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Abstract 

 
 The properties of the procedure for constructing multidimensional Hotelling maps are 

investigated for the case of individual observations of a dynamic process. The features of the 

behavior of such maps are noted in comparison with multivariate statistical control of 

controllability and stability, using sample observations at a certain fixed point in time or in a 

short period of time. At the same time, detrending of non-stationary time series, describing the 

dynamics of each feature separately, as well as the transformation of the multidimensional sample 

distribution of observations to a joint multivariate normal distribution is used. 
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I. Introduction 
 

Development of oil fields is a complex process that depends on many geological and 

technological factors and must meet the requirements of the most optimal oil recovery [1,2]. In 

order to maintain the optimal mode of oil production, the task is to stabilize the development 

process based on the application of the concept of a statistically controlled process using 

Hotelling's multivariate control charts [3-5]. 

Typically, control charts (CC) are used to control the quality of some large volume of 

single-item products that are divided into subgroups (lots, lots) of the same volume n. At the same 

time, checks (observations) of the quality of each unit of production can be carried out according to 

one indicator (onevariate CC) or several indicators (multivariate CC) at the same moment in time 

with a random selection of the unit of the tested product. For n = 1, these observations are called 

individual. 

When using CC to check the statistical controllability of dynamic processes (in particular, 

the process of developing an oil field), the following features should be taken into account. 

For a multidimensional dynamic process defined by time series of discrete values of 

indicators in a sequence of time values t, each of these series describes a one-dimensional non-

stationary random process with mathematical expectation, which is generally a function of time 

(process trend) and only for a stationary process its first moment (expectation) and the second 

moment (covariance) do not depend on time [6]. 

Therefore, to construct CC, the first differences of the initial time series are usually used, as 

is done in the "STATISTIKA" package. In this case, it is assumed that such a procedure leads to a 

stationary random process. However, only after taking the second time difference, the obtained 

time series can be approximately considered stationary [7, 8]. In this regard, it is advisable to 
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construct a multidimensional dynamic CC to use for each indicator not the initial time series, but 

the corresponding detrended time series obtained by detecting and rejecting a trend, which is 

obviously stationary with a high accuracy of the calculated trend. 

 

II. Statistical process control using control charts. 
 

When constructing CC, two different phases are distinguished [3,4]. Phase I, carried out 

with a hindsight analysis, involves testing the statistical control of the process based on original or 

subgrouped observational data. This phase is commonly referred to as the start-up-stage of the 

process, in which a set of data (training sample) is obtained from which control limits are set for 

monitoring the process. The purpose of this phase is to identify statistical controllability and find 

the upper control limit (UCL) and lower control limit (LCL). In the second phase, on the basis of 

the obtained control limits, corrective control is carried out, including the detection of points of 

instability (outliers) of the process and subsequent regulation of the process with maintaining its 

statistical stability. 

In this paper, we consider phase I of a multivariate statistical control with individual 

observations representing the values хij of several indicators xj, given in a certain sequence of times 

ti, i = 1,…, m. With regard to the process of developing an oil field xij - oil production indicators by 

years ti, i = 1,…, m. 

 

III. Multivariate charts of statistical control at the start-up stage for individual 

observations. 
 

Suppose that we are dealing with individual observations, that is, the sample of 

observations consists of m subgroups of observations with the same volume of observations n = 1. 

Let  ,..., ,...,
1

x x xpjx = there be a vector of p variables (indicators of the process under study) x1,…, 

xj,…, xp and xij - the value of the variable xj in the i-th (i = 1,…, m) observations. Let's introduce the 

notation:     

 ,..., ,...,
1

T
miX = X X X  ;  

   ,..., 1,...,
1

T
x x i mi ipi

 X  

 ,..., ,...,
1

x x xm pjX  ,  

1

1

m
x xj ijm i

 


 

  
1

1 1

m T
m m mi im i
  

 
S X X X X  

 where mX    and  mS - sample mean vector and covariance matrix; T is the transposition sign. 

