
0.5 0.1 0.1755 0.0528 1.6646 5.0278

0.4 0.3001 0.0837 0.8087 2.4314
0.9 0.5152 0.0923 -0.1377 1.7674

1.0 0.1 0.3301 0.0665 0.7430 2.5785
0.4 0.4663 0.0827 0.1417 1.8116
0.9 0.6699 0.0664 -0.7388 2.5633

2.0 0.1 0.5234 0.0562 0.0559 2.0882
0.4 0.6394 0.0575 -0.4382 2.2506
0.9 0.7962 0.0360 -1.3390 4.3644

From Table 2, we conclude that the PCB(α, λ) distribution can be left- and right-skewed, as
negative and positive values for S are observed, and it has all kurtosis states, as K varies around
the limit value of 3.
Complement: Alternative measures of skewness and kurtosis are the ones based on the qf of
the distribution as proposed by [7] and [22], respectively. The Galton skewness and the Moors
kurtosis are, respectively, defined as

SG =
Q(6/8; α, λ)− 2Q(4/8; α, λ) + Q(2/8; α, λ)

Q(6/8; α, λ)−Q(2/8; α, λ)

and

KM =
Q(7/8; α, λ)−Q(5/8; α, λ) + Q(3/8; α, λ)−Q(1/8; α, λ)

Q(6/8; α, λ)−Q(2/8; α, λ)
.

In order to complete the previous numerical work, Figure 3 presents the nature of the Galton
skewness and Moors kurtosis of the PCB(α, λ) distribution.

(a) (b)

Figure 3: Plots of (a) the Galton skewness and (b) Moors kurtosis for the PCB(α, λ) distribution with α ∈ [0, 2] and
λ ∈ [0, 1]
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From Figure 3, we can observe that the Galton skewness seems monotonic according to α and
λ, with possible negative and positive values. On the other hand, the Moors kurtosis is more
complex, being non-monotonic in α. This illustrates the versatility of the PCB(α, λ) distribution
on these form aspects.

4. Entropy

The amount of randomness in the PCB(α, λ) distribution is now the object of all the attention. In
order to accomplish this, we recall that the Rényi entropy of a random variable X with pdf f (x)
is given by

Rθ =
1

1− θ
ln
[∫ +∞

−∞
f (x)θdx

]
,

with θ > 0 and θ 6= 1. The following proposition is about the mathematical expression of the
Rényi entropy of a random variable Y following the PCB(α, λ) distribution.

Proposition 2. Let θ > 0 with θ 6= 1, and Y be a random variable following the PCB(α, λ)
distribution. Then the Rényi entropy of Y is given by

Rθ =



1
1− θ

ln
(

αθ

θ(α− 1) + 1

)
, λ =

1
2

,

1
1− θ

ln
{

(1− λ)θ cθ
λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ−

[
(θ − 1)(α− 1)

α
+ 1, 2θ arctanh(1− 2λ)

]}
, λ ∈

(
0,

1
2

)
,

1
1− θ

ln
{

(1− λ)θ cθ
λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ+

[
(θ − 1)(α− 1)

α
+ 1,−2θ arctanh(1− 2λ)

]}
, λ ∈

(
1
2

, 1
)

,

where γ−(x, u) and γ+(x, u) are defined as in (7).

Proof. For the case λ = 1/2, we have∫ +∞

−∞
f (x; α, λ)θdx = αθ

∫ 1

0
xθ(α−1)dx =

αθ

θ(α− 1) + 1
.

Hence,

Rθ =
1

1− θ
ln
(

αθ

θ(α− 1) + 1

)
.

For the case λ ∈ (0, 1)/ {1/2}, by applying the change of variable y = xα, we have∫ +∞

−∞
f (x; α, λ)θdx = cθ

λαθ
∫ 1

0
xθ(α−1)λθxα

(1− λ)θ(1−xα)dx

= cθ
λαθ−1

∫ 1

0
y(θ−1)(α−1)/αλθy(1− λ)θ(1−y)dy.

Let us now distinguish the case λ ∈ (0, 1/2) and the case λ ∈ (1/2, 1).

