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Abstract

In this present piece of work, we have considered a lifetime distribution based on trigonometric
function called SSE(ε)-distribution and discuss its various properties which have not been added
previously by host as well as any other authors. This distribution is useful and a good contribution in
research under trigonometric function. We are deriving some more useful properties such as moments,
conditional moments, mean deviation about mean, mean deviation about median, order statistics etc.
Estimation of parameter has been done for both classical and Bayesian paradigms under Type-II censored
sample. Simulation study has also been carried out to know the progress of the estimators in the sense of
having smallest risk (over the sample space) at the long-run use.

Keywords: SSE(ε)-distribution, Type-II censoring, Bayes estimator, MLE, Gauss-Laguerre method,
risk function

1. Introduction

In statistical literature, there are several lifetime distributions available, for example exponential,
gamma, Weibull, Lindley distribution etc. In past studies, calculations can only be handled when
the expressions corresponding to various properties obtained in the nice closed form and when
this was not achieved then rarely preferred. But in this modern era due to the advancement of
computational facilities this problem have been resolved almost. Mostly, algebraic and exponential
functions have been used to develop the new transformation and sometimes authors see gap in
trigonometric, inverse and logarithmic type transformations. Keeping this in mind, the considered
transformation is the good contribution in support of filling such gap. As we aware that the use
of a single model is not found suitable in every aspect, therefore to adopt a suitable baseline
model is also a quite tedious job. Study explores that exponential distribution is preferably
used as a lifetime distribution but the extensive use of it is restrictive in the sense of its constant
hazard rate. For simplicity and flexibility, we are also using here exponential distribution as a
baseline distribution In these days, many authors are introducing transformation techniques to
get a new lifetime distribution with the help of available baseline distributions some of which are
popular as power transformation proposed by [6], sine square distribution by [1], [20] introduced
quadratic rank transmutation map (QRTM), sinofarm distribution by [23], DUS transformation
proposed by [10], minimum-guarantee distribution proposed by [11], CS transformation by [3],
new Sine-G family based on [13] proposed by [16], new extension of Lindley distribution given
by [17], PCM transformation by [12] and many more. In such continuation, [13] have proposed a
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new transformation known as SS-transformation by using sine function which is given by

F(x) = sin
(π

2
G(x)

)
(1)

Where G(x) is the baseline’s cumulative distribution function (cdf) and the accompanying
probability density function (pdf) are

f (x) =
π

2
g(x) cos

(π

2
G(x)

)
(2)

They have utilized baseline distribution as exponential distribution and named as SS exponential
(SSE(ε))-distribution and having the following form of its pdf is

f (x) =
π

2
ε× e−εx sin

(π

2
e−εx

)
; (x, ε) > 0 (3)

and its cdf in compact form is

F(x) = cos
(π

2
e−εx

)
; (x, ε) > 0 (4)

The reported compact forms of reliability function and hazard rate function respectively are

R(x) = 1− cos
(π

2
e−εx

)
(5)

and
h(x) =

π

2
ε× e−εx cot

(π

2
e−εx

)
(6)

Figures 1, 2 and 3 presents the shape of pdf, cdf and hazard rate function of SSE(ε)-distribution.
And Figure 3, claims that the nature of hazard rate function of the SSE(ε)-distribution is increasing
which is different from baseline distribution.
The article is constructed as follows, introductory part have been shown in Section (1), statistical
properties discussed in Section (2), estimation of parameter presented in Section (3), comparison
of estimators in Section (4) and concluding remarks regarding the work quoted in Section (5).

Figure 1: Plots of pdf of SSE(ε)-distribution for various choices of parameter ε.
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Figure 2: Plots of cdf of SSE(ε)-distribution for various choices of parameter ε.

