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Abstract

In the present work, we are going to propose a new transformation called Beta transformation. The
new model includes the exponential distribution as a special case and it is known as Beta transformed
exponential(BTE) distribution. We have been obtained its various statistical properties such as moments,
moment generating function, median, hazard rate function, entropies, and order statistics. Parameters of
BTE distribution are estimated by the method of maximum likelihood, Cramer-von-Mises and method
of least square. Monte Carlo simulation is performed in order to investigate the performance of these
estimates. Finally, two data sets have been analyzed to show how the proposed model works in practice.

Keywords: Cramer-von-Mises method, Exponential distribution, Hazard rate function, Method
of maximum likelihood, , Method of least squares.

1. Introduction

The development of new methods of expanding the existing distributions is quite rich in the
literature of distribution theory. There are several methods to propose new distributions by the
use of some baseline distribution in statistical literature. This has been done through different
approaches.
In Statistical literature no. of transformations are available to produce new cumulative distribution
function (cdf) corresponding to a given cdf. Suppose, we have a cdf F(x), then the associated
proposed cdf will be Gi(x).

• The most popular among them is the power transformation initiated by Gupta et al. (1998)
having the form

G1(x) = [F(x)]α; α > 0

• Quadratic rank transformation map (QRTM) proposed by Shaw and Buckley (2007) having
the form

G2(x) = (1 + λ)F(x)− λF2(x); | λ |≤ 1

• DUS transformation proposed by Kumar et al. (2015) having the form

G3(x) =
eF(x) − 1

e − 1
; e = exp(1)

• SS-transformation proposed by Kumar et al. (2015) having the form

G4(x) = sin(
π

2
F(x))
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• Minimum Guarantee (MG)-distribution proposed by Kumar et al. (2017) having the form

G5(x) = e1− 1
F(x)

• Log-transformation proposed by Maurya et al. (2016) and having the form

G6(x) = 1 − ln(2 − F(x))
ln 2

• Transformation based on the generalization of Kumar et al. (2015) called GDUS transforma-
tion proposed by Maurya et al. (2017) having the form

G7(x) =
eFα(x) − 1

e − 1
; α > 0

• New transformation initiated by Kyurkchiev (2017) to develop a sigmoid family of functions
for Verhulst Logistic function is

G9(x) =
2F(x)

1 + F(x)

• New trigonometry based transformation called PCM proposed by Kumar et al. (2021) and
having the form

G10(x) = tan(
π

4
F(x))

The lifetime of a system can be modeled with statistical distributions that can be used in
modeling lifetime data; among them, the most popular are gamma and weibull distributions. The
proposed model contains several lifetime distributions as its special cases that are very flexible
and able to accommodate different types of data sets since the probability density function and
hazard rate can take on different forms such as increasing, decreasing, and constant shapes, and
the potentiality of this model has been tested statistically by using it to model some real life data
set.
In this article, We have decided to propose a new transformation known as beta transformation
for x ∈ ℜ is given below

G(x) =

{
β

β−1 [1 − β−F(x)] if β > 0, β ̸= 1

F(x) if β = 1
(1)

Where, G(x) and F(x) are the cdfs of the proposed transformation and baseline distribution.
On differentiating (1) w.r.t. x, we get the probabilty density function (pdf) g(x) and is given by

g(x) =

{
β log β
β−1 f (x)β−F(x) if β > 0, β ̸= 1

f (x) if β = 1
(2)

For β ̸= 1, g(x) is a weighted version of f (x), where the weight function

w(x) = β−F(x),

and g(x) can be written as

g(x) =
f (x)w(x)

c
.

where constant c = E(w(X)),
Here c = β−1

β log β .
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The survival reliability function(sf) S(x) and the hazard rate function(hrf) h(x) are obtained as

S(x) =

 β1−F(x)−1
β−1 if β ̸= 1

1 − F(x) if β = 1
(3)

and

h(x) =

 f (x) log ββ1−F(x)

β1−F(x)−1
if β ̸= 1

f (x)
S(x) if β = 1

(4)

