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Abstract

The behaviour of everyday real life processes played a greater role in distribution theory. Thus, this article
proposes a transmuted Weibull Frechet (TWFr) distribution for modeling real life datasets. Of most
important, the statistical properties of the TWFr distribution such as the hazard, survival functions, order
statistic, quantile, odd, cumulative functions were derived and examined. A simulation study to examine
the performance of the TWFr distribution was also conducted. A glass fiber data and breaking stress of
carbon data real life application were used to showcase the performance of the proposed model. The results
showed that the TWFr distribution competes favourably well with other types of continuous distributions
in the Frechet family of distributions.

Keywords: Frechét distribution, Hazard rate function, Order statistics, Transmutation, Weibull
distribution.

1. Introduction

Modeling the distributions of real life processes poses greater challenges despite the numerous
distributions that have been proposed in literature. However, there is a growing interest in
developing newer classes of classical univariate distributions for modeling variety of data sets
that arise from our daily scenarios. Thus, it becomes necessary to model these processes either by
compounding one or more distributions to address these complex situations.

The Weibull distribution proposed by a famous statistician called Weibull in 1951 [27] has a
wide range of applications in modeling failure time processes, lifetime processes, mechanical and
electrical systems. More so, the Weibull distribution has been found to be better for modeling the
minimum of large number of independent positive random variables in extreme value theory.
On the other hand, the Frechet distribution is a special case of the Weibull distribution used
to model extreme value scenarios like earthquakes, horse racing, floods, rainfall, wind speed,
queues in supermarkets and sea waves (see [2]). The Frechet distribution has been widely used
to model extreme value scenarios because of its stochastic phenomena. However, the Frechet
distribution is used for modeling maximum of a large number of independent random variables
from a particular class of distributions ([1]). Hence, because of its usefulness, improving the
flexibility of the Frechet distribution becomes necessary by adding a transmuted parameter that
can reflect the true characteristics of the data set(see [13]).

Several statistical distributions have been proposed in literature. For example, [2] proposed
the Weibull Frechet distribution, [12] proposed the generalized odd Weibull generated family of
distributions. Recently, [26] proposed the gamma extended Frechet distribution. [17] proposed
the beta Frechet distribution. [16] proposed the exponentiated Frechet distribution. [14] proposed
Kumaraswamy Frechet distribution. The generalized transmuted Frechet (GTFr) distribution
was proposed in [18]. [14] estimated the Frechet type 11 parameters and [23] proposed a
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new generalization of the Frechet distribution. In this study, the transmuted Weibull Frechet
distribution is introduced.

A random variable X with a scale parameter α, and β, τ, ν the shape parameters has a Weibull
Frechet distribution if the cumulative density function is given as

G(x) = 1− exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)

. (1)

The corresponding probability density function is given as

g(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

.

(2)

However, the pdf and cdf of a random variable X can be transmuted with a transmutation
parameter |λ| ≤ 1 as

f (x; λ) = g(x)
[

1 + λ− 2λG(x)
]

, (3)

and

F(x; λ) =

(
1 + λ

)
G(x)− λ

[
G(x)

]2

(4)

with G(x) and g(x) as the cdf and pdf of the baseline/parent distribution respectively.
This article is organized as follows: The introduction was given in section 1, Section 2 is the

formulation of the transmuted Weibull Frechet distribution. Section 3 discussed the maximum
likelihood of model parameters. In Section 4, we derived some properties of the TWFr distribution.
Section 5 is the simulation study and real life application to validate the proposed model and
Section 6 is the conclusion.

2. The Transmuted Weibull Frechet Distribution

Let X be random variable. Then, the pdf of the TWFr is defined as

fTWFr(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

×
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

.

(5)

The corresponding cdf is given as

FTWFr(x) =
(

1 + λ

)(
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))

− λ

[
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]2

.

(6)

Figure 1 shows the plot of the pdf for TWFr distribution with different parameters values.
The plot of the TWFr distribution shows that it could be increasing, decreasing and skewed to the
right and left depending on the values of the parameters.
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Figure 1 The plots of the TWFr pdf for some parameter values

The reliability or survival function (rf) of the random variable X is given as

r fTWFr(x) =exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))2

.

(7)
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Its hazard rate function (hrf) is given as

hrTWFr(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

×
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

×
{

exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))2}−1

.