Figure 3: Plots of hazard rate function of SSE(ε)-distribution for various choices of parameter ε.
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2. Statistical Properties

In this section, we are discussing some statistical properties of SSE(ε)-distribution which have not
derived yet namely mean deviation about mean, mean deviation about median, order statistics
etc. Firstly, we have discussed two lemma which are-

Statement (Lemma-1)

ξ1(ε, r, ζ) =
∫ ∞

0
xre−ζx × sin

(π

2
e−εx

)
dx =

∞

∑
k=0

(−1)2k+1

(2k + 1)!
×
(π

2

)2k+1
[

r!
((2k + 1)ε + ζ)r+1

]

Proof:

ξ1(ε, r, ζ) =
∫ ∞

0
xre−ζx sin

(π

2
e−εx

)
dx =

∞

∑
k=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
[∫ ∞

0
xre−((2k+1)ε+ζ)xdx

]
=

∞

∑
k=0

(−1)2k+1

(2k + 1)!
×
(π

2

)2k+1
[

r!
((2k + 1)ε + ζ)r+1

]
The rth order moment about origin of SSE(ε)-distribution have already obtained by [13]. Here,
we obtain the same by using lemma 1 and is

E(Xr) =
π

2
ε× ξ1(ε, r, ε) (7)

on putting r = 1, 2, 3, 4 in (7), we get the first four raw moments of SSE(ε)-distribution and are

E(X) =
π

2
ε× ξ1(ε, 1, ε) ; E(X2) =

π

2
ε× ξ1(ε, 2, ε)

E(X3) =
π

2
ε× ξ1(ε, 3, ε) ; E(X4) =

π

2
ε× ξ1(ε, 4, ε)

And, first four central moments are calculated by the following relations,

µ2 =µ′2 − µ′21

µ3 =µ′3 − 3µ′2µ′1 + 2µ′31

µ4 =µ′4 − 4µ′3µ′1 + 6µ′2µ′21 − 3µ′41

On using above relations of central moments, we can obtain the measures of skewness and
kurtosis, viz., β1, γ1 and β2, γ2 respectively by the following expressions

β1 =
µ2

3

µ3
2

=⇒ γ1 =
√

β1 =
µ3

µ3/2
2

β2 =
µ4
µ2

2
=⇒ γ2 = β2 − 3 =

µ4
µ2

2
− 3

Statement (Lemma-2)

ξ2(ε, r, ζ, t) =
∫ ∞

t
xre−ζx ×

[
sin
(π

2
e−εx

)]
dx

=
∞

∑
k=0

r

∑
l=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
×
[

r!× e−((2k+1)ε+ζ)t × (((2k + 1)ε + ζ)t)l

l!((2k + 1)ε + ζ)r+1

]

Proof:

ξ2(ε, r, ζ, t) =
∫ ∞

t
xre−ζx

[
sin
(π

2
e−εx

)]
dx =

∞

∑
k=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
×
∫ ∞

t
xre−((2k+1)ε+ζ)xdx

=
∞

∑
k=0

r

∑
l=0

(−1)2k+1

(2k + 1)!

(π

2

)2k+1
×
[

r!× e−((2k+1)ε+ζ)t × [((2k + 1)ε + ζ)t]l

l! [(2k + 1)ε + ζ]r+1

]
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2.1. Conditional Moments

The conditional moment of rth order is represented by E(Xr|X > r) then by using lemma 2, we
get

E(Xr|X > x) =
π

2
× ε× ξ2(ε, r, ε, x)[

1− cos
(

π
2 e−εx

)] (8)

2.2. Quantile Function

Using (4), we get the quantile function of order p (Q(p)) is

cos
(π

2
e−εQ(p)

)
= p =⇒ e−εQ(p) =

2
π

cos−1(p)

Therefore,

Q(p) = −1
ε

ln
(

2
π

cos−1(p)
)

(9)

2.3. Median

On putting p = 1
2 in equation (9) we will easily get the median of SSE(ε)-distribution and if Md

be the median of SSE(ε)-distribution then the expression is

Md = −1
ε

ln
(

2
3

)
(10)

which is same expression as obtained by [13].