Lifetime models are used to explain the life of a system or device. These models are used in
reliability, engineering, biological field, insurance, etc. The motivations for introducing our
beta transformation model is that it is efficient to analyze lifetime data and very easy method
of inducting an additional parameter to a family of distributions functions. It improve the
characteristics, bring more flexibility to the given family and provide better fits than the other
models having the same or higher number of parameters. The proposed method is very interesting
with a closed form for the cdf and capable of modeling heavy tailed data sets.
The aim of this article is to introduce a transformation that yields new distributions by using
a given baseline distribution. It contains only one new parameter other than the parameters
involved in the baseline distribution. To illustrate the usefulness of this new transformation, We
choose exponential as the baseline distributions in the present work.
The rest of this work is as follows. In Section 2, We introduce a special sub-case of (1), called a
beta transformed exponential(BTE) distribution by considering exponential model as a parent
distribution. Some mathematical properties are derived in Section 3. Certain characterizations of
the proposed distribution are provided in Section 4. Estimation of parameter has been carried out
in Section 5, Simulation study have been discussed in Section 5. Illustrate the flexibility of models
using two real-life data sets discussed in Section 7. Finally, the article is concluded in Section 8.

2. Beta transformed exponential distribution

In this section, a sub model of the beta transformed family, called the beta transformed exponential
(BTE) distribution is introduced. Let G(x; θ) be cdf of the exponential random variable given by
G(x; θ) = 1 − e−θx; x, θ > 0. Using this in equation(1), then the cdf of the BTE for x > 0 with the
shape and scale parameters as β > 0 and θ > 0 has the following form

G(x) =

{
β

β−1 [1 − βe−θx−1
] if β ̸= 1

1 − e−θx if β = 1
(5)

The pdf g(x) is given by

g(x) =

{
θ log β
β−1 e−θxβe−θx

if β ̸= 1

θe−θx if β = 1
(6)

The survival reliability function S(x) and the hazard rate function(hrf) h(x) are obtained as

S(x) =

 βe−θx−1
β−1 if β ̸= 1

e−θx if β = 1
(7)

and

h(x) =


θ log β

βe−θx−1
e−θxβe−θx

if β ̸= 1

θ if β = 1
(8)

We have the following results for a general distribution function F(x).
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Table 1: Behavior of the hazard functions of the three distributions.

Parameter Gamma Weibull BTE
β = 1 θ θ θ
β > 1 Increasing from Increasing from Decreasing from

0 toθ 0 to ∞ βθ log β
β−1 to θ

β < 1 Decreasing from Decreasing from Increasing from
∞ toθ ∞ to 0 βθ log β

β−1 to θ

• If f (x) is a decreasing function, and β ≥ 1, then g(x) is a decreasing function.

• If f (x) is a decreasing function, and f (x) is log-convex, then for β ≥ 1, the hazard rate
function h(x) is a decreasing function.

It can be easily seen that f (x; β, θ) is a unimodal function with mode at (log(logβ))
θ .

Here note that,
limx→0 h(x) = βθ log β

β−1 ,and
limx→∞ h(x) = θ.
We have the following cases:

• When β < 1, h(x) is an increasing function increases from βθ log β
β−1 to θ

• When β > 1, h(x) is an decreasing function decreases from βθ log β
β−1 to θ

• When β = 1, h(x) is a constant function.

By taking the second derivative of f (x; β, θ), it easily follows that the pdf of BTE(β, θ) is log-
convex if β > 1 and log-concave if β < 1;
Table 1 provides the comparison of the hazard function of the BTE distribution with the corre-
sponding hazard functions of Weibull and Gamma distributions. In all these cases the shape and
scale parameters are assumed to be β and θ, respectively. It is clear from Table 1 that the hazard
function of the BTE distribution is a decreasing or an increasing function depending on the shape
parameter similarly as the Gamma and Weibull distributions, the ranges are quite different.