(8)

Figure 2 shows the plot for the hazard rate function of the TWFr distribution. The plot
shows that the TWFr model is decreasing and bathtub depending on the values of the associated
parameters.

1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

x

h(
x)

τ=0.7, ν=1.6, β=0.7, α=0.7, λ=0.5,
τ=0.6, ν=1.4, β=0.5, α=0.5, λ=0.5,
τ=0.8, ν=1.0, β=0.9, α=0.7, λ=0.5,
τ=1.1, ν=1.0, β=0.5, α=0.5, λ=1.0,
τ=0.7, ν=1.6, β=0.8, α=0.7, λ=0.4,
τ=0.7, ν=1.2, β=0.5, α=0.7, λ=0.5,
τ=0.5, ν=1.0, β=0.5, α=0.5, λ=0.2,
τ=0.7, ν=1.6, β=0.5, α=0.7, λ=0.1,

Figure 2 The plots of the TWFr hrf for some parameter values

The cumulative hazard rate function (chrf) of the TWFr model is given as

chr fTWFr(x) =− ln
{

exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))2}

.

(9)

3. Parameter Estimation of the Transmuted Weibull Frechet

Distribution

Let X be random variable with TWFr distribution function. Then, the log-likelihood ` of the
distribution for parameter vector (λ, β, τ, ν, α)T is given as,

` = n log(τνβαβ) + s + m + z + p (10)
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∂`

∂λ
= p′λ = 0, (11)

∂`

∂α
=

k′α
k
− s′α + m′α − z′α + p′α = 0, (12)

∂`

∂τ
=

n
τ
− z′τ + p′τ = 0, (13)

∂`

∂ν
=

n
ν
− s′ν + m′ν − z′ν + p′ν = 0, (14)

and
∂`

∂β
=

n
β
+

k′β
k
− s′β + m′β − z′β + p′β = 0. (15)

where ′ denotes partial derivative and subscript the respective parameter and

k = αβ; s =
n

∑
i=1

[
−ν
(α

x
)β
]

; m =
n

∑
i=1

log
{

1− exp
[
−(α

x
)β

]}−ν−1

;

z =
n

∑
i=1

(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

;

p =
n

∑
i=1

log
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

.

The Equations (11), (12), (13), (14) and (15) are nonlinear and can not be easily obtained
in closed form. Thus, the solutions to the parameter vector are obtained numerically using
the Newton-Raphson algorithm and with various statistical and mathematical softwares like R,
Mathematical, Maple and Matlab.

4. Some Statistical Properties of the Transmuted Weibull Frechet

Distribution

This section investigates some statistical properties of the TWFr distribution. These include,
quantile and random number generation and order statistics.

4.1. Quantile Function and Median

Let X be a random variable such that X ∼ TWFr(α, λ, β, a, b). Then, the quantile function of X
for u ∈ (0, 1) is real solution of the following equation given as

Q(u) = F−1(x). (16)

Thus,

xu = α

[
log
{

1 +
[
(−τ−1) log(1− φ(u))

]− 1
ν
}]− 1

β

(17)

0 < u < 1

where

φ(u) =



(1+λ)−
√

(1+λ)2−4λu
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−4λu
2λ , if λ > 0,

u, otherwise λ = 0.
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By setting u = 0.5 in Equation (17), we have the median (M) of X as

M = α

[
log
{

1 +
[
(−τ−1) log(1− φ(0.5))

]− 1
ν
}]− 1

β

, (18)

with

φ(u) =



(1+λ)−
√

(1+λ)2−2λ
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−2λ
2λ , if λ > 0,

0.5, otherwise λ = 0.

However, the 25th and 75th percentile for the random variable X is obtained as

Q1 = α

[
log
{

1 +
[
(−τ−1) log(1− φ(0.25))

]− 1
ν
}]− 1

β

, (19)

with

φ(u) =



(1+λ)−
√

(1+λ)2−λ
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−λ
2λ , if λ > 0,

0.25, otherwise λ = 0.

Q3 = α

[
log
{

1 +
[
(−τ−1) log(1− φ(0.75))

]− 1
ν
}]− 1

β

, (20)

with

φ(u) =



(1+λ)−
√

(1+λ)2−3λ
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−3λ
2λ , if λ > 0,

0.75, otherwise λ = 0.

