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i.e. power output of the generator will jam (either by the dispatcher, or by the value of the load schedule), i.e. it is
an input value, and as the output value of the controller is the opening angle of the guiding apparatus of the
turbine.
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Sampling inspection by the method of variables is a well-known category of product control in which the 
discretion of acceptance or rejection is made hinge on some specific rule, which is framed according to the 
measurement of a quality characteristic under study. In this scenario, the quality feature under study is 
considered a continuous random variable that can be demonstrated using any continuous type statistical 
distribution. Birnbaum and Saunders distribution is a continuous probability distribution, which is 
having numerous applications in various fields. Application of Birnbaum and Saunders distribution is 
considered in this paper for establishing acceptance sampling inspection plans for variables based on the 
examination of units from a single sample. Numerical illustrations are given to demonstrate the application of 
proposed sampling plan. In addition, the results of numerical illustrations are explained with the help of 
simulated data.  
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system missions. The optimal allocations depend on system confgurations and lifetimes of components and 
spares. Various methods for finding optimal allocations have been proposed in the literature. For sake of brevity, 
lifetimes of components are commonly assumed to be independent. This paper deals with series systems, a 
common confguration, under a general setting, i.e. component lifetimes are dependent and heterogeneous. 
Moreover, the spare is also allowed to switch among original components to impose more fexibility for spare 
managements. This allowance occurred usually in network servers and electrical generators which manage by a 
dispatching center. Explicit expressions for system reliability functions are derived in detail. Since system 
lifetimes are random phenomena, stochastic orders are utilized for comparison purposes. Various illustrative 
examples are also given.  
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The minimum sample size necessary to ensure the specified life percentile is obtained under a given consumerСs 
risk. The operating characteristic values (and curves) of the sampling plans as well as the producerТs risk are 
presented.  

BAYESIAN AND CLASSICAL ESTIMATIONS 
OF TRANSMUTED INVERSE GOMPERTZ DISTRIBUTION ................................ 207 

T. M. Adegoke, K.O. Obisesan, O. M. Oladoja, G.K. Adegoke Х
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The quadratic rank transmutation map scheme is utilized to obtain the distribution. The study explores several 
characteristics of the transmuted inverse Gompertz model, including the estimation of parameters through 
classical approaches such as maximum likelihood estimation, least-squares esti≠mation, Crammer-Von Misses 
estimation, and maximum product spacing estimation. Additionally, the Bayesian techniques is used under 
different loss functions, such as the Linex loss function, square error loss function, and general entropy loss 
function. The estimates obtained from both classical and Bayesian techniques are evaluated using simulation. To 
illustrate the potential benefits of the transmuted inverse Gompertz model, a dataset on the strength of aircraft 
window glass is employed. The results obtained from the application of the new distribution to the real-life dataset 
demonstrate that it yields superior fits in comparison to other well-known distributions. The studyТs findings 
suggest that the transmuted inverse Gompertz model can provide a useful alternative for modeling lifetime data. 
The research offers valuable insights into the distributionТs properties and estimation techniques, as well as its 
superiority over other commonly used distributions. The new model can contribute to the development of more 
accurate and efficient models for analyzing lifetime dataset. Overall, the study highlights the importance of 
exploring new statistical models and techniques to improve data analysis and decision-making.  
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Transportation plays an important role in the day to day activities of human race. Road, rail, water and air are 
the four major forms of transportation in Nigeria. Road transportation is the most common means of movement 
in Oyo State and this has raise the likelihood of the occurrence of road traffic accident even posing a serious 
problem that needs serious attention. Road traffic accidents would Continually increase if tangible efforts are not 
made to tackle is problem. In Oyo state, the epicenter of the western Nigeria, road transportation is the most 
popular means of transportation. Of concern is the accidents recorded daily on the roads. This study takes into 
account the series of accidents caused on the state roads due to vehicle types. Seven vehicle types were considered 
due to the data available. Bayesian Model Averaging (BMA), a variable selection approach, was used to handle 
uncertainty in the model selection process. Several classical approach like time series have been used in analysing 
road accidents but few had explored the Bayesian approach via BMA route. A uniform model prior was used with 
a numeric g-prior to improve the predictive performance. The trend of accidents were observed for a period of 15 
years from (2006 -2020). 78% of the models were visited and using the Posterior Inclusion Probability results 

12



Table of Contents RT&A, No 2 (73) 
Volume 18, June 2022 

 

(99.546%), it was seen that the accidents that occurred via private cars was the predominant. It is the most 
important in modeling vehicle type accidents in Oyo State Nigeria. Also, accidents for 2023 and 2024 were 
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automation reduces part waiting time, decreasing the cost of waiting. When compared to the poisson arrival 
system, the size of the Markovian encouraged arrival queuing system is increasedas shown in the table. Little's 
lawis verifiedthat systemsize andqueue size issame as in length. Little's law is used to predicts lead time based 
on production rate and work-in-process. Here it is verified as shown in table.  

RELIABILITY ANALYSIS OF THIN -WALLED PRESSURE 
VESSELS USING ADVANCED FIRST ORDER SECOND  
MOMENT (AFOSM) METHOD  ..................................................................................... 244 

K. Sunitha, T. Sumathi Uma Maheshwari, M. Tirumala Devi

Pressure vessels are highly used in commercial purposes and industries such as boiling, softening and hot water 
storing tanks. Pressure vessels are subjected to its internal and external pressure. In this paper, thin-walled 
pressure vessels are taken for analysis. Pressure, radius, thickness and strength of the material are considered as 
random variables. The random variables follow normal distribution. The reliability index of the pressure vessel 
made with different materials such as 6061 aluminum alloy and SA 516 70 stainless steel has been found. 
Reliability analysis has been done for the pressure vessel by using AFOSM with MATLAB. It is observed that 
strength of the materials influences more on reliability of the vessels.  

WEIGHTED INTERVENED EXPONENTIAL 
DISTRIBUTION AS A LIFETIME DISTRIBUTION ................................................... 253 

Vilayat Ali Bhat, Sudesh Pundir 

This study proposes and investigates the weighted intervened exponential distribution, which is demon≠strated 
as a generalized extension of the intervened exponential distribution. The form of the weighted intervened 
exponential distribution is obtained by considering a specifc non-negative weighted function. The probability 
density function and cumulative density function of the proposed model are given, and its generalized form of 
reliability function and the hazard rate function is also derived. By choosing a different set of parametric values, 
the graphical demonstrations of the probability density function of weighted intervened exponential distribution 
are given where it acquires different curve shapes. The weighted intervened exponential distribution density 
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function is then further studied in the limited form as a special case called the length-biased intervened 
exponential distribution. Along with the distribution of order statistics, stochastic ordering, stress-strength 
reliability, and entropy measure, several distributional and reliability aspects of the length-biased intervened 
exponential distribution are derived. For estimating the unidentifed parameters of the length-biased variant, the 
most suggested approach known as the maximum likelihood estimation technique is implemented. To explore the 
behavior of the parameter estimates for various sample sizes, a sample data generation technique is required to 
carry out the process. Since the quantile function of the length biased intervened exponential distribution is not 
in closed form. So, the alternative data generation algorithm is employed which is known as the acceptance-
rejection algorithm technique, and a Monte-Carlo simulation study is done. The absolute average bias and mean 
square error of the estimated parameters of the length-biased version model are calculated and it is noticed that 
both the calculated measures decrease simultaneously on increasing the sample size. In order to determine if the 
model is appropriate, a real-life time-to-event data set is examined as an example, and length biased distribution 
is juxtaposed with several other common available lifetime distributions for comparison purposes.  

TRADE CREDIT FINANCING SCHEME ON RETAILERТS  
ORDERING QUANTITY FOR IMPERFECT QUALITY ITEM WITH 
LEARNING EFFECTS AND STOCKING STRATEGIES  .......................................... 267 

A. R. Nigwal, U. K. Khedlekar, N. Gupta, L. Sharma 

Today's life is a age of modern life, and in the modern life for any kind of business setup, customer service, 
pricing, stocking strategies and trade credit fnancing schemes are effective, essential and survival parameters to 
grow the business. In this paper, we have developed, an economical order quantity model for imperfect quality 
product by considering retailer's stock sensitive demand of product under trade credit fnancing policy. Further 
in this paper we have studied the Learning effect on screening process on every batch of imperfect quality product. 
Under the trade credit fnancing scheme, we have considered that, the supplier proposes to the retailer, a fxed 
credit time period for payment and retailer also offers to his customers to a fxed credit time period of payment. 
Finally an appropriate total proft function per unit time has been derived under the various trade credit fnancing 
periods of payment including various expenditure and other related parameters. A sensitivity analysis has been 
done to verify the optimum results and also a numerical example has been given to verify the model's outputs.  

A NOVEL METHOD TO GENERATE A FAMILY OF  
BATHTUB-SHAPED FAILURE RATES FROM A FAMILY  
OF UPSIDE DOWN BATHTUB-SHAPED FAILURE RATES 
AND VICE-VERSA  ............................................................................................................ 286 

R.L. Giri, Subarna Bhattacharjee, Suchandan Kayal, S. K. Misra

It is indeed a matter of great signifcance for system engineers and scientists to derive new classes of lifetime 
distributions for providing a better statistical model which will ft a given lifetime data set. It is known that many 
real time data have varied characteristics and can be modeled by distributions with bathtub and upside down 
bathtub failure rates viz., Weibull, Modifed Weibull, Inverse Weibull. This paper proposes a method which 
generates a family of distributions having bathtub (BT)-shaped failure rate from a distribution having upside 
down bathtub (UBT)-shaped failure rate and vice-versa. The proposed method is validated with the help of a few 
statistical distributions. The closure properties of the proposed model under various reliability operations are 
studied.  
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AN APPROACH FOR ASSESSMENT OF RELIABILITY INDICES 
CONSIDERING OMISSION OF FIXED REPAIR TIME FOR ELECTRIC 
TRACTION SYSTEM APPLYING MONTE CARLO SIMULATION ...................... 298 

Aditya Tiwary 

Assessment of numerous reliability indices is essential when availability and unavailability of supply in any 
electric power system is talked about. The reliability index which are very important for overall performance of 
any complex engineering system are mean up time, mean down time and unavailability. In this paper, assessment 
of various reliability indices for the electric traction system is done based on Monte Carlo simulation. If an 
engineering system fails then its repair is required to be performed at proper time interval. Omission of a threshold 
value of fixed repair time will not have so much impact on the overall reliability of the engineering system taken 
together. Electric traction system is very important as it is utilized for operation of passenger trains and freight 
trains across a large rail network throughout the continents. In view of above, modified values of mean up time, 
mean down time and unavailability have been obtained accounting fixed repair time omission for the electrical 
traction system taken under consideration.  

BAYESIAN INTERVAL ESTIMATION FOR THE PARAMETERS OF 
POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL  ................. 307 

Rajesh Singh, Preeti A. Badge, Pritee Singh 

In this research paper, two sided Bayesian interval is proposed for Poisson type length biased exponential class 
software reliability growth model. The failure intensity function, mean time to failure function and likelihood 
function are derived. Bayesian interval estimation has been done for the parameters using non informative priors. 
The performance of proposed Bayesian interval is obtained by using Monte Carlo simulation technique. Average 
length and coverage probability of Bayesian interval for the parameters are calculated. From the obtained intervals 
it is concluded that Bayesian interval of parametersperform better for appropriate choice of execution time and 
certain values of parameters.  

RESILIENCE OF A TELECOMMUNICATIONS NETWORK 
SUBJECTED TO CORRELATED GEOGRAPHICAL FAILURES  ............................ 315 

Dora Jimenez, Abigail Medina 

Due to the COVID-19 pandemic, the way in which routine activities are carried out changed, taking a leading 
role telecommunications networks, it is important to evaluate their operation, service interruption and 
progressive deterioration, especially those generated by natural disasters, we have focused on earthquakes. 
Venezuela is a seismic country, being vulnerable to economic and human losses caused by this disaster. Many of 
the infrastructures that are used by both public and private institutions may not follow the current laws on 
earthquake-resistant structures. We seek to evaluate the damage by correlated geographic faults produced by 
earthquakes in a telecommunications network using probabilistic seismic risk analysis.  
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A NEW ZERO-TRUNCATED DISTRIBUTION 
AND ITS APPLICATIONS TO COUNT DATA  .......................................................... 327 

Na Elah, Peer Bilal Ahmad, Muneeb Ahmad Wani 

Numerous disciplines, including engineering, public health, sociology, psychology, and epidemiology, are 
particularly interested in the analysis and modelling of zero truncated count data. As a result, we suggest a novel 
and straightforward structural model in this study called zero truncated new discrete distribution. We examine 
its statistical properties including probability mass function, cumulative function, and moments. The parametric 
estimation of the zero-truncated new discrete distribution is explained by Maximum Likelihood Estimation 
method and, to investigate its performance, a simulation study is proposed. The importance of the distribution is 
evaluated using two real-world data sets as well as one simulated data set and the model comparison is made on 
the basis of AIC and BIC criterions.  

USE OF TRIBODIAGNOSTICS IN PRACTICE  .......................................................... 340 

Pavol Mikus, Alena Breznicka 

Tribodiagnostics deals with the problems of lubrication, friction and analysis of oils in technical fluids. Based on 
the results of parameter monitoring and chemical analysis of the oil, it is possible to determine the impending 
failure of the entire system very accurately. Today, this relatively young field of technical diagnostics is gradually 
becoming very viable and its results are fully in line with classical vibroacoustic diagnostics or thermodiagnostics. 
It is used in all mechanical systems containing oil systems. This is one of the methods of non-disassembly 
technical diagnostics, which is based on the knowledge that the lubricant after a certain period of use in the 
lubrication system reflects the condition of the equipment and the conditions in which this equipment was 
operated.  

MOMENTS PROPERTIES OF CONCOMITANTS 
OF GENERALIZED ORDER STATISTICS FROM 
 FGMTBM EXPONENTIAL DISTRIBUTION  ............................................................. 348 

Mustafa Kamal, Nayabuddin, Intekhab Alam, Ahmadur Rahman, 
Abdul Salam, Shazia Zarrin 

Concurrent or induced order statistics are produced when individuals in a random sample are ordered in 
compliance with the corresponding values of some other random sample. Concomitants are most helpful when 
k(n) individuals are to be chosen using a selection technique based on their X-values. The relevant Y-values are 
then used to reflect how well a characteristic has performed. In this paper, concomitants of generalized order 
statistics (GOS) from Farlie Gumbel Morgenstern type bivariate moment (FGMTBM) exponential distribution 
are obtained. Additionally, distribution function (df) and probaility density function (pdf) r-th generalized order 
statistics and a joint pdf of r-th and s-th GOS were also obtained. Furthermore, we provide the minimum variance 
linear unbiased estimator (MVLUE) of the position and scale parameters of the concomitants of the k-th upper 
record values and order statistics for the distribution under consideration. Finally, an implementation of the 
suggested methodology has been taken into account.  
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PROJECT CHARACTERISTICS WITH TRIANGULAR FUZZY NUMBER  ......... 359 

Adilakshmi Siripurapu, Ravi Shankar Nowpada 

The Critical Path Method (CPM) is required to plan, organize, and arrange for major project networks. A clear 
estimate of the time duration will help in the successful execution of the CPM. However, the time duration cannot 
be precisely specified in real life. As a result, there is always uncertainty about the duration of activities, leading 
to the invention of the fuzzy critical path method. This study proposes a simple method for critical path analysis 
and project characteristics in a project network with a triangular fuzzy number. Furthermore, this study defines 
the most critical path and the relative path degree of criticality, both theoretically valid and practical. The 
suggested method can determine the critical path, project characteristics and critical degree of an activity as 
shown by an example discussed in some earlier studies. The proposed approach is very simple to apply and does 
not require knowing the explicit form of the membership functions of the fuzzy activity times.  

RELIABILITY FACTORS OF SOFTWARE 
FOR MICROPROCESSOR PROTECTIONS  ................................................................ 370 

M. I. Uspensky

The features of the program functioning reliability that are typical for critical applications operating in real mode 
for microprocessor protections are considered. Among the main characteristics of the relay protection functioning 
are reliability indicators. With the transition to the execution of such protections on a microprocessor-based basis, 
in addition to hardware reliability, it became necessary to characterize its operation by software reliability. The 
importance of the solve tasks in the operation process refers it to programs used in safety-critical software and 
operating in real mode. This, in turn, tightens the requirements for their reliability evaluation. Comparative 
analysis made it possible to assess the generality of the considered reliability factors for the functioning of the 
application software under consideration. At the same time, we were able to highlight some of the features that 
are typical for the implementation of relay protection on microprocessors. An example of such an assessment is 
given, showing that despite all the difficulties of complete testing for microprocessor protection programs the 
software erroneous contribution still amounts to 2.5% of the total contribution. It is shown that microprocessor 
protection programs are related to programs of critical applications operating in real mode, which makes it 
possible to use the experience and characteristics of such software in solving relay protection challenges. 
Nevertheless, some features are given that are specific for relay protection based on a microprocessor. Further 
tasks are defined.  

ANALYSIS OF M[X1], M[X2]/G1, G2/1 RETRIAL QUEUE  
WITH PRIORITY SERVICES, DIFFERENTIATE BREAKDOWN, 
REPAIR, SYNCHRONIZED RENEGING AND OPTIONAL VACATION  ........... 376 

G. Ayyappan, S. Nithya

This study deals with the steady-state analysis of single-server retrial non-preemptive priority queue with 
differentiate breakdown, repair, synchronized reneging and optional vacation. For this purpose, two categories of 
customers are considered, priority and ordinary customers, who arrive as per Poisson arrival process. The server 
consistently affords single service for these customers based on general distribution. The server randomly fails 
while providing service to the customer. Hard failure and soft failure are the two kinds of system failure. Hard 
failure is defined as an equipment failure that requires a repairman with specialized knowledge to be physically 
present, which is a time-consuming process. Whereas soft failure is defined as failure caused by events rather 
than physical condition and is usually resolved rebooting the system. Ordinary customers may renege the orbit 
if the server is engaged or unavailable. Furthermore, once the service of all priority customers is completed by the 
server, the server goes for a vacation or becomes idle. In this study, we used probability generating function and 
supplementary variable technique to solve the Laplace transforms of time-dependent probabilities of system states. 
Finally, we evaluated performance measures and expressed the results in numerical values.  
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MUlTI-COMPONENT CONDITIONAL STRESS-STRENGTH PARAMETER  ... 392 

Kavoos Khorshidian, Morteza Taheri Saif Abad  

There are situations in which the experimenter has some information about the components of the operating 
system and he/she wants to use this information for better assessment or operating of the underlying system. In 
such cases the notion of conditional probability may help the operator to use that information and improve his/her 
task. In the present study this notion has been examined, and some conditional stress-strength parameters have 
been introduced for s of k systems. The multi-component conditional stress-strength parameter (MCCSSP) and 
its maximum likelihood estimator have been calculated when the strength and stress random variables are 
exponentially distributed. In the case of having extra information about the parameters, a closed form has been 
derived for the Bayes estimator of MCCSSP and has been calculated by using an algorithm together with Monte 
Carlo method. For the case of non-exponential stress or strengths, the nonparametric estimator of the defined 
parameter has also been derived. Finally, some simulation study on the MLE and Bayes estimator, as well as real 
data analysis for nonparametric estimators have been done to verify the analytic results.  

BAYESIAN ANALYSIS OF ARMA AND BSTS MODELS 
FOR COVID-19 DATA USING R AND STAN  ............................................................ 406 

Muhammed Navas T, Athar Ali Khan 

This study compares the performance of Bayesian ARIMA and BSTS models for COVID-19 data using Bayesian 
approach. Many studies in the literature have compared the BSTS model and classical ARIMA models for 
infectious disease modelling, and the BSTS model performs well. Apart from the literature, this study is trying 
to prove the Bayesian ARIMA model gives a better result than the BSTS model. This study uses a different 
modelling and model comparison method to compare widely used autoregressive integrated moving average 
(ARIMA) models with their Bayesian structural time series (BSTS) models for COVID-19 data using the 
Bayesian approach. It is essential to find the order of the ARIMA model before doing bayesian analysis. We find 
the order of the ARIMA model using measurement LOO information criteria , using the Hamiltonian Montecarlo 
algorithm and rstan estimate the parameters of ARIMA and BSTS models for COVID-19 data. Furthermore, 
compare both models using Looic and Waic values; Bayesian ARIMA models outperform in this study.  

ANALYSIS OF PROJECTED PROFIT IN AN M/M/K ENCOURAGED 
ARRIVAL QUEUEING MODEL USING CHI-SQUARE TEST  ............................... 417 

V. Narmadha, P. Rajendran

Nowadays, queues be seen in fast food restaurants and in all service-based businesses. This study is a 
mathematical analysis of such business firms with the help of Queueing Theory . The discounts and promotions 
entice customers to the firm and in this study such attracted customers are referred to as Encouraged Arrivals. 
The Chi-square test is used to determine the kind of encouraged arrival pattern that adheres to the data observed 
from a fastfood outlet. We introduce the encouraged arrivals in an M/M/k queueing model for the analysis of 
performance metrics. The performance metrics of the various encouraged arrival patterns are compared and the 
ideal one is chosen for the firm. The economic analysis shows that with encouraged arrivals, the cost associated 
with the time lost due to waiting is reduced gradually with increasing number of servers. Thus the firm increases 
its projected profit with encouraged arrivals. This study helps the entrepreneurs to decide the kind of discounts 
that wouldattract the customers simultaneouslyimprovingthe firmТs profit. Little Тslawisalso verified.  
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MOMENTS OF GENERALIZED RECORD VALUES FROM 
MODIFIED FRECHET DISTRIBUTION AND ITS CHARACTERIZATION ....... 429 

Zaki Anwar, Abdul Nasir Khan, Rafiqullah Khan 

The aim of this paper is to introduce the relations for moments and characterizing results for the newly introduced 
modified Fréchet distribution based on generalized record values. Here, we used an ordered random variable 
approach like generalized record values for generating the results. We have established the recurrence relations for 
single and product moments of generalized record values from modified Fréchet distribution. These relations are 
also deduced for the lower record values and some specific distributions, which are the special cases of modified 
Fréchet distribution. Further, the characterization results for this distribution have been established by using 
recurrence relations for single and product moments and conditional expectation of a function of generalized 
record values and truncated moments.   

PROFITABILITY ANALYSIS OF A FOOD INDUSTRIAL 
SYSTEM HAVING MAKE-AND-PACK PRODUCTION  
STRATEGY WITH PRIORITY BASIS REPAIR  ........................................................... 441 

Monika, Garima Chopra 

The present investigation is concerned with the profitability analysis of a food industrial system where production 
is based on the make-and-pack strategy. The system is assumed to have two subsystems: first subsystem is for 
making while the second is for packing the product so formed. As per the gathered information about the 
production procedure in the food industrial plant, the priority of repair is given to the making subsystem over 
the packing subsystem. Here, failure of either subsystem leads to a complete breakdown of the system. Also, two 
types of failures are considered in the packing subsystem i.e. minor failures and major failures. Two kinds of 
repairers (operator and fitter) are appointed to tackle the failures in the subsystems. For minor and major failures 
in the packing subsystem, the operator and fitter respectively are responsible for repairs. However, any failure in 
making subsystem is repaired by the combined efforts of the operator and fitter. Reliability characteristics such 
as mean time to system failure (MTSF), system availability, and expected busy period of the repair persons are 
studied by employing the semi-Markov process and regenerative point technique. The system profitability is 
graphically analyzed concerning to failure rates of both subsystems.  

HYBRID AND BLIND WATERMARKING FRAMEWORK 
FOR PRIVACY PROTECTION AND CONTENT  
AUTHENTICATION OF DIGITAL MULTIMEDIA  .................................................. 456 

Swati J. Patel, Dr. Mehul C. Parikh 

Nowadays, due to inexpensive and conveniently available internet access at the fingertip, the illegitimate sharing 
of digital multimedia i.e. image, audio, and video is becoming a universal and significant threat. Illegal 
transmission of digital multimedia through the internet creates an issue of authentication and copyright 
protection; hence, piracy protection is a vital need for protecting digital media. Digital watermarking is a method 
of preventing digital theft in which additional information, known as a watermark, is inserted into digital 
multimedia. This technology was originally designed for still photos, but it has subsequently been expanded to 
include additional multimedia artifacts such as audio and video, due to its countless use in today's era. Digital 
watermarking is an effective method of limiting piracy and providing authenticity and copyright ownership to 
digital content. Watermarking can be performed either in the spatial or in the transform domain. In this paper, a 
hybrid digital video watermarking technique for copyright protection, data security, and content authentication 
of multimedia, based on Discrete Wavelet Transform, Discrete Cosine Transform, and Singular Value 
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Decomposition is presented. The authenticity of the content has been ensured by embedding a watermark in the 
transform domain, while copyright protection has been provided by a strong watermark. The experimental results 
show that the proposed schemes achieve a PSNR greater than 51 dB on average, which illustrates that the 
proposed method gives excellent performance for robustness, authentication, and security. A comparison of the 
proposed framework to various cutting-edge techniquesillustratesits e.ectiveness andsuperiority. 

EMPIRICAL STUDY ON ROBUST REGRESSION 
ESTIMATORS AND THEIR PERFORMANCE  ........................................................... 466 

Lakshmi R, Dr.Sajesh TA 

Regression Analysis is statistical technique to model data. But the presence of outliers and influential points 
affect data modelling and its interpretation. Robust regression analysis is an alternative choice to this. Here we 
made an attempt to study different robust estimators and propose a new robust reweighted Sn covariance based 
regression estimator. We have evaluated the performance empirically and the simulation study shows our 
proposed estimator is preferable to OLS and other robust regression estimators in terms of the MSE criteria. Also, 
proposed robust Sn covariance regression estimator produce outperforming results for regression equivaraince 
and breakdown criterion. Robustness of the proposed estimator is proved empirically. The proposed method is 
innovatively used to model fluid data. R software is used for simulation and study.  

RATIO ESTIMATOR OF POPULATION MEAN USING 
A NEW LINEAR COMBINATION UNDER RANKED SET SAMPLING  ............. 479 

Saba Riyaz, Khalid Ul Islam Rather, Showkat Maqbool, T. R. Jan 

Ranked set sampling is an approach to data collection originally combines simple random sampling with the field 
investigator's professional knowledge and judgment to pick places to collect samples. Alternatively, field 
screening measurements can replace professional judgment when appropriate and analysis that continues to 
stimulate substantial methodological research. The use of ranked set sampling increases the chance that the 
collected samples will yield representative measurements. This results in better estimates of the mean as well as 
improved performance of many statistical procedures. Moreover, ranked set sampling can be more cost-efficient 
than simple random sampling because fewer samples need to be collected and measured. The use of professional 
judgment in the process of selecting sampling locations is a powerful incentive to use ranked set sampling. This 
paper is devoted to the study, we introduce an approach to the mean estimators in ranked set sampling. The 
amount of information carried by the auxiliary variable is measured with the on populations and samples and to 
use this information in the estimator, the basic ratio and the generalized exponential ratio estimators are as an 
improved form of a difference cum exponential ratio type estimator under the ranked set sampling in order to 
estimate the population mean of study variate Y using single auxiliary variable X. The expressions for the mean 
squared error of propose estimator under ranked set sampling is derived and theoretical comparisons are made 
with competing estimators. We show that the proposed estimator has a lower mean square error than the existing 
estimators. In addition, these theoretical results are supported with the aid of some real data sets using R studio. 
Therefore, Under RSS architecture, a better difference cum exponential ratio type estimator has been suggested. 
The estimator's mathematical form has been developed, and its efficiency requirements have been developed in 
relation to various already-existing estimators from the literature. By imputing various values for the constants 
used in the creation of our proposed estimator, we also provide several specific situations of our estimator.  
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COMBINED REDUNDANCY OPTIMIZATION  
FOR A SYSTEM COMPRISING OPERATIVE, COLD 
STANDBY AND WARM STANDBY UNITS ................................................................ 486 

Lalji Munda, Gulshan Taneja 

The company or industry can increase system reliability and provide stress-free operation by adding redundant 
equivalent subsystems to the active unit. The warm standby system is accessible if the operational unit 
malfunctions, and the cold standby system can take over. This paper aims to analyze a system comprised of one 
operative unit, cold standby unit, and one warm standby unit. Cold standby is activated to become warm standby 
when the operative unit fails, and warm standby becomes operational immediately. A minor defect causes the 
warm standby unit to fail, whereas a major fault causes the operational unit to fail. Such systems are used by 
many businesses, sectors, and facilities to prevent operational and reputational losses. Cut-off values for the 
failure rate, activation rate, revenue cost, and cost per repairman visit have been calculated to determine when 
the system is profitable. Various system performance measures have been defined by using the Markov process 
and regeneration point method.  

A TWO-STATE FEEDBACK RETRIAL QUEUEING SYSTEM 
HAVING TWO HETEROGENEOUS PARALLEL SERVERS  
AND IMPATIENT CUSTOMERS ................................................................................... 498 

Neelam Singla, Harwinder Kaur. Х 

Objective: In the present paper we consider a two-state retrial queueing system with feedback having two 
heterogeneous parallel servers and impatient customers. Transient state probabilities for exact number of arrivals 
and departures from the system will be obtained when both, one or none of the servers is busy. Numerical and 
graphical solutions will also be obtained. Methods: The difference-differential equations governing the system are 
solved recursively, Laplace transform is then used to obtain the transient state probabilities for exact number of 
arrivals and departures from the system. Findings: Time dependent probabilities are obtained when both, one and 
none of the servers is busy. Numerical and Graphical solutions are also obtained using MATLAB programming. 
Novelty: In past research, models considered arrivals and departures from the orbit whereas in present model 
arrivals and departures from the system are studied along with the concept of feedback. Applications: This type 
of model is implemented in computer systems.  

ANALYSIS OF A NON-IDENTICAL COMPONENT 
STRENGTHS SYSTEM BASED ON LOWER RECORD DATA  .............................. 513 

Amal S. Hassan, Doaa M. Ismail, Heba F. Nagy 

In engineering applications and reliability literature, stress-strength models play a crucial role. The goal of this 
study is to develop more accurate stress-strength models by addressing the reliability estimation in multi-
component systems with non-identical component strengths and stress. In the context of lower record values, the 
system's reliability is assessed using both classical and Bayesian approaches. In classical estimation, the 
maximum likelihood estimator of the reliability function is constructed, and a simulation study based on 
measurements of precision is used to assess the behavior of various estimates. The Bayesian estimators of 
reliability under general entropy, logarithmic and precautionary loss functions are computed. The suggested 
Bayesian estimates are calculated using the Markov Chain Monte Carlo method through a simulation study 
because there is no one particular way to do it. We found through simulated research that the accuracy of 
measurements decreases as the number of records rises. The theoretical results are validated using an example 
from actual data sets.  
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OPTIMAL SOFTWARE RELIABILITY PREDICTION USING CRITERIA 
WEIGHTS UNDER FUZZY DECISION-MAKING APPROACH  ........................... 529 

H. D. Arora, Anjali Naithani, Surbhi Gupta

Multi Criteria Decision Making techniques often face the challenge of determining criteria weights. The weights 
of criteria can significantly impact the outcomes of the decision-making process. Therefore, it is crucial to pay 
close consideration to the objectivity characteristics of criteria weights. Many weighting methods were 
discussed by various authors and utilized to solve various decision-making complications in Analytical 
Hierarchy Process (AHP), Entropy method, Weighing Score Method (WSM), Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS), Best worse method (MWM), VlseKriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR), Criteria Importance Through Intercriteria Correlation 
(CRITIC) method, ELECTRE, etc. This research article gives an overview of various weighting strategies 
that can be used in multi-criteria optimization and proposes a novel approach to determine criteria weights 
using Pythagorean fuzzy sets to handle uncertainties inthe decision makerТs preferencesforallocating software 
reliability. The comparative analysis shows that the proposed weighting method has the advantage of being 
simple and straightforward in comparison to the existing weighting methods. The evaluation confirms that this 
novel approach is effective enough to determine objective weights.  

STRESS-STRENGTH RELIABILITY MODEL 
UNDER MULTIVARIATE NORMAL SETUP AND ITS APPLICATIONS  .......... 545 

Babulal Seal, Anirban Goswami 

We often see that in a system, the energy is supplied to the system by 𝑝  1 sources and its consumed through 𝑝  2 
sources and the sources are linearly dependent with vector 𝒂′ and 𝒃′. The overall representation of the two sets 
are related to vectors 𝒂 and 𝒃 , such that they are approximated by 𝒂′𝒙 and 𝒃′𝒚 as in principal component 
analysis. In this article, a stress strength reliability model R= Pr(𝒂′𝒙> 𝒃′𝒚), when 𝒙 and 𝒚 are distributed 
dependently multivariate normal distribution is proposed, with 𝒂 and 𝒃 are two known vectors. MVUE and 
MLE of R are obtained. Through simulation studies, their performances are compared using different measures. 
The two-sided confidence intervals and lower bounds of R are obtained through exact and asymptotic distribution 
of maximum-likelihood estimators and using bootstrap procedure. Through simulation studies, the performances 
of these confidence intervals are empirically checked using their coverage and the accuracy. In this study, we 
proposed to choose the optimal sample size for an experiment assures an adequate power and level. Finally, we 
applied these interval estimators to a real data set. 

GENERALIZATION OF LENGTH BIASED WEIGHTED 
GENERALIZED UNIFORM DISTRIBUTION AND ITS APPLICATIONS  .......... 565 

Jismi Mathew 

In this article, a generalization of length biased weighted generalized uniform distribution called Marshall Olkin 
length biased weighted generalized uniform distribution is introduced and studied. Some of the statistical 
properties of the new distribution such as hazard rate function, compounding, quantile function, moments, Renyi 
and Shannon entropies are discussed. The maximum likelihood estimation of the model parameters is done and a 
simulation study is conducted for confirming the validity of the estimates and also introduced a minification 
process with respect to the model and explored its sample path behaviour for different combinations of parameters. 
Further, the stress strength analysis is carried out and the estimate of the reliability is obtained based on a 
simulation study.  

22



Table of Contents RT&A, No 2 (73) 
Volume 18, June 2022 

 

A NOVEL METHOD FOR SOFTWARE BUG REPORT ASSIGNMENT ............... 579 

Lukasz Chmielowski, Pavlo Konstantynov, Ryszard Luczak, Michal Kucharzak, Robert 
Burduk 

During the development of software and electronic devices, it is inevitable to make mistakes. In large, developed 
companies, assigning a request to the right development team or even a department is not an easy task. Often, the 
creation of software bug reports and assignment to groups is also formalized by appropriate processes. The paper 
presents a novel method of software bug report assignment to a group of developers or analysts. A specifc usage of 
organizational structure at the company is a key component of the proposed approach. There are presented 
results from real use application including both machine learning predictions and human decisions. Human 
predictions are not independent, the issues are raised as to why comparing the results of machine learning models 
with those of humans may be inappropriate and what factors infuence human decisions. The work also covers 
conclusive research about potential benefts of the application of automated assignment of bug reports.  

A NEW TWO PARAMETRIC GENERALIZED 
DIVERGENCE MEASURE AND ITS RESIDUAL  ...................................................... 589 

Fayaz Ahmed, Khalique Baig 

In this research article, we proposed a new two-parametric divergence measure and developed its weighted 
version. We also looked at its properties and specific cases with examples and also obtained some results and 
bounds for new two prametric weighted generalized divergence measure. With the aid of a numerical example 
that determine the distribution function and also studied some inequality for the new proposed divergence 
measure. The known divergence measure is the particular case of our proposed measure. The proposed measure 
uniquely characterized the distribution function using the proportional hazard rate model (PHRM). Its residual 
function is also being worked on.  

23



Idzhar A. Lakibul, Bernadette F. Tubo
On the TeSU−G family of distributions

RT&A, No 2 (73) 
Volume 18, June 2023

On the TeSU−G family of distributions applied to life
data analysis

Idzhar A. Lakibul
1

and Bernadette F. Tubo
2

•
1,2Department of Mathematics and Statistics

Mindanao State University - Iligan Institute of Technology
Iligan City, Philippines

1idzhar.lakibul@g.msuiit.edu.ph, 2bernadette.tubo@g.msuiit.edu.ph

Abstract

This paper derives distributions from the U-quadratic and the T-X family of distributions labeled as the
T-extended Standard U-quadratic−G family of distributions or simply, TeSU−G family. In particular,
the TeSU−Weibull distribution (TeSU−W) is explored with respect to some statistical properties such
as its limiting distribution, moment, mean and variance and moment generating function. Also, the
statistical properties of the TeSU−Exponential distribution (TeSU−E) which is a special case of the
TeSU−W are also derived. The Weibull and Exponential distributions are mostly used in life data
analysis because of its ability to adapt to different situations. Moreover, the formula for the median is
derived via a proposed algorithm. Simulation study is conducted to verify the performance of the ML
estimates of the TeSU−W distribution for varied sample sizes. Further, real life data analysis reveals that
derived extended distribution can provide a better fit than several well-known distributions.

Keywords: U-quadratic distribution, T-X family of distributions, Weibull distribution

1. Introduction

Classical statistical distribution plays a vital role in many areas of science for describing the
behavior of any data as well as for modelling data. But nowadays, due to the complexity of the
data, the classical distribution needs to be modified in order to cater the complexity of the data.
Up to this time, researchers are working in methodologies on statistical distribution theory in
order to solve these types of problems.

In 1985, Azzalini [4] introduced a skewed family of distribution for generating a distribution
with additional skewed parameter. Other identified family of distributions are the Marshall-Olkin
extended (MOE) family [12] and the exponentiated family of distributions [10].

Moreover Eugene [9] in 2002 introduced a composite method of combining two or more known
competing distributions through transformations, like the Gamma generated family [16], the
Kumaraswamy−G (Kw−G) family [7], the Beta extended−G family [8], the Exponentiated Gener-
alized family [5], the Kumarsway Marshall-Olkin−G family [1], the Generalized odd log-logistic
family [6], the generalized transmuted−G family [13] and the Exponentiated Kumarasway−G
class family [15].

This paper derives an extended or modified distribution named as TeSU−G family of dis-
tribution and explored a derived model using the Weibull as the baseline distribution. This is
named as the TeSU−Weibull distribution (TeSU−W). The statistical properties like its limiting
distribution, moment, mean and variance, and moment generating function are derived. Similarly,
the properties of the TeSU− Exponential distribution (TeSU−E), which is a special case of the
TeSU−W are obtained.
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The rest of the paper is organized as follows: The extended Standard U-quadratic (eSU)
distribution is derived in section 2; in section 3, the TeSU−G family of distribution is introduced;
in section 4, the cdf and pdf of both TeSU−W and TeSU−E distributions are derived using the
results in sections 2 and 3. Some statistical properties of TeSU−W are presented in section 5.
In section 6, estimates of the TeSU−W parameters via the maximum likelihood estimation is
generated. Simulation study is presented in section 7 while the application to real life dataset are
discussed in section 8. Finally, some concluding remarks are presented in section 9.

2. The eSU distribution

This section shows the derivation of the extended Standard U-quadratic distribution (eSU).
Consider the special case of the T-X family which was introduced by Alzaatreh [2] in 2013.
Accordingly, for any arbitrary baseline cumulative distribution function (cdf) G(x), a new cdf
F(x) can be generated using the equation

F(x) =
∫ G(x)

0
f (t)dt (1)

where f (t) is a probability density function (pdf) of a random variable T with support on the
interval [0, 1]. Also, consider the Transmuted−G family of distributions introduced by Shaw [14],
that is, for any baseline cdf G(x), we can define a new cdf K(x) given by

K(x) = (1 + λ)G(x)− λG2(x), (2)

where λ ∈ [−1, 1]. Note that (2) can be written as

K(x) =
∫ G(x)

0
f (t)dt

where
f (t) = 1 + λ − 2λt I[0,1](t) = (1 − λ) f1(t) + λ f2(t) (3)

with pdfs f1(t) and f2(t) are given as f1(t) = 1 I[0,1](t) and f2(t) = 2(1 − t) I[0,1](t), respectively.
Hence, f (t) can be written as a mixture of two pdfs with support set on the interval [0, 1].

Now consider the pdf of the U-quadratic distribution. For a random variable T that follows a
U-quadratic distribution, the pdf of T is given by

l(t) = m(t − n)2, (4)

where t ∈ [a, b], a < b, a, b ∈ R, m =
12

(b − a)3 and n =
a + b

2
.

To standardize equation (4), let a = 0 and b = 1. Then, equation (4) becomes

l(t) = 12(t − 1
2
)2, (5)

where t ∈ [0, 1]. Substituting l(t) of (5) in equation (3) for f2(t) derives the pd f of the eSU-
quadratic distribution denoted as feSU(t) and is given by

feSU(t) = 1 − λ + 3λ(2t − 1)2, (6)

where t ∈ [0, 1] and λ ∈ [− 1
2 , 1].
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3. The TeSU−G Family of Distribution

This section introduces a T-extended Standard U-quadratic (TeSU)− G Family of distribution.
Using equation (1) and the pdf of eSU in (6) derives the cd f of TeSU−G family of distribution
given by

FTeSU−G(x) = (1 + 2λ)G(x)− 6λG2(x) + 4λG3(x), x ∈ R (7)

with corresponding pd f

f (x) = g(x)[1 − λ + 3λ(2G(x)− 1)2], x ∈ R (8)

where λ ∈ [− 1
2 , 1] and g(x) is the pd f associated with a baseline cd f G(x). Note that, if λ = 0,

the cd f of TeSU-G reduces to the cdf of the baseline distribution.

4. The TeSU−Weibull and the TeSU−Exponential distributions

This section discusses the derivation of the cdf and pdf of the TeSU using the Weibull and
Exponential as baseline distributions. Suppose that a random variable X has Weibull distribution
with cdf Gw(x) and pdf gW(x) given, respectively, as follows:

GW(x) = 1 − e−τxβ
and (9)

gW(x) = τβxβ−1e−τxβ
, (10)

where x ≥ 0 and with scale τ and shape β parameters.

The cd f of the TeSU−Weibull distribution (TeSU−W) is derived by substituting (9) in equation
(7), so that we have

FTeSU−W(x) = 1 − e−τxβ
(1 + 2λ − 6λe−τxβ

+ 4λe−2τxβ
), (11)

where τ > 0, β > 0, λ ∈ [− 1
2 , 1] and x ≥ 0 with corresponding pd f given as

fTeSU−W(x) = τβxβ−1e−τxβ
(1 + 2λ − 12λe−τxβ

+ 12λe−2λe−2τxβ

). (12)

Note that the exponential distribution is a special case of the classical Weibull distribution when
β = 1. Thus, when β = 1, the TeSU−W reduces to the TeSU− Exponential distribution (TeSU−E).

The cd f of TeSU−E is given as

FTeSU−E(x) = 1 − e−τx(1 + 2λ − 6λe−τx + 4λe−2τx),

where τ > 0, λ ∈ [− 1
2 , 1] and x ≥ 0 with corresponding pd f

fTeSU−E(x) = τe−τx(1 + 2λ − 12λe−τx + 12λe−2λe−2τx
).

Figure 1: Plots of the pdf of the TeSU−W for τ = 1.4, β = 2.5 and for some values of λ
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Figure 2: Plots of the pdf of the TeSU−E for τ = 1.4 and for some values of λ

Figure 1 depicts the pdfs of TeSU−W at fixed values of τ = 1.4 and β = 2.5 with varied
values of λ ∈ {−0.5,−0.25, 0, 0.5, 1.0}. It can be observed that the TeSU−W displays a bimodal
distribution when 0 < λ < 1, while when λ = 0, it depicts the usual shape of the classical Weibull
distribution. Moreover, for − 1

2 ≤ λ < 0, a unimodal distribution which is leptokurtic in nature or
a peaked top is observable.

A special case of the TeSU−W is the TeSU−Exponential distribution (TeSU−E), that is, when
the parameter β is equal to one. Figure 2 shows the graph of TeSU−E with fixed value of τ = 1.4
and varied values of λ stated previously. The following distribution shapes can be noticed: (1)
when λ = 0, the graph of the TeSU-E is the same as the classical exponential distribution; (2)
when − 1

2 ≤ λ < 0, then it exhibits a unimodal distribution which is positively skewed, and (3)
when 0 < λ ≤ 1, it follows an inverted skewed bathtub shape. These types of shape are important
for describing the complex behavior of the data specially when data distribution reflects a bimodal
shape. Hence, the next discussions are focused on the TeSU-W distribution which can cater the
bimodal distribution.

5. Some Statistical Properties

5.1. Survival and Hazard Functions of TeSU-W

Let X be a random variable with cd f given in equation (11) and pdf given in equation (12). Then

for x > 0, the survival function STeSU−W(x) and hazard function hTeSU−W(x) =
fTeSU−W
STeSU−W

of X

are given, respectively, as follows:

STeSU−W(x) = 1 − FTeSU−W(x)

= e−τxβ
(1 + 2λ − 6λe−τxβ

+ 4λe−2τxβ
)

and

hTeSU−W(x) =
τβxβ−1(1 + 2λ − 12λe−τxβ

+ 12λe−2τxβ
)

1 + 2λ − 6λe−τxβ
+ 4λe−2τxβ

. (13)

Note that if β = 1, then STeSU−W(x) = STeSU−E(x) and hTeSU−W(x) = hTeSU−E(x).

RT&A, No 2 (73) 
Volume 18, June 2023

27



Idzhar A. Lakibul, Bernadette F. Tubo
On the TeSU−G family of distributions

Figure 3: Plots of the h(x) of the TeSU−W when τ = 1.4, β = 2.5 with varied λ.

Figure 4: Plots of the h(x) of the TeSU−E for τ = 1.4 with varied λ.

Figure 3 shows that at fixed values of τ = 1.4 and β = 2.5 and varied values λ ∈
{−0.5,−0.25, 0, 0.5, 1.0}, the hazard rate function h(x) of the TeSU−W can model not only
monotonic but also non-monotonic behavior of the failure rate of the observations, which are
inherent in survival lifetime data. Moreover, Figure 4 reveals that the TeSU-E hazard rate function
h(x) can model complex data which are either non-monotonic decreasing, increasing or with
constant rate.

5.2. The Limiting Distribution of TeSU−W

This section derives the limiting distribution of the probability distribution function (Theorem 1)
and the hazard function (Theorem 2) of TeSU−W.

Theorem 1. (i) The limit of the probability density function f (x) of the TeSU-Weibull distribu-
tion as x → ∞ is equal to 0, that is,

lim
x→∞

fTeSU−W(x) = 0.

(ii)

lim
x→0

fTeSU−W(x) =


∞ i f β < 1
τ(1 + 2λ) i f β = 1
0 i f β > 1

.

Proof. Recall that the pdf of TeSU-W is given in equation (12). It is clear that

lim
x→∞

fTeSU−W(x) = 0
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since lim
x→∞

e−τxβ
= lim

x→∞

1
eτxβ

= 0. This proves (i).

To prove Theorem 1 (ii), we have

lim
x→0

fTeSU−W = τβ lim
x→0

xβ−1 lim
x→0

e−τxβ
(1 + 2λ − 12λ lim

x→0
e−τxβ

+ 12λ lim
x→0

e−2τxβ
).

Observe that for β > 0,

lim
x→0

e−τxβ
= lim

x→
1

eτxβ
= 1.

It follows that
lim
x→0

fTeSU−W(x) = τβ(1 + 2λ) lim
x→0

xβ−1.

If β = 1, then we have

lim
x→0

fTeSU−W(x) = τ(1 + 2λ) lim
x→0

x0 = τ(1 + 2λ).

Next, for β > 1 we have

lim
x→0

fTeSU−W(x) = τβ(1 + 2λ) lim
x→0

xβ−1 = 0.

Lastly, for β < 1 we get
lim
x→0

fTeSU−W(x) = τβ(1 + 2λ) lim
x→0

xβ−1

but β − 1 < 0 since β < 1. Also, β − 1 can be express as β − 1 = −(1 − β) = −c, where
c = 1 − β > 0.. It follows that

lim
x→0

fTeSU−W(x) = τβ(1 + 2λ) lim
x→0

xβ−1 = τβ(1 + 2λ)(lim
x→0

1
x
)c = ∞.

■

Theorem 2. The limit of the hazard rate function of the TeSU-W distribution is given by the
following:

(i)

lim
x→∞

hTeSU−W(x) =


0 i f β < 1
τ i f β = 1
∞ i f β > 1

.

(ii)

lim
x→0

hTeSU−W(x) =


∞ i f β < 1
τ(1 + 2λ) i f β = 1
0 i f β > 1

.

Proof. By taking the limit of equation (13) as x → ∞, we have the following results. It can be
verified that

lim
x→∞

hTeSU−W(x) =
τβ(limx→∞ xβ−1)(1 + 2λ − 12λ limx→∞ e−τxβ

+ 12λ limx→∞ e−2τxβ
)

1 + 2λ − 6λ limx→∞ e−τxβ
+ 4λ limx→∞ e−2τxβ

.

Observe that
lim

x→∞
e−τxβ

= lim
x→∞

1
eτxβ

= 0,

then it follows that
lim

x→∞
hTeSU−W(x) = τβ lim

x→∞
xβ−1.
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If β = 1 then
lim

x→∞
hTeSU−W(x) = τ.

If β > 1 then
lim

x→∞
hTeSU−W(x) = τβ( lim

x→∞
x)β−1 = ∞.

If β < 1 then
lim

x→∞
hTeSU−W(x) = τβ lim

x→∞
xβ−1 = 0.

This proves (i). The proof of Theorem 2 (ii) is as follows: By definition of the hazard function,
we have

lim
x→0

hTeSU−W(x) =
lim
x→0

fTeSU−W(x)

lim
x→0

STeSU−W(x)
.

Observed that,

lim
x→0

STeSU−W(x) = (lim
x→0

e−τxβ
)(1 + 2λ − 6λ lim

x→0
e−τxβ

+ 4λ lim
x→0

e−2τxβ
).

But lim
x→0

e−τxβ
= 1. Hence, it follows that lim

x→0
STeSU−W(x) = 1. Thus,

lim
x→0

hTeSU−W(x) = lim
x→0

fTeSU−W(x).

By Theorem 1, we have

lim
x→0

hTeSU−W(x) = lim
x→0

fTeSU−W(x) = lim
x→0

fTeSU−W(x) =


∞ i f β < 1
τ(1 + 2λ) i f β = 1
0 i f β > 1

.

■

5.3. Moment and Moment Generating Function of TeSU-W

This section derives the rth moment (Theorem 3), the mean and variance (Corollary 1), and the
moment generating function (Theorem 4) of TeSU−W.

Theorem 3. The rth moment of TeSU-W distribution, with pdf given in (12) is given by

µ′
r = τ

− r
β Γ(

r
β
+ 1)[1 + 2λ − 6λ2−

r
β + 4λ3−

r
β ], (14)

where r = 1, 2, ..., n and Γ(·) is a gamma function.

Proof. The rth raw moment is defined by µ′
r = E(Xr) =

∫ ∞

0
xr f (x)dx. Thus, using the pdf f (x)

in equation (12) and simplifying, we have

µ′
r =

∫ ∞

0
xrτβxβ−1e−τxβ

(1 + 2λ − 12λe−τxβ
+ 12λe−2τxβ

)dx

= (1 + 2λ)τ
− r

β Γ(
r
β
+ 1)− 6λ2−

r
β τ

− r
β Γ(

r
β
+ 1) + 4λ3−

r
β τ

− r
β Γ(

r
β
+ 1)

= τ
− r

β Γ(
r
β
+ 1)[1 + 2λ − 6λ2−

r
β + 4λ3−

r
β ].

■
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Corollary 1. The mean and variance of the TeSU-W distribution are, respectively, given by

µ = µ′
1 = τ

− 1
β Γ(

1
β
+ 1)[1 + 2λ − 6λ2−

1
β + 4λ3−

1
β ] and

σ2 = τ
− 2

β [Γ(
2
β
+ 1)(1 + 2λ − 6λ2−

2
β + 4λ3−

2
β )− Γ2(

1
β
+ 1)(1 + 2λ − 6λ2−

1
β + 4λ3−

1
β )2].

Proof. The mean of the TeSU-W distribution is obtained when r = 1 in (14). Thus,

µ = µ′
1 = τ

− 1
β Γ(

1
β
+ 1)[1 + 2λ − 6λ2−

1
β + 4λ3−

1
β ].

It is to note that σ2 = µ′
2 − (µ′

1)
2. Now, the 2nd raw moment µ′

2 of the proposed distribution
is obtained using equation (14) when r = 2. It follows that

µ′
2 = τ

− 2
β Γ(

2
β
+ 1)[1 + 2λ − 6λ2−

2
β + 4λ3−

2
β ].

Therefore, the variance σ2 of TeSU-W distribution is derived as

σ2 = µ′
2 − (µ′

1)
2

= τ
− 2

β

[
Γ
(

2
β
+ 1
)(

1 + 2λ − 6λ2−
2
β + 4λ3−

2
β

)
− Γ2

(
1
β
+ 1
)(

1 + 2λ − 6λ2−
1
β + 4λ3−

1
β

)2
]

.

■

Theorem 4. Let X follows the TeSU-W distribution, then its moment generating function,
MXTeSU−W (t) is given as

MXTeSU−W (t) =
∞

∑
r=0

trτ
− r

β

r!
Γ(

r
β
+ 1)(1 + 2λ − 6λ2−

r
β + 4λ3−

r
β ),

where t ∈ R.

Proof. By definition of moment generating function and using equation (14), we have

MXTeSU−W (t) = E(etX)

=
∫ ∞

0
etx fTeSU−W(x)dx.

Recall that etX = ∑∞
r=0

tr

r! xr. Hence, we have

MXTeSU−W (t) =
∫ ∞

0

∞

∑
r=0

tr

r!
xr fTeSU−W(x)dx

=
∞

∑
r=0

tr

r!

∫ ∞

0
xr fTeSU−W(x)dx

=
∞

∑
r=0

tr

r!
µ′

r.

Thus,

MXTeSU−W (t) =
∞

∑
r=0

trτ
− r

β

r!
Γ(

r
β
+ 1)(1 + 2λ − 6λ2−

r
β + 4λ3−

r
β ).

■
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5.4. The Median of TeSU−G family and TeSU−W distribution

This section described the process of the derivation of the median of the TeSU−G family of
distributions. Consider the Structured Set of Skew–Kurtotic Transmutations proposed by Shaw
[14], that is, for parameters α1, α2 we shall consider the polynomial family given by

P(z, α1, α2) = z − z(1 − z)
[

α1 + α2

(
z − 1

2

)]
,

where z ∈ [0, 1] and the non-negativity of the pdf P′ at the end points should satisfy

−1 − α2

2
≤ α1 ≤ 1 +

α2

2
.

Let u follows a uniform distribution (0, 1). Then the solution for the equation P(z, α1, α2) = u is
as follows:

z =



u, i f α1 = α2 = 0
α1 − 1 +

√
1 + α1(α1 + 4u − 2)

2α1
, i f α2 = 0

3
√

u, i f α1 = 3
2 , α2 = 1

1 − 3
√

1 − u, i f α1 = − 3
2 , α2 = 1

C(u, α1, α2), otherwise

where C(·) is a function that denotes the general cubic (GC) solver for other cases. This function
is processed by the following algorithm.

Step 1. Compute

Q =
4α2

1 + 3(α2 − 4)α2

36α2
2

,

R =
4α3

1 − 9α2α1(α2 + 2) + 27(1 − 2u)α2
2

108α3
2

.

Step 2. If R2 > Q3, the equation has one real and two complex roots. In this case we have,

A = −sign(R)
(
|R|+

√
R2 − Q3

) 1
3 ;

B =

A, i f A = 0
Q
A

, otherwise
;

C(u, α1, α2) = A + B − 1
3

(
α1

α2
− 3

2

)
.

Otherwise, the cubic has three real roots and this is done by setting

θ = arccos
(

R
3
√

Q

)
;

C(u, α1, α2) = −2
√

Q cos
(

θ − 2π

3

)
− 1

3

(
α1

α2
− 3

2

)
.

Observed that the cdf (7) of the TeSU-G family can be rewritten as

F(x) = z − z(1 − z)
[

α1 + α2

(
z − 1

2

)]
,
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where z = G(x), α1 = 0 and α2 = 4λ, λ ∈ [−0.5, 1]. The inverse of F(x) is a solution to the
following equation

z = C(u, α1, α2) = G(x) = C(u, 0, 4λ).

Hence, the given algorithm can be modified as follows. Let u follows a uniform distribution (0, 1).
Then,

Step 1∗. Compute

Q =
1
2

(
1 − 1

λ

)
, λ ̸= 0;

R =
1 − 2u

16λ
,

Step 2∗. If R2 > Q3 then

A = −sign(R)
(
|R|+

√
R2 − Q3

) 1
3 ;

B =

A, i f A = 0
Q
A

, otherwise
;

x = G−1
(

A + B +
1
2

)
.

Otherwise,

θ = arccos

(
R√
Q3

)
;

x = G−1
(

1
2
− 2
√

Q cos
(

θ − 2π

3

))
,

where G−1(x) is the inverse function of any baseline distribution function G(x). If λ = 0, then
x = G−1(u). The updated algorithm can be used for generating random numbers that follows
any TeSU distribution. Consequently, the median of TeSU−G family can be computed by taking
u = 1

2 , that is,

xmed =


G−1

(
1
2

)
, i f λ = 0

G−1
[

1
2 − 2

√
1

12

(
1 − 1

λ

)
cos
( 90−2π

3
)]

, otherwise
. (15)

Setting G(x) to be the cdf in equation (9) of the Weibull distribution, the algorithm is then modi-
fied to generate random numbers from the TeSU−Weibull distribution. The modified algorithm
is as follows:

Step 1∗∗. Compute

Q =
1
2

(
1 − 1

λ

)
, λ ̸= 0;

R =
1 − 2u

16λ
.

Step 2∗∗. If R2 > Q3 then

A = −sign(R)
(
|R|+

√
R2 − Q3

) 1
3 ;

B =

A i f A = 0
Q
A

otherwise
;
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x =

(
− 1

τ
log
(

1
2
− A − B

)) 1
β

.

Otherwise,

θ = arccos

(
R√
Q3

)
;

x =

(
− 1

τ
log
(

1
2
+ 2
√

Q cos
(

θ − 2π

3

))) 1
β

.

If λ = 0, then x = (− 1
τ log(u))

1
β . Hence, the median of the TeSU−W is solved using equation (15)

as

xmed(TeSU−W) =


(
− 1

τ log( 1
2 )
) 1

β , i f λ = 0(
− 1

τ log
(

1
2 + 2

√
Q cos

( 90−2π
3
))) 1

β , otherwise
.

6. The TeSU−W Model Parameter Estimation

Let X1, X2, . . . , Xn be an independently and identically distributed random variables from a
TeSU−Weibull distribution. Then the likelihood function of the TeSU−W is given by

L =
n

∏
i=1

[
τβxβ−1

i e−τxβ
i

(
1 + 2λ − 12λe−τxβ

i + 12λe−2τxβ
i

)]
.

Then the log-likelihood function is given by

l =
n

∑
i=1

log
[

τβxβ−1
i e−τxβ

i

(
1 + 2λ − 12λe−τxβ

i + 12λe−2τxβ
i

)]
. (16)

The derivatives of (16) with respect to the parameters τ, β and λ are given as follow:

∂l
∂τ

=
n
τ
−

n

∑
i=1

xβ
i + 12λ

n

∑
i=1

zix
β
i e−τxβ

i

yi
; (17)

∂l
∂β

=
n
β
−

n

∑
i=1

τxβ
i log(xi) +

n

∑
i=1

log(xi) + 12τλ
n

∑
i=1

zix
β
i log(xi)e−τxβ

i

yi
; (18)

∂l
∂λ

= 2
n

∑
i=1

1 − 6e−τxβ
i + 6e−2τxβ

i

yi
, (19)

where yi = 1 + 2λ − 12λe−τxβ
i + 12λe−2τxβ

i and zi = 1 − 2e−τxβ
i .

Setting equations (17), (18) and (19) equal to zero, the numerical maximum likelihood estimates
τ̂, β̂ and λ̂ of the parameters can be obtained by any numerical method like the Newton-Raphson
iterative method.

7. The Asymptotic Properties of TeSU−W ML Estimates

This section presents the simulation study result conducted to verify the performance of the
ML estimates of TeSU-W distribution when sample sizes are varied. The simulation process
proceeded with 2 sets of data from TeSU-W distribution and considered the following sets of
parameters values: s1 = {τ = 1.4, β = 2.5, λ = 0.5} and s2 = {τ = 1.4, β = 1, λ = −0.5}. For
each si, the study is processed for varied sample sizes n ∈ {50, 100, 200, 500, 1000}. Also, at each
replication, the ML estimates τ̂, β̂ and λ̂ are computed. The process is repeated 1000 times for
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each si, and some diagnostic statistics like the average estimate (AE), biases and mean squared
errors (MSE) are determined and are summarized in Tables 1 and 2. These indicate that the
MSE of τ̂, β̂ and λ̂ for sets si, i = 1, 2 decay toward zero as the sample size increases, that is,
limn→∞ MSE = limn→∞

1
n ∑n

i=1
(

P̂i − P
)2

= 0 where P = τ, β, λ. This implies that the AE of the
parameters for each si tend to be closer to the true parameters as sample sizes n increases.

Table 1: Some diagnostic statistics of TeSU-W for
s1 at varied n

n MLE AE Bias MSE
τ̂ 1.446 0.046 0.047

50 β̂ 2.716 0.216 0.124
λ̂ 0.569 0.069 0.041
τ̂ 1.440 0.040 0.022

100 β̂ 2.694 0.194 0.070
λ̂ 0.552 0.052 0.020
τ̂ 1.433 0.033 0.010

200 β̂ 2.683 0.183 0.051
λ̂ 0.555 0.055 0.010
τ̂ 1.429 0.029 0.005

500 β̂ 2.679 0.179 0.039
λ̂ 0.547 0.047 0.005
τ̂ 1.428 0.028 0.003

1000 β̂ 2.671 0.171 0.032
λ̂ 0.544 0.044 0.003

Table 2: Some diagnostic statistics of TeSU-W for
s2 at varied n

n MLE AE Bias MSE
τ̂ 1.509 0.109 0.044

50 β̂ 1.107 0.107 0.036
λ̂ −0.486 0.014 0.007
τ̂ 1.483 0.083 0.019

100 β̂ 1.084 0.084 0.014
λ̂ −0.498 0.002 0.001
τ̂ 1.473 0.073 0.012

200 β̂ 1.080 0.080 0.009
λ̂ −0.500 0.000 0.000
τ̂ 1.463 0.063 0.006

500 β̂ 1.073 0.073 0.006
λ̂ −0.500 0.000 0.000
τ̂ 1.463 0.063 0.005

1000 β̂ 1.072 0.072 0.006
λ̂ −0.500 0.000 0.000

Figure 5: Plots of the MSE and Bias for τ̂ (left), β̂ (center) and λ̂ (right) in s1

Figure 6: Plots of the MSE and Bias for τ̂ (left), β̂ (center) and λ̂ (right) in s2

8. The TeSU−W in Life Data Analysis

This section illustrates the TESU−W distribution when applied to real life dataset using a package
"fitdistrplus" of the R software. The result of the TeSU−W distribution will then be compared to
the recent work of Arif [3] on the New Extended Exponentiated Weibull (NEEW) distribution and
the work of Malik [11] on the New Transmuted Weibull (NTW) distribution. The New NEEW
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pdf is given by

fNEEW(x) =
αλxλ−1e−αxλ

(1 − e−αxλ
)

[
eθ(1−eαxλ

)(2 + θ − θe−αxλ
) + 2

]
eθ + 1

, x ≥ 0, α, λ, θ > 0

while the pdf of the New Transmuted Weibull (NTW) distribution is given by

fNTW(x) = θλxλ−1e−θxλ
[

1 − β +
2β

2 − e−θxλ

]
, x, θ, λ > 0,−1 ≤ β ≤ 1.

Model diagnostics are done with the determination of the Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K−S), Cramer-von Mises (W*) and
the Anderson-Darling (A) statistics. As a rule of thumb, a smaller value of these statistics implies
a better fit of the model using the proposed distribution to the given dataset.

The COVID-19 cases in India from May 1, 2020 to June 14, 2020 are used in this study. This
data set can be accessed from the siteweb (Coronavirus Update (Live):7,114,524 Cases and 406,552
Deaths from COVID-19 Virus Pandemic - Worldometer). For calculation purpose, we consider
data (10−2). Table 3 lists the MLEs of the TeSU-W, NEEW, NTW and TeSU-E distributions fitted
to the given dataset while Table 4 shows the different diagnostics statistics. Consistently in all
diagnostic criterion, the TeSU−W gave the lowest values of the diagnostic statistics compared to
NEEW, NTW and TeSU-E distributions. It may imply that the TeSU−W works well when fitted
with the given dataset and that the ML estimates are asymptotically equal to the true values of
the parameters. In addition, same result is observed from the plots of the fitted models and the
histogram of the dataset given in Figure 7.

Table 3: ML estimates of the fitted models using the different distributions

Distribution α̂ β̂ θ̂ λ̂ τ̂

TeSU−W 3.05948300 0.47928580 0.00000183
NEEW 0.00111771 0.00000082 1.69201100
NTW −0.99999996 0.00047039 1.86047516

TeSU−E −0.49999997 0.01248669

Table 4: Some diagnostic statistics of the fitted models using the different distributions

Distribution AIC BIC K − S A W∗
TeSU−W 428.9631 434.3830 0.1005729 0.4046896 0.0566358

NEEW 433.5504 438.9703 0.1271787 0.6914853 0.1042066
NTW 433.0563 438.4763 0.1255249 0.7159459 0.1097673

TeSU−E 446.9146 450.528 0.1660065 2.2543706 0.3196720

Figure 7: Plots of the models fitted to the COVID-19 data
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9. Concluding Remarks

This paper derives a new family of distributions called the T-extended Standard U-quadratic−G
family of distributions or simply, TeSU−G family. Derived models of the family called as TeSU−
Weibull distribution (TeSU−W) and the TeSU-Exponential distribution (TeSU−E) are generated
and its limiting behavior, moments, mean and variance, and moment generating function are
computed. Also, formula of the median for the TeSU−G family as well as for TeSU−W distribution
are derived. Furthermore, the Maximum Likelihood (ML) estimates of the TeSU−W distribution
is derived. Simulation study shows that the ML estimates is asymptotically equal to the true
value of the parameters as sample sizes increases. This can be observed by the values of MSE that
goes to zero, on the average. Life data analysis using the TeSU−W distribution to a COVID-19
dataset provides better fit compared with the existing New Extended Exponentiated Weibull
(NEEW) distribution and the New Transmuted Weibull (NTW) distribution as explored by Arif
[3] in 2022 and Malik [11] in 2022, respectively.
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Abstract 

In this article, “we introduce a new generalization of Adya distribution known as Exponentiated Adya 

distribution. We have also derived and discussed its different statistical properties. The Exponentiated 

Adya distribution has two parameters (scale and shape). The different structural properties of the 

proposed distribution have been obtained. The maximum likelihood estimation technique is also used 

for estimating the parameters of the proposed distribution. Finally, a real lifetime data set is used for 

examining the superiority of the proposed distribution.”  

Keywords: “Exponentiated distribution, Adya distribution, Order statistics, 

Entropies, Reliability analysis, Maximum likelihood Estimation.” 

1. Introduction

A “new family of distributions namely the exponentiated exponential distribution was introduced by 

Gupta et al. [1].  The family has two parameters scale and shape, which are similar to the weibull or 

gamma family. Later Gupta and Kundu [2], studied some properties of the same distribution. They 

observed that many properties of the new family are similar to those of the weibull or gamma family. 

Hence the distribution can be used an alternative to a weibull or gamma distribution. The two-

parameteric gamma and weibull are the most popular distributions for analyzing any lifetime data. 

The gamma distribution has a lot of applications in different fields other than lifetime distributions. 

The two parameters of gamma distribution represent the scale and the shape parameter and because 

of the scale and shape parameter, it has quite a bit of flexibility to analyze any positive real data. But 

one major disadvantage of the gamma distribution is that, if the shape parameter is not an integer, 

the 
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distribution function or survival function cannot be expressed in a closed form. This makes gamma 

distribution little bit unpopular as compared to the Weibull distribution, whose survival function and 

hazard function are simple and easy to study. Nowadays exponentiated distributions and their 

mathematical properties are widely studied for applied science experimental data sets. Exponentiated 

weibull family as an extension of weibull distribution studied by Pal et al. [3]. Exponentiated 

generalized Lindley distribution studied by Rodrigues et al. [4]. Hassan et al. [5] discussed 

Exponentiated Lomax geometric distribution with its properties and applications. Nasiru et al. [6] 

obtained exponentiated generalized power series family of distributions. Rather and subramanian [7] 

discussed the exponentiated Mukherjee-Islam distribution which shows more flexibility than the 

classical distribution. Rather and subramanian [8] discussed the exponentiated ishita distribution with 

properties and Applications. Subramanian and Rather [9] obtained the exponentiated version of 

power distribution with its properties and estimation. Rather and subramanian [10] discussed the 

exponentiated Garima distribution which shows more flexibility than the classical distribution. Ganie 

and Rajagopalan [11] obtained exponentiated Aradhana distribution with its properties and 

applications. Recently, Rather et al. [12] discussed the exponentiated Ailamujia distribution with 

statistical inference and applications of medical science which shows better performance than the 

classical distributions.” 

Adya “distribution is a newly proposed one parameteric distribution formulated by Shanker 

et al. [13] for several engineering applications and calculated its various characteristics including 

stochastic ordering, moments, order statistics, Renyi entropy, stress strength reliability and ML 

estimation. The two parameters of an exponentiated Adya distribution represent the shape and the 

scale parameter. It also has the increasing or decreasing failure rate depending of the shape parameter. 

The density function varies significantly depending of the shape parameter.” 

2. Exponentiated Adya Distribution (EAD)

The “probability density function of Adya distribution is given by 
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and the cumulative distribution function of Adya distribution is given by 
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A random variable X is said to have an exponentiated distribution, if its cumulative distribution 

function is given by  

( ) )3(0,
'

;)()( = 


 RxxGxF

Then X is said to have an exponentiated distribution. 

The probability density function of X is given by 
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By Substituting (2) in (3), we will obtain the cumulative distribution function of Exponentiated Adya 

distribution 
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and the probability density function of Exponentiated Adya distribution can be obtained as” 
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 Fig 1: pdf plot of exponentiated Adya distribution   Fig 2: cdf plot of exponentiated Adya distribution 

3. Reliability Analysis

In “this section, we will obtain the survival function, hazard function and Reverse hazard rate function 

of the Exponentiated Adya distribution.” 

The “survival function of Exponentiated Adya distribution is given by 
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The hazard function is also known as hazard rate, instantaneous failure rate or force of mortality and 

is given by 
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The reverse hazard rate of exponentiated Adya distribution is given by” 

“
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    Fig 3: Survival plot of exponentiated Adya distribution 

4. Statistical Properties

In “this section, we will discuss the different statistical properties of the proposed Exponentiated Adya 

distribution.”  

4.1 Moments 

Suppose “X is a random variable following exponentiated Adya distribution with parameters α and 

θ, then the rth order moment E(X r) for a given probability distribution is given by” 
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Using Binomial expansion of 
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Equation (10) will become 
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Again using Binomial expansion of 
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Equation (11), will reduce to 
“
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After simplification, we obtain 
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Since “equation (13) is a convergent series for all r ≥ 0, therefore all the moments exist.” 

Therefore 
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Therefore, the Variance of X can be obtained as 
22 ))(()()( XEXEXV −=

4.2 Harmonic mean 

The “Harmonic mean for the proposed Exponentiated Adya distribution can be obtained as” 
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Using Binomial expansion in equation (16), we get 
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On using Binomial expansion in equation (17), we obtain 
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After the simplification of equation (18), we obtain 
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4.3 “Moment Generating Function and Characteristics Function” 

Let “X have an exponentiated Adya distribution, then the moment generating function of X is obtained 

as”  
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Similarly, the characteristic function of Exponentiated Adya distribution is given by 

( )

)22(
34

)1(

))24()1((2)34()14(
2

)1(
2

0 0 0 1
)2

2
2

4
(

2
3

2
2

!

1
)1(

3
)(
































++
+

++++++++++





=



=



= +
++

++−
−=

kj
i

kjikjkji

i j k k

k

j

j
mt

k

i

i

i
tX










5. Order Statistics

Order “statistics represents the arranging of samples in an ascending order. Order statistics also has 

wide field in reliability and life testing. Let X(1), X(2), ….., X(n) be the order statistics of a random sample 

X1, X2, ….Xn drawn from the continuous population with probability density function fx(x) and 

cumulative distribution function Fx(x), then the pdf of rth order statistics X(r) can be written as” 
“ 
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Substitute “the values of equation (5) and (6) in equation (13), we will obtain the pdf of rth order 

statistics X(r) for exponentiated Adya distribution and is given by” 
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Therefore, the probability density function of higher “order statistics X(n) for exponentiated Adya 

distribution can be obtained as” 

)25(

)1(

2
2

2
4

)2
2

2(
11

1

2
2

2
4

)2
2

2(
11

2
2

2
4

2
)(

3

)()(

−

−

++

++
+−

−

−

++

++
+−

++

−
+

=























































n

θx
e

θxθxθx
e

θxθx
θx

ex
nxnxf

















and “the pdf of first order statistics X(1) for exponentiated Adya distribution can be obtained as” 
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6. Maximum Likelihood Estimation

In “this section, we will discuss the maximum likelihood estimation for estimating the parameters of 

exponentiated Adya distribution. Let X1, X2 ,….,Xn be the random sample of size n from the 

Exponentiated Adya distribution, then the likelihood function can be written as” 
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The log likelihood function is given by 
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 The “maximum likelihood estimates of α, θ which maximizes (28), must satisfy the normal equations 

given by” 
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Where “ψ (.) is the digamma function.”
 It “is important to mention here that the analytical solution of the above system of non-linear equation 

is unknown. Algebraically it is very difficult to solve the complicated form of likelihood system of 

nonlinear equations. Therefore, we use R and wolfram mathematics for estimating the required 

parameters.” 

7. Information Measures of Exponentiated Adya Distribution

7.1 Renyi Entropy 

The “Renyi entropy is named after Alfred Renyi in the context of fractual dimension estimation, the 

Renyi entropy forms the basis of the concept of generalized dimensions. The Renyi entropy is 

important in ecology and statistics as index of diversity. The Renyi entropy is also important in 

quantum information, where it can be used as a measure of entanglement. Entropies quantify the 

diversity, uncertainty, or randomness of a system. For a given probability distribution, Renyi entropy 

is given by” 
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Using binomial expansion in (33), we get 
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Again using binomial expansion in (34), we get 
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After the simplification of (35) we obtain 
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7.2 Tsallis Entropy 

A “generalization of Boltzmann-Gibbs (B-G) statistical mechanics initiated by Tsallis has gained a 

great deal to attention. This generalization of B-G statistics was proposed firstly by introducing the 

mathematical expression of Tsallis entropy for a continuous random variable it is defined as” 
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Using binomial expansion in (38), we get 
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Again using binomial expansion in (39), we obtain 

)40(
0 0

)(

0

2
)(

2
2

2
4

2
3

2
22)1(

)1(

2
2

2
4

3

1
1

1
































































=



=

+−



+

++

++−
−

++

−
−

=
i k

dx
iθx

ex

k
θxxx

k

i

i

i 













After the simplification of (40), we get 
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7. Applications

In “this section, we use a real-life time data set in exponentiated Adya distribution and the model has 

been compared” over Adya distribution. 

The following data set in table 1 represents the bladder cancer patients (n = 128) of the remission times 

(in months) reported by Lee and Wang [14]. 

  Table 1: Data represents the 123 blood cancer patients 

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 

3.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 

9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 

25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 6.31 0.81 

2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 

7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 

1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 

5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 

17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 

5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 

2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 

12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69 

In “order to compare the exponentiated Adya distribution with Adya distribution. We consider the 

Criteria like BIC (Bayesian information criterion), AIC (Akaike information criterion), AICC 

(Corrected Akaike information criterion) and -2logL. The better distribution is which corresponds to 

lesser values of AIC, BIC, AICC and -2logL. For calculating AIC, BIC, AICC and -2logL can be 

evaluated by using the formulas as follows.” 

LnkBIC
kn

)k(k
AIC AICCLkAIC log2log

1

12
log22 −=

−−

+
+=−=    and   

Where “k is the number of parameters in the statistical model, n is the sample size and -2logL is the 

maximized value of the log-likelihood function under the considered model.” 

Table 2: Fitted distributions of the data set and criteria for comparison 

Distribution MLE S.E -2logL  AIC    BIC AICC 

Exponentiated 
�̂� = 0.3967 �̂� = 0.0491 

829.448   833.448 839.152 833.544 
�̂� = 0.1924 �̂� = 0.0201 

Adya �̂� = 0.3212 �̂� = 0.015 891.2774 893.2774 896.1295 893.3091 

From “table 2, it can be observed that the exponentiated Adya distribution have the lesser AIC, BIC, 

AICC and -2logL values as compared to Adya distribution. Hence we can conclude that the 

exponentiated Adya distribution leads to a better fit than the Adya distribution.” 
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8. Conclusion

In this “article, we have introduced a new generalization of Adya distribution called as exponentiated 

Adya distribution with two parameters (scale and shape). The subject distribution is generated by 

using the exponentiated technique and the parameters have been obtained by using the maximum 

likelihood estimator. Some statistical properties along with reliability measures are discussed. The 

new distribution with its applications in real life-time data has been demonstrated. Finally, the result 

of a real lifetime data set has been compared with Adya distribution and it has been found that the 

exponentiated Adya distribution provides a better fit than the Adya distribution.” 
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Abstract 

 
The modeling of income data has originated a century ago with the work of Vilfredo Pareto. Since then 

several authors have added immense literature about income distributions and income inequality 

measures. In the present paper, we have pointed out some recent works in income distributions and 

income inequality measures. Recently the potential of the quantile function has been discussed in parallel 

with the distribution function for modeling reliability and income data. So we have also included some 

quantile functions existing in the literature and their potentiality to model income data in the review. 

We derived the Lorenz curve, Gini index, Pietra index, Bonferroni index, Bonferroni curve, and Zenga 

curve for six distributions and checked the model adequacy of three distributions using real income data. 

 

Keywords: Income distribution, Income Inequality measures, Quantile based 

reliability models, Quantile function, Distribution function. 

 

 

1. Introduction 
 

We can consider the introduction of the Pareto model by Vilfredo Pareto as the beginning of the 

study of income distributions. A variety of models such as Lognormal, Dagum, Singh Maddala, etc., 

came into the literature for modeling income data. Several income inequality measures also exist in 

the literature. Kakwani [1] made a detailed study on income distributions, income inequalities, 

government policies affecting personal income distributions, and the measurement of poverty. 

Dagum [2]  introduced the economic distance ratio, which is used to determine the degree of income 

inequality between two populations. For a detailed review of income distributions and income 

inequality measures since the beginning one can refer to [3]. This review tried to bring all the income 

distributions and income inequality measures that came in the literature under one umbrella. 

Most of the income distributions adopted the distribution function approach. Only a very 

few have used the quantile function approach to model income data [3, 4]. So in the present review, 

we have considered quantile functions that can be used as income models. 

The study of probability distribution in applied problems can be accomplished in two 

different ways; one by specifying the distribution function and the other through the quantile 

function. The quantile function is defined as, 

( ) ( ) ( )( )1 inf | ,0 1Q u F u x F x u u−= =    .                                                                                                     (1) 

Since ( )F x u  iff ( )Q u x  , the knowledge of the form of ( )Q u  is equivalent to the knowledge of 

the functional form of ( )F x . Gilchrist [5] provided a thorough explanation of quantile function and  
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model-building principles. 

After this introduction in Section 2, we have reviewed some income distributions in which 

the distribution function is in the closed form. In Section 3 we have discussed some quantile 

functions which can be used as income models. We have reviewed some more quantile functions 

which have applications in reliability in Section 4. In Section 5 we have discussed income inequality 

measures existing in the literature and derived inequality measures for six distributions having 

closed-form quantile functions. We carried out a real data analysis in  Section 6. Finally, the 

conclusions of the study are given in Section 7. 

 

2. Distribution function based Income distributions 

 

McDonald et al. [6] found that the Weibull, the Dagum, the Generalized beta of the second kind 

(GB2) gave the best fit among 5 parameter Generalized beta and its 10 special cases, that were fitted 

into 82 income data sets. These data sets comprise income data for 23 nations, covering both 

developed and emerging economies, and were taken from Luxembourg Income Study (LIS) 

database. He also observed that for almost every country, the Gini index increases monotonically 

over time.  

Exponential Kumaraswamy - Dagum (EKD) distribution for analysis of income and lifetime 

data was introduced by [7]. The Cumulative Distribution Function (CDF) of EKD distribution is 

given by, 

( ) ( ); , , , , 1 1 1EKDF x x

     
−

−  = − − +    
                                                                                            (2)                                     

where , , , , 0      and 0x  . Its basic statistical properties like moments, hazard functions, 

mean and median deviations, measures of income inequalities like Lorenz and Bonferroni curves, 

reliability measures, kth order statistics, and Renyi entropy were derived. Maximum likelihood 

estimation was done to estimate the parameters of EKD and its application to real data was also 

presented.   

An application of Gamma distribution to income distributions was explained by [8]. Its 

parameters were estimated based on the income quantile data, using non-linear optimization and 

the least square method. The future distribution of income and hunger issues were also discussed in 

this paper. They used the Gamma distribution to compare the estimates of people living in absolute 

poverty to the World Bank's report and estimated the number of people who are hungry in each 

country based on the results of a crop market model. 

 Fabio Clementi et al. [9] have surveyed k-generalized distribution for modeling income and 

wealth size distributions. They studied the k-generalized model [10, 11, 12] for the distribution of 

income, the k-generalized mixture model for the distribution of wealth, and the extended k-

generalized distributions of the first and second kinds. They discussed its basic properties, 

interrelations with other distributions; income inequalities like Gini Index and Lorenz Curve. They 

concluded that a good fit for the distribution of income and wealth is given by k-generalized models. 

A three-parameter Weibull-Pareto (WP) distribution with CDF, 

( )
1

; , , 1 ; 0, 0, 0

b

x

F x b e x b




   

  
− −  
   = −                                                                                                     (3) 

was proposed by [13]. Various properties of WP distribution including moments, incomplete 

moments, mean deviations, mode, reliability measures, generating functions, quantile functions, 

Bonferroni and Lorenz curves were derived. They also obtained density of order statistics, Renyi, 

and q-entropy of the above distribution. The parameters of the above distribution were estimated 

using the method of maximum likelihood. On two real-life data sets, WP distribution provides a 

better fit than comparable lifetime models. 

 Calderin-Ojeda et al. [14] proposed two extensions of the Exponential distribution ie, the 

Exponential Arc Tan (EAT) model and the composite EAT–Lognormal model. These models can  
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describe income distributions even with zero income. The adequacy of these models was evaluated  

using Australian income data for the years 2001-2012 and found that the proposed models provide 

a better fit for the data than exponential and gamma distribution. 

Six mixture distributions based on Weibull ie, Weibull-Paralogistic, Weibull-Weibull, 

Weibull-Fisk, Weibull-Gamma, Weibull-Burr, and Weibull-Dagum to model income data were 

proposed by [15]. Here the method of maximum likelihood is used to estimate the parameters of 

Weibull mixture models and are evaluated with respect to average income per tax unit data for ten 

countries. Also, the application of income inequality measures like Gini, Bonferroni, and generalized 

index and mathematical expression of poverty measures like headcount ratio and poverty gap ratio 

was discussed in this paper. 

A comparative study was taken by [16] on the distribution of income of poor households in 

Malaysia. They compared the models Reverse Pareto [17, 18], shifted reverse exponential, shifted 

reverse stretched exponential [19], and shifted reverse lognormal. They derived expressions for the 

Lorenz curve and Gini index for the four models. Results from Kolmogorov Smirnov (KS) test and 

R2  coefficient conclude that the Reverse Pareto distribution adequately describes the distribution of 

income in poor households. Also, the Lorenz curve and Gini index based on Reverse Pareto models 

showed that poor households have evenly distributed incomes. 

The historical evidence, empirical properties, the relationship between distribution 

functions, and model selection of top income distributions were reviewed by [20]. He summarized 

that for modeling income, the Generalized Pareto and Generalized Beta family of  3-4 parameters, 

which includes Dagum, Singh-Maddala, and GB2 distributions are invariably successful. 

 

3. Quantile function based Income distributions 

 
Sodomova et al. [21] did the statistical analysis and modeling on a sample of the yearly net income 

of 1566 households in the Slovak Republic in the year 2002. Results showed that except for the 

intervals having the lowest and highest income, the Weibull distribution with parameters from 

maximum likelihood estimation provides the best fit. Whereas for the intervals two fitted 

distributions from the Weibull-Pareto class, which is obtained by the method of modeling with 

quantile distributions provided the best fit. 

  Hankin and Lee [22] introduced and studied distribution with quantile function, 

( )
( )

1

21

Cu
Q u

u




=

−
                                                                                                                                                               (4)                                                                                               

where 1 2, , 0C     and 0 1u  . They studied the properties, shape, comparison with other 

distributions and calculated the moments of distribution in equation (4). The parameters of this 

distribution were estimated using maximum likelihood and the method of logged regression. In this 

paper, they compared the efficiencies of the above two estimation methods using simulation and 

found when the sample size is small and parameters are roughly equal we can use the regression 

method otherwise the maximum likelihood method. This distribution was also applied for modeling 

the toxic gas release. The quantile function in equation (4) is obtained as the product of quantile 

functions of Pareto and Power distribution, hence it has the potential for income modeling.  

 Haritha et al. [3] worked on the Modified Lambda family (MLF) with quantile function, 

( )
( ) 4

3

1

2 3 4

1 11 1 uu
Q u




  

 − −−
= + − 

  

                                                                                                                           (5) 

where 
1 2 3
, ,    and 

4
  are real. The distributional characteristics of MLF were studied in detail. 

Major income distributions were obtained either as special or limiting cases or by approximation 

from MLF. They also expressed commonly used income inequality measures in quantile terms and 

calculated those measures for MLF. The parameters of MLF were evaluated using a new estimation 
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procedure involving location, dispersion, skewness, and kurtosis in quantile measures. Through a 

simulation study, it was shown that the above method of estimation is better than the method of 

percentiles and moments. They characterized income distributions using truncated Gini index and 

Income Gap Ratio at various ranges of poverty and affluence limit. 

Using Dagum's three-parameter type 1 model [23] examined the change in personal income 

in Spain between 1995 and 2005. The quantile function of this distribution is given as, 
1

1
1

1
( ) 1Q u

u






−

 
  = −   
 

                                                                                                                                                             (6) 

where 0 1u   and , , 0    . The model in equation (6) fits the empirical income distribution of 

Spain quite well. The economic interpretation of the Dagum model parameters was also studied. 

The data from the European Community Household Panel (ECHP) and the European Union 

Statistics on Income and Living Conditions (EU-SILC) is used to study the effect of parameter 

changes in the growth of inequality in Spain as well as on different income percentiles. 

The distributional and geometric properties of partial moments of first and second order in 

quantile terms were studied by [24]. The rth order partial moment is given by, 

( ) ( ) ( )( )
1

r

r

u

P u Q p Q u dp= −                                                                                                                                    (7) 

where (.)Q  is a quantile function. Stop-loss transform based on quantile function is mainly 

discussed in this paper. Relationships of income inequality measures like Lorenz, Gini, Bonferroni, 

and Leimkuhler curves with scaled stop-loss transform curves were also developed. 

The capabilities of the Zenga curve as an inequality measure were explored by [25]. They 

made a detailed study on the properties of the Zenga curve and stochastic orders based on this curve 

were used to prove some results. They established a relationship between the Zenga curve and 

inequality measures like the Bonferroni curve and the Leimkuhler curve. Similarly, they established 

an association between the Zenga curve and reliability measures like mean residual quantile 

function and reversed mean residual quantile function. A study on quantile-based income 

distributions like the Govindarajulu distribution, quantile model with linear hazard quantile form, 

and Power × Pareto distribution was made and derived measures of income inequality like the 

Lorenz curve, Bonferroni curve, etc. In this thesis, they also studied the relationship between L- 

moments and income inequality measures. Bivariate reliability concepts based on copula were also 

discussed. 

  Ekum et al. [26] proposed a six-parameter distribution named the exponentiated-

exponential Dagum {Lomax} (EEDL) from T- Dagum{Y} family using T-R{Y} framework. Its quantile 

function is given by 

( ) ( )
( ) ( )1
1

1 11
( ) 1 1 log 1 1

p
q

p

XQ u u






−
−

− 
    

= − − − −    
     

 

                                                                                    (8)            

where , , ,q p   defines the shape and ,   defines the spread of the distribution and 0 1u  . The 

basic distributional and reliability characteristics including stochastic ordering, asymptotes, analysis 

of stress–strength, and Shannon entropy were studied. The parameters of EEDL distribution were 

estimated using the method of maximum likelihood. On two real data sets, the EEDL distribution 

did well in comparison with the Exponential Kumaraswamy Dagum (EKD), the Exponentiated 

Generalized Exponential Dagum (EKD), and the Mc Dagum (McD) distributions. 
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4. New quantile functions in reliability analysis 

 
Nair et al. [27] discussed the method of constructing quantile functions for lifetime models by 

utilizing the relationship between the hazard quantile function and the Parzens score function [28]. 

Three models based on score function were illustrated in this paper and many known distributions 

exist as its special case. Various reliability properties of the Parzen score function were also studied. 

The reliability ideas in quantile terms were broadly explained by [29]. They also discussed 

distributions having closed-form quantile functions, ageing concepts, total time on test transforms, 

L-moments of residual life, hazard quantile function, stochastic orders, and modeling in a quantile 

framework. 

 Thomas et al. [30] introduced a software reliability model with a quantile function,  

( ) ( ), 1, 1Q u k u a b= + +                                                                                                                                             (9) 

where 0,k  ,a b  are real numbers, 0 1u   and ( ), 1, 1u a b + +  is an incomplete beta function. 

Various distributional and reliability characteristics of the above quantile function were studied. 

They approximated equation (9), to two well-known distributions like Inverse Gaussian and 

Weibull. The method of  L-moments was used to estimate the parameters of the model and applied 

the model in (9) to a real data set. 

The reliability properties of the quantile-based proportional hazard model (PHM) were 

studied by [31]. The ageing properties and characterizations for the PHM were derived and 

demonstrated with examples. Certain important stochastic orders in the context of PHM were 

discussed. They also proposed the quantile-based dynamic cumulative residual Kullback-Leibler 

divergence of PHM.  

A new class of distribution as the product of quantile functions of Weibull and Pareto 

distributions was proposed by [32] and it is given as,  

( ) ( ) ( )( )1 log 1Q u u u



−

= − − −                                                                                                                             (10) 

where 0 1u  ; , , 0    . The distributional characteristics and reliability properties of 

distribution in equation (10) were studied in detail. The inference was done using L-moments and 

the model was applied to two real datasets. 

 Kumar and Paduthol [33] introduced a new class of distributions with quantile functions, 

( )
( ) ( )

log 1
1 1

u u
Q u

u u




  

  
= + +    − + −  

                                                                                                          (11) 

where 0  , 0   and 1  − , this class of distributions was obtained as an extension of 

distributions with linear mean residual quantile function. The distributional characteristics, 

reliability properties, and L-moments of equation (11) were calculated. The method of percentiles 

was employed to estimate the parameters of the model in (11). As an application, the above model 

was applied to real data reported in [34], consisting of the strength of glass fibers. 

A class of distributions with quadratic hazard quantile function was developed by [35] and 

is given as, 

( )
( )

( )
( )

( )
( )2 2

1 1
log 1 log 1 log

2 2

u
Q u u u

  

     

 +
= + − − −  

− + −  
                                              (12) 

where, 0, | |,       . They studied distributional properties, reliability characteristics, and 

characterization of the distribution. Estimation was done using the method of least squares and 

demonstrated the models' utility using real data. 

 Ghosal et al. [36] used subject-specific quantile functions to capture the distributional nature 

of wearable data. They used these quantile functions L-moment representations in Scalar-On-

Function Regression (SOFR) model [37], Functional Generalized Additive Model(FGAM) [38], and 
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Joint and Individual Variation Explained(JIVE) method [39]. As an application, they illustrated the 

proposed method in the study of Alzheimer’s Disease(AD). 

Power exponential geometric distribution was introduced by [40] as the sum of the quantile 

function of the power and the exponential geometric distributions. The distributional and reliability 

properties were studied. A simulation study was done and applied the model to real data. 

 

5. Income inequality measures 

 
A book on modeling income distributions and the Lorenz curves was edited by [41]. A compilation 

of five major papers in this area makes the first part and four survey papers on Lorenz functions, as 

well as generalizations and extensions of a few income distributions, are included in Part two. Eight 

papers on recent research and advancement in this field are included in the last section. 

The distinction between the Lorenz curve in economics and the Leimkuhler curve in 

information science is that the Lorenz curve is used to arrange sources in increasing productivity 

order whereas for Leimkuhler is arranged in decreasing order. A general definition for the 

Leimkuhler curve was introduced by [42] in terms of theoretical CDF and is given as, 
1

1

1

1
( ) ( )X X

X u

K u F y dy


−

−

=                                                                                                                  (13) 

where 0 1u  . The discrete, continuous, and mixed random variables are covered by the equation 

(13). In this paper, they derived the Leimkuhler curves expressions for five continuous, one mixed, 

and one discrete distribution. 

The Bonferroni curve and Bonferroni index have applications not only in the field of 

economics to study poverty and income but also in the field of insurance, medicine, demography, 

and reliability.  For thirty-five continuous distributions, [43]provided explicit expressions for 

Bonferroni Curve, Bonferroni Index, Lorenz curve, and Gini index.  

 Fellman [44] studied two optimal cases, where the transformed variable Lorenz dominates 

the initial variable and the initial variable Lorenz dominates the transformed one. The first case has 

more practical application than the second because it results in policies that decrease inequality. The 

properties and limits of the transformed Lorenz curve were also analyzed.  In this work, the limits 

found are valid for a wide range of distributions and transformations but the inequalities that result 

from pursuing general conditions cannot be improved. 

Chotikapanich et al. [45] discussed poverty measures like the head-count ratio, the  Foster-

Greer-Thorbecke (FGT) measure, the Atkinson index, the Watts index, the Sen index, and the Gini 

index and derived their expression for  GB2 distribution. An analysis of poverty trends in South and 

South East Asian nations is done using beta 2 distribution, which is a special case of GB2. 

Using the semiparametric method, [46] estimated the Lorenz curve and Gini index for the 

exponential distribution. The above estimation was done under type 1, type 2, and interval 

censoring. From Monte Carlo simulation studies they found, that as sample size increases, the mean 

square error (MSE) of the estimator decreases. 

 Fellman [47] comprehensively explained the Lorenz curve and gave a brief description of 

the Gini index and Pietra index. As an application, the changes in  Lorenz curves, Gini, and Pietra 

indices with respect to model parameters of  Pareto [48], the simplified Rao Tam [49], and the 

Chotikapanich [50] distributions were also given. When the above three models have the same Gini 

index, the Lorenz curves for the simplified Rao Tam and the Chotikapanich models are rather similar 

but Pareto’s is different. 

 Behdani & Mohtashami Borzadaran [51] reformulated certain income inequality measures 

using quantiles. They used the relationship between the Lorenz curve and reliability concepts like 

mean residual quantile function and reversed mean residual quantile function to characterize 

probability distributions. They also studied ageing concepts using the Lorenz curve and quantile 

function. 
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 Kattumannil et al. [52] proposed a non-parametric estimation of the Gini index for right-

censored observations in the sample. The propound estimator has an asymptotic normal distribution 

and is consistent. Monte Carlo simulation was used to determine the potential of the above 

estimator. The simulation study showed that the confidence interval of the Gini index based on the 

proposed estimator has good coverage probability and can be implemented very easily. 

 

A detailed literature review on the association between income inequality and economic 

growth was done by [53]. To comprehend how income inequality and growth are related, theoretical 

and empirical literature is studied and analyzed. 

 

Table 1 lists major income inequality measures and curves of the six distributions covered in this 

review. The distributions having explicit quantile functions and those for which income inequality 

measures exist in closed form are taken for the calculation of inequality measures.  

 

Expressions used in Table 1 

(i) LC, GI, PI, BC, BI, and ZC denote the Lorenz curve, Gini index, Pietra index, Bonferroni 

curve, Bonferroni index, and Zenga curve respectively. 

(ii) (.,.)u  denotes the incomplete beta function. 

(iii) 
0u  in Pietra indexes can be obtained by solving u  the equation ( )Q u = . 

(iv) csc(.)  denotes the cos (.)ecant  function in trigonometry. 

(v) . ( )Har no n  denotes the thn harmonic number and is given as 1

1

. ( )
n

k

Har no n k−

=

= .  

(vi)  (.)  denotes the gamma function. 

(vii)  (.,.)  denotes incomplete gamma function. 

(viii) (.,.)uI is the regularized incomplete beta function and is given as 
(.,.)

(.,.)
(.,.)

u
uI




= . 

(ix) 
 csc( ) ( 2) . ( 1) . ( 2)1

( 1, 2) ( ) ( 3)

b a Har no a Har no a b

a b b a b

 



  + + − + + 
 

+ +  −  + +  
 

(x) 
( )

( )

1

2
0

2 1 1 1
0 0 0 2 21 (1 )

1 1 1
2 2

2 (1 ) (1 (1 ) ) 1,

1,

k

k

k

ku

k

ku u u 

 

 





−

− −
− − − − + −

+ −
 

(xi) 


 

1 1

( 1)

1
( 1) ( 2) (1 ) (1 ) ( ) 1

2 ( 1) ( 1, 2ln(1 ))

u u u u u u

u

 



     


  

− − −

− +

 − − − − + + − − + 

+  + − + − −

 

(xii) 
  

( 1) 1 2 1

1

3 6 ( 1) (2 3 )( 1)( 2)( 3) ( 1)

( 3) 2 ( 1)( 2) ( 1)( 2) ( 1)

   



     

        

− + + + +

+

 − + + − − − −  + 

− + − − + − −  +
 

(xiii) 
 

 

1 1 2 2

0 0 0 0 0 0 0

( 1)

0

(1 ) ln(1 ) ( 1) ( 2) (1 ) ( 1) 1 (1 )

2 ( 1) ( 1, 2ln(1 ))

u u u u u u u

u

  




   



 

− − −

− +

 − − − + − − − − − + − − 

−  + − + − −

 

(xiv) 


 

1 1 1

( 1) 1

1
( 1) ( 2) (1 ) (1 ) ( ) 1

2 ( 1) ( 1, 2ln(1 ))

u u u u u u

u u

 



     


  

− − − −

− + −

 − − − − + + − − + 

+  + − + − −

 

56



 
Ashlin Varkey, Haritha N Haridas 
A REVIEW ON QUANTILE FUNCTIONS, INCOME DISTRIBUTIONS, 
AND INCOME INEQUALITY MEASURES 

RT&A, No 2 (73) 
Volume 18, June 2023  

 

(xv)      


 

1

1 1 1

0

( 1) 1

1
1 ( 1) ( 2) (1 ) (1 ) ( ) 1

2 ( 1) ( 1, 2ln(1 ))

u u u u u u

u u du

 



     


  

− − − −

− + −

 − − − − − + + − − + 

+  + − + − −


 

(xvi) In expressions (xi), (xiii), (xiv), and (xv),  is the mean of the Weibull-Paretovo distribution 

and is given as ( 1)2 ( 1)
( 1)( 2)


   

 

− += + +  +
− −

      

 

 

Table 1: Income inequality measures and inequality curves 

 

 

Quantile function 

 

Income inequality measures/ inequality curves 

 

 

 

 

 

         

          Bijamma Thomas distribution 

 
𝑄(𝑢) = 𝑘𝛽(𝑢, 𝑎 + 1, 𝑏 + 1) 

 

LC 

[𝑢𝛽𝑢(𝑎 + 1, 𝑏 + 1) − 𝛽𝑢(𝑎 + 2, 𝑏 + 1)]

𝛽(𝑎 + 1, 𝑏 + 2)
 

 

GI 

 
(𝑎 + 1)(𝑎 + 𝑏 + 3)−1 

 

PI 

𝛽𝑢0(𝑎 + 2, 𝑏 + 1)

𝛽(𝑎 + 1, 𝑏 + 2)
 

 

BC 

1

𝛽(𝑎 + 1, 𝑏 + 2)
[𝛽𝑢(𝑎 + 1, 𝑏 + 1) −

1

𝑢
𝛽𝑢(𝑎 + 2, 𝑏 + 1)] 

 

BI 

 

(ix) 

 

ZC 
𝛽(𝑎 + 1, 𝑏 + 2) − 𝛽𝑢(𝑎 + 1, 𝑏 + 1) +

1
𝑢
𝛽𝑢(𝑎 + 2, 𝑏 + 1)

𝛽(𝑎 + 1, 𝑏 + 2) − 𝑢𝛽𝑢(𝑎 + 1, 𝑏 + 1) + 𝛽𝑢(𝑎 + 2, 𝑏 + 1)
 

 

 

 

 

 

Shifted reverse exponential distribution 

 

𝑄(𝑢) = 𝑥0 +
1

𝜆
𝑙𝑛( 𝑢) 

 

LC 

𝑢(𝑙𝑛 𝑢 + 𝜆𝑥0 − 1)

𝜆𝑥0 − 1
 

 

GI 

1

2(𝜆𝑥0 − 1)
 

 

PI 

𝑢0
𝜆𝑥0 − 1

 

 

BC 

𝑙𝑛 𝑢 + 𝜆𝑥0 − 1

𝜆𝑥0 − 1
 

 

BI 

1

𝜆𝑥0 − 1
 

 

ZC 

𝑙𝑛 𝑢

1 + 𝑢(𝑙𝑛 𝑢 − 1) − 𝜆𝑥0(1 − 𝑢)
 

Shifted reverse stretched exponential 

distribution 

𝑄(𝑢) = 𝑥0 − 𝜆(− 𝑙𝑛 𝑢)
1
𝜌 

 

LC 
𝑥0𝑢 − 𝜆Γ(1 +

1
𝜌
,− 𝑙𝑛 𝑢)

𝑥0 − 𝜆Γ(1 +
1
𝜌
)

 

 

GI (1 − 2
−1
𝜌 )

𝜆Γ(1 +
1
𝜌
)

[𝑥0 − 𝜆Γ(1 +
1
𝜌
)]

 

 

PI 
𝜆Γ(1 +

1
𝜌
,− 𝑙𝑛 𝑢0) − 𝜆𝑢0(− 𝑙𝑛 𝑢0)

1
𝜌

𝑥0 − 𝜆Γ(1 +
1
𝜌
)

 

 

BC 
𝑥0 − 𝜆𝑢−1Γ(1 +

1
𝜌
,− 𝑙𝑛 𝑢)

𝑥0 − 𝜆Γ(1 +
1
𝜌
)
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BI 
𝜆Γ(1 +

1
𝜌
)

𝑥0𝜌 − 𝜆Γ(
1
𝜌
)
 

 

ZC 
𝜆 [Γ(1 +

1
𝜌
,− 𝑙𝑛 𝑢) − 𝑢Γ(1 +
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6. Data Analysis 

 
This section analyses 2020’s per capita personal income (in dollars) of 254 counties in Texas, US. This 

data is available from https://www.bea.gov and is used for studying the potential of Shifted Reverse 

Exponential, Govindarajulu, and Weibull Paretovo distribution in income modeling. Here we use 

the method of percentiles for estimating the parameters of the above three distributions. 

Here, the Chi-square ( 2 ) test and Q-Q plot are used to determine model adequacy. Table 

2 provides the parameter estimates, 2 test statistics, and p-values of Shifted Reverse Exponential, 

Govindarajulu, and Weibull Paretovo distributions. Table 2 and the Q-Q plot given in Figure 1 make 

it evident that the Weibull Paretovo distribution provides the best fit for the real data. 

 

Table 2: Parameter Estimates, 
2 Statistic, p-value 

 

Distribution Parameter Estimates 2 Statistic p-value 

Shifted Reverse 

Exponential 

𝑥0 = 5.472113 × 104 
𝜆 = 8.922956 × 10−5 

 
68.39832 

 

8.41825 × 10−8 

 

Govindarajulu 

𝜃 = 3.85826 × 104 
𝜎 = 2.605615 × 104 

𝛽 = 2.943906 

 
78.84319 

 
1.36464 × 10−9 

 

 

 Weibull Paretovo 

𝜆 = 3.429882 × 104 
𝜂 = 1.177798 × 104 
𝛽 = 5.374932 × 10−1 
𝛾 = 4.088145 × 10−1 

 

 
16.73783 

 

 
0.54119 

 

 
          Figure 1: Q-Q plot corresponding to Weibull Paretovo distribution 
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7.  Conclusion 

 
In this work, we reviewed recent income distributions, income inequalities, and quantile functions 

that appeared in the literature. This study is carried out in five sections comprising income 

distributions, income models based on quantiles, new quantile functions in reliability analysis,  

income inequality measures, and data analysis. For the six distributions examined in this work, the 

Lorenz curve, Gini index, Pietra index, Bonferroni index, Bonferroni curve, and Zenga curve were 

determined. Three models were applied to the per capita personal income data of  254 counties in 

Texas State and found that the Weibull Paretovo distribution provides the best fit.  In future works, 

we can check whether more quantile functions used in reliability analysis have potential in income 

modeling. 
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Abstract 

The Erlang Truncated (ETE) distribution is modified and the new lifetime distribution is called 

the Extended Erlang Truncated Exponential (EETE) distribution. Some statistical and 

reliability properties of the new distribution functions have been characterized based on two 

non-adjacent generalized and dual generalized order statistics. Moreover, we show that these 

characterization properties provide a beneficial strategy to predict future events, which are based 

on past or current events and on an arbitrary distribution function. A characterization in 

statistics is a specific distributional property of a statistic that uniquely identify related 

parametric family of distributions. In statistical applications, the researchers usually want to 

verify whether the data that they are dealing with belong to a certain family of DFs. Therefore, 

the researchers have to rely on a characterization of the assumed distribution and check if the 

corresponding conditions are satisfied.  

Keywords: Generalized order statistics, Dual generalized order statistics, Dilation 

Characterization of distributions, Point prediction  

1. Introduction

Generalized order statistics introduced by [15]. A concept of generalized order statistics 

(GOSs) as a unified approach to a variety of models of ascendingly ordered random variables 

(RVs) introduced by [15]. The concept of dual GOSs, denoted by DGOSs, was introduced by [14] 

as a parallel concept of GOSs to enable a common approach to descendingly ordered RVs. [14] 

has shown that (cf. Theorem 3.3) there is a direct link between DGOSs and GOSs.  

The subclasses m −GOSs and m −DGOSs of GOSs and DGOSs, respectively, contain 

many important models of ordered RVs such as ordinary order statistics (OOSs), lower and 

upper record values, k−records, sequential order statistics (SOSs) and type II censored OOSs. 

For any 1 ≤ r ≤ n, the marginal probability density functions (PDFs) of the rth m-GOS  X(r, n; m, 

k) and m-DGOS 𝑋∗(r, n; m, k), based on a continuous distribution function (DF) 𝐹𝑋(x) = P(X ≤ x)

with a PDF 𝑓𝑋(x), are given, respectively, by (cf. [15] and [28]).

𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑟−1

(𝑛)

(𝑟−1)!
[�̅�𝑋(𝑥)]𝛾𝑟

(𝑛)
−1 [

1−[𝐹𝑋(𝑥)]𝑚+1

𝑚+1
]

𝑟−1

𝑓𝑋(𝑥)   ,     𝑚 ≠ −1  (1) 

and 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑟−1

(𝑛)

(𝑟−1)!
𝐹𝑋

𝛾𝑟
(𝑛)

−1 [
1−[𝐹𝑋(𝑥)]𝑚+1

𝑚+1
]

𝑟−1

𝑓𝑋(𝑥)   ,  𝑚 ≠ −1 (2)

63

mailto:khalidstat34@gmail.com


Imtiyaz A. Shah 

THE  EXTENDED ERLANG-TRUNCATED EXPONENTIAL … 

RT&A, No 2 (73) 
Volume 18, June 2023 

where 𝐹 = 1 − 𝐹 , 𝛾𝑟
(𝑛)

= 𝑘 + (𝑛 − 𝑟)(𝑚 + 1)  and   𝐶𝑟−1
(𝑛)

= ∏ 𝛾𝑟
(𝑛)𝑟

𝑖=1 , 1 ≤ r ≤ n. 

Classical results in characterizations can be found in [2], [3], [4] and [5]. Different results 

of characterization and its applications in terms of GOSs and DGOSs are derived by many 

authors. Among these authors are [6], [7], [8], [9], [10], [11] ,[12] and [13]. 

In this paper, we prove some new characteristic properties of the Erlang truncated 

exponential DF exp(βαλ ), with mean 
1

(βαλ)
 , β >  0, αλ > 0. The Erlang truncated exponential 

distribution is prominent in life testing experiments and reliability problems. 

The result of this paper enables us to predict the time at which some survived 

components will have failed or to predict the mean failure time of unobserved lifetimes in a 

lifetime experiment by using the result of another independent lifetime experiment. 

Throughout this paper, “X  =
𝑑  Y ” means that the RVs X and Y have the same DFs and “X ~ F” 

means that the RV X has the DF F. 

The rest of this paper is organized as follows. In Section 2, we reveal some characterization 

properties for the Erlang truncated exponential distribution based on two nonadjacent m−GOSs 

(consequently m−DGOSs) from two independent Erlang truncated exponential distributions. In 

Section 3, we use the results of Section 2 in an application of the prediction problem concerning 

the lifetime experiments. If support of the distribution 𝐹𝑋(𝑥) be over (𝑎, 𝑏), then by convention, 

we will write 

𝑋(0, 𝑛, 𝑚, 𝑘) = 𝑎 and  𝑋∗(0, 𝑛, 𝑚, 𝑘) = b 

It may be seen that if 𝑌 is a measurable function of 𝑋 with the relation 
𝑌 = ℎ(𝑋) 

Then 
𝑌(𝑟, 𝑛, 𝑚, 𝑘) = ℎ[𝑋(𝑟, 𝑛, 𝑚, 𝑘)] 

if ℎ is an increasing function and 
𝑌∗(𝑟, 𝑛, 𝑚, 𝑘) = ℎ[𝑋(𝑟, 𝑛, 𝑚, 𝑘)] 

if ℎ is a decreasing function 

where 𝑋(𝑟, 𝑛, 𝑚, 𝑘) is the 𝑟𝑡ℎ m-GOS and 𝑋∗(𝑟, 𝑛, 𝑚, 𝑘) is the 𝑟𝑡ℎ m- DGOS. 

Erlang-Truncated Exponential (ETE) distribution was originally introduced by [1] as an 

extension of the standard one parameter exponential distribution. The Erlang-Truncated 

Exponential (ETE) distribution results from the mixture of Erlang distribution and the left 

truncated one-parameter exponential distribution. The cumulative distribution function CDF 

𝐹𝑋(𝑥)and probability density function PDF𝑓𝑋(𝑥)of the Erlang-Truncated Exponential (ETE) 

distribution are given by 

FX(𝑥) = [1 − 𝑒−𝛽(𝛼𝜆)𝑥],           0 ≤ 𝑥 < ∞, β,   λ >  0                                                               (3)

where 𝛼𝜆 = (1 − 𝑒−𝜆)

and 

𝑓𝑋(𝑥) = β (𝛼𝜆) 𝑒−𝛽(𝛼𝜆)𝑥 , 0 ≤ 𝑥 < ∞, β, λ >  0      (4) 

respectively, where β is the shape parameter and λ is the scale parameter. The Erlang-Truncated 

Exponential (ETE) distribution collapses to the classical one-parameter exponential distribution 

with parameter β and λ → ∞. 

𝑋 ~ Par (𝛽(𝛼𝜆)) 

if 𝑋 has a Pareto distribution with the DF 
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𝐹𝑋(𝑥) = [1 − 𝑥−𝛽(𝛼𝜆)] , 1 < 𝑥 < ∞ , β >  0, ∝> 0, λ >  0  (5) 

𝑋 ~ pow (𝛽(𝛼𝜆)) 

if 𝑋 has a power function distribution with the DF 

𝐹𝑋(𝑥) = 𝑥𝛽(𝛼𝜆) , 0 < 𝑥 < 1 , β >  0, ∝> 0, λ >  0          (6) 

It may further be noted that 

if  log 𝑋 ~ Erlang-truncated exp (𝛽(𝛼𝜆)) then  𝑋 ~ Par (𝛽(𝛼𝜆)) 

if  −log 𝑋 ~ Erlang-truncated exp (𝛽(𝛼𝜆)) then 𝑋 ~  pow (𝛽(𝛼𝜆)) 

It has been assumed here throughout that the DF is differentiable 𝑤. 𝑟. 𝑡. its argument. 

The new distribution is called the Extended Erlang-Truncated Exponential (EETE) 

distribution. The Extended Erlang-Truncated Exponential (EETE) distribution has a tractable 

PDF whose shape is either decreasing or unimodal. The failure rate function (FRF) is 

characterized by decreasing, constant and increasing shapes and the new three-parameter 

distribution demonstrates a superior fit when compared with some other well-known three 

parameter distributions, as we shall see later. Related works are: the Transmuted Erlang 

Truncated Exponential distribution, due to [25], Marshall–Olkin generalized Erlang-truncated 

exponential distribution, due to [26] and the generalized Erlang-Truncated Exponential 

distribution, due to [27]. 

2. MODEL

The cumulative distribution function CDF 𝐹𝑋(𝑥) and probability density function 

PDF𝑓𝑋(𝑥) of the Extended Erlang-Truncated Exponential (EETE) distribution are given by 

FX(𝑥) = [1 − 𝑒−𝛽(𝛼𝜆)𝑥]𝛼 , 0 ≤ 𝑥 < ∞, 𝛼, β,   λ >  0         (7) 

and 

𝑓𝑋(𝑥) = 𝛼 β (𝛼𝜆) 𝑒−𝛽(𝛼𝜆)𝑥[1 − 𝑒−𝛽(𝛼𝜆)𝑥]𝛼 −1 , 0 ≤ 𝑥 < ∞, 𝛼, β, λ >  0     (8) 

where α and β are the shape parameters and λ is the scale parameter. 

The Extended Erlang-Truncated Exponential (EETE) distribution reduces to Erlang-Truncated 

Exponential (ETE) when α = 1.  

3. RELIABILITY CHARACTERISTICS

The reliability function R(x) is an important tool for characterizing life phenomenon. R(x) is 

analytically expressed as R(x) = 1 − F(x). Under certain predefined conditions, the reliability 

function R(x) gives the probability that a system will operate without failure until a specified 

time x . The reliability function of the Extended Erlang-Truncated Exponential (EETE) 

distribution is given by 

𝑅(𝑥) = 1 − (1 − 𝑒−𝛽(𝛼𝜆)𝑥)
𝛼

 , 0 ≤ 𝑥 < ∞, 𝛼, β,   λ >  0             (9)

Another important reliability characteristics is the failure rate function. The failure rate function 

gives the probability of failure for a system that has survived up to time x. The failure rate 

function h(x)  is mathematically expressed h(x) = f(x)/R(x) . The failure rate function the 

Extended Erlang-Truncated Exponential (EETE) distribution is given by: 
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ℎ(𝑥) =
𝛼 β (𝛼𝜆) 𝑒−𝛽(𝛼𝜆)𝑥[1−𝑒−𝛽(𝛼𝜆)𝑥]𝛼 −1

1−[1−𝑒−𝛽(𝛼𝜆)𝑥]𝛼
 , 0 ≤ 𝑥 < ∞, 𝛼, β, λ > 0  (10) 

4. CHARACTERISTION RESULTS

We assume that all considered DFs are differentiable with respect to their arguments. 

Moreover, all the considered RVs are non-negative 

THEOREM 4.1 :- 

 Let 𝑋(𝑟, 𝑛; 𝑚, 𝑘), 𝑚 ≠ −1 be the 𝑟𝑡ℎ m- GOS from a sample of size 𝑛 drawn from a continuous 

DF 𝐹𝑋 (x) with PDF 𝑓𝑋(𝑥).  Furthermore, let 𝑌(𝑟, 𝑛, 𝑚, 𝑘),  𝑚 ≠ −1  be the 𝑟𝑡ℎ    m- GOS based on

a sample of size n , which is drawn from a continuous DF 𝐹𝑦(𝑦) = 𝑃(𝑌 ≤ 𝑦) , where Y is 

independent of X. Finally, let the relation  

𝑋(𝑠, 𝑛, 𝑚, 𝑘)  𝑋(𝑟, 𝑛, 𝑚, 𝑘) + �̃�=
𝑑                            (11) 

be satisfied for all  1 ≤ 𝑟 < 𝑠 ≤ 𝑛, Then,  �̃�    =
𝑑 𝑋(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘) and Y ~ exp(βαλ) if and  if 

𝑋 ~ exp(βαλ), β >  0, αλ >  0 . 

Proof. We first prove the necessary part. Let the moment generating function (MGF) of 

𝑋(𝑠, 𝑛, 𝑚, 𝑘) be 𝑀𝑋(𝑠,𝑛,,𝑚,𝑘)
(𝑡). Then, (11) implies that

𝑀𝑋(𝑠,𝑛,𝑚,𝑘)
(𝑡) = 𝑀𝑋(𝑟,𝑛,𝑚,𝑘)

(𝑡) ∙  𝑀�̃�(𝑡)      (12) 

Let us now derive the MGF of the rth  m-GOS 𝑋(𝑠, 𝑛, 𝑚, 𝑘) based on Erlang truncated exp(βαλ). 

Clearly, in view of (1), we get 

𝑀𝑋(𝑠,𝑛,𝑚,𝑘)
(𝑡) =

𝛽(𝛼𝜆) 𝑐𝑠−1
(𝑛)

(𝑟 − 1)! (𝑚 + 1)𝑠−1
∫ 𝑒−𝑥((𝛽𝛼𝜆)𝛾𝑠

(𝑛)
−𝑡)

∞

0

[1 − 𝑒−𝛽(𝛼𝜆)(𝑚+1)𝑥)]𝑠−1𝑑𝑥 

Which by using the transformation  y = 𝑒−𝛽𝛼𝜆(𝑚+1)𝑥 takes the form 

𝑀𝑋(𝑠,𝑛,𝑚,𝑘)
(𝑡) =

𝐶𝑠−1
(𝑛)

(𝑠 − 1)! (𝑚 + 1)𝑠
∫ 𝑦

(
𝛾𝑠

(𝑛)

𝑚+1
 − 

𝑡

𝛽(𝛼𝜆)(𝑚+1)
)

−1
1

0

 (1 − 𝑦)𝑠−1𝑑𝑦

=
𝐶𝑠−1

(𝑛)

(𝑚 + 1)𝑠

Γ (
𝛾𝑠

(𝑛)

(𝑚+1)
 −  

𝑡

𝛽𝛼𝜆(𝑚+1)
 )

Γ (
𝛾𝑠

(𝑛)

(𝑚+1)
 −  

𝑡

𝛽𝛼𝜆(𝑚+1)
+ 𝑠)

= ∏ (

𝛾𝑠
(𝑛)

(𝑚+1)

𝛾𝑠
(𝑛)

(𝑚+1)
 −  

1

𝛽(𝛼𝜆)(𝑚+1)
+ 𝑠 − 𝑖

)

𝑠

𝑖=1

 

 = ∏ (

𝛾𝑠
(𝑛)

(𝑚+1)

𝛾𝑠
(𝑛)

(𝑚+1)
 − 

1

𝛽(𝛼𝜆)(𝑚+1)
+𝑠−𝑖

)𝑠
𝑖=1 = ∏ (1 −

𝑡

𝛽(𝛼𝜆)𝛾
𝑖
(𝑛))

−1

𝑠
𝑖=1

(13) 

Where Γ(. ) is the usual gamma function. On the other hand, in view of (12) 

𝑀�̃�(𝑡) =
𝑀𝑋(𝑠,𝑛,𝑚,𝑘)

(𝑡)

𝑀𝑋(𝑟,𝑛,𝑚,𝑘)
(𝑡)

=
(𝑚 + 1)𝑟  

(𝑚 + 1)𝑠

𝐶𝑠−1
(𝑛)

 

𝐶𝑟−1
(𝑛)

Γ (
𝛾𝑠

(𝑛)

(𝑚+1)
 −  

𝑡

𝛽(𝛼𝜆)(𝑚+1)
 )

Γ (
𝛾𝑠

(𝑛)

(𝑚+1)
 −  

𝑡

𝛽(𝛼𝜆)(𝑚+1)
+ 𝑠)

Γ (
𝛾𝑟

(𝑛)

(𝑚+1)
 −  

𝑡

𝛽(𝛼𝜆)(𝑚+1)
+ 𝑟)

Γ (
𝛾𝑟

(𝑛)

(𝑚+1)
 −  

𝑡

𝛽(𝛼𝜆)(𝑚+1)
) 
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= ∏ (1 −
𝑡

𝛽(𝛼𝜆)𝛾
𝑖
(𝑛))

−1

𝑠
𝑖=𝑟+1 = ∏ (1 −

𝑡

𝛽(𝛼𝜆)𝛾
𝑟+𝑗
(𝑛) )

−1

𝑠−𝑟
𝑗=1 = ∏ (1 −

𝑡

𝛽(𝛼𝜆)𝛾
𝑗
(𝑛−𝑟))

−1

𝑠−𝑟
𝑗=1                             (14) 

                                      

Since, 𝛾𝑟+𝑗
(𝑛)

  = 𝑘 + (𝑛 − 𝑟 − 𝑗)(𝑚 + 1) = 𝛾𝑗
(𝑛−𝑟)

 . On comparing (14) with (13), we deduce that 

𝑀�̃�(𝑡) is the MGF of  Y (𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘), i.e., the (s − r)𝑡ℎ m-GOS from a sample of size  (n −

r) drawn from the DF Erlang truncated exp(𝛽(𝛼𝜆)). This completes the proof of the necessity 

part.  

