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Abstract

In process of observing data, it is sometimes not possible to obtain data precisely and fuzzy methods
are useful for analyzing such data sets. In this article, we propose location-scale family of the Teissier
distribution for fitting fuzzy censored data sets. The maximum likelihood, least squares and Bayes
estimators of the parameters of the Teissier distribution are constructed in the presence of the progressively
fuzzy censored samples. In addition to that statistical properties of the distribution are also derived.
Fitting of the tensile strengths of the carbon fibers is done using the proposed distribution with comparison
to the location-scale families of the exponential, Maxwell and Lindley distributions. We found that the
Teissier distribution can be effectively used for fitting complete and fuzzy censored data as well.

Keywords: Location-scale Teissier distribution, Fuzzy lifetime data, Type-II progressive censoring
scheme, Mean residual life, Moments, Maximum likelihood estimator, Least squares estimator,
Bayes estimator

1. Introduction

Uncertainty is associated with our daily life activities. We have to take some actions/decisions
to minimize the risk or maximize the gains in business and other activities. We make some
probabilistic statements to assess the nature of the random phenomenon under consideration,
so that our decision makes our life better. In this article, we are concerned about the life of
man-made systems/products and propose a method of estimating the parameter associated with
the random phenomenon. Lifetimes are not deterministic and they are random in nature. This
type of uncertainty arises due the random nature of the phenomenon and are efficiently dealt
by the statistical methods where the lifetimes are considered as random variables having certain
probability distributions that are characterized by some constants (called parameters).

In conventional statistical inferences, random observations are drawn from the population and
inferences are made about the parameters provided that the data are observed precisely. In many
cases, it may not be possible to obtain the data in precise form because of many unavoidable
reasons such as the lack of information, human errors, measurement errors and other practical
difficulties. In fact, the real measurements of the continuous variables are never precisely obtained
and have some errors. For instance, locations of the objects in space, live positions of ships
on radar screen and space time data are a few examples among many. There is uncertainty
always attached with the individual observation. Such type of uncertainty cannot be dealt by the
conventional statistical procedures. In such cases, the fuzzy set theory is useful for explaining the
random behavior of the observations. Until 1960, the probability theories and statistics are used
to model the uncertainty. In 1968, [7] introduced the probability measure for fuzzy events, see
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also [6]. [22] discussed various methods for fuzzy data estimation and hypothesis testing. From
the application point of view, [5] proposed the statistical analysis of fuzzy data. [8, 21] proposed
to use Bayesian approach to estimate the parameters and reliability function for the distributions
using the fuzzy lifetime data. Recently, [11] presented classical and Bayesian procedure for
estimating the parameter of Rayleigh distribution based on Type-II progressively hybrid censored
data under fuzzy setup.

In the field of surveys and life testing experiments, it may be possible to come across the
situation of incomplete/lost data due to lack of time, cost and some other constraints. Some
of the experimental units have some complete information and the rest reports non-occurrence.
The units for which exact failure information is available are called complete samples and the
remaining units are called censored observations. For analyzing such censored data, it is essential
to use censoring schemes. Conventional Type-I and Type-II censoring schemes have been studied
by many authors, see [13], [15] and [14] for modeling censored data sets.

Under Type-I censoring scheme, n units are put under observation and the experiment
is carried-out up to a predetermined time. In the case of the Type-II censoring scheme, the
experiment is terminated when pre-fixed numbers of units are observed to have failed. It is
worth to mention here that these schemes do not enough flexible to incorporate removals of the
experimental units at the stages other than the final terminal stage. In this context, [9] proposed a
censoring scheme, called the progressive censoring scheme, which has an advanced feature that
allows the removal of the units at the intermediate stages. Since then, an extensive list of literature
is seen devoted to the progressive censoring. We follow [17] and [35] for the detailed theoretical
aspects, estimation methods and applications of this scheme. [2] provided two simulation
algorithms for generating the progressive Type-II censored samples based on exponential and
uniform random variable transformations. [18] proposed classical and Bayes estimation for the
flexible Weibull parameters under the progressive Type-II censoring scheme. [19] discussed the
different estimation methods for estimating the parameters of Rayleigh distribution on the basis
of progressive Type-II censoring scheme.

Suppose n experimental units are put under observation and experiment is terminated after a
prefixed number (m) of observations are observed. At each stage, we progressively drop some
prefixed number of units from the remaining units. Suppose that as the first failure occurs, some
units, say R1 are removed from the remaining (n− 1) units. At the second stage, R2 units are
removed from the remaining (n− R1− 2) units. Similarly, at th mth stage xm is observed, Rm units
are removed from the remaining (n− R1 − · · · − Rm−1 −m) units such that (m + ∑m

i=1 Ri = n).
We terminate the experiment at time point xm. This is how we obtain the progressively censored
data (x1, x2, . . . , xm) with prefixed removals (R1, R2, . . . , Rm).