4.2. Reversed Hazard Function and Odds Functions

The reversed hazard function (rhf) of the TWFr distribution is given as

rh fTWFr(x) =τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τν

{
exp
[
(

α

x
)β

]
− 1
})

×
[

1− λ + 2λexp
(
−τν

{
exp
[(α

x
)β
]
− 1
})]

×
{

1 + exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

λ− 1
)

− λ

(
exp
(
−2τ

{
exp
[(α

x
)β
]
− 1
}−ν))}−1

.

(21)
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The Odd function that corresponds to the TWFr distribution is given as

OTWFr(x) =1 +
{

exp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)(

1− λ

)
+ λ

(
exp
(
−2τ

{
exp
[(α

x
)β
]
− 1
}−ν))}−1

.

(22)

4.3. Distribution of the Order Statistics

Let X1, X2, · · · , Xn be a random sample of size n from the fTWFr(x) distribution and X(1), X(2), · · · , X(n)be
the corresponding order statistics, Then, probability density function of the kth order statistics Xk,
say fk(x) is given as

fk(x) =
n!(

k− 1
)
!
(
n− k

)
!

[
FTWFr(x)

]k−1

fTWFr(x)
[

1− FTWFr(x)
]n−k

. (23)

−∞ < x < ∞.

On substituting into Equation (23), we have

fk(x) =
n!(

k− 1
)
!
(
n− k

)
!

× τνβαβx−β−1exp
[
−ν
(α

x
)β
]{

1− exp
[
−(α

x
)β

]}−ν−1

× exp
(
−τ

{
exp
[
(

α

x
)β

]
− 1
}−ν)

×
[

1− λ + 2λexp
(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]

×
[(

1 + λ

)(
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))

− λ

[
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]2]k−1

×
[

1−
(

1 + λ

)(
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν))

− λ

[
1− exp

(
−τ

{
exp
[(α

x
)β
]
− 1
}−ν)]2]n−k

.

(24)

The minimum and maximum order statistics are obtained when k = 1 and k = n respectively.

4.4. Simulation Study

A simulation is performed to examine the flexibility and efficiency of the TWFr distribution.
Tables 1 and 2 show the simulation results for different values of parameters. The simulation was
performed as follows:

• Data were generated using

xu = α

[
log
{

1 +
[
(−τ−1) log(1− φ(u))

]− 1
ν
}]− 1

β

0 < u < 1.
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with

φ(u) =



(1+λ)−
√

(1+λ)2−4λu
2λ , if λ < 0,

(1+λ)+
√

(1+λ)2−4λu
2λ , if λ > 0,

u, otherwise λ = 0.

• The values of the parameters were purportedly set as α = 1.5, β = 0.5,τ = 1.0, ν = 1.0 and
λ = 0.5, α = 1.5, β = 0.5,τ = 1.0, ν = 1.0 and λ = −0.5.

• The sample sizes were taken as n = 10, 50, 150, 350, 400 and 500.

• Each sample size was replicated 5000 times.

In the simulation study, we investigated the mean estimates (MEs), variance, biases and means
squared errors (MSEs) of the MLEs.
The bias was calculated as (for S = α, λ, β, τ, ν)

B̂iasS =
1

5000

5000

∑
i=1

(
Ŝi − S

)
.

Also, the MSE was obtained as

M̂SES =
1

5000

5000

∑
i=1

(
Ŝi − S

)2

.

In Tables 1 and 2, the results of the Monte Carlo study show that the MSEs decay towards zero
as the sample size increases which corroborates with the first-order asymptotic theory. The mean
estimates of the TWFr distribution parameter estimates tend to the true parameter values as the
sample size increases which also corroborates the fact that the asymptotic normal distribution
provides an adequate approximation of the estimates.

5. Real-Life Applications

A breaking stress of carbon fibers and glass fiber real life datasets were used to examine the
performance and flexibility of the model based on its test statistic. Several criteria were used
to determine the distribution of the best fit: Akaike Information Criteria (AIC), Consistent
Akaike Information Criteria (CAIC), Bayesian Information Criteria (BIC), and Hannan and Quinn
Information Criteria (HQIC).
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Table 1 Simulation results for mean estimates, biases and root mean squared errors of τ̂, ν̂, α̂, λ̂ > 0 and β̂ for the
TWFr distribution.