Table 1: Mean, median, variance, skewness and kurtosis of SSE(ε)-distribution for different values of ε.

ε Mean Median Variance Skewness(γ1) Kurtosis(γ2)
0.2 0.25814 2.02733 0.25695 4.13316 19.53054
0.7 0.25379 0.57924 0.16079 2.73800 6.85106
1 0.23603 0.40547 0.11153 2.53429 5.44002
2 0.17377 0.20273 0.04342 2.28171 3.84498
5 0.09108 0.08109 0.00919 2.12107 2.91886
10 0.05023 0.04055 0.00253 2.06265 2.60720
15 0.03446 0.02703 0.00118 2.04642 2.45738

Table 1 shows that the mean, median, variance, skewness (γ1) and kurtosis (γ2) of the SSE(ε)-
distribution with pdf (3) for different choices of parameter ε. The values of mean, median and
variance of SSE(ε)-distribution are decreases as values of parameter ε increases this shows that
mean, median and variance of the SSE(ε)-distribution inversely related to parameter ε. Since,
γ1 > 0 and γ2 > 0 so the nature of SSE(ε)-distribution has positively skewed and leptokurtic
distribution for considered choices of parameter.

2.4. Mean deviation about mean and median

The mean deviation (MD) about mean is another measure of dispersion and is defined as,

φ1(x) =
∫ ∞

0
|x− µ| f (x)dx

where µ is the mean of SSE(ε)-distribution, then

φ1(x) =
∫ µ

0
(µ− x) f (x)dx +

∫ ∞

µ
(x− µ) f (x)dx

=⇒ φ1(x) = 2µ× F(µ)− 2µ + 2
[∫ ∞

µ
x f (x)dx

]
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where notations have their usual meanings then by using lemma 2, we get∫ ∞

µ
x f (x)dx =

π

2
ε× ξ2(ε, 1, ε, µ)

Therefore,
φ1(x) = 2µ× F(µ)− 2µ + πε× ξ2(ε, 1, ε, µ) (11)

In the similar way, MD about median is

φ2(x) =
∫ ∞

0
|x−M| f (x)dx =

∫ M

0
(M− x) f (x)dx +

[∫ ∞

M
(x−M) f (x)dx

]
= −µ + 2

∫ ∞

M
x f (x)dx

Now, by lemma 2, we have ∫ ∞

M
x f (x)dx =

π

2
ε× ξ2(ε, 1, ε, M)

Finally,
φ2(x) = −µ + πε× ξ2(ε, 1, ε, M) (12)

2.5. Order Statistics

Let us take random sample of size n from the SSE(ε)-distribution say, {X1, X2, . . . , Xn} and
associated order statistics is X(1) < X(2) < ... < X(r), then pdf of rth order statistics is

fr(x) =
n!

(r− 1)!(n− r)!
× Fr−1(x)× f (x)× [1− F(x)]n−r

=⇒ fr(x) =
n!

(r− 1)!(n− r)!
×

n−r

∑
i=0

(−1)i
(

n− r
i

)
Fr+i+1(x)× f (x) (13)

Now, using (3) and (4) in 13), we have

fr(x) =
n!

(r− 1)!(n− r)!
× π

4
ε

n−r

∑
i=0

(−1)i
(

n− r
i

)
× sin

(
πe−εx) [cos

(π

2
e−εx

)]r+i
(14)

and corresponding cdf of rth order statistics is

Fr(x) =
n

∑
i=r

(
n
i

)
Fi(x)× [1− F(x)]n−i =

n

∑
i=r

n−i

∑
j=0

(
n
i

)(
n− i

j

)
(−1)jFi+j(x) (15)

Using equation (4) in (15), we obtain the expression of cdf of rth order statistic of SSE(ε)-
distribution as follows