The objective of this paper is to develop the various estimation methods to estimate the
parameters of two-parameter Teissier distribution with fuzzy censored data. The Teissier distri-
bution was first introduced in [23] to model the frequency of the mortality due to ageing only
i.e. deaths are protected from the accidents and disease. Later on, [24] used this distribution for
the reliability analysis. After that it has been overlooked in the literature. [25] rediscovered the
Teissier distribution and derived its statistical properties. For adding more flexibility to the model,
[26] introduced a two parameter extension of Teissier distribution called Power Muth distribution.
[34] proposed another two parameter extension of the Teissier distribution, called exponentiated
Teissier distribution. Recently, [36] proposed the Teissier generalised family of the distributions
and produced various flexible probability distributions.

The rest of the paper is organized as follows. In section 2, the progressive censoring and
different methods of estimation are discussed. Section 3 deals with the brief introduction of
fuzzy random variable and related concepts. We introduce location-scale family of the Teissier
distributions in section 4 and discussed it’s properties here. Section 5 discusses the estimation
of parameters of the Teissier distribution for the Type-II progressive censoring under under
fuzzy setup. Simulation study and real data application are discussed in section 6 and section 7,
respectively. At last, overall conclusions are given in section 8.
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2. Progressive Censoring and Estimation Methods

Statistical inference mainly focuses on the estimation of the unknown model parameters using the
available observed data. As discussed in the above section, we may encounter the situation where
the observed data is censored. The estimation procedures can be easily implemented for censored
data, [35]. In this section, we describe the maximum likelihood estimation (MLE), least squares
estimation (LSE) and Bayes estimation procedures for the Type-II progressively censored data.

Under the MLE, we maximize the joint density function (called likelihood function) of
observed random sample over the parameter space. If we are given realizations of the n i.i.d.
random variables, the likelihood function is nothing but the product of the respective densities.
Suppose that X is a random variable governed by the probability distribution function (pdf)
f (x, θ) and x1, x2, ...., xn are the n i.i.d. random samples drawn from it. The likelihood function is
L(θ; x) = ∏n

i=1 f (xi, θ), where θ is the parameter of interest.
Since, in this paper, we consider progressively Type-II censored data, we define the likelihood

function (following [35]) as given by

L(θ) = C
m

∏
i=1

f (xi) (1− F (xi))
Ri , (1)

where C = ∏m−1
i=1

(
n−∑i

j=1(ri + 1)
)

and f (x) and F(x) are the pdf and cdf of the assumed

probability distribution. The MLE θ̂ of θ maximize the likelihood function given in the equation
(1). For some distributions, the closed-form MLEs are not possible to derive and iterative methods
are used for numerical computation of the estimates.

In the process of estimating the parameters, [1] proposed the method of least squares for
estimating the beta parameters. That are obtained by minimizing the sum of squares of the
discrepancies between the observed and expected distributions. For the progressively Type-II
censored data, [12] have constructed the LSEs of the parameters of the generalised inverted
exponential distribution. For the Type-II progressively censored sample, we have

E [F(xi)] = 1−
m

∏
j=m−i+1

αj, (2)

where αj =
ai

1+ai
and ai = i + ∑m

j=m−i+1 Ri. The LSEs are obtained by minimising the following
function

S(θ) =
m

∑
i=1

[F(xi)− E(F(xi))]
2 . (3)

The equation (3) are usually optimized numerically as the closed form solution is not possible in
most of the cases.

In recent decades, Bayesian perspective received a great attention by researchers for statistical
inferences. In Bayesian framework, we use the Bayes theorem to update the probability for a
hypothesis after observing the data as evidence. It facilitates to use the prior information for
formulating a better method of estimation. Bayes procedure is discussed in section 5.

3. Fuzzy random variable and membership function

Before defining the fuzzy random variable, some basic definitions are needed to explore. Let
S = (Ω, A, Pθ) be the probability space. Here (Ω, A) is a measurable space and Pθ is the
probability measure defined on measurable space (Ω, A).

Definition 1. Membership function for any set Ω is the function from Ω to real interval [0, 1].
Here the value of µÃ(x) at x define the "Grade of membership" or "degree of truthfulness ".

µÃ(x) : Ω→ [0, 1]
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Here membership function is not limited to 0 and 1 only, but takes any value between [0, 1].

Definition 2. Here Ω is a universal set. Fuzzy set Ã in Ω is denoted by an ordered set of pairs
(x, µÃ(x)). The first component of which denotes elements of the set Ã and second denotes the
degree of membership of that elements in set Ã.

If supµÃ(x) = 1, then Ã is called normal fuzzy set.

Definition 3. Let X be the universal set. Then the support of a fuzzy set Ã, i.e. S(Ã) is the set of
all points x ∈ X such that µÃ(x) > 0.

Definition 4. Let X be the universal set. A fuzzy set Ã is said to be convex if µÃ(λx1 + (1−
λ)x2) ≥ min(µÃ(x1), µÃ(x2)), x1, x2 ∈ X, 0 < λ < 1.

Definition 5. A fuzzy set Ã is a fuzzy number if it is normal, convex and its support is bounded.

