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Abstract

In this article, a new transformation technique based on the cumulative distribution function is proposed,
the proposed transformation technique is very useful to generate a class of lifetime distribution. The
various statistical properties of the proposed transformation method are studied. Further, the proposed
technique is illustrated by considering exponential distribution as a baseline distribution. Various
statistical properties such as survival and hazard rate, moments, mean deviation about mean and median,
order statistics, moment generating function (MGF), Bonferroni’s, and Lorenz curves, entropy, stress-
strength reliability have been discussed. Different classical estimation methods are used to estimate
the unknown parameters. Finally, two real data sets are considered to justify the use of the proposed
distribution in real scenario.

Keywords: Transformation technique, statistical properties, classical method of estimation, and
application.

1. INTRODUCTION

In lifetime analysis, various transformation techniques are used to propose the new probability
distribution by adding an additional parameter to the baseline probability distribution. The signif-
icance of these probability distributions is categorized according to their use and appropriateness
of different hazard rates viz. increasing, decreasing, constant, bathtub, and upside-down bathtub
(UBT). Modeling of the real-life data set is based on the nature of the hazard rate function. For
example, the exponential distribution is the most suitable choice whenever data exhibits the
pattern of constant hazard rate. However, underlying data exhibits a non-constant hazard rate
then other generalized lifetime distributions such as Weibull, Gamma, Extended Exponential,
Generalized Exponential, Lindley distributions, and many others are frequently used to desirable
data. To know more about monotone and non-monotone hazard rates, see [17], [32, [4], [5], [14],
and [8]], etc.

In statistical literature, various method has been suggested by the several authors to generate
a new flexible model, viz. [26], [24], [19], and [30]. The beta generated model is used by [15]
who uses the beta distribution to develop the beta generated distributions. [11] propose the
Kumarswamy-G family of distributions.[12] propose a new class of distribution by adding two
more parameters. [2] introduce a new method for generating families of distributions called the
T-X family. Recently, the quantile function is used to generate the T-X family of distributions
by [1]. For another development in the family of distributions see, [18], [23], [20], and [25], etc.
These methods are most popular to propose flexible and appropriate models. Here notable thing
is that all the methods of transformation discussed above introduce one additional parameter.
Unquestionably, the addition of an extra parameter increases the flexibility but at the same time,
it also increases complexity in further statistical inference.

311


mailto:*Corresponding Author\T1\textquoteright s Email: surajyadav9693@gmail.com

S. K. Singh, Suraj Yadav & Abhimanyu Singh Yadav
Statistical properties & estimation procedures for RT&A, No 4 (71)
a new flexible two parameter lifetime distribution Volume 17, December 2022

Motivated by the above-mentioned literature, this article aims to propose a new transformation
technique to generate the class of distributions. The proposed transformation is illustrated with
an exponential baseline model and named a new two-parameter lifetime model. The proposed
model through this transformation will be considered as an alternative to the Gamma, Weibull,
and Extension of Exponential distributions by using the transformation method.

Let G(x) is the cumulative distribution function (CDF) of any baseline distribution, then the CDF
of new distribution is proposed by,

) G(x)
Fx)=5 () + 1+ Gx)"

for x €R anda >0 1)

Clearly, F(x) is the distribution function as it satisfy the condition to be a CDFE.

(i) lim F(x)=0 (i) lmF(x)=1 (iii) F (x) = f(x)

X— —00

where f (x) and g(x) are the probability distribution function (PDF) of proposed and baseline
distribution function respectively.

(iv) It is well known that 0 < G (x) < 1, which implies that 0 < F (x) < 1.
(v) Clearly, F (x) is a continuous function.