Figure 1 and 2 provides the plots of the pdf and hrf of the model for different values of β
when θ = 1

BTE distribution for β > 1, β log β
β−1 is a decreasing function from 1 to 0, as β varies from 1 to ∞.

If X ∼ BTE(β, θ), then BTE distribution has the following mixture representation:

X =

{
X1 with probability if log β

β−1

X2 with probability if 1 − log β
β−1 ,

(9)

where X1 and X2 have the following pdfs:

fX1(x) = θe−θx; x > 0 (10)

fX2(x) =
log β

β − 1 − log β
θe−θx(βe−θx − 1); x > 0, (11)

respectively. From (9), as β approaches 1, X behaves like an exponential distribution, and as β
increases, it behaves like X2.
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Figure 1: plot of pdf of distribution

3. The basic mathematical properties

This section provides some mathematical properties of proposed distribution.

3.1. Quantile function

The qth quantile xq of the BTE random variable is given by

xq = −1
θ

log

1 +
log(1 − q(β−1)

β )

log β

 . (12)

3.2. Moments

In this subsection, we intend to derive the moments and the moment generating function of the
BTE distribution. Let X follow (6), then, the rth moment of X is derived as

µ
′
r =

∫ ∞

−∞
xr f (x; β, θ)dx, (13)

using(6)in(13), we get

µ
′
r =

r!
θr(β − 1)

∞

∑
k=1

(ln β)k

k!kn (14)

Furthermore, a general expression for the moment generating function (mgf) of the BTE random
variable X is given by

MX(t) =
θ

(β − 1)

∞

∑
k=0

(ln β)k+1

k!

[
1

θ + θk − t

]
; t < θ (15)

3.3. Sample Generation

The method to generate a sample is the inverse CDF transformation method. If X is U(0, 1) with
CDF F(x), then by the transformation, we generate the sample from the equation G(x) = U
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Figure 2: plot of hrf of distribution

implies x = G−1(U) of BTE distribution

x = −1
θ

log

1 +
log(1 − U(β−1)

β )

log β

 . (16)

3.4. Order Statistics

Order statistics are used in applied fields of statistics such as reliability and lifetime testing.
Let X1, X2, ..., Xn be a random sample from BTE(β, θ) . Also, let X(1), X(2), ..., X(n), denote the
corresponding order statistics. Then the pdf and cdf of kth order statistics, are given by

fX(x) =
n!

(k − 1)!(n − k)!
[F(x)]k−1 [1 − F(x)]n−k f (x)

=
n!

(k − 1)!(n − k)!
θ log β

β − 1
e−θxβe−θx

[
β

β − 1
[1 − β−F(x)]]k−1

[
1 − [

β

β − 1
[1 − β−F(x)]]

]n−k
(17)

and

FX(x) =
n

∑
j=k

(
n
j

)
[F(x)]j[1 − F(x)]n−j

=
n

∑
j=k

(
n
j

) [
β

β − 1
[1 − β−F(x)]

]j

[
1 − [

β

β − 1
[1 − β−F(x)]]

]n−j
(18)

respectively.
The pdf of the minimum and maximum of order statistics are obtained by putting X = X1 and
X = Xn respectively in equation (6).

RT&A, No 4 (71) 
Volume 17, December 2022 

349 



Fasna K
A METHOD FOR GENERATING LIFETIME MODELS

3.5. Entropy

The entropy of a random variable measures the variation of the uncertainity. A large value of
entropy indicates the greater uncertainty in the data. The concept of entropy is important in
different areas such as physics, probability and statistics, communication theory, and economics,
etc. Several measures of entropy have been studied and compared in the literature.
If X is an absolute continuous random variable with REX(ρ) for ρ > 0 and ρ ̸= 1, is defined as

REX(ρ) =
1

1 − ρ
log
[∫ ∞

−∞
f (x)ρdx

]
(19)

From equation(19), we get

REX(ρ) =
ρ

1 − ρ
log
(

θ log β

β − 1

)
+

1
1 − ρ

log

(
∞

∑
k=0

ln(β)k

k!ρ(k + 1)