In general, there are two fuzzy numbers that are mostly used Triangular fuzzy number and
Trapezoidal fuzzy number. Triangular fuzzy number is denoted by x̃ = (u, v, w) with correspond-
ing membership function as

µx̃(x) =



x−u
v−u , u ≤ x ≤ v

w−x
w−v v ≤ x ≤ w

0, otherwise

(4)

Fuzzy random variable can be defined as random variable, the value of which is not real but
fuzzy number which is nothing but a particular kind of fuzzy set, see [7], [6] and [22].

4. Location-Scale Teissier distribution

In any probability distribution, location parameter determines the shift of the distribution or
origin on the horizontal axis. Sometimes, in reliability and life testing experiments, it is possible
that failure will absolutely not happen before a given time. In this regard, location parameter
have some profound effect in reliability and life-testing experiments. Here, we introduce the
Teissier distribution with location parameter denoted by µ.

Definition 6. Consider random variable Y that follows the Teissier distribution defined in [23]
with scale parameter θ. Then the random variable Y = X + µ is said to follow the 2-parameter
Teissier (2-T) distribution indexed by location parameter µ and scale parameter θ. The pdf and
cdf of the 2-T distribution are given as follows

f (x; µ, θ) = θe(eθ(x−µ))
(

eθ(x−µ) − 1
)

exp
(
−eθ(x−µ)

)
, x > µ > 0, θ > 0, (5)

F(x; µ, θ) = 1− exp
[
θ(x− µ)− eθ(x−µ) + 1

]
, x > µ > 0, θ > 0. (6)

The corresponding hazard function of the 2-T distribution is given by

h(x; µ, θ) = θ
(

eθ(x−µ) − 1
)

, x > µ > 0, θ > 0.

Note that h
′
(x; µ, θ) = θ2eθ(x−µ) +

(
eθ(x−µ) − 1

)
> 0, ∀ x > µ > 0, θ > 0. It can be concluded that

the hazard function of the 2-T distribution is monotonic increasing.
Fig. 1 displays the various shapes of the pdf of the 2-T distribution. We can see that the

distribution is unimodal and right skewed. So, it is flexible enough to fit a wide varieties of
right skewed data sets. Fig. 2 displays the hazard rate function which has increasing shapes for
different parameter values. Since, the 2-T has increasing hazard rate, so it may be a good choice
for modelling data set in reliability and survival analysis where the things are more likely to fail
with the increasing time.
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Figure 1: Density function for different values of θ for given µ = 0 and µ = 2

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

µ = 0

x

h(
x)

θ = 0.2
θ = 0.5
θ = 0.7
θ = 1
θ = 1.5
θ = 2

0 5 10 15

0.
0

0.
5

1.
0

1.
5

µ = 2

x

h(
x)

θ = 0.2
θ = 0.5
θ = 0.7
θ = 1
θ = 1.5
θ = 2

Figure 2: Hazard function for different values of θ for given µ = 0 and µ = 2

4.1. Properties

In this section, the basic properties of the 2-T distribution are derived. We derive moments,
quantile function, moments generating function and mean residual life function.

4.1.1 Quantile function

The quantile function or inverse cumulative distribution function is more precisely used to
generate the computer pseudo random data from associated probability distribution and explore
its basic statistical properties such as measures of central value, dispersion, skewness and
kurtosis. The qth quantile of any random variable X is defined as the solution of the equation
FX(ηq) = q, 0 < q < 1 i.e. ηq = F−1

X (q), where F(.) is the cdf. The closed-form expression of
the 2-T distribution is obtained in terms of the Lambert-W function. The Lambert-W function
is used to obtain the solution of the equation W(z)eW(z) = z, z ∈ C. For more details about the
Lambert-W function see [31]. For the 2-T distribution ηq is the solution of the equation

1− exp
[
θ(ηq − µ)− eθ(ηq−µ) + 1

]
= q, 0 < q < 1. (7)
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On simplifying the equation (7), it turns out to be

eθ(ηq−µ) = θ(ηq − µ) + (1− log(1− q)).

Here we note that eθ > 0, ∀ θ > 0 and eθ 6= 1, ∀ θ > 0 also (ηq − µ) 6= 0 ∀ ηq > µ. So, this equation
can be solved by using the Lambert-W function. ηq is given by

ηq = µ− 1
θ
+

1
θ

log(1− q)− 1
θ

W−1

(
u− 1

e

)
(8)

where W−1 represents the negative branch fo Lambert-W function.

4.1.2 Mean Residual Life

The mean residual life (MRL) is an important criterion of reliability measure of non-negative
random variables. Sometimes it is more relevant than the hazard rate function, mainly in repair
and replacement problems because it relates only to the risk of immediate failure than entire
residual life function. The MRL or mean remaining life of the random variable X beyond the
value x, denoted by r(x) is given as

r(x) = E ((X− x)/X > x) =
∫ ∞

x

F̄(y)dy
F̄(x)

. (9)

The analytical expression of the MRL function for the 2-T distribution is given as follows

r(x) =
1

F̄(x)

∫ ∞

x
exp

(
θ(y− µ)− eθ(y−µ) + 1

)
dx. (10)

In equation (10), we have made change of variable (x− µ) = z and again make substitution as
eθz = t in the equation. Then we obtain the expression of MRL of the 2-T distribution as

r(x) =
exp

(
1− eθ(x−µ)

)
θF̄(x)

, (11)

where F̄(x) is the survival function of the random variable X.

