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 Abstract 

In this article, a generalization of length biased weighted generalized uniform distribution called 

Marshall Olkin length biased weighted generalized uniform distribution is introduced and studied. Some 

of the statistical properties of the new distribution such as hazard rate function, compounding, quantile 

function, moments, Renyi and Shannon entropies are discussed. The maximum likelihood estimation of 

the model parameters is done and a simulation study is conducted for confirming the validity of the 

estimates and also introduced a minification process with respect to the model and explored its sample 

path behaviour for different combinations of parameters. Further, the stress strength analysis is carried 

out and the estimate of the reliability is obtained based on a simulation study. 
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1. Introduction 

 
The theory of weighted distributions provides a collective access for the problems of model 

specification and data interpretation. Weighted distributions take into account the method of 

ascertainment, by adjusting the probabilities of the actual occurrence of events to arrive at a 

specification of the probabilities of those events as observed and recorded [14]. 

 The uniform distribution is considered as the simplest probability model and is connected to 

all the distributions. Many characterizations and modifications of the generalized uniform distribution 

have been introduced and explored by various researchers [see, 19, 10, 8, 18]. Rather and Subramanian 

[16] introduced and studied the properties of length biased weighted generalized uniform 

distribution. 

The probability density function and cumulative distribution function of length biased 

weighted generalized uniform distribution (LBWGU) are respectively, given by  

 𝑔𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾) =
(𝜃+2)𝑥𝜃+1

𝛾𝜃+2 ;     0 < 𝑥 < 𝛾, 𝜃 > −1 (1) 

 

 𝐺𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾) = (
𝑥

𝛾
)

𝜃+2

;      0 < 𝑥 < 𝛾, 𝜃 > −1 (2) 

Marshall Olkin [11] introduced a new family of distributions by inserting a new shape parameter to 

the existing family of distributions. Let G(x) be the cumulative distribution function (cdf) of a random 

variable X, then the cdf of the Marshall and Olkin family of distributions is  

𝐹(𝑥) =
𝐺(𝑥)

1−(1−𝛽)(1−𝐺(𝑥))
                                     (3) 
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 The corresponding pdf of (3) is given by 

 

 𝑓(𝑥) =
𝛽𝑔(𝑥)

[1−(1−𝛽)(1−𝐺(𝑥))]2, (4) 

where 𝛽 > 0 is a shape parameter. Clearly, for 𝛽 = 1, we obtain the baseline distribution, i.e., F(x) = 

G(x). 

Many authors have introduced various univariate distributions belonging to the 

Marshall-Olkin family of distributions such as Marshall-Olkin Weibull [5], Marshall-Olkin semi Burr 

and Marshall-Olkin Burr [7], Marshall-Olkin Frechet distribution [9], Marshall-Olkin generalized 

exponential distribution [17] and Marshall-Olkin extended generalized Lindley distribution [2]. 

Recently, introduced Marshall-Olkin form of additive Weibull distribution [1], reliability test plan for 

the Marshall-Olkin length biased Lomax distribution [12] and Marshall-Olkin length biased Maxwell 

distribution and its applications [13]. 

The rest of this paper is planned as follows. In section 2, the Marshall-Olkin length biased 

weighted generalized uniform (MOLBWGU) distribution is given, with plots of the pdf and cdf. The 

statistical properties of the new distribution are studied in section 3, including hazard rate function, 

moments, quantile function, compounding properties, order statistics and Renyi and Shannon 

entropies. Estimation of the model parameters are discussed in section 4. In section 5, the application 

of the distribution in time series analysis is discussed. In section 6, the stress strength analysis is 

carried out using a simulation study. Concluding remarks are presented in section 7. 

 

2. Marshall-Olkin Length Biased Weighted Generalized Uniform Distribution 

 
 Let X follows length biased weighted generalized uniform distribution. A new distribution can be 

defined by inserting (2) in (3). The cdf obtained is  

 𝐹𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

,       0 < 𝑥 < 𝛾. (5) 

 Based on (5), the survival function of the MOLBWGU distribution can be expressed as  

 𝑆𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

,      0 < 𝑥 < 𝛾. (6) 

 where 𝜃 > −1 and 𝛽 > 0. 

By putting (1) and (2) in (4), we obtain the pdf of the MOLBWGU distribution as  

 𝑓𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 ,      0 < 𝑥 < 𝛾. (7) 

We refer to this new distribution as the generalization of length biased weighted generalized 

uniform distribution with parameters 𝜃, 𝛾 and 𝛽. 

The shape of the pdf 𝑓(𝑥; 𝜃, 𝛾, 𝛽) depends on parameter 𝛽. If 𝛽 ∈ (0,1) then the pdf is a bell 

shaped function on (0, 𝛾) with 𝑓(0; 𝜃, 𝛾, 𝛽) = 0 and 𝑓(𝛾, 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽

𝛾
. In the case of 𝛽 > 1 then 

the pdf is an increasing function on (0, 𝛾) with 𝑓(0, 𝜃, 𝛾, 𝛽) = 0 and 𝑓(𝛾, 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽

𝛾
. 