We now turn to prove the sufficiency part. Let the representation (11) be satisfied with 

�̃�    =
𝑑 𝑌(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘) and Y ~ exp(𝛽(𝛼𝜆)). Furthermore, let 𝑋(𝑠, 𝑛, 𝑚, 𝑘) and 𝑋(𝑟, 𝑛, 𝑚, 𝑘) in (11) 

be m−GOSs, which are based on an unknown DF 𝐹𝑋(x) and they are independent of 𝑌(𝑠, 𝑛, 𝑚, 𝑘). 

Therefore, the convolution relation (11) implies that  

 

𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) = ∫ 𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑦)𝑓𝑌((𝑠,𝑛,𝑚,𝑘))(𝑥 − 𝑦)𝑑𝑦
∞

0
     

          

          =
𝛽(𝛼𝜆) 𝑐(𝑠−𝑟−1)

(𝑛−𝑟)

(𝑠−𝑟−1)!(𝑚+1)𝑠−𝑟−1 ∫ [𝑒−𝛽(𝛼𝜆)(𝑥−𝑦)]𝛾𝑠
(𝑛)∞

0
 

     

   × [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑠−𝑟−1𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑦)𝑑𝑦         (15) 

as 𝛾𝑠−𝑟
(𝑛−𝑟)

= 𝛾𝑠
(𝑛)

 

Differentiating both the sides of (15) 𝑤. 𝑟. 𝑡. x, we get 

 

𝐶𝑠−𝑟−1
(𝑛−𝑟)

= 𝛾𝑠−𝑟
(𝑛−𝑟)

𝐶𝑠−𝑟−2
(𝑛−𝑟)

= 𝛾𝑠
(𝑛)

𝐶𝑠−𝑟−2
(𝑛−𝑟)

 
 

and, 𝛾𝑠
(𝑛)

+ (𝑚 + 1) = 𝛾𝑠−1
(𝑛)

, we get 

 

𝑑

𝑑𝑥
𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) =

(𝛽(𝛼𝜆))2 𝛾𝑠
(𝑛)

𝐶𝑠−𝑟−2
(𝑛−𝑟)

(𝑠 − 𝑟 − 2)! (𝑚 + 1)𝑠−𝑟−2
∫[𝑒−𝛽(𝛼𝜆)(𝑥−𝑦)]𝛾𝑠−1

(𝑛)
+(𝑚+1)

𝑥

0

  

                  

× [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑠−𝑟−2𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑦)𝑑𝑦 

−
(𝛽(𝛼𝜆))2 𝛾𝑠

(𝑛)
 𝐶𝑠−𝑟−1

(𝑛−𝑟)

(𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−𝑟−1
∫[𝑒−𝛽(𝛼𝜆)(𝑥−𝑦)]𝛾𝑠

(𝑛)

 

𝑥

0

 

                

× [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑠−𝑟−1𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑦)𝑑𝑦        (16) 

 

On the other hand, by using the obvious relation 

 

𝑒−𝛽(𝛼𝜆) 𝛾𝑠
(𝑛)

 𝑧  (1 − (𝑒−𝛽(𝛼𝜆)(𝑧))𝑚+1)
𝑠−𝑟−1

= 𝑒−𝛽(𝛼𝜆)) 𝛾𝑠
(𝑛)

 𝑧 (1 − 𝑒−𝛽(𝛼𝜆) (𝑚+1) 𝑧 )
𝑠−𝑟−2

  

 

−𝑒−𝛽(𝛼𝜆)) 𝛾𝑠
(𝑛)

 +(𝑚+1)𝑧 (1 − 𝑒−𝛽(𝛼𝜆) (𝑚+1) 𝑧 )
𝑠−𝑟−2

 

and by using the representation (3.5), we get 

 

𝛽(𝛼𝜆) 𝐶𝑠−𝑟−1
(𝑛−𝑟)

(𝑠−𝑟−2)!(𝑚+1)𝑠−𝑟−2 ∫ [𝑒−𝛽(𝛼𝜆)(𝑥−𝑦)]𝛾𝑠−𝑟
(𝑛)

+(𝑚+1)𝑥

0
× [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑠−𝑟−2𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑦)𝑑𝑦

                                 
 

=
  𝐶𝑠−𝑟−1

(𝑛−𝑟)

𝐶𝑠−𝑟−2
(𝑛−1) 𝑓𝑋(𝑠−𝑟−1,𝑛−1,𝑚,𝑘)(𝑥) −  (𝑚 + 1) (𝑠 − 𝑟 − 1)𝑓𝑋(𝑠−𝑟,𝑛,𝑚,𝑘)(𝑥)                                  (17) 
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Thus, by using the relation  𝛾𝑠−𝑟
(𝑛)

+ (𝑚 + 1) (𝑠 − 𝑟 − 1) = 𝛾1
(𝑛)

 and

 𝐶𝑠−𝑟−1
(𝑛−𝑟)

𝐶𝑠−𝑟−2
(𝑛−1)

=
∏ 𝛾𝑖

(𝑛)𝑠−𝑟
𝑖=1

∏ 𝛾
𝑖

(𝑛)𝑠−𝑟
𝑖=2

= 𝛾𝑠
(𝑛)

and by combing (23) and (16), weget 
𝑑

𝑑𝑥
𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) = 𝛽(𝛼𝜆)𝛾𝑠

(𝑛)
[𝑓𝑋(𝑠−1,𝑛−1,𝑚,𝑘)(𝑥) − 𝑓𝑋(𝑠,,𝑚,𝑘)(𝑥)]

or equivalently, by integrating from 0 to x 

𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) = 𝛽(𝛼𝜆)𝛾𝑠
(𝑛)

[𝐹𝑋(𝑠−1,𝑛−1,𝑚,𝑘)(𝑥) − 𝐹𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥)]  (18) 

Now, by using the relation (II) of  [15] on page 75, we get 

𝐹𝑋(𝑠−1,𝑛−1,𝑚,𝑘)(𝑥) − 𝐹𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑠−2

(𝑛)

(𝑠−1)!(𝑚+1)𝑠−1 [�̅�𝑋(𝑥)]𝛾𝑠
(𝑛)

−1[1 − (�̅�𝑋(𝑥))𝑚+1]𝑠−1  (19) 

Therefore, by combing (1), (18) and (19), we have 
𝑓𝑋(𝑥)

𝐹𝑋(𝑥)
= 𝛽(𝛼𝜆) 

Which implies that FX(𝑥) = [1 − 𝑒−𝛽(𝛼𝜆)𝑥] , 𝑥 > 0, β >  0, ∝>  0, λ > 0. This completes the proof of

the sufficient part, as well as the proof of theorem 3.1. 

Corollary 4.1. Assume that the RVs X and Y are independent, as we assumed in Theorem 4.1. 

By replacing the additive relation (11) by the multiplication relation 

𝑋(𝑠, 𝑛, 𝑚, 𝑘)     𝑋(𝑟, 𝑛, 𝑚, 𝑘) ∙  �̃�=
𝑑                           (20) 

Then,  �̃�    =
𝑑 𝑌(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘) and Y ~  𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼𝜆)) (i.e., 𝐹(𝑥) = [1 − 𝑦−𝛽(𝛼𝜆), 𝑦 > 1] if and  if

𝑋 ~ 𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼𝜆),  β >  0, ∝ >  0, λ > 0 . 

Proof. Here the proof immediately follows, by noting that if X ~   𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼𝜆)) , then 

log 𝑋~ 𝑒𝑥𝑝 (𝛽(𝛼𝜆)) and 

log 𝑋(𝑠, 𝑛, 𝑚, 𝑘)      =
𝑑 log 𝑋(𝑟, 𝑛, 𝑚, 𝑘) + log �̃� 

which implies 

𝑋(𝑠, 𝑛, 𝑚, 𝑘)      𝑋(𝑟, 𝑛, 𝑚, 𝑘)   �̃�=
𝑑  

Remark 1. In (20), the product  𝑋(𝑟, 𝑛, 𝑚, 𝑘) × �̃�   is called random dilation of  𝑋(𝑟, 𝑛, 𝑚, 𝑘), cf. [7]. 

Moreover, at  𝑠 = 𝑟 + 1, the representation (20) gives 

𝑋(𝑟 + 1, 𝑛, 𝑚, 𝑘)     𝑋(𝑟, 𝑛, 𝑚, 𝑘) ∙ 𝑌(1, 𝑛 − 𝑠 + 1, 𝑚, 𝑘)=
𝑑                                                                (21) 

as was obtained by [7] for X ~  𝑃𝑎𝑟𝑒𝑡𝑜(𝛽(𝛼𝜆)). Also, at  𝑟 = 𝑠 − 1, the relation (20) gives  

𝑋(𝑟 + 1, 𝑛, 0,1)     𝑋(𝑟, 𝑛 − 1,0,1) ∙ 𝑌(1, 𝑛, 0, 1)=
𝑑  

(i.e., for the OOSs model), which was obtained by [8], for 𝑋(1, 𝑛, 0,1) ~ Pareto(𝛽(𝛼𝜆)𝑛). Finally, 

the representation (21) can be written as ( for OOSs model)  X(s, n, 0,1)     X(r, n, 0,1) ∙ V=
d , 1 ≤ r <

s , which was an unsolved problem due to [6]). 

 Corollary 4.2. Assume that the RVs X and Y are independent, Let X∗(r, n, m, k) and 

Y∗(r, n, m, k)be the rth m- DGOS based on a sample of size n drawn from FX and FY, respectively.

By replacing the additive relation (11) by the multiplicative relation 

𝑋∗(𝑠, 𝑛, 𝑚, 𝑘)     𝑋∗(𝑟, 𝑛, 𝑚, 𝑘) ∙  𝑌∗
=
𝑑       

Then,  𝑌∗    =
𝑑 𝑌∗(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘)  and 𝑌∗  ~   𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼𝜆))  ,  β > 0, ∝> 0  (i.e., Fy(𝑦) = 𝑦  𝛽(𝛼𝜆)  if

and  if  𝑋∗ ~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼𝜆).

Proof. The  proof immediately follows from the simple relation between the GOSs and DGOSs, 

by nothing that if , by noting that if  X ~  𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼𝜆)) , then −logX ~  𝑒𝑥𝑝(𝛽(𝛼𝜆)) and 

−𝑙𝑜𝑔𝑋∗(𝑠, 𝑛, 𝑚, 𝑘) =
𝑑 − 𝑙𝑜𝑔 𝑋∗(𝑟, 𝑛, 𝑚, 𝑘) − log 𝑌∗

which implies

𝑋∗(𝑠, 𝑛, 𝑚, 𝑘)  𝑋∗(𝑟, 𝑛, 𝑚, 𝑘)   𝑌∗
=
𝑑  
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THEOREM 4.2 :- 

 Let 𝑋(𝑟, 𝑛, 𝑚, 𝑘), 𝑚 ≠ −1 be the 𝑟𝑡ℎ m- GOS from a sample of size 𝑛 drawn from a continuous 

DF 𝐹𝑋 (x) with PDF 𝑓𝑋(𝑥).  Furthermore, let 𝑌(𝑟, 𝑛, 𝑚, 𝑘), 𝑚 ≠ −1 be the 𝑟𝑡ℎ m- GOS based on a

sample of size n , which is drawn from a continuous DF 𝐹𝑦(𝑦), where Y is independent of X. 

Finally, let the relation  

𝑋(𝑠, 𝑛, 𝑚, 𝑘)     𝑋(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘) + �̃�=
𝑑             (22) 

be satisfied for all  1 ≤ 𝑟 < 𝑠, Then,  �̃�    =
𝑑 𝑋(𝑟, 𝑛, 𝑚, 𝑘) and Y ~ exp(βαλ) if and  if  𝑋 ~ exp(βαλ), 

β >  0, ∝>  0, λ > 0. 

Proof. Clearly, the proof of the necessity part follows from Theorem 4.1, while the proof of the 

sufficiency part follows closely as the sufficiency part of Theorem 4.1. Namely, let the 

representation (22) be satisfied with �̃�    =
𝑑 𝑋(𝑟, 𝑛, 𝑚, 𝑘)  and Y ~  exp( βαλ ). Furthermore, let 

𝑋(𝑠, 𝑛, 𝑚, 𝑘) and 𝑋(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘)  in (22) be m−GOSs, which are based on an unknown DF 

𝐹𝑋(x) and they are independent of Y(𝑟, 𝑛, 𝑚, 𝑘). Therefore, the convolution relation (22) implies 

that  

𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) = ∫ 𝑓𝑋(𝑠−𝑟,𝑛−𝑟,𝑚,𝑘)(𝑦)𝑓𝑌(𝑟,𝑛,𝑚,𝑘)(𝑥 − 𝑦)𝑑𝑦

𝑥

0

 

    =
𝛽(𝛼𝜆) 𝐶𝑟−1

(𝑛)

(𝑟−1)!(𝑚+1)𝑟−1 ∫ 𝑒−𝛽(𝛼𝜆) 𝛾𝑟
(𝑛)

(𝑥−𝑦)𝑥

0
× [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑟−1𝑓𝑋(𝑠−𝑟,𝑛−𝑟,𝑚,𝑘)(𝑦)𝑑𝑦  (23)

By differentiating both the sides of (23) with respect to x, we get 

𝑑𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥)

𝑑𝑥
=

(𝛽(𝛼𝜆))2 𝐶𝑟−1
(𝑛)

(𝑟 − 2)! (𝑚 + 1)𝑟−2
∫[𝑒−𝛽(𝛼𝜆)(𝛾𝑟

(𝑛2)
+(𝑚+1)](𝑥−𝑦)

𝑥

0

× [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑟−2𝑓𝑋(𝑠−𝑟,𝑛−𝑟,𝑚,𝑘)(𝑦)𝑑𝑦

−
(𝛽(𝛼𝜆))2  𝛾𝑟

(𝑛)
𝐶𝑟−1

(𝑛)

(𝑟−1)!(𝑚+1)𝑟−1 ∫ 𝑒−𝛽(𝛼𝜆)(𝛾𝑟
(𝑛)

(𝑥−𝑦)𝑥

0

× [1 − (𝑒−𝛽(𝛼𝜆)(𝑥−𝑦))𝑚+1]𝑟−1𝑓𝑋(𝑠−𝑟,𝑛−𝑟,𝑚,𝑘)(𝑦)𝑑𝑦

= 𝛽(𝛼𝜆)𝛾1
(𝑛)

[𝑓𝑋(𝑠−1,𝑛,𝑚,𝑘)(𝑥) − 𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥)]

Or equivalently, by integrating from 0 to x, 

𝑓𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) = 𝛽(𝛼𝜆)𝛾1
(𝑛)

[𝐹𝑋(𝑠−1,𝑛−1,𝑚,𝑘)(𝑥) − 𝐹𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥)]     (24) 

Now, by using the relation of [15] on page 75, we get 

𝐹𝑋(𝑠−1,𝑛−1,𝑚,𝑘)(𝑥) − 𝐹𝑋(𝑠,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑠−2

(𝑛−1)

(𝑠−1)!(𝑚+1)𝑠−1 [�̅�𝑋(𝑥)]𝛾𝑠
(𝑛)

−1[1 − (�̅�𝑋(𝑥))𝑚+1]𝑠−1  (25) 

Therefore, by combing (1), (24) and (25), we get 
𝑓𝑋(𝑥)

𝐹𝑋(𝑥)
= 𝛽(𝛼𝜆) 

which implies that 

FX(𝑥) = [1 − 𝑒−𝛽(𝛼𝜆)𝑦} , β >  0, ∝ >  0, λ > 0, x > 0 

This complete the proof of the sufficiency part, as well as the proof of Theorem 4.2. 

Corollary 4.3 Assume that the RVs X and Y are independent, as we assumed in Theorem 4.2. By 

replacing the additive relation (22) by the multiplicative relation 

X(𝑠, 𝑛, 𝑚, 𝑘)     𝑋(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘) ∙  �̃�=
𝑑  

(26)
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Then, Ỹ  =
d Y(r, n, m, k) and Y ~  Pareto(β(αλ)) if and only if  X ~  Pareto(β(αλ)) 

Proof. The  proof  follows exactly as the proof of Corollary 4.1. 

Remark 2. For OOSs model the relation (26) takes the form 

X(𝑠, 𝑛; 0,1)      𝑋(𝑠 − 𝑟, 𝑛 − 𝑟; 0,1)   𝑌 (𝑟, 𝑛; 0,1)=
𝑑  

Which implies the relation X(𝑠, 𝑛; 0,1)      𝑋(𝑟, 𝑛; 0,1)   𝑌 (𝑠 − 𝑟, 𝑛 − 𝑟; 0,1)=
𝑑  that is belonging to 

[8]). 

Corollary 4.4. Assume that the RVs X and Y are independent, Let X∗(r, n, m, k) and 

Y∗(r, n, m, k)be the rth m- DGOs based on a sample of size n drawn from FX and FY, respectively.

By replacing the additive relation (22) by the multiplicative relation 

𝑋∗(𝑠, 𝑛, 𝑚, 𝑘)     𝑋∗(𝑠 − 𝑟, 𝑛 − 𝑟, 𝑚, 𝑘) ∙  𝑌∗
=
𝑑        

Then,  𝑌∗   =
𝑑 𝑌∗(𝑟, 𝑛, 𝑚, 𝑘) and 𝑌∗~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼𝜆)) if and  if  𝑋∗ ~ 𝑃𝑜𝑤𝑒𝑟(𝛽(𝛼𝜆), β > 0, ∝>  0, λ >

0 . 

Proof. The  proof follows as the proof of Corollory 4.2. 

5. APPLICATIONS TO THE PREDICTION PROBLEM

Prediction problem usually arises in life-testing experiments of medical and industrial 

applications. Often, in the life-testing experiments, the observations arrive in ascending order of 

magnitude. Consequently, in reliability theory, especially for OOSs and SOSs, X(r, n, m, k) 

represents the life length of a n − r + 1- out-of-n system made up of n independent life lengths 

(these components are identical for OOSs and non identical for SOSs). Motivation for the 

prediction problems arises when the experiment is terminated before its conclusion by stopping 

after a given time (Type I censoring) or after a given number of failures (Type II censoring). 

Several authors have considered prediction problems involving GOSs, see for example [30], 

[31],  [32], [33] and [34]. 

Theorems 4.1 and 4.2 suggest a new method for treating two prediction problems of different 

types. Namely, Theorem 4.2 treats a classical prediction problem, that predicting 

X(s, n, m, k), 1 ≤ r < s ≤ n , based on the observed m−GOSs X(1, n, m, k) ≤ X(2, n, m, k) ≤ ⋯ ≤

X(r, n, m, k. On the other hand, Theorem 3.1 considers the prediction problem of X(r, n, m, k), 

when the sample size of the test is enlarged from n to N, by adding some extra items 𝑋𝑛+1, ⋯ , 𝑋𝑁

after observing X(r, n, m, k) . Clearly, the sequence {X(r,n,m,k)} is non-increasing in n . For 

example, if 𝐹𝑋(𝑥) is continuous and for any fixed value r < n, the observed value of X(r, n, 0,1), 

denoted by x(r, n, 0,1) , did not change if min (xn+1 , ⋯ , xN ) > x(r, n, 0,1) , otherwise we get 

x(r, n, 0,1) < x(r, N: 0,1). In the preceding two prediction problems, the failure times of the un-

observed lifetimes in a lifetime experiment are predicted by using the result of another 

independent lifetime experiment. 
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Abstract

Since the problem of coronavirus infection, especially in vulnerable groups, remains relevant in the
healthcare system, it is necessary to recognize the risk of fatal events during the treatment of patients
from COVID-19. Patients with hemoblastosis are exposed to a more severe course of coronavirus infection
than the general population, as well as an increased risk of fatal events. The aim of our study was to
determine the effect of signs on the risk outcomes of fatal events among patients with diseases of the blood
system, both of a tumor and non-tumor nature. According to the values of the signs, it was necessary
to recognize survivors and those who died during treatment from COVID-19. The method of interval
pattern recognition was chosen due to the presence of big data, it is described in detail in the article. The
patients were broken down by gender and age. The signs that significantly affect the forecast according to
the developed algorithm were identified. This is especially evident in groups of men and women with
malignant diseases of the blood system over the age of 60 years. In these groups, a positive outcome of
treatment is detected due to the presence of a large set of uninformative signs. This phenomenon is closely
related to the tasks of technical gerontology.

Keywords: interval pattern recognition, big data, informative signs, technical gerontology, coron-
avirus infection, hemoblastosis, tumor.

Introduction

According to world studies, it is known that patients with hemoblastosis are susceptible to a more
severe course of coronavirus infection than the general population, as well as an increased risk
of fatal complications [1, 2, 3]. In the era of the ongoing coronavirus pandemic, it is an urgent
task for the population and the healthcare system to recognize the risk of fatal events during the
treatment of COVID-19 patients with benign and malignant diseases of the blood system based
on the results of their examination.

The initial sample contains data from medical records of the medical history of 221 patients
with diseases of the blood system of Primorsky Krai who were treated for COVID-19 coronavirus
infection in the infectious department of the KKB2 in Vladivostok, among which 48 patients had
non-tumor (benign) diseases of the blood system, 173 - tumor (malignant) diseases of the blood
system. Patients with blood tumor diseases were divided depending on the age category into
groups: women at least 60 years of age - 60 patients, under 60 years of age - 31 patients, men at
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least 60 years of age - 53 patients, under 60 years of age - 29 patients. The use of medical data
was made after the signing of informed voluntary consent from the patient.

As a result of this partitioning, the original rather heterogeneous sample was divided into
five relatively homogeneous subsamples. Each of these samples was characterized by about 40
different characteristics. Some of these features have the character of Boolean variables of the yes
- no type, and some are the results of laboratory studies. Despite the relatively small number of
patients in each of the selected groups, the number of signs is quite large. This property allows
the source information to be characterized as Big Data. The task was to investigate the effect of
signs on the result of treatment in the selected groups. According to the values of the signs, it
was necessary to recognize survivors and those who died during treatment from coronavirus
infection. The presence of Big Data in the problem required solving by an algorithm with the
lowest possible computational complexity. The method of interval pattern recognition was chosen
as such a method. This method [4] was developed to predict outbreaks of tick-borne encephalitis
by meteorological characteristics of the winter period and later extended to the analysis of
extreme meteorological phenomena during last twenty years. The issues of medical information
processing considered in the paper are closely related to the tasks of technical gerontology [5] –
[7].

I. Interval pattern recognition and its properties

Let there be two sets of m-dimensional vectors characterizing some objects:

X0 = {(x0
11, . . . , x0

1m), . . . , (x0
n01, . . . , x0

n0m)},

X1 = {(x1
11, . . . , x1

1m), . . . , (x1
n111, . . . , x1

n1m)}.

We assume that the components of these vectors with numbers k = 1, . . . , m′ < m are Boolean
variables, and the components with numbers k = m′ + 1, . . . , m are real variables. Each vector
from the sets X0, X1 describes Boolean/real features of a separate object. Our task is to recognize
whether objects belong to the set of X0 or to the set of X1 by the vector of signs characterizing
these objects.

The essence of the interval pattern recognition method is as follows. An object defined by the
vector (x1

k1, . . . , x1
km) is recognized as an element of the set X0, if all inequalities are met

x−i = min
1≤k≤n0

x0
ki ≤ x1

ki ≤ max
1≤k≤n0

xki = x+i , i = 1, . . . , m. (1)

Otherwise, the object characterized by the vector (x1
k1, . . . , x1

km) is recognized as an element of
the set X1, denote their number s (the number of correctly recognized objects of the set X1). The
quality of this method is determined by the ratio

ρ =
n0 + s

n0 + n1
, (2)

since the number of correctly recognized objects of the set X0 is n0.
Let’s list some properties of the value ρ.

1. All objects of the set X0 are correctly recognized.
2. The recognition quality of ρ increases with the number of m features.
3. The number of arithmetic operations for implementing interval pattern recognition depends
linearly on m and on n.
4. The Boolean attribute i, such that not all numbers x0

k,i match, does not affect the quality of
recognition ρ in any way.

Remark 1. In multidimensional statistics, the recognition quality increases with the growth of n and with
the decrease of m. In turn, in many real observations, on the contrary: n is small (about 30), and m is quite
large (at least 5). This circumstance in conjunction with the properties {2, 3 makes it convenient to use the
interval pattern recognition method when analysing Big Data.
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But to use this method to medical information, some adaptation is required. Particular
attention should be paid to the signs determined by Boolean variables, since doctors consider these
signs to be more reliable. Therefore, first a set of I1 Boolean features is allocated (conditionally
denote them 1, . . . , m′), according to which all objects of the set X0 take the same values. Next is
s1 of objects, (conditionally denote them 1, . . . , n1

1) of the set X1, which are correctly recognized
by the pain signs of the set I1. Let X1

1 be the collection of all such objects in the set X1.
The next step is to build segments of the type (1) based on laboratory signs and check

objects X1 \ X1
1 for the correctness of their recognition by signs m′ + 1, . . . , m. Denote s2 the

number of objects of the set X1 \ X1
1 correctly recognized by these signs, then the equality

s = s1 + s2 is fulfilled. For each feature i, i = 1, . . . , m,, the number of elements of the set X1

correctly recognized by it, divided by the number of elements of this set n1, is compared as its
informativeness.

II. Research results

For calculations from the initial medical information, the following signs were identified:
1. Phase of hematological disease at the time of diagnosis of COVID-19: 1 - remission induction,
2 - first remission, 3 - second and subsequent remission, 4 -relapse therapy, 5 - refractory course,
6 - no data;
2. Number of comorbidities (such as obesity, diabetes mellitus, cardiovascular disease, respiratory
disease, liver disease, chronic kidney disease);
3. ECOG stage (from 0 to 4) at the time of admission (ECOG is a scale for assessing the general
condition of a cancer patient);
4. ECOG maximum stage (that is, how the general condition of the patient has changed from the
moment of infection with coronavirus to the moment of recovery/death);
5. Indicators of a clinical blood test: 5.1.hemoglobin (g/l), 5.2.leukocytes (g/l), 5.3. erythrocytes
(g/l), 5.4. platelets (g/l); 5.5. ESR (erythrocyte sedimentation rate, mm/h), 5.6. eosinophils (%),
5.7. P / I (stab neutrophils, %), 5.8. c / i (segmented neutrophils, %), 5.9. lymphocytes (%), 5.10.
monocytes (%);
6. Parameters of blood biochemistry: 6.1. ALT (IU/l), 6.2. Ast (IU/l), 6.3. GFR (glomerular
filtration rate), 6.4. creatinine (mmol/l), 6.5. urea (mmol/l), 6.6.total protein (g/l), 6.7. total
bilirubin (mmol/l);;
7. Indicators of the blood coagulation system: 7.1. APTT (activated partial thromboplastin time,
sec), 7.2. PT (prothrombin time, sec), 7.3. fibrinogen (g/l).

The rest of the blood signs are not informative (few of the deceased have values in the table).
Some of the Boolean features allocated to doctors do not affect the quality of recognition due to
property 5.

Table 1. Quality of interval recognition

n0 n1 n0 + n1 s ρ

Benign blood diseases (group 1) 10 38 48 38 1
Malignant blood diseases,
women at least 60 years old (group 2) 24 36 60 22 0,77
Malignant blood diseases,
women under 60 (group 3) 15 16 31 11 0,84
Malignant blood diseases,
men at least 60 years old (group 4) 28 25 53 15 0,81
Malignant blood diseases,
men under 60 (group 5) 12 16 28 15 0,96

The interval pattern recognition algorithm described above (in the presence of Boolean signs)
calculated the indicator ρ, characterizing the quality of interval recognition for all selected groups
of patients (see Table 1). In our notation n0 is the number of patients who died from coronavirus
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infection, n1 is the number of patients who recovered from coronavirus infection, s is the number
of recovered patients recognized as recovered (correctly recognized).

Table 2. Informative value of recognizing signs

feature number Group 1 Group 2 Group 3 Group 4 Group 5
1 32/38 0 1/16 0 0
2 11/38 4/36 1/16 0 0
3 0 0 0 0 6/16
4 0 0 0 3/25 7/16

5.1 10/38 1/36 1/16 1/25 1/16
5.2. 33/38 2/36 2/16 1/25 1/16
5.3. 13/38 1/36 0 1/25 10/16
5.4. 18/38 0 0 7/25 3/16
5.5. 4/38 1/36 2/16 0 1/16
5.6. 15/38 4/36 1/16 2/25 1/16
5.7. 2/38 0 0 0 0
5.8. 35/38 0 0 0 3/16
5.9. 6/38 2/36 2/16 1/25 2/16

5.10. 1/38 0 6/16 0 0
6.1 7/38 4/36 2/16 0 1/16
6.2. 3/38 1/36 0 0 0
6.3. 2/38 1/36 1/16 1/25 3/16
6.4. 7/38 1/36 0 1/25 3/16
6.5. 28/38 2/36 0 0 2/16
6.6. 9/38 3/36 0 0 0
6.7. 6/38 1/36 0 0 2/16
7.1. 10/38 3/36 7/16 1/25 4/16
7.2. 4/38 0 0 0 0
7.3. 9/38 1/36 1/16 1/25 1/16

From Table 2, it follows that in group 1 of patients with benign blood diseases, three signs
are distinguished with an informativeness greater than 0.70, the maximum of them is 0.92. In
the group 2 female patients at least 60 years old with malignant blood diseases, the maximum
informative value of signs is 0.11, but there are many signs with small values. In the group 3
female patients under 60 years of age with malignant blood diseases, the maximum informative
value of signs is 0.38, however, there are many signs with zero informative value. In a group
4 male patients at least 60 years old with malignant blood diseases, the maximum informative
value of signs is 0.28, but there are many signs with zero informative value. In a group 5 male
patients under 60 years of age with malignant blood diseases, the maximum informative value of
signs is 0.62. From a comparison of signs with maximum effectiveness, it can be seen that they
are different in different groups (see Figure 1). In conclusion, it should be noted that due to its
speed, the interval pattern recognition method proved to be convenient when processing big data
in the treatment of coronavirus infection in various age groups of patients with diseases of the
blood system. This is especially evident in groups of men and women with malignant diseases of
the blood system over the age of 60 years. In these groups, a positive outcome of treatment is
detected due to the presence of a large set of uninformative signs. The research was carried out
within the state assignment for IAM FEB RAS (N 075-01290-23-00).
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Figure 1: Graphic representation of informative features in groups of patients
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Abstract 

 
A universal analytical expression is obtained for the power of hydraulic turbines of small hydropower 
plants such as Francis, Pelton and Kaplan with fixed blades as a function of water flow. This 
expression allows us to predict the generation of active power of each of the turbines, depending on 
the adjusted water flow rate, which varies in the seasonal, monthly and daily periods of the year. It 
also allows you to solve the inverse problem, when it is necessary, depending on the load schedule 
dictated by the electrical system to which these small hydroelectric power stations are connected, to 
regulate the amount of water flow by changing the opening angles of the guiding devices of the 
hydraulic turbines. Studies on the proposed mathematical model containing a synchronous generator 
with electromagnetic excitation coupled to a Francis hydraulic turbine with a 60% change in water 
flow from q=1 (r.u) to q=0.4 (r.u). The value of the required active power of a small hydroelectric 
power station, i.e. power output of the generator will jam (either by the dispatcher, or by the value of 
the load schedule), i.e. it is an input value, and as the output value of the controller is the opening 
angle of the guiding apparatus of the turbine. 
 
Keywords: small hydropower plants, Francis turbine, Pelton turbine, axial turbines, 
synchronous generator with electromagnetic excitation, electrical grid.  

 
1. Introduction 

 
In recent years small HPSs (hydroelectric power station) are successfully adopted as the electric 

power producers at regional level in many world countries. One of the main advantages of this 
power type is its environmental purity, and a disadvantage is the demand for significant 
investments in their construction. 

In small HPSs, whose power varies from several kW to 25–30 MW, in most cases as the hydraulic 
turbines the Francis and Pelton turbines are used, and a series of hydraulic units with axial flow 
turbines.  

The purpose of this paper is the modeling of behavior of stated turbines in general analytic 
form and the solution of some issues of their combined action with electromechanical converter 
connected to electric power network of power system. 
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2. Materials and methods 

 
To deduce the analytical relations, describing the processes in above turbines, as a basis the 

approach presented in [1] is assumed. 
It is known, that the active power of hydraulic turbines is described by the expression of [2] 

form: 
 (1) 

where Р – powerin [kW]; η – efficiency, expressed in relative units;  Q – water discharge [m3/s]], Н – 
head [m], g=9.81– acceleration of gravity [m/s2]. 

It is clear that the rated power of hydraulic turbine will be:  
 (2) 

If to write down the current power in relative units, taking the rated values as the basis, we will 
obtain: 

 (3) 

where . 

The expression for efficiency of hydraulic turbines is presented in [1] in the form of: 
 (4) 

In (4) equation the а, b and с indexes depend on turbine’s type. For example for the Francis 
hydraulic turbines they are equal to a=‒0.537; b=1.047; c=0.49 with ηrat=0.9 for Pelton turbines they 
are equal to a=‒0.224; b=0.483; c=0.741 also with; and finally for axial flow turbines a=‒0.219; b=0.476; 
c=0.743 with ηrat=0.9 [1]. 

It is also known, that in general case the rated head is described by the expression of following 
form: 

 (5) 
where Н0 – head corresponded to theoretical fall, i.e. without taking into account the friction loss, λ 
– index, taking into account the water friction when passing from top level to hydraulic turbine. 

It is natural that a value of this λ index depends on a value of water flow q*, this dependence is 
imaged in the expression for current value of head, which is presented in the form of: 

 (6) 

Thus with taking into account (5) and (6) expressions the expression of current head in relative 
units has the form: 

 (7) 

Inserting the (4) and (7) expressions into (3) expression and making the simple conversions we 
finally obtain the expression for relative power of hydraulic turbine so small HPS sin the form of: 

 (8) 

where . 

Thus the expression (8) for power of hydraulic turbines is the universal analytic expression, 
linking a power value of three types of turbines –Francis, Pelton and axial flow with water discharge 
q, in this process only change the values of а, b, с indexes and friction factor λ. 

 
Table 1. Calculatedrelationship p*=f(q*) for Francis turbine 

q* 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 
p* 0.33 0.47 0.59 0.7 0.816 0.915 1 1.11 1.12 
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Table 2. Calculated relationship p*=f(q*) for Pelton turbine 
q* 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 
p* 0.39 0.502 0.61 0.718 0.819 0.916 1 1.14 1.22 

 
Table 3. Calculated relationship p*=f(q*) for axial (Kaplan) turbine water rate 

q* 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 1.4 
p* 0.39 0.5 0.61 0.718 0.818 0.914 1 1.1 1.2 

 
If to assume the friction factor λ is equal to λ=0.1, then the calculated dependences p*=f(q*) for 

Francis turbines will be presented in Table 1, for Pelton turbines in Table 2 and for axial flow turbines 
in Table 3. 

Analyzing the results, given in 1÷3 Tables, the single-valued conclusions can be drawn, that the 
power factors of Pelton turbine and axial flow turbine in turndown of flow rate q* from 0.4 to 1.4 are 
fully coincide in practice. For Francis hydraulic turbines in the range of water discharge from 0.4 to 
0.7 the power value р* as a function of flow rate q* is a little bit less than for above turbines, which 
indicates that the efficiency of this turbine for small flow rates is lower than the one of Pelton's and 
axial flow turbines (the less flow rate the less output power value). The curves of p*=f(q*) change for 
above hydraulic turbines of small HPSs are shown in Fig. 1 (further “*” indexes are removed). 

And also it needs to point to the circumstance, that all above mentioned correlations were 
obtained for constant (rated) rotational frequency of hydraulic turbines. Thus if the hydraulic 
turbines were jointed with uncontrolled electric generators – synchronous or asynchronous, whose 
rotational frequency is constant in steady-state mode, then (8) equation becomes automatically the 
one of driving torque, developed by hydraulic turbine as: 

 (9) 

where n*=1. 
 

3. Results and discussion 
 

The issues of operating modes study of hydraulic units with adjustable rotational frequency are 
presented in [3, 4].  

Let's consider the equations of state of hydraulic unit, composed of Francis turbine and classical 
synchronous generator with electromagnetic excitation, operating to electric network. 

The equations of synchronous generator with electromagnetic excitation are presented in [5]. 
Thus with consideration for the equations of hydraulic turbine the general equations will be 
presented in the form of: 

htht p
n
pm == *

*
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(10) 

 
where  

 

– excitation voltage as a fraction of excitation voltage of no-load operation [6]; mht – driving 

torque of hydraulic turbine; ktran – index of transfer of hydraulic turbine's basic units to the basic units 
of synchronous generator; q – water discharge in relative units. .  

 
If to automatize the system, then it becomes necessary to link the water discharge q, which 

determines identically a value of turbine's driving torque mht, with the output power of generator 
pget, i.e. besides the generator's equations it needs to take into account the equation of controller. For 
Francis hydraulic turbines and propeller (axial flow) ones a water discharge is controlled with the 
help of opening of wicket gates, which in one's turn are controlled by servomotors. A time constant 
of control tract is rather significant and reaches 1–2 seconds. 

 
If to take for simplicity of analysis the inertia governor as a controller (link of first order), then 

its equation will be in the form of: 

 (11) 

As it was noted, as the output power of controller Uout the angle of opening of wicket gates is 
used, which determine a water discharge q flowing through turbine, and the input power is the 
active power at the output of generator, which is set either by dispatcher or by a value of load 
diagram pgset. 

 
Thus the equations of controller and expressions for current value of active power on the 

terminals of generator will add to the equations of generator and hydraulic turbine (10): 
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 (12) 

where  – symbol of differentiation with respect to synchronous time τ=314·t, Tp – time constant of 
controller in [rad], k12 – amplification factor (of transfer) of controller, pgset – set value of power at 
generator's output. 
 

In accordance with Fig. 1 k12 can be determined by approximation of curve q=f(p), in this process 
at least two approximations are needed: up to q≤1 k12=k1 ( for example for axial flow turbines k1≈1), 
and for q≥1 k12=k2, (rarely carried out mode). 

 

 (13) 

  
Let's perform the approximate calculation of small hydraulic unit with Francis turbine, which 

parameters are equal to: rated head  Hrat =50 m, rated water discharge for diameter of hydraulic 
turbine D=2.45 m is equal to Q =56 m3/s, then the power of small HPS in nominal conditions will be 
equal to: 

MW 

Rotational frequency of hydraulic turbine with reduced rotational frequency equal to 
rpm [2] is determined by the formula [3].  

rpm 

The generator is chosen with the power of Prat=25 MW, total power of generator S, which is taken 
as a basis one, is equal to Srat=31.25 MW with rated revolutions equal to nrat=375 rpm. In this case an 
index of transfer is ktrat=0.8. 

 
The parameters of steady-state mode of the system are given in Table 4. 

 
Table 4. Parameters of steady-state mode of the system 

1 0.8 0.6 0.4 rel.unit q 
1 0.816 0.59 0.33 rel.unit p 

0.8 0.65 0.47 0.264 0.8·mht mht 

0.787 0.642 0.46 0.258 rel.unit  

1 0.816 0.585 0.328 rel.unit qst-state 

 
Two first rows of the table were determined in accordance with Fig. 1 for Francis hydraulic 

turbine (i.e. data of Table 1). Third row displays a value of driving torque of hydraulic turbine  
with taking into account the index of transfer ktrat=0.8 according to (9) expression. The data of set 
active power at the output of generator pgset

 
(in relative units) were placed in the fourth row. And 

finally in the fifth row the data of controller output were placed, i.e. the values qst-state in steady-state 
mode (equation (12)) 
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Figure 1. The relationship between turbine output power and water flow rate 
 
  In this section, we design a tracking controller for a The chosen parameters of controller are the 

following: time constant of controller Tgen=1.5 (471.22 rad.), amplification factor (of transfer) 
k12=k1=1.27. 

The fluktogrammas of mode parameters' change of small HPS's generator with automatic 
control system of water discharge (and therefore of the hydraulic turbine’s power) are presented in 
Fig. 2. The data of generator and controller and algorithm of modeling are given in Appendix. The 
fluktogramma of change of generator's electromagnetic torque mem=f(τ) is given in Fig. 2(a). 
According to the modeling algorithm at the first stage the asynchronous start is carried out without 
load and with short-circuited excitation winding within the period up to τ=5000 radian. A slip s 
changes in accordance with Fig 2(b). At 5000 radian the open-circuit voltage U*f=1 is supplied to the 
excitation winding, and the machine locks in synchronism, the rotational frequency of generator sets 
at the mark ω=1 (Fig.2, c). 

At 15000 radian the set value of active power pset1=0.787 inputs to the equation of controller, a 
torque of hydraulic turbine in this process is formed according to expression mht=ktran·q1=‒0.8·q1, here 
with a value of water discharge q sets at a level of q1=1 (Fig.2, d) and the relevant to it value of driving 
torque of turbine is equal to mht=‒0.8  (minus sign indicates the generator mode) (Fig.2, a). Further in 
accordance with the set values of output power of generator pset2=0.642, pset3=0.46, pset4=0.258 the q 
values, accordingly equal to q2=0.815, q3=0.584 and q4=0.327 (Fig.2, d), are set at the output of 
controller. In accordance with these q values the torque values mht and mem automatically form, the 
values of last one are accordingly equal to mem1=‒0.799,  mem2=‒0.652, mem3=‒0.467 and mem4=‒0.262. 
These values of electromagnetic torque are corresponded to the values of active powers at the 
generator's output pgen1=‒0.784, pgen2=‒0.64,

 
pgen3=‒0.45 and pgen4=‒0.254 (Fig. 2, e). Comparing the 

values of current powers of generator pgen1÷pgen4 with the set values it can be stated, that the error 
amount because of approximation and offset of chosen type of controller doesn't exceed 3%. 
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a) b) 

 

  
c) d) 

 

 
e) f) 

 
Figure 2. Fluctograms of operating parameters variations of small hydroelectric power generator 

 
The curve of change of synchronous machine's interior angle θ is given in Fig.(2, f);  for almost 

rated active load (pgen1=‒0.784) this angle is equal to θrat=0.4 radian (~23 deg.), and for minimum active 
load (pgen4=‒0.254) is equal to θ4=0.1 radian (~5.7 deg.).  

In conclusion it needs to note again, that the controller in these researches is chosen as the 
relaxation circuit of first order, which is a simplification, needs for more visual demonstration of 
system's principle of operation. The choice of more complicated controller will not influence on the 
idea and algorithm of construction of general modeling system. 
 

Conclusions 
 

1. The mathematical model is developed for study of operating modes of small HPSs' 
hydroelectric units, equipped with Frensis, Pelton and axial flow turbines (Kaplan turbines with 
antideflection mounting of blades). For three above mentioned types of turbines the analytic 
expression was obtained in a form of multinomial, which connects the power values of turbines, 
expressed in relative units, with a value of flow rate of energy carrier – water; the structure of 
multinomial is invariable and only the values of its factors change according to turbines' types. 

2. Collaborate research of hydraulic turbines with synchronous generators on full equations 
and also of the controller has demonstrated the working capacity, accuracy and effectiveness of 
developed mathematical model, which allows its using for oriented calculations of operating modes 
of small HPSs both at the designing stage and in operating conditions. 
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Appendices 

 
Appendix 1. Parameters of Synchronous generator 

xds=0.986 xad=0.787 
xqs=0.63 xdr=1 
xaq=0.435 rs=0.02 
xqr=0.7 rqr=0.019 
xdf=1.1 rdr=0.028 
Tj=1000 rad. (~1.5 s.) Us=1 

Calculated value Δd=0.367; Δd1=0.167; Δd2=0.48; Δq=0.255. 
Controller parameters: gain ratio k12=k1=1.27; time constant Tgen=471.22 rad. 

 
Appendix 2. Algorithm of the mathematical model 

 
 

Y0=Ψds; Y1=Ψqs; Y2=Ψdr; Y3=Ψqr; Y4=Ψdf; Y5=s; Y6=θ; Y7=q.   
 

 

pset  – active power preset value in generator output 
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Abstract 

This paper considers a new lifetime distribution called Gamma-Shanker distribution which is a 

compound of Gamma and Shanker distribution. Many important properties of the suggested distribution 

including its shape, Inverse moments, hazard rate function, reversed hazard rate function, quantile 

function and stress-strength reliability have been discussed. The estimation of its parameters has been 

discussed using maximum likelihood estimation. Goodness of fit of the proposed distribution has been 

explained with two examples of real lifetime data from biomedical sciences and it shows that the proposed 

distribution gives much closure fit over the considered distributions 

Keywords: Lifetime distribution, Statistical Properties, Stress-strength reliability, 

Maximum Likelihood estimation, Goodness of fit. 

1. Introduction

The real lifetime data from different fields of knowledge are generally stochastic in nature and requires 

a distribution which can capture the variation to a great extent. There were two classical one parameter 

lifetime distributions namely exponential and Lindley by Lindley [1] in use for analyzing the lifetime 

data. Shanker et al [2] have detailed comparative study on the goodness of fit of exponential and 

Lindley distributions and observed that in some data sets exponential gives better fit than Lindley 

whereas in some datasets Lindley gives much closure fit than exponential and there were some datasets 

where neither exponential nor Lindley gives good fit. One of the important advantages of Lindley 

distribution over exponential distribution is that hazard rate for exponential distribution is constant 

while the hazard rate of Lindley distribution is not constant. The gamma and Weibull distributions 

which contain exponential distribution as particular case are the classical two-parameter lifetime 

distributions for the analysis and modeling of lifetime data. Shanker et al [3] have detailed comparative 

study on modeling of lifetime data using gamma and Weibull distributions and observed that both 

gamma and Weibull distributions are competing and each has some advantages over the others and 

there were some datasets where both gamma and Weibull did not give good fit.  

Recently, Abdi et al [4] proposed gamma-Lindley distribution (G-LD) by compounding gamma 

distribution with Lindley distribution assuming that the scale parameter of gamma distribution follows 

Lindley distribution.  
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As we know that the nature of lifetime data is in general stochastic in nature and thus have different 

failure rates and to capture the analysis of such lifetime data different distributions are required. The 

decreasing and unimodal (upside down bathtub) failure rates have a lot of applications in survival 

analysis including the situation where the probability of an event in a fixed time interval in the future 

decreases over time and can be observed in case of infant mortality rate where earlier failures are 

eliminated or corrected, as observed by Finkelstein [5]. One of the practical examples of decreasing 

failure rate is the failure in the air conditioning systems explained by Proschan [6]. It has been observed 

by Lie and Xie [7] that if the main reasons of the failures of products are caused by fatigue and corrosion, 

the failure rates of those products exhibit unimodal shapes. For example, the data relating to breast 

cancer and infection in biomedical sciences with new viruses are generally of unimodal shape, as 

observed by Demicheli et al [8]. 

Recently, Abdi et al [4] derived gamma-Lindley distribution (G-LD) by compounding gamma ( ),   

with Lindley ( ) distribution when the scale parameter  of gamma distribution follows Lindley 

distribution. The probability density function (pdf) and cumulative distribution function (cdf) of G-LD 

are given by 
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The pdf and cdf of Shanker distribution obtained by Shanker [9] are given by 
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It should be noted that Shanker distribution is a two-component mixture of exponential distribution 

having scale parameter ( )  and a gamma distribution having shape parameter 2 and scale parameter 

( ) with mixing proportion
2

2 1



 +
. The statistical properties, estimation of parameter and application 

of Shanker distribution are available in Shanker [9].  

The main motivations for proposing Gamma-Shanker distribution are as follows: 

The first motivation G-SD lies in the fact that if X is the lifetime of  component and  is the scale 

parameter of the distribution of X  and suppose that in the population from which the sample is being 

drawn has some variability in the scale parameter, then that variability can be described by the 

distribution of  . The second motivation is that in real life situation components in a certain population 

differs sustainability from each other and this heterogeneity can easily be taken into consideration for 

the analysis of such population using compound distribution. In fact, the G-SD distribution can be 

shown as mixture representation like G-LD which is recommended for such variation in the population. 

The third motivation for proposing G-SD as a compound of Gamma and Lindley lies in context of 

Bayesian inference is that G-SD arises when Gamma ( )| ,f x   represents the distribution of future 

observations and the Lindley ( )|f   is the posterior distribution of the parameters of ( )| ,f x   , given 

the information in a sample of observed data. The fourth motivation is that there are several lifetime 

data which have long right tail and the G-SD is most suitable for long right tail data. The fifth and the 

final motivation is that as the Shanker distribution provides much closure fit than exponential and 

Lindley distribution and G-LD distribution provides better fit than Gamma, Weibull and other two-
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parameter distribution, it is expected and hoped that G-SD would provide much better fit than G-LD 

and other two-parameter distributions. In the present paper, statistical properties, estimation of 

parameters and applications of G-SD have been discussed. 

2. Compound of Gamma and Shanker Distribution

Following the approach of obtaining G-LD distribution, the pdf and the cdf of gamma-Shanker 

distribution (G-SD) are obtained as 
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The shapes of the pdf and the cdf of G-SD for varying values of parameters are shown in the following 

figures 1 and 2 respectively. It is obvious that the pdf of G-SD is unimodal and positively skewed.  

 Figure 1: pdf plots of G-SD for some selected values of parameters 

 Figure 2: cdf plots of G-SD for some selected values of parameters 
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In the following theorem an attempt has been made to prove the decreasing nature of G-SD and the 

unimodality. 

Theorem 1:  The pdf of G-SD distribution is decreasing for 1   and unimodal for 1   

Proof:  We have, 
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where C is a constant. We have 
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This gives the following quadratic equation 
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A real root of the above equation is given by  

( )2 2 2 4 2 4 2 2 4 2 2

0

3 3 3 9 2 2 12 18 10 9

4
x

            



− − − + + + + + + + + +
= , 

  which is also the mode of G-SD. 

Since, ( )
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x
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→

= and ( )lim 0
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→

= , the pdf ( )f x is unimodal for 1  . 

3. Hazard rate function and Reversed hazard rate function

The hazard rate function and the reverse hazard rate function are two important functions of a 

distribution. The reliability (survival) function of G-SD is given by 
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The corresponding Hazard rate and Reversed Hazard rate function of G-SD are obtained as 
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The behavior of ( )h x when 0x →  and x→ , respectively are given by 
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The natures of hazard rate and the reversed hazard rate function of G-SD are shown in the figures 3 

and 4 respectively. 

 Figure 3: Plots of hazard rate function of G-SD for some parameter values 

 Figure 4: Plots of Reversed hazard rate function of G-SD for some parameter values 

From figures 3 and 4 it is quite clear that the hazard rate function of G-SD is decreasing for 1   and 

unimodal for 1   and the reversed hazard rate function of the G-SD is also decreasing, which is also 

shown in the following theorems 2 and 3, respectively.  
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Theorem 2: The hazard rate function of the G-SD is decreasing for 1   and unimodal for 1   

Proof: We have 
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It is quite obvious that for 1  , ( ) 0x   and for 1  , ( ) 0x   has a global maximum at mode 

(say 
0x ). 

Theorem 3: The reversed hazard rate function of the G-SD is decreasing 

Proof: We have,  

 ( )
( )

( ) ( ) ( )

2 2

2 2

1

1 1

x
r x

x x x

   

    

+ + +
=

 + + + + +
 

. 

This gives 

( )
( ) ( ) ( ) ( )

2

2 2 2

1 1 1
log 0

1 1 1

d
r x

dx x xx x

 

      

− − −
= − − 

+ + + + + + + +
 

 for all ,   

Therefore, reversed hazard function is decreasing for any value of the parameters ,  . 

4. Quantiles and Moments

The p th quantiles px of G-SD.  defined by ( )pF x p= ,is the root of the equation
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This gives 
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It should be noted that this px may be used to generate G-SD random variates. Further, the median 

of G-SD can be obtained from above equation by taking
1

2
p = . 

The moments of G-SD can be obtained as follows: 

If X G-SD ( ),   then, 

RT&A, No 2 (73) 
Volume 18, June 2023

92



Mousumi Ray and Rama Shanker      
A COMPOUND OF GAMMA AND SHANKER DISTRIBUTION 
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Thus, in general, ( )rE X =  for 1r  .This means that all moments of G-SD are infinite and hence G-SD 

has no mean. As G-SD has no mean, if we take a sample ( )1 2, ,..., nX X X from G-SD, then mean X does

not tend to a particular value. Since G-SD has no raw and central moments, we have to derive inverse 

moments. Negative moments are useful in several real life applications, such as life testing problems 

and estimation purpose. The negative moments for G-SD can be obtained as follows: 

The thr negative moment about origin, ( )r −
 , of the G-SD can be obtained as  
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Thus, for 1,2,3,4r =  , we have 
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It is obvious from the above expressions for negative moments that negative moments are not defined 

for 1  . 

5. Extreme Order Statistics

Let, 1: :,...,n n nX X be the order statistics of a random sample of size n from the G-SD ( ), 

distribution with distribution function ( )F x . The cdf of the minimum order statistic 1:nX is given

by 
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x

  



    

 

+

+

 + + − + + −
 = − − = −  
 + +
 

 (17) 

The cdf of the maximum order statistic 1:nX is given by

( ) ( )
( ) ( )( )

: 121
n n

n

n

X

x x
F x F x

x x

 

 



  
+

 
 = = +  
 + + +
 

 (18) 

6. Stochastic Orderings

In probability theory and Statistics, a stochastic order quantifies the concept of one random variable 

being “bigger” than other. In many problems, it becomes necessary to compare two lifetime 
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distributions with reference to some of their characteristics. Stochastic orders provide the necessary 

tools in such case. 

A random variable X  is said to be smaller than a random variable Y  in the 

i. Stochastic order ( )stX Y  if ( ) ( )X YF x F y  for all x  

ii. Hazard rate order ( )hrX Y  if ( ) ( )X Yh x h y for all x  

iii. Mean residual life order  ( )mrlX Y if ( ) ( )X Ym x m y for all x

iv. Likelihood ratio order ( )lrX Y if 
( )

( )
X

Y

f x

f Y
 decrease in x

The following results due to Shaked and Shantikumar [10] are well known for establishing 

stochastic ordering of distributions: 

lr hr mrl

st

X Y X Y X Y

X Y

 



Theorem 4: Let ( )1 1 1G-SD ,X   and ( )2 2 2G-SD ,X   .If 1 2  = = and 1 2  and if 

1 2 1  = =   with 1 2  , then 1 2 1 2 1 2lr hr stX X X X X X  . 

Proof: We have 
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( )( )( )
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1 1 2
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22 2 2
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If 1 2  = = , we get 
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22 2 2

1 2 1 1 2

1 2 2 2
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 ( ) ( )2 1q q = − , 
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 +
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( )
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( ) ( )
2 2

2

2 1
0
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− + + +
= − 
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If 1 2  = = ,then 1X is stochastically smaller than 2X with respect to the likelihood ratio if and only

if  1 2   

Case II: If 1 2 1  = =  , we get 

( )
( )
( )

1 22
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x x
g x

xx
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Thus, it is obvious that 1 2  , 
( )2log

0
d g x

dx
 . Hence, if 1 2 1  = =  then 1X is stochastically 

smaller than 2X with respect to the likelihood ratio if and only if  1 2  . 

7. Estimation of parameters

Let ( )1 2, ,..., nx x x be the observed values of a random sample ( )1 2, ,..., nX X X from the G-SD. Then the 

Likelihood function is given by 

( )
( )

( )

1

2

2
1 1

2
2

1

1

,
1

n n

n i i

i i

n

i

i

x x

L

x





  


 




−

= =

+

=

 
+ + +  

   
=  

+  +

 


      (19) 

The log-likelihood function of G-SD is thus obtained as 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1

1 1

ln , ln 2 ln ln 1 ln 1

1 ln 2 ln

n

i

i

n n

i i

i i

L n n n x

x x

       

  

=

= =

= + − + + + + +

+ − − + +



 
   (20) 

The maximum likelihood estimators (MLEs) of   and  are the simultaneous solutions of the 

following log -likelihood equations 

( )

( )
( ) ( )

2
1 1 1

ln , 1
ln ln 0

1

n n n

i i

i i ii

L n
x x

x
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 ++ + + +
 

It is very difficult to solve these two log-likelihood equations directly, so we will use Fisher’s scoring 

method.  We have  

( )

( )
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2 2 2
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The following equation can be solved for MLE’s of   and   of G-SD 

( ) ( )

( ) ( )
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   −      =      −             

, 

where 0 and 0 are initial value of  and   respectively. The initial values of the parameters taken in 

this paper for estimating parameters are 0 0.5 = and 0 0.5 = . 
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8. Estimation of the Stress-Strength parameter ( )R P X Y=   

In Reliability, the Stress-Strength model describes the life of a component which has a random Strength 

X subjected to a random Stress Y .The component fails at the instant that the Stress applied to it 

exceeds the Strength, and the component will function satisfactory whenever X Y . In this section our 

objective is to estimate ( )R P X Y=   when ( )1 1G-SD ,X    and ( )2 2G-SD ,Y   and X and Y are 

independently distributed. The, the Stress- Strength Parameter is given by 

( ) ( ) ( )
0

| YR P X Y P X Y Y y f y dy


=  =  =

( ) ( )
0

1 X YF y f y dy


= −  

 
( ) ( ) ( )
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 = H ( )1 2 1 2, , ,     (21) 

Let, ( )1 2, ,..., nx x x be the observed value of a random sample of size n  from G-SD ( )1 1,  and

( )1 2, ,..., my y y  be the observed value of a random sample of size m  from G-SD ( )2 2,  . 

The log-likelihood function of 1 2 1, ,   and 2  is given by 

( ) ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )

2 2

1 2 1 2 1 1 1 1 1 1

1

2

1 1 1 2 2 2

1 1

2

2 2 2 2 2 2

1 1 1

ln , , , ln 2 ln ln 1 ln 1

1 ln 2 ln ln 2 ln ln 1

ln 1 1 ln 2 ln

n

i

i

n n

i i

i i

m m m

i i i

i i i

L n n n x

x x m m m

y y y

         

     

     

−

= =

− = =

= + − + + + + +

+ − − + + + + − +

+ + + + + − − + +



 

  

The maximum likelihood estimates of 1 2 1, ,   and 2  are the solutions of following log-likelihood 

equations 
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Solving these non-linear equations using any iterative methods available in R  packages we can obtain 

the MLEs of the parameters as ( )1 2 1 2
ˆ ˆˆ ˆ, , ,    and hence the MLE of R can thus be obtained as  

R̂ = H ( )1 2 1 2
ˆ ˆˆ ˆ, , ,    (22)
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9. Applications

In this section, we present the goodness of fit of the G-SD to two real lifetime datasets to illustrate its 

applications. The goodness of fit of G-LD, Weibull, gamma, Shanker, Lindley and exponential have also 

been given for ready comparison. The datasets that we considered to demonstrate the applications of 

the proposed distribution are as follows:  

Dataset 1: The dataset consists of plasma concentrations of indomethacin (mcg/ml) given by Team R.C. 

(2014) [11] are  

1.50, 0.94, 0.78, 0.48, 0.37, 0.19, 0.12, 0.11, 0.08, 0.07, 0.05, 2.03, 1.63, 0.71, 0.70, 0.64, 0.36, 0.32, 0.20, 0.25, 

0.12, 0.08, 2.72, 1.49, 1.16, 0.80, 0.80, 0.39, 0.22, 0.12, 0.11, 0.08, 0.08, 1.85, 1.39, 1.02, 0.89, 0.59, 0.40, 0.16, 

0.11, 0.10, 0.07, 0.07, 2.05, 1.04, 0.81, 0.39, 0.30, 0.23, 0.13, 0.11, 0.08, 0.10, 0.06, 2.31, 1.44, 1.03, 0.84, 0.64, 

0.42, 0.24, 0.17, 0.13, 0.10, 0.09 

Dataset 2: The dataset is the survival times (in days) of 73 patients who diagnosed with acute bone 

cancer [12], available in https://doi.org/10.22436/jnsa.013.05.01 

0.09, 0.76, 1.81, 1.10, 3.72, 0.72, 2.49, 1.00, 0.53,0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 1.57, 

4.93, 11.07, 1.63, 1.39, 4.54, 3.12, 86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1.46, 2.75, 1.38, 2.76, 

1.86, 2.68, 1.76, 0.67, 1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 13.75, 0.67, 3.70, 0.76, 3.63, 

0.68,2.65, 0.95, 2.30, 2.57, 0.61, 3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 4.18, 1.37 

In order to compare lifetime distributions, values of 2log L− , AIC (Akaike information criterion), BIC 

(Bayesian information criterion), Kolmogorov – Smirnov (K-S) statistics with their P- values for the 

considered datasets has been computed. The formulae for computing AIC, AICC, BIC and K-S 

Statistics are as follows:  

2 2logAIC kL−= + ,   
2 ( 1)

1

k k
AICC AIC

n k

+
= +

− −
,   2 loglogBIC k nL−= + ,    

( ) ( )0| |n
x

D Sup F x F x= − where number of parameter,  sample sizek n= = . 

The distribution corresponding to the lower values of 2log L− , AIC and K-S is the best fit distribution. 

The standard errors of estimate of parameters are given in the parenthesis along with the ML estimates. 

Table1: ML estimates, 2log L− ,AIC , BIC and K-S statistics with their P-values of the distributions for first data 

set 1 

Distributions ML estimates 

̂ (S.E) 

̂ (S.E) 

2log L− AIC BIC K-S P-value

G-SD 2.2087 (0.6607) 

0.2677 (0.0986) 

60.72 64.72 65.51 0.15 0.09 

G-LD 2.5615 (0.8798) 

0.2034(0.0837) 

61.09 65.09 65.88 0.19 0.03 

Weibull 1.6857 (0.2078) 

0.9545 (0.0903) 

62.51 66.51 67.31 0.42 0.00 

Gamma 1.6513 (0.3257) 

0.9772 (0.1495) 

62.74 66.74 67.53 0.41 0.00 

Shanker 2.0294 (0.1916) 63.27 67.27 68.06 0.17 0.08 

Lindley 2.2152 (0.2208) 64.28 66.28 66.67 0.17 0.08 

Exponential 1.6897 (0.2080) 62.76 64.76 65.15 0.17 0.15 
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Table 2: ML estimates, 2log L− ,AIC,BIC and K-S statistics with their P-values of the distributions for second data set 

Based on the values of 2log L− ,AIC , BIC and K-S statistics with their P- values it is obvious from tables 

1 and 2 shows that among all considered distributions, gamma Shanker distribution (G-SD) give much 

closer fit. 

Figure 5: Fitted Plots for Dataset 1 and 2 

In dataset 2 there are four values  which act as an outlier, so for better graphical representation we have 

exclude the values from the dataset.  

10. Concluding Remarks

 In this paper, we propose a gamma-Shanker distribution by compounding gamma and Shanker 

distribution. Its statistical properties including shapes of hazard rate and reversed hazard rate 

Distributions ML estimates 

̂ (S.E) 

̂  (S.E) 

2log L− AIC BIC K-S P-value

G-SD 4.8969 (1.3904) 

0.4968 (0.1360) 

282.82 286.81 296.62 0.09 0.63 

G-LD 5.1601 (1.8468) 

0.4376 (0.1602) 

284.31 288.31 298.13 0.13 0.23 

Weibull 0.4395 (0.0687) 

0.7656 (0.0568) 

322.80 326.80 336.62 0.31 0.00 

Gamma 0.1985 (0.0389) 

0.7457 (0.1058) 

334.53 338.53 348.35 0.78 0.00 

Shanker 1.9473 (0.2707) 310.45 312.45 317.36 0.46 0.00 

Lindley 0.4499 (0.0382) 374.77 376.77 381.67 0.31 0.00 

Exponential 0.2663 (0.0312) 339.18 341.18 346.09 0.19 0.08 
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function, Quantile, negative moments, stochastic ordering, and Stress-Strength reliability have 

been discussed. Maximum Likelihood estimation has been discussed for estimating its parameter. 

The goodness of fit of G-SD over G-LD distribution, Weibull distribution, gamma distribution, 

Shanker distribution, Lindley distribution and exponential distribution shows that G-SD gives 

much closure fit than these distributions for the considered datasets.   
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Abstract

This work proposes a new two-parameter model, titled Topp-Leone (A) model. The main benefit of the new
model is that it has an inverted bathtub shaped curve, increasing and decreasing hazard rate function
quite dependent on the shape parameter. Its structural properties including the ordinary moments,
quantiles, probability weighted moment, median, entropy and order statistics are derived. More so, the
survival, failure rate, reversed failure rate and cumulative failure rate functions are also derived. Six
classical estimation methods are discussed for estimating the parameters of the new model. Monte Carlo
experiments and real datasets analyses are conducted to examine the classical estimators performance of
this model. Finally, the usefulness of the Topp-Leone (A) model demonstrated with different applications
to complete and type-II right censored data proves its more flexible when compared to well-known models
in statistical literature.

Keywords: (A)-model, Censoring, Estimation methods, Simulation, Topp-Leone-G class

1. Introduction

In the past decades, classical models have been utilized extensively for analysing various datasets
in the fields of demography, engineering, finance, medical and social sciences, environmental
science, biological and actuarial studies. In many workable circumstances the classical models
do not give a sufficient fit to actual datasets. Therefore, various generalizations and extensions
of the classical models have been proposed and studied. For example, inverse Gompertz model
was pioneered by [1], odd Fréchet inverse exponential model was studied by [2], Kumaraswamy
inverse Gompertz model was introduced by [3], Odd exponentiated half-logistic exponential
model was studied by [4], Pareto exponential model was proposed by [5], odd exponentiated
skew-t model was pioneered by [6], type-I half logistic skew-t model studied by [7], exponentiated
half logistic skew-t model was introduced by [8], exponentiated odd lomax exponential model
was studied by [9] and polynomial exponential model was studied by [10], among others.
[11] proposed the (A) model having just a scale parameter which makes it unsuitable for modeling
most real life circumstances, hence the need to extend the (A) model to increase its flexibility and
capability. The novelty and input made by this study is the creation of a new two-parameter model
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known as the Topp-Leone-(A) (TL(A)) model reliant on Eqs (3) and (4). The principal focus in this
work are: utilizing the TL-G class to improve the structural properties and flexibility of the (A)
model, provide a new generalized version of the (A) model with a closed-form quantile function,
investigate the important descriptive aspects of the TL(A) model, such as the mode, median, mean,
variance (VAR), skewness (SK), kurtosis (KU), moments, moment generating function, entropy,
probability weighted moment and order statistics, investigate the statistical inference of the TL(A)
model using six different methods such as the maximum likelihood estimation (MLE), maximum
product spacing estimation (MPS), Anderson Darling estimation (ADE) least square estimation
(LSE), and weighted least square estimation (WLSE), Cramer Von Mises estimation (CVME) for
complete datasets, and provide better fits than competing generalized statistical models and also
the suitability for testing the goodness of fit of the TL(A) to its sub-model, the (A) model.
Suppose that Z is a random variable, the cumulative distribution function (CDF) and probability
density function (PDF) of the (A) model with scale parameter κ > 0 are respectively, given by

G (z) = e−
1
κ

(
e

κ
z −1

)
; z > 0; κ > 0, (1)

and

g (z) =
1
z2 e

κ
z −

1
κ

(
e

κ
z −1

)
; z > 0; κ > 0. (2)

Recently, the Topp-Leone-G (TL-G) family is one essential generator that have increased the
interest of researchers in distribution theory. [12] introduced the CDF of the TL-G family as

F (z) =
{

1 − [1 − G (z)]2
}η

, (3)

and the corresponding PDF to Eq (3) takes the form

f (z) = 2ηg (z) [1 − G (z)]
{

1 − [1 − G (z)]2
}η−1

. (4)

where η > 0 is a shape parameter, G(z) and g(z) are considered as the CDF and PDF of a baseline
r.v Z.
The remaining parts are outlined as follows: Part 2 introduces the CDF and PDF of the
TL(A) model. Part 3 presents several fundamental structural properties of the TL(A) model.
Some essential functions used in reliability analysis are introduced in Part 4. The six classical
estimation approaches are discussed in Part 5 to appreciate the parameters of the TL(A). The
maximum likelihood estimator of TL(A) for the type-II right censored are presented in Part 6. The
performance of TL(A) estimators is appreciated in Part 7 using Monte Carlo experiments. Three
real datasets; two complete and one type-II right censored data are analysed and the empirical
results presented in Part 8. Finally, in Part 9, discussions and conclusion are presented.

2. Topp-Leone-(A) model

2.1. Genesis of TL(A)

The non-negative r.v Z is said to have the TL(A) model with parameters vector Ψ = (κ, η), say Z
∼ TL(A) (Ψ). The CDF of TL(A) model takes the form

F (z) =

{
1 −

[
1 − e−

1
κ

(
e

κ
z −1

)]2
}η

, (5)

and the corresponding PDF to Eq (5) takes the form

f (z) = 2ηz−2e
κ
z −

1
κ

(
e

κ
z −1

) [
1 − e−

1
κ

(
e

κ
z −1

)]{
1 −

[
1 − e−

1
κ

(
e

κ
z −1

)]2
}η−1

. (6)
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where η > 0, κ > 0 are the shape and scale parameters, and z ∈ ℜ+. Figure 1 depicts the graphical
shapes of the TL(A) PDF with selected values for the parameters η and κ. The PDF is uni-modal,
increasing-decreasing, right-skewness, decreasing, and heavy-tailed. The failure rate function
of the new model in Figure 3 takes the form of "an inverted bathtub shaped, increasing and
decreasing".

Figure 1: The density function (PDF) plots of the TL(A) model.

3. Structural properties of TL(A) model

This part inspects some fundamental structural properties of the TL(A) model.

3.1. Quantiles function

The explicit forms of the quantile and median functions for the TL(A) model are presented in this
subpart. The quantile function found by inverting Eq (5) takes the form

zu =
κ

log

{
1 − κ log

[
1 −

(
1 − u

1
η

) 1
2
]} ; 0 < u < 1, (7)

By setting u = 1
2 in Eq (7), the median (M) function takes the form

M =
κ

log

{
1 − κ log

[
1 −

(
1 − 0.5

1
η

) 1
2
]} . (8)

3.2. Moments and moment generating function

If Z ∼ TL(A)(Ψ), then the rth ordinary moment (OM) of Z is found using

µ′
r = E (Zr) =

∫ ∞

0
Zr f (z; Ψ) dz (9)

By substituting Eq (6) into Eq (9), expanding using the Taylor series and invoking the beta
function. The OM of the TL(A) model takes the form
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µ′
r =

η−1

∑
i=0

ϑiΓ (h − r + 1) , (10)

where

ϑi = 2η ∑∞
j,g=0 ∑

g
l=0 ∑∞

h=0

(
η − 1

i

)(
2i + 1

j

)
(−1)g+i+j+l+1(1+j)g(1+g)hκr−g−1lr−h−1

l!h!(g−l)!

Similarly, the moment generating function (MGF) of TL(A) model, say MZ (t) is found using

MZ (t) = E
(
etz) = ∞

∑
r=0

tr

r!

∫ ∞

0
Zr f (z; Ψ) dz =

∞

∑
r=0

tr

r!
µ′

r. (11)

By substituting Eq (10) into Eq (11), the MGF takes the form

MZ (t) =
∞

∑
r=0

ϑrΓ (h − r + 1) , (12)

where

ϑr = 2η ∑
η−1
i=0 ∑∞

j,g=0 ∑
g
l=0 ∑∞

h=0

(
η − 1

i

)(
2i + 1

j

)
(−1)g+i+j+l+1(1+j)g(1+g)hκr−g−1tr lr−h−1

r!l!h!(g−l)!

3.3. Entropy measures

Entropy performs a crucial part in computer science, information theory, probability theory and
engineering. It is considered as a measure of dispersion for the uncertainty associated with a
random variable Z; see [13]. The Rényi entropy of Z, say Iτ (Z) is given by

Iτ (Z) =
1

1 − τ
log

∫ ∞

0
f τ (z) dz; τ > 0 and τ ̸= 1, (13)

If Z ∼ TL(A)(Ψ), substituting Eq (6) into Eq (13), expanding using the Taylor series and invoking
the beta function. The Iτ (Z) takes the form

Iτ (z) =
1

1 − τ
log

[
τ(η−1)

∑
i=0

ϑ∗
i Γ (2i + h − 1)

]
, (14)

where

ϑ∗
i = (2η)τ ∑∞

j,g=0 ∑
g
l=0 ∑∞

h=0

(
τ (η − 1)

i

)(
2i + 1

j

)
(−1)g+i+j+l+1(τ+j)g(τ+g)hκ−2τ−g−1l−2τ−h−1

l!h!(g−l)!

3.4. Probability weighted moment

According to [14], the probability weighted moment (PWM) is a very useful quantity in mathematical
statistics. The PWM of Z, say ζr,s is given by

ζr,s = E [zrFs (z)] =
∫ ∞

0
zrFs (z) f (z) dz, (15)

If Z ∼ TL(A)(Ψ), substituting Eqs (5) and (6) into Eq (15), expanding using the Taylor series and
invoking the beta function. The PWM ζr,s takes the form

ζs,r =
∞

∑
a=0

ϑaΓ (h − s + 1) , (16)

where

ϑa = 2η ∑
η(a+1)−1
b=0 ∑∞

c,i=0 ∑i
g=0 ∑∞

h=0

(
r
a

)(
η (a + 1)− 1

b

)(
2b + 1

c

)

× (−1)b+c+i+g+1(1+c)i(1+i)hκs−i−1gs−h−1

g!h!(i−g)!
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3.5. Order statistics

Let z1, z2, . . . , zn be a random sample from a continuous distribution, and the sequence z1:n <
z2:n < . . . < zn:n are order statistics (O.S) obtained from the sample. According to [15], he pth O.S
is given by

fp:N (z) =
g (z)

B (p, N − p + 1)
[G (z)]p−1 [1 − G (z)]N−p , (17)

where G (z) and g (z) are the CDF and PDF of the TL(A) model, and B (., .) is the beta function.
Expanding [1 − G (z)]N−p, the O.S takes the form

fp:N (z) =
1

B (p, N − p + 1)

N−p

∑
l=0

(−1)l
(

N − p
l

)
[F (z)]p+l−1 f (z) , (18)

By substituting Eqs (5) and (6) into Eq (18), and then expanding. The O.S takes the form

fp:N (z) =
2η

B (p, N − p + 1)

N−p

∑
l=0

ϑl
z2 e

κ(1+g)
z , (19)

where

ϑl = ∑
η(p+l)−1
i=0 ∑∞

j,g=0 ∑
g
h=0

(
N − p

l

)(
η (p + l)− 1

b

)(
2i + 1

j

)
(−1)g+h+i+j+l(1+j)gκ−g

h!(g−h)!

3.6. Skewness, kurtosis, dispersion index and coefficient of variation

The quantile function of the TL(A) presented in Eq (7) can be utilized in investigating the effect
of the shape parameter on the mean (ME), variance (VAR), standard deviation (STD), median
(M), skewness (Sk), kurtosis (Ku), dispersion index (DI) and coefficient of variation (CV). [16]
proposed the skewness computational method using the quartiles, titled Bowley skewness. It is
expressed as

Sk =
Q
( 3

4 ; Ψ
)
− 2Q

(
1
2 ; Ψ

)
+ Q

(
1
4 ; Ψ

)
Q
( 3

4 ; Ψ
)
− Q

(
1
4 ; Ψ

) (20)

Likewise, [17] introduced the kurtosis computational method based on the octiles, titled
Moor’s kurtosis. It is expressed as

Ku =
Q
( 7

8 ; Ψ
)
− Q

( 5
8 ; Ψ

)
− Q

( 3
8 ; Ψ

)
+ Q

(
1
8 ; Ψ

)
Q
( 6

8 ; Ψ
)
− Q

( 2
8 ; Ψ

) (21)

The DI shows whether a model is suitable for modeling equi, under or over-dispersed datasets.
More so, a distribution is considered equi-dispersed if DI = 1, under-dispersed if DI < 1 and
over-dispersed if DI > 1. The DI is expressed as

DI =
Var(X)

E(X)
=

Q( 3
4 ;Ψ)−Q( 1

4 ;Ψ)
1.35

Q( 3
4 ;Ψ)+Q( 1

2 ;Ψ)+Q( 1
4 ;Ψ)

3

. (22)

The CV is a relative measure of variability and generally utilized to compare independent samples
based on their variability. A large CV value indicates a higher variability. The CV is expressed as

CV =
(Var(X))

1
2

E(X)
=

(
Q( 3

4 ;Ψ)−Q( 1
4 ;Ψ)

1.35 )
1
2

Q( 3
4 ;Ψ)+Q( 1

2 ;Ψ)+Q( 1
4 ;Ψ)

3

. (23)
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where Q(.) is the quantile function. The numerical values of the descriptive measures for the
TL(A) model under selected values of η and κ are reported in Table 1. The following conclusions
are reached:

1. The mean and standard deviation of the TL(A) model increases as the values of κ and
η increases. From the reported numerical values of the skewness and kurtosis, we can
conclude that the TL(A) model is positively skewed. Also, as the values of κ and η are
increased the skewness and kurtosis values decreases.

2. The TL(A) model is beneficial for under-dispersed datasets while the DI increases and the
CV decreases, as the values of κ and η increases.

Table 1: The descriptive measures for the TL(A) model.

Parameters Descriptive measures

η κ ME VAR STD M Sk Ku DI CV

0.2 0.2 0.375 0.072 0.268 0.331 0.365 1.140 0.192 0.715
0.5 0.2 0.664 0.224 0.473 0.592 0.340 1.055 0.337 0.712
1.0 0.5 1.148 0.507 0.712 1.044 0.322 0.997 0.442 0.620
2.0 0.5 1.667 1.061 1.030 1.520 0.317 0.978 0.636 0.618
2.5 1.0 2.097 1.378 1.174 1.933 0.310 0.959 0.657 0.560
3.0 1.5 2.501 1.708 1.307 2.321 0.306 0.943 0.683 0.523
3.5 1.5 2.683 1.991 1.411 2.489 0.306 0.944 0.742 0.526
3.5 2.0 2.885 2.048 1.431 2.691 0.302 0.931 0.710 0.496
4.5 2.5 3.417 2.683 1.638 3.196 0.299 0.923 0.785 0.479
5.0 3.0 3.765 3.042 1.744 3.533 0.297 0.915 0.808 0.463
6.5 3.5 4.383 3.988 1.997 4.117 0.296 0.912 0.910 0.456
7.0 4.0 4.705 4.360 2.088 4.429 0.294 0.906 0.927 0.444

Fig 2 depicts the 3D plots of the mean, variance, skewness and kurtosis of the TL(A) for some
values of η and κ parameters. The plots in figure 2 reveal that as the values of η and κ increases, the
skewness and kurtosis values decrease, and the mean and variance values increase, respectively.

4. Reliability analysis

4.1. Survival and failure rate functions

The survival function (Reliability) of Z ∼ TL(A)(Ψ), takes the form

R (z) = 1 −
{

1 −
[

1 − e−
1
κ

(
e

κ
z −1

)]2
}η

; η, κ > 0. (24)

The failure (hazard) rate function (HRF) of Z ∼ TL(A)(Ψ), takes the form

h (z) = 2ηz−2e
κ
z −

1
κ

(
e

κ
z −1

) [
1 − e−

1
κ

(
e

κ
z −1

)]{
1 −

[
1 − e−

1
κ

(
e

κ
z −1

)]2
}η−1

×
(

1 −
{

1 −
[

1 − e−
1
κ

(
e

κ
z −1

)]2
}η)−1

.

(25)

More so, if Z ∼ TL(A)(Ψ), then the reversed HRF takes the form

r (z) = 2ηz−2e
κ
z −

1
κ

(
e

κ
z −1

) [
1 − e−

1
κ

(
e

κ
z −1

)]{
1 −

[
1 − e−

1
κ

(
e

κ
z −1

)]2
}η−1

×
({

1 −
[

1 − e−
1
κ

(
e

κ
z −1

)]2
}η)−1

.

(26)
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Figure 2: The Mean, Variance, skewness and kurtosis plots of the TL(A) model.

and the cumulative HRF takes the form

H (z) = − log

(
1 −

{
1 −

[
1 − e−

1
κ

(
e

κ
z −1

)]2
}η)

. (27)

The graphical shapes of the HRF for TL(A) with various selected values of η and κ are depicted in
Fig 3. The model is characterized by an inverted bathtub shaped curve, increasing and decreasing
HRF.

5. Estimation methods

This part discusses estimating the TL(A) parameters via different estimation methods. The method
of maximum likelihood (MLE), method of maximum product of spacing (MPS), methods of
ordinary least squares (OLS) and weighted least squares (WLS), method of Cramer-Von Mises
(CVM) and method of Anderson Darling (ANDA) are considered for the complete data.

5.1. The MLE

The maximum likelihood (ML) method for estimating the unknown parameters of TL(A)(Ψ) for
complete samples is considered. Let z1, z2, . . . , zs be the random observed values of size (s) from
TL(A)(Ψ). Hence, the log-likelihood function L(Ψ) of Eq (6) takes the form

L (Ψ) = s log (2η) + 2 ∑s
j=1 log zj + κ ∑s

j=1
1
zj
− 1

κ ∑s
j=1 υj

+∑s
j=1 log

(
1 − e−

1
κ υj
)
+ (η − 1)∑s

j=1 log
[

1 −
(

1 − e−
1
κ υj
)2
]

,
(28)
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Figure 3: The HRF plots of the TL(A) model.

where υj = e
κ
zj − 1. By deriving the first partial derivatives of L (Ψ) and equating to zero. The

associated score function U (Ψ) =
(

∂[L(Ψ)]
∂η , ∂[L(Ψ)]

∂κ

)T
= 0 are given by

Uη (Ψ) =
s
η
+

s

∑
j=1

log
[

1 −
(

1 − e−
1
κ υj
)2
]
= 0, (29)

and

Uκ (Ψ) = ∑s
j=1

(
1
zj

)
+ 1

κ2 ∑s
j=1
(
υj
)
− 1

κ ∑s
j=1

(
e

κ
zj

zj

)
− ∑s

j=1
(
ς j
)

+2 (η − 1)∑s
j=1

(
1−e

− 1
κ υj
)(

1
κ2 υj− 1

κ zj
e

κ
zj
)

e
− 1

κ υj

1−
(

1−e
− 1

κ υj
)2 = 0.

(30)

where ς j =

 υj
κ2 −

e
κ
zj

κzj

e−
υj
κ

1−e−
υj
κ

.

The ML estimates η̂ML and κ̂ML of the parameters of TL(A)(Ψ) are found by maximizing Eq (??)
using the (Optim function) in R-programming software.

5.2. The OLS and WLS

Let z(1:s), z(2:s), . . . , z(s:s) be the ordered sample of size (s) from CDF of the TL(A)(Ψ) in Eq (5). The
ordinary least squares (OLS) estimates η̂OLS and κ̂OLS can be found by minimizing with respect
to η and κ, the function

OL (η, κ) =
s

∑
j=1

[
F
(

z(j)

∣∣∣ η, κ
)
− ξ(j, s)

]2
, (31)

where ξ(j, s) = j
/
(s + 1). Equivalently, the OLS estimates can be found by solving the following

differential equation
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s

∑
j=1

[
F
(

z(j)

∣∣∣ η, κ
)
− ξ(j, s)

]
∆i

(
z(j)

∣∣∣ η, κ
)
= 0; i = 1, 2, (32)

where

∆1

(
z(j)

∣∣∣ η, κ
)
=

∂

∂η
F
(

z(j)

∣∣∣ η, κ
)

, ∆2

(
z(j)

∣∣∣ η, κ
)
=

∂

∂κ
F
(

z(j)

∣∣∣ η, κ
)

. (33)

The solutions of ∆i for i = 1, 2 can be found numerically. For more details, see [18].
Likewise, the weighted least squares (WLS) estimates η̂WLS and κ̂WLS can be found by minimizing
with respect to η and κ, the function

WL (η, κ) =
s

∑
j=1

Φ(j, s)
s

∑
j=1

[
F
(

z(j)

∣∣∣ η, κ
)
− ξ(j, s)

]2
, (34)

where Φ(j, s) = (s + 1)2 (s + 2)
/

j (s − j + 1). The WLS estimates can also be found by solving
the following differential equation

s

∑
j=1

Φ(j, s)
[

F
(

z(j)

∣∣∣ η, κ
)
− ξ(j, s)

]
∆i

(
z(j)

∣∣∣ η, κ
)
= 0; i = 1, 2, (35)

where ∆1(. |η, κ ) and ∆2(. |η, κ ). are given in Eq (33).

5.3. The MPS

The maximum product spacing (MPS) estimator proposed by [19, 20], for the estimation of
unknown parameters with ordered sample z(1:s), z(2:s), . . . , z(s:s) from TL(A)(Ψ), and the uniform
spacing for this random sample is given by

Dj (η, κ) = F
(

z(j:s) |η, κ
)
− F

(
z(j−1:s) |η, κ

)
; j = 1, 2, . . . , T + 1, (36)

where
F
(

z(0:s) |η, κ
)
= 0, F

(
z(s+1:s) |η, κ

)
= 1.

∑s+1
j=1 Dj (η, κ) = 1.

The MPS estimates η̂MPS and κ̂MPS can be found by maximizing the geometric mean (GM) of the
spacing given by

GM (η, κ) =

[
s+1

∏
j=1

Dj (η, κ)

]1/s + 1
, (37)

relative to η and κ or maximizing the logarithm of GM of the spacing given by

LGM (η, κ) =
1

s + 1

s+1

∑
j=1

log Dj (η, κ) , (38)

The MPS estimates η̂MPS and κ̂MPS of TL(A)(Ψ) can also be found by solving the following
differential equation

s+1

∑
j=1

1
Dj (η, κ)

[
∆i

(
z(j:s) |η, κ

)
− ∆i

(
z(j−1:s) |η, κ

)]
= 0; i = 1, 2, (39)

where ∆1(. |η, κ ) and ∆2(. |η, κ ) are given in Eq (33).
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5.4. The ANDA

The ANDA estimates η̂ANDA and κ̂ANDA can be found for TL(A)(Ψ) by minimizing the function

AD (η, κ) = −s − 1
s

s

∑
j=1

(2j − 1)
[
log F

(
y(j:s) |η, κ

)
+ log F̄

(
y(s+1−j:s) |η, κ

)]
, (40)

relative to η and κ. The ANDA estimates can also be found by solving the following non-linear
equation

s

∑
j=1

(2j − 1)

∆i

(
z(j:s) |η, κ

)
F
(

z(j:s) |η, κ
) −

∆m

(
z(s+1−j:s) |η, κ

)
F̄
(

z(s+1−j:s) |η, κ
)
 = 0; i, m = 1, 2. (41)

where ∆1(. |η, κ ) and ∆2(. |η, κ ) are given in Eq (33).

5.5. The CVM

The CVM estimates η̂CVM and κ̂CVM of TL(A)(Ψ) are found by minimizing the function

CV (η, κ) =
1

12s
+

s

∑
j=1

[
F
(

z(j:s) |η, κ
)
− 2(j − 1) + 1

2s

]2

, (42)

relative to η and κ. Solving the non-linear equation, the CVM estimates can also be found by
solving the following non-linear equation

s

∑
j=1

[
F
(

z(j:s) |η, κ
)
− 2(j − 1) + 1

2s

]
∆i(z(j:s) |η, κ ) = 0; i = 1, 2., (43)

where ∆1(. |η, κ ) and ∆2(. |η, κ) are given in Eq (33).

6. MLE for type-II right censored data

Experiments on life testing is terminated when a specified number of failed objects have been
observed, then the objects remaining are designated to be a type-II-right censored W. Let
z(1), z(2), . . . , z(p), p ≤ s denote the ordered values of a random sample z1, z2, . . . , zs (failure
times) and observations terminate after the pth failure occurs, then the likelihood function (Ct−I I)
is

Ct−I I =
s!

(s − p)!
[
R
(
zp; Ψ

)]s−p
p

∏
j=1

f
(
zj; Ψ

)
. (44)

If z1, z2, . . . , zs is a random sample from the TL(A)(Ψ), then the log-likelihood function L∗∗ (Ψ) of
z(1), z(2), . . . , z(p), p ≤ s is

L∗∗ (Ψ) = p log (2η) + log
(

s!
(s−p)!

)
+ (s − p) log

{
1 −

[
1 −

(
1 − e−

2
κ υp
)2
]η}

−2 ∑
p
j=1 log

(
zj
)
+ κ ∑

p
j=1

1
zj
− 1

κ ∑
p
j=1 υj + ∑

p
j=1 log

(
1 − e−

1
κ υj
)

+ (η − 1)∑
p
j=1 log

[
1 −

(
1 − e−

1
κ υj
)2
]

(45)

where υp = e
κ

zp − 1 and υj = e
κ
zj − 1. The ML estimates η̂ML and κ̂ML of the unknown parameters

of TL(A)(Ψ) is found by maximizing Eq (45) using the R-programming software (Optim function).
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7. Monte Carlo experiments

In this part, the average estimates (AEs), absolute biases (AbsBs), mean square errors (MSEs) and
mean relative errors (MREs) are computed for the TL(A) parameters (Pa.) using Monte Carlo
experiments with complete samples.

7.1. Monte Carlo experiments based on complete data

These Monte Carlo experiments are executed in R-programming software and the sampling
distributions are found for different sample sizes (T) from s = 3000 replications for various values
of κ and η. The classical estimators discussed in Part 5 for complete data are assessed and the
average estimates (AEs) for each estimator are presented in Tables 2, 3 and 4. The comparison of
the estimators graphically according to the AbsBs, MSEs and MREs for the TL(A) parameters (Pa.)
are depicted in Figures 4, 5 and 6. Therefore, the following conclusions are reached utilizing the
graphical plots.

1. The estimators are asymptotically unbiased given that their absolute biases converge to zero
as the sample size increases. The estimators are consistent given that their MSEs tend to
zero for large sample size.

2. The MLE and OLS performs better than the other estimators in terms of minimum AbsBs
and MREs in most cases while the MPS has the largest absolute biases and MREs compared
to other estimators in most cases. The results indicate that the MLE, OLS, WLS, ANDA,
CVM and MPS perform quite well in estimating the TL(A) model parameters.

Figure 4: The estimators AbsBs, MSEs and MREs when κ = 3.0 and η = 0.5 (complete data).
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Table 2: The estimators AEs when κ = 3.0 and η = 0.5 based on complete data.

T Pa. MLE OLS WLS MPS ANDA CVM

20 κ 3.458 2.425 2.493 2.662 3.102 2.659
η 0.522 0.889 0.850 0.804 0.642 0.788

40 κ 3.239 2.664 2.704 2.749 3.051 2.805
η 0.510 0.705 0.683 0.673 0.573 0.653

60 κ 3.163 2.763 2.777 2.802 3.040 2.862
η 0.507 0.643 0.633 0.626 0.551 0.609

80 κ 3.127 2.815 2.820 2.837 3.042 2.901
η 0.504 0.611 0.604 0.597 0.535 0.582

100 κ 3.104 2.855 2.861 2.859 3.037 2.933
η 0.504 0.588 0.583 0.583 0.530 0.563

Table 3: The estimators AEs when κ = 3.5 and η = 2.0 based on complete data.

T Pa. MLE OLS WLS MPS ANDA CVM

50 κ 3.788 3.491 3.562 3.220 3.610 3.750
η 2.003 2.286 2.200 2.460 2.161 2.100

100 κ 3.649 3.528 3.572 3.320 3.568 3.660
η 2.004 2.134 2.080 2.270 2.081 2.040

150 κ 3.598 3.516 3.552 3.360 3.545 3.600
η 2.005 2.091 2.051 2.190 2.056 2.030

200 κ 3.577 3.513 3.542 3.380 3.536 3.580
η 1.999 2.064 2.033 2.150 2.037 2.020

250 κ 3.562 3.514 3.538 3.400 3.531 3.570
η 2.000 2.051 2.025 2.120 2.030 2.010

Table 4: The estimators AEs when κ = 2.0 and η = 2.5 based on complete data.

T Pa. MLE OLS WLS MPS ANDA CVM

200 κ 2.056 2.006 2.029 1.920 2.023 2.060
η 2.492 2.562 2.530 2.650 2.536 2.510

400 κ 2.025 2.002 2.015 1.950 2.010 2.030
η 2.502 2.535 2.517 2.590 2.522 2.510

600 κ 2.013 2.000 2.008 1.950 2.004 2.020
η 2.506 2.526 2.515 2.570 2.518 2.510

800 κ 2.009 1.999 2.005 1960 2.002 2.010
η 2.504 2.521 2.511 2.550 2.514 2.510

1000 κ 2.008 2.000 2.005 1.970 2.003 2.010
η 2.502 2.514 2.507 2.540 2.509 2.500

8. Data applications

The flexibility of the TL(A) model is demonstrated here with three real datasets; two complete
data and one type-II right censored data.

8.1. Applications for complete data

The first dataset corresponding to the relief times of twenty patients receiving an analgesic was
previously analysed by [22]. 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7,4.1, 1.8, 1.5, 1.2, 1.4, 3.0,
1.7, 2.3, 1.6, 2.0. The second dataset corresponding to the scores of the general rating of affective
symptoms for preschoolers (GRASP) which measures the emotional and behavioural problems
of children was previously analysed by [1] and [11]. 19(16), 20(15), 21(14), 22(9), 23(12), 24(10),
25(6), 26(9), 27(8), 28(5), 29(6), 30(4), 31(3), 32(4), 33(1), 34(1), 35(4), 36(2), 37(2), 39(1), 42(1), 44(1).
The MLE will be used to compare the goodness-of-fit of the TL(A) with the (A) model, inverse
Gompertz (IG) model, lomax(LOMX) model, Pareto (PE) model, inverse Pareto (IPE) model,
Pareto type-I (PETI) model, exponentiated inverse rayleigh (EIR) model, type-I half logistic skew-t
(TIHLST) model, generalized inverse exponential (GIE) model and odd frechet inverse exponential
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Figure 5: The estimators AbsBs, MSEs and MREs when κ = 3.5 and η = 2.0 (complete data).

(OFIE) model. These models will be fitted to the two complete datasets according to some criteria,
namely, the Kolmogorov Smirnov test statistic (K.S) with its PVs. The Akaike information
criterion (AIC), correct Akaike information criterion (CAIC), Hannan-Quinn information criterion
(HQIC), Bayesian information criterion (BIC), Cramér-von Mises (W) statistic, Anderson-Darling
(A) statistic and log-likelihood value (LL) will also be provided. The analysis is performed with
the R-programming software using the fitdistrplus, Optim and AdequacyModel packages.

First dataset analysis

The MLEs, K.S and PVs for the first dataset are provided in Table 5 for all the studied models.
The results show that the TL(A) has the least values for LL, AIC, CAIC, HQIC, BIC, and KS value
with largest PV. This highlights that the TL(A) fits the first dataset better than (A), IG, LOMX,
PE, IPE, PETI, OFIE, EIR, TIHLST and GIE models. This confirms that the TL(A) seems to be
a very good model better than the other competing models. More so, the TL(A) model gives a
more appropriate fit to the first data than the Kumaraswamy-transmuted exponentiated modified
Weibull (KwTEXMW), McDonald log-logistic (McDLL), beta Weibull (BWE), modified Weibull
(MWE), transmuted complementary Weibull geometric (TCWEG) and exponentiated transmuted
generalized Rayleigh (ETGRH) models (see Table 5, [22]). Figure 7 depicts the fitted PDFs and
fitted CDFs of all the models. The plots support the results presented in Table 5 that the TL(A)
model provides the best goodness of fits to the first dataset.
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Figure 6: The estimators AbsBs, MSEs and MREs when κ = 2.0 and η = 2.5 (complete data).

Table 5: The MLEs, KS, PVs, LL, AIC, BIC, CAIC, HQIC, W* and A* values for the first dataset.

Models

TLA A IG LOMX PE IPE PETI GIE TIHLST EIR OFIE

κ̂ 5.092 2.402 6.145 28.385 25.011 28.862 1.697 36.485 0.708 3.610 1.329
η̂ 0.228 - 0.110 0.019 47.333 0.059 - 2.232 2.347 2.336 0.906

K.S 0.116 0.385 0.142 0.444 0.437 0.380 0.285 0.134 0.504 0.127 0.358
PV 0.952 0.005 0.812 0.001 0.001 0.006 0.078 0.862 7.6E-05 0.906 0.012
LL -15.650 -23.503 -16.392 -33.142 -33.182 -32.986 -21.207 -16.261 -38.265 -15.868 -26.591

AIC 35.300 49.006 36.783 70.283 70.364 69.972 44.414 36.521 80.529 35.736 57.181
CAIC 36.005 49.229 37.489 70.989 71.070 70.678 44.636 37.227 81.235 36.442 57.887
BIC 37.291 50.002 38.774 72.275 72.356 71.963 45.410 38.513 82.520 37.727 59.172

HQIC 35.688 49.201 37.172 70.672 70.729 70.361 44.609 36.910 80.918 36.125 57.570
W* 0.025 0.028 0.055 0.102 0.102 0.050 0.038 0.054 0.090 0.042 0.032
A* 0.105 0.162 0.332 0.607 0.605 0.293 0.219 0.319 0.533 0.244 0.179

Second dataset analysis

The MLEs, KS and PVs for the second dataset are provided in Table6 for all studied models. The
results show that the TL(A) has the least values for LL, AIC, CAIC, HQIC, BIC, and KS value
with largest PV. This highlights that the TL(A) fits the second dataset better than (A), IG, LOMX,
PE, IPE, PETI, OFIE, EIR, TIHLST and GIE models. This confirms that the TL(A) seems to be
a very good model better than the other competing models. More so, the TL(A) model gives a
more appropriate fit to the second data than the generalized exponential (GEX), Gompertz (GTz),
extended Gompertz (EGTz) and generalized Gompertz (GGTz) models (see Table 5, [1]). Figure 8
depicts the fitted pdfs and fitted CDFs plots of all the models. The plots support the results
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Figure 7: Fitted density function (pdf) plot (left panel), Fitted distribution function (CDF) plot (right panel) for the
TL(A) model (first dataset).

presented in Table 6 that the TL(A) model provides the best goodness of fits to the second dataset.

Table 6: The MLEs, KS, PVs, LL, AIC, BIC, CAIC, HQIC, W* and A* values for the second dataset.

Models

TLA A IG LOMX PE IPE PETI GIE TIHLST EIR OFIE

κ̂ 86.970 107.354 149.337 3.328 7.808 63.123 0.313 138.914 0.676 10.246 18.987
η̂ 4.809 - 0.175 0.012 185.974 0.379 - 0.218 359.391 40.286 0.943

K.S 0.100 0.130 0.102 0.495 0.532 0.452 0.602 0.108 0.572 0.109 0.446
PV 0.138 0.022 0.120 2.2E-16 2.2E-16 2.2E-16 2.2E-16 0.088 2.2E-16 0.085 2.2E-16
LL -393.202 -404.277 -393.401 -582.812 -573.127 -565.908 -718.074 -399.265 -601.745 -401.694 -520.798

AIC 790.404 810.555 790.801 1169.625 1150.253 1135.816 1438.148 802.530 1207.490 807.388 1045.595
CAIC 790.496 810.585 790.893 1169.716 1150.345 1135.907 1438.179 802.622 1207.582 807.479 1045.687
BIC 796.200 813.453 796.597 1175.420 1156.049 1141.611 1441.046 808.326 1213.286 813.452 1051.391

HQIC 792.759 811.732 793.157 1171.980 1152.608 1138.171 1439.326 804.886 1209.846 809.743 1047.951
W 0.208 0.209 0.235 0.371 0.388 0.286 0.302 0.246 0.377 0.322 0.227
A 1.523 1.525 1.708 2.512 2.613 1.994 2.091 1.756 2.545 2.214 1.631

For the TL(A), the approximate 95% two-sided confidence intervals (CIs) for the parameters κ and η
are [2.276, 7.909] and [−0.176, 0.632] for the first dataset and [65.743, 108.197] and [−1.249, 10.868]
for the second dataset, respectively. The likelihood ratio test (LRT) is normally used to test if the
fit by TL(A) model is statistically superior to the fit provided by the (A) model. Table 7 provides
the values of the LRT, degree of freedom (d.f) and its PVs for the first and second datasets. Based
on the PVs, the null hypothesis (H0) is rejected at α = 0.05 level of significance.

Table 7: The LR tests for the first and second datasets.

Model Hypotheses LR PV

First dataset
(A) vs. TL(A) H0 : η = 1 vs. H1 : H0 is f alse 15.707 0.00074

Second dataset
(A) vs. TL(A) H0 : η = 1 vs. H1 : H0 is f alse 22.151 0.0000025
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Figure 8: Fitted density function (pdf) plot (left panel), Fitted distribution function (CDF) plot (right panel) for the
TL(A) model (second dataset).

8.2. Application for censored data

The censored data used here which represents the fatigue life for 10 bearings of a specific type in
hours was introduced by DD. 152.7, 172, 172.5, 173.5, 193, 204.7, 216.5, 234.9, 262.6, 422.6. Assume
a type II right censored sample of size p = 8 is taken from this data. Table 8 shows the MLEs, LL,
K.S and PV for the TL(A) model. It is clear that the TL(A) well fitted to the data based on the K.S
and its PV.

Table 8: The MLEs and performance measures for the type-II right censored data.

Models MLEs LL K.S PV

TL(A) κ = 539.86, η = 946.82 -41.129 0.263 0.550

9. Discussions and Conclusion

In this work, a new model titled TL(A) which is considered as an extension and generalization
to the (A) model is proposed. The TL(A) is characterized by an inverted bathtub shaped curve,
increasing and decreasing hazard rate function quite dependent on the shape parameter. More
so, the TL(A) is appropriate for testing the goodness of fit of the sub-model, the (A) model.
Some structural properties including the ordinary and incomplete moments, MGFs, PWMs,
quantiles, Bonferroni and Lorenz curves, entropies, median and order statistics of TL(A) are
derived. Likewise, basic functions utilized in reliability theory such as the survival function,
HRF, reversed HRF, cumulative HRF, MTTF, MRL and MWT are derived. The Monte Carlo
experiments are carried out to determine the performance of MLE, MPS, ANDA, CVM, OLS
and WLS methods according to AbsBs, MSEs and MREs measures. The experiments results
indicate that the estimators perform quite well in producing good parameter estimates for all the
various parameter groups at different sample sizes. However, the MLE method produced closer
estimates for TL(A) parameters. This conforms to the reports by [24, 25, 26, 27, 28]. Furthermore,
the parameters of TL(A) are appreciated using the MLE in the case of complete and type-II-right
censored data. The two complete data are analysed using the TL(A) and compared with ten other
competing lifetime models. Likewise, a type-II-right censored data is analysed using the TL(A)
model. The results indicate that the TL(A) has more flexibility for fitting the various datasets.
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Futuristically, the bivariate extension of the TL(A) model, the TL(A)–G family of distributions and
the discrete case of the TL(A) model will be addressed.
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Abstract 

 

Human plays a vital role in the manufacturing process of a product during the planning, design, 

assembly, production, and maintenance phase. This paper presents a systematic method of determining 

the reliability and availability of an 8-step auto unit manufacturing system taking into consideration 

the case of occurring human error during maintenance. The whole process involves eight major units 

as Combustion engine, power train unit, fuel feed unit, fuel injection unit, drain or exhaust unit, engine 

cooling unit, brake unit, and body frame. With the failure of any of these units, the whole process can 

fail. Also, a constant failure rate and a general repair time are taken into the consideration for each 

operative unit that makes up the process. The integral differential equations were generated based on 

Markov modeling of the process and solution derived by considering repair time distribution using the 

Laplace transform. Calculations of different reliability aspects like process availability, mean time to 

failure steady-state nature, and profit analysis are done using supplementary variable technique and 

copula methodology.   

 

Keywords: Reliability, Availability, Failure probability, Supplementary variable 

technique, Markov model, Human error. 

 

1. Introduction 
 

For a very long period, a good amount of work has been done to find the reliability of various 

manufacturing and industrial systems. Many researchers applied different methods like the Hidden 

Markov models, state space method, K map approach, probabilistic rational model method, etc. to 

analyze the reliability and steady-state nature of some realistic manufacturing systems like Aircraft 

and sea-going ships, bufferless production system, Aircraft commutators, automobile assembly 

process, fiber plant unit, etc. [1, 4, 5, 12, 13, and 14]. Here the discussion is focused on the reliability 

and availability analysis of an 8-step auto unit manufacturing process. 

The automobile sector has played a significant role in the economic growth and 

development of any country. Because of the steady growth in the GDP of a country due to the 

contribution of the auto industry, it is also called an “industry of industries”. Although the industry 

started in Germany and France now it has become one of the global all over the world.  

The automobile manufacturing process is a multifaceted process involving various steps 

starting from designing, building, quality checks, and shipping. The first phase of the process is to 

design, develop, and product analysis. Once this phase is completed the next step is fulfill the 

requirements of tools and apparatus for the bulk production of the vehicle. This phase includes 

everything right from engine assembly, welding and painting to stamping machines. Following this 
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phase, is production planning which decides the quantity needs to manufacture. Before launching 

the product, it has to undergo different quality and safety checks. The purpose of these checks is to 

ensure that the product is designed by considering all safety standards and will perform failure-free 

operation.  

In this competitive scenario, to sustain itself in the market and to fulfill customer expectation 

it is required to increase the product performance, topographies, and quality, as a result, the 

complexity and mechanization of the product are increased and it has resulted in several issues 

related to maintenance and repair [8, 9]. When we talk about manufacturing lines, a repairman plays 

a vital role in this field during the design, installation, production, and maintenance. The probability 

of occurrence of human error is more in this maintenance phase only. Human error in repair is a 

concern, that has not gotten the proper attention of the researchers. It can be defined as failure to 

perform a particular operation that could result in a delay in the production or could damage a 

machine or equipment. These errors may occur due to various reasons like insufficient facilities and 

services, less technical skills, design errors or improper planning, etc. These errors may be classified 

into different categories like Design, operational, installation, quality check, maintenance, etc. 

Maintenance error is defined as an unintentional failure occurred during the maintenance of the 

product because of improper repair or proactive measures. The probability of occurrence of 

maintenance error increases as the product gets older [6, 10].  

 By considering all the above facts the present study proposes a methodology to assess the 

reliability and performance of a manufacturing process having a fault in maintenance due to human 

error. The assumed process involves eight major units as Combustion engine, power train unit, fuel 

feed unit, fuel injection unit, drain or exhaust unit, engine cooling unit, brake unit, and body frame. 

The main focus of the study is on failure during maintenance due to human error. The following 

assumptions have been made for the whole process: 

• The combustion engines can fail due to operational errors. 

• The power train unit contains: a clutch, transmission gear, differential and final drive  

➢ It is assumed that the process can fail due to inappropriate fitting of the power train 

and transmission gear. 

➢ The process can be in a degraded state because of inappropriate working of 

differential. 

➢ Also, the process can completely fail due to final drive failure.  

• It is considered that the process can fail due mistake in fuel injection pump timings during 

an inspection in the fuel feed unit. 

• Furthermore, it is also assumed that the process can fail due to maintenance errors and 

mistakes in quality checks in the fuel injection unit because of misfiring and disturbed 

pressure levels. 

• Improper assembly of the exhaust units can cause process failure and overheating problems 

in the engine cooling units can take the process into a degraded state. 

• The process can fail due to design error in break unit. 

• Improper installation of axle and chassis can lead to process failure in the build unit. 

The whole process can fail due to the failure of any of these units. A joint repair policy is 

applied to repair the system in the power train when the failure occurs due to failure of the 

differential and final drive. 

• Fuel injection unit when the failure occurs due to misfiring and disturbed pressure level. 

Here, the joint probability distribution is applied with the help of the Gumbel-Hougaard 

Copula methodology [7, 11]. Also, failures follow exponential time distribution while general time 

distribution is applied for repairs. To help the production industry some parametric investigations 

for process reliability, availability, mean time to failure, and profit analysis has been made [2, 3]. The 

state transition figure is shown in figure-1.  
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2. Notations 
 

Different notations used in the model are given in table 1 and the state specification of the model is 

described in table 2.  

Table 1: Notations  

)(0 tP
       :        

Indicates the probability that initially the whole system is fully operational, 

denoted by state S0 

),( tjPi    :        
The probability that the process is in the failed state due to failure of the ith unit 

at any time, here, i=1,2,4,5,6,7,9,10,11 and Elapsed repair time j= x, y, v, w, m, r, n, 

v, k 

EO
         :      

Combustion engine failure rate due to operational error 

TI / FSS   :        Failure rates of transmission gear and fuel injection pump in fuel supply  

DSD  /
:              

Differential unit failure rate and final drive failure rate 

LPM  /
:                  

The failure rate of misfiring and disturbed pressure level to be low pressure of 

fuel injection unit 

EA            : 

OVH
       :    

CS
           : 

BR
       : 

BU
         : 

Exhaust unit failure rate  

 

Failure rate due to overheating 

 

The cooling unit failure rate 

Break unit failure rate 

Build unit failure rate 

( )k j
       :         

Shows the repair rate of kth failure in the time interval (j, j+), where, k = EO, TI, 

D, DS, FSS, M, LP, EA, OVH, CS, BR, BU, and j = x, y, v, w, m, r, n, v, k  

K1, K2          :   Profit cost and service cost per unit of time respectively 

 

Consider that, 
meu =1 , 

)(2 mu MLP+=
and

weX =1 , ),(2 wX DSD+=   then joint probability is 

given by the expression,  

])))((logexp[)( /1   mmm MLPMLP ++ += , ])))((logexp[)( /1   www DSDDSD ++ +=  

using Gumbel- Hougaard copula methodology. 

 

3. State specification  
 

The state specification of the process is given by the table 2. 

 

Table 2: Process state specification 

States Description System 

State 

S0 State in which the process is fully operational G 

S1 State in which the process gets failed due to operational error in combustion 

engine  

FR 

S2 State in which the process is failed due to inappropriate fitting of the power 

train and transmission gear 

FR 
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Note:  G= Good state; FR= Failed state under repair; D = Degraded state  

 
Figure 1: State transition diagram for 8-step auto manufacturing process 

 

 

 

   P0 (t) S0 

     S0 

P8 (t)   S8 

     S8 

P4 (w, t) 

P2(y, t) 

P5 (v, t) 

P10 (v, t) 

P1(x, t) 

P7 (r, t) 

EO  

EO  

TI  

TI  

)(wDSD+  
BR  

)(v
BR

  

)(vFSS  

LPM  +  6S  

)(nCS
  

CS  

OVH
  

DS  

)(k
BU

  

BU
  

)(mFSS  

FSS  

D  

EA  

EA  

S1 S2 

S4 

S10 

S7 

S5 

S3  P3 (t) 

 

 

     S3 

P6 (m, t) 

P9 (n, t) 

S9 

P11 (k, t) 

S11 

S3 State in which the process is in a degraded state because of inappropriate 

working of differential 

D 

S4 State in which the process is completely failed due to final drive failure  FR 

S5 State in which the process fails due mistakes in fuel injection pump timings 

during an inspection in the fuel feed unit 

FR 

S6 State in which the process fails due to maintenance error and mistake in 

quality check in fuel injection unit because of misfiring and disturbed pressure 

level 

FR 

S7 State in which process gets fail due to improper assembly of the exhaust unit FR 

S8 State in which the process gets degraded because of overheating problem in 

the engine cooling unit  

D 

S9 State in which process is failed due to failure of the cooling unit FR 

S10 State in which process gets failed due to design error in break unit FR 

S11 State in which the process gets failed due to improper installation of axle and 

chassis in the build unit 

FR 
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4. Mathematical formulation of the model  

 
The differential transition state probabilities for different states of the model are given by the 

following equations 

=







++++++++++ )(( 0) tP

dt

d
BUBROVHEALPMFSSDTIEO
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),()(
1

dxtxPx
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+
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+
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Boundary Conditions: 

0
(0, ) ( )
i kP t P t=

                                                                                                              (13) 

)(),0( 34
tPtP

DS
=

                                                                                                            (14) 

)(),0(
89
tPtP

CS
=

                                                                                                            (15) 

Where, i=1,2,5,6,7,10,11 and k=EO, TI, D, FSS, M, LP, EA, OVH, BR, BU 
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Initial Condition: 

1)0(0 =P
, otherwise zero.                                                                                                (16) 

 

For finding the solution of the mathematical model, Taking Laplace transforms of equation (1) to 

(12), subject to the initial condition (16), and then solving them, we get the following transition state 

probabilities of the model: 

)(

1
)(0

sB
sP =

                                                                                                                    (17) 

( )
( )

( )

kk

i

D s
P s

B s

 
=

         
(18) 

where i=1, 2, 5, 6, 7, 10, 11 and k= EO, TI, FSS, LP+M, EA, BR, BU                                                                                                
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where, 
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])))((logexp[)( /1   mmm MLPMLP ++ +=                                                                  (24) 

])))((logexp[)( /1   www MLPDSD ++ +=
                                                                  (25)                                        

Also, up-state and down-state probabilities of the system are given by: 
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4.1. Steady-state behavior of the system 

 

By using Abel’s lemma,  

                          
)(lim)}({lim

0
tFsFs
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We get following up and down time independent operational probabilities: 
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where, 

B (0) = 0
lim
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4.2. Special case 
 
when repair rates follow exponential time distribution then,  

Let, 
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in equations (17) to (22) we get, 
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where, 
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5. Numerical Computation  

 

Considering different values of failure rates like EO
 = 0.006, TI

 = 0.009, D  = 0.008, DS
 = 0.01, 

FSS
 = 0.07, M  = 0.008, LP

=0.006, EA
=0.002, OVH

=0.005, CS
=0.003, BR

=0.009, BU

=0.004, Фi = 1 for  i= EO, TI, D, DS, FSS, M, LP, EA, OVH, CS, BR, BU, θ = = 1, and x= y= w= v= m= 

r= n= v=k = 1. Consider that all repair follows exponential time distribution then by substituting these 

values in equation (26) and taking inverse Laplace transformation, we have 

 

Pup (t) = -0.002992831292 e(-0.003000000000 t) +0.09089745085 e(-1.10098171 t) -0.1045972416 

10(-7)  e(-.9969905879t) -0.04625367733e(-0.2043987365 t) -0.009328505569e(-0.00471367337 

t)                  +0.9676775738                                                                                                (34)                         
 

By, putting t=0,1, 2…,10 in equation (34) we obtain the variation of availability for time shown in 

figure 2. Similarly, by considering different numerical values for failure rates we get the graphs of 

reliability and mean time to failure given in figures 3, 4 and 5. 

 

5.1. Cost Analysis  

 

If it is considered that the service facility is always available, then the expected profit function in the 

interval (0, t] is given by 

                                

 −=
t

tKdttupPKtEP
0

)()( 21

 
where, K1 and K2 are the revenue and service cost per unit of time respectively, then 

E P (t) = K1 [0.2602109240 e(-0.5000000000 t) + 0.003420894509 e(-0.9100000000 t) +0.3707166241 

            e(-1.577110005 t) +0.2282704474 e(-0.8601482323 t) cos(0.007394121216 t) +0.2901464146  

            e(-0.8601482323 t) sin(0.007394121216 t) -0.05867072106 e(-0.7862665523 t) –0.2283382234  

            e(-0.7285677930 t)-0.003350319082 e(-0.6042513821 t)-9.234941008 e(-0.1268411365 t)                                                                                                

            +8.996326343]-K2t                                                                                                                                 (35)  

Keeping K1 = 1 and varying K2 at 0.1, 0.2, 0.3, 0.4, 0.5 in equation (35), one can obtain Figure 6. 
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6. Results & Conclusion 

 
For the more concrete behavior analysis of the process, a numerical calculation of availability, 

reliability, mean time to failure for various failure rates and cost function have been made. The 

following conclusions may be drawn based on the study conducted in the present paper.  

 Figure 2 shows a rapid decrease in the availability of the system for time initially because 

of an error in maintenance but later on, it becomes stable. Although, the reliability of the process 

shown in figure 3 has a constant decline and stabilizes at 0.4. Figures 4 and 5 show the variations in 

the meantime to failure (MTTF) for different failure rates. As the failure rates increase, the MTTF 

decreases and also it is observed that it is highest for fuel supply unit failure shown in figure 4 and 

5. Now, cost analysis reveals that an increase in service cost results in decreased profit as shown in 

figure 6.  

 

 
Figure 2: Time vs. Availability 

 

 
       Figure 3: Time vs. Reliability 
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Figure 4: MTTF vs. EO
, LP

, M , BR
 

 

 

Figure 5: MTTF vs. DS
, FSS

 

 

 
Figure 6: Time vs. cost 
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Abstract

A bivariate version of the Bilal distribution has been proposed in the literature, called the Farlie-Gumbel-
Morgenstern bivariate Bilal (FGMBB) distribution. In this article, we have dealt with the problem of
estimation of the scale parameter associated with the study variable Z of primary interest, based on
the ranked set sample defined by ordering the marginal observations on an auxiliary variable W, when
(W, Z) follows a FGMBB distribution. When the dependence parameter ϕ is known, we have proposed
the following estimators, viz., an unbiased estimator based on the Stoke’s ranked set sample and the best
linear unbiased estimator based on the Stoke’s ranked set sample for the scale parameter of the variable
of primary interest. The efficiency comparison of the proposed estimators with respect to the maximum
likelihood estimator have been carried out.