Now, the associated probability distribution function (PDF) f(x) for (1) is,

g(0{1-Gx)+aG ()} {(1-6 ()™}

fx)= - )
{G(x)+(1-G )}
The survival and hazard rates are:
_ (1-Gx)"
*M) =+ a-Gor )
h(x)_ g(x) {1_G (JC) +aG (X)} (4)

T (1-G(x)G(x) + (1-G(x))**

To illustrate the above transformation, let us assume exponential distribution as the base line
distribution. The PDF of the exponential distribution is given by,

—x >
(={37 !
and the associated CDF is:
G(x)= 1—e M for x>0, A>0 (6)
here, A is rate parameter of exponential distribution.
Then by transformation (I)), the CDF of the new flexible distribution is,
1_67)06
F(x):m for x>0,a>0,A>0 7)
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The PDF, survival and hazard rate function of proposed distribution are given as:

e Aax (tx+e’/\" —uce’)‘x)

f(x)= (e e o)’ for x>0,a>0,A>0 )
S (x) == - - )
(1—e A7) +e—Aax
e A [ate M —pe ]
h(x) = [1—e Avrerar] (10)
respectively.

The principal objective of this paper is to propose a new transformation method and derive its
various statistical properties. Specifically, we substitute (6) into (I) to get the CDF of the proposed
distribution and the corresponding PDF is obtained by substituting (5) and (6) into (). Our
motivation to construct a new model is: (i) it is applicable for modeling increasing, decreasing,
and constant hazard shape which provides a good fit for real data sets; (ii) In our proposed model
if we put a = 1 then our proposed model reduced to baseline model; (iii) The proposed model can
be considered as a good alternative model for fitting the positive data with a longer tail and (iv)
The proposed model provides a better fit than some well-known lifetime models to real data sets.
As, the proposed model is an alternative to Weibull, Gamma, and Extended Exponential, thus the
proposed model might be a good choice for the researcher. Also, we have considered different
methods of estimation to estimate the unknown value of the parameter. To check the applicability,
AIC and BIC’s are also constructed for the parameters of the proposed model. A simulation study
has been performed to appraise the performance of the proposed estimation methods. Further,
we have considered two real data set to illustrate the superiority of the proposed model and study.
The plots of pdf and hazard rate function of new flexible two-parameter lifetime distribution for
various values of « and A are shown in Figure and respectively. From the Figure
the proposed distribution has an increasing, decreasing, and constant hazard rate.
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Figure 1: (a) PDF of proposed distribution. (b) Hazard function of proposed distribution.
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The content of the rest of the paper is organized as follows: In section 2, we have discussed
some statistical properties such as raw moments, moment generating function (MGF), mean
deviations, Bonferroni and Lorenz curves, Rényi entropy, s- entropy, cumulative residual entropy,
order statistics and reliability. In section 3, different method of estimation of the proposed
distribution is studied. Simulation studies are carried out, in section 4, to compare the behaviour
and performance of the different estimators. In section 5, the proposed model is fitted with some
competing models using two real data sets and finally, the conclusions are summarised in section
6.

2. STATISTICAL PROPERTIES OF NEW FLEXIBLE TWO PARAMETER LIFETIME
DISTRIBUTION

In this section, we have discussed various statistical properties of our proposed new two parameter
lifetime distribution like moments, moment generating function (MGF), mean deviation about
mean and median, order statistics, reliability, Renyi entropy and Shannon entropy.

2.1. Raw Moments:

The " moment about origin of the distribution with PDF () is obtained by,

dx

,=E (X") =/0o xrf(x)dx:/oo x" il G
' 0 (1—eAx4e—Aux)?

After simplification the above integral, we get,

‘u;:i i (_1)],( ; > (i+1) l al’ (r+1) N (1—a) T (r+1) ] 1)
=0

AT (ai—jraf) ™ AT Qati—j+aj) !

i=0 j

The respective four moments about origin can be obtained by putting r =1,2,3, and 4. Forr =1
we get mean (p) of the distribution and is given by the following expression,

n=) 2(—1)j(;>(i+1) L( R ) ]

par e ati—j+af)t A(l+ati—j+aj)?