4.1.3 Moment Generating Function

The analytical expression for moment generating function of random variable X following the
2-T distribution, having the density function as fX(x) is defined as

MX(t) = E(etx) =
∫ ∞

µ
etx fX(x)dx. (12)

Proposition 1. The moment generating function of the 2-T Teissier distribution is given by

MX(t) = eµt+1
[

Γ
(

2 +
t
θ

, 1
)
− Γ

(
1 +

t
θ

, 1
)]

,−∞ < t < ∞,

where Γ denotes the upper incomplete gamma function.

Proof. The proof is straight forward. �

4.1.4 Moments

For calculating the moments of the 2-T distribution, we make use of Generalized integro-
exponential function, the integral representation of which is given as

Eb
a(t) =

1
Γ(b + 1)

∫ ∞

1
(log v)bv−ae−tvdv, m = 0, 1, 2, ..... (13)

where t, a ∈ C and Γ(p) =
∫ ∞

0 e−xxp−1 is the ordinary gamma function.
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Proposition 2. For random variable X following the distribution (5), the kth moment is given by

E[Xk] = eµk
k

∑
i=0

(k
i)

(µθ)i

[
Ei
−1(1)− Ei

0(1)
]

. (14)

Proof. Let X be any random variable and following any particular distribution fX(x). Then
kth moment of the random variable X is given as

E[Xk] =
∫

xk fX(x)dx. (15)

Now for the moments of the 2-T distribution, fX(x) here is as defined in (5) also make substitution
as (x− µ) = y, the above equation turns out to be as

E[Xk] = θe
∫ ∞

0
(µ + y)keθy

(
eθy − 1

)
exp

(
−eθy

)
dy.

Now using Binomial expansion in the expression (µ + y)k and using the substitution eθy = t in
the above equation. Then, it turns out to be as

E[Xk] = µke
k

∑
i=0

(k
i)

(µθ)i

[∫ ∞

1
(log t)ite−tdt−

∫ ∞

1
(log t)ie−tdt

]
.

Here, by using the generalized integro-exponential function in the above equation it will be same
as (14). �

In this section, the analytical expression of the particular case i.e. for k = 1 (Mean) is also
derived.

Corollary 1. Let X be the random variable following the 2-T distribution given in (5), then for
given µ and θ, the mean of the distribution will be given by

E[X] =

(
µ +

1
θ

)
where E stands for the expectation.
Proof. For given µ and θ, mean value of the 2-T distribution is defined as E[X] =

∫ ∞
µ x fX(x)dx.

Here, fX(x) is same as defined in (5). Now, making substitution as (x− µ) = y we get

E[X] = θe
∫ ∞

0
(µ + y) eθy

(
eθy − 1

)
exp

(
−eθy

)
dy

By making substitution eθy = t in the above equation and using analytical expression
∫ ∞

1 log z(z−
1)e−zdz = 1

e , we get required result. �

5. Estimation for fuzzy progressively censored data

In this section, for the given fuzzy progressively censored data, we obtain the MLEs, LSEs and
Bayes estimators of the parameters µ and θ.

5.1. Maximum likelihood estimation

Following the [7], the likelihood for fuzzy data can expressed as

`(θ, µ; x) = A
m

∏
i=1

∫
f (xi) [1− F (xi)]

Ri µx̃i (x)dx. (16)

Let (xi, ri) be the progressive sample. For 2-T distribution, the log−likelihood function can be
obtained by putting the value (6) and (5) in (16). Differentiating the above equation with respect
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to µ and θ and equating to zero. We obtain

d
dµ

log l =
m

∑
i=1

∫ (
fµ(xi) [1− F (xi)]

Ri − Ri [1− F (xi)]
Ri−1 Fµ(xi)

)
µx̃i (x)dx∫

f (xi) [1− F (xi)]
Ri µx̃i (x)dx

= 0,

d
dθ

log l =
m

∑
i=1

∫ (
fθ(xi) [1− F (xi)]

Ri − Ri [1− F (xi)]
Ri−1 Fθ(xi)

)
µx̃i (x)dx∫

f (xi) [1− F (xi)]
Ri µx̃i (x)dx

= 0,

where fµ(x) = d
dµ f (x) and Fµ(x) = d

dµ F(x). Above equations can not be solved analytically.
That’s why some numerical techniques such as Newton-Raphson are required to solve these
equations.

5.2. Least squares estimation

The equations (2) and (6) provide the method of obtaining the LSEs for fuzzy data. The LSEs can
be obtained by minimising S. So differentiating S with respect to µ and θ and equating to 0, we
obtain

dS
dµ

=
m

∑
i=1

∫
[F(xi)− E(F(xi))] Fµ(xi)µx̃i (x)dx = 0,

dS
dθ

=
m

∑
i=1

∫
[F(xi)− E(F(xi))] Fθ(xi)µx̃i (x)dx = 0,

where E (F(xi)) = 1−∏m
j=m−i+1 αj, αj =

ai
1+ai

, ai = i + ∑m
j=m−i+1 Ri , and dS

dµ , dS
dθ are the first

order derivatives of the F(x) with respect to µ and θ. Equations dS
dµ = 0 and dS

dθ = 0 provide the
LSEs for µ and θ. But there is no closed form solution of the above equations. A suitable iterative
search method such as Newton-Raphson is is needed to obtain the LSEs of the parameters.