)
. (20)

4. Characterization of Beta transformed exponential distribution

In this section, we present certain characterizations of the BTE distribution based on a simple
relationship between two truncated moments. This characterization result employs a theorem
due to Glanzel (1987), which stated as follows:

Theorem 1. Let (Ω,F, P) be a given probability space and let H = [a, b] be an interval for some
a < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be a continuous random
variable with the distribution function F and let q1 and q2 be two real functions defined on H
such that

E[q2(X)|X ≥ x] = E[q1(X)|X ≥ x]η(x), xϵH,

is defined with some real function η. Assume that q1, q2 are continuous functions, η has
continuous derivative and F is twice continuously differentiable and strictly monotone function
on the set H. Finally, assume that the equation ηq1 = q2 has no real solution in the interior of H.
Then F is uniquely determined by the functions q1, q2 and η, particularly

F(x) =
∫ x

a
C | η

′
(µ)

η(µ)q1(u)− q2(u)
| exp(−s(u))du,

where the function s is a solution of the differential equation s
′
= η

′
q1

ηq1−q2
and C is a constant,

chosen to make
∫

H dF = 1.

Proposition 1. Let X : Ω → (0, ∞) be a continuous random variable and let q1(x) = β−e−θx
and

q2(x) = q1(x)e−θx for x > 0. The random variable X has pdf (6) if and only if the function η
defined in Theorem 1 has the form

η(x) =
θ + 1

θ
e−x, x > 0

Proof. Let X be a random variable with pdf (6), then
(1 − F(x))E[q1(X) | X ≥ x] = log β

β−1 e−θx, x > 0
and
(1 − F(x))E[q2(X) | X ≥ x] = θ log β

β−1
e−x(θ+1)

θ+1 , x > 0
and finally

η(x)q1(x)− q2(x) = q1e−x

θ > 0, f orx > 0.
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Conversely, if η is given as above, then

s′(x) =
η
′
(x)q1(x)

ηq1(x)− q2(x)
= −(1 + θ), x > 0

and hence
s(x) = −(1 + θ)x, x > 0, or e−s(x) = e(1+θ)x, x > 0. Now, in view of Theorem 1, X has density(6).

■

Corollary 1. Let X : Ω → (0, ∞) be a continuous random variable and let q1(x) be as in
Proposition 1. The pdf of X is (6) if and only if there exist functions q2 and η defined in Theorem
1 satisfying the differential equation

η
′
(x)q1(x)

ηq1(x)− q2(x)
= −(1 + θ), x > 0

Remark 1. The general solution of the differential equation in Corollary 1 is

η(x) = e−(1+θ)x
[∫

(1 + θ)[q1(x)]−1q2(x)e(1+θ)xdx + D
]

where D is a constant. Note that a set of functions satisfying the above differential equation is
given in Proposition 1 with D = 0. However, it should be also noted that there are other triplets
(q1, q2, η) satisfying the conditions of Theorem 1.

5. Estimation and simulation

In this section, we use the method of maximum likelihood, method of Cramer-von-Mises and
ordinary least square method for estimation of parameters of BTE distributions.

5.1. Method of Maximum Likelihood Estimation

This is an extensively used method initiated by C.F. Gauss and elaborative study initiated by Prof.
R. A. Fisher to obtain the estimator of the unknown parameter of the distribution. If X1, X2..., Xn
be a set of random observations from the population BTE(β, θ) distribution having pdf g(x; β, θ),
then its log likelihood function will be as follows

log L = n log θ + n log
(

log β

β − 1

)
− θ

n

∑
i=1

xi +
n

∑
i=1

e−θxi log(β). (21)

The likelihood equations are,

∂ log L
∂β

=
n(β − 1 − β log β)

β(β − 1) log β
+

1
β

e−θxi = 0, (22)

and

∂ log L
∂θ

=
n
θ
−

n

∑
i=1

xi +
n

∑
i=1

xie−θxi = 0. (23)

The MLE of β and θ can be obtained by solving this nonlinear system of equations. It is
usually more convenient to use nonlinear optimization algorithms such as the Newton-Raphson
algorithm.
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5.2. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators are based on minimizing the distance be-
tween the theoretical and empirical cumulative distribution functions. Macdonald(1971) provided
empirical evidence that the bias of these estimators is smaller than the bias of other minimum
distance estimators. The Cramer-von-Mises estimators, β̂CME and θ̂CME are the values of β and θ
minimizing

C(β, θ) =
1

12n
+

n

∑
i=1

[
F(ti | β, θ)− 2i − 1

2n

]2
.

