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Abstract 
 

In the process of long-term operation of pipeline systems for the transport of hydrocarbons (oil, 

gas) and other liquids, leaks occur in some of its sections over time. An important role of timely 

detection of leaks is occupied by methods of indestructible control over the state of pipeline 

systems that do not require the production of any technical actions. Non-destructive testing 

methods are based, as a rule, on mathematical methods and modern computer technologies. In 

this paper, using the example of the problem of determining the locations of fluid leaks, an 

approach is proposed based on solving an inverse problem with respect to a system of differential 

equations with partial derivatives that describes the process of fluid flow. 

 

Keywords: oil-gas pipelines, non-destructive control methods, leaks, environmental risks, 

inverse problem. 

 

 

I. Introduction 
 

In the process of long-term operation of pipeline systems for the transport of hydrocarbons 

(oil, gas) and other liquids, leaks occur in some of its sections over time. Leaks occur due to 

pipeline breaks, which can have different causes and sizes. 

The emerging leaks lead to great risks, which have both environmental consequences, but 

also causing great economic damage to mining and transport organizations. 

Known and used are various methods of timely detection of leaks of raw materials. An 

important role is occupied by methods of indestructible control over the state of pipeline systems 

that do not require the production of any technical actions. In particular, in the case of 

underground pipeline networks, such methods do not require, for example, any earthworks. 

Non-destructive testing methods are based, as a rule, on mathematical methods and modern 

computer technologies. In this paper, using the example of the problem of determining the 

locations of fluid leaks, an approach is proposed based on solving an inverse problem with respect 

to a system of differential equations with partial derivatives that describes the process of fluid 

flow. 

An inverse problem for a pipeline network of complex loopback structure is solved numerically. 

The problem is to determine the locations and amounts of leaks from unsteady f low characteristics 

measured at some pipeline points. The features of the problem include impulse functions involved 

in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary 

conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline 

segments. The problem is reduced to a parametric optimal control problem without initial conditions, 
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but with nonseparated boundary conditions. The latter problem is solved by applying first-order 

optimization methods [1]. Results of numerical experiments are presented. 

This paper differs from many other studies [2] in which leak locations and amounts were determined 

either in a steady f low regime in a pipeline of complex structure or in a transient f low regime in a 

pipeline consisting of a single linear segment. In this study, we numerically solve an inverse problem 

[3] of determining leak locations and amounts in an unsteady f low in a pipeline network of complex 

(loopback) structure. The problem is described by a system made up of numerous subsystems of two 

hyperbolic partial differential equations with impulse actions specified at possible leakage points on 

pipeline network segments. 

Another feature of the problem is the assumption that, due to the long duration of the process 

under study, exact information on its initial state is not available at the time of monitoring and that the 

states of the process (which is distributed in space) cannot be quickly measured at all points. Instead, 

there is information on a variety of possible initial states of the process and some state (regime) 

characteristics are measured at certain pipeline points starting at this time. One more feature of the 

problem is that its boundary conditions are specified as nonseparated relations (determined by physical 

laws) between the states at the endpoints of adjacent pipeline segments.  

 

II. Problem statement   
 

To simplify presentation of numerical schemes and to be specific, let us consider the pipe 

network, containing 8 segments as shown in figure 1. Numbers in brackets identify the nodes (or 

junctions). The set of nodes we denote by I :  1,..., ;NI k k  where , 1,ik i N  are the nodes; 

N I  is the numbers of nodes in the network. Two numbers in parentheses identify two-index 

numbers of segments.  The flow in these segments goes from the first index to the second (for 

example, the flow in the segment (1,2) is obviously from the node 1 to node 2.  

Let J :  ( , ) : ,i j i jJ k k k k I   is the set of segments and M J  is it’s quantity; ,
i jk kl  

i jk kd , ,i jk k I  is a length and diameter of the segment ( , )i jk k  respectively; kI 
 is the set of 

nodes connected with node k  by segments where flow goes into the node, kI 
 is the set of nodes 

connected with node k  by segments where flow goes out of the node; k k kI I I   is the set of 

total nodes connected with node k  and , , ,k k k kk k
N I N I N I 

     
k k k

N N N   . 

