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Abstract 

In this paper, we consider a record-based transmuted version of Power Lomax distribution and it is named as 

Record-based Transmuted Power Lomax (RTPL) distribution. Further, we present several statistical properties 

of the proposed distribution such as moments, quantiles, stochastic ordering, order statistics, and its explicit 

expressions. Some of its reliability measures such as survival function, hazard function, cumulative hazard 

function, mean residual time, and mean inactivity time is also discussed. The maximum likelihood method is 

used to estimate the parameters of the RTPL distribution and this new extended model is applied to a real 

datasets to access the suitability and applicability of the model based on well-known information criteria and 

test for goodness of fit. The simulation study is performed to verify the efficiency and asymptotic behavior of the 

maximum likelihood estimators.  

Keywords: Record-based Transmuted map, Power Lomax distribution, Lambert 

W function, Maximum Likelihood Estimation. 

1. INTRODUCTION

Record values and record statistics are routine and central points for monitoring many aspects of 

human life in date to date activities and it has a lot of real-life applications. In particular, the 

industry has many products which fail at times due to stress. For example, an electronic 

component ceases to function in an environment of high temperature, and a battery dies under the 

stress due to over use. But the precise breaking stress or failure point varies even among identical 

items. Hence in such experiments, measurements may be made sequentially and only the record 

values are observed. Thus, the number of measurements made is considerably smaller than the 

complete sample size. This “measurement saving” method can be important when the 

measurement of these experiments is costly if the entire sample was destroyed. There are 

situations in which an observation is sorted only if it is a record value. This includes studies in 

meteorology, hydrology, economics, athletic events, and life testing studies. 

In 1952, Chandler introduced the study of record values and discussed lots of the most important 

and basic properties of records. Let ,..., 21 XX  be the sequence of the random variables, there are 

two types of the record values such as upper and lower records. We say that
nX  be the upper 

record value if { } ,....3,2,,...,,max 121 => − nXXXX nn
this means that 

nX  which is more than all 

previous sX ' , and 
nX  be the lower record value if { } ,....3,2,,...,,min 121 =< − nXXXX nn

. In two

situations 
1X  is considered the first upper or lower record value. The upper records can be used in 

many real-life phenomena when compares to the lower records. Now if together with some 
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sequence ...,, 21 XX  one considers ....  ,...,  , 2111 nn XYXYXY −=−=−= , then it becomes evident that the 

lower record times for sY ' is coinciding with the corresponding upper record times of sX ' .

Balakrishnan et.al [9] proposed a record-based transmuted map to generate new probability 

models.  Let
nXXX ,...,, 21

be a sequence of an independent and identically distributed random 

variable with a distribution function ( )xG . Let ( )1UX  and ( )2UX be the two upper records from the

above sequence of independent and identically distributed random variables. Define a random 

variable Y as follows: 

( )

( )



 −

=
pX

pX
Y

U

U

y probabilit with ,

1y probabilit with ,

2

1

Where, [ ]1,0∈p , then

( ) ( ) ( )( ) ( )( )xXPpxXPpxF UUY ≤+≤−= 211

The record-based transmuted cumulative distribution function is obtained as 

( ) ( ) ( ) ( )xGxGpxGxF Y log.+= ; for Rx ∈ , 10 ≤≤ p  (1) 

The corresponding probability density function is given by 

( ) ( ) ( )[ ]xGppxgxfY log.1 −−= ; for Rx ∈ , 10 ≤≤ p  
(2) 

Balakrishnan et al. [9] also introduced a few new record-based transmuted (RT) probability 

distributions like RT-exponential (RTE) distribution, RT-Linear exponential (RTLE) distribution, 

RT-Weibull (RTW) distribution, etc. Vijay Kumar et al. [8] studied the Record-Based Transmuted 

Generalized Linear Exponential Distribution with increasing, decreasing, and bathtub-shaped 

failure rates. 

The Lomax distribution, is also known as Pareto Type II distribution and it is proposed by K.S. 