Fr(x) =
n

∑
i=r

n−i

∑
j=0

(
n
i

)(
n− i

j

)
(−1)j

{
cos

(π

2
e−εx

)}i+j
(16)

3. Estimation of Parameter

In this section, we have discussed the estimation of parameter ε of SSE(ε)-distribution for Type-II
censored data under both Classical and Bayesian paradigms. It is observed that, it is not possible
to obtain the failure times of all the test units placed on a life testing experiment because of
the associated costs such as cost of per unit is high or limitations on experimental time etc.
Therefore, such situations are handled by removal of test units before the actual failure occurs
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and are termed as censoring scheme. Since, the removal of these units can be done in various
possible ways, these are further known as various type of censoring scheme. The two widely
used censoring schemes are Type-I and Type-II censoring schemes. Here, we consider Type-II
censoring only. Let x(1), x(2), . . . , x(r) be r-ordered Type-II right censored random observations
obtained from n units placed on a life testing experiment where each unit has its lifetime and
follows SSE(ε)-distribution having pdf (3) with largest (n− r) lifetimes have been censored, then
the likelihood function is given by [4] is

LC(ε|X) =
n!

(n− r)!

r

∏
i=1

f (x(i); ε)
(

1− F(x(r); ε)
)n−r

(17)

Several authors have been done their work in this direction, [18] have been discussed Bayesian
estimation of parameter under Type-II censored data, [9] worked on classical and Bayesian
estimation of reliability estimation of Maxwell distribution under Type-II censored data, [22] have
discussed the Bayesian estimation of exponentiated gamma parameter and reliability function
under Type-II censored data for asymmetric loss function, [7] presents the statistical evidences
of Type-II censored data, [19] have been derived the Bayesian estimation techniques of system
reliability for Weibull distribution under Type-II censored data, [8] discussed the comparison
between same Bayesian estimation methods for the parameter of exponential distribution based
on Type-II censored data. [5] have been discussed the estimation procedure for new lifetime
models under classical and Bayesian set-up in the presence of Type-II censored sample. [2]
studied the various properties of Pareto distribution using Type-II hybrid censored sample data.

3.1. Classical Estimation

Using (17), the likelihood function of the SSE(ε)-distribution under Type-II censoring scheme is

LC(ε|X) =
n!

(n− r)!
εre−ε ∑r

i=1 x(i)
r

∏
i=1

sin
(π

2
e−εx(i)

) [
1− cos

(π

2
e−εx(r)

)]n−r
(18)

and taking logarithm on both sides of (18), we get

ln LC = ln
n!

(n− r)!
+ r ln ε + ε

r

∑
i=1

x(i) +
r

∑
i=1

ln
[
sin
(π

2
e−εx(i)

)]
+ (n− r) ln

[
1− cos

(π

2
e−εx(r)

)]
(19)

On differentiating (19) w.r.to ε and equate the resultant to zero, we get

d ln LC
dε

=
r
ε
+

r

∑
i=1

x(i) −
π

2

r

∑
i=1

x(i)e
−εx(i)

[
cot
(π

2
e−εx(i)

)]
+ (n− r)

π

2
×

x(r)e
−εx(r) sin

(
π
2 e−εx(r)

)
1− cos

(
π
2 e−εx(r)

)
 = 0

(20)

The above equation cannot be solved analytically. So, we use numerical approximation technique
through R software to solve them numerically in terms of ε i.e. ε̂MC which maximizes the equation
(18).