For, r = 2,3, and 4 we can compute ylz, ;4,3, and y; by putting these values in equation number
(II). The variance of the proposed model can be obtained using the expression,

V(X)=E(X?) - (E(x))?

Similarly, we can find other moment based, skewness, and the kurtosis of the distribution.

2.2. Moment generating function (MGF):
The moment generating function (MGF) for the proposed distribution with PDF (8) is given by;

00 X\ ,—Aax —AX__ . ,—AX
MX(t):/ et¥\e [a+e we ]dx
0 [1_ef)\x+ef)uxx}2
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After simplification,

i i (- 1)1 ( ] ) (J+1) (t—ad) T (r+1)

J=0 =0 rt A (J—itia) !

e

<
I
o

o EEE o (1)
2.3. Mean Deviation (MD)

The mean deviation is the mean of the deviations. It can be calculated from the mean, median,
and mode. It shows how far all the observations from the middle, on average are. The mean
deviation about mean and mean deviation about median is defined as,

81 (0= [ nxl £ () dx
and, -
&)= [ lr—MIfdx

Respectively, here y = E(X) is the mean and M = median(X) is the median of the distribution.
After simplification the mean deviation about mean and the mean deviation about median are
given as;

01 ()= 24 (1) 242 [ xf (1) x (13)

Now, the integral is computed as,

00 o0 A —Aax —AX__,—AX
/ xf (x) dx:/ it [ate txez ]dx
2 iz (1—e=Mxqe—Aax)

:2 g (-1y ( ; ) (i+1) x

{M(/w xe~ CHTA g3 A (1— ) T e (rari—jra)Ax g
2 Ju

By the definition of complementary incomplete gamma function and for any integer n,
T (n, x) = fxoo ti’l*leftdt
r(;/[, ax):fxoo tﬂflefatdt

n—1 .k

1"(n,x):/xoo e tdt= (n—1)le ™™ Y Jli' (n—1)le e, 1 (x)

k=0

here, e,,(x) is the exponential sum function. The above expression can be expressed as;

00 i ) .
SHD (—1)]( ! >(i+1)><
i=0 =0 J
aef(uc+i7j+ocj))\y(1 ( o )A)
——— [+ (a+i—j+a
(a+i—j+aj)*A JHEDAR

(1 a))e” (I+a+i—j+aj)Au

1+ (a+i—j+aj)A 14
(rariejraih (1 + (a+i—j+aj)Ap) (14)
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By using equation and (14), the mean deviation ¢; (x) about mean is;

5y (x) =24 F () =2 zi Zl: 1)]< i ) 1) qe— (ari—jraj)Au (L (avimjraf) An)
= + +1) | —————— (1+ (a+i—j+
1(X) =2l U e i ! (zx+i—j+txj)2)\ X+i—jtaj) Al

(1—0() e—(1+p¢+i—j+o¢j)Ay

(1+¢x+ifj+1xj)2)\ (1+(1+uc+ij+ocj)/\y)1 (15)

Similarly, the mean deviation d(x) about median is given by,

hgk:

b = -2y Y (- 1)](1)(l+1) [M(lwm—jwﬁm

0 (a+i—j+aj)’A

1l
o

i

(l—tx) e~ (L+a+i—j+aj)Au

(1+(X+i—j+0c]')2)x (1+ (1+a+i—j+aj) Ay)] (16)

2.4. Bonferroni and Lorenz curves

The Bonferroni [7] and Lorenz curves [21] is used to measure the inequality in the distribution of
quantity in the area of economics as in term of income and wealth. The Bonferroni and Lorenz
curves have various applications not only in the area of economics to study income and poverty
but also in other areas like demography, medicine, insurance and reliability. Lorenz curves cannot
be defined if the mean of the distribution is zero or infinite. The Bonferroni and Lorenz curves
are given by,

=Ply /O T e F()dx (17)