Differentiating the above equation partially, with respect to the parameters β and θ respectively
and equating them to zero, we get the normal equations. Since the normal equations are non-
linear, we can use iterative method to obtain the solution.

5.3. Method of Least-Square Estimation

The least square estimators were proposed by Swain et al. (1988) to estimate the parameters
of Beta distributions. Here, we apply the same technique for the BTE distribution. The least
square estimators of the unknown parameters β and θ of BTE distribution can be obtained by
minimizing

n

∑
i=1

[
F(ti | β, θ)− i

n + 1

]2
.

with respect to unknown parameters β and θ.

5.4. Simulation study

We conduct Monte Carlo simulation studies to compare the performance of the estimators
discussed in the previous sections and the process is repeated 1000 times. We evaluate the
performance of the estimators based on bias and mean squared error. Methods are compared for
sample sizes n = 500, 700 and 1000.
For each estimate we calculate the mean-squared error. The statistics are obtained using the
following formulae.
MSE(β̂) = 1

n ∑n
i=1(β̂ − β)2 MSE(θ̂) = 1

n ∑n
i=1(θ̂ − θ)2

The estimates, and the mean square errors (MSE) of the parameter estimates for the Maximum
likelihood estimation procedure, method of Cramer-von-Mises and method of least squares are
presented in Tables 1-3.
From Tables , we note that the maximum likelihood method performs well for estimating the
model parameters. Also, as the sample size increases, the MSEs of the average estimates of
maximum likelihood estimates decrease as expected.
The following observations can be drawn from the Tables 1-3.
1. All the estimators show the property of consistency, i.e. the MSE decreases as the sample size
increases.
2. The MSE of β̂ decreases with an increasing n for all the method of estimations.
3. The MSE of θ̂ decreases with an increasing n for all the method of estimations.
4. The MSE of β̂ and θ̂ generally increases with an increasing beta and theta for any given n in all
methods of estimation.
5. In terms of MSE, all the methods of estimation produce smaller MSE for β̂ compared to that of
θ̂.
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Table 2: Simulation result for β = 0.5 and θ = 0.1.

n Est. MLE CVM LSE

500

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.5173
0.1004

5.247×10−5

0.0209

0.5087
0.1004

7.3129×10−5

0.0244

0.5245
0.1021

7.4119×10−5

0.0311

700

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.5171
0.1000

3.702×10−5

0.0150

0.5222
0.1003

7.0427×10−5

0.0220

0.5306
0.0994

5.4085×10−5

0.0260

1000

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.5013
0.1004

2.495×10−5

0.0093

0.5062
0.1005

4.0516×10−5

0.0129

0.5845
0.0972

3.9591×10−5

0.0187

Table 3: Simulation result for β = 0.9 and θ = 0.5.

n Est. MLE CVM LSE

500

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.9315
0.5044
0.0019
0.0943

0.9527
0.5049
0.0029
0.1899

0.9941
0.4966
0.0025
0.1144

700

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.9196
0.5018
0.0013
0.0664

0.9489
0.5044
0.0025
0.1047

0.9046
0.5011
0.0016
0.0556

1000

β̂

θ̂

MSE(β̂)
MSE(θ̂)