3.2. Bayesian Estimation

In Bayesian paradigm, posterior probability is an effect of two components prior probability and
likelihood function, and calculated from the statistical model for the observed data. The prior
distribution of the parameters is assumed before the data observed. There are different kinds of
prior distribution of parameters defined as proper and improper priors. Another way to define
the priors based on available advanced information is known as informative and non-informative
priors.
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Here, we use informative prior as a Gamma(a, b) prior for ε of SSE(ε)-distribution and having
the following form

π(a, b) =
ba

Γa
εa−1e−bε ; ε > 0, a, b > 0 (21)

where, hyper-parameters are a and b. If two information’s which are independent in nature on
ε (say prior mean and prior variance are known) are provided, they can be obtained, for more
details see [21], [14], [15]. The mean and variance of the prior distribution (21) are a

b and a
b2

respectively. Thus, we take M = a
b and V = a

b2 giving b = M
V and a = M2

V . The informative
gamma prior behaves like non-informative prior if hyper-parameters changes i.e. if we fixed prior
mean and taking large prior variance.
The posterior density of ε given the sample observations X is given below

ψC(ε|X) =
LC(ε|X)× π(a, b)∫ ∞

0 LC(ε|X)× π(a, b)dε
(22)

By using equation (21) and (18) in (22), posterior density of ε given X under Type-II censoring is

ψC(ε|X) =

εr+a−1e−ε(∑r
i=1 x(i)+b)

{
∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
}

∫ ∞
0 εr+a−1e−ε(∑r

i=1 x(i)+b)
{

∏r
i=1 sin

(
π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
}

dε

(23)

The expressions for considered loss functions namely squared error loss function (SELF) and
general entropy loss function (GELF) having the following forms

LS(ε̂SC, ε) = (ε̂SC − ε)2 (24)

LG(ε̂GC, ε) =

(
ε̂GC

ε

)c
− c ln

(
ε̂GC

ε

)
− 1 (25)

If ε̂GC is a Bayes estimator of ε for Type-II censoring under GELF then, we get

ε̂GC =


∫ ∞

0 εr+a−c−1e−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε∫ ∞

0 εr+a−1e−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε


− 1

c

(26)

Putting c = −1 in equation (26), we get the Bayes estimator ε̂SC of ε for Type-II censoring, we get

ε̂SC =


∫ ∞

0 εr+ae−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε∫ ∞

0 εr+a−1e−ε(∑r
i=1 x(i)+b) ×∏r

i=1 sin
(

π
2 e−εx(i)

) [
1− cos

(
π
2 e−εx(r)

)]n−r
dε

 (27)

The above equations (26) and (27) are not solvable analytically. Therefore, we propose some
numerical approximation technique to get the solution. Basically, we have used here Gauss-
Laguerre quadrature formula to obtain the solution.

4. Comparison of Estimators

In this section, we compare the performance of the considered estimators (ε̂MC, ε̂SC, ε̂GC) of
parameter ε of SSE(ε)-distribution in the presence of Type-II censoring scheme in terms of lowest
risks (expected loss over Ω) under GELF. It is clear that, the expressions of risk function are not
obtained in implicit form. So, we use Gauss-Laguerre quadrature formula to obtain the estimators
(ε̂SC and ε̂GC) of parameter ε for computing the risks under Type-II censored data. To know
the performance of estimator in long run use, we simulate 20,000 samples for different sample
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size n and different effective sample size r (for Type-II censoring) from SSE(ε)-distribution with
different choices of values of parameter (ε = 1.5, 2.0, 3.0) and loss parameter c = ±2.

Tables 2, 3 and 4 represents the risks for the variations in hyper-parameters (variation in prior
variance (V = 0.5, 1.0, 2.0, 5.0, 80) for fixed prior mean (M = 1.0, 2.0, 3.0)) when true value of
the parameter ε = 2 for sample size n = 30 with different censoring schemes r = 12, 18, 24 and
30.

Tables 5 and 6 shows the variation in n and r with minimum prior variance (high confidence
level V = 0.5) and prior mean (M = 2.0) for the true value of ε = 1.5 and 3, respectively.