Remark 1. If 𝛽 = 1, we obtain length biased weighted generalized uniform distribution introduced by 

Rather and Subramanian [16].  

Remark 2. When 𝜃 = -1 and 𝛽 = 1, MOLBWGU distribution reduces to uniform distribution over 

(0, 𝛾).  

Remark 3. When 𝛾 = 1 and 𝛽 = 1, MOLBWGU distribution reduces to standard power function 

distribution.  
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Figure 1 : Curves of the pdf of the MOLBWGU distribution for different values of the parameters. 

 
Figure 2 : Curves of the cdf of the MOLBWGU distribution for different values of the parameters. 

 

3. Statistical Properties 

 
This section is devoted to some statistical properties of the MOLBWGU distribution.  

 

3.1. Hazard Rate Function 

 

The hrf is given by, ℎ𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2

(1−
(

𝑥
𝛾)

𝜃+2

1−(1−𝛽)(1−(
𝑥
𝛾)

𝜃+2
)

)

, 

 where, 0 < 𝑥 < 𝛾. 

For 𝛽 ∈ (0,1) and 𝛽 > 1, the hrf is evidently increasing failure rate. 
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Figure 3: Curves of the hazard rate function of the MOLBWGU distribution for different values of the parameters. 

 

  The reverse hazard function of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) is given by, 

 

 𝑟𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2

(
(

𝑥
𝛾)

𝜃+2

1−(1−𝛽)(1−(
𝑥
𝛾)

𝜃+2
)

)

. 

 The reverse hazard rate function decreases with 𝑟(0, 𝜃, 𝛾, 𝛽) = 0 and 𝑟(𝛾, 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽

𝛾
. 

 

3.2. Compounding 

 
The property that Marshall-Olkin family of distributions can be expressed as a compound distribution 

with exponential distribution as mixing density is useful in obtaining new parameter families of 

distribution in terms of existing ones, expressed Marshall-Olkin extended forms of Weibull, Lomax, 

linear exponential and exponential power family of distributions as a compound distribution [see 5, 4, 

9].  

Theorem 1. Let 𝑋 be a continuous random variable with conditional survival function on 𝛥 = 𝛿 

expressed as �̅�(𝑥|𝛿) = (1 − (
𝑥

𝛾
)𝜃+2) 𝑒

−(1−𝛽)𝛿(
𝑥

𝛾
)𝜃+2

,         0 < 𝑥 < 𝛾, 

and let Δ follows a distribution function with probability density function  

 𝑚(𝛿) = 𝛽 𝑒−𝛽𝛿 , 𝛿 > 0. 

Then the random variable 𝑋 has the 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution.  

Proof: The unconditional survival function of the random variable 𝑋 is given by,  

 �̅�(𝑥) = ∫
∞

−∞
�̅�(𝑥|𝛿)𝑚(𝛿)𝑑𝛿 

      = 𝛽(1 − (
𝑥

𝛾
)𝜃+2) ∫

∞

0
𝑒

−[𝛽+(1−𝛽)(
𝑥

𝛾
)𝜃+2]𝛿

𝑑𝛿 

                 =    
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

 . 

 which is the survival function of the 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution.              

Theorem 2. Let {𝑋𝑖 , 𝑖 ≥ 1} be a sequence of i.i.d. random variables with common survival function 

𝐺′(𝑥). Let 𝑇 be a geometric random variable independently distributed of {𝑋𝑖 , 𝑖 ≥ 1} such that 𝑃(𝑇 =

𝑛) = 𝛽(1 − 𝛽)𝑛−1, 𝑛 = 1,2, … ,0 < 𝛽 < 1 . Let 𝑌𝑇 = 𝑚𝑖𝑛1≤𝑖≤𝑇𝑋𝑖 . Then {𝑌𝑇}  is distributed as 

MOLBWGU(𝜃, 𝛾, 𝛽) if and only if {𝑋𝑖} follows 𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾) .  

Proof: The survival function of the random variable 𝑌𝑇 is  

 𝐻′(𝑥) = 𝑃(𝑌𝑇 > 𝑥) 
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            = ∑∞
𝑛=1 𝑃(𝑌𝑛 > 𝑥)𝑃(𝑇 = 𝑛) 

            = ∑∞
𝑛=1 [𝐺′(𝑥)]𝑛𝛽(1 − 𝛽)𝑛−1 

            =
𝛽𝐺′(𝑥)

1−(1−𝛽)𝐺′(𝑥)
 

           =
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

. 

 which is survival function of MOLBWGU(𝜃, 𝛾, 𝛽) distribution.              

Theorem 3. Let {𝑋𝑖 , 𝑖 ≥ 1} be a sequence of i.i.d. random variables with common survival function 

𝐺′(𝑥). Let 𝑇 be a geometric random variable independently distributed of {𝑋𝑖 , 𝑖 ≥ 1} such that 𝑃(𝑇 =

𝑛) = 𝛽(1 − 𝛽)𝑛−1, 𝑛 = 1,2, … , 0 < 𝛽 < 1 . Let 𝑍𝑇 = 𝑚𝑎𝑥1≤𝑖≤𝑇𝑋𝑖 . Then {𝑍𝑇}  is distributed as 

MOLBWGU(𝜃, 𝛾,
1

𝛽
) if and only if {𝑋𝑖} follows LBWGU(𝜃, 𝛾) distribution.  

