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Abstract

This study compares the performance of Bayesian ARIMA and BSTS models for COVID-19 data
using Bayesian approach. Many studies in the literature have compared the BSTS model and classical
ARIMA models for infectious disease modelling, and the BSTS model performs well. Apart from the
literature, this study is trying to prove the Bayesian ARIMA model gives a better result than the
BSTS model. This study uses a different modelling and model comparison method to compare widely
used autoregressive integrated moving average (ARIMA) models with their Bayesian structural time
series (BSTS) models for COVID-19 data using the Bayesian approach. It is essential to find the order
of the ARIMA model before doing bayesian analysis. We find the order of the ARIMA model using
measurement LOO information criteria , using the Hamiltonian Montecarlo algorithm and rstan estimate
the parameters of ARIMA and BSTS models for COVID-19 data. Furthermore, compare both models
using Looic and Waic values; Bayesian ARIMA models outperform in this study.

Keywords: BSTS, COVID-19, ARIMA, MCMC, LOOIC, WAIC, Stan

1. Introduction

The literature contains a variety of traditional studies that use ARIMA models. The statistical
models and techniques for evaluating discrete time series are discussed in [1], along with some of
the methodology’s most significant applications. The class of autoregressive integrated moving
average (ARIMA) models and various extensions of these models are among the models taken
into consideration. [2] used the ARIMA model, a version of ARMA, and fitted the same to
non-seasonal data by identifying autoregressive and moving average terms with the help of
PACF and ACF. [3] describes how to find ARIMA models using the extended autocorrelation
function. Over the past few decades, the Bayesian method’s significance in econometrics has
grown significantly. In this sense, significant references include [4], [5], [6], [7], and [8], etc. [9]
clarifies the autoregressive and moving average parameters are implicitly constrained to the
stationary and invertible region using a straightforward reparameterisation. [10] offers a few new
transformation concepts and looks at how they fit into an effective numerical integration strategy
for ARIMA models. The ARMA model can be used to model a variety of data sets due to its
universal structure. Typically, the theory does not specify which model should be chosen, so it
must be chosen from among a variety of competing models. The choice of an ARIMA model is
vital for both statistical inference and prediction.

The bayesian structural time series (BSTS) model, which is based on [11] technique, is another
model we used in this work. Create numerous layers utilising this model, such as trends,
seasonality, and regression components. In addition, unlike with traditional ARIMA models,
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stationary time series are not required for BSTS models, since the BSTS model can deal with
structural changes in time series. In contrast to classical ARIMA and machine learning models, a
notable advantage of the BSTS model is its distinct interpretable structure in both observable and
unobservable dynamic components.

2. Methodology

In many studies comparison between classical ARIMA and BSTS models for COVID-19 data,
the BSTS model performs well in these studies [12, 13, 14]. Apart from the literature, this study
is trying to prove the Bayesian ARIMA model gives a better result than the BSTS model for
COVID-19 data. The study’s goal is to provide a Bayesian approach to assess ARIMA models and
the BSTS model, utilizing the Hamiltonian Monte Carlo (HMC) algorithm and the programming
language Rstan. This is being done for the COVID-19 cumulative number of cases and the
cumulative number of deaths from the date 01 March 2020, to 30 June 2021. Performing this
study in two steps; first, for the analysis of Bayesian ARIMA models, it is important to find the
order of the ARIMA model. We find the optimized order using the LOOIC value, and the model
with the lowest LOOIC value is considered the best model [15]. In the second step, using various
priors, we estimate the parameters of the BSTS model and the Bayesian ARIMA model. In the
following phase, we compare the BSTS model and the Bayesian ARIMA model using various
measures for the corresponding data, such as the looic and waic values [16]. The model with the
lowest looic and waic values is considered the best model [17].