Tables 2, 3 and 4 presents the simulated risks under GELF for variation in prior variance (high
to low confidence level) with fixed prior mean (M). We see that the risks under GELF for the
Bayes estimators of ε under SELF and GELF are increases as values of prior variance increases
(high to low confidence level) and if prior mean increases then the risks under GELF decreases for
the Bayes estimators under SELF and GELF for Type-II censored samples. Bayes estimator under
GELF ε̂GC outperforms MLEs (ε̂MC) and SELF (ε̂SC) under Type-II censored sample when under
estimation is more serious as compared to over estimation (c = −2) and when over estimation is
more serious as compared to under estimation (c = +2), then Bayes estimator under SELF (ε̂SC)
outperforms MLEs (ε̂MC) and GELF (ε̂GC) under Type-II censored sample. It is also noted that
when prior variance is large (low confidence level i.e. very weak information about the parameter
ε) then classical estimator MLEs (ε̂MC) performs better than the Bayes estimators under SELF
(ε̂SC) and GELF (ε̂GC).

Tables 5 and 6 shows that the variation in sample size n and corresponding different Type-II
censoring schemes r for the true values of parameter ε = 1.5 and 3. Table 5 provides simulated
risks of the Bayes estimators (ε̂SC) of ε under SELF outperforms MLEs (ε̂MC) and Bayes estimators
of ε under GELF (ε̂GC) in both cases under estimation is more serious than over estimation and
vice-versa. While Table 6 provides Bayes estimator under GELF (ε̂GC) outperforms the Bayes
estimator under SELF (ε̂SC) and MLE (ε̂MC) for the situation when under estimation is more
serious than over estimation but in reverse case, Bayes estimator under SELF (ε̂SC) outperforms
MLEs (ε̂MC) and Bayes estimator under GELF (ε̂GC) for the true value of parameter ε = 3. It is
also observed that the risks of all estimators of ε for Type-II censored sample decreases with
increase in the value of n and r for all considered values of the parameter ε.
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Table 2: Risks of the estimators of ε under GELF when prior variance varies for fixed n = 30, r(r = 12, 18, 24),
ε = 2.0, M = 1 and c = ±2.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

12 0.15180 0.13386 0.11519 0.20147 0.09545 0.13667
0.5 18 0.09915 0.09065 0.08189 0.12088 0.07236 0.07057

24 0.07407 0.06885 0.06373 0.08397 0.05817 0.05724
30 0.05938 0.05558 0.05214 0.06572 0.04751 0.04789
12 0.15180 0.13616 0.11989 0.20147 0.12083 0.13550

1 18 0.09915 0.08988 0.08482 0.12088 0.08641 0.08943
24 0.07407 0.06883 0.06587 0.08397 0.06675 0.06850
30 0.05938 0.05605 0.05410 0.06572 0.05494 0.05612
12 0.15180 0.14083 0.13321 0.20147 0.15280 0.16792

2 18 0.09915 0.09324 0.08994 0.12088 0.09933 0.10516
24 0.07407 0.06992 0.06806 0.08397 0.07367 0.07693
30 0.05938 0.05718 0.05594 0.06572 0.05952 0.06165
12 0.15180 0.14373 0.13906 0.20147 0.17322 0.17442

10 18 0.09915 0.09650 0.09440 0.12088 0.10864 0.11646
24 0.07407 0.07278 0.07155 0.08397 0.07953 0.08381
30 0.05938 0.05919 0.05836 0.06572 0.06330 0.06606
12 0.15180 0.15085 0.14829 0.20147 0.18860 0.19630

80 18 0.09915 0.09847 0.09735 0.12088 0.11827 0.12777
24 0.07407 0.07445 0.07382 0.08397 0.08530 0.09051
30 0.05938 0.06022 0.05979 0.06572 0.06677 0.07010

Table 3: Risks of the estimators of ε under GELF when prior variance varies for fixed n = 30, r(r = 12, 18, 24),
ε = 2.0, M = 2 and c = ±2.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