L(x)= ; /0 T e F(x)dx (18)

and

where p = E(x) and g = F~! (p) respectively. Now, the integral quantity in RHS is simplified as;

/qoo x)dx = i Zl: (—1)j ( ; )(i+1)><

i=0 j=0

e~ ari—jraj)Aq
———— (1 + (a+i—j+aj)Aq)

(a+i—j+aj)*A

(1 06)) —(l+a+i—j+aj)Aq

1 TPy
(1+a+i— ]+¢x])2}\ L+ (ari=jra) q)]

Hence, the Bonferroni and Lorenz curves for the new distribution are obtained as;

IR (e B
B(P) =5 Pu lZ Y, (=D j (i+1) (¢x+i—j+zxj)2)\(1+(a+l j+aj)Aq)

(1 a)e” (I+a+i—j+aj)Aq

1+ (1+zx+i—j+a]’))\q)H (19)

(1+a+i—j+af)*A

and

p=1-2 (5 T e () e G g
PI= |7 : (a+i— ]+1x])A FRTIeA
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(1 a)e” (I+a+i—j+aj)Aq

1+ (1+zx+i—j+zxj))\q)} (20)

(1+a+i— ]+zx])

respectively.

2.5. Renyi entropy

Rényi entropy [28] is a most popular measure of average amount of uncertainty of a random
variable X. If X is a random variable with probability distribution function f(x) then the Rényi
entropy is defined as

Te (1) == log{ [ dx} 1)

where, > 0 and y#1. Now, from equation (§) we get,
© ) A —Aax + —AX__ = AX 7
/ @) dx:/ e [a+e ocez ] "
0 0 (1—6*/\x+e*/\“x)

:/\m“’fiiii(—l)j+k+l <_?7) G) <11<) <;) (W+i;+ak+j)/\

By putting the above value in the equation we get,
g r+l—j
1_,Ylog/\+ < = ) loga

e EEEE 0 () (1) () () et @

i=0 j=0k=01=0

Jr(7) =

2.6. s-Entropy

Shannon entropy was proposed by [29], and is a particular case of Rényi entropy as v — 1. It can
be defined as E [—logf(X)] .

(ef/\x _ ef)uxx) m

ngk

m

( 1)n+1 "
logf (X) = logA — aAx +loga + Z R (e—Ax _ ae—)\x) 49

n=1 m=1

After using the result based on series expansion of [0g(1 + x) and log(1l — x) in the above
expression, the expression for Shannon entropy is given by,

© n )n+l+1

E [—logf(X)] = —logA + AaE (X) — loga — } |
n=11=0

(1))
9 Z Z( 1)° ( ) ( —)\mx+/\sx7)uxsx) (23)

m=1s=0

The equation number can be computed with the help of following results;

E(e™) = L 0(_1)j(;)(i+1)[(ﬂ+zx+i/\fj+tx]'))\+(n+0¢+/\1(*1'i_—“])'+“j))\} e

i=0 j=
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o k
E (ef)xmxw\sxf)uxsx) — ZZ( 1)t ( > k+1) %

k=0t=0

o N 11—« (25)
(m—s+as+k+a—t+at) (m—s+as+a+1+k—t+af)

respectively.
Corr: 1. The cumulative residual entropy [27] defined as,

—/Pr(X>x) log (Pr (X > x) ) dx

_ _/ 1 — e A:j—xe A’XX) <_/\ax_log (1 _e*/\x_i_ef/\ax))dx
— o i PN i A B o k (_1)1 (k) )
_1;];0( 1 (1) [((D&+i—]'+lxj)/\)2 E)g ko \1) (a+i—j+aj+k—1+al)

2.7. Order Statistics

Suppose that X;, X5 ........ X, is a random sample of size n from the proposed continuous prob-
ability distribution function (PDF), f (x). Let Xj., < Xo.y < - -+ < Xy:y denote the corresponding
order statistics. We know that the probability density function of 7 order statistics X,., , say
fr(x), where the population PDF and CDF are f(X) and F(x) respectively, is given as follows,