Proof: The distribution function of 𝑍𝑇 is  

 𝐾(𝑥) = 𝑃(𝑍𝑇 ≤ 𝑥) 
           = ∑∞

𝑛=1 𝑃(𝑍𝑛 ≤ 𝑥)𝑃(𝑇 = 𝑛) 
          = ∑∞

𝑛=1 [𝐺(𝑥)]𝑛𝛽(1 − 𝛽)𝑛−1 

        =
𝛽𝐺(𝑥)

1−(1−𝛽)𝐺(𝑥)
 

         =
𝛽(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(
𝑥

𝛾
)

𝜃+2 . 

 From this it follows that the survival function of the random variable 𝑍𝑇 is  

𝐾′(𝑥) =

1
𝛽

(1 − (
𝑥
𝛾

)𝜃+2)

1 − (1 −
1
𝛽

) (1 − (
𝑥
𝛾

)
𝜃+2

)

 , 

which implies that 𝑍𝑇 has MOLBWGU(𝜃, 𝛾,
1

𝛽
) distribution.        

       

3.3. Order Statistics 

 
Let (𝑥1, 𝑥2, … , 𝑥𝑛)  be a random sample of size 𝑛  from 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽)  distribution and let 

𝑥1:𝑛, 𝑥2:𝑛, … , 𝑥𝑛:𝑛 be the corresponding order statistics. Then the pdf of the 𝑗𝑡ℎ order statistic for the 

𝑀𝑂𝐿𝐵𝑊𝐺𝑈 distribution is given by  

 𝑓𝑗:𝑛(𝑥) =
𝑛!

(𝑗−1)!(𝑛−𝑗)!

(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 × [
(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑗−1

[
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑛−𝑗

. 

 The 𝑀𝑂𝐿𝐵𝑊𝐺𝑈 distribution has the following pdf for 𝑥1:𝑛  

 𝑓1:𝑛(𝑥) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 [
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑛−1

. 

 and the pdf for 𝑥𝑛:𝑛 is given by  

 𝑓𝑛:𝑛(𝑥) = 𝑛
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 [
(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑛−1

,    0 < 𝑥 < 𝛾. 

 

3.4. Quantile Function 

 
The 𝑞𝑡ℎ quantile of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution is given by  

 𝑥𝑞 = 𝐹−1(𝑞) = 𝛾 (
𝑞𝛽

1−𝑞(1−𝛽)
)

1

𝜃+2
,         0 ≤ 𝑞 ≤ 1. 

where 𝐹−1(⋅) is the inverse distribution function.  
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In particular the median of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution is given by,  

 m𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝛾 (
𝛽

1+𝛽
)

1

𝜃+2
 . 

 

3.5. Moments 

 
If X has the 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution, then the 𝑠𝑡ℎ order moment is obtained as 

 

 𝔼(𝑋𝑠) = ∫
𝛾

0
𝑥𝑠 (𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 𝑑𝑥 

 =
𝛽(𝜃+2)

𝛾3(𝜃+2) ∫
𝛾

0

𝑥𝑠+𝜃+1

(𝛽𝛾𝜃+2+(1−𝛽)𝑥𝜃+2)
2 𝑑𝑥. 

 where 𝔼 denotes the expectation. 

Let 𝑥𝜃+2 = u, above equation reduces to  

 𝔼(𝑋𝑠) =
𝛽

𝛾3(𝜃+2) ∫
𝛾𝜃+2

0

𝑢
𝑠

𝜃+2

(𝛽𝛾𝜃+2+(1−𝛽)𝑢)
2 𝑑𝑢. 

 From Prudnikov [15],  

 ∫
𝑏

𝑎

(𝑥−𝑎)𝛼−1

(𝑐𝑥+𝑑)𝛼+𝑛+1 𝑑𝑥 =
(𝑏−𝑎)𝛼

(𝑎𝑐+𝑑)(𝑏𝑐+𝑑)𝛼
∑𝑛

𝑘=0 𝑛𝐶
𝑘

𝐵(𝛼+𝑘,𝑛−𝑘+1)

(𝑏𝑐+𝑑)𝑘(𝑎𝑐+𝑑)𝑛−𝑘. 

where a, b, c and d are real numbers with (ac+d)(bc+d) > 0; Real part of 𝛼 > 0 and 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
. 

Hence if 𝑠/𝜃 + 2 is a positive integer, we have,  

 ∫
𝛾𝜃+2

0

𝑢
𝑠

𝜃+2

(𝛽𝛾𝜃+2+(1−𝛽)𝑢)
2 𝑑𝑢 =

1

𝛾𝜃+2+𝑠𝛽1+𝑠/(𝜃+2)
∑𝑠/𝜃+2

𝑘=0 𝑠/𝜃 + 2 C
𝑘

𝛽𝑘 

 𝐵(1 + 𝑘 +
𝑠

𝜃+2
, 1 − 𝑘 +

𝑠

𝜃+2
). 