n Parameter ME Bias Variance MSE
10 α̂ 1.4627 -0.0373 0.1504 0.1518

β̂ 0.6653 0.1653 0.0738 0.1011
τ̂ 1.0968 0.0968 0.1034 0.1128
ν̂ 0.9871 -0.0129 0.2505 0.2507
λ̂ 0.3617 -0.1383 0.1493 0.1684

50 α̂ 1.5383 0.0383 0.0618 0.0632
β̂ 0.5326 0.0326 0.0167 0.0177
τ̂ 1.0924 0.0924 0.0485 0.0571
ν̂ 1.0037 0.0037 0.0924 0.0924
λ̂ 0.4170 -0.0830 0.0690 0.0759

150 α̂ 1.5540 0.0540 0.0279 0.0308
β̂ 0.5068 0.0068 0.0050 0.0050
τ̂ 1.0529 0.0529 0.0240 0.0268
ν̂ 1.0012 0.0012 0.0322 0.0322
λ̂ 0.4742 -0.0258 0.0417 0.0423

350 α̂ 1.5528 0.0528 0.0142 0.0170
β̂ 0.4983 -0.0017 0.0019 0.0019
τ̂ 1.0367 0.0367 0.0116 0.0129
ν̂ 1.0063 0.0063 0.0137 0.0137
λ̂ 0.4960 -0.0040 0.0234 0.0234

400 α̂ 1.5539 0.0539 0.0134 0.0163
β̂ 0.4975 -0.0025 0.0016 0.0016
τ̂ 1.0334 0.0334 0.0102 0.0113
ν̂ 1.0072 0.0072 0.0115 0.0116
λ̂ 0.5001 0.0001 0.0205 0.0205

500 α̂ 1.5500 0.0500 0.0104 0.0129
β̂ 0.4968 -0.0032 0.0013 0.0013
τ̂ 1.0276 0.0276 0.0079 0.0087
ν̂ 1.0071 0.0071 0.0091 0.0091
λ̂ 0.5058 0.0058 0.0176 0.0176

The density functions considered include (for x > 0)

• Weibull Frechet: f (x) = abβαβx−β−1exp
[
−b( α

x )
β

]{
1− exp

[
−( α

x )
β

]}−b−1

× exp
(
−a
{

exp[( α
x )

β]− 1
}−b)

;

• Exponentiated Frechect: f (x) = λβαβx−β−1exp
[
−( α

x )
β

]{
1− exp

[
−( α

x )
β

]}λ−1

;

• Kumaraswamy Frechet: f (x) = abβαβx−β−1exp
[
−a( α

x )
β

]{
1− exp

[
−( α

x )
β

]}b−1

;

• Beta Frechet: f (x) = βαβx−β−1

B(a,b) exp
[
−a( α

x )
β

]{
1− exp

[
−( α

x )
β

]}b−1

;

• Gamma Extended Frechet: f (x) = aβαβx−β−1

Γ(b) exp
[
−( α

x )
β

]{
1− exp

[
−( α

x )
β

]}a−1(
−log{1−
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Table 2 Simulation results for mean estimates, biases and root mean squared errors of τ̂, ν̂, α̂, λ̂ < 0 and β̂ for the
TWFr distribution.

n Parameter ME Bias Variance MSE
10 α̂ 1.5887 0.0887 0.1859 0.1937

β̂ 0.6626 0.1626 0.0532 0.0796
τ̂ 0.9814 -0.0186 0.1996 0.1999
ν̂ 0.9641 -0.0359 0.1531 0.1544
λ̂ -0.5970 -0.0970 0.7110 0.7204

50 α̂ 1.5604 0.0604 0.0658 0.0694
β̂ 0.5448 0.0448 0.0164 0.0184
τ̂ 0.9843 -0.0157 0.0538 0.0540
ν̂ 1.0009 0.0009 0.0683 0.0683
λ̂ -0.4541 0.0459 0.0995 0.1016

150 α̂ 1.5587 0.0587 0.0284 0.0318
β̂ 0.5117 0.0117 0.0060 0.0062
τ̂ 1.0013 0.0013 0.0224 0.0224
ν̂ 1.0134 0.0134 0.0272 0.0274
λ̂ -0.4521 0.0479 0.0363 0.0386

350 α̂ 1.5561 0.0561 0.0146 0.0178
β̂ 0.5010 0.0010 0.0024 0.0024
τ̂ 1.0100 0.0100 0.0100 0.0101
ν̂ 1.0158 0.0158 0.0114 0.0116
λ̂ -0.4636 0.0364 0.0168 0.0181