=Gy T & (1 ( ) £ 6)

Consequently, using the equation @) and () in we get,

fr(x)(rl—i i(n_r>{1_i_)\:+):m(y+i_l

i=0

A —Aax —Ax __ —Ax
y l e (x+e we M) 27)

(1 _ e—/\x + e—/\zxx)z

and corresponding ' order statistics of CDF F,(x) is,

9-y Y (1) (")) e 28)

j=r m=0

Hence from the equation (7), equation can be written as,

ERer () () ()T

j=r m=0

2.8.  Reliability

In this section, we have discussed about reliability of a component. In the context of reliability,
the stress-strength model explains the life of a component which has a random strength X that
is subjected to random stress Y. The component will fail if the stress applied to it exceeds the
strength and the component will work properly whenever X > Y. So, P[X > Y] is a measure of
component reliability. It has various number of applications in many areas such as in science,
engineering etc. In the field of stress-strength model there has been number of works as regarded
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estimation of reliability R when X and Y are independent random variable belonging to the same
univariate family of distribution.

Here, we derive the reliability R when X and Y are independent random variables from the
proposed distribution with parameter (a1, A1) and (a2, A») respectively. So, the reliability R is
defined as bellow,

R=P (X>Y) =/0 fX (x, ocl,Al) Fy(x, no, /\z)dx

z+1 Ao 1
U (g +i—j+anf) A+ (k—I+agl) A

1
— }+/\1 (1—a7)
1
A

(p+i—j+aqj) A+ (k—I+anl+1) Ay

><{(1+o¢1+z—]+uc1]) 1+ (k=1+azl) Ay

1
- (T+aq+i—j+aqj) A+ (k—l+agl+1) Ay H (30)

3. METHODS OF ESTIMATION

In this section, we will discuss different method of estimation namely, maximum likelihood
estimation (MLE), maximum product spacing estimation (MPS), least square estimation (LSE)
and weighted least square estimation (WLSE), Cramer-von-Mises estimation (CVME), Anderson
Darling estimation (ADE) to estimate the unknown parameter of the considered model.

3.1.  Maximum likelihood estimation (MLE)

Let xq,x0,......... x;, be the random samples of size n from the proposed distribution. Then the
log-likelihood function of the proposed distribution is given as,

logL =nlog A — aA ixi + ilog (zx +e M txe*)‘xi) - Zilog (1—67)"‘%6*)‘“1') (31)
i=1 =1 i=1

Now, differentiating equation with respect to parameters « and A we get,

alogL 1— e M n Axe— i
— A) x+ +2 32
Z 1 Z zx+e AxXj _ pe— /\xz) ; (1_67/\3(1._’_67)\“351,) ( )
and R ) ) )
dlogL _n —1) xje i TN — e M
A 33
A A sz Z ((X + e—’\xz ae_’\x Zl 1 —e— A +e—/\lxxz) (33)

Now, putting the equation (32) and (33) equal to zero, we have two non-liner likelihood equations.
After solving these equations, we get MLEs @ and A of parameters & and A. These equations are
not in closed form consequently it cannot be solved analytically. Therefore, Newton-Raphson
method is used to get the MLE’s of the parameters « and A.
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3.2.  Maximum Product Spacing Estimation (MPSE)

This method is one of the most popular method of estimation and it was developed by [9]. Let
xay < x@) < -+ < X be the ordered sample of size n and we define spacing as,

X(i
Di:/() Feo,a Ny ;i=1,2,3......... (n+1)
X(i-1)

=F (x(i),zx, /\) —F (x(,',l),zx, /\)

Where, initial conditions are F (x(o)oc, )\) =0, F (x(n 1), /\) and sum of all the spacing will be
Zero.