To construct a multivariate CC based on Hotelling's T2-statistic, it is assumed [9] that observations 

are independent and identically distributed (i.i.d.) random variables satisfying a p-dimensional 

normal distribution  N μ,Σp  with a mean vector  ,...,
1

T
p μ = and a covariance matrix 

  
T

  X - μ X - μ . 

           If the vector  ,..., ,...,
1 miX = X X X  obeys d-variate normal distribution, then the asymmetry 

indices b1,d and curvatures b2,d satisfy the relations b1,d = 0 and b2,d = d (d + 2). Sample estimates of 

these indicators  
3

1,
1 1

1 m m

d hi
h i

b g
m  

    ,   
2

2,
1

1 m

d ii
i

b g
m 

     where 
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   11T

hi h m ig
m

   X X Q X X , 

      1
T

m m i im     Q S X X X X , 

1( ,..., )i i idx xX (i=1,…,m),  

 1,...,m dX XX = X , 

1

1 m

j ij
i

X x
m 

  . 

   Mardia [10] showed that if  dN ΣX μ, , then for d> 2 and m> 50 

2

1,

1

6
d fA mb    , 

  
1

1 2f d d d
b

    

and 

 

 
 2,

11/2

d

  

b - d d + 2
B =  N

8d d + 2 / m
0,1  

where  2
f

 is the 2-distribution with f degrees of freedom,  1 0,1N is the standard one-

dimensional normal distribution.  
2

iT - Hotelling statistics corresponding to the observation iX  is written in the form 

     2 1
T

i i m m i mT   X X S X X . Assuming that the estimates mX  and mS  characterize a sample from 

a p-dimensional normal population (general population) with a mean μ  and a covariance matrix  

, the statistics
2

iT  obey the Pearson 2-distribution with p degrees of freedom. In this case, at the 

initial stage, the lower control limit is written as  2 1 / 2,LCL p    , and the upper limit is 

written as  2 / 2,UCL p   where  2 , p  -  1  -  percentile
2  - distribution with p 

degrees of freedom;     - a given level of significance. 

          Assuming that the i-th observation iX  does not depend on mX and mS the statistics 
2

iT  (for 

a fixed i) obeys Fisher's F-distribution with degrees of freedom p and m-p [11]. In this case, the 

lower control limit has the form  

  
 

 
1 1

1 / 2; ,
p m m

LCL F p m p
m m p


 

  


 

and the top one is,  

  
 

 
1 1

/ 2; ,
p m m

UCL F p m p
m m p


 

 


 

 where  ; ,F p m p   is the  1   percentile of the F-distribution with degrees of freedom p and 

m-p. 

Checking the mutual independence of random variables can be carried out using the 

appropriate test [12, p. 612]. 

If the above assumption about the independence of observation iX from mX  and is not fulfilled, 

the specified equalities for LCL and UCL may be violated. As shown in [12], statistics 
2

iT  (for a 

fixed i) has a beta distribution, 
2

iT  
  

2
1

/ 2, 1 / 2
m

B p m p
m


   which can be correctly used in the 

case of individual observations when constructing control limits at the initial stage to check the 
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statistical controllability of the process. In this case, the lower control limit is set as, 

 
  

2
1

1 / 2; / 2, 1 / 2
m

LCL B p m p
m




     

and the top one is,  

 
  

2
1

/ 2; / 2, 1 / 2
m

UCL B p m p
m




    

where   / 2; / 2, 1 / 2B p m p    is the  1  percentile of the beta distribution with the 

parameters p/2 and (m-p-1)/2. 

If the tables for the beta distribution are difficult to access, you can use the following 

relationship between it and the F - Fisher distribution: 

   

   
 

/ 1 ; , 1
; / 2,( 1/ 2

1 / 1 ; , 1

p m p F p m p
B p m p

p m p F p m p






         
      

 

     

   

2
/ 1 1 / 2; , 11

1 / 1 1 / 2; , 1

p m p F p m pm
LCL

m p m p F p m p





         
        

  and 

     

   

2
/ 1 / 2; , 11

1 / 1 / 2; , 1

p m p F p m pm
UCL

m p m p F p m p





        
       

 . 