• In the case λ ∈ (0, 1/2), by applying the change of variable t = 2θ arctanh(1− 2λ)y ≥ 0, we
obtain∫ +∞

−∞
f (x; α, λ)θdx = cθ

λαθ−1
∫ 1

0
y(θ−1)(α−1)/αeθy ln(λ)+θ(1−y) ln(1−λ)dy

= (1− λ)θcθ
λαθ−1

∫ 1

0
y(θ−1)(α−1)/αe−y[2θ arctanh(1−2λ)]dy

=
(1− λ)θcθ

λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1

∫ 2θ arctanh(1−2λ)

0
t(θ−1)(α−1)/αe−tdt

=
(1− λ)θcθ

λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ−

[
(θ − 1)(α− 1)

α
+ 1, 2θ arctanh(1− 2λ)

]
.

Hence,

Rθ =
1

1− θ
ln
{

(1− λ)θ cθ
λαθ−1

[2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ−

[
(θ − 1)(α− 1)

α
+ 1, 2θ arctanh(1− 2λ)

]}
.
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• In the case λ ∈ (1/2, 1), by applying the change of variable t = −2θ arctanh(1− 2λ)y ≥ 0,
we obtain∫ +∞

−∞
f (x; α, λ)θdx = cθ

λαθ−1
∫ 1

0
y(θ−1)(α−1)/αeθy ln(λ)+θ(1−y) ln(1−λ)dy

= (1− λ)θcθ
λαθ−1

∫ 1

0
y(θ−1)(α−1)/αe−y[2θ arctanh(1−2λ)]dy

=
(1− λ)θcθ

λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1

∫ −2θ arctanh(1−2λ)

0
t(θ−1)(α−1)/αetdt

=
(1− λ)θcθ

λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ+

[
(θ − 1)(α− 1)

α
+ 1,−2θ arctanh(1− 2λ)

]
.

Hence,

Rθ =
1

1− θ
ln
{

(1− λ)θ cθ
λαθ−1

[−2θ arctanh(1− 2λ)](θ−1)(α−1)/α+1
γ+

[
(θ − 1)(α− 1)

α
+ 1,−2θ arctanh(1− 2λ)

]}
.

We end the proof by compiling the above expressions. �

Table 3 shows some numerical values of the Rényi entropy of the PCB(α, λ) distribution.

Table 3: Numerical results of the Rényi entropy of the PCB(α, λ) distribution

γ α = 1, λ = 0.3 α = 1, λ = 0.8 α = 2, λ = 0.3 α = 2, λ = 0.8
0.01 -0.0003 -0.0008 -0.0019 -0.0061
0.03 -0.0009 -0.0024 -0.0057 -0.0813
0.5 -0.0148 -0.0390 -0.0712 -0.2523
0.7 -0.0207 -0.0542 -0.0901 -0.3290
2.0 -0.0574 -0.1443 -0.1604 -0.6414
4.0 -0.1069 -0.2468 -0.2056 -0.8486
7.0 -0.1624 -0.3379 -0.2360 -0.9827
9.0 -0.1892 -0.3756 -0.2474 -1.0320

Consequently, from Table 3, some useful properties of the Rényi entropy provided in [11] are
applicable here. In particular, (i) for any θ1 < θ2, we have Rθ2 ≤ Rθ1 , (ii) the Rényi entropy can
be negative.

5. Statistical applications

This section is devoted to the applicability of the PCB(α, λ) distribution.

5.1. Estimation

In the setting of the PCB(α, λ) distribution, we aim to estimate the unknown parameters α and λ
based on data that can be conceptually fitted with this distribution. To accomplish this, we can
use the ML method, described as follows: Let y1, . . . , yn represent n independent observations
from a random variable Y following the PCB(α, λ) distribution. Then, based on the pdf indicated

RT&A, No 4 (71) 
Volume 17, December 2022 

240 



C. Chesneau, F.C. Opone
THE POWER CONTINUOUS BERNOULLI DISTRIBUTION

in (5), the likelihood function is specified by

L(α, λ; y1, . . . , yn) =
n

∏
i=1

f (yi; α, λ)

=


αn

[
n

∏
i=1

yi

]α−1

, λ =
1
2

,

cn
λαn

[
n

∏
i=1

yi

]α−1

λ∑n
i=1 yα

i (1− λ)n−∑n
i=1 yα

i , λ ∈ (0, 1)/
{

1
2

}
.