Beside of inflows and outflows in the segments of the network there can be external inflows 

(sources) and outflows (sinks) with the rate ( )iq t  at some nodes i I  of the network. Positive 

and negative values of ( )iq t  indicate the existence of external inflow or outflow at the node i . 

However, in general case, assuming that the case ( ) 0iq t  for the sources is admissible one can 

consider all nodes of the network as the nodes with external inflows or outflows. Let 
fI I  

denote the set of nodes i I , where i is such that the set i iI I 
 consists of only one segment. It 

means that the node i  is a node of external inflow or outflow for the whole pipe network (for 

example {1,4,5,8}fI  in fig.1). Let f

fN I  is the number of such nodes, it is obviously that 

fN N ; intI  is the set of nodes not belonging to fI , so 
int

intN I , i.e.,
int / fI I I , 

int fN N N  . In actual conditions, the pumping stations are placed, the measuring equipment is 

installed and the quantitative accounting is conducted at the nodes from the set fI .  
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Fig.1: The scheme of pipe network with 8 nodes 

 

We assume that at some instants of time 0t t  at some points (0, ),ks l  of any ( )ks -th 

section of the pipeline network, fluid leakage with the flow rates ( )loss

ksq t  began.
 

Using the 

generalized Dirac function δ(x), we can describe the motion of the liquid by the following 

linearized system of differential equations for unsteady flow of dripping liquid with constant 

density   in a linear pipe ( , )k s  of length ksl  and diameter ksd
 
of oil pipeline network can be 

written in the following form [4-8]: 

2 2

( , ) ( , )
- 2 ( , ), (0, ),

, .
( , ) ( , )

- c ( ) ( ), (0, ],

ks ks
ks ks ks

ks ks

kks ks
loss

ks ksks ks

P x t Q x t
a Q x t x l

x S t S
s I k I

P x t Q x t
c q t x t T

t S x S

 

 
 



  
  

  
 

     
  

 

 (1) 

here c is the sound velocity in the fluid; 
ksS  is the area of an internal cross-section of the segment 

( , )k s ; 
ksa  is the coefficient of dissipation (we may consider that the kinematic coefficient of 

viscosity   is independent of pressure and the condition  
2

32
2

( )

ks

ks
a const

d


   is quite accurate 

for a laminar flow). ( , )i jk k
Q x t , 

,
( , )i jk k

P x t  are the flow rate and pressure of flow, respectively, at 

the time instance t in the point 
,

(0, )
k ki jx l  of the segment ( , )i jk k  of the pipe network. 

( ), ( )k kP t Q t  are the pressure and flow rate at the node k I , respectively.  

The conditions of Kirchhoff’s first law (total flow into the node must be equal to total flow out 

of the node) are satisfied at the nodes of the network at [0, ]t T : 

( , ) (0, ) ( ),

k k

ks ks ks k

s I s I

Q l t Q t q t k I
  

    .     (2) 

Also, the following conditions of flow continuity for the nodes of the net (the equality of the 

values of pressures on all adjacent ends of the segments of the network) hold: 

( ) ( , ) (0, )ji i
kkk k k kkP t P l t P t  , , ,i k j kk I k I k I    ,   (3) 

where ( )kq t  is the external inflow ( ( ) 0)kq t   or outflow ( ( ) 0)kq t   for the node k , ( )kP t  is 

the value of the pressure in the node k . We must note that they have significant specific features, 

consisting in the fact that the conditions (2) and (3) are non-separated (nonlocal) boundary 

conditions unlike classical cases of boundary conditions for partial differential equations. 