400 α̂ 1.5582 0.0582 0.0130 0.0164
β̂ 0.4998 -0.0002 0.0021 0.0021
τ̂ 1.0110 0.0110 0.0089 0.0091
ν̂ 1.0166 0.0166 0.0100 0.0103
λ̂ -0.4642 0.0358 0.0160 0.0173

500 α̂ 1.5563 0.0563 0.0102 0.0134
β̂ 0.4991 -0.0009 0.0017 0.0017
τ̂ 1.0109 0.0109 0.0074 0.0075
ν̂ 1.0159 0.0159 0.0078 0.0081
λ̂ -0.4650 0.0350 0.0129 0.0141

exp
[
−( α

x )
β

]}a)b−1

;

• Transmuted Frechet: f (x) = βαβx−β−1exp
[
−( α

x )
β

]{
1 + λ− 2λexp

[
−( α

x )
β

]}
;

• Frechet: f (x) = λαλx−λ−1exp
[
−( α

x )
λ

]
;

• Alpha Power Inverse Weibull: f (x) = log(α)
(α−1) λβexp(−λx−β)αexp(−λx−β);

• Transmuted Rayleigh: f (x) = x
α2 exp

(
− x2

2α2

)(
1− β + 2βexp

(
− x2

2α2

))
.

5.1. Breaking Stress of Carbon fibres

The first data consist of 100 breaking stress of carbon fibres as used in [19] and [5]. It consists
of 100 observations taken on breaking stress of carbon fibers (in Gba). Table 3 shows the test
statistics. The dataset are as follow:
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2.81, 2.77, 2.17, 2.83, 1.92, 1.41, ,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 3.11,4.42, 2.41,
3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39,
2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.17, 1.17, 5.08, 2.48, 1.18,
3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61,
2.12,1.89, 2.88, 3.68, 2.97, 1.36,3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 0.98, 2.76, 4.91, 3.68, 1.84,
1.59, 3.19 2.82, 2.05, 3.65.

Table 3 Performance rating of the TWFr distribution with breaking stress of carbon fibres dataset

Model Parameter MLEs(Std. Errors) AIC CAIC BIC HQIC -2`
τ̂ = 86.6226(41.4818)

ν̂ = 0.4167(0.2361)
Transmuted Weibull Frechét α̂ = 3.7977(1.3096) 292.0566 292.4776 302.4773 296.2740 282.0566

λ̂ = 0.6301(0.1704)
β̂ = 0.4463(0.1260)
α̂ = 0.6942(0.363)
β̂ = 0.6178(0.284)

Weibull Frechét 294.6000 295.0211 305.0207 298.8174 286.6000
â = 0.0947(0.456)
b̂ = 3.5178(2.942)

α̂ = 69.1489(57.349)
Exponentiated Frechect β̂ = 0.5019(0.0800) 295.7000 295.8237 300.9103 297.8087 291.7000

λ̂ = 145.3275(122.824)
α̂ = 2.0556(0.0710)
β̂ = 0.4654(0.0070)

Kumaraswamy Frechét 297.1000 297.5211 307.5207 301.3174 289.1000
â = 6.2815(0.0630)

b̂ = 224.1800(0.1640)
α̂ = 1.6097(2.4980)
β̂ = 0.4046(0.1080)

Beta Frechét 311.1000 311.5211 321.5207 315.3174 303.1000
â = 22.0143(21.432)

b̂ = 29.7617(17.4790)
α̂ = 1.3692(1.3692)
β̂ = 0.4776(0.1330)

Gamma Extended Frechét 312.0000 312.4211 322.4207 316.2174 304.0000
â = 27.6452(14.1360)
b̂ = 17.4581(14.8180)

α̂ = 109.8227(75.5562)
Alpha Power Inverted Weibull β̂ = 1.1138(0.2018) 328.4842 328.7342 336.2997 331.6473 322.4842

λ̂ = 2.2803(0.1420)
α̂ = 1.9315(0.0971)

Transmuted Frechét β̂ = 1.7435(0.0760) 350.5000 350.7500 358.3155 353.6631 344.5
λ̂ = 0.0819(0.1980)
α̂ = 1.8705(0.1120)

Frechét 348.3000 348.4237 353.5103 350.4087 344.3000
λ̂ = 1.7766(0.113)

Figures 3 and 4 show the empirical pdf and cdf for the breaking stress of carbon for the TWFr
model.