The ML estimates (MLEs) of α and λ are given by

(α̂, λ̂) = argmax(α,λ) L(α, λ; y1, . . . , yn).

Alternatively, they are defined by

(α̂, λ̂) = argmax(α,λ) `(α, λ; y1, . . . , yn),

where `(α, λ; y1, . . . , yn) refers to the log-likelihood function given by
`(α, λ; y1, . . . , yn) = ln [L(α, λ; y1, . . . , yn)]

=


n ln(α) + (α− 1)

n

∑
i=1

ln(yi), λ =
1
2

,

n ln(cλ) + n ln(α) + (α− 1)
n

∑
i=1

ln(yi) + ln(λ)
n

∑
i=1

yα
i + ln(1− λ)

[
n−

n

∑
i=1

yα
i

]
, λ ∈ (0, 1)/

{
1
2

}
.

They can be obtained by solving the following non-linear equations with respect to α and λ:

∂`(α, λ; y1, . . . , yn)

∂α
= 0,

∂`(α, λ; y1, . . . , yn)

∂λ
= 0.

The standard errors of α̂ and λ̂ can be approximated, and they are denoted in the next as
se(α̂) and se(λ̂), respectively. The advantage of the ML method is that it guarantees interesting
properties for the MLEs, such as asymptotic unbiasedness and normality. More information on
these properties can be found in [4]. Based on the MLEs, we can estimate all the underlying
functions of the PCB(α, λ) distribution. In particular, an estimate of the cdf F(x; α, λ) is given by
F̂(x) = F(x; α̂, λ̂) and an estimate of the pdf f (x; α, λ) is given by f̂ (x) = f (x; α̂, λ̂).

5.2. Simulation study

In this portion, we investigate the asymptotic behavior of the MLEs of α and λ using Monte Carlo
simulation. Random samples from the PCB(α, λ) distribution were generated using (6). The
simulation is repeated N = 2000 times for different sample sizes n ∈ {20, 50, 100, 200, 500} and
different choices of the parameter values (α = 0.3, λ = 0.1), (α = 0.5, λ = 0.3) and (α = 0.8, λ =
0.6). The performance of the MLEs is examined using various statistical criteria presented below.
For φ ∈ {α, λ}, we consider

1. the average bias (Bias) defined by
1
N

N

∑
i=1

(φ̂i − φ), where the index i refers to the i-th

experiment among the N,

2. the root mean square error (RMSE) defined by

√
1
N

N

∑
i=1

(φ̂i − φ)2,

3. the coverage probability (CP) of the 95% confidence interval defined by

1
N

N

∑
i=1

I
(
φ̂i − u∗ se(φ̂i) < φ < φ̂i + u∗ se(φ̂i)

)
,

RT&A, No 4 (71) 
Volume 17, December 2022 

241 



C. Chesneau, F.C. Opone
THE POWER CONTINUOUS BERNOULLI DISTRIBUTION

where I(.) is the indicator function, se(φi) is the standard error related to φ̂i and u∗ = 1.959964.
Table 4 presents the simulation results based on these criteria.

Table 4: Simulation results for the unknown parameters estimates of PCB(α, λ) distribution

Bias RMSE CP
Parameters n α λ α λ α λ

25 0.0189 0.0234 0.0807 0.1314 0.9420 0.8065
α = 0.3 50 0.0056 0.0156 0.0520 0.0934 0.9455 0.8425
λ = 0.1 100 0.0042 0.0062 0.0358 0.0565 0.9570 0.9000

200 0.0028 0.0028 0.0255 0.0406 0.9450 0.9060
500 0.0006 0.0014 0.0155 0.0250 0.9520 0.9395

25 0.0528 -0.0061 0.1736 0.2073 0.9440 0.8120
α = 0.5 50 0.0228 -0.0040 0.1139 0.1608 0.9545 0.8675
λ = 0.3 100 0.0095 0.0075 0.0819 0.1251 0.9470 0.9150