Lomax (1954). It is also classified as heavy-tailed distribution and referred as a shifted Pareto 

distribution, which is widely used in survival analysis. It is popularly used as an alternative to 

power-law, exponential, gamma, and Weibull distribution for modeling heavy-tailed data in the 

domain of business, Economics, and Actuarial science. A random variable X follows the Lomax 

distribution with the shape parameters 0>β  and the scale parameter 0>λ  and its cumulative 

distribution function is given by 

( )
β

λ

−









+−=

x
xF 11 ; 0>x  (3) 

The corresponding probability density function is given below 

( )
1

1

−−








 +=
β

λλ
β x

xf ; 0>x (4) 

El-Houssainy et al. [14] mentioned that the Power Lomax (PL) distribution is obtained by using the 

power transformation that is β
1

XY = . The random variable X is said to follow the three-

parameter PL distribution with the shape parameters 0, >βα  
and scale parameter 0>λ if the 

cumulative distribution function of 0>x  is given by
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( ) ( ) αβα λλ
−

+−= xxF 1 (5) 

The probability density function of the power Lomax distribution is given by 

( ) ( ) 11 −−− +=
αββα λαβλ xxxf (6) 

In the literature, some extensions of the Lomax distribution were developed and further showed 

that these resultant distributions are better than the baseline distribution, and the following will be 

the list of a few such extensions of the Lomax distribution. Abdul-Moniem et al. [1] introduced 

Exponentiated Lomax (EL) distribution, Muhammad Rajab et al.[19] proposed Beta-Lomax (BL) 

distribution, Cordeiro G. M et al. [11] developed gamma-Lomax (GL) distribution,  El-Bassiouny et 

al. [13] studied Exponential Lomax distribution, Singh Yadav et al.[20] investigated on Inverse 

Lomax (IL) distribution, Masood Anwar et al. [6] presented the Half-logistic Lomax (HLL) 

distribution, and Sanaa Al-Marzouki et al. [4] developed the Exponentiated power Lomax 

distribution. 

The remaining part of this paper is organized as follows: In Section 2, we introduce Record based 

Transmuted power Lomax (RTPL) distribution and present some of its special cases. In Section 3, 

we derive some structural properties including quantile function, moments, Lorenz curve, 

Bonferroni curve, entropy, and order statistics. In Section 4, we present the simulation study to 

measure the precision and asymptotic nature of parameter estimates of the proposed distribution. 

In Section 5, we discuss the maximum likelihood estimates (MLEs) of the model parameters. In 

Section 6, we considered two data set for illustrating the suitability and goodness of fit of the RTPL 

distribution. In Section 7, we conclude the study with a summary of results. 

2. RECORD-BASED TRANSMUTED POWER LOMAX DISTRIBUTION

A non-negative integer-valued random variable X is said to follow Record based transmuted 

Power Lomax distribution with scale parameter 0>λ , shape parameters 0, >βα and [ ]1,0∈p
 
if

its cumulative distribution function is of the following form 

( )
( ) 



















+

−
+

−=
α

βαβ

α

λ
λ

λ

λ
x

p
x

xF log11  (7) 

And the corresponding probability density function of the RTPL distribution is given by 

( )
( ) 






























+

+−
+

= +

− α

βαβ

βα

λ
λ

λ

αβλ
x

p
x

x
xf log1.1

1

1

(8)
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Figure: 1a

Figure 1. The probability density plot of the RTPL distribution

The shapes of the probability density function of RTPL distributions for different values of the

parameters can be described in

unimodal and positively skewed which represents the density plot with fixed

and λ  those with different values. From

and reversed J shaped and the curves represent fixed values such that

values to the other three parameters of RTPL distribution.

2.1.Reliability Analysis 

In this section, we define the survival function, hazard rate function,

and cumulative hazard rate function of the RTPL distribution.

The survival function of RTPL distribution is obtained as follows

S

 Figure: 2a

Figure 2. The plots of the Survival function of RTPL distribution

BASED POWER LOMAX DISTRIBUTION

Figure: 1a                                                      Figure: 1b 

The probability density plot of the RTPL distribution

The shapes of the probability density function of RTPL distributions for different values of the

parameters can be described in Figure 1. From Figure 1a, it is observed that the curves are

unimodal and positively skewed which represents the density plot with fixedα β

different values. From Figure 1b, it can be observed that the curve is left

shaped and the curves represent fixed values such that and assign different

values to the other three parameters of RTPL distribution. 

In this section, we define the survival function, hazard rate function, reversed hazard rate function,

and cumulative hazard rate function of the RTPL distribution. 