Therefore  

 𝔼(𝑋𝑠) =
1

𝛾4(𝜃+2)+𝑠𝛽𝑠/(𝜃+2)
∑𝑠/𝜃+2

𝑘=0 𝑠/𝜃 + 2 𝐶
𝑘

𝛽𝑘𝐵(1 + 𝑘 +
𝑠

𝜃+2
, 1 − 𝑘 +

𝑠

𝜃+2
). 

 In particular,  

 𝔼(𝑋) =
1

𝛾4𝜃+9𝛽1/(𝜃+2)
∑1/𝜃+2

𝑘=0 1/𝜃 + 2 𝐶
𝑘

𝛽𝑘𝐵(1 + 𝑘 +
1

𝜃+2
, 1 − 𝑘 +

1

𝜃+2
). 

 

 𝔼(𝑋2) =
1

𝛾4𝜃+10𝛽2/(𝜃+2)
∑2/𝜃+2

𝑘=0 2/𝜃 + 2 𝐶
𝑘

𝛽𝑘𝐵(1 + 𝑘 +
2

𝜃+2
, 1 − 𝑘 +

2

𝜃+2
). 

 

3.6. Renyi and Shannon Entropies 

 
The Renyi entropy is defined as 

𝐼𝑅(𝛾) =
1

1 − 𝛾
log ∫

∞

0

𝑓𝛾(𝑥)𝑑𝑥, 𝛾 > 0, 𝛾 ≠ 1. 

 Then, ∫
∞

0
𝑓𝛾(𝑥)𝑑𝑥 = ∫

𝛾

0

𝛽𝛾(𝜃+2)𝛾

𝛾3(𝜃+2)𝛾

𝑥𝑟(𝜃+1)

(𝛽𝛾𝜃+2+(1−𝛽)𝑥𝜃+2)
2𝛾 𝑑𝑥. 

 Let u = 𝑥𝜃+2. Therefore  

 ∫
𝛾

0

𝑥𝑟(𝜃+1)

(𝛽𝛾𝜃+2+(1−𝛽)𝑥𝜃+2)
2𝛾 𝑑𝑥 =

1

𝜃+2
∫

𝛾𝜃+2

0

𝑢
1

𝜃+2
(𝛾−1)(𝜃+1)

(𝛽𝛾𝜃+2+(1−𝛽)𝑢)
2𝛾 𝑑𝑢. 

 Using the equation from Prudnikov [15] and if 
(𝛾−1)(𝜃+3)

(𝜃+2)
 is a positive integer, the above integral 

becomes  

 
1

(𝜃+2)𝛾(𝜃+2)+(𝛾−1)(𝜃+3)𝛽
1+

(𝛾−1)(𝜃+3)
(𝜃+2)

∑
(𝛾−1)(𝜃+3)

(𝜃+2)

𝑘=0

(𝛾−1)(𝜃+3)

(𝜃+2)
𝐶

𝑘
𝛽𝑘 

 𝐵(1 + 𝑘 +
(𝛾−1)(𝜃+3)

(𝜃+2)
, 1 − 𝑘 +

(𝛾−1)(𝜃+3)

(𝜃+2)
). 
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 Therefore the Renyi entropy is  

 𝐼𝑅(𝛾) =
1

1−𝛾
log [

𝛽

(1−𝛾)
(𝜃+2)(𝜃+2)(𝛾−1)

𝛾(4𝜃+9)𝛾−1
∑

(𝛾−1)(𝜃+3)

(𝜃+2)

𝑘=0

(𝛾−1)(𝜃+3)

(𝜃+2)
𝐶

𝑘
𝛽𝑘 

 𝐵(1 + 𝑘 +
(𝛾−1)(𝜃+3)

(𝜃+2)
, 1 − 𝑘 +

(𝛾−1)(𝜃+3)

(𝜃+2)
)]. 

 Thus, the Shannon entropy is  

 𝐸[−log𝑓(𝑥)] = −log[𝛽(𝜃 + 2)𝛾−3(𝜃+2)] − (𝜃 + 1)𝐸[log(𝑋)] + 2𝐸[log(𝛽𝛾𝜃+2 + (1 − 𝛽)𝑥𝜃+2)]. 

 

4. Maximum Likelihood Estimation 

 
The MLE method is used for the parameter estimation of MOLBWGU distribution. Let (𝑥1, 𝑥2, … , 𝑥𝑛) 

be a random sample of size n from the MOLBWGU distribution. The likelihood function for the 

MOLBWGU distribution is,  

 𝐿 = ∏𝑛
𝑖=1

(𝜃+2)𝛽𝛾−𝜃−2𝑥𝑖
𝜃+1

(1−(1−𝛽)(1−(
𝑥𝑖
𝛾

)
𝜃+2

))

2. 

from which the log-likelihood function is obtained as  

 log𝐿 = −2 ∑𝑛
𝑖=1 log (1 − (1 − 𝛽)(1 − 𝛾−𝜃−2𝑥𝑖

𝜃+2)) + (𝜃 + 1) ∑𝑛
𝑖=1 log(𝑥𝑖) 

 +𝑛(−(𝜃 + 2)log(𝛾) + log(𝜃 + 2) + log(𝛽)). 