The total number of conditions for all nodes from 
fI  is 

fN . So, the total number of 

conditions in (2) and (3) is int int[ ] [(2 ) ] 2f fN N M N N M     . As it was noted above the 
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number of conditions in (2) is N , but in view of the condition of material balance ( ( ) 0k

k I

q t


 ) 

for the whole pipeline network, we conclude that the number of linearly independent conditions is 

1N  . So, it is necessary to add any one independent condition. As a rule the value of pressure at 

one of the nodes 
fs I  is given for this purpose, in place of the flow rate ( )sq t : 

( ) ( )s sP t P t .        (4) 

In the case of unknown points of leakages and their rates , ( )loss

ks ksq t
 we will assume that at 

the ends of the pipeline sections a constant and rather long observation on pressure is made, i.e., 

the values of  
( ),n

mesP t
f

pn I  or  ( )m

mesQ t ,
f

qm I  are known. It is quite natural to suppose that 

the sought leak spots do not coincide with the points of observation of regimes.  In more general 

case, for every node from 
f f f

q pI I I , it is necessary to give the values of pressure (
f f

pI I  

denotes the set of such nodes) or the values of flow rate (the set
f f

qI I ) and 
f

pI  must not be an 

empty:
f

pI  . So, we will add the following conditions to the condition (3):  

( ) (0, ) ( ), , ,

( ) ( , ) ( ), , ,

n ns n

mes n n

n sn sn n

mes n n

P t P t P t s I if I

P t P l t P t s I if I

 

 

    


   

 
f

pn I ,   (5) 

( ) (0, ) ( ), , ,

( ) ( , ) ( ), , ,

m ms m

mes m m

m sm sm m

mes m m

Q t Q t Q t s I если I

Q t Q l t Q t s I если I

 

 

    


   

 ,f

qm I   (6) 

When the spots of oil leakages from a pipeline and the rates of these leakages are known 

, ( )loss

ks ksq t , ( , )k s J , it is sufficient to use one of the  boundary-value conditions (5) or (6) to 

calculate the regime of liquid motion in the pipeline from (1) on the time interval 0[ , ]t T . One of 

them we will use in the functional, the form which will be given below.     

The problem consists in the detection of the points of leakage  { ,( , ) }ks k s J    and 

corresponding losses of raw material ( ) { ( ),( ) }loss loss

ksq t q t ks J   at 0[ , ]t t T  with the use of 

the given mathematical model and obtained information.  

It is important to note that if process (1) is rather long, then, due to the presence of friction 

typical of any real physical system, the influence of the initial state of the pipeline on the regimes 

of oil motion in it becomes weaker with time. Therefore, when the process is observed for a long 

time, i.e., within a large time interval 0[ , ]t T , the influence of the initial regime of oil flow in a 

pipeline (at 0t t ) on the current state of the process decreases, and there exists such   ( )T   

that at t   the regime of oil motion experiences only the influence of the boundary-value 

conditions on the time interval 0[ , ]t T , where the quantity   is determined by the parameters of 

the process and the characteristics of the pipeline [9]. Thus, we arrive at the problem without 

initial conditions. 

 

III. Approach to the solution of the problem 
 

In order to solve the problem posed, we will consider the functional that determines the 

derivation of regimes of oil flow at the given points of the oil pipeline section from those 

predicted: 

D

D

( , ) ( , ; ) ( , ) ( ) min,loss lossq q q d                (7)
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2( , ; ) [ ( ; , ( ), ) ( )] ,
f

q

T

loss m m

mes

m I

q Q t q t Q t dt


   


         

Z
Z

2 0

22

1 2L [ , ] R

ˆˆ( , ) ( ) - ,
t T

q q t - q            
 

where ( ; , ( ), ),m f

qQ t q t m I    – is the solution of the problem (1)–(5) at the given values of 

( , ( ))lossq t , [ , ]T  is the time interval of monitoring the process whose regimes already do not 

depend on the initial conditions; 1 2, , ,mq R     – are the regularization parameters. Since the 

initial conditions at time 0t  do not influence the process in the interval [ , ]T , exact knowledge of 

the initial value of 0t  is not of primary importance.  