The survival function of RTPL distribution is obtained as follows 

( )
( ) 



















+

−
+

=
α

βαβ

α

λ
λ

λ

λ
x

p
x

xS log1

Figure: 2a  Figure: 2b

The plots of the Survival function of RTPL distribution

4=λ

The probability density plot of the RTPL distribution 

The shapes of the probability density function of RTPL distributions for different values of the 

that the curves are 

0.5, 2.5, 1pα β= = =  

igure 1b, it can be observed that the curve is left-skewed 

and assign different 

reversed hazard rate function, 

(9)

Figure: 2b 

The plots of the Survival function of RTPL distribution 
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The hazard rate function of RTPL distribution defined as

 Figure: 3a

Figure 3.

The cumulative hazard function of RTPL distribution is as follows

(H

(11) 

The reversed hazard function of the RTPL distribution is given as

(τ x

The survival function plot with

and different values of the parameter

for 4=λ and assigning different values for the parameters

decreasing as time increases. Figure 3a displays the hazard rate plot for

� with changing value, which describes the curves are in

that hazard rate plot for 4=λ
increasing and reversed J shaped.

BASED POWER LOMAX DISTRIBUTION

The hazard rate function of RTPL distribution defined as 

( )
( )




















+

−+































+

+−

=

−

α

β
β

α

β
β

λ
λ

λ

λ
λ

αβ

x
px

x
px

xh

log1

log111

Figure: 3a  Figure: 3b

Figure 3. The hazard rate plot for RTPL distribution 

The cumulative hazard function of RTPL distribution is as follows 

( )
( ) 































+

−
+

−=
α

βαβ

α

λ
λ

λ

λ
x

p
x

x log1log

The reversed hazard function of the RTPL distribution is given as 

)
( ) ( )

( ) 

















+

−+−

















+

+−+

=
−

+−−

α

β

αβα

β

αββα

λ
λ

λλ

λ
λ

λαβλ

x
px

x
pxx

x

log11

log1.1
11

The survival function plot with parameters  5.2 ,5.1 == βα and 1=p  is represented in

and different values of the parameter λ  and Figure 2b shows the survival function plot of RTPL

and assigning different values for the parameters p and , , βα . The survival curves are

decreasing as time increases. Figure 3a displays the hazard rate plot for ,5.1=α
with changing value, which describes the curves are increasing, decreasing, and

4 , and varying parameter values for   , βα and

shaped. 

(10) 

Figure: 3b 























α

λ
 (12) 

s represented in Figure 2a 

igure 2b shows the survival function plot of RTPL

. The survival curves are 

1 ,5.2 , == pβ  and 

creasing, decreasing, and Figure 3b shows 

and p  the curves are
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Special cases: For different values of the parameters, the following distributions are obtained as 

the special case of the RTPL distribution. 

Case 1: If the value of 0=p , then the distribution function given in (7) reduced to the power 

Lomax distribution.  

Case 2: If the value of 0=p  and 1=β , then the distribution function given in (7) reduced to the 

Lomax distribution. 

3. STATISTICAL AND MATHEMATICAL PROPERTIES

This section deals with some important properties of the proposed RTPL distribution such as 

quantile function, moments, inverted moments, entropy, stochastic ordering, and order statistics. 

3.1. Quantile Function 

The quantile function plays an important role when simulating random variables from a 

probability distribution. The quantile function of the RTPL distribution function is defined as 

follows 

( )
u

x
p

x
=




















+

−
+

−
α

βαβ

α

λ
λ

λ

λ
log11  (13) 

The closed-form expression of the quantile function has been obtained by using the Lambert W-

function such as: 

( ) ( ) νν ν =WeW

Where � is the complex number. For real numbers,
e

1
−≥ν , the Lambert W function has only two

branches 0W  which takes the value in [ )∞− ,1   and 1−W  which takes the value in [ )1,−∞−  and for







−∈ 0,
1

e
ν . It can be verified that 






−∈
−

0,
11

1 epe

u
p

, and [ )1,log
1

−∞−∈








+
+− αβ

α

λ
λ

xp

Now using the negative branch of the Lambert W function in the above equation we get, 










+
+−=







 −
− αβ

α

λ
λ

xppe

u
W

p
log

11
11

 (14) 

Thus, by solving the equation (13), we get the quantile function as given below 

β

α λλ

1
111

11
















−=













+









 −
− −

ppe

u
W

p

p

ex  (15) 

The median of the probability distribution can be obtained by taking the u as 0.5 in the above 

quantile function.  