Keywords: Farlie-Gumbel-Morgenstern bivariate Bilal distribution, Concomitants of order statis-
tics, Ranked set sampling, Best linear unbiased estimator

1. Introduction

The Bilal distribution was introduced by [1], as a member of the families of distributions for
the median of a random sample arising from an arbitrary lifetime distribution. Also, he shows
that, this distribution belongs to the class of new better than average renewal failure rates and
its probability density function (pdf) is always unimodal and has less of skewness and kurtosis
than the pdf of the exponential distribution by about 25% and 28% respectively. The cumulative
distribution function (cdf) of the Bilal distribution with the scale parameter σ is given by

F(x; σ) = 1 − e−
2x
σ

(
3 − 2e−

x
σ

)
; σ > 0, x > 0. (1)

The corresponding pdf is given by

f (x; σ) =
6
σ

e−
2x
σ

(
1 − e−

x
σ

)
; σ > 0, x > 0. (2)
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Furthermore, the author obtained the closed form expressions for the quantile function, the
hazard rate function and simple expression for moments in terms of the exponential function.
Even though the Bilal distribution has only one parameter, this distribution possess high fitting
ability compared to other competing models for two different real datasets, namely, the dataset
consisting of thirty successive values of precipitation (in inches) given by [14] and the data for
waiting times before service of 100 bank customers reported by [13]. Based on type-2 censored
sample, [2] provide certain estimators of the parameter of the Bilal distribution. According
to [3], the one parameter Bilal model can be generalized into the two parameter Bilal model,
whose applications are elaborately discussed. Now the Proficiency of univariate Bilal distribution
compared to other competing models well established in the literature in the theoretical as well
as applied perspective. But even a single work is not been seen so far in the available literature
on bivariate Bilal model except the work of [17]. A bivariate extension of one parameter Bilal
distribution using Morgenstern approach was proposed by [17], so-called the Farlie-Gumbel-
Morgenstern Bivariate Bilal (FGMBB) distribution and elucidated its inferential aspects using
concomitants of order statistics (COS).
A bivariate random variable (W, Z) is said to follow a FGMBB distribution, if its pdf is given by

f (w, z) =



36
σ1σ2

e−
2w
σ1

(
1 − e−

w
σ1

)
e−

2z
σ2

(
1 − e−

z
σ2

)
×

[
1 + ϕ

(
2e−

2w
σ1

{
3 − 2e−

w
σ1

}
− 1

)(
2e−

2z
σ2

{
3 − 2e−

z
σ2

}
− 1

)]
,

w > 0, z > 0; σ1 > 0, σ2 > 0;−1 ≤ ϕ ≤ 1.

0, otherwise.

(3)

Clearly the marginal distributions of W and Z variables are univariate Bilal distributions with
pdf’s are respectively given by

fW(w) =

 6
σ1

e−
2w
σ1

(
1 − e−

w
σ1

)
; i f σ1 > 0, w > 0,

0, otherwise.

and

fZ(z) =

 6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

)
; i f σ2 > 0, z > 0,

0, otherwise.
(4)

Clearly,

E(W) =
5
6

σ1, Var(W) =
13
36

σ2
1 ,

E(Z) =
5
6

σ2, (5)

Var(Z) =
13
36

σ2
2 . (6)

The ranked set sampling (RSS) scheme was first developed by [19] as a process of increasing the
precision of the sample mean as an estimator of the population mean. McIntyre’s idea of ranking
is possible whenever it can be done easily by a judgement method. For a detailed discussion
on the theory and applications of RSS [11]. Basically the procedure involves choosing n sets
of units, each of size n, and ordering the units of each of the set by judgement method or by
applying some inexpensive method, without making actual measurement on the units. Then the
unit ranked as one from the 1st set is actually measured, the unit ranked as two from the 2nd

set is measured. The process continuous in this way until the unit ranked as n from the nth set
is measured. Then the observations obtained under the afore mentioned criterion is known as
ranked set sample (rss) and the procedure is known as RSS. For recent developments in RSS, one
can refer [6], [4] and [5].
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In some practical problems, the variable of primary concern say Z, is more intricate to measure,
but an auxiliary variable W related with Z is easily measurable and can be ordered exactly. In
this case, [22] developed another scheme of RSS, which is as follows: Choose n independent
bivariate sets, each of size n. In the first set of size n, the Z variate associated with smallest
ordered W is measured, in the second set of size n, the Z variate associated with the second
smallest, W is measured. This process is continued until the Z associated with the largest W
from the nth set is measured. The measurements on the Z variate of the resulting new set of n
units chosen by the above method gives a rss as suggested by [22]. If W(r:n)r is the observation
measured on the auxiliary variable W from the unit chosen from the rth set, then we write Z[r:n]r
to denote the corresponding measurement made on the study variable Z on this unit so that
Z[r:n]r, r = 1, 2, · · · , n form the rss. Z[r:n]r was referred by [12] as the concomitant of the rth order
statistic arising from the rth sample.
The rss mean as an estimator for the mean of the study variate Z, when an auxiliary variable W
is used for ranking the sample units has suggested by [22], under the assumption that (W, Z)
follows a bivariate normal distribution. Based on rss obtained on the study variate Z, [10] have
improved the estimator of [22] by deriving the best linear unbiased estimator (BLUE) of the
mean of the study variate Z. COS and its applications in RSS from Farlie-Gumbel-Morgenstern
bivariate Lomax distribution is elaborately elucidated by [20]. The estimation of a parameter of
Morgenstern type bivarite Lindley distribution by RSS has been discussed in [15]. Parameter
estimation of Cambanis-type bivariate uniform distribution with RSS is studied by [16]. For
review of various variants of RSS and their application in parameter estimation [11].
The remaining part of this paper is assembled as follows. In section 2, we have proposed an
unbiased estimator σ∗

2 of σ2 using Stoke’s rss. As mentioned earlier if (W, Z) has a FGMBB
distribution as defined in (3), then the marginal distributions of both W and Z have Bilal
distributions and the pdf of Z is given in (4). We have evaluated the Cramer-Rao Lower Bound
(CRLB) for the variance of an unbiased estimator of σ2 involved in (4) based on a random sample

of size n and is given by 13
25

σ2
2

n . In this section, we have also shown that the variance of proposed

unbiased estimator σ∗
2 is strictly less than 13

25
σ2

2
n , the CRLB for the variance of an unbiased estimator

of σ2 involved in (4), for all ϕ ∈ B, where B = [−1, 1]− {0}. In this section, we have further
discussed an efficiency comparison between σ∗

2 and the maximum likelihood estimator (MLE) σ̂2
of σ2 based on a random sample of size n arising from (3). In section 3, we have derived the BLUE
σ̃2 of σ2 involved in FGMBB distribution based on Stoke’s rss and made an efficiency comparison
of σ̃2 relative to σ̂2.

2. An unbiased estimator of σ2 using Stoke’s RSS.

Suppose the bivariate random vector (W, Z) follows a FGMBB distribution with pdf given in (3).
Select a rss as per Stoke’s RSS scheme. Let W(r:n)r be the observation obtained on the auxiliary
variate W in the rth unit of the rss and let Z[r:n]r be the measurement made on the variate related
with W(r:n)r, r = 1, 2, · · · , n. Clearly Z[r:n]r is the rth COS of a random sample of size n arising
from the FGMBB distribution. Using the results of [21], we obtain the pdf of Z[r:n]r, r = 1, 2, · · · , n,
and is given by

f[r:n](z) =
6
σ2

e−
2z
σ2

(
1 − e−

z
σ2

) [
1 + ϕ

(n − 2r + 1)
(n + 1)

(
2e−

2z
σ2

{
3 − 2e−

z
σ2

}
− 1

)]
. (7)

The mean and variance of Z[r:n]r for r = 1, 2, · · · , n, is obtained as

E[Z[r:n]r] = σ2

[
5
6
− 19

60
ϕ
(n − 2r + 1)

(n + 1)

]
(8)

and

Var[Z[r:n]r] = σ2
2

[
13
36

− 253
1800

ϕ
(n − 2r + 1)

(n + 1)
− 361

3600
ϕ2 (n − 2r + 1)2

(n + 1)2

]
. (9)

RT&A, No 2 (73) 
Volume 18, June 2023 

131



M. R. Irshad, R. Maya, A.I. Al-Omari, Ahmad A. Hanandeh, S. P. Arun
ESTIMATION OF A PARAMETER BY RANKED SET SAMPLING

Since Z[r:n]r and Z[s:n]s for r ̸= s are arising from two independent samples, we obtain

Cov[Z[r:n]r, Z[s:n]s] = 0, r ̸= s.

Next, we derive an unbiased estimator of σ2 and its variance using the rss observations Z[r:n]r for
r = 1, 2, · · · , n, on the variable Z of primary interest and are given by the following theorem.

Theorem 1. Let (W, Z) follows a FGMBB distribution with pdf given by (3). Let Z[r:n]r, r =
1, 2, · · · , n be the rss observations on a study variate Z generated out of ranking made on an
auxiliary variate W. Then

σ∗
2 =

6
5n

n

∑
r=1

Z[r:n]r

is an unbiased estimator of σ2 and its variance is given by

Var[σ∗
2 ] =

σ2
2

n

[
13
25

− 361
2500

ϕ2

n

n

∑
r=1

(
n − 2r + 1

n + 1

)2
]

. (10)

Proof By using the definition, we have

E[σ∗
2 ] =

6
5n

n

∑
r=1

E[Z[r:n]r]

=
6

5n

n

∑
r=1

[
5
6
− 19

60
ϕ
(n − 2r + 1)

(n + 1)

]
σ2. (11)

Using the result,
n

∑
r=1

(n − 2r + 1) = 0. (12)

Applying (12) in (11) we get,
E[σ∗

2 ] = σ2.

Therefore, σ∗
2 is an unbiased estimator of σ2. The variance of σ∗

2 is given by,

Var[σ∗
2 ] =

36
25n2

n

∑
r=1

Var[Z[r:n]r]. (13)

Applying (9) and (12) in (13), we get

Var[σ∗
2 ] =

σ2
2

n

[
13
25

− 361
2500

ϕ2

n

n

∑
r=1

(
n − 2r + 1

n + 1

)2
]

.

Hence the proof.

As mentioned above, if (W, Z) has the FGMBB distribution as defined in (3), then the marginal
distribution of both W and Z are Bilal distributions and the pdf of Z is given in (4). The CRLB
for the variance of any unbiased estimator of σ2 based on a random sample of size n drawn from

(4) is obtained as 13
25

σ2
2

n . Now we compare the the variance of σ∗
2 with the CRLB for the variance of

an unbiased estimator of σ2 involved in (4). If we write E1(σ
∗
2 ) to denote the ratio of 13

25
σ2

2
n with

Var(σ∗
2 ), then we have,

E1(σ
∗
2 ) =

1[
1 − 361

1300
ϕ2

n ∑n
r=1

(
n−2r+1

n+1

)2
] . (14)

It is easily verified that
E1(σ

∗
2 ) ≥ 1.
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Thus we arrive at a conclusion that the estimator σ∗
2 based on Stoke’s rss is more efficient as it

assert the statement that rss always provide more information than simple random sample even
if ranking is imperfect [11]. It is very clear that Var(σ∗

2 ) is a decreasing function of ϕ2 and hence
the gain in efficiency of the estimator σ∗

2 increases as |ϕ| increases.
Again on simplifying (14) we get,

E1(σ
∗
2 ) =

1

1 − 361ϕ2

1300

[
2
3

(
2+1/n
1+1/n

)
− 1

] .

Then,

lim
n→∞

E1(σ
∗
2 ) = lim

n→∞

1

1 − 361ϕ2

1300

[
2
3

(
2+1/n
1+1/n

)
− 1

]
=

1

1 − 361ϕ2

3900

.

From the above expression it is clear that the maximum value for E1(σ
∗
2 ) is attained when |ϕ| = 1

and in this case E1(σ
∗
2 ) tends to 3900/3539.

Next we discuss the efficiency comparison of σ∗
2 with the asymptotic variance of MLE of σ2

involved in the FGMBB distribution. If (W, Z) follows a FGMBB distribution with pdf given in
(3), then

∂ log f (x, y)
∂σ1

=
1
σ1

{
−1 +

2w
σ1

− we−
w
σ1

σ1(1 − e−
w
σ1 )

+

4ϕwe−
2w
σ1

[
−3 + 18e−

2z
σ2 − 12e−

3z
σ2 + 3e−

w
σ1 − 18e−

w
σ1 e−

2z
σ2 + 12e−

w
σ1 e−

3z
σ2

]
σ1

{
1 + ϕ

[
1 − 2e−

2w
σ1 (3 − 2)e−

w
σ1

] [
1 − 2e−

2z
σ2 (3 − 2)e−

z
σ2

]}


and

∂ log f (x, y)
∂σ2

=
1
σ2

{
−1 +

2z
σ2

− ze−
z

σ2

σ2(1 − e−
z

σ2 )

+

4ϕze−
2z
σ2

[
−3 + 18e−

2w
σ1 − 12e−

3w
σ1 + 3e−

z
σ2 − 18e−

z
σ2 e−

2w
σ1 + 12e−

z
σ2 e−

3w
σ1

]
σ2

{
1 + ϕ

[
1 − 2e−

2w
σ1 (3 − 2)e−

w
σ1

] [
1 − 2e−

2z
σ2 (3 − 2)e−

z
σ2

]}
 .

Then we have,

Iσ1 (ϕ) = E
(

∂ log f (x, y)
∂σ1

)2

=
36
σ2

1

∞∫
0

∞∫
0

e−2u(1 − e−u)
{
−1 + 4u + ue−u(u − 2 + 2e−u)(1 − e−u)−2

−
12αu2e−2u [

−2 + 12e−2v − 8e−3v + 3e−u − 18e−ue−2v + 12e−ue−3v]
{1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}

+
24αue−2u [

−1 + 6e−2v − 4e−3v + e−u − 6e−ue−2v + 4e−ue−3v]
{1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}2

×{1 + α[1 − 2e−2v(3 − 2e−v)][1 − 6e−2u − 6ue−2u + 4e−3u + 6ue−3u]}

} e−2v(1 − e−v){1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}dudv,
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Iσ2 (ϕ) = E
(

∂ log f (x, y)
∂σ2

)2

=
36
σ2

2

∞∫
0

∞∫
0

e−2u(1 − e−u)
{
−1 + 4v + ve−v(v − 2 + 2e−v)(1 − e−v)−2

−
12αv2e−2v [−2 + 12e−2u − 8e−3u + 3e−v − 18e−ve−2u + 12e−ve−3u]

{1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}

+
24αve−2v [−1 + 6e−2u − 4e−3u + e−v − 6e−ve−2u + 4e−ve−3u]

{1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}2

×{1 + α[1 − 2e−2u(3 − 2e−u)][1 − 6e−2v − 6ve−2v + 4e−3v + 6ve−3v]}

} e−2v(1 − e−v){1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}dudv

and

Iσ1σ2 (ϕ) = E
(

∂2 log f (x, y)
∂σ1∂σ2

)

=
36

σ1σ2

∞∫
0

∞∫
0

e−2u(1 − e−u)
{

144αuve−2ue−2v [1 − e−u − e−v + e−ue−v]
−

144α2uve−2ue−2v [−1 + 6e−2v − 4e−3v + e−u − 6e−ue−2v + 4e−ue−3v]
{1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}2

×{[1 − 2e−2u(3 − 2e−u)][e−v − 1]}

} e−2v(1 − e−v){1 + α[1 − 2e−2u(3 − 2e−u)][1 − 2e−2v(3 − 2e−v)]}dudv.

Thus the Fisher information matrix associated with the random variable (W, Z) is given by,

I(ϕ) =
[

Iσ1(ϕ) −Iσ1σ2(ϕ)
−Iσ1σ2(ϕ) Iσ2(ϕ)

]
. (15)

We have computed the values of σ−2
1 Iσ1(ϕ) and σ−1

1 σ−1
2 Iσ1σ2(ϕ) numerically for ϕ = ±0.25,±0.50,±0.75,±1

(clearly σ−2
1 Iσ1(ϕ)=σ−2

2 Iσ2(ϕ)) and are given below:

ϕ σ−2
1 Iσ1 (ϕ) σ−1

1 σ−1
2 Iσ1σ2 (ϕ) ϕ σ−2

1 Iσ1 (ϕ) σ−1
1 σ−1

2 Iσ1σ2 (ϕ)

0.25 1.9381 0.1373 -0.25 1.9381 -0.1373
0.50 1.9795 0.2772 -0.50 1.9795 -0.2773
0.75 2.0530 0.4230 -0.75 2.0530 -0.4236
1.00 2.1705 0.5815 -1.00 2.1705 -0.5841

Thus from (15), the asymptotic variance of the MLE σ̂2 of σ2 involved in the FGMBB distribution
under a bivariate sample of size n is obtained as

Var(σ̂2) =
1
n

I−1
σ2

(ϕ), (16)

where I−1
σ2

(ϕ) is the (2,2)th element of the inverse of I(ϕ) given by (15).

We have compute the efficiency E(σ∗
2 |σ̂2) = Var(σ̂2)

Var(σ∗
2 )

of σ∗
2 relative to σ̂2 for n = 2(2)20; ϕ =

±0.25,±0.50,±0.75,±1 and are given in table 1. From the table, one can infer that the estimator
σ∗

2 is more efficient than σ̂2 and efficiency increases with n and |ϕ| for n ≥ 4.
Remark 2.1. For given value of ϕ ∈ (0, 1], once the variance of σ∗

2 is evaluated, then this variance
is equal to the variance of σ∗

2 for −ϕ because the variance given in (10) depends only on ϕ by a
term containing ϕ2 only.
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3. Best linear unbiased estimator of σ2 using Stoke’s RSS

In this section we derive the BLUE of σ2 provided the dependence parameter ϕ is known.
Suppose Z[r:n]r for r = 1, 2, · · · , n, are the rss observation generated from (3) as per Stoke’s RSS
scheme. Let

ζr,n =
5
6
− 19

60
ϕ
(n − 2r + 1)

(n + 1)
, (17)

ψr,r,n =
13
36

− 253
1800

ϕ
(n − 2r + 1)

(n + 1)
− 361

3600
ϕ2 (n − 2r + 1)2

(n + 1)2 . (18)

Using (17) and (18), we get
E[Z[r:n]r] = σ2ζr,n, 1 ≤ r ≤ n (19)

and
Var[Z[r:n]r] = σ2

2 ψr,r,n, 1 ≤ r ≤ n. (20)

Also we have
Cov[Z[r:n]r, Z[s:n]s] = 0, r, s = 1, 2, · · · , n and r ̸= s. (21)

Let Z[n] = (Z[1:n]1, Z[2:n]2, · · · , Z[n:n]n)
′ denote the column vector of n rss observations. Then from

(19), (20) and (21), we can write,
E[Z[n]] = σ2ζ (22)

and the dispersion matrix of Z[n] ,
D[Z[n]] = σ2

2 G, (23)

where ζ = (ζ1,n, ζ2,n, · · · , ζn,n)′ and G = diag(ψ1,1,n, ψ2,2,n, · · · , ψn,n,n), where ζr,n and ψr,r,n for
r = 1, 2, · · · , n are respectively given by equations (17) and (18). If ϕ contained in ζ and G are
known then (22) and (23) together defines a generalized Gauss-Markov setup and then the BLUE
of σ2 is given by

σ̃2 = (ζ ′G−1ζ)−1ζ ′G−1Z[n]

and the variance of σ2 is given by

Var(σ̃2) =
σ2

2

ζ ′G−1ζ
.

On simplifying, we get

σ̃2 =

n

∑
r=1

ζr,n

ψr,r,n

n

∑
r=1

ζ2
r,n

ψr,r,n

Z[r:n]r (24)

and

Var(σ̃2) =
σ2

2
n

∑
r=1

ζ2
r,n

ψr,r,n

. (25)

From (24), we have σ̃2 is a linear functions of the rss observations Z[r:n]r, r = 1, 2, · · · , n and hence

σ̃2 can be written as σ̃2 =
n

∑
r=1

arZ[r:n]r, where

ar =

ζr,n
ψr,r,n

n

∑
r=1

ζ2
r,n

ψr,r,n

, r = 1, 2, · · · , n.

We have evaluated the numerical values of means and variances using the expressions (17) and
(18) respectively for ϕ = 0.25(0.25)1 and for n = 2(2)20. Using these values we have evaluated
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the variance of BLUE σ̃2 for ϕ = 0.25(0.25)1 and for n = 2(2)20. Also we have computed the ratio
E(σ̃2|σ̂2) =

Var(σ̂2)
Var(σ̃2)

to measure the efficiency of our estimator σ̃2 relative to σ̂2 for n = 2(2)20 and
ϕ = 0.25(0.25)1 and are presented in table 1. From the table it is clear that, BLUE of σ2 performs
well compared to the MLE of σ2, namely σ̂2.

Remark 3.1. As in the case of variance of an unbiased estimator given in (10), for a given
value of ϕ ∈ (0, 1], once the variance of σ̃2 is evaluated, then there is no need to again evaluate
the variance of σ̃2 when ϕ = −ϕ. To establish this argument we prove the following theorem.

Theorem 2. Let (W, Z) follows a FGMBB distribution with pdf given by (3). For a given ϕ ∈ (0, 1],
Var[σ̃2(ϕ0)] is the variance of the BLUE σ̃2 of σ2 involved in the FGMBB distribution, then

Var[σ̃2(−ϕ0)] = Var[σ̃2(ϕ0)]. (26)

Proof The terms ζr,n and ψr,r,n defined by (17) and (18) are functions of ϕ, r and n and hence ζr,n
and ψr,r,n can be denoted as ζr,n(ϕ) and ψr,r,n(ϕ) respectively. From (17) and (18), it is clear that

ζr,n(ϕ) = ζn−r+1,n(−ϕ), 1 ≤ r ≤ n (27)

and
ψr,r,n(ϕ) = ψn−r+1,n−r+1,n(−ϕ), 1 ≤ r ≤ n. (28)

As a consequence of (27) and (28), we get

Var[σ̃2(ϕ)] =
σ2

2
n

∑
r=1

ζ2
r,n(ϕ)

ψr,r,n(ϕ)

=
σ2

2
n

∑
r=1

ζ2
n−r+1,n(−ϕ)

ψn−r+1,n−r+1,n(−ϕ)

= Var[σ̃2(−ϕ)].

Hence the proof.
Remark 3.2. For FGMBB distribution defined in (3), we have evaluated the correlation coefficient between
the two variables and is given by ρ = 361

1300 ϕ. But in certain real life situations our assumption that ϕ is
known may viewed as unrealistic. Hence if we have a situation with ϕ unknown, we compute the sample
correlation τ from (Wr:n, Z[r:n]) for r = 1, 2, · · · , n and introduce a moment type estimator ϕ̂ for ϕ as,

ϕ̂ =


−1, i f τ < −361

1300
1300
361 τ, i f −361

1300 ≤ τ ≤ 361
1300

1, i f τ > 361
1300 .

Table 1: Efficiencies of the estimators σ∗
2 and σ̃2 relative to σ̂2.

n ϕ e(σ∗
2 |σ̂2) e(σ̃2|σ̂2) ϕ e(σ∗

2 |σ̂2) e(σ̃2|σ̂2)

0.25 0.9992 0.9992 -0.25 0.9992 0.9992
2 0.50 0.9984 0.9984 -0.50 0.9984 0.9984

0.75 0.9957 0.9957 -0.75 0.9957 0.9957
1.00 0.9849 0.9849 -1.00 0.9850 0.9853
0.25 1.0008 1.0008 -0.25 1.0008 1.0008

4 0.50 1.0047 1.0047 -0.50 1.0029 1.0029
0.75 1.0103 1.0111 -0.75 1.0047 1.0047
1.00 1.0106 1.0139 -1.00 1.0110 1.0147
0.25 1.0012 1.0012 -0.25 1.0012 1.0012

6 0.50 1.0082 1.0082 -0.50 1.0082 1.0082
0.75 1.0168 1.0180 -0.75 1.0168 1.0180
1.00 1.0223 1.0273 -1.00 1.0230 1.0286
0.25 1.0015 1.0015 -0.25 1.0015 1.0015
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n ϕ e(σ∗
2 |σ̂2) e(σ̃2|σ̂2) ϕ e(σ∗

2 |σ̂2) e(σ̃2|σ̂2)

8 0.50 1.0094 1.0094 -0.50 1.0094 1.0094
0.75 1.0192 1.0209 -0.75 1.0192 1.0209
1.00 1.0282 1.0351 -1.00 1.0300 1.0367
0.25 1.0019 1.0019 -0.25 1.0019 1.0019

10 0.50 1.0098 1.0098 -0.50 1.0098 1.0098
0.75 1.0221 1.0241 -0.75 1.0221 1.0241
1.00 1.0312 1.0398 -1.00 1.0330 1.0419
0.25 1.0023 1.0023 -0.25 1.0023 1.0023

12 0.50 1.0094 1.0094 -0.50 1.0094 1.0094
0.75 1.0242 1.0266 -0.75 1.0242 1.0266
1.00 1.0376 1.0455 -1.00 1.0376 1.0455
0.25 1.0000 1.0000 -0.25 1.0000 1.0000

14 0.50 1.0110 1.0110 -0.50 1.0110 1.0110
0.75 1.0225 1.0254 -0.75 1.0225 1.0254
1.00 1.0380 1.0472 -1.00 1.0380 1.0472
0.25 1.0031 1.0031 -0.25 1.0031 1.0031

16 0.50 1.0126 1.0126 -0.50 1.0126 1.0126
0.75 1.0258 1.0291 -0.75 1.0258 1.0291
1.00 1.0403 1.0473 -1.00 1.0403 1.0473
0.25 1.0035 1.0035 -0.25 1.0035 1.0035

18 0.50 1.0106 1.0106 -0.50 1.0106 1.0106
0.75 1.0291 1.0291 -0.75 1.0291 1.0291
1.00 1.0415 1.0534 -1.00 1.0415 1.0534
0.25 1.0000 1.0000 -0.25 1.0000 1.0000

20 0.50 1.0118 1.0157 -0.50 1.0118 1.0157
0.75 1.0242 1.0283 -0.75 1.0242 1.0283
1.00 1.0420 1.0508 -1.00 1.0420 1.0508

4. Estimation of σ2 based on censored ranked set sample

In this section, we obtain some estimators of σ2 using censored RSS scheme. Suppose k units are
censored in the Stoke’s RSS scheme, then we may represent the rss observations on the study
variate Z as δ1Z[1:n]1, δ2Z[2:n]2, · · · , δnZ[n:n]n where,

δi =

{
0, i f the ith unit is censored,
1, otherwise.

and hence ∑n
i=1 δi = n − k. In this case the usual unbiased estimator of σ2 is equal to

6 ∑n
i=1 δiZ[i:n]i
5(n−k) .

It may be noted that one need not get δi = 0 for i = 1, 2, · · · , k and δi = 1 for i = k+ 1, k+ 2, · · · , n.
Hence if we write mi, i = 1, 2, · · · , n − k as the integers such that 1 ≤ m1 < m2 < · · ·mn−k and
for which δmi =1, then,

E

[
6 ∑n

i=1 δiZ[i:n]i

5(n − k)

]
= σ2

[
1 − 19ϕ

50(n + 1)(n − k)

n−k

∑
i=1

(n − 2mi + 1)

]
.

Thus it is clear that the in the censored case the usual unbiased estimator is not an unbiased
estimator of σ2. However we can construct an unbiased estimator of σ2 based on

6 ∑n
i=1 δiZ[i:n]i
5(n−k) is

given in the following theorem.

Theorem 3. Suppose that the random variable (W, Z) has a FGMBB distribution as defined in
(3). Let Z[mi ]mi

, i = 1, 2, · · · , n − k be the rss observations on the study variate Z resulting out
of censoring applied on the auxiliary variable W. Then an unbiased estimator of σ2 based on
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6
5(n−k) ∑n−k

i=1 Z[mi ]mi
is given by

σ∗
2 (k) =

60(n + 1)[
50(n + 1)(n − k)− 19ϕ ∑n−k

r=1 (n − 2mi + 1)
] n−k

∑
i=1

Z[mi ]mi

and its variance is given by

Var[σ∗
2 (k)] =

3600(n + 1)2σ2
2[

50(n + 1)(n − k)− 19ϕ ∑n−k
r=1 (n − 2mi + 1)

]2

n−k

∑
i=1

ψmi

where ψmi is as defined in (18).

Proof We have

E[σ∗
2 (k)] =

60(n + 1)[
50(n + 1)(n − k)− 19ϕ ∑n−k

r=1 (n − 2mi + 1)
] n−k

∑
i=1

E[Z[mi ]mi
]

=
60(n + 1)[

50(n + 1)(n − k)− 19ϕ ∑n−k
r=1 (n − 2mi + 1)

]
×

n−k

∑
i=1

[
5
6
− 19

60
ϕ
(n − 2mi + 1)

(n + 1)

]
σ2

=
60(n + 1)[

50(n + 1)(n − k)− 19ϕ ∑n−k
r=1 (n − 2mi + 1)

]
×

[
5(n − k)

6
− 19ϕ

60(n + 1)

n−k

∑
i=1

(n − 2mi + 1)

]
σ2

= σ2.

Thus σ∗
2 (k) is an unbiased estimator of σ2. The variance of σ∗

2 (k) is given by

Var[σ∗
2 (k)] =

3600(n + 1)2[
50(n + 1)(n − k)− 19ϕ ∑n−k

r=1 (n − 2mi + 1)
]2

n−k

∑
i=1

Var(Z[mi ]mi
)

=
3600(n + 1)2σ2

2[
50(n + 1)(n − k)− 19ϕ ∑n−k

r=1 (n − 2mi + 1)
]2

n−k

∑
i=1

ψmi

where ψmi is as defined in (18). Hence the theorem.
As a competitor of the estimator σ∗

2 (k), next we propose the BLUE of σ2 based on the censored
rss, resulting out of ranking of observations on W.
If Z[n](k) = (Z[m1]m1

, Z[m2]m2
, · · · , Z[mn−k ]mn−k

)′, then the mean vector and the variance-covariance
matrix of Z[n](k) are given by

E[Z[n](k)] = σ2ζ(k), (29)

D[Z[n](k)] = σ2G(k), (30)

where ζ(k) = (ζm1 , ζm1 , · · · , ζmn−k )
′, G(k) = diag(ψm1 , ψm2 , · · · , ψmn−k ).

if the parameter ϕ involved in ζ(k) and G(k) are known then (29) and (30) together defines a
generalized Gauss-Markov setup and hence the BLUE σ̃2(k) of σ2 is obtained as,

σ̃2(k) = [(ζ(k))′(G(k))−1ζ(k)]−1(ζ(k))′(G(k))−1Z[n](k) (31)

and the variance of σ2 is given by

Var(σ̃2(k)) = [(ζ(k))′(G(k))−1ζ(k)]−1σ2
2 . (32)
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On substituting the values of ζ(k) and G(k) in (31) and (32) and simplifying we get,

σ̃2(k) =
∑n−k

i=1 (ζmi /ψmi )

∑n−k
i=1 (ζ

2
mi

/ψmi )
Z[mi ]mi

(33)

and
Var(σ̃2(k)) =

1

∑n−k
i=1 (ζ

2
mi

/ψmi )
σ2

2 . (34)

Remark 4.1. Since both the BLUE σ̃2(k) and the unbiased estimator σ∗
2 (k) based on the censored

ranked set sample utilize the distributional property of the parent distribution they lose the usual
robustness property. Hence in this case the BLUE σ̃2(k) shall be considered as a more preferable
estimator than σ∗

2 (k).
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Abstract 

 

Present paper covers performance modelling and performability evaluation of a veneer-cutting 

system of plywood manufacturing industry. The performability is evaluated as a function of 

availability. In this system the different subsystems are connected in hybrid mode. Markovian 

Approach was used for developing the process modeling of the subsystems and to evaluate the 

performability of said system. MATLAB software was used to perform the numerical computations 

as well as simulation of results. The current work examines the impact of varied failure rates and 

repair rates on the long-term availability of the system. A Particle Swarm Optimization (PSO) 

based technique was used to optimize the results. A Decision Support System (DSS), which can be 

helpful for making strategic decisions on financial investments in managing the maintenance 

priorities, spare part management, and human resource requirements, among other things, has been 

recommended based on the numerical investigation.. 

 

Keywords: Availability, DSS, Maintenance, Markov Chain, PSO, RAM Tools 

 

 

1. Introduction 
 

The manufacturing of plywood is a complex engineering process. It undergoes through 

several stages like veneer cutting, laying up and gluing operation, hot/cold pressing and trimming 

process etc. With rapid increase of market competition manufacturers have ensure the 

progressively improve in their production processes. Use of human labor provides flexibility. 

Need of varying sizes of the required final product usually interrupt progression in the crucial 

stage of layup. The availability, cost of production, quality, and, in certain situations, the safety of 

the operator has all been negatively impacted by the condition. The modern business communities 

of these fields have taken a positive lesson from it. They grasped as an opportunity to learn from a 

long list of such failures and their impact in terms of economy and safety. 

Regattieri and Bellomi [13] developed a system that reduces the manpower requirements 

and wastage of materials and improving the operational performance. Use of certain modeling 

tools in industrial practices can help them in making appropriate decisions on Reliability 
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Availability and Maintainability (RAM) issues. Various quantitative as well as qualitative tools and 

techniques are available for these types of analysis. Studies related to RAM facilitates in identifying 

several maintenance related issues and maintenance planning for smooth system working. 

Available literature on the subject shows that an equipment maintenance policy generally works in 

two ways: 1) Corrective Maintenance (CM) which is an offline activity where repair action is taken 

only after the equipment has failed; and 2) Preventive Maintenance (PM). This plan involves an 

online maintenance activity well in advance to avoid the frequent failure of system.  

In the next sub section usefulness of the certain RAM tools and their typical applications in 

process industries are suitably discussed. RAM Approaches in Process Industries. 

 RAM tools reported in the literature in the present study may be classified into two 

categories namely (i) non state space and (ii) state space models.  

The modeling techniques belonging to the non-state space category are Reliability-Block-

Diagram, Fault Tree Analysis whereas Petri-Nets (PN) and Markovian processes are coming under 

the state space models [9,10]. These modeling tools are briefly described as under: 

Fault Tree Analysis (FTA): At Bell Telephone Laboratory, this modelling method was 

created for the first time in 1962. In its original module, a combination of events that might cause a 

system failure was represented using a visual representation of logical links between events. The 

system represents top event in the modelling process. Dhillon and Rayapati [3] presented several 

examples describing successful applications of FTA to modelling of industrial systems. The RAM 

analysis of a RO desalination plant has also been done by Hajeeh and Chaudhuri [4] using it. Its 

aptitude for managing complex maintenance operations, which are best handled by state-space 

approaches like Markov or PN formalisms, is one of its significant drawbacks when employed as a 

RAM analysis tool. 

Reliability-Block-Diagram (RBD): Reliability Block Diagram represents the various 

connections between the components of system. The two forms of series in Reliability Block 

Diagram are Series and Parallel Configurations. Based upon the Operational Dependency each 

component in Reliability Bloc Diagram is represented with help of a block i.e. connected either in 

series, parallel or hybrid mode. RBD Techniques has proved its effectiveness so far in the analysis 

of reliability of system. The fundamental flow diagram of the process is used to create a high-level 

dependability block diagram in this.  

Khan and Kabir [6] carried out availability analysis of ammonia plant using Reliability 

Block Diagram is an example of availability analysis of industrial process systems.  

Petri Nets (PN) Model: PN Modeling Technique was first used in 1962 by Dr. Carl Adam 

Petri in his thesis of doctorate. PN uses bipartite directed graph for process modeling of systems 

having synchronization, randomness and concurrency simultaneously.  It has circles to indicate 

places, bars to denote transitions, and black dots inside the circles to represent tokens [17]. 

Sachdeva et al [15] applied Petri Nets for the performance modelling and evaluate long run steady 

state availability of paper manufacturing plant. 

Bahl [2] used PN approach for the availability assessment of various systems of a fertilizer 

industry. More recently, Angel and Jayaparvathy [1] applied PN approach for developing safety 

system against occurrence of fire. Kumar et al [7,8] performed availability analysis of different 

repairable industrial units producing different products however similar in operational nature 

such as randomness, synchronization and concurrency etc.  

Markov Process: It is a great process of stochastic behavior used to develop the 

performance model of systems that exhibit probabilistic behavior. It has many important 

applications in time-based reliability as well as availability analysis. Here in Movkov state 

transition diagrams are used for modelling of stochastic behavior of system. The system is capable 

of a number of distinct states across time. It is possible to specify the speed at which transitions 

between these states happen. Regardless of the number of states the system passed through to 
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arrive at this state, the system's transition from one state to another solely depends on the prior 

one. There are two forms of Markovian Chain models: Discrete-Time-Markov-Chain (DTMC) and 

Continuous-Time-Markov-Chain (CTMC).  Explosion of a number states is the main problem with 

the markovian chain models which makes difficult to deal with the tedious mathematical 

calculations.   

The work of Singh et al. [16] and Kumar et al. [18,19] uses petri nets for modelling and 

performance evaluation of subsystems of a thermal power plant. More recently, Malik and Tewari 

[12] applied Markov Chains for modeling and evaluated availability for different power plants. 

Kempa [11] dealt with performance modelling of a production system with Markov chains.   

Keeping in view of this, in the present study we have considered a Plywood plant facing 

several challenges as mentioned earlier. The system description and performance modeling is 

described in subsequent sections here after. 

 

 

2. System Description 
 

 Usually, the plywood manufacturing has nine main steps. These are (i)  log collection (ii) 

debarking (iii) steaming the blocks (iv) peeling blocks into veneers (v) drying veneers (vi) gluing 

and laying up the veneers one over the another (vii) pressing veneers in a hot press (viii) plywood 

trimming and (ix) finishing and stamping as shown in Fig.1. The veneer making system is 

responsible for around 35to 40 % of the total production of the plant. The system under study is a 

poplar plywood manufacturer situated in the Ganga basin of Northern India. The various 

subsystems under consideration are as follows: 

• Debarking Machine: It used to separate the tree bark and wood without damaging it. 

Further the logs extracted are into specified lengths. It consists of movable debarking head, roller 

table, hydraulics mechanism, horizontal and diagonal conveyors and electrically insulated control 

cabin etc. 

• Veneer Lathe: In this subsystem a veneer knife cuts the steamed blocks into veneers of 

desired thickness usually 3mm. The veneer sheets are further clamped to a usable width, to allow 

for shrinkage and trim. Veneer peeling knives, mechanical drives, tool holders and chucks are the 

major components of this sub system. 

• Veneer Drier: It is used to dry the veneers obtained from the barks maintaining the 

desired level of moisture contents (usually 1to 15%). This subsystem comprises of heating and 

cooling components and process measuring devices. A veneer drier typically has three heating 

zones followed by a cooling section. Heating zone consists of source of hot air, circulating fans and 

the ports for exhaust which are used reduce the temperature veneer before exiting to the drier. 

• Plywood Scanner: This subsystem is used to inspect, sort, grade and repair of 

plywood. It has (i) face and back scanners to detect visual 2-D and 3-D defects (ii) edge 

scanning for panel layup defects (iii) dimensional scanning for checking length and width 

and (iv) paralleling and guiding robotic movements for precise sorting and stacking etc. 
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Figure 1:  Flow diagram of Plywood Manufacturing Plant 

 

3. Performance Modeling 
In this study continuous time Markov Chains have been used to represent the transitions 

among various subsystems and to develop a performance model of the system. Fig. 2 shows the 

Markov model of the veneer cutting system. The failure and repair rates, among other variables, 

were taken into account when modelling the system's performance. The maintenance history 

books of the plant were obtained in discussion with plant’s persons for the required data presented 

in table 1.  Additionally, the following presumptions were used for system modelling and 

analysis.: 

• Exponential distributions have been used to express failure and repair rates. 

• A unit is as good as new after repair. 

• Standby units have the same nature and capacity as active. 

• Only the delay in the availability of repair facilities causes a delay in the start of repairs. 

• The system can operate in reduced capacity mode as well. 

 

Notations: 

A, B, C and D:  :All of the subsystems A, B, C, and D are in fine working order. 

 A ̅    :shows that subsystem A is functioning in a reduced state. 

B ̅   :shows that subsystem B is functioning in a reduced state. 

C ̅                         :shows a reduced state of operation for subsystem C.  

 a, b, c and d       : shows that A, B, C, and D are all in a failed state, correspondingly. 

λi, i=1,2,3……7   : Failure- Rates (FR) from states A, B, C, D, A ̅,B ̅  and C ̅ to the states A ̅,B ̅,C ̅, d, a, 

b and c respectively. 

µi, i=1,2,3……7   : Repair- Rates (RR) from states A ̅,B ̅,C ̅, d, a, b and c to the states A, B, C, D, A, B 

and C respectively. 

Pj(t), j=1,2,3…..27:  Probability that all subsystems are functioning properly and the system is in the 

jth state at time t. Pj′(t) represents the derivative of Pj (t) with respect to time ‘t’. 
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Figure 2:  Performance Model of Veneer Cutting System 

 

4. Performance Analysis 

 
Using mnemonic rule a set of first order differential equations related to the transition diagram seen above 

(Fig.2) of the system at Time (t+Δt) may be written as follows: 

P0(t+Δt)- P0(t )= [-λ1 Δt  -λ2 Δt - λ 3 Δt - λ4 Δt ]P0( t )+P1( t )µ1 Δt+P2( t )µ2Δt+P3( t )µ3Δt+P8( t )µ4Δt 

Dividing both sides by Δt, it becomes: 

[P0(t+Δt)-P0(t)]/Δt=[-λ1-λ2-λ3-λ4]P0(t)+P1(t)µ1+P2(t)µ2+P3(t)µ3+P8(t)µ4 

On taking limit as Δt→0, this obtained as: 

P′0(t)=-X0P0(t)+µ1 P1( t )+µ2 P2( t )+µ3 P3( t )+µ4 P8( t ) 

P′0(t)+X0P0(t)= µ1P1(t)+µ2P2(t)+µ3P3(t)+µ4P8(t)                                                       (1) 

Similarly,  

P′1 (t)+X1 P1(t)=λ1P0(t)+µ2P4(t)+µ3P5(t)+µ4P9(t)+µ5P10(t)                                                    (2) 

P′2(t)+X2P2(t)=λ2P0(t)+µ1P4(t)+µ3P6(t)+µ4P11(t)+µ6P12(t)                                 (3) 

P′3 (t)+X3P3(t)=λ3P0(t)+µ1P5(t)+µ2P6(t)+µ4P13(t)+µ7P14(t)                                                    (4) 

P′4(t)+X4P4(t)=λ2 P1 (t)+λ1 P2 (t)+µ3P7(t)+µ4P15(t)+µ5P16(t)+µ6P17(t)                                  (5) 

P′5(t)+X5P5(t)= λ3P1(t)+ λ1P3(t)+µ2P7(t)+µ4P18(t)+µ5P19(t)+µ7P20(t)                                (6) 

P′6(t)+X6P6(t)=λ3P2(t)+λ2P3(t)+µ1P7(t)+µ4P21(t)+µ6P22(t)+µ7P23(t)                                 (7) 

P′7(t)+X7P7(t)= λ3P4(t)+ λ2P5(t)+ λ1P6(t)+µ4P24(t)+µ5P25(t)+µ6P26(t)+µ7P27(t)                       (8) 

where, X0= λ1+λ2+λ3+λ4 

           X1= λ2+λ3+λ4+λ5+µ1 

 X2= λ1+λ3+ λ4+λ6+µ2 

X3= λ1+λ2+ λ4+λ7+µ3 

X4= λ3+λ4+λ5+λ6+µ1+µ2 

X5= λ2+λ4+λ5+λ7+µ1+µ3 

X6= λ1+λ4+λ6+λ7+µ2+µ3 

X7= λ4+λ5+λ6+λ7+µ1+µ2+µ3 

P′8 (t) +µ4 P8(t)=λ4P0(t)                                                                                                        (9) 
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P′i  (t)+µj Pi(t)=λjP1(t),where, i=9,10; j=4,5                                                                         (10) 

P′i  (t)+µj Pi(t)=λjP2(t), here, i=11,12; j=4,6                                                                                                         (11) 

P′I (t)+µjPi(t)=λjP3(t),here, i=13,14; j=4,7                                                                                                                  (12) 

P′I (t)+µj Pi(t)=λjP4(t), here, i=15,16,17; j=4,5,6                                                                                                         (13) 

P′i  (t)+µjPi(t)=λjP5(t),here, i=18,19,20; j=4,5,7                                                                                                          (14) 

P′i  (t)+µjPi(t)=λjP6(t),here, i=21,22,23; j=4,6,7                                                                                                          (15) 

P′i  (t)+µjPi(t)=λjP7(t),here, i=24,25,26,27;j=4,5,6,7                                                                                                   (16) 

Steady State  

By imposing the condition, steady state probabilities of the system are derived that as  t→ ∞, d/dt→0.  

With this, equations (5.58) to (5.73) the following equation system is reduced to 

X0P0= µ1P1+µ2P2+µ3P3+µ4P8                                                                                        (17) 

Similarly, 

X1P1=λ1P0+µ2P4+µ3P5+µ4P9+µ5P10                                                                                         (18) 

X2P2=λ2P0+µ1P4+µ3P6+µ4P11+µ6P12                                      (19) 

X3P3=λ3P0+µ1P5+µ2P6+µ4P13+µ7P14                                     (20) 

X4P4=λ2P1+ λ1P2+µ3P7+µ4P15+µ5P16+µ6P17                                                                                          (21)  

X5P5= λ3P1+ λ1P3+µ2P7+µ4P18+µ5P19+µ7P20                                     (22) 

X6P6=λ3P2+λ2P3+µ1P7+µ4P21+µ6P22+µ7P23                                        (23) 

X7P7= λ3P4+ λ2P5+ λ1P6+µ4P24+µ5P25+µ6P26+µ7P27                                                                (24) 

µ4 P8=λ4P0                                                                                                                               (25) 

µj Pi=λjP1, where, i=9, 10; j=4, 5                                                                                                 (26) 

µj Pi=λjP2, where, i=11, 12; j=4, 6                                                                                                                                (27) 

µj Pi=λjP3, where, i=13, 14; j=4, 7                                                                                                                                (28) 

µj Pi=λjP4, where, i=15, 16, 17; j=4, 5, 6                                                                                                                      (29)  

µj Pi=λjP5, where, i=18, 19, 20; j=4, 5, 7                                                                                                                      (30) 

µj Pi=λjP6, where, i=21, 22, 23; j=4, 6, 7                                                                                                                      (31) 

µj Pi(t)=λjP7(t),where, i=24, 25, 26, 27;j=4 ,5, 6, 7                                                                                                      (32) 

It can be found by recursively solving these equations as: 

 P1= (λ1/µ1)P0; P2= (λ2/µ2)P0; P3=(λ3/µ3)P0; P4=[(λ1λ2)/(µ1µ2)]P0; 

P5=[(λ1λ3)/(µ1µ3)]P0;P6=[(λ2λ3)/(µ2 µ3)]P0; P7 = [(λ1λ2 λ3)/( µ1µ2 µ3)]P0                                                                      

On adding,  

P1+P2+P3+ …. +P7  

    =[(λ1/µ1) + (λ2/µ2) + (λ3/µ3) + (λ1λ2)/(µ1µ2)+(λ1λ3)/(µ1µ3)+(λ2λ3)/(µ2 µ3)+(λ1λ2 λ3)/( µ1µ2 µ3)] P0 

    = KP0                                                                                                                                                                           (33)                                                             

where, K=[(λ1/µ1)+(λ2/µ2)+(λ3/µ3)+(λ1λ2)/(µ1µ2)+(λ1λ3)/(µ1µ3)+(λ2λ3)/(µ2 µ3)+(λ1λ2 λ3)/( µ1µ2 µ3)]; 

Similarly, P9+P10= (λ4/µ4+λ5/µ5)(λ1/µ1)P0; P11+P12=(λ4/µ4+λ6/µ6)(λ2/µ2)P0;  

P13+P14=(λ4/µ4+λ7/µ7)(λ3/µ3)P0;P15+P16+P17=(λ4/µ4+λ5/µ5+λ6/µ6)(λ1λ2)/(µ1µ2)P0; 

P18+P19+P20=(λ4/µ4+λ5/µ5+λ7/µ7) (λ1λ3)/(µ1µ3)P0; 

P21+P22+P23=(λ4/µ4+λ6/µ6+λ7/µ7) (λ2λ3)/(µ2µ3)P0;  

P24+P25+P26+P27=(λ4/µ4+λ5/µ5+λ6/µ6+λ7/µ7)(λ1λ2 λ3)/( µ1µ2 µ3)]P0                   (34)                                                                

The sum of all probability must equal one under the normalizing condition., i.e. 

ƩPi =1, Or, P0+P1+ P2+ …..  +P27 =1                                                                                                                           (35) 

This implies, 

[P0+(P1+P2+.….+P7)+P8+(P9+P10)+(P11+P12)+(P13+P14)+(P15+P16+P17)+(P18+P19+P20)+ 

(P21+P22+P23)+P24+P25+ P26+P27] =1 

Or, 

P0[1+K+λ4/µ4+(λ4/µ4+λ5/µ5)(λ1/µ1)+(λ4/µ4+λ6/µ6)(λ2/µ2)+(λ4/µ4+λ7/µ7)(λ3/µ3)+(λ4/µ4+λ5/µ5+λ6/µ6)(λ1λ2

)/(µ1µ2)+ 

(λ4/µ4+λ5/µ5+λ7/µ7)(λ1λ3)/(µ1µ3)+(λ4/µ4+λ6/µ6+λ7/µ7)(λ2λ3)/(µ2µ3)+(λ4/µ4+λ5/µ5+λ6/µ6+λ7/µ7)(λ1λ2 

λ3)/( µ1µ2 µ3)]=1 

Or, P0=[1+K+λ4/µ4+(λ4/µ4+λ5/µ5)(λ1/µ1)+(λ4/µ4+λ6/µ6)(λ2/µ2)+(λ4/µ4+λ7/µ7)(λ3/µ3)+ 

(λ4/µ4+λ5/µ5+λ6/µ6)(λ1λ2)/(µ1µ2)+(λ4/µ4+λ5/µ5+λ7/µ7)(λ1λ3)/(µ1µ3)+(λ4/µ4+λ6/µ6+λ7/µ7)(λ2λ3)/(µ2µ3)+ 

(λ4/µ4+λ5/µ5+λ6/µ6+λ7/µ7)(λ1λ2 λ3)/( µ1µ2 µ3)]-1                           (36) 
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Now, it is possible to determine the system A(∞) availability by utilizing: 

 A(∞)=P0+P1+P2+P3+….+P7 

        =[1+(λ1/µ1)+(λ2/µ2)+(λ3/µ3)+(λ1λ2)/(µ1µ2)+(λ1λ3)/(µ1µ3)+(λ2λ3)/(µ2µ3)+(λ1λ2λ3)/(µ1µ2 µ3)]P0 

        =(1+K)P0                                                                                                                                                               (37) 

 

Using Eq. 37, it is possible to determine the long-term availabilities for a variety of 

permitted pairings of repair and failure rates of veneer manufacturing systems in steady state. 

Tables 2 provide a summary of the impact of failure and repair rates on system availability. 

Following is a discussion of how availability affects system performance in relation to the 

parameters of the subsystems under consideration. 

Table 1: Data of failure and repair of Veneer System 

 

Name of Sub-System Mean Failure-Rate/hr 

( λi ) 

Mean Repair-Rate / hr ( µi )  

Debarking Machine (A) 2.0X10-3 1.3X10-2  

Veneer cutting lathe (B) 6.0X10-2 14X10-2  

Veneer Driers (C) 22.5X10-4 1.2X10-1  

Optical Scanner (D) 7.5X10-5 1.2X10-3  

 

Table 2: Effects of subsystem failure and repair rates variation on system performance 

 

Subsystem Variation in failure rates λi 

(Repair rates µi) 

Effect of variation on system 

availability 

 

1 Debarking   machine 0.0016-0.0024 (0.017-0.009) 0.8342-0.8028 (2.14)  

2Veneer lathe 0.02-0.10(0.20-0.08) 0.9156-0.5635 (35.21)  

3 Drier 0.00025-0.00425(0.20-0.04) 0.8301-0.8187 (1.14)  

4 Plywood   

scanner 

0.000035-0.000115 

(0.0020-0.0004) 

0.8578-0.6964 (16.14)  

 

 
Figure 3:  Effect on availability of the failure and repair rate of the debarking machine 

 

 

Fig. 3 reveals that the variation in FRR of debarking machine has moderate impact on performance 

of system. Overall 2.14 % Changes have been noted in the system's availability, with the debarking 

machine's failure rate rising from 0.0016 to 0.0024 and its repair rate falling from 0.017 to 0.009. 
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Figure 4:  : Effect on availability of the failure and repair rate of the veneer lathe. 

 

The failure and repair rates of the veneer lathe are shown to have a significant impact on the 

system's overall availability in Fig. 4 above. The overall availability varies by 35.20 percent, with 

the veneer lathe's failure rate rising from 0.02 to 0.10 and its repair rate falling. 

 

 
Figure 5:  : Impact of the veneer dryer's repair and failure rates on availability. 

 

As can be seen from Fig. 5, there is little to no impact on the system's availability when failure and 

repair rates vary within acceptable bounds. The system's availability varies1.14 %, with the veneer 

dryer's failure rate rising from 0.00025 to 0.00425 and its repair rate falling from 0.20 to 0.04. 

 

 
Figure 6:   Impact on availability of the plywood scanner's failure and repair rates. 

 

According to Fig. 6, changing the failure and repair rates within the given ranges has a significant 

impact on the system under consideration's overall availability. The plywood scanner's failure rate 

rose from 0.000035 to 0.000115, while its repair rates fell from 0.0020 to 0.0004, creating a 16.14% 

difference in the system's availability. 
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5. Performance Optimization 
 

In the present study, to see the further enhancement in the availability of the system a 

performance optimization were carried out using Particle Swarm Optimization (PSO) algorithms. 

The PSO technique was first used by  Dr. Kennedy [5] He proposed on the basis of the social 

behavior of birds or bees called ‘particles’ in their optimum search for food sources. In this, each 

bird has its own objective value at present, current position and current velocity. Ever experienced 

best value by the particle is called p-best i.e. personal best. It also considers the best objective value 

experienced by any particle ever called g-best i.e. global best. 

Thomas Schoene [14] described a standard version of classical PSO which uses the 

following relations to determine velocity and position of the ith particle: 

 

Vi (n+1) =  w*Vi (n) + C1(n)* R1i (n) *{p-besti - Xi(n)}+ C2(n)* R2i (n) *{g-best - Xi(n)}; 

n = 0, 1…………., N-1                                                       (38) 

Xi (n+1) = Xi (n) + Vi (n+1); n = 0,1…………., N-1;                                        (39) 

 

where Vi is the velocity of ith particle, Xi is the position of ith particle. ‘n’ in parenthesis represents 

the iteration number, n = 0 refers to the initialization; N is the total no. of performed iterations, C1 

and C2 are the personal weight and global weights respectively (preferably C1 = C2 = 2). R1i and 

R2i are random numbers distributed between 0 and 1 and ‘w’ the inertia weight that ranges from 

0.4 to 1.4.  

In PSO, the best solution represents the optimum position of a particle. There is random 

initialization of particles along with their velocity and position which were evaluated with 

equations (38) and (39).  The main steps involved in optimization process may be depicted as 

shown in Fig.7 below: 

 
 

Figure 7:   Flow Diagram PSO 
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The best position reached in each iteration is compared with the best previous position and 

similarly their position of   the global best and personal best are updated. Each particle is updated 

to a new best position considering their previous experience after adjusting their velocities. After 

reaching to the new position, the particles of swarn are updated. Best optimal solution is obtained 

by repeating the process in same manner. 

 

Computational Optimized Results of Veneer Making System 

 

Following the procedure mentioned in Fig.7 by varying the failure and repair rate within the 

permissible limitsthe performance optimization  of various subsystems has been carried out These 

are are shown below: 

 

λ1ϵ (0.0016-0.0024),, µ1 ϵ (0.009-0.017);    λ2ϵ (0.02-0.10),  µ2 ϵ (0.08-0.20); 

 λ3ϵ (0.00025-0.00425), µ3 ϵ (0.04-0.20)  and λ4ϵ (0.000035-0.000115), µ4 ϵ (0.0004-0.0020) 

 

The effect of population size and the number of iterations on the system performance is shown 

below in Tables 3 and 4 as given below. 

 

Table 3: Effect of Population Size (PS) Variation on the Accessibility of Veneer Making System 

Populatio

n Size@ 

no. of GS 

100 

Failure Rate Repair rate Optimum 

Availabilit

y (%) 

λ1 λ2 λ3 λ4 µ1 µ2 µ3 µ4 

10 0.0019 0.02 0.00092 0.000109 0.010 0.17 0.15 0.0016 0.9123 

20 0.0018 0.02 0.00343 0.000067 0.013 0.14 0.10 0.0019 0.9383 

50 0.0018 0.02 0.00235 0.000048 0.013 0.16 0.10 0.0016 0.9492 

100 0.0018 0.02 0.00246 0.000047 0.013 0.16 0.10 0.0016 0.9498 

200 0.0016 0.02 0.00036 0.000041 0.016 0.17 0.10 0.0018 0.9611 

1500 0.0018 0.02 0.00235 0.000040 0.015 0.18 0.05 0.0019 0.9614 

3000 0.0016 0.02 0.00189 0.000038 0.015 0.20 0.04 0.0018 0.9638 

4000 0.0016 0.02 0.00191 0.000038 0.015 0.20 0.04 0.0018 0.9639 

6000 0.0016 0.02 0.00186 0.000037 0.015 0.20 0.04 0.0017 0.9641 

8000 0.0016 0.02 0.00348 0.000035 0.015 0.19 0.08 0.0020 0.9669 

15000 0.0016 0.02 0.00379 0.000035 0.017 0.20 0.10 0.0020 0.9685 

      

Table 4: The impact of different iteration counts on the accessibility of veneer manufacturing systems 

Generatio

n Size @ 

no. of PS 

50000 

Failure Rate Repair rate Optimum 

Availabilit

y (%) 

λ1 λ2 λ3 λ4 µ1 µ2 µ3 µ4 

10 0.0015 0.10 0.0051 0.0016 0.015 0.19 0.05 0.0016 0.9560 

20 0.0016 0.02 0.00373 0.000035 0.017 0.20 0.11 0.0020 0.9682 

30 0.0016 0.02 0.00379 0.000035 0.017 0.20 0.11 0.0020 0.9684 

50 0.0016 0.02 0.00380 0.000035 0.017 0.20 0.11 0.0020 0.9685 

80 0.0016 0.02 0.00380 0.000035 0.017 0.20 0.11 0.0020 0.9685 

120 0.0016 0.02 0.00380 0.000035 0.017 0.20 0.11 0.0020 0.9685 

200 0.0016 0.02 0.00380 0.000035 0.017 0.20 0.11 0.0020 0.9685 

250 0.0016 0.02 0.00380 0.000035 0.017 0.20 0.11 0.0020 0.9685 
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Figure 8:   Optimum Availability of Veneer Making System using PSO 

 

The Fig. 8 shows the highest achievable availability of system is as much as 96.85%. Based on the 

detailed investigation a comparative analysis of results is presented in Table 5 in the form of DSS. 

 

 

6. Conclusions 
 

The detailed investigation carried out on different subsystems here indicates that the veneer 

cutting lathe needs an utmost maintenance priority as it is the most critical subsystem. The failure 

of veneer knives is the main reason for the failure is in veneer cutting lathe. The effect of varying 

repair facilities on the availability of system were carried out which will further help in the 

allocation of repair facilities among the subsystems. The obtained outcomes also demonstrate the 

usefulness of the RAM tools. The analysis carried out will further help the maintenance engineers 

to optimize the overall maintenance cost and overall production cost. Thus it understood that 

appropriate RAM tools have the direct impact on the maintenance cost and overall production cost 

[15]. 

 

Table 5: Summary of Results and DSS for Veneer making system of Plywood Manufacturing Plant 

Name of 

System 

Name of 

subsystem 

Varying Failure 

rates λi and 

(Repair Rates 

µi) 

Impact of 

change on 

availability 

using Markov 

(%) 

Optimized 

Availability 

based on 

PSO (%) 

Suggested 

Maintenance 

Priorities* 

Veneer 

Making 

System 

Debarking 

Machine 

0.0016-0.0024 

(0.017-0.009) 

0.8342-0.8028 

(2.14) 

96.85 % 

III 

Veneer 

lathe 

0.02-0.10 

(0.2-0.08) 

0.9156-0.5635 

(35.21) 
I 

Drier 
0.00025-0.00425 

(0.2-0.04) 

0.8301-0.8187 

(1.14) 
IV 

Plywood 

Scanner 

0.000035-

0.000115 

(0.0020-0.0004) 

0.8578-0.6964 

(16.14) 
II 

 

* At present being managed on the basis of intuitive decisions of the plant managers 
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In case it is desired to determine more possible efficient performance of such systems then we 

recommend the use of PSO type of optimization approach to be used for further optimizing the 

results obtained using Markov or any other convenient approaches as has been done in the present 

case study. Here a DSS is proposed (in Table 5) so that a significant amount of wastage in material 

and manpower involvement can be reduced. Hence, for researchers a lot of opportunity to work 

on the advancement of veneer layup process so as to achieve an optimum point between cost vs 

quality ensuring safety and volume of production. In future, It will be of great interest if Petri Nets 

approach is applied in such cases that supports non constant failure pattern also. 
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Abstract 

In this paper, we propose a new control chart based on Downton’s estimator (D) for monitoring the 

process dispersion using ranked set sampling design and runs rules. The performance of the 

proposed control chart is compared with the originally proposed D chart based on simple random 

sampling method when underlying process distribution is normal and non-normal. The average 

run length is used to evaluate the performance of the proposed control chart. It is observed that the 

proposed control chart is efficient in detecting shifts in process dispersion as compared with the 

chart using simple random sampling method. The performance of the proposed chart is further 

investigated using runs rules. The efficiency of the designed runs rules RSS-D chart is compared 

with its existing counterparts and is found to be superior. 

Keywords: Control chart, Average run length, Process dispersion, Ranked set 

sampling, Runs rules, Downton estimator. 

1. Introduction

In statistical process control (SPC), control charts are the most popular tools used to monitor the 

quality characteristics in an industrial process. Shewhart R chart and S chart are the commonly 

used control charts for monitoring the process dispersion. The R chart is based on the sample 

range (R) whereas S chart is based on sample standard deviation (S). These charts are based on 

subgroups of sample size n using simple random sampling (SRS) method. Both R and S charts are 

easy to implement and are effective in the detection of large shifts, but are less sensitive in the 

detection of small and moderate shifts in the process dispersion (Montgomery[1]).Several 

alternatives have been proposed in the literature to improve the performance of Shewhart type 

control charts. One recent approach is the construction of control charts based on ranked set 

sampling (RSS) scheme. The RSS scheme was first suggested by McIntyre [2]. This scheme ensures 

increased precision through ranking of observations. He pointed out that this sampling scheme 

works superior to standard simple random sampling (SRS) for estimation of the population mean. 

Takahasi and Wakimoto [3] laid the necessary mathematical formulation for this sampling scheme. 

Several researchers have studied applications of ranked set sampling in different streams. Kvam 

and Samaniego [4] showed that ranked set sampling may occur naturally in survival analysis. 

Kvam and Samaniego [5] studied the applications of this sampling scheme in reliability. Recently, 

RSS scheme has got considerable attention in the construction of control charts. Salazar and Sinha 

[6] first suggested control charts for monitoring process mean using RSS scheme. It was shown that

the RSS based control charts perform better than the charts based on SRS. Muttlak and Al-Sabah [7]
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developed control charts for process mean based on different RSS schemes and showed that the 

proposed RSS based control charts perform better than the classical SRS charts. Al-Naseer and Al-

Rawwash [8] developed the mean control chart using robust RSS method. Al-Omari and Al-Naseer 

[9] suggested a new quality control chart for mean using robust extreme ranked set sampling

(RERSS) method. It was shown that RERSS chart performs better than all other charts based on SRS

and RSS methods. Al-Omari and Haq [10] developed Shewhart-type control charts to  improve the

monitoring the process mean by using the double quartile-ranked set sampling, quartile double

ranked set sampling and double quartile extreme ranked set sampling methods. Al-Rawwash et al.

[11] developed control charts of the sample mean based on several sampling techniques including

RSS as well as some of its recent modifications assuming that the underlying distribution is normal 

with mean  and variance
2 . Mehmood et al. [12] discussed the details of different ranked set 

strategies and their applications in an industrial process using control charts. Abbasi [13] 

investigated the performance of the mean chart based on various sampling schemes under normal 

and non-normal process distributions. Tahir et al. [14] designed and investigated dispersion 

control charts based on different estimates of process dispersion under different RSS strategies for 

normal and non-normal processes.  

Most of the papers published so far on the RSS based control charts have concentrated on 

monitoring the process location and few control charts has been developed for monitoring the 

process dispersion. Motivated by the attractive features of RSS scheme, in this paper, we propose a 

D chart based on RSS scheme (denoted as RSS-D chart) for monitoring process dispersion. It is 

shown that the proposed RSS-D chart performs uniformly better than the D chart without RSS 

scheme for detecting increasing shifts in the process dispersion. Although the RSS scheme 

improves the performance of the D chart in detecting shifts in process dispersion, further 

improvement can be achieved if runs rules scheme is implemented to the RSS-D chart.In case of 

SRS, a number of authors have defined runs rules schemes for different control charts to improve 

the detecting ability for small and moderate shifts in process parameters. Klein [15] proposed two 

control charts based on runs rule as efficient alternatives to Shewhart control chart. These control 

charts were named as 2-out-of-2 runs rule control chart and 2-out-of-3 runs rule control chart. In 2-

out-of-2 runs rule control chart, if two successive points fall beyond a special control limit, then 

process is declared to be out of control. In 2-out-of-3 runs rule control chart, if two points among 

successive three points fall beyond a special control limit, then process is declared to be out of 

control. This special limit is determined in such a way that the in-control ARL equals with 

specified value ARL0. This chart has been proven to perform better than Shewhart 

chart.Antzoulakos and Rakitzis [16] have studied the control charts with supplementary runs rules 

for monitoring the process standard deviation. In general, the use of runs rules increases a chart’s 

sensitivity but also produces more false alarms. To keep the same rate of false alarm, control limits 

have to be adjusted (Cheng and Chen [17]). Although runs rules have been widely used in practice 

to increase the sensitivity of control charts, to our best knowledge, little research has been done on 

the RSS based control charts. 

The purpose of this paper is to improve the performance of the D chart proposed by 

Abbasi and Miller [18] to detect shifts in process dispersion by using RSS scheme and further to 

implement runs rule scheme to proposed RSS-D chart. The rest of the paper is organized as 

follows: In section2, we outline the process of constructing the D control chart based on SRS 

(denoted as SRS-D chart) for monitoring the process dispersion. The description of ranked set 

sampling scheme used in this study is given in section 3. The charting structure of the proposed 

RSS-D chart is presented in section 4. RSS based D-chart with runs rules is discussed in section 

5.The performance evaluation of proposed RSS-D chart and RSS-D chart with runs rules and its

comparative study with SRS-D control chart is given in section 6.  In section 7, an illustrative

example based on simulated data sets is provided for a better understanding about

implementation of the proposed control chart. A real life application of the proposed control chart

is illustrated in section 8. Conclusions are given in the final section 9.
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2. D Chart for Process Dispersion Based on SRS

Let𝑋1, 𝑋2, … , 𝑋𝑛 be a simple random sample of size 𝑛 from a normal process whose mean is 𝜇 and 

standard deviation is 𝜎. Further, let𝑋(1), 𝑋(2), … , 𝑋(𝑛) be the order statistics corresponding to this 

sample.  Downton [19] proposed following statistic as an estimator for process standard deviation

 . 

𝐷 =
2√𝜋

𝑛(𝑛−1)
∑ [𝑖 −

1

2
(𝑛 + 1)] 𝑋(𝑖)

𝑛
𝑖=1         (1) 

which is an unbiased estimator of 𝜎 for normally distributed process data. Abbasi and Miller [18] 

proposed the control chart based on D to monitor the process variability. It was shown that for 

normally distributed process, the D chart is equally efficient to the Shewhart S chart for detecting 

shifts in the process standard deviation. Since the distribution of D is not symmetric at least for 

small to moderate values of n, they have used probability limits instead of three-sigma control 

limits in the construction of D chart. The probability limits of D chart are computed by using 

quantile points of the distribution of=
𝐷

𝜎
. The upper control limit (UCL) of the D chart is given as

𝑈𝐶𝐿 = 𝑍1−𝛼𝐷 with 𝑃(𝑍 ≥ 𝑍1−𝛼) = 1 − 𝛼                                           (2) 

where 𝛼 is the specified probability of making Type-I error,  𝑍𝛼 is 𝛼𝑡ℎquantile point of the

distribution of 𝑍. The process dispersion is then monitored by plotting values of the D statistic on 

the chart with UCL given by Eq. (2). If 𝐷 < 𝑈𝐶𝐿, the process is regarded as in-control, otherwise 

there is an increase in process standard deviation and process is deemed out-of-control.  

To design the D chart based on simple random sample (SRS), let 𝑋1, 𝑋2, … , 𝑋𝑛be 

independent and identically distributed𝑁(𝜇0, 𝜎0
2) random sample of size𝑛, where 𝜇0and 𝜎0

2 are the

in-control mean and variance, respectively. As the concern of this paper is monitoring process 

dispersion, let us assume that process standard deviation has a shift of size𝛿. Hence, the new 

standard deviation for the process becomes 𝜎1 = 𝛿𝜎0, where 𝜎1is out-of-control value of process 

standard deviation. For positive shift (𝛿 > 1), that is, for increase in 𝜎, 𝑘+𝜎0is the upper control

limit and process is declared to be out-of-control if 𝐷 > 𝑘+𝜎0. For negative shift (𝛿 < 1), that is for

decrease in𝜎, 𝑘−𝜎0 is the lower control limit and process is declared to be out-of-control if 𝐷 <

𝑘−𝜎0. The values of 𝑘+ and 𝑘− are found for fixed in-control ARL value based on simulations.

A commonly used performance measure for a control chart is its ARL. For a given shift in 

process parameter, the ARL is the average number of points plotted on a control chart until an out-

of-control signal is obtained. In case of Shewhart control chart, which signals as soon as a point 

falls beyond the control limits, 𝐴𝑅𝐿 = 1
𝑝⁄ , where𝑝 is the probability that a point exceeds the

control limits.  

For positive shift 𝛿, 
𝑝 = 𝑃𝑟(𝐷 > 𝑘+𝜎0 𝜎 = 𝛿𝜎0⁄ )

= 𝑃𝑟 (
𝐷

𝛿𝜎0
>

𝑘+𝜎0

𝛿𝜎0
𝜎 = 𝛿𝜎0⁄ )

= 𝑃𝑟 (𝑍 >
𝑘+

𝛿
) 

= 1 − 𝐹 (
𝑘+

𝛿
) 

In-control ARL is the reciprocal of the detecting power 𝑝. 

𝐴𝑅𝐿(𝛿) =
1

𝑝
=

1

1−𝐹(
𝑘+

𝛿
)

 (3) 

For negative shift 𝛿, 
𝑝 = 𝑃𝑟(𝐷 < 𝑘−𝜎0 𝜎 = 𝛿𝜎0⁄ )

= 𝑃𝑟 (
𝐷

𝛿𝜎0
<

𝑘−𝜎0

𝛿𝜎0
𝜎 = 𝛿𝜎0⁄ )

= 𝑃𝑟 (𝑍 <
𝑘−

𝛿
) 

= 𝐹 (
𝑘−

𝛿
) 
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where 𝐹(. ) is distribution function of 𝑍. 

In-control ARL is the reciprocal of the detecting power 𝑝. 

𝐴𝑅𝐿(𝛿) =
1

𝑝
=

1

𝐹(
𝑘−

𝛿
)

 (4) 

3. Ranked Set Sampling Scheme

The mechanism of ranked set sampling (RSS) is as follows. Let 𝑋 be the characteristic 

under study. In order to get a RSS sample of size𝑛, total of 𝑛2 units are drawn from the population. 

These 𝑛2 units are randomly arranged in 𝑛 sets each of size𝑛. Let{𝑋𝑖,𝑘, 𝑖 = 1,2, … , 𝑛}be the 𝑘𝑡ℎ set,

where= 1,2, … , 𝑛 . The observations in the 𝑘𝑡ℎ set {𝑋𝑖,𝑘 , 𝑖 = 1,2, … , 𝑛}are ranked either by visual

magnitude of characteristic 𝑋 or by using some other variable, which is significantly correlated 

with𝑋. If the ranking of 𝑋is exact, then the sampling scheme is called RSS with perfect ranking, and 

if ranking is not exact, then the sampling scheme is called RSS with imperfect sampling. In the 

present study, we have assumed perfect RSS scheme. Let 𝑘𝑡ℎordered set be {𝑋[𝑖,𝑘], 𝑖 = 1,2, … , 𝑛},

where 𝑋[𝑖,𝑘], 𝑖 = 1,2, … , 𝑛;  𝑘 = 1,2, … , 𝑛 is the 𝑖𝑡ℎ order statistic in 𝑘𝑡ℎset. These sets are called the

ranked sets. Then 𝑖𝑡ℎ, 𝑖 = 1,2, … , 𝑛 order statistic is picked from 𝑖𝑡ℎ, 𝑖 = 1,2, … , 𝑛 ranked set. That is, 

first order statistics from first ranked set, second order statistics from second ranked set and so on. 

Thus, a final selected sample of size 𝑛 is {𝑋[1,1], 𝑋[2,2], … , 𝑋[𝑛,𝑛]}, which is termed as a ranked set 

sample (RSS). 

4. RSS Based D Chart for Process Dispersion

In this section, a working mechanism of RSS-D chart is described. A subgroup sample from the 

underlying process is obtained using RSS scheme of sampling. It is assumed that ranking is 

perfect. Using this scheme, we generate subgroups of size 𝑛 and repeat them for 𝑛 cycles from the 

distribution that is under study. Downton statistic based on RSS sample{𝑋[1,1], 𝑋[2,2], … , 𝑋[𝑛,𝑛]} of 

size 𝑛 is given as  

𝐷 =
2√𝜋

𝑛(𝑛−1)
∑ [𝑖 −

1

2
(𝑛 + 1)] 𝑋[𝑖,𝑖]

𝑛
𝑖=1           (5) 

Since the exact distribution of D  statistic based on ranked set sampling scheme is not

known, simulation approach is used to compute ARL values of the proposed RSS-D chart. The 

control limits for RSS-D chart are found outusing extensive simulation. 50000 ranked set samples 

of size 𝑛 were simulated and quantile points of D statistic based on RSS scheme were realized. 

Using these quantile points, the values of 𝑘+and 𝑘−are evaluated using equations (3) and (4) 

respectively for positive and negative shifts in process standard deviation 𝜎. The estimated ARL 

values of the proposed RSS-D chart along with standard error of the chart are found with 50000 

simulations for each shift of magnitude 𝛿in process standard deviation𝜎. The ARL performance of 

the RSS-D chart under both normal and non-normal process distributions is presented in Section 6. 

5. RSS-D Chart with Runs Rule

In this section, we study the performance of the proposed RSS-D chart using the following runs 

rules. Note that we would usually use only one of these rules at a time. Each rule would have 

different control limits. 

The process is declared to be out of control when 

(i) Two consecutive points plot outside the control limits (2-of-2-rule).

(ii)Any two of three successive points plot outside the control limit (2-of-3-rule)

The ARL performance of the RSS-D chart using these runs rules has been evaluated under both

normal and non-normal process distributions using a simulation study in Section 6.
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6. Performance Evaluation and Comparison

6.1.Performance evaluation under normality 

This section evaluates and compares the performance of RSS-D chart and RSS-D chart using runs 

rules and D chart with simple random sampling. To compare the performance of these charts 

under normality, in-control observations are generated from 𝑁(𝜇0, 𝜎0
2)  distribution. Without loss

of generality, we take 𝜇0 = 0 and 𝜎0
2 = 1. For out-of-control process, observations are generated

from 𝑁(𝜇0, 𝜎1
2)distribution. Without RSS scheme, the values of the control chart statistic 𝐷 for the

𝐷 chart are computed using Eq. (1) for subgroups of size 𝑛. With the RSS scheme, the values of the 

control chart statistic 𝐷 for the RSS-D  chart are computed using Eq. (5) based on RSS sample of 

size 𝑛. For increase in standard deviation (that is, 𝜎1 > 𝜎0), where 𝜎1 = 𝛿𝜎0, the magnitude of shift 

in process standard deviation considered are 𝛿 = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 and 2.0, while for decrease 

in process standard deviation (that is, 𝜎1 < 𝜎0),the magnitude of shift in process standard deviation 

considered are 𝛿 = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5 and 0.1. All charts have calibrated in-control ARL of 200 

and subgroup size of 𝑛 = 5, 8 and 10 are considered. The values of 𝑘+ and 𝑘− are obtained by 

designing the chart to have an in-control ARL of 200. The out-of-control ARL values of the charts 

are found with 50000 simulations for each of shift of magnitude 𝛿 in the process standard 

deviation 𝜎. 

ARL values for positive shifts and negative shifts in process standard deviation with 

different sample sizes as𝑛 = 5, 8, 10 are given in Table 1 and Table 2 respectively.  

Table 1: ARL comparison for process dispersion with positive shift under normal distribution. 

Sample 
𝑛 

Shift 
𝛿 

SRS-D RSS-D 
RSS-D 

(2-out-of-2 ) 

RSS-D 

(2-out-of-3) 

5 

1.0 200 200.27(1.816) 200.39 (1.795) 200.25 (1.817) 

1.1 66.65 62.43 (0.561) 60.35  (0.540) 55.36 (0.491) 

1.2 29.67 25.90 (0.230) 25.76 (0.223) 23.22 (0.197) 

1.3 15.56 13.48 (0.117) 14.52 (0.119) 12.78 (0.102) 

1.4 9.59 8.35 (0.071) 9.50 (0.074) 8.26 (0.061) 

1.5 6.49 5.66 (0.048) 6.87 (0.050) 6.11 (0.042) 

2.0 2.31 2.05 (0.014) 3.22 (0.016) 2.98 (0.013) 

𝑘+ 2.068 1.9985 1.5377 1.60286 

8 

1.0 200 199.65(1.822) 200.03 (1.779) 200.85(1.823) 

1.1 54.00 45.14 (0.407) 40.46 (0.358) 37.27 (0.326) 

1.2 20.62 15.75 (0.138) 14.63 (0.122) 13.14 (0.105) 

1.3 10.40 7.47 (0.064) 7.61 (0.057) 6.80 (0.048) 

1.4 6.05 4.33 (0.035) 4.91 (0.033) 4.44 (0.027) 

1.5 4.13 2.92 (0.022) 3.69 (0.021) 3.46 (0.018) 

2.0 1.55 1.27 (0.005) 2.24 (0.006) 2.19 (0.004) 

𝑘+ 1.78 1.6296 1.33955 1.43986 

10 

1.0 200 199.55(1.852) 200.03 (1.809) 199.49 (1.792) 

1.1 48.33 36.44 (0.333) 32.07 (0.282) 29.49 (0.252) 

1.2 17.45 11.56 (0.101) 10.67 (0.085) 9.58 (0.074) 

1.3 8.27 5.20 (0.042) 5.39 (0.037) 5.02 (0.032) 

1.4 4.86 3.02 (0.023) 3.66 (0.021) 3.39 (0.017) 

1.5 3.28 2.08 (0.014) 2.88 (0.013) 2.74 (0.010) 

2.0 1.34 1.10 (0.003) 2.06 (0.003) 2.05 (0.002) 

𝑘+ 1.676 1.508285 1.27474 1.307509 
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Table 2: ARL comparison for process dispersion with negative shift under normal distribution. 

Sample 
𝑛 

Shift 
𝛿 

SRS-D RSS-D 
RSS-D 

(2-out-of-2 ) 

RSS-D 

(2-out-of-3) 

5 

1.0 201 200.64 (1.851) 200.77 (1.816) 200.98 (1.852) 

0.9 135.62 176.49 (1.592) 118.89 (1.055) 116.73 (1.067) 

0.8 86.12 152.17 (1.386) 62.21 (0.548) 62.80 (0.564) 

0.7 51.93 128.76(1.173) 30.37  (0.265) 30.30 (0.265) 

0.6 29.34 99.68 (0.917) 14.24 (0.118) 14.27 (0.117) 

0.5 15.42 72.75 (0.667) 6.58 (0.047) 6.53 (0.048) 

0.1 1.00 1.42 (0.007) 2.00(0.00) 2.00(0.00) 

𝑘− 0.240 0.1184 0.483308 0.483291 

8 

1.0 200 200.47(1.824) 199.59(1.786) 200.79(1.832) 

0.9 102.77 101.45(0.911) 61.40(0.548) 62.08(0.562) 

0.8 51.32 47.47(0.425) 20.01(0.169) 19.89(0.167) 

0.7 23.99 20.34(0.182) 7.24(0.0543) 7.22(0.054) 

0.6 10.72 8.29(0.071) 3.37(0.018) 3.40(0.019) 

0.5 4.63 3.20(0.024) 2.22(0.006) 2.23(0.006) 

0.1 1.00 1.00(0.00) 2.00(0.00) 2.00(0.00) 

𝑘− 0.388 0.4425 0.674418 0.67443 

10 

1.0 201.00 200.82(1.818) 201.01(1.859) 201.59 (1.823) 

0.9 91.63 72.29(0.658) 43.57(0.390) 43.54(0.379) 

0.8 39.72 24.76(0.220) 11.52(0.093) 11.81(0.095) 

0.7 16.37 8.50(0.072) 4.19(0.026) 4.23(0.026) 

0.6 6.77 3.06(0.023) 2.39(0.008) 2.40(0.008) 

0.5 2.81 1.43(0.007) 2.02(0.001) 2.02(0.002) 

0.1 1.00 1.00(0.00) 2.00(0.00) 2.00(0.00) 

𝑘− 0.449 0.549 0.7365543 0.736105 

Following are the findings from Table 1 and Table 2. 

• It is observed that with an increase in sample size 𝑛, the out-of-control ARL values of

all the charts under investigation decreases. This shows that large sample sizes help

control chart statistic to quickly detect the shifts in process dispersion of the

production process.

• For a fixed value of sample size 𝑛, with an increase or decrease in the shift of process

dispersion, the out-of-control ARL values of all the charts under investigation

decreases. The same trend is observed in standard errors of the estimated ARL values.

• For increase in process dispersion, the proposed RSS-D chart consistently produces

smaller out-of-control ARL values than SRS-D chart for the entire range of shifts in

the process dispersion.

• The RSS-D chart with runs rule shows a better performance than SRS-D chart for

smaller shifts (𝛿 ≤ 1.2) and smaller sample size (𝑛 = 5), while for larger sample size

(𝑛 = 8 or 10), chart shows better performance for small to moderate shifts.

• The RSS-D chart with runs rule shows better performance than RSS-D chart only for

small shifts in process dispersion.

• For decrease in process dispersion, for smaller sample size (𝑛 = 5), the out-of-control

ARL values of the proposed RSS-D chart are greater than that of SRS-D chart. As

sample size increases, the RSS-D chart becomes more efficient than the SRS-D chart.

• RSS-D chart with runs rule shows better performance than RSS-D chart and SRS-D

chart for decreasing shifts in process dispersion.

• The performance of RSS-D chart with 2-out-of-2 and 2-out-of-3 runs rule is similar.
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6.2. Performance evaluation under non-normality 

In this section, we study the performance of the RSS-D and RSS-D chart by implementing runs 

rules schemes under non-normal distributions and it is compared with the D chart based on SRS 

scheme. In order to study the performance of these charts under non-normality, we considered 

heavy-tailed symmetric and skewed distributions. Specifically, we simulated observations in the 

heavy-tailed symmetric case from double exponential distribution and in the skewed case from 

gamma distribution. The probability density functions of these non-normal distributions are 

given as 

Double exponential distribution: The double exponential distribution, denoted by Double 

Exponential(𝜇, 𝜆) has the probability density function,   

𝑓(𝑥; 𝜇, 𝜆) =
1

2𝜆
𝑒−

1

𝜆
|𝑥−𝜇|, −∞ < 𝑥 < ∞; 𝜆 > 0, −∞ < 𝜇 < ∞  (6) 

where 𝜇 and 𝜆 are respectively the location and scale parameters. The mean and variance of a 

double exponential distribution are 𝜇 and 2𝜆2 respectively. 

Gamma distribution: The gamma distribution, denoted by 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) has the probability 

density function,   

𝑓(𝑥; 𝛼, 𝛽) =
𝛽𝛼

𝛤𝛼
𝑥𝛼𝑒−𝛽𝑥, 𝑥 > 0;  𝛼, 𝛽 > 0  (7) 

where 𝛼 and 𝛽 are respectively the shape and scale parameters. The mean and variance of a 

gamma distribution are 𝛼 𝛽⁄  and 𝛼 𝛽2⁄ respectively. 

     To study the performance of the RSS-Dcontrol chart under non-normality, we have considered 

the process data from double exponential distribution with location parameter 𝜇 = 0 and scale 

parameter 𝜆 = 1 and gamma distribution with shape parameter 𝛼 = 2 and scale parameter 𝛽 = 1. 

Simulation approach is used to compute ARL values of these charts. The ARL values of the charts 

are found with 50000 simulations for each shift of magnitude 𝛿 in the process standard deviation. 

The standard errors of the estimated ARL values of these charts are given (in parentheses) along 

with ARL values. The value of𝑘+isdetermined based on 100 iterations of 50,000 simulations from 

the underlying process with no shift, such that in-control ARL is 200. In this study we consider 

the case of increase in standard deviation only.  

 Tables 3 and 4 present the ARL values of the charts under investigation to detect increase in 

process standard deviation for different magnitudes for in-control ARL of 200 and sample sizes 

𝑛 = 5,8 and 10, when underlying process distributions are gamma and double exponential.  

Table 3: ARL comparison for process dispersion with positive shift under gamma distribution. 

Sample 
𝑛 

Shift 
𝛿 

SRS-D RSS-D 
RSS-D 

(2-out-of-2 ) 

RSS-D 

(2-out-of-3) 

5 

1.0 200.23 (0.897) 200.61 (0.904) 199.50 (1.808) 200.26 (1.807) 

1.1 93.56 (0.415) 92.95 (0.41) 77.59 (0.703) 74.34 (0.668) 

1.2 50.63 (0.226) 48.38 (0.215) 37.54 (0.327) 34.74 (0.300) 

1.3 30.75 (0.135) 28.33 (0.126) 20.92 (0.178) 19.58 (0.163) 

1.4 20.19 (0.089) 17.99 (0.078) 13.36 (0.11) 12.38 (0.098) 

1.5 14.04 (0.060) 12.17 (0.052) 9.32 (0.073) 8.65 (0.063) 

2.0 4.46 (0.018) 3.533 (0.013) 3.59 (0.02) 3.41 (0.017) 

𝑘+ 2.452 2.4051 1.635 1.73 

8 

1.0 200.32  (0.897) 201.30 (0.897) 201.5 (1.814) 200.46 (2.786) 

1.1 80.14 (0.357) 74.60 (0.330) 58.25 (0.517) 55.35 (0.788) 

1.2 38.73 (0.171) 22.76 (0.099) 23.21 (0.198) 21.53 (0.280) 

1.3 21.50 (0.094) 13.52 (0.058) 11.69 (0.095) 10.85 (0.084) 

1.4 13.31 (0.057) 8.81 (0.037) 7.16 (0.054) 6.76 (0.047) 

1.5 9.00 (0.038) 6.27 (0.026) 4.977 (0.033) 4.71 (0.029) 

2.0 2.75 (0.010) 1.82 (0.005) 2.364 (0.008) 2.34 (0.006) 

𝑘+ 2.0315 1.8919 1.411 1.468 
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10 

1.0 201.12 (0.892) 199.84 (0.887) 200.5 (1.814) 201.10 (1.809) 

1.1 74.03 (0.329) 65.79 (0.293) 47.66 (0.421) 46.55 (0.405 ) 

1.2 33.71 (0.149) 26.84 (0.119) 17.43 (0.148) 16.57 (0.134) 

1.3 17.92 (0.078) 12.85 (0.055) 8.418 (0.064) 7.98 (0.058) 

1.4 10.88 (0.046) 7.18 (0.029) 5.129 (0.035) 4.97 (0.031) 

1.5 7.11 (0.030) 4.49 (0.018) 3.708 (0.021) 3.65 (0.019) 

2.0 2.21 (0.007) 1.39 (0.003) 2.137 (0.005) 2.12 (0.003) 

𝑘+ 1.885 1.717 1.33 1.378 

Table 4: ARL comparison for process dispersion with positive shift under double exponential distribution. 

Sample 
𝑛 

Shift 
𝛿 

D RSS-D 
RSS-D 

(2-out-of-2 ) 

RSS-D 

(2-out-of-3) 

5 

1.0 200.61 (0.889) 199.86 (0.891) 200.00 (1.825) 200.00 (1.801) 

1.1 94.25 (0.422) 91.15 (0.407) 83.25 (0.745) 79.02 (0.709) 

1.2 51.29 (0.228) 48.36 (0.214) 41.50 (0.370) 38.04 (0.333) 

1.3 31.22 (0.137) 28.46 (0.124) 24.08 (0.206) 21.82 (0.182) 

1.4 20.65 (0.089) 18.37 (0.079) 15.44 (0.129) 14.10 (0.115) 

1.5 14.54 (0.063) 12.64 (0.054) 11.20 (0.090) 9.88 (0.076) 

2.0 4.75 (0.019) 3.85 (0.014) 4.25 (0.026) 3.91 (0.021) 

𝑘+ 2.521 2.5075 1.745 1.798 

8 

1.0 200.95 (0.893) 200.36 (0.901) 200.31 (1.778) 200.45 (1.817) 

1.1 83.00 (0.369) 75.99 (0.336) 62.75 (0.557) 60.27 (0.525) 

1.2 40.38 (0.178) 34.99 (0.154) 26.41 (0.227) 24.44 (0.208) 

1.3 22.65 (0.099) 18.41 (0.080) 13.94 (0.115) 12.95 (0.102) 

1.4 14.22 (0.061) 10.96 (0.046) 8.69 (0.068) 7.99 (0.058) 

1.5 9.65 (0.04) 7.20 (0.030) 6.088 (0.043) 5.67 (0.038) 

2.0 2.95 (0.01) 2.11 (0.007) 2.67 (0.011) 2.59 (0.009) 

𝑘+ 2.095 1.975 1.457 1.523 

10 

1.0 199.84 (0.895) 199.48 (0.894) 200.40 (1.808) 200.33 (1.813) 

1.1 75.13 (0.332) 67.76 (0.301) 53.10 (0.476) 50.23 (0.439) 

1.2 34.70 (0.153) 28.44 (0.130) 20.59 (0.179) 19.13 (0.161) 

1.3 18.79 (0.082) 14.20 (0.060) 10.51 (0.085) 9.65 (0.073) 

1.4 11.49 (0.049) 8.19 (0.034) 6.33 (0.046) 6.00 (0.040) 

1.5 7.66 (0.032) 5.26 (0.021) 4.50 (0.029) 4.25 (0.025) 

2.0 2.38 (0.008) 1.61 (0.004) 2.28 (0.007) 2.26 (0.005) 

𝑘+ 1.938 1.792 1.371 1.424 

Following are the important findings based on Table 3 and Table 4. 

• When underlying process distribution is gamma, the ARL values of RSS-D chart and RSS-

D charts with runs rules are smaller than that of the SRS-Dchart for all sample sizes n and

entire range of shifts considered. The RSS-D charts with runs rules show a better

performance than RSS-D and SRS-D charts. The RSS-D chart with 2-out-of-3 runs rule is

very effective for detecting shifts than 2-out-of-2 chart.

• When underlying process distribution is double exponential, we see that the ARL values of

RSS-D chart and RSS-D charts with runs rules are smaller than that of the SRS-D chart for

all sample sizes n and entire range of shifts considered. The RSS-D charts with runs rules

show a better performance than RSS-D and SRS-D charts. The RSS-D chart with 2-out-of-3

runs rule is very effective for detecting shifts than 2-out-of-2 chart.

• The ARL performance of RSS-D chart and SRS-D chart under non-normal process

distributions is higher than that for the normal process distribution with sample sizes𝑛 =

5,8 and 10
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• In general, under skewed and heavy tailed process distributions, the RSS-D chart is more

efficient than the SRS-D chart for monitoring shifts in process dispersion.

7. Illustrative Example

In this section, we provide an example to illustrate the proposed chart. For this purpose, two 

datasets are generated which will be later referred as dataset 1 and dataset 2. 

Dataset 1 contains 40 simple random samples each of size 𝑛 = 5, out of which first 

10 samples are generated from 𝑁(0, 1)referring to in-control situation and remaining 30  samples 

are generated from 𝑁(0,1.2) referring to a shift in a process standard deviation. The D-statistics of 

these 40 samples are computed and are presented in Table 5. The graphical display of the control 

chart applied to data set 1 with UCL=1.676 is given in Figure 1. 

Table 5: D-values for simulated data with SRS. 

In-control Process Out of control process with Shift (δ) =1.2 

No. D-value No. D-value No. D-value No. D-value

1 1.04679 11 1.285956 21 0.884477 31 1.100131

2 1.165552 12 1.513122 22 1.113954 32 1.534435

3 1.468238 13 0.722581 23 0.887508 33 1.196817

4 0.4986 14 1.658094 24 1.431795 34 1.590498

5 0.574144 15 1.40786 25 1.294181 35 1.173697

6 1.231162 16 1.263608 26 1.52249 36 0.677852

7 0.84646 17 1.518884 27 1.379621 37 0.991026

8 0.728805 18 0.896195 28 1.349834 38 1.412045

9 0.767625 19 1.431129 29 1.029293 39 1.136405

10 0.920877 20 1.032453 30 1.981427 40 1.138973

Figure 1: SRS-D control chart. 

From Figure 1, we can see that D control chart gives first out of control signal at point no. 

30, which is the only out of control signal. 

Dataset 2 consists of 40 ranked set samples each of size𝑛 = 10 of which first 10 samples are 

generated from 𝑁(0,1) referring to in-control situation and remaining 30  RSS samples are 

generated from 𝑁(0,1.2) referring to a shift in a process standard deviation. The D-statistics based 

on these 40 ranked samples are computed and are presented in Table 6. The graphical display of 

the control chart applied to data set 2 with UCL=1.5082 is given in Figure 2. 
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Table 6: D-values for simulated data with RSS 

In-control Process Out of control process with Shift (δ) =1.2 

No. D-value No. D-value No. D-value No. D-value

1 0.76489 11 0.955223 21 1.658042 31 1.41809

2 1.11167 12 1.340428 22 1.200549 32 1.12013

3 0.928814 13 1.440937 23 1.057834 33 1.22928

4 1.029337 14 0.856949 24 1.827535 34 1.1807

5 1.046913 15 1.241251 25 1.452098 35 1.476113

6 1.197435 16 1.410242 26 0.963128 36 1.039491

7 1.258457 17 0.76041 27 1.096964 37 0.93336

8 1.291416 18 1.293803 28 0.947557 38 1.461749

9 1.262475 19 1.189676 29 1.917295 39 1.562749

10 0.871265 20 1.502025 30 1.601436 40 0.895917

Figure 2: RSS-D control chart 

From Figure 2, we can see that RSS D chart gives first out of control signal at point no.21 

and total out of control signals given are05. These signals are at point numbers 21, 24, 29, 30, 39. 

From the above two figures, it is clear that RSS D chart signals earlier than D chart, also 

giving more number of signals than D chart. The above example clearly indicates that the 

proposed RSS-D chart performs better than D chart without RSS. 

8. A Real Life Application

The use of RSS and other sampling schemes based on ranking of observations in SPC has increased 

in the recent years. As pointed out by Nawaz and Han [20], many a times, the actual measurement 

process has the constraints on the time and cost. Therefore, it is advisable to adopt such sampling 

designs which provide greater efficiency with relatively small sample sizes. Instead of taking 

physical measurements, sometimes it is easier to rank the sampling units on the basis of size, 

weight and volume by visual inspection or judgment. For example, in an automatic bottle filling 

plant, the actual quantification of filled volume of liquid in bottles, is costly and time consuming. 

Instead, it is easier and inexpensive torank the bottles on the basis of the amount of filled volume 

of liquid in bottles by visual inspection before actual measurement. 

Abujiya and Muttlak [21] constructed control charts for mean using double ranked set 
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sampling. To demonstrate the performance of proposed chart, they used a real dataset, which was 

originally taken by Muttlak and Al-Sabah [22]. The dataset consisted of 54 subgroups, each of size 

three. The subgroup data were collected using the SRS and RSS schemes. The data were taken from 

a Pepsi Cola production company in Khobar, Saudi Arabia. The quality characteristic understudy 

was considered to be the unfilled part of the bottle, which was measured with the help of an 

instrument. By visual inspection of levels of the soft drinks, the bottles in each set were ranked. 

Then the samples were realized with newly proposed sampling techniques. Haq and Munir [23] 

also used the same dataset to demonstrate the performance of improved CUSUM charts for 

monitoring process mean based on RSS.The detection abilities of the CUSUMcharts with RSS and 

ordered RSS schemes were compared. 

Nawaz and Han [20] considered a real dataset taken from Tüfekci [24] for monitoring 

process location by using new RSS-based memory control charts. Since the original data was not 

collected from thequality control prospective, therefore, the available data was considered as a 

population and RSS samples were drawn from it to demonstrate the process monitoring. 

In this section, we consider dataset on inside diameter measurements (mm) for automobile 

engine piston rings, given in Montgomery [1]. The dataset consists of total 40 subgroups each of 

size 5 collected using SRS method. Based on this dataset, we estimated the population mean (𝜇) 

and population standard deviation (𝜎) as�̂� = 74.00361 and �̂� = 0.010144. To compare the 

performance of proposed RSS-D control chart with SRS-D chart, 8 RSS subgroups are formed using 

given 40 subgroups assuming that the ranking is perfect. To have fair comparison, out of available 

40 SRS samples, 8 equidistant subgroups are selected. Using the estimated values of parameters, 22 

SRS and 22 RSS samples are generated with a shift of size 𝛿 = 1.3 in process dispersion. These 

values are tabulated in Table VII. The graphical display of the control charts applied to these data 

sets with UCL=2.068 for SRS and UCL= 1.9985 for RSS is given in Figure 3. 

Table 7: D-values for SRS and RSS samples of Inside Diameter Measurements (mm) for   Automobile Engine 

Piston Rings. 

D values for SRS Samples 

In-control Process Out of control process with Shift (δ) =1.3 

No. D-value No. D-value No. D-value No. D-value

1 1.624979 9 1.373168 17 0.613449 25 2.546284 

2 0.90859 10 1.278336 18 1.419153 26 2.014164 

3 0.297039 11 0.993755 19 1.312875 27 1.862361 

4 0.803753 12 0.417964 20 0.786504 28 1.006743 

5 1.310467 13 0.778037 21 2.358553 29 0.645239 

6 1.799708 14 1.593989 22 1.268609 30 1.791942 

7 1.118265 15 1.286196 23 1.984099 

8 1.45025 16 0.627962 24 0.736714 

D values for RSS Samples 

In-control Process Out of control process with Shift (δ) =1.3 

No. D-value No. D-value No. D-value No. D-value

1 1.048373 9 0.749542 17 0.50747 25 2.456585 

2 1.048373 10 1.469715 18 2.005007 26 1.333404 

3 0.873645 11 1.827723 19 1.612167 27 1.005756 

4 1.467723 12 1.485399 20 0.765135 28 1.214323 

5 1.415304 13 1.57744 21 1.68864 29 0.801106 

6 0.995955 14 1.691586 22 1.294557 30 1.63209 

7 1.57256 15 2.131071 23 1.493243 

8 1.555087 16 1.51146 24 1.607816 
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Figure 3: SRS-D and RSS-D control chart for a real dataset. 

From Figure 3, we can see that the SRS D chart gives first out of control signal at point no 

21 and total out of control signals given are02, which are at point numbers 21,25. Whereas, RSS D 

chart gives first out of control signal at point no. 15 and total out of control signals given are 03. 

These signals are at point numbers 15, 18, 25. 

9. Conclusions

In this paper, a control chart based on Downton’s estimator D is developed using ranked set 

sampling scheme for monitoring the process dispersion of normally and non-normally distributed 

processes. The performance of the proposed chart is investigated in terms of ARL and is compared 

with originally proposed D chart without RSS for monitoring the process dispersion. The proposed 

chart is found to be performing well for entire range of shifts in process dispersion under both 

normal and non-normal process distributions. The efficiency of proposed chart is further enhanced 

using two runs rules schemes. The chart with runs rules is found to be performing well for small 

and moderate shifts under normal process and performing uniformly better for entire range of 

shifts in dispersion under heavy tailed and skewed process distributions.  
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Abstract 

 

The article presents a simulation model of a queuing system (QS) with a queue and relative priority, 

which can be used to manage the reliability of transport systems under resource constraints. The 

developed simulation model combines agent and discrete-event simulation principles and allows 

studying queuing systems in terms of establishing regularities: probabilities (service, failure, push-

out), time delays (waiting in a queue, under service), queue sizes, order of queue formation upon 

arrival of consumers of different priority. 

As a result of the research, dependencies were obtained for the probability of servicing higher priority 

consumers depending on the intensities of their arrival and service; probabilities of servicing lower 

priority consumers depending on the intensity of service and servicing of higher priority consumers; 

the probability of "pushing out" lower priority consumers from the QS by higher priority consumers 

depending on service intensities and the arrival of high priority consumers. 

 

Keywords: transport system, agent modeling, simulation modeling, queuing 

systems, absolute priority, arrival and service intensity, service and push-out 

probabilities, consumer service probabilities 

 

 

1. Introduction 
 

In mathematics and applied research, the queuing theory is widely used in modeling the functioning 

of real systems, information [1], computing, energy, medical [2], biological [3], transport [4][5] and 

others. 

In the field of transport, the application of the queuing theory methods is quite traditional. 
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Recently, the events of the aggressive war of Russia, which it is waging against Ukraine during 2022-

23, force us to formulate new practical problems that are solved with the use of these methods, in 

particular, in queuing system (QS) with priorities. 

Military operations in Ukraine have repeatedly aimed at destroying the railway infrastructure, 

especially on electrified lines. For historical and technological reasons, almost 4 times more electric 

locomotives than diesel locomotives were used for transportation on Ukrainian railways. With such 

a disproportion, diesel locomotives cannot replace the entire fleet of electric locomotives, to serve all 

of transportation traffic on electrified lines, in the event that the power supply is stopped on these 

lines. Likewise, it is not possible to transfer all trains from destroyed/damaged electrified lines to 

non-electrified lines, due to the defined geography of transportation between consignors and 

consignees. 

Then there were "problems with priorities" – for example, to which alternative route the train 

of a certain type should be directed, if the capacity of the route and the number of locomotives (diesel 

or electric) are limited. At the same time, the priority of dispatching the trains can be determined 

according to different criteria, separately for passenger and cargo service. 

The priorities of passenger transportation can be assigned, for example, as a special military 

personnel transportation, the first term evacuation, and for the rest of passenger trains, it is possible, 

ranking them by the cost of all tickets sold up to an hour divided by the time remaining to the 

planned train arrival to final destination according to the timetable. In the event of cargo 

transportation, the priorities may be assigned to cargoes and trains especially important for the state 

and defense purposes, while the rest of cargoes/trains can be prioritized according to the value of 

cargoes and the time available for their delivery to the destination station. After ranking the 

priorities, from the highest to the lowest, the decision should be made on the appropriate use of 

locomotive fleet and railway line capacity on alternative routes. The priming and flexibility of these 

decisions are only growing, if the mathematical apparatus for optimizing the QS with priorities is 

applied. 

In such QSs, if they have consumers (customers, trains, cargoes, shippers etc.) with different 

priorities, then the consumers with higher priority are served earlier. Priorities can be absolute. It 

QSs with absolute priorities, servicing the consumers of the lower priority is interrupted, when 

higher priority consumers arrive. While the lower priority consumer, for which the servicing which 

was interrupted, turns back to the queue. It is only serviced again when there are no consumers of 

higher priority in the queue. In QSs with relative priorities, the servicing of a consumer is always 

finished once it has started, even if a higher priority consumer arrives at that time. 

Special attention should be paid to QSs with low rates of both arrival and servicing of higher 

priority customers. That is, the time intervals between high priority consumer arrivals and the time 

periods for servicing such consumers are long. 

For example, with all the current non-predictability of warfare, it is known that the time 

intervals between infrastructure-destroying strikes and the duration of its recovery are relatively 

long compared to the intervals between trains and the duration of transportation in normal, peaceful 

conditions. Then the priority is given to transportation related to infrastructure restoration, and it is 

to ensure these transportations that locomotives and other resources are directed. 

Each priority class of consumers can have a separate list of ranked consumers and its own 

queue. Consumers from the lower priority list are served only after the last consumer from the 

higher priority list has been served. For all arrivals, it is assumed that the processes of receipt of 

requirements are independent, Poisson and do not depend on service durations. 

QSs with priorities have been sufficiently studied for a long time. With the help of Laplace 

transformations, dependences on the determination of the characteristics of such QSs for various 

service disciplines were obtained [6]. During the study of QS with different priorities – priorities 

without interruption of service and with interruption of service and additional after-service – 

dependences on finding the mean waiting time in the queue, the average time spent in the system 
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for k-priority consumers were obtained [7]. 

In the monograph [8], a partially modified QS was studied using the MathLab Simulinc 

simulation model development environment (with the SimEvent and StateFlaw libraries). It is 

shown that with the help of dynamic priorities, the priority of a non-priority customer is increased 

once, while the probability of serving these customers increases. However, such a characteristic of 

QS as the probability of serving the flow of arriving consumers decreases, since non-priority 

consumers are served longer than priority consumers. 

With the help of simulation model development environment (AnyLogic, with Java SE 

libraries) and tools of queuing theory, agent and discrete-event principles, technological risks and 

failures in transport and logistics systems were studied [9] [10]. As a result, the regularity of the 

influence of the number of service channels on the mean service rate with an unchanged total arrival 

and service rates in the system was established. However, the priority of applications was not 

considered in these studies. 

In [11], methods of queuing theory of Markov and non-Markov types are applied to simulate 

the resistance of security personnel to a malicious group with a random number of criminals in the 

group and various ways of organizing the actions of such personnel. And in research [12], 

mathematical models of the queuing system are considered, simulating the processes of abnormal 

situations during railway transportation of dangerous goods, as well as the processes of elimination 

of ecologically dangerous consequences of such events.  

In this work, a QS with a queue and relative priority is investigated, with customers of higher 

and lower priorities arriving at rates λH, λL, the customer servicing times of are exponential with 

rates µH, µL. A higher-priority customer that arrives to the QS "pushes " a lower-priority customer 

out after its service has finished and takes a place in front of it if it is in the queue for servicing. A 

lower priority customer that has been pushed out leaves the QS unserved if there are no places in 

the queue and is queued if a place exists. 

The peculiarity of the proposed experiment, conducted for the purpose of studying the 

functioning of the model, is that its input receives a stream of events that have negative consequences 

that significantly affect the functioning of this model (for example, reduce the intensity of service in 

the system). The flow of these "negative" events (the higher priority flow) has low intensity 

compared to the lower priority flow and takes a significant amount of time to service the 

requirements of that flow. 

The complexity of the implementation of the queuing theory analytical methods is determined 

by the voluminous forms of mathematical description for such a kind of QSs. Therefore, it is 

advisable to use computer simulation methods when solving the scientific and applied problems. 

 

2. Methods 

 

2.1 Development of simulation model for a QS with priority customers 
 

The model is developed on the basis of discrete-event and agent principles. When developing the 

model, standard blocks of the Process Modeling Library were used. 
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Figure 1: The main window of the simulation model in the AnyLogic environment 

 

For the possibility of prioritizing customers based on the Entity base class of agents, a 

MyAgent population of agents (customers) was created with the priority parameter added. During 

modeling, each new requirement will be assigned a priority level: 

priority = 2.0 – higher priority customers with the value of the parameter; 

priority = 1.0 – lower priority customers with the parameter value. 

The simulation of demand arrival and service starts with source_1 and source_2 blocks, which 

form the lower and higher priority demands, respectively.  

When the generated agents (customers) exit from the source blocks, the priority parameter 

is assigned the value of the priority level of the customers: The simulation of customers arrival and 

service starts with source_1 and source_2 blocks, which form the lower and higher priority customers, 

respectively. When the generated agents (customers) exit from the source blocks, the priority 

parameter is assigned the value of the priority level of the requirements: 

for lower priority agents (customers): 

 

"agent.priority = 1;"; 

 

for higher priority agents (customers): 

 

"agent.priority = 2;". 

 

Next, the agents (customers) enter the general queue q_Big. This element is used to form a 

general queue of customers that will be accepted by the QS and processed in it. Queue q_Big is not 

an element of the QS under study and is outside the QS. 

The queue in the q_Big element is formed according to the general principle of FIFO ("first 

in, first out"), taking into account the priority of customers and the model time of customers 

generation. That is, the FIFO principle is used within the customers of higher and lower priorities. 

To verify the process of queue formation, all information about the presence of customers is 

displayed in a text field: the higher the entry in the visual representation of the formation of the 

queue (Fig. 2), the closer the customer is to the exit from the q_Big block. Information about all 

customers is presented in the form:  

 

"requirement generation serial number | priority level of the requirement | model time of requirement 

generation". 
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forming the higher priority 

customers queue 

 

 

forming  

the lower priority customers 

queue 

 

Figure 2: Visual display of queue formation in the q_Big block 

 

Since the number of places in the queue is limited in the QS itself, the mechanism of 

separation of requirements by priority and formation of separate queues from requirements of 

higher and lower priorities, respectively (blocks q_2 and q_1) is used. Separation of requirements is 

carried out by the sO_Big element. Passage of requirements from the general q_Big queue to the QS 

queue is carried out using a block of the hold type (hold_big, Fig. 1). The algorithm is implemented 

through Java code using the built-in function fun_hold_big(): 

 

"if ((q_2.size() + q_1.size()) < places){ 

hold_big.unblock(); 

}». 

 

The function fun_hold_big() is implemented every time any customer is received for the q_Big 

queue or the delay block. The fun_hold_big() function algorithm checks the total number of requests 

in the QS queue, and if the number of customers is less than the set number of places in the queue 

(places), the hold_big block is unblocked (hold_big.unblock() procedure). 

The model also implements the algorithm of passing agents (requirements) into the middle 

of the system "by priority" and pushing agents (requirements) of lower priority out of the system by 

agents (requirements) of higher priority. The specified algorithm is implemented using blocks of the 

hold type (hold_1) and the additional function fun_Logic_HIghPr() with Java code:  

 

«if ((q_2.size() + q_1.size()) == places && q_1.size() > 0){ 

 if (q_Big.size() > 0 && q_Big.get(0).priority == 2){ 

   q_1.remove(q_1.get(0)); 

   source_out.inject(1); 

   hold_big.unblock(); 

 } 

}». 

 

According to the algorithm, if an agent (customer) of higher priority arrives at the QS and 

there are no free places in the QS queue, the agent (customer) of lower priority is "pushed out" of the 

QS queue (block q_1) and is replaced by a corresponding agent (customer) of a higher priority from 

the general queue (block q_Big). 

To simulate the processing of agents (customers), a Delay block with one location (one server 

device) is used. Agents (customers) of higher priority are served first and proceed immediately from 

the q_2 block to the Delay block without delay. 
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The arrival of lower priority agents (customers) is regulated functionally using the hold_1 block and 

the fun_Logic_LowPr() function with Java code:  

 

«if (q_2.size() == 0 && q_1.size() > 0){ 

 hold_1.unblock(); 

}». 

 

When the agent (customer) passes the hold_1 block using Java code, the hold_1 block is 

blocked: «hold_1.block();» 

During simulation, data is collected on the probability of servicing or pushing out the 

customers according to the general principle: 

 

𝜉 =
∑𝑁𝑖,𝑠𝑢𝑐𝑐𝑒𝑠𝑠

∑𝑁𝑖

, 

 

where ∑𝑁𝑖,𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is the number of i - type events that were processed in the system or 

pushed out of the system;  

∑𝑁𝑖 is the total number of i - type events generated during the simulation. 

In addition, statistical information is generated regarding the average size of queues and the 

time that requests are in service or waiting in the QS. 

 

2.2 Results of experiments and discussion of the results 
 

To study the regularities of queue formation and service probabilities in the system, a series 

of experiments on the sensitivity of the model were conducted, where the variable parameter is the 

arrival flow of higher priority customers (λH  [0,001; 0,5]) at different values of the service rate (µH 

 [0,001; 0,5]). Other raw data of the experiments are presented in Table 1. 

 

Table 1: Input parameters of the experiments 

Modeling parameter Symbol Range of 

values 

Distribution 

density 

Higher priority customers arrival rate (High) λH 0,001 – 0,5; 

step 0,001 

exponential 

Lower priority customers arrival rate (Low) λL 0,5 – const exponential 

Higher priority customers service rate (High) µH 0,001 – 0,5; 

крок 0,1 

exponential 

Lower priority customers service rate (Low) µL 0,5 – const exponential 

Number of servers  1  

Number of places in the QS queue  4  

Number of priorities  2  

Model time unit  hour  

Model time duration  6 months (4392 

hrs.) 

 

 

The main simulation results are shown in Fig. 3 - 8. 
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Figure 3: Probability of servicing higher priority consumers depending on arrival and service rates 

 

The data of fig. 3 indicate that the probability of servicing higher priority customers 

decreases as the intensity of servicing higher priority customers approaches 0.5 value. Moreover, the 

"breaking point" at the beginning of the decrease of the probability from 1.0 begins at the moment 

of equilibrium of the intensities of arrival and service of higher priority customers, that is, at this 

point: 

.Н Н =  

 

The descending part of the dependence of the probability of servicing higher priority 

customers (Fig. 4) is closely described by a power function of the form: 

 

𝑦 = 𝑘𝑥−𝑐 ,  

 

where 𝑘 are 𝑐 coefficients; 

 

for µН = 0,1:  

y = 0.0994x-0.998, 

for µН = 0,2:  

y = 0.2032x-0.981, 

for µН = 0,3:  

y = 0.3067x-0.97. 

 

The result of approximating the periods of descending probability of service of higher priority 

customers depending on the intensities of service and arrival is presented in Fig. 4. 
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Figure 4: Approximation by power-law dependences of periods of descending probability of servicing higher 

priority customers depending on the rates of arrival and service 

 

 

From those obtained in fig. 4 data can be recorded: 
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The dependence of higher priority customers servicing rate µН on the probability PH and 

higher priority customers arrival rate λН is presented in the table. 2. 

Table 2: Dependence of µН value on PH and λН values 

PH 𝝀𝑯 0,1 0,2 0,3 0,4 0,5 

1.00 µН1,0 0.10 0.20 0.30 0.40 0.50 

0.90 µН0,9 0.09 0.18 0.27 0.36 0.45 

0.80 µН0,8 0.08 0.16 0.24 0.32 0.40 

0.70 µН0,7 0.07 0.14 0.21 0.28 0.35 

0.60 µН0,6 0.06 0.12 0.18 0.24 0.30 

0.50 µН0,5 0.05 0.10 0.15 0.20 0.25 

0.40 µН0,4 0.04 0.08 0.12 0.16 0.20 

0.30 µН0,3 0.03 0.06 0.09 0.12 0.15 

0.20 µН0,2 0.02 0.04 0.06 0.08 0.10 

0.10 µН0,1 0.01 0.02 0.03 0.04 0.05 

y = 0,0994x-0,998

R² = 0,9848
y = 0,2032x-0,981

R² = 0,9758

y = 0,3067x-0,97

R² = 0,9471
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Graphs of dependence of µН values on PH and λН rate for PH = 1.0; PH = 0.7; PH = 0.5 and PH = 0.3 are 

presented in Fig. 5. 

 

 
 

Figure 5: Graph of the dependence of µН values on λН values at PH = 1.0; PH = 0.7;  

PH = 0.5 and PH = 0.3 

 

Table 2 and fig. 5 show that to increase the value of PH(λН, µН) it is necessary to increase the 

values of µН. Thus, to increase PH by 0.1, it is necessary to increase µН by 1% at λН = 0.1, at λН = 0.2 – 

by 2%, etc., at λН = 0.5 the increase is 5% from the previous values of µН. 

 

The graph of PL probabilities of servicing lower-priority customers depending on service µН 

and arrival λН intensities of higher-priority customers is presented in Fig. 6. 

 

 
Figure 6: Probability of servicing PL requirements of lower priority depending on higher priority 

customers arrival and servicing rate 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5P
ro

b
ab

ili
ty

 o
f 

se
rv

ic
in

g 
lo

w
er

 p
ri

o
ri

ty
 

cu
st

o
m

er
s,

 P
L

High priority customers arrival arrival rate, λH

μH =0.001 μH =0.1 μH =0.2 μH =0.3 μH =0.4 μH =0.5

175



 
M. Katsman, V. Matsyuk, V. Myronenko 
MODELING THE RELIABILITY OF TRANSPORT … 

RT&A, No 2 (73) 
Volume 18, June 2023  

 

From Fig. 6, it can be seen that the probability of servicing lower-priority customers has a 

decreasing nature, while the "sharpness" of the fall is inversely proportional to the intensity of 

servicing higher-priority customers. 

Consider the function PL(t) depending on the intensity µH and the time tH = 1 / λH of the 

interval between the customers of the highest priority of the incoming flow. The function PL(t) is a 

function of the probability of failure-free service of lower priority consumers, which is linear in 

nature. The mean time of failure-free service of these consumers is equal to the area bounded by the 

line PL(t) and the coordinate axes PL(t) and tH. The dependence of the probability value PL(t) of 

servicing lower priority consumers on the intensity µH of servicing higher priority consumers and 

the duration of the time interval tH between these consumers in the arrival flow is shown in Fig. 7. 

Indeed, with an increase in the value of µH, the average service duration decreases, at the 

same time, with an increase in the value of λH, the interval between consumers in the arrival flow of 

higher priority consumers decreases, which leads to an increase in the average number of such 

consumers, and therefore to a higher load on the service channel, which in turn, prevents consumers 

of lower priority from entering the service channel and reduces the service probability PL. 

 

 
 

Figure 7: Graphs of the dependence of the probability of PL(tH, µH) on the values of µH and tH  

 

Fig. 7 shows that when the value of tH decreases at PL(tH, µH) = const, or the value of PL(tH, 

µH) at tH = const, the value 𝑡�̅� = 0.5𝑃𝐿(𝑡𝐻 , 𝜇𝐻)𝑡𝐻 decreases. To increase the value of PL(tH, µH) at a 

certain value of tH, it is necessary to increase the value of µH, that is, to provide more intensive service 

of higher priority customers. 

Fig. 8 shows graphs of the dependence of the probability of pushing out PLP consumers of 

lower priority. 
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Figure 8: Probability PLP of "pushing out" from the QS lower priority consumers by high priority 

consumers depending on high priority consumers arrival and service rates  

 

The processes that are associated with the increase of PLP are described in detail above, the 

decrease of PLP after reaching its maximum is associated with a decrease in the number of consumers 

of lower priority and the load of the service channel. The value of 𝜆𝐻,е𝑥𝑡𝑟  corresponds to the 

maximum value of PLP. To determine the value of 𝜆𝐻,е𝑥𝑡𝑟  , dependences of the probability of PLP were 

obtained, approximated by a polynomial of the sixth degree, of the form: 

 
6

6 1... .y a x a x C= + + +  

 

The coefficients of the polynomials approximating the probabilities of PLP of the value 𝜆𝐻,е𝑥𝑡𝑟  

are presented in the table. 3. 

 

Table 3: Coefficients of polynomials approximating the probabilities of “pushing out” the QS of low-priority consumers 

 

Coefficient of the 

polynomial 

µH =0.1 µH =0.2 µH =0.3 µH =0.4 µH =0.5 

а6 -1767609 97550.53 4593.061 1980.917 983.323 

а5 431830.5 -54236 -3453.6 -2276.31 -1392 

а4 -42096 10862.98 857.173 966.0881 721.876 

а3 1791.001 -1046.51 -114.584 -212.099 -184.777 

а2 -34.143 48.5078 8.249455 23.6418 23.30407 

а1 2.292621 1.042772 1.748402 0.770417 0.615751 

а0 -0.00172 0.004007 -0.0002 0.017116 0.019575 

Extremum, 𝝀𝑯,е𝒙𝒕𝒓 0.071 0.135 0.198 0.2628 0.328 

 

Knowing the extrema of the probabilities of pushing out lower priority consumers and the 

corresponding rates of arrival flows and servicing higher priority consumers is of practical 

importance, for example, for making decisions about the distribution of trains of different priorities 

(repair, passenger, freight, other types) on different nodes and routes of the transport network. 
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Conclusions 
 

1. Taking into account the practical experience of functioning and ensuring the reliability of 

the railway transport system in extreme conditions of military operations, destruction and 

restoration of infrastructure, shortage of time and fleet of vehicles, it is proposed to formalize the 

functioning of this system as a queuing system (QS) with priorities, with variable parameters of 

arrival and servicing the consumers of higher and lower priorities, which allows making more 

informed decisions for the management of such systems. 