Proceeding from the meaning of the problem considered, technological conditions, and 

technical requirements, we will assume that are restrictions on the identified functions and 

parameters: 

0 ks

ks l  ,   ( ) ,lossq q t q   0[ , ],t t T  

where ,q q  are the given quantities.  

As is seen, as to the determination of the points and rates of leakages the posed problem is the 

problem of parametric optimal control of an object described by a hyperbolic system. For its 

solution we use numerical methods (projections of the conjugated gradient) based on iteration 

procedures of first order optimization. To carry out this procedure, we obtain formulas for the 

gradient of functional (7).  If as a result of the solution of posed problem we obtain that 

( ) ,lossq t   [ , ]t T , this will mean that in this section of the pipeline network there is no 

leakage of raw material.   
 

IV. Results of numerical experiments 
 

We consider the following specially constructed test problem for oil pipeline network 

consisting of 5 nodes, as shown in figure 2. Here 6N  , int5, {1,3,4,6}, 4, 2f

fM I N N    .  

There are no external inflows and outflows inside the network. We assume that in the course of 30 

min we observe the process (mode of operation of pumping plants at the ends of the sections) of 

oil transportation with the kinematic viscosity 
4 21.5 10 ( / )m s    and density 

3920( / )kg m  ( 2 0.017a   for case being considered; the sound velocity in oil is 

1200( / )m s ) in the sections of pipeline of diameter  530 (mm), of the lengths of the segments:  

(1,2) (5,2) (3,2) (5,4) (5,6)100 (km), 30 (km), 70 (km), 100 (km), 60 (km)l l l l l     . 

 

 

 

 

 

Fig.2: The scheme of oil pipeline network with 5 nodes 
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Let there was regime in the pipes at initial time instance 0t   with the following values of 

pressure and flow rate in the pipes: 

 
1,2ˆ ( ) 23P x  00000-5.8955x (Pa), 

5,2ˆ ( )P x  1745669-1.17393x (Pa),  

3,2ˆ ( )P x  1827844-1.677043x (Pa), 
5,4ˆ ( )P x  1827844-2.35786x (Pa),  

5,6ˆ ( )P x  1827844-0.94415x 

(Pa). 
1,2 3ˆ ( ) 300 ( )Q x m hour ,

5,2 3ˆ ( ) 200 ( )Q x m hour ,
3,2 3ˆ ( ) 100 ( )Q x m hour ,  

5,4 3ˆ ( ) 120 ( )Q x m hour , 
5,6 3ˆ ( ) 80 ( )Q x m hour ,       

Let the oil flow rate at the ends of this pipeline section be defined by the functions:  

 
1

0 ( )P t  2000000+300000
0.0003te

 (Pa), 
3

0 ( )P t  1900000-72156
0.0004te  (Pa),   

4 ( )lP t  1800000-66571
0.0007te

( Pa),  
6 ( )lP t  1600000+86372

0.0002te
( Pa).  

 

On the assumption that the point of leakage is located at the point 30 ( )km   of the first 

section of pipeline network and the rate of leakage is determined by the function 
0.0003 3( ) 50 10 ( )loss tq t e m h  , we solved the boundary-value problem (1)-(5) numerically and 

determined the numerical values of pressure at the ends of the section ( ),n f

pP t n I . Thereafter, 

with the aid of the probe of uniformly distributed random numbers these values were changed 

within 2% (to simulate the error of measurements) and used as the observed regimes of the 

process. The point and rate of leakage , ( )lossq t  "forgotten" in this case. 

To determine , ( )lossq t , we used the method of the projection of conjugate gradients. The 

numerical solution of the boundary-value problem (1)–(5) was made using the scheme of the 

sweep method introduced in [10], on the  grids with the steps 10xh m and 100(sec)th 
. 