3. ARIMA model

ARMA model with AR coefficient ϕi ’s and MA coefficient θj ’s is defined as

yt = µ0 +
p

∑
i=1

ϕiyt−i +
q

∑
j=1

θjϵt−j + ϵt (1)

in equation 1, p and q are order of ARMA model, yt ’s are the data points collected over time,
µ0 is the intercept, and ϵ ’s are the error terms distributed according to IID normal variate with
mean zero and variance σ2. Equation 1 is denoted by ARIMA (p,q) model. Invertibility enables
us to estimate the noise (ϵt) recursively by

ϵ̂t = yt − µ0 −
p

∑
i=1

ϕiyt−i −
q

∑
j=1

θjϵt−j, t = 1, 2, . . . , T (2)

As an approximation, we consider the starting values yt = ϵt = 0 for t ≤ 0. Choosing p + q ≤ 2
greatly simplifies the model, and it is frequently observed that higher order ARMA models are
more difficult to justify in practise. (see, for example, [6]). A careful review of the literature also
suggests that the problems of stationarity and invertibility can be easily tackled for small p and q,
say p + q ≤ 2.
Advantages of Bayesian ARIMA models:

• Flexibility: The Bayesian ARIMA model can handle a wide range of time series patterns,
such as non-stationary, multi-seasonal, and multi-trend data.

• Better forecasting: The Bayesian approach to ARIMA models allows for more accurate
predictions by taking into account uncertainties in the model parameters.

• Model selection: The Bayesian framework enables the use of model selection methods, such
as LOOIC, which helps to determine the optimal number of AR and MA terms in the model.

• Prior information: The Bayesian ARIMA model allows for incorporating prior information
or domain knowledge into the model, making it more robust and reliable.
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• Model uncertainty: The Bayesian ARIMA model provides a quantification of model uncer-
tainty, which can be useful in decision-making processes.

• Model comparison: The Bayesian ARIMA model allows for comparison with other models,
and selection of the best model based on a range of criteria.

3.1. Bayesian Model Formulation of ARMA model

Let y : y1, y2, . . . , yT be the time series observations from a strictly stationary and invertible ARMA
model 1. To write the approximate likelihood function for an ARMA(p, q) model with yt’s are
the time series observed data is
yt ∼ N

((
µ0 + ϕ1yt−1 + . . . + ϕpyt−p + θ1ϵt−1 + . . . + θqϵt−q

)
, σ2) under the assumption of yt =

ϵt = 0 for t ≤ 0. The conditional density of yt given yt−1, yt−2, . . . , yt−p can then be written as,

f
(
yt | yt−1, yt−2, . . . , yt−p; µ0, Φ, Θ

)
∝(

1
σ2

)
exp

− 1
2σ2

(
yt − µ0 −

p

∑
i=1

ϕiyt−i −
q

∑
j=1

θjϵt−j

)2
 .

(3)

The likelihood function is defined as:

f
(

y | µ0, Φ, Θ
)

∝
T

∏
t=p+1

f
(
yt | yt−1, yt−2, . . . , yt−p; µ0, Φ, Θ

)
(4)

which reduces to:

f
(

y | µ0, Φ, Θ
)

∝(
1
σ2

)(T−p)/2
exp

− 1
2σ2

T

∑
t=p+1

(
yt − µ0 −

p

∑
i=1

ϕiyt−i −
q

∑
j=1

θjϵt−j

)2
 (5)

4. BSTS model

The BSTS model is defined by a pair of equations,

yt = ZT
t αt + εt,

αt+1 = Ttαt + Rtηt,
(6)

where εt ∼ N
(
0, σ2

t
)

and ηt ∼ N (0, Qt), both error terms are independent of all other unknowns
[11]. In this study, we are using a local linear trend model (a BSTS model without regression
components) that assumes level and slope as random walk components.

4.1. Local linear trend model

The local linear trend model is a popular option for trend modelling because it responds rapidly
to local variation, which is important when making short-term forecasts. The equation as follows:

yt = µt + ϵt ϵt ∼ N
(

0, σ2
ϵ

)
(7)

the equation of the level component is:

µt+1 = µt + δt + ηt ηt ∼ N
(

0, σ2
η

)
(8)

and the equation of the slope is:

δt+1 = δt + ζt ζt ∼ N
(

0, σ2
ζ

)
(9)

The local linear trend is based on the supposition that both the mean and slope components
follow random walks.
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5. Bayesian estimation using R and Stan

5.1. Bayesian estimation of ARIMA models

In this session, use the corresponding priors to express the following stan code for the ARIMA(1,0,1)
model in R:

µ0 ∼ studentt(0, 1, 6)

ϕ1 ∼ normal(0, 0.5)

θ1 ∼ normal(0, 0.5)

σ ∼ studentt(0, 1, 7)