5.3. Bayes Estimation

In statistical inferences, Bayesian estimation turns out as a valid and powerful alternative of
classical or traditional perspectives of the parameter estimation. In this section, Bayes estimates
of the parameters of the 2-T distribution are derived using the Type-II progressive censoring
scheme where data is given in form of the fuzzy numbers. Here, we assume that the parameters
(µ, θ) follow the independent gamma priors denoted by π1(µ) and π2(θ) respectively. Then, the
probability density function of µ and θ are given as follows

π1(µ) =
pn

Γ(n)
exp(−pµ)µn−1, µ, p, n > 0,

π2(θ) =
qa

Γ(n)
exp(−qθ)θb−1, θ, b, q > 0.

The joint posterior density of µ and θ for given observed data is defined by

π(µ, θ|x̃) = π1(µ)π2(θ)l(θ, µ; x)∫ ∞
0

∫ ∞
0 π1(µ)π2(θ)l(θ, µ; x)dµdθ

,

where l(θ, µ; x) is the log-likelihood defined in the equation (16). Bayes estimates of any function
of µ and θ i.e. g(µ, θ) under the squared error loss function is defined as

E(g(µ, θ)) =

∫ ∞
0

∫ ∞
0 g(µ, θ)π1(µ)π2(θ)l(θ, µ; x)dµdθ∫ ∞
0

∫ ∞
0 π1(µ)π2(θ)l(θ, µ; x)dµdθ

. (17)
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The above integral (17) can not be solved analytically. So we have to use some approximations
to calculate the Bayes estimates. Here, we proposed Markov Chain Monte Carlo technique
to obtain the Bayes estimates of the parameters of the 2-T distribution. In this paper, we use
Metropolis-Hastings (MH) algorithm to simulate the posterior samples.

In order to obtain the reasonable results by simulation in a limited amount of time, the choice
of an effective proposal distribution is crucial. Since the target density is unknown, the choice of
the proposal distribution is very difficult. To overcome this difficulty [33] provided a possible
adaptive algorithm as a remedy which adapts continuously to the target distribution. The basic
idea is to update the proposal distribution by using the knowledge we acquired so far about the
target population. For the simulation algorithm researchers may see [37].

6. Simulation Study

To estimate the unknown constants of the proposed distribution, various estimation methods
are proposed such as MLE, LSE, and Bayes estimation in the previous sections. To access
the long-run performance and to choose the best possible estimators for the 2-T parameters,
simulation experiments are carried-out. During simulations, we generate the Type-II progressively
fuzzy censored pseudo-random data from the 2-T distribution with various choices of the 2-T
parameters. Without loss of generality, we here present the simulation results for a parameter
combination (µ = 1, θ = 1.5). To compare the performance of these estimators, we calculate the
bias and mean squared error (MSE) for each estimators. For generating the progressive Type-II
censored data, we use an algorithm given by ([2]). After getting the pseudo data, each realization
of x is then fuzzified by using the triangular fuzzy number defined in (4). In generating the
random sample form the 2-T distribution, we have to use Lambert-W function which is easily
available in R software.

Further, for the fixed value of µ and θ, we take the different combinations of (n, m) along with
four removal schemes for variation purposes. The removal schemes are as follows:
Scheme 1: R1 = (n−m) and R2 = R2 = ....Rm = 0,
Scheme 2: R1 = R2 = ......Rm−1 = 0 and Rm = n−m,
Scheme 3: R1 = R2 = ......Rn−m = 1 and Rn−m+1 = .......R2m−n = 0,
Scheme 4: R1 = R2 = ......R(2m−n) = 0 and R2m−n+1 = .......Rm = 0.

On the basis of simulation results summarized in the Tables (1 and 2), we observe that even
for the small sample size, the performance of all the estimators is quite satisfactory. The average
estimates are nearer to the true values of the parameters and MSEs of all the estimators decrease
as the sample size increases (i.e. m increases for the given n) under the different removal schemes.
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Table 2: Average estimate, Bias and MSE of the estimators of µ for given µ = 1, θ = 1.5

(n,m,s) MLE BIAS MSE LSE BIAS MSE BAYES BIAS MSE

(20,12,1) 1.05117 0.08489 0.01194 0.96279 0.147329 0.03393 0.95877 0.10030 0.01661
(20,12,2) 1.07121 0.09659 0.01546 0.96337 0.128139 0.02589 0.93566 0.12577 0.02813
(20,12,3) 1.05428 0.08559 0.01219 0.96157 0.13481 0.02856 0.95331 0.10465 0.01845
(20,12,4) 1.05842 0.08893 0.01322 0.95713 0.13284 0.02776 0.94327 0.11840 0.02488