We are taking the observation from the proposed distribution, now from the equation (7) the D/s
are defined as,

—Ax(; —Ax;
1—e 70 1—e 7701
D; = — sforalli=1,2,....n 34
! 1_6—/\X(i)+e—/\ﬂ(1(i) 1_6_)\)((171) +e—)\l¥X(l;1) ’f 4 ( )

For,i=2,3,....n. The MPS estimator @,ys and mes of « and A are obtained by maximising the

geometric mean of the differences,
el 1/(n+1)
G= <H Di)
i=1

after taking logarithm of G we get,

1 n+1
logG = | — logD; 35
08 (n " 1) ; 0gD; (35)
substituting the value of D; from the equation in equation we get,
1 n+1 1— e—/\x(i) 1— g_/\x(i—l)
logG = l — 36
o8 (n + 1) ; 28 [1_6)‘x(z‘>+67\“<z‘> 1— e~ M(i-1) o~ AX(i-1) (36)

It may be noted that from the equation we can get the derivatives algf L, algf L and set it equal

to zero, the equation, thus obtained, cannot solved analytically, therefore, the same numerical
technique may be used to obtain the solution.

3.3. Least Squares Estimation (LSE)

This method is most popular method [31]. Let x4y < x(3) ...+ < x(;) be ordered sample of size
n from proposed distribution. LSEs @ and Ass of parameters & and A are obtained by minimizing

n

Z(a,A) = ; (F (xG,a,A) —E[F (xi)])z

where, E[F (x;)] = 7= ;i=1,2,...... (n+1)
then,

2
n 1—e M0 i
Z(a,\) = - 37
(2,2) 1221 (1_6_/\x(i)+e_/\“x(i) n+1 37)

In order to minimize Z (a, A)given in (37), we differentiate equation with respect to « and A
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and equating to zero, which results of the following equations,

az =Y F (v ) ( (¥ @A) = i) =0 (38)

= n+1

AZ(,A) .
3((0;\)) ) ;FA (o2, 1) (F (xy o, A) = nl+1> =0 (39)

The above two non-linear equations cannot be solved analytically, therefore, numerical technique
is used for solution.

3.4.  Weighted Least Squares Estimation (WLSE)

The estimation procedure to obtain the estimates of the parameters through WLSE is quite
similar to the LSE with a slight change that it minimizes the weighted sum of squared deviation
between true and expected CDF at observed ordered sample points, where weights are inversely
proportional to the var [F (x(;)]|. Thus, WLSE is obtained by minimizing

(n+1) (n+2)

12
1
Wi, ) = 121: i(n—i+1) [P (x @A) = n+1]
2
" (n+1)% (n+2) 1—e ™0 i
— 4
Wia, A) = ; (n—i+1) L_e—)\x(;‘)Jre—Mxm n+1 (40)

To get the WLSE estimates Ay s and )\W s of parameters « and A, differentiate equation with
respect to & and A and equating to zero, which results of the following equations

oW SA LC 1 2 . 2
T Lg%fﬁf’i%“ ("@f“)[ (X«ww)—niJ =0 (41)
W, ) _{~ (n+1)* (n+2)

. 2
’ 1
ERY :; i(l’l—i+1) F)\ (x(,-),tx,)\) |:F(X(i),06,/\)—n+1:| =0 (42)

Again, equation and cannot be solved analytically, therefore, numerical technique is used
to secure the solution.

3.,5. Cramer-von-Mises Estimation (CVME)

This method of estimation is proposed by [22], the method is the minimum distance method
based on the difference between empirical and cumulative distribution functions. See, [10, [13] for
more detail about this method. The CVM estimator of the parameters are obtained by minimizing

1 & 2i — 12
C(zx,/\)=12n+;<F (x(l-),zx,/\>f - ) 43)
i=

To get the CVM estimates @cy s and XCVM of parameters « and A, differentiate equation (43)
with respect to « and A and equating to zero, which results of the following equations

ano; A) = ;F; <x(i),oc, )\) <F (x(i),zx, )t) — Ziz:l 1) (44)
anX ae ;F A (’C(i)f”‘f A) (F (x(,-),a, )\) - 21'27—1 1) (45)
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Again, equation and cannot be solved analytically, therefore, same numerical technique
is used to obtain the solution.