2. The necessity of using, along with analytical methods, simulation modeling tools has been 

proven, in particular, a simulation model has been developed and implemented, which combines 

agent and discrete-event simulation principles and allows studying QSs when consumers of 

different priority are arriving, namely in the part of establishing regularities: probabilities (service, 

refusal, push-out), time delays (waiting in a queue, under service), queue sizes, order of queue 

formation when customers of different priority arrive. 

3. The resulting dependencies: 

- the probability of servicing higher priority consumers depending on arrival and servicing 

rates; 

- probabilities of servicing lower priority consumers depending on arrival and servicing 

rates of higher priority consumers; 

- probability of "pushing" lower priority consumers out the QS by higher priority 

consumers, depending on arrival and service intensities of higher priority consumers; 

- values of the intensity of service of higher priority consumers µH on the probability PH and 

the intensity of their arrival λH ; 

- values of the probability of PL on the values of the intensity of service µH of the consumers 

of the highest priority and the duration of the interval tH between these consumers in the arrival 

flow. 

4. Experimental data of modeling the probability of servicing higher priority customers 

depending on their arrival and service rates, as well as the approximation of these data by empirical 

dependencies allow us to propose ratios that simplify the calculations of QSs with priorities, namely: 

 

{
𝑃𝜇Н = 𝜇Н𝜆Н

−1, 𝜆Н > 𝜇Н,

𝑃𝜇Н = 1, 𝜆Н ≤ 𝜇Н.
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Abstract 

Sampling inspection by the method of variables is a well-known category of product 

control in which the discretion of acceptance or rejection is made hinge on some specific rule, which 

is framed according to the measurement of a quality characteristic under study. In this scenario, the 

quality feature under study is considered a continuous random variable that can be demonstrated 

using any continuous type statistical distribution. Birnbaum – Saunders distribution is a 

continuous probability distribution, which is having numerous applications in various fields. 

Application of Birnbaum – Saunders distribution is considered in this paper for establishing 

acceptance sampling inspection plans for variables based on the examination of units from a single 

sample. Numerical illustrations are given to demonstrate the application of proposed sampling 

plan. In addition, the results of numerical illustrations are explained with the help of simulated 

data. 

Keywords: Sampling inspection plans, variable sampling, Birnbaum – Saunders distribution, non-

normality, skewness. 

I. Introduction

Sampling inspection plans or acceptance sampling plans play a cardinal role in determining the 

quality of products by reviewing the sample of units taken from the lot of products. More often, 

the product control methodologies are grouped into two categories, namely, sampling inspection 

by the method of attributes and sampling inspection by the method of variables. In sampling 

inspection by the method of attributes, selection of one or more samples is made from the 

manufactured lot of items and the sampled units are classified into defective (non-conforming) or 

non-defective (conforming) according to some prescribed decision criteria. The choice of accepting 

or rejecting the lot is taken based on some explicit criteria. 

In sampling inspection by the method of variables, a sample of manufactured commodities 

is picked from the lot, and then the quality feature of interest is measured and recorded. The 
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decision about the lot acceptance or lot disposition is interpreted according to some specific 

criteria, which are framed based on the measurement of the quality variable under study. This 

method is applicable to the cases where the quality feature under study is a continuous random 

variable, which is quantifiable on a continuous scale.  

A peculiar aspect of variable sampling is that the quality feature under study is a 

continuous random variable which can be demonstrated using any continuous type probability 

distribution from the literature of statistical theory. A noteworthy advantage of variable sampling 

is that the decision is made about the lot quality in accordance with the exact measurements of the 

quality variable. It provides more accurate information about the product quality than compared 

to the sampling inspection by attributes. Variable sampling plans can be used with same level of 

protection as attribute sampling plans, but with lesser number of sampling units, showing its 

efficiency with respect to the sample size.  

Under normality assumption of the quality feature, many researchers have devised the 

variable sampling plans. When the normality assumption is sheered or when the quality variable 

shows some kind of skewness, the standard variable sampling plans based on normal distribution 

are no longer applicable. In such situations, the need for the application of non-normal 

distributions or skewed distributions arises. Many researchers have initiated the works on variable 

sampling plans for non-normal populations. Zimmer and Burr [1] considered Burr distribution for 

constructing variable sampling plans based on the measures of skewness and kurtosis. Takagi [2] 

designed sampling procedures for variable inspection based on non-normal distributions when the 

population variance is unknown. Geetha and Vijayaraghavan [3] considered Pareto distribution 

for the construction of variable sampling plans. Seifi and Nezhad [4] constructed variable sampling 

plan for resubmitted lots under Bayesian approach. Other major developments in variables 

sampling plans include the works of Srivastava [5], Owen [6], Duncan [7], Guenther [8, 9], Yeh [10, 

11], Yeh et.al. [12], Aslam et.al. [13], Balamurali and Usha [14], Yen and Cheng [15], Wu et.al. [16-

18], Geetha and Pavithra [19], and Rao et.al. [20]. 

The aspects of construction and assessment of variable sampling plans are quite easy when 

the quality feature under study stick to follow normality assumption. In industrial applications, 

the normality assumption of the quality variable may be sheered or the quality feature may exhibit 

non-normal patterns. In such situations, designing of sampling inspection plans by the method of 

variables becomes unwieldy.  

In this paper, the designing procedure of sampling inspection plans by the method of 

variables based on a single sample is examined when the distribution of the quality feature of the 

manufactured commodity under study shows a similar pattern of Birnbaum – Saunders 

distribution. 

II. Birnbaum – Saunders Distribution 

One among the important probability distributions that have potential applications in life testing 

and reliability is the Birnbaum – Saunders distribution. It is a two - parameter continuous, 

unimodal and positively skewed probability distribution that is specifically used in the studies 

relating to modeling of fatigue life of metals, which are subject to periodic stress. [See, 

Balakrishnan and Kundu [21]]. It is also known as the fatigue-life distribution and has been widely 

applied to fatigue and reliability studies. Birnbaum and Saunders [22] derived an ingenious 

probability model to describe lifetimes associated with materials exposed to fatigue and tension. 

Birnbaum and Saunders [23, 24] formalized the fatigue-life distribution which is named after them. 

Since then, extensive work was carried out by many researchers on this distribution to provide 

generalizations, estimation and inferential procedures.  

According to Leiva [25], its field of application has been extended beyond the context of 

fatigue and reliability analysis and is a model in situations where the accumulation of a certain 

factor forces a quantifiable characteristic to exceed a critical threshold. A detailed account of 

description, analysis and applications of the Birnbaum and Saunders distribution has been given in 
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the phenomenal paper by Balakrishnan and Kundu [21]. Another unparalled contribution on this 

distribution has been made by Leiva [25] in his book which provides an overview of the 

distribution, its probabilistic and statistical features, and its extension to regression analysis, 

diagnostics, etc.     

The Birnbaum – Saunders distribution has a failure rate function which can take the three 

forms of failure rates, viz., increasing and decreasing failure rate, and unimodal or inverse bathtub. 

[See, Johnson, Kotz and Balakrishnan [26] and Nelson [27]]. When a probability distribution for 

life-time variable has a failure rate function that takes various shapes, it is the natural choice to 

adopt the distribution in practice. Considering the importance of Birnbaum and Saunders 

distribution, as pointed out by many research in the literature, its application in sampling 

inspection by variables is now considered. 

Let X be a random variable representing the quality feature of a material and follows 

Birnbaum – Saunders distribution. The probability density function and cumulative distribution 

function of X are, respectively, given by 
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where δ and θ are the shape and scale parameters, respectively, and  and are the density and 

distribution functions of standard normal distribution, respectively. 

The mean and variance of BSD are given by, 
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The reliability function and hazard function for specified time x under Birnbaum – 

Saunders distribution are, respectively, given by 
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The coefficient of variation of BSD is,  
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The coefficients of skewness and kurtosis of a random variable X which follows BSD are given by, 
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It can be identified that the coefficients of variation, skewness and kurtosis only depends 

on the shape parameter of BSD. It is also possible to note that, as the shape parameter, δ move 

towards zero, the BSD exhibit a symmetrical pattern around scale parameter, θ (the median of the 

BSD) and the variability decreases. Furthermore, notice that, as the shape parameter increases, the 

BSD has heavier tails. This means that δ modifies the skewness and kurtosis of the distribution. 

III. Sampling Inspection by Variables 

Acceptance sampling plans for variables based on a single sample can be stated based on the 

conditions mentioned hereafter. 

i. The random variable depicting the quality feature is quantifiable on a continuous scale 

that is having a recognized model of statistical distribution. 

ii. Each single item subjected to quality monitoring has provided with a single specification 

limit say, lower specification limit (LSL), 𝐿, or upper specification limit (USL), 𝑈. If a 

measurement on a particular item goes beyond the specification, the item is considered as 

an unsatisfactory component. 

The working process of an acceptance sampling plan based on variable inspection for a single 

sample is described in the following manner: 

Step 1: Randomly select a small group of elements of size n from the submitted population of 

manufactured items. Measure the quality variable of interest for each unit in the selected group 

and record the measurements. 

Step 2: Approve the submitted population of manufactured commodities as accepted, if 

Ukx +  or Lkx −  ; and reject, otherwise. The conditions are chosen according to the given 

specification. If σ is unknown, s, an unbiased estimate of population standard deviation, is used in 

the place of σ.  

The sample size n and acceptance constant k constitute the parameters of the acceptance 

sampling plans for variables based on a single sample. 

IV. Operating Characteristic Function 
 

The effectiveness of any acceptance sampling plan can be evaluated using an important measure, 

called operating characteristic (OC) function. It gives the probability of acceptance of a lot with a 

specified proportion of faulty items. It is denoted by )( pPa , where p is the fraction of defective or 

nonconforming items in the bunch of commodities. When USL is provided, the proportion of 

nonconforming items and probability of accepting the lot are, respectively, given by  

 

)|( UXPp =      (10)     

 

and    
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)|()(  UkxPpPa +=
          

(11) 

 

When σ is unknown, the sample standard deviation, s, which is an unbiased estimate of σ, is used.
 

A plot of probability of acceptance against the proportion of defective or nonconforming 

items is known as the operating characteristic (OC) curve, which is commonly used for comparing 

the efficiencies of sampling plans. A common procedure for designing a sampling plan is 

described by specifying two points on the OC curve, viz., )1 ,( 0 −p  and ), ,( 1 p  
0p and 1p denote 

the acceptable quality level (AQL) and limiting quality level (LQL), respectively; α and β are 

producer’s risk and consumer’s risk, respectively. The AQL and LQL are, respectively, defined by  

 

)|( 00 UXPpAQL ==
         

(12) 

and 

  

 ),|( 11 UXPpLQL ==          (13) 

 

where 0 and 1  are the means of probability distribution of the quality variable under study 

which results in AQL and LQL. The producer’s risk and consumer’s risk can be obtained using the 

given requirements of AQL and LQL as  

 

)|( 0 UkxP +=
       

(14) 

 

and    

 

)|(1 1 UkxP +=−          
(15) 

 

When 𝜎 is unknown, the estimate 𝑠 is used for the evaluation of 𝛼 and 𝛽.
 

The probability of acceptance and the proportion of nonconforming items are defined 

based on the underlying distribution of the quality feature under study. They are obtained using 

the cumulative probability distribution function of BSD. 

 

V. Designing Procedure of Variable Single Sampling Plan 

In most of the practical scenarios, the quality feature of the product under study will show some 

kind of deviations from the normality assumption. In such situations, the standard variable 

sampling plans cannot be utilized. It is, also, the fact that population parameters of the statistical 

distribution, which is used to model the quality variable, are unidentifiable in most of the cases 

and hence, they are estimated using the sample statistics. If the distribution of quality variable 

under consideration is deviating from normality, the development phase of unknown 𝜎 sampling 

plans becomes more cumbersome.  

Let ),;( xF  be the cumulative distribution function of BSD, which is also considered as 

the distribution function of the quality feature. From equation (12), it is easily observed that the 

acceptable quality level 0p  can be found using the cumulative distribution function of quality 

parameter, which can be expressed as  

 

),;(1 00 xFpAQL x−==
        

(16)  

 

where 0  is the mean of BSD, which results in an acceptable quality level. 

Similarly, from equation (13) the limiting quality level 
1p  can be expressed as  
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),;(1 11 xFpLQL x−==
        

(17)  

 

where 1  is the mean of BSD, which results in limiting quality level. 

Also, from equations (14) and (15), the producer’s risk and consumer’s risk can be obtained 

using the cumulative distribution function ),;( xF   as  

 

 );(1 0 xFx−=
       

(18)  

 

and    
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(19) 

 

When the underlying distribution of quality parameter is normal, the designing of variable 

sampling plan includes the process of determining the standard normal deviate value *

pK . For 

designing a variable sampling plan for non-normal distributions, the value of *

pK  corresponds to 

the deviate value of underlying distribution. Hence, for obtaining the parameters of a variable 

sampling plan under BSD, the deviate values are obtained as follows. 
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where 
0p

x is the value of x for which the upper tail area of BSD is
0p and *

0p
K is the standardized 

value of 
0p

x .  Here, M and S denotes, respectively, the mean and standard deviation of the BSD.   

Similarly, the deviate value corresponding to the limiting quality level is obtained as  
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where 
1p

x  is the value of x for which the upper tail area of BSD is 
1p and *

1p
K is the standardized 

value of 
1p

x .   

The optimum values of the parameters of a variable sampling plan for non-normal 

populations is given by Zimmer and Burr (1963) as  
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Similarly, the constants of a variable sampling plan when the lower specification limit is 

specified, can be determined as  
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In 1972, Takagi introduced an approach for obtaining the sample size and the acceptance 

constant of single sampling inspection plans by variables based on a wide range of non-normal 

distributions and proposed an expansion component in the context of the measures of skewness 

and kurtosis. According to Takagi, when 𝜎 is unknown, ksx   will follow normal distribution 

asymptotically with parameters,  ky =  and ( ) ,1
4

1 34
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 where 3 , ,   

and 4  represent the mean, standard deviation, skewness and kurtosis of the underlying 

probability distribution, respectively. The operating characteristic function given in (11) can be 

rewritten, approximately, as 
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where 
y  and 

y  denote the mean and standard deviation of ksx   and Z is the standardized 

variable. 

Let us denote ( ) .* −= UK p
 Then, for the designated points of acceptable and limiting 

quality levels, one may have  

 *

0 0p
KU −=

             
(27) 

and 

.*

1 1
 pKU −=

              
28) 

Let α and β denote the producer’s risk and consumer’s risk, respectively. Then, the normal 

deviates corresponding to the specified risks are given by 
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Using the expressions of  K,, 10 and 
K  one can obtain the following:   
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Solving the equations (31) and (32), the explicit expressions for the parameters of sampling 

inspection plan can be obtained as 
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where K  and K  
denote the well-known standard normal deviates exceeding the probabilities α 

and β respectively, and ( )( ) 34

2 141  UUU kke +−+=  
is known as the expansion factor. The 

expansion factor is utilized in order to gain information about the parameters of known σ plans 

with the relations UUU enn /' =  and UU kk =' .  In a similar manner, the constants of variable 

sampling plan, when the lower specification limit is specified, can be determined as  
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where ( )( ) ,141 34

2  LLL kke +−+= making use of which the parameters of a known σ plan can be 

obtained as
LLL enn /' = and 

LL kk =' . 

VI. Numerical Illustrations 

I. Numerical Illustration 1 

The thickness of silicon wafers is a vital quality feature in microelectronic circuits. The 

manufacturing firm specified the upper specification limit for the thickness as 0.02 mm. From the 

history, it was ascertained that the thickness of silicon wafer follows BSD having parameters 

25.0=  and 0125.0= . 

The mean and standard deviation were determined as 01289.0= and 0032.0= . Under 

the given conditions, for the specified values of 05.0,05.0,01.0 10 === pp and ,10.0= it is required 

to obtain a single sampling plan by variables. Corresponding to the specified quality levels and the 

risks, one obtains the following:  644854.1,8225.1,864411.2 **

10
=== KKK pp  

and 

1.281552.K = Thus, the optimum values of the parameters n and k of the sampling plan are 

determined from (21) and (22) as 7.89=n or 8 and 2.2788. =k  

In order to make the comparison of the results obtained in the illustration, data have been 

simulated based on 5000 runs using R programming. The simulated data of 8 observations from 

BSD having the specified parameters provide the sample average was found to be 11180.0=x .  

It can be observed that 0185.0=+ kx which falls below the upper specification limit, 

0.02. = U  Hence, the lot would be accepted. 
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II. Numerical Illustration 2 

A manufacturing company produces bottles for various purposes. For a particular make of bottle, 

a lower specification on the bursting strength of bottle is at 200 psi. The lot is accepted, if 1% or less 

of the bottles burst within this limit, with probability 0.95 (i.e., 01.00 =p 05.0, = ) whereas if 

6% or more of the bottles have bursting strength below this limit, the lot is rejected with 

probability 0.90 (i.e., 06.01 =p 10.0, = ). 

Let X be the quality variable which follows BSD having the parameters, 1.0=  and 

275= . The mean, variance, skewness and kurtosis are obtained as 

1994.01,7031.765,375.276 3

2 ===   
and ,1497.34 =  respectively. For the specified quality 

levels, say 01.00 =p and ,06.01 =p and the associated producer’s and consumer’s 

risks 05.0, =  and 10.0= , one can obtain the parameters of the sampling plan by variables 

using the expressions (21) and (22). Corresponding to 01.00 =p  and ,06.01 =p  the deviate values 

*

0p
K

 
and *

1p
K

 
are obtained, from (19) and (20), as 2.1083 and 1.4793, respectively. Corresponding to 

the specified 05.0= and ,10.0= the values of 
K  and

K  are obtained as 1.644854 and 

1.281552. Given the lower specification limit and other requirements, the parameters of single 

sampling plan by variables are obtained from equations (21) and (22) as 21.65,=n  which when 

rounded becomes 22 and 1.7548. =k   

A simulation study is carried out for comparing the results arrived in the above 

illustration. Assume that the standard deviation is known. The simulated results are based on 5000 

runs using R programming. By simulation based on 5000 runs, the randomly generated sample of 

22 observations from BSD having the specified parameters 1.0=  and 275= yields the sample 

mean, viz.,  276.3843.=x  

It is known that the acceptance criterion under a variable sampling plan with specified 

lower specification limit is given as Lkx −  . It can be seen that ,8266.227=− kx which is 

greater than the lower specification limit, i.e., U = 200. Hence, the lot would be accepted. 

VII. Conclusion 

Normal distribution and its wide range of properties play a prominent role in the theory and 

applications of statistics. Acceptance sampling plans for variable inspection consider normal 

distribution as an important model for the quality variable. Even though applications of normal 

distribution are a plenty in various domains, there are situations, where non-normality arises in 

the real-life data. In this paper, a Birnbaum – Saunders distribution (BSD) is considered for 

designing an acceptance sampling plan by variables based on the information acquired from a 

single sample. The strategy for the choice of variable single sampling inspection plans when the 

quality feature shows the behavior of BSD is discussed, when the producer’s and consumer’s 

requirements are specified. The numerical illustrations are given to demonstrate how the proposed 

plan could be executed in practical application. The simulation based on 5000 runs for generating 

samples from BSD has been done utilizing R programming and the simulated results are 

compared with the results arrived in the illustrations. 
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Abstract

Spares are commonly used to improve system performances. They are allocated to original components
during system missions. The optimal allocations depend on system configurations and lifetimes of
components and spares. Various methods for finding optimal allocations have been proposed in the
literature. For sake of brevity, lifetimes of components are commonly assumed to be independent. This
paper deals with series systems, a common configuration, under a general setting, i.e. component
lifetimes are dependent and heterogeneous. Moreover, the spare is also allowed to switch among original
components to impose more flexibility for spare managements. This allowance occurred usually in network
servers and electrical generators which manage by a dispatching center. Explicit expressions for system
reliability functions are derived in detail. Since system lifetimes are random phenomena, stochastic orders
are utilized for comparison purposes. Various illustrative examples are also given.

Keywords: Allocation; Reliability; Stochastic orders; Redundancy; Switching.

1. Introduction

Implementing spare (redundant) is an effective and common method to attain high reliability
systems. The redundancy allocation problem (RAP) has been extensively used in real-world
applications such as circuit design, power plant, electrical power systems, transportation, safety,
telecommunication, satellite, consumer-electronics industry, etc. Specifically redundants are also
used in computer science and especially in network systems (servers), to guard the primary
system against random failure as a backup system. In this case, redundant components can
include both hardware elements of a system such as disk drives, peripherals, servers, switches,
routers and software elements such as operating systems, applications, and databases. In the
world of information technology (IT), redundancy is the “duplication of critical components or
functions of a system with the intention of increasing reliability of the system, usually in the
form of a backup or fail-safe, or to improve actual system performance, such as in the case of
GNSS receivers (GNSS antennas), or multi-threaded computer processing” (See, e.g. [7]). Issues
such as a hardware failure, network problems, or application faults could cause the primary
servers to stop functioning correctly. This can leave users unable to access services, which poses a
real barrier to productivity. Server redundancy helps businesses by protecting critical data by
ensuring it exists in more than just one place. This means that the business can recover data if
something happens to a live server. For applications where data integrity and access are vital,
redundant servers are very important.
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Additional components (spares) are used to improve engineering system performances. For
more details, see Barlow and Proschan [2], Nakagawa [15]. There are many papers deal with
redundancy allocation problem in reliability systems. Boland et al. [5] applied stochastic orders
to consider this problem for series and parallel systems. Zhao et al. [24, 23] studied optimal
allocation of redundancies with exponential components in the sense of various stochastic or-
ders. Xie et al. [20] investigated the redundancy allocation problem in k-out-of-n hot standby
systems to maximize the operational availability. But in the case of dependent components,
there are not many works. Among a few works, Navarro et al. [17] studied the performance
of a system composed by various kinds of units have dependent lifetimes to evaluate reliability.
Navarro and Durante [16] studied the behaviour of the residual lifetimes of coherent systems
with possibly dependent components. Belzunce et al. [3, 4] used the concept of "joint stochastic
orders” and Jeddi and Doostparast [9, 10] studied this problems for series and parallel systems.
Redundants are allocated to original components during system missions. Commonly, spares
do not switch among the original components. Adding redundants to a system may be done
with respect to some limitations such as cost, weight and volume. Switching a spare between
original (primary) components is a possible way to overtake these limitations. For example,
communication networks, managers may be able to control and switch spares (servers) among
original components (or severs) to achieve more reliable connections among customers. This
management is usually done by a dispatching center. In other words, redundants can change
dynamically their respective original components. For more examples and recent developments,
see Kim et al. [12], Li et al. [14], Jia et al. [11] and references therein. Notice that, the spare can
not switch if the corresponding original component fails.

In the sequel, let (Ω, F, P) be a probability space and X = (X1, · · · , Xk) : Ω→ Rk
+, for k ≥ 1, be

an absolutely continuous random vector with the joint distribution function and joint survival
function

FX1,··· ,Xk (a1, · · · , ak) = P(X1 ≤ a1, · · · , Xk ≤ ak), ∀(a1, · · · , ak) ∈ Rk
+,

and
FX1,··· ,Xk (a1, · · · , ak) = P(X1 > a1, · · · , Xk > ak), ∀(a1, · · · , ak) ∈ Rk

+,

respectively. Here, Rk
+ stands for the k-dimensional Euclidean space. Then, the density func-

tion of X is given by fX1,··· ,Xk (a1, · · · , ak) = ∂FX1,··· ,Xk (a1, · · · , ak)/(∂a1 · · · ∂ak). The marginal
distribution of Xi(1 ≤ i ≤ k) is denoted by FXi (x) = P(Xi ≤ x), ∀x ∈ R+k. The random vari-
ables Xi is said to be smaller than Xj(j 6= i) in usual stochastic order denoted by Xi ≤st Xj, if
FXi (x) ≥ FXj(x), ∀x ∈ R. Equivalently, FXi (x) ≤ FXj(x) where FXi (x) = 1− FXi (x), ∀x and for
1 ≤ i ≤ k; See Shaked and Shanthikumar [19].

This paper is organized as follows. In Section 2, two possible spare allocations are described.
Then, the improved system lifetimes by the two schemes for allocating the spare are also derived.
In Section 3, a general form for the system reliability function is presented. Section 4 deals with
comparing the two schemes. Indeed, The main result holds for systems with heterogeneous and
dependent component lifetimes. Also, it provides the interval time for switching the spare among
original components when the components and spare are independent. In Section 5, two general
classes of lifetimes and some well known lifetimes are analysed in detail. Section 6 concludes the
paper and provides further topics for future research.

2. System lifetime with the spare

Consider a 2-component series system consisting of a spare which can be added to the system
configuration. The spare can switch only one-time. Let τ > 0 be a preassigned deterministic
constant and T[0,τ]

i (i = 1, 2) denote the system lifetime when the spare is allocated (in parallel) to
Component i during interval [0, τ] and then to Component j( 6= i) beyond τ(> 0) ; See Figure 1.
In Figure 1, the spare is allocated to Component 1 during the time interval [0, τ]. Then, the spare
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Figure 1: Allocation a spare under a switching scheme.

is allocated to Component 2. We call this allocation strategy as Scheme 1. Similarly, Scheme 2 is
defined. Figure 2 pictures two possible schemes for allocating the spare.

Now, we obtain the system lifetime when the spare is added to the original components. To
do this, let X1 and X2 denote the original component lifetimes, and S stands for the spare lifetime.
Therefore, it can be seen that the improved system lifetime under Scheme I is

T[0,τ]
1 =


∧(∨(X1, S), X2), if X1 ≤ τ,
X2, if X1 > τ, X2 ≤ τ,
τ + ∧(X1 − τ, X2 − τ), if X1 > τ, X2 > τ, S ≤ τ,
τ + ∧(X1 − τ,∨(X2 − τ, S− τ)), if X1 > τ, X2 > τ, S > τ,

=


∧(∨(X1, S), X2), if X1 ≤ τ,
X2, if X1 > τ, X2 ≤ τ,
τ + ∧(X1 − τ,∨(X2 − τ, S− τ)), if X1 > τ, X2 > τ,

=


∧(∨(X1, S), X2), if X1 ≤ τ,
X2, if X1 > τ, X2 ≤ τ,
∧(X1,∨(X2, S)), if X1 > τ, X2 > τ,

(1)

where ∨(a1, a2) = max{a1, a2} and ∧(a1, a2) = min{a1, a2}. Similarly, the improved system
lifetime under Scheme II is

T[0,τ]
2 =


∧(X1,∨(X2, S)), if X2 ≤ τ,
X1, if X2 > τ, X1 ≤ τ,
∧(∨(X1, S), X2)), if X2 > τ, X1 > τ.

(2)

Equations (1) and (2) can be unified as

T[0,τ]
1 = ∧(∨(X1, S), X2)I(X1 ≤ τ) + X2 I(X1 > τ, X2 ≤ τ)

+ ∧(X1,∨(X2, S))I(X1 > τ, X2 > τ), (3)

and

T[0,τ]
2 = ∧(X1,∨(X2, S))I(X2 ≤ τ) + X1 I(X2 > τ, X1 ≤ τ)

+ ∧(∨(X1, S), X2))I(X2 > τ, X1 > τ), (4)

where IA(t) denotes the indicator function of the set A, i.e., IA(t) = 1 for t ∈ A, and IA(t) = 0
otherwise.
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Figure 2: Scheme 1 with system lifetime T[0,τ]
1 and Scheme 2 with system lifetime T[0,τ]

2 .

3. System reliability with the spare

In this section, the reliability function of the system is derived when the spare allows to switch
among the system components one and only one time. To end this, from Equation (3), we have
for 0 < t < τ,

P(T[0,τ]
1 > t) = P(T[0,τ]

1 > t, X1 ≤ τ) + P(T[0,τ]
1 > t, X1 > τ, X2 ≤ τ)

+ P(T[0,τ]
1 > t, X1 > τ, X2 > τ)

= P(∧(∨(X1, S), X2) > t, X1 ≤ τ) + P(X1 > τ, X2 ≤ τ, X2 > t)

+ P(∧(X1,∨(X2, S)) > t, X1 > τ, X2 > τ)

= P(∨(X1, S) > t, X1 ≤ τ, X2 > t) + P(X1 > τ, t < X2 ≤ τ)

+ P(X1 > t,∨(X2, S) > t, X1 > τ, X2 > τ)

= P(X1 ≤ τ, X2 > t)− P(X1 ≤ τ, X2 > t, X1 ≤ t, S ≤ t)

+ P(X1 > τ, X2 > t)− P(X1 > τ, X2 > τ)

+ P(X1 > τ, X2 > τ)− P(X1 > τ, X2 > τ, X2 ≤ t, S ≤ t)

= P(X1 ≤ τ, X2 > t)− P(X1 ≤ t, X2 > t, S ≤ t)

+ P(X1 > τ, X2 > t)

= P(X2 > t)− P(X1 ≤ t, S ≤ t) + P(X1 ≤ t, X2 ≤ t, S ≤ t)

= 1− FX2(t)− FX1,S(t, t) + FX1,X2,S(t, t, t). (5)
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Similarly, for t ≥ τ, we have

P(T[0,τ]
1 > t) = P(T[0,τ]

1 > t, X1 ≤ τ) + P(T[0,τ]
1 > t, X1 > τ, X2 ≤ τ)

+ P(T[0,τ]
1 > t, X1 > τ, X2 > τ)

= P(∧(∨(X1, S), X2) > t, X1 ≤ τ) + P(X1 > τ, X2 ≤ τ, X2 > t)

+ P(∧(X1,∨(X2, S)) > t, X1 > τ, X2 > τ)

= P(∨(X1, S) > t, X1 ≤ τ, X2 > t)

+ P(X1 > t,∨(X2, S) > t, X1 > τ, X2 > τ)

= P(X1 ≤ τ, X2 > t)− P(X1 ≤ τ, X2 > t, X1 ≤ t, S ≤ t)

+ P(X1 > t, X2 > τ)− P(X1 > t, X2 > τ, X2 ≤ t, S ≤ t)

= P(X1 ≤ τ, X2 > t)− P(X1 ≤ τ, X2 > t, S ≤ t)

+ P(X1 > t, X2 > τ)− P(X1 > t, τ < X2 ≤ t, S ≤ t)

= P(X1 ≤ τ, X2 > t, S > t) + P(X1 > t, X2 > τ)

−P(X1 > t, X2 > τ, S ≤ t) + P(X1 > t, X2 > t, S ≤ t)

= P(X2 > t, S > t)− P(X1 > τ, X2 > t, S > t)

+P(X1 > t, X2 > τ, S > t) + P(X1 > t, X2 > t)− P(X1 > t, X2 > t, S > t)

= F̄X2,S(t, t)− F̄X1,X2,S(τ, t, t) + F̄X1,X2,S(t, τ, t) + F̄X1,X2(t, t)

−F̄X1,X2,S(t, t, t). (6)

Finally, from Equations (5) and (6), the next proposition is obtained.

Proposition 1. The system reliability functions of T[0,τ]
1 and T[0,τ]

2 are F
T[0,τ]

1
(t) = y1(t)I[0,τ)(t) +

y2(t)I[τ,∞)(t), and F
T[0,τ]

2
(t) = z1(t)I[0,τ)(t) + z2(t)I[τ,∞)(t), respectively, where yi(t) and zi(t)(i =

1, 2) are defined by

y1(t) = F̄X2(t)− FX1,S(t, t) + FX1,X2,S(t, t, t), (7)

y2(t) = F̄X2,S(t, t)− F̄X1,X2,S(τ, t, t) + F̄X1,X2,S(t, τ, t) + F̄X1,X2(t, t)− F̄X1,X2,S(t, t, t),

(8)

z1(t) = F̄X1(t)− FX2,S(t, t) + FX1,X2,S(t, t, t), (9)

z2(t) = F̄X1,S(t, t)− F̄X1,X2,S(t, τ, t) + F̄X1,X2,S(τ, t, t) + F̄X1,X2(t, t)− F̄X1,X2,S(t, t, t),

for all t > 0.

Notice that limt→τ− y1(t) = limt→τ+ y2(t) and limt→τ− z1(t) = limt→τ+ z2(t). Therefore, the next
corollary follows.

Corollary 1. The reliability functions of the lifetimes T[0,τ]
1 and T[0,τ]

2 are continuous in t ∈ (0,+∞).

4. Comparison and optimal time to switch

System lifetimes are random variables and then partially orders should be considered for com-
parison purposes. Among various partially orders, stochastic orders are commonly used in
reliability analyses. See, e.g. Boland et al. [5], Navarro et al. [17] and Belzunce et al. [3].
In this section, the main result of this paper is presented under a general setting for com-
ponent and spare lifetimes. In the rest of this paper and for lifetimes U1, U2 and U3, let
F̄U1|(U2,U3)

(u1|u2, u3) := P(U1 > u1|U2 > u2, U3 > u3).

Proposition 2. Suppose that X1, X2 and S be dependent random variables and [X1|S = s] ≤st
[X2|S = s] for all s ≥ 0. If F̄X1|(X2,S)(τ|t, t) ≤ 1/2 and F̄X2|(X1,S)(τ|t, t) ≥ 1/2 for t > τ, then

T[0,τ]
1 ≥st T[0,τ]

2 .
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Proof. [i] For 0 < t ≤ τ, Equations (7) and (9) conclude

FT1
[0,τ](t)− FT2

[0,τ](t) = F̄X2,S(t, t)− F̄X1,S(t, t)

=
∫ +∞

t

(
P(X2 > t|S = s)− P(X1 > t|S = s)

)
dFS(s) ≥ 0, (10)

since [X1|S = s] ≤st [X2|S = s] for all s > 0. For t > τ, Equations (8) and (10) imply

FT1
[0,τ](t)− FT2

[0,τ](t) = F̄X2,S(t, t)− F̄X1,S(t, t) + 2F̄X1,X2,S(t, τ, t)− 2F̄X1,X2,S(τ, t, t)

= F̄X2,S(t, t)(1− 2F̄X1|X2,S(τ|t, t)) + F̄X1,S(t, t)(2F̄X2|X1,S(τ|t, t)− 1)

≥ 0. (11)

Since F̄X1|(X2,S)(τ|t, t) ≤ 1/2 and F̄X2|(X1,S)(τ|t, t) ≥ 1/2 for t > τ, the desired result follows. �
There are situations in which components and spares are remote and hence they are approximately
statistically independent. For example, suppose that there are two main servers in a network and
the system administrator (in a dispatching center) wishes to improve system reliability by adding
an extra server. Therefore, the three servers would be independent. In sequel, some conditions
are assumed which simplify the main result is given in Proposition 2. First, assume that the spare
is independent of original component lifetimes X1 and X2 while the original components may be
dependent.

Corollary 2. Let S be independent of (X1, X2). If X1 ≤st X2 and F̄X1|X2
(τ|t) ≤ 1/2 and

F̄X2|X1
(τ|t) ≥ 1/2 for t > τ, then T[0,τ]

1 ≥st T[0,τ]
2 .

The next Proposition states that if the original components and the spare are independent, and
the switch time lies between medians of the original component DFs, then Scheme 1 dominates
Scheme 2 in st-order.

Proposition 3. Let X1, X2 and S be independent. If X1 ≤st X2 and m1 < τ < m2, where m1 and
m2 stand for medians of X1 and X2, respectively. Then T[0,τ]

1 ≥st T[0,τ]
2 .

Proof. For 0 < t ≤ τ, Equations (7) and (9) conclude

FT1
[0,τ](t)− FT2

[0,τ](t) = g1(t)− z1(t)

= FX1(t)− FX2(t) + FX2(t)FS(t)− FX2(t)FS(t)

= F̄S(t)(FX1(t)− FX2(t)) ≥ 0, (12)

since X1 ≤st X2. For t > τ, Equations (8) and (10) imply

FT1
[0,τ](t)− FT2

[0,τ](t) = g2(t)− z2(t)

= F̄X2(t)F̄S(t)− F̄X1(t)F̄S(t)

+2
(

F̄X1(t)F̄X2(τ)F̄S(t)− F̄X1(τ)F̄X2(t)F̄S(t)
)

= F̄X2(t)F̄S(t)(1− 2F̄X1(τ)) + F̄X1(t)F̄S(t)(2F̄X2(τ)− 1)

≥ 0, (13)

since τ > m1 and τ < m2. and the desired result follows. � Proposition 3 says
that if component and spare lifetimes are independent, the spare should allocate to the weaker
component at least up to its median lifetime and then before reaching to the median lifetime of
the other component, the spare must switch.

Remark 1. The distribution of S in Proposition 3 is free and the given conditions do not rely on
the DF of S.
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Figure 3: Allocation a spare under a switching scheme with independent exponential random variables.

5. Examples

In this section, some examples are analyzed to derived the optimal switching times for the spare.

Example 4. Let X1 and X2, be independent exponential random variables with means 1/λ1 and
1/λ2, respectively. If λ1 > λ2, then Proposition 3 implies that T[0,τ]

1 ≥st T[0,τ]
2 provided that the

switching occurs after ln 2
λ1

but before ln 2
λ2

, that is ln 2
λ1

< τ < ln 2
λ2

; See Figure 3. 2

Example 5. Let X1, X2 and S be independent and Xi ∼ Pa(αi, 1), i = 1, 2 where αi > 0 and

Pa(a, b) stands for the Pareto distribution Type I with density f (x) =
a

xa+1 , x ≥ 1. It is easy to

see that the medians of X1 and X2, respectively, are given by m1 = α1
√

2 and m2 = α2
√

2. If α1 > α2

and α1
√

2 < τ < α2
√

2 then T[0,τ]
1 ≥st T[0,τ]

2 from Proposition 3. 2

Example 6. The class of newsboy distributions, introduced by Braden and Freimer[6], includes abso-
lutely continues distribution functions of the form Fθ(x) = 1− e−θl(x), where l(x) is non-negative,
increasing, differentiable and unbounded function with l(0) = 0. The newsboy distributions are
used extensively in the modelling of excess demand of the inventory level that is lost and thus un-
observed. Now assume that X1, X2 and S be independent and Xi ∼ Fθi (x) = 1− e−θi l(x), i = 1, 2

where θi > 0. If θ1 > θ2 and l−1
(

ln 2
θ1

)
< τ < l−1

(
ln 2
θ2

)
then T[0,τ]

1 ≥st T[0,τ]
2 by Proposition 3;

See Table 1. Here, l−1(.) denotes the inverse of the function l(.).

Example 7. Let Φ be the class of absolutely continues distribution function Fθ of the form
Fθ(x) = 1− e−Kθ(x), x > 0, where Kθ(x) is increasing in x and positive function θ ∈ Θ. Then the

probability of density function is given by fθ(x) = kθ(x)e−Kθ(x), x > 0, where kθ(x) =
∂

∂x
Kθ(x).

This class include several important distribution such as exponential, Pareto, Weibull and has
been studied in literature; See e.g, Al-Hussaini [1] for more details. Let X1 ∼ Fθ1(x) and
X2 ∼ Fθ2(x). Then medians X1 and X2 are m1 = K−1

θ1
(ln 2) and m2 = K−1

θ2
(ln 2) respectively.

If Kθ1(x) ≥ Kθ2(x) and K−1
θ1

(ln 2) ≤ τ ≤ K−1
θ2

(ln 2), then T[0,τ]
1 ≥st T[0,τ]

2 by Proposition 3. For
example, let Kθ(x) = λxα and Θ = (α, λ), α, λ > 0. Thus Xi, i = 1, 2, has the Weibull distribution

with density function fαi ,λ(x) = αiλxαi−1e−λxαi , αi, λ > 0, therefore mi = K−1
θi

(ln 2) = αi

√
(

ln 2
λ

)

where `i = (αi, λ), i = 1, 2. If α1 > α2 and α1

√
(

ln 2
λ

) < τ < α2

√
(

ln 2
λ

) then T[0,τ]
1 ≥st T[0,τ]

2 by

Proposition 3. Table 1 presents some selected members in the class Φ and corresponding optimal
switching times.

2
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Table 1: Some well known members of Class Φ in Example 7

Distribution Vector parameter Kθi (x)(i = 1, 2) optimal switching time
`i K−1

θ1
(ln 2) ≤ τ ≤ K−1

θ2
(ln 2)

Exponential λi λix ln 2
λ1

< τ < ln 2
λ2

Pareto (αi, β) αi ln
(

x
β

)
β α1
√

2 < τ < β α2
√

2

Weibull (αi, λ) λxαi α1

√(
ln 2
λ

)
< τ < α2

√(
ln 2
λ

)
Compound Weibull (αi, γ) γ ln(1 + xαi )

α1

√
e

ln 2
γ − 1 < τ <

α2
√

e
ln 2
γ − 1

(Burr type XII)

Rayleigh σi
x2

2σ2
i

√
2σ1 ln 2 < τ <

√
2σ1 ln 2

Newsboy θi θil(x) l−1
(

ln 2
θ1

)
< τ < l−1

(
ln 2
θ2

)

6. Conclusions

This paper derived the system reliability function consisting of two original components and
a spare. The spare can switch among the original components. The finding of this paper hold
under a general setting. The optimal scheme for switching was also provided. Some special cases
which have also practical applications were studied in detail. It was shown that the best time
for switching the spare falls between the median lifetimes of the original component lifetimes
provided that all component and spare lifetimes be independent. This result does not depend on
the distribution of spare lifetimes. The results of this paper may be extended in various directions.
For example, one can study the system behaviour under some parametric conditions such as
multivariate distribution functions for component lifetimes. The optimal switching times for the
case of two and multiple redundancies may also be considered. Engineering systems including
parallel-series, series-parallel and mixed systems are worth for consideration in details. Another
problem is that the spare allows to switch at possible times τ1, · · · , τk(k ≥ 1). This means that the
spare can switch for k times. Finding optimal switching times τ1, · · · , τk is essential in practice.
Works on these topics are under consideration and we hope to report findings soon.
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Abstract

Acceptance sampling is a statistical technique used to inspect the quality of a batch of products. An
acceptance sampling plan under which sampling inspection is performed by conducting life test upon
the sampled products is termed as reliability sampling plan. In this paper, a single acceptance sampling
plan based on percentile is presented for Topp-Leone Gompertz (TL-G) distribution when the life test
is truncated at a pre-specified time. The minimum sample size necessary to ensure the specified life
percentile is obtained under a given consumer‘s risk. The operating characteristic values (and curves) of
the sampling plans as well as the producer’s risk are presented.

Keywords: Acceptance sampling plan, Percentiles, Topp-Leone Gompertz (TL-G) distribution,
Operating characteristic values, Producer‘s risk, Minimum sample size

1. Introduction

In statistical quality control, acceptance sampling for products is one aspect of quality assurance.
If the quality characteristic is regarding the lifetime of the product, the acceptance sampling
problem becomes a life test. Quality personnel would like to know whether the lifetimes of
products reach the consumer‘s minimum standard or not. Traditionally, when the life test
indicates that the mean life of products exceeds the specified one, the lot of products is accepted,
otherwise it is rejected. For the purpose of reducing the test time and cost, a truncated life test
may be conducted to determine the smallest sample size to ensure a certain mean life of products
when the life test is terminated at a preassigned time t, and the number of failures observed does
not exceed a given acceptance number ‘c‘.

Nzei et al. [13] developed the Topp-Leone Gompertz (TL-G) distribution. Studies regarding
truncated life tests can be found in Epstein [4], Sobel and Tischendrof [20], Goode and Kao [6],
Gupta and Groll [7], Gupta [8], Fertig and Mann [5], Kantam and Rosaiah [10], Baklizi [2], Wu
and Tsai [22], Rosaiah et al. [19], Tsai and Wu [21], Balakrishnan et al. [3], Rao et al. [15], Aslam
et al. [1], Rao et al. [17], . Mahmood et al. [12]. All these authors designed acceptance sampling
plans based on the mean life time under a truncated life test using different distributions.

In contrast, Lio et al. [11] considered acceptance sampling plans for percentiles using
Birnbaum-Saunders distribution. Srinivasa Rao et al. [16] studied acceptance sampling plans
for percentiles based on the inverse Rayleigh distribution. Rao et al. [18] considered acceptance
sampling plans for percentiles using Half Normal distribution. Pradeepa Veerakumari and
Ponneeswari [14] designed acceptance sampling plan based on percentiles of exponentiated
Rayleigh distribution Jayalakshmi and Vijilamery [9] studied Special Type Double Sampling Plan
for truncate life test using Gompertz Frechet distribution.
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2. Topp-Leone Gompertz (TL-G) Distribution

The TL-G distribution was developed by Nzei et al. in 2020. The CDF and PDF of the TL-G
distribution are given by

F(t; α, δ, γ) = [1 − e(
−2δ(eγt−1)

γ
)]α (1)

f (t; α, δ, γ) = 2αδeγte(
−2δ(eγt−1)

γ
)[1 − e(

−2δ(eγt−1)

γ
)](α−1); t > 0 (2)

For given 0 < q < 1 the 100qt` actual percentile of the TL-G distribution can be given by

tq =
1
γ

ln(1 − γ

2δ
ln(1 − q

1
α )) (3)

The tq increase as q increases Let

η = ln(1 − γ

2δ
ln(1 − q

1
α )) (4)

Then from (3), γ = η/tq
By letting a = t/tq , F(t) becomes

F(t; α, δ, γ) = [1 − e(
−2δ(eaη−1)

γ
)]α (5)

Equation (5) gives the modified cdf and by partially differentiating the equation (4) w.r.t a we
will get the modified pdf for percentiles of TL-G distribution where tq is the 25th percentile of the
given distribution.

3. Reliability Acceptance Sampling Plan

A sampling plan in which a decision about the acceptance or rejection of a lot is based on a single
sample that has been inspected is known as a Single Sampling Plan. For a single sampling plan,
one sample of items is selected at random from a lot and the disposition of the lot is determined
from the resulting information. Single Sampling Plans are the most common and easiest plans to
use.

Reliability Single Sampling Plans are part of an inspection procedure used to determine
whether to accept or reject a specific lot based on lifetime. The Reliability Single Sampling Plan
can be represented as (n, c, t/t0

q) . Here n and c are the sample size and acceptance number for
the sampling plan. Assume that a life test is conducted and will be terminated at time t0

q.

3.1. Operating Procedure

The acceptance sampling plan based on truncated life tests consists of the following:

1. Take a random sample of size n from the lot and inspect them.

2. The maximum test duration time is t.

3. Count the number of defectives d in the sample of size n.

4. The benchmark of defective (d) units is c, where if d ≤ c defectives out of n occur at the end
of the test period t0

q, the lot is accepted. Otherwise reject the lot.
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3.2. Minimum sample size

For a fixed P∗ our sampling plan is characterized by (n, c, t/t0
q). Here we consider sufficiently

large sized lots so that the binomial distribution can be applied. The problem is to determine for
given values of P∗ (0 < P∗ < 1), t0

q and c, the smallest positive integer, n required to assert that
tq > t0

q must satisfy
c

∑
i=0

pi(1 − p)(n−i) ≤ (1 − P∗) (6)

where p=F(t,aq), it is the probability of failure time during time t given a specified percentile of a
lifetime t0

q and it depends on the a = t/(t0
q) since t0

q increases as q increases. Accordingly, we have

F(t, a) < F(t, δ0) ⇐⇒ a ≤ a0

Or, equivalently
F(t; tq) < F(t; t0

q) ⇐⇒ tq ≥ t0
q

The smallest sample size n satisfying eq. (6) can be obtained for any given sampling plan
(n, c, t/t0

q) is given in Table 1.

3.3. Operating Characteristic (OC) Function

The OC function L(p) of the acceptance sampling plan (n,c,t/t0
q) is the probability of accepting a

lot. It is given as

L(p) =
c

∑
i=0

pi(1 − p)(n−i) (7)

where p = F(t, aq) . It should be noticed that F(t, aq) can be represented as a function of aq = t/tq.
Therefore, we have

p = F(t, a) = F(
t
tq

,
1
dq

)

where dq=tq/t0
q

Using eq. (7) the OC values can be obtained for any sampling plan (n, c, t/t0
q). The OC values for

the proposed sampling plan is presented in Table 3.

3.4. Producer‘s Risk (λ)

The producer’s risk is defined as the probability of rejecting the lot when tq > t0
q. For a given

value of the producer’s risk, say λ , we are interested in knowing the value of dq to ensure the
producer’s risk is less than or equal to λ if a sampling plan (n, c, t/t0

q) is developed at a specified
confidence level P∗. Thus, one needs to find the smallest value dq according to eq. (7).

L(p) ≥ 1 − λ

Based on the sampling plans (n,c,t/tq
0) given in Table 2 the minimum ratios of d0.25 at the

producer‘s risk of λ = 0.05 are presented in Table 4.

4. Illustration

Assume that the life distribution is TL-G distribution, and the experimenter is interested in
showing that the true unknown 25th percentile life t0.25 is at least 1000 hrs. Let α = 1.9,δ = 0.125,
γ = 1.7and λ = 0.05 . It is desire to stop the experiment at time t=3500 hrs. For the acceptance
number c=1 from the Table 1 one can obtain the Single Sampling Plan (n, c, t/t0

q) = (5,1,3.5). The
optimum sample sizes needed for the given requirement is found to be as n=5.
The respective OC values for the proposed acceptance sampling plan (n, c, t/t0

q) with P∗ = 0.95
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Table 1

tq/(t0
q) 0.75 1 1.25 1.5 1.75 2 2.25 2.5

L(p) 0.000012 0.05241 0.37108 0.67370 0.83596 0.9137 0.95184 0.97148

for TL-G distribution from the Table 2 are given in above Table 1.
This shows that if the actual 25th percentile is equal to the required 25th percentile (t0.25/t0.250 =

3.5), the producer‘s risk is approximately 0.94759 (1 − 0.05241). The producer‘s risk almost equal
to 0.03 or less when the actual 25th percentile is greater than or equal to 2.5 times the specified
25th percentile.
Table 4 gives the d0.25 values for c=1 and t/t0

0.25 = 3.5 to assure that the producer‘s risk is less
than or equal to 0.05.
In this example, the value of d0.25 is 2.229656 for c=1, t/t0

0.25 = 3.5 and λ =0.05. This means the
product can have a 25th percentile life of 2.229656 times the required 25th percentile lifetime. That
is under the above Single Sampling Plan the product is accepted with probability of at least 0.95.

Figure 1: OC curve for the sampling plan (n = 5, c = 1, t/t0
0.25 = 3.5)

5. Construction of the Table

Step 1: Find the value of η for the fixed values of α = 1.9, δ = 0.125, γ = 1.7 and q=0.25

Step 2: Set the value of t/tq
0 =0.7, 0.9, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5

Step 3: Find the sample size n by satisfying L(p) ≤ 1 − P∗ when P∗ = 0.99, 0.95, 0.90 and 0.75.
Here P∗ is the probability of rejecting a bad lot and

L(p) =
c

∑
i=0

pi(1 − p)(n−i)

Step 4: for the n value obtained find the d0.25 value such that L(p) ≥ 1 − λ where λ = 0.05 and
p = F(t/t0

q, 1/dq); dq = tq/t0
q
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Table 2: Minimum Sample Size values necessary to assure 25th percentile for TL-G distribution

p∗ c t/(t0
q)

0.7 0.9 1.0 1.5 2.0 2.5 3 3.5
0.75 1 261 144 112 39 18 8 6 3

2 379 210 162 58 26 14 8 5
3 495 274 211 75 33 18 10 7
4 608 336 260 92 41 21 12 8
5 719 398 309 109 48 25 15 11

0.90 1 377 208 160 57 25 13 7 5
2 514 284 221 77 34 18 10 6
3 647 357 276 97 43 21 13 9
4 74 429 331 116 52 27 15 10
5 897 498 384 135 60 31 19 12

0.95 1 458 253 196 69 29 15 10 5
2 609 337 260 90 41 20 12 7
3 749 414 320 112 50 26 15 9
4 884 489 379 132 58 31 18 11
5 1017 562 435 152 68 35 21 13

0.99 1 637 353 271 94 42 21 12 7
2 803 446 343 121 53 27 15 9
3 970 534 414 144 64 32 19 12
4 1118 615 477 166 74 38 22 13
5 1263 695 539 187 83 43 25 16

Table 3: Operating characteristic values of the sampling plan (n, c = 1, t/(t0
q)) for a given P∗ under TL-G distribution

p∗ t/(tq
0) n tq/(tq

0)
0.75 1 1.25 1.5 1.75 2 2.25 2.5

0.75 0.7 261 0.0303 0.2489 0.5162 0.7027 0.8152 0.8815 0.9214 0.9462
0.9 144 0.0255 0.2497 0.5292 0.7188 0.8293 0.8927 0.9299 0.9526
1 112 0.0225 0.2466 0.5320 0.7238 0.8342 0.8967 0.9330 0.9550
1.5 39 0.9497 0.9845 0.9938 0.9970 0.9984 0.9990 0.9994 0.9996
2 18 0.0066 0.2254 0.5666 0.7751 0.8794 0.9315 0.9588 0.9739
2.5 8 0.0104 0.2979 0.6584 0.8414 0.9216 0.9581 0.9675 0.9805
3 6 0.0008 0.1566 0.5351 0.7774 0.8905 0.9424 0.9675 0.9805
3.5 3 0.0046 0.2777 0.6755 0.8650 0.9395 0.9702 0.9840 0.9907

0.90 0.7 377 0.0038 0.0991 0.3191 0.5330 0.6879 0.7900 0.8559 0.8988
0.9 208 0.0029 0.0995 0.3321 0.5536 0.7087 0.8079 0.8704 0.9103
1 160 0.0026 0.1009 0.3407 0.5656 0.7202 0.8175 0.8779 0.9161
1.5 57 0.0010 0.0934 0.3585 0.6009 0.7568 0.8487 0.9027 0.9352
2 25 0.0005 0.0939 0.3889 0.6446 0.7963 0.8795 0.9256 0.9521
2.5 13 0.0002 0.0851 0.3998 0.6692 0.8202 0.8983 0.9395 0.9622
3 7 0.0001 0.0971 0.4461 0.7177 0.8563 0.9229 0.9560 0.9734
3.5 5 0.00001 0.0524 0.3710 0.6737 0.8359 0.9137 0.9518 0.9714

0.95 0.7 458 0.00087 0.0502 0.2214 0.4298 0.6009 0.7227 0.8054 0.8611
0.9 253 0.00062 0.0501 0.2324 0.4508 0.6246 0.7444 0.8237 0.8760
1 196 0.0005 0.0495 0.2367 0.4598 0.6348 0.7538 0.8316 0.8823
1.5 69 0.00018 0.0470 0.2583 0.5040 0.6833 0.7969 0.8172 0.9988
2 29 0.00011 0.0555 0.3082 0.5732 0.7464 0.8466 0.8667 0.9375
2.5 15 0.00003 0.0498 0.3201 0.6018 0.7757 0.8704 0.9039 0.9507
3 10 0.00001 0.0213 0.2451 0.5458 0.7456 0.8555 0.8172 0.9471
3.5 5 0.00001 0.0524 0.3710 0.6737 0.8359 0.9137 0.9518 0.9714

0.99 0.7 637 0.00003 0.0104 0.0933 0.2555 0.4306 0.5780 0.6896 0.7706
0.9 353 0.00001 0.0101 0.0993 0.2733 0.4558 0.6047 0.7143 0.7920
1 271 0.00001 0.0105 0.1049 0.2863 0.4725 0.6213 0.7290 0.8044
1.5 94 0.000004 0.0105 0.1243 0.3370 0.5379 0.6855 0.7850 0.8505
2 42 0 0.0092 0.1362 0.3750 0.5870 0.7324 0.8245 0.8822
2.5 21 0 0.0093 0.1562 0.4226 0.6409 0.7793 0.8614 0.9103
3 12 0 0.0074 0.1593 0.4450 0.6703 0.8059 0.8825 0.9262
3.5 7 0 0.0085 0.1852 0.4945 0.7177 0.8422 0.9085 0.9444
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Table 4: Minimum ratio of true d0.25 for the acceptability of a lot for the TL-G distribution and producer‘s risk of
λ = 0.05

p∗ t/(t0
q) n tq/(t0

q)

0.75 0.7 261 2.5451 2.5464 2.5454 2.5462 2.5467 2.5470 2.5499 2.5496
0.9 144 2.4588 2.4600 2.4599 2.4611 2.4614 2.4622 2.4578 2.4750
1 112 2.4264 2.4276 2.4277 2.4290 2.4293 2.4301 2.4273 2.4281
1.5 39 2.2498 2.2507 2.2517 2.2433 2.2472 2.2521 2.2500 2.2600
2 18 2.1487 2.1495 2.1506 2.1457 2.1494 2.1478 2.1416 2.1542
2.5 8 1.9254 1.9191 1.9240 1.9192 1.9183 1.9201 1.9305 1.9229
3 6 2.0570 2.0575 2.0514 2.0556 2.0526 2.0559 2.0600 2.0635
3.5 3 1.8133 1.8095 1.8127 1.8122 1.8089 1.8143 1.8122 1.8124

0.90 0.7 377 3.0392 3.0515 3.0508 3.0483 3.0461 3.0442 3.0389 3.0529
0.9 208 2.9272 2.9362 2.9356 2.934 2.9337 2.9324 2.9304 2.9324
1 160 2.8693 2.8768 2.8763 2.8754 2.8753 2.8742 2.8734 2.8761
1.5 57 2.6634 2.6585 2.6691 2.6692 2.6573 2.6571 2.6620 2.6675
2 25 2.4689 2.4683 2.4662 2.4693 2.4698 2.4717 2.4658 2.4750
2.5 13 2.3440 2.3433 2.3431 2.3452 2.3463 2.3419 2.3398 2.3515
3 7 2.1876 2.1875 2.1887 2.1896 2.1861 2.1826 2.1875 2.1911
3.5 5 2.2309 2.2296 2.2298 2.2313 2.2249 2.2319 2.2275 2.2250

0.95 0.7 458 3.3592 3.3560 3.3529 3.3445 3.3597 3.3578 3.3548 3.3483
0.9 253 3.2281 3.2253 3.2241 3.2174 3.2289 3.2283 3.2264 3.2238
1 196 3.1704 3.1678 3.1667 3.1612 3.1563 3.1710 3.1695 3.1681
1.5 69 2.9000 2.9104 2.9096 2.9082 2.9081 2.9065 2.9054 2.9086
2 29 2.6336 2.6372 2.6368 2.6370 2.6371 2.6260 2.6323 2.6365
2.5 15 2.4881 2.4836 2.4807 2.4846 2.4853 2.4879 2.4804 2.5
3 10 2.5268 2.5294 2.5290 2.5197 2.5206 2.5241 2.5288 2.5250
3.5 5 2.2309 2.2296 2.2298 2.2313 2.2249 2.2319 2.2275 2.2250

0.99 0.7 637 3.9519 3.9484 3.9580 3.9540 3.9405 3.9577 3.9512 3.9411
0.9 353 3.7928 3.7890 3.7985 3.7958 3.7860 3.7990 3.7958 3.7899
1 271 3.7035 3.6996 3.7089 3.7065 3.6989 3.7096 3.7076 3.7032
1.5 94 3.3554 3.3517 3.3462 3.3578 3.3558 3.3537 3.3496 3.3429
2 42 3.1019 3.0989 3.0974 3.0906 3.1031 3.1027 3.1017 3.1013
2.5 21 2.8693 2.8672 2.8660 2.8642 2.8648 2.8632 2.8635 2.8679
3 12 2.7162 2.7239 2.7230 2.7227 2.7231 2.7232 2.7245 2.7183
3.5 7 2.5509 2.5545 2.5539 2.5544 2.5546 2.5469 2.5534 2.5537

6. CONCLUSION

In this paper we have derived the acceptance sampling plans based on percentiles for the
Topp-Leone Gompertz (TL-G) distribution when the life test is truncated at a pre-fixed time. The
minimum sample size required to decide upon accepting or rejecting a lot based on its specified
25th percentile, the operating characteristic function values and corresponding producer‘s risk
are obtained. Tables provided are helpful for the industrial use to save the cost and time of the
experiment.
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Abstract

In this article, the use of the transmuted inverse Gompertz distribution in modeling lifetime data is
investigated particularly in cases where standard probability distributions are not able to properly handle
complex datasets. The quadratic rank transmutation map scheme is utilized to obtain the distribution. The
study explores several characteristics of the transmuted inverse Gompertz model, including the estimation
of parameters through classical approaches such as maximum likelihood estimation, least-squares esti-
mation, Crammér-Von Misses estimation, and maximum product spacing estimation. Additionally, the
Bayesian techniques is used under different loss functions, such as the Linex loss function, square error
loss function, and general entropy loss function. The estimates obtained from both classical and Bayesian
techniques are evaluated using simulation. To illustrate the potential benefits of the transmuted inverse
Gompertz model, a dataset on the strength of aircraft window glass is employed. The results obtained from
the application of the new distribution to the real-life dataset demonstrate that it yields superior fits in
comparison to other well-known distributions. The study’s findings suggest that the transmuted inverse
Gompertz model can provide a useful alternative for modeling lifetime data. The research offers valuable
insights into the distribution’s properties and estimation techniques, as well as its superiority over other
commonly used distributions. The new model can contribute to the development of more accurate and
efficient models for analyzing lifetime dataset. Overall, the study highlights the importance of exploring
new statistical models and techniques to improve data analysis and decision-making

Keywords: Classical method, Bayesian method, Posterior distribution, Loss functions,
Transmuted inverse Gompertz distribution.

1. Introduction

The Gompertz distribution with two parameters is an expansion of the exponential distribution
and was proposed by Gompertz [1]. It is widely used in survival analysis to construct accurate
actuarial and human mortality tables. Additionally, it is a valuable tool for modeling survival
distributions with increasing hazard rates and for describing the distribution of adult lifespans by
demographers and actuaries (Willemse and Koppelaar [2]).

The inverse distribution was developed to model actuarial surveys biological and demography
(El-Bassiouny et al. [3]). The inverse Gompertz distribution was proposed by Eliwa et al. [4] and
it is useful in modeling lifetime observations. The cumulative probability density (CDF) and
probability density function (PDF) are expressed as

G(x; θ, γ) = e
− γ

θ

(
e

θ
x −1

)
θ > 0, γ > 0, x ≥ 0 (1)
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g(x; θ, γ) =
γ

x2 e
− γ

β

(
e

θ
x −1

)
+ θ

x
θ > 0, γ > 0, x ≥ 0 (2)

where the scale and shape parameters are presented as θ and γ.
Recently in literature the development of new family of lifetime distributions using transmuted
method has recently been attempted to estimate model parameters efficiently for the subject
model (see Aryal and Tsokos [5] and Khan et al. [6]). Using the techniques known as quadratic
rank transmutation map, proposed by Shaw and Buckley [7], we are able to propose a new three
parameters transmuted inverse Gompertz (TR-IG) distribution.

If a random variable X has a transmuted distribution, then its cumulative probability density
function (CDF) and probability density function (PDF) satisfy the following relationship:

F(x) = (1 − λ)G(x)− λG2(x), |λ| ≤ 1 (3)

f (x) = g(x) ((1 − λ)− 2λG(x)) (4)

where G(x) is the CDF of the baseline model, g(x) and f(x) are the corresponding PDF associated
with G(x) and g(x), respectively.

The motivation of this work is to proposed a model that can be used to model complex dataset
which the standard probability distributions model can’t handle properly. Also we examine the
potential use of the TR-IG distribution and determine a number of the mathematical features.

2. Transmuted inverse Gompertz distribution

Consider a positive value of x with three parameters TR-IG distribution having a shape parameter
γ and scale parameter θ and the transmuted parameter |λ| ≤ 1 , the CDF can be derived by
substituting Equation (1) into Equation (3)

F(x; γ, θ, λ) = (1 + λ)e
− γ

θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2

γ > 0, θ > 0, x ≥ 0, |λ| ≤ 1 (5)

Figure 1: CDF Plot of TR-IG distribution for different parameter values .

Figure 1 shows the CDF plots of TR-IG distribution and we deduced that as x increases the CDF
increase and remains constant as it tends to 1.
Substituting Equations (1) and (2) into Equation (4) produces the PDF of TR-IG distribution

f (x; γ, θ, λ) =
γ

x2 e
− γ

θ

(
e

θ
x −1

)
+ θ

x

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

) γ > 0, θ > 0, x ≥ 0, |λ| ≤ 1 (6)
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Figure 2: PDF plot of TR-IG distribution for different parameter values

Figure 2 shows that the PDF of TR-IG distribution is positively skewed. When |λ| = 0, the TR-IG
distribution CDF and PDF (5) and (6) becomes inverse Gompertz distribution with CDF (1) and
PDF (2).

3. Statistical Properties

This section looks into some of the statistical characteristics of TR − IG(γ, β, λ) such survival
function, reversed hazard function, odds function, hazard function and moments.

3.1. Survival Function

A survival function of the TR-IG distribution can be expressed as

S(x) = 1 − (1 + λ)e
− γ

θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2

γ > 0, θ > 0, |λ| ≤ 1, x > 0 (7)

3.2. Hazard Function

The hazard function for the TR-IG distribution can be expressed as

h(x) =

γ
x2 e

− γ
θ

(
e

θ
x −1

)
+ θ

x

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

)
1 − (1 + λ)e

− γ
θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2 γ > 0, θ > 0, |λ| ≤ 1, x > 0 (8)
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3.3. Reversed Hazard Function (RHF)

The reversed hazard function for the TR-IG distribution can be expressed as

τ(x) =

γ
x2 e

− γ
θ

(
e

θ
x −1

)
+ θ

x

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

)
(1 + λ)e

− γ
θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2 γ > 0, θ > 0, |λ| ≤ 1, x > 0 (9)

3.4. Odd Function

The odd function for the TR-IG distribution can be expressed as

O(x) =

(1 + λ)e
− γ

θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2

1 − (1 + λ)e
− γ

θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2 γ > 0, θ > 0, |λ| ≤ 1, x > 0 (10)

3.5. Cumulative Hazard Function

The cumulative hazard function for the TR-IG distribution can be expressed as

H(x) = − log

1 − (1 + λ)e
− γ

θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2
 γ > 0, θ > 0, |λ| ≤ 1, x > 0 (11)

3.6. The Quantile Function

The expression for the quantile function is Q(u) = F−1(u). Consequently, the TR-IG distribution
quantile function can be written as

Q(u) =
θ

log
{

1 − θ
γ log

[
(1+λ)−

√
1+(2−4u)λ+λ2

2λ

]} (12)

3.7. Moments

Moments can be used to analyze a variety of distributional features, including tendency, skewness,
dispersion, and kurtosis. If X ∼ TR − IG(γ, β, λ), then the rth moment expression of TR-IG
distribution can be expressed as

µ′
r =

∫ ∞

0
xr f (x)dx (13)

after performing some mathematical expressions, we obtained the moment generating function
for the TR-IG distribution

µ′
r = Mx(t) =

∞

∑
i,j,r=0

iCj(−1)i+j 1
i!
(−t)r

r!
Γ(1 − r)

[θ(j − i − 1)]1−r (14)
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4. Estimations of Transmuted Inverse Gompertz Distribution

4.1. Maximum Likelihood Estimation (MLE)

Let x1, x2, . . . xn be random variables (rvs) drawn from TR − IG(γ, θ, λ). The log-likelihood
function is defined as follows:

L(γ, θ, λ|x) = γn
n

∑
i=1

1
x

e
− γ

θ ∑n
i=1

(
e

θ
x −1

)
+θ ∑n

i=1
1
x

n

∏
i=1

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

) (15)

taking the logarithm of Equation (15), we obtained the log-likelihood function

l = n log γ − log(x)− γ

θ

n

∑
i=1

(
e

θ
x − 1

)
+ θ

n

∑
i=1

1
x
+

n

∑
i=1

log

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

) (16)

Maximizing logL(γ, θ, λ) with respect to γ, θ and λ, the system with non-linear equations is
obtained as:

∂l
∂γ

=
n
γ
−

n

∑
i=1


(

e
θ
x − 1

)
θ

+
n

∑
i=1

2λµ
(

e
θ
x − 1

)
θω

 (17)

∂l
∂θ

=
n

∑
i=1

γ
(

e
θ
x − 1

)
θ2

−
n

∑
i=1

[
γe

θ
x

θx

]
+

n

∑
i=1

[
1
x

]
−

n

∑
i=1

[
2λϱµ

ω

]
(18)

∂l
∂λ

=
n

∑
i=1

[
(1 − 2µ)

ω

]
(19)

where ϱ =

 γ

(
e

θ
x −1

)
θ2 − γe

θ
x

θx

, µ = e−
γ

(
e

θ
x −1

)
θ , ω = (1 + λ − 2λµ)

To obtain the estimates of γ̂MLE, θ̂MLE and λ̂MLE, we equate expressions (17) - (19) to zero
and solve the system of nonlinear equation. It was observed that solution of this system can
not be obtained analytically so we employed a numerical approach known as Newton Raphson
method.

4.2. Least-squares Method (OLS)

Let the related order statistics (or) of rvs x1, x2, . . . , xn from the TR-IG distribution sorted in
ascending order are denoted as X1:n, X2:n, . . . , Xn:n. According to Swain et al.[8], the OLS estimates
of γ̂OLS, θ̂OLS and λ̂OLS can be obtained by minimizing Equation 20 with respect to γ, θ and λ
and equate the non-linear equations to zero.

S(γ, θ, λ|x) =
n

∑
i=1


(1 + λ)e

− γ
θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2
− i

n + 1


2

(20)

4.3. Cramér-von Mises (CVM)

Let the related os of rvs x1, x2, . . . , xn from the TR-IG distribution sorted in ascending order are
denoted as X1:n, X2:n, . . . , Xn:n. To obtain the CVM estimates of γ̂CVM, θ̂CVM and λ̂CVM, Equation
21 is minimized with respect to γ, θ and λ and equate the non-linear equations to zero.

C(γ, θ, λ) =
1

12n
+

n

∑
i=1


(1 + λ)e

− γ
θ

(
e

θ
x −1

)
− λ

e
− γ

θ

(
e

θ
x −1

)2
− 2i − 1

2n


2

(21)
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4.4. Maximum Product Spacing Method (MPS)

Let the related os of rvs x1, x2, . . . , xn from the TR-IG distribution sorted in ascending order are
denoted as X1:n, X2:n, . . . , Xn:n. According to Cheng and Amin [9], the MPS estimates of γ̂MPS,
θ̂MPS and λ̂MPS, can be obtained by minimizing Equation 22 with respect to γ, θ and λ and equate
the non-linear equations to zero.

D =

(1 + λ)e
− γ

θ

(
e

θ
xi −1

)
− λ

e
− γ

θ

(
e

θ
xi −1

)2


−

(1 + λ)e
− γ

θ

(
e

θ
xi−1 −1

)
− λ

e
− γ

θ

(
e

θ
xi−1 −1

)
2
 (22)

4.5. Bayesian Analysis

Let x = (x1, x2, . . . xn) be a rv with parameters γ, θ and λ having a size n. The posterior probability
density function of the parameters γ, θ and λ given x can be expressed as

Pr(γ, θ, λ|x) = π(γ, θ, λ)l(γ, θ, λ)∫ ∫ ∫
π(γ, θ, λ)l(γ, θ, λ)∂(γ, θ, λ)

(23)

where l(γ, θ, λ) is the likelihood function expressed in Equation (15) and π(γ, θ, λ) is the prior
probability distribution, which is expressed in Equation (24).

π(γ, θ, λ) =
1

γλΓ(a)ba θa−1e−
θ
b γ, θ, λ, a, b > 0 (24)

where: γ ∼ Uni f orm(0, γ); λ ∼ Uni f orm(0, λ); θ ∼ Gamma(a, b)
substituting Equations (15) and (24), we obtained the posterior probability distribution

Pr(γ, θ, λ|x) =

1
γλΓ(a)ba θa−1e−

θ
b γ

x2 e
− γ

θ

(
e

θ
x −1

)
+ θ

x

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

)
∫ ∫ ∫ 1

γλΓ(a)ba θa−1e−
θ
b γ

x2 e
− γ

θ

(
e

θ
x −1

)
+ θ

x

1 + λ − 2λe
− γ

θ

(
e

θ
x −1

) ∂(γ, θ, λ)

(25)

4.6. Loss Functions

The Bayesian method was employed for the estimation of TR-IG distribution parameters, utilizing
three different types of loss function. The first loss function considered was the LINEX loss
function (LLF), also referred to as the linear-exponential loss function, initially proposed by Varian
[11]. LLF is an asymmetric loss function that rises exponentially on one side of zero and linearly
on the other, as described by Preda and Panaitescu [12].

The second loss function used was the General Entropy loss function (GELF), first introduced
by Calabria and Pulcini [13]. GELF is also an asymmetric loss function that has been utilized by
several authors, such as Dey and Liu [14], Sule and Adegoke [15], and Ogunsanya et al. [17], who
used GELF in its original form by setting c to be equal to 1.

The third and final loss function considered was the Squared Error loss function (SELF), which
is a common loss function in statistics and machine learning. SELF is also known as the L2 loss
function and is used to measure the difference between the estimated and true values squared.
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If θ is an estimator required to estimate the parameter θ̂, then the square error loss function
can be defined as follows:

LSELF ∝ (θ̂ − θ)2 (26)

The LLF can be expressed as

LLLF ∝ κ(ec(θ̂−θ) − c(θ̂ − θ)− 1) κ > 0, c ̸= 0 (27)

where c and κ are the scale and shape parameters of the LLF. In this study, we assume that κ= 1.
Provided that Eθ

[
e−cθ

]
exits, Bayes estimator of the LLF is the value θ̂ that minimizes Equation

(27) (Zeller [18]).

θ̂ = −1
c

ln
(

Eθ

[
e−cθ

])
(28)

The GELF is defined as

LGELF

(
θ̂

θ

)c

∝

[(
θ̂

θ

)c

− c log

(
θ̂

θ

)
− 1

]
(29)

where c > 0. The minimum occurred at θ̂ = θ. The GELF Bayes estimator is the value θ̂ that
minimizes Equation (29) and can be expressed as

θ̂ =
[
E
(
θ−c)]−c (30)

4.7. Lindley Approximation Method

To estimate Equation (25), we will employ an iterative techniques known as Lindley’s approxima-
tion to estimate the parameter of interest for γ, θ and λ. According to Lindley [19], if n is large
enough, any ratio of the integral of the form

I(x) = E[u(γ, θ, λ)] =

∫ ∫ ∫
u(γ, θ, λ)el(γ,θ,λ)+ρ(γ,θ,λ)∂(γ, θ, λ)∫ ∫ ∫

el(γ,θ,λ)+ρ(γ,θ,λ)∂(γ, θ, λ)
(31)

where u(γ, θ, λ) is a function of γ, θ and λ only, l(γ, θ, λ) is the log-likelihood and ρ(γ, θ, λ) is
the log of prior distribution π(γ, θ, λ). Equation (31) can be evaluated as

I(x) = u(γ̂, θ̂, λ̂) + (u1a1 + u2a2 + u3 + a3 + a4 + a5) +
1
2

A(u1σ11 + u2σ12 + u3σ13)

+
1
2

B(u1σ21 + u2σ22 + u3σ23) +
1
2

C(u1σ31 + u2σ32 + u3σ33) (32)

ai = ρ1σi1 + ρ2σi2 + ρ3σi3 (33)

a4 = u12σ12 + u13σ13 + u23σ23 (34)

a5 =
1
2
(u11σ11 + u22σ22 + u33σ33) (35)

A = σ11L111 + 2σ12L121 + 2σ13L131 + 2σ23L231 + σ22L221 + σ33L331 (36)

B = σ11L112 + 2σ12L122 + 2σ13L132 + 2σ23L232 + σ22L222 + σ33L332 (37)

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ23L233 + σ22L223 + σ33L333 (38)

ρi =
∂ρ

∂θi
; ui =

∂u(θ1, θ2, θ3)

∂θi
ui,j =

∂2 u(θ1, θ2, θ3)

∂θi∂θj
; Li,j,k =

∂3l(θ1, θ2, θ3)

∂θi∂θj∂θk
(39)

where θ1 = γ , θ2 = θ and θ3 = λ. σi,j is the (i, j)th element of the matrix’s inverse Li,j all evaluated
at the MLE estimation and i, j, k = 1, 2, 3
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d2l
dγ2 = − n

γ2 −
n

∑
i=1

[
2λϵ2µ

θ2ω

]
−

n

∑
i=1

[
4λ2ϵ2µ2

θ2ω2

]
(40)

d2l
dθ2 = −

n

∑
i=

[
2γϵ

θ3

]
+

n

∑
i=

[
2γe

θ
x

θ2x

]
−

n

∑
i=

[
γe

θ
x

θx2

]
−

n

∑
i=

[
2λϕµ

ω

]
−

n

∑
i=

[
2λγψ2µ

ω

]
−

n

∑
i=

[
4λ2γψ2µ2

ω2

]
(41)

d2l
dλ2 = −nΥ2

ω2 ;
∂2l

∂θ∂λ
= −

n

∑
i=

[
2γψµ

ω

]
+

n

∑
i=

[
2λγψµΥ

ω2

]
(42)

∂2l
∂γ∂θ

=
n

∑
i=

[ ϵ

θ2

]
−

n

∑
i=

[
e

θ
x

θx

]
−

n

∑
i=

[
2λϵµ

θ2ω

]
+

n

∑
i=

[
2λe

θ
x µ

θxω

]
(43)

+
n

∑
i=

[
2λϵγψµ

θω

]
+

n

∑
i=

[
4λ2ϵµ2γψ

θω2

]
(44)

∂2l
∂γ∂λ

=
n

∑
i=

[
2ϵµ

θω

]
−

n

∑
i=

[
2λϵµΥ

θω2

]
;

∂3l
∂λ3 =

n

∑
i=

[
2Υ3

ω3

]
(45)

∂3l
∂γ3 =

2n
γ3 +

n

∑
i=

[
2λϵ3µ

θ3ω

]
+

n

∑
i=

[
12nλ2ϵ3µ2

θ3ω2

]
+

n

∑
i=

[
16nλ3ϵ3µ3

θ3ω3

]
(46)

∂3l
∂θ3 =

n

∑
i=

[
6γϵ

θ4

]
−

n

∑
i=

[
6γe

θ
x

θ3x

]
+

n

∑
i=

[
3γne

θ
x

θ2x2

]
−

n

∑
i=

[
γe

θ
x

θx3

]
−

n

∑
i=

[
2λτµ

ω

]
−

n

∑
i=

[
6λϕγψµ

ω

]
−

n

∑
i=

[
12λ2ϕµ2γψ

ω2

]
−

n

∑
i=

[
2λγψ3µ

ω

]
−

n

∑
i=

[
12λ2γψ3µ2

ω2

]
−

n

∑
i=

[
16λ3γψ3µ3

ω3

]
(47)

∂3l
∂γ2∂θ

=
n

∑
i=

[
4λϵ2µ

θ3ω

]
−

n

∑
i=

[
4λϵµe

θ
x

θ2ωx

]
−

n

∑
i=

[
2λϵ2γψµ

θ2ω

]
−

n

∑
i=

[
12λ2ϵ2µ2γψ

θ2ω2

]

+
n

∑
i=

[
8λ2ϵ2µ2

θ3ω2

]
−

n

∑
i=

[
8λ2ϵµ2e

θ
x

θ2ω2x

]
−

n

∑
i=

[
16λ3ϵ2µ3γψ

θ2ω3

]
(48)

∂3l
∂γ2∂λ

= −
n

∑
i=

[
2ϵ2µ

θ2ω

]
+

n

∑
i=

[
2λϵ2µΥ

θ2ω2

]
−

n

∑
i=

[
8λϵ2µ2

θ2ω2

]
+

n

∑
i=

[
8λ2ϵ2µ2Υ

θ2ω3

]
(49)

∂3l
∂θ2∂λ

= −
n

∑
i=

[
2ϕµ

ω

]
+

n

∑
i=

[
2λϕµΥ

ω2

]
−

n

∑
i=

[
2nγψ2µ

ω

]
+

n

∑
i=

[
2λγψ2µΥ

ω2

]
−

n

∑
i=

[
8λγψ2µ2

ω2

]
+

n

∑
i=

[
8λ2γψ2µ2Υ

ω3

]
(50)

∂3l
∂θ2∂γ

= −
n

∑
i=

[
2ϵ

θ3

]
+

n

∑
i=

[
2e

θ
x

θ2x

]
−

n

∑
i=

[
e

θ
x

θx2

]
−

n

∑
i=

[
2λφµ

ω

]
+

n

∑
i=

[
2λϕϵµ

θω

]
+

n

∑
i=

[
4nλ2ϕµ2ϵ

ω2θ

]
−

n

∑
i=

[
4λγψµγψ

ω

]
+

n

∑
i=

[
2λγψ2ϵµ

θω

]
+

n

∑
i=

[
12λ2γψ2µ2ϵ

ω2θ

]
−

n

∑
i=

[
8λ2γψµ2γψ

ω2

]
+

n

∑
i=

[
16λ3γψ2µ3ϵ

ω3θ

]
(51)
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∂3l
∂λ2∂γ

= −
n

∑
i=

[
4Υϵµ

ω2θ

]
+

n

∑
i=

[
4Υ2λϵµ

ω3θ

]
;

∂3l
∂λ2∂θ

=
n

∑
i=

[
4Υγψµ

ω2

]
−

n

∑
i=

[
4Υ2λγψµ

ω3

]
(52)

∂3l
∂λ∂θ∂γ

= −
n

∑
i=

[
2γψµ

ω

]
+

n

∑
i=

[
2nγψϵµ

θω

]
+

n

∑
i=

[
8γψµ2λϵ

ω2θ

]
+

n

∑
i=

[
2λγψµΥ

ω2

]
−

n

∑
i=

[
2λγψϵµΥ

θω2

]
−

n

∑
i=

[
8λ2γψµ2Υϵ

ω3θ

]
(53)

where:

Υ = (1 − 2µ) , Φ =

(
e

θ
x −1
θ2 − e

θ
x

θx

)
, ψ =

(
e

θ
x −1
θ2 − e

θ
x

θx

)
, ϕ =

−
2γ

(
e

θ
x −1

)
θ3 + 2γe

θ
x

θ2x − γe
θ
x

θx2

,

φ =

−
2
(

e
θ
x −1

)
θ3 + 2e

θ
x

θ2x − e
θ
x

θx2

, ς =

 6γ

(
e

θ
x −1

)
θ4 − 6γe

θ
x

θ3x + 3γe
θ
x

θ2x2 − γe
θ
x

θx3

 ,ϵ =
(

e
θ
x − 1

)
From the prior distribution in expression (24),

ρ = log(π(γ, θ, λ)) = (a − 1) ln θ − θ

b
− ln γ − ln λ

ρ1 =
∂

∂γ
= − 1

γ
; ρ2 =

∂

∂θ
=

a − 1 − bθ

θ
; ρ3 =

∂

∂λ
= − 1

λ
(54)

substituting Equations ((40)-(54)) into Equation (31) reduces the Lindley integral, therefore the
Bayes estimates using SELF are thus

i. If u(γ, θ, λ) = γ̂

γ̂BS = γ̂ − 1
γ̂ σ11 +

a−1−bθ̂
θ̂

σ12 − 1
γ̂ σ13 +

1
2 (Aσ11 + Bσ12 + Cσ13)

ii. If u(γ, θ, λ) = θ̂ then
θ̂BS = θ̂ − 1

γ̂ σ21 +
a−1−bθ̂

θ̂
σ22 − 1

γ̂ σ23 +
1
2 (Aσ12 + Bσ22 + Cσ32)

iii. If u(γ, θ, λ) = λ̂ then
λ̂BS = λ̂ − 1

γ̂ σ31 +
a−1−bθ̂

θ̂
σ32 − 1

γ̂ σ33 +
1
2 (Aσ13 + Bσ23 + Cσ33)

Also, the Bayes estimate using LINEX are thus

i. If u(γ, θ, λ) = e−cγ̂ then
γ̂BL = γ̂ + log

(
1 − c

(
− 1

γ̂ σ11 +
a−1−bθ̂

θ̂
σ12 − 1

γ̂ σ13 − c
2 σ11 +

1
2 (Aσ11 + Bσ12 + Cσ13)

))
ii. If u(γ, θ, λ) = e−cθ̂ then

θ̂BL = θ̂ + log
(

1 − c
(
− 1

γ̂ σ21 +
a−1−bθ̂

θ̂
σ22 − 1

γ̂ σ23 − c
2 σ22 +

1
2 (Aσ12 + Bσ22 + Cσ32)

))
iii. If u(γ, θ, λ) = e−cλ̂ then

λ̂BL = λ̂ + log
(

1 − c
(
− 1

γ̂ σ31 +
a−1−bθ̂

θ̂
σ32 − 1

γ̂ σ33 − c
2 σ33 +

1
2 (Aσ13 + Bσ23 + Cσ33)

))
Finally, the Bayes estimate using the GELF are thus

i. If u(γ, θ, λ) = γ̂−c then

γ̂BG =
[
γ̂−c

[
1 − c

γ̂

(
− 1

γ̂ σ11 +
a−1−bθ̂

θ̂
σ12 − 1

γ̂ σ13 − c+1
2γ̂ + 1

2 (Aσ11 + Bσ12 + Cσ13)
)]]− 1

c

ii. If u(γ, θ, λ) = θ̂−c then

θ̂BG =
[
θ̂−c

[
1 − c

θ̂

(
− 1

γ̂ σ21 +
a−1−bθ̂

θ̂
σ22 − 1

γ̂ σ23 − c+1
2̂θ̂

+ 1
2 (Aσ12 + Bσ22 + Cσ32)

)]]− 1
c

iii. If u(γ, θ, λ) = λ̂−c then

λ̂BG =
[
γ̂−c

[
1 − c

λ̂

(
− 1

γ̂ σ31 +
a−1−bθ̂

θ̂
σ32 − 1

γ̂ σ33 − c+1
2λ + 1

2 (Aσ13 + Bσ23 + Cσ33)
)]]− 1

c
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5. Results

5.1. Simulation Techniques

In this section, we consider a monte carlo simulation study to evaluate the performance of all the
estimators using the MSE and biases with respect to different sample sizes n =(20, 50, 100,200,
500) for different parameters TR − IG(γ, θ, λ) = [(1,1,1), (0.7, 1 0.5), (0.5, 1, -0.5) and (0.5, 0.5 ,-0.2)]
respectively. The results obtained from the analysis are displayed in Tables (1 - 7) and the results
shown that the estimates using both the classical techniques and Bayesian methods performed
excellently in estimating model parameters of the TR-IG distribution since the estimated results
are closed to the true parameter values with small MSE and bias as the sample sizes increases for
all the estimation techniques considered in this study.

Table 1: The MLE estimates, Bias and MSE for different parameter values.

n Values γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1

1.3933 1.7840 -2.170 0.3933 0.7840 -3.1707 0.1547 0.6146 0.6146
50 1.0849 1.0267 2.0412 0.0849 0.0267 1.0412 0.0072 0.0007 0.0007
100 1.2748 1.4741 1.5233 0.2748 0.4741 0.5233 0.0755 0.2248 0.2248
200 1.0842 0.9210 1.0594 0.0842 -0.0789 0.0594 0.0071 0.0062 0.0062
500 1.0406 0.9230 1.0752 0.0406 -0.0769 0.0752 0.0016 0.0059 0.0059

20
γ = 0.7
θ = 1
λ = 0.5

0.8490 0.9426 0.9628 0.1490 -0.0573 0.4628 0.0222 0.0032 0.0032
50 0.8012 0.4173 2.1917 0.1012 -0.5826 1.6917 0.0102 0.3395 0.3395
100 0.9900 0.6209 1.5020 0.2900 -0.3790 1.0020 0.0841 0.1436 0.1436
200 0.8170 1.0175 0.5633 0.1170 0.01757 0.0633 0.0137 0.0003 0.0003
500 0.7696 0.9641 0.5986 0.0696 -0.0358 0.0986 0.0048 0.0012 0.0012

20
γ = 0.5
θ = 1
λ = -0.5

0.6706 1.2368 -1.7885 0.1706 0.2368 -1.2885 0.0291 0.0561 0.0561
50 0.4520 0.5452 -0.3392 -0.0479 -0.4547 0.1607 0.0023 0.2068 0.2068
100 0.5724 0.9028 -0.5957 0.0724 -0.0971 -0.0957 0.0052 0.0094 0.0094
200 0.6274 0.9089 -0.3868 0.1274 -0.0910 0.1131 0.0162 0.0082 0.0082
500 0.5189 0.9966 -0.4976 0.0189 -0.0033 0.0023 0.0003 1.1E-05 1.1E-05

20
γ = 0.5
θ = 0.5
λ = -0.2

0.0679 -0.0188 -0.1817 -0.4320 -0.5188 0.0182 0.1866 0.2691 0.2691
50 0.2330 0.0920 0.2068 -0.2667 -0.4079 0.4068 0.0712 0.1664 0.1664
100 0.3784 0.3681 -0.2509 -0.1215 -0.1318 -0.0509 0.0147 0.0173 0.0173
200 0.4593 0.4362 -0.1983 -0.0406 -0.0637 0.0016 0.0016 0.0040 0.0040
500 0.4179 0.5230 -0.3623 -0.0820 0.0230 -0.1623 0.0067 0.0005 0.0005
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Table 2: The Bayesian estimate using GELF, Bias and MSE for different parameter values.

n Values γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1
c = 1

1.5700 1.9749 0.2172 -0.5700 -0.9749 0.7828 0.3249 0.9504 0.9504
50 1.0552 0.9894 1.6972 -0.0552 0.0106 0.6972 0.0030 0.0001 0.0001

100 1.2573 2.1781 1.8270 -0.2573 -1.1781 -0.8270 0.0662 1.3878 1.3878
200 1.0766 0.9160 1.0860 -0.0766 0.0840 -0.0860 0.0059 0.0071 0.0071
500 1.0377 0.9208 1.0854 -0.0377 0.0792 -0.0854 0.0014 0.0063 0.0063

20
γ = 0.7
θ = 1

λ = 0.5
c =1

0.7795 0.8400 -2.7292 -0.0795 0.1600 1.2292 0.0063 0.0256 0.0256
50 0.8106 0.4566 -0.8339 -0.1106 0.5434 1.3339 0.0122 0.2953 0.2953

100 0.9805 0.6114 8.3239 -0.2805 0.3886 -7.8239 0.0787 0.1510 0.1510
200 0.8090 1.0061 0.6476 -0.1090 -0.0061 -0.1476 0.0119 0.0000 0.0000
500 0.7667 0.9596 0.6238 -0.0667 0.0404 -0.1238 0.0044 0.0016 0.0016

20
γ = 0.5
θ = 1

λ = -0.5
c = -1

0.6499 1.1989 -1.7308 -0.1499 -0.1989 1.2308 0.0225 0.0395 0.0395
50 0.4390 0.5267 -0.2967 0.0610 0.4733 -0.2033 0.0037 0.2240 0.2240

100 0.5669 0.8942 -0.5799 -0.0669 0.1058 0.0799 0.0045 0.0112 0.0112
200 0.6246 0.9049 -0.3776 -0.1246 0.0951 -0.1224 0.0155 0.0090 0.0090
500 0.5181 0.9953 -0.4949 -0.0181 0.0047 -0.0051 0.0003 0.0000 0.0000

20
γ = 0.5
θ = 0.5
λ = -0.2
c = -1

0.0362 -0.0674 -0.0715 0.4638 0.5674 -0.1285 0.2151 0.3219 0.3219
50 0.2153 0.0708 0.2833 0.2847 0.4292 -0.4833 0.0811 0.1842 0.1842

100 0.3703 0.3577 -0.2202 0.1297 0.1423 0.0202 0.0168 0.0202 0.0202
200 0.4553 0.4314 -0.1808 0.0447 0.0686 -0.0192 0.0020 0.0047 0.0047
500 0.4167 0.5214 -0.3567 0.0833 -0.0214 0.1567 0.0069 0.0005 0.0005

Table 3: The Bayesian estimate using LINEX, Bias and MSE for different parameter values

n Values γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1
c =1

0.3809 0.4126 2.2994 0.6191 0.5874 -1.2994 0.3833 0.3451 0.3451
50 1.2102 0.6444 -2.5123 -0.2102 0.3556 3.5123 0.0442 0.1264 0.1264

100 1.1813 0.1028 0.6599 -0.1813 0.8972 0.3401 0.0329 0.8050 0.8050
200 1.1288 1.0870 0.9989 -0.1288 -0.0870 0.0011 0.0166 0.0076 0.0076
500 1.0672 1.0210 1.0269 -0.0672 -0.0210 -0.0269 0.0045 0.0004 0.0004

20
γ = 0.7
θ = 1

λ = 0.5
c =1

0.9130 1.0132 0.2642 -0.2130 -0.0132 0.2358 0.0454 0.0002 0.0002
50 1.2158 0.9125 -0.3400 -0.5158 0.0875 0.8400 0.2661 0.0077 0.1685

100 1.1905 0.8456 -0.2682 -0.4905 0.1544 0.7682 0.2406 0.0239 0.0239
200 0.7941 0.9342 0.4847 -0.0941 0.0658 0.0153 0.0089 0.0043 0.0043
500 0.7636 0.9384 0.5599 -0.0636 0.0616 -0.0599 0.0040 0.0038 0.0038

20
γ = 0.5
θ = 1

λ = -0.5
c=-1

0.6660 1.2612 -0.7200 -0.1660 -0.2612 -0.2200 0.0276 0.0682 0.4852
50 0.4446 0.5059 -0.3653 0.0554 0.4941 -0.1347 0.0031 0.2442 0.2442

100 0.5743 0.9084 -0.6158 -0.0743 0.0916 0.1158 0.0055 0.0084 0.0084
200 0.6285 0.9109 -0.3955 -0.1285 0.0891 -0.1045 0.0165 0.0079 0.0079
500 0.5193 0.9980 -0.5008 -0.0193 0.0020 0.0008 0.0004 0.0000 0.0000

20
γ = 0.5
θ = 0.5
λ = -0.2

c=-1

0.0007 -0.3024 -0.2992 0.4993 0.8024 0.0992 0.2493 0.6438 0.6438
50 0.2015 0.0137 0.0638 0.2985 0.4863 -0.2638 0.0891 0.2365 0.2365

100 0.3741 0.3568 -0.2791 0.1259 0.1432 0.0791 0.0159 0.0205 0.0205
200 0.4584 0.4332 -0.2103 0.0416 0.0668 0.0103 0.0017 0.0045 0.0045
500 0.4181 0.5233 -0.3653 0.0819 -0.0233 0.1653 0.0067 0.0005 0.0005
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Table 4: The Bayesian estimate using SELF, Bias and MSE for different parameter values

n γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1

0.9476 1.2083 0.9019 0.0524 -0.2083 0.0981 0.0027 0.0434 0.0434
50 1.1452 0.8396 1.0749 -0.1452 0.1604 -0.0749 0.0211 0.0257 0.0257

100 1.2268 0.9133 1.1424 -0.2268 0.0867 -0.1424 0.0514 0.0075 0.0075
200 1.1058 1.0044 1.0302 -0.1058 -0.0044 -0.0302 0.0112 0.0000 0.0000
500 1.0537 0.9721 1.0515 -0.0537 0.0279 -0.0515 0.0029 0.0008 0.0008

20
γ = 0.7
θ = 1

λ = 0.5

0.8749 0.9668 0.6708 -0.1749 0.0332 -0.1708 0.0306 0.0011 0.0011
50 1.0160 0.6759 0.8044 -0.3160 0.3241 -0.3044 0.0998 0.1051 0.1051

100 1.0910 0.7341 0.8397 -0.3910 0.2659 -0.3397 0.1529 0.0707 0.0707
200 0.8050 0.9751 0.5277 -0.1050 0.0249 -0.0277 0.0110 0.0006 0.0006
500 0.7664 0.9509 0.5806 -0.0664 0.0491 -0.0806 0.0044 0.0024 0.0024

20
γ = 0.5
θ = 1

λ = -0.5

0.5120 1.0705 -0.6552 -0.0120 -0.0705 0.1552 0.0001 0.0050 0.0050
50 0.6015 0.8504 -0.4043 -0.1015 0.1496 -0.0957 0.0103 0.0224 0.0224

100 0.5988 0.9835 -0.4885 -0.0988 0.0165 -0.0115 0.0098 0.0003 0.0003
200 0.6511 0.9742 -0.3346 -0.1511 0.0258 -0.1654 0.0228 0.0007 0.0007
500 0.5214 1.0081 -0.4678 -0.0214 -0.0081 -0.0322 0.0005 0.0001 0.0001

20
γ = 0.5
θ = 0.5
λ = -0.2

0.4064 0.5934 -0.6487 0.0936 -0.0934 0.4487 0.0088 0.0087 0.0087
50 0.4748 0.4553 -0.3847 0.0252 0.0447 0.1847 0.0006 0.0020 0.0020

100 0.4836 0.5361 -0.4501 0.0164 -0.0361 0.2501 0.0003 0.0013 0.0013
200 0.5183 0.5333 -0.3103 -0.0183 -0.0333 0.1103 0.0003 0.0011 0.0011
500 0.4336 0.5511 -0.3879 0.0664 -0.0511 0.1879 0.0044 0.0026 0.0026

Table 5: OLS estimates, Bias and MSE for the simulated values

n Values γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1

1.0444 0.7986 1.1393 -0.0444 0.2014 -0.1393 0.0020 0.0405 0.0405
50 0.9979 1.0074 1.0142 0.0021 -0.0074 -0.0142 0.0000 0.0001 0.0001

100 1.0355 1.0912 0.9270 -0.0355 -0.0912 0.0730 0.0013 0.0083 0.0083
200 1.0684 1.1656 0.8362 -0.0684 -0.1656 0.1638 0.0047 0.0274 0.0274
500 1.0309 1.0772 0.9979 -0.0309 -0.0772 0.0021 0.0010 0.0060 0.0060

20
γ = 0.7
θ = 1

λ = 0.5

0.5445 1.0569 0.6307 0.1555 -0.0569 -0.1307 0.0242 0.0032 0.0032
50 0.7043 1.0029 0.5329 -0.0043 -0.0029 -0.0329 0.0000 0.0000 0.0000

100 0.7956 1.0147 0.4648 -0.0956 -0.0147 0.0352 0.0091 0.0002 0.0002
200 0.8361 1.0624 0.3252 -0.1361 -0.0624 0.1748 0.0185 0.0039 0.0039
500 0.7327 1.0585 0.4770 -0.0327 -0.0585 0.0230 0.0011 0.0034 0.0034

20
γ = 0.5
θ = 1

λ = -0.5

0.4300 0.9754 -0.3656 0.0700 0.0246 -0.1344 0.0049 0.0006 0.0006
50 0.5046 1.0022 -0.4892 -0.0046 -0.0022 -0.0108 0.0000 0.0000 0.0000

100 0.5923 1.0111 -0.5143 -0.0923 -0.0111 0.0143 0.0085 0.0001 0.0001
200 0.6208 1.0654 -0.5974 -0.1208 -0.0654 0.0974 0.0146 0.0043 0.0043
500 0.5374 1.0534 -0.5178 -0.0374 -0.0534 0.0178 0.0014 0.0029 0.0029

20
γ = 0.5
θ = 0.5
λ = -0.2

0.5315 0.3582 -0.1056 -0.0315 0.1418 -0.0944 0.0010 0.0201 0.0201
50 0.5138 0.4900 -0.1926 -0.0138 0.0100 -0.0074 0.0002 0.0001 0.0001

100 0.5237 0.5591 -0.2425 -0.0237 -0.0591 0.0425 0.0006 0.0035 0.0035
200 0.5523 0.5970 -0.3090 -0.0523 -0.0970 0.1090 0.0027 0.0094 0.0094
500 0.5197 0.5442 -0.2383 -0.0197 -0.0442 0.0383 0.0004 0.0020 0.0020
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Table 6: MPS estimates, Bias and MSE for the simulated values

n Values γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1

1.0230 0.9286 0.7827 -0.0230 0.0714 0.2173 0.0005 0.0051 0.0051
50 1.0807 0.8271 0.9403 -0.0807 0.1729 0.0597 0.0065 0.0299 0.0299

100 1.1303 0.9557 1.0101 -0.1303 0.0443 -0.0101 0.0170 0.0020 0.0020
200 1.0660 1.0193 0.9686 -0.0660 -0.0193 0.0314 0.0044 0.0004 0.0004
500 1.0181 0.9949 1.0038 -0.0181 0.0051 -0.0038 0.0003 0.0000 0.0000

20
γ = 0.7
θ = 1

λ = 0.5

0.9815 0.6772 0.6045 -0.2815 0.3228 -0.1045 0.0792 0.1042 0.1042
50 1.0213 0.6075 0.7410 -0.3213 0.3925 -0.2410 0.1032 0.1540 0.1540

100 1.0915 0.6921 0.7970 -0.3915 0.3079 -0.2970 0.1532 0.0948 0.0948
200 0.8248 0.9325 0.5298 -0.1248 0.0675 -0.0298 0.0156 0.0046 0.0046
500 0.7810 0.9256 0.5875 -0.0810 0.0744 -0.0875 0.0066 0.0055 0.0055

20
γ = 0.5
θ = 1

λ = -0.5

1.6379 0.1379 0.5668 -1.1379 0.8621 -1.0668 1.2947 0.7432 0.7432
50 1.5484 0.1713 0.6225 -1.0484 0.8287 -1.1225 1.0991 0.6868 0.6868

100 1.6676 0.2513 0.6615 -1.1676 0.7487 -1.1615 1.3633 0.5606 0.5606
200 0.6542 0.9326 -0.3554 -0.1542 0.0674 -0.1446 0.0238 0.0045 0.0045
500 0.9890 0.6552 0.2423 -0.4890 0.3448 -0.7423 0.2391 0.1189 0.1189

20
γ = 0.5
θ = 0.5
λ = -0.2

0.8555 1.1375 0.4301 -0.3555 -0.6375 -0.6301 0.1264 0.4065 0.4065
50 1.1167 0.0400 0.5593 -0.6167 0.4600 -0.7593 0.3803 0.2116 0.2116

100 1.2114 0.0889 0.5987 -0.7114 0.4111 -0.7987 0.5062 0.1690 0.1690
200 0.5270 0.5020 -0.3156 -0.0270 -0.0020 0.1156 0.0007 0.0000 0.0000
500 1.1111 0.0000 0.6778 -0.6111 0.5000 -0.8778 0.3735 0.2500 0.2500

Table 7: The CVM estimates, Bias and MSE for the simulated values

n Values γ̂ θ̂ λ̂ γ̂Bias θ̂Bias λ̂Bias γ̂MSE θ̂MSE λ̂MSE

20
γ = 1
θ = 1
λ = 1

1.0209 0.9660 1.1022 -0.0209 0.0340 -0.1022 0.0004 0.0012 0.0012
50 1.0513 1.0769 0.9379 -0.0513 -0.0769 0.0621 0.0026 0.0059 0.0059

100 1.0598 1.1720 0.8364 -0.0598 -0.1720 0.1636 0.0036 0.0296 0.0296
200 1.1118 1.2235 0.7814 -0.1118 -0.2235 0.2186 0.0125 0.0500 0.0500
500 1.0926 1.0991 0.8669 -0.0926 -0.0991 0.1331 0.0086 0.0098 0.0098

20
γ = 0.7
θ = 1

λ = 0.5

0.6705 1.0208 0.5809 0.0295 -0.0208 -0.0809 0.0009 0.0004 0.0004
50 0.7955 1.0136 0.4675 -0.0955 -0.0136 0.0325 0.0091 0.0002 0.0002

100 0.8104 1.0894 0.3628 -0.1104 -0.0894 0.1372 0.0122 0.0080 0.0080
200 0.8899 1.1010 0.2976 -0.1899 -0.1010 0.2024 0.0361 0.0102 0.0102
500 0.7668 1.0906 0.4191 -0.0668 -0.0906 0.0809 0.0045 0.0082 0.0082

20
γ = 0.5
θ = 1

λ = -0.5

0.4851 1.0183 -0.4424 0.0149 -0.0183 -0.0576 0.0002 0.0003 0.0003
50 0.5593 1.0397 -0.5468 -0.0593 -0.0397 0.0468 0.0035 0.0016 0.0016

100 0.6335 1.0521 -0.5911 -0.1335 -0.0521 0.0911 0.0178 0.0027 0.0027
200 0.6754 1.0881 -0.6524 -0.1754 -0.0881 0.1524 0.0308 0.0078 0.0078
500 0.5966 1.0494 -0.5740 -0.0966 -0.0494 0.0740 0.0093 0.0024 0.0024

20
γ = 0.5
θ = 0.5
λ = -0.2

0.5134 0.4739 -0.1671 -0.0134 0.0261 -0.0329 0.0002 0.0007 0.0007
50 0.5278 0.5544 -0.2396 -0.0278 -0.0544 0.0396 0.0008 0.0030 0.0030

100 0.5601 0.5904 -0.3026 -0.0601 -0.0904 0.1026 0.0036 0.0082 0.0082
200 0.6012 0.6143 -0.3492 -0.1012 -0.1143 0.1492 0.0102 0.0131 0.0131
500 0.5453 0.5665 -0.2794 -0.0453 -0.0665 0.0794 0.0021 0.0044 0.0044
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5.2. Application

In this section, we analyzed the strength of glass of aircraft window datasets adopted by Fuller
et al. [20] (whose dataset is displayed in Table ( 8) to ascertain that the TR-IG distribution is a
good lifetime model, when compared with three known distribution like Inverse Gompertz (IGD),
inverse Rayleigh (IR) and inverse Exponential distribution (IE). To assess the TR-IG distribution’s
goodness-of-fit with these distributions, some criteria (such as the Kolmogorov-Smirnov test
statistic (KS), log-likelihood (L) values, Akaike information criterion (AIC), Bayesian information
criterion (BIC), and Cramér-von Mises statistic (W∗) and Anderson-Darling statistic (A∗)) were
used to fit all of the above-mentioned distributions.

Figure 3 displayed the estimated PDFs, estimated CDFs of all tested distributions and the
empirical and theoretical CDF. From the results displayed in Table 9, we deduced that the TR-IG
distribution fits the data better than the other four model. Table 10, shows the classical and
Bayesian estimates for the strength of glass of aircraft windows.

Table 8: The strength of glass of aircraft window.

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52
26.77 26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76
35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29 45.381

Table 9: The estimates and goodness-of-fit measurements for glass strength data set.

Statistics
Model

IE IR IG TR-IG
γ 29.215 810.504 1.249 0.6563
θ – - 0.6411 119.762 126.5584
λ – –

KS 0.477 0.325 0.139 0.1349
-L 137.262 118.201 107.884 94.5072

AIC 241.2363 208.4237 195.9174 193.0145
BIC 242.5321 209.7196 198.5090 196.902
A* 7.2108 3.5316 0.6034 0.5349
W* 1.5051 0.6627 0.0841 0.0748

Figure 3: The Histogram, empirical and theoretical densities for Glass strength dataset .
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Table 10: Estimated values of the strength of glass for aircraft window under different estimation techniques

Estimation
Techniques

γ̂ θ̂ λ̂

CVM 0.4574 124.1316 -0.7821
MPS 0.9403 112.6889 -0.6803
SELF 0.5428 121.5032 -0.8790

LINEX (c =-1) 0.5467 129.2076 -0.9585
OLS 0.5663 122.5142 -0.5257

GELF (c =1) 0.7698 129.7899 -0.5152

6. Conclusion

We introduced a novel model called the TR-IG distribution, which expands upon the inverse
Gompertz distribution for analyzing data with a real support. One clear motivation for extending
a standard distribution is to increase the flexibility in modeling complex dataset. We derived
some properties such as hazard function, survival function and etc. The parameters were
estimated using both the classical and Bayesian estimation techniques.The utilization of the TR-IG
distribution on actual data demonstrates that this new distribution can be employed with great
effectiveness to yield superior fits in comparison IE, IR and IG distributions.
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Abstract

Transportation plays an important role in the day to day activities of human race. Road, rail, water
and air are the four major forms of transportation in Nigeria. Road transportation is the most common
means of movement in Oyo State and this has raise the likelihood of the occurrence of road traffic accident
even posing a serious problem that needs serious attention. Road traffic accidents would Continually
increase if tangible efforts are not made to tackle is problem. In Oyo state, the epicenter of the western
Nigeria, road transportation is the most popular means of transportation. Of concern is the accidents
recorded daily on the roads. This study takes into account the series of accidents caused on the state
roads due to vehicle types. Seven vehicle types were considered due to the data available. Bayesian Model
Averaging (BMA), a variable selection approach, was used to handle uncertainty in the model selection
process. Several classical approach like time series have been used in analysing road accidents but few
had explored the Bayesian approach via BMA route. A uniform model prior was used with a numeric
g-prior to improve the predictive performance. The trend of accidents were observed for a period of 15
years from (2006 - 2020). 78% of the models were visited and using the Posterior Inclusion Probability
results (99.546%), it was seen that the accidents that occurred via private cars was the predominant. It is
the most important in modeling vehicle type accidents in Oyo State Nigeria. Also, accidents for 2023 and
2024 were predicted using the posterior predictive distribution. It is imperative for concerned authorities
(Federal Road Safety Corps amongst others) in the state to look into the issue of private car owners in the
state.

Keywords: Bayesian Model Averaging, Posterior Inclusion Probability, Predictive, Trend, Trans-
portation, Private Cars

1. Introduction

Transport plays a significant role in the day to day activities of man. The four main modes of
transportation are air travel, road travel, river travel, and rail travel. Of these forms of transport,
the most popular is road transport. As a country develops in economy, it proportionally becomes
more motorized, as a result, more persons are expected to use road transport. This increase in the
usage of road transport raises the probability of road traffic accident occurrence to a significant
amount. Road traffic accidents are serious problems facing mankind today.

According to a 2018 World Health Organization publication on the state of global road safety
(WHO), there have been increase in fatalities emanating from road traffic accident to 1.3 million
annually (WHO [1]).

Nigeria is ranked as a lower middle-income economy, over the last decade an increase in Road
transport accidents has been experienced. This is as a result of growing motorization and increase
in urbanization in the country. As a low-income economy, road infrastructure development is still
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lagging, as are policy challenges in meeting international safety standards. According to Ogbodo
and Nduoma [2], the death rate from road traffic accidents is 162 per 100,000 people. This data
compares to the global average of 22 deaths per 100,000 people (Sukhai et al. [3]).

Road traffic accident has become one of the issues of great concern in Nigeria. A road traffic
accident occurs almost every day, resulting in an overall increase in morbidity and mortality rates,
as well as financial costs to both society and the individual involved. It is disheartening that road
accident is becoming a daily occurrence due to the fact that road traffic integration is treated as
secondary issue in Nigeria.

According to Sanusi, et al. [4], road traffic accident has been classified using the International
Statistical Classification of Diseases and Related Health Problems, as one of the leading causes of
death worldwide. Road traffic accident was defined by Odugbemi [5] as anything that occur by
chance, anything happening unexpectedly and undersigned. It has been noticed that there is an
overall increase in the incidence, morbidity, and mortality rates of road traffic accidents around
the world, with the majority of these fatalities and morbidities occurring in developing nations
such as Nigeria. (Eze [6]; Agbonkhese et al. [7]).

Road traffic accidents are caused by one or more of three basic variables: environmental
factors, mechanical factors, and human factors. Human factors are considered to be responsible
for around 80% of all traffic accidents since drivers’ operating ability is critical to the causes and
prevention of traffic accidents Afolabi and Gbadamosi [8]. Agbonkhese, et al. [7] opined that on
many Nigerian roads, deterioration often begins with the production of cracks or potholes on
the road tarmacs, which vary depending on their configuration, traffic flow, forms, amplitude
of stress, and rate of deformation. Aside from human and vehicle factors, the existence of these
potholes is known to be one of the leading causes of road traffic accidents in Nigeria.

Deaths from reckless driving are the third biggest cause of mortality in Nigeria as a whole.
According to Agbonkhese et al. [7], 473 people died in a total of 1,115 automotive accidents in
Nigeria in 2012, while more people perished in vehicular accidents in 2013. They advocated for
treating road traffic accidents as a serious issue that requires immediate attention in order to
prevent early deaths and reduce the health, social, and economic consequences for the typical
Nigerian.

Despite the scale of the problem and the loss of life, Oyo state has failed to receive the
necessary attention. It is past time for the government to prioritize road traffic accidents in order
to reduce their health, social, and economic consequences. In this project, an analysis of a 15-year
(2006-2020) publically accessible data set will be sought to reveal patterns and traffic conditions
on Oyo state’s highways. The primary goal is to analyze the prevalence of accidents in Oyo state
based on deaths, causative agent, and kind of vehicle involved.

Many safety strategies have been put in place by the Nigerian Government to check the
menace of road traffic accidents through its agencies. For these policies to be effective continuous
researches on the Road Traffic Accident (RTA) cases as well as on the implementation of the
policies need to be carried out. Therefore, considering the importance of the road and the
increased level of road traffic accidents in recent years, there is the need for this study which
aimed at obtaining a model which would show the pattern of road traffic accidents. This would
provide a parameter for assessing the effectiveness of current strategies for reducing accidents on
our roads and for the development of new strategies where necessary by those responsible for
maintaining safety on our local

2. Nigerian Road Traffic Accidents

A crash is an unexpected event that causes damage, injuries, and, in extreme cases, death. A
crash might be single (just one vehicle involved) or multiple (two or more vehicles involved).
Accidents are classified as fatal, serious, or minor. A crash is considered fatal when there is a loss
of human life. A serious crash occurs when someone is critically hurt and hospitalized, whereas
a minor crash occurs when no injuries occur or when the victim is treated for minor injuries and
immediately dismissed from the hospital. According to Chun et al. [9] and Abayomi [10], the
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causes of road traffic accidents can be divided into three categories: human factors, mechanical
factors, and environmental factors.

According to Oyenuga et al. [11], human factors account for approximately 80% of the causes
of road traffic accidents, with the following being the leading causes: drunk driving, illiteracy,
psychological factors, reliance, poor vision, temperaments, overconfidence, poor driving culture,
economic factors, and underage drivers. Mechanical issues include the usage of motorized
vehicles such as cars, trucks, buses, and motorcycles without adequate maintenance. Iwok [12]
concurs that, while the driver (human factor) accounts for roughly 80% of the causal index of
road crashes in Nigeria, vehicle conditions are a component that cannot be overlooked in this
type of analysis. The geography of most of Nigeria’s road network presents significant challenges
to road development. Mountains, valleys, and rivers lead to acute bends, steep bills, and sharp
slopes, all of which are potentially dangerous aspects for inexperienced highway motorists. Our
tropical climate also presents difficulties for drivers. Heavy rainfall in the south and abnormally
hot weather conditions, along with harmattan dust in northern Nigeria, have an impact on our
road network. Potholes are easily formed, and deadly black’s pots all pose obstacles to reading
users.

In his study titled "Time Series Analysis of Road Accident in Osun State," Iwok [12] suggested
that in order to better the work of the FRSC, there should be an emergency line for the commission
to contact in case of an accident. Aluko [13] used multiple correlation coefficients to analyze her
data and came to the conclusion that if the government improves the measures against motor
vehicle accidents, the total number of accidents and adverse socioeconomic effects would be
greatly reduced, allowing the country to move forward positively into an advanced or developing
country. Trivedi and Rawal [14], evaluated the frequency of major and minor road traffic accidents
among young drivers, as well as its relationship with driving practices. The study employed
a cross-sectional design with young drivers drawn from tuition programs in Ahmedabad and
Vadodara. The findings revealed that the prevalence of road traffic accidents is high among young
drivers and is associated to driving at high speeds, using mobile phones, and failing to observe
safety measures while driving.

According to Agbonkhese et al. [7], reckless driving deaths are the third biggest cause of
death in Nigeria. According to Agbonkhese et al. [7], at least 473 people died in a total of
1,115 automobile incidents in Nigeria in 2012. More people perished in automotive accidents
in 2013. They advocated for treating road traffic accidents as a serious issue that requires
immediate attention in order to prevent early deaths and reduce the health, social, and economic
consequences for the typical Nigerian. Using bus priority measures in Melbourne and analyzing
resultant road safety performance and bus-involved accidents, Chun et al. [9], summarized their
findings. An empirical investigation of accident types found a considerable reduction in the
proportion of accidents involving buses colliding with stationary objects and cars, indicating the
influence of bus priority in addressing bus maneuverability concerns. A main result of this study
is that bus priority improves road safety in Melbourne and should be a major concern for road
management organizations when implementing bus priority and road plans. Abdulkabir and
Edem [15], investigated the pattern of accident occurrence in Ibadan, Nigeria. Their research
revealed an increase tendency.

According to Sanusi et al. [4], vehicle traffic accidents in Nigeria have been increasing at an
alarming rate. They examined road traffic accidents in Nigeria from 1960 to 2013 using time
series analysis. They provided appropriate Autoregressive Integrated Moving Average (ARIMA)
models for several kinds of road accidents, including minor cases, major cases, fatal cases, and
total cases. They discovered that the ARIMA (1,1,1) model works best for minor and total cases,
the ARIMA (1,1,0) model works best for serious instances, and the ARIMA (0,1,1) model works
best for fatal cases. The forecast based on the various models suggests an average increase in the
data for all scenarios. Iwok [12], utilized the ARIMA model to fit data from road traffic accidents
in Port Harcourt. The seasonal-ARIMA model was found to fit the data in the study. Oyenuga
et al. [11], also analyzed the pattern of monthly road accidents data along Oyo-Ibadan express
road between 2004 to 2014. They employed moving average method to decompose the time series
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using additive model approach. From the result they observed that accidents and deaths were
higher at festive periods. Emenike and Kanu [18], examined how road traffic accidents can be
caused by drivers distraction in Port Harcourt. The study also publicized that the use of mobile
phones and gadgets in vehicles were blamable for most accidents involving commercial drivers.

Aluko [13], investigated the characteristics of road accident victims in Ado-Ekiti, Nigeria.
According to the report, a bigger proportion of those involved in vehicle accidents were of
working age. Macharia et al. [19] examined monthly road accident data for eight years, beginning
in January 2010 and ending in December 2017. They used the Box-Jekins method for the analysis
and Eviews as the statistical software. The study found no seasonality in the data, contradicting
popular notion that accidents in this region of the world are seasonal, with increased incidence in
September, October, November, and December. This implies that road accidents occur throughout
the year, not just during specific seasons, within the research area. Feldkircher and Zeugner [20],
utilized the ARIMA model to anticipate accidents up to ten years later (2030) and characterize
the frequency of road traffic incidents that result in harm. A total of 70039 road traffic accidents
were recorded during the 9-year observation period (from 2013 to 2021). The time plot shows a
systematic shift, indicating a trend in the data. Furthermore, the trend exhibits an exponential
decrease. This analysis concluded that traffic accidents are falling exponentially at a rate of 0.360
per year. The number of road accidents was predicted to fall to 47 (97%) by 2030, which is higher
than the current objective of 50%, and that the time series for the yearly number of road traffic
accidents did not exhibit substantial seasonality or moving average components.

The significance of this study is that it provides a method of minimizing the number of road
traffic accidents/collisions in Oyo state and throughout Nigeria. It will assist road users and
management of the Federal Road Safety Corps and the Nigeria police in determining the rate
and working toward the reduction of accidents in Oyo state, particularly in the always busy and
congested areas that have the highest reported cases and casualties of road traffic crash/accidents.