0.9260
0.5004
0.0009
0.0436

0.9310
0.4948
0.0014
0.0503

0.9120
0.5034
0.0014
0.0484

6. Applications

In this section, we consider two real life data sets to illustrate the importance of the proposed
distribution. The model parameters are estimated by the method of maximum likelihood and
compare the fit of the BTE distribution with the following distributions: KuE,EW,W and E
models.
(a) Kumaraswamy Exponential (KuE) distribution having pdf

f (x; θ, β, c) = θβce−cx(1 − ecx)θ−1[1 − (1 − e−cx)θ ]β−1; x > 0, θ, β, c > 0. (24)

(b) Exponentiated Weibull (EW) distribution having pdf

f (x; θ, β, c) = θβθcxθ−1e−(βx)θ(1 − e−(βx)θ
)c−1; x > 0, θ, β, c > 0. (25)

(c)Weibull (W) distribution having pdf

f (x; θ, β) = βθβxβ−1e(−θx)β
; x > 0, θ, β > 0. (26)
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Table 4: Simulation result for β = 1.5 and θ = 1.

n Est. MLE CVM LSE

500

β̂

θ̂

MSE(β̂)
MSE(θ̂)

1.5861
1.004

0.0101
0.3336

1.7673
0.9999
0.0235
0.9141

1.6562
1.0142
0.0218
0.8282

700

β̂

θ̂

MSE(β̂)
MSE(θ̂)

1.5470
1.005

0.0075
0.2346

1.5931
1.0114
0.0128
0.4939

1.5058
1.0263
0.0174
0.2132

1000

β̂

θ̂

MSE(β̂)
MSE(θ̂)

1.5278
1.003

0.0048
0.1388

1.5810
0.9929
0.0052
0.1505

1.5941
1.0107
0.0152
0.3750

Table 5: The descriptive statistics of Data set.

Min 1st Q Median Mean 3rd Q Max
0.30 17.50 40.00 46.33 60.00 154.00

(d) Exponential (E) distribution having pdf

f (x; θ) = θe−θx; x > 0, θ > 0 (27)

The values of the log-likelihood functions− ln(L), AIC(Akaike Information Criterion), AICC(Akaike
Information Criterion with correction) and BIC(Bayesian Information Criterion) are calculated for
the five distributions in order to verify which distribution fits better to data. The better distri-
bution corresponds to smaller − ln(L), AIC, AICC and BIC values. Here, AIC = −2 ln(L) + 2k,
AICC = −2 ln(L) + ( 2kn

n−k−1 ) and BIC = −2 ln(L) + k ln(n); where L is the likelihood function
evaluated at the maximum likelihood estimates, k is the number of parameters and n is the
sample size. The K-S distance Dn = supx|F(x)− Fn(x)|,where,Fn(x) is the empirical distribution.
Kolmogorov-Smirnov (K-S) statistic is computed to compare the fitted models.
The required computations are carried out in the R-language introduced by R Development Core
Team (2019).

6.1. Data set 1

The first real data set represents the survival times of 121 patients with breast cancer obtained
from a large hospital in a period from 1929 to 1938 taken from Lee (1992). The data are:
(0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8,
15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6,
24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0,
40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0,
51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0,
69.0, 78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,
126.0, 127.0, 129.0, 129.0, 139.0, 154.0). The data is skewed-to-the right with skewness =1.0432 and
kurtosis =0.4021
The descriptive statistics of the above data set are given in Table 4. The values in Table 5 shows
that the BTE distribution leads to a better fit to the other four models.

Figure 3, shows the fitted density curves, Empirical and the fitted cumulative distribution
functions for the data set 1.
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Table 6: Maximum likelihood parameter estimates and goodness of fit for various models fitted for the Data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

BTE β̂ = 0.131
θ̂ = 0.033

-579.155 1162.309 1162.411 1167.901 0.0534 0.8802

KuE
θ̂ = 1.651
β̂ = 0.098
ĉ = 0.231

-583.314 1172.63 1172.83 1181.02 0.1152 0.0803

EW
θ̂ = 1.393
β̂ = 0.017
ĉ = 0.798

-579.879 1165.76 1165.96 1174.15 0.0664 0.6606

W β̂ = 1.306
θ̂ = 0.019

-580.024 1164.05 1164.15 1169.64 0.0588 0.7967

E θ̂ = 0.022 -585.128 1172.26 1172.29 1175.05 0.1206 0.0594

(a) Fitted pdf plots of Data set 1 (b) Empirical and the fitted cumulative distribution functions
for the data set 1

Figure 3. Histogram with fitted pdf’s (left) and Empirical cdf with fitted cdf’s (right) for the data set 1.