5.2. Glass fibres data

The second data consist of 1.5 cm strengths of glass fibres obtained at the UK National Physical
Laboratory. The data were used to compare the performance of the TWFr distribution as used in
[25], [11], [3], [15], [24], [21], [5], [6], [4], [7], [22], [8], [9], [10], [20] and [28]. The observations are
as follows:

1.53, 1.54, 1.55, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36,
1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.61, 1.58, 1.59, 1.60, 1.61,0.55, 0.74,1.50, 1.50, 1.55, 1.52, 1.64, 1.66,
1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01,
2.24, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67,.
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Figure 3 The empirical cdfs of the TWFr density for the breaking stress of carbon
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Figure 4 The empirical pdfs of the TWFr density for the breaking stress of carbon

The descriptive statistics of the glass fibers dataset are showed in Table 4. Table 5 shows the
measure of comparison for the various distribution under consideration.

Table 4 Descriptive statistics for the glass fibres dataset to 2 decimal points

Mean Median Mode St.D IQR Variance Skewness Kurtosis 25thP. 75thP.
1.51 1.59 1.61 0.32 0.31 0.11 -0.81 0.80 1.38 1.69

Figures 5 and 6 show the empirical pdf and cdf for the glass fiber data for the TWFr model.
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Table 5 Performance rating of the TWFr distribution with glass fibres dataset

Model Parameter MLEs(Std. Errors) AIC CAIC BIC HQIC -2`
τ̂ = 0.5739(0.1877)
ν̂ = 3.9560(2.2162)

Transmuted Weibull Frechét λ̂ = 0.0300(0.0135) 35.7214 36.7740 46.4370 39.9359 25.7214
α̂ = 5.8185(4.2645)
β̂ = 1.2345(0.1734)
α̂ = 0.3865(0.7990)
β̂ = 0.2436(0.2850)

Weibull Frechét 39.0000 39.6896 47.5725 42.3716 31.0000
â = 1.4762(4.782)

b̂ = 16.8561(20.4850)
α̂ = 2.0518(0.9886)
β̂ = 0.6466(0.1630)

Beta Frechét 68.6261 69.3157 77.1986 71.9977 69.300
â = 15.0756(12.057)
b̂ = 36.9397(22.649)
α̂ = 1.6625(0.9520)
β̂ = 0.7421(0.197)

Gamma Extended Frechét 69.6237 70.3016 78.1098 72.9007 61.4503
â = 32.1120(17.3970)
b̂ = 13.2688(9.967)
α̂ = 61.10(48.14)

Alpha Power Inverted Weibull β̂ = 0.78(0.16) 82.5800 82.9900 89.0100 85.1100 76.5848
λ̂ = 3.80(0.30)

α̂ = 1.2640(0.0589)
Frechét 97.7105 97.9045 102.0078 99.3560 93.6980

λ̂ = 2.8879(0.2340)
α̂ = 1.3068(0.034)

Transmuted Frechét β̂ = 2.7898(0.1648) 100.1009 100.5078 106.4897 102.5908 94.0893
λ̂ = 0.1298(0.2080)

α̂ = 1.0895(1.1e− 08)
Transmuted Rayleigh β̂ = 1.0e− 10(1.7e− 12) 103.5818 103.7820 107.8680 105.2676 99.5818

α̂ = 83.4497(79.2814)
Alpha Power Inverted Exponential λ̂ = 0.3137(0.0774) 196.3253 196.5253 200.6116 198.0111 191.4580
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Figure 5 The empirical cdfs of the TWFr density for the glass fiber data

5.3. Discussion

The performance of a model is determined by the value that corresponds to the lowest Akaike
Information Criteria (AIC) or the highest Log-likelihood value is regarded as the best model. In
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Figure 6 The empirical pdfs of the TWFr density for the glass fiber data

the two real life cases considered, the TWFr distribution has the lowest AIC values.

6. Conclusion

The Transmuted Weibull Frechet distribution has been successfully derived. Its expressions for
the basic statistical properties which include the order statistics distribution, cumulative hazard
function, reversed hazard function, quantile, median, hazard function, odds function have been
successfully established. The shape of the distribution could be increasing (depending on the
value of the parameters). An application of real life data shows that the TWFr distribution is a
better competitor for some other families of distributions.
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