For all ARIMA models, we use the same priors for µ and σ; for all AR components, we use prior
as normal(0, 0.5), and for all MA components, we use prior as normal(0, 0.5). Stan code for the
ARIMA(1,0,1) model is given below:

armamodel="data {
int<lower=1> N;
real y[N];
}
parameters {
real mu0;
real phi1;
real theta1;
real<lower=0> sigma;
}
model {
vector[N] nu;
vector[N] err;
psi[1] = mu0 + phi1 * mu0;
err[1] = y[1] - psi[1];
for ( n in 2:N) {
psi[n] = mu0 + phi1 * y[n-1] + theta1 * err[n-1];
err[n] = y[n] - psi[n];
}
mu0 ~ studentt(0, 1, 6);
phi1 ~ normal(0, 0.5);
theta1 ~ normal(0, 0.5);
sigma ~ studentt(0, 1, 7);
err ~ normal(0, sigma);
}
"

Only the ARIMA(1,0,1) model code is expressed here; other types of ARIMA models were used
in this study but were not displayed owing to space limitations.

5.2. BSTS models

In this session, the Stan formulation of the Bayesian structural time series model is discussed. The
appropriate priors for the parameters are discussed below:

uerr ∼ N(0, 1)

verr ∼ N(0, 1)

σslope ∼ N(0, 0.5)
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σlevel ∼ N(0, 0.5)

σobs ∼ N(5, 10)

Stan code for BSTS model is:

\label{stan:2}
bstsmodel="
data {
int <lower=0> N;
vector[N] y;
}
parameters {
vector[N] a_err;
vector[N] b_err;
real beta;
real <lower=0> sigma_obs;
real <lower=0> sigma_slope;
real <lower=0> sigma_level;
}

transformed parameters {
vector[N] a;
vector[N] b;
a[1] = a_err[1];
b[1] = b_err[1];
for (n in 2:N) {
a[n] = a[n-1] + b[n-1] + s_level*u_err[n] ;
b[n] = b[n-1] + s_slope*v_err[n] ;
}
}

model {
a_err ~ normal(0,1);
b_err ~ normal(0,1);
sigma_slope~normal(0,0.5);
sigma_level~normal(0,0.5);
sigma_obs~normal(5,10);
for(n in 1:N){
y[n] ~ normal (a[n] ,sigma_obs);
}
}
generated quantities{
vector[N] yrepg;
real log_lik[N];
for(n in 1:N){log_lik[n]=normal_lpdf(y[n]|a[n],sigma_obs);
}
}
"

In this chapter for the BSTS model, we apply the same priors and stan code for the remaining
data sets; when we use the same priors for all data sets, we can more precisely compare our looic
and waic values.
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6. Results and discussions

During this session, we reviewed the estimated parameters obtained after executing Stan code for
both Bayesian ARIMA and BSTS models.

6.1. ARIMA model Bayesian estimation

6.1.1 ARIMA model selection

Finding the AR component, MA component, and order of differencing for the model is the first
step before using an ARIMA model. Table 1 lists various p and q order ARIMA models and their
associated LOOIC values. We assess alternative order ARIMA models with LOOIC values for the
cumulative number of cases and the cumulative number of deaths for each of the five countries.
We evaluate the model with the lowest LOOIC value as the ideal model, and we employ that
model in further bayesian analysis. For instance, from table 1, take the cumulative number of
cases in the USA, the minimum LOOIC value is 10720.14 for the order of ARIMA (1, 2, 1), so we
find our ARIMA model using the minimum LOOIC value.Similarly, for the cumulative number
of deaths in the USA, the minimum LOOIC value is 7000.51 for the model ARIMA (3, 2, 2), so we
use this model in further Bayesian analysis. Similarly, we ordered ARIMA for further Bayesian
analysis for all other countries’ cumulative cases and deaths.

Table 1: ARIMA model selection

Countries Cases model AIC value Deaths model AIC value

USA

ARIMA(2„2,2)
ARIMA(0,2,1)
ARIMA(1,2,2)
ARIMA(2,2,1)
ARIMA(1,2,1)
ARIMA(2,2,0)

10721.76
10730.94
10721.83
10722.18
10720.14
10751.45

ARIMA(2,2,2)
ARIMA(1,2,2)
ARIMA(2,2,1)
ARIMA(3,2,2)
ARIMA(3,2,1)
ARIMA(3,2,3)

7007.206
7176.245
7131.75
7000.51
7115.77
7012.184

UK

ARIMA(2,2,2)
ARIMA(0,2,0)
ARIMA(1,2,0)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(1,2,2)