(20,16,1) 1.04958 0.08302 0.01146 0.9722 0.12815 0.02577 0.96858 0.09272 0.01336
(20,16,2) 1.05754 0.08701 0.01252 0.96564 0.12048 0.02289 0.96034 0.10296 0.01680
(20,16,3) 1.04896 0.08189 0.01119 0.97146 0.12415 0.0242 0.96601 0.09257 0.01345
(20,16,4) 1.05377 0.08582 0.01221 0.96663 0.12211 0.02320 0.96038 0.10094 0.01654

(30,18,1) 1.03790 0.06643 0.00736 0.97335 0.11831 0.02198 0.97923 0.07149 0.00784
(30,18,2) 1.05625 0.07593 0.00966 0.97553 0.10164 0.01621 0.98319 0.06926 0.00736
(30,18,3) 1.03848 0.06589 0.00734 0.97729 0.10477 0.01742 0.98215 0.08784 0.01240
(30,18,4) 1.04099 0.06827 0.00786 0.96974 0.10467 0.01727 0.97611 0.07657 0.00913

(30,24,1) 1.03706 0.06560 0.00719 0.97992 0.10319 0.01662 0.97835 0.07379 0.00745
(30,24,2) 1.04694 0.07004 0.00821 0.97807 0.09683 0.01470 0.09792 0.06645 0.00721
(30,24,3) 1.03493 0.06352 0.00674 0.97905 0.09887 0.01541 0.98565 0.06580 0.00653
(30,24,4) 1.03961 0.06692 0.00756 0.97831 0.09554 0.01432 0.98573 0.06517 0.00643

(40,24,1) 1.02919 0.05493 0.00509 0.98192 0.10178 0.01636 0.98354 0.06807 0.00702
(40,24,2) 1.05041 0.06566 0.00721 0.98207 0.08668 0.01182 0.98933 0.05802 0.00510
(40,24,3) 1.02968 0.05493 0.00503 0.98149 0.08933 0.01259 0.98579 0.06193 0.00582
(40,24,4) 1.03283 0.05694 0.00540 0.97724 0.08872 0.01242 0.98870 0.05761 0.00505

(40,32,1) 1.02840 0.05495 0.00503 0.98604 0.08961 0.01249 0.99025 0.05438 0.00451
(40,32,2) 1.04047 0.05944 0.00593 0.98374 0.08232 0.01073 0.98886 0.05601 0.00478
(40,32,3) 1.02827 0.05382 0.00483 0.98503 0.08418 0.01117 0.99035 0.05371 0.00441
(40,32,4) 1.03192 0.05598 0.00526 0.98272 0.083117 0.01073 0.98901 0.05568 0.00472

(50,32,1) 1.02491 0.04841 0.00389 0.98714 0.08689 0.01173 0.99131 0.04960 0.00373
(50,32,2) 1.04350 0.05681 0.00542 0.98590 0.07658 0.00919 0.99125 0.04857 0.00361
(50,32,3) 1.02472 0.04763 0.00381 0.98443 0.07822 0.00967 0.98994 0.05062 0.00391
(50,32,4) 1.02843 0.04942 0.00416 0.98371 0.07742 0.00948 0.98932 0.05171 0.00407

Table 1: Average estimate, Bias and MSE of the estimators of θ for given µ = 1, θ = 1.5

(n,m,s) MLE BIAS MSE LSE BIAS MSE BAYES BIAS MSE

(20,12,1) 1.68417 0.26014 0.13438 1.51204 0.32128 0.19246 1.51421 0.46034 0.09226
(20,12,2) 1.87181 0.43052 0.39091 1.50953 0.32969 0.19795 1.51804 0.43837 0.15056
(20,12,3) 1.70755 0.28655 0.15911 1.51094 0.33063 0.21401 1.51649 0.13176 0.10492
(20,12,4) 1.74806 0.32708 0.21514 1.49362 0.32598 0.19692 1.52243 0.00117 0.13382

(20,16,1) 1.65856 0.23182 0.10179 1.50694 0.27225 0.13749 1.51162 0.42873 0.06524
(20,16,2) 1.72482 0.28867 0.16376 1.48766 0.26682 0.12266 1.51452 0.16994 0.08835
(20,16,3) 1.65894 0.23057 0.10174 1.50268 0.26759 0.12866 1.50970 0.07517 0.06535
(20,16,4) 1.69341 0.26412 0.13576 1.49197 0.26952 0.12975 1.51735 0.03427 0.08529

(30,18,1) 1.62509 0.19206 0.06812 1.49969 0.24981 0.10879 1.51535 0.56535 0.04742
(30,18,2) 1.79499 0.33826 0.11789 1.50243 0.26144 0.11812 1.52215 0.78643 0.07443
(30,18,3) 1.63589 0.20816 0.08106 1.50654 0.25692 0.11976 1.51554 0.38108 0.05667
(30,18,4) 1.65963 0.23143 0.10024 1.48741 0.25252 0.11179 1.52062 0.64902 0.06721

(30,24,1) 1.61181 0.17401 0.05427 1.49836 0.21281 0.07755 1.51166 0.13018 0.03632
(30,24,2) 1.67945 0.22550 0.09407 1.49155 0.21491 0.07673 1.51314 0.12987 0.03987
(30,24,3) 1.60598 0.17006 0.05202 1.49456 0.21026 0.07416 1.51199 0.13882 0.03696
(30,24,4) 1.63389 0.19729 0.07220 1.49172 0.2089 0.07286 1.51423 0.12571 0.04457