3.6. Anderson-Darling Method of Estimation (ADE)

This method is based on the minimization criteria of Anderson-Darling statistic [3] . The ADE
estimate can be obtained by minimizing the following equation,

n

A(a,A)=—n— %2 (2i —1) [log (F (x(l-),zx, /\)) +1log (? (x(n+1_l-),oc, A))} (46)

i=1

where, F (x(;41-i), &, A) =1 — F(x(,a,A). Therefore, the AD estimates #4pg and Aapk of the
parameters « and A can be obtained as the solutions of the partial differentiation based on
equation using same iterative procedure.

4. SIMULATION STUDY

In this section, the Monte Carlo simulation study has been performed to assess the performance
of the different estimators obtained via different method of estimation viz., MLE, MPS, LSE,
WLSE, CVME, and ADE.

In order to perform simulation, the random sample for the for the different variation of
the sample size, and parameters. In particular, n = 10,20,...,100 and « = (0.75,1,1.5,2.5),
A = 0.5 are chosen. The estimators obtained via considered methods are not assumed any explicit
mathematical form and not yield closed form solution, therefore N-R method is used to secure
estimates of the parameters. The average estimate, MSE of the parameters using the above
methods reported in Table [T} based on N = 5000 replication using the following formula.
Average estimates:

. 1 & ~ 1N
"‘AE:NZUH , )\AE=N2/\1‘
i=1 i=1

Mean square error:

N 1 Y R ~ 1N N2
UMSE = 77 Yo (i — &), Amse= N ) ()\i - /\)
i=1 i=1

From Table and [ it has been overserved that the MSE of the parameter decreases as the
sample size increases, which ensures the consistency of the proposed estimators. It is important
to mention that ML and MPS methods are based on likelihood and others are based on a distance
measure. Further, if we fixed A = 0.5 and varied a« = (0.5,1.0, 1.5, 2.0,4.0) the Table and [2[ show
that, in likelihood-based methods for shape parameter « and scale parameter A, MPS and MLE
perform well respectively. Furthermore, in the considered distance measure there is no trend for
the shape parameter however there is a specific trend for the scale parameter viz.

CVME < ADE < WLSE < LSE

Next, if we fixed & = 0.5 and varied A = (0.5,1.0, 1.5, 2.0,4.0) the Table 3] and [4 show that in
likelihood-based methods MPS is better than MLE for shape parameter « and MLE is better
than MPS for scale parameter A. Further, in the considered distance measure there is the same
conclusion as in the previous case. Also, we have calculated coverage probability and average
length of 95% confidence interval. The MSEs of point estimates and average lengths of interval
estimates decreases with increasing sample sizes.
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5. REAL DATA APPLICATION

In this section, the applicability of the proposed flexible extension has been discussed based
on two survival data sets. The data set-I is taken from [6] which represents the survival times
(in days) of 72 guinea pigs infected with virulent tubercle bacilli. The second data set has been
obtained from [16] which consists of survival times, in week, of 33 patients suffering from acute
Myelogenous Leukaemia. The summary of both data sets is given in Table

Further, to show the superiority of the proposed model, the following well-known lifetime models
are taken.

1. Extension of exponential distribution with pdf
F(x) = aA(1+Ax)" L7090 oy 50, 4> 0, A >0
2. Weibull distribution with pdf
f(x):ﬁx"‘*le*(%)a x>0, a>0,A>0
3. Gamma distribution with pdf

A“
fx)= Xt lemAx x>0, a>0,A>0

where, & is shape and A is the scale parameter.