200 0.0037 0.0040 0.0554 0.0902 0.9515 0.9300
500 0.0029 -0.0002 0.0341 0.0569 0.9575 0.9405

25 0.1847 -0.1243 0.3970 0.2635 0.9485 0.8380
α = 0.8 50 0.0959 -0.0711 0.2636 0.2073 0.9420 0.8835
λ = 0.6 100 0.0460 -0.0380 0.1832 0.1628 0.9445 0.9090

200 0.0189 -0.0155 0.1276 0.1221 0.9620 0.9285
500 0.0065 -0.0051 0.0827 0.0818 0.9540 0.9365

From Table 4, we notice that the RMSE of both MLEs decreases as the sample size n increases.
While α̂ is a positively biased parameter estimate, λ̂ can be both positively and negatively biased.
Furthermore, the CP of both MLEs approaches 0.95, and the CP of λ increases as the sample size
n increases.

5.3. Real-life data fitting

Among other purposes, the PCB(α, λ) distribution can be used for fitting data with values into
[0, 1]. We thus illustrate this application by considering two real-life data sets, and compare
their fit with the ones obtained from some existing distributions with support of [0, 1]. More
specifically, we consider the following recently developed unit distributions, including the beta
and Kumaraswamy distributions.

1. Marshall-Olkin extended Kumaraswamy distribution (MOEKD) introduced by [8], and
defined with the following pdf:

f (x; α, a, b) =
αabxa−1 (1− xa)b−1[

1− ᾱ (1− xa)b
]2 , x ∈ [0, 1], where ᾱ = 1− α, with α, a, b > 0.

2. Marshall-Olkin extended Topp-Leone distribution (MOETLD) introduced by [25], and
specified by the following pdf:

f (x; α, λ) =
2αλ(1− x)

[
1− (1− x)2]λ−1[

1− ᾱ
(

1− [1− (1− x)2]
λ
)]2 , x ∈ [0, 1], with α, λ > 0.

3. Unit-Gompertz distribution (UGD) introduced by [20], and defined with the following pdf:
f (x; a, b) = abx−a−1e−b(x−a−1), x ∈ (0, 1], with a, b > 0.

4. Unit-Burr XII distribution (UBXIID) introduced by [16], and defined with the following pdf:
f (x; α, β) = αβx−1(− ln(x))β−1 (1 + (− ln(x))β

)−α−1 , x ∈ (0, 1], with α, β > 0.
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5. Kumaraswamy distribution introduced by [17], and characterized by the following pdf:
f (x; a, b) = abxa−1(1− xa)b, x ∈ (0, 1], with a, b > 0.

6. Beta distribution reported in [24], and defined with the following pdf:

f (x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1), where Γ(x) refers to the standard gamma

function, with α, β > 0.

7. Continuous Bernoulli distribution (CBD) reported in [30], and defined with the pdf given in
(1).

For clarity in exposition, we finally mention that the PCB(α, λ) distribution will sometimes
be denoted as PCBD in the figures and tables to come.

Data set 1: The first data set consists of trade share data from [3]. The trade share data are as
follows: 0.140501976, 0.156622976, 0.157703221, 0.160405084, 0.160815045, 0.22145839, 0.299405932,
0.31307286, 0.324612707, 0.324745566, 0.329479247, 0.330021679, 0.337879002, 0.339706242, 0.352317631,
0.358856708, 0.393250912, 0.41760394, 0.425837249, 0.43557933, 0.442142904, 0.444374621, 0.450546652,
0.4557693, 0.46834656, 0.473254889, 0.484600782, 0.488949597, 0.509590268, 0.517664552, 0.527773321,
0.534684658, 0.543337107, 0.544243515, 0.550812602, 0.552722335, 0.56064254, 0.56074965, 0.567130983,
0.575274825, 0.582814276, 0.603035331, 0.605031252, 0.613616884, 0.626079738, 0.639484167, 0.646913528,
0.651203632, 0.681555152, 0.699432909, 0.704819918, 0.729232311, 0.742971599, 0.745497823, 0.779847085,
0.798375845, 0.814710021, 0.822956383, 0.830238342, 0.834204197, and 0.979355395. The data set is
approximately symmetric with a skewness value of 0.0059. Details of this data set can be accessed
in [29].
Data set 2: The second data set relates to 30 measurements of the tensile strength of polyester
fibers reported in [20]. It was first reported in [27]. The data are as follows: 0.023, 0.032, 0.054,
0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188, 0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395,
0.432, 0.463, 0.481, 0.519, 0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, and 0.926. The data set is
right-skewed with a skewness value of 0.5193.
Figure 4 presents the boxplot for the two data sets, showing some of their quantile characteristics.