The partial derivatives of this log-likelihood function is given by  

 
𝜕log𝐿

𝜕𝜃
= −2 ∑𝑛

𝑖=1 −
(1−𝛽)(𝛾−𝜃−2log(𝛾)𝑥𝑖

𝜃+2−𝛾−𝜃−2𝑥𝑖
𝜃+2log(𝑥𝑖))

1−(1−𝛽)(1−𝛾−𝜃−2𝑥𝑖
𝜃+2)

 

 + ∑𝑛
𝑖=1 log(𝑥𝑖) + 𝑛 (

1

𝜃+2
− log(𝛾)). 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛾
= −2 ∑𝑛

𝑖=1
(−𝜃−2)(1−𝛽)𝛾−𝜃−3𝑥𝑖

𝜃+2

1−(1−𝛽)(1−𝛾−𝜃−2𝑥𝑖
𝜃+2)

−
(𝜃+2)𝑛

𝛾
. 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
=

𝑛

𝛽
− 2 ∑𝑛

𝑖=1
1−𝛾−𝜃−2𝑥𝑖

𝜃+2

1−(1−𝛽)(1−𝛾−𝜃−2𝑥𝑖
𝜃+2)

. 

 The maximum likelihood estimator (�̂�, 𝛾, �̂�) of the parameters (𝜃, 𝛾, 𝛽) can be obtained by solving 

the equations 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
= 0, 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛾
= 0 and 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
= 0. 

 

4.1. Simulation Study 
 

In this section, some simulation results are provided to study the behaviour of the MLEs in terms of 

the sample size. For this purpose, a Monte Carlo simulation study is conducted for 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) 

distribution. The results are obtained from 1000 Monte Carlo replications and the simulations are 

carried out using the statistical software R. In each replication, a random sample of size 25, 50, 100, 150, 

200 is generated for different combinations of 𝜃, 𝛾 and 𝛽 . The initial values of parameters are 𝜃 = 

1.2, 𝛾 = 0.3, 𝛽 = 1.5; 𝜃 = 2 , 𝛾 = 1.5, 𝛽 = 2.5; 𝜃 = 0.5, 𝛾 = 0.5, 𝛽 = 1.5 and 𝜃 = 2, 𝛾 = 1, 𝛽 = 2. Then 

computed mean of the MLEs of the parameters, biases and mean square errors (MSEs) of the 

parameter estimates. Tables 1, 2, 3 and 4 gives the values of the estimates, biases and MSEs of the 

corresponding parameters. From the tables, it can be seen that, as sample size increases the bias and 

MSE of the estimates decreases.  
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Table 1: Estimates, Biases and MSEs for 𝜃 = 1.2, 𝛾 = 0.3 and 𝛽 = 1.5 

 

Sample Size(n)  Parameters  Estimates Biases  MSEs  

 

25 

𝜃  
 𝛾 
 𝛽 

1.2155 

0.3579 

1.5034 

 0.0155  

 0.0579 

 0.0034  

 0.0431  

 0.1046  

 0.0009  

 

50 

 𝜃  
 𝛾 
 𝛽 

1.2143 

0.3565 

1.5022 

 0.0143 

 0.0565  

 0.0022  

 0.0412  

 0.1051  

 0.0003  

 

100 

 𝜃  
 𝛾 
 𝛽 

1.2135 

0.3541 

1.5015 

 0.0135 

 0.0541 

 0.0015  

 0.0159  

 0.1015  

 0.0003  

 

150 

 𝜃  
 𝛾 
 𝛽 

1.2111 

0.3509 

1.5009 

 0.0111 

 0.0509 

0.0009 

 0.0039  

 0.1012 

 0.0002  

 

200 

 𝜃  
 𝛾 
 𝛽 

1.2097 

0.3478 

1.5001 

 0.0097  

 0.0478 

 0.0001  

0.0027 

 0.1004 

 0.0002  

   

 

 

Table 2: Estimates, Biases and MSEs for 𝜃 = 2 , 𝛾 = 1.5 and 𝛽 = 2.5 

  

Sample Size(n)  Parameters  Estimates  Biases  MSEs  

 

25 

 𝜃  
 𝛾 
 𝛽 

 2.6271 

 1.5096 

 2.5242 

 0.6271 

 0.0096 

 0.0242 

 0.4428 

 0.2635 

 0.9715 

 

50 

 𝜃  
 𝛾 
 𝛽 

 2.4927 

 1.5082 

 2.5211 

 0.4927 

 0.0082 

 0.0211  

 0.3527 

 0.0792 

 0.6226 

 

100 

 𝜃  
 𝛾 
 𝛽 

 2.3813 

 1.5065 

 2.5175 

 0.3813 

 0.0065 

 0.0175 

 0.3795 

 0.0489 

 0.6535 

 

150 

 𝜃  
 𝛾 
 𝛽 

 2.3145 

 1.5068 

 2.5148  

 0.3145 

 0.0068 

 0.0148  

 0.1529 

 0.0035 

 0.3614 

 