12 0.15180 0.05785 0.05776 0.20147 0.06075 0.06133
0.5 18 0.09915 0.05112 0.05095 0.12088 0.05416 0.05772

24 0.07407 0.04445 0.04421 0.08397 0.04712 0.04948
30 0.05938 0.03881 0.03858 0.06572 0.04070 0.04237
12 0.15180 0.08699 0.08659 0.20147 0.09806 0.09889

1 18 0.09915 0.06802 0.06764 0.12088 0.07527 0.08079
24 0.07407 0.05566 0.05534 0.08397 0.06073 0.06412
30 0.05938 0.04725 0.04700 0.06572 0.05079 0.05314
12 0.15180 0.11490 0.11311 0.20147 0.13630 0.14083

2 18 0.09915 0.08291 0.08192 0.12088 0.09455 0.10148
24 0.07407 0.06399 0.06330 0.08397 0.07033 0.07421
30 0.05938 0.05327 0.05274 0.06572 0.05719 0.05974
12 0.15180 0.13415 0.13238 0.20147 0.17091 0.17531

5 18 0.09915 0.09104 0.09008 0.12088 0.10704 0.11543
24 0.07407 0.06982 0.06916 0.08397 0.07840 0.08300
30 0.05938 0.05707 0.05665 0.06572 0.06254 0.06558
12 0.15180 0.15018 0.14771 0.20147 0.19933 0.19672

80 18 0.09915 0.09963 0.09857 0.12088 0.11883 0.12845
24 0.07407 0.07551 0.07482 0.08397 0.08598 0.09119
30 0.05938 0.06064 0.06018 0.06572 0.06703 0.07033
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Table 4: Risks of the estimators of ε under GELF when prior variance varies for fixed n = 30 and r(r = 12, 18, 24),
ε = 2.0, M = 3 and c = ±2.

V schemes r c =-2 c=2
MLE SELF GELF MLE SELF GELF

12 0.15180 0.11285 0.12353 0.20147 0.18003 0.18618
0.5 18 0.09915 0.08463 0.09185 0.12088 0.12879 0.14174

24 0.07407 0.06730 0.07252 0.08397 0.09833 0.10731
30 0.05938 0.05613 0.06017 0.06572 0.07954 0.08627
12 0.15180 0.10204 0.11257 0.20147 0.16348 0.16861

1 18 0.09915 0.07569 0.08181 0.12088 0.11215 0.12486
24 0.07407 0.06083 0.06489 0.08397 0.08519 0.09338
30 0.05938 0.05096 0.05389 0.06572 0.06833 0.07411
12 0.15180 0.10845 0.11640 0.20147 0.16802 0.16768

2 18 0.09915 0.07780 0.08184 0.12088 0.10803 0.11971
24 0.07407 0.06115 0.06362 0.08397 0.07953 0.08651
30 0.05938 0.05096 0.05263 0.06572 0.06339 0.06810
12 0.15180 0.12592 0.12934 0.20147 0.17881 0.17903

5 18 0.09915 0.08871 0.09023 0.12088 0.11345 0.12417
24 0.07407 0.06864 0.06947 0.08397 0.08334 0.08942
30 0.05938 0.05580 0.05640 0.06572 0.06568 0.06971
12 0.15180 0.14540 0.14786 0.20147 0.18968 0.19429

80 18 0.09915 0.09905 0.09951 0.12088 0.12069 0.13089
24 0.07407 0.07306 0.07313 0.08397 0.08471 0.09015
30 0.05938 0.05921 0.05997 0.06572 0.06597 0.06942

Table 5: Risks of the estimators of ε under GELF when V = 0.5, M = 2 and c = ±2 for true value of ε = 1.5.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

6 0.30733 0.11180 0.12843 0.58496 0.17749 0.19775
15 9 0.20172 0.09625 0.10710 0.30346 0.14726 0.17215