(a) (b)

Figure 4: Boxplot for (a) data set 1 and (b) data set 2

Figure 4 further supports the claim that data set 1 is approximately symmetric while data set
2 is right-skewed. Observe also that there are no outliers in the two data sets.

The distribution comparison will be based on the distribution parameter estimates, log-
likelihood (LogL), Akaike information criterion (AIC), and Kolmogorov-Smirnov test statistic
(K-S), along with the corresponding p-value. Tables 5 and 6 present the summary statistics for
data sets 1 and 2, respectively.
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Table 5: Summary statistics for data set 1

Models Estimates LogL AIC K-S p-value
PCBD α = 2.8491 15.1002 -26.2005 0.0565 0.9837

λ = 0.0094
α = 0.3011

MOEKD a = 3.0586 14.3183 -22.6367 0.0582 0.9783
b = 1.9513

MOETLD α = 0.6630 14.3606 -24.7211 0.0568 0.9831
λ = 3.3521

Beta α = 2.7940 13.9561 -23.9121 0.1162 0.3546
β = 2.6038

UGD a = 0.6162 10.8759 -17.7518 0.1098 0.4235
b = 1.0921

UBXIID α = 2.1247 14.1186 -24.2371 0.0578 0.9804
β = 2.2237

Kumaraswamy a = 2.3297 13.6251 -23.2503 0.0689 0.9142
b = 2.7630

CBD λ = 0.5424 0.0734 1.8532 0.1834 0.0287

Table 6: Summary statistics for data set 2

Models Estimates LogL AIC K-S p-value
PCBD α = 1.1240 3.4469 -2.8938 0.0578 0.9998

λ = 0.1069
α = 0.4363

MOEKD a = 1.1874 3.6043 -1.2088 0.0627 0.9992
b = 1.2582

MOETLD α = 1.0929 2.9136 -1.8272 0.0672 0.9978
λ = 1.0628

Beta α = 0.9666 3.3051 -2.6101 0.1646 0.3515
β = 1.6203

UGD a = 1.0373 3.9488 -3.8976 0.0734 0.9932
b = 0.4213

UBXIID α = 1.0331 1.0390 1.9220 0.0993 0.9007
β = 1.8465

Kumaraswamy a = 0.9627 3.3110 -2.6221 0.0649 0.9987
b = 1.6084

CBD λ = 0.1565 3.3118 -4.6236 0.0594 0.9997

5.4. Discussion of the results

In the model selection concept, the model that best fits the data set is traceable to the one having
the maximized LogL, least value in terms of AIC and K-S with the highest p-value. A close look
at Tables 5 and 6 reveals that the PCB(α, λ) distribution outperforms the competitors in fitting
the two data sets under study. In particular, all the comparison criteria in Table 5 are in favor of
the PCB(α, λ) distribution. Whereas, in Table 6, we observe that LogL as a criterion supports the
Marshall-Olkin extended Kumaraswamy and unit-Gompertz distributions over the PCB(α, λ)
distribution, while the AIC supports the unit-Gompertz and continuous Bernoulli distributions
over the PCB(α, λ) distribution. However, the PCB(α, λ) distribution outperforms all of the
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competitors in terms of the K-S statistic and its corresponding p-value. Figures 5,6,7 and 8 show
additional evidence of its flexibility over the competitors.

Especially, Figure 5 displays the estimated pdf and cdf fits of the distributions for data set 1.