3. Methodology

3.1. Averaging in the Bayesian Model (BMA)

Canonical regression problems including model uncertainty are addressed with Bayesian Model
Averaging (BMA) Akanbi and Oladoja, [21], (Akanbi and Oladoja [22], Obisesan and Oladoja [23]).
Given a linear model, y is the response variable, µi is the intercept, and φj are the predictors,

y = µi + Xj φj + ε ε ∼ N(0, σ2 I) (1)

where ε is independently and identically distributed with mean zero and variance σ2 The problem
arises if matrix X has a large number of explanatory variables. It is inefficient or even impossible
to draw conclusions from a single linear model that includes all variables when the sample size is
small. An alternative strategy is to estimate models for all possible combinations of [X] and then
construct a weighted average of those models. The estimate of 2K models is required if X consists
of K potential variables. As a result of Bayes’ theorem, posterior model probabilities are used for
weighting the models.

p(Bj|y, X) =
p(y|Bj, X)p(Bj)

p(y|X)
=

p(y|Bj, X)p(Bj)

∑2K
s=1 p(y|Bs, X)p(Bs)

(2)

The integrated likelihood over all models is denoted by the multiplicative term p(y|X). In other
words, the posterior model probability (PMP) (p(Bj|y, X)) can be determined as a function of
the model’s marginal likelihood (MLM) (p(y|Bj, X), the probability of the data given the model)
multiplied by a prior model probability (p(Bj) - a researcher’s belief before looking at data is
the likelihood of the model being accurate. For any statistic, renormalization yields the model
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weighted posterior distribution (MWPD) π.

p(π|y, X) =
2K

∑
j=1

p(π|Bj, X)p(Bj|X, y) (3)

Priors on the model parameters must be specified in order to obtain posterior distributions. The
constant variance and error variance here have ’improper’ priors, which means their distribution
is equal. The researcher constructs a normal distribution based on her prior beliefs on coefficients
before analyzing the data. Often, it is assumed that the coefficients have zero prior means because
little is known about them. Their variance structure is

φj|g ∼ N

(
0, σ2

(
1
g

X′
jXj

)−1
)

(4)

Essentially, the researcher believes coefficients are zero and their variance-covariance structure
closely matches the data’s. In relation to g, a researcher’s level of certainty is expressed by the
degree to which he or she believes that coefficients are indeed zero. It implies that the researcher
is confident (or conservative) that there are no prior coefficient variances. An increase in g, in
contrast, indicates a researcher’s uncertainty about the coefficients.

3.2. Predictive Performance of Priors in BMA

Forecasting is a primary goal of statistical analysis. Similarly, there is always the argument that,
everything else being equal, when comparing rival modeling systems, we are more impressed with
a modeling strategy that consistently assigns greater probabilities to the events that really occur.
Thus, one way to assess the efficacy of a BMA strategy is to measure how effectively a model
predicts future data. The logarithmic scoring rule, which is based on the conditional predictive
ordinate, is one measure of predicting ability. The Log Prediction Score (LPS) specifically gauges
an individual model’s predictive skill by summing the logarithms of the observed ordinates of
the predictive density for each observation in the test set.

− ∑
d∈Dtest

logP(d|B, Dtrain) (5)

The LPS is considered by splitting the data into two halves: training set, Dtrain (which will use
the observation to estimate the BMA predictive distribution by obtaining the parameter posterior
distributions, P(πj|y∗, Bj) and testing set, Dtest (this formula forms the weights over the space
of the model to measure its predictive ability). In order to find the posterior predictive density,
you have to take the predictive likelihood and the posterior distribution of the parameters and
multiply them.

p(ỹ|y∗, Bj) =
∫

πj

p(ỹ|πj, y∗, Bj)p(πj|y∗, Bj)dπj (6)

It indicates how likely it is that the future observations ỹ have been generated under model Bj
given data y∗.

− ∑
d∈Dtest

log

[
∑

B∈A
P(d|Z, Dtrain)P(B|Dtrain

]
(7)

The better the prediction performance, the smaller the log predictive score for a specific model
or model average. We can see that the logarithmic scoring rule is correct. There are two kinds
of disparities between observed and expected values in probabilistic predictions: the predictor
tends to overestimate or underestimate their predictive accuracy because of predictive biases
(synthetically predicting on either side) and lack of calibration (synthetically underestimating or
overestimating). The predicted log score is a bias and calibration metric.
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4. Results and Discussion

4.1. Exploratory Data Analysis

The data for this study is road accident data sourced from Oyo State Bureau of Statistics. It
includes the types of vehicle (taxi, private car, bus, motor lorry, motor cycle, pedal cycle and
hand manual) plying the road in the state. It is an annual data that spans from 2006 to 2020.
Nigeria’s inland state of Oyo is located in the southwest. According to the 2016 estimate, Oyo
State’s population is estimated at 7,840,864. Road is a major means of travelling in the state with,
the state capital and previously the continent’s second most populous city, Ibadan a commercial
hub linking the west to the northern axis of the country. On the average, the number of accidents
caused by private car outweighs that of the other vehicle types while accidents caused by pedal
cycle has the least number of accidents as displayed in Table 1 below in the state.

Table 1: Five-Figure Summary of Road Accidents Due to Vehicle Types in Oyo State from 2006 to 2020

Vehicle Minimum 1st Quartile Median Mean 3rd Quartile Maximum
Taxi 8.0 36.5 60.0 97.3 147.5 323.0
Private Car 14.0 152.5 192.0 218.9 250.0 677.0
Bus 13.0 119.5 163.0 197.1 193.5 695.0
Motor Lorry 3.0 100.0 130.0 160.1 189.0 426.0
Motor Cycle 10.0 98.0 129.0 179.3 242.0 473.0
Pedal Cycle 0.0 5.0 16.0 22.6 39.0 63.0
Hand Manual 0.0 13.0 50.0 53.53 65.0 152.0

The trend for accident due to vehicle types is displayed in Figure 1 below.The trend shows
that the highest number of road accidents in the state occurred in 2013 and the number of road
accidents begins to reduce in 2020 due to the COVID’19 outbreak.

Figure 1: Time Plots for Vehicle Types of Road Accidents in Oyo State

4.2. Bayesian Model Averaging of Road Accidents

The study variable is the serious occurrences of accidents in the state from 2006 to 2020 and
the predictor are the accidents caused by different type of vehicles namely taxis (TAXI), private
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cars (PRIVATE.CAR), bus (BUS), motor lorry (MOTOR.LORRY), motor cycle (MOTOR.CYCLE),
pedal cycle (PEDAL.CYCLE) hand manual (HAND.MANUAL). The Markov Chain Monte Carlo
sampler uses 100,000 draws after the burn ins of 25,000 with uniform distribution as the prior
model and the numeric modified g-priors for the parameters. Therefore the accident model due
to vehicle types is given as

Accidents = θ0 + θ1TAXI + θ2PRIVATE.CAR + θ3BUS + θ4MOTOR.LORRY
+θ5MOTOR.CYCLE + θ6PEDAL.CYCLE + θ7HAND.MANUAL + ϵ

where, ϵ is a stochastic error term, independent and identically distributed as N(0, σ2).
The posterior probabilities of incorporating each of the regressors are shown in Table 2.

It can be seen that there are 7 explanatory factors and 15 years of observations of relevance.
The model space is 128 and the number of models visited is 100, indicating that 78% of the
models were visited. The modified g-prior employed for the application to significant accidents
caused by vehicle types in Oyo State, Nigeria, established that the shrinkage factor was close
to one, indicating overfitting. The averages and standard deviations of the Posterior Inclusion

Table 2: Summary of the Posterior Probabilities of Including each of the Regressors

Variables 7
Observations 15
Mean no. regressors 0.9973
Draw 100000
Burnings 25000
No. models visited 100
Model Space 2K 128
% Visited 78
% Top Models 100
Corr PMP 1.000
Model Prior Uniform/3.5
g-prior numeric
Shrinkage-Stats (Average) 1.0

Probabilities (PIP) of each regressor in the vehicle type accident model are shown in Table 3. Post
Mean represents the coefficients averaged over all models, even those in which the variable was
not present (implying that the coefficient is zero in this case). The covariate private automobiles
with a PIP of 99% and a relatively big coefficient band appears to be the most relevant in modeling
Nigeria vehicle type accidents in Oyo state. This demonstrates that private cars play an important
part in the selection of any vehicle type accident model in Oyo state. Table 4 displays the posterior

Table 3: Posterior Probabilities of including the Regressors in the Accident Model

Regressors PIP Post Mean Post SD Cond.Pos.Sign Index
PRIVATE.CAR 0.99546 1.4382 0.1462 1.0000 2
BUS 0.00147 0.10216 0.2980 0.96599 3
PEDAL.CYCLE 0.00033 -1.4630 0.9392 0.00000 6
TAXI 0.00002 -0.19399 0.2613 0.00000 1
MOTOR.CYCLE 0.00001 0.1553 0.2797 0.00000 5
MOTOR.LORRY 0.00000 0.00000 0.00000 0.00000 4
HAND.MANUAL 0.00000 0.00000 0.00000 0.00000 7
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probability of the top five models out of the 128 visited for both the MCMC and precise samplers.
This table shows that the best model, with a probability of 99.5%, depicts vehicle type accidents
in Oyo State, with private automobile as the predictor. The chart shows that the genuine vehicle
type accident model (20) is always preferred over any other model. Figure 2 depicts the prior

Table 4: Best 5 models of 128 models visited

Model PMP (Exact) PMP (MCMC) Predictors
20 0.99492 0.99505 PRIVATE.CAR
00 0.00350 0.00312
10 0.00118 0.00058 BUS
22 0.000204 0.000060 PRIVATE.CAR, PEDAL.CYCLE
28 0.000078 0.00026 PRIVATE.CAR, MOTOR.LORRY

and posterior distribution of model sizes, which helps to demonstrate the impact of the model
prior assumption on the estimation outcomes. In accordance with the literature (Ley and Steel,
2009; Eicher et al., 2011), the plot created allows for visual clarity of the choice of model prior on
posterior outcomes.

Figure 2: Posterior Model Size Distribution with Uniform Model Priors

Figure 3 depicts the mixed marginal posterior density for the significant regression coefficients.
The red dotted vertical lines represent the equivalent standard deviation bounds from the MCMC
technique, while the red and green vertical lines represent the conditional expected value and
median, respectively. The charts show that the values of the conditional expected value and the
median are very close to each other. Given that the related variable is included in the regression,
the density in the graphs describes the posterior distribution of the regression coefficient.
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Figure 3: Posterior Density of Private Cars Accidents in Oyo State

Bayesian Model Averaging lends itself not only to inference, but also to prediction. The
employed Bayesian regression models naturally give rise to predictive densities, whose mixtures
yields the BMA predictive density. The predictive density represents the likelihood of future
accidents based on our fitted model. Using the information from the first 15 years (2006-2020) to
forecast vehicle type accidents for the next two years, namely 2023 and 2024 as displayed in Table
5 below. The 95% credible intervals were also estimated.

5. Conclusion

Because BMA provides researchers with a thorough framework for measuring model uncertainty,
the theoretical and empirical evidence presented in this paper demonstrates the vital role of
previous assumptions in BMA. In Oyo state, Nigeria, road accidents were on the high side in
2013. Series of vehicle types accident were monitored from 2006 to 2020 namely Taxi, Private
Cars, Bus, Motor Lorry, Motor Cycle, Pedal Cycle and Hand Manuals. Using model averaging
approach, the posterior probabilities of the explanatory variables was able to visit the 78% of the
model space. Private Cars with a Posterior Inclusion Probability of 99% is important in modelling
vehicle type accidents in Oyo state Nigeria. There is need for concerned authorities (Federal Road
Safety Corps amongst others) in the state to look into the issue of private car owners in the state.
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Abstract 

Customers are frequently drawn in by lucrative deals and discounts offered by businesses. These 

interested customers are referred to as encouraged arrivals. The major goal of this study is to evaluate 

the performance of the automobile assembly line in order to decrease waiting time by coordinating the 

activities at each workstation using stopwatch time study approach. The novelty of this research is to 

convert poisson arrival to encouraged arrival with some discounts (like.,10%, 20%). The queuing 

problem is represented by the notation M/M/1: FCFS/∞/∞ in Kendall's notation. It is a single 

channel, multi-server service with infinite system capacity and an infinite number of calling 

population. Data concerning the system's encouraged arrival and service distribution were 

established. These data were used to calculate the system performance parameter. The finding of the 

study was used to predict the system's performance and effectiveness and to make logical 

recommendations for possible future improvements. According to the results, it is possible to conclude 

that increasing the level of automation reduces part waiting time, decreasing the cost of waiting. 

When compared to the poisson arrival system, the size of the Markovian encouraged arrival queuing 

system is increased as shown in the table. Little’s law is verified that system size and queue size is 

same as in length. Little's law is used to predicts lead time based on production rate and work-in-

process. Here it is verified as shown in table. 

Keywords: Encouraged arrival, Assembly Line, Queuing Analysis, Stopwatch 

time study, Steady state Solution. 

1. Introduction

In public areas like post offices, banks and gas stations, waiting is a common occurrence. Not just 

people, but also machinery and moving vehicles at traffic lights experience the phenomena of 

waiting. Bottlenecks arise and assume the shape of lines when resources are limited and unable to 

fulfil demand.  In an assembly line, to make a final product as soon as possible, pieces are 

systematically attached to a product utilizing the well-planned logistics. The sequential organization 

of employees, equipment or parts is the main goal of assembly lines. In flow-oriented production 

system, the productive units performing the operations are repeatedly linked to a service.  

          The work components are often conveyed along the line via, a transportation system such as a 

conveyor belt where they are delivered to stations one after another. The different types of assembly 

lines include single-model, batch-model and mixed-model lines. A few product models are 
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manufactured in batches, one at a time on the same line with time allocated for a changeover so that 

the line is set up for the production of a new system. The procedure for choosing the configuration 

of the goods to be produced on the line must minimize the number of workstations, balance the 

delay and fulfil other placement requirements such as production rate, variety, minimal distance 

moved, division of labor and quality.  

         Introduction to congestion theory in telephone systems was discussed in [1] effective 

implementation of cycle time reduction strategies. For semiconductor back-end manufacturing 

considered in [2]. The goal of traditional assembly line balancing procedures is to get us to the point 

of subdividing work so that the amount of time that stations are out of balance is kept to a minimum 

is studied in [3]. Queuing analysis to analyses patient load in outpatient and inpatient services to 

facilitate more realistic resource planning is found in [4]. The Application of queuing theory in multi-

stage production line is studied in [5]. Discussion of operational transport analysis methods and the 

practical application of queuing theory to stationary traffic considered in [6]. Modelling and analysis 

of manufacturing systems considered in [7]. Queuing theory in solving automobile assembly line 

problems in [8]. Improving effectiveness and efficiency of assembly line with a stopwatch time study 

and balancing activity elements was discussed in [9]. Queuing theory and manufacturing systems 

modelling and analysis are done and they are developed. Few among them were found in [10 and 

11].  Parallel tasks and stations are considered by Bard (1989), as is dead time, which is the time 

required for transporting workpieces from one station to the next while no tasks can be executed. 

         Maximization of system size in solving automobile assembly line problem using encouraged 

arrival proposed in this work. An introduction is described in Section 1. The Markovian queue with 

encouraged arrival for mathematical model formulation is described in Section 2. Numerical 

illustrations are provided in Section 3. Results and discussion are given in Section 4. Section 5 

contains the Conclusion. 

2. Mathematical Model

The mathematical model predicates to satisfy the following conditions: 

i) Customers arrive one by one to an encouraged arrival discipline process with rate  𝜆(1 + 𝜒),

where 𝜒  represents the customer's previous or observed data. If a previous firm gave

discounts and percentages, the number of consumers observed values ranging from 𝜒 = 0.1

and 𝜒  = 0.2 respectively.

ii) Service time is symmetrically and exponentially distributed.

iii) Customers adhere to the first in, first out principle.

2.1 Steady State Solution: 

We obtain the following system of differential difference equations. 

𝑑

𝑑𝑡
𝑃0(𝑡) = − 𝜆(1 + 𝜒)𝑃0(𝑡) + 𝜇𝑃1(𝑡)   ( 1 ) 

𝑑

𝑑𝑡
𝑃𝑛(𝑡) = 𝜆(1 + 𝜒)𝑃𝑛−1(𝑡) − {𝜆(1 + 𝜒) +  𝜇}𝑃𝑛(𝑡) + 𝜇𝑃𝑛+1(𝑡)     𝑛 ≥ 1   ( 2 ) 

In the steady state, as 𝑡 → ∞, 𝑃𝑛(𝑡) =  𝑃𝑛 and therefore 𝑃𝑛
1(𝑡) = 0 as 𝑡 → ∞ then, the equations are,

     0 =  − 𝜆(1 + 𝜒)𝑃0 + 𝜇𝑃1               ( 3 ) 

     0 =     𝜆(1 + 𝜒)𝑃𝑛−1 − {𝜆(1 + 𝜒) +  𝜇}𝑃𝑛 + 𝜇𝑃𝑛+1    ( 4 ) 

Now the value of 𝑃𝑛  is obtained as,    𝑃𝑛 = 𝜌𝑛𝑃0
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𝑃𝑛  =  (
𝜆(1+𝜒)

𝜇
)

𝑛

𝑃0     ( 5 ) 

The value 𝑃0 can be computed by using the obvious requirement, that the sum of all probabilities 

must be equal to 1. 

∑ 𝑃𝑛 ∞
𝑛=0 =  𝑃0 ∑  ∞

𝑛=0 𝜌𝑛

    = 𝑃0
1

1−𝜌  

    ∑ 𝑃𝑛 ∞
𝑛=0 = 1       ( 6 ) 

Where, 𝑃0 = 1 − 𝜌  

It is clear that the traffic rate 𝜌 must be less than 1, otherwise the sum of probabilities would not be 

1 (not even limited). From (6) to (5) gives the general formula for 𝑃𝑛: 

𝑃𝑛 =  𝜌𝑛(1 − 𝜌)

= (
𝜆(1+𝜒)

𝜇
)

𝑛

𝑃𝑛  = (1 −
𝜆(1+𝜒)

𝜇
)           ( 7 ) 

The equation (7) represent a very important result used to obtain all the characteristics of the M/M/1 

system. 

3. Numerical Illustration

The performance of the M/M/1 queueing system is analysed numerically concerning the parameters 

Values λ(1 + χ), μ, χ represent discounts values 10% and 20% of the table and figure. The following 

table 1 displays the parameters for the number of customers in the queueing system for various 

values of λ(1 + χ) , μ. 

Labor level 

         An important component to take into account when conducting an assessment study of an 

automobile assembly plant is the number of personnel engaged in productive operations on the 

assembly line. Depending on how much automation is used throughout the line, different people 

are required. The encouraged arrival method is more efficient than the Poisson process. 

Output of the Problem Evaluation Analysis 

        The Estimation Analysis was done by calculating the system performance parameters such as 

idle system, length in system, length in queue, waiting time in system, waiting time in queue and 

system utilization.  
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Table 1: Encouraged arrival 10% and utilization factor for Markovian model 

Work 

Station 
𝜒 

Encouraged Arrival 

rate 

𝜆(1 + 𝜒)/Min 

Mean Service 

Time (𝜇)/min 

Utilization factor 
𝜆(1+𝜒)

𝜇

1 0.1 12.1 16.9 0.72 

2 0.1 14.3 17.8 0.80 

3 0.1 13.2 17.8 0.74 

4 0.1 11.0 16.4 0.67 

5 0.1 11.0 18.1 0.61 

6 0.1 14.3 19.2 0.74 

7 0.1 12.1 17.2 0.70 

8 0.1 11.0 19.8 0.56 

9 0.1 13.2 17.6 0.75 

10 0.1 11.0 16.9 0.65 

11 0.1 14.3 18.1 0.79 

12 0.1 11.0 17.8 0.62 

13 0.1 12.1 17.1 0.71 

14 0.1 14.3 18.9 0.76 

15 0.1 13.2 18.6 0.71 

16 0.1 15.4 20.0 0.77 

Figure 1: Usage of workstation graph 

The utilization factor for each workstation is displayed in Figure 1. It is clear from the graph 

that certain workstations are operating below capacity. This might be as a result of the low amount 

of automation or labor at such a station.    

3.1 Encouraged Arrival 10% of the Queuing System: 

In station 1:  

λ(1 + χ) = 11(1 + 0.1) = 12.1 parts/min,  𝜇 = 16.9 parts/min 

(i) Traffic intensity 𝜌 = 
(λ(1+χ))

μ
=  

12.1

16.9
  = 0.72 

Utilization…0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.72 0.8 0.74 0.67 0.61
0.74 0.7

0.56
0.75

0.65
0.79

0.62 0.71 0.76 0.71 0.77
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(ii) Idle system = 1 - 𝜌 = 1 – 0.72 = 0.28

(iii) Length in system 𝐿𝑠 = 
(λ(1+χ))

μ−λ(1+χ)
 = 

12.1 

16.9−12.1
= 

12.1

4.8
  = 2.52 

(iv) Length in queue 𝐿𝑞 =
(λ(1+χ))2

μ(μ−λ(1+χ))
= 

(12.1 )2

16.9(4.8)
= 

146.41

81.12
 = 1.81 

(v) Waiting time in system  𝑤𝑠 =
1

μ−λ(1+χ)
 = 

1

16.9−12.1
 = 

1

4.8
 = 0.21 × 60 = 12.6 sec. 

(vi) Waiting time in queue 𝑤𝑞  =
(λ(1+χ))

μ(μ−λ(1+χ))
  = 

12.1 

16.9(4.8)
= 

12.1

81.12
 = 0.14 × 60 = 8.4 sec 

Table 2: Encouraged arrival for 10% discounts and utilization factor for a Markovian queuing. 

Stations 𝜒 𝜆(1 + 𝜒) 𝜇 𝜌 1-𝜌 𝐿𝑠 𝐿𝑞 𝑊𝑆 𝑊𝑞 

1 0.1 12.1 16.9 0.72 0.28 2.52 1.81 12.6 8.4 

2 0.1 14.3 17.8 0.80 0.20 4.09 3.28 17.4 13.8 

3 0.1 13.2 17.8 0.74 0.26 2.87 2.13 13.2 9.6 

4 0.1 11.0 16.4 0.67 0.33 2.04 1.37 11.4 7.2 

5 0.1 11.0 18.1 0.61 0.39 1.55 0.94 8.4 5.4 

6 0.1 14.3 19.2 0.74 0.26 2.92 2.17 14.4 9.0 

7 0.1 12.1 17.2 0.70 0.30 2.37 1.67 11.4 8.4 

8 0.1 11.0 19.8 0.56 0.44 1.25 0.69 6.6 3.6 

9 0.1 13.2 17.6 0.75 0.25 3.0 2.25 13.8 10.2 

10 0.1 11.0 16.9 0.65 0.35 1.86 1.21 10.20 6.6 

11 0.1 14.3 18.1 0.79 0.21 3.76 2.97 15.6 12.6 

12 0.1 11.0 17.8 0.62 0.38 1.62 0.99 9.0 5.4 

13 0.1 12.1 17.1 0.71 0.29 2.42 1.71 12.0 8.4 

14 0.1 14.3 18.9 0.76 0.24 3.11 2.35 13.2 9.6 

15 0.1 13.2 18.6 0.71 0.29 2.44 1.74 11.4 7.80 

16 0.1 15.4 20.0 0.77 0.23 3.35 2.58 13.2 10.2 

In M/M/1 automobile assembly line problem with 10% encouraged arrival for length in system and 

queue as well as waiting time in system and queue. 
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Figure 2: Encouraged arrival of 10% discounts system and queue Size. 

Table 3: Encouraged Arrival 10% discounts comparing with the Poisson Arrival (PA) model. 

Stations (𝜆) 𝜆(1 + 𝜒) PA 

(𝐿𝑠) 

EA 

(𝐿𝑠) 

PA 

(𝐿𝑞) 

EA 

(𝐿𝑞) 

PA 

(𝑊𝑠) 

EA 

(𝑊𝑠) 

PA 

(𝑊𝑞) 

EA 

(𝑊𝑞) 

1 11 12.1 1.86 2.52 1.21 1.81 10.2 12.6 6.62 8.4 

2 13 14.3 2.71 4.09 1.98 3.28 12.5 17.4 9.13 13.8 

3 12 13.2 2.07 2.87 1.39 2.13 10.3 13.2 6.97 9.6 

4 10 11.0 1.56 2.04 0.95 1.37 9.4 11.4 5.72 7.2 

5 10 11.0 1.23 1.55 0.68 0.94 7.4 8.4 4.09 5.4 

6 13 14.3 2.10 2.92 1.42 2.17 9.7 14.4 6.55 9.0 

7 11 12.1 1.77 2.37 1.12 1.67 9.7 11.4 6.19 8.4 

8 10 11.0 1.02 1.25 0.52 0.69 6.1 6.6 3.09 3.6 

9 12 13.2 2.14 3.0 1.46 2.25 10.7 13.8 7.31 10.2 

10 10 11.0 1.45 1.86 0.86 1.21 8.7 10.20 5.15 6.6 

11 13 14.3 2.55 3.76 1,83 2.97 11.8 15.6 8.45 12.6 

12 10 11.0 1.28 1.62 0.72 0.99 7.7 9.0 4.32 5.4 

13 11 12.1 1.80 2.42 1.16 1.71 9.8 12.0 6.33 8.4 

14 13 14.3 2.20 3.11 1.51 2.35 10.2 13.2 6.99 9.6 

15 12 13.2 1.82 2.44 1.17 1.74 9.1 11.4 5.87 7.80 

16 14 15.4 2.33 3.35 1.63 2.58 10.0 13.2 7.00 10.2 

  Table 3 demonstrate that measuring each station has a substantial influence on the efficacy and 

efficiency of production operations in encouraged arrival by increasing system size and waiting time 

when compared to the poisson arrival for 10% discount by utilizing stopwatch time study methods. 
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Figure 3: Comparison of poisson arrival to encouraged arrival in systems and queues for 10% discounts. 

Table 4: Verification of Little’s law 

Stations 𝜆(1 + 𝜒) 𝐿𝑞 𝐿𝑠 𝑊𝑞 𝑊𝑠 𝐿𝑞 =  𝜆(1 + 𝜒)𝑊𝑞 𝐿𝑠= 𝜆(1 + 𝜒) 𝑊𝑠 

1 12.1 1.81 2.52 0.14 0.21 1.7 2.54 

2 14.3 3.28 4.09 0.23 0.29 3.28 4.14 

3 13.2 2.13 2.87 0.16 0.22 2.11 2.90 

4 11.0 1.37 2.04 0.12 0.19 1.32 2.09 

5 11.0 0.94 1.55 0.09 0.14 0.99 1.54 

6 14.3 2.17 2.92 0.15 0.204 2.15 2.92 

7 12.1 1.67 2.37 0.14 0.19 1.69 2.29 

8 11.0 0.69 1.25 0.06 0.11 0.66 1.21 

9 13.2 2.25 3.0 0.17 0.23 2.24 3.04 

10 11.0 1.21 1.86 0.11 0.17 1.21 1.87 

11 14.3 2.97 3.76 0.21 0.26 3.0 3.72 

12 11.0 0.99 1.62 0.09 0.15 0.99 1.65 

13 12.1 1.71 2.42 0.14 0.20 1.7 2.42 

14 14.3 2.35 3.11 0.16 0.22 2.28 3.15 

15 

16 

13.2 

15.4  

1.74 

2.58  

2.44 

3.35 
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3.2 Encouraged arrival 20% of the queuing system: 

Table 5: Encouraged arrival for 20% discounts and utilization factor for a Markovian model. 

Stations 𝜒 𝜆(1+𝜒) (𝜇) (𝜌) (1-𝜌) (𝐿𝑠) (𝐿𝑞) (𝑊𝑆) (𝑊𝑞) 

1 0.2 13.2 16.9 0.78 0.22 3.57 2.79 16.2 12.6 

2 0.2 15.6 17.8 0.87 0.13 7.09 0.98 27.0 23.4 

3 0.2 14.4 17.8 0.80 0.20 4.24 3.43 17.4 14.4 

4 0.2 12.0 16.4 0.73 0.27 2.73 1.99 13.8 10.20 

5 0.2 12.0 18.1 0.66 0.34 1.97 1.30 9.6 6.6 

6 0.2 15.6 19.2 0.81 0.19 4.33 3.52 16.8 15.6 

7 0.2 13.2 17.2 0.77 0.23 3.3 2.53 15.0 11.4 

8 0.2 12.0 19.8 0.61 0.39 1.54 0.93 7.8 4.8 

9 0.2 14.4 17.6 0.82 0.18 4.5 3.68 13.2 15.6 

10 0.2 12.0 16.9 0.71 0.29 2.45 1.74 12.0 8.4 

11 0.2 15.6 18.1 0.86 0.14 6.24 5.38 24.0 20.4 

12 0.2 12.0 17.8 0.67 0.33 2.07 1.39 10.20 7.2 

13 0.2 13.2 17.1 0.77 0.23 3.38 2.61 15.6 11.4 

14 0.2 15.6 18.9 0.83 0.17 4.73 3.90 18.0 15.0 

15 0.2 14.4 18.6 0.77 0.23 3.43 2.65 14.4 10.8 

16 0.2 16.8 20.0 0.84 0.16 5.25 4.41 18.6 15.6 

In M/M/1 automobile assembly line problem using the stopwatch time study approach method with 

20% encouraged arrival for length in system and queue, as well as waiting time in system and queue. 

Figure 4: Shows that the encouraged arrival of 20% discounts systems and queues size. 

The (table 6) demonstrate that measuring each station has a substantial influence on the efficacy and 

efficiency of production operations in encouraged arrival by increasing system size and waiting time 
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when compared to the poisson arrival for 20% discount by using stopwatch time study approach. 

Table 6: Encouraged arrival 20% discounts model comparing with the Poisson arrival (PA) model. 

Sta

tio

ns 

(𝜆) 𝜆(1 + 𝜆) 
PA 

(𝐿𝑠) 

EA 

(𝐿𝑠) 

PA 

(𝐿𝑞) 

EA 

(𝐿𝑞) 

PA 

(𝑊𝑠) 

EA 

(𝑊𝑠) 

PA 

(𝑊𝑞) 

EA 

(𝑊𝑞) 

1 11 13.2 1.86 3.57 1.21 2.79 10.2 16.2 6.62 12.6 

2 13 15.6 2.71 7.09 1.98 0.98 12.5 27.0 9.13 23.4 

3 12 14.4 2.07 4.24 1.39 3.43 10.3 17.4 6.97 14.4 

4 10 12.0 1.56 2.73 0.95 1.99 9.4 13.8 5.72 10.20 

5 10 12.0 1.23 1.97 0.68 1.30 7.4 9.6 4.09 6.6 

6 13 15.6 2.10 4.33 1.42 3.52 9.7 16.8 6.55 15.6 

7 11 13.2 1.77 3.3 1.12 2.53 9.7 15.0 6.19 11.4 

8 10 12.0 1.02 1.54 0.52 0.93 6.1 7.8 3.09 4.8 

9 12 14.4 2.14 4.5 1.46 3.68 10.7 13.2 7.31 15.6 

10 10 12.0 1.45 2.45 0.86 1.74 8.7 12.0 5.15 8.4 

11 13 15.6 2.55 6.24 1,83 5.38 11.8 24.0 8.45 20.4 

12 10 12.0 1.28 2.07 0.72 1.39 7.7 10.20 4.32 7.2 

13 11 13.2 1.80 3.38 1.16 2.61 9.8 15.6 6.33 11.4 

14 13 15.6 2.20 4.73 1.51 3.90 10.2 18.0 6.99 15.0 

15 12 14.4 1.82 3.43 1.17 2.65 9.1 14.4 5.87 10.8 

16 14 16.8 2.33 5.25 1.63 4.41 10.0 18.6 7.00 15.6 

Figure 5: Comparison of poisson arrival to encouraged arrival in systems and queues for 20% discounts.
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Table 7:  Verification of Little’s law: 

Station 𝜆(1 + 𝜒) 𝐿𝑞 𝐿𝑠 𝑊𝑞 𝑊𝑠 𝐿𝑞 =  𝜆(1 + 𝜒)𝑊𝑞 𝐿𝑠= 𝜆(1 + 𝜒) 𝑊𝑠 

1 13.2 2.79 3.57 0.21 0.27 2.77 3.56 

2 15.6 0.98 7.09 0.39 0.45 7.02 7.02 

3 14.4 3.43 4.24 0.24 0.29 3.46 4.18 

4 12.0 1.99 2.73 0.17 0.23 2.04 2.76 

5 12.0 1.30 1.97 0.11 0.16 1.92 1.92 

6 15.6 3.52 4.33 0.26 0.28 4.06 4.37 

7 13.2 2.53 3.3 0.19 0.25 2.51 3.3 

8 12.0 0.93 1.54 0.08 0.13 0.96 1.56 

9 14.4 3.68 4.5 0.26 0.31 3.74 4.5 

10 12.0 1.74 2.45 0.14 0.20 1.7 2.4 

11 15.6 5.38 6.24 0.34 0.4 5.30 6.24 

12 12.0 1.39 2.07 0.12 0.17 1.44 2.04 

13 13.2 2.61 3.38 0.19 0.26 2.51 3.43 

14 15.6 3.90 4.73 0.25 0.30 3.9 4.7 

15 

16 

14.4 

16.8 

2.65 

4.41 

3.43 

5.25 

0.18 

0.26 

0.24 

0.31 

2.6 

4.37 

3.46 

5.21 

4. Results and Discussions

This research provides recommendation to improve the standard of service to be more effective and 

efficient. The stopwatch time study approach in [9] was used to determine the average service time 

and distribution of encouraged arrival rates for each workstation. The degree of variation in the 

materials or components used to make the cars, as well as the manufacturing processes, affect service 

times. The timelines for the vehicle under consideration's arrival and assembly are summarized in 

the table. In comparison to the Poisson arrival system, the size of the Markovian encouraged arrival 

queuing system increased. 

5. Conclusion

Based on the findings, the queuing problem in an automobile assembly line to improve the standard 

of service to be more effective and efficient. The encouraged arrival and service distribution data for 

the system were determined. These data were used to calculate the system performance parameter. 

The result shows that increasing automation will lead to quicker processing times for parts and 

lower lead costs. The company will benefit greatly from this study because it will make it easier for 

management to plan future production by providing them with all the data pertaining to the 

performance of the company's assembly line. 
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Abstract 

 

Pressure vessels are highly used in commercial purposes and industries such as boiling, softening 

and hot water storing tanks. Pressure vessels are subjected to its internal and external pressure. In 

this paper, thin-walled pressure vessels are taken for analysis. Pressure, radius, thickness and 

strength of the material are considered as random variables. The random variables follow normal 

distribution. The reliability index of the pressure vessel made with different materials such as 6061 

aluminum alloy and SA 516 70 stainless steel has been found. Reliability analysis has been done for 

the pressure vessel by using AFOSM with MATLAB. It is observed that strength of the materials 

influences more on reliability of the vessels. 

 

Keywords: Thin-walled cylinder, reliability, stress, strength, normal distribution, 

pressure, thickness, inner radius of cylinder, mean, variance. 

 

 

1. Introduction 
 

Chemical Industry requires the handling and storing the large quantities of material such as liquids 

and gases in containers or vessels and therefore pressure vessels play an important role in the 

industry. Pressure vessels are leak-proof containers that store liquid or gas. Pressure vessels [1] of 

various sizes and shapes have been produced for different purposes, constructing a required 

pressure vessel is engineer’s task. Engineer’s aim is to design a high-level performance of a vessel. 

Reliability is the probability of a design, should satisfy certain needs under the prescribed 

environment for certain period. Reliability methods are used to get specified reliability of a structure. 

Finding reliability of the design is inescapable. In 1981, Cornell [2] called structural reliability is a 

healthy adolescent. 

L. Cizelj et al. [3] applied First Order Reliability Method (FORM) and Second Order Reliability 

Method (SORM) in the safety assessment of steam generator tubes with through-wall axial stress 

corrosion cracks. Gunjan Agarwal and Baidurya Bhattacharya [4] studied partial safety factor design 

of rectangular partially prestressed concrete beams in ultimate flexural limit state. Antanas Kudzys 

and Romualdas Kliukas [5] discussed the reliability index of the design of reinforced concrete 

structures of annular cross sections. P. Hari Prasad et al. [6] used FORM for the reliability analysis 

of a section of a structural beam and reliability index was found. Zheng Yulong et al. [7] used 

Hasofer-Lind method for thin -walled pressure vessels, compared with Second Moment Method and 

found that thickness of the pressure vessel was small. Devaraju A. and pazhanivel K. [8] studied 
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reliability of thin -walled pressure vessels with ANSYS software.  

In this paper, thin-walled pressure vessel is considered for the analysis. Found reliability index 

of the pressure vessel which is made with different materials such as 6061 aluminum alloy and SA 

516 70 stainless steel. Reliability analysis has been done for the pressure vessel by using AFOSM 

with MATLAB. 

 

2. Methodology 
 

If the system has a deterministic strength 𝑋, and a randomly developed stress 𝑌 then the reliability 

of the system is the probability that the resistance is greater than the stress, 𝑃(𝑋 > 𝑌). Failure 

probability is the probability that the stress is greater than the strength  𝑃(𝑌 > 𝑋). In the specific case 

of a Gaussian random variable, the stress 𝑌 can be reduced into standard normal variable 𝑦, 

  

 

𝑌 = 𝜇𝑌 + 𝑦𝜎𝑌 ⇒ 𝑦 =
𝑌−𝜇𝑌

𝜎𝑌
                                                                           (1) 

 

where 𝜇𝑌 is the mean of 𝑌 and 𝜎𝑌 is the standard deviation of 𝑌, then the reliability of the system 
 

                                                 𝑅 = 𝑃(𝑋 > 𝜇
𝑌

+ 𝑦𝜎𝑌) 

                                            𝑅 = 𝑃(
(𝑋−𝜇𝑌)

𝜎𝑌
> 𝑦) 

                  𝑅 = 𝑃(𝛽 > 𝑦)                                                                                                        (2) 

 

where 𝛽 is the reliability index, in the single variable case, this inequality is a safe region. This is the 

set of values of  𝑦 for which the structure will not fail. The probability of failure is the complement 

of the reliability. 
 

𝑃𝑓 = 1 − 𝑅 = 1 − 𝑃(𝛽 > 𝑦)                                                                                               (3) 

 

Let 𝑓𝑋(𝑥)  and 𝑓𝑌(𝑦) are the probability density functions of strength 𝑋 and stress 𝑌. Then the 

distribution function 𝐹 is 
 

𝐹𝑋(𝑦) = 𝑃(𝑌 ≤ 𝑦) = ∫ 𝑓𝑋(𝑢)𝑑𝑢  
𝑦

−∞
                                                                                     (4) 

 

The probability of failure becomes 
 

𝑃𝑓 = 𝑃(𝑌 > 𝑋) = ∫ 𝐹𝑋(𝑦)𝑓𝑌(𝑦)𝑑𝑦
∞

0

 

                                   = ∫ ∫ 𝑓𝑋(𝑢) 
𝑦

−∞
𝑓𝑌(𝑦)𝑑𝑢𝑑𝑦

∞

0
                                                                  (5) 

 

2.1. First Order Reliability Method 
 

Let (𝑋1, 𝑋2, 𝑋3. . . . . 𝑋𝑛) be the set of random variables (structural design variables). The limit state 

equation for the failure surface of the structure is  
 

𝑔(𝑋1, 𝑋2, 𝑋3. . . . . 𝑋𝑛) = 0                                                                                     (6) 

 

Collapse of the structure or failure is defined by the failure condition as 𝑔(𝑋1, 𝑋2, 𝑋3. . . . . 𝑋𝑛) <

0. Probability of failure is 𝑃𝑓 = 𝑃(𝑔(𝑋1, 𝑋2, 𝑋3. . . . . 𝑋𝑛) < 0) and reliability is 𝑃(𝑔(𝑋1, 𝑋2, 𝑋3. . . . . 𝑋𝑛) >

0). Methods for the determination of this probability depends on the complexity of the limit state 

function. The limit state function is the limit at which the performance transits from acceptable to 
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unacceptable. 

There are different types of limit states: Ultimate limit state, serviceability limit state, etc. The 

limit state function is 
 

                                                   𝑔 = 𝑋 − 𝑌                                                                                                              (7) 

 

In the above expression, 𝑋 and 𝑌 are random variables. 𝑋 is the strength and 𝑌 is the stress developed 

in the structure. If  𝑔 < 0 it leads to breakage of the structure. i.e., failure, and if  𝑔 > 0 then the 

structure is safe. 

If the random variables 𝐶, 𝑆 for a linear performance function described by the equation (7) are 

normally distributed then 𝐶, 𝑆 can be reduced as 
 

𝐶′ =
(𝐶−𝜇𝐶)

𝜎𝐶
  and  𝑆′ =

(𝑆−𝜇𝑆)

𝜎𝑆
                                                                                                  (8) 

𝑔 = 𝐶 − 𝑆 = (𝐶′𝜎𝐶 + 𝜇𝐶) − (𝑆′𝜎𝑆 + 𝜇𝑆)    = (𝜇𝐶 − 𝜇𝑆) +   𝐶′𝜎𝐶 − 𝑆′𝜎𝑆               (9)                                                                          

 

     The line in reliability analysis is the line corresponding to 𝑔( 𝐶′, 𝑆′) = 0 because this line 

separates the safe and failure region in the standardized space. From the above, the reliability index 

𝛽 is the shortest distance from origin of reduced variables to the line of 𝑔(𝐶′, 𝑆′ ) = 0 
 

𝛽 =
(𝜇𝐶−𝜇𝑆)

√𝜎𝐶
2+𝜎𝑆

2   

                                                                                                                             (10) 

 

where 𝜇𝐶 and 𝜇𝑆 are the mean values of 𝐶 and 𝑆 respectively; 𝜎𝐶
2 and 𝜎𝑆

2 are their variance values. If 

the random variables 𝐶 and 𝑆 have the log- normal distribution, then the reliability index is given 

by 
 

𝛽 =
(𝑊𝐶̅̅ ̅̅ ̅−𝑊𝑆̅̅ ̅̅ ̅)

√𝜎𝑊𝐶
2 +𝜎𝑊𝐶

2    
                                                                                       (11) 

 

where 𝑊𝐶 = 𝑙𝑜𝑔𝐶, and 𝑊𝑆 = 𝑙𝑜𝑔𝑆,  𝑊𝐶 ,̅̅ ̅̅ ̅ 𝑊𝑆
̅̅ ̅̅  are the mean values of 𝑊𝐶 and 𝑊𝑆; 𝜎𝑊𝐶

2  and 𝜎𝑊𝑆
2  are their 

variance values. 

If the limit state surface is linear, then the Hasofer -Lind reliability index coincides with the 

reliability index computed from FOSM. However, Hasofer -Lind reliability method is used for non 

-linear limit state surfaces. If the limit state line is closer to the origin in the standardized coordinate 

system, the failure region is larger, and if it is farther away from the origin, the failure region is 

smaller. Thus, the position of the limit state surface relative to the origin in the standardized 

coordinate system is a measure of the reliability of the system. Then the probability of failure is 
 

𝑃𝑓 = 𝑃((𝐶 − 𝑆) < 0) = 𝑃(𝑔 < 0)                                                                                           (12) 
Pf = Φ(−β) ⇒ β = −Φ−1(Pf)                                                                                                    (13)  

 

and reliability 𝑅 = 1 − 𝑃𝑓, where Φ and Φ−1 are the cumulative distribution function and its inverse. 

 

2.2. Advanced First Order Second Moment Method (AFOSM) 
 

In this method, the assessment of the reliability index is based on the reduction of the limit state 

function to the standardized coordinate system Thus, the random variables 𝑋𝑖, which are normally 

distributed and are reduced as 
 

                                            𝑋𝑖
′ =

(𝑋𝑖−𝜇𝑋𝑖
)

𝜎𝑋𝑖

,    (𝑖 = 1,2 … … 𝑛)                                                          (14) 
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where 𝑋𝑖
′ is a standardized random variable with zero mean and unit standard deviation, Thus, Eq. 

(8) is used to transform the original limit state surface 𝑔(𝑋) = 0 into a reduced limit state 

surface 𝑔(𝑋′) = 0. Where, 𝑋 denotes ’original coordinate system’. In the standardized coordinate 

system, Hasofer- Lind reliability index  𝛽 is equal to the minimum distance from the origin to the 

limit state surface 
 

𝛽 = √(𝑥∗′)𝑇(𝑥∗′)                                                                                (15) 

 

The minimum distance point on the limit state surface is called the design point. It is denoted by 

vector 𝒙∗ in the original coordinate system and by vector 𝒙∗′ in the reduced coordinate system. These 

vectors represent the values of the random variables. For the general case of a non-linear limit state 

surface, the assessment of the minimum distance can be written as an optimization problem 
 

Minimize 𝐷 = √𝑥′𝑇𝑥′  
                                     Subject to 𝑔(𝑋′) = 0.                                                                (16) 

 

By using Lagrange’s multipliers, the minimum distance (for n variables) could be estimated as 
 

𝛽 = − 
∑ 𝑥𝑖

∗′(
𝜕𝑔

𝜕𝑋𝑖
′)

∗
𝑛
𝑖=1

√∑ (
𝜕𝑔

𝜕𝑋𝑖
′)

∗2
𝑛
𝑖=1

                                                                        (17)  

where (
𝜕𝑔

𝜕𝑋𝑖
′)

∗

  is the 𝑖𝑡ℎ partial derivative evaluated at the design point ( 𝑥𝑖
∗′, 𝑥2

∗′, 𝑥3
∗′, … . 𝑥𝑛

∗′
). The 

design point in the reduced coordinates is 
 

𝑥𝑖
∗′ = −𝛼𝑖𝛽 (𝑖 = 1, 2, … … , 𝑛)                                                                                               (18) 

where 𝛼𝑖 are the direction cosines along the coordinate axes 𝑋𝑖
′. They are given by 

 

                     𝛼𝑖 =
(

𝜕𝑔

𝜕𝑋𝑖
′)

∗

√∑ (
𝜕𝑔

𝜕𝑋𝑖
′)

∗2
𝑛
𝑖=1

                                                                             (19)                   

 

3. Results 

3.1. Computation of reliability for thin-walled cylindrical shell pressure vessel 
   

Thickness is very important in the design for the safety of the cylinder. Thickness of the cylinders is 

20th part of diameter or even less. It is assumed that thin - walled cylindrical pressure vessel with 

SA516-70 stainless steel, and 6061 aluminum alloy. Yield strength, radius of the cylinder, pressure, 

thickness of the cylinder, are taken as random variables which follow normal distribution. Let (𝜇𝑋, 

𝜇𝑟 , 𝜇𝑝, 𝜇𝑡  ), (𝜎𝑋, 𝜎𝑟 ,  𝜎𝑝, 𝜎𝑡) be the mean and standard deviation design vector of the random variables. 

 
Table 1: Design variables and materials properties 

 

 

 SA51670stainless-steel   6061aluminumalloy 

 Mean Standard deviation Mean Standard deviation 

Yield strength (MPa) 335 16.56 276 16.56 

Radius of cylinder(mm) 2000 100 2000 100 

Inside pressure(MPa) 5 0.4 5 0.4 

Thickness (mm) 50 2 50 2 

Joint efficiency 0.85 
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Let the thin cylindrical pressure vessel limit state function is [10] 
 

𝑔 = 𝑋 − 𝑌 = 𝑋 −
𝑝(𝑟−(0.6)𝑡)

𝐸𝑡
                                                                      (20) 

 

where 𝑋 is the strength of the cylinder, 𝑌  is stress of the cylinder, p is pressure in the cylinder, r is 

radius, t is thickness of the cylinder, E is joint efficiency. Therefore, the equation of failure surface is 

given by 
 

                                  𝑔 = 𝑋 −
𝑝(𝑟−(0.6)𝑡)

𝐸𝑡
= 0                                                                                 (21)                                                 

 

using eqn. (8), the failure surface function eqn. (20) in the standardized coordinate system is given 

by 
 

𝑔 = (𝑋′𝜎𝑋 + 𝜇𝑋) −
(𝑝′𝜎𝑝+𝜇𝑝)(𝑟′𝜎𝑟+𝜇𝑟−(0.6)(𝑡′𝜎𝑡+𝜇𝑡))

𝐸(𝑡′𝜎1+𝜇𝑡)
= 0                 (22)                               

 

where 𝑋′, 𝑝′, 𝑟′, 𝑡′ are reduced random variables. 
 

Since 𝑋′ = 𝛽𝛼1, 𝑝′ = 𝛽𝛼2, 𝑟′ = 𝛽𝛼3, 𝑡′ = 𝛽𝛼4    then   

                                                             (23) 

(𝛽𝛼1𝜎𝑋 + 𝜇𝑋) −
(𝛽𝛼2𝜎𝑝 + 𝜇𝑝)(𝛽𝛼3𝜎𝑟 + 𝜇𝑟 − (0.6)(𝛽𝛼4𝜎𝑡 + 𝜇𝑡))

𝐸(𝛽𝛼4𝜎1 + 𝜇𝑡)
= 0 

                                              (24) 

(𝛽𝛼1𝜎𝑋 + 𝜇𝑋)𝐸(𝛽𝛼4𝜎1 + 𝜇𝑡) − (𝛽𝛼2𝜎𝑝 + 𝜇𝑝)((𝛽𝛼3𝜎𝑟 + 𝜇𝑟) − (0.6)(𝛽𝛼4𝜎𝑡 + 𝜇𝑡)) = 0 

                                          (25) 

𝛽2(𝐸𝛼1𝛼3𝜎𝑋𝜎𝑡 − 𝛼2𝛼4𝜎𝑝𝜎𝑟 + (0.6)𝛼3𝛼4𝜎𝑝𝜎𝑡) − 𝛽(𝐸𝛼1𝜎𝑋𝜇𝑡 + 𝐸𝛼3𝜇𝑋𝜇𝑡 − 𝛼4𝜎𝑝𝜇𝑟 − 𝛼2𝜇𝑝𝜎𝑟 +

(0.6)𝛼4𝜎𝑝𝜇𝑡 + (0.6)𝛼3𝜇𝑝𝜎𝑡) + (𝐸𝜇𝑋𝜇𝑡 − 𝜇𝑝𝜇𝑟 + (0.6)𝜇𝑝𝜇𝑡) = 0                                                                   (26) 

 

3.1. Mean thickness vs reliability 

 
It is observed from Table 2 that if thickness of SA 516 70 Stainless steel increases from 50 mm to 140 

mm, then reliability increases from 0.7882 to 0.9998 where as in 6061 aluminum alloy, the reliability 

of the material increases from 0.6627 to 0.9985. The reason for this is, with the increase of thickness, 

the stress is lowered at a given pressure. 
 

Table 2: Mean thickness vs reliability   
 

 

 

 

 

 

 

 

 

 SA51670 stainless-steel      6061aluminumalloy 

          𝜇t     𝛽       𝑃𝑓        𝑅1        𝛽            𝑃𝑓          𝑅2 

50 0.8 0.2118 0.7882 0.42 0.3372 0.6627 

60 1.29 0.0985 0.9014 0.85 0.1976 0.8023 

70 1.68 0.0464 0.9535 1.21 0.1131 0.8868 

82 2.03 0.0211 0.9788 1.51 0.0655 0.9344 

100 2.56 0.0052 0.9947 2.05 0.0201 0.9798 

120 3.08 0.0019 0.9989 2.53 0.0057 0.9942 

140 3.58 0.0002 0.9998 2.97 0.0014 0.9985 
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Figure 1: Variation of reliability as a function of mean thickness 

 
 

3.2. Mean pressure vs reliability 

 
It is observed from Table3 that if 𝜇p increases from 1.9 MPa to 5 MPa of SA 516 70 stainless steel, then 

reliability decreases from 0.9996 to 0.7882 and the reliability of 6061 aluminum alloy decreases from 

0.9971 to 0.6627. By the increase of pressure, the stress will be developed in the cylinder and the 

increment in the stress causes low. 
 

Table 3: Mean pressure vs reliability 

 

 SA 51670 stainless steel 6061 aluminum alloy 

          𝜇p     𝛽 𝑃𝑓  𝑅1         𝛽 𝑃𝑓  𝑅2 

1.9 3.35 0.0004 0.9996 2.77 0.0043 0.9971 

2.5 3.19 0.0007 0.9993 2.04 0.0206 0.9793 

3 2.06 0.0186 0.9804 1.59 0.0559 0.9440 

4 1.38 0.0837 0.9163 0.93 0.1761 0.8238 

5 0.8 0.2118 0.7882 0.42 0.3372 0.6627 

 

 

  
 

Figure 2: Variation of reliability as a function of mean pressure 
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3.3. Mean radius vs reliability 
 

If mean radius of the design increases from 800 mm to 2000 mm, then reliability of SA 516 70 Stainless 

steel decreases from 0.9993 to 0.7882 and the reliability of 6061 aluminum alloy decreases from 0.9958 

to 0.6627. With the increase of mean radius, the size of the cylinder increases, then the reliability 

decreases. The variation of reliability with mean diameter is shown below. 

   
Table 4:  Mean radius vs reliability 

 

SA 516 70 Stainless steel 6061 aluminum alloy 

      𝜇𝑟      𝛽 𝑃𝑓 𝑅1    𝛽 𝑃𝑓 𝑅2 

800 3.21 0.0007 0.9993 2.64 0.0041 0.9958 

1000 2.56 0.0053 0.9947 2.05 0.0201 0.9798 

1200 2.07 0.0193 0.9807 1.61 0.0536 0.9463 

1400 1.7 0.0446 0.9554 1.25 0.1056 0.8943 

1600 1.28 0.0838 0.9162 0.94 0.1736 0.8263 

1800 1.11 0.1335 0.8665 0.67 0.2514 0.7485 

2000 0.8 0.2118 0.7882 0.42 0.3372 0.6627 

                

  
 

Figure 3: Variation of reliability as a function of mean radius 

 

3.4. Mean strength vs Reliability 
 

In this case, with the increment of mean strength, the deformation is lowered then the reliability of 

the cylinder enhances. The reliability of SA 516 70 Stainless steel increases from 0.7882 to 0.9846 with 

the increase of mean strength from 335 MPa to 580 MPa and in 6061 aluminum alloy, the reliability 

increases from 0.6628 to 0.7580 with the increase of mean strength from 276MPa to 312 MPa. 

 
Table 5: Mean strength vs reliability 

 

 SA51670 Stainless steel      6061 aluminum alloy 

  𝜇𝑐   𝛽 𝑃𝑓  𝑅1   𝜇𝑐  𝛽 𝑃𝑓 𝑅2 

335 0.8 0.2118 0.7882 276 0.42 0.3372 0.6628 

350 0.97 0.1669 0.8331 280 0.45 0.3263 0.6737 

370 1.09 0.1378 0.8622 284 0.49 0.3120 0.6880 

390 1.21 0.1131 0.8869 288 0.52 0.3015 0.6985 

410 1.33 0.0917 0.9083 292 0.55 0.2911 0.7089 

430 1.44 0.0749 0.9251 296 0.58 0.2809 0.7191 
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 SA51670 Stainless steel      6061 aluminum alloy 

  𝜇𝑐   𝛽 𝑃𝑓  𝑅1   𝜇𝑐  𝛽 𝑃𝑓 𝑅2 

450 1.54 0.0617 0.9383 300 0.61 0.2709 0.7291 

470 1.65 0.0494 0.9506 304 0.64 0.2610 0.7390 

510 1.84 0.0328 0.9672 308 0.67 0.2514 0.7486 

580 2.16 0.0154 0.9846 312 0.70 0.2419 0.7580 

 

  
 

Figure 4: Variation of reliability as a function of mean strength 

 

 

4. Conclusion 

 
Prediction of the reliability of a pressure vessel leads to high performance of the vessel, several 

methods have been discussed to estimate the reliability of the vessel. In the analysis, thin-cylindrical 

pressure vessels with both ends closed are taken. Pressure, radius, thickness and strength of the 

material are considered as random variables and follow normal distribution. The reliability index of 

the pressure vessel made with different materials has been found. Reliability analysis has been done 

for the pressure vessel by using AFOSM with MATLAB.  

 

The analysis shows that mean thickness of SA 516 70 stainless steel cylinder increases from 50 mm 

to 140 mm then reliability increases from 0.7882 to 0.9998 drastically and reliability of 6061 aluminum 

alloy cylinder increases from 0.6627 to 0.9985. If there is an increment in mean pressure of the 

cylinder from 1.9 MPa to 5 MPa then there is decrement in reliability from 0.9996 to 0.7882 and also 

a decrement in reliability of 6061 aluminum alloy cylinder from 0.6627 to 0.9971. Change in mean 

radius of the cylinder from 800 mm to 2000 mm causes change in reliability from 0.9996 to 0.7882. If 

mean strength of SA 516 70 stainless steel cylinder increases from 335 MPa to 630 MPa then reliability 

increases from 0.7882 to 0.9846. Thickness, diameter, pressure and strength of the cylinder influence 

the reliability of the pressure vessel. It is observed that strength of the materials has significant 

influence on reliability of the vessel.  
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Abstract

This study proposes and investigates the weighted intervened exponential distribution, which is demon-
strated as a generalized extension of the intervened exponential distribution. The form of the weighted
intervened exponential distribution is obtained by considering a specific non-negative weighted function.
The probability density function and cumulative density function of the proposed model are given, and its
generalized form of reliability function and the hazard rate function is also derived. By choosing a different
set of parametric values, the graphical demonstrations of the probability density function of weighted
intervened exponential distribution are given where it acquires different curve shapes. The weighted
intervened exponential distribution density function is then further studied in the limited form as a
special case called the length-biased intervened exponential distribution. Along with the distribution of
order statistics, stochastic ordering, stress-strength reliability, and entropy measure, several distributional
and reliability aspects of the length-biased intervened exponential distribution are derived. For estimating
the unidentified parameters of the length-biased variant, the most suggested approach known as the
maximum likelihood estimation technique is implemented. To explore the behavior of the parameter
estimates for various sample sizes, a sample data generation technique is required to carry out the process.
Since the quantile function of the length biased intervened exponential distribution is not in closed form.
So, the alternative data generation algorithm is employed which is known as the acceptance-rejection
algorithm technique, and a Monte-Carlo simulation study is done. The absolute average bias and mean
square error of the estimated parameters of the length-biased version model are calculated and it is noticed
that both the calculated measures decrease simultaneously on increasing the sample size. In order to
determine if the model is appropriate, a real-life time-to-event data set is examined as an example, and
length biased distribution is juxtaposed with several other common available lifetime distributions for
comparison purposes.

Keywords: Acceptance-rejection algorithm; Entropy; Weighted intervened distribution; Monte
Carlo simulation

1. Introduction

The literature witnesses the dominance of exponential distribution among all existing lifetime
models over data analysis in essential fields like reliability theory, survival analysis, and several
other branches of statistical as well as the applied sciences. As it is well observed the exponential
model has been extended in different ways with the help of new model development methods
and transformation techniques, such as inverted gamma distribution by Lin et al., [11], generalized
exponential distribution by Gupta and Kundu [9], weighted exponential distribution by Gupta
and Kundu [8], etc. are few examples. Apart from these extensions, a new development in
statistics called the intervention was brought into existence by Shanmugam [21] in the form of a
new discrete intervention model called the intervened Poisson distribution. Later on, in another
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successful attempt Shanmugam et al. [22] developed the continuous intervened exponential
model, which was later introduced as a lifetime distribution in the field of reliability theory and
survival analysis by Bhat and Pundir [2]. The cumulative and probability density functions (c.d. f
& p.d. f ) of IvED are given by

FIvED(x; Θ) =

{
1− ρe−(x−σ)/ρθ−e−(x−σ)/θ

(ρ−1) ρ 6= 1

1−
(
1 + x−σ

θ

)
e−(x−σ)/θ ρ = 1

(1)

and,

f IvED(x; Θ) =

{
e−(x−σ)/ρθ−e−(x−σ)/θ

(ρ−1)θ ρ 6= 1
(x−σ)

θ2 e−(x−σ)/θ ρ = 1
(2)

where, σ < x < ∞, and Θ = {(σ, θ, ρ) : σ > 0, θ > 0, ρ > 0} which is commonly known as the
parameter space with intervention parameter ρ and rate parameter θ. The wider applicability
of the model motivated us to extend the intervened exponential distribution (IvED) further in
the direction of the weighted distributions and the distribution obtained is known as weighted
intervened exponential distribution (WIvED). Thus, the newly proposed WIvED is a type of
generalization of IvED. To trace the history of weighted distributions, Fisher [7] investigated
the influence of ascertainment procedures on frequency estimates and developed the notion
of weighted distributions. When diversifying Fisher’s core theories, Rao ([18], [19]) realized
the need for a unifying notion by attempting to identify numerous sampling conditions that
might be handled according to what he named weighted distributions. To know the history
and applicability of weighted distributions Patil published several articles that he wrote with
co-authors refer Taillie et al. [23], Patil and Taillie [12], Patil and Rao [15], Denis and Patil [5],
Laird et al. [10], Patil and Ord [14], etc. moreover, see more references Patil [16]. In a definition,
Patil et al. [13] proposed the methodology used to determine the weighted version probability
density function (p.d. f ) is depicted below:

f (x; Θ) =
w(x) f∗(x; Θ)

E [w(X)]

where, f∗(x; Θ) is the natural density function of existing distribution with parameter space Θ
and w(x) is the non-negative weighted function by choosing w(X) = Xr, then E [w(X)] = E [Xr]
is the rth moment about origin. The rth raw moment of IvED derived by Bhat and Pundir [2] is
presented in a simplified form as given by

µ′r =
1

θ (ρ− 1)

r

∑
k=0

(
r
k

)
σkθr−k+1

(
ρr−k+1 − 1

)
. (3)

Therefore, according to the definition of weighted distributions, the c.d. f and p.d. f of WIvED(σ, θ, ρ)
derived from a r.v X ∼ IvED(σ, θ, ρ) are given by

FWIvED(x; Θ) =


1− θr+1{ρr+1eσ/ρθΓ(r+1,x/ρθ)−eσ/θΓ(r+1,x/θ)}

∑r
k=0 (

r
k)σ

kθr−k+1(ρr−k+1−1)Γ(r−k+1)
ρ 6= 1

1− θr+1{θΓ(r+2,x/θ)−σΓ(r+1,x/θ)}
∑r

k=0 (
r
k)σ

kθr−k+2Γ(r−k+2)
eσ/θ ρ = 1

(4)

and,

fWIvED(x; Θ) =


xre−(x−σ)/ρθ−xre−(x−σ)/θ

∑r
k=0 (

r
k)σ

kθr−k+1(ρr−k+1−1)Γ(r−k+1)
ρ 6= 1

xr(x−σ)

∑r
k=0 (

r
k)σ

kθr−k+2Γ(r−k+2)
e−(x−σ)/θ ρ = 1

(5)

where, σ < x < ∞, and Θ is parameter space. The reliability function of the WIvED(σ, θ, ρ) is
obtained as

RWIvED(x; Θ) =


θr+1{ρr+1eσ/ρθΓ(r+1,x/ρθ)−eσ/θΓ(r+1,x/θ)}

∑r
k=0 (

r
k)σ

kθr−k+1(ρr−k+1−1)Γ(r−k+1)
ρ 6= 1

θr+1{θΓ(r+2,x/θ)−σΓ(r+1,x/θ)}
∑r

k=0 (
r
k)σ

kθr−k+2Γ(r−k+2)
eσ/θ ρ = 1

(6)
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and, its hazard rate function is

hWIvED(x; Θ) =


xre−(x−σ)/ρθ−xre−(x−σ)/θ

θr+1{ρr+1eσ/ρθΓ(r+1,x/ρθ)−eσ/θΓ(r+1,x/θ)} ρ 6= 1
xr(x−σ)

θr+1{θΓ(r+2,x/θ)−σΓ(r+1,x/θ)} e−x/θ ρ = 1
(7)

further, we study the special case density function of WIvED obtained at r = 1 from equation (5),
that is, defined as Length(size)-biased intervened exponential distribution (LBIvED). The mean,
variance several statistical and reliability properties, parameter estimation, simulation, stochastic
ordering, order statistics, and real-life applicability of LBIvED are studied in proceeding sections
and subsections.

2. Distribution and its Properties

The cumulative and probability density functions (c.d. f & p.d. f ) of LBIvED are given by

FLBIvED(x; Θ) =

 1− {ρ(x+ρθ)e−(x−σ)/ρθ−(x+θ)e−(x−σ)/θ}
(ρ−1)[σ+θ(ρ+1)] ρ 6= 1

1− θ2+(x+θ)(x−σ+θ)
θ(σ+2θ)

e−(x−σ)/θ ρ = 1
(8)

and,

fLBIvED(x; Θ) =


xe−(x−σ)/ρθ−xe−(x−σ)/θ

θ(ρ−1)[σ+θ(ρ+1)] ρ 6= 1
x(x−σ)

θ2(σ+2θ)
e−(x−σ)/θ ρ = 1

(9)

where, 0 < σ < x < ∞ and Θ being its parameter space. The attempt is made to derive the
expressions of mean (µx) and its variance

(
σ2

x
)
. Also, some of the measures of LBIvED(σ, θ, ρ 6= 1)

which are not in closed form are the quantile function, median and the mode. Note, for simplicity
here on-wards, we take τ = (ρ− 1) [σ + θ (ρ + 1)].

µx =
2θ2 (ρ3 − 1

)
+ 2σθ

(
ρ2 − 1

)
+ σ2 (ρ− 1)

τ
(10)

and

σ2
x =

2θ3 (ρ4 − 1
)
+ 2σθ2 (ρ3 − 1

)
+ (3σ + 2) σθ

(
ρ2 − 1

)
+ σ3 (ρ− 1)

τ
− (µx)

2 . (11)

In Figure 1 and Figure 2, the p.d. f of LBIvED(σ, θ, ρ 6= 1) is plotted graphically. This is evident
from the graphical representation that the distribution is positively skewed, where multiple p.d. f
curves are displayed for various chosen sets of parameter values.
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Figure 2: P.d. f Subplots

2.1. Moments

In this subsection, the derivation of moments particularly central and non-central are derived. So,
if a random variable X ∼ LBIvED(σ, θ, ρ 6= 1), then central moments (µr) expression is obtained
by

µr =
1

θτ

∫ ∞

σ
(x− µx)

r x
{

e−(x−σ)/ρθ − e−(x−σ)/θ
}

dx

to solve the integral, first, we expand the term (x− µx)
r by using binomial expansion. After,

integration and simplification the resulting equation is

µr =
1
τ

r

∑
k=0

(
r
k

)
(σ− µx)

r θr−kΓ (r− k + 1)
{

θ
(

ρr−k+2 − 1
)
(r− k + 1)− σ

(
ρr−k+1 − 1

)}
. (12)

In a similar context, we derive the non-central moments (µ′r) expression for a random variable
X ∼ LBIvED(σ, θ, ρ 6= 1). The procedure to obtain the final resulting expression is given by

µ′r =
1

θτ

∫ ∞

σ
xr+1

{
e−(x−σ)/ρθ − e−(x−σ)/θ

}
dx

after, simplifications the resulting equation is

µ′r =
1
τ

r+1

∑
k=0

(
r + 1

k

)
σkΓ (r− k + 2) θr−k+1

(
ρr−k+2 − 1

)
(13)

2.2. Generating Functions for Moments

In general, the moment generating function (m.g. f ) denoted by MX(t) of a r.v X is obtained by,

MX(t) = E
(

etX
)
=
∫ ∞

−∞
etx f (x)dx (14)

so, to derive the m.g. f of a r.v X ∼ LBIvED(σ, θ, ρ 6= 1), we have

MX(t) =
∫ ∞

σ
etx fLBIvED(x; Θ)dx
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on substituting the p.d. f of LBIvED, when ρ 6= 1 and proceed with the transforming technique,
we get

=
etx

θτ

∫ ∞

0
(x + σ)

{
e−
(

1
θρ−t

)
x − e−(

1
θ−t)x

}
dx

on solving this further by using the gamma function, the required resulting equation of m.g. f is
obtained as

MX(t) =
{σ (1− θt) (1− θρt) + θ (1 + ρ− 2θρt)} eσt

(1− θt)2 (1− θρt)2 [σ + θ (ρ + 1)]
. (15)

Next, the characteristic function (c. f ) of a r.v X ∼ LBIvED(σ, θ, ρ 6= 1) is derived by

φX(t) = E(eιtX) =
∫ ∞

σ
eιtx fLBIvED(x; Θ)dx

=
{σ (1− θιt) (1− θριt) + θ (1 + ρ− 2θριt)} eσιt

(1− θιt)2 (1− θριt)2 [σ + θ (ρ + 1)]
(16)

3. Discussion on Reliability Properties

Suppose a random variable X is such that it is non-negative, X ∼ LBIvED( σ, θ, ρ), the p.d. f of
X is fLBIvED(x; Θ), and its c.d. f FLBIvED(x; Θ) which are given in equation (9) and (8) respectively.
Then the reliability function of LBIvED(σ, θ, ρ) is given by

RLBIvED(x; ξ) =


ρ(x+ρθ)e−(x−σ)/ρθ−(x+θ)e−(x−σ)/θ

τ ρ 6= 1
θ2+(x+θ)(x−σ+θ)

θ(σ+2θ)
e−(x−σ)/θ ρ = 1

(17)

the essential failure rate functions of a random variable X ∼ LBIvED(σ, θ, ρ 6= 1) are obtained.
The hazard rate and reverse hazard rate functions are given by

hLBIvED(x; ξ) =


xe−(x−σ)/ρθ−xe−(x−σ)/θ

θ{ρ(x+ρθ)e−(x−σ)/ρθ−(x+θ)e−(x−σ)/θ} ρ 6= 1
x(x−σ)

θ{θ2+(x+θ)(x−σ+θ)} ρ = 1
(18)

in Figure 3 and Figure 4, the hazard rate function of LBIvED(σ, θ, ρ 6= 1) is plotted graphically. It
is shown in the graphical representation the distribution is having increasing multiple hazard
rate function curves that are displayed for various chosen sets of parameter values.

0 20 40 60 80 100
x

0

0.05

0.1

0.15

h
(x

)

(σ, θ, ρ) = (0.011, 4.220, 2.018)

(σ, θ, ρ) = (0.020, 4.855, 1.308)

(σ, θ, ρ) = (0.030, 6.055, 2.041)

(σ, θ, ρ) = (0.045, 8.450, 2.116)

Figure 3: Hazard Rate Function Plot
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Figure 4: Hazard Rate Function Subplots

3.1. Mean Residual Life Function

The Mean Residual Life (MRL) function is used to investigate the aging process phenomenon of
systems. To determine the MRL for a random variable X representing the component’s life, is
defined by

mLBIvED(x; Θ) = E [X− x|X > x] =
1

RLBIvED(x; Θ)

∫ ∞

x
RLBIvED(x; Θ)dx. (19)

The function m(x; Θ) is defined over any domain of a random variable, it is of special significance
for a non-negative random variable explaining the lifetime of the system, and at time x for an
operational system, conditional expected residual life is determined by Finkelstein [6]. Further-
more, while the shape of the hazard rate function is essential, the MRL function is considered to
be much more meaningful than the hazard rate function. Since the first describes the full residual
life function, whilst the other simply evaluates the possibility of immediate failure at the time
x. The MRL function of the LBIvED(σ, θ, ρ 6= 1) is determined by using the relation (19) and is
obtained as follows:

mLBIvED(x; Θ) =
1

RLBIvED(x; Θ)

∫ ∞

x

ρ (x + ρθ) e−(x−σ)/ρθ − (x + θ) e−(x−σ)/θ

τ
dx.

On solving the above integral and further simplifications gives the following required MRL
function of the model.

mLBIvED(x; Θ) =
θρ2 (x + 2ρθ) e−(x−σ)/ρθ − θ (x + 2θ) e−(x−σ)/θ

τRLBIvED(x; Θ)
(20)

3.2. Stress-Strength Reliability

It is easily noticed, that a significant amount of research work had already been carried out in the
field of stress-strength modeling on the estimation of reliability R = Pr. (X1 > X2), where the
random variables X1 and X2 represent the strength and stress factors of the system possessing the
same distributions of uni-variate family. For the vast majority of the well-known standard distri-
butions, the algebraic representation for R has been developed. Here, X1 ∼ LBIvED(σ, θ2, ρ1 6= 1)
and X2 ∼ LBIvED(σ, θ2, ρ2 6= 1) are unrelated and have the same distribution, so-called LBIvED,
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we calculate the reliability R. The procedure to measure R by having the c.d. f of X2 and p.d. f of
X1 is described as follows

FLBIvED(x; Θ) = 1− ρ2 (x + ρ2θ2) e−(x−σ)/ρ2θ2 − (x + θ2) e−(x−σ)/θ2

(ρ2 − 1) [σ + θ2 (ρ2 + 1)]
ρ 6= 1 (21)

and,

fLBIvED(x; Θ) =
xe−(x−σ)/ρ1θ1 − xe−(x−σ)/θ1

θ1(ρ1 − 1) [σ + θ1 (ρ1 + 1)]
ρ 6= 1 (22)

then, R is derived by

R =
∫ ∞

σ

{∫ x

σ
fX2(x)dx

}
fX1(x)dx =

∫ ∞

σ
FX2(x) fX1(x)dx (23)

= 1 −
θ1θ2ρ1ρ2

2
B (θ1ρ1 + θ2ρ2)

{
σ (σ + θ2ρ2) +

θ1θ2ρ1ρ2 (2σ + θ2ρ2)

(θ1ρ1 + θ2ρ2)
+

2 (θ1θ2ρ1ρ2)
2

(θ1ρ1 + θ2ρ2)
2

}

+
θ1θ2ρ1

B (θ1ρ1 + θ2)

{
σ (σ + θ2) +

θ1θ2ρ2 (2σ + θ2)

(θ1ρ1 + θ2)
+

2 (θ1θ2ρ2)
2

(θ1ρ1 + θ2)
2

}

+
θ1θ2ρ2

2
B (θ1 + θ2ρ2)

{
σ (σ + θ2ρ2) +

θ1θ2ρ2 (2σ + θ2ρ2)

(θ1 + θ2ρ2)
+

2 (θ1θ2ρ2)
2

(θ1 + θ2ρ2)
2

}

− θ1θ2

B (θ1 + θ2)

{
σ (σ + θ2) +

θ1θ2 (2σ + θ2)

(θ1 + θ2)
+

2 (θ1θ2)
2

(θ1 + θ2)
2

}

where, B = θ1 (ρ1 − 1) (ρ2 − 1) [σ + θ1 (ρ1 + 1)] [σ + θ2 (ρ2 + 1)].

4. Entropy Measures

In science and engineering, entropy measures have already been studied as a practical application
of the system. The two uncertainty measures of variation so-called Rényi entropy by Rényi
[17] and Tsallis entropy by Tsallis [24] are studied in this section, the expressions of both these
measures are given in the following respective subsections:

4.1. Rényi Entropy

The Rényi entropy of order α, for a non-negative r.v X ∼ LBIvED( σ, θ, ρ 6= 1) is derived by

h̄R(α) =
1

1− α
log
[∫ ∞

σ
{ fLBIvED(x; Θ)}α dx

]
; α ≥ 0, α 6= 1

on substituting the p.d. f of LBIvED when ρ 6= 1 and making use of binomial expansion by
treating α as a finite nature number. The simplified equation of Rényi entropy of order α is
derived as given by

h̄R(α) =
1

1− α
log

{
α

∑
r=0

α

∑
k=0

(α
r)(

α
k) (−1)r σk (θρ)α−k+1 Γ (α− k + 1)

{θτ}r [α + r (ρ− 1)]α−k+1

}
(24)

4.2. Tsallis Entropy

The Tsallis entropy also known as q-entropy of order q, for a non-negative r.v X ∼ LBIvED( σ, θ,
ρ 6= 1) is derived by

Tq(x) =
1

1− q

[
1−

∫ ∞

σ
{ fLBIvED(x; Θ)}q dx

]
; q ≥ 0, q 6= 1
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on substituting the p.d. f of LBIvED when ρ 6= 1 and making use of binomial expansion by
treating α as a finite nature number. The simplified equation of Tsallis entropy of order q is
derived as given by

Tq(x) =
1

1− q

[
1−

q

∑
r=0

q

∑
k=0

(q
r)(

q
k) (−1)r σk (θρ)q−k+1 Γ (q− k + 1)

{θτ}r [q + r (ρ− 1)]q−k+1

]
(25)

5. Stochastic Ordering and Order Statistics

In this section, the stochastic ordering of the model and its order statistics are discussed.

5.1. Stochastic Ordering

Over the past several years, the usage of stochastic ordering has drastically increased across
a wide range of statistical fields. These disciplines include reliability theory, queuing theory,
survival analysis, and many more fields refer to Shaked and Shantikumar [20]. Let the r.v′s
X1 and X2, where X1 ∼ LBIvED(σ1, θ1, ρ1 6= 1) and X2 ∼ LBIvED(σ2, θ2, ρ2 6= 1), have p.d. f ′s
denoted by fX1(x), fX2(x) and c.d. f ′s denoted by FX1(x), FX2(x) respectively. According to the
model, it is believed that the random variable X1 is smaller than X2 in the,

(a1) Stochastic order (mathematically X1 ≤st X2), if FX1(x; Θ1) ≥ FX2(x; Θ2)∀x.

(a2) Hazard rate order (mathematically X1 ≤hr X2), if hX1(x; Θ1) ≥ hX2(x; Θ2)∀x.

(a3) Mean residual life order (mathematically X1 ≤MRL X2), if mX1(x; Θ1) ≥ mX2(x; Θ2)∀x.

(a4) Likelihood ratio order (mathematically X1 ≤LR X2), if
fX1 (x;Θ1)

fX2 (x;Θ2)
decreases in x.

Since the following results show that, the four stochastic orders stated above are connected,

X1 ≤MRL X2 ⇐ X1 ≤hr X2 ⇐ X1 ≤LR X2 and X1 ≤st X2 ⇐ X1 ≤hr X2.

When the required conditions are met, the LBIvED(σ, θ, ρ 6= 1) models are arranged w.r.t the
strongest likelihood ratio ordering, stated in the following theorem.

Theorem 1. Suppose X1 ∼ LBIvED(σ1, θ1, ρ1), and X2 ∼ LBIvED(σ2, θ2, ρ2), with the condition,
that if σ1 = σ2 = σ, (ρ1>ρ2) > 1, and (θ1>θ2) then (X1 ≤st X2), (X1 ≤hr X2), (X1 ≤lr X2), and
(X1 ≤MRL X2).

Proof. Proof of the specified ratio is sufficient to demonstrate the outcome.

fX1(x; Θ1)

fX2(x; Θ2)
=

θ2(ρ2 − 1) [σ2 + θ2 (ρ2 + 1)]
θ1(ρ1 − 1) [σ1 + θ1 (ρ1 + 1)]

{
e−(x−σ1)/ρ1θ1 − e−(x−σ1)/θ1

}
{

e−(x−σ2)/ρ2θ2 − e−(x−σ2)/θ2
} .

Now, applying log both sides and differentiate w.r.t x.

d
dx

log
{

fX1(x; Θ1)

fX2(x; Θ2)

}
=

θ1ρ1U (V1 − ρ2V2)− θ2ρ2V (U1 − ρ1U2)

θ1θ2ρ1ρ2UV

where, U =
{

e−(x−σ1)/ρ1θ1 − e−(x−σ1)/θ1
}

, V =
{

e−(x−σ2)/ρ2θ2 − e−(x−σ2)/θ2
}

, U1 = e−(x−σ1)/ρ1θ1 ,

U2 = e−(x−σ1)/θ1 , V1 = e−(x−σ2)/ρ2θ2 , and V2 = e−(x−σ2)/θ2 . Hence, if σ1 = σ2 = σ, (ρ1>ρ2), and

(θ1>θ2) then d
dx log

{
fX1 (x;Θ1)

fX2 (x;Θ2)

}
≤ 0, which implies that (X1 ≤st X2), (X1 ≤hr X2), (X1 ≤lr X2),

and (X1 ≤MRL X2). �
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5.2. Order Statistics

In order to discuss the order statistics of n random observations x = { x1, x2, x3, ..., xn }
drawn from LBIvED(σ, θ, ρ 6= 1). The random sample is arranged in ascending order such as
x1:n ≤ x2:n ≤, ...,≤ xn:n. Then, we denote the p.d. f of random variable which is of ith order by
fi:n(xi, Θ); i = 1, 2, ..., n, and joint p.d. f of (i, j)th order variable pair by fi:j:n(xi, xj); 1 ≤ i ≤ j ≤ n,
whose expressions are given by

fi:n(xi; Θ) = π1[FLBIvED(x(i); Θ)]i−1[1− FLBIvED(x(i); Θ)]n−i fLBIvED(x(i); Θ) (26)

and,

fi:j:n(xi, xj) = π2[FLBIvED(x(i); Θ)]i−1[FLBIvED(x(j); Θ)− FLBIvED(x(i); Θ)]j−i−1

[1− FLBIvED(x(j); Θ)]n−j fLBIvED(x(i); Θ) fLBIvED(x(j); Θ) (27)

where F(.) and f (.) are c.d. f and p.d. f . The constants π1 and π2 are given by

π1 = n!
(i−1)!(n−i)! and π2 = n!

(i−1)!(j−i−1)!(n−j)!

on substituting i = 1 and i = n in equation (26) the p.d. f ′s of 1st and nth order statistics obtained
are given as follows:

f1:n(x(1); Θ) = n
[
1− FLBIvED(x(1); Θ)

]n−1
fLBIvED(x(1); Θ)

=
n
[
ρφ(1)e

−(x(1)−σ)/ρθ − ψ(1)e
−(x(1)−σ)/θ

]n−1 [
x(1)

{
e−(x(1)−σ)/ρθ − e−(x(1)−σ)/θ

}]
θ(ρ− 1)n [σ + θ (ρ + 1)]n

(28)

and,

fn:n(x(n); Θ) = n
[

FLBIvED(x(n); Θ)
]n−1

fLBIvED(x(n); Θ)

=
n
[
τ −

{
ρφ(n)e

−(x(n)−σ)/ρθ − ψ(n)e
−(x(n)−σ)/θ

}]n−1 [
x(n)

{
e−(x(n)−σ)/ρθ − e−(x(n)−σ)/θ

}]
θ(ρ− 1)n [σ + θ (ρ + 1)]n

. (29)

Similarly, the joint order statistic density function of LBIvED(σ, θ, ρ 6= 1) is given as

fi:j:n(x(i), x(j)) =
π2

θ2(ρ− 1)n [σ + θ (ρ + 1)]n

.
[
(ρ− 1) [σ + θ (ρ + 1)]−

{
ρφ(i)e

−(x(i)−σ)/ρθ − ψ(i)e
−(x(i)−σ)/θ

}]i−1

.
[{

ρφ(i)e
−(x(i)−σ)/ρθ − ψ(i)e

−(x(i)−σ)/θ
}
−
{

ρφ(j)e
−(x(j)−σ)/ρθ − ψ(j)e

−(x(j)−σ)/θ
}]j−i−1

.
[
ρφ(j)e

−(x(j)−σ)/ρθ − ψ(j)e
−(x(j)−σ)/θ

]n−j [
x(i)

{
e−(x(i)−σ)/ρθ − e−(x(i)−σ)/θ

}]
.
[

x(j)

{
e−(x(j)−σ)/ρθ − e−(x(j)−σ)/θ

}]
where, φ(r) =

(
x(r) + ρθ

)
and ψ(r) =

(
x(r) + θ

)
; r = 1, n, i, j

6. Parameter Estimation and Simulation

6.1. Estimation Procedure of Model Parameters

Let a random sample x1, x2, ..., xn, consisting of n observations is drawn from LBIvED( σ, θ,
ρ 6= 1). The most frequently used technique called the method of maximum likelihood estimation
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approach is chosen for the estimation of the parameters. So, we write the log-likelihood function
of the complete data for LBIvED(σ, θ, ρ 6= 1) as

log L =
n

∑
i=1

log
{

xie−(xi−σ)/ρθ − xie−(xi−σ)/θ
}
− n log {θ(ρ− 1) [σ + θ (ρ + 1)]} . (30)

Setting φ = e−(xi−σ)/ρθ and ψ = e−(xi−σ)/θ , then (30) becomes

log L =
n

∑
i=1

log {φ− ψ}+
n

∑
i=1

log xi − n log θ − n log(ρ− 1)− n log [σ + θ (ρ + 1)] . (31)

On differentiating equation (31) with respect to (w.r.t) σ, θ, and ρ, the normal equations obtained
are

∂ log L
∂σ

=
n

∑
i=1

φ− ρψ

ρθ (φ− ψ)
− n

[σ + θ (ρ + 1)]
(32)

∂ log L
∂θ

=
n

∑
i=1

(xi − σ) (φ− ρψ)

ρθ2 (φ− ψ)
− n (ρ + 1)

[σ + θ (ρ + 1)]
− n

θ
(33)

∂ log L
∂ρ

=
n

∑
i=1

φ (xi − σ)

ρθ2 (φ− ψ)
− nθ

[σ + θ (ρ + 1)]
− n

ρ− 1
. (34)

To get the maximum likelihood estimates (MLEs), we equate equations (32), (33), and (34) to zero.
But the equations obtained are not in closed form. So, the recommended functions such as nlm or
optim are used to maximize the log-likelihood function in the R programming language. Also, the
alternative iterative technique known as the Newton-Raphson method could be employed to yield
the solution for the parameters. Further to construct the Fisher information matrix there must
exist the second-order partial differentials which do exists as can be proved by the continuity of
first-order differentials. Also, let us suppose that the MLEs of Θ are given by Θ̂ = { ( σ, θ, ρ ) :
σ > 0, θ > 0, ρ > 0 } then Fisher information matrix is defined as

I (Θ) = −E


∂2 log L

∂σ2
∂2 log L

∂σ∂θ
∂2 log L

∂σ∂ρ
∂2 log L

∂θ∂σ
∂2 log L

∂θ2
∂2 log L

∂θ∂ρ
∂2 log L

∂ρ∂σ
∂2 log L

∂ρ∂θ
∂2 log L

∂ρ2

 (35)

the partial derivatives of Fisher information matrix I (Θ) are given by

∂2 log L
∂σ2 =

n

∑
i=1

(φ− ρψ)2 − (φ− ψ) (φ− ρψ)

ρ2θ2 (φ− ψ)2 +
n

[σ + θ (ρ + 1)]2
(36)

∂2 log L
∂θ2 =

n

∑
i=1

(xi − σ) (φ− ρψ) {(1 + 3ρ)ψ− 2 (1 + ρ) φ}
ρ2θ3 (φ− ψ)2 +

n (ρ + 1)2

[σ + θ (ρ + 1)]2
+

n
θ2 (37)

∂2 log L
∂ρ2 =

n

∑
i=1

φ (xi − σ) {(σ + 2ρθ) φ− 2ρθψ}
ρ4θ2 (φ− ψ)2 +

nθ2

[σ + θ (ρ + 1)]2
+

n

(ρ− 1)2 (38)

∂2 log L
∂θ∂σ

=
n

∑
i=1

ρθ
(
φ2 + ρψ2)− (σ + ρθ − 2σρ + σρ2 + ρ2θ

)
φψ

ρ2θ3 (φ− ψ)2 +
n (ρ + 1)

[σ + θ (ρ + 1)]2
(39)

∂2 log L
∂ρ∂σ

=
n

∑
i=1

ρθ
(
φ2 + ρψ2)− (σ− σρ + ρθ + ρ2θ

)
φψ

ρ3θ (φ− ψ)2 +
nθ

[σ + θ (ρ + 1)]2
(40)

∂2 log L
∂ρ∂θ

=
n

∑
i=1

(xi − σ)
{(

σ− σρ + ρ2θ
)

φψ− ρθ (ρ + 1)ψ2 − ρθφ2}
ρ3θ3 (φ− ψ)2 − σ

[σ + θ (ρ + 1)]2
. (41)
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We drop the expectation term as it is difficult to compute for the second-order partial differential
elements of the Fisher information matrix see Cohen [4]. Therefore we write I (Θ) as

I
(
Θ̂
)
= −


∂2 log L

∂σ2
∂2 log L

∂σ∂θ
∂2 log L

∂σ∂ρ
∂2 log L

∂θ∂σ
∂2 log L

∂θ2
∂2 log L

∂θ∂ρ
∂2 log L

∂ρ∂σ
∂2 log L

∂ρ∂θ
∂2 log L

∂ρ2


(σ,θ,ρ)=(σ̂,θ̂,ρ̂)

(42)

now to construct the confidence intervals (C.I′s) for parameters of LBIvED( σ, θ, ρ 6= 1 ), we
first find inversion matrix I(Θ)−1 consisting of the diagonal elements as variances whereas
the off-diagonal elements represent the co-variances. The 100(1− ζ)% C.I′s for σ, θ, and ρ are

σ̂± χζ/2
√

V(σ̂), θ̂± χζ/2

√
V(θ̂), and ρ̂± χζ/2

√
V(ρ̂) respectively, where the term χζ/2 is (ζ/2)th

upper percentile of a normal variate.

6.2. Simulation Study

It is necessary for a statistical distribution, to explore the behavior of estimated parameters by
performing a Monte-Carlo simulation study at various randomly selected sample sizes, as n = {
30, 90, 150, 210, 350, 500 }. Since the quantile function of LBIvED does not exist in closed form.
So, to simulate the data, an alternative technique is utilized known as the acceptance-rejection
algorithm. In Table 1, the average bias (Bias = 1

n ∑n
i=1(Θ̂−Θ)) and average mean square error

(MSE = 1
n ∑n

i=1(Θ̂−Θ)2) of the estimated parameters are calculated. The simultaneous decrease
of Bias and MSE of parameters σ, θ, and ρ are reported as the sample size increases. It is clear,
that the consistency property of estimated parameters holds for LBIvED.

Table 1: Parameter Bias and MSE of LBIvED(σ, θ, ρ 6= 1)

(σ, θ, ρ) n
Bias MSE

σ̂ θ̂ ρ̂ σ̂ θ̂ ρ̂

(0.91, 0.82, 0.78)

30 0.16580 0.37902 1.7e+01 0.027489 0.14366 3.0e+02
90 0.06044 0.27480 2.65334 0.003654 0.07551 7.04022

150 0.04272 0.25322 1.11791 0.001825 0.06412 1.24971
210 0.03215 0.23397 0.97621 0.001034 0.05474 0.95299
350 0.01838 0.20611 0.67691 0.000338 0.04248 0.45821
500 0.01439 0.20147 0.63070 0.000207 0.04059 0.39778

(1.01, 1.87, 0.83)

30 0.39676 0.73710 1.2e+01 0.157419 0.54332 1.4e+02
90 0.16685 0.58280 2.36629 0.027840 0.33966 5.59931

150 0.11098 0.48364 1.03614 0.012317 0.23391 1.07359
210 0.08229 0.43797 0.69849 0.006772 0.19182 0.48789
350 0.05865 0.39767 0.55490 0.003440 0.15814 0.30791
500 0.04099 0.36097 0.46926 0.001681 0.13030 0.22020

(1.02, 1.59, 1.05)

30 0.37336 0.53592 1.2e+01 0.139400 0.28721 1.6e+02
90 0.15147 0.32432 1.97947 0.022842 0.10519 3.91829

150 0.09869 0.25286 0.69786 0.009740 0.06394 0.48701
210 0.07163 0.22203 0.45958 0.005131 0.04930 0.21121
350 0.03737 0.15245 0.27079 0.001397 0.02324 0.07333
500 0.03229 0.11726 0.19951 0.001042 0.01375 0.03980
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7. Model Applicability

7.1. Real-Life Data Based Applications

In this section, an illustration of the proposed methodology is given. Real-life examples are
presented to demonstrate the superior performance of the proposed LBIvED model. The real-life
data sets that are analyzed in this study are given below:

The first data set of T8 fluorescent lamps analyzed by Ahmed [1] represents the lifetime
(Hours) for 50 devices given by: 0.445, 0.493, 0.285, 0.564, 0.760, 0.381, 0.690, 0.579, 0.636, 0.238,
0.149, 0.244, 0.126, 0.796, 0.405, 0.553, 0.780, 0.431, 0.184, 0.375, 0.198, 0.890, 0.192, 0.463, 0.486,
0.521, 0.366, 0.486, 0.116, 0.511, 0.612, 0.117, 0.384, 0.326, 0.057, 0.412, 0.586, 0.517, 0.570, 0.588,
0.497, 0.246, 0.234, 0.228, 0.552, 0.893, 0.403, 0.458, 0.134, 0.338.

The second data set by Bader and Priest [3] consists of 63 samples representing the strength
measured in GPA for single carbon fibers with gauge lengths of 10mm given by: 1.901, 2.132,
2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575,
2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996,
3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408,
3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395,
5.020.

The output results of the analyzed data sets include the estimated parameters, the information
measures such as Akaike information criteria { AIC = −2 log L(x; Θ) }, Bayesian information
criteria { BIC = −2 log L(x; Θ) + k log L(x; Θ) }, Hannan Quen information criteria { HQIC =
−2 log L(x; Θ) + 2k log [log(n)] }, where constants n and k represent the sample size and the
number of parameters respectively. The goodness-of-fit statistics tests are the Anderson Darling
test, Cramer Von Mises test, and the Kolmogorov Smirnov test statistic with a p-value. The
existing distributions that are compared with LBIvED are IvED, exponential distribution (ED),
weighted exponential distribution (WED), and length-biased exponential distribution (LBED).
The p.d. f ′s are given as,

ED = f (x; Θ) =
1
σ

e−x/σ (43)

WED = f (x; Θ) =
(σ + 1)

σ
θe−θx

(
1− e−σθx

)
(44)

LBED = f (x; Θ) =
[θ(σ + 1)]2

σ (σ + 2)
xe−θx

(
1− e−σθx

)
(45)

Table 2: Various measures from the first data set

Models
In f ormation Measures

σ̂ θ̂ ρ̂ log L AIC BIC HQIC
LBIvED 0.01975 0.13979 1.00007 7.60999 -9.21998 -3.48391 -7.03565

IvED 0.04305 0.19339 1.00033 6.10016 -6.20032 -0.46426 -4.01600
LBED 1.749e+4 4.65200 - 4.11157 -3.96781 -0.39908 -2.76691
WED 1.278e-04 4.65203 - 4.11157 -4.22313 -0.39908 -2.76691

ED 0.42990 - - -7.78987 17.5797 19.4918 18.3078

Models
Goodness-o f - f it Tests

σ̂ θ̂ ρ̂ CVM AD KS p-value

LBIvED 0.01975 0.13979 1.00007 0.14036 0.75075 0.12723 0.3932
IvED 0.04305 0.19339 1.00033 0.17074 0.91949 0.15728 0.1685
LBED 1.749e+4 4.65200 - 0.13315 0.71331 0.16757 0.1206
WED 1.278e-04 4.65203 - 0.13315 0.71330 0.16761 0.1205

ED 0.42990 - - 0.13395 0.71750 0.23317 0.0087

     RT&A, No 2 (73) 

  Volume 18, June 2023 

264



Vilayat Ali Bhat, Sudesh Pundir
WEIGHTED INTERVENED DISTRIBUTION

Table 3: Various measures from the second data set

Models
In f ormation Measures

σ̂ θ̂ ρ̂ -log L AIC BIC HQIC
LBIvED 1.87153 0.50522 1.00011 59.884 125.768 132.197 128.297

IvED 1.87408 0.59253 1.00026 60.663 127.326 133.756 129.855
LBED 1.58e-05 0.9806086 - 97.954 199.908 204.194 201.594
WED 1.717e-5 6.537e-01 - 110.35 224.696 228.983 226.382

ED 3.05930 - - 133.45 268.892 271.035 269.734

Models
Goodness-o f - f it Tests

σ̂ θ̂ ρ̂ CVM AD KS p-value

LBIvED 1.87153 0.50522 1.00011 0.06424 0.42637 0.10492 0.4919
IvED 1.87408 0.59253 1.00026 0.06944 0.46604 0.11296 0.3975
LBED 1.58e-05 0.9806086 - 0.05891 0.36294 0.33488 1.4e-06
WED 1.717e-5 6.537e-01 - 0.05890 0.36281 0.39019 9.3e-09

ED 3.05930 - - 0.05885 0.36229 0.48600 2.3e-13

From Table 2 and Table 3, it is visible that all the existing distributions lack superiority against
the new LBIvED, the information measures and the goodness-of-fit test results displayed are
relatively lower for LBIvED with a higher significant p-value. Hence, the LBIvED is treated as
the best-fitted model.

Conclusion

In this article, the WIvED, a generalization of the IvED that may be used to describe time-to-event
data sets as a lifetime distribution is presented and examined. The length biased variant of
the IvED is derived as a special instance of the WIvED and its model applicability features are
thoroughly examined. We find that the LBIvED may be used as a flexible model in place of
the traditional lifetime models taken in comparison that are commonly used in the literature
to describe real-life time-to-event data. As evidenced by its excellent distributional, reliability,
and survival qualities, we anticipate that the proposed WIvED and the length-biased variant of
IvED will function as a competitive model for representing data from reliability analysis, survival
analysis, and other domains of the statistics.
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Abstract

Today’s life is a age of modern life, and in the modern life for any kind of business setup, customer
service, pricing, stocking strategies and trade credit financing schemes are effective, essential and survival
parameters to grow the business. In this paper, we have developed, an economical order quantity model
for imperfect quality product by considering retailer’s stock sensitive demand of product under trade
credit financing policy. Further in this paper we have studied the Learning effect on screening process on
every batch of imperfect quality product. Under the trade credit financing scheme, we have considered
that, the supplier proposes to the retailer, a fixed credit time period for payment and retailer also offers to
his customers to a fixed credit time period of payment.
Finally an appropriate total profit function per unit time has been derived under the various trade credit
financing periods of payment including various expenditure and other related parameters. A sensitivity
analysis has been done to verify the optimum results and also a numerical example has been given to
verify the model’s outputs.

Keywords: Learning Effect, Stocking, Imperfect quality items, Trade credit policy. Screening
process

1. Introduction

Generally, it has been analyzed, that a large number of consumer goods displayed in a shelf
at shopping center or supermarket are connected with on sale items to induce more sales and
profits. For any kind of an item, increment of shelf space induces more consumers to buy it. This
possible because of its visibility, prominence or variety. Conversely, low stocks of certain paved
goods might raise the feeling that they are not good and fresh. Therefore, demand is often based
on inventory-level. In the last some decade, a considerable literature has been written in the
operational research area on how inventory-level-dependent demand affects inventory control
policies. Wu et al. [1] developed a inventory model for determining the optimal ordering quantity
for non-instantaneous deteriorating products considering with stock-level dependent demand.
They suggested that this may more beneficial for those situations in which backlogging parameter
increases and decreases the order quantity. In (2005), Teng and Chang [2] Giri, and Bardhan, [3]
formulated two layer supply chain coordination policy for deteriorating items with price stock
level depended market demand of single product under revenue sharing contract. They con-
cluded that the centralized system is the best strategy instead of decentralized system. developed
EPQ models for deteriorating items considering with selling price and stock level dependent
demand. They proposed appropriate decision for managerial activities. Ray and Chaudhuri,

     RT&A, No 2 (73) 

  Volume 18, June 2023 

267

mailto:arnw@rediffmail.com


A. R. Nigwal, U. K. Khedelekar, N. Gupta L. Sharma
TRADE CREDIT FINANCING SCHEME ON RETAILER’S ORDERING
QUANTITY FOR IMPERFECT QUALITY ITEM

[4], developed an EOQ model assuming a deterministic stock-dependent demand, incorporating
with shortage, inflation and time discounting. They show through the numerical example that
inventory backlogging is beneficial from both (retailer and supplier) organizational as well as
economic viewpoints; Giri, and Chaudhuri, [5] designed a model considering with deterministic
stock-dependent demand rate of perishable products incorporating time dependent nonlinear
holding cost of the products. Parlar and Wang, [6] designed a quantity discounting decisions
model for supplier and buyer relationship in which they start with Stackelberg equilibrium of
the problem. They concluded quantity discount policy can be very effective in obtaining the
maximum profit increase that the supplier and the retailer can possibly obtain together in certain
cases. A deterministic inventory model is developed by Pal et al., [7] assuming that the demand
rate is stock-dependent and the items deterioration rate is constant. They highlighted the various
problems related stocking of goods and further they optimized the profit function with respect
to decision variable time and economical order quantity. Muth, and Spremann [8] provided a
classical square root formula on the class of economical lot sizing problem considering with
learning effects on the production process. Salameh et al. [9] developed a economical production
inventory (EMQ) model which was formulated under the learning curve effect on the finite
production rate. Cheng [10] Formulated an economical manufacturing quantity (EOM) under
the influence of learning process. The order size is considered as to be large enough to allow the
manufacturing learning phenomenon to manifest itself. The set-up cost is also assumed to reduce
as a result of learning over the life of the product. Salameh and Jaber [11] developed a traditional
(EOQ/EPQ) model for imperfect quality items using the (EOQ/EPQ) formulas. They also assumed
that at the end of 100 percent screening work the poor-quality items are sold as a single batch
with lower price.

Jaber and Guiffrida [12] Provided an (EPQ) model with rework for imperfect quality
items using (WLC) wright learning curve. For this they proposed two different cases, first one
is learning process adopted in production, no learning process in reworks and second one is
learning process adopted in production and rework both. Eroglu and Ozdemir [13] developed an
economical order quantity (EOQ) model in which they considered that each ordered lot contains
some defective items incorporating with shortages at retailers end. They analyzed, how to affects
optimal solution by increasing rate of percentage of defective items. They also assumed that, after
100 percent screening of each lot, the good and defective items are separated into two collection
of imperfect quality and scrap items.

Jaber et al. [14] extended the work of Salameh and Jaber [11] by introducing the assumption
that the percentage defective items per lot decreases under the learning curve (LC) effects, which
was experimentally certified and validated by actual data of automotive industry. Jaber et al. [15]
investigated the quality learning curve (QLC) for the assumption that the manufacturing process
is interrupted due to maintain the quality to bring the process in control again. In this article they
developed two various cases, first one is learning process is adopted in production, no learning
process is adopted in reworks and second one is learning process is adopted in production and
reworks both. Pan [16] analyzed the effect of learning curve on setup cost for their (CRI) model.
They also assumed that the controllable lead time with the mixture of backorder and partial lost
sales. Lin [17] investigated the market survey and manufacturing problem for a monopolist firm
for quality and cumulative sales dependent demand. They also assumed that per unit production
cost reduces with the cumulative manufacturing and learning effect.

Yoo et al. [18] focused on the problem that not only imperfect production process is possible
but also inspection processes are always not perfect, due to generating defects and inspection
errors. For this they developed a profit-maximizing economical manufacturing (EMQ) model
by incorporating imperfect quality production and two-way imperfect inspection both. Sui et
al. [19] provided a model for Vendor-Managed Inventory (VMI) system in place of traditional
retailer-managed inventory applying with learning curve approach in which the supplier makes
decisions of inventory management for the retailer.

Khan et al. [20] extended the paper of Salameh and Jaber’s [11] model by introducing a new
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case where there is learning in inspection. The model is more realistic than Salameh and Jaber’s
[11] model in the that they considered situations of lost sales and back-orders.
Wahab and. Jaber [21] developed a model for the optimal lot sizes of an item with imperfect
quality which is extension of Salameh and Jaber [11] by incorporating different holding cost for
good and defective items. Jaber and Khan [22] presented a model to develop a combination
of performance of average processing time and process yield with respect to the number of
equal batches. For the development of model, they changed the learning curve parameters in
production system and rework both.

Das et al. [23] introduced a production-inventory model (EPQ) for deteriorating items in an
indefinite conditions characterized by inflation and timed value of money by considering with
static demand. They also considered that the planning interval of the business activity time is
random in nature and follows exponential distribution function with a known mean. Khan et al.
[24] extended the model of Salameh and Jaber [11] by introducing the inspection error in the time
of the screening process and the probability of inspection errors is assumed to be known.
Konstantaras et al. [25] developed an economical order quantity (EOQ) model for imperfect
quality items considering with shortages. They also assumed that the fraction of perfect quality
in each shipment increases with respect to learning effect. A new and more advance inventory
model for imperfect quality items has been developed by Jaggi et al. [26] under the situations
of permissible delay in payments. Shortages are also allowed and fully backlogged, which are
fulfilled during screening process. In this model It has been assumed that screening rate is enough
greater than the demand rate.

Teng et al. [27] also proposed an economical order quantity (EPQ) model from the retailer’s’
point of view to determine his/her optimal production lot size (EPQ) and trade credit financing
period simultaneously. For this they assumed that (i) trade credit financing scheme encourage not
only sales but also opportunity cost and default risk, and (ii) production cost reduces with respect
to learning curve effect. Kumar et al. [28] proposed the effect of learning on the economical
ordering policy (EPQ) for deteriorating items incorporating shortages and partially backlogging.
They also assumed that due to impact learning process the ordering cost is partly constant
and partly decreasing in each cycle. Further they also considered the two-level storage cost for
replenishment inventor.

Givi et al. [29] introduced a Human Reliability Analysis (HRA) model that estimates the
human error rate while performing a collectively job under the domination of learning-forgetting
and fatigue-recovery. This model is enable to quantify the human error rate dynamically with
time. Agi and Soni [30] proposed a deterministic demand inventory model for jointly pricing and
inventory control of a perishable product considering both physical deterioration and freshness
condition degradation. They considered the market demand of product as price and stock
sensitive. They suggested that when the primary demand is high, then the retailer would be
interested in greedy the benefit of this higher primary demand by increasing the retailing price
and accelerating the inventory turnover by reducing a cycle time in place of pricing strategies.
Sarkar, and Sumon [31] extended an inventory model for deteriorating items with stock-level
dependent market demand. This model has been studied in that situations in which backlogging
rate and deterioration rate are time varying with respect to time. Further a sensitivity analysis is
analyzed of the model’s outputs with respect to key parameters. Jayaswal et al. [32] introduced
trade credit financing inventory model for imperfect quality items under the effects of learning
on ordering policy. They derived average profit function per cycle time by incorporating various
expenditure costs and related parameters for the retailers and the optimization process is also
shown by a numerical example. Yadav et al. [33], developed two layer supply chain model
to study the effect of imperfect quality items under the asymmetric information with market
expenditure sensitive demand.
Soni, and Shah [34] developed an economical production quantity (EPQ) model for retailer’s
by considering partially constant and partially stock stock sensitive demand. Further they also
consider a new progressive credit period. They concluded which credit period is more beneficial
for business activity. Benyong and Feng [35] developed a two layer supply chain inventory model
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with revenue sharing contract and service requirement under the unpredictability of supply
and demand. They formulated the buyer’s and supplier’s optimal coordination and service
requirement situations. They demonstrated how the service requirement’s impacts the buyer’s
and supplier’s decisions. Nigwal et al.[36] designed an EPQ model on retailer’s order quantity
using learning effect on screening process under trade credit financing scheme. Nigwal et al.[37]
developed three stage price dependent trade credit policy for supplier, manufacturer and retailer.

Generally, in the traditional economical order quantity (EOQ) models, it is assumed that the
retailer pay to supplier as soon as the product is received. But in the practice, supplier to stimulate
sales of his products,he offers to the retailer a certain permissible delay period of payment and
after end of this delayed period he charges the interest. In this chapter we have considered a two
stage trade credit financing periods, in which firstly supplier offers to the retailer a permissible
delay period of payment and the retailer also offers to his customers a permissible delay period
of payment without interest. Further, we have also assumed that every manufacturing system
may manufacture some defective and good items both. The defective items may be detected
by the screening process after delivery of imperfect quality items’ batches.To separate the good
and defective items we apply screening process on each batches of imperfect quality items on
retailer’s end. Furthermore we have applied learning effects on screening process.
Learning curve (LC) or Experience curve (EC) was derived first by Wright [38] in 1936. It is a
mathematical tool which relates the learning variables and cumulative quantity of units. In this
chapter we study the impact of learning on screening process on imperfect quality items. Sigmoid
function is the ideal shape of all other learning curves and in this paper we use Sigmoid function

which is formulated as α(n) =
(

α
g+eβn

)
, where α(n) represents defective percentage rate of item

in the single batch and n represents number of batches. β, g > 0 and a > 0 are the learning curve
parameters.
Table 1: Comparative table for contribution of different authors:

Authors Learning Effects Screening Trade Credit Financing Pricing Stock level
Strategies

Wright (1936) X × × × ×
Muth, and Spremann (1983) X × × × ×

Salameh et al.(1993) X × × × ×
Pal et al.(1993) × × × X ×

Parlar and Wang (1994) × × × X ×
Cheng (1994) X × × × ×

Ray, and Chaudhuri(1997) × × × X X
Giri, and Chaudhuri. (1998) × × × X ×

Salameh and Jaber (2000) X X × × ×
Jaber et al.(2004) X X × × ×

Teng and Chang (2005) × × × X X
Wu et al.(2006) × × × X X

Eroglu and Ozdemir(2007) X X × × ×
Jaber and Guiffrida (2008) X X × × ×

Pan (2008) X × × × ×
Lin (2008) X × × X ×

Soni, and Shah (2008) × × X X X
Jaber et al. (2008) X X × × ×

Yoo et al. X X × × ×
Sui, et al. (2010) X X × × ×

Khan et al. (2010) X X × × ×
Wahab and. Jaber (2010) X X × × ×
Jaber and Khan (2010) X × × × ×

Das et al. (2010) X × × × ×
Khan et al. (2011) × X × × ×

Giri, and Bardhan (2012) × × × X X
Sarkar, and Sumon (2013) × × × X X
Konstantaras et al. (2012) X X × × ×

Jaggi et al. (2013) × X X × ×
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Authors Learning Effects Screening Trade Credit Financing Pricing Stock level
Strategies

Teng et al. (2013) X × × × ×
Kumar et al. (2013) X × × × ×

Givi et al. (2015) X × × × ×
Benyong and Feng (2017) × × × X X

Jayaswal et al. (2019) X X X × ×
Maher and Soni (2020) × × × X X

Nigwal et al. (2022) × × X X X
Nigwal et al. (2022) X X X X ×

This paper X X X × X

2. The Mathematical Model

I. Notations and Assumptions:

φn : Lot size of the nth batch,

D : Demand rate of items in units per unit of time for perfect quality items, Where,
D = a + bI(t),

Sc : Setup cost per order,

φn : Initial stock of inventory,

Cp : Purchasing cost per unit of an item,

h : Holding cost of items per unit time,

p : Retailing price per unit of perfect quality items,

v : Retailing price (On discounted rate) per unit of defective items (p > v),

α(n) : Percentage rate of defective items per batch,

Tn : Length of cycle for shipment per order,

χ : Screening rate of items per unit time (D < χ),

Cs : Screening cost per unit items,

τn : Screening time of φn batch in planing time Tn, where, τn = φn
χ < Tn,

Ie : Interest rate per unit $ earned by retailer,

Ip : Interest rate per unit $ paid by retailer,

TSR : Sells revenue,

TE : Total cost,

Π(φn) : Retailer’s total profit per unit time,

L : Length delay period of payment offered per cycle time by supplier to the retailer,

M : Length delay period of payment offered per cycle time by retailer to customers,

The following assumptions are assumed during the development of model:

• The supplier provides a fixed and predetermined credit period to settle the accounts to the
supplier,

• For infinite supply rate, selling price p and optimal lot size φn, are decision variable,
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• No scrape item will be obtain during the screening process,

• Screening procedure and demand of items occurs simultaneously (D < χ).,

• It has been assumed that each lot size contains perfect and imperfect items both,

• It has been assumed that the price of the perfect quality items is greater than the imperfect
quality items,

• It has been assumed that the earned interest rate is less than the payable interest rate,

• It has been that the retailer offers a permissible delay period of payment to his customers
without interest to stimulate the sales,

• We has been assumed that a limited but maximum amount of stock displayed in a super-
market without leaving a negative impact on customers,

• It has been assumed that L, M ∈ [0, Tn], only.

• During the formulation of profit, Tn is approximated by second term, because b < 1 and a
is very large, therefore b2

a2 ≈ 0.

II. The Mathematical formulation of model

The inventory level of perfect quality items at any time t, is governed by the following differential
equation:

dI(t)
dt

= −(a + bI(t)), 0 ≤ t ≤ Tn, (1)

with the boundary conditions: I(0) = (1− α(n))φn, and I(Tn) = 0
solution of this equation : Where A is arbitrary constant, to remove the constant using the
conditionsI(0) = (1− α(n))φn, then solutions becomes

I(t) =
a
b
(e−bt − 1) + (1− α(n))φne−bt (2)

at time t = Tn, the Tn can be determined by the following formula

Tn =
log(1− α(n))φn

a
(3)

and according to the assumptions the screening time τn is given by the following formula

τn =
φn

χ
(4)

The Sales revenue SR = p(1− α(n))φn + vα(n)φn,Ordering Cost = Oc,Purchasing Cost = Pcφn,
Screening Cost = Scφn, Inventory Holding Costs = h

[
1
a (1− (ebTn Tnb)) + (1−α−(n))φn

b (1− e−bTn)
]

and h
[

φ2
nα(n)

χ

]
Now the total expenditure per cycle is given by:

TE = Sc + pcφn + scφn+ = h

[
a
b

(
− e−bTn

b
− Tn

)
+

(1− α(n))φne−bTn

b
+

a
b2 +

(1− α(n))φn

b

]
(5)

At a time of each replenishment a fixed and certain credit period of payment L is provided by
supplier to the retailer and similarly a fixed and certain period of payment M is also provided
by retailer to their customers. Where M, L∈ (0, Tn) and τn 6= Tn There are four different cases
available for retailer and their customers.

(1) τn ≥ L ≥ M (2) τn ≥ M ≥ L (3) L ≥ M ≥ τn (4) M ≥ L ≥ τn
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Figure 1: Inventory Level Chart

the retailer’s whole profit Πi(φn), i=1,2,3, 4 per unit of time can be defined as:

Πi(φn) = TSRi-TEi+(Earned Interest)-(Paid Interest), where i=1, 2, 3, 4 (6)

Case 1: τn ≥ L ≥ M

As assumed credit periods, firstly we consider L is greater than M as per depicted in Figure 1,
the earned interest and paid interest for this case is estimated as follows:

Earned Interest by retailer:

EIr = Ie p[a + b(1− α(n))φ(L−M)] (7)

Paid Interest by retailer:

PIr = IpCp[a + b(1− α(n))φnb(L− (1− α(n))
a

)φn] + Cp Ipα(n)φn(
φn

χ
− L) (8)

and total profit function per unit time may be defined as follow:

Π1(φn) =
TSR1-TE1+(Earned Interest)-(Paid Interest)

Tn
(9)

Hence the total profit function per unit time is:

Π1(φn) = pa +
να(n)a

(1− α(n))
+

Ie pa2

(1− α(n))φn
+ ba(L−M)Ie p

−
(Cs + Cpφn + Scφn)a

(1− α(n))φn
− 2hb

a
− h(1− α(n))φn −

hφnα(n)
(1− α(n))χ

− IpCp

[
a

(1− α(n))φn
+ ab

(
L− (1− α(n))

a
)φn

)]
+

Cp Ipα(n)a
(1− α(n))

(
φn

χ
− L

)
. (10)

Theorem 2.1. Retailer’s profit function is an optimum at retailer’s ordering quantity φ∗n, where φ∗n1 is
given by the following equation:

φ∗n1 =

√√√√ Csa− Ie pa2 + Cp Ipa2

h(1− α(n))2 + hα(n)
χ − Cp Ipb(1− α(n))2 +

Cp Ipα(n)a
χ

. (11)
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Proof. On differentiating the equations (10) with respect to φn, we get

dΠ1(φn)

dφn
= − Ie pa2

(1− α(n))φ2
n
+

Csa
(1− α(n))φ2

n
− h(1− α(n))− hα(n)

χ(1− α(n))

+
Cp Ipa2

(1− α(n))φ2
n
+ Cp Ipb(1− α(n))−

Cp Ipα(n)a
(1− α(n))χ

(12)

As per optimality condition, on equating to zero the above equation (12), yields

− Ie pa2 + Csa− h(1− α(n))2φ2 − hα(n)φ2

χ
+ Cp Ip

(
a2 + b(1− α(n))2φ2 − α(n)aφ2

χ

)
= 0

On solving the above equation we obtain the equation (11)

Theorem 2.2. As per optimality condition, at the point of optimality, the second derivative d2Π1
dφ2

n
is always

negative if
2Ie pa2

(1− α(n))φ3
n
− 2Csa

(1− α(n))φ3
n
−

Cp Ipα(n)a2

(1− α(n))3 < 0 (13)

Proof. On differentiating again the equation (12) with respect to φn, we get the second order
derivative is

d2Π1

dφ2
n

=
2Ie pa2

(1− α(n))φ3
n
− 2Csa

(1− α(n))φ3
n
−

Cp Ipα(n)a2

(1− α(n))3 (14)

As per assumptions all the terms 2Ie pa2

(1−α(n))φ3
n

, 2Csa
(1−α(n))φ3

n
and Cp Ipα(n)a2

(1−α(n))3 are always positive, and
therefore by numerical analysis

2Ie pa2

(1− α(n))φ3
n
− 2Csa

(1− α(n))φ3
n
−

Cp Ipα(n)a2

(1− α(n))3 < 0.