200 

 𝜃  
 𝛾 
 𝛽 

 2.2501  

 1.5045  

 2.5122 

 0.2501  

 0.0045  

 0.0122 

 0.1358 

 0.0012 

 0.1428  
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Table 3: Estimates, Biases and MSEs for 𝜃 = 0.5, 𝛾 = 0.5 and 𝛽 = 1.5 

 

Sample Size(n)  Parameters  Estimates   Biases  MSEs  

 

25 

 𝜃  
 𝛾 
 𝛽 

 0.5312 

0.5505 

 1.5091 

 0.0312 

 0.0505 

 0.0091  

 0.0803 

 1.5112 

 0.1583 

 

50 

 𝜃  
 𝛾 
 𝛽 

 0.5304 

 0.5447 

 1.5082 

 0.0304 

0.0447 

 0.0082  

 0.0713 

 0.8218 

 0.0685 

 

100 

 𝜃  
 𝛾 
 𝛽 

 0.5275 

 0.5418 

 1.5079  

 0.0275 

 0.0418 

 0.0079 

 0.0752 

 0.7943 

 0.0082  

 

150 

 𝜃  
 𝛾 
 𝛽 

 0.5289 

 0.5345 

 1.5074 

 0.0289 

 0.0345 

 0.0074 

 0.0239 

 0.5728 

 0.0047  

 

200 

 𝜃  
 𝛾 
 𝛽 

 0.5217 

 0.5293  

 1.5066 

 0.0217 

 0.0293 

 0.0066  

 0.0249 

 0.5355 

 0.0032 

  

  

Table 4: Estimates, Biases and MSEs for 𝜃 = 2, 𝛾 = 1 and 𝛽 = 2 

Sample Size(n)  Parameters  Estimates   Biases  MSEs  

 

25 

 𝜃  
 𝛾 
 𝛽 

 2.1827 

1.1578 

 2.1666  

 0.1827 

0.1578 

 0.1666 

 0.3912 

 0.2014 

 0.0009 

 

50 

 𝜃  
 𝛾 
 𝛽 

 2.0915 

 1.1579 

 2.1643 

 0.0915 

 0.1579 

 0.1643  

 0.3373 

 0.2008 

 0.0004 

 

100 

 𝜃  
 𝛾 
 𝛽 

 2.0912 

 1.1458 

 2.1712 

 0.0912 

 0.1458 

 0.1712 

 0.1838 

 0.2007 

 0.0003 

 

150 

 𝜃  
 𝛾 
 𝛽 

 2.0774 

 1.1435 

 2.1626 

 0.0774 

0.1435 

 0.1626  

 0.1425 

 0.2001 

 0.0003 

 

200 

 𝜃  
 𝛾 
 𝛽 

 2.0751 

1.1315  

 2.0125 

 0.0751 

 0.1315 

 0.0125 

 0.0564 

 0.0197 

 0.0002 
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5. Application in Autoregressive Time Series Modeling 
 

In this section, some applications of MOLBWGU distribution in autoregressive time series modelling 

are provided. Now, we construct a first order autoregressive minification process with structure as 

follows,  

 𝑋𝑛 = {
𝜀𝑛, 𝑤. 𝑝. 𝛽
min(𝑥𝑛−1, 𝜀𝑛), 𝑤. 𝑝. 1 − 𝛽, 0 ≤ 𝛽 ≤ 1, 𝑛 ≥ 1,

 (8) 

 where {𝜀𝑛} is a sequence of i.i.d. random variables following LBWGU(𝜃, 𝛾) distribution independent 

of {𝑥𝑛−1, 𝑥𝑛−2, . . . } . Then the process is stationary and is marginally distributed with 

𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution. This leads to the following theorem. 

Theorem 4. In an AR (1)  process with structure (8), {𝑋𝑛 , 𝑛 ≥ 0}  defines a stationary AR (1) 

minification process with 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽)  marginal distribution iff {𝜀𝑛}  is a sequence of 

independently and identically distributed random variable with LBWGU(𝜃, 𝛾) distributon.   

Proof. Consider (8) in terms of survival function  

 �̅�𝑋𝑛
(𝑥) = 𝛽�̅�𝜀𝑛

(𝑥) + (1 − 𝛽)�̅�𝑋𝑛−1
(𝑥)�̅�𝜀𝑛

(𝑥). 

 Under stationary equilibrium it reduces to  

 �̅�𝑋(𝑥) =
𝛽𝐹𝜀𝑛(𝑥)

1−(1−𝛽)𝐹𝜀𝑛(𝑥)
. (9) 

 and hence  

 �̅�𝜀𝑛
(𝑥) =

𝛽𝐹𝑋(𝑥)

1−(1−𝛽)𝐹𝑋(𝑥)
. (10) 

 If 𝜀𝑛 follows LBWGU(𝜃, 𝛾) from(9), we get  

 �̅�𝑋(𝑥) =
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

. 

which is the survival function of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) . 

Conversely, if we take  

 �̅�𝑋𝑛
(𝑥) =

𝛽(1−(
𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

. 

from (9) it can show that�̅�𝜀𝑛
(𝑥) is distributed LBWGU(𝜃, 𝛾) with survival function (1 − (

𝑥

𝛾
)𝜃+2). 