(40,24,1) 1.59452 0.15782 0.04424 1.50070 0.21230 0.07591 1.51460 0.03188 0.03336
(40,24,2) 1.76290 0.29066 0.15152 1.50191 0.22435 0.07381 1.52099 0.06421 0.05131
(40,24,3) 1.60391 0.17089 0.05283 1.49815 0.21323 0.07699 1.51675 0.03746 0.03862
(40,24,4) 1.62594 0.19079 0.06559 1.48809 0.21711 0.07946 1.51199 0.21665 0.03781

(40,32,1) 1.58081 0.14022 0.03471 1.49854 0.18253 0.05580 1.50969 0.19968 0.02466
(40,32,2) 1.66169 0.19758 0.06913 1.49313 0.18304 0.05512 1.51179 0.21566 0.03059
(40,32,3) 1.58256 0.140137 0.03532 1.4959 0.17741 0.05193 1.50996 0.19452 0.02508
(40,32,4) 1.60563 0.16096 0.04668 1.49024 0.17888 0.05241 1.51156 0.21259 0.03001

(50,32,1) 1.57342 0.13123 0.02990 1.50051 0.17974 0.05394 1.50665 0.09304 0.02300
(50,32,2) 1.72174 0.24448 0.10128 1.49803 0.19029 0.05928 1.51015 0.11409 0.03324
(50,32,3) 1.58079 0.13939 0.03447 1.49515 0.18043 0.05417 1.50771 0.11663 0.02528
(50,32,4) 1.60111 0.15821 0.04490 1.49576 0.18461 0.05669 1.50946 0.12165 0.03084
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Figure 3: Fitted density of various distributions
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Figure 4: Fitted CDF of various distributions

7. Real Data Application

To demonstrate the application of the proposed distribution and estimation methods, a real
data set has been considered, that represent the tensile strength, measured in Giga-Pascal (GPa),
of 69 carbon fibers tested under tension at gauge lengths of 20mm, see [27]. They conducted
single-filament tensile tests on carbon fibers of differing gauge lengths. These experimental
results were further reported and analyzed by [28] and [29]. [30] also used this data to show
the usefulness of the three-parameter Birnbaum-Saunders distribution and the inverse Gaussian
distribution. Set of data points is given as follows :

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027,
2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382,
2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633,
2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012,
3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585

As we have stated in the first section that this paper aims to propose the use of the 2-T distri-
bution for fuzzy data sets, we assume that the tensile strength of carbon fibers are observed with
some degrees of imprecision and fit the 2-T distribution over the other competing distributions.
Here, the triangular fuzzy number is used to model the unknown value of x̃ = (u, v, w). The
corresponding membership function of each value of observed data point, say x, is given by

µx̃(x) =



x−(xi−h)
h , xi − h ≤ x ≤ xi,

(xi+h)−x
h , xi ≤ x ≤ xi + h,

0, otherwise,

(18)

where h = 0.05xi.

Table 3: MLEs, AIC, BIC and KS-statistics along with p-value for complete data set without fuzzy

Model
MLEs

NLL AIC BIC KS p-value
α̂ λ̂

Teissier 1.217 0.834 49.982 103.965 108.433 0.089 0.641
Maxwell 1.136 0.761 51.291 106.582 111.051 0.095 0.557

Exponential 1.312 0.878 78.001 158.001 164.469 0.310 0.000
Lindley 1.312 1.265 72.943 147.887 154.355 0.276 0.000
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Table 4: MLEs, AIC, BIC and KS-statistics along with p-value for complete fuzzy data

Model
MLEs

NLL AIC BIC
α̂ λ̂

Teissier 1.216 0.834 196.3064 396.613 401.081
Maxwell 1.136 0.761 197.6153 399.230 403.699

Exponential 1.312 0.877 224.3245 450.649 457.117
Lindley 1.312 1.264 219.2673 440.535 447.002

In order to proceed with the fuzzy set-up, we would like to first assess the goodness-of-fit of
the proposed distribution to model the given data set. For this purpose, we use some goodness-
of-fit criteria such as Kolmogorov-Smirnov (KS) statistic, Akaike information criterion (AIC) and
Bayesian information criterion (BIC) to compare the fitting of the competing distributions. For the
comparison purposes, we take two parameter families of the exponential, Maxwell and Lindley
distributions, which are very popular distributions in statistical literature. Table 3 consists of the
MLEs and negative log-Likelihood (NLL) values for all four distributions for the carbon fibers
data. Table (4) also shows the different model selection criteria such as AIC, BIC, and KS-statistic
along with the p-value. From the table, it is observed that the 2-T distribution has the lowest
AIC, BIC and KS values for given data-set. As we can note that the 2-T distribution has the
smallest statistic values among others, it may be used to model the tensile strength data set over
the considered distributions. Since, we aimed to propose the estimation under fuzzy set-up, the
fitting of all four distributions under fuzzy environment is also presented. The fitting results are
presented in table (4). We can also note here that the 2-T distribution also has the smallest AIC
and BIC values under fuzzy set up. It can be concluded that the 2-T is the best fitting model
among others for the fuzzy and without fuzzy data problems as well.