RT&A, No 4 (71) 
Volume 17, December 2022 

579 



K.M.Sakthivel and V.Nandhini
RECORD-BASED POWER LOMAX DISTRIBUTION
 

3.2. Method of Moments 

The �th raw moment of the random variable X having RTPL distribution is obtained by substituting 

the equation (8) as follows:  

( )
( )∫

∞

+

−































+

+−
+

==′
0

1

1

log1.1 dx
x

p
x

x
xXE rr

r

α

βαβ

βα

λ
λ

λ

αβλ
µ

∫
∞ +

−−




































++−








+=

0

1

1 1log1.11 dx
x

p
x

x r

αβαβ
β

λλλ
αβ

By taking 
λ

βx
y =  and applying the transformation method and 

w

w
y

−
=

1
in the above equation, 

we get 

( ) ( )
( )

( )
( )



















+Γ









−Γ








+Γ

−+
+Γ









−−Γ








++Γ

−
==′ ∑

∞

=

+

1

1

1
1

1

1

!

1

k

kr
r

r

r
k

r

p

k
r

k
r

k
pXE

α
β

α
β

α
β

α
β

ααλµ β (16) 

The first two moments of the distribution can be derived from equation (16) and it is given as 

( )
( )

( )
( )



















+Γ









−Γ








+Γ

−+
+Γ
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






−−Γ






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∞

=

+

1
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1
1
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1
1

1
1

1

!

1

k
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k

p

kk

k
p
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β

ααλµ β  (17) 
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
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


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∞

=

+

1
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2
1
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1
1

2
1

2

!

1

k

k
k

p

kk

k
p

α
β

α
β

α
β

α
β

ααλµ β

 

(18) 

The ��� incomplete moment of the RTPL distribution can be obtained by using the equation (8) as 

follows: 

( )
( )∫

∞

+

−
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By taking � = 1 in the equation (19) to get the1	� incomplete moment of RTPL distribution and it is 

given as  

( ) ( ) ( )



























−








+−+
















−−








++

−
= ∑

∞

=

+

1

1
1

1

1
,

1
1

1
,1

1

!

1

k

tt

k

kBpkkB
k

pt
β

α
ββ

α
β

ααλφ β (20)
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The ��� central moment of RTPL distribution is defined as follows 
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The ��� inverted moment of RTPL distribution is defined and obtained as follows 
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Mean residual life (MRL) or life expectancy at time t is the expected additional life length for a 

unit, which is still alive at time t. The mean residual lifetime of the RTPL distribution is defined as 

follows 
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Mean inactivity time (MIT) is the waiting time to elapsed since the failure of an item is on the 

condition that the failure can be occurred in (0,t). The mean inactivity time of the proposed RTPL 

distribution is obtained as 
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3.3. Measures of Inequality and Uncertainty 

In this section, the measures of uncertainty and three inequality measures of the RTPL distribution 

have been derived. The Lorenz curve of the RTPL distribution can be derived by using the first 
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incomplete moment in (20) and the moment in (17) is obtained as follows 
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The Bonferroni curve of the RTPL distribution is obtained by using (7) and the Lorenz curve in (25) 

is given below 
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The Zenga Index of the RTPL distribution is obtained as 
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By substituting the equations (28) and (29) in (27), we get the Zenga Index of the RTPL 

distribution. 

Entropy is one of the important tools for measuring the uncertainty of the random variables and 

the information provided by such variables. In some cases, the random variables in the probability 

distribution are associated with some sort of uncertainty, and entropy can be used to quantify 

them. 
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The R
́nyi entropy can be derived by using the equation (8) is defined as follows 
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 (30) 

3.4. Order Statistics 

The order statistics play a vital role in predicting the failure time of certain items by using 

previously observed failures. Let 
nXXX ,...,, 21

be a random sample of size n, and let 
nrX :

denotes that �th order statistic, then the pdf of 
nrX :

 is given by 
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3.5. Record Statistics 

Let ( ) ( ) ( )nUUU XXX ,...,, 21  be the upper record values from a sequence of identically and

independently distributed random variables from the RTPL distribution. The pdf of 
��upper 

record value ( )nUX  of the RTPL distribution is defined by 
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The pdf of 
��lower record value ����� of the RTPL distribution is defined by 
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3.6.Stochastic Ordering 

The ordering of probability distributions particularly among lifetime distributions plays an 

important role in the statistical literature. We consider stochastic orders, namely, the hazard rate, 

the mean residual life, and the likelihood ratio order for two independent RTPL random variables 

under a restricted parameter space. It can be recalled that if a family has a likelihood ratio 

ordering, it has the monotone likelihood ratio property. If X and Y are independent random 

variables with a cumulative distribution function �� and �� respectively, then X is said to be 

smaller than Y in the 

• stochastic order YX st≤ if ( ) ( )xFxF YX ≥ for all x

• hazard rate order YX hr≤  if ( ) ( )xhxh YX ≥ for all x

• mean residual life order YX mrl≤ if  ( ) ( )xmxm YX ≥ for all x

• likelihood ratio order YX lr≤ if ( )
( )xf

xf

Y

X  decreases in x. 