8921.798
8935.118
8919.275
8917.05
8918.23
8920.127

ARIMA(2,2,2)
ARIMA(1,2,2)
ARIMA(2,2,1)
ARIMA(5,2,2)
ARIMA(5,2,1)
ARIMA(4,2,1)

6181.108
6204.96
6237.94
5801.33
5968.22
6114.78

UAE

ARIMA(0,2,0)
ARIMA(1,2,0)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(0,2,2)

6906.30
6788.24
6729.45
6732.08
6731.07

ARIMA(2,2,2)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(2,2,1)
ARIMA(1,2,2)

1987.16
1984.84
1983.08
1985
1973.254

Bahrain

ARIMA(2,2,2)
ARIMA(1,2,2)
ARIMA(1,2,1)
ARIMA(2,2,1)

5911.402
5908.39
5929.98
5931.204

ARIMA(2,2,2)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(1,2,2)

2096.992
2096.94
2099.94
2101.53

India

ARIMA(2,2,2)
ARIMA(2,2,1)
ARIMA(3,2,2)
ARIMA(3,2,1)

10000.67
10033.83
9941.79
9990.04

ARIMA(2,2,2)
ARIMA(1,2,1)
ARIMA(0,2,1)
ARIMA(1,2,2)

6895.87
6895.35
6892.32
6895.8

Using the above mentioned stan code in 5.1 and using different priors to estimate unknown
parameters shown in table 2. Figure 1a and 1b show the posterior density plot and trace plot of
the ARIMA model for the cumulative number of UK cases and the cumulative number of Bahrain
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deaths, respectively. Due to space restrctions, here is the convergence plot of two countries: the
UK and Bahrain are only displayed.

(a)

(b)

Figure 1: (a) ARIMA model for UK cases Posterior density plot, and Traceplot (b) ARIMA model for bahrain deaths
Posterior density plot, and Traceplot

Table 2 displays the anticipated outcomes for the ARIMA models. For all countries, it is simple
to verify that the majority of estimated parameters across the ARIMA models are significantly
different from zero. Let’s use the results for deaths in the UK as an example. Except for µ0, all
other parameters are statistically significant in the ARIMA(5,2,2) model. This model’s parameters
have a 95% credible interval that excludes zero and demonstrates the statistical significance of the
estimate. Additionally, the model’s ar.1 and ma.2 components contribute favourably, but ar.2, ar.3,
ar.4, and ar.5 components have statistically significant negative contributions to the ARIMA(5, 2,
2) model. For the USA’s cumulative number of cases, the recommended model is ARIMA (1, 2, 2).
There is one AR component, two MA components, and two other parameters, µ0 and σ0. All five
parameters are statistically significant, which means their 95% credible interval does not contain
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zero, and the first MA component contributes to the model negatively. Similarly, we can interpret
other countries’ parameters using table 2.

Countries
Items
(Models)

µ0 σ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 θ1 θ2

USA

Cases
(ARIMA(1,2,1)

Deaths
(ARIMA(3,2,2)

0.0545
(0.0286)

0.0367
(0.0209)

15711.35
(4.6476)

360.2125
(0.1044)

0.2375
(0.0006)

0.7407
(0.0004)

-0.4641
(0.0005)

-0.2742
(0.0004)

-0.6858
(0.0004)

-0.9896
(0.0001)

0.3402
(0.0004)

UK

Cases
ARIMA(0,2,1)

Deaths
ARIMA(5,2,2)

0.0717
(0.0277)

0.0263
(0.0211)

2433.14
(0.7048)

95.9465
(0.0277)

0.1916
(0.0004)

-0.8767
(0.0003)

-0.1517
(0.0005)

-0.4477
(0.0003)

-0.5309
(0.0004)

-0.2125
(0.0004)

-0.6963
(0.0004)

0.6722
(0.0003)

UAE

Cases
ARIMA(0,2,1)

Deaths
ARIMA(1,2,2)

1.2845
(0.0371)

0.0135
(0.0003)

252.93
(0.1261)

1.8694
(0.0005)

-0.2635
(0.0020)

-0.6439
(0.0005)

-0.5254
(0.0021)

-0.1067
(0.0016)

Bahrain

Cases
ARIMA(1,2,2)

Deaths
ARIMA(0,2,1)

0.0278
(0.0279)

0.0054
(0.0003)

108.622
(0.0564)

2.1048
(0.0006)

0.4209
(0.0027)

-0.8067
(0.0026)

-0.6267
(0.0003)

0.3154
(0.0010)

Table 2: ARIMA model Bayesian estimation: estimation of the posterior means.