From the Tables (3) and (4) it is found that 2-T distribution is quite enough flexible to model
the uncertainty arises due to the randomness and fuzziness. Table (5) includes the estimates of the
parameters under the MLE, LSE and Bayesian estimation methods for the 2-T distribution under
different progressive Type-II censoring schemes. These parameters are calculated for different
schemes as well as for the different sample sizes. The 95 percent confidence intervals are also
provided for the 2-T parameters. For the Bayesian estimation, the non-informative priors are
considered to estimate µ and θ. Fig. (5) represents the corresponding density and trace plots
for the simulated posterior samples based on the real data-set. Here, the trace plots display the
random scatter of the sample around the mean values and do not have trend which emphasis
the fact that the model has converged. Also, the density plots show the unique modality of the
parameters.
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Table 5: MLEs, LSEs and Bayes estimates under progressive fuzzy sample

m Schemes
MLEs LSEs Bayes CI HPD

µ̂ θ̂ µ̂ θ̂ µ̂ θ̂ µ̂ θ̂ µ̂ θ̂

1 1.242 1.208 1.513 1.510 1.213 1.170 (1.15,1.33) (1.03,1.39) (1.11,1.30) (0.99,1.33)
40 2 1.211 0.828 1.343 0.876 1.140 0.752 (1.08,1.35) (0.68,0.97) (0.95,1.29) (0.60,0.88)

3 1.250 1.038 1.641 1.589 1.216 0.999 (1.16,1.34) (0.88,1.19) (1.10,1.30) (0.83,1.16)
4 1.233 0.915 1.587 1.302 1.190 0.875 (1.13,1.34) (0.77,1.06) (1.05 ,1.30) (0.72,1.02)
1 1.243 1.142 1.512 1.401 1.215 1.111 (1.15,1.33) (0.98,1.30) (1.10,1.30) (0.94,1.26)

45 2 1.217 0.841 1.366 0.900 1.152 0.771 (1.09,1.34) (0.70,0.98) (0.98,1.29) (0.64,0.90)
3 1.255 1.057 1.623 1.510 1.225 1.026 (1.17,1.33) (0.91,1.20) (1.13,1.30) (0.88,1.18)
4 1.230 0.888 1.552 1.176 1.193 0.858 (1.12,1.34) (0.75,1.02) (1.06,1.30) (0.72,0.99)
1 1.244 1.085 1.513 1.311 1.215 1.058 (1.15,1.34) (0.94,1.23) (1.10,1.30) (0.91,1.20)

50 2 1.220 0.847 1.389 0.926 1.156 0.786 (1.10,1.34) (0.72,0.97) (1,1.29) (0.66,0.91)
3 1.255 1.049 1.590 1.391 1.226 1.020 (1.17,1.33) (0.91,1.19) (1.13,1.30) (0.88,1.16)
4 1.228 0.874 1.508 1.082 1.189 0.846 (1.11,1.34) (0.75,1.00) (1.04,1.30) (0.71,0.97)
1 1.241 0.974 1.490 1.134 1.204 0.945 (1.15,1.33) (0.85,1.09) (1.01,1.30) (0.83,1.07)

60 2 1.220 0.843 1.410 0.949 1.169 0.800 (1.10,1.34) (0.73,0.95) (1.01,1.29) (0.69,0.91)
3 1.246 0.971 1.507 1.148 1.215 0.945 (1.15,1.33) (0.85,1.09) (1.11,1.30) (0.83,1.07)
4 1.226 0.859 1.435 0.975 1.187 0.831 (1.11,1.34) (0.75,0.97) (1.05,1.30) (0.73,0.95)
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Figure 5: The density and trace plots of simulated µ and θ for complete data

8. Conclusion

In real world situations, it is always possible that the observed lifetime data might be observed
imprecisely and may be represented in the form of fuzzy numbers. Therefore, a suitable statistical
methodology is required to handle these type of data sets. In this article, we introduced a two
parameter Teissier distribution to model the fuzzy censored lifetime data sets. We derived the
some useful properties of the distribution such as mean residual life, moments, moment generating
function and quantile function. We also discussed different methods to estimate the parameters
of Teissier distribution by using the maximum likelihood, least square and Bayesian techniques.
In order to assess the validity and applications of the estimation procedures, we presented an
extensive simulation study. Lastly, a real data set is considered to discuss the applicability of
the distribution. From the data, it is found that Two parameter Teissier distribution may be a
better choice over other competing distributions such as Maxwell, Exponential and Lindley. The
objective of the article was to introduce a new two parameter distribution to model the fuzzy
censored data set having increasing failure rate which is generally found in the reliability and
survival analysis. Future objectives may be threefold. The first one may be In future, with the
objective of modelling the fuzzy data set, the more flexibility can be added by introducing more
parameters in the distribution. Also, we can work in future with different censoring schemes
available in the literature.
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