The following results are well known for establishing stochastic ordering of probability 

distributions. The likelihood ratio is given as follows 
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By taking the logarithm on both sides of the likelihood ratio which is given in the equation (34) 

then we get, 
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 (36) 

Now if ααα == 21 , βββ == 21
, ppp == 21 and 21 λλ > then ( )

( )
0log ≤

xf

xf

dx

d

Y

X implies that 

YX lr≤ and hence YX lr≤ , YX hr≤ YX mlr≤ and YX st≤ .

4. MAXIMUM LIKELIHOOD ESTIMATION METHOD

In this section, the maximum likelihood method is used to estimate the unknown parameters of the 

RTPL distribution and the information matrix is obtained to observe the asymptotic behavior of 

the parameters of RTPL distribution.  

Let 
nXXX ,...,, 21

be a random sample from the RTPL distribution with unknown parameters 

p and ,,, λβα then the likelihood function is given by
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The log-likelihood function of the RTPL distribution is given below 
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Taking first-order partial derivatives of the equation (37) to find the unknown parameters, 

( ) ( )
0

log11

loglog
loglog

log

11

=


































+

+−

+−
++−+=

∂
∂ ∑∑

==

n

i

i
n

i

i

x
p

xpp
xn

nL
α

β

β
β

λ
λ

αλ

λλ
λλ

αα
 (38) 

( ) ( )
( )

0

log11

log
log

log
1

log

1

1

1 1

=


































+

+−

+
−+

+
+−=

∂
∂

∑∑ ∑
=

−

= =

n

i

iii
n

i

n

i

i

i

ii

x
p

xxpx
x

x

xxnL

α

β

ββ

β

β

λ
λ

α

λα
λ

α
ββ

 (39) 

( )
( )

( )
0

log11

1log

1

1

1

=


































+

+−

+
−

+
+

−=
∂

∂
∑∑
=

−

=

n

i

ii
n

i i

x
p

xpx

x

nL

α

β

ββ

β

λ
λ

αλ

λα
λ

α
λ
α

λ
(40)

RT&A, No 4 (71) 
Volume 17, December 2022 

585 



K.M.Sakthivel and V.Nandhini
RECORD-BASED POWER LOMAX DISTRIBUTION
 

0

log11

log1
log

1

=


































+

+−




















+

+

−=
∂

∂ ∑
=

n

i

x
p

x

p

L
α

β

α

β

λ
λ

αλ

λ
λ

α

(41) 

Then the maximum likelihood estimates of the parameters p and ,,, λβα can be obtained by 

solving the partial differential equations in (38) to (41). The Fisher information ���  matrix for RTPL 

distribution is given by 
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The Fisher information matrix can be obtained by deriving the second-order partial of the log-

likelihood function in equation (37) for unknown parameters. So we obtain the asymptotic 

100�1 − ��% confidence intervals for the unknown parameters of RTPL �, �, �, and � can be easily 

obtained by using the equation given below  
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Where 

2

αz  is the 
2

α
quantile of the standard normal distribution. 

5. MONTE CARLO SIMULATION

This section deals with the simulation study by generating the samples from the proposed 

distribution. The idea behind the Monte Carlo simulation is to generate a series of experimental 

samples using the random number sequence and it creates a fluctuating convergence process. The 

inverse transformation method is the most commonly used technique to generate random variates 

of the distribution. If a random variates R follows a uniform distribution with [0,1], the random 

variates ( )RFX
1−=  have a continuous cumulative probability distribution ( )XF . In this case,

the inverse function is defined as
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( ) ( ){ } 10for    ;:min
1 ≤≤≥== −

RRxFxRFX  

The procedure for generating random variates using the inverse transformation method is 

Step 1: Generate a uniformly distributed random number sequence R between the interval [0,1]. 