6.2. BSTS model Bayesian estimation

From table 3, the majority of the posterior estimates for the BSTS model are statistically significant,
which is consistent with the results from the BSTS models. For UK deaths, for instance, a posterior
parameter estimate of σobs with a range of 142.04 to 155.34 implies that zero excludes from a
credible interval of 95 %, indicating that the parameter is statistically significant. Similarly, for
parameter σslope and σlevel , UK deaths have statistical significance. Similarly, for parameter σslope
and σlevel , UK deaths have statistical significance. The parameter value of σslope is 0.02, and σlevel
is 0.38 for the UK cumulative number of deaths. We can provide a similar justification for the
parameter estimate for the other four countries. Figure 2 to 9 show the autocorrelation plot,
caterpillar plot, posterior density plot, and trace plot of the BSTS model for the UK cumulative
number of cases and deaths, respectively.From the trace plot, we can interpret the convergence of
the Markov chain, due to space restrictions not displaying the plots of all countries.

Table 3: BSTS model Bayesian estimation: estimation of the posterior means.

Countries Items σobs σslope σlevel

USA

Cases

Deaths

1948.43
(0.04)

284.66
(0.07)

3.25
(0.001)

0.03
(0.001)

0.40
(0.001)

0.41
(0.02)

UK

Cases

Deaths

1239.84
(0.10)

148.45
(0.04)

11.51
(0.01)

0.02
(0.001)

0.39
(0.01)

0.38
(0.001)

UAE

Cases

Deaths

218.46
(0.07)

2.41
(0.08)

0.03
(0.001)

0.02
(0.001)

0.40
(0.01)

0.02
(0.001)

Bahrain

Cases

Deaths

107.37
(0.08)

2.50
(0.08)

0.03
(0.001)

0.01
(0.001)

0.41
(0.02)

0.02
(0.001)

India

Cases

Deaths

1240.02
(0.10)

233.30
(0.09)

11.53
(0.01)

0.04
(0.001)

0.40
(0.01)

0.39
(0.001)
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Figure 2: BSTS model for UK cases
autocorrelation plot
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Figure 3: BSTS model for UK cases
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Figure 4: BSTS model for UK cases
posterior density plot
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Figure 5: BSTS model for UK cases
trace plot
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Figure 6: BSTS model for UK deaths
autocorrelation plot
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Figure 7: BSTS model for UK deaths
caterpillar plot
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Figure 8: BSTS model for UK deaths
posterior density plot
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Figure 9: BSTS model for UK deaths
trace plot

7. Conclusion

In this study, we used a Bayesian estimation to evaluate the widely used ARIMA and BSTS
models while modelling COVID-19 cumulative number of cases and the cumulative number
of deaths in five countries. From table 4, we discover that the ARIMA model LOOIC value is
lower than that of their corresponding BSTS models. The model with the lowest LOOIC value
is considered to be the best model. For example, Bahrain’s cumulative number of cases LOOIC
value for the Bayesian ARIMA model is 5945.3 and for the BSTS model is 6028.5. Here Looic
value is the minimum for the ARIMA model and which is the best model. Similarly, for Bahrain
cumulative number of deaths LOOIC value for the Bayesian ARIMA model is 2110.7, and for the
BSTS model is 2273.2, therefore the minimum LOOIC value is for the ARIMA model. Therefore
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almost all countries’ data set LOOIC value is minimum for the Bayesian ARIMA model. Hence,
when compared to the corresponding BSTS model, the Bayesian ARIMA model performs the best.

Table 4: ARIMA and BSTS model validation using LOOIC and WAIC.

Looic Waic Looic Waic

USA

Cases

Deaths

10771.5

7221.3

10771.6

7260

47343.5

7665.8

47887.2

7665

UK

Cases

Deaths

8958.4

5831.3

8958.3

5831.2

24255.4

6448.6

24362.8

6448.6

UAE

Cases

Deaths

6786

1993.4

6800.9

1993.5

7131.2

2236

7180.2

2236

Bahrain

Cases

Deaths

5945.3

2110.7

5945.3

2110.9

6028.5

2273.2

6028.5

2273.2

India

Cases

Deaths

10095.5

6981.2

10096.1

6983.5

24219.5

7279.4

24326.3

7361.7
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