Case 2: τn ≥ M ≥ L

As assumed credit periods, we consider M is greater than L as per depicted in the Figure 2, the
earned interest and paid interest for this case is estimated as follows:

Earned Interest by retailer:
EIr = 0 (15)

Paid Interest by retailer:

PIr = IpCp[a + b(1− α(n))φnb(L− (1− α(n))
a

)φn] + Cp Ipα(n)φn(
φn

χ
− L) (16)

and total profit function per unit time may be defined as follow:

Π2(φn) =
TSR2-TE2+(Earned Interest)-(Paid Interest)

Tn
(17)

Hence the total profit function per unit time is:

Π2(φn) = pa +
να(n)a

(1− α(n))
−

(Cs + Cpφn + Scφn)a
(1− α(n))φn

− 2hb
a
− h(1− α(n))φn

− hφnα(n)
(1− α(n))χ

− IpCp

[
a2

(1− α(n))φn
+ ab

(
(1− α(n))φn

a
−M

)]
−

Cp Ipα(n)a
(1− α(n))

(
φn

χ
− L

)
. (18)
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Figure 2: Inventory Level Chart

Theorem 2.3. Retailer’s profit function is an optimum at retailer’s ordering quantity φ∗n2, where φ∗n is
given by the following equation:

φ∗n2 =

√√√√ Csa + Cp Ipa2

h(1− α(n))2 + hα(n)
χ + Cp Ipb(1− α(n))2 +

Cp Ipα(n)a
χ

. (19)

Proof. On differentiating the equations (18) with respect to φn, we get

dΠ2(φn)

dφn
=

Csa
(1− α(n))φ2

n
− h(1− α(n))− hα(n)

χ(1− α(n))

+
Cp Ipa2

(1− α(n))φ2
n
− Cp Ipb(1− α(n))−

Cp Ipα(n)a
(1− α(n))χ

(20)

As per optimality condition, on equating to zero the above equation (20), yields

Csa− h(1− α(n))2φ2 − hα(n)φ2

χ
+ Cp Ip

(
a2 − b(1− α(n))2φ2 − α(n)aφ2

χ

)
= 0

On solving the above equation we obtain the value of φ∗n2 given in the equation (19)

Theorem 2.4. As per optimality condition, at the point of optimality, the second derivative d2Π2
dφ2

n
is always

negative if
2Csa

(1− α(n))φ3
n
+

Cp Ipa2

(1− α(n))3 > 0 (21)

Proof. On differentiating again the equations (20) with respect to φn, we get the second order
derivative is

d2Π2

dφ2
n

= − 2Csa
(1− α(n))φ3

n
−

Cp Ipa2

(1− α(n))3 (22)

As per article’s assumptions all the terms 2Csa
(1−α(n))φ3

n
and Cp Ipa2

(1−α(n))3 are always positive, and
therefore

− 2Csa
(1− α(n))φ3

n
−

Cp Ipa2

(1− α(n))3 < 0.
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Figure 3: Inventory Level Chart

Case 3: L ≥ M ≥ τn

As assumed credit periods, we consider L is greater than τ and M as pr depicted in the Figure 3,
the earned interest and paid interest for this case is estimated as follows:

Earned Interest by retailer:

EIr = Ie p[a + b(1− α(n))φ(M− L)] + νIeα(n)φ(L− τ) (23)

Paid Interest by retailer:

PIr = IpCp

[
a + b(1− α(n))φn

(
(1− α(n))φn

a
− L

)]
(24)

and total profit function per unit time may be defined as follow:

Π3(φn) =
TSR3-TE3+(Earned Interest)-(Paid Interest)

Tn
(25)

Hence the total profit function per unit time is:

Π3(φn) = pa +
να(n)a

(1− α(n))
+

νIeα(n)a
(1− α(n))

(
L− φn

χ

)
−

(Cs + Cpφn + Scφn)a
(1− α(n))φn

− 2hb
a

− IpCp

[
a− ab

(
L +

a2L
1− α(n)φn

)
+ b((1− α(n))φn

]
− h(1− α(n))φn

− hφnα(n)a
(1− α(n))χ

+
Cp Ipα(n)a
(1− α(n))

(
φn

χ
− L

)
. (26)

Theorem 2.5. Retailer’s profit function is an optimum at retailer’s ordering quantity φ∗n3, where φ∗n3 is
given by the following equation:

φ∗n3 =

√√√√ Csa + Cp IpLa2

h(1− α(n))2 + hα(n)a
χ + Cp Ipb(1− α(n))2 + να(n)Iea

χ

. (27)

Proof. On differentiating the equations (26) with respect to φn, we get

dΠ3(φn)

dφn
= − Ie pa2

(1− α(n))φ2
n
+

Csa
(1− α(n))φ2

n
− h(1− α(n))− hα(n)

χ(1− α(n))

+
Cp Ipa2

(1− α(n))φ2
n
+ Cp Ipb(1− α(n))−

Cp Ipα(n)a
(1− α(n))χ

(28)
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Figure 4: Inventory Level Chart

As per optimality condition, on equating to zero the above equation (28), yields

Csa + a2Cp IpL− h(1− α(n))2φ2
n −

hα(n)φ2
na

χ
− Cp Ipb(1− α(n))2φ2

n −
νIeαaφ2

χ
= 0 (29)

On solving the above equation we obtain the equation (27)

Theorem 2.6. As per optimality condition, at the point of optimality, the second derivative d2Π3
dφ2

n
is always

positive if
2Csa

(1− α(n))φ3
n
+

2Cp Ipa2L
(1− α(n))φ3

n
> 0 (30)

Proof. On differentiating again the equations (28) with respect to φn, we get the second order
derivative is

d2Π1

dφ2
n

= − 2Csa
(1− α(n))φ3

n
−

2Cp Ipa2L
(1− α(n))φ3

n
(31)

As per assumptions all the terms 2Csa
(1−α(n))φ3

n
and 2Cp Ipa2L

(1−α(n))φ3
n

are always positive, and therefore,

− 2Csa
(1− α(n))φ3

n
−

2Cp Ipa2L
(1− α(n))φ3

n
< 0.

Case 4: M ≥ L ≥ τn

As assumed credit periods, we consider M is greater than L and τ as per depicted in the Figure 4,
the earned interest and paid interest for this case is estimated as follows:

Earned Interest by retailer:

EIr = Ie p [a + b(1− α(n))φn] L + νIeα(n)φn(L− τn) (32)

Paid Interest by retailer:

PIr = IpCp

[
a + b(1− α(n))φn

(
(1− α(n))φn

a
− L

)]
(33)
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and total profit function per unit time may be defined as follow:

Π4(φn) =
TSR4-TE4+(Earned Interest)-(Paid Interest)

Tn
(34)

Hence the total profit function per unit time is:

Π4(φn) = pa +
να(n)a

(1− α(n))
− Cp Ip (b(1− α(n))φn − aL)−

(Cs + Cpφn + Scφn)a
(1− α(n))φn

− 2hb
a
− h(1− α(n))φn −

hφnα(n)a
(1− α(n))χ

− Ie pLa
[

a
(1− α(n))φn

+ b
]

+
νIeα(n)a
(1− α(n))

(
L− φn

χ

)
− Cp IPa

(
1 +

aL
(1− α(n))φn

)
. (35)

Theorem 2.7. Retailer’s profit function is an optimum at retailer’s ordering quantity φ∗n4, where φ∗n4 is
given by the following equation:

φ∗n4 =

√√√√ Csa− Ie pa2L− Cp Ipa2L

h(1− α(n))2 + hα(n)a
χ + Cp Ipb(1− α(n))2 + να(n)

χ

. (36)

Proof. On differentiating the equations (35) with respect to φn, we get

dΠ4(φn)

dφn
=

Csa
(1− α(n))φ2

n
− h(1− α(n))− hα(n)a

χ(1− α(n))

− Ie pa2L
(1− α(n))φ2

n
− Cp Ipb(1− α(n))− να(n)a

(1− α(n))χ
−

IpCpL
(1− α(n))φ2

n
. (37)

As per optimality condition, on equating to zero the above equation (37), yields

Csa− h(1− α(n))2φ2 − Ie pa2L− α(n)φ2

χ
(ah + Ieν)− Cp Ip

(
a2 + b(1− α(n))2φ2

)
= 0 (38)

On solving the above equation we obtain the equation (36)

Theorem 2.8. As per optimality condition, at the point of optimality, the second derivative d2Π4
dφ2

n
is always

negative if
2Ie pa2L

(1− α(n))φ3
n
− 2Csa

(1− α(n))φ3
n
−

2Cp Ipa2L
(1− α(n))φ3

n
< 0 (39)

Proof. On differentiating again the equation (37) with respect to φn, we get the second order
derivative is

d2Π1

dφ2
n

=
2Ie pa2L

(1− α(n))φ3
n
− 2Csa

(1− α(n))φ3
n
−

2Cp Ipa2L
(1− α(n))φ3

n
(40)

As per assumptions all the terms 2Ie pa2L
(1−α(n))φ3

n
, 2Csa
(1−α(n))φ3

n
and 2Cp Ipa2L

(1−α(n))φ3
n

are always positive, and
therefore by numerical analysis

2Ie pa2L
(1− α(n))φ3

n
− 2Csa

(1− α(n))φ3
n
−

2Cp Ipa2L
(1− α(n))φ3

n
< 0.
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3. Numerical Examples

Case-1:

We have considered the following data set of input parameters is given as: α = 160 units/unit
time, β = 1, Sc = $0.5, h = $0.8 unit/ unit time, Cp = $150 /unit, v = $45 per/unit, χ = 5000
units, Cs = $100/unit, Ie = 0.003/unit time, Ip = $0.004/unit time, α(n) = 0.1599, n = 1, a = 455,
b = 0.25, g = 999 L = 0.06/unit time, M = 0.05/unit time.

Following the proposed restrictions for this case we may get the optimal ordering quantity
(OOQ) φn = 339 units per unit time, p = 190 and after substituting these optimum values φn, and
p into the equation (10) we get the retailer’s profit Π(φn) = 18266, screening time τn = 0.06 per
unit time, and time interval is Tn = 0.250 in year.

Case-2:

We have considered the following data set of input parameters is given as: α = 160 units/unit
time, β = 1, Sc = $0.5, h = $0.8 unit/ unit time, Cp = $150 /unit, v = $45 per/unit, χ = 5000
units, Cs = $100/unit, Ie = 0.003/unit time, Ip = $0.004/unit time, α(n) = 0.1599, n = 1, a = 455,
b = 0.25, g = 999 L = 0.06/unit time, M = 0.07/unit time.

Following the proposed restrictions for this case we may get the optimal ordering quantity (O
OQ) φn = 423 units per unit time, p = 190 and after substituting these optimum values φn, and p
into the equation (18) we get the retailer’s profit Π(φn) = 17174, screening time τn = 0.08 per
unit time, and time interval Tn = 0.363 in year.

Case-3:

We have considered the following data set of input parameters is given as: α = 160 units/unit
time, β = 1, Sc = $0.5, h = $0.8 unit/ unit time, Cp = $190 /unit, ν = $45 per/unit, χ = 5000
units, Cs = $100/unit, Ie = 0.003/unit time, Ip = $0.004/unit time, α(n) = 0.1599, η = 1, a = 455,
b = 0.25, g = 999 L = 0.09/unit time, M = 0.07/unit time.
Following the proposed restrictions for this case we may get the optimal ordering quantity (O
OQ) φn = 244 units per unit time, p = 190 and after substituting these optimum values φn, and p
into the equation (26) we get the retailer’s profit Π(φn) = 39979, screening time τn = 0.049 per
unit time, and time interval Tn = 0.219 in year.

Case-4:

We have considered the following data set of input parameters is given as: α = 160 units/unit
time, β = 1, Sc = $0.5, h = $0.8 unit/ unit time, Cp = $150 /unit, v = $45 per/unit, χ = 5000
units, Cs = $100/unit, Ie = 0.003/unit time, Ip = $0.004/unit time, α(n) = 0.1599, n = 1, a = 455,
b = 0.25, g = 999 L = 0.06/unit time, M = 0.09/unit time.
Following the proposed restrictions for this case we may get the optimal ordering quantity (O
OQ) φn = 181 units per unit time, p = 190 and after substituting these optimum values φn, and p
into the equation (35) we get the retailer’s profit Π(φn) = 17364, screening time τn = 0.036 per
unit time, and time interval Tn = 0.164 in year.

4. Sensitivity Analysis

A perusal of Table 2, shows that if the learning ability of the workers is 1 then 16 shipments will
be required for the workers to acquire the proficiency. And, if the learning ability of the workers is
1.2 then 16 shipments will be required for the workers to acquire proficiency of screening process.
And again, if the learning ability of the workers is 1.4 then 13 shipments will be required for
the workers to acquire proficiency of screening process. In addition, as we increase the learning
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ability of the workers, the lot size, profit function, screening time and planning time increase,
while the number of defective items and number of shipments decrease.The same situations
are applying for table numbers 3, 4 and 5 as well. A learning efficiency of worker’s not only
reduces the number of shipments but also increases the profit per unit time. Table 6 shows the
comparative study of various cases. Observation of tables 6, 7, 8 and 9 reveals that Case 3. gives
better results per unit time and there is no considerable effect of Beta on outputs of various cases.

Table 2: Impact of Learning Rate and No. of Shipments on Outputs (Case 1)

Learning Rate β = 1
No. of Shipment (n) φn % of good τn Tn Profit No of Shipment Required

item for Perfection
1 339 84.03% 0.068 0.253 9140
4 336 84.81% 0.067 0.252 9670
7 307 92.37% 0.061 0.251 14298

10 284 99.31% 0.057 0.250 17930
13 282 99.96% 0.056 0.250 18249 n=16
16 282 100.00% 0.056 0.250 18265
19 282 100.00% 0.056 0.250 18266
22 282 100.00% 0.056 0.250 18266
25 282 100.00% 0.056 0.250 18266

Learning Rate β = 1.2
1 339 84.04% 0.068 0.253 9147
4 332 85.72% 0.066 0.252 10269
7 291 97.06% 0.058 0.251 16813

10 282 99.90% 0.056 0.250 18219
13 282 100.00% 0.056 0.250 18265 n=13
16 282 100.00% 0.056 0.250 18266
19 282 100.00% 0.056 0.250 18266
22 282 100.00% 0.056 0.250 18266
25 282 100.00% 0.056 0.250 18266

Learning Rate β = 1.4
1 282 99.99% 0.056 0.250 18260
4 282 100.00% 0.056 0.250 18266
7 282 100.00% 0.056 0.250 18266

10 282 100.00% 0.056 0.250 18266
13 282 100.00% 0.056 0.250 18266 n=4
16 282 100.00% 0.056 0.250 18266
19 282 100.00% 0.056 0.250 18266
22 282 100.00% 0.056 0.250 18266
25 282 100.00% 0.056 0.250 18266

Table 3: Impact of Learning Rate and No. of Shipments on Outputs (Case 2)
Learning Rate β = 1
No. of Shipment (n) φn % of good τn Tn Profit No of Shipment Required

item for Perfection
1 500 84.03% 0.100 0.361 8047
4 495 84.81% 0.099 0.361 8577
7 456 92.37% 0.091 0.362 13206

10 426 99.31% 0.085 0.363 16838
13 423 99.96% 0.085 0.363 17157 n=16
16 423 100.00% 0.085 0.363 17173
19 423 100.00% 0.085 0.363 17174
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No. of Shipment (n) φn % of good τn Tn Profit No of Shipment Required
item for Perfection

22 423 100.00% 0.085 0.363 17174
25 423 100.00% 0.085 0.363 17174

Learning Rate β = 1.2
1 500 84.04% 0.100 0.361 8054
4 490 85.72% 0.098 0.361 9176
7 435 97.06% 0.087 0.362 15721

10 423 99.90% 0.085 0.363 17127
13 423 100.00% 0.085 0.363 17173 n=13
16 423 100.00% 0.085 0.363 17174
19 423 100.00% 0.085 0.363 17174
22 423 100.00% 0.085 0.363 17174
25 423 100.00% 0.085 0.363 17174

Learning Rate β = 1.4
1 500 84.05% 0.100 0.361 8062
4 481 87.40% 0.096 0.361 10250
7 426 99.16% 0.085 0.363 16767

10 423 99.99% 0.085 0.363 17168
13 423 100.00% 0.085 0.363 17174 n=13
16 423 100.00% 0.085 0.363 17174
19 423 100.00% 0.085 0.363 17174
22 423 100.00% 0.085 0.363 17174
25 423 100.00% 0.085 0.363 17174

Table 4: Impact of Learning Rate and No. of Shipments on Outputs (Case 3)
Learning Rate β = 1
No. of Shipment (n) φn % of good τn Tn Profit No of Shipment Required

item for Perfection
1 288 84.03% 0.058 0.217 35175
4 285 84.81% 0.057 0.217 35454
7 263 92.37% 0.053 0.218 37890

10 246 99.31% 0.049 0.219 39802
13 244 99.96% 0.049 0.219 39970 n=16
16 244 100.00% 0.049 0.219 39979
19 244 100.00% 0.049 0.219 39979
22 244 100.00% 0.049 0.219 39979
25 244 100.00% 0.049 0.219 39979

Learning Rate β = 1.2
1 288 84.04% 0.058 0.217 35179
4 282 85.72% 0.056 0.217 35770
7 251 97.06% 0.050 0.218 39214

10 244 99.90% 0.049 0.219 39955
13 244 100.00% 0.049 0.219 39979 n=13
16 244 100.00% 0.049 0.219 39979
19 244 100.00% 0.049 0.219 39979
22 244 100.00% 0.049 0.219 39979
25 244 100.00% 0.049 0.219 39979

Learning Rate β = 1.4
1 288 84.05% 0.058 0.217 35183
4 277 87.40% 0.055 0.217 36335
7 246 99.16% 0.049 0.219 39765

10 244 99.99% 0.049 0.219 39976
13 244 100.00% 0.049 0.219 39979 n=13
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No. of Shipment (n) φn % of good τn Tn Profit No of Shipment Required
item for Perfection

16 244 100.00% 0.049 0.219 39979
19 244 100.00% 0.049 0.219 39979
22 244 100.00% 0.049 0.219 39979
25 244 100.00% 0.049 0.219 39979

Table 5: Impact of Learning Rate and No. of Shipments on Outputs (Case 4)
Learning Rate β = 1
No. of Shipment (n) φn % of good τn Tn Profit No of Shipment Required

item for Perfection
1 213 84.03% 0.043 0.163 8238
4 211 84.81% 0.042 0.163 8767
7 195 92.37% 0.039 0.164 13396

10 182 99.31% 0.036 0.164 17028
13 181 99.96% 0.036 0.164 17347 n = 16
16 181 100.00% 0.036 0.164 17364
19 181 100.00% 0.036 0.164 17364
22 181 100.00% 0.036 0.164 17364
25 181 100.00% 0.036 0.164 17364

Learning Rate β = 1.2
1 213 84.04% 0.043 0.163 8244
4 209 85.72% 0.042 0.163 9366
7 186 97.06% 0.037 0.164 15911

10 181 99.90% 0.036 0.164 17317
13 181 100.00% 0.036 0.164 17363 n=13
16 181 100.00% 0.036 0.164 17364
19 181 100.00% 0.036 0.164 17364
22 181 100.00% 0.036 0.164 17364
25 181 100.00% 0.036 0.164 17364

Learning Rate β = 1.4
1 213 84.05% 0.043 0.163 8252
4 205 87.40% 0.041 0.163 10440
7 182 99.16% 0.036 0.164 16957

10 181 99.99% 0.036 0.164 17358
13 181 100.00% 0.036 0.164 17364 n=13
16 181 100.00% 0.036 0.164 17364
19 181 100.00% 0.036 0.164 17364
22 181 100.00% 0.036 0.164 17364
25 181 100.00% 0.036 0.164 17364

Table 6: Comparative Table for Case 1

β No. of ship. required for proficiency τn Tn Profit
1 16 0.056 0.363 18265

1.2 16 0.056 0.363 18266
1.4 4 0.056 0.363 18266

Table 7: Comparative Table for Case 2
β No. of ship. required for proficiency τn Tn Profit
1 16 0.085 0.363 17173

1.2 13 0.085 0.363 17173
1.4 13 0.085 0.363 17174
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Table 8: Comparative Table for Case 3
β No. of ship. required for proficiency τn Tn Profit
1 16 0.049 0.219 39979

1.2 13 0.049 0.219 39979
1.4 13 0.049 0.219 39979

Table 9: Comparative Table for Case 4
β No. of ship. required for proficiency τn Tn Profit
1 16 0.036 0.164 17364

1.2 13 0.036 0.164 17364
1.4 13 0.036 0.164 17364

5. Conclusion

In this article we have optimized the retailer’s ordering quantity for imperfect quality items
with learning effects on screening process under the trade credit financing scheme. The main
focus of this study is that how affects the retailer’s ordering quantity when stocking strategies is
beneficial for market situations. The various interval of credit periods have been analyzed and
verified through the different numerical examples. A comparative study has been done through
the numerical examples. and we have concluded that Case 3. is more beneficial for this type of
trade credit financing strategies. This article suggests that, those item which sale depends on
stocking may earn more and more profit by increasing Tn, φn, and τn. Article also suggests that,
in the financing policy keep always τn > M > L for better outputs. This article may be extended
by incorporating the rework process on defective items. One can also extended this article by
incorporating procurement cost on ordering size of items. One can also extended this article by
incorporating expected quantity of defective items.
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Abstract

It is indeed a matter of great significance for system engineers and scientists to derive new classes of

lifetime distributions for providing a better statistical model which will fit a given lifetime data set. It

is known that many real time data have varied characteristics and can be modeled by distributions with

bathtub and upside down bathtub failure rates viz., Weibull, Modified Weibull, Inverse Weibull. This

paper proposes a method which generates a family of distributions having bathtub (BT)-shaped failure

rate from a distribution having upside down bathtub (UBT)-shaped failure rate and vice-versa. The

proposed method is validated with the help of a few statistical distributions. The closure properties of the

proposed model under various reliability operations are studied.

Keywords: Aging phenomenon, hazard rate, bathtub-shaped failure rate, upside down bathtub-

shaped failure rate.

AMS 2020 Subject Classification: Primary 60E15, Secondary 62N05, 60E05

1. Introduction

Lifetime distributions are usually categorized based on their failure pattern. Given that a device

has survived till time t > 0, the hazard (failure) rate provides instantaneous failure rate in a very

small (future) time interval. The shape of the hazard rate function can be strictly decreasing,

strictly increasing, constant, BT and UBT. Increasing failure rate often occurs in the real life situ-

ations, where devices are more likely to fail with respect to age. Decreasing hazard rate appears

when materials become harder with respect to time. The concept of bathtub (resp. upside bath-

tub) hazard rate distribution is discussed in the literature based on whether the corresponding

hazard rate is decreasing (resp. increasing) in the region (0, T0], constant in [T0, T1], and increas-

ing (resp. decreasing) in [T1, ∞) where T0 and T1 are non-negative real numbers. In that case,

∗Corresponding author : E-mail: subarna.bhatt@gmail.com
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the random variable X is said to be BT (resp. UBT). Here, T0 and T1 are considered as change

points of the hazard rate function. This concept holds even if T0 = T1. BT-shaped hazard rate is

a combination of three different types of shapes, which usually appears in the study of life cycle

of an industrial product or in the whole life span of a biological entity. Due to design error or

installation problem, there is a high chance that a device has high likelihood of failure in first

few weeks of operation. After initial period, the failure rate becomes relatively low, known as

normal wear period. Then, the device reaches at the end of its life and the failure probability

becomes very high with respect to time due to ageing. We refer to Rajarshi and Rajarshi [6] and

Lai et al.[4] for some discussions on such kind of distributions. There are some other situations,

related to the study of lifetime of a patient after major surgery, where models having unimodal

hazard rate or having UBT-shaped hazard rate are useful. In biological science, it is observed in

the course of a disease whose mortality reaches a peak after some finite period and then declines

gradually. The commonly used distributions with UBT-shaped hazard rate are inverse Gaussian

distribution, log-normal distribution, etc.

There are various transformations used by researchers to convert a baseline distribution into a

new statistical distribution to get better flexibility. For example, inverted family of distributions

can be obtained from a baseline distribution after using an inverse transformation. It has been

shown by Keller et al.[3] that for pistons, crankshaft, main bearings failure data sets, the inverse

Weibull distribution provides a better fit than the exponential and Weibull distributions. Akgül

et al. [1] explored that the wind speed data can be modelled by inverse Weibull distribution,

which gives a better output than Weibull distribution. This paper aims to provide a new method

for the generation of a family of BT-shaped failure rates from a family of UBT-shaped failure

rates and vice-versa. It is well-known that a series system formed with independent compo-

nents each having BT-shaped failure rate with different change points has a BT-shaped failure

rate with an arbitrary change point. In this article, we propose a new transformation so as to

have a common (specific) change point of the resulting BT-shaped failure rate. Some of the

resulting mathematical avenues are also explored for reverse model. Let X be a non-negative

absolutely continuous random variable with probability density function (PDF) f (.) and cumula-

tive distribution function (CDF) F(.). Then, the hazard rate of X is denoted by r(t) = f (t)/F̄(t),

where F̄(t) = 1 − F(t), t > 0. Throughout the paper, we assume that the derivative exists when-

ever, it is implemented.

The rest of the paper is arranged as follows. Section 2 provides a transformation/method for the

generation of the BT-shaped failure rate distribution from UBT-shaped failure rate distribution.

In addition, various properties of the resulting BT-shaped failure rate distribution are explored.

Section 3 discusses a method of generating UBT-shaped failure rates from BT-shaped failure rate

with some notable consequences. Finally, Section 4 concludes the paper.
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2. A method to generate a BT-shaped failure rate using UBT-shaped

failure rate

Let U be a non-negative absolutely continuous lifetime random variable with CDF FU(·) having

UBT-shaped failure rate rU(t), for t ∈ (lU , uU), where lU and uU denote respectively the lower

and the upper bounds of the support of the random variable U. In this section, we introduce

an interesting method to generate a distribution with corresponding lifetime random variable B

with a BT-shaped failure rate rB(t), t ∈ (lB, uB), where lB and uB denote respectively the lower

and the upper bounds of the support of B using the distribution with UBT-shaped failure rate

rU(t). Throughout the paper, we assume lU = 0 and uU = +∞.

Theorem 1. Denote by rB(t) and rU(t) the BT-shaped failure rate and UBT-shaped failure rate,

respectively. Then, the UBT-shaped failure rate can be obtained using an equation given by

rB(t) = kM − rU(t), for t ≥ 0, (2.1)

where k ≥ 1 is a real number and M = max
t≥0

rU(t).

Proof. The proof is clear from the following discussion. Note that the graphs of rB(t) and rU(t)

are geometrically equivalent because one is obtained from other by reflection about horizontal

axis and then by vertical translation of kM units. For a given UBT-shaped failure rate function

rU(t), −rU(t) represents its vertical reflected image (or reflection about t-axis) lying in fourth

quadrant, which is eventually a BT-shaped failure rate function. To shift up and to drag −rU(t),

for all t ≥ 0, back to first quadrant, we give a positive (up) shift by kM units, k being greater than

or equal to one, the minimum required factor being M, where M = max
t≥0

rU(t). This completes

the proof of the result. �

Remark 1. Clearly, {rU(·), k} completely describes the aforementioned model which satisfies the

hypothesis of Theorem 1. This notation will be used throughout the article wherever required.

The parameter M is derivable from {rU(·), k}.

The next theorem provides the survival function F̄B(·) and the density function fB(·) correspond-

ing to the newly generated distribution with BT-shaped failure rate, which is obtained from the

UBT-shaped failure rate model by the method discussed in Theorem 1. The proof is omitted

since it easily follows from Theorem 1 and the well-known relationship

F̄B(t) = e
−
∫ t

0
rB(u)du

. (2.2)

Theorem 2. The survival and density functions of the random variable B are respectively given

by

F̄B(t) =
exp(−kMt)

F̄U(t)
, t ≥ 0 (2.3)

and

fB(t) =
1

F̄U(t)
(kM − rU(t)) exp(−kMt), t ≥ 0. (2.4)

The method, discussed in Theorem 1 can be implemented to generate a family of BT-shaped

failure rate models using a single UBT-shaped failure rate model as stated (without proof) in the

next theorem.
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Theorem 3. For i = 1, . . . , n, the random variables Bi’s have BT-shaped failure rates as given by

rBi (t) = ki M − rU(t), for t ≥ 0, (2.5)

where rU(t) is the UBT-shaped failure rate, ki’s are real constants satisfying ki ≥ 1, and M =

max
t≥0

rU(t).

Proof. The proof follows using similar arguments as in the proof of Theorem 1, and thus it is

omitted. �
Next, we consider an example to illustrate the result in Theorem 3.

Example 2.1. Let a random variable U follow inverse Weibull distribution (see Jiang et al. [2]) with

survival function F̄U(t) = 1 − exp
(
−

( β
t
)α), t ≥ 0, α > 0, β > 0. This distribution has UBT-shaped

failure rate for α < 1. Taking α = 0.5, β = 2, the corresponding failure rate rU(t) =
α(β/t)α

t
(

exp(β/t)α−1
) can

be shown to be UBT. Further, M = max
t≥0

rU(t) = 0.35536. Now, the corresponding rBi (t)’s are plotted in

Figure 1(a), where rBi (t) = ki M − rU(t), with ki = i, for i = 1, . . . , 5.

Below, we compare two random variables Bi and Bj having UBT-shaped hazard rates in the

sense of the hazard rate order. Let X and Y be two non-negative random variables with hazard

rate functions rX(.) and rY(.), respectively. Then, X is said to be smaller than Y in the sense of

the hazard rate order, denoted by X ≤hr Y, if rX(x) ≥ rY(x), for all x > 0. For various other

stochastic orders, we refer to Shaked and Shanthikumar [7]. From Theorem 3, we can write

rBn(t) = kn M − rU(t), for n = i, j.

Corollary 1. Let Bi and Bj be two random variables with rBn(t) = kn M − rU(t), for n = i, j and

t ≥ 0. Then, Bi ≤hr Bj, if and only if ki ≥ k j.

Proof. The proof is straightforward, and thus it is omitted. �

2.1. Properties of the resulting BT-shaped failure models

In this subsection, we establish an interesting property of the resulting BT-shaped failure mod-

els. The following theorem shows that a series system formed by n number of independent

components each having BT-shaped failure rate obtained from a common UBT-shaped failure

rate model possesses BT-shaped failure rate model. In other words, a series system is closed

under the specified BT transformation as given by (2.1) and (2.5).

Theorem 4. Consider a series system formed by n components with independent lifetimes de-

noted by Bi, i = 1, . . . , n. Further, let Bi have BT-shaped failure rate, say rBi (t) generated from

a single component with UBT-shaped failure rate rU(t) satisfying rBi (t) = ki M − rU(t), i =

1, . . . , n, for all t ≥ 0, ki ≥ 1, and M = max
t∈(0,∞)

rU(t). Then, the system has BT-shaped failure rate,

denoted by rBS(t).

Proof. Note that

rBS(t) =
n

∑
i=1

rBi (t) =
n

∑
i=1

ki M − nrU(t) = nM
(

∑n
i=1 ki

n

)
− nrU(t). (2.6)
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Further, max
t∈(0,∞)

nrU(t) = nM and ∑n
i=1 ki
n ≥ 1. Thus, it follows from (2.1) and (2.6) that rBS(t) rep-

resents a BT-shaped failure rate, implies the system has BT-shaped failure rate. This completes

the proof. �
The next remark gives an interesting fact about Theorem 4, and may be noted for independent

interest.

Remark 2. For i = 1, . . . , n, if rBi (t) = ki M − rU(t), then rBi (t) and rU(t) have the same change

points as given by the roots of d
dt
(
rBi (t)

)
= − d

dt
(
rU(t)

)
= 0, for all t ∈ [0,+∞). This leads

to the fact that all of rBi (t), for i = 1, . . . , n have the same change point as a result of which

rBS(t) = ∑1≤i≤n rBi (t) has a change point equal to that of rBi (t) (or rU(t)) since from (2.6) we

find
d
dt

(
rBs(t)

)
= −n

d
dt

(
rU(t)

)
= n

d
dt

(
rBi (t)

)
= 0,

and hence BS has a BT-shaped failure rate.

1 2 3 4 5
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Figure 1: (a) Plots of rU(t) (the black curve) and rBi (t), for i = 1, . . . , 5, respectively from bottom to top as in

Example 2.1. (b) Plot of rX(t) versus t as in Counterexample 2.1

We now state a lemma with an outline of its proof, which will be used in proving upcoming

theorem.
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Lemma 1. Let S be a non-empty set and let gi(t) be defined on S such that maxt∈S gi(t) exists

for each i = 1, . . . , n. Then, we have

max
t∈S

n

∑
i=1

gi(t) ≤
n

∑
i=1

max
t∈S

gi(t). (2.7)

Proof. We know that gi(t) ≤ max
t∈S

gi(t), for i = 1, . . . , n and t ≥ 0. Thus,

n

∑
i=1

gi(t) ≤
n

∑
i=1

max
t∈S

gi(t).

Further, since
n

∑
i=1

max
t∈S

gi(t) is an upper bound of
n

∑
i=1

gi(t), it follows that

max
t∈S

n

∑
i=1

gi(t) ≤
n

∑
i=1

max
t∈S

gi(t).

Thus, the proof is completed. �
Now, we present an example in the light of the above lemma, where strict inequality holds. It is

quite easy to construct examples where equality holds.

Example 2.2. Let g1, g2 : R → R be given by

g1(t) =

{
1, for t ∈ Q

0, for t ∈ Qc
and g2(t) =

{
0, for t ∈ Q

1, for t ∈ Qc
(2.8)

Clearly, max
t∈[0,+∞)

gi(t) = 1, for i = 1, 2 so that

2

∑
i=1

max
t∈[0,+∞)

gi(t) = 2.

Furthermore, since (g1 + g2)(t) = 1, for all t ∈ [0,+∞), we have

max
t∈[0,+∞)

2

∑
i=1

gi(t) = 1.

Thus,

max
t∈[0,+∞)

2

∑
i=1

gi(t) <
2

∑
i=1

max
t∈[0,+∞)

gi(t)

is established.

In the upcoming theorem, we will observe that even though rBi (t) possesses different change

points yet

rBS∗ (t) =
2

∑
i=1

rBi (t)

is BT-shaped. We pause for a while and read the next remark before going to Theorem 5.

Remark 3. For i = 1, . . . , n, if rBi (t) = ki Mi − rUi (t), then rBi (t) possesses different change points

given by the roots of d
dt
(
rBi (t)

)
= − d

dt
(
rUi (t)

)
= 0, for all t ∈ [0,+∞), provided that each rUi (t)

is differentiable. This leads to the fact that all of rBi (t), for i = 1, . . . , n have different change

points.
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Theorem 5. If BS∗ is a random variable denoting the lifetime of a series system formed by

n independent components with lifetimes Bi, for i = 1, . . . , n having BT-shaped failure rates

rBi (t) generated from independent components with UBT-shaped failure rates rUi (t) satisfying

rBi (t) = ki Mi − rUi (t), for all t ≥ 0, ki ≥ 1, and Mi = maxt∈(0,+∞) rUi (t), then rBS∗ (t) yields a

distribution having BT-shaped failure rate.

Proof. Note that

rBS∗ (t) =
n

∑
i=1

rBi (t) =
n

∑
i=1

(
ki Mi

)
−

n

∑
i=1

rUi (t) = M
n

∑
i=1

( ki Mi
M

)
−

n

∑
i=1

rUi (t), (2.9)

where M = maxt∈(0,∞) ∑n
i=1 rUi (t). Further, since each of rUi (t), for i ∈ {1, . . . , n} is concave,

∑n
i=1 rUi (t) is also concave. Moreover, the local maximizer of a concave function defined over a

convex set (here R) is the global maximizer. Thus, ∑n
i=1 rUi (t) possesses a UBT-shaped failure

rate with unique maximizer. So, it suffices to show that ∑n
i=1

ki Mi
M ≥ 1 to establish our claim that

rBS∗ (t) represents a BT failure rate as discussed in Theorem 1. Clearly,

n

∑
i=1

(
ki Mi) ≥ min

1≤i≤n
(ki)

n

∑
i=1

Mi (2.10)

Again, using Lemma 1, one can show that( n

∑
i=1

Mi =
) n

∑
i=1

max
t∈(0,+∞)

rUi (t) ≥ max
t∈(0,+∞)

n

∑
i=1

rUi (t). (2.11)

Thus, from (2.10) and (2.11), we conclude that
n

∑
i=1

(
ki Mi) ≥ min

1≤i≤n
(ki)

n

∑
i=1

max
t∈(0,∞)

rUi (t) ≥ max
t∈(0,∞)

n

∑
i=1

rUi (t) = (M)

as ki ≥ 1, for all i = 1, . . . , n, that is ∑n
i=1

ki Mi
M ≥ 1. This completes the proof. �

Since this special type of construction allows the BT-shaped failure rate system to be closed

under the formation of series system, a natural question that arises is whether this result can

be generalized to the formation of k-out-of-n system. We recall that k-out-of-n system works if

atleast k components of n number of components work. In the following counterexample, we

notice that the answer of this question in negative. It shows that the BT-shaped failure rate

system is not closed under the formation of parallel system.

Counterexample 2.1. Consider a parallel system with lifetime X comprised of two components having

failure rates, rBi (t) = ki M − rU(t), t ≥ 0 with ki = i + 1, for i = 1, 2, and rU(t) = β(α/t)β

t
(

exp(α/t)β−1
) ,

α = 0.5, β = 2, M = maxt≥0 rU(t) = 0.35536. By Theorem 2, it follows that F̄Bi (t) =
exp(−ki Mt)

F̄U(t) , for

i = 1, 2 so that F̄X(t) = 1 − (1 − F̄B1(t))(1 − F̄B2(t)), for all t ≥ 0. The plot of rX(t) for t ≥ 0 given in

Figure 1(b) shows that it is roller coaster.

3. A method to generate a UBT-shaped failure rate using BT-shaped

failure rate

Let B∗ be a continuous non-negative random variable with CDF FB∗(·) having BT-shaped failure

rate rB∗(t) for t ∈ [0,+∞). On a similar line as discussed in the earlier section, we generate a

distribution with corresponding random variable U∗ having UBT-shaped failure rate as given in

the next theorem. The proof is omitted for the sake of conciseness.
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Theorem 6. A distribution with UBT-shaped failure rate denoted by rU∗(t) obtained from a

distribution having BT-shaped failure rate rB∗(t) is generated by the following equation

rU∗(t) =


0 for 0 < t ≤ t1

km − rB∗(t) for t1 ≤ t ≤ t2

0 for t ≥ t2,

(3.12)

where t1 and t2 are the positive roots of km − rB∗(t) = 0 with t1 ≤ t2 and m = min
t∈[0,+∞)

rB∗(t) and

k is a real number satisfying k ≥ 2.

The next corollary is useful to obtain the survival function F̄U∗(·), and the density function

fU∗(·) of the newly generated UBT-shaped failure rate model obtained from BT-shaped failure

rate model by the approach as discussed in Theorem 6.

Corollary 2. With reference to the hypothesis as in Theorem 6, it is easy to note that

(i) the survival function of the random variable U∗ is

F̄U∗(t) =


1 for 0 < t ≤ t1

exp(−km(t − t1))
F̄B∗ (t1)
F̄B∗ (t)

for t1 ≤ t ≤ t2

exp(−km(t2 − t1)) exp(−
∫ t

t2
rB∗(u)du) F̄B∗ (t1)

F̄B∗ (t)
for t ≥ t2;

(ii) the density function of the random variable U∗ can be obtained by simply differentiating

−F̄U∗(t) with respect to t.

The following proposition, which is useful to generate a family of UBT-shaped failure rate mod-

els using a single BT-shaped model, can be easily established from Theorem 3. The proof is

omitted for the sake of brevity.

Proposition 3.1. A family of random variables Ui, for i = 1, . . . , n each with UBT-shaped failure rate,

given by

rU∗
i
(t) =


0 for 0 ≤ t ≤ t(i)1

kim − rB∗(t) for t(i)1 ≤ t ≤ t(i)2

0 for t ≥ t(i)2 ,

(3.13)

is generated from a random variable B∗ with BT-shaped failure rate rB∗(t), where t(i)1 and t(i)2 are the

positive roots of kim − rB∗(t) = 0, with t(i)1 ≤ t(i)2 , m = min
t∈[0,+∞)

rB∗(t) and ki is a real number satisfying

ki ≥ 2.

The following corollary presents condition, under which the hazard rate order between U∗
i and

U∗
j exists. We omit the proof since it is a consequence of Proposition 3.1.

Corollary 3. We have U∗
i ≥hr U∗

j , if and only if ki ≤ kj.

Let us use the notation Si = {t ∈ R | rU∗
i
(t) > 0}. Clearly, it follows from (3.13) that Si = (ti

1, ti
2).

Next, we state a strong result in the form of a lemma, which will be used later.

Lemma 2. If ki ≤ k j, then Si ⊆ Sj, for any i, j ∈ {1, . . . , n}.
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Figure 2: Plots of (a) rB∗ (t), (b) rU∗
1
(t), (c) rU∗

2
(t), and (d) rU∗

3
(t) versus t as in Example 3.1.

Proof. Since ki ≤ k j, thus we have rU∗
i
(t) ≤ rU∗

j
(t), for t > 0. We claim that Si ⊆ Sj for any

i, j ∈ {1, . . . , n}. If x ∈ Si but x ̸∈ Sj, then rU∗
i
(x) > 0 and rU∗

j
(x) = 0, i.e., rU∗

i
(x) > rU∗

j
(x), a

contradiction. Hence the result follows. �

Example 3.1. Let B∗ have failure rate, given by rB∗(t) = a(λt + b)eλttb−1, t ≥ 0. Taking a = 2, b =

0.2, λ = 5, it can be seen that B∗ has bathtub-shaped failure rate (as 0 < b < 1, (cf. Pham and Lai [5]).

Here

m = min
t∈(0,+∞)

rB∗(t) = rB∗(tm) = 12.6948,

where tm = 0.0494427. We construct rU∗
i
(t) = kim − rB∗(t), for t ∈ [t(1)i , t(2)i ] and = 0 otherwise,

given that ki ∈ {2, 3, 4}, for i = 1, 2 and 3, respectively. Here, [t(1)1 , t(2)1 ] = [0.00717441, 0.21376],

[t(1)2 , t(2)2 ] = [0.00386556, 0.291059], and [t(1)3 , t(2)3 ] = [0.00257858, 0.345577]. This example has been

implemented and plotted in Figure 2 and Figure 3(a).

3.1. Properties of the new UBT-shaped failure models

In this subsection, we show that the nature of the failure rate of a series system constituted by n

independent components each having UBT-shaped failure rate, obtained from a single bathtub-

shaped failure rate distribution can be derived using the concept in Proposition 3.1. If US∗ is a

random variable denoting the lifetime of a series system formed by n independent components

with lifetimes U∗
i for i = 1, . . . , n with corresponding UBT-shaped failure rate functions rU∗

i
(t),

all generated from a component with BT-shaped failure rate rB∗(t), then rUS∗ (t) can be derived

as given in the following.
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Let rU∗
i
(t) = kim − rB∗(t), for t ∈ Si and rU∗

i
(t) = 0 otherwise, where Si = {t | rU∗

i
(t) ̸= 0},

i ∈ A = {1, . . . , n}. Let B = {k1, . . . , kn}. Let us define k∗i , for all i ∈ A as

k∗1 = min
ki∈B

ki, k∗j = min
ki∈B−{k∗1 ,k∗2 ,...,k∗j−1}

ki, j ∈ A − {1}.

Further, consider the roots t(p)
1 and t(p)

2 of rU∗
p (t), for p ∈ A with t(p)

1 < t(p)
2 , where

r∗U∗
p
(t) = k∗pm − rB∗(t), p ∈ A, t ∈ Sp,

with Sp = {t | rU∗
p (t) ̸= 0}. Now, one can prove that r∗U∗

1
(t) < r∗U∗

2
(t) < . . . < r∗U∗

n
(t), for all t ∈ R

as k∗j < k∗j+1, for all j ∈ A. Here, the two finite sets {rU∗
1
, . . . , rU∗

n} and {r∗U∗
1
, . . . , r∗U∗

n
} are equal,

i.e., its elements are rearrangement of each other. Each r∗U∗
j
(t) is of UBT-shaped, for t ∈ (t(j)

1 , t(j)
2 ).

From lemma 2, we know that (t(j)
1 , t(j)

2 ) ⊆ (t(j+1)
1 , t(j+1)

2 ), for all j ∈ A, as shown in Figure 3(b)

giving

rUS∗ (t) =



0 for t ∈ [0, t(n)1 ]

r∗U∗
n
(t) for t ∈ [t(n)1 , t(n−1)

1 ]

r∗U∗
n
(t) + r∗U∗

n−1
(t) for t ∈ [t(n−1)

1 , t(n−2)
1 ]

...

∑n
l=n−j r∗U∗

l
(t) for t ∈ [t(n−j)

1 , t(n−j−1)
1 ]

...

∑n
l=1 r∗U∗

l
(t) for t ∈ [t(1)1 , t(1)2 ]

∑n
l=2 r∗U∗

l
(t) for t ∈ [t(1)2 , t(2)2 ]

...

∑n
l=n−j rU∗

l
(t) for t ∈ [t(n−j−1)

2 , t(n−j)
2 ]

...

r∗Un
(t) for t ∈ [t(n−1)

2 , t(n)2 ]

0 for t ∈ [t(n)2 ,+∞),

so that

rUS∗ (t) =



0 for t ∈ [0, t(n)1 ]

mk∗n − rB∗(t) for t ∈ [t(n)1 , t(n−1)
1 ]

m(k∗n + k∗n−1)− 2rB∗(t) for t ∈ [t(n−1)
1 , t(n−2)

1 ]
...

m ∑n
l=n−j k∗l − (j + 1)rB∗(t) for t ∈ [t(n−j)

1 , t(n−j−1)
1 ]

...

m ∑n
l=1 k∗l − nrB∗(t) for t ∈ [t(1)1 , t(1)2 ]

m ∑n
l=2 k∗l − (n − 1)rB∗(t) for t ∈ [t(1)2 , t2

2]
...

m ∑n
l=n−j k∗l − (j + 1)rB∗(t) for t ∈ [t(n−j−1)

2 , t(n−j)
2 ]

...

mk∗n − rB∗(t) for t ∈ [t(n−1)
2 , t(n)2 ]

0 for t ∈ [t(n)2 ,+∞).
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Clearly, (j + 1)rB∗(t) represents failure rate of a bathtub distribution with

min
t∈[t(n−j)

1 ,t(n−j−1)
1 ]

(j + 1)rB∗(t) = (j + 1)m,

where m = mint∈(0,+∞) rB∗(t). One can note that rUS∗ (t) represents a UBT-shaped failure model

as in rUs(t) = m ∑n
l=n−j k∗l − (j + 1)rB∗(t), for t ∈ [t(n−j)

1 , t(n−j−1)
1 ] and rUS∗ (t) = m ∑n

l=n−j k∗l −
(j + 1)rB∗(t), for t ∈ [t(n−j−1)

2 , t(n−j)
2 ]. We find that m ∑n

l=n−j k∗l ≥ 2(j + 1), ki being a real number

satisfying ki ≥ 2 for all i.

0.04944 0.4
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20
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40

50

60

70

rB versus t

(a)

(b)

Figure 3: (a) Plot of rB∗ (t) (blue color curve) and rU∗
i
(t) versus t, for i = 1, 2, 3 (bottom to top) as in Example 3.1.

(b) Plot of rU∗
i
(t) for i = 1, . . . , n versus t.

4. Concluding remarks

In this paper, we have proposed a novel method which yields a family of distributions with BT

shaped failure rate model from a distribution having UBT-shaped failure rate and vice-versa.

Few examples have been presented for the validation of the newly proposed method. In addi-

tion, the closure properties of the proposed model have been studied under various reliability

operations.
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[1] Akgül, F. G., Senoğlu, B. and Arslan, T. (2016). An alternative distribution to Weibull

for modeling the wind speed data: Inverse Weibull distribution. Energy Conversion and

Management, 114: 234—240.

[2] Jiang, R., Murthy, D. and Ji, P. (2001). Models involving two inverse Weibull distributions.

Reliability Engineering and System Safety, 73(1): 73—81.

[3] Keller, A., Goblin, M. and Farnworth, N. (1985). Reliability analysis of commercial vehicle

engines. Reliability Engineering, 10(1): 15–25.

[4] Lai, C., Xie, M. and Murthy, D. (2001). Ch. 3 Bathtub-shaped failure rate life distributions.

Handbook of statistics, 20: 69–104.

[5] Pham, H. and Lai, C.-D. (2007). On recent generalizations of the Weibull distribution. IEEE

transactions on reliability, 56(3): 454–458.

[6] Rajarshi, S. and Rajarshi, M. (1988). Bathtub distributions: A review. Communications in

Statistics-Theory and Methods, 17(8): 2597–2621.

[7] Shaked, M. and Shanthikumar, J. G. Stochastic Orders, Springer, New York, 2007.

     RT&A, No 2 (73) 

  Volume 18, June 2023 

297



 
Aditya Tiwary 
AN APPROACH FOR ASSESSMENT OF RELIABILITY INDICES 
APPLYING MONTE CARLO SIMULATION 

RT&A, № 2 (73) 
Volume 18, June 2023  

 

 

 
 

AN APPROACH FOR ASSESSMENT OF RELIABILITY 

INDICES CONSIDERING OMISSION OF FIXED REPAIR 

TIME FOR ELECTRIC TRACTION SYSTEM APPLYING 

MONTE CARLO SIMULATION 

Aditya Tiwary 

• 
Department of Fire Technology & Safety Engineering, IPS Academy,  

IES, Indore (M.P) India 

 raditya2002@gmail.com  

 

 

Abstract 

 

Assessment of numerous reliability indices is essential when availability and unavailability of 

supply in any electric power system is talked about. The reliability index which are very important 

for overall performance of any complex engineering system are mean up time, mean down time and 

unavailability. In this paper, assessment of various reliability indices for the electric traction system 

is done based on Monte Carlo simulation. If an engineering system fails then its repair is required 

to be performed at proper time interval. Omission of a threshold value of fixed repair time will not 

have so much impact on the overall reliability of the engineering system taken together.  Electric 

traction system is very important as it is utilized for operation of passenger trains and freight trains 

across a large rail network throughout the continents. In view of above, modified values of mean up 

time, mean down time and unavailability have been obtained accounting fixed repair time omission 

for the electrical traction system taken under consideration. 

 

Keywords: Monte Carlo simulation, Electric traction system, Mean up time, 

Repair time, Reliability indices. 

 

 

1. Introduction 
 

Reliability evaluation of a system or component or element is very important in order to predict its 

availability and other relevant indices. Reliability is the parameter which tells about the availability 

of the system under proper working conditions for a given period of time. A Markov cut-set 

composite approach to the reliability evaluation of transmission and distribution systems 

involving dependent failures was proposed by Singh et al. [1]. The reliability indices have been 

determined at any point of composite system by conditional probability approach by Billinton et 

al. [2]. Wojczynski et al. [3] discussed distribution system simulation studies which investigate the 

effect of interruption duration distributions and cost curve shapes on interruption cost estimates. 

New indices to reflect the integration of probabilistic models and fuzzy concepts was proposed by 

Verma et al.  [4]. Zheng et al. [5] developed a model for a single unit and derived expression for 

availability of a component accounting tolerable repair time. Distributions of reliability indices 

resulting from two sampling techniques are presented and analyzed along with those from MCS 
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by Jirutitijaroen and Singh [6]. Dzobe et al. [7] investigated the use of probability distribution 

function in reliability worth analysis of electric power system. Bae and Kim [8] presented an 

analytical technique to evaluate the reliability of customers in a micro grid including distribution 

generations. Reliability network equivalent approach to distribution system reliability assessment 

is proposed by Billinton and Wang [9]. 

Customer and energy based indices consideration for reliability enhancement of distribution 

system using Improved Teaching Learning based optimization is discussed [10]. An Innovative 

Self-Adaptive Multi-Population Jaya Algorithm based Technique for Evaluation and Improvement 

of Reliability Indices of Electrical Power Distribution System, Tiwary et al. [11]. Determination of 

reliability indices for distribution system using a state transition sampling technique accounting 

random down time omission, Tiwary et al. [12]. Tiwary et al. [13] proposed a methodology based 

on Inspection-Repair-Based Availability Optimization of Distribution System Using Bare Bones 

Particle Swarm Optimization. Bootstrapping based technique for evaluating reliability indices of 

RBTS distribution system neglecting random down time was evaluated [14].  

Volkanavski et al. [15] proposed application of fault tree analysis for assessment of the power 

system reliability. Li et al. [16] studies the impact of covered overhead conductors on distribution 

reliability and safety. Self-Adaptive Multi-Population Jaya Algorithm based Reactive Power 

Reserve Optimization Considering Voltage Stability Margin Constraints was obtained in Tiwary et 

al. [17]. A smooth bootstrapping based technique for evaluating distribution system reliability 

indices neglecting random interruption duration is developed [18]. Tiwary et al. [19] have 

developed an inspection maintenance based availability optimization methodology for feeder 

section using particle swarm optimization. The impact of covered overhead conductors on 

distribution reliability and safety is discussed [20].  Tiwary et al. [21] has discussed a methodology 

for reliability evaluation of an electrical power distribution system, which is radial in nature. 

Sarantakos et al. [22] introduced a method to include component condition and substation 

reliability into distribution system reconfiguration. Tiwary et al. [23] has discussed a methodology 

for evaluation of customer orientated indices and reliability of a meshed power distribution 

system. Reliability evaluation of engineering system is discussed [24]. Battu et al. [25] discussed a 

method for reliability compliant distribution system planning using Monte Carlo simulation. 

Application of non-parametric bootstrap technique for evaluating MTTF and reliability of a 

complex network with non-identical component failure laws is discussed [26]. Tiwary and Tiwary 

[27] have developed an innovative methodology for evaluation of customer orientated indices and 

reliability study of electrical feeder system. Tiwary and Tiwary [28] proposed the evaluation of 

reliability indices of Roy Billinton Test System (RBTS) Bus-2 Distribution System.  

Tiwary and Tiwary [29] have proposed a methodology for reliability block diagram 

representation of electric traction system and identification of various reliability indices. In view of 

the above, in this paper reliability indices such as mean up time, mean down time and 

unavailability are obtained for the electrical traction system considering Monte Carlo simulation 

technique. Fixed repair time omission has been taken into account for obtaining the various 

reliability indices of importance. The result obtained is been shown in the result section and 

various analysis has also been done based on proposed method. 

 

2. Reliability indices evaluation of electric traction system considering Omission of 

fixed Repair Time 
 

            Reliability block diagram modeling of the electric traction system is formulated and discussed 

by Tiwary and Tiwary [29]. The radial system which is taken into account, all the components is 

connected in series manner. System failure rate, repair time and unavailability are the parameters 
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which are considered as important reliability parameters. 

 

        The system failure rate is expressed as follows: 

                                                                 𝜆𝑠𝑦𝑠 = 𝛴𝜆𝑖                                                                         (1) 

λi is the failure rate of each and every components. 

The unavailability of a series system can be written as: 

                                                  𝑈𝑠𝑦𝑠 = 𝛴𝜆𝑖 . 𝑟𝑖                                                         (2) 

𝑟𝑖 is the repair time of each and every component. 

The system repair time can be obtained by following relation: 

                                                                

                                                      rsys =
Usys

λsys
                                                       (3) 

 

3. Monte Carlo Simulation (MCS) Based Computational Algorithm 
 

Certain value of the repair time which is fixed in nature can be omitted as it does not concern 

much to the system. A threshold value of the repair time can be omitted depending on the system 

under consideration. Evaluation of reliability indices with fixed repair time omission using Monte 

Carlo simulation (MCS) is discussed by Tiwary et al. [30]. 

Monte Carlo simulation is used to obtain the relevant reliability indices and the algorithm for 

the same is shown below: 

Step 1: Obtain failure density function f(t) of the components, repair density function g(t) of 

the components and repair time omission (τ). 

Step 2: Obtain random variates: 

(Tf,i,Tr, i)    i=1……NS 

Tf,i =time to failure 

Tr,i = time to repair 

NS = number of samples 

Step 3: Obtain the modified value of the different reliability indices as follows: 

If Tr,i ≤ τ 

Then 

T𝑓,�̃� = T𝑟,𝑖 + T𝑓,𝑖  

If T𝑟,𝑖 > τ 

Then 

T𝑓,�̃� = T𝑓,𝑖  

If T𝑟,𝑖 ≤ τ 

Then 

T𝑟,�̃� = 0  

If T𝑟,𝑖 > τ 

Then 

T𝑟,�̃� = T𝑟,𝑖  

Where 

T𝑓,�̃� =modified time to failure 

T𝑟,�̃� =modified time to repair 

Step 4: Repeat above steps for NS samples. 

Step 5: Calculate the modified mean up time (𝑀𝑈�̃�) by using following relation: 

𝑀𝑈�̃� =
1

NS
∑T𝑓,�̃� 
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Step 6: Calculate the modified mean down time (𝑀𝐷�̃�) by using following relation: 

𝑀𝐷�̃� =
1

NS
∑T𝑟,�̃� 

 

Step 7: Calculate the modified mean unavailability (𝑈 ) by using following relation: 

𝑈 =
𝑀𝐷�̃�

𝑀𝑈�̃�
 

 

  

4. Result and Discussion 
 

Table 1 shows the initial data such as failure rate per year and repair time in hours for the 

components of direct current (DC) electrification traction system. There are four components in the 

DC electrification traction system which are overhead wire, pantograph, motor control and motor 

and shown as components c1, c2, c3 and c4 respectively [29]. 

 

 

Table 1: Initial data for different components of the direct current electrification traction system [29]. 
 

component c1 c2 c3 c4 

Failure rate/year 0.04 0.03 0.005 0.004 

Repair time (hrs.) 3 4 5 6 

 

 

        Table 2 shows the initial data such as failure rate per year and repair time in hours for the 

components of alternating current (AC) electrification traction system. There are six components in 

the AC electrification traction system which are overhead wire, pantograph, transformer, rectifier, 

motor control and motor and shown as components c1, c2, c3, c4, c5 and c6 respectively [29]. 

 

Table 2: Initial data for different components of the alternating current electrification traction system [29]. 
 

component c1 c2 c3 c4 c5 c6 

Failure rate/year 0.04 0.03 0.002 0.003 0.005 0.004 

Repair time (hrs.) 3 4 6 4 5 6 

 

         Table 3 and Table 4 provide the component level evaluated modified failure rate, modified 

repair rate and modified unavailability for each and every component of the DC electrification 

traction system and AC electrification traction system respectively. 

 

Table 3: Component level modified evaluated Reliability indices for each and every component of the DC electrification 

traction system. 
 

Component 

Level 

MUT, 

year 

MDT, h U, 

h/year 

𝑀𝑈�̃�, year 𝑀𝐷�̃�, h 𝑈, 

h/year 

C1 25.0000 3.0000 0.1200 25.3569 2.8856 0.1138 

C2 14.2857 3.4286 0.2400 14.3569 3.1546 0.2197 

C3 13.3333 3.5333 0.2650 13.8596 3.2548 0.2348 

C4 12.6582 3.6582 0.2890 12.8896 3.4568 0.2682 
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Table 4: Component level modified evaluated Reliability indices for each and every component of the AC 

electrification traction system. 
 

Component Level MUT, year MDT, h U, h/year 𝑀𝑈�̃�, year 𝑀𝐷�̃�, h 𝑈, h/year 

C1 25.0000 3.0000 0.1200 25.2365 2.8965 0.1148 

C2 14.2857 3.4286 0.2400 14.3895 3.2245 0.2241 

C3 13.8889 3.5000 0.2520 13.9623 3.3654 0.2410 

C4 13.3333 3.5200 0.2640 13.5623 3.2361 0.2386 

C5 12.5000 3.6125 0.2890 12.6985 3.4521 0.2718 

C6 11.9048 3.7262 0.3130 11.9965 3.4523 0.2878 

 

         Fig. 1 shows the magnitude of modified mean up time at Component level C1, C2, C3 and C4 

of DC electrification traction system. The magnitude of MUT has increased from 25.0000 to 25.3569 

for the component C1. Components C2, C3 and C4 are having increase from 14.2857 to 14.3569, 

13.3333 to 13.8596 and 12.6582 to 12.8896 respectively. Magnitude of modified mean down time 

and modified unavailability at Component level C1, C2, C3 and C4 of DC electrification traction 

system is shown in Fig. 2 and Fig. 3 respectively. Modified mean down time are 2.8856, 3.1546, 

3.2548 and 3.4568 respectively. Improvement in the modified unavailability is 0.0062, 0.0203, 0.0302 

and 0.0208 respectively.     

 

 
Figure 1: Magnitude of modified mean up time at Component level C1, C2, C3 and C4  

of DC electrification traction system. 

 

 
Figure 2: Magnitude of modified mean down time at Component level C1, C2, C3 and C4  

of DC electrification traction system. 
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Figure 3: Magnitude of modified unavailability at Component level C1, C2, C3 and C4  

of DC electrification traction system. 

 

         Fig. 4 shows the magnitude of modified mean up time at Component level C1, C2, C3, C4, C5 

and C6 of AC electrification traction system. The magnitude of MUT has increased from 25.0000 to 

25.2365 for the component C1. Components C2, C3, C4, C5 and C6 are having increase from 

14.2857 to 14.3895, 13.8889 to 13.9623, 13.3333 to 13.5623, 12.5000 to 12.6985 and 11.9048 to 11.9965    

respectively. Magnitude of modified mean down time and modified unavailability at Component 

level C1, C2, C3, C4, C5 and C6 of AC electrification traction system is shown in Fig. 5 and Fig. 6 

respectively. Modified mean down time are 2.8965, 3.2245, 3.3654, 3.2361, 3.4521 and 3.4523 

respectively. Improvement in the modified unavailability is 0.0052, 0.0159, 0.0110, 0.0254, 0.0172 

and 0.0252 respectively. 

 

 
 

Figure 4: Magnitude of modified mean up time at Component level C1, C2, C3, C4, C5 and C6  

of AC electrification traction system. 
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Figure 5: Magnitude of modified mean down time at Component level C1, C2, C3, C4, C5 and C6  

of AC electrification traction system. 

 

 
 

Figure 6: Magnitude of modified unavailability at Component level C1, C2, C3, C4, C5 and C6  

of AC electrification traction system. 

 

 

5. Conclusion 
 

Evaluation of reliability of complex engineering system is necessary in order to obtain its overall 

availability. In view of the above, in this paper calculation of various reliability indices for the 

electric traction system is obtained based on Monte Carlo simulation methodology. Considering 

the omission of the threshold value of fixed repair time, the overall reliability indices of the 

engineering system taken into account is obtained. Based on the Monte Carlo simulation 

computational algorithm the component level modified evaluated reliability indices for each and 

every component of the DC and AC electrification traction system is obtained and shown. 

Modified mean up time, modified mean down time and modified mean unavailability are 

obtained and shown in result and discussion section for DC and AC electrification traction system 

respectively. The magnitude of modified mean up time at Component level of DC and AC 

electrification traction system in shown. It also provides the magnitude of modified mean down 

time at Component level of DC and AC electrification traction system. Magnitude of modified 

mean unavailability for both the electrification traction system is shown in result section. 
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Abstract 

In this research paper, two sided Bayesian interval is proposed for Poisson type length biased 

exponential class software reliability growth model. The failure intensity function, mean time to failure 

function and likelihood function are derived. Bayesian interval estimation has been done for the 

parameters using non informative priors. The performance of proposed Bayesian interval is obtained by 

using Monte Carlo simulation technique. Average length and coverage probability of Bayesian interval 

for the parameters are calculated. From the obtained intervals it is concluded that Bayesian interval of 

parameters perform better for appropriate choice of execution time and certain values of parameters.  

Keywords: Length biased exponential distribution, Non informative priors, 

Software reliability growth model (SRGM), Bayesian interval, average length, 

coverage probability.  

 

1. Introduction 

This paper considers Poisson type length biased exponential class model according to classification 

scheme of Musa and Okumoto [9]. Poisson execution time models are based on the premise that 

execution time is the best time domain for expressing reliability. Execution is the most practical 

measure of the failure inducing stress being placed on a program. Musa et al [8] have suggested that 

it is convenient to divide the program into number of runs. The run depends on the function executed 

by program. The time required for run is depends upon size of run. As the size of run varies the 

number of failure observed in single run may vary. Fisher [2] defined length biased and further 

formulated by Rao [12] Gupta and Keating [6]developed relationship between survival function, the 

failure rate and mean residual life function using length biased distribution. Patil and Rao [10] have 

given a table for some distribution and their size biased forms. Rao and Cunha [13] estimated credible 

interval and confidence interval through MLE for lognormal distribution and also compared average 

length and coverage probability of the calculated interval. Tamak [16] estimated reliability of web 

application using Goel-Okumoto Software Reliability Growth models (SRGM). Shreshtha and Kumar 

[14] computed MLE and Bayesian estimate for Rayleigh distribution using gamma prior. Singh et al 

[15] introduced length biased distribution as Software Reliability Growth models (SRGM). Fitrilia et 

al [3] estimate the failure rate by E-Bayesian estimation method. E-Bayesian estimation is an 
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expectation of Bayes estimation, in order to obtain Bayes estimation expectations is by calculating the 

mean of Bayes estimator. Rabie and Li [11] studied the Bayesian and E-Bayesian approaches under 

squared error and LINEX loss functions. Also construct Confidence intervals for maximum likelihood 

estimates, as well as credible intervals for the E-Bayesian and Bayesian estimates. Andure and Ade [1] 

proposed length biased quasi lindley distribution and discussed different properties of proposed 

distribution. Gupta et al [5] obtained Bayesian and non-Bayesian estimators under symmetric 

(squared error) and asymmetric (linex and precautionary) loss functions using a non-informative 

prior. And compared risk efficiencies of Bayes estimators with maximum likelihood estimators. 

In this paper, it is considered that the time to failure of an individual fault following length biased 

exponential distribution and the failure experienced by time t is distributed as Poisson type. In this 

model it is assumed that the software failures are independent of each other but depend on length of 

the time interval which contains the software failures. 

The structure of the paper is such that section 2 presents derivation of failure intensity and expected 

number of failures using length biased exponential distribution, derivation of likelihood function, 

selection of priors, and derives joint and marginal posterior distribution of model. Section 3 presents 

derivation of two sided Bayesian interval for the parameters θ0 and θ1. Results and discussion is given 

in the section 4 while concluding remarks are provided in section 5.  

      

2. Model Formulation 

Consider that software is tested for its performance and observed the time of failure occurs during 

software system performance. Let the number of failures present in software be 𝜃0,and  te be the 

execution time i.e. time during which CPU is busy and me be the number of failures observed up to 

execution time te. Consider time between the failures ti (i=1,2,………me ) follows the exponential 

distribution with parameter θ1. The length biased exponential distribution is given as 

𝑓∗(𝑡) =  {𝑡𝜃1
2𝑒−𝜃1𝑡           , 𝑡 > 0, 𝜃1 > 0, 𝐸[𝑡]  ≠ 0

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
                                                                  (1) 

Where 𝑓∗(𝑡) denotes the length biased exponential distribution. 

The failure intensity function is obtained by using equation (1)  

𝜆(𝑡) = 𝜃0𝑡𝜃1
2𝑒−𝜃1𝑡  , 𝑡 > 0, 𝜃0 > 0                                                   (2)  

Where θ0 express the number of failures and θ1 express the for failure rate. 

The mean failure function i.e. expected number of failures at time te can be obtained by using 

equations (2)  

𝜇(𝑡𝑒) = 𝜃0𝜃1
2𝐼1                                                         (3) 

Where, 𝐼1 =  ∫ 𝑡𝑖𝑒
−𝜃1𝑡𝑖

𝑡𝑒

0
 𝑑𝑡  and by solving (see Gradshteyn and Ryzhik [4] p. 357) we get, 

𝜇(𝑡𝑒) = 𝜃0 [1 − (1 + 𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]  , 𝑡 > 0, 𝜃0 > 0, 𝜃1 > 0                                                                             (4) 

Behavior of failure intensity and expected number of failure of length biased exponential class model 

has been studied by Singh et al [15]. They have compared the maximum likelihood estimates i.e. 

MLE's and Bayesian estimators on the basis of risk efficiencies. 

Now for a system, considering that me software failures are observed at times ti , i = 1,2,……,me  up to 

execution time is te (≥ tme) and the likelihood function of  parameters θ0 and θ1 with the help of failure 

intensity and mean failure function can be  obtained as (cf. Singh et al [15]) 
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𝐿(𝜃0, 𝜃1) = 𝜃0
𝑚𝑒𝜃1

2𝑚𝑒[∏ 𝑡𝑖
𝑚𝑒
𝑖=1 ] 𝑒−𝑇𝜃1𝑒−𝜃0 [1−(1+𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]                                                              (5) 

 

3. Bayesian interval Estimation of parameters θ0 and θ1 

Bayesian estimation is done by combining prior information with information obtained from sample 

data. While testing the software, the experimenter have very little knowledge relative to the total 

number of failures present in the software.. Here insufficient prior information is not available about 

parameters θ0 and θ1, hence non- informative priors are considered. The following non informative 

prior distributions g (θ0) and g (θ1) are considered for parameters θ0 and θ1 as follows: 

𝑔(𝜃0)  ∝  {
𝜃0

−1        , 𝜃0𝜖 [0, ∞)

0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                            (6) 

and 

𝑔(𝜃1)  ∝  {
𝜃1

−1        , 𝜃1𝜖 [0, ∞)

0            , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (7) 

The joint posterior of θ0 and θ1 given t (=ti, i = 1, 2,………, me ) is obtained by using equations (5),(6) 

and (7) is as follows:   

𝜋(𝜃0, 𝜃1|𝑡) = 𝐷−1𝜃0
𝑚𝑒−1

𝜃1
2𝑚𝑒−1

𝑒−𝑇𝜃1𝑒−𝜃0 𝑒[𝜃0(1+𝜃1𝑡𝑒)𝑒−𝜃1𝑡𝑒]   𝑚𝑒 < 𝜃0 < ∞ ,0 < 𝜃1 < ∞                (8

       

Where, D is normalizing constant. 

𝐷 =  ∑ ∑ (
𝑘

𝑟
)

𝑘

𝑟=0

∞

𝑘=0

[
𝛤(2𝑚𝑒 + 𝑟)𝛤(𝑚𝑒 + 𝑘, 𝑚𝑒)  𝑡𝑒

𝑟(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
] 

Where,  𝑇∗ = 𝑇 + 𝑘𝑡𝑒,  𝑇 = ∑ 𝑡𝑖
𝑚𝑒
𝑖=1  

The marginal posterior distribution of  𝜃0 given 𝑡 is, 

𝜋(𝜃0|𝑡) = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0 [
   𝑡𝑒

𝑟 𝛤(2𝑚𝑒+𝑟)(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
]∞

𝑘=0 [𝜃0
𝑚𝑒+𝑘−1

𝑒−𝜃0 ], 𝜃0 > 𝑚𝑒                                               (9) 

The marginal posterior of 𝜃1, say 𝜋(𝜃1|𝑡) can be obtained as  

𝜋(𝜃1|𝑡) = 𝐷−1 ∑ [
𝛤(𝑚𝑒+𝑘,𝑚𝑒)

𝑘!
]∞

𝑘=0 [𝜃1
2𝑚𝑒−1

(1 + 𝜃1𝑡𝑒)𝑘𝑒−𝜃1𝑇∗
],𝜃1 > 0                                              (10) 

 A symmetric 100(1- α) % two sided Bayes probability interval (θL, θU) is given as   

∫ 𝜋(𝜃|𝑡)
𝜃𝐿

−∞

𝑑𝑡 = 𝛼/2 

∫ 𝜋(𝜃|𝑡)
∞

𝜃𝑈

𝑑𝑡 = 𝛼/2 

Where 𝜋 (𝜃|𝑡)   is the marginal posterior distribution of θ for details see Martz and Waller [7] 

Now, to obtain two sided Bayes interval for the parameter θ0 and θ1 by integrating equation (9) and 

(10) w.r.t. θ0 and θ1 respectively can be given as: 

�̃�0𝐿  =  𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0 [
   𝑡𝑒

𝑟 𝛤(2𝑚𝑒+𝑟)(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
]∞

𝑘=0 𝛤(𝑚𝑒 + 𝑘, 𝜃0∗)  

�̃�0𝑈 = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0 [
   𝑡𝑒

𝑟 𝛤(2𝑚𝑒+𝑟)(𝑇∗)−2𝑚𝑒−𝑟

𝑘!
]∞

𝑘=0 𝛤(𝑚𝑒 + 𝑘, 𝜃0
∗)  

�̃�1𝐿 = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0
∞
𝑘=0 [

𝛤(𝑚𝑒+𝑘,𝑚𝑒) 

𝑘!
] 𝑡𝑒

𝑟(𝑇∗)−2𝑚𝑒−𝑟 𝛾(2𝑚𝑒 + 𝑟, 𝑇∗𝜃1∗)  

�̃�1𝑈 = 𝐷−1 ∑ ∑ (𝑘
𝑟
)𝑘

𝑟=0
∞
𝑘=0 [

𝛤(𝑚𝑒+𝑘,𝑚𝑒) 

𝑘!
] 𝑡𝑒

𝑟(𝑇∗)−2𝑚𝑒−𝑟𝛤 (2𝑚𝑒 + 𝑟, 𝑇∗𝜃1
∗)   

Where, 𝛤(𝑚𝑒 + 𝑘, 𝜃0
∗), 𝛤 (2𝑚𝑒 + 𝑟, 𝑇∗𝜃1

∗)  are  incomplete gamma functions. 
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∫ 𝑥𝑣−1∞

𝑢
𝑒−𝜇𝑥𝑑𝑥 =  𝜇−𝑣𝛤(𝑣, 𝜇𝑢)                                                           [𝑅𝑒 𝑢 > 0, 𝑅𝑒 𝜇 > 0, 𝑛 > 0]   

is known as incomplete gamma function. The details about the incomplete gamma function can be 

seen from Gradshteyn and Ryzhik [7]. Therefore, (�̃�0𝐿 , �̃�0𝑈) and (�̃�1𝐿 , �̃�1𝑈) are the Bayesian interval 

estimates for parameter θ0 and θ1 respectively. 

4. Results and Discussion 

 Here, two sided Bayesian interval are obtained for the parameter total number of failures i.e. θ0 and 

the parameter θ1. The interval estimate is the posterior probability distribution about the parameter. 

To study the performance of two sided Bayesian interval, sample of different sizes (say me) was 

generated from the length biased exponential distribution and it is repeated 1000 times. Monte Carlo 

simulation technique is used for simulation and the result is presented in the tables given below. The 

credible interval depends upon the values of execution time i.e. te and number of failures experienced 

at times ti, i = 1, 2…, me. Average length and coverage probability of the proposed Bayesian interval 

have been calculated for different values of parameters θ0 and θ1 and for certain execution time. Here, 

it is assumes that  two sided Bayesian interval maintains the credible level if the estimated coverage 

probability is  found in between the range of 0.940 to 0.960 i.e. (1-α)±0.01 where, α = 0.05. 

Here tables (1) to (4) give average length and coverage probability for Bayesian interval for parameter 

θ0 i.e. total number of failures. Average length have been obtained by assuming parameter θ0 (=1(1)5), 

 𝜃1(= 0.6(0.1)1). From tables, we can see that Average length is computed for Bayesian interval for 

parameter θ0 is shorter. Average length increases as the values of θ0 increases for fixed execution time 

i.e. te. It is also observes that as the values of θ1 increases average length decreases. From table, we can 

see that coverage probability increases as the θ0 increases and coverage probability decreases as the θ1 

increases. From the table it also observes that as execution time increases average length decreases. 

Table (5) to (8) gives average length and coverage probability for Bayesian interval for parameter the 

θ1.  The Average length have been calculated by assuming values θ0 (=1(1)5) and  𝜃1(= 0.6(0.1)1). 

Average length increases as the values of θ0 increases for fixed execution time i.e. te and it is decreases 

as θ1 increases. From table, it can be seen that coverage probability increases as the θ0 increases and 

coverage probability decreases as parameter θ1 increases. From the table it also observes that average 

length decreases as execution time increases. 

Table 1:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿 , �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 5 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
2.12412 

(0.994) 

2.95254  

(0.994) 

5.07429  

(0.994) 

5.39784 

(0.995) 

6.45182  

(0.995) 

0.7 
2.06795  

(0.993) 

2.18189  

(0.994) 

4.17136 

 (0.994) 

5.07228  

(0.995) 

6.69461  

(0.995) 

0.8 
1.90843 

 (0.993) 

2.98570  

(0.993) 

3.93268  

(0.994) 

4.72848 

(0.994) 

6.42171  

(0.995) 

0.9 
1.42513  

(0.993) 

2.26186  

(0.993) 

3.56985  

(0.994) 

4.40744 

 (0.994) 

5.06234  

(0.995) 

1 
1.40031 

(0.993) 

2.04029 

(0.993) 

2.28113  

(0.993) 

3.85033 

(0.994) 

4.29281  

(0.994) 

*The values in the parenthesis are coverage probability of true value of parameter. 
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Table 2:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿 , �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 7  

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.723187  

(0.994) 

1.544598   

(0.994) 

1.58816 

(0.994) 

3.681955  

(0.995) 

4.526929  

(0.995) 

0.7 
0.476033   

(0.993) 

1.222565   

(0.994) 

1.236041   

(0.994) 

2.442999  

(0.994) 

3.921342  

(0.995) 

0.8 
0.470561   

(0.993) 

0.847506  

(0.993) 

1.191867 

(0.994) 

1.889722  

(0.994) 

2.520656   

(0.995) 

0.9 
0.463198  

(0.993) 

0.71856 

(0.993) 

1.092366  

(0.994) 

1.828802   

(0.994) 

2.504829   

(0.994) 

1 
0.375691  

(0.993) 

0.570903  

(0.993) 

0.795695   

(0.993) 

1.412542   

(0.994) 

2.446384   

(0.994) 

*The values in the parenthesis are coverage probability of true value of parameter. 

Table 3:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿, �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 10  

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.267986  

(0.993) 

0.324152   

(0.993) 

0.465934  

(0.993) 

0.57678 

(0.994) 

1.019986   

(0.994) 

0.7 
0.260624   

(0.993) 

0.322248  

(0.993) 

0.353603  

(0.993) 

0.431857   

(0.993) 

0.906414 

(0.994) 

0.8 
0.260624  

(0.993) 

0.282712  

(0.993) 

0.34624 

(0.993) 

0.421758   

(0.993) 

0.868347  

(0.994) 

0.9 
0.260624  

(0.993) 

0.275349  

(0.993) 

0.338877 

(0.993) 

0.412504  

(0.993) 

0.801439  

(0.994) 

1 
0.257986  

(0.993) 

0.267986  

(0.993) 

0.316789   

(0.993) 

0.402406    

(0.993) 

0.718558   

(0.993) 

 *The values in the parenthesis are coverage probability of true value of parameter. 

Table 4:  Average length and coverage probability of Bayesian interval   (�̃�0𝐿 , �̃�0𝑈)   of 𝜃0   calculated for different values 

of parameters 𝜃0  and   𝜃1  when execution time te = 12 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.260624  

(0.993) 

0.260624  

(0.993) 

0.309427  

(0.993) 

0.368328   

(0.993) 

0.667052 

(0.993) 

0.7 
0.258620  

(0.993) 

0.275349  

(0.993) 

0.280105  

(0.993) 

0.34624 

(0.993) 

0.591506   

(0.993) 

0.8 
0.256715  

(0.993) 

0.267986  

(0.993) 

0.275349  

(0.993) 

0.331515   

(0.993) 

0.402406   

(0.993) 

0.9 
0.253609  

(0.993) 

0.264624  

(0.993) 

0.267986   

(0.993) 

0.319525   

(0.993) 

0.380318  

(0.993) 

1 
0.252286  

(0.993) 

0.260624   

(0.993) 

0.260624  

(0.993) 

0.309427   

(0.993) 

0.365592  

(0.993) 

*The values in the parenthesis are coverage probability of true value of parameter. 

311



Rajesh Singh,  Pritee Singh, Preeti Badge 

BAYESIAN INTERVAL ESTIMATION FOR THE PARAMETERS OF 

POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL  

RT&A, No 2 (73) 

Volume 18, June 2023   

 
Table 5:  Average length and coverage probability of Bayesian interval (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for different 

values of parameters 𝜃0 and   𝜃1  when execution time te = 5 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.00605 

(0.994) 

0.01269 

(0.994) 

0.02099 

(0.994) 

0.02412 

(0.995) 

0.02947 

(0.995) 

0.7 
0.00543 

(0.993) 

0.01146 

(0.994) 

0.01713 

(0.994) 

0.02134 

(0.994) 

0.02700 

(0.995) 

0.8 
0.00474 

(0.993) 

0.00859 

(0.993) 

0.01511 

(0.994) 

0.02037 

(0.994) 

0.02694 

(0.995) 

0.9 
0.00387 

(0.993) 

0.00710 

(0.993) 

0.01386 

(0.994) 

0.01912 

(0.994) 

0.02613 

(0.994) 

1 
0.00348 

(0.993) 

0.00616 

(0.993) 

0.01001 

(0.993) 

0.01895 

(0.993) 

0.02599 

(0.993) 

*The values in the parenthesis are coverage probability of true value of parameter 

.Table 6:  Average length and coverage probability of Bayesian interval   (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for 

different values of parameters 𝜃0 and   𝜃1  when execution time te = 7 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.00049 

(0.994) 

0.00158 

(0.994) 

0.00252 

(0.994) 

0.00572 

(0.994) 

0.00908 

(0.994) 

0.7 
0.00046 

(0.993) 

0.00106 

(0.994) 

0.00229 

(0.994) 

0.00498 

(0.994) 

0.00890 

(0.994) 

0.8 
0.00041 

(0.993) 

0.00093 

(0.993) 

0.00149 

(0.993) 

0.00401 

(0.994) 

0.00771 

(0.994) 

0.9 
0.0007 

(0.993) 

0.00082 

(0.993) 

0.00139 

(0.993) 

0.00248 

(0.994) 

0.00358 

(0.994) 

1 
0.0002 

(0.992) 

0.00067 

(0.993) 

0.00109 

(0.993) 

0.00143 

(0.993) 

0.00245 

(0.994) 

 *The values in the parenthesis are coverage probability of true value of parameter. 

Table 7:  Average length and coverage probability of Bayesian interval   (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for 

different values of parameters 𝜃0 and   𝜃1  when execution time te = 10 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.000066 

(0.992) 

0.000102  

(0.992) 

0.001163 

(0.993) 

0.00227 

(0.992) 

0.00265 

(0.993) 

0.7 
0.000066  

(0.992) 

0.000071   

(0.992) 

0.00025 

(0.992) 

0.000219  

(0.992) 

0.00184 

(0.993) 

0.8 
0.000065  

(0.992) 

0.000067  

(0.992) 

0.00022 

(0.992) 

0.000207  

(0.992) 

0.00159 

(0.993) 

0.9 
0.000063 

(0.992) 

0.000060  

(0.992) 

0.00021 

(0.992) 

0.000130 

(0.992) 

0.000249  

(0.993) 

1 
0.000062 

(0.992) 

0.000052  

(0.992) 

0.000041  

(0.992) 

0.000062 

(0.992) 

0.000109 

(0.993) 

*The values in the parenthesis are coverage probability of true value of parameter. 
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Table 8:  Average length and coverage probability of   Bayesian interval   (�̃�1𝐿 , �̃�1𝑈)   of 𝜃1   calculated for 

different values of parameters 𝜃0 and   𝜃1  when execution time te = 12 

             θ0 

 θ1                    
1 2 3 4 5 

0.6 
0.000063  

(0.992) 

0.000594   

(0.992) 

0.000603  

(0.992) 

0.00064 

(0.992) 

0.00151 

(0.993) 

0.7 
0.0000532   

(0.992) 

0.0000599   

(0.992) 

0.0000608  

(0.992) 

0.000541 

(0.992) 

0.000179  

(0.992) 

0.8 
0.0000330   

(0.992) 

0.0000466    

(0.992) 

0.0000607     

(0.992) 

0.000116 

(0.992) 

0.000462 

(0.992) 

0.9 
0.0000204    

(0.992) 

0.0000229    

(0.992) 

0.0000385   

(0.992) 

0.0000602  

(0.992) 

0.000220 

(0.992) 

1 
0.0000128  

(0.991) 

0.0000193   

(0.992) 

0.0000359  

(0.992) 

0.0000596  

(0.992) 

0.000124 

(0.992) 

*The values in the parenthesis are coverage probability of true value of parameter. 

 

5. Conclusion 
         

In this paper, two-sided Bayesian interval has been obtained for length biased exponential class 

model with parameters i.e. total number of failures θ0 and scale parameter θ1. Bayesian interval is 

obtained and studied on the basis of average length and coverage probability.  It is found that 

Bayesian interval has shorter average length and high coverage probability. As execution time 

increases average length decreases and coverage probability increases. From results it is concluded 

that the proposed Bayesian interval preferred for parameter total number of failures i.e. θ0 and θ1. 
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Abstract

Due to the COVID-19 pandemic, the way in which routine activities are carried out changed,
taking a leading role telecommunications networks, it is important to evaluate their operation, service
interruption and progressive deterioration, especially those generated by natural disasters, we have
focused on earthquakes. Venezuela is a seismic country, being vulnerable to economic and human losses
caused by this disaster. Many of the infrastructures that are used by both public and private institutions
may not follow the current laws on earthquake-resistant structures. We seek to evaluate the damage by
correlated geographic faults produced by earthquakes in a telecommunications network using probabilistic
seismic risk analysis.

Keywords: reliability, seismic, simulation

1. Introduction

In the last three years due to the social isolation caused by the COVID-19 pandemic, the daily
tasks, work and academic, have taken a turn driving more and more the need to access and have
reliable telecommunications networks, since the activities that were traditionally executed in
person, have been replaced by tools that allow to perform these tasks from home via the Internet,
in addition to this, the trade could continue thanks to this. In a research carried out in 2021 by
Valeria Castro in [1], it points out that the use of Internet increased globally by 70%, in fact it also
shows a projection for 2025, and it is expected that this percentage will continue to increase. In [2]
the methods currently used to assess individual seismic risk are based on many years of statistical
data, they propose an end-to-end calculation-experimental approach to estimate possible losses
and individual risk based on actual data on hazard, seismicity and earthquake resistance.

Due to the importance that telecommunication networks have taken, it is relevant to study
the fragility of this, in order to know the possibility of partial or complete failure of the network,
caused by typical or geographical failures, such as those generated by seismic events. Despite
scientific and technological advances, human beings continue to be exposed to natural disasters,
leaving in evidence the vulnerability of society to such events. It should be emphasized that these
events cannot be avoided; however, thanks to globalization, it is possible to obtain information in
real time about the predictions of these disasters (in case it is possible to predict them), or the
strata caused by them, and this has been achieved thanks to the progress in telecommunications.

Venezuela throughout history has been affected by high intensity earthquakes, additionally
most of the country’s population is concentrated in the capital and northwest coast, being these
some of the areas of greatest seismic threat [3], since along this region are the fault systems Boconó,
San Sebastián and La Victoria, making the buildings that are located there more vulnerable to
damage by such events.
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Once the motivations for this research have been stated, the study of the vulnerability of the
telecommunications network to earthquakes is focused on using as a case study a representation
of the Venezuelan state communications network (Compañía Anónima Nacional Teléfonos de
Venezuela, CANTV). A phased model is proposed through Monte Carlo simulation to determine
the operability of the network components.

2. Methodology

The seismic hazard of Venezuela was identified in order to select the model that adapts to the
geographic faults of the Venezuelan territory. John Douglas, in [4], proposes different functions
for the study of ground motion in an earthquake, classifying them according to the zone and type
of earthquake. Taking this into account, it was decided to use the equation to calculate the SA
(spectral acceleration) described by Norman Abrahamson et al. (2016) and BC Hydro (2012) [5].
We follow the approach proposed by [6], where, using probabilistic seismic risk analysis, they
evaluate the reliability of a telecommunications network in the event of earthquake failure in
Chile, one of the most seismic countries in the world.

In the diagram 1 the processes executed in the simulation are visualized, applying a three-
stage model, in the first one the characteristics of the earthquake itself necessary to generate the
following stages are generated, some parameters of interest are the moment magnitude, depth
and epicenter, subsequently an intensity measure describing the ground motion is generated, In
this opportunity we work with the spectral acceleration (SA) and in the last one we calculate the
fragility curves to obtain the probability that the components of the network suffer a specific level
of damage (in this opportunity the levels of mild and extensive damage), which occurred given
the spectral acceleration, as established by the HAZUS manual [7], this is achieved using Monte
Carlo simulation, these steps are repeated n times, to finally calculate the marginal probability of
failure of each component of the network.

Figure 1: Flowchart of a generic Monte Carlo simulation run
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The processes shown in the 1 diagram are presented in more detail below, starting with the
model used to simulate ground motion.

2.1. Equation to predict ground motion

I know use the following equation of ground motion from Carlos Arteta et al. in [8], where SAij
is the spectral acceleration at a given period; f (Mi, rij, θ) is the attenuation equation as a function
of magnitude M, distance r and the model parameter vector Θ; ϵij is the error term for log j of
event i and ηi is the random effect for event i.

ln(SAij) = f (Mi, rij, θ) + ηi + ϵij (1)

The term θi represents between-event (or interevent) variations, while ϵij represents within-event
(or intra-event) variations. The residuals of η, ϵ are uncorrelated and are normally distributed
with variances t2 and f 2, respectively. The total standard deviation of the ground motion model
sigma can be expressed as.

σ =
√

τ2 + σ2 (2)

2.1.1 Functional form of the ground motion model

The mean of the model posited by Abrahamson (2016) and BC Hydro (2012) in [5], in future
reference the abbreviation GMPE-Am2016 will be used for simplification of writing, is described
in the following equation for interface and intraplate earthquakes:

ln(SA) = θ1 + θ4δC1 + (θ2 + θ14Fevent + θ3(M − 7.8)) ln (Rrup,hypo) + (M − 6))
+C4 exp(θ9 + θ6Rrup,hypo + θ10Fevent + fmag(M) + fdepth(Rhypo)Fevent+
+ fFABA(Rrup,hypo) + fsite(PGA1000, VS30)

(3)

• SA is the spectral acceleration in gravity.
• M is the magnitude of the momentum.
• R is the event-dependent distance, e.g., Rrup the rupture distance for the interface and Rhypo

the hypocentral distance for intraplate events.
• θj is the dependent event.

• Fevent =

{
0 − for interface events
1 − for intra-board events

• FFABA =

{
0 − foreground or unknown sites
1 − posterior arc sites

Model for magnitude scaling

fmag(M) =


θ4(M − (C1 + δC1)) + θ13(10 − M)2 para M ≤ C1 + δC1

θ5(M − (C1 + δC1)) + θ13(10 − M)2 otros casos
(4)

Where C1 = 7.8. The values of C1 capture the epistemic uncertainty of magnitudes.
Model for scaling depth

fdepth(Rhypo) = θ11(min(Rhypo, 120))Fevent (5)

Model for scaling the fore/back arc:

fFABA(R) =


θ7 + θ8 ln

(
max(Rhypo, 85)

40

)
FFABA para Fevent = 1

θ15 + θ16 ln
(

max(Rrup, 100)
40

)
FFABA para Fevent = 0

(6)
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Figure 2: Venezuela’s simplified telecommunications network graph

Model for scaling site response,

fsite(PGA1000, VS30) =



θ12 ln
V∗

S
Vl in

− b ln PGA1000 + c+

para VS30 < Vlin

+b ln PGA1000 + c
(

V∗
S

Vlin

)n

θ12 ln
V∗

S
Vl in

− b ln
V∗

S
Vlin

para VS30 ≥ Vlin

(7)

where PGA1000 = is the PGA median f VS30 = 1000 m/s and

V∗
S =

{
1000 para VS30 > 1000
VS30 para VS30 ≤ 1000

(8)

In this research for the calculation of the SA, the equation for the calculation of interface type
earthquakes was used. Likewise, a model was proposed in which the different components of the
Venezuelan telecommunications network are evaluated by damage levels. With the objective of
calculating the marginal probability of failure for the nodes (cities of the network).

To calculate the probability of operability of each component it is necessary to use fragility
curves, this corresponds to the graphical representation of the cumulative distribution function,
also seen as the probability of reaching or exceeding a previously defined state of damage. In the
case of earthquakes, such fragility curves have been defined in the HAZUS manual [7].

A telecommunication network can be viewed as a graph composed of nodes and arcs, the
arcs connecting nodes to each other. The capitals of each state that make up the country and an
additional city (Santa Elena de Uairén) were considered as the nodes of the network 2.
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To perform the simulation of ground motion within an acceptable margin, with the GMPEAm-
2016 model, a historical seismic base is necessary, for which it is essential to use a database that
has a seismic research institution either national or international.

We use the data provided by the USGS (United States Geological Survey) Earth Explorer.
Considering seismic events with magnitudes between 6 and 8, from 1900 to 2019, as shown in
Figure 3.

Figure 3: Geolocation of earthquakes between magnitude 6 and 8, image taken from [9]

Once the data was obtained, the ground motion simulation was performed, then the condi-
tional probability was defined to evaluate the possibility of the component being operative after
the earthquake. The probability of damage occurring, given that a displacement occurred in the
component under study, is calculated using the equation for estimating fragility given by the
HAZUS manual [7]After obtaining the probability of failure, the state of the component was
evaluated, for which a stochastic binary system is defined. Finally, the structure function for the
Venezuelan telecommunications network was performed to calculate the marginal probability of
each component. Finally, by quantifying the expected damage at each node, the corresponding
analyses were performed to better understand the state of the network.

3. Results

For this research, the RStudio program was used as a tool for the simulation, the calculations
of the probabilities, as well as the graphs that are presented. The calculations and graphs were
obtained by means of codes implemented in the aforementioned program using an Intel Core
i3 − 3110M 1.4G laptop computer with 4GB of RAM memory. One thousand (1000) simulations
were performed, a process that took 1.3399 seconds to execute, indicating that the associated
computational cost is low.

For the mapping of the earthquakes, the data presented in Table 1, taken from [9], were used.
The locations used for the nodes are shown in the table below 2
For ground motion simulation, the GMPE-Am2016 model was implemented for interface type

earthquakes, in the following Tables the parameters used for this model are presented.
Table 3, which was taken from [5], shows the coefficients to be used for the GMPE-Am2016

model, regardless of the period being worked with.
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Table 1: Earthquakes (6 − 8 Mw), from 1900 to 2019, data obtained from [9]

Latitude Longitude Depth Moment
(Km) Magnitude

10.7731 -62.9019 146.82 7.3
6.7757 -72.9875 155 6.2

10.9048 -62.3150 63 6.0
10.7090 -67.9270 14 6.4
10.8760 -61.7560 53 6.1
11.1240 -62.5590 110.3 6.2
10.5980 -63.4860 19.9 7.0
11.1120 -60.8920 5 6.7
11.4120 -60.9420 45 6.1
5.0500 -72.9160 17.3 6.5
7.4140 -72.0330 11.6 6.0

10.2410 -60.7580 36.0 6.2
6.4700 -71.2100 20.3 6.1

10.9600 -68.3250 20.3 6.0
10.4020 -60.5870 56.2 6.7
10.5970 -62.9280 18.8 6.3
10.4190 -62.7640 40.0 6.1
10.0400 -69.7550 33.0 6.1
10.5630 -63.3820 34.0 6.1
9.4770 -72.5880 175.7 6.1

10.6970 -62.7480 103.4 6.5
10.5590 -67.3300 25.0 6.6
6.7470 -73.0320 161.2 6.8

10.3360 -62.5400 15.0 6.1
10.9420 -62.6680 15 6.0
10.8240 -62.7060 23.3 6.4
6.8680 -72.0950 25.0 6.6
8.3570 -71.1810 15.0 6.1

10.8630 -61.3740 49.0 6.1
7.0130 -71.9410 28.2 6.5
9.7100 -69.8190 15.0 6.4

10.5430 -64.4440 10.0 6.7
10.3620 -62.8040 20.0 6.3
11.8290 -71.4610 15 6.3
11.0000 -66.0000 0.0 7.7
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Table 2: Geographic location of Venezuelan telecommunications network nodes

Number City Latitude Longitude
1 Coro 11.4046 -69.6563
2 Valencia 10.1725 -67.9941
3 Maracay 10.2669 -67.6052
4 Los Teques 10.3486 -67.0344
5 Caracas 10.5002 -66.9191
6 La Guaira 10.6025 -66.9308
7 San Felipe 10.3400 -68.7452
8 Barquisimeto 10.0680 -69.3475
9 San Carlos 9.6600 -68.5811
10 San Juan de los Morros 9.9127 -67.3613
11 Ciudad Bolívar 8.0886 -63.5536
12 Barcelona 10.1450 -64.6783
13 Cumana 10.4322 -64.1833
14 La Asunción 11.0278 -63.8583
15 Maturín 9.7358 -63.1919
16 Tucupita 9.0697 -62.0456
17 San Fernando de Apure 7.8808 -67.4692
18 San Cristóbal 7.77194 -72.2264
19 Mérida 8.5700 -71.1808
20 Barinas 8.6231 -70.2372
21 Guanare 9.0378 -69.7289
22 Trujillo 9.3691 -70.4396
23 Maracaibo 10.645 -71.6131
24 Puerto Ayacucho 5.6625 -67.5828
25 Santa Elena de Uairén 4.6081 -61.1072

Table 3: Period-independent subduction model coefficients used in the regression analysis, Table taken from [5]

Coefficients Value in all
the periods

n 1.18
θ3 0.1
θ4 0.9
θ5 0.0
θ9 0.4
C1 7.8

dC1 0.2
C4 10

     RT&A, No 2 (73) 

  Volume 18, June 2023 

321



Dora Jiménez and Abigail Medina
RELIABILITY IN THE TELECOMMUNICATIONS NETWORK

Table 4: Regression coefficients for the median (units of g) of the ground motion model for interface earthquakes, taken
from [5]

Coefficients Value in all Value for
the PGA1000 the SA

Period 0.0000 0.2500
Vlim 865.1 654.3

b -1.186 -2.381
θ1 4.2203 5.0594
θ2 -1.3500 -0.9940
θ6 -0.0012 -1.3000
θ7 1.988 2.8000
θ6 -1.4200 0.0129
θ8 0.9996 -1.3000
θ10 3.1200 2.800
θ11 0.0130 0.0129
θ12 0.9800 2.4800
θ13 -1.4200 -0.0172
θ15 0.9996 1.1600
θ16 -1.0000 -1.1700

In Table 4, the coefficients that depend on the period are shown, being equal to 0 used for the
calculation of the PGA1000 and equal to 0.25 for the calculation of the SA.

Since the spectral acceleration was calculated for interface earthquakes, the coefficient θ14 has
been omitted, since it is not necessary for this type of telluric movement. The value of Vs30 used
corresponds to [200,850], taking into consideration the works of Escobar et al. in [10] and [11],
that of Morales and several authors in [12], and that of Acosta together with other authors in [13].

For the fragility curves, the following parameters presented in Table 5, selected from the
HAZUS Manual [7] for reinforced concrete buildings (C2L), since the main CANTV telecom-
munications network exchanges are of this type of structures, two levels of damage were taken
into consideration, slight and extensive, the first refers to cracks in the surfaces of the walls or
small detachments of the concrete in some places, while the second is when most of the walls
have exceeded their creep capacity, thus indicating cracks that go through the wall, extensive
spalling around the cracks and wall reinforcement visibly bent or rotation of narrow walls with
inadequate foundations, and partial collapse of the walls, the units are given in inches, so the
corresponding conversion must be made, taking into account that the spectral acceleration is
given in g.

Table 5: Structural parameters of the fragility curve

Displacement
Spectral (Inches)

Slight Extended
S̄d,ds 0.72 1.04
βds 3.55 0.99

An Unif [0,1] was sampled to evaluate the state of the network components, i.e., whether there
was damage or not, for which a dynamic binary system was established, taking the number one
(1) to indicate that damage actually occurred in the node, and zero (0) for the opposite scenario.
Once the thousands (1000) repetitions had been carried out, the marginal probability of each
node receiving a slight or extensive level of damage was calculated. The following results were
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obtained:
In Figures 4(a) and 4(b), the horizontal axis corresponds to the numbering assigned in the

network for each city (see Figure 2 or Table 2), and the vertical axis to the number of times a
failure occurred.

(a) Frequency of a city (node) failing slightly (b) Frequency of a city (node) failing extensively

Figure 4: Frequency of occurrence of failure per damage level at each node

In Figures 4(a) and 4(b) three facts are observed, the first is that it is more frequent that a node
receives a slight damage, as opposed to one of extensive level, second is that in Figure 4(a) the
nodes that were damaged more than 600 times, were those corresponding to the following cities:
Valencia (2), Maracay (3), Los Teques (4), Caracas (5), La Guaira (6), San Felipe (7), San Juan de los
Morros (10), Ciudad Bolivar (11), Barcelona (12), Cumana (13), La Asunción (14) and Maturin (15),
Los Teques and Barcelona being the two most recurrent nodes to receive slight damage, and close
to 600 are San Carlos (9), Tucupita (16) and San Fernando de Apure (17), finally, in Figure 4(b)
shows that La Asunción, Maturín and Tucupita received more than 500 times extensive damage,
Barcelona and Cumaná between 400 and 500 times. Thus obtaining the probabilities presented
in Figure 5, again the horizontal axis corresponds to the nodes, while the vertical axis in these
graphs corresponds to the probability of failure.

(a) Probability of a city (node) failing slightly (b) Probability of a city (node) failing extensively

Figure 5: Probabilities of failure per damage level at each node

When comparing 5(a) and 5(b), with the geolocation of the earthquakes shown in the map
3, a geographical correlation is evidenced in which the nodes that have greater probability of
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suffering damage, whether slight or extensive, are those that are closer to the areas with greater
seismic activity; since the nodes that are observed in the graph 5(a) with a probability greater
than 0. 6 are mostly belonging to the capital, central and eastern regions of the country, and it
is precisely these regions or near them that a greater number of earthquakes occur due to the
system of active faults Boconó (Los Andes), San Sebastián (north-central Venezuela), and El Pilar
(northeast of the country), their locations can be seen in the image 6.

Figure 6: Seismic zonation map of Venezuela

The nodes with a probability of extensive damage greater than 0.5, shown in Figure 5(b), are
those corresponding to La Asunción Maturín and Tucupita, which are located in one of the high
seismic hazard zones (indicated by the orange color), as shown in the map 6. This correlation is
also observed when analyzing the nodes with lower probability of damage in the two different
levels, being the most notorious the Santa Elena de Uairén node (25) which has a slight probability
of damage equal to 0. 152, located in a zone of low seismic hazard (green color); and a probability
of extensive damage to 0.013, another node with a low probability of extensive damage is Puerto
Ayacucho (24) with an occurrence equal to 0.037, and also located in a zone with seismic hazard
similar to the previous one.

In the graph 7 the fragility curves for C2L buildings are shown, where the blue curve represents
the probability that given a spectral acceleration the mild damage state is exceeded or reached,
and the green one for extensive damage, on the horizontal axis the SA is expressed and on the
horizontal axis the conditional probability that a damage state is exceeded given the intensity
measure, in this case the SA. It is clear from this graph that slight damage has a higher probability
of occurrence than extensive damage, which is the expected result.

4. Conclusions

A study was carried out on the operability of the components of the Venezuelan telecommuni-
cations network when affected by earthquakes. For this purpose, a model was implemented to
calculate the spectral acceleration in order to perform a simulation of ground motion, taking into
consideration the characteristics of the infrastructure and geography, and thus be able to evaluate
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Figure 7: Fragility curves for mild and extensive damage levels

the probability of exceeding a previously defined damage state (in this opportunity, light and
extended damage were established), and thus obtain the marginal probability of each component
receiving a level of damage.

The network was tested with specific earthquakes (6 − 8 Mw), obtaining as a result that
the probability that the nodes of the network suffer a slight or extensive level of damage is
geographically related to the location of the earthquakes, so they have a higher probability of
slight damage compared to extensive damage.

It is suggested to consider possible damage to the network arcs, since it is known that
earthquakes can cause damage to these components. This study represents a novel proof of
concept for the Venezuelan case and serves as a starting point for further studies.
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Abstract

Numerous disciplines, including engineering, public health, sociology, psychology, and epidemiology,
are particularly interested in the analysis and modelling of zero truncated count data. As a result, we
suggest a novel and straightforward structural model in this study called zero truncated new discrete
distribution. We examine its statistical properties including probability mass function, cumulative
function, and moments. The parametric estimation of the zero-truncated new discrete distribution is
explained by Maximum Likelihood Estimation method and, to investigate its performance, a simulation
study is proposed. The importance of the distribution is evaluated using two real-world data sets as well
as one simulated data set and the model comparison is made on the basis of AIC and BIC criterions.

Keywords: truncation, zero-truncated distribution, simulation maximum likelihood estimation,
goodness-of-fit

1. Introduction

The truncation of probability distributions is a significant statistical phenomenon that is employed
in numerous domains, including medicine, reliability theory, industry, queueing systems, and
many others. When a range of probability values for the variables is either ignored or unobserv-
able, probability models are truncated. For instance, if we want to see how many journal articles
across different disciplines have been published, how many tickets were given out to teenagers
based on their academic performance, how many children have ever been born to a sample
of mothers who are over 40, etc. Typically, the Zero Truncated Poisson(ZTP), Zero Truncated
Negative Binomial(ZTNB), and Zero Truncated Poisson Lindley(ZTPL) distributions are used
to model the aforementioned scenarios. For the examination of gall-cell counts and amount of
eggs in flower heads, Finney and Varley [7] used the ZTP distribution. Brass [2] used the ZTNB
distribution to simulate the number of children ever born to a sample of mothers above the age
of 40. The ZTNB distribution was used in a regression model by Lee et al. [15] to examine the
over-dispersed data of ischemic stroke hospitalizations. ZTNB distribution was also used by
Phange and Loh [18] to analyze the prevalence of rare species and hospital stay. In 1990, Creel
and Loomis [5] used the ZTP distribution and applied it to deer hunting data set which was
collected in California. Also, Lindsay [14] analyzed the postal survey data using ZTP distribution.
Further, ZTPL distribution was introduced by Ghitany et al. [9] in 2008 and a real count data set
was analyzed.
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The zero truncated models outlined above are seen to have neither a high peak nor a heavy tail.
These models do not perform well when over and under-dispersion problems are present in the
data. Some other researchers who have worked in this field are Coleman and James [4], Mathews
and Appleton [17], they have discussed various applications of zero-truncated distributions
particularly ZTP distribution. Further, a detailed discussion was given by Best et al. [3] in 2007 on
the applications including goodness-of-fit of ZTP distribution. Hassan et al.[10] in 2008 obtained
the Bayes estimator and reliability function of the ZTP and also derived its recurrence relations.
In 2008, Ghitany et al. [9] introduced the ZTPL distribution and also derived the method of
moments (MoM) and maximum likelihood estimators (MLE) of the parameter including their
large sample properties and simulation procedure. In addition to this, the effectiveness of the
MoM and ML estimators have been compared, it has been found that the ML estimators are more
effective than the MoM estimators. In 2017, Shanker & Shukla [21] introduced a Zero Truncated
Two Parameter Poisson Lindley(ZTTPPL) distribution using compounding technique by mixing
Size Biased Poisson(SBPD) with a continuous distribution. They have showed that ZTTPPL
model gives better fitting than ZTPD in case of biological science data. Simon and Shanker
[24] in 2018, obtained a Zero Truncated Discrete Lindley(ZTDL) distribution and analyzed that
both the methods i.e., MoM and MLE gave the same estimates of the distributions parameter.
In 2020, Kiani [13] proposed a new model, named as Zero Truncated Two Parameter Discrete
Lindley(ZTTPDL) distribution. The distribution has some embedded models and represents a
two-component mixture of a Zero Truncated Geometric(ZTG) distribution and a ZTNBD with
certain parameters. Another distribution named as Poisson Ishita distribution(PID) was obtained
by Shukla & Shanker [25] which was further studied by Kamlesh et al. [27] in 2020. They obtained
the zero truncation of the PID model. Similarly, Shanker [22] in 2017 obtained a zero truncation
for Poisson-Akash model of Shanker [23]. Sium in 2020 [26] obtained a zero-truncated model of
discrete Akash distribution and obtained its different structural properties.
Now some of the aforementioned shortcomings served as the motivation for the proposal of a
Zero Truncated New Discrete (ZTND) distribution with a basic structure and only one parameter.
The proposed model is equi-dispersed, over-dispersed as well as under-dispersed. Additionally,
the model’s adaptability is examined by looking at how well it agrees with some real data sets as
shown by checking its p-value, and some criterions like AIC and BIC. For this purpose, three
data sets including one simulated data are examined , and it has been found that the proposed
model, which displays minimum values for certain statistics, is the most appropriate distribution
among the others.

2. Zero Truncated New Discrete Distribution

Sanjay et al.[12] in 2021, obtained a new discrete version of the failure model which was given
by Siddiqui in 2016 [20] by using the cdf and reliability function of the Continuous Distribution
(CD).

Let y be a random variable following new discrete distribution [12] then pmf is given as:

P0(y : θ) =
θ − 1
θ(y+1)

; y = 0, 1, 2, 3...; ; θ > 1 (1)

Now, the formula given below can be used to determine the pmf of ZTND distribution.

P(y; θ) =
P0(y; θ)

1− P0(0; θ)
(2)

Using equation (1) and (2) we get the pmf of ZTNDD as:

P(y; θ) =
θ − 1

θy ; y = 1, 2, 3, ... θ > 1 (3)
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The cdf of ZTNDD is provided as:

F(y; θ) =
θy − 1

θy

F(y; θ) =
θy − 1

θy
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Figure 1: PMF plots of ZTNDD
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Figure 2: CDF plots of ZTNDD

3. Structural Properties and Generating Functions

In this part, we acquired various structural properties including factorial moments and raw
moments. Also, MGF is obtained and is given in next subsection.

3.1. Raw Moments/Moments about Origin

The first four raw moments of the proposed model are:

m′1 =
θ

θ − 1

m′2 =
θ2 + θ

(θ − 1)2

m′3 =
θ(θ2 + 4θ + 1)

(θ − 1)3

m′4 =
θ(θ3 + 11θ2 + 11θ + 1)

(θ − 1)4
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3.2. Factorial Moments

The four factorial moments are:

m(1) =
θ

θ − 1

m(2) =
2θ

(θ − 1)2

m(3) =
6θ

(θ − 1)3

m(4) =
24θ

(θ − 1)4

3.3. Moment Generating Function(M.G.F)

From the formula given below, we can get the M.G.F of proposed model as:

My(t) = E(ety) =
∞

∑
y=1

etyP(Y = y)

⇒ My(t) =
(θ − 1)

θ

∞

∑
y=1

ety

θy

⇒ My(t) =
(θ − 1)et

(θ − et)

From the above calculations, the mean and variance of the proposed model are:

E(y) = m′1 =
θ

θ − 1
(4)

V(y) = σ2 =
θ

θ2 + 1− 2θ

Index of Dispersion(IoD) is given as

IoD =
1

θ − 1

Skewness and Kurtosis are given as:

√
β1 =

µ3

σ3 =
(1 + θ)2

θ

β2 =
µ4

σ4 =
(θ2 + 7θ + 1)

θ

Coefficient of Variation for the proposed model is:

C.V =
1√
θ
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Figure 3: Index of Dispersion plot for ZTNDD
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Table 1: Behaviour of the model’s descriptive statistics for various parameter values.

θ Mean Variance C.V Skewness Kurtosis IoD
1.5 3.0000 6.0000 0.8165 4.1667 9.1667 2.0000
2.0 2.0000 2.0000 0.7071 4.5000 9.5000 1.0000
2.5 1.6667 1.1111 0.6324 4.9000 9.9000 0.6667
3.0 1.5000 0.7500 0.5774 5.3333 10.3333 0.5000
3.5 1.4000 0.5600 0.5345 5.7857 10.7857 0.4000
4.0 1.3333 0.4444 0.5000 6.2500 11.2500 0.3333
4.5 1.2857 0.3673 0.4714 6.7222 11.7222 0.2857
5.0 1.2500 0.3125 0.4472 7.2000 12.2000 0.2500

From the table, it is clear that our model is positively skewed and leptokurtic. Also, the model
is equi-dispersed for (θ=2), underdispersed for (θ>2) and over-dispersed for (1<θ<2).

4. Parametric Estimation

One of the key problems in mathematical statistics is the parameter estimation. In this segment,
we will look at the parametric estimation of the ZTNDD using the maximum likelihood estimation
method as well as the method of moments.
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4.1. Maximum Likelihood Method of Estimation

Let’s take a sample y1, y2, y3,...,yn from ZTNDD of size n with parameter θ. The likelihood
function is given by

L =
(θ − 1)n

θ∑ yi

⇒ log L = n log(θ − 1)− log θ
∞

∑
i=1

yi

Differentiating above equation w.r.t. θ and equating to zero we get

∂ log L
∂θ

=
n

θ − 1
− ∑∞

i=1 yi
θ

= 0

⇒ θ̂ =
ȳ

ȳ− 1

4.2. Method of Moments

We must compare the first sample moment with the corresponding population moment in order
to estimate the unknown parameter of the ZTND model using the technique/method of moments.
Now, replacing µ by ȳ in equation (4) we get the moment estimate of the parameter θ as:

θ̂ =
ȳ

ȳ− 1

5. Reliability Analysis

This section deals with Reliability and hazard rate function of the proposed model.

5.1. Reliability Function

The likelihood that a system will continue to work after a certain amount of time is the reliability
function. For the proposed model, it is given as:

R(y; θ) = P(Y > y) =
1
θy ; y = 1, 2, 3...

5.2. Hazard Rate

The hazard rate for ZTNDD is given by:

h(y; θ) =
P(y; θ)

R(y; θ)

⇒ h(y; θ) =
(θ − 1)

θy θy = (θ − 1)
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Table 2: Values of Reliability function R(y;θ) for the proposed model

y θ = 1.5 θ = 2.0 θ = 2.5 θ = 3.0 θ = 3.5 θ = 4.0
1 0.667 0.500 0.400 0.333 0.286 0.250
2 0.444 0.250 0.160 0.111 0.082 0.0625
3 0.296 0.125 0.064 0.037 0.0233 0.016
4 0.198 0.063 0.026 0.012 007 004
5 0.132 0.031 0.010 0.004 0.002 –
6 0.088 0.016 0.004 0.001 – –
7 0.059 0.008 0.002 – – –
8 0.039 0.004 – – – –
9 0.026 0.002 – – – –

10 0.017 – – – – –

5.3. Simulation Study

This part is based on extensive simulation studies to compare the effectiveness of the created
estimator. Six parameter settings (θ=1.5,2.0,2.5,2.7,3.0,3.5) are taken into account from ZTNDD
with sizes n=10, 25, 60, 350, and 500. The simulation process, which is described below, is based
on 1000 iterations of the suggested model.

Table 3: Simulation study of MLEs for proposed model

Sample θ = 1.5 θ = 2.0
Size(n) Bias Variance MSE Coverage Bias Variance MSE Coverage

Probability Probability
(95%) (95%)

10 0.11539 0.07045 0.08376 1.00 0.57527 2.55556 2.88649 0.94
25 0.02430 0.01274 0.01332 0.98 0.10359 0.06458 0.07531 1.00
60 0.01663 0.00710 0.00738 0.96 0.00713 0.02679 0.02684 0.96

350 -0.00388 0.00099 0.00101 0.96 0.01830 0.00680 0.00713 0.96
500 0.00652 0.00083 0.00087 0.96 0.00118 0.00473 0.00473 0.90

Sample θ = 2.5 θ = 2.7
Size(n) Bias Variance MSE Coverage Bias Variance MSE Coverage

Probability Probability
(95%) (95%)

10 0.45452 0.96431 1.17090 0.94 0.74182 4.06066 4.61096 0.94
25 0.13630 0.12885 0.14743 0.96 0.05464 0.21413 0.21712 0.98
60 0.03798 0.04603 0.04748 0.98 0.02543 0.07962 0.08027 0.92

350 0.03642 0.01411 0.01543 0.92 -0.02979 0.02648 0.02737 0.90
500 0.02586 0.00647 0.00714 0.88 -0.01670 0.01099 0.01127 0.94

Sample θ = 3.0 θ = 3.5
Size(n) Bias Variance MSE Coverage Bias Variance MSE Coverage

Probability Probability
(95%) (95%)

10 0.68743 2.96483 3.4374 0.98 0.54364 3.79498 4.09053 0.96
25 0.25330 0.51149 0.57565 0.98 0.32301 0.65368 0.75802 0.98
60 0.16092 0.17636 0.20225 0.96 0.11374 0.24541 0.25835 0.92

350 0.03626 0.03187 0.03319 0.94 0.06039 0.04573 0.04938 0.96
500 -0.00804 0.00909 0.00916 0.96 -0.01819 0.02315 0.02349 0.96

It is clear from the simulation table (3) that the Bias and MSE decreases significantly as sample
size increases. Additionally, when sample size grows, coverage probability gets closer to 0.95. We
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can therefore claim that MLE exhibits the consistency property. Therefore, we draw the conclusion
that the MLE does a good job of forecasting the distribution’s parameter.

6. Applications

In this part, we show that, in comparison to other competing models, our suggested model
gives a better fitting when analysing two real-world datasets and one simulated data set. The
first two data sets reflect European red mites, are taken from Garman [8] and Mcguire [16]
respectively. These data sets are shown in Tables (4) and (7) respectively. The parameters of each
of these distributions are determined using the maximum likelihood approach. The expected
frequencies for fitting ZTNDD, ZTPD, ZTNBD, SBPD, SBNBD(Size Biased Negative Binomial),
SBPLD(Size Biased Poisson Lindley Distribution)[1], and SBDLD(Size Biased Discrete Lindley)[24]
are obtained using R studio, and the goodness of fit of the model is evaluated using Pearson’s
chi-square test. For each fitted model, the expected counts, chi square, and p-value are shown in
Table (5 and 8). Additionally, we take into account the AIC (Akaike information criterion) and
BIC criteria in order to evaluate our proposed distribution to the other competing models. The
fact is lesser the AIC and BIC values, better is the distribution.

AIC = 2k− 2 log L and BIC = k log n− 2 log L

where n is the sample size, k is the number of parameters in the model, and logL is the log-
likelihood function’s maximum value for the model under consideration. Here Table (6 and 12)
show that, in comparison to other competing models, the ZTND distribution has lower AIC and
BIC values.

6.1. Data Set I

This data set is related to European red mites taken by Garman [8]. This data set was recently
used by Rama & Simon in 2018 [13] in modelling zero truncaed discrete distribution.

Table 4: European Red Mites[8]

Count 1 2 3 4 5 6 7
Frequency 38 17 10 9 3 2 1

Table 5: Expected frequencies and p-values of ZTND model and other competing models for data set I

Count Frequency ZTNDD ZTPD ZTNBD SBPD SBNBD SBPLD SBDLD
1 38.00 37.00 29.00 36.00 25.00 37.00 32.00 30.00
2 17.00 20.00 26.00 21.00 29.00 20.00 24.00 25.00
3 10.00 11.00 15.00 11.00 17.00 11.00 13.00 14.00
4 9.00 6.00 7.00 6.00 6.00 6.00 6.00 6.00
5 3.00 3.00 2.00 3.00 2.00 3.00 3.00 3.00
6 2.00 2.00 1.00 2.00 0.00 2.00 1.00 1.00
7 1.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00

Degrees of Freedom 3.00 2.00 2.00 2.00 2.00 2.00 2.00
χ2 2.07 10.08 2.46 20.73 2.07 6.36 8.34

p-value 0.56 0.01 0.29 <0.01 0.36 0.04 0.02
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Table 6: Different criterions for ZTND model and other competing models for data set I

Criteria ZTNDD ZTPD ZTNBD SBPD SBNBD SBPLD SBDLD
-l 118.80 122.79 119.73 127.89 119.78 120.07 121.08

AIC 239.60 247.59 241.46 257.78 241.56 242.13 244.17
BIC 241.99 249.97 246.22 260.16 246.33 244.51 246.55

z

6.2. Data Set II

This data set is also related to European red mites taken from Mcguire [16]. This data set was
recently used by Hassan & Mir[11] in analysing the Bayesian estimation of size biased generalized
geometric series distribution.

Table 7: European red mites [11]

Count 1 2 3 4 5
Frequency 128 37 18 3 1

Table 8: Expected frequencies and p-values of ZTND model and other competing models for Data set II

Count Frequency ZTNDD ZTPD ZTNBD SBPD SBNBD SBPLD SBDLD
1 128.00 128.00 121.00 126.00 118.00 127.00 123.00 122.00
2 37.00 40.00 49.00 43.00 54.00 42.00 46.00 49.00
3 18.00 13.00 13.00 13.00 12.00 13.00 13.00 13.00
4 3.00 4.00 3.00 4.00 2.00 4.00 3.00 3.00
5 1.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00

Degrees of Freedom 2.00 1.00 1.00 1.00 1.00 1.00 1.00
χ2 2.35 5.59 2.99 10.77 2.73 3.43 4.70

p-value 0.31 0.02 0.08 0.00 0.10 0.06 0.03

Table 9: Different criterions for ZTND model and other competing models for data set II

Criteria ZTNDD ZTPD ZTNBD SBPD SBNBD SBPLD SBDLD
-l 170.09 171.16 171.96 173.83 170.92 170.48 171.04

AIC 342.19 344.32 343.92 349.66 344.05 342.95 344.09
BIC 345.42 347.55 350.38 352.89 350.51 346.19 347.32

6.3. Simulated Data Set

For further testing our claim that our model is suitable for fitting purposes, we ran a simulation
experiment. The simulated data is present in Table(10).