Step 2: Calculate the random variates X of the RTPL distribution by using the equation given 

below, 

β

α λλ

1
111

11
















−=












+









 −
− −

ppe

u
W

p

p

ex

We study the performance of MLE of the RTPL distribution by conducting various simulations for 

different sample sizes and different parameter values. After generating random samples, it can be 

used to obtain the mean estimate, average bias, and root mean square error of the maximum 

likelihood estimators of the distribution.  

a) Mean estimate of the MLE υ̂ of the parameter , , ,  and pυ α β λ= :

∑
=

N

iN 1

ˆ
1

υ

b) The average bias of the MLE υ̂ of the parameter , , ,  and pυ α β λ= :

( )∑
=

−
N

iN 1

ˆ
1

υυ

c) Root mean squared error of the MLE υ̂ of the parameter , , ,  and pυ α β λ= :

( )∑
=

−
N

iN 1

2
ˆ

1
υυ

Table 1. Average Bias, Root mean square error of the estimates based on MLE by Monte Carlo 

Simulation of RTPL distribution for different sample sizes. 

N Parameter 5.0,4,5.2,3: ==== pICase λβα  1,4,5.2,3: ==== pIICase λβα  

Mean AB RMSE Mean AB RMSE 

25 

α  
β  

λ  
p

4.63043 

2.87287 

7.87230 

0.36628 

1.63043 

0.37287 

3.87230 

-0.13371

6.54560 

0.91905 

12.0427 

0.32787 

4.13564 

3.27358 

12.8557 

0.56351 

1.13564 

0.77358 

8.85574 

-0.43648

4.42860 

1.02376 

18.3768 

0.63158 

50 

α  
β  

λ  
p

4.79498 

2.65200 

8.58040 

0.35866 

1.79498 

0.15200 

4.58040 

-0.14134

6.37452 

0.56537 

13.3039 

0.31642 

3.21649 

3.35949 

9.45730 

0.63158 

0.21649 

0.85949 

5.45730 

-0.36841

2.91639 

1.07604 

13.0895 

0.44482 

75 

α  

β  

λ  
p

4.70200 

2.57257 

8.06813 

0.39320 

1.70200 

0.07257 

4.08045 

-0.10679

5.25124 

0.47150 

11.2990 

0.31475 

2.85943 

3.39907 

8.56134 

0.63080 

-0.14056

0.89907

4.56134

-0.36919

2.78340 

1.08594 

12.5419 

0.45047 

100 

α  

β  

λ  
p

4.88606 

2.52120 

8.08045 

0.39184 

1.88606 

0.02120 

4.06813 

-0.10816

5.17449 

0.42337 

10.4641 

0.31473 

2.58303 

3.39977 

7.72486 

0.63409 

-0.41696

0.89977

3.72485

-0.36590

2.06095 

1.03959 

10.9990 

0.44544 
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Table 2. Average Bias, Root mean square error can be obtained by Monte Carlo Simulation of 

RTPL distribution for different sample sizes. 

n Parameter 1.0,4.0,6.0,5.0:  ==== pICase λβα  1,4.0,6.0,5.0: ==== pIICase λβα  

Mean AB RMSE Mean AB RMSE 

50 

α  
β  

λ  
p

0.63005 

0.66297 

0.50398 

0.29443 

0.13004 

0.06297 

0.10398 

0.19443 

0.46860 

0.24380 

0.78359 

0.35607 

0.46542 

0.39145 

0.34823 

0.34648 

-0.03457

0.29992

1.39085

-0.51504

0.27323 

0.29433 

2.27508 

0.69344 

100 

α  
β  

λ  
p

0.55927 

0.63287 

0.37730 

0.29320 

0.05927 

0.03287 

-0.02269

0.19320

0.22920 

0.15135 

0.30049 

0.36410 

0.69993 

0.75728 

0.81821 

0.83007 

-0.10854

0.25728

0.86313

-0.59811

0.16292 

0.25213 

1.28071 

0.62799 

500 

α  
β  

λ  
p

0.52201 

0.60772 

0.34190 

0.24686 

0.02201 

0.00772 

-0.05809

0.14686

0.10083 

0.05899 

0.15553 

0.32035 

1.79085 

1.26313 

0.79885 

0.65827 

-0.15176

0.21821

0.39885

-0.39769

0.16203 

0.24087 

0.66036 

0.48515 

1000 

α  

β  

λ  
p

0.51573 

0.60490 

0.34769 

0.21904 

0.01573 

0.00490 

-0.05230

0.11904

0.07803 

0.04176 

0.12756 

0.28422 

0.40188 

0.48495 

0.60230 

0.66413 

-0.15352

0.20107

0.25827

-0.33586

0.15928 

0.24376 

0.46895 

0.40010 

Table 1 shows the simulation study is repeated for 1000=N times each which has its sample size 

is given by 100,75,50,25=n  and for two different cases such parameter values are shown as 