 

5.1. Sample Path 
 

To study the behavior of the process we simulate the sample path for various values of 𝛽, the 

properties of sample path shows that the MOLBWGU AR(1) minification process can be used for 

modelling a rich variety of real data. Sample path of MOLBWGU AR(1) process for 𝛾 = 0.5, 𝜃 = 0.9 

and 𝛽= 0.4, 0.5, 0.6 and 0.8 is given in Figure 4.  

  

  
Figure 4: Sample path of the MOLBWGU AR(1) process for 𝛾 = 0.5, 𝜃 = 0.9 and 𝛽= 0.4, 0.5, 0.6 and 0.8.   
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6. Stress Strength Analysis 
 

The stress strength reliability analysis can be regarded as an assessment of reliability of a system in 

terms of random variables X and Y, where X represents strength and Y represents the stress. If the 

stress exceeds strength the system would fail and the system will function if strength exceeds stress. 

The stress strength reliability can be defined as R = P(X >Y ). Gupta [6] obtained various results on the 

MO family in the context of reliability modelling and survival analysis. Then,  

 𝑅 = 𝑃(𝑋 > 𝑌) = ∫
+∞

−∞
𝑃(𝑋 > 𝑌|𝑌 = 𝑦)𝑔𝑌(𝑦)𝑑𝑦 

 =

𝛽1
𝛽2

(
𝛽1
𝛽2

−1)2
(−𝑙𝑛

𝛽1

𝛽2
+

𝛽1

𝛽2
− 1). 

 

Let (𝑥1, 𝑥2, . . . , 𝑥𝑚) and (𝑦1 , 𝑦2, . . . , 𝑦𝑛) be two independent random samples of sizes m and n from 

MOLBWGU distribution with tilt parameters 𝛽1  and 𝛽2  respectively, and common unknown 

parameters 𝛾 and 𝜃 .  

The log likelihood function is given by 

log𝐿 = −2 ∑
𝑚

𝑖=1
log (1 − (1 − 𝛽1)(1 − 𝛾−𝜃−2𝑥𝑖

𝜃+2)) + (𝜃 + 1) ∑
𝑚

𝑖=1
log(𝑥𝑖) + 𝑚(−(𝜃 + 2)log(𝛾) + log(𝜃

+ 2) + log(𝛽1)) − 2 ∑
𝑛

𝑖=1
log (1 − (1 − 𝛽2)(1 − 𝛾−𝜃−2𝑦𝑖

𝜃+2)) + (𝜃 + 1) ∑
𝑛

𝑖=1
log(𝑦𝑖)

+ 𝑛(−(𝜃 + 2)log(𝛾) + log(𝜃 + 2) + log(𝛽2)) 

Then MLE of 𝛽1 and 𝛽2 are the solutions of the nonlinear equations 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1
= 0 and 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2
= 0. The 

elements of Information matrix are given by,  

 𝐼11 = −𝐸 (
𝜕2𝐿

𝜕𝛽1
2) =

𝑚

3𝛽1
2. 

 𝐼22 = −𝐸 (
𝜕2𝐿

𝜕𝛽2
2) =

𝑛

3𝛽2
2. 

 𝐼12 = 𝐼21 = −𝐸 (
𝜕2𝐿

𝜕𝛽1𝜕𝛽2
) = 0. 

 By the property of MLE for 𝑚 → ∞ and 𝑛 → ∞ ,  

 (√𝑚(�̂�1 − 𝛽1), √𝑛(�̂�2 − 𝛽2)) → 𝑁2(0, 𝑑𝑖𝑎𝑔{𝑎11
−1, 𝑎22

−1}). 

where 𝑎11 = lim𝑚,𝑛→∞
𝐼11

𝑚
=

1

3𝛽1
2 and 𝑎22 = lim𝑚,𝑛→∞

𝐼22

𝑛
=

1

3𝛽2
2 

Now from [6] the 95% confidence interval for R is given by  �̂� ± 1.96�̂�1𝑏1(�̂�1, �̂�2)√
3

𝑚
+

3

𝑛
,   

where  𝑏1(𝛽1, 𝜆2) =
𝜕𝑅

𝜕𝛽1
=

𝛽2

(𝛽1−𝛽2)3 [−2(𝛽1 − 𝛽2) + (𝛽1 + 𝛽2)ln
𝛽1

𝛽2
]  and  𝑏2(𝜆1, 𝜆2) =

𝜕𝑅

𝜕𝛽2
=

𝛽1

(𝛽1−𝛽2)3 [2(𝛽1 − 𝛽2) − (𝛽1 + 𝛽2)ln
𝛽1

𝛽2
] = −

𝛽1

𝛽2
𝑏1(𝛽1, 𝛽2).  

 

6.1. Simulation Study 
 

For the simulation study, generate N=10,000 sets of X-samples and Y-samples from the MOLBWGU 

distribution with parameters (𝛽1, 𝛾, 𝜃) and (𝛽2, 𝛾, 𝜃) respectively. The combinations of samples of sizes 

𝑚 = 20,25,30 and 𝑛 = 20,25,30 are studied. The validity of the estimate of R is considered by using 

the following measures, namely average bias of the estimate (�̅�), average mean square error of the 

estimate (AMSE), average confidence interval of the estimate and coverage probability defined by,   

    1.  Average bias (�̅�) of the estimates of 𝑅: 

 
1

𝑁
∑𝑁

𝑖=1 (�̂�𝑖 − 𝑅). 