The superiority of the proposed extension with the above considered families of the distribution
are shown with the help of model criterion tools. Hence, the criterion like p-value, Akaike
Information Criteria (AIC), Bayesian Information Criteria (BIC), and Kolmogorov-Smirnov (KS)
test are taken.

To compare the models, Table [plf7] contains the values of the parameters estimated by the
maximum likelihood, AIC, BIC, and KS statistics with the p-value for fitted data sets. From the
K-S test statistics or associated p-value, it may be seen that the proposed model provides better fit
than Weibull, Gamma, and Extension of Exponential models. Also, a similar result is concluded
on the basis of negative of Log-likelihood which is higher than other three. Also based on the
relative model selection criteria it is observed that the proposed model has smaller AIC and BIC
in comparison to other thee considered models. Hence, the proposed mode is more suitable for
considered real phenomena.

Further, the plots of the empirical cumulative distribution function (ECDF) and the fitted CDF
for the considered two data set are shown in Figure 2| From Figure [2] it is concluded that the
proposed model fits better to considered real data in comparison to other competitive models.
Hence it may be taken as the alternative to the several lifetime models.

Table 5: Summary of the considered data sets.

Data Min. Q1 Median Mean Q3 SD Skewness Kurtosis  Max.
I 0.080  1.080 1.560 1.837 2.303 1.215 1.754 7.151 7.000
II 1.00 4.00 22.00 40.88 65.00 46.703 1.164 3.122 156.00

6. CONCLUSION
In this article, we have introduced a new transformation technique to generate the class of lifetime

distributions. Further, the purposed transformation technique is illustrated via exponential distri-
bution as baseline distribution and named a new flexible two-parameter lifetime distribution. The
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Table 6: MLE, AIC, BIC and KS statistics with the p-value for the data set-I.

ML Estimates KS-Test
Distributions & A -LogL Statistics  p-value AIC BIC
Proposed 8.2801  0.1257  102.4141  0.09658  0.5127  208.8283  213.3816
Weibull 16172  2.0558 104.0168  0.11346  0.3121  212.0336  216.5869
Gamma 24379 13273 1029648  0.10372  0.4207  209.9296  214.4829
EE 5.0262 0.0731 109.6485  0.19617  0.0078  223.2970  227.8504

Table 7: MLE, AIC, BIC and KS statistics with the p-value for the data set-I1.

ML Estimates KS-Test
Distributions i A -LogL Statistics p-value AIC BIC
Proposed 0.2659  0.0763 151.7045 0.10004 0.8959 307.4091 310.4021
Weibull 0.7764 35.3613 153.5868 0.13668 0.5684 311.1737  314.1667
Gamma 0.6877  0.0168  153.6737 0.13900 0.5466 311.3473  314.3403
EE 0.4897  0.0998  153.7430 0.13920 0.5440 3114860  314.4790
ECDF plot for dataset 1 ECDF plot for dataset 2
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Figure 2: (1) ECDF and fitted CDF plot of proposed distribution for data 1. (b) ECDF and fitted CDF plot of proposed
distribution for data 2.

proposed distribution has an increasing, decreasing, and constant hazard nature see Figure
Next, the different distributional properties are derived viz. mean, moments, moment generating
function (MGF), mean deviation about mean and median, Bonferroni and Lorenz curves, Renyi
entropy, s-entropy, cumulative residual entropy, rth order statistics, and reliability. The unknown
parameter of the proposed model is estimated by different methods of estimation namely MLE,
MPS, LSE, WLSE, CVME, and ADE. To compare the performances of different estimators obtained
via different estimation methods Monte Carlo simulation study has been performed in Table
and [} The superiority of the present study and model has been illustrated by constructing two
real data sets. From the Table [67] and Figure [} It is observed that the proposed new flexible
two-parameter lifetime distribution provides better fits to the considered data sets among the
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most popular distributions viz., Weibull, Gamma, and extension of exponential distribution.
Therefore, we may conclude that the proposed model might be considered an alternative to other
considered models.
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