5.0,4,5.2,3: ==== pICase λβα , and 1,4,5.2,3: ==== pIICase λβα . Table 2 describes 

the simulation study is repeated for 10000=N times each with sample size n = 50, 100, 500, 1000 

and by taking parameter values 1.0,4.0,6.0,5.0: ==== pICase λβα and

1,4.0,6.0,5.0: ==== pIICase λβα . In the simulation study, we present the mean, average 

bias, and RMSE values of the parameters p and ,,, λβα  for different sample sizes. From the

results, we can verify that as the sample size n increases, the RMSEs decay toward zero. The 

average bias for the parameters is slightly larger for small to moderate sample sizes but tends to 

get smaller as the sample size n increases. We also observe that for all the parametric values, the 

bias decrease as the sample size n increases. Hence the ML estimates of RTPL distribution are 

consistent and efficient. 

6. APPLICATIONS

In this section, we consider two real data sets for illustrating the suitability of the RTPL 

distribution in real-time applications, the first data set consists of the breaking stress of carbon 

fibers with the length of 50mm, and the second data involves the exact failure time of Kevlar 

373/epoxy that is subject to constant pressure can be discussed by using the maximum likelihood 

method of estimation and goodness of fit test. The model selection is carried out by using the AIC 

(Akaike information criterion), the BIC (Bayesian information criterion), and the CAIC (consistent 

Akaike information criteria). 

( ) qLAIC 2ˆ2 +−= θ

( ) ( )nqLBIC logˆ2 +−= θ

( )
1

2ˆ2
−−

+−=
qn

qn
LCAIC θ
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Where ( )θ̂L denotes the log-likelihood function evaluated at the MLEs, p  is the number of

parameters, and n is the sample size. Here, θ  denotes the parameters p,,, λβαθ = . An iterative

procedure is applied to solve the equations (38), (39), (40), and (41). The model with minimum AIC 

(or BIC, CAIC) values is chosen as the best model to fit the given data sets. 

Data Set 1: The data set contains exact times of failure. More precisely, it consists of the life of 

fatigue fracture of Kevlar 373/epoxy that is subject to constant pressure (at the 90% stress level) 

until all had failed. Analysis of this data set can also be found in [16]. These data are listed as: 

0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 

0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773,1.1733, 

1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 

1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 

2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 

3.4045,  3.4846,  3.7433,  3.7455, 3.9143,  4.8073,  5.4005,  5.4435,  5.5295,  6.5541,  9.0960. 

Table 3. Summary of statistics for Data set 1. 

n Minimum Q1 Median Mean Q3 Maximum 

69 0.0251 0.8645 1.5728 1.5675 2.0903 3.7455 

Table 4. The Parameter estimates of the RTPL distributions for Data set 1. 

Probability 

Models 

Parameter Estimates 

�  �! �! �̂

RTPL 142.646 1.25041 134.721 0.84430 

Expo-Lomax 14.3067 2.973127e+02 3.299822e-03 - 

H-L 4.669135e+02 1.965831e-03 - - 

Lomax 4569.5 6914.7 - - 

Table 5. The log-likelihood, information criteria, and Goodness of fit test for Data set 1. 

Accuracy 

Measures 

Probability Models 

RTPL Expo-Lomax H-L Lomax 

-log L 87.698 91.753 93.440 100.062 

AIC 183.39 189.50 190.91 204.12 

BIC 192.33 196.20 195.37 208.59 

CAIC 184.02 189.87 191.09 204.31 

#$
%  0.1678 0.2094 0.5941 1.1240 

&$
%  1.1275 1.2655 3.0836 5.5955 

'$ 0.1175 0.1183 0.1639 0.2221 

Table 5, provides the estimated values of the parameters and likelihood values for all the fitted 

distributions. From this, minimum values of the information criterion represent the fitness of the 

new model and we conclude that the RTPL distribution is best when compared to Lomax 

distribution, Half-logistic Lomax (HL) [6], and Exponentiated Lomax (Expo-Lomax) [1] 

distributions. The test statistics(�, )�
*, +�

*  have the smallest values for the Kevlar 373/epoxy data 

set under the RTPL distribution when compare to other suitable models. The RTPL distribution is 

approximately a better model for this real dataset. 
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Figure 4: Estimated pdf plot for the data set 1 

Figure 4 shows the fitted pdf plot, in which the histogram represents data points, and the curves 

show the fitness of the four comparable distributions. This plot shows that the RTPL model 

provides an adequate fit to the lifetime of fatigue fracture of the Kevlar 373/epoxy datasetwhen 

compared to the other advisory models. 