Table 10: Simulated Data Set

Count 1 2 3 4 5 6 7 8 9 10
Frequency 523 250 104 61 31 15 8 6 1 1
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Table 11: Expected frequencies and p-values of ZTND model and other competing models for Simulated data

Count Frequency ZTNDD ZTPD ZTNBD SBPD SBNBD SBPLD SBDLD
1 523.00 514.00 425.00 510.00 388.00 514.00 457.00 439.00
2 250.00 250.00 323.00 253.00 367.00 250.00 300.00 316.00
3 104.00 122.00 164.00 123.00 174.00 122.00 145.00 152.00
4 61.00 59.00 62.00 60.00 55.00 59.00 61.00 61.00
5 31.00 29.00 19.00 29.00 13.00 29.00 24.00 22.00
6 15.00 14.00 5.00 14.00 2.00 14.00 9.00 7.00
7 8.00 7.00 1.00 7.00 0.00 7.00 3.00 2.00
8 6.00 3.00 0.00 3.00 0.00 3.00 1.00 1.00
9 1.00 2.00 0.00 1.00 0.00 2.00 0.00 0.00

10 1.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00

Degrees of Freedom 6 4 4 3 5 4 4
χ2 3.90 172.81 4.86 260.35 3.90 56.42 92.80

p− value 0.69 <0.01 0.30 <0.01 0.56 <0.01 <0.01

Table 12: Loglikelihood, AIC and BIC values of proposed model and other competing models for Simulated

Criteria ZTNDD ZTPD ZTNBD SBPD SBNBD SBPLD SBDLD
−l 1348.836 1418.286 1349.320 1477.478 1348.845 1373.345 1387.746

AIC 2699.672 2838.572 2702.641 2956.956 2701.690 2748.690 2777.492
BIC 2704.580 2843.480 2712.456 2961.864 2711.506 2753.598 2782.399

7. Discussion and Conclusion

From Table(1), it is evident that our model is positively skewed and leptokurtic in nature. Also,
from the index of dispersion plot(3), it is obvious that our model can accommodate equi-dispersed,
under-dispersed as well as over-dispersed data. From Table(3), it can be observed that the Bias
and MSE decreases with increase in sample size and also as sample size increases the coverage
probability approaches to 0.95.
From table(5,8, and 11), it can be observed that our model has highest p-value among all the
competing models in all the three data sets. Also, the information criterion is used to validate our
model, and it can be seen from table(6,9, and 12) that our model has lowest values of AIC, BIC
criterions which agrees with the fact that lesser the values of AIC and BIC, better is the model.
In this paper we have introduced a zero truncated model namely zero truncated new discrete
distribution(ZTNDD). We have derived the structural properties and generating functions of
the truncated model including Moments about origin, Factorial moments, Moment generating
function. Also, MLE is calculated, and for checking the behaviour of MLE, we have carried out a
simulation study. We have fitted two real life data sets and one simulated data set, we compared
our model with several other discrete models and it has been found that our model performs
better than all models.
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Abstract 

 

Tribodiagnostics deals with the problems of lubrication, friction and analysis of oils in technical 

fluids. Based on the results of parameter monitoring and chemical analysis of the oil, it is possible to 

determine the impending failure of the entire system very accurately. Today, this relatively young 

field of technical diagnostics is gradually becoming very viable and its results are fully in line with 

classical vibroacoustic diagnostics or thermodiagnostics. It is used in all mechanical systems 

containing oil systems. This is one of the methods of non-disassembly technical diagnostics, which is 

based on the knowledge that the lubricant after a certain period of use in the lubrication system reflects 

the condition of the equipment and the conditions in which this equipment was operated. 

 

Keywords: Tribodiagnostics, lubrication fluid, oil, friction 

 

 

1. Introduction 
 

The growing demand for vehicles forces us to think about ensuring a high level of 

operational reliability, which should be close to the inherent reliability, which is ensured by optimal 

use, maintenance, repairs, etc. For the maintenance to be technically and economically optimal, it is 

also necessary to optimize the technical diagnostics, resp. also a significant part of it - 

tribodiagnostics. The term tribology (from the Greek TRIBOS - friction and logos - science) is 

historically very old and has probably existed since the beginnings of written history. Examples of 

the development of wheels, bearings, friction surfaces, etc. are documented. Already in the early 

civilizations (Archimedes) and also the targeted scientific development of tribology has a relatively 

long history (15th century), when the foundations of the law come from Leonardo da Vinci. 

Important scientists who dealt with tribology were e.g. Lavoisier, Leibnitz, Tower, Reynolds, 

Stribeck and others [2]. 

 

2. Tribotechnical systems 
 

From a narrower point of view, tribology is a science and practice that deals with the 

behavior of contacting surfaces in motion, or in an attempt to move relative to each other (sliding, 

rolling, rotating, impact, oscillating, flow of gases, liquids, etc.). When the surfaces interact with each 

other, there is resistance to movement and friction. At the same time, the engineering observation of 

friction has a predominantly phenomenological character, since it uses in particular its external  
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manifestations, effects in the field of contact and effects on the environment. Generally speaking, 

there are generally two basic areas of research and application of tribology: 

 

• the field of man-made artificial technical tribological systems,  

• the area of natural tribological systems (e.g. human locomotor system - joints, plant roots, 

etc.),  

 

An approximation of the sizes and dimensions in which tri-diagnostics is performed in the area of 

vehicle groups is shown in Fig. 1 and Fig. 2. 

 

Both artificial and natural tribological systems include at least two, but usually four, system 

elements, namely a basic friction body, a counter-acting friction body, an Interfacial Medium and an 

Ambient Medium.  

 

 
 

Figure 1: An example of the size of the lubricating film and wear particles in the field of tribodiagnostics 

 

 
Figure 2: Example of an oil film size for an internal combustion engine 
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The Tribotechnical System (TTS) generally includes relationships between the following variables: 

  

• Input Variables:  

• desirable,  

• undesirable (disturbing). 

 

• Output Variables:  

▪ useful variables,  

• loss variables. 

 

Undesirable - interfering input variables negatively affect the values of usable and lossy output 

variables. The role of TTS in practice is the conversion of input variables such as input torque, input 

speed, type of input movement, resp. in the case of several different movements, their sequence also 

includes, for technically usable output variables e.g. output torque, output speed and output 

movement. While the two contacting surfaces are part of each TTS, the interfacial medium and the 

surrounding medium may be absent from the system if it is a process taking place e.g. in a vacuum. 

Open systems are those where the base body is in contact in time with a different type of contact 

body or with several different bodies, e.g. when transporting materials or machining. Closed TTSs 

are those where the contacting bodies meet repeatedly. In addition to the other features of the 

tribological process mentioned above, when comparing open and closed systems, the ability of the 

system to function properly depends on: 

 

• in the case of open TTS only for wear of the base body, 

• in the case of closed TTS for wear of the base and opposing body [4]. 

 

3. Tribological load and interaction 
 

 The tribological load in tribotechnical systems is caused by the already mentioned input and 

disturbing variables, more precisely by their influence on the structure of the tribotechnical system. 

Tribological loading includes contact, kinematic, dynamic and thermal processes. A tribological load 

is a contact load of a base surface in the solid phase by another surface, which may be in the solid, 

liquid or gaseous phase, with relative relative movement of the two surfaces. This is done with the 

help of real contact surfaces. Plastic deformation and wear can cause a change in the size of 

individual real contact surfaces during the tribological process. Mechanical energy dissipates by 

friction, i.e. they dissipate and are converted into thermal energy, which affects the rate of wear. The 

nominal or apparent surface is decisive for lubrication when the two contact surfaces are not in direct 

contact and there is a sufficient amount of lubricant between them. With mixed lubrication, the 

lubrication parameter Λ is equal: 

 

( ) 2/12

2

2

1

min

qq RR

h

+
=                                                                (1) 

 

where hmin is minimum thickness of lubricating layer (μm), Rq1 root mean square deviation of the 

base body surface profile (μm), Rq2 mean square deviation of the surface profile of the opposing 

body (μm).  

 

In the range 1 ≤ Λ <5, in the case of limit friction (lubrication) Λ <1 and in the case of dry friction, 

when both bodies are in direct contact, whether partial or complete, the boundary or real contact 

surfaces have a decisive influence. If there is direct contact between the friction surfaces, there will 

also be interactions between atoms / molecules and mechanical interactions at the locations of the  
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real contact surfaces and in the affected area close below the surface of both bodies. This gradually 

leads to elastic and finally to plastic contact deformations and the creation of real contact surfaces. 

The type of interaction that occurs depends mainly on the state of lubrication. If it is a sufficiently 

lubricated contact, then atomic / molecular interactions are insignificant compared to mechanical 

interactions. 

 

4. Wear 

 
 Wear can be characterized as an increasing loss of material from the surface of the solid 

phase upon interaction and relative motion with the solid phase body, liquid or gas. Wear of two 

rigid bodies occurs in direct contact, ie. in case of insufficient thickness of lubricating film, or in case 

of absence of lubricant. Wear is manifested by the release of particles from the surface of the material 

of one or both bodies in frictional contact. Wear can be caused by several mechanisms, the following 

four being the most important of them: 

 

• surface fatigue,  

• abrasion,  

• adhesion,  

• tribochemical reaction or erosion [1]. 

 

5. Tribotechnical diagnostics 

 
Tribotechnical diagnostics is a set of methods and means of checking the technical 

condition (diagnosis, localization, prognosis, or genesis) of usually complex, closed friction moving 

joints of mechanical systems using lubricating media (oils, greases, greases, etc.) hydrau -lic liquids 

and. i. It organically combines the measurement, evaluation and forecasting of parameters and 

characteristics of processes taking place in a given facility. The results of the analyzes are used to 

perform the following tasks: 

 

1. Monitoring the condition, trend and mode of wear of machinery based on, e.g. determination of 

the content of abrasions, resp. abrasion metals in the lubricant, while the decisive factor is mainly 

the trend of measured values. 

 

2. Determination of the service life of the lubricant by determining the degree of its degradation by 

chemical reactions, products of thermal-oxidation processes, internal contamination, external 

impurities, etc. Increased number of impurities, e.g. in oil it not only means greater wear of the 

lubricated parts, but the contained deposits can clog the lubrication holes and grooves. The 

service life of the lubricant is expressed by a set of relatively objectively determined indicators. 

 

3. Determination of optimal times for changing individual lubricants. The importance of this task 

is currently increasing with the rising price of lubricants and cost-saving measures. 

 

By fulfilling the above tasks, we can get an overview of the technical condition of the relevant 

mechanical system, the aging and deterioration of the lubricant, wear of functional parts of the 

machine, or. about the location of excessive wear, which is usually the cause of failures and 

sometimes system crashes. Analytical data on the lubricant provide, in addition to diagnostic 

information, also prognostic information and make it possible to predict and also prevent accident 

situations. Lubricant analysis makes it possible to very sensitively determine the wear rate of the 

system as a function of time, resp. in real time, provides additional control options, e.g. filtration 

systems, tightness of cooling systems, etc. In addition to the requirement of complexity, 
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 tribotechnical diagnostics must meet the condition of correct selection of the necessary 

tribodiagnostic methods, their simplicity, speed and unambiguous responses to the state (mode) of 

system wear and further usability of the lubricant. In terms of use, depending on the complexity of 

the technique, the organizational level, the traffic intensity, the instrumentation and the personnel 

possibilities, the methods of tribotechnical diagnostics can be divided as follows: 

 

• Simple methods and tests - express methods (speed methods). 

• Standard methods and tests - according to STN EN. 

• Special methods and tests - tribodiagnostic methods.  

 

From the point of view of the essence and physico-chemical principles, the methods of 

tribodiagnostics can be divided into:  

 

• Methods for determining the concentration of abrasive metals. 

• Methods for evaluating the morphology and distribution of abrasive particles.  

• Methods for determining the physico - chemical properties of a lubricant [5,6].  

 

5. Ferrography 
 

The detection of wear of oil-lubricated mechanical systems is based on the knowledge that 

the oil after a certain period of operation reflects the technical condition of the mechanical system 

and the operating conditions. This multidimensional information is carried by metal abrasion, which 

is dispersed in the oil and which, after quantification by a suitable method, allows indirect 

monitoring of the wear regime and mechanical changes in the system in which the oil is used. From 

the detected amount of metal abrasion, the intensity of the increase in the number of particles, the 

shape, morphology, size and material composition of particles and wear fragments, certain 

conclusions can be drawn - if the increase in abrasion and other parameters are systematic and 

compared with the nominal values determined for a given mechanical system (determined by 

calculation, long-term monitoring, etc.), it can be relatively reliably judged to be a normal course of 

wear without an increased risk of system failure. A sudden increase in the number of metal particles 

and the finding of particles of shapes characteristic of abnormal wear mechanisms signal an 

extraordinary event. From the size and shape of the particles, the growth rate, their number, 

morphology and other parameters, the severity of the disorder and the urgency of corrective action 

can be inferred. An important diagnostic circumstance is the ability to locate the site of increased 

abrasion and incipient disorders. According to the material composition of the metal abrasion, it is 

possible to determine the friction pair in which there is a sharp increase in wear. For these purposes, 

a suitable method is ferrography, based on the separation of solid metallic and non-metallic particles 

contained in the oil filling of lubrication systems of machines and equipment from the actual oil. 

Describes trapped particles (especially ferromagnetic) and assigns them to individual wear 

mechanisms; allows you to detect an impending machine failure. Abrasive particles can be divided 

according to their composition, size and other characteristics using this method. The separation takes 

place in a ferrograph, Fig. 3 - a sample of the examined lubricant flows down an inclined pad, which 

is placed in a magnetic field. The largest ferromagnetic particles settle at the beginning of the 

substrate and then the particles settle according to their magnetic properties, composition, size and 

shape. With this method it is possible to distinguish the shape of particles, their origin, place of origin 

(location of wear), morphology, etc. Ferrography is focused on the analysis of ferromagnetic 

abrasives in a lubricant using a magnetic field. It is a technique for separating metallic (and non-

metallic) substances from used oil. In the ferrographic analysis, a diluted sample of oil is drained 

over an inclined transparent substrate (foil), under which a strong magnet is placed. The inclination 

of the substrate causes a particle size distribution along the transparent substrate due to the gradient 

(variable force) of the magnetic field. At the beginning, larger particles are captured (>15 
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micrometers) and the closer the film is to the magnet, the smaller particles are captured (<5 

micrometers, or at the end up to 1-2 micrometers). After passing the oil sample, the oil is washed 

away with a suitable solvent (technical gasoline) and the particles are fixed on a transparent support 

with a transparent varnish, thus obtaining the so-called Ferrogram. Ferrogram allows to assess 

particle size, ratio of large particles (10-100 micrometers) to small particles, morphological (shape) 

characteristics of particles, etc. Based on the observation of particles on a special bichromatic 

microscope (combination of metallographic and biological microscopes - reflected as well as 

transmitted light is used), the wear regime of the mechanical system can be determined. 

 
 

 
 Figure 3: Schematic of a ferrograph and the principle of ferrographic analysis 

 

The operating conditions, in particular the efficiency of the air filter, the presence of water in the oil 

and the overall care of the technical staff for the equipment, shall be clearly indicated at the end of 

the sedimentation trace on the ferrogram. Image analysis can be used for quantitative evaluation of 

ferrograms. In Fig. 4 and Fig. 5 are particles isolated from oil filters. 

 

 
 

Figure 4: Particles from oil filters 

 
 

Figure 5: Particles from oil filters 
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Fig. 4 shows laminar particles where traces of abrasive wear due to high pressures at the contact of 

the friction surfaces are visible and incipient cracks are visible in the edge portions. In Fig. 5 is a 

spheroid artifact typical of fatigue wear. The ball is formed by the slow growth of a fatigue crack 

extending into the oil-soaked surface [7].  

 

6. Results and discussion 

 
The maintenance program is usually based on vibration monitoring, selected operating 

parameters and tribodiagnostics, which allows you to assess the specific condition of the equipment 

in real time. It is important that maintenance only applies to those parts or machines that really need 

it. The fault can be detected at the stage of occurrence and thus prevent more extensive damage, there 

are no unexpected outages and at the same time no unnecessary work is performed. Tribodiagnostics 

is based on regular sampling of lubricants (oils) from monitored machines and their analysis. With 

the help of tribodiagnostic analysis, we can determine both the condition of the oil itself and especially 

the condition of the monitored machine. The lubricating oil serves as a medium containing wear 

particle of the lubricated parts of the monitored machine. By analyzing these particles, we obtain 

important information about the mode of wear and events in the machine. It is very important to 

monitor the machine systematically and continuously from the beginning of the operational 

deployment and to obtain trends in the content of particles in the oil, resp. other tribodiagnostic 

parameters in the oil, as this information provides a reliable indication of changes in the wear regime 

and the actual technical condition. The second part of tribodiagnostics is the analysis of the oil itself, 

which we find out by changing its physico-chemical properties, as well as its pollution by foreign 

substances, e.g. water, mechanical pollution, chemical compounds. The basis of the success of 

tribodiagnostics is a correctly taken oil sample. The sample must be truly representative, ie. it must 

contain all substances in the proportion in which they occur in the lubrication system of the monitored 

machine. The optimal place for sampling is the return line, where the oil returns from the lubricated 

places to the oil tank. Some manufacturers already equip the machine (engine) with a sampling tap 

located just on the oil return line. Sampling must be performed while the machine is running, if 

possible, or shortly after it has stopped. Sampling containers (sample boxes) must be clean and dry. 

An important aspect of tribodiagnostics is the speed of response and the accuracy of the results. 

Regular samples should be analyzed quickly, based on the results of the diagnosis, the results are sent 

to the machine operator. Only the results of the analysis of the oil sample or the evaluation of the 

analysis with a recommendation for further action may be given in the relevant report. It depends on 

the system that suits the knowledge and experience of the workers. 

 

 

7. Conclusion  
 

This article briefly analyzes the crucial problems of friction and wear that occur during the 

operation of vehicles (especially vehicle combustion engine, transmissions, hydraulic systems, etc.), 

defined tribological unit as the smallest element where friction and wear take place. The tribological 

unit includes interactions of min. two friction surfaces, lubricant and environment. A separate part 

is devoted to the tribodiagnostic method of ferrography. This focuses on the detection of wear of oil-

lubricated mechanical systems is based on the knowledge that the oil after a certain period of 

operation reflects the technical condition of the mechanical system and the operating conditions. 

There are still few such maintenance personnel who practically use and apply the current state of 

the art to identify the condition of the equipment based on the condition of the oil system. The 

introduction of new approaches to the care of means of production, technology, and processes 

enables the rational use of the results of analyzes for reliable and trouble-free operation. Proper 

treatment e.g. by filtering or adding the right additives will significantly affect the economy of  
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operation. If the oil is still clean and properly maintained, it does not need to be changed. This will 

significantly reduce the environmental risk as well as increased environmental protection. 
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Abstract 

 

Concurrent or induced order statistics are produced when individuals in a random sample are 

ordered in compliance with the corresponding values of some other random sample. Concomitants 

are most helpful when k(n) individuals are to be chosen using a selection technique based on their 

X-values. The relevant Y-values are then used to reflect how well a characteristic has performed. In 

this paper, concomitants of generalized order statistics (GOS) from Farlie Gumbel Morgenstern 

type bivariate moment (FGMTBM) exponential distribution are obtained. Additionally, 

distribution function (df) and probaility density function (pdf) r-th generalized order statistics and 

a joint pdf of r-th and s-th GOS were also obtained. Furthermore, we provide the minimum 

variance linear unbiased estimator (MVLUE) of the position and scale parameters of the 

concomitants of the k-th upper record values and order statistics for the distribution under 

consideration. Finally, an implementation of the suggested methodology has been taken into 

account. 

 

Keywords: Generalized order statistics, Concomitants, Record Values, FGMTBM 

exponential distribution, Single and Product Moments, Minimum variance linear unbiased 

estimator. 

AMS Subject Classification: 62G30, 62E10 

 

1. Introduction 
 

In a wide range of statistical applications, order statistics (OS) and record values are often used in 

statistical modeling and inference. In both models, random variables are listed in descending order 

of magnitude. GOS offers an integrated approach to a wide variety of ordered random variable 

models with various interpretations. The theory of GOS is pioneered by [1]. Since then, a number of 
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writers have incorporated the idea of GOS into their works, including [2-3], and others. 

Let 𝑛 ∈ 𝑁, 𝑛 ≥ 2, 𝑘 > 0, �̃� = (𝑚1, 𝑚2, … , 𝑚𝑛−1) ∈ ℜ𝑛−1, 𝑀𝑟 = ∑𝑛−1
𝑗=𝑟 𝑚𝑗 , such that 𝛾𝑟 = 𝑘 + 𝑛 −

𝑟 + 𝑀𝑟 > 0 for all 𝑟 ∈ {1,2, . . . , 𝑛 − 1}. Then 𝑋(𝑟, 𝑛, �̃�, 𝑘), 𝑟 ∈ {1,2, . . . , 𝑛} are called 𝑔𝑜𝑠 if their joint 

𝑝𝑑𝑓 is given by 

𝑘(∏𝑛−1
𝑗=1 𝛾𝑗)(∏𝑛−1

𝑖=1 [1 − 𝐹(𝑥𝑖)]𝑚𝑖𝑓(𝑥𝑖))[1 − 𝐹(𝑥𝑛)]𝑘−1𝑓(𝑥𝑛)        (1.1) 

 

on the cone 𝐹−1(0) < 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 < 𝐹−1(1) of ℜ𝑛. 

Now, by selecting the proper values for the parameters, models such as ordinary OS (𝛾𝑖 = 𝑛 −

𝑖 + 1; 𝑖 = 1,2, … , 𝑛 𝑖. 𝑒. 𝑚1 = 𝑚2 = ⋯ = 𝑚𝑛−1 = 0, 𝑘 = 1, ) , 𝑘𝑡ℎ   record values (𝛾𝑖 = 𝑘  i.e. 𝑚1 =

𝑚2 … = 𝑚𝑛−1 = −1, 𝑘 ∈ 𝑁, ) , sequential OS (𝛾𝑖 = (𝑛 − 𝑖 + 1)𝛼𝑖;  )  (𝛼1, 𝛼2, . . . , 𝛼𝑛 > 0) , OS with 

non-integral sample size (𝛾𝑖 = (𝛼 − 𝑖 + 1); 𝛼 > 0), Pfeifer’s record values (𝛾𝑖 = 𝛽𝑖;  𝛽1, 𝛽2, . . . , 𝛽𝑛 >

0) and progressive type-II censored OS (𝑚𝑖 ∈ 𝑁0, 𝑘 ∈ 𝑁) are obtained. 

The pdf of 𝑟 − 𝑡ℎ GOS, 𝑋(𝑟, 𝑛, 𝑚, 𝑘) is 

 

 𝑓𝑋(𝑟,𝑛,𝑚,𝑘) =
𝐶𝑟−1

(𝑟−1)!
[�̅�(𝑥)]𝛾𝑟−1𝑓(𝑥)[𝑔𝑚(𝐹(𝑥))]𝑟−1                          (1.2) 

 

and joint pdf of 𝑋(𝑠, 𝑛, 𝑚, 𝑘) and 𝑋(𝑟, 𝑛, 𝑚, 𝑘) , 1 ≤ 𝑟 < 𝑠 ≤ 𝑛, is 

 

𝑓𝑋(𝑟,𝑠,𝑛,𝑚,𝑘)(𝑥, 𝑦) =
𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
 [�̅�(𝑥)]𝑚𝑓(𝑥)  [𝑔𝑚(𝐹(𝑥))]𝑟−1 

 

  × [ℎ𝑚(𝐹(𝑦)) − ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−1[�̅�(𝑦)]𝛾𝑠−1𝑓(𝑦), 𝛼 ≤ 𝑥 < 𝑦 ≤ 𝛽                  (1.3) 

 where, 

  

 𝐶𝑟−1 = ∏𝑟
𝑖=1 𝛾𝑖  , 𝛾𝑖 = 𝑘 + (𝑛 − 𝑖)(𝑚 + 1),   𝑔𝑚(𝑥) = ℎ𝑚(𝑥) − ℎ𝑚(0), 𝑥 ∈ (0,1) 

 

and ℎ𝑚(𝑥) = {
−

1

𝑚+1
 (1 − 𝑥)𝑚+1 , 𝑚 ≠ −1

−log(1 − 𝑥) , 𝑚 = −1
 

 

Let 𝐹(𝑥, 𝑦) be the df of some arbitrary bivariate population. Assume also that  (𝑋𝑖 , 𝑌𝑖), 𝑖 =

1,2, . . . , 𝑛, are 𝑛 pairs of independent random variables from the poulation having distrubution 

𝐹(𝑥, 𝑦). Let the ascending order of 𝑋 variates is 𝑋(1, 𝑛, 𝑚, 𝑘) ≤ 𝑋(2, 𝑛, 𝑚, 𝑘) ≤, . . . , ≤ 𝑋(𝑛, 𝑛, 𝑚, 𝑘), 

now, if we arrange the 𝑌  variates pairwise (necessarily not in increasing order) with these 

generalized ordered statistics, then 𝑌 variates are called the concomitants of GOS and are generally 

denoted by 𝑌[1,𝑛,𝑚,𝑘], 𝑌[2,𝑛,𝑚,𝑘], . . . , 𝑌[𝑛,𝑛,𝑚,𝑘]. Now, the pdf of 𝑌[𝑟,𝑛,𝑚,𝑘], the 𝑟𝑡ℎ concomitant of GOS is 

given as 

 

 𝑔[𝑟,𝑛,𝑚,𝑘](𝑦) = ∫
∞

−∞
 𝑓𝑌|𝑋(𝑦|𝑥) 𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑥) 𝑑𝑥      (1.4) 

 

and the joint pdf of  𝑌[𝑟,𝑛,𝑚,𝑘] and  𝑌[𝑠,𝑛,𝑚,𝑘]  is 

 

𝑔[𝑟,𝑠,𝑛,𝑚,𝑘](𝑦1, 𝑦2) = ∫
∞

−∞
 ∫

𝑥2

−∞
 𝑓𝑌|𝑋(𝑦1|𝑥1) 𝑓𝑌|𝑋(𝑦2|𝑥2) 𝑓𝑋(𝑟,𝑠,𝑛,𝑚,𝑘)(𝑥1, 𝑥2) 𝑑𝑥1 𝑑𝑥2        (1.5) 

The FGM family of bivariate distributions is frequently employed in practice. This family is 

defined by the given marginal dfs 𝐹𝑋(𝑥)  and 𝐹𝑌(𝑦)  of random variables 𝑋  and 𝑌  and a 

parameter 𝛼. As a result, the FGM bivariate distribution function is given as follows: 

 

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦)[1 + 𝛼(1 − 𝐹𝑋(𝑥))(1 − 𝐹𝑌(𝑦))],                  (1.6) 

349



 
M. Kamal, Nayabuddin, I. Alam, A. Rahman, A. Salam, S. Zarrin 
MOMENTS PROPERTIES OF CONCOMITANTS OF GENERALIZED  
ORDER STATISTICS FROM FGMTBM EXPONENTIAL DISTRIBUTION  

RT&A, No 2 (73) 
Volume 18, June 2023 

 
together with associated pdf 

  

     𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦)[1 + 𝛼(1 − 2𝐹𝑋(𝑥))(1 − 2𝐹𝑌(𝑦))].                       (1.7) 

 

The marginals of 𝑓𝑋,𝑌(𝑥, 𝑦) in this case are 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦). The two random variables 𝑋 and 𝑌 

are independent when the parameter 𝛼, also known as the association parameter, is zero. For 

exponential marginals, such a model was first presented by [5] and examined by [6]. The general 

form in Eq. (1.6) is credited to [7] and [8]. The acceptable range of the association parameter 𝛼 is 

−1 ≤ 𝛼 ≤ 1, and the maximum value of the Pearson correlation coefficient 𝜌 between X and Y 

must not exceed the value 1/3. Now, for given 𝑋, the conditional df and pdf of 𝑌 are: 

  

     𝐹𝑌|𝑋(𝑦|𝑥) = 𝐹𝑌(𝑦)[1 + 𝛼(1 − 𝐹𝑋(𝑥))(1 − 𝐹𝑌(𝑦))]                      (1.8) 

 and  

     𝑓𝑌|𝑋(𝑦|𝑥) = 𝑓𝑌(𝑦)[1 + 𝛼(1 − 2𝐹𝑋(𝑥))(1 − 2𝐹𝑌(𝑦))]                      (1.9) 

 

There have been various studies that discuss the concomitants of OS in the research. Weighted 

inverse Gaussian distribution used to conduct a comparative study on the concomitant of OS and 

record values by [9]. Shannon’s entropy is calculated by [10] after taking into account the 

concomitants of distribution of FGM family. Readers might check [11, 12] for some outstanding 

reviews on the concomitants of GOS. In [13], parameter estimation is discussed. They estimated the 

parameters of the FGM-type bivariate exponential distribution using the concomitants of GOS. The 

concomitants of GOS for the bivariate Lomax distribution is investigated by [14]. In addition, [15] 

obtained the concomitants of GOS for bivariate Pareto distribution. Also, [16] explored the 

concomitants of m-GOS  from the generalized FGM distribution family. For a few examples of 

recent studies based on the notion of concomitants of OS, readers may refer to [15, 17]. For some 

applications of OS in reliability and accelerated life testing, readers may refer to [18-22]. 

In this study, we examined the FGMTBM exponential distribution. For 𝜃 > 0, 0 < 𝑥, 𝑦 <

∞, −1 ≤ 𝛼 ≤ 1, the pdf, df and the conditional pdf of 𝑌 given 𝑋 of the FGMTBM exponential 

distribution is described by the following equation [23]. 

 

𝑓(𝑥, 𝑦) = 𝜃4𝑥𝑦 𝑒−𝜃(𝑥+𝑦){1 + 𝛼[1 − 2{1 − (1 + 𝜃𝑥)𝑒−𝜃𝑥}] [1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}]}      (1.10) 

 

𝐹(𝑥, 𝑦) = {1 − (1 + 𝜃 𝑥)𝑒−𝜃𝑥}{1 − (1 + 𝜃 𝑦)𝑒−𝜃𝑦}[1 + 𝛼(1 + 𝜃𝑥)(1 + 𝜃𝑦)𝑒−𝜃(𝑥+𝑦)]       (1.11) 

𝑓(𝑦|𝑥) = 𝜃2𝑦 𝑒−𝜃𝑦{1 + 𝛼[1 − 2{1 − (1 + 𝜃𝑥)𝑒−𝜃𝑥}] [1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}]}          (1.12) 

 

The marginal pdf and df of 𝑋 are respectively 

 

𝑓(𝑥) = 𝜃2𝑥 𝑒−𝜃𝑥 ,    0 < 𝑥 < ∞, 𝜃 > 0,                                       (1.13) 

 

        𝐹(𝑥) = 1 − (1 + 𝜃𝑥)𝑒−𝜃𝑥, 0 < 𝑥 < ∞, 𝜃 > 0,                                (1.14) 

 

2. PDF of Concomitants 

 

For the FGMTBM exponential distribution as given in Eq. (1.10), using Eq. (1.12) and Eq. (1.2) in Eq. 

(1.4), the 𝑝𝑑𝑓 of 𝑟 − 𝑡ℎ concomitants 𝑌[𝑟,𝑛,𝑚,𝑘]of GOS for 𝑚 ≠ −1 is given as: 

  

 𝑔[𝑟,𝑛,𝑚,𝑘](𝑦) =
𝐶𝑟−1

(𝑟−1)!(𝑚+1)𝑟−1  𝜃2𝑦𝑒−𝜃𝑦 
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   ×  ∫
∞

0
{1 + 𝛼[1 − 2{1 − (1 + 𝜃𝑥)𝑒−𝜃𝑥}] [1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}] 

 

 ×  [(1 + 𝜃𝑥)𝑒−𝜃𝑥]𝛾𝑟−1−1[1 − {(1 + 𝜃𝑥)𝑒−𝜃𝑥}𝑚+1]𝑟−1 𝜃2𝑥𝑒−𝜃𝑥𝑑𝑥.           (2.1) 

 

Setting 𝑧 = (1 + 𝜃𝑥)𝑒−𝜃𝑥 in Eq. (2.1), we get 

  

 =
𝐶𝑟−1

(𝑟−1)!(𝑚+1)𝑟−1  𝜃2𝑦𝑒−𝜃𝑦 ∫
1

0
{1 + 𝛼(1 − 2𝑧) [1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}]} 𝑧𝛾𝑟−1[1 − 𝑧𝑚+1]𝑟−1 𝑑𝑧.      

(2.2) 

 

Making transformation 𝑡 =  1 − 𝑧𝑚+1, we get 

  

 =
𝐶𝑟−1

(𝑟−1)!(𝑚+1)𝑟−1  𝜃2𝑦𝑒−𝜃𝑦 ∫
1

0
𝑡𝑟−1(1 − 𝑡)

𝛾𝑟
𝑚+1

−1 {1 + 𝛼[1 − 2(1 − 𝑡)
1

𝑚+1] [1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}]} 𝑑𝑡 

(2.3) 

  

=
𝐶𝑟−1

(𝑟−1)!(𝑚+1)𝑟−1  𝜃2𝑦𝑒−𝜃𝑦{𝐵(𝑟,
𝛾𝑟

𝑚+1
) + 𝛼[𝐵(𝑟,

𝛾𝑟

𝑚+1
) − 2𝐵(𝑟,

𝛾𝑟+1

𝑚+1
)][1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}]}.         

(2.4) 

 

Which after simplification yields 

 

𝑔[𝑟,𝑛,𝑚,𝑘](𝑦) = 𝜃2𝑦𝑒−𝜃𝑦[1 + 𝛼{1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}}{1 − 2 ∏𝑟
𝑖=1 (1 +

1

𝛾𝑖
)−1}].       (2.5) 

 

It may be verified that  ∫
∞

0
𝑔[𝑟,𝑛,𝑚,𝑘](𝑦)𝑑𝑦 = 1 

 

Remark 2.1: Set 𝑚 = 0, 𝑘 = 1 in Eq. (2.5), to get the 𝑝𝑑𝑓  of 𝑟 − 𝑡ℎ  concomitants of OS from 

FGMTBM exponential distribution as 

 𝑔[𝑟:𝑛](𝑦) = 𝜃2𝑦𝑒−𝜃𝑦[1 + 𝛼{1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}}{1 − 2
(𝑛−𝑟+1)

𝑛+1
}]. 

 

Remark 2.2: At 𝑚 = −1 in Eq. (2.5), to get the 𝑝𝑑𝑓 of 𝑟 − 𝑡ℎ concomitants of 𝑘 − 𝑡ℎ upper record 

values from FGMTBM exponential distribution as 

 

 𝑔[𝑟,𝑛,−1,𝑘](𝑦) = 𝜃2𝑦𝑒−𝜃𝑦[1 + 𝛼{1 − 2{1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦}}{1 − 2(
𝑘

𝑘+1
)𝑟}]. 

 

3. Single Moments 
 

Now, by using the results from the previous section, we obtain the moments of 𝑌[𝑟,𝑛,𝑚,𝑘] for the 

FGMTBM exponential distribution in this section. As a result, in the light of Eq. (2.5), the moments 

of 𝑌[𝑟,𝑛,𝑚,𝑘] are given as: 

 

𝐸[𝑌[𝑟,𝑛,𝑚,𝑘]
𝑘1 ] = 𝜃2 ∫

∞

0
𝑦𝑘1+1𝑒−𝜃𝑦[1 + 𝛼{1 − 2[1 − (1 + 𝜃𝑦)𝑒−𝜃𝑦]}{1 − 2 ∏𝑟

𝑖=1 (1 +
1

𝛾𝑖
)−1}]𝑑𝑦. (3.1) 

 

Note that 

∫
∞

0
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥 =

Γ(𝛼)

𝛽𝛼 .                                        (3.2) 
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Using Eq. (3.2) in Eq. (3.1), we get after simplification 

 

𝐸[𝑌[𝑟,𝑛,𝑚,𝑘]
𝑘1 ] =

Γ𝑘1+2

𝜃𝑘1
[1 + 𝛼{

𝑘1+4

2𝑘1+2 − 1}{1 − 2 ∏𝑟
𝑖=1 (1 +

1

𝛾𝑖
)−1}].                (3.3) 

 

Remark 3.1: Insert 𝑚 = 0, 𝑘 = 1 in Eq. (3.3) to retrieve the moments of OS concomitants from the 

FGMTBM exponential distribution as: 

 

    𝐸[𝑌[𝑟:𝑛]
𝑘1 ] =

Γ𝑘1+2

𝜃𝑘1
[1 + 𝛼{

𝑘1+4

2𝑘1+2 − 1}{1 −
2(𝑛−𝑟+1)

𝑛+1
}]. 

 

 Remark 3.2: The moments of concomitants of the k-th upper record statistics from the FGMTBM 

exponential distribution can be obtained as follows by setting 𝑚 = −1  in Eq. (3.3): 

 

    𝐸[𝑌[𝑟,𝑛,−1,𝑘]
𝑘1 ] =

Γ𝑘1+2

𝜃𝑘1
[1 + 𝛼{

𝑘1+4

2𝑘1+2 − 1}{1 − 2(
𝑘

𝑘+1
)𝑟}] 

 

Table 3.1: Mean of the concomitant of OS for FGMTBM exponential distribution with θ = 0.4 

n r α = −0.9 α = −0.5 α = −0.1 α = 0.1 α = 0.5 α = 0.9 

1 1 5 5 5 5 5 5 

2 
1 4.437 4.687 4.937 5.062 5.312 5.562 

2 5.562 5.312 5.062 4.937 4.687 4.437 

3 

1 4.156 4.531 4.906 5.093 5.468 5.843 

2 5 5 5 5 5 5 

3 5.843 5.468 5.093 4.906 4.531 4.156 

4 

1 3.987 4.437 4.887 5.112 5.562 6.012 

2 4.662 4.812 4.962 5.037 5.187 5.337 

3 5.337 5.187 5.037 4.962 4.812 4.662 

4 6.012 5.562 5.112 4.887 4.437 3.987 

 

 

Table 3.2: Mean of the concomitant of record value for FGMTBM exponential distribution with θ = 0.4 and k = 2. 

r α = −0.9 α = −0.5 α = −0.1 α = 0.1 α = 0.5 α = 0.9 

1 4.437 4.687 4.937 5.062 5.312 5.562 

2 5.187 5.104 5.02 4.979 4.895 4.812 

3 5.687 5.381 5.076 4.923 4.618 4.312 

4 6.02 5.567 5.113 4.886 4.432 3.979 

 

4. Joint PDF of Two Concomitants 

 

Now, using Eqs. (1.3) and (1.12) in Eq. (1.5), the joint pdf of the r-th and s-th concomitants of 

GOS 𝑌[𝑟,𝑛,𝑚,𝑘] and 𝑌[𝑠,𝑛,𝑚,𝑘] for 𝑚 ≠ −1 for the FGMTBM exponential distribution can be derived 

as: 

 

 𝑔[𝑟,𝑠,𝑛,𝑚,𝑘](𝑦1, 𝑦2) =
𝐶𝑠−1

(𝑟−1)!(𝑠−𝑟−1)!
 𝜃4𝑦1𝑦2𝑒−𝜃𝑦1𝑒−𝜃𝑦2  

  

  × ∫
∞

0
∫

𝑥2

0
{1 + 𝛼[1 − 2{1 − (1 + 𝜃𝑥1)𝑒−𝜃𝑥1}] [1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}]} 

352



 
M. Kamal, Nayabuddin, I. Alam, A. Rahman, A. Salam, S. Zarrin 
MOMENTS PROPERTIES OF CONCOMITANTS OF GENERALIZED  
ORDER STATISTICS FROM FGMTBM EXPONENTIAL DISTRIBUTION  

RT&A, No 2 (73) 
Volume 18, June 2023 

 
  

  ×  {1 + 𝛼[1 − 2{1 − (1 + 𝜃𝑥2)𝑒−𝜃𝑥2}] [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]} 

  

  × (𝜃4𝜃 𝑒−𝜃𝑥1𝑒−𝜃𝑥2){
1

𝑚+1
(1 − [(1 + 𝜃𝑥1)𝑒−𝜃𝑥1]𝑚+1)}𝑟−1{(1 + 𝜃𝑥2)𝑒−𝜃𝑥2}𝛾𝑠−1 

  

  × {−
1

𝑚+1
[(1 + 𝜃𝑥2)𝑒−𝜃𝑥2]𝑚+1 +

1

𝑚+1
[(1 + 𝜃𝑥1)𝑒−𝜃𝑥1]𝑚+1}𝑠−𝑟−1 

  

  × [(1 + 𝜃𝑥1)𝑒−𝜃𝑥1]𝑚 𝑑𝑥1𝑑𝑥2                                         (4.1) 

 

And utilizing the transformations 𝑈 = 1 − (1 + 𝜃𝑥1)𝑒−𝜃𝑥1  and 𝑉 = 1 − (1 + 𝜃𝑥2)𝑒−𝜃𝑥2 in Eq. (4.1), 

we get: 

  

 =
𝐶𝑠−1

(𝑟−1)!(𝑠−𝑟−1)!(𝑚+1)𝑠−2  𝜃4𝑦1𝑦2𝑒−𝜃𝑦1𝑒−𝜃𝑦2 ∫
1

0
∫

𝑉=𝑈

0
{1 + 𝛼(1 − 2𝑈) [1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}] 

 

×  {1 + 𝛼(1 − 2𝑉) [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]}𝑈𝑚  [1 − 𝑈𝑚+1]𝑟−1 [𝑈𝑚+1 − 𝑉𝑚+1]𝑠−𝑟−1 𝑉𝛾𝑠−1𝑑𝑢 𝑑𝑣   

(4.2) 

 

Subsequently, using the transformation 𝑉 = 𝑈𝑡  in the preceding equation, we obtained the 

following results: 

  

 =
𝐶𝑠−1

(𝑟−1)!(𝑠−𝑟−1)!(𝑚+1)𝑠−2  𝜃4𝑦1𝑦2𝑒−𝜃𝑦1𝑒−𝜃𝑦2 ∫
1

0
∫

1

0
{1 + 𝛼(1 − 2𝑈)[1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}]} 

 

×  {1 + 𝛼(1 − 2𝑈𝑡) [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]}𝑈𝛾𝑟−1 [1 − 𝑈𝑚+1]𝑟−1 𝑡𝛾𝑠−1 [1 − 𝑡𝑚+1]𝑠−𝑟−1 𝑑𝑢 𝑑𝑡   

(4.3) 

 

By setting 𝑝 = 𝑈𝑚+1 and 𝑞 = 𝑡𝑚+1 in Eq. (4.3), we get after simplification 

  

 =
𝐶𝑠−1

(𝑟−1)!(𝑠−𝑟−1)!(𝑚+1)𝑠  𝜃4𝑦1𝑦2𝑒−𝜃𝑦1𝑒−𝜃𝑦2 ∫
1

0
∫

1

0
{1 + 𝛼(1 − 2𝑝

1

𝑚+1) [1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}]} 

 

× {1 + 𝛼(1 − 2𝑝
1

𝑚+1 𝑞
1

𝑚+1) [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]}𝑝
𝛾𝑟

𝑚+1
−1 (1 − 𝑝)𝑟−1 𝑞

𝛾𝑠
𝑚+1

−1 (1 − 𝑞)𝑠−𝑟−1 𝑑𝑝 𝑑𝑞 

(4.4) 

 

Upon further simplification of the preceding result, we obtain 

 

 𝑔[𝑟,𝑠,𝑛,𝑚,𝑘](𝑦1, 𝑦2) = 𝜃4𝑦1𝑦2𝑒−𝜃𝑦1𝑒−𝜃𝑦2  [1 + 𝛼2 [1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}] [1 − 2{1 − (1 +

𝜃𝑦2)𝑒−𝜃𝑦2}] 

  

   × {1 − 2 ∏𝑟
𝑖=1 (1 +

1

𝛾𝑖
)−1 − 2 ∏𝑠

𝑖=1 (1 +
1

𝛾𝑖
)−1 +  4 ∏𝑟

𝑖=1 (1 +
2

𝛾𝑖
)−1} 

 

+𝛼{[1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}] + [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]}{1 − 2 ∏𝑠
𝑖=1 (1 +

1

𝛾𝑖
)−1}]    (4.5) 

It may be varified that ∫
∞

0
∫

∞

0
𝑔[𝑟,𝑠,𝑛,𝑚,𝑘](𝑦1 , 𝑦2)𝑑𝑦1𝑑𝑦2 = 1. 

 

Remark 4.1: We can obtain the joint pdf of concomitants of OS by putting 𝑚 = 0, 𝑘 = 1 in Eq. (4.5), 

as well as the joint pdf of concomitants of the k-th upper record values for the FGMTBM 

exponential distribution by setting 𝑚 = −1. 
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5. Product Moments of Two Concomitants 

 

The product moments of two concomitants 𝑌[𝑟,𝑛,𝑚,𝑘] and 𝑌[𝑠,𝑛,𝑚,𝑘] are given as: 

 

𝐸(𝑌[𝑟,𝑛,𝑚,𝑘]
𝑙 𝑌[𝑠,𝑛,𝑚,𝑘]

𝑝
) = ∫

∞

0
 ∫

∞

0
𝑦1

𝑙  𝑦2
𝑝

  𝑔[𝑟,𝑠,𝑛,𝑚,𝑘](𝑦1, 𝑦2) 𝑑𝑦1 𝑑𝑦2                  (5.1) 

 

In view of Eq. (4.5) and Eq. (5.1), we have 

  

 𝐸(𝑌[𝑟,𝑛,𝑚,𝑘]
𝑙 𝑌[𝑠,𝑛,𝑚,𝑘]

𝑝
) = 𝜃4 ∫

∞

0
𝑦2

𝑝+1
𝑒−𝜃𝑦2  {∫

∞

0
𝑦1

𝑙+1 𝑒−𝜃𝑦1[1 + 𝛼2 [1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}] 

 

  × [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]{1 − 2 ∏𝑟
𝑖=1 (1 +

1

𝛾𝑖
)−1 − 2 ∏𝑠

𝑖=1 (1 +
1

𝛾𝑖
)−1 +  4 ∏𝑟

𝑖=1 (1 +
2

𝛾𝑖
)−1} 

 

 +𝛼{[1 − 2{1 − (1 + 𝜃𝑦1)𝑒−𝜃𝑦1}] + [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]}{1 − 2 ∏𝑠
𝑖=1 (1 +

1

𝛾𝑖
)−1}]𝑑𝑦1}𝑑𝑦2  

(5.2) 

 

 𝐸(𝑌[𝑟,𝑛,𝑚,𝑘]
𝑙 𝑌[𝑠,𝑛,𝑚,𝑘]

𝑝
) =

𝜃2 Γ𝑙+2

𝜃𝑙 ∫
∞

0
𝑦2

𝑝+1
𝑒−𝜃𝑦2{[1 + 𝛼2 (

2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) [1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}] 

 

  × [1 − 2 ∏𝑟
𝑖=1 (1 +

1

𝛾𝑖
)−1 − 2 ∏𝑠

𝑖=1 (1 +
1

𝛾𝑖
)−1 +  4 ∏𝑟

𝑖=1 (1 +
2

𝛾𝑖
)−1] + 𝛼[(

2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) 

 

                +[1 − 2{1 − (1 + 𝜃𝑦2)𝑒−𝜃𝑦2}]][1 − 2 ∏𝑠
𝑖=1 (1 +

1

𝛾𝑖
)−1]}𝑑𝑦2                   (5.3) 

 

Solving Eq. (5.2), we get after simplification 

  

 𝐸(𝑌[𝑟,𝑛,𝑚,𝑘]
𝑙 𝑌[𝑠,𝑛,𝑚,𝑘]

𝑝
)  =

Γ(𝑙+2) Γ(𝑝+2)

𝜃𝑙+𝑝 {[1 + 𝛼2 (
2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) (
2𝑝+2−2𝑝+3+𝑝+4

2𝑝+2 )] 

 

 × [1 − 2 ∏𝑟
𝑖=1 (1 +

1

𝛾𝑖
)−1 − 2 ∏𝑠

𝑖=1 (1 +
1

𝛾𝑖
)−1 +  4 ∏𝑟

𝑖=1 (1 +
2

𝛾𝑖
)−1] 

 

+𝛼[(
2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) + (
2𝑝+2−2𝑝+3+𝑝+4

2𝑝+2 )][1 − 2 ∏𝑠
𝑖=1 (1 +

1

𝛾𝑖
)−1]}                       (5.4) 

 

Remark 5.1: The product moments of the concomitants of OS from the FGMTBM exponential 

distribution can be obtained by setting 𝑚 = 0, 𝑘 = 1 in Eq. (5.4) as follows: 

  

 𝐸(𝑌[𝑟:𝑛]
𝑙 𝑌[𝑠:𝑛]

𝑝
) =

Γ(𝑙+2) Γ(𝑝+2)

𝜃𝑙+𝑝 {[1 + 𝛼2 (
2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) (
2𝑝+2−2𝑝+3+𝑝+4

2𝑝+2 )] 

 

× [1 + 4(
(𝑛−𝑠+1)(𝑛−𝑠+2)

(𝑛+1)(𝑛+2)
) − 2(

𝑛−𝑠+1

𝑛+1
) − 2(

𝑛−𝑟+1

𝑛+1
)]  

 

+𝛼[(
2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) + (
2𝑝+2−2𝑝+3+𝑝+4

2𝑝+2 )][1 − 2(
𝑛−𝑟+1

𝑛+1
)]}  

 

Remark 5.2: The product moments of the concomitants of 𝑘 − 𝑡ℎ upper record value from the 

FGMTBM exponential distribution can be obtained by setting 𝑚 = −1 in Eq. (5.4) as follows: 

  

 𝐸(𝑌[𝑟,𝑛,−1,𝑘]
𝑙 𝑌[𝑠,𝑛,−1,𝑘]

𝑗−𝑝
) =

Γ(𝑙+2) Γ(𝑝+2)

𝜃𝑙+𝑝 {[1 + 𝛼2 (
2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) (
2𝑝+2−2𝑝+3+𝑝+4

2𝑝+2 )] 
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 × [1 + 4(
𝑘

𝑘+2
)𝑟 − 2(

𝑘

𝑘+1
)𝑟 − 2(

𝑘

𝑘+1
)𝑠]  

 

+𝛼[(
2𝑙+2−2𝑙+3+𝑙+4

2𝑙+2 ) + (
2𝑝+2−2𝑝+3+𝑝+4

2𝑝+2 )][1 − 2(
𝑘

𝑘+1
)𝑠]}  

 

Table 5.1: Covariance of the concomitant of OS for FGMTBM exponential distribution with θ = 0.4 

n s r α = −0.9 α = −0.5 α = −0.1 α = 0.1 α = 0.5 α = 0.9 

4 

1 1 30.981 19.839 12.493 10.243 8.589 10.731 

2 
1 13.102 13.488 11.939 10.439 5.988 -0.397 

2 11.567 6.996 4.179 3.429 3.246 4.817 

3 

1 1.297 9.011 11.46 10.71 5.261 -5.452 

2 -0.692 2.378 3.695 3.695 2.378 -0.692 

3 -2.682 -4.253 -4.07 -3.32 -0.503 4.067 

4 

1 -4.431 6.41 11.056 11.056 6.41 -4.431 

2 -6.877 -0.363 3.285 4.035 3.386 -0.127 

3 -9.322 -7.136 -4.485 -2.985 0.363 4.177 

4 -11.768 -13.91 -12.256 -10.006 -2.66 8.481 

 

Table 5.2: Covariance of the concomitant of record value for FGMTBM exponential distribution with θ=0.4, 

and k = 2. 

s r α = −0.9 α = −0.5 α = −0.1 α = 0.1 α = 0.5 α = 0.9 

1 1 7.352 2.287 0.098 0.081 2.204 7.202 

2 

1 21.549 7.57 0.633 -0.193 3.431 14.099 

2 5.002 1.537 0.059 0.064 1.565 5.052 

3 

1 31.013 11.092 0.991 -0.377 4.25 18.697 

2 14.091 4.944 0.411 -0.123 2.268 9.275 

3 6.607 2.016 0.072 0.092 2.118 6.79 

4 

1 37.323 13.44 1.229 -0.499 4.795 21.762 

2 20.151 7.214 0.646 -0.248 4 12.09 

3 12.5 4.236 0.305 -0.034 2.535 9.439 

4 9.298 2.836 0.101 0.131 2.987 9.57 

 

6. Application 

 
Finding the MVLUE of the location and scale parameters is an intriguing application of this 

work. Although the [24] methodology could be utilized to obtain MVLUE but it is quite challenging 

to acquire the inverse of the variance-covariance matrix in closed form for this methodology. 
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Therefore, these estimates are computed using numerical techniques. 

Assume that the distribution of the random variables have 𝜇 and 𝜎 as the location and scale 

parameters. Now, based on the [24] technique, the MVLUE of 𝜃  is given as �̂� =

(𝐴′𝑉−1𝐴)−1(𝐴′𝑉−1𝑦),  where, 𝑉 = (𝑉𝑖,𝑗)  represents the variance of the 𝑖 − 𝑡ℎ  and 𝑗 − 𝑡ℎ 

concomitants, 𝑉−1 represents the inverse of the matrix 𝑉, and 𝑦′ is the observed value of the 

vector 𝑌′ = 𝑌[1,𝑛,𝑚,𝑘], 𝑌[2,𝑛,𝑚,𝑘], . . . , 𝑌[𝑛,𝑛,𝑚.,𝑘]. For 𝜇 = 0 and 𝜎 = 1, 𝐴 and 𝜃 can be obtained as: 

 

𝐴 = [

1, 1 . . . 1
 

𝜇𝑑[1,𝑛,𝑚,𝑘] 𝜇𝑑[2,𝑛,𝑚,𝑘] . . . 𝜇𝑑[𝑛,𝑛,𝑚,𝑘]
] 

𝜃′ = [𝜇    𝜎] 

 

Table 6.1: Coefficients of MVLUE of µ and σ for FGMTBM exponential distribution based on OS with n = 4, 

θ = 0.4 

α Estimate Coefficients 

-0.9 
�̂� -0.0828 -0.1638 1.26766 -0.5523 

�̂� -0.5017 -0.9922 7.67812 -3.3452 

-0.5 
�̂� 5.14576 3.93097 -8.4672 0.39049 

�̂� -0.9503 -0.825 1.83408 -0.0588 

-0.1 
�̂� 14.4297 28.8015 -32.732 -9.4992 

�̂� -2.7511 -5.8872 6.69428 1.944 

0.1 
�̂� -9.1516 -35.805 33.9053 12.0516 

�̂� 1.98121 7.01331 -6.6369 -2.3576 

0.5 
�̂� -5.0134 -3.5421 10.2922 -0.7368 

�̂� 1.07724 0.74098 -2.047 0.2288 

0.9 
�̂� -1.9202 -0.6639 1.18162 2.40244 

�̂� 0.40411 0.19224 -0.1153 -0.481 

 

Table 6.2: Coefficients of MVLUE of µ and σ for FGMTBM exponential distribution based on record values 

with n = 4, θ = 0.4 and k = 2 

α Estimate Coefficients 

-0.9 
�̂� -9.0704 37.5315 -32.689 5.22765 

�̂� 2.27034 -8.4608 7.36915 -1.1787 

-0.5 
�̂� -9.6243 57.7496 -68.289 21.1632 

�̂� 2.26517 -12.314 14.5604 -4.5111 

-0.1 
�̂� 26.7814 -5.3193 24.1669 -44.629 

�̂� -5.2229 1.07976 -4.8968 9.04001 

0.1 
�̂� -32.758 4.67707 12.0107 17.0699 

�̂� 6.66864 -0.9234 -2.3731 -3.3721 

0.5 
�̂� -19.659 26.1102 4.18588 -9.6375 

�̂� 3.88893 -4.915 -0.7883 1.81434 

0.9 
�̂� -7.5351 10.0486 -1.2653 -0.2481 

�̂� 1.53447 -1.8065 0.22748 0.04455 
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7. Conclusions 

 
In this study, FGMTBM exponential distributions was considered and concomitants of GOS were 

obtained. Additionally, pdf pdf r-th GOS and a joint pdf of r-th and s-th GOS were also obtained. 

Furthermore, the MVLUE of the location and scale parameters of the concomitants of the k-th upper 

record values, as well as OS, were obtained for the distribution under consideration. Finally, an 

example was considered for the purpose of putting the suggested methodology into exercise. When 

k(<n) individuals are to be picked using a selection method based on their X-values, concomitants 

are most useful. The performance of a characteristic is then depicted using the pertinent Y-values. 

When individuals in a random sample are arranged in accordance with the corresponding values of 

another random sample, concurrent or induced OS are created.  

  

References 
[1] Kamps, U. (1995). A concept of generalized order statistics, B.G. Teubner Stuttgart, Germany 

(Ph. D. Thesis). 

[2] Khan, A.H., Khan R.U. and Yaqub, M. (2006). Characterization of continuous distributions 

through conditional expectation of generalized order statistics, J. Appl. Prob. Statist 1, 15-131. 

[3] Tavangar M. and Asadi M. (2008) On a characterization of generalized Pareto distribution 

based on generalized order statistics, Commun. Statist. Theory Meth. 37, 1347-1352. 

[4] Athar H. and Nayabuddin (2013). Recurrence relations for single and product moments of 

generalized order statistics from Marshall- Olkin extended general class of distributions, J. 

Stat. Appl. Prob. 2(2), 63-72. 

[5] Morgenstern, D. (1956). Einfache Beispiele Zweidimensionaler Verteilunngen, Mitteilungsblatt 

fur Mathemtische Statistik, 8, 234-235. 

[6] Gumbel, E.J. (1960). Bivariate exponential distributions, J. Amer. Statist. Assoc. 55, 698-707. 

[7] Farlie, D.J.G. (1960). The performance of some correlation coefficients for a general bivariate 

distribution, Biometrika , 47, 307-323. 

[8] Johnson, N.L. and Kotz, S. (1975). On some generalized Farlie-Gumbel-Morgenstern 

distributions, Commun. statist. Theor. Meth. 4, 415-427. 

[9] Das, K. K., Das, B. and Baruah, B. K. (2012). A comparative study on concomitant of order 

statistics and record values for weighted inverse Gaussian distribution. International Journal 

of Scientific and Research Publication 2, 1-7. 

[10] Tahmasebi, S. and Behboodian, J. (2012). Shannon information for concomitants of generalized 

order statistics in Farlie-Gumbel-Morgenstern (FGM) family. Bulletin of the Malaysian 

Mathematical Science Society 34, 975-981. 

[11] Ahsanullah, M. and Beg, M. I. (2006). Concomitant of generalized order statistics in Gumbel’s 

bivariate exponential distribution. Journal of Statistical Theory and Applications 6, 118-132. 

[12] Beg, M. I. and Ahsanullah, M. (2007). Concomitants of generalized order statistics from Farlie 

Gumbel Morgenstern type bivariate Gumbel distribution, Statistical Methodology. 1-20. 

[13] Chacko, M. and Thomas, P.Y. (2011) . Estimation of a parameter of Morgenstern type bivariate 

exponential distributionusing concomitants of order statistics, Statistical Methodology, 8, 

363-376. 

[14] Nayabuddin, (2013). Concomitants of generalized order statistics from bivariate Lomax 

distribution, ProbStat Forum 6, 73-88.  

[15] Nayabuddin, Athar H. and Al- Helan, M. (2018). Concomitants of generalized order statistics 

from bivariate Burr XII distribution, Aligarh Journal of statistics, 18, 1-18. 

 

357



 
M. Kamal, Nayabuddin, I. Alam, A. Rahman, A. Salam, S. Zarrin 
MOMENTS PROPERTIES OF CONCOMITANTS OF GENERALIZED  
ORDER STATISTICS FROM FGMTBM EXPONENTIAL DISTRIBUTION  

RT&A, No 2 (73) 
Volume 18, June 2023 

 
[16] Domma, F. and Giordano, S. (2016). Concomitants of m-generalized order statistics from 

generalized Farlie-Gumbel-Morgenstern distribution family. Journal of Computational and 

Applied Mathematics, 294, 413-435 

[17] Alawady, Barakat, H. M., Shengwu Xiong and Abd Elgawad, M. A.(2020). Concomitants of 

generalized order statistics from iterated Farlie–Gumbel–Morgenstern type bivariate 

distribution, Communications in Statistics - Theory and Methods, DOI: 

10.1080/03610926.2020.1842452 

[18] Saxena, S., Zarrin, S., & Kamal, M. (2012). Computation of reliability and Bayesian analysis of 

system reliability for Mukherjee Islam failure model. American Journal of Mathematics and 

Statistics, 2(2), 1-4. 

[19] Kamal, M. (2013). Application of geometric process in accelerated life testing analysis with 

type-I censored Weibull failure data. Reliability: Theory & Applications, 8(3 (30)), 87-96. 

[20] Kamal, M. (2021). Parameter estimation for progressive censored data under accelerated life 

test with 𝒌 levels of constant stress. Reliability: Theory & Applications, 16(3 (63)), 149-159. 

[21] Kamal, M., Rahman, A., Zarrin, S., & Kausar, H. (2021). Statistical inference under step stress 

partially accelerated life testing for adaptive type-II progressive hybrid censored data. Journal 

of Reliability and Statistical Studies, 585-614. 

[22] Kamal, M. (2022). Parameter estimation based on censored data under partially accelerated life 

testing for hybrid systems due to unknown failure causes. CMES-Computer Modeling in 

Engineering & Sciences, 130(3), 1239-1269. 

[23] Hasnain, S.A. (2013). Exponentiated moment Exponential Distribution, National College of 

Business Administration and Economics, Lahore, Pakistan. (Ph.D. Thesis). 

[24] Llyod, E.H.(1952) Least squares estimation of location and scale parameter using order 

statistics, Biometrika, 39, 88-95. 

 

358



 
Adilakshmi Siripurapu, Ravi Shankar Nowpada 
TRIANGULAR FUZZY NUMBER AND ITS APPLICATION 

RT&A, No 2 (73) 
Volume 18, June 2023  

 

 

PROJECT CHARACTERISTICS WITH TRIANGULAR 

FUZZY NUMBER 

 
Adilakshmi Siripurapu1, Ravi Shankar Nowpada2 

• 
Dept. of Basic Science and Humanities, Vignan’s Institute of Information Technology (A), 

Duvvada, Visakhapatnam, AP, India1 

laxmimaths2008@gmail.com 

 

Dept. of Mathematics, Institute of Science, GITAM  

(Deemed to be University), Visakhapatnam, AP, India2 

drravi68@gmail.com 

 

 

Abstract 

 

The Critical Path Method (CPM) is required to plan, organize, and arrange for major project 

networks. A clear estimate of the time duration will help in the successful execution of the CPM. 

However, the time duration cannot be precisely specified in real life. As a result, there is always 

uncertainty about the duration of activities, leading to the invention of the fuzzy critical path 

method. This study proposes a simple method for critical path analysis and project characteristics in 

a project network with a triangular fuzzy number. Furthermore, this study defines the most critical 

path and the relative path degree of criticality, both theoretically valid and practical. The suggested 

method can determine the critical path, project characteristics and critical degree of an activity as 

shown by an example discussed in some earlier studies. The proposed approach is very simple to 

apply and does not require knowing the explicit form of the membership functions of the fuzzy 

activity times. 

 

Keywords: Activity duration, critical degree, critical path method, project 

characteristics, triangular fuzzy number,  

 

 

1. Introduction 
 

The project manager needs to complete the required work in time, but recognition of project 

obstruction plays the main task. Projects may be complicated to handle in various scenarios. To 

meet this challenge, the CPM has been proven to be a practical implementation in efficiently 

controlling projects when the activity durations are predictable and known. CPM's objective is to 

recognize essential activities in the project if resources can be focused on to shorten project 

duration. 

             The effective outcome of CPM needs the provision of clearly defined time frames for an 

individual task. Anyhow, this condition is sometimes difficult to meet in practice since many tasks 

will be performed initially. To meet such realistic conditions, Zadeh, 1965 [21] familiarized the 

theory of a fuzzy set. Because of ambiguity regarding the activities period in a network design, the 

Fuzzy Critical Path Method (FCPM) has been presented in the 1970s. Several techniques have been 

developed in past years for determining the fuzzy critical path. 
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 Dubois, et al., 1978 [6] calculated the earliest, latest and slack times and criticality levels of 

activities using fuzzy numbers to demonstrate the network topology and series-parallel graphs. 

Gazdik [7] initially determined the activity durations and critical paths using fuzzy arithmetic 

operations. Atanassov et al. 1989 [3] defined membership value, non-membership value, and 

another element called hesitation; it has been used in various fields. Rommelfanger et al., 1994[16]  

calculated the activity’s earliest, latest and slack times in a project network using fuzzy intervals 

and expanded all concepts of classical network procedure using the suggested methodology. In 

order to allocate renewable resources, the FPS (Fuzzy Project Scheduling) method was used. Using 

time parameters, understand durations, beginning timings, and due dates of certain activities. L-R 

fuzzy numbers are utilized to model the uncertainty of these parameters. Constructing optimistic 

and pessimistic schedules based on ∝ -cut levels that have been specified are possible. A fuzzy 

project was a planning decision support system that applies L-R fuzzy numbers to evaluate 

activity times. Hapke et al., 1994 [8] proposed fuzzy project scheduling technique is employed in a 

software project scheduling context to allocate resources across related tasks. Scheduling is made 

more accurate by using a novel resource allocation approach that accounts for and includes 

uncertainty in the scheduling process. Loterapong et al., 1994 [12] proposed the fuzzy set theory 

approach to distribute resources to minimize unexpected project delays, use available resources, 

and minimize resource shortages. Three criteria are used to measure performance compared to the 

Minimum Late Finish (MINLFT) and the Minimum Slack (MINSLK) rules project duration, 

resource utilization, and resource interruption. Chang et al., 1995 [5] introduced the fuzzy Delphi 

method effectively determines the project length and the critical degree for each direction in a 

project. Attempted to substitute probabilistic or deterministic assumptions in the project network 

review with probabilistic ones and decrease the complexity caused by inexact and incomplete 

knowledge about activity times by representing activity times as fuzzy numbers. Chanas et al., 

2002 [4] introduced the idea of criticality in the network having fuzzy activity times. It computed 

the path degree of criticality using two alternative approaches. Stefan et al., 2002 [20] evaluated the 

criticality of a network in terms of path and activity duration periods, where intervals or fuzzy 

intervals describe activity duration times. Sireesha et al., 2010 [19] adapted fuzzy triangular 

numbers to solve project scheduling problems. This technique computes every activity's total float 

and the network's critical path beyond performing any forward or backward computations. 

Oladeinde et al. 2013 [14] utilized an altered fuzzy backward pass technique with a recursive 

relation to obtaining the most recent start and finish times, which enabled them to overcome 

negative fuzzy numbers. Khalaf 2013 [11] suggested a new mechanism for dealing with fuzzy 

project scheduling problems by applying a ranking function. They also suggested a novel 

technique for estimating every activity's fuzzy cumulative, free, and independent slack. Jaya Gowri 

et al. [9] proposed an algorithm to tackle the problem in an intuitionistic fuzzy environment. The 

Triangular intuitionistic fuzzy number is defuzzified using graded mean integration 

representation. Now the intuitionistic fuzzy number is converted to a crisp number. Then applied, 

the proposed algorithm to find the critical path. Adilakshmi et al. 2021 [17] find the critical path 

and project duration with the fuzzy hexagonal number. In their paper, the activity times are 

represented as a hexagonal fuzzy number and obtained a new ranking function in hexagonal fuzzy 

number by the centroid of centroid method. By using the ranking function, hexagonal fuzzy 

numbers are transformed into crisp values.  Priyadharshini et al. 2022 [15] developed a different 

algorithm, namely the maximum edge distance method, to find the optimal path in an 

intuitionistic fuzzy weighted directed graph with its edge weights as an intuitionistic triangular 

fuzzy number. The method is an alternative way to identify the critical path in the fuzzy 

environment. Adilakshmi et al. 2022 [1] find the critical path and project duration with the 

pentagonal fuzzy number. In their paper, the activity times are represented as a pentagonal fuzzy 
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number and obtained a new ranking function in pentagonal fuzzy number by the centroid of 

centroid method. Then applying a ranking function to PFNs is transformed into crisp values. 

Mahesh et al. [13] developed a new Fuzzy linear programming-based method using a single MF, 

called modified logistics MF. The modified MF logistics and its modifications taking into account 

the characteristics of the parameter are from the analysis process. This MF was tested for useful 

performance by modeling using FLP. Adilakshmi et al. 2022 [2] improved Dijkstra's algorithm for 

finding the critical path and project duration with the triangular fuzzy number. Their paper 

represents the activity times as a triangular fuzzy number. Then applied an algorithm to find the 

critical path. 

         This paper suggested measuring a fuzzy network's Critical Degree and project Characteristics 

utilizing tabular representation with Triangular fuzzy activity times and a new subtraction 

arithmetic operation.  

 

2. Preliminaries 

 
In this section, we will look at a few key definitions. 

2.1. Fuzzy Set [16] 

As stated in Zadeh's paper, the formalization of a fuzzy set is: 

Let X be a space of points (objects), with a generic element of X denoted by 𝑥. Thus, 𝑋 = {𝑥}. A 

fuzzy set (class) A in X is characterized by a membership (characteristic function) function 𝜇𝐴(𝑥), 

which associates with each point in X a real number in the interval [0,1], with the value of 𝜇𝐴(𝑥) at 

𝑥 representing the “grade of membership” of 𝑥 in A. When A set in the ordinary sense of the term, 

its membership function can take on only two values, 0 and 1, 𝜇𝐴(𝑥) = 1 𝑜𝑟 0 according to 𝑥 does 

or does not belong to A. 

 

2.2. Fuzzy Number [8] 

 

It is a Fuzzy set of the following conditions: 

• Convex fuzzy set 

• Normalized fuzzy set. 

• Its membership function is piece-wise continuous. 

• It is defined in the real number. 

Fuzzy numbers should be normalized and convex. Here the condition of normalization implies 

that the maximum membership value is 1. 

 

2.3. Triangular Fuzzy Number (TFN) [8] 
 

The TFN indicated by�̃� = (𝑎, 𝑏, 𝑐)and its membership function is given by; 

𝜇𝐴(𝑥) =

{
 
 

 
 
0, −∞ < 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,   𝑎 ≤ 𝑥 < 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
,   𝑏 ≤ 𝑥 < 𝑐

0,   𝑐 ≤ 𝑥 < ∞
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Figure 1: Graphical representation of Triangular fuzzy number 

 

2.4. Arithmetic Operations of Triangular fuzzy number [4] 
 

Let �̃� = (𝑎1, 𝑎2, 𝑎3)  and �̃� = (𝑏1, 𝑏2, 𝑏3) be two Triangular fuzzy numbers then; 

𝑘�̃� = 𝑘(𝑎1, 𝑎2, 𝑎3) = (𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3) 

�̃� ⊕ �̃� = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3) 

�̃� ⊝ �̃� = (𝑎1 − 𝑏1, 𝑎2 − 𝑏2, 𝑎3 − 𝑏3) 

�̃� ⊗ �̃� = (𝑎1 ∗ 𝑏1, 𝑎2 ∗ 𝑏2, 𝑎3 ∗ 𝑏3) 

�̃� ⊘ �̃� = (
𝑎1
𝑎2
,
𝑎2
𝑏2
,
𝑎3
𝑏3
) 

Example: 

Let �̃� = (3,6,9)  and �̃� = (2,4,6) then 

�̃� ⊕ �̃� = (5,10,15) 

�̃� ⊝ �̃� = (1,2,3) 

�̃� ⊗ �̃� = (6,24,54) 

�̃� ⊘ �̃� = (1.5, 1.5, 1.5) 

Remark: Some authors defined�̃� ⊝ �̃� = (𝑎1 − 𝑏3, 𝑎2 − 𝑏2, 𝑎3 − 𝑏1). 

How is it possible? 

Here I consider one example. 

Let�̃� = (2,4,6) & �̃� = (2,4,6), Here both �̃� 𝑎𝑛𝑑 �̃� are same TFNs. 

Now �̃� ⊝ �̃� = (2 − 6, 4 − 4, 6 − 2) 

                           = (−4,0,4). 

It is a completely wrong output since both �̃� 𝑎𝑛𝑑 �̃� are the same. 

According to my definition; 

�̃� ⊝ �̃� = (2 − 2, 4 − 4, 6 − 6) = (0,0,0) 
 

3. Proposal Method 

 
Fuzzy numbers are acceptable representations in project networks since activity periods are 

frequently challenging to predict or define exactly. In this chapter, the length of every activity is 

expressed as a positive TFN.  

The below steps to follow to find project critical path and characteristics. 

Step1: Construct a network diagram 𝐺(𝑉, 𝐸, 𝑇) with the set of given vertices and edges, where                         

𝑉 = {𝑣1, 𝑣2, … . , 𝑣𝑛}be set of n vertices, E be set of edges which represent activities, and T be set of 

fuzzy triangular numbers as activity times.  

Step2: Construct a square table with (𝑛 − 1) × (𝑛 − 1) order."i" indicate the number of rows, and the 

column number is indicated by 𝑗, where 𝑖 = 1,2,3… , 𝑛 − 1;𝑗 = 2,3, … . . 𝑛.Two numbers (𝑖, 𝑗) 

describes each entry in the table, where indicates the row number and 𝑗 indicates the column 

number. 
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Step3: Set the entries�̃�𝑖𝑗 , the highest fuzzy time needed from source node to tail node𝑖 → 𝑗. Insert the 

times �̃�𝑖𝑗 in the table’s first row. Then add the preceding time of the second node and 𝑡2𝑗 to 

complete the elements in the second row𝑖 = 2. Then proceed by adding the preceding time of the 

third node and 𝑡3𝑗 to the elements of the third row 𝑖 = 3, and so on. If we get more than one path, 

then we take the maximum value. Continuing this procedure on down the rows up to the ending 

row is attained. 

Step4: To determine the critical path, go backward from the known endpoint. Begin by picking the 

element from the end column 𝑗 = 𝑛 with the highest fuzzy value. This value represents the project 

completion time. The row number corresponding to the highest value in the end column provides 

the preceding activity’s end node index; hence, the next activity head node on the critical path is 

noted.  If column-n has the greatest number in row 𝑘, column 𝑘 is checked, and the greatest number 

in that column is needed. This step is continued until the initial node is reached when a list of all 

actions along the fuzzy critical path is obtained. 

Step5: Create a new (𝑛 − 1) × (𝑛 − 1) order table to compute free slack times. Choose the entry with 

the largest value �̃�𝑒𝑛𝑑 = �̃�𝑘𝑗where 𝑘 = 2,3, … . , 𝑛 − 1; 𝑗 = 𝑛.   

The free slack of activity (𝑖, 𝑗) is calculated using𝐹�̃�𝑖𝑗 = 𝑚𝑎𝑥{�̃�𝑘𝑗} − �̃�𝑖𝑗. 

Where �̃�𝑖𝑗 = 𝑡𝑖𝑗 + 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑐𝑜𝑙𝑢𝑚𝑛 𝑗. 

Step6: Form another (𝑛 − 1) × (𝑛 − 1) order table for computing total slack time using              

𝑇�̃�𝑖𝑗 = 𝐹�̃�𝑖𝑗 +𝑚𝑖𝑛{𝑇𝑆𝑗𝑘} for all 𝑘 > 𝑗. 

In the last row  𝑇�̃�𝑖𝑗 = 𝐹�̃�𝑖𝑗  is taken to begin the computations. 

Step7: Compute the earliest and latest activity periods by using; 

Earliest start time(𝐸𝑆𝑖𝑗) = �̃�𝑖 

Earliest finish time(𝐸�̃�𝑖𝑗) = �̃�𝑖 + �̃�𝑖𝑗 

Latest finish time(𝐿�̃�𝑖𝑗) = �̃�𝑗 

Latest start time (𝐿�̃�𝑖𝑗) = �̃�𝑗 − �̃�𝑖𝑗Total Float(𝑇�̃�𝑖𝑗) = 𝐿�̃�𝑖𝑗 − 𝐸�̃�𝑖𝑗   𝑜𝑟 𝐿�̃�𝑖𝑗 − 𝐸�̃�𝑖𝑗 

 

4.  Application 

 

Consider a site preparation and concrete slab foundation that includes nine different activities. The 

network table is shown in Table 1, and the network diagram is presented in Figure 1, where every 

activity duration is presented as a TFN. 

 

 Table1: Project Activity duration with TFN  

Activity Activity description TFN 

1→2 Removal tress (6,12,18) 

1→3 Site clearing (13,25,33) 

2→3 General excavation (15,20,29) 

2→4 Placing Formwork and reinforcement for concrete (2,11,20) 

2→5 Excavation for utility frame work (7,16,25) 

3→5 Grading general area (17,25,33) 

4→5 Installing sewer line (8,9,10) 

4→6 Pouring concrete  (15,21,31) 

5→6 Installing other utilities (4,11,14) 
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Figure2: Fuzzy project network with activity time as TFN 

 

The tabular representation of Fuzzy activity times is presented in Table 2. 

 

Table 2: Tabular description of Fuzzy activity times with TFN 

(𝑖, 𝑗) 2 3 4 5 6 

1 (6,12,18) (13,25,33)    

2  (15,20,29) (2,11,20) (7,16,25)  

3    (17,25,33)  

4    (8,9,10) (15,21,31) 

5     (4,11,14) 

 

5.  Results 

5.1. Project critical path 
 

In section 3 explained the procedure. From this procedure, calculated fuzzy critical path. Table3 represents 

maximum fuzzy time durations. 

 

Table 3: Tabular representation of Maximum Fuzzy activity duration (�̃�𝑖𝑗) 

(𝑖, 𝑗) 

 
2 3 4 5 6 

        1        (6,12,18) (13,25,33)    

        2  (21,32,47) (8,23,38) (13,28,43)  

        3    (38,57,80)  

        4    (16,32,48) (23,44,69) 

        5     (42,68,94) 

 

Using the following ranking formula, calculated rank of maximum fuzzy time duration (�̃�𝑖𝑗)and 

represented in Table 4. 

Let (𝑎, 𝑏, 𝑐) be a TFN, thenℛ(𝑎, 𝑏, 𝑐) =
𝑎+2𝑏+𝑐

4
. 
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Table 4: Tabular representation of Rank of �̃�𝑖𝑗 

(𝑖, 𝑗) 

 
2 3 4 5 6 

        1        12 24    

        2  33 23 28  

        3    58  

        4    32 45 

        5     68 

From Table 4,  

In the 6th column;ℛ{�̃�56} > 𝑅{�̃�46} ⟹ �̃�56 > �̃�46 

As a result, the sixth row has the greatest fuzzy value in the last column. 

Therefore, the last activity's head node index is 5, and the last activity's tail node index is 6. 

In the 5th column;ℛ{�̃�35} > 𝑅{�̃�45} > 𝑅{�̃�25} ⟹ �̃�35 > �̃�45 > �̃�25 

Therefore, the 3rdrow is the highest fuzzy value in the 5th column. 

Thus, the last activity's head node index is 3, and the last activity's tail node index is 5. 

In the 4th column; 

�̃�24 is the only fuzzy number in the column. 

Therefore, the 2nd row is the highest fuzzy value in the 4th column. 

Thus, the last activity's head node index is 2, and the last activity's tail node index is 4. 

In the 3rd column; 

In the 3rd column, ℛ{�̃�23} > 𝑅{�̃�13} ⟹ �̃�23 > �̃�13 

Therefore, the 3rd row is the highest fuzzy value in the 3rd column. 

Thus, the last activity's head node index is 2, and the last activity's tail node index is 3. 

In the 2nd column, �̃�12 is the only fuzzy number. 

Therefore, 1st row is the highest fuzzy value in 2nd column. 

Thus, the last activity's head node index is 1, and the last activity's tail node index is 2.  

The head node on the fuzzy critical path of the next to last activity is identified if the column’s 

highest fuzzy number is in row k, then column k is checked, and the highest fuzzy number in that 

column is needed. Then, the last activity's head node index is 1, and the last activity’s tail node 

index is 2.  

The tabular representation of identified critical path is presented in Table 5. 

 

Table 5: Maximum Fuzzy duration of Critical path 

(𝑖, 𝑗) 

 
2 3 4 5 6 

        1        (6,12,18)     

        2  (21,32,47)    

        3    (38,57,80)  

        4      

        5     (42,68,94) 

 

Therefore, the project critical path is 1→2→3→5→6 and the project end period is 68 days. 

 

5.2. Project Characteristics 

 
In section 3, explained earliest, latest and total floats formulas. Adapting those formulas, computed 

earliest, latest and total float of every activity. 
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5.2.1. Fuzzy Earliest and Latest Times of events 

Table 6 shows the fuzzy events earliest and latest times. 

 
Table 6: Earliest and Latest times of Fuzzy Network events with TFN 

Event (i) �̃�𝑖 �̃�𝑖 

1 (0,0,0) (0,0,0) 

2 (6,12,18) (6,12,18) 

3 (21,32,47) (21,32,47) 

4 (8,23,38) (27,47,63) 

5 (38,57,80) (38,57,80) 

6 (42,68,94) (42,68,94) 

 

Table 7 represents activities earliest; latest and total float time of every activity. 

 

Table 7: Earliest, latest and total float times of every activity with TFN 

𝑖 ⟶ 𝑗 𝐸�̃�𝑖𝑗 𝐸�̃�𝑖𝑗 𝐿�̃�𝑖𝑗  𝐿�̃�𝑖𝑗 Total float(𝑇�̃�𝑖𝑗) 

1→2 (0,0,0) (6,12,18) (0,0,0) (6,12,18) (0,0,0) * 

1→3 (0,0,0) (13,25,33) (8,7,14) (21,32,47) 
(8,7,14) 

2→3 (6,12,18) (21,32,47) (6,12,18) (21,32,47) (0,0,0) * 

2→4 (6,12,18) (8,23,38) (25,36,43) (27,47,63) (19,24,25) 

2→5 (6,12,18) (13,28,43) (31,41,55) (38,57,80) (25,29,37) 

3→5 (21,32,47) (38,57,80) (21,32,47) (38,57,80) (0,0,0) * 

4→5 (8,23,38) (16,32,48) (30,48,70) (38,57,80) (22,25,32) 

4→6 (8,23,38) (23,44,69) (27,47,63) (42,68,94) (19,24,25) 

5→6 (38,57,80) (42,68,94) (38,57,80) (42,68,94) (0,0,0) * 

5.3. Fuzzy slack times 
 

Slack time is an important factor in project management and planning. There are two kinds of 

slacks for each activity, i.e., fuzzy free slack (𝐹�̃�𝑖𝑗) and fuzzy total slack(𝑇�̃�𝑖𝑗). 

5.3.1. Fuzzy free slack time 
An activity's fuzzy free slack time (𝐹�̃�𝑖𝑗) is the duration of activity that could be prolonged, or its 

beginning can be delayed without impacting the beginning period of the immediately following 

activity. By default, every value in the�̃�𝑖𝑗 table reflects the maximal duration needed to achieve and 

complete the task(𝑖, 𝑗); thus, the gap within the maximum column and particular element in that 

column indicates how much free slack time is feasible for that particular activity. 

In section 3, the method to find Fuzzy free slack times using a tabular representation is explained. 

Fuzzy free slack time calculations 

𝐹�̃�12 = (6,12,18) − (6,12,18) = (0,0,0) 

𝐹�̃�13 = (21,32,47) − (13,25,33) = (8,7,14) 

𝐹�̃�23 = (21,32,47) − (21,32,47) = (0,0,0) 

𝐹�̃�24 = (8,3,28) − (8,23,38) = (0,0,0) 

𝐹�̃�25 = (38,57,80) − (13,28,43) = (25,29,37) 
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𝐹�̃�35 = (38,57,80) − (38,57,80) = (0,0,0) 

𝐹�̃�45 = (38,57,80) − (16,32,48) = (22,25,32) 

𝐹�̃�46 = (42,68,94) − (23,44,69) = (19,24,25) 

𝐹�̃�56 = (42,68,94) − (42,68,94) = (0,0,0) 

 

The calculated free slack times of every activity are represented in Table 8. 
 

Table 8: Tabular representation of free slack times 

𝑖 ⟶ 𝑗 

i   𝑖 
2 3 4 5 6 

1 (0,0,0) (8,7,14)    

2  (0,0,0) (0,0,0) (25,29,37)  

3    (0,0,0)  

4    (22,25,32) (19,24,25) 

5     (0,0,0) 

5.3.2. Total Slack Fuzzy Times 
 

The total slack time is the delay or an activity extension(𝑖, 𝑗)period that can occur without affecting 

the project's completion. 

In section 3, explained how to calculate total slack time for each activity. 

Total slack time calculations for fuzzy project network 

𝑇�̃�56 = (0,0,0) + (0,0,0) = (0,0,0) 

𝑇�̃�46 = (19,24,25) + (0,0,0) = (0,0,0) 

𝑇�̃�45 = (22,25,32) + (0,0,0) = (22,25,32) 

𝑇�̃�35 = (0,0,0) + (0,0,0) = (0,0,0) 

𝑇�̃�25 = (25,29,37) + (0,0,0) = (25,29,37) 

𝑇�̃�24 = (0,0,0) + (22,25,32) = (22,25,32) 

𝑇�̃�23 = (0,0,0) + (0,0,0) = (0,0,0) 

𝑇�̃�13 = (8,7,14) + (0,0,0) = (8,7,14) 

𝑇�̃�12 = (0,0,0) + (0,0,0) = (0,0,0) 
Table 9 displays the total fuzzy slack periods of every activity in the fuzzy project network. 

 

 

Table 9: Tabular representation of total float of each activity 

𝑖 ⟶ 𝑗 

i   𝑖 
2 3 4 5 6 

1 (0,0,0) (8,7,14)    

2  (0,0,0) (19,24,25) (25,29,37)  

3    (0,0,0)  

4    (22,25,32)  

5     (0,0,0) 

 

The above table shows that activities 1→2, 2→3, 3→5, 5→6 have zero slack time. Therefore, the 

critical path is 1→2→3→5→6.  
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5.4. Critical degree 
 

In the PERT, an activity considers a critical activity; its total float is zero. That is, the total float 

reduces, and then criticality increases. In the Fuzzy methodology, if𝐶�̃�𝑖𝑗 = 1, the activity (𝑖, 𝑗)is 

considered as a critical activity. 

Let𝑇�̃�𝑖𝑗 = (𝑎𝑖 , 𝑏𝑖 ,  𝑐𝑖) be the total float of fuzzy activity(𝑖, 𝑗), then the Critical Degree of activity is 

described as follows: 

𝐶�̃�𝑖𝑗 = {

1,   𝑏𝑖 ≤ 0
−𝑎𝑖
𝑏𝑖 − 𝑎𝑖

,

0, 𝑎𝑖 ≥ 0

𝑎𝑖 < 0 < 𝑏𝑖  

Table 10 provides the critical degree calculations for each activity. 

 

Table 10:  Critical Degree of Each Activity 

Activity Total float Critical degree 

1→2 (0,0,0) 1* 

1→3 (8,7,14) 0 

2→3 (0,0,0) 1* 

2→4 (19,24,25) 0 

2→5 (25,29,37) 0 

3→5 (0,0,0) 1* 

4→5 (22,25,32) 0 

4→6 (19,24,25) 0 

5→6 (0,0,0) 1* 

 

We noticed from the above table that activities 1→2, 2→3, 3→5, 5→6 have critical degree 1. 

According to the critical degree definition, activities 1→2, 2→3, 3→5, and 5→6 is considered as 

critical activities. 

Therefore, the critical path is 1→2→3→5→6. 

6. Conclusion 
 

This paper presented various methods to determine the critical path with a triangular fuzzy 

number. Earlier work on network planning employing fuzzy sets theory has developed 

approaches for project scheduling. However, these techniques do not directly enable backward-

pass computations in the same way they do forward-pass calculations. Project parameters like 

earliest, latest times, total float, slack times and critical degree are computed with TFNs. One 

significant set of this technique uses primary arithmetic fuzzy operations to get relevant 

determinable outputs. We presented a novel strategy in this paper: the Fuzzy tabular 

representation.  
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Abstract 
 

The features of the program functioning reliability that are typical for critical applications operating 

in real mode for microprocessor protections are considered. Among the main characteristics of the 

relay protection functioning are reliability indicators. With the transition to the execution of such 

protections on a microprocessor-based basis, in addition to hardware reliability, it became necessary 

to characterize its operation by software reliability. The importance of the solve tasks in the operation 

process refers it to programs used in safety-critical software and operating in real mode. This, in turn, 

tightens the requirements for their reliability evaluation. Comparative analysis made it possible to 

assess the generality of the considered reliability factors for the functioning of the application software 

under consideration. At the same time, we were able to highlight some of the features that are typical 

for the implementation of relay protection on microprocessors. An example of such an assessment is 

given, showing that despite all the difficulties of complete testing for microprocessor protection 

programs the software erroneous contribution still amounts to 2.5% of the total contribution. It is 

shown that microprocessor protection programs are related to programs of critical applications 

operating in real mode, which makes it possible to use the experience and characteristics of such 

software in solving relay protection challenges. Nevertheless, some features are given that are specific 

for relay protection based on a microprocessor. Further tasks are defined. 

 

Key words: safety-critical software, microprocessor relay protection, software 

reliability. 

 

1. INTRODUCTION 
 

Recently, programmers have been paying a lot of attention to assessing the reliable operation of 

programs used in mission-critical applications and operating in real mode. Among a whole range of 

such programs that perform important functions in nuclear power plants, for military equipment, 

etc., a large share of them is involved in control and protection of electric power system (EPS) 

equipment. Such software is required to perform its functions with high reliability. 

 

In the engineering community, software systems have a reputation for being unstable. There have 

been cases where programmers' mistakes have led to major accidents with large financial losses. So 

on 14.08.2013 on the east coast of the USA, 55 million people were without electricity, because the 

operator of the power plant turned off the alarm about the violation, so as not to interfere with the 

work, corrected the mode and forgot to turn on the alarm, and the program did not remind about it, 

and the next violation of the mode led to a major accident, because the alarm about it was not 

received. Because the designers forgot to cross the date line, 12 fighters on their way from the United 

States to Okinawa lost access to fuel data, speed and altitude sensors, and communications were 

partially disrupted. For hours, America's most advanced F-22 Raptor fighters flew across the ocean 

completely helpless. In the end they were only able to land thanks to the skill of their pilots. And 

there are hundreds of similar examples. 
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2. SPECIFICS OF SAFETY-CRITICAL SOFTWARE 
 

So why don’t engineers avoid software if it is not trustworthy? There are usually three main 

advantages of replacing hardware with software: 

 

1. Software technology allows more logic to be built into the system. Software-controlled computer 

systems can distinguish between a large number of situations and produce outputs 

corresponding to each situation. Hard logic systems could not achieve this behavior without an 

exorbitant amount of hardware. Programmable hardware is less expensive than equivalent 

hardwired logic because it is regularly structured and mass produced. The economics of the 

situation also allow program-controlled systems to perform more checks; reliability can be 

increased by periodically running programs that check the hardware. 

2. On the other hand, the cost of writing and certifying truly reliable software is very high; in 

addition, maintenance costs must be taken into account – again, one that does not undermine 

reliability and security. An illustrative example: only maintenance of relatively simple and not 

very big in volume (about 400 thousand words) software for the onboard computer installed on 

the American spacecraft, type Shuttle, has cost NASA 100 million dollars per year [1]. 

3. The logic implemented in the software is theoretically easier to change than the logic 

implemented in the hardware. Many changes can be made without adding new components. If 

the system is replicated or in a hard to reach physical location, it is much easier to make changes 

to the software than to the hardware. 

4. On the other hand, changes to software modules are easy to make technically, but difficult to do 

without introducing new bugs. The verification and certification required for security 

guarantees mean new high costs. In addition, the longer the lifetime of a program, the greater 

the danger of introducing bugs along with changes – for example, because some developers 

cease to be such over time, and documentation is rarely exhaustive. Meanwhile, the scale of 

changes in software can be very large. For example, the Shuttle software underwent 14 

modifications over 10 years of maintenance since 1980, which resulted in 152,000 lines of code 

changes (the total software volume is 400,000 lines). The need for software upgrades was 

dictated by periodic hardware upgrades, adding functionality, and by the need to correct 

identified defects. 

5. Computer technology and software flexibility allow more information to be made available to 

operators and provided in a more useful form. The operator of a modern software-controlled 

system can be provided with information that would be unthinkable in a purely hardware 

system. All of this can be accomplished with less space and power than was used in 

noncomputerized systems [2]. 

 

In considering reliability relative to software, it should be remembered that: 

 

• The most obvious difference between software and hardware technologies is their complexity. 

Thus, accurate documentation in fairly general notation for small software systems can fill a 

bookcase, whereas for hardware a few diagrams and a brief description are sufficient. Another 

indicator of complexity is the time it takes the programmer to become intimately familiar with 

the system. Even with small software systems, it is often the case that it takes a programmer a 

year to work with a program before he or she can be trusted to make improvements on his or 

her own. 

• The next notable property of software is its sensitivity to small errors. In conventional 

mechanical engineering, every design and manufacturing measurement can be characterized by 
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a tolerance. One is not required to be an exact match; it is sufficient to be within the specified 

tolerance of the desired value. The use of tolerances is justified by the assumption that small 

errors have small consequences. It is well known that in software, trivial clerical errors can have 

the most serious consequences. For software, there is no known useful interpretation of a 

tolerance. A single punctuation error can be catastrophic, even though fundamental missteps 

sometimes have minor consequences. 

• Software is notoriously difficult to adequately test. It often happens that a piece of software, 

subjected to careful and disciplined testing, is seriously flawed. Analog device testing is based 

on interpolation. It is assumed that devices that perform well at two close points will also 

perform well at intermediate points. In software, this assumption is wrong. The number of cases 

that must be tested in order to generate confidence in the software is usually very large.  

• Many of the assumptions that are commonly made when designing high-reliability equipment 

are invalid for software. Developers of high-reliability equipment are concerned about 

manufacturing failures and wear and tear phenomena. They may conduct their analysis under 

the assumption that failures are not highly correlated and simultaneous failures are unlikely. 

Those evaluating the reliability of hardware systems would have to be concerned about design 

errors and correlated failures; however, in many situations, the effects of other types of errors 

are dominant. Software has few errors introduced at the production (compilation) stage; when 

such errors do exist, they are systematic rather than random. Software does not wear out. The 

errors that software reliability specialists must deal with are design errors. These errors cannot 

be considered statistically independent. There is ample evidence that even when programs for 

a given task are written by people who do not know each other, they have closely related errors 

[3, 4]. 

 

These properties are a fundamental consequence of the fact that the mathematical functions 

implemented by the software are not continuous functions, but functions with an arbitrary number 

of discontinuities. The lack of continuity constraints on functions describing software effects makes 

it difficult to find compact descriptions of the software. The lack of such constraints gives software 

flexibility, but also complexity. Similarly, sensitivity to small errors and difficulty in testing can be 

attributed to fundamental mathematical properties; a miracle cure is unlikely to be found. 

Reliability-critical software systems will always require a great deal of discipline and scrutiny. 

 

In contrast to the situation with hardware systems, you cannot achieve higher reliability by 

duplicating software components. Errors are simply duplicated. Even if programs are written 

independently, errors made by one programmer are often shared by others. As a result, one cannot 

expect to improve the reliability of software systems only by having three computers where one is 

enough, although even here everything is not so simple. 

 

It is appropriate to recall that in the practice of developing and using software, great importance is 

attached to solving the problem of its safety by executing a standard series of the IEC 61508-N-2010 

“«Functional safety of electrical/electronic/programmable electronic safety-related systems", where 

N = 1, …, 4. This series details the goals and requirements for managing the safety of functioning, 

including programmable systems. But the actual filling of these requirements remains with the 

software developers. 

 

3. FEATURES OF RELAY PROTECTION PROGRAMS ON MICROPROCESSOR 
 

Let us consider application of the above properties and peculiarities to relay protection programs on 

microprocessor which also refer to reliability-critical software systems. 
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Applied program modules of relay protection are characterized by relatively small volume of 

programs (in average 3-5 thousand lines in assembler equivalent), that is determined, first of all, by 

requirements to speed of protection. On the other hand, such volumes create a good visibility of the 

program text, which reduces the appearance of design errors. This also includes the fact that in some 

cases such application programs are prepared in the languages of programmable logic controllers 

(PLCs) [5], which also reduces the likelihood of program errors. However, the operating 

environment is written in more traditional software languages, such as C, Java, etc. 

 

Another characteristic of these modules is related to the fact that this or that violation of the mode 

of EPS components can be detected in different ways on the basis of the same input data and often 

on different microprocessors. In traditional protection, this approach is known as redundancy. In 

microprocessor protection, it allows duplicating software when processing the input data, because 

the algorithms of their processing are not repeated. As a result, at such organization the restriction 

on duplication of programs is to some extent weakened, because such organization of their work is 

rather a redundancy than a duplication, although in reliability modeling they are included in parallel 

in terms of task performance (detection of an unacceptable mode). Of course, here too, each of the 

programs may have its own errors, which are not detected and are not similar to each other, but this 

is closer to the duplication of the hardware part of protection. 

 

And of course it is important that the protection system is not loaded with some auxiliary 

background tasks, which can be a source of errors and crashes. It should be as autonomous as 

possible if we consider it a critical application. The tendency to combine several protection tasks on 

a single processor leads to an increase in the size of the software, hence to a worse visibility of the 

programs, and hence to an increase in the probability of software errors. 

 

Thus, various probabilistic assessments of reliability indicators of relay protection software 

functioning, similar to hardware assessments, give only a qualitative picture in a rather wide range. 

Quantitative assessment can be judged only from statistics, which appears after years of operation 

of a significant number of devices.  

 

So according to statistical data, the number of microprocessor-based relay protection and automatic 

devices (RPAD) in operation in 2013 were 274062 devices, and in 2014 - 319912 devices ([6], Table 4). 

From the data "Distribution of cases of malfunction of RPAD devices by types of technical reasons 

and types of RPAD devices for the period from 01.01.2020 to 30.06.2020" [7] we know that from 727 

cases of RPAD failure 29 cases are related to failure of microprocessor protections hardware, and 18 

cases - to failure or failure of their software. Then the forecast number of relay protection devices for 

2020 in relation to 2013 (in 7 years) can be made from the formula 

𝑎𝑛 = 𝑎1(1 + 𝑟)𝑛 

with 𝑟 = (𝑎2 − 𝑎1) 𝑎1⁄  , where 𝑎1 = 274062 is the number of devices of the first year (2013), 𝑎2 =

319912 (2014) is the number of devices of the next year, 𝑎𝑛 is the number of devices for year n 

(2020), r is the average annual growth of devices, then 

 

𝑎7 = 274062 (1 +
319912−274062

274062
)

7

= 809321 devices. 

 

Let's take Rosseti's share of RPAD to be 70% of all devices in [7]. Then a rough estimation of intensity 

of failures 𝜆 =
𝑚

0.7∙𝑁∙𝑡
=

18∙2

0.7∙809321
= 6.35 ∙ 10−5 years–1. Here m - the number of device failures due to 

software, for half a year (2 is multiplier up to a year), 0.7∙N - the number of all Rosseti's 

microprocessor protections, t - design period (year). When the recovery time tr = 2 h 
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(𝜇 =
1

𝑡𝑟
=

8760

2
= 4380 years–1),  

 

software availability factor 

 

𝐾𝑎𝑣.𝑠𝑤 =
𝜇

𝜆 + 𝜇
=

4380

6.35 ∙ 10−5 + 4380
= 0.999999985 

 

And the average operating time before the error 

 

𝑡𝑒 = 1 𝜆⁄ = 15748 years 

 

The proportion of errors due to software from the number of all protection failures is 

 

𝑃𝑟𝑠𝑤 =
𝑚𝑠𝑤

𝑚𝑠𝑤 + 𝑚𝑜𝑡ℎ

∙ 100% =
18

727
∙ 100% ≈ 2.5% 

 

where 𝑚𝑠𝑤 = 18 is failures of devices due to software, 𝑚𝑠𝑤 + 𝑚𝑜𝑡ℎ = 727 all cases of incorrect 

operation of microprocessor protections. 29 of them are related to hardware. Note that the 

proportion of failures due to software errors was 2.5%. 

 

According to the data of work [8] at small sampling a error share of software in the total number of 

failures can be estimated, as (3+1+3+4) / (11+15+18+17) = 11/61‧100% = 18%, where in numerator - 

failures of microprocessor devices because of software, and in denominator - total failures. Of course, 

the small sample does not allow to judge confidently about the representativeness of the figures, but 

nevertheless some idea of the ratio is given. 

 

4. CONCLUSIONS 
 

Microprocessor-based protection programs refer to the programs of critical applications operating 

in real mode, and therefore they are required to perform their functions with high reliability. Given 

the development and widespread use of computer technology and the flexibility of microprocessor-

based protection software, we must not forget the complexity of their description, sensitivity to even 

small deviations from the basic algorithm, testing problems associated with the lack of continuity 

limitations of the functions of programs describing the algorithms of solutions, which does not 

contribute to the design with errors that have little effect on the performance of the required 

functions. 

 

There are some properties of these programs that improve their reliability performance, such as 

brevity, programmable logic controller languages, but this is not enough to solve the reliability 

problems of microprocessor protection programs as programs, critical applications. On the other 

hand, sufficient autonomy of individual protection devices is necessary, because the desire for 

comprehensiveness often reduces the reliability parameters of protection. Here it is necessary to look 

for optimal solutions, taking into account both the functionality of programmable protections, and 

the achievement of the required characteristics of the reliability of the execution of these functions.   

 

The work was done within the framework of the topic AAA-A20-120051590026-3 "Models and 

methods of adaptation of power engineering systems in modern conditions". 
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Abstract

This study deals with the steady-state analysis of single-server retrial non-preemptive priority queue
with differentiate breakdown, repair, synchronized reneging and optional vacation. For this purpose, two
categories of customers are considered, priority and ordinary customers, who arrive as per Poisson arrival
process. The server consistently affords single service for these customers based on general distribution.
The server randomly fails while providing service to the customer. Hard failure and soft failure are the
two kinds of system failure. Hard failure is defined as an equipment failure that requires a repairman with
specialized knowledge to be physically present, which is a time-consuming process. Whereas soft failure is
defined as failure caused by events rather than physical condition and is usually resolved rebooting the
system. Ordinary customers may renege the orbit if the server is engaged or unavailable. Furthermore,
once the service of all priority customers is completed by the server, the server goes for a vacation or
becomes idle. In this study, we used probability generating function and supplementary variable technique
to solve the Laplace transforms of time-dependent probabilities of system states. Finally, we evaluated
performance measures and expressed the results in numerical values.

Keywords: Batch arrivals; Priority queues; Differentiate Breakdown; Optional Vacation; Synchro-
nized Reneging
AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

A significant feature of a queuing situation (e.g., telecommunication system) is that when all
servers are busy, an arriving customer is forced to exit the area of service and return to the
retrial group after a particular period. These scenarios can be overcome by using retrial queues;
for example if a server is found unavailable by the customers who arrives, then they will join
the orbit to try their requests in random orders and at random moments. In real word, retrial
queues are widely utilized as models for stochastic phenomena such as telecommunication
networks, telephone switching systems, and computer systems so as to gain service from central
processing unit. Recently, the literature on retrial queues has grown rapidly. Many researchers
have investigated single-server retrial queues with two classes of customers. Wua and Lian [16]
analyzed an M[1], M[2]/G/1 G-queueing system with retrial customers and a server subject to
breakdown and repair. Choudhury et al. [10] extensively analyzed an M[X]/G/1 retrial queue
with service interruption and optional service . Ammar and Rajadurai [2] studied a preemptive
priority queueing system with disaster and the server working at the lower speed. Ayyappan
and Udayageetha [4] discussed a priority retrial queueing system with collisions, working
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breakdown, reneging, two-way communication and immediate feedback . Arivudainambi and
Godhandaraman [3] investigated single-server retrial queueing system with second optional
service, balking and single vacation.

In the history of queueing analysis, priority queueing system has gained crucial attention.
Preemptive and non-preemptive disciplines are the two types of priority disciplines. Priority
customers, in case of non-preemptive discipline, have to wait until the service to ordinary
customers completed. However, in case of preemptive discipline, priority customers will always
interrupt the service provided to ordinary customers. Dhas et al. [11] described a preemptive
priority queue with general bulk service and heterogeneous arrivals. Brandwajn and Begin [8]
examined preemptive priority system with general inter arrival and service times. Kim et al. [17]
explained a non-preemptive priority queue with two classes of customers and multiple vacations.
Krishnamoorthy et al. [18] analyzed non-preemptive priority queue with priorities and service
time that are self generated and follows PH-distribution. Dimitriou [12] investigated a retrial
queue with mixed priorities, unreliable server, negative arrivals and multiple vacations.

A server in a queuing system would be unavailable for some time due to different reasons,
for example, being under maintenance work, busy at another queue, or simply taking a break.
Baruah et al. [7] explained a two-stage of service with reneging during breakdown and vacation
periods. Choudhury and Kalita [9] analyzed the steady-state behaviour of a M/G/1 queue
with optional repeated service and two types of general heterogeneous service subject to server
breakdown that randomly occurs at any point in time while serving the customers and during
delayed repair. Maragathasundari and Srinivasan [20] investigated a non-Markovian queueing
model with multistage of services, in which the authors considered reneging to prevail in case of
unavailability of the server during system breakdown or vacation periods. Jain et al. [14] studied
a general retrial M[X]/G/1 queue with Bernoulli vacation and second optional service. In this
model, breakdowns are observed at random intervals at any point in time during the provision of
service to the customers. Janani [15] described transient analysis of single-server queueing model
with differentiated breakdown.

The server is assumes to take vacations at random intervals. However, even if the system has
a single priority customer, no vacation is allowed. Therefore, the server may take an optional
random length vacation after the last service of the last priority customer is served. Gupta et al.
[22] generalized impatient customers in queueing system with optional vacation policies. Madan
and Rawwash [19] determined M[X]/G/1 queueing system with feedback and optional server
vacations based on single vacation. Laxmi et al. [24] investigated M/M/1 queueing system
with second optional service, correlated reneging and working vacations. Ayyappan et al. [5]
analysed M[X]/G/1 queueing system with optional server vacation and two phases of service.
Ordinary customers become impatient if the server is busy or unavailable. However, they execute
synchronized abandonments motivated by remote systems. Adan et al. [1] have performed a
detailed analysis of queueing models with impatient customers and vacations. Economou and
Kapodistria [13] explained single-server queueing system with synchronized reneging customers.
A single server queueing model with reneging, feedback and balking was examined by Rakesh
Kumar and Soodam [23]

Two different types of customers, priority and ordinary customers are to be considered in
this work with differentiate breakdown, repair, synchronized reneging optional vacation and
followed by non preemptive priority discipline. The server provide service to the customer
but randomly fails. Hard failure is defined as an equipment failure that usually necessitates
the physical presence of a repairman with specialized knowledge, which is a time-consuming
process. Soft failure, on the other hand, is defined as failure caused by events rather than physical
condition and usually resolved rebooting the system. Ordinary customers may go back from the
orbit if the server is unavailable. Furthermore, the server becomes idle or goes for a vacation on
completing the service of all priority customers.
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Figure 1: Schematic representation

This article is organized as follows. Mathematical model is described in Section 2 and queue
size distribution is analyzed in Section 3. An explicit expression for governing equation is enlisted
in Section 4. Steady state analysis is discussed in Section 5. Particular cases are obtained in
Section 6. The effect of system performance measures is illustrated in Section 7. Numerical and
graphical results are derived and conclusion is obtained in Section 8 and 9.

2. Description of the Model

• Arrival Process : Two different types of units arrive in batches with independent Poisson
compound process. Let λ1, λ2 > 0 be the arrival rate for priority and ordinary customers,
respectively. Assume that the first order probabilities for priority and ordinary units λ1cidt
(i = 1, 2, 3, ...) and λ2cjdt (j = 1, 2, 3, ...) with batch size i and j units arrive at the system
during a short interval of time (t, t + dt). Here, 0 ≤ ci ≤ 1, ∑∞

i=1 ci = 1 , 0 ≤ cj ≤ 1,
∑∞

j=1 cj = 1.
• Retrial Service Process : Ordinary customers are known as retrial customers. These

customers will go back to the orbit and will request repeatedly for their service after some
time if the server is busy or unavailable.

• Regular Service Process : Ordinary and priority customers ordinate in batches with
distinct queues. Service rate follows general distribution and server renders single service
for priority customers and ordinary customers with service rate µi(ν), i = 1, 2 respectively.
The service for ordinary customers starts when the priority queue is empty.

• Differentiate Breakdown and repair : The rates of hard and soft failure are exponentially
distributed with rate α1 & α2 respectively. For soft failure, the repair time follows exponential
distribution with rate η1 and for hard failure, the repair time follows general distribution
with rate η2(ν).

• synchronized Reneging : If the server is not available in the system, ordinary customer
either exit the orbit with probability ξ or join the orbit with probability 1 − ξ.

• Vacation: The server may take a vacation with probability θ or it may remain idle with
probability 1 − θ after serving all priority customers. The random variable for vacation time
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V, with rate γ(ν) follows general distribution.

3. Analysis of queue size distribution

This section deals with the derivation of governing equations. On account of non-Markovian
queueing system, probability generating function and supplementary variable have been used to
solve this model.
Let,
N1(t) = Number of priority customers in the queue at time t,
N2(t) = Number of ordinary customers in the queue at time t,
Y(t) = State of the server at time t.
Here M0(t), B0

i (t) for i = 1, 2., V0(t), R0(t), indicates elapsed service time for retrial, service for
priority and ordinary customers, vacation and repair at time t.

To obtain a bivariate Markov process {N1(t), N2(t), Y(t), t > 0}, Y(t) denotes the server state.
Here Y(t) = (0,1,2,3,4,5), which mean as follows: 0, the server is idle; 1, server is in retrial state; 2,
busy with priority customers; 3, busy with ordinary customers; 4, on vacation and 5, repair.

Let us assume that, M(0) = 0, M(∞) = 1, Bi(0) = 0, Bi(∞) = 1, V(0) = 0, V(∞) = 1 and
R(2)(0) = 0, R(2)(∞) = 1 be continuous at ν = 0 for i = 1, 2.

The functions β(ν), µ1(ν), µ2(ν), γ(ν) and η2(ν) be the hazard rate for retrial, priority and
ordinary customers service rate, vacation and repair.

β(ν) =
dM(ν)

1 − M(ν)
; µi(ν) =

dBi(ν)

1 − Bi(ν)
, i = 1, 2 γ(ν) =

dV(ν)

1 − V(ν)
; η2(ν) =

dR(2)(ν)

1 − R(2)(ν)
.

The probability I0,n(ν, t) = PrN1(t) = 0, N2(t) = 0, Y(t) = 0 and probability densities are as
follows:

I0,n(ν, t)dν = Pr{N1(t) = 0, N2(t) = n, Y(t) = 1; ν ≤ I0(t) ≤ ν + dν}, n ≥ 1

Pm,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 2; ν ≤ B0
1(t) ≤ ν + dν},

Qm,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 3; ν ≤ B0
2(t) ≤ ν + dν},

Vm,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 4; ν ≤ V0(t) ≤ ν + dν},

Rm,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 5; ν ≤ R0(t) ≤ ν + dν},

for ν ≥ 0, t ≥ 0, m ≥ 0 and n ≥ 0.

4. Equation Governing the System

d
dt

I0,0(t) =− (λ1 + λ2)I0,0(t) + (1 − θ)
∫ ∞

0
P0,0(ν, t)µ1(ν)dν

+ (1 − θ)
∫ ∞

0
Q0,0(ν, t)µ2(ν)dν +

∫ ∞

0
R(2)

0,0 (ν, t)η2(ν)dν

+ R(1)
0,0 (t)η1 +

∫ ∞

0
V0,0(ν, t)γ(ν)dν.

(1)

∂

∂t
I0,n(ν, t) +

∂

∂ν
I0,n(ν, t) =− (λ1 + λ2 + β(ν))I0,n(ν, t) for n ≥ 1. (2)
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∂

∂t
Pm,n(ν, t) +

∂

∂ν
Pm,n(ν, t) =− (λ1 + λ2 + α1 + α2 + µ1(ν))Pm,n(ν, t)

+ λ1(1 − δ0m)
m

∑
i=1

ciPm−i,n(ν, t)

+ λ2(1 − δ0n)
n

∑
j=1

cjPm,n−j(ν, t) for m, n ≥ 1.

(3)

∂

∂t
Qm,n(ν, t) +

∂

∂ν
Qm,n(ν, t) =− (λ1 + λ2 + α1 + α2 + µ2(ν))Qm,n(ν, t)

+ λ1(1 − δ0m)
m

∑
i=1

ciQm−i,n(ν, t)

+ λ2(1 − δ0n)
n

∑
j=1

cjQm,n−i(ν, t) for m, n ≥ 1.

(4)

∂

∂t
Vm,n(ν, t) +

∂

∂ν
Vm,n(ν, t) =− (λ1 + λ2 + ξ + γ(ν))Vm,n(ν, t) + ξVm,n+1(ν, t)

+ λ1(1 − δ0m)
m

∑
i=1

ciVm−i,n(ν, t)

+ λ2(1 − δ0n)
n

∑
j=1

cjVm,n−i(ν, t) for m, n ≥ 1.

(5)

d
dt

R(1)
m,n(ν, t) +

d
dν

R(1)
m,n(ν, t) =− (λ1 + λ2 + ξ + η1)R(1)

m,n(t) + ξR(1)
m,n+1(t)

α1

∫ ∞

0
(Pm,n(ν, t) + Qm,n(ν, t))dν

+ λ1(1 − δ0m)
m

∑
i=1

ciR
(1)
m−i,n(t)

+ λ2(1 − δ0n)
n

∑
j=1

cjR
(1)
m,n−i(t) for m, n ≥ 1.

(6)

∂

∂t
R(2)

m,n(ν, t) +
∂

∂ν
R(2)

m,n(ν, t) =− (λ1 + λ2 + ξ + η2(ν))R(2)
m,n(ν, t) + ξR(2)

m,n+1(ν, t)

+ λ1(1 − δ0m)
m

∑
i=1

ciR
(2)
m−i,n(ν, t)

+ λ2(1 − δ0n)
n

∑
j=1

cjR
(2)
m,n−i(ν, t) for m, n ≥ 1.

(7)

Define, the boundary conditions at ν = 0

Pm,n(0, t) =
∫ ∞

0
Pm+1,n(ν, t)µ1(ν)dν +

∫ ∞

0
Qm+1,n(ν, t)µ2(ν)dν

+
∫ ∞

0
R(2)

m+1,n(ν, t)η(ν)dν + R(1)
m+1,n(t)η1 + λ1cm+1 I0,n(t),

(8)

Q0,0(0, t) = λ2c1 I0,0(t) +
∫ ∞

0
I0,1(ν, t)β(ν)dν (9)

Q0,n(0, t) = λ2cn+1 I0,0(t) +
∫ ∞

0
I0,n+1(ν, t)β(ν)dν +

n

∑
i=1

λ2Ci(ν, t)

+
∫ ∞

0
I0,n+1−i(ν, t)dν for n ≥ 1.

(10)

     RT&A, No 2 (73) 

  Volume 18, June 2023 

380



G. Ayyappan, S. Nithya
ANALYSIS OF M[X1], M[X2]/G1, G2/1 RETRIAL QUEUE WITH
PRIORITY SERVICES, DIFFERENTIATE BREAKDOWN,REPAIR,...

V0,n(0, t) = θ
∫ ∞

0
P0,n(ν, t)µ1(ν)dν + θ

∫ ∞

0
Q0,n(ν, t)µ2(ν)dν, for n ≥ 0. (11)

R(2)
m,n(0, t) = α2

∫ ∞

0
Pm−1,n(ν, t)µ1(ν)dν + α2

∫ ∞

0
Qm,n(ν, t)µ2(ν)dν, for m, n ≥ 0. (12)

I0,n(0, t) = (1 − θ)
∫ ∞

0
P0,n(ν, t)µ1(ν)dν +

∫ ∞

0
R(2)

0,n(ν, t)η2(ν)dν + R(1)
0,n(t)η1

+ (1 − θ)
∫ ∞

0
Q0,n(ν, t)µ2(ν)dν +

∫ ∞

0
V0,n(ν, t)γ(ν)dν,

(13)

Pm,n(0) = Qm,n(0) = R(1)
m,n(0) = R(2)

m,n(0) = Vm,n(0) = 0, for m, n ≥ 0 and I0,0 = 1,

I0,n(0) = 0, for n ≥ 1 are the initial conditions.
(14)

Now, we define the Probability Generating Function (PGF),

I(ν, t, z0) =
∞

∑
n=1

zm
2 I0,n(ν, t); A(ν, t, z1, z2) =

∞

∑
m=0

∞

∑
n=0

zm
1 zn

2 Am,n(ν, t);

A(ν, t, z1) =
∞

∑
m=0

zm
1 Am(ν, t); A(ν, t, z2) =

∞

∑
n=0

zn
2 An(ν, t); (15)

here A = P, Q, V, R(1), R(2).
By applying Laplace transforms to equations (1) to (13) and by using (14) and (15) , we obtain the
following equations:

I0(ν, s, z2) = I0(0, s, z2)e−(s+λ1+λ2)ν−
∫ ν

0 β(t)dt, (16)

P(ν, s, z1, z2) = P(0, s, z1, z2)e−ϕ1(s,z)ν−
∫ ν

0 µ1(t)dt, (17)

Q(ν, s, z1, z2) = Q(0, s, z1, z2)e−ϕ1(s,z)ν−
∫ ν

0 µ2(t)dt, (18)

V(ν, s, z1, z2) = V(0, s, z1, z2)e−ϕ2(s,z)ν−
∫ ν

0 γ(t)dt, (19)

R(2)
(ν, s, z1, z2) = R(2)

(0, s, z1, z2)e−ϕ2(s,z)ν−
∫ ν

0 η2(t)dt. (20)

where,

ϕ1(s, z) = s + λ1(1 − C(z1)) + λ2(1 − C(z2)) + α1 + α2, (21)

ϕ2(s, z) = s + λ1(1 − C(z1)) + λ2(1 − C(z2)). (22)

Q(0, s, z2) =


1 − (s + λ1 + λ2)I0,0(s)E1(s, z) + C(z2)λ2 I0,0(s)
1
z2
[A(s, z)D(s, z) + B(s, z)E1(s, z)]F(s, z) + C(z2)λ2 I0,0(s)

z2[E1(s, z)− A(s, z)C(g(z2))λ1

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
− [A(s, z)D(s, z) + B(s, z)E1(s, z)]F(s, z)


(23)

I0(0, s, z2) =


1 − (s + λ1 + λ2)I0,0(s)E1(s, z) + C(z2)λ2 I0,0(s)
1
z2
[A(s, z)D(s, z) + B(s, z)E1(s, z)]

z2[E1(s, z)− A(s, z)C(g(z2))λ1

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
− [A(s, z)D(s, z) + B(s, z)E1(s, z)]


(24)

P(0, s, z1, z2) =

λ1

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
I0(0, s, z2)[E1(s, z)C(z1)− C(g(z2))E(s, z)]

Q(0, s, z2)[E1(s, z)(d1(s, z)− d2(s, z))− E(s, z)(d∗1(s, z)− d∗2(s, z))]

{
(z1 − C(s, z))E1(s, z)

} (25)
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V0(0, s, z2) =

θB1ψ1(s, z)C(g(z2))λ1

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
I0(0, s, z2)

+ θ[E1(s, z)B2ψ1(s, z) + (d∗1(s, z)− d∗2(s, z))B1ψ1(s, z)]Q(0, s, z2)

{
E1(s, z)

} (26)

R(1)
(0, s, z1, z2) =

α1

ϕ(s, z)

[
P(0, s, z1, z2)

[1 − B1(ϕ1(s, z))
ϕ1(s, z)

]
+ Q(0, s, z2)

[1 − B2(ϕ1(s, z))
ϕ1(s, z)

]]
(27)

R(2)
(0, s, z1, z2) = α2z1P(0, s, z1, z2)

[1 − B1(ϕ1(s, z))
ϕ1(s, z)

]
+ α2Q(0, s, z2)

[1 − B2(ϕ1(s, z))
ϕ1(s, z)

]]
. (28)

Theorem.1 When the system is in regular service, breakdown, repair and vacation by using
the Laplace transforms the probability generating function of the number of customers in the
respective queue is given by

I0(s, z2) = I0(0, s, z2)
[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
, (29)

P(s, z1, z2) = P(0, s, z1, z2)
[1 − B1(ϕ1(s, z))

ϕ1(s, z)

]
, (30)

Q(s, z1, z2) = Q(0, s, z2)
[1 − B2(ϕ1(s, z))

ϕ1(s, z)

]
, (31)

V(s, z1, z2) = V(0, s, z1, z2)
[1 − V(ϕ2(s, z))

ϕ2(s, z)

]
, (32)

R(2)
(s, z1, z2) = R(2)

(0, s, z1, z2)
[1 − R(2)

(ϕ2(s, z))
ϕ2(s, z)

]
. (33)

Proof: Integrating the preceding equations (29) to (33) with respect to ν and applying the solution
of renewal theory we obtain the following

∫ ∞

0

[
1 − H(ν)

]
e−sνdν =

1 − h(s)
s

. (34)

Here, the LST of the distribution function of a random variable H(ν) is denoted as h(s) . The
absolute outcomes of the probability generating functions for the successive states, P(s, z1, z2),

Q(s, z1, z2), V(s, z1, z2), and R(2)
(s, z1, z2) are obtained by using equation (29) to (33).