             In many cases, LCL is assumed to be 0 because any shift in the mean results in an increase 

in the T2 statistic, thus allowing the LCL values to be ignored. However, 
2

iT  it is sensitive not only 

to shifts of the mean vector, but also to changes in the covariance matrix of observations. If it 

strongly depends on the volume of observations, then this can lead to a violation of normality at 

small values 
2

iT . To detect such deviations from normality, non-zero LCL values should be used. 

Statistics 
2

iT going beyond the control values UCL or LCL indicates a violation of statistical control 

at time t = ti. The task of identifying an indicator or several indicators that caused this violation and 

the subsequent regulation of the process (phase 2) will be considered separately. 

Detrending of the process. Let be  0,( 1,..., )kx k k   , ( )k kx x t   , 
01 2 ... kt t t    - the initial 

time series of some indicator of the investigated dynamic process. We will assume that,   

0 sk s N   where s  and sN  are positive integers. We divide the full time interval of observations 

 1 0, kt t  into intervals of length s. For each ν = 1,…, ν0, ν0 = sN , we construct a polynomial 

regression  
( )

0

v

v t

m
m r

r

r

x c


  of order ( 1,..., )om m m . The best value vm
 of the degree of the 

polynomial of model  is obtained by enumerating  v 0m = 1,...,m  the minimum sum of squares 

of residuals SSR (see details of the detrending algorithm in [13]). Then 
( )

0

m
mtrend r

k r k

r

x c t










       

.stas trend
k k

x = x - xk   k=(ν-1)s+i      i=1,…,s   ν=1,…,νo . 

 

IV. Normalization of a multivariate random variable 
 

            To normalize  d-dimensional vector of variables  1,..., ,...,j dx x x x , it is proposed [14] to 

use the vector of parameters  1,..., ,...,j d    and the transformed vectors   
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( )

1
, 0,

log , 0; 0

j

j
j

jj

j j j

x

x

x x










 


 


 

 

corresponding to the variables xj (j = 1,...,d) . Wherein λ (j = 1, ..., d)j  are chosen so that the vector 

 1 ( )( )( ) d

j


x = x , ..., x  consists of independent identically distributed random variables satisfying a 

joint normal distribution Nd( )μ,Σ  with a mean vector μ and a normal matrix . . In this case, the 

maximum likelihood function is written as 
1

max1 1

d m

ij
i i


 
 L log (λ - 1) log xj2

, where ijx  is the j-th 

element of the vector  1,...,
T

i i idx xX  (i = 1,...,n), and ML is the estimate (maximum likelihood 

estimate)   for the matrixΣ . The function max( ( ))L   minimum  is determined by the 

coordinate descent method [13]. 

 

V. Conclusion 
 

The construction of multivariate dynamic control charts for statistical control of the oil 

field development process has distinctive features in comparison with commonly used (onevariate  

or multivariate) CC based on quality control of products for its various indicators, but issued at a 

certain fixed time of control (that is, the task statics). Even a sample of observations, represented by 

the values of the same indicator of the production process, is a non-stationary time series, the 

mathematical expectation (trend) of which is generally characterized by a non-linear dependence 

on time, and only the residual time series obtained by detrending the initial time series is 

stationary a time series in which both the first moment (mathematical expectation) and the second 

moment (variance) do not depend on time. So, it is more accurate to investigate the statistical 

stability of the stationary remainder of the time series, and the variance of this series will 

characterize the stability band of the square deviation of the stationary remainder from its constant 

mean, which fundamentally diverges from the analysis using Shewhart's CC. Another feature of 

multivariate analysis, in comparison with the traditionally used sequence of onevariate control 

charts, is to take into account the interdependent influence of a set of features on the response of 

the process. Thus, the synergistic nature of the multivariate control of the dynamic process is 

revealed, in which various interactions of different signs are manifested. 

Thus, the proposed methodological approach to multivariate statistical control of oil field 

development is of both theoretical and practical significance and can be applied in the statistical 

control of any dynamic production processes. 
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