Data Set 2: This dataset describes the breaking stress of carbon fibers with a length (GPA) of 

50mm. The data has been taken from [17]. The data is given as follows: 0.39, 0.85, 1.08, 1.25, 1.47, 

1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.5, 2.55, 

2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88 , 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 

3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 

4.38, 4.42, 4.70, 4.90. 

Table 6. Summary of statistics for Data set 2. 

n Minimum Q1 Median Mean Q3 Maximum 

66 0.390 2.178 2.835 2.759 3.277 4.900 

Table 7. The Parameter estimates of the RTPL distributions for Data set 2. 

Probability 

Models 

Parameter Estimates 

�  �! �! �̂ ,  

RTPL 98.6077 2.77527 1161.283 0.74846 - 

Expo-PL 5690.105 1.11941 7.95276 - 6600.825

PL 105.423 2.08411 784.590 - - 

H-L 7.176263e+02 7.599327e-04 - - - 

Lomax 2686.160 7663.882 - - - 

Table 8: The log-likelihood, information criteria, and Goodness of fit test for Data set 2. 

Accuracy 

Measures 

Probability Models 

RTPL Expo-PL PLomax H-L Lomax 

-log L 85.5269 94.2648 98.4301 122.4363 133.0312 

AIC 179.053 196.529 202.860 248.872 270.0624 

BIC 187.812 205.288 209.429 253.252 274.4417 

CAIC 179.709 197.185 203.247 249.063 270.2529 
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#$
%  0.06810 0.38229 1.8567 12.206 13.422 

&$
%  0.40351 1.9864 8.6186 2.4891 2.7094 

'$ 0.07319 0.16162 0.29427 0.3269 0.3474 

Table 8 presents the estimated values of the parameters for all the fitted distributions. From this we 

conclude that the RTPL distribution provides the best fit to the given data set when compared to 

Lomax distribution, Half-logistic Lomax (HL) [6], Exponentiated Power Lomax (Expo-PL) [4], and 

Power Lomax (PLomax) [14] distributions. The values of tests statistics such as the Kolmogorov-

Smirnov (� , Cramér-von Mises )�
*, Anderson and Darling +�

* can be used to measure the goodness 

of fit of the RTPL distribution while concerning the other models through the breaking stress of 

carbon fibers data. Hence, the RTPL distribution approximately provides an adequate fit for the 

dataset. 

Figure 5: Estimated pdf plot for the data set 2 

The fitted pdf plot is displayed in Figure 5, this plot shows that the histogram represents the data 

points and the curve shows the fitness of the five different distribution which is chosen for this 

comparative study. From this, we conclude that the RTPL model provides an adequate fit to the 

breaking stress of the carbon fibers data set, when compared to the other suitable models. 

7. CONCLUSION

In this paper, a new extension of the four-parameter Lomax distribution is proposed and it is 

named as Record-based Transmuted Power Lomax distribution based on Record based transmuted 

map. The usefulness of this newly proposed model is illustrated by using two real data sets. This 

results illustrate that the proposed model provides a consistently better fit than the other existing 

suitable models. The graphical representation of the hazard rate of RTPL model has been explored 

and the obtained shapes are increasing, decreasing, and reversed J shaped. The maximum 

likelihood estimation method is used to estimate the unknown parameters of the RTPL 

distribution. The performance of the maximum likelihood estimates is investigated through the 

Monte Carlo simulation study to generate a random sample by using the quantile function and we 

observed that the proposed distribution shows a better fit when the sample size increases. The 

results of the Kolmogorov Smirnov test, Cramer Von Mises test, Anderson Darlings test, and 

important information criterions conclude that the RTPL model is provided goodness fit and 

emerge as better model compared to the other models. It is evident that, it has a lot of scope and 

real time applications in many field of science.  
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