Figure 5: Estimated pdf and cdf fits of the distributions for data set 1

We observe that the estimated pdf fit of the PCB(α, λ) distribution perfectly captures the
shape of the unimodal histogram, and the estimated cdf fit approaches well the curvature of the
empirical cdf.

In Figure 6 the probability-probability (P-P) plots of the distributions for data set 1 are shown.

Figure 6: P-P plost of the distributions for data set 1
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Visually, the P-P line of the PCB(α, λ) distribution better adjusts the associated scatter plot
than the others.

Figure 7 is analogous to Figure 5 but for data set 2.

Figure 7: Estimated pdf and cdf fits of the distributions for data set 2

In Figure 7, the estimated pdf fit of the PCB(α, λ) distribution captures well the decreasing
shape of the histogram, and the estimated cdf fit approaches correctly the concave trend of the
empirical cdf.

Figure 8 is analogous to Figure 6 but for data set 2.

Figure 8: P-P plots of the distributions for data set 2

RT&A, No 4 (71) 
Volume 17, December 2022 

246 



C. Chesneau, F.C. Opone
THE POWER CONTINUOUS BERNOULLI DISTRIBUTION

In Figure 8, the P-P line of the PCB(α, λ) distribution is quite acceptable in terms of fitting, as
for some other competitors.

In summary, from these figures, it is clear that the fit accuracy of the PCB(α, λ) distribution is
excellent, making it a golden distribution to analyze the considered data sets.

6. Conclusion

We proposed a natural extension of the novel continuous Bernoulli distribution by adding a shape
parameter through power transformation. The so-called power continuous Bernoulli distribution
is aimed at extending the modeling scope of the continuous Bernoulli distribution. Some of
its mathematical properties were derived (moments, quantiles, entropy, etc.). A parametric
estimation exercise has been given through the maximum likelihood method, and the asymptotic
behavior of the parameter estimates was investigated through a Monte Carlo simulation study.
Finally, we illustrate the flexibility of the power continuous Bernoulli distribution in real-life data
fitting using two real data sets. The potential for probability and statistics applications, such as
regression modeling and machine learning applications, is enormous, and this study provides
the first steps in that direction.

Conflict of Interests

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] Altun, E. (2018). The log-xgamma distribution with inference and application. Journal de la
Société de Statistique de Paris, 159(3): 40-55.

[2] Bantan, R. A. R., Chesneau, C. and Jamal, F. (2020). Some new facts about the unit-Rayleigh
distribution with applications. Mathematics, 8(11): 1-23.

[3] Bantan, R. A. R., Jamal, F., Chesneau, C. and Elgarhy, M. (2021). Theory and
applications of the unit Gamma/Gompertz distribution. Mathematics, 9(1850), 1-22.
https://doi.org/10.3390/math9161850

[4] Casella, G. and Berger, R. L. (1990). Statistical Inference, Brooks/Cole Publishing Company:
Bel Air, CA, USA.

[5] Cordeiro, G. M. and dos Santos Brito, R. (2012). The beta power distribution. Brazilian
Journal of Probability and Statistics, 26(1): 88-112.

[6] Eliwa, S. M., Ahsan-ul-Haq, M., Al-Bossly, A. and El-Morshedy, M. (2022). A unit proba-
bilistic model for proportion and asymmetric data: Properties and estimation Techniques
with Application to Model Data from SC16 and P3 Algorithms. Mathematical Problems in
Engineering, Article ID 9289721, https://doi.org/10.1155/2022/9289721

[7] Galton, F. (1883). Enquiries into Human Faculty and its Development. Macmillan & Company,
London

[8] George, R. and Thobias, S. (2017). Marshall-Olkin Kumaraswamy distribution. International
Mathematical Forum, 12(2): 47-69.

[9] Ghitany, M., Al-Mutairi, D., Balakrishnan, N. and Al-Enezi, I. (2013). Power Lindley distribu-
tion and associated inference. Computational Statistics and Data Analysis, 64: 20-33.

[10] Gilchrist, W. (1997). Modelling with quantile distribution functions, Journal of Applied
Statistics, 24(1): 113-122.

[11] Golshani, L. and Pasha, E. (2010). Renyi entropy rate for Gaussian processes. Information
Sciences, 180: 1486-1491.