6.2. Data set 2

Here we consider the data set of the life of fatigue of Kelvar 373/epoxy that are subject to constant
pressure at the 90% stress level until all had failed. The data sets are taken from Andrews and
Herzberg (1985). The data are:
(0.0251, 0.6751, 1.0483, 1.4880, 1.8808, 2.2460, 3.4846, 0.0886, 0.6753, 1.0596, 1.5728, 1.8878, 2.2878,
3.7433, 0.0891, 0.7696, 1.0773, 1.5733, 1.8881, 2.3203, 3.7455, 0.2501, 0.8375, 1.1733 1.7083, 1.9316,
2.3470, 3.9143, 0.3113, 0.8391, 1.2570, 1.7263, 1.9558, 2.3513, 4.8073, 0.3451, 0.8425, 1.2766, 1.7460,
2.0048, 2.4951, 5.4005, 0.4763, 0.8645, 1.2985, 1.7630, 2.0408, 2.5260, 5.4435, 0.5650, 0.8851, 1.3211,
1.7746, 2.0903, 2.9941, 5.5295, 0.5671, 0.9113, 1.3503, 1.8275, 2.1093, 3.0256, 6.5541, 0.6566, 0.9120,
1.3551, 1.8375, 2.1330, 3.2678, 9.0960, 0.6748, 0.9836, 1.4595, 1.8503, 2.2100, 3.4045). The data is
skewed-to-the right with skewness =1.9794 and kurtosis =5.160
The descriptive statistics of the above data set are given in Table 6. The values in Table 7 shows
that the BTE distribution leads to a better fit to the other four models.

Figure 4, shows the fitted density curves, Empirical and the fitted cumulative distribution
functions for the data set 2.

Table 7: The descriptive statistics of Data set.

Min 1st Q Median Mean 3rd Q Max
0.025 0.905 1.736 1.959 2.296 9.096
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Table 8: Maximum likelihood parameter estimates and goodness of fit for various models fitted for the Data set.

Model parameter estimates log L AIC AICC BIC K-S p-value

BTE β̂ = 0.070
θ̂ = 0.873

-121.410 246.820 246.984 251.481 0.099 0.4167

EW
θ̂ = 1.101
β̂ = 0.609
ĉ = 1.443

-122.166 250.332 250.665 257.324 0.0992 0.4160

W β̂ = 1.326
θ̂ = 0.469

-122.526 249.052 249.219 253.714 0.1098 0.2968

E θ̂ = 0.510 -127.114 256.228 256.282 258.559 0.5120 0.0266

(c) Fitted pdf plots of Data set 2 (d) Empirical and the fitted cumulative distribution functions
for the data set 2

Figure 4. Histogram with fitted pdf’s (left) and Empirical cdf with fitted cdf’s (right) for the data set 2.

7. Concluding remarks

In this paper,we have proposed beta transformation in order to get a transformed distribution of
some available baseline distribution. Beta transformation of exp(θ) distribution has been consid-
ered to check its application to the real problem called the Beta transformed (BTE) distribution.
In the present work, we have provide expressions for the quantiles,moments,moment generating
function,hazard rates,entropies and order statistics. The model parameters are estimated by
maximum likelihood, Cramer-von Mises and least squares method. We have performed an
extensive simulation study to compare these methods. We have compared estimators with respect
to mean-squared error. The simulation results show that maximum likelihood estimators is the
best performing estimator in terms of MSE. The next best performing estimator is the least square
estimator followed by the Cramer-von Mises estimator.
Two real data sets are analyzed to show the importance and flexibility of this distribution.
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