    2.  Average mean square error of the estimates of 𝑅: 

 
1

𝑁
∑𝑁

𝑖=1 (�̂�𝑖 − 𝑅)2. 

    3.  Average length of the asymptotic 95% confidence interval of 𝑅: 
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1

𝑁
∑𝑁

𝑖=1 2(1.96)�̂�1𝑖𝑏1𝑖(�̂�𝛽1𝑖 , �̂�𝛽2𝑖)√
3

𝑚
+

3

𝑛
. 

    4.  The coverage probability of the confidence intervals given by the proportion of such 

interval that include the parameter 𝑅.  

The numerical values obtained for the measures are presented in Table 5 and 6. The average bias 

decreases as the sample size increases. The coverage probability is close to 0.95 as the sample size 

increases. This simulation results shows that the average bias, average MSE, average confidence 

interval and coverage probability do not show much variability for various parameter combinations.   

 

Table 5: Average bias and average MSE of the simulated estimates of R for 𝛾 = 1 and 𝜃 = 0.9 

 

(𝛽1, 𝛽2) 

 Average Bias (�̅�)  Average Mean Square Error (AMSE) 

(m, n) (0.2,0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) (0.2, 0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) 

(20, 20) 

(20, 25) 

(20, 30) 

(25, 20) 

(25, 25) 

(25, 30) 

(30, 20) 

(30, 25) 

(30, 30) 

-0.0035 

-0.0066 

-0.0092 

-0.0024 

-0.0052 

-0.0077 

-0.0021 

-0.0048 

-0.0075 

-0.0825 

-0.0832 

-0.0839 

-0.0857  

-0.0877 

-0.0878 

-0.0887 

-0.0910 

-0.0908  

-0.0589 

-0.0605 

-0.0614 

-0.0588 

-0.0606 

-0.0611 

-0.0588 

-0.0602 

-0.0611 

0.0286 

0.0289 

0.0279 

0.0233 

0.0241 

0.0234 

0.0199 

0.0204 

0.0205 

0.0042 

0.0041 

0.0039 

0.0041 

0.0039  

0.0038 

0.0040 

0.0038 

0.0037 

0.0115 

0.0117 

0.0117 

0.0115 

0.0118 

0.0118 

0.0116 

0.0118 

0.0118 

0.0040 

0.0041 

0.0042 

0.0040 

0.0041 

0.0041 

0.0040 

0.0040 

0.0041 

0.0052 

0.0052 

 0.0050 

0.0041 

0.0043 

0.0042 

0.0036 

0.0036 

0.0037 

 

  

Table 6: Average length of the confidence interval and coverage probability of the simulated 95% 

 confidence intervals of R for 𝛾 = 1 and 𝜃 = 0.9 

   

 

 

   

 

 

 

 

 

 

 

 

 

7. Conclusion 
 

In this paper, a generalization of LBWGU distribution namely MOLBWGU distribution is developed. 

Some of the statistical properties of the new distribution such as probability density function, hazard 

rate function, moments, quantile function, compounding, distribution of order statistics, Renyi and 

Shannon entropies are derived. We estimated the parameters of the distribution using maximum 

likelihood estimation method and a simulation study is conducted for proving the validity of the 

estimates.  

(𝛽1, 𝛽2) 

 Average Confidence Length  Coverage Probability 

(m, n) (0.2,0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) (0.2, 0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) 

(20, 20) 

(20, 25) 

(20, 30) 

(25, 20) 

(25, 25) 

(25, 30) 

(30, 20) 

(30, 25) 

(30, 30) 

0.3346 

0.3167 

0.3043 

0.3179 

0.2991 

0.2860 

0.3064 

0.2867 

0.2728 

0.3505 

0.3325 

0.3201 

0.3334 

0.3145 

0.3012 

0.3215 

0.3019 

0.2879 

0.3111 

0.2960 

0.2853 

0.2951 

0.2791 

0.2675 

0.2840 

0.2671 

0.2551 

0.3239 

0.3074 

0.2956 

0.3063 

0.2889 

0.2764 

0.2939 

0.2759 

0.2631 

0.9592 

0.9585 

0.9583 

0.9582 

0.9573 

0.9568 

0.9574 

0.9557 

0.9542 

0.9839 

0.9727 

0.9611 

0.9809 

0.9613 

0.9434 

0.9720 

0.9533 

0.9264 

0.9991 

0.9898 

0.9794 

0.9799 

0.9999 

0.9696 

0.9599 

0.9599 

0.9399 

0.9805 

0.9530 

0.9299 

0.9793 

0.9533 

0.9231 

0.9783 

0.9593 

0.9333 
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Also we developed a minification process using the model and explored its sample path behavior for 

different combinations of parameters. To check the impact of stress on strength of devices and systems, 

the stress strength analysis is carried out and the estimate of the reliability is examined based on a 

simulation study. 
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