12 0.14916 0.08295 0.09059 0.20110 0.12254 0.14004
15 0.12036 0.07335 0.07906 0.15104 0.10453 0.11761
8 0.22597 0.09958 0.11208 0.35915 0.15420 0.15351

20 12 0.14976 0.08279 0.09040 0.20231 0.12191 0.13939
16 0.11135 0.06989 0.07502 0.13774 0.09803 0.10978
20 0.09013 0.06117 0.06495 0.10558 0.08244 0.09104
12 0.15112 0.08386 0.09189 0.20662 0.12435 0.12456

30 18 0.09839 0.06540 0.06998 0.11985 0.09049 0.10073
24 0.07255 0.05290 0.05584 0.08325 0.06937 0.07586
30 0.05884 0.04529 0.04738 0.06545 0.05727 0.06186
24 0.07548 0.05425 0.05723 0.08712 0.07144 0.07669

60 36 0.04909 0.03924 0.04075 0.05379 0.04825 0.05158
48 0.03676 0.03096 0.03186 0.03932 0.03655 0.03855
60 0.02966 0.02581 0.02643 0.03120 0.02961 0.03098
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Table 6: Risks of the estimators of ε under GELF when V = 0.5, M = 2 and c = ±2 for true value of ε = 3.0.

V scheme r c =-2 c=2
MLE SELF GELF MLE SELF GELF

6 0.30882 0.18838 0.14822 0.57630 0.11627 0.20923
15 9 0.20002 0.14235 0.11626 0.29734 0.09092 0.07627

12 0.14878 0.11418 0.09590 0.19835 0.07558 0.06526
15 0.12139 0.09769 0.08385 0.14948 0.06649 0.05869
8 0.22674 0.15471 0.12462 0.35157 0.09761 0.16869

20 12 0.14766 0.11417 0.09571 0.19338 0.07540 0.06492
16 0.11053 0.09059 0.07813 0.13388 0.06245 0.05537
20 0.08972 0.07659 0.06737 0.10351 0.05458 0.04936
12 0.15287 0.11776 0.09863 0.20241 0.07752 0.12301

30 18 0.09955 0.08390 0.07307 0.11933 0.05891 0.05277
24 0.07382 0.06505 0.05808 0.08374 0.04801 0.04407
30 0.05927 0.05340 0.04848 0.06563 0.04099 0.03822
24 0.07358 0.06458 0.05742 0.08556 0.04785 0.06514

60 36 0.04797 0.04366 0.04011 0.05294 0.03478 0.03278
48 0.03608 0.03355 0.03141 0.03875 0.02795 0.02676
60 0.02952 0.02785 0.02637 0.03116 0.02385 0.02303
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5. Conclusion

In this paper, we have been consider a lifetime distribution by using sine function which has
proposed by [13]. We have also discussed some statistical properties of the considered distribution
such as conditional moments, mean deviation about mean, mean deviation about median and
derived expressions of the pdf and cdf of rth order statistics. Mean, median and variance are
inversely related to the parameter ε of SSE(ε)-distribution and the distribution has positively
skewed and leptokurtic nature. We have developed classical and Bayesian estimation procedure
for estimation of parameter ε under Type-II censored data. And also check the workout of the
estimators at the long-run by performing simulation study. The Bayes estimator under SELF (ε̂SC)
outperforms MLE (ε̂MC) and Bayes estimator under GELF (ε̂GC) for the true value of parameter
ε = 1.5 whatever the seriousness i.e. over estimation is more serious than under estimation and
reversely. In all other considered cases, Bayes estimator under GELF (ε̂GC) outperforms MLE
(ε̂MC) and Bayes estimator under SELF (ε̂SC) when under estimation is more serious than over
estimation but in reverse case Bayes estimator under SELF (ε̂SC) outperform MLE (ε̂MC) and
Bayes estimator under GELF (ε̂GC). Finally, we see that risks under GELF decreases as sample
informations (n & r) increases.
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