[12] Gómez-Déniz, E., Sordo, M. A. and Calderín-Ojeda, E. (2014). The Log-Lindley distribution
as an alternative to the beta regression model with applications in insurance. Insurance:
Mathematics and Economics, 54(1): 49-57.

RT&A, No 4 (71) 
Volume 17, December 2022 

247 



C. Chesneau, F.C. Opone
THE POWER CONTINUOUS BERNOULLI DISTRIBUTION

[13] Gordon-Rodriguez, E., Loaiza-Ganem, G. and Cunningham, J. P. (2020). The continuous
categorical: a novel simplex-valued exponential family. In 36th International Conference on
Machine Learning, ICML 2020. International Machine Learning Society (IMLS).

[14] Jamal, F., Chesneau, C., Aidi, K. and Ali, A. (2021). Theory and application of the power
Ailamujia distribution, Journal of Mathematical Modeling, 9(3): 391-413.

[15] Korkmaz, M. C., Altun, E., Chesneau, C. and Yousof, H. M. (2021). On the unit-Chen
distribution with associated quantile regression and applications. Mathematica Slovaca, (to
appear).

[16] Korkmaz, M. and Chesneau, C. (2021). On the unit Burr-XII distribution with the quantile
regression modeling and applications. Computational and Applied Mathematics, 40(1): 1-26.

[17] Kumaraswamy, P. (1980). A generalized probability density function for doubly bounded
random process. Journal of Hydrology, 46: 79-88.

[18] Lindley, D. V. (1958). Fiducial distributions and Bayes theorem. Journal of the Royal Statistical
Society, Series B, 20(1): 102-107.

[19] Loaiza-Ganem, G. and Cunningham, J.P. (2019). The continuous bernoulli: fixing a pervasive
error in variational autoencoders. In Advances in Neural Information Processing Systems,
13266-13276.

[20] Mazucheli, J., Menezes, F. A. and Dey, S. (2019). Unit-Gompertz distribution with applications.
Statistica, 79(1): 25-43.

[21] Menezes, A. F. B., Mazucheli, J. and Dey, S. (2018). The unit-logistic distribution: different
methods of estimation. Pesquisa Operacional, 38(3): 555-578.

[22] Moors, J. J. (1988). A quantile alternative for kurtosis. Statistician, 37: 25-32.
[23] Opone, F. C., Akata, I. U. and Osagiede, F. E. U. (2023). The Kumaraswamy unit-Gompertz

distribution and its application to lifetime dataset. Earthline Journal of Mathematical Sciences,
11(1): 1-22.

[24] Opone, F. C. and Ekhosuehi, N. (2017). A study on the moments and performance of the
maximum likelihood estimates (mle) of the beta distribution. Journal of the Mathematical
Association of Nigeria (Mathematics Science Series), 44(2): 148-154.

[25] Opone, F. C. and Iwerumor, B. N. (2021). A new Marshall-Olkin extended family of distribu-
tions with bounded support. Gazi University Journal of Science, 34(3): 899-914.

[26] Opone, F. C. and Osemwenkhae, J. E. (2022). The transmuted Marshall-Olkin extended
Topp-Leone distribution. Earthline Journal of Mathematical Sciences, 9(2): 179-199.

[27] Quesenberry, C. and Hales, C. (1980). Concentration bands for uniformity plots. Journal of
Statistical Computation and Simulation, 11(1): 41-53.

[28] Rady, E. A., Hassaine, W. A. and Elhaddad, T. A. (2016). The power Lomax distribution with
an application to bladder cancer data. SpringerPlus, 5, 1838.

[29] Stock, J. H. and Watson, M. W. (2007). Introduction to Econometrics, 2nd ed., Addison Wesley:
Boston, MA, USA. Available online: https://rdrr.io/cran/AER/man/GrowthSW.html

[30] Wang, K. and Lee, M. (2020). Continuous Bernoulli distribution: simulator and test statistic.
DOI: 10.13140/RG.2.2.28869.27365

RT&A, No 4 (71) 
Volume 17, December 2022 

248 