Table 1 presents the obtained results of the minimization of functional (7) for different initial 

values of the identified parameters 
0( , ( ))lossq t , as well as the required number of iterations 

(one-dimensional minimizations) of the method of projection of conjugate gradients. Here are the 

results of solving the problem under the conditions that the observed values of the flow rate at the 

ends of the network have measurement errors. 

For this experiment, to generate observations for the inverse problem, by using a random 

number generator we add noises )( i

m

i tQ  to the values 

t

f

qtii

m

i

m NiImihtqtQtQ ,...,1,
~

,),,;()(    obtained by solving the direct problem, 

where  
i  - random variable, uniformly distributed on a segment [–1,1], 

tNi ,...,1 ,   takes 

values equal to 0.0, 0.005 and 0.01, which corresponds to the noise level when measuring flow 

rates in vertices 
f

qI
~

 respectively in 0% (without noise), 0.5% and 1%  from the measured value. 

We use the following designations in table 1:  
)2,1(~

  – obtained leak location value, 
0 – 

initial value of the functional, 
~

 – the resulting optimal value of the functional, iterN – the 

number of iterations (one-dimensional minimizations) required by the conjugate gradient 
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projection method, ,|
~

| )2,1()2,1()2,1()2,1( *

  |)(||)(~)(|max )2,1()2,1()2,1(

],[

)2,1( *

0

tqtqtqq
Ttt






– relative error values, respectively, at the location of leakage and its volume.  

As can be seen from Table 1, an increase in the accuracy of measurements most significantly 

affects the accuracy of determining the volume of leaks, but in general, the order of error of the 

obtained values of the identified parameters is the same as the order of measurement error. 

 

 

Table 1: The results of numerical experiments  

 

 

 
  

(1,2)

0  60 20 90 10 45,685 
(1,2)

0 ( )q t

 

0.000390 10 te  0.000320 10 te  0.000330 10 te  0.000366 20 te  0.000366 20 te  

 

 

 

0% 

0  76.104 16.704 11.664 42.48 57.636 


~

 5.73∙10-7 1.26∙10-7 3.19∙10-6 1.85∙10-6 7.43∙10-7 

)2,1(~


 
30.003 29.998 30.008 29.994 29.998 

iterN
 

6 5 16 14 8 
)2,1(

 0.00009 0.00006 0.0003 0.0002 0.00006 
)2,1(q

 0.0003 0. 0006 0.0003 0.0002 0.0003 

 

 

0.5% 

0  76.352 16.837 11.683 42.148 57.732 


~

 0.023 0.014 0.024 0.017 0.020 
)2,1(~


 

29.841 30.332 30.068 29.654 29.796 

iterN
 

6 5 14 12 7 
)2,1(

 –0.005 0.011 0.002 –0.011 –0.006 
)2,1(q

 

0.043 0.030 0.049 0.041 0.042 

 

 

 

1% 

0  77.119 16.924 11.832 43.744 57.413 


~

 0.067 0.071 0.073 0.062 0.065 

)2,1(~


 
28.527 29.392 29.923 30.597 29.839 

iterN
 

6 5 14 12 7 
)2,1(

    –0.049 

–0.020 

–0.002 0.020 –0.005 
)2,1(q

 

0.109 0.092 0.107 0.094 0.093 

 

Figure 3 shows the graphs of the exact leak function and the resulting loss functions when 

solving problem assuming the presence of a leakage.  
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Fig.3:  The exact and experimental time dependences of raw material leakage. 

 

V. Conclusion  
 

We propose a numerical solution to an inverse problem in the hydraulic network of complex 

loopback structure in the paper.  The problem consists in determining the places and volume of 

leakage in the presence at some points of the pipeline the results of additional observations on 

non-stationary regimes of fluid flow. We reduce the stated problem to the parametric optimal 

control problem with unknown initial and non-separated boundary conditions, and use numerical 

methods of first-order optimization to solve the problem. The results of numerical experiments are 

given. 
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