5. Steady State Analysis

According to Tauberian property,

lim
s→0

s f (s) = lim
t→∞

f (t).

Despite of the state of the system, the probability generating function of the queue size is as

follows:

Wq(z1, z2) =
Nr(z1, z2)

Dr(z1, z2)
, (35)
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where

Nr(z1, z2) = N2(z)D3(z)ϕ1(z)
[1 − M(s + λ1 + λ2)

s + λ1 + λ2

][
ϕ2 +

θB1ψ1(z)C(g(z2))λ1(1 − Vϕ2)

E1

]
+ N4D2(1 − B1ϕ1(z))

[
(1 +

α1

ϕ(z)
)ϕ2 + α2z1(1 − R(2)

ϕ2(z))
]

+ N3D3

[
(1 +

α1

ϕ(z)
)ϕ2 + α2(1 − R2

ϕ2(z))
]
(1 − B2ϕ1(z))

+ (1 − Vϕ2)
[ θE1(z)B2ψ1(z) + B1ψ1(z)(d∗1(z)− d∗2(z))

E1

]

Dr(z1, z2) = D2(z)D3(z)ϕ1(z)ϕ2(z),

where,

N2 = z2(−λ1 + λ2)I0,0E1(s, z) + C(z2)λ2 I0,0[A(s, z)(d∗1(s, z)− d∗2(s, z)) + B(s, z)E1(s, z)]

N3 = [(−λ1 + λ2)I0,0E1(s, z) +
1
z2

C(z2)λ2 I0,0[A(s, z)(d∗1(s, z)− d∗2(s, z))

+ B(s, z)E1(s, z)]]F(s, z) +
1
z2

C(z2)λ2 I0,0

N4 = N2λ1

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
[E1(s, z)C(z1)− C(g(z2))E(s, z)]

+ N3[E1(s, z)(d1(s, z)− d2(s, z))− E(s, z)(d∗1(s, z)− d∗2(s, z))]

D2 = z2[E1(s, z)− A(s, z)C(g(z2)λ1

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
− [A(s, z)(d∗1(s, z)− d∗2(s, z)) + B(s, z)E1(s, z)]F(s, z)

D3 = (z1 − C(s, z))E1(s, z)D2(s, z)

A(s, z) = (1 − θ + θVψ2(z))B1ψ1(z) +
[ α1η1

ψ(z)
+ α2z1R(2)

ψ2(z)
][1 − B1ψ1(z)

ψ1(z)

]
B(s, z) = (1 − θ + θVψ2(z))B2ψ1(z) +

[ α1η1

ψ(z)
+ α2z1R(2)

ψ2(z)
][1 − B2ψ1(z)

ψ1(z)

]
C(s, z) = B1ϕ1(z) +

[α1η1

ϕ(z)
+ α2z1R(2)

ϕ2(z)
][1 − B1ϕ1(z)

ϕ1(z)

]
d1(s, z) = B2ϕ1(z) +

[α1η1

ϕ(z)
+ α2z1R2

ϕ2(z)
][1 − B2ϕ1(z)

ϕ1(z)

]
d2(s, z) = (1 + θVψ2(z)− θVϕ2(z))B2ψ1(z) +

[ α1η1

ψ(z)
+ α2z1R2

ψ2(z)
][1 − B2ψ1(z)

ψ1(z)

]
d∗1(s, z) = B2σ1(z) +

[α1η1

σ(z)
+ α2z1R(2)

σ2(z)
][1 − B2σ1(z)

σ1(z)

]
d∗2(s, z) = (1 + θVψ2(z)− θVσ2(z))B2ψ1(z) +

[ α1η1

ψ(z)
+ α2z1R2

ψ2(z)
][1 − B2ψ1(z)

ψ1(z)

]
E(s, z) = (1 + θVψ2(z)− θVϕ2(z))B1ψ1(z) +

[ α1η1

ψ(z)
+ α2z1R2

ψ2(z)
][1 − B1ψ1(z)

ψ1(z)

]
E∗(s, z) = (1 + θVψ2(z)− θVσ2(z))B1ψ1(z) +

[ α1η1

ψ(z)
+ α2z1R2

ψ2(z)
][1 − B1ψ1(z)

ψ1(z)

]

     RT&A, No 2 (73) 

  Volume 18, June 2023 

383



G. Ayyappan, S. Nithya
ANALYSIS OF M[X1], M[X2]/G1, G2/1 RETRIAL QUEUE WITH
PRIORITY SERVICES, DIFFERENTIATE BREAKDOWN,REPAIR,...

F(z) = M(λ1 + λ2) + c(z2)λ2

[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
f1(z1, z2) = ϕ2(z) +

θB1ψ1(z)C(g(z2))λ1(1 − Vϕ2(z))
E∗(z1, z2)

f2(z1, z2) = (1 +
α1

ϕ(z)
ϕ2(z) + α2z1(1 − R(2)

ϕ2)

f3(z1, z2) = [(1 +
α1

ϕ(z)
ϕ2(z) + α2z1(1 − R(2)

ϕ2)](1 − B2ϕ1(z))

+
[ θ(E∗(z)B2ψ1(z) + B1ψ1(z)(d∗1(z)− d∗2(z)))

E∗(z)

]
(1 − Vϕ2(z))

ϕ(z) = λ1(1 − C(z1) + λ2(1 − C(z2) + η1 + ξ(1 − 1
z2
)

σ(z) = λ1(1 − C(g(z2)) + λ2(1 − C(z2) + η1 + ξ(1 − 1
z2
)

σ1(z) = λ1(1 − C(g(z2)) + λ2(1 − C(z2) + α1 + α2

σ2(z) = λ1(1 − C(g(z2)) + λ2(1 − C(z2) + ξ(1 − 1
z2
)

ψ(z) = λ1 + λ2(1 − C(z2) + η1 + ξ(1 − 1
z2
)

ψ1(z) = λ1 + λ2(1 − C(z2) + α1 + α2

ψ2(z) = λ1 + λ2(1 − C(z2) + ξ(1 − 1
z2
).

Using normalization condition Wq(1, 1) + I0,0 = 1, we get

I0,0 =


[D2(1, 1)D

′
3(1, 1)(α1 + α2)(ξ − (λ1 + λ2))]

− [N3(1, 1)D
′
3(1, 1) f ′3(1, 1) + N

′
2(1, 1)D

′
3(1, 1) f

′
1(1, 1)(α1 + α2)[1 − M(λ1 + λ2)

λ1 + λ2

]
+ N

′
4(1, 1)D2(1, 1) f

′
2(1, 1)(1 − B1(α1 + α2))]

{
D2(1, 1)D

′
3(1, 1)(α1 + α2)(ξ − (λ1 + λ2))

} (36)

and the utilization factor is given by

ρ =


[N3(1, 1)D

′
3(1, 1) f ′3(1, 1) + N

′
2(1, 1)D

′
3(1, 1) f

′
1(1, 1)(α1 + α2)[1 − M(λ1 + λ2)

λ1 + λ2

]
+ N

′
4(1, 1)D2(1, 1) f

′
2(1, 1)(1 − B1(α1 + α2))]

{
D2(1, 1)D

′
3(1, 1)(α1 + α2)(ξ − (λ1 + λ2))

} . (37)

The stability condition for the model under which steady state exists is ρ < 1 .

6. Performance Measures

The expected queue size for priority customer is as follows:

Lq1 =
d

dz1
Wq(z1, 1)|z1=1 (38)

The expected orbit size for ordinary customer is as follows:

Lq2 =
d

dz2
Wq(1, z2)|z2=1 (39)
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then

Lq1 =
Dr′′(1)Nr(

′′′)(1)− Dr
′′′)(1)Nr′′(1)

3(Dr′′(1))2 , (40)

Lq2 =
Dr′′′(1)Nr(iv)(1)− Dr(iv)(1)Nr′′′(1)

4(Dr′′′(1))2 . (41)

The expected waiting time for priority queue is as follows:

Wq1 =
Lq1

λ1
(42)

The expected waiting time for orbit is as follows:

Wq2 =
Lq2

λ2
. (43)

7. Particular Cases

Case 1:
In the absence of priority queue, when there is no breakdown, no reneging, no vacation and no
retrial then the above model becomes

Wq(z) =
−(1 − B2)(λ − λC(z2))I0,0

z2 − B2(λ2 − λ2C(z2))

which is the PGF of Medhi [21].
Case 2:
In the absence of priority queue, when there is no breakdown, no reneging and no retrial then
the above model becomes

Wq(z) =



[−ϕ1(z, s)I0,0(1 − θV(ϕ1(z, s)) + θV(ψ1(z, s)))(1 − B1(ϕ(z, s)))

+ θλ1C(g(z2))I0,01 − θV(ϕ1(z, s))z1 − B1(ϕ(z, s))]

+ [Q0(0, z2)[θ(B2(σ(z, s))− B2(ψ(z, s)))(1 − V(ϕ(z, s)))

(z1 − B1(ϕ(z, s)))− (z2 − B2(ϕ1(z, s)))(1 − θV(ϕ(z, s))

+ θV(ψ1(z, s)))(1 − B1(ϕ(z, s))) + (z1 − B1(ϕ(z, s)))

(1 − B2(ϕ(z, s)))(1 − V(σ(z, s))) + θV(ψ(z, s)))]]

{
[z1 − B1(ϕ(z, s))(1 − θV(σ(z, s)) + θV(ψ(z, s)))ϕ(z, s)]

}
which is the PGF of Ayyappan and Thamizhselvi [6].

8. Numerical Results

This section deals with the numerical and graphical studies of this model. We assume that the
service time, breakdown, repair and vacation time are distributed exponentially.

Table 1: Effect of priority arrival rate (λ1)

λ1 I0,0 ρ Lq1 Wq1 Lq2 Wq2

0.1 0.2806 0.7194 0.2082 2.0816 0.2463 0.1231
0.2 0.2776 0.7224 0.4758 2.3789 0.3580 0.1790
0.3 0.2754 0.7246 0.7650 2.5501 0.4246 0.2123
0.4 0.2743 0.7257 1.0720 2.6801 0.4554 0.2277
0.5 0.2742 0.7258 1.3930 2.7859 0.4616 0.2308
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Table 1 shows that when the arrival rate (λ1) of priority customers for priority queue increases,
then the probability of the server being idle decreases. However, average queue lengths busy
period and average waiting time for customers in the queues all increase: we assume the values
as λ2 = 2, α1 = 0.1, α2 = 0.1 µ = 5, η1 = 10,η2 = 15, γ = 10, θ = 0.9, β = 20, ξ = 0.9 and λ1 = 0.1
to 0.5.

Table 2: Effect of service rate (µ)

µ I0,0 ρ Lq1 Wq1 Lq2 Wq2

5 0.3058 0.6942 0.4275 1.4250 0.6219 0.3110
6 0.4823 0.5177 0.4270 1.4233 0.5472 0.2736
7 0.5950 0.4050 0.4200 1.4001 0.4856 0.2428
8 0.6728 0.3272 0.4109 1.3695 0.4348 0.2174
9 0.7296 0.2704 0.4012 1.3374 0.3926 0.1963

10 0.7727 0.2273 0.3918 1.3060 0.3576 0.1788

Table 2 shows that when the service rate (µ) increases then the probability of the server
being idle increases. However, average queue lengths, busy period, and average waiting time
for customers in the queues all decrease: we assume the values as λ1 = 0.3, λ2 = 2, α1 = 0.2,
α2 = 0.5, η2 = 10,η1 = 15, γ = 10, θ = 0.8, β = 20, ξ = 0.9 and µ = 5 to 10.

Table 3: Effect of ordinary customers arrival rate (λ2

λ2 I0,0 ρ Lq1 Wq1 Lq2 Wq2

1.5 0.6275 0.3275 0.4029 0.8058 0.0409 0.0273
1.6 0.6406 0.3594 0.4347 0.8694 0.2939 0.1837
1.7 0.6073 0.3927 0.4663 0.9326 0.4609 0.2711
1.8 0.5725 0.4275 0.4974 0.9949 0.5752 0.3196
1.9 0.5361 0.4639 0.5279 1.0557 0.6556 0.3451
2.0 0.4981 0.5019 0.5573 1.1145 0.7133 0.3567

Table 3 shows that when the arrival rate (λ2) of ordinary customers increases, then the
probability server being idle decreases. Busy period, average queue lengths, and average waiting
time for customers in the queues all increase: we assume the values as λ1 = 0.5, µ = 6, α1 = 0.3,
α2 = 0.5, µ = 5, η1 = 6, η2 = 15, γ = 10, θ = 0.8, β = 18, ξ = 0.9 and λ2 = 1.5 to 2.

In graphical representations, we assume that the service time, breakdown, repair, and vacation
time are follows Erlang-2 distribution. The two-dimensional graphs are shown in Figure 2 - 4.
Figure 2 exhibits that the expected length of the queue (Lq1 , Lq2)rises, the expected length of
the queue extends together with the priority arrival rate (λ1). The behaviour of the queue sizes
(Lq1 , Lq2 ), which depends on the service rate (α), is shown in Figure 3, the length of the queue as
the service rate rises. Figure 4 shows the expected queue length (Lq1 , Lq2 ), which depends on the
ordinary customers arrival rate (λ2), the expected queue length grows together with the repair
rate.
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Figure 2: Expected queue length vs priority arrival rate λ1

5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

µ

Ex
pe

ct
ed

qu
eu

e
le

ng
th

Lq1
Lq2
I0,0

Figure 3: Expected queue length vs service rate µ
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Figure 4: Expected queue length vs ordinary arrival rate λ2
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Figure 5: Lq1 Vs λ1 and λ2

Figure 6: Lq2 Vs λ1 and λ2

Figure 7: Lq1 Vs γ and λ1
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Figure 8: Lq2 Vs γ and λ1

Figure 9: Lq2 Vs η2 and µ

Figure 10: Lq2 Vs η2 and µ

     RT&A, No 2 (73) 

  Volume 18, June 2023 

389



G. Ayyappan, S. Nithya
ANALYSIS OF M[X1], M[X2]/G1, G2/1 RETRIAL QUEUE WITH
PRIORITY SERVICES, DIFFERENTIATE BREAKDOWN,REPAIR,...

Graphs in three dimensions can be found in Figures 5 - 10. Figures 5 and 6 in the reference
indicate that as the priority arrival rate (λ1) and ordinary arrival rate (λ2) increase, the expected
queue size (Lq1) and orbit size (Lq2) increase as well. The behaviour of queue size (Lq1) and
orbit size (Lq2) rises for increasing priority arrival rate(λ1) and vacation rate (γ) as shown in
Figure 7 and 8. The behaviour of queue size (Lq1) and orbit size (Lq2) increases with lowering
repair rate (η2) and service rate (µ) in Figure 9 and 10 .

9. Conclusion

In this study, we examined a non-preemptive priority retrial queue on a single server with
distinct breakdown, repair, synchronised reneging, and optional server vacation. Random failures
of servers are common. The breakdown of the model proposed in this study differs from
traditional breakdown, which can be either a long breakdown (hard failure) or a short breakdown
(soft failure). For example, if a computer system fails, a simple rebooting of the system (soft
failure) or repair by a skilled personnel ( hard failure) can fix the problem. Ordinary customers
may exit the orbit if the server is either down or busy with priority queue. Furthermore, on
completing the priority service, the server may become idle or may go for a vacation. Probability
generating functions for the system size and its orbit were found by using supplementary variable
technique. System characteristics such as steady-state probabilities and mean system size were
also obtained. The results obtained analytically were confirmed with numerical illustrations.
The model proposed in this study finds significant practical applications in computer processing
systems.
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Abstract

There are situations in which the experimenter has some information about the components of the
operating system and he/she wants to use this information for better assessment or operating of the
underlying system. In such cases the notion of conditional probability may help the operator to use that
information and improve his/her task. In the present study this notion has been examined, and some
conditional stress-strength parameters have been introduced for s of k systems. The multi-component
conditional stress-strength parameter (MCCSSP) and its maximum likelihood estimator have been
calculated when the strength and stress random variables are exponentially distributed. In the case of
having extra information about the parameters, a closed form has been derived for the Bayes estimator of
MCCSSP and has been calculated by using an algorithm together with Monte Carlo method. For the case
of non-exponential stress or strengths, the nonparametric estimator of the defined parameter has also been
derived. Finally, some simulation study on the MLE and Bayes estimator, as well as real data analysis for
nonparametric estimators have been done to verify the analytic results.

Keywords: Conditional Reliability, Exponential Distribution, Maximum Likelihood Estimator,
Multi-Component Systems, Stress-Strength Parameter

1. Introduction

The effects of resistance and shocks which enter to a system are usually studied via a stress-
strength model. The term stress-strength was first introduced by [1]. Since then the stress-strength
models have been inspected by many researchers due to their applicability in different fields,
such as engineering, economics, psychology, medicine and so on. In such models, when the
stress that experienced by the system have been represented by a random variable (RV) X and
the strength of system by a RV Y, the stress-strength parameter is denoted by R = P(X > Y), it
measures the chance that the system fails. It should be mentioned that 1 − R is the chance that
the considered system operates well and is known as the reliability function or parameter of the
system. For the majority of the well-known distributions, including Normal, Exponential, Pareto,
Uniform, Weibull, Gamma, Beta, logistic, and Laplace, R has been studied by [2]. Some of the
recent studies about R can be seen in [3], [4], [5], [6] and [7]
There are situations that one have some information about the stress and strength RV’s and knows
that they are greater than some pre-specified values, or one wants to know how much a system
can be reliable when stress and strength increase or decrease. Considering conditions like these,
the conditional stress-strength parameter was introduced by [8] as:

R|a,b = P(X > Y | X > a, Y > b). (1)

     RT&A, No 2 (73) 

  Volume 18, June 2023 

392

mailto:khorshidian@shirazu.ac.ir
mailto:taherisaifmorteza@gmail.com


Kavoos Khorshidian, Morteza Taheri Saif Abad
MUlTI-COMPONENT CONDITIONAL STRESS-STRENGTH PARAMETER

Nowadays in the real life and industries most of the operating systems have become complex
with more than one active component, i.e., a lot of working systems are multi-component rather
than simple and uni-component. The reliability of a multi-component stress-strength model
was first developed by [9]. Afterwards, applications and studies on different characteristics of
multi-component stress-strength models grow up rapidly. Some of the recent studies can be seen
in [10],[11], [12], [13], [14] and [15].
By developments in most technologies, in many situations there are a lot of information about the
working mechanisms which will be precise and helpful, if they have been employed corrected, e.g.
in the case of second hand and used devices. For example, consider a large drilling machine in a
mine. This machine uses several gears or drills simultaneously for drilling, which are the most
important parts of this machine and are often iteratively replaced by another one. Therefore, a lot
of information about the amount of stress and strength experienced by this part of the machine
can be collected . In this article, we have focussed on the notion of conditional stress-strength
parameter to extend, generalize and employ such information in multi-component systems.
In order to prepare a complete pack about MCCSSP, it has been calculated and estimated by
using different methods for employing it in different real situations of practice. For exponential
distribution as the first and most exploited candidate of the lifetimes of components in operating
systems, the MCCSSP has been calculated, its MLE has been estimated through samples and
its asymptotic behaviors has been studied, as well. For the circumstances that we have extra
information about the varying structure of exponentially distributed stress and strengths random
variables, the Bayes estimators of MCCSSP has been also derived based on the information
included in samples of stress and strength. For the case of non-exponential or unknown life time
distributions the non-parametric estimators have been also derived.
The structure of this article is as follows: A general formula for computing MCCSSP will have been
provided in Section 2. In Section 3, the MCCSSP has been computed in the case of exponential
distributions as well as its maximum likelihood estimator and asymptotic distribution of the
later. The Bayes estimator of this parameter has been obtained in Section 4, by adopting an
algorithm and using the Monte Carlo method. The corresponding nonparametric estimator of
this parameter has been obtained in Section 5. Section 6 is devoted to the presentation of some
simulation studies on the MLE, Bayesian and nonparametric estimators and their comparison.
Some numerical results for a real data-set have been presented in Section 7. Finally in Section 8,
some concluding remarks have been given.

2. The MCCSSP

In this section, the MCCSSP will have been introduced and a general formula have been presented
to compute it.

Definition 1. Consider the independent RV’s X1, ..., Xk with common continuous distribution
function F(·), independent of continuous RV Y with distribution function G(·). The MCCSSP is
defined as:

R|a,b
s,k = P(at least s of X1, ..., Xk exceed Y | X1 > a, ..., Xk > a, Y > b). (2)

The particular cases s = 1 and s = k correspond to parallel and series systems, respectively.
Note that a special case of this quantity for a = b = −∞ is

Rs,k = P( at least s of X1, ..., Xk exceed Y) =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
(1 − F(y))i(F(y))k−idG(y) (3)

which is introduced by [9] as the multi-component stress-strength parameter.
Suppose that there a lot of information about one of the stress RV’s Xz, some specified z, 1 ≤
z ≤ k,. For example, in some systems, one of the parts wears out more and is replaced more
often, such as drilling machines, where the drill bit is very important and is replaced a lot, and

     RT&A, No 2 (73) 

  Volume 18, June 2023 

393



Kavoos Khorshidian, Morteza Taheri Saif Abad
MUlTI-COMPONENT CONDITIONAL STRESS-STRENGTH PARAMETER

the other parts are replaced less often. Therefore, there are more information about the lifetime of
a specified part than the other parts. For this case R|(z),a,b

s,k as the MCCSSP when Xz > a is defined
as:

Definition 2.
R|(z),a,b

s,k = P(at least s of X1, ..., Xk exceed Y | Xz > a, Y > b) (4)

Note that (3) is again a special case of (4). A formula for computing (2) has been presented in
the following theorem.

Theorem 1. If R|s,k
a,b is defined by (2), then

R|a,b
s,k =


∑k

i=s (
k
i)
∫ ∞

b [1−F(y)]i [F(y)−F(b)]k−idG(y)
[1−F(a)]k [1−G(b)] a ≤ b

∑k
i=s (

k
i)(

∫ ∞
a [G(x)−G(b)]dF(x))i(

∫ ∞
a [1−G(x)]dF(x))k−i

[1−F(a)]k [1−G(b)] a > b
(5)

Proof. First, we write (2) as follows:

R|a,b
s,k =

P(at least s of X1, ..., Xk exceed Y, X1 > a, ..., Xk > a, Y > b)
P(X1 > a, ..., Xk > a, Y > b)

.

Since X1, ..., Xk and Y are independent, the dominator is (1 − F(a))k(1 − G(b)). To compute the
numerator, first we write it as follows:

P(at least s of Xi exceed Y, X1 > a, ..., Xk > a, Y > b) = P((X1, ..., Xk, Y) ∈ A)

=
∫

...
∫

A
dF(x1)...dF(xk)dG(y),

where A = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > a, ..., xk > a,y > b}. To compute
this integral, partition A into two regions A1 and A2 for the cases a ≤ b and a > b, where:

A1 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > a, ..., xk > a, y > b, a ≤ b}
= {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, a < x1 < b, ..., a < xk < b, y > b, a ≤ b}⋃

{(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > b, ..., xk > b, y > b, a ≤ b}

= B1
⋃

B2,

and

A2 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, y > b, x1 > a, ..., xk > a, a > b}
= {(x1, ..., xk, y) | at least s of (b, x1), ..., (b, xk) contain y, y > b, x1 > a, ..., xk > a, a > b}.

where

B1 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, a < x1 < b, ..., a < xk < b, y > b, a ≤ b},

B2 = {(x1, ..., xk, y) | at least s of x1, ..., xk exceed y, x1 > b, ..., xk > b, y > b, a ≤ b}.

Let
R1 =

∫
A1

dF(x1)...dF(xk)dG(y), (6)

and
R2 =

∫
A2

dG(y)dF(x1)...dF(xk) (7)

then

R1 =
∫

B1

dF(x1)...dF(xk)dG(y) +
∫

B2

dF(x1)...dF(xk)dG(y)

=
∫

B2

dF(x1)...dF(xk)dG(y)

=
k

∑
i=s

(
k
i

) ∫ ∞

b
[1 − F(y)]i[F(y)− F(b)]k−idG(y)
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The first integral becomes zero because P(Xi > Y, a < Xi < b, Y > b) = 0 for i = 1, ..., k, and

R2 = P(at least s of (b, X1), ..., (b, Xk) contain Y, Y > b, X1 > a, ..., Xk > a, a > b)

=
k

∑
i=s

(
k
i

)[∫ ∞

a
[G(x)− G(b)]dF(x)

]i[ ∫ ∞

a
[1 − G(x)]dF(x)

]k−i,

This completes the proof. ■

Remark 1. Consider an s of k multi-component system, which their strengths are denoted by
iid RV’s X1, X2, . . . , Xk with common continuous distribution function F(·). Also suppose that
each component experiences a random stress Y with continuous distribution function G(·),
independent of the strengths. Note that the system stays alive only if at least s of k strengths be
greater than the stress. Then the conditional reliability of the multi-component system has the
following form:

R|a,b
s,k = P(at least s of X1, ..., Xk exceed Y | X1 > a, ..., Xk > a, Y > b). (8)

In this model, the conditional reliability of the system is represented by (5).

Remark 2. In practice the information in hand and given condition may not have exactly the
form {x1 > a, ..., Xk > a, Y > b}, but be as {X1 ∈ A1, ..., Xk ∈ Ak, Y ∈ B} where A1, ...,Ak and B
are linear Borel sets on (0, ∞). In this case, by applying some procedure similar to the approach
of Theorem 1, one can compute this generalized MCCSSP. Based on the structure of A1, ...,Ak
and B, it is expected that the analytic derivations may be complicated. In this situation and more
general case some non-parametric method similar to that given in section 5 as well as Monte
Carlo simulation may be applied.

Remark 3. By formula (5), one may show that for the case a ≤ b, the MCCSSP R|a,b
s,k is an

increasing function of a, which is expected trivially. Note that in this case:

∂R|a,b
s,k

∂a
=

k f (a)(1 − F(a))k−1 ∑k
i=s (

k
i)
∫ ∞

b [1 − F(y)]i[F(y)− F(b)]k−idG(y)
[1 − F(a)]2k[1 − G(b)]

= kR|a,b
s,k

f (a)
1 − F(a)

≥ 0.

According to the calculations resulting in the formula (5), it can be seen that if X1, . . . , Xk have
different distributions, it is not easy to calculate the analogous of this formula. In what follows,
the formula (5) has been calculated when X1, . . . , Xk and Y have the same distributions.

Corollary 1. Suppose that the continuous RV’s X1, ..., Xk and Y are independent and identically
distributed with probability density function(pdf) f (.) and cumulative distribution function(cdf)
F(.). Then,

R|a,b
s,k =


∑k

i=s (
k
i)
∫ 1

F(b) [1−y]i [y−F(b)]k−idy

[1−F(a)]k [1−F(b)] , a ≤ b

( 1
2 )

k ∑k
i=s (

k
i)[1−2F(b)+F(a)]i [1−F(a)]k−i

[1−F(b)] , a > b.
(9)

Remark 4. Put R|(z)1,a,b
s,k = P(at least s of X1, ..., Xk exceed Y, Xz ≥ Y | Xz > a, Y > b) and

R|(z)2,a,b
s,k = P(at least s of X1, ..., Xk exceed Y, Xz < Y | Xz > a, Y > b) for some z, 1 ≤ z ≤ k.

According to the approach of the proof for Theorem 1, after some computation, we have:

R|(z)1,a,b
s,k =


∑k

i=s (
k
i)
∫ ∞

b [1−F(y)]i F(y)k−idG(y)
[1−F(a)][1−G(b)] a ≤ b

∑k
i=s (

k
i−1,k−i)

[ ∫ ∞
0 [G(x)−G(b)]dF(x)

]i−1[ ∫ ∞
a [G(x)−G(b)]dF(x)

][ ∫ ∞
0 [1−G(x)]dF(x)

]k−i

[1−F(a)][1−G(b)] a > b,
(10)

R|(z)2,a,b
s,k =


∑k−1

i=s ( k
i,k−i−1)

∫ ∞
b [1−F(y)]i [F(y)−F(b)]F(y)k−(i+1)dG(y)

[1−F(a)][1−G(b)] a ≤ b

∑k−1
i=s ( k

i,k−i−1)[
∫ ∞

0 [G(x)−G(b)]dF(x)]i
[ ∫ ∞

a [1−G(x)]dF(x)
][ ∫ ∞

0 [1−G(x)]dF(x)
]k−(i+1)

[1−F(a)][1−G(b)] a > b.
(11)

     RT&A, No 2 (73) 

  Volume 18, June 2023 

395



Kavoos Khorshidian, Morteza Taheri Saif Abad
MUlTI-COMPONENT CONDITIONAL STRESS-STRENGTH PARAMETER

Therefore

R|(z),a,b
s,k =

{
R|(z)1,a,b

s,k Xz ≥ Y

R|(z)2,a,b
s,k Xz < Y.

(12)

3. Estimation for Exponential Distribution

In this section, the measure (5) has been evaluated for the Exponentially distributed stresses and
strength RV’s with different parameters. The probability density and cumulative distribution
functions of a random variable X ∼ E(α) are denoted by: f (x) = αe−αx, and F(x) = 1 − e−αx

where x ≥ 0, α > 0. Suppose that Xi ∼ E(λ1) for i = 1, . . . , k and Y ∼ E(λ2) are independent, we
have:

R1 = λ2e−b(λ1k+λ2)
k

∑
i=s

k−i

∑
j=0

(
k

i, j

)
(−1)j

λ1(i + j) + λ2
,

and

R2 = e−ak(λ1+λ2)

[
λ1

λ1 + λ2

]k k

∑
i=s

(
k
i

)[
λ1 + λ2

λ1
e−λ2(b−a) − 1

]i

,

by dividing the above equations by [1 − F(a)]k[1 − G(b)] = e−(akλ1+bλ2) we have:

R|a,b
s,k =

λ2e−λ1k(b−a) ∑k
i=s ∑k−i

j=0 (
k
i,j)

(−1)j

λ1(i+j)+λ2
a ≤ b

e−λ2(ak−b)[ λ1
λ1+λ2

]k ∑k
i=s (

k
i)[

λ1+λ2
λ1

e−λ2(b−a) − 1]i a > b.
(13)

Remark 5. From (13), we conclude that R|a,b
s,k for a ≤ b in Exponential distribution depends only

on the difference between a and b. In other words , if b1 − a1 = b2 − a2 then R|a1,b1
s,k = R|a2,b2

s,k for
a1 ≤ b1 and a2 ≤ b2.

Figure 1 show the effect of changes in the values a and b in (13). These figures show what
happens when the values a and b increase or decrease, in all Figures (s, k) = (1, 3).

(a) b=600, (λ1, λ2) =
(0.0049, 0.0005)

(b) a = 0.1, (λ1, λ2) =
(0.0049, 0.0005)

(c) b = 0.1, (λ1, λ2) =
(1.4, 1.7)

(d) a = 2, (λ1, λ2) =
(1.4, 1.7)

Figure 1: MCCSSP

By assuming the Exponential distributions for stresses and strength, from (10) and (12), after
some calculation it follows that for the case Xz ≥ Y, we have:

R|(z),a,b
s,k =

∑k
i=s ∑k−i

j=0 (
k
i,j)

λ2(−1)je−λ1(b(k−j)−a)

λ1(k−j)+λ2
a ≤ b

e−λ2(a−b)[ λ1
λ1+λ2

]k ∑k
i=s (

k
i)[

λ1+λ2
λ1

e−λ2b − 1]i−1[ λ1+λ2
λ1

e−λ2(b−a) − 1] a > b,
(14)

and for the case Xz < Y :

R|(z),a,b
s,k =

{
λ2e−λ1(b−a)[ ∑k−1

i=s ∑k−i
j=0 (

k
i)(

k−i
j )(−1)je−λ1(b(i+j))[ 1

λ1(i+j)+λ2
− e−λ1(b−a)

λ1(i+j+1)+λ2
]
]

a ≤ b

e−λ2(a−b)[ λ1
λ1+λ2

]k
[

∑k−1
i=s (k

i)[
λ1+λ2

λ1
e−λ2b − 1]i

]
a > b.

(15)
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Indeed, as in (13) to (15), the stress-strength parameters R|a,b
s,k and R|(z),a,b

s,k are functions of λ1 and
λ2. Therefore, it is rational that for evaluating the maximum likelihood estimators of MCCSSP,
the first step to be calculating the MLE’s of λ1 and λ2.

3.1. Maximum Likelihood Estimation

Suppose that X1, ..., Xn and Y1, ..., Ym are two independent random samples from E(λ1) and E(λ2).
Then the likelihood function is

L(λ1, λ2) = λn
1 λm

2 e−λ1 ∑n
1 xi e−λ2 ∑m

1 yj (16)

and the MLE’s of the parameters λ1 and λ2 are λ̂1 = 1
X

and λ̂2 = 1
Y

, respectively. Therefore, by
using the invariance property for MLE’s, and substituting λ̂1 and λ̂2 instead of λ1 and λ2 in (14)
and (15), one may write the MLE of (13) by:

R̂|a,b
s,k =

λ̂2e−λ̂1k(b−a) ∑k
i=s ∑k−i

j=0 (
k
i,j)

(−1)j

λ̂1(i+j)+λ̂2
a ≤ b

e−λ̂2(ak−b)[ λ̂1
λ̂1+λ̂2

]k ∑k
i=s (

k
i)[

λ̂1+λ̂2
λ̂1

e−λ̂2(b−a) − 1]i a > b.
(17)

3.2. Asymptotic Distribution

In this subsection the asymptotic distribution of R̂|a,b
s,k will have been obtained by using the

asymptotic normality of the MLE’s and the multivariate delta method. By the fact that λ̂ →
N2(λ, Σ) as n, m tend to infinity, n

m → d for some 0 < d < ∞, where λ̂ = (λ̂1, λ̂2)
T , λ =

(λ1, λ2)
T and Σ is the inverse of Fisher’s information matrix I(λ), it is easy to see that

I(λ) =

[ n
λ2

1
0

0 m
λ2

2

]
, and so Σ =

[
λ2

1
n 0

0 λ2
2

m

]
.

The well-known delta method enables us to derive the asymptotic behaviour of functions of
an estimator, whenever the estimator is itself asymptotically normal. The delta method have been
present and applied in different forms, we have used the following presentation.

Proposition 1. Let g(.) be a mapping g(.) : Rd → R , such that g(.) is continuous in a neighbor-
hood of µ ∈ Rd. If Xn is a sequence of d-dimensional random vectors such that Xn → Nd(µ, Σ) in
distribution, then g(Xn)−g(µ)

τ → N(0, 1) in distribution, where τ2 = ∇TΣ∇ > 0 and ∇ = ∂g(µ)
∂µ .

We will apply Proposition 1 to Xn = λ̂ and

g(x1, x2) =

x2e−x1k(b−a) ∑k
i=s ∑k−i

j=0 (
k
i,j)

(−1)j

x1(i+j)+x2
a ≤ b

e−x2(ak−b)[ x1
x1+x2

]k ∑k
i=s (

k
i)[

x1+x2
x1

e−x2(b−a) − 1]i a > b.

The asymptotic distribution of R̂|ab
s,k may be obtained as below:

(R̂|a,b
s,k − R|a,b

s,k ) → N(0,∇TΣ∇) , (18)

where

∇ = (
∂g(λ1, λ2)

∂λ1
,

∂g(λ1, λ2)

∂λ2
)T ,

∇TΣ∇ = [
∂g(λ1, λ2)

∂λ1
]2

λ2
1

n
+ [

∂g(λ1, λ2)

∂λ2
]2

λ2
2

m
, (19)

For the cases a ≤ b and a > b, denote (19) by σ2
1 and σ2

2 respectively. Put ψ = ∂g(λ1,λ2)
∂λ1

|a≤b,

ν = ∂g(λ1,λ2)
∂λ1

|a>b, θ = ∂g(λ1,λ2)
∂λ2

|a≤b, κ = ∂g(λ1,λ2)
∂λ2

|a>b, we arrive at:

σ2
1 = ψ2 λ2

1
n

+ θ2 λ2
2

m
, (20)
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σ2
2 = ν2 λ2

1
n

+ κ2 λ2
2

m
. (21)

Therefore, the asymptotic normalized distribution of R̂|a,b
s,k for different values of a and b are as

follow:
R̂|a,b

s,k − R|a,b
s,k

σi
→ N(0, 1) i = 1, 2, (22)

where σ1 and σ2 stands for the cases a ≤ b and a > b respectively. The above statistics can be used
for constructing confidence intervals for R|a,b

s,k . By employing a similar approach and performing

some steps like the above, using lemma 1 and asymptotic normality of R̂|(z),a,b
s,k , one may arrive at

the asymptotic distribution of R|(z),a,b
s,k .

4. Bayes Estimation

In this section, the Bayesian estimation of the reliability parameter (13) has been considered.
Suppose that the parameters λ1 and λ2 are RV’s, and have independent Gamma prior distributions
with parameters (αi, βi), i = 1, 2 respectively. The pdf of a random variable X ∼ Gamma(αi, βi) is
denoted by

π(x) =
β

αi
i

Γ(αi)
xαi−1e−βix x > 0, αi > 0, βi > 0. (23)

The joint posterior density function of the parameters based on this prior density and the
likelihood function can be written as follows:

π∗(λ1, λ2 | x, y) =
π(λ1, λ2, x, y)∫ ∞

0

∫ ∞
0 π(λ1, λ2, x, y)dλ1dλ2

(24)

where

π(λ1, λ2, x, y) = π(λ1)π(λ2)L(λ1, λ2) ∝ λα1+n−1
1 e−λ1(β1+∑n

i=1 xi)λα2+m−1
2 e−λ2(β2+∑m

j=1 yj).

It is easily seen that the posterior density functions of λ1 and λ2 are respectively

π∗(λ1|λ2, x, y) ∝ Γ(α1 + n, β1 +
n

∑
i=1

xi), (25)

π∗(λ2|λ1, x, y) ∝ Γ(α2 + m, β2 +
m

∑
j=1

yj). (26)

The Bayes estimator of R|a,b
s,k under the squared error loss (SEL) is obtained as

R̃|a,b
s,k = E(R|a,b

s,k |x, y) =
∫ ∞

0

∫ ∞

0
R|a,b

s,k π∗(λ1, λ2 | x, y)dλ1dλ2. (27)

It is not possible to calculate equation (27) analytically. Therefore, to compute the Bayes estimate
of reliability parameter R|a,b

s,k , a Monte Carlo (MC) method has been adopted as follows:
Step 1: Set l=1.
Step 2: Generate X1, . . . , Xn from Exp(λ1).
Step 3: Generate Y1, . . . , Ym from Exp(λ2)
Step 4: Generate λl

1 from Gamma(α1 + n, β1 + ∑n
i=1 xi).

Step 5: Generate λl
2 from Gamma(α2 + m, β2 + ∑m

j=1 yj).

Step 6: Compute Rl|a,b
s,k at (λl

1, λl
2).

Step 7: l=l+1.
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Step 8: Repeat Steps 2 to 7, M times and obtain the posterior sample Rl|a,b
s,k for l = 1, ..., M.

Now the Bayes estimate of R|a,b
s,k with respect to SEL will be obtained as follows:

R̃|a,b
s,k =

1
M

M

∑
l=1

Rl|a,b
s,k . (28)

5. Nonparametric Estimation

In this section a nonparametric method for estimating R|a,b
s,k has been presented. In many situations,

we may have no information about the distribution of data or computing R|a,b
s,k via 1 may require

complex computations, or even may not have a definite answer. Therefore, employing the
nonparametric method, in which the structure of the model may have been determined from
data, can lead us to better results or at least be more applicable. Let n(.) be the counting measure.
For the sample space S and the event D as a subset of S the nonparametric estimator of P(D) is
defined as P̂(D) = n(D)

n(S) . To obtain the nonparametric estimator of MCCSSP, one may write (2) in
the form:

R|a,b
s,k =

P(at least s of X1, . . . , Xk exceed Y, X1 > a, . . . , Xk > a, Y > b)
P(X1 > a, . . . , Xk > a, Y > b)

(29)

where P(X1 > a, . . . , Xk > a, Y > b) > 0. Since X1, . . . , Xk and Y are independent, equation (29)
can be written as follows:

R|a,b
s,k =

P(at least s of X1, . . . , Xk exceed Y, X1 > a, . . . , Xk > a, Y > b)
P(X1 > a, . . . , Xk > a)P(Y > b)

, (30)

where P(X1 > a, . . . , Xk > a)P(Y > b) > 0.
Let A = {(x1, . . . , xk, y) | at least s of x1, . . . , xk exceed y, x1 > a, . . . , xk > a, y > b}, B =
{(x1, . . . , xk) | x1 > a, . . . , xk > a} and C = {y | y > b}. The nonparametric estimator of (30) can
be written as follows:

RNp|a,b
s,k =

n(A)

n(B)n(C)
. (31)

Let X1i, ..., Xki ∼ X for i = 1, ..., n and Y1, ..., Ym ∼ Y be independent random samples. Also, let
I(E) be the indicator function of the event E, that is a RV that takes value 1 when the event E
happens and 0 when the event does not happen. By assuming n(.) as the counting measure, we
have:

n(B) =
n

∑
i=1

I(X1i > a, . . . , Xki > a), (32)

n(C) =
m

∑
j=1

I(Yj > b), (33)

and by the properties of the indicator function:

n(A) =
n

∑
i=1

m

∑
j=1

I(s of X1i, ..., Xki exceed Yj)I(X1i > a, . . . , Xki > a)I(Yj > b) + . . .

+
n

∑
i=1

m

∑
j=1

I(k of X1i, ..., Xki exceed Yj)I(X1i > a, . . . , Xki > a)I(Yj > b).
(34)

Let Xi = (X1i, . . . , Xki) for i = 1, . . . , n. Those observations Xi and Yj for them both Xi ≤ a and
Yj ≤ b simultaneously, have been removed in calculating n(A) , since in details of calculating

P(A) or RNP|a,b
s,k = n(A)

n(B)n(C)
, the numerator is an strict subset of denominator. Note that in this
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case the values of the second and third indicators will automatically equal one in n(A), (34). It is
worth noting that the number of reminded samples of Xi and Yj are n(B) and n(C), so n(A) can
be written as follows:

n(A) =
n(B)

∑
i=1

n(C)

∑
j=1

I(s of X1i, ..., Xki exceed Yj) + · · ·+
n(B)

∑
i=1

n(C)

∑
j=1

I(k of X1i, ..., Xki exceed Yj)

In the case of n = m, the formula (31) may have simpler form and computations, since we only
keep those (X1i, ..., Xki, Yi) i = 1, ..., n which for them (X1i > a, ..., Xki > a, Yi > b) and remove
the rest and also, n(B) = n(C). In what follows, we introduce a definition and representation
for non-parametric estimator of multi-component stress-strength parameter. To the best of our
knowledge, interestingly this estimator has not been defined till now.

Definition 3. The nonparametric estimator of Rs,k is defined as follows:

RNP
s,k =

n(A)

n(B)n(C)
(35)

where n(B) = n, n(C) = m and

n(A) =
n

∑
i=1

m

∑
j=1

I(s of X1i, ..., Xki exceed Yj) + · · ·+
n

∑
i=1

m

∑
j=1

I(k of X1i, ..., Xki exceed Yj).

Note that (35) can be obtained from (31) by assuming a = b = 0.

Remark 6. (i): By (31), and according to the definitions of n(A), n(B) and n(C), it can be
concluded that for fixed values of a, a ≤ b, the estimator RNP|a,b

s,k is a decreasing function of b.
(ii): By (31), and according to the definitions of n(A), n(B) and n(C), it can be concluded that for
fixed values of b, a > b, the estimator RNP|a,b

s,k is an increasing function of a.

In applications, the data observed for different stresses may differ greatly in their values.
Therefore, selecting a minimum value of a, w.r.t. it all stresses in MCCSSP through definition 1,
satisfy the corresponding condition Xi > a, may be not useful. So, in what follows, the MCCSSP
has been defined in some general way to be more realistic and applicable.

Definition 4. The generalized conditional multi-component stress-strength parameter is defined
as follows:

R|a1,...,ak ,b
s,k = P(at least s of X1, ..., Xk exceed Y | X1 > a1, ..., Xk > ak, Y > b) (36)

where the RV’s Y, X1, ..., Xk are independent, G(·) is the continuous distribution function of Y
and F(·) is the common continuous distribution function of X1, ..., Xk.

Theorem 2. If Xri > max(a1, . . . , ak) for r = 1, . . . , k; i = 1, . . . , n and Yj > b for j = 1, . . . , m then

RNP|a1,...,ak ,b
s,k = RNP

s,k .

Proof. Replace I(X1i > a1, . . . , Xki > ak) with I(X1i > a, . . . , Xki > a) in (32) and (34).
Since I(X1i > a1, . . . , Xki > ak) = 1 and I(Yj > b) = 1 we have n(B) = n, n(C) = m and
n(A) = ∑n

i=1 ∑m
j=1 I(s of X1i, ..., Xki exceed Yj) + · · ·+ ∑n

i=1 ∑m
j=1 I(k of X1i, ..., Xki exceed Yj). ■

Of course, a special case of (36) is (2). In parametric case (MLE method) when a1, . . . , ak are closed
in values, a can be considered as the minimum or maximum of a1, . . . , ak and approximate (36)
through (4). In some situations, a1, . . . , ak are very different, and using (36) is not very helpful or
may not be accurate. In these cases, the non-parametric method is more practical and it is enough
to consider A = {(x1, . . . , xk, y) | at least s of x1, . . . , xk exceed y, x1 > a1, . . . , xk > ak, y > b}, and
B = {(x1, . . . , xk) | x1 > a1, . . . , xk > ak} in (31). It is easy to see that the results of nonparametric
estimation of (29) can also be used for nonparametric estimation of (36), where ai is substituted
instead of a for i = 1, . . . , k. Note that in this case, one advantage of the nonparametric method
is that the assumption of common distribution for stress RV’s may be relaxed. The later makes
this method much more practical. If B = {(x1, . . . , xk, y) | x1 > a1, . . . , xk > ak, y > b}, then the
nonparametric estimator of the generalized MCCSSP where stresses and strength RV’s are not
independent, can also be easily computed through the same method.
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6. Simulation

In this section, a simulation study has been done to assess the quality and the efficiency of
performance of R|ab

s,k , its MLE, Bayes and nonparametric estimators. The performances of the MLE,
Bayes and nonparametric estimators have been studied by using their biases. The performances
of the confidence intervals for MLE are studied by using average confidence lengths (ACL’s)
and coverage probabilities (CP’s). It would be mentioned that, the proportion of the times that
the intervals contain the true value of interest is called the coverage probability of a confidence
interval. The simulations have been only done for a ̸= b since for a = b the conditional and
unconditional cases have the same results.
The results for R|ab

s,k , MLE’s, Biases, MSE’s, ACL’s and CP’s and different values of m and n where
the other parameters are fixed, have been shown in the Tables 1 for λ1 = 1, λ2 = 2 and shown
in 2 for λ1 = 1.5, λ2 = 0.7. According to these tables larger sample sizes have more reliable
results. A comparison among MLE, RNP|a,b

1,3 and R̃|a,b
1,3 assuming α1 = 2, β1 = 3, α2 = 5, β2 = 4

for different values of a and b, n = m = 100, λ1 = 0.0003 and λ2 = 0.0005 has been done and
the results presented in Tables 3 and 4. A comparison among R̂|a,b

2,4 and R̃|a,b
2,4 assuming λ1 = 3,

λ2 = 2, α1 = 5, β1 = 0.8, α2 = 4, β2 = 0.2 for different sample sizes has been done and the results
presented in Table 5. A nonparametric simulation for different values of a1, a2, a3, λ1 = 0.004
and λ2 = 0.002 has been done and the results are presented in Table 6.

Table 1: Comparison of estimators, R|0.7,1
1,3 = 0.3659, R|0.7,1

2,4 = 0.2409

n 15 20 35 50 85 100
(s,k) m 15 25 35 50 75 100

(1,3)

R̂|0.7,1
1,3 0.3556 0.3577 0.3612 0.3628 0.3632 0.3646

MSE 0.0439 0.0256 0.0180 0.0125 0.0083 0.0062
Bias -0.0102 -0.0082 -0.0046 -0.0030 -0.0026 -0.0013
ACL 0.6889 0.5202 0.4425 0.3674 0.2990 0.2588
CP 0.9384 0.9498 0.9736 0.9802 0.9818 0.9844

(2,4)

R̂|0.7,1
2,4 0.2372 0.2357 0.2390 0.2393 0.2400 0.2400

MSE 0.0243 0.0139 0.0100 0.0069 0.0046 0.0034
Bias -0.0036 -0.0052 -0.0018 -0.0015 -0.0008 -0.0008
ACL 0.5145 0.3879 0.3296 0.2741 0.2228 0.1921
CP 0.8988 0.9012 0.938 0.9518 0.9640 0.9690

Table 2: Comparison of estimators, R|1.2,0.5
1,3 = 0.4603, R|1.2,0.5

2,4 = 0.2798

n 15 20 35 50 75 100
(s,k) m 15 25 35 50 75 100

(1,3)

R̂|1.2,0.5
1,3 0.4404 0.4481 0.4551 0.4537 0.4562 0.4567
MSE 0.0391 0.0225 0.0097 0.0096 0.0060 0.0046
Bias -0.0199 -0.0122 -0.0052 -0.0065 -0.0041 -0.0035
ACL 0.5655 0.4581 0.3110 0.3085 0.2481 0.2183
CP 0.9374 0.9696 0.9826 0.9838 0.9876 0.9932

(2,4)

R̂|1.2,0.5
2,4 0.2608 0.2679 0.2718 0.2742 0.2758 0.2771
MSE 0060 0.0045 0.0025 0.0017 0.0010 0.0008
Bias -0.0197 -0.0118 -0.0079 -0.0056 -0.0040 -0.0027
ACl 0.2349 0.2079 0.1600 0.1351 0.0.0104 0.0964
CP 0.9156 0.9548 0.9620 0.9690 0.9712 0.9837
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Table 3: Comparison of R̂|a,b
1,3 , RNP|a,b

1,3 , R̃|a,b
1,3 for a ≤ b

a 10 25 70 78 170 215 300
b 20 40 74 120 190 260 310

R|a,b
1,3 0.8607 0.8568 0.8653 0.8362 0.8530 0.8340 0.0.8607

R̂|a,b
1,3 0.8555 0.8516 0.8602 0.8311 0.8478 0.8327 0.8555

R̃|a,b
1,3 0.8598 0.8559 0.8646 0.8349 0.8519 0.8321 0.8598

RNP|a,b
1,3 0.8657 0.8655 0.8697 0.8681 0.8691 0.8646 0.8668

Bias(R̂|a,b
1,3 ) -0.0051 -0.0051 -0.0051 -0.0051 -0.0051 -0.0013 -0.0051

Bias(R̃|a,b
1,3 ) -0.0008 -0.0009 -0.0007 -0.0013 -0.0010 -0.0019 -0.0008

Bias(RNP|a,b
1,3 ) 0.0049 0.0087 0.0043 0.0618 0.0161 0.0305 0.0061

Table 4: Comparison of R̂|a,b
1,3 , RNP|a,b

1,3 , R̃|a,b
1,3 for a > b

a 7 22 45 67 100 120 240
b 4 11 38 65 90 70 230

R|a,b
1,3 0.9437 0.9377 0.9124 0.8877 0.8664 0.8867 0.7532

R̂|a,b
1,3 0.9397 0.9338 0.9088 0.8844 0.8633 0.8836 0.7514

R̃|a,b
1,3 0.9372 0.9313 0.90559 0.8812 0.8598 0.8805 0.7466

RNP|a,b
1,3 0.8654 0.8658 0.8658 0.8653 0.8674 0.8686 0.8680

Bias(R̂|a,b
1,3 ) -0.0039 -0.0038 -0.0036 -0.0033 -0.0030 -0.0030 -0.0017

Bias(R̃|a,b
1,3 ) -0.0064 -0.0063 -0.0064 -0.0065 -0.0065 -0.0062 -0.0065

Bias(RNP|a,b
1,3 ) -0.0782 -0.0719 -0.0466 -0.0224 0.0097 -0.0181 0.1147

Table 5: Comparison of R̂|a,b
2,4 , R̃|a,b

2,4 , exact values R|0.6,0.8
2,4 = 0.0430, R|0.9,0.6

2,4 = 0.0243

n 10 20 30 60 95 100 150
m 10 22 30 58 100 120 150

R̂|0.6,0.8
2,4 0.0505 0.0475 0.0457 0.0443 0.0437 0.0436 0.0434

R̃|0.6,0.8
2,4 0.0360 0.0407 0.0405 0.0418 0.0419 0.0421 0.0424

Bias(R̂|0.6,0.8
2,4 ) -0.0075 -0.0045 -0.0027 -0.0013 -0.0007 -0.0006 -0.0004

Bias(R̃|0.6,0.8
2,4 ) 0.0069 0.0022 0.0024 0.0011 0.0010 0.0008 0.0005

R̂|0.9,0.6
2,4 0.0269 0.0260 0.0254 0.0249 0.0246 0.0246 0.0245

R̃|0.9,0.6
2,4 0.0342 0.0301 0.0290 0.0271 0.0261 0.0257 0.0252

Bias(R̂|0.9,0.6
2,4 ) -0.0026 -0.0016 -0.0010 -0.0006 -0.0003 -0.0002 -0.0001

Bias(R̃|0.9,0.6
2,4 ) -0.0098 -0.0057 -0.0046 -0.0027 -0.0017 -0.0013 -0.0008
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Table 6: Values of RNP|a1,a2,a3,b
1,3 for λ1 = 0.004 and λ2 = 0.002

a1 1 1 8 27 40 40 95 100 100
a2 3 5 14 60 40 42 98 100 100
a3 7 7 28 90 40 47 100 100 100
b 5 3 19 43 30 30 110 110 180

RNP|a1,a2,a3,b
1,3 0.532 0.535 0.532 0.540 0.546 0.549 0.510 0.509 0.468

7. Real Data Analysis

In this section the numerical results of the parameters estimation for a real data set with Expo-
nential distribution have been presented. This data set was used for the first time by [16] and
can be find in it. Also, it have been used by many other authors, e.g., [17], [18] and [19].These
data present the tensile properties of the jute fibres at different gauge lengths 5, 10, 15 and 20 mm
which measured in MPa. The data sets corresponding to the breaking strength of jute fibres with
10mm and 15mm gauge lengths have been considered as the stresses measurement and 20mm in
gauge lengths, which represents the strength measurement.
Each data has been separately fitted to the some Exponential distribution and examined by using
the Kolmogorov-Smirnov goodness-of-fit test, the results have been reported in Table 7. The
Kolmogorov-Smirnov statistics and the corresponding P-values indicate that the Exponential
distribution fits the data sets. The estimation of MCCSSP for different values of a and b by MLE,
nonparametric methods and Bayesian approach assuming α1 = 2, β1 = 3, α2 = 5, β2 = 4 for
parameters of prior distributions have been presented in Table 8. The estimation of MCCSSP for
different values of a1, a2 and b by nonparametric methods have been presented in Table 9. The
estimation of (4) for a1 = 0 or a2 = 0 by nonparametric methods have been presented in Table 10.
The data set consisting of the breaking strength of jute fiber 5 mm in gauge length have been
fitted with the Normal distribution with mean 384.37 and standard deviation 188.77 using the
Kolmogorov-Smirnov goodness-of-fit test. For this data, the Lilliforce significance correction
criteria (modified Kolmogorov-Smirnov test to check the normality of the data) and the P-value
are 0.143 and 0.122. Note that by adding this length to the model, the assumption of exponentially
for all stresses fails and the MLE method may not be employed. The nonparametric estimators of
MCCSSP for real data and different values of a1, a2, a3 and b have been presented in Table 11
where X1 has Normal distribution, X2 and X3 have Exponential distribution.

Table 7: Estimate of parameters, K-S test for strength of jute fiber data

data Mean λ̂ K-S p-value
10 mm 365.72 0.0027 0.958 0.317
15 mm 367.87 0.0027 0.999 0.271
20 mm 340.74 0.0029 0.727 0.666

Table 8: Values of estimates of MCCSSP for real data

a 30 45 45 78 85 100 220
b 25 50 40 90 75 80 245

R̂|a,b
1,2 0.7200 0.6680 0.6893 0.6432 0.6280 0.6288 0.5996

R̃|a,b
1,2 0.7431 0.6737 0.6458 0.6207 0.6477 0.5970 0.6151

RNP|a,b
1,2 0.6744 0.6760 0.6886 0.6462 0.6485 0.6485 0.6944
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Table 9: Values of RNP|a1,a2,b
1,2 for real data

a1 20 30 90 180 202 200 300
a2 40 100 70 170 200 250 280
b 30 70 80 175 201 225 290

RNP|a1,a2,b
1,2 0.674 0.640 0.654 0.755 0.755 0.694 0.760

Table 10: Values of RNP|(z),a,b
1,2 for real data

a1 0 0 90 160 0 190 0
a2 30 50 0 0 150 0 280
b 45 35 40 145 160 255 290

RNP|a1,a2,b
1,2 0.663 0.670 0.679 0.608 0.663 0.617 0.640

Table 11: Values of RNP|a1,a2,a3,b
1,3 for real data

a1 10 42 80 111 150 215 300
a2 30 58 90 121 160 221 400
a3 60 71 100 171 170 240 100
b 34 54 85 154 165 220 340

RNP|a1,a2,a3,b
1,3 0.730 0.736 0.705 0.750 0.859 0.625 0.750

8. Conclusion

The MCCSSP (R|a,b
s,k ) as an appropriate extension of multi-component stress-strength parameter

has been introduced. A general formula for computing R|a,b
s,k in the case of continuous RV’s has

been presented. The maximum likelihood estimator of R|a,b
s,k for Exponential distribution has

been estimated. The asymptotic distribution of maximum likelihood estimator has been obtained
and been used to obtain asymptotic confidence intervals of R|a,b

s,k . A Formula for estimating the
MCCSSP by nonparametric method has also been presented. Some numerical computation and
simulation studies have been done for illustrating the inferential procedures.
In the past decades, a lot of researches have been done for studying the behavior of reliability
function in multi-component stress-strength models, many of similar works can be done for the
conditional case. As an specific idea, R|a,b

s,k can be obtained and estimated for other distributions.
As another idea, one may interested in the amounts of information which are measurable, lost,
unpredictable, etc.
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Abstract

This study compares the performance of Bayesian ARIMA and BSTS models for COVID-19 data
using Bayesian approach. Many studies in the literature have compared the BSTS model and classical
ARIMA models for infectious disease modelling, and the BSTS model performs well. Apart from the
literature, this study is trying to prove the Bayesian ARIMA model gives a better result than the
BSTS model. This study uses a different modelling and model comparison method to compare widely
used autoregressive integrated moving average (ARIMA) models with their Bayesian structural time
series (BSTS) models for COVID-19 data using the Bayesian approach. It is essential to find the order
of the ARIMA model before doing bayesian analysis. We find the order of the ARIMA model using
measurement LOO information criteria , using the Hamiltonian Montecarlo algorithm and rstan estimate
the parameters of ARIMA and BSTS models for COVID-19 data. Furthermore, compare both models
using Looic and Waic values; Bayesian ARIMA models outperform in this study.

Keywords: BSTS, COVID-19, ARIMA, MCMC, LOOIC, WAIC, Stan

1. Introduction

The literature contains a variety of traditional studies that use ARIMA models. The statistical
models and techniques for evaluating discrete time series are discussed in [1], along with some of
the methodology’s most significant applications. The class of autoregressive integrated moving
average (ARIMA) models and various extensions of these models are among the models taken
into consideration. [2] used the ARIMA model, a version of ARMA, and fitted the same to
non-seasonal data by identifying autoregressive and moving average terms with the help of
PACF and ACF. [3] describes how to find ARIMA models using the extended autocorrelation
function. Over the past few decades, the Bayesian method’s significance in econometrics has
grown significantly. In this sense, significant references include [4], [5], [6], [7], and [8], etc. [9]
clarifies the autoregressive and moving average parameters are implicitly constrained to the
stationary and invertible region using a straightforward reparameterisation. [10] offers a few new
transformation concepts and looks at how they fit into an effective numerical integration strategy
for ARIMA models. The ARMA model can be used to model a variety of data sets due to its
universal structure. Typically, the theory does not specify which model should be chosen, so it
must be chosen from among a variety of competing models. The choice of an ARIMA model is
vital for both statistical inference and prediction.

The bayesian structural time series (BSTS) model, which is based on [11] technique, is another
model we used in this work. Create numerous layers utilising this model, such as trends,
seasonality, and regression components. In addition, unlike with traditional ARIMA models,
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stationary time series are not required for BSTS models, since the BSTS model can deal with
structural changes in time series. In contrast to classical ARIMA and machine learning models, a
notable advantage of the BSTS model is its distinct interpretable structure in both observable and
unobservable dynamic components.

2. Methodology

In many studies comparison between classical ARIMA and BSTS models for COVID-19 data,
the BSTS model performs well in these studies [12, 13, 14]. Apart from the literature, this study
is trying to prove the Bayesian ARIMA model gives a better result than the BSTS model for
COVID-19 data. The study’s goal is to provide a Bayesian approach to assess ARIMA models and
the BSTS model, utilizing the Hamiltonian Monte Carlo (HMC) algorithm and the programming
language Rstan. This is being done for the COVID-19 cumulative number of cases and the
cumulative number of deaths from the date 01 March 2020, to 30 June 2021. Performing this
study in two steps; first, for the analysis of Bayesian ARIMA models, it is important to find the
order of the ARIMA model. We find the optimized order using the LOOIC value, and the model
with the lowest LOOIC value is considered the best model [15]. In the second step, using various
priors, we estimate the parameters of the BSTS model and the Bayesian ARIMA model. In the
following phase, we compare the BSTS model and the Bayesian ARIMA model using various
measures for the corresponding data, such as the looic and waic values [16]. The model with the
lowest looic and waic values is considered the best model [17].

3. ARIMA model

ARMA model with AR coefficient ϕi ’s and MA coefficient θj ’s is defined as

yt = µ0 +
p

∑
i=1

ϕiyt−i +
q

∑
j=1

θjϵt−j + ϵt (1)

in equation 1, p and q are order of ARMA model, yt ’s are the data points collected over time,
µ0 is the intercept, and ϵ ’s are the error terms distributed according to IID normal variate with
mean zero and variance σ2. Equation 1 is denoted by ARIMA (p,q) model. Invertibility enables
us to estimate the noise (ϵt) recursively by

ϵ̂t = yt − µ0 −
p

∑
i=1

ϕiyt−i −
q

∑
j=1

θjϵt−j, t = 1, 2, . . . , T (2)

As an approximation, we consider the starting values yt = ϵt = 0 for t ≤ 0. Choosing p + q ≤ 2
greatly simplifies the model, and it is frequently observed that higher order ARMA models are
more difficult to justify in practise. (see, for example, [6]). A careful review of the literature also
suggests that the problems of stationarity and invertibility can be easily tackled for small p and q,
say p + q ≤ 2.
Advantages of Bayesian ARIMA models:

• Flexibility: The Bayesian ARIMA model can handle a wide range of time series patterns,
such as non-stationary, multi-seasonal, and multi-trend data.

• Better forecasting: The Bayesian approach to ARIMA models allows for more accurate
predictions by taking into account uncertainties in the model parameters.

• Model selection: The Bayesian framework enables the use of model selection methods, such
as LOOIC, which helps to determine the optimal number of AR and MA terms in the model.

• Prior information: The Bayesian ARIMA model allows for incorporating prior information
or domain knowledge into the model, making it more robust and reliable.
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• Model uncertainty: The Bayesian ARIMA model provides a quantification of model uncer-
tainty, which can be useful in decision-making processes.

• Model comparison: The Bayesian ARIMA model allows for comparison with other models,
and selection of the best model based on a range of criteria.

3.1. Bayesian Model Formulation of ARMA model

Let y : y1, y2, . . . , yT be the time series observations from a strictly stationary and invertible ARMA
model 1. To write the approximate likelihood function for an ARMA(p, q) model with yt’s are
the time series observed data is
yt ∼ N

((
µ0 + ϕ1yt−1 + . . . + ϕpyt−p + θ1ϵt−1 + . . . + θqϵt−q

)
, σ2) under the assumption of yt =

ϵt = 0 for t ≤ 0. The conditional density of yt given yt−1, yt−2, . . . , yt−p can then be written as,

f
(
yt | yt−1, yt−2, . . . , yt−p; µ0, Φ, Θ

)
∝(

1
σ2

)
exp

− 1
2σ2

(
yt − µ0 −

p

∑
i=1

ϕiyt−i −
q

∑
j=1

θjϵt−j

)2
 .

(3)

The likelihood function is defined as:

f
(

y | µ0, Φ, Θ
)

∝
T

∏
t=p+1

f
(
yt | yt−1, yt−2, . . . , yt−p; µ0, Φ, Θ

)
(4)

which reduces to:

f
(

y | µ0, Φ, Θ
)

∝(
1
σ2

)(T−p)/2
exp

− 1
2σ2

T

∑
t=p+1

(
yt − µ0 −

p

∑
i=1

ϕiyt−i −
q

∑
j=1

θjϵt−j

)2
 (5)

4. BSTS model

The BSTS model is defined by a pair of equations,

yt = ZT
t αt + εt,

αt+1 = Ttαt + Rtηt,
(6)

where εt ∼ N
(
0, σ2

t
)

and ηt ∼ N (0, Qt), both error terms are independent of all other unknowns
[11]. In this study, we are using a local linear trend model (a BSTS model without regression
components) that assumes level and slope as random walk components.

4.1. Local linear trend model

The local linear trend model is a popular option for trend modelling because it responds rapidly
to local variation, which is important when making short-term forecasts. The equation as follows:

yt = µt + ϵt ϵt ∼ N
(

0, σ2
ϵ

)
(7)

the equation of the level component is:

µt+1 = µt + δt + ηt ηt ∼ N
(

0, σ2
η

)
(8)

and the equation of the slope is:

δt+1 = δt + ζt ζt ∼ N
(

0, σ2
ζ

)
(9)

The local linear trend is based on the supposition that both the mean and slope components
follow random walks.
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5. Bayesian estimation using R and Stan

5.1. Bayesian estimation of ARIMA models

In this session, use the corresponding priors to express the following stan code for the ARIMA(1,0,1)
model in R:

µ0 ∼ studentt(0, 1, 6)

ϕ1 ∼ normal(0, 0.5)

θ1 ∼ normal(0, 0.5)

σ ∼ studentt(0, 1, 7)

For all ARIMA models, we use the same priors for µ and σ; for all AR components, we use prior
as normal(0, 0.5), and for all MA components, we use prior as normal(0, 0.5). Stan code for the
ARIMA(1,0,1) model is given below:

armamodel="data {
int<lower=1> N;
real y[N];
}
parameters {
real mu0;
real phi1;
real theta1;
real<lower=0> sigma;
}
model {
vector[N] nu;
vector[N] err;
psi[1] = mu0 + phi1 * mu0;
err[1] = y[1] - psi[1];
for ( n in 2:N) {
psi[n] = mu0 + phi1 * y[n-1] + theta1 * err[n-1];
err[n] = y[n] - psi[n];
}
mu0 ~ studentt(0, 1, 6);
phi1 ~ normal(0, 0.5);
theta1 ~ normal(0, 0.5);
sigma ~ studentt(0, 1, 7);
err ~ normal(0, sigma);
}
"

Only the ARIMA(1,0,1) model code is expressed here; other types of ARIMA models were used
in this study but were not displayed owing to space limitations.

5.2. BSTS models

In this session, the Stan formulation of the Bayesian structural time series model is discussed. The
appropriate priors for the parameters are discussed below:

uerr ∼ N(0, 1)

verr ∼ N(0, 1)

σslope ∼ N(0, 0.5)
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σlevel ∼ N(0, 0.5)

σobs ∼ N(5, 10)

Stan code for BSTS model is:

\label{stan:2}
bstsmodel="
data {
int <lower=0> N;
vector[N] y;
}
parameters {
vector[N] a_err;
vector[N] b_err;
real beta;
real <lower=0> sigma_obs;
real <lower=0> sigma_slope;
real <lower=0> sigma_level;
}

transformed parameters {
vector[N] a;
vector[N] b;
a[1] = a_err[1];
b[1] = b_err[1];
for (n in 2:N) {
a[n] = a[n-1] + b[n-1] + s_level*u_err[n] ;
b[n] = b[n-1] + s_slope*v_err[n] ;
}
}

model {
a_err ~ normal(0,1);
b_err ~ normal(0,1);
sigma_slope~normal(0,0.5);
sigma_level~normal(0,0.5);
sigma_obs~normal(5,10);
for(n in 1:N){
y[n] ~ normal (a[n] ,sigma_obs);
}
}
generated quantities{
vector[N] yrepg;
real log_lik[N];
for(n in 1:N){log_lik[n]=normal_lpdf(y[n]|a[n],sigma_obs);
}
}
"

In this chapter for the BSTS model, we apply the same priors and stan code for the remaining
data sets; when we use the same priors for all data sets, we can more precisely compare our looic
and waic values.
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6. Results and discussions

During this session, we reviewed the estimated parameters obtained after executing Stan code for
both Bayesian ARIMA and BSTS models.

6.1. ARIMA model Bayesian estimation

6.1.1 ARIMA model selection

Finding the AR component, MA component, and order of differencing for the model is the first
step before using an ARIMA model. Table 1 lists various p and q order ARIMA models and their
associated LOOIC values. We assess alternative order ARIMA models with LOOIC values for the
cumulative number of cases and the cumulative number of deaths for each of the five countries.
We evaluate the model with the lowest LOOIC value as the ideal model, and we employ that
model in further bayesian analysis. For instance, from table 1, take the cumulative number of
cases in the USA, the minimum LOOIC value is 10720.14 for the order of ARIMA (1, 2, 1), so we
find our ARIMA model using the minimum LOOIC value.Similarly, for the cumulative number
of deaths in the USA, the minimum LOOIC value is 7000.51 for the model ARIMA (3, 2, 2), so we
use this model in further Bayesian analysis. Similarly, we ordered ARIMA for further Bayesian
analysis for all other countries’ cumulative cases and deaths.

Table 1: ARIMA model selection

Countries Cases model AIC value Deaths model AIC value

USA

ARIMA(2„2,2)
ARIMA(0,2,1)
ARIMA(1,2,2)
ARIMA(2,2,1)
ARIMA(1,2,1)
ARIMA(2,2,0)

10721.76
10730.94
10721.83
10722.18
10720.14
10751.45

ARIMA(2,2,2)
ARIMA(1,2,2)
ARIMA(2,2,1)
ARIMA(3,2,2)
ARIMA(3,2,1)
ARIMA(3,2,3)

7007.206
7176.245
7131.75
7000.51
7115.77
7012.184

UK

ARIMA(2,2,2)
ARIMA(0,2,0)
ARIMA(1,2,0)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(1,2,2)

8921.798
8935.118
8919.275
8917.05
8918.23
8920.127

ARIMA(2,2,2)
ARIMA(1,2,2)
ARIMA(2,2,1)
ARIMA(5,2,2)
ARIMA(5,2,1)
ARIMA(4,2,1)

6181.108
6204.96
6237.94
5801.33
5968.22
6114.78

UAE

ARIMA(0,2,0)
ARIMA(1,2,0)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(0,2,2)

6906.30
6788.24
6729.45
6732.08
6731.07

ARIMA(2,2,2)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(2,2,1)
ARIMA(1,2,2)

1987.16
1984.84
1983.08
1985
1973.254

Bahrain

ARIMA(2,2,2)
ARIMA(1,2,2)
ARIMA(1,2,1)
ARIMA(2,2,1)

5911.402
5908.39
5929.98
5931.204

ARIMA(2,2,2)
ARIMA(0,2,1)
ARIMA(1,2,1)
ARIMA(1,2,2)

2096.992
2096.94
2099.94
2101.53

India

ARIMA(2,2,2)
ARIMA(2,2,1)
ARIMA(3,2,2)
ARIMA(3,2,1)

10000.67
10033.83
9941.79
9990.04

ARIMA(2,2,2)
ARIMA(1,2,1)
ARIMA(0,2,1)
ARIMA(1,2,2)

6895.87
6895.35
6892.32
6895.8

Using the above mentioned stan code in 5.1 and using different priors to estimate unknown
parameters shown in table 2. Figure 1a and 1b show the posterior density plot and trace plot of
the ARIMA model for the cumulative number of UK cases and the cumulative number of Bahrain
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deaths, respectively. Due to space restrctions, here is the convergence plot of two countries: the
UK and Bahrain are only displayed.

(a)

(b)

Figure 1: (a) ARIMA model for UK cases Posterior density plot, and Traceplot (b) ARIMA model for bahrain deaths
Posterior density plot, and Traceplot

Table 2 displays the anticipated outcomes for the ARIMA models. For all countries, it is simple
to verify that the majority of estimated parameters across the ARIMA models are significantly
different from zero. Let’s use the results for deaths in the UK as an example. Except for µ0, all
other parameters are statistically significant in the ARIMA(5,2,2) model. This model’s parameters
have a 95% credible interval that excludes zero and demonstrates the statistical significance of the
estimate. Additionally, the model’s ar.1 and ma.2 components contribute favourably, but ar.2, ar.3,
ar.4, and ar.5 components have statistically significant negative contributions to the ARIMA(5, 2,
2) model. For the USA’s cumulative number of cases, the recommended model is ARIMA (1, 2, 2).
There is one AR component, two MA components, and two other parameters, µ0 and σ0. All five
parameters are statistically significant, which means their 95% credible interval does not contain
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zero, and the first MA component contributes to the model negatively. Similarly, we can interpret
other countries’ parameters using table 2.

Countries
Items
(Models)

µ0 σ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 θ1 θ2

USA

Cases
(ARIMA(1,2,1)

Deaths
(ARIMA(3,2,2)

0.0545
(0.0286)

0.0367
(0.0209)

15711.35
(4.6476)

360.2125
(0.1044)

0.2375
(0.0006)

0.7407
(0.0004)

-0.4641
(0.0005)

-0.2742
(0.0004)

-0.6858
(0.0004)

-0.9896
(0.0001)

0.3402
(0.0004)

UK

Cases
ARIMA(0,2,1)

Deaths
ARIMA(5,2,2)

0.0717
(0.0277)

0.0263
(0.0211)

2433.14
(0.7048)

95.9465
(0.0277)

0.1916
(0.0004)

-0.8767
(0.0003)

-0.1517
(0.0005)

-0.4477
(0.0003)

-0.5309
(0.0004)

-0.2125
(0.0004)

-0.6963
(0.0004)

0.6722
(0.0003)

UAE

Cases
ARIMA(0,2,1)

Deaths
ARIMA(1,2,2)

1.2845
(0.0371)

0.0135
(0.0003)

252.93
(0.1261)

1.8694
(0.0005)

-0.2635
(0.0020)

-0.6439
(0.0005)

-0.5254
(0.0021)

-0.1067
(0.0016)

Bahrain

Cases
ARIMA(1,2,2)

Deaths
ARIMA(0,2,1)

0.0278
(0.0279)

0.0054
(0.0003)

108.622
(0.0564)

2.1048
(0.0006)

0.4209
(0.0027)

-0.8067
(0.0026)

-0.6267
(0.0003)

0.3154
(0.0010)

Table 2: ARIMA model Bayesian estimation: estimation of the posterior means.

6.2. BSTS model Bayesian estimation

From table 3, the majority of the posterior estimates for the BSTS model are statistically significant,
which is consistent with the results from the BSTS models. For UK deaths, for instance, a posterior
parameter estimate of σobs with a range of 142.04 to 155.34 implies that zero excludes from a
credible interval of 95 %, indicating that the parameter is statistically significant. Similarly, for
parameter σslope and σlevel , UK deaths have statistical significance. Similarly, for parameter σslope
and σlevel , UK deaths have statistical significance. The parameter value of σslope is 0.02, and σlevel
is 0.38 for the UK cumulative number of deaths. We can provide a similar justification for the
parameter estimate for the other four countries. Figure 2 to 9 show the autocorrelation plot,
caterpillar plot, posterior density plot, and trace plot of the BSTS model for the UK cumulative
number of cases and deaths, respectively.From the trace plot, we can interpret the convergence of
the Markov chain, due to space restrictions not displaying the plots of all countries.

Table 3: BSTS model Bayesian estimation: estimation of the posterior means.

Countries Items σobs σslope σlevel

USA

Cases

Deaths

1948.43
(0.04)

284.66
(0.07)

3.25
(0.001)

0.03
(0.001)

0.40
(0.001)

0.41
(0.02)

UK

Cases

Deaths

1239.84
(0.10)

148.45
(0.04)

11.51
(0.01)

0.02
(0.001)

0.39
(0.01)

0.38
(0.001)

UAE

Cases

Deaths

218.46
(0.07)

2.41
(0.08)

0.03
(0.001)

0.02
(0.001)

0.40
(0.01)

0.02
(0.001)

Bahrain

Cases

Deaths

107.37
(0.08)

2.50
(0.08)

0.03
(0.001)

0.01
(0.001)

0.41
(0.02)

0.02
(0.001)

India

Cases

Deaths

1240.02
(0.10)

233.30
(0.09)

11.53
(0.01)

0.04
(0.001)

0.40
(0.01)

0.39
(0.001)
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Figure 2: BSTS model for UK cases
autocorrelation plot

s_slope

s_level

s_obs

0 500 1000

Figure 3: BSTS model for UK cases
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Figure 4: BSTS model for UK cases
posterior density plot
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Figure 5: BSTS model for UK cases
trace plot
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Figure 6: BSTS model for UK deaths
autocorrelation plot
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Figure 7: BSTS model for UK deaths
caterpillar plot
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Figure 8: BSTS model for UK deaths
posterior density plot
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Figure 9: BSTS model for UK deaths
trace plot

7. Conclusion

In this study, we used a Bayesian estimation to evaluate the widely used ARIMA and BSTS
models while modelling COVID-19 cumulative number of cases and the cumulative number
of deaths in five countries. From table 4, we discover that the ARIMA model LOOIC value is
lower than that of their corresponding BSTS models. The model with the lowest LOOIC value
is considered to be the best model. For example, Bahrain’s cumulative number of cases LOOIC
value for the Bayesian ARIMA model is 5945.3 and for the BSTS model is 6028.5. Here Looic
value is the minimum for the ARIMA model and which is the best model. Similarly, for Bahrain
cumulative number of deaths LOOIC value for the Bayesian ARIMA model is 2110.7, and for the
BSTS model is 2273.2, therefore the minimum LOOIC value is for the ARIMA model. Therefore
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almost all countries’ data set LOOIC value is minimum for the Bayesian ARIMA model. Hence,
when compared to the corresponding BSTS model, the Bayesian ARIMA model performs the best.

Table 4: ARIMA and BSTS model validation using LOOIC and WAIC.

Looic Waic Looic Waic

USA

Cases

Deaths

10771.5

7221.3

10771.6

7260

47343.5

7665.8

47887.2

7665

UK

Cases

Deaths

8958.4

5831.3

8958.3

5831.2

24255.4

6448.6

24362.8

6448.6

UAE

Cases

Deaths

6786

1993.4

6800.9

1993.5

7131.2

2236

7180.2

2236

Bahrain

Cases

Deaths

5945.3

2110.7

5945.3

2110.9

6028.5

2273.2

6028.5

2273.2

India

Cases

Deaths

10095.5

6981.2

10096.1

6983.5

24219.5

7279.4

24326.3

7361.7
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Abstract 

 

Nowadays, queues be seen in fast food restaurants and in all service-based businesses. This study is 

a mathematical analysis of such business firms with the help of Queueing Theory . The discounts and 

promotions entice customers to the firm and in this study such attracted customers are referred to as 

Encouraged Arrivals. The Chi-square test is used to determine the kind of encouraged arrival pattern 

that adheres to the data observed from a  fastfood outlet. We introduce the encouraged arrivals in an 

M/M/k queueing model for the analysis of performance metrics. The performance metrics of the 

various encouraged arrival patterns are compared and the ideal one is chosen for the firm. The 

economic analysis shows that with encouraged arrivals, the cost associated with the time lost due to 

waiting is reduced gradually with increasing number of servers. Thus the firm increases its projected 

profit with encouraged arrivals. This study helps the entrepreneurs to decide the kind of discounts 

that would attract the customers simultaneously improving the firm’s profit. Little’s law is also 

verified. 

 

Keywords: Encouraged Arrivals (eaη), Promotions, Expenses, Chi-square test, 

Frequency, Degrees of freedom (Dof), Little’s formula (LF). 

 

 

1. Introduction 

 
Queuing theory is one of the earliest and most used quantitative analytic methodology. It involves 

the study of waiting queues. Everyday activities such as grocery shopping, gas purchases, bank 

deposits, and many organisations are affected by waiting lines. The Latin word cauda, which means 

"tail," is where the word queue first originated. Any service system will inevitably have customers 

wait in line to get services, making queue management a significant task. It is commonly referred to 

as the theory of congestion, which comes under the branch of operational research examines the 

connection between the level of demand for a system of services and the delays experienced by its 

users. The goal of the research of queues is to quantify the phenomenon of standing in queues by 

employing benchmark performance indicators like avereage length of the queue, queue’s average 

waiting time and utilization. 

     Poor service patterns, queue management issues, unhelpful service staff attitudes, subpar 
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amenities and delivery are widespread in most service-based businesses including restaurants. All 

of these elements have an impact on customer relationships and overall efficiency. This study aims 

to analyse the data to increase the efficacy and economy of the organization. The analysis is carried 

out based on the primary data collected from a fastfood outlet [1].  

The objective of this study is to reduce the amount of time consumers spend waiting in lines by using 

the M/M/k model in a fast food outlet. First in, first out (FIFO) queue discipline is utilised and we 

have taken into account eaη. 

     A comparison of network tools was performed to figure out the ideal values of performance 

metrics for flexible manufacturing systems in [2]. Tsarouhas [3] presented a theory to estimate the 

overall waiting times for processing  each pizza at a workstation in a food manufacturing outlet. A 

model describing the psychological mechanisms that influence the connection between satisfaction 

and perceived wait time was suggested and tested by McGuire [4]. In [5] according to Mahmoud 

and Lu, numerous branches of research and engineering use queuing theory and Markov chains as 

common analysis, evaluation, and decision-making methods. For analysis of the steady-state and 

transient behaviour, real-world systems could be modelled. According to stochastic replacement 

intervals, special discounts are taken into account for a specific item from the supplier in [6]. A 

demand-satisfaction dilemma involving two products that are interchangeable was examined in [7]. 

The goal was to obtain the order quantity for each product that optimises the combined profit 

function.  Location-inventory models were also taken into account in [8]. They employed a bi-level 

Markov process(MP) to create a stochastic inventory model. Som et al. [9] studied a multi- server 

queuing model with limited capacity for any organization encountering eaη and reverse reneging. 

Customers who are drawn into an organisation as a result of special offers (known as Encouraged 

Arrivals (eaη), a term coined by Som and Seth [10]. Jain et al. [11] described the idea of customer 

mobilisation and stated that a system attracts a new consumer by taking a look at its sizable customer 

base. eaη deals with the percentage change in clients as a result of promotions and discounts. Som 

et al. [12] studied a multi- server queuing model with limited capacity for any organization 

encountering eaη and reverse reneging. The Banking sector has become the most inevitable part of 

public units. Most banks make use of common queuing models. An M/M/1 queueing model is used 

to analyse the ATM’s performance in [13]. The performance metrics of a toll plaza is analysed to find 

the traffic flow and to set up the system in an efficient way in [14]. A review on bulk arrivals [15] 

heps the researchers to model problems without congestion. 

     The introduction of the paper is given in Section 1. Section 2  provides the mathematical notation. 

The proposed mathematical model is given in section 3. In section 4, chi-square test is performed to 

check the fit of various encouraged arrivals. Analysis of performance metrics and economic analysis 

is given in section 5. Little’s law is verified in section 6. Section 7 wraps up the paper with remarks 

and conclusion. 

 

2. Mathematical Notation 

 
The proposed queueing model uses the following notations. 

• Encouraged arrivals are denoted by ‘eaη’ and frequency of arrivals is denoted by ‘fa’. The 

arrivals happen sequentially according to a Poisson process with the parameter λ(1+eaη), 

where "eaη" denotes the change of percentage in the total count of clients estimated from 

observed data. For instance, if a firm previously offered discounts and a percentage change 

in the total count of clients was noticed of +10%, +30% or +50%, then eaη= 0.1, 0.3 or eaη=0.5, 

respectively. 

• The model follows an exponentially distributed service times with parameter µ. 

• Customers are served in the order of their arrival i.e., FCFS. 

• The system has k parallel servers and there is no limit placed on the waiting space in the 
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system at any time ‘t’. 

• Probability that there is no clients in the system is given by Pb0. 

 

3.  Mathematical Model 

 
The following diagram depicts the proposed model. We construct an M/M/k model  to analyse the 

performance measures of the encouraged arrivals. The arrival rate is denoted by the  parameter n ,

(1 )n ea  = + , for all n 

Where n is the number of customers in the system. 

     The model follows an exponentially distributed service times with parameter µ and there are k 

servers in the model. If there are k or more clients, then it is understood that all the k servers are 

busy.  

Hence, the service rate is given by    
( )

( )

       1    

          
n

nµ n k

kµ n k



=









 

 

 
 

Figure 1. Rate transition diagram of the proposed model 

 

4. Chi-square test to check the goodness of fit 

 
In this study, Chi-square test is employed to determine the encouraged arrival pattern that adheres 

to the data observed from a fastfood outlet. This particular statistical test was created to examine the 

consistency between a set of actual frequencies and expected frequencies under the presumption of 

a hypothesis for the phenomenon under study. The test is employed to determine if two 

classification attributes are dependent on one another or not. The chi-square formula provides a 

measurement for the gap between reported and expected frequency which is given by 

                                                                     
2

2 ( )fa ea

ea


−
=                                                                      (1)                                                                                                                     

    Here ‘fa’ denotes the frequency of arrivals and ‘ea’ denotes the expected arrivals, in our case we 

consider ea as follows: 

 i.e., ea = λ (1+ eaη)  when 20 % , 30% or 40% eaη are offered . 
 

Case 1:  
Consider the following hypothesis to check whether the 20% eaη fits the observed data [1]  

 

Null hypothesis:  The 20% eaη fits the distribution 

Alternative hypothesis: The 20% eaη does not fits the distribution. 
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Table 1 : Chi-square test to check the goodness of fit of 20% eaη 

Number of arrivals Frequency of arrivals 

(fa = λ) 

ea =λ (1+ 0.2) 

 

2( )fa ea

ea

−
 

0 6 7.2 0.2 

1 14 16.8 0.467 

2 26 31.2 0.867 

3 18 21.6 0.6 

4 6 7.2 0.2 

5 2 2.4 0.067 

  

     The ea should be greater than or equal to 5 for good approximation in a chi-square test. If any of 

the ea does not staisfy this condition then it has to be combined with some other ea until the 

condition is satisfied. 

 

Table 1 thus becomes 
Table : 1.1 

Number of arrivals Frequency of arrivals 

(fa = λ) 

       ea =λ (1+ 0.2) 2( )fa ea

ea

−
 

0 6 7.2 0.2 

1 14 16.8 0.467 

2 26 31.2 0.867 

3 18 21.6 0.6 

4 or 5 8 9.6 0.267 

                                                                                                                                   
2( )fa ea

ea

−
 = 2.401 

 
2

2 ( )fa ea

ea


−
=  = 2.401 

 

The Dof is given by (number of observed data ) – (number of parameters to be estimated ) -1 

Hence, Dof = 3 

The value of chi-square at 5% level of significance for 3 Dof from the chi-square distribution table = 

7.8147 

 

The calculated value is lesser than table value therefore null hypothesis is accepted.  

(i.e.,) The 20% eaη fits the distribution. 

 
Table 2 : To find arrival rate from the 20% eaη 

Number of arrivals Frequency ofarrivals 

(fa = λ) 

 ea =λ (1+ 0.2) Number of arrivals × ea 

0 6 7.2 0 

1 14 16.8 16.8 

2 26 31.2 62.4 

3 18 21.6 64.8 

4 6 7.2 28.8 

5 2 2.4 12 

                                                                                                                                  Total = 184.8 
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Hence the system has the capacity N= 184.8 

The interarrival time for the N clients is observed as 714 minutes [1] 

The time taken to serve the N clients is observed as 1012 minutes [1] 

Then λ = 
𝑁

𝑖𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑁 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 
 = 

184.8

714
 = 0.258 

          µ = 
𝑁

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑁 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 𝑡𝑜 𝑏𝑒 𝑠𝑒𝑟𝑣𝑒𝑑
 = 

184.8

1012
 = 0.183  

 
Case 2: 

Consider the following hypothesis to check whether the 30% eaη fits the observed data [1]  

 

Null hypothesis:  The 30% eaη fits the distribution 

Alternative hypothesis: The 30% eaη does not fits the distribution 

 
Table 3 : Chi-square test to check the goodness of fit of 30% eaη 

Number of arrivals Frequency of arrivals 

(fa = λ) 

   ea = λ (1+ 0.3) 2( )fa ea

ea

−
 

0 6             7.8 0.4153 

1 14           18.2 0.9692 

2 26           33.8 1.8 

3 18           23.4 1.246 

4 or 5 8           10.4 0.553 

                                                                                                                          
2( )fa ea

ea

−
 =  4.9835 

 
2

2 ( )fa ea

ea


−
=  = 4.9835 

The Dof is given by (number of observed data ) – (number of parameters to be estimated ) -1 

Hence, Dof = 3 

The value of chi-square at 5% level of significance for 3 Dof from the chi-square distribution table= 

7.8147 

The calculated value is lesser than table value therefore null hypothesis is accepted.  

(i.e.,) The 30% eaη fits the distribution. 

 
Table 4 : To find arrival rate from the 30% eaη 

Number of arrivals Frequency of arrivals 

(fa = λ) 

     ea =λ (1+ 0.3) Number of arrivals × ea 

                0 6 7.8 0 

                1 14 18.2 18.2 

                2 26 33.8 67.6 

                3 18 23.4 70.2 

                4 6 7.8 31.2 

                5 2 2.6 13 

                                                                                                                         Total = 200.2 

 

Let the system has the capacity N= 200.2 

The interarrival time for the N clients is observed as 714 minutes [1] 

The time taken to serve the N clients is observed as 1012 minutes [1] 

Then λ = 
𝑁

𝑖𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑁 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 
 = 

200.2

714
 = 0.28 

          µ = 
𝑁

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑁 𝑐𝑙𝑖𝑒𝑛𝑡𝑠 𝑡𝑜 𝑏𝑒 𝑠𝑒𝑟𝑣𝑒𝑑
 = 

200.2

1012
 = 0.197  
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Case 3: 

Consider the following hypothesis to check whether the 40% eaη fits the observed data [1]  

 

Null hypothesis:  The 40% eaη fits the distribution 

Alternative hypothesis: The 40% eaη does not fits the distribution. 

 
Table 5: Chi-square test to check the goodness of fit of 40% eaη 

Number of arrivals Frequency of arrivals 

(fa = λ) 

         ea = λ (1+ 0.4) 2( )fa ea

ea

−
 

0 6 8.4 0.685 

1 14 19.6 1.6 

2 26 36.4 2.97 

3 18 25.2 2.057 

4 or 5 8 11.2 0.9142 

                                                                                                                          
2( )fa ea

ea

−
 =  8.2262 

 
2

2 ( )fa ea

ea


−
=   = 8.2262 

The Dof is given by (number of observed data ) – (number of parameters to be estimated ) -1 

Hence, Dof = 3 

The value of chi-square at 5% level of significance for 3 Dof from the chi-square distribution table= 

7.8147 

The calculated value is gretaer than table value therefore null hypothesis is not accepted.  

(i.e.,) The 40% eaη does not fits the distribution. 

 

 Remarks : 

• Using the chi-square test it is very easy to find the kind of eaη that fits the observed 

data[1]. 

• Thus we can infer from the chi-square test that 20% and 30% eaη fits the observed data 

with which we can further investigate the performance metrics to analyse which is more 

effective for the firm to increse the projected profit. 

5. Analysis of performance metrics 

 
Probability that there are no clients in the system is given by Pb0 
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1
1

0

0!(1 ) !

k nk

n

m m
Pb

k r n

−
−

=

 
= + 

− 
 where  m = 

𝜆(1+𝑒𝑎𝜂)

µ
    , r = 

𝑚

𝑘
                                                          (2) 

Provided that  
𝑚

𝑘
 < 1 

The expected number of clients in the queue is given by Lq 

                                                                       
1

( )q j

j k

L j k Pb


= +

= −  

                                                          
02!(1 )

k

q

m r
L Pb

k r

 
=  

− 
                                                                             (3) 

Using LF,  Lq = λWq 

Where Wq is the expected waiting time in queue 

                                                                      
q

q

w
L


=  

                                                           

02

(1 )

!(1 )

q k

ea
W

m r
Pb

k r

 +
=
 
 

− 

                                                                           (4) 

 

The expected number of clients in the system is given by
s qL m L= +  

The expected waiting time in the system is given by 
1

s qW W


= +  

 

Expected time lost per day due to waiting = λ (1+ eaη) × Wq × 8 hours 

(The working hours per day is taken as 8 hours) [1] 

 

Expected Cost associated with lost time = Wq × Rs. 50 

( The cost associated with time lost by waiting is taken as Rs. 50) [1] 

 
 

Table 6: Comparison of  performance measures between 20% and 30% eaη 

Number of servers                 2                  3                  4 

Lq for 20% eaη 1.97 0.3862 0.0948 

Lq for 30% eaη 2.033 0.3968 0.0978 

Wq for 20% eaη 7.635 1.496 0.367 

Wq for 30% eaη 7.26 1.417 0.3492 

Ls for 20% eaη 3.379 1.7952 1.503 

Ls for 30% eaη 3.454 1.817 1.5188 

Ws for 20% eaη 13.099 6.96 5.831 

Ws for 30% eaη 12.33 6.493 5.425 

 

 Comparing all the performance metrics of eaη with respect to number of servers in Table 6. 

 

 Remarks: 

• From comparing all the performance metrics of 20% and 30% eaη we observe the following  

• In case of expected total count of clients both in queue as well as system (i.e.,) Lq  and Ls 

respectively, 30% eaη increases the count when compared with 20% eaη with varying 

number of servers. 

• In case of waiting time in queue as well as system (i.e.,) Wq and Ws  30% eaη reduces the time 

spent in waiting when compared with 20% eaη with varying number of servers. 
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• Therefore we come to a conclusion that in case of performance metrics (i.e.,) expected count 

of clients and expected waiting time 30% eaη increases the size and at the same time reduces 

the waiting time. 

 

 
 

Figure 2.  Comparing performance metrics between 20% and 30% eaη with respect to number of servers 

 

5.1. Comparison of expected time lost per day with respect to number of servers 

 
Now, the expected time lost per day for poisson, 20% eaη and 30% eaη with respect to number of 

servers are compared. 

 

Expected time lost per day due to waiting = λ (1+ eaη) × Wq × 8 hours 

(The working hours per day is taken as 8 hours) [1] 
Table 7 :  Calculating Expected lost time for poisson arrival 

 Number of servers Expected lost time 

for poisson arrival 

Expected lost time 

for 20% eaη 

Expected lost time for 

30% eaη 

2 18.7719 15.758 16.2624 

3 3.1612 3.0877 3.174 

4 0.775 0.7574 0.7822 

 

Calculating the Expected lost time for poisson arrival with respect to number of servers in Table 7. 

  

Remarks: 

We infer from the Table 7 that the lost time for poisson is more than that of 20% and 30% eaη. Any 

firm’s aim is to reduce the waiting time thus administering eaη helps us to reduce the amount of 

time lost in waiting for service. 
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Figure 3.  Variation in Expected lost time per day with respect to number of servers 

 

 

5.2. Comparison of cost associated with lost time per day 

 
Comparing the cost associated with lost time per day for poisson, 20% eaη and 30% eaη with respect 

to number of servers. 

 

 Expected Cost associated with lost time = Wq × Rs. 50 

 

( The cost associated with time lost by waiting is taken as Rs. 50) [1] 
 

Table 8 :  Calculating cost associated with lost time for 20% eaη 

Number of servers λ (1+ 0.2) Cost associated with 

lost time for poisson 

arrival (in Rs.) 

Cost associated 

with lost time for 

20% eaη (in Rs.) 

  Savings  

with 20% 

eaη (in Rs.)  

2    0.258 938.597 787.932       150.665 

3    0.258 158.06 154.387          3.63 

4    0.258 38.875 37.87          1.005 

 

Calculating the cost associated with lost time for 20% eaη and also the cost saved with 20% eaη  when 

compared with λ [1] with respect to number of servers in Table 8. 

 
Table 9 :  Calculating cost associated with lost time for 30% eaη 

Number of servers λ (1+ 0.3) Cost associated with lost 

time for poisson arrival 

(in Rs.) 

Cost associated 

with lost time for 

30% eaη (in Rs.) 

Savings  

with 30% 

eaη (in Rs.)  

2    0.28 938.597 813.12 125.477 

3    0.28 158.06 158.704 -0.644 

4    0.28 38.875 39.11 -0.235 

0 5 10 15 20

2

3

4

lost time for 30% ea lost time for 20% ea lost time for poisson arrival
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Calculating the cost associated with lost time for 30% eaη and also the cost saved with 30% eaη  when 

compared with λ [1] with respect to number of servers in Table 9. 

 

Remarks: 

We infer from the Tables 7,8 and 9 that the cost associated with lost time due to waiting is more for 

λ [1] than 20% and 30% eaη. While comparing the cost saved with eaη and λ, we observe that 

among the eaη 20% yields better gain than 30% for the firm which is our primary goal. Thus we 

conclude that 20% eaη is the best to be offered by the firm as it would increase the organisation’s 

profit. 

 
  

Figure 4.  Variation in cost associated with lost time with respect to number of servers 

 

 

6. Verification of Little Formula(LF) 

 
Using LF, Ls = λWs 

Table 10: Verification of LF for 20% eaη with respect to system 

Number of servers λ(1+ eaη) Ls Ws Ls = λWs 

2 0.258 3.379 13.099 3.379 = 

(0.258)(13.099) 

verified 

3 0.258 1.7952 6.96 1.7952 = 

(0.258)(6.96) 

verified 

4 0.258 1.503 5.831 1.503 = 

(0.258)(5.831) 

verified 

 
Table 11: Verification of LF for 30% eaη with respect to system 

Number of servers λ(1+ eaη) Ls Ws Ls = λWs 

2 0.28 3.454 12.33 3.454 = 

(0.28)(12.33) 

Verified 

3 0.28 1.817 6.493 1.817 = 

(0.28)(6.493) 

Verified 

4 0.28 1.5188 5.425 1.5188 = 

(0.28)(5.425) 

verified 
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 The LF is verified for both 20% and 30% eaη in terms of queue as well as system size which shows 

that the system is well balanced. 

 

7.  Conclusion 

 
• Using the chi-square test, it is very easy to find the kind of  eaη that fits the observed data[1]. 

• We infer from the chi-square test that, 20% and 30% eaη fits the observed data with which 

we can further investigate the performance metrics to analyse and is found to be  more 

effective for the firm to increse the profit. 

• While comparing the expenses with eaη and λ, we observe that among the eaη 20% yields 

better gain than 30% for the firm which is our primary goal.  

• We conclude that 20% eaη is the best to be offered by the firm as it would increase the 

organisation’s projected profit. 

     We infer from the model created that adding one additional server will assist shorten the time 

clients wait in line and lower the cost associated with it. In order to decrease the time customers 

must wait to receive services and to lower the expense associated with waiting, we advise the 

organisation to raise the number of servers to at least three. 

     With encouraged arrivals the results show that  the cost associated with lost time reduces 

gradually with increasing number of servers than poisson arrivals [1] and we see that 20% eaη is 

ideal for the proposed model as 20% eaη yields better projected profit . Therefore by using the chi-

square test we analysed the kind of encouraged arrival pattern that adheres to the firm 

simultaneously increasing the firm’s projected profit. Thus this study helps the entrepreneurs to 

decide the kind of discounts that would attract the customers simultaneously improving the firm’s 

profit. 
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Abstract 

The aim of this paper is to introduce the relations for moments and characterizing results for the 

newly introduced modified Fréchet distribution based on generalized record values. Here, we used 

an ordered random variable approach like generalized record values for generating the results. We 

have established the recurrence relations for single and product moments of generalized record 

values from modified Fréchet distribution. These relations are also deduced for the lower record 

values and some specific distributions, which are the special cases of modified Fréchet distribution. 

Further, the characterization results for this distribution have been established by using recurrence 

relations for single and product moments and conditional expectation of a function of generalized 

record values and truncated moments. 

Keywords: Order statistics, generalized record values, modified Fréchet 

distribution, single moments, product moments, recurrence relations and 

characterization. 

1. Introduction

The modified Fréchet distribution is an extension of the Fréchet distribution which was introduced 

by Tablada and Cordeiro [23] and pointed out that this distribution is quite effective to provide the 

best fits for real data sets. Since the results on real life data compared with other known 

distributions such as Fréchet, exponentiated Fréchet, Marshall–Olkin Fréchet, exponentiated 

Weibull, revealed that modified Fréchet distribution provides a better fit for modeling real life 

data. 

A random variable X follows modified Fréchet distribution, if it’s probability density function 

pdf is of the form 
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with the distribution function (df) 

 




















 
−= −


xe

x
xF exp)( ,   0x ,    ,  , 0 .                (2) 

Where  , 𝛽 and  𝜆 are shape parameters. 

Note that 𝑓(𝑥) and 𝐹(𝑥) satisfy the relation. 

 )()](ln[
)(

)( xFxF
x

x
xf −

+
= .                    (3) 

The Fréchet and standard Gumbel distributions are the special cases of the modified Fréchet 

distribution, when 0=  and 0= , 1=  respectively. 

Initially, Chandler [8] was the first who laid down the concept of record values inspired by the 

extreme weather conditions. As a result, he designed the model for successive extremes values in a 

sequence of identically independently distributed ( iid ) continuous random variables. Dziubdziela 

and Kopociński [9]  have generalized the concept of record values by choosing random variables of 

more generalized nature and these random variables are called the 𝑘 −th record values. Later, the 

record values defined by Dziubdziela and Kopociński [9] have been called as generalized record 

values by Minimol and Thomas [15], since the −r th member of the sequence of the ordinary 

record values is also known as the −r th record value. Setting 𝑘 = 1, we obtain ordinary record 

statistics. 

Generally, the record values means the values which are not acquired before, e.g., fastest 

century in the one day cricket match, the longest winning streak in basketball, the world record in 

high jumping, the lowest time to cover a fixed distance in freestyle swimming and so on. The 

observation which is greater (or less) than the previous all observations is known as the record 

value. Record values arise naturally in many real life applications involving data relating to 

weather, sports, economics and life-tests. 

For more details on the applications of record values, see Ahsanullah [1], Ahsanullah and 

Nevzorov [2], Arnold et. al. [5]. 

Let }1,{ nX n  be a sequence of independently identically distributed )(iid  random variables 

with df  )(xF  and pdf  )(xf . The −r th order statistics of a random sample nXXX ...,,, 21  is 

denoted by nrX : . For fixed 𝑘 ≥ 1, we define the sequence }1),({ nnLk  of −k th record times of 

}1,{ nX n  as follows: 

 1)1( =kL  

 }:)(min{)1( 1:1)(: −+−+ =+ kjkknLkkk XXnLjnL
k

. 

The sequence }1,{ )( nZ k
n  with 1)(:

)(
−+= knLk

k
n k

XZ , ,2,1=n  is called the sequence of −k th 

lower record values of }1,{ nX n . For convenience, we shall also take and 0
)(

0 =
k

Z . Note that for 

1=k  we have )(
)1(

nLn XZ = , 1n . Then pdf  of )(k
nZ  and the joint pdf  )(k

mZ  and )(k
nZ  are as 

follows: 
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For some recent developments on generalized record values with special reference to those 

arising from NH, exponentiated Rayleigh, Kappa distribution, additive-Weibull lifetime, Power 

function, extended Erlang-truncated exponential, Kumaraswamy-log-logistic, Weibull-Rayleigh, 

Weibull-power function,  Fréchet distributions see, Alam et al. [4], Khan et al. ([12], [13]), Khan et 

al. [14], MirMostafaee et al. [16], Paul [17], Singh and Khan [19], Singh et al. ([20], [21], [22]) 

Thomas and Paul  [24], etc. In this paper we mainly studied the generalized lower record values 

arising from the modified Fréchet distribution. 

The plots represent the shapes of the pdf  of lower record values, arises from the modified 

Fréchet distribution. 

  
Figure. Plots of the pdf  of lower record values from modified Fréchet distribution for selected values of 

parameters. 

 

2.  Relations for single moments 

 
Theorem 2.1.  For the modified Fréchet distribution given in (2) and nk 1 , ...,1,0=j  
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Consequently for 1n , nk 1  and ...,1,0=j  
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Proof.   From (3) and (4), we get 
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In view of Bieniek and Szynal [7], note that 
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Therefore, 
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On substituting in (9), we get 
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On rewriting above expression, we derive the recurrence relation in (7). Then, by repeatedly 

applying the recurrence relation in (7), we simply derive the recurrence relation in (8). 

Remark 2.1.   For 1=k  in (7), the recurrence relation for single moments of lower record values 

from the modified Fréchet distribution given as 

 j
nL

j
nL

j
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j
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j
nL XE
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j
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j
XEXE )(})()({

)1(
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−−

+


=− ++ . 

Remark 2.2.  Putting 1=k , 0= , 1=  in (7), we deduced the recurrence relation for single 

moments of lower record values from the standard Gumbel distribution as obtained by 

Balakrishnan et al. [6]. 

Remark 2.3.  Setting 0=  in (7), we deduced the recurrence relation for generalized record values 

from inverse Weibull distribution as established by Pawlas and Szynal [18] for replacing n  by 

1−n . 

Table I   Moments of lower record values  

 
Table II   Variances of lower record values 

 

 
 

3.  Relations for product moments 

 
Theorem 3.1.  For the modified Fréchet distribution given in (2) and 1n , km  , ...,1,0, =ji  
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and for nm 1 , 2n , ...,1,0, =ji  

n  
5.1= ,   4=  2= ,   5=  

5.1=  5.2=  5.3=  5.1=  5.2=  5.3=  

1 1.45394 1.78177 2.02126 1.32077 1.68029 1.95621 

2 1.06968 1.44242 1.71475 1.00841 1.39679 1.69422 

3 0.90020 1.28891 1.57416 0.86681 1.26561 1.57166 

4 0.79618 1.19248 1.48489 0.77828 1.18208 1.49298 

5 0.72301 1.12323 1.42020 0.71510 1.12151 1.43553 

n  
5.1= ,   4=  2= ,   5=  

5.1=  5.2=  5.3=  5.1=  5.2=  5.3=  

1 0.28211 0.21581 0.17375 0.18045 0.14615 0.12349 

2 0.08176 0.06541 0.05419 0.05577 0.04695 0.04059 

3 0.04147 0.03480 0.02952 0.02950 0.02579 0.02271 

4 0.02588 0.02267 0.01960 0.01900 0.01718 0.01535 

5 0.01798 0.01638 0.01440 0.01355 0.01263 0.01142 
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Proof.  From (3) and (5), we have 
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where 
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Integrating by part, taking bx  for integration and rest of the part for differentiation, we get 
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Substituting in (12), we get 
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After simplification, we obtain the required result as given in (11). 
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Proceeding in a similar manner for the case 1+=mn , the recurrence relation given in (10) can 

easily be established. 

On can also note that Theorem 2.1. can be deduced from Theorem 3.1. by putting 0=j . 

Remark 3.1.  Putting 1=k  in (11), the recurrence relations for product moments of lower record 

values is deduced for the modified Fréchet distribution in the form 
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Remark 3.2.  Setting 1=k , 0= , 1=  in (11), we get the recurrence relations for product 

moments of lower record values from the standard Gumbel distribution as obtained by 

Balakrishnan et al. [6]. 

Remark 3.3.  Assuming 0=  in (11), the recurrence relations for product moments of generalized 

record values is deduced for inverse Weibull distribution as established by Pawlas and Szynal 

[18]. 

4.   Characterizations 

 

Theorem 4.1.  If k  and j  be are positive integers. A necessary and sufficient condition for a 

random variable X  to be distributed with pdf  given by (2) is that 
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Proof.  The necessary part follows from Theorem 2.1. On the other hand if the recurrence relation 

(13) is satisfied, then on using Bieniek and Szynal [7], we have 
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which implies 
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Now applying a generalization of the Müntz-Szász theorem (see for example Hwang and Lin [11]) 

to above expression, we get 
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x
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+
= , 

which proves the sufficiency part. 

Theorem 4.2.  For a positive integer 1k  and let i , j  are non-negative integers, a necessary and 

sufficient condition for a random variable X  to be distributed with pdf  given by (1) is that 
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Proof.  The necessary part follows from Theorem 3.1. On the other hand if the relation in (14) is 

satisfied, then (14) can be written as 
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where 

 





=
y

b
b xdyxh

x
xyxI ),(),( . 

Integrating by parts, treating bx  for differentiation and rest of the part for integration, we get 
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Now applying a generalization of the Müntz-Szász theorem (see for example Hwang and Lin [11]), 

we get 
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Hence the sufficiency part proved. 

Theorem 4.3.  Let X  be an absolutely continuous non-negative random variable having df  )(xF , 
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Now (17) can be seen in view of (Gradshteyn and Ryzhik [10], p-551) 
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To prove the sufficient part, we have 
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Now integrating both the sides with respect to x , we get 
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Since , 0)( =xF  as 0→x  and CxF =)(  as →x . 

Thus, by definition of df  1)( =xF  as →x , this implies that 1=C . 

Hence the sufficiency part proved. 

Remark 4.3. If 1=k  in (17), we get the following characterization of lower record values for 

modified Fréchet distribution 
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Theorem 4.4.   Suppose X  be an absolutely continuous (with respect to Lebesque measure) 

random variable with the df )(xF  and pdf  )(xf     x0 , such that )(' xf  and )|( xXXE  , 
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Integrating by parts, taking 
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 for integration and rest of the 

integrand for differentiation, we get 
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Now dividing and multiplying by )(xf , we obtain the result as given in (20). 

For proving sufficient part, we have from (20) 
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On integrating (21) both sides with respect to x , we get 
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Further, To obtain the value of C (constant of integration), we have used the property of pdf  that 

is 
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Remark 4.5.   Setting 1=  and 0= , Theorem 4.4 gives characterizing result for standard Gumbel 

distribution and for 0= , it gives the characterizing result for inverse Weibull distribution. 

Conclusion:  In this paper, we have presented the new results for the single and product moments 

of modified Fréchet distribution based on generalized lower record values. These results include 

some well-known results for standard Gumbel and inverse Weibull distributions as obtained by 
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Balakrishnan et al. [6] and Pawlas and Szynal [18]. Later, we established the characterizing results 

for this distribution by utilizing the relations for single and product moments and conditional 

expectation of a function of generalized lower record value, and using truncated moments. 
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Abstract 

 

The present investigation is concerned with the profitability analysis of a food industrial system 

where production is based on the make-and-pack strategy. The system is assumed to have two 

subsystems: first subsystem is for making while the second is for packing the product so formed. As 

per the gathered information about the production procedure in the food industrial plant, the priority 

of repair is given to the making subsystem over the packing subsystem. Here, failure of either 

subsystem leads to a complete breakdown of the system. Also, two types of failures are considered in 

the packing subsystem i.e. minor failures and major failures. Two kinds of repairers (operator and 

fitter) are appointed to tackle the failures in the subsystems. For minor and major failures in the 

packing subsystem, the operator and fitter respectively are responsible for repairs. However, any 

failure in making subsystem is repaired by the combined efforts of the operator and fitter. Reliability 

characteristics such as mean time to system failure (MTSF), system availability, and expected busy 

period of the repair persons are studied by employing the semi-Markov process and regenerative point 

technique. The system profitability is graphically analyzed concerning to failure rates of both 

subsystems.  

 

Keywords: make-and-pack production process, priority basis repair, regenerative 

point technique, semi-Markov process 

 

 

1. Introduction 
 

Globalization has opened up new opportunities and challenges to the manufacturing industries 

which force producers to seek out more efficient ways to manufacture their products. The producers 

adopt various strategies to obtain the most reliable product and as a result, the production process 

is becoming more multifarious. So, for the smooth handling of the production process, it is divided 

into some stages i.e. known as two-stage production or three-stage production, etc. From the existing 

literature, it is visible that Johnson [1] was the first one who used the term two-stage production in 

which he considered one machine in each stage. Afterward, a number of significant studies came 

into existence regarding two-stage production with consideration of more than one machine in the 
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second stage as taken by Gupta and Tunc [2] and Honkomp et al. [3]. From the general point of view 

of the production, this two-stage production was specifically named the make-and-pack process. 

Usually, a make-and-pack production process is coupled with two stages: the first stage is 

responsible for the making or formation of the product while the second stage is responsible for the 

packaging or packing of the product so formed. This mode of production makes workability more 

flexible by managing the processing rates of the packaging lines with the respect that of formulation 

lines. It is frequently confronted in many production industries such as the paper industry, 

pharmaceutical industry, food industry, chemical industry, etc. 

Make-and-pack production process is a well-known concept in the food processing industry. 

Akkerman et al. [4] examined the effect of some capacity and time constraints on the performance of 

a two-stage food production system. Sel et al. [5] discussed the planning and scheduling of make-

and-pack production under lifetime uncertainty. Klanke et al. [6] analyzed the short-term scheduling 

of the make-and-pack process for minimizing the total production makespan of the schedule. It is 

apparent from the extensive literature review that most of the research on make-and-pack process 

is limited to the scheduling of this production process. But there is another side rather than the 

scheduling of this process which can be equally responsible for the financial loss in manufacturing 

industries and that is the failure in the systems used for production. As if the system will fail and 

did not come into operation timely, then the company can face a great loss in terms of money and 

reputation. So, the present paper is an effort to develop the reliability model for a food industrial 

system considering two subsystems one for making and another for the packing stage. In reliability 

analysis, a modeling approach is usually adopted to understand and predict the system’s behavior 

in given situations with the help of probabilistic concepts. Also, the priority of repair and two types 

of repairmen are taken from the point of making the system more available so that profit can be 

maximized.  

As far as reliability analysis is concerned, it has been a very compelling topic for a long time. It 

has been dealing with various types of industrial systems since the 1960s. A lot of research has been 

done and appreciated on the reliability analysis of various systems as seen in the literature. The 

various types of systems viz. single-unit systems or two or more unit industrial systems have been 

studied in the literature considering various factors affecting the system performance such as 

preventive maintenance of the units, perfect/imperfect switchover of the units, priority basis repair, 

two or more types of repairmen, standby units, inspections, replacement of the failed unit or its 

repair in the online or offline mode and plenty of factors are also there. These all factors were sized 

up to see the feasibility of profit maximization. Gaver [7] made derivations regarding MTSF and the 

availability of the type of systems that are composed of two paralleled subsystems. He considered 

situations for when there is waiting time to repair for another subsystem or not when both fail 

simultaneously.  Pandey et al. [8] discussed the stochastic modeling of a powerloom plant consisting 

of two units having mechanical failures along with the concept of two additional failures due to 

poorly trained weavers; common cause failure and human error. Mathew et al. [9] studied a two-

unit system of continuous casting plant with three types of failures such as repairable, replaceable, 

or requiring reconditioning/ reinstallation. Taj et al. [10] have examined a single-machine subsystem 

involved in a cable plant by considering its three types of maintenance strategies. Kumari et al. [11] 

investigated the profit of the butter-oil (ghee) manufacturing system through the supplementary 

variable technique. Singh et al. [12] evaluated the reliability metrics of a complex repairable system 

having two subsystems connected in series with imperfect switching. Saini et al. [13] analyzed a 

redundant system with non-identical units; one original and another duplicate cold standby unit 

where priority was given to the original unit over the repair of the duplicate unit. Bashir et al. [14] 

proposed a model considering two units along with their controlled and uncontrolled failures in 

terms of repairing and replacing respectively. Andalib and Sarkar [15] discussed a repairable system 
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with two spare units along with their repair/service by two repair persons. Sharma and Drishti [16] 

studied the seasonal effect on the workability of an ice-cream plant.  Monika and Chopra [17] have 

developed the reliability model for the food industrial system by considering demand-based 

seasons. Some other recent reliability studies on realistic systems can be explored in Rizwan et al. 

[18], Sachdeva et al. [19], and Yusuf and Sanusi [20]. 

It is apparent from the literature that several aspects have been taken regarding the reliability 

modeling of industrial systems. So, on studying these aspects and by the visit of the industrial system 

under consideration, the concept of priority of repair of the making subsystem over the packing 

subsystem and two types of repairmen are considered. In all, the present study helps to fill the gap 

between the scheduling of the make-and-pack process of the food production systems and failures 

that cause a delay in food production following the financial loss. We develop a model with 

consideration of the two subsystems (one for making and another for packing) of the food industrial 

system based on the production strategy. Also, it is assumed that the packing subsystem has more 

than one unit working in parallel and this subsystem can have failures of two types i.e. minor and 

major failures. Accordingly, various measures of system effectiveness have been evaluated with the 

help of the regenerative point technique to see the behavior of the profit function, and also profit 

maximizing parameters are deduced.   

 

2. Notations 

 
Table 1:  Notations used throughout the paper 

 

 

Notations Description 

𝜆1 Constant failure rate of the making subsystem 

𝜆2 Constant failure rate of the packing subsystem 

𝑔1(𝑡)/𝐺1(𝑡) pdf/cdf of repair time of making subsystem  

𝑔21(𝑡)/𝐺21(𝑡) pdf/cdf of time to complete repair of minor failures of packing subsystem 

𝑔22(𝑡)/𝐺22(𝑡) pdf/cdf of time to complete repair of major failures of packing subsystem 

𝑞𝑖𝑗(𝑡)/𝑄𝑖𝑗(𝑡)  pdf/cdf of transition time from a state ‘i’ to a state ‘j’  

𝜙𝑖(𝑡) cdf of first passage time from a regenerative state ‘i’ to a failed state 

𝐴0 Steady state availability of the system 

𝐵0
𝑜/𝐵0

𝑓 Busy period of the operator/fitter for repair 

𝑀𝑖(𝑡) Probability that the system is up initially in regenerative state ‘i’ and is up at 

instant t without going through any other regenerative state 

𝑊𝑖(𝑡)  Probability that the repair person is busy in repair of the subsystem 

(making/packing) initially in regenerative state ‘i’ and is engaged at time t 

without visiting to any other regenerative state 

𝑚𝑖𝑗 The unconditional mean time taken by the system to visit any regenerative 

state ‘j’ when the time is measured from the time of entrance into state ‘i’ 

𝜇𝑖 Mean sojourn time, i.e., the expected spent time in a regenerative state ‘i’ before 

visiting any other state 

           */© Symbol for Laplace transform / Laplace convolution 

         **/ⓢ Symbol for Laplace Stieltjes transform/ Laplace Stieltjes convolution 
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Table 2: Notations regarding the states of the system 
 

 

State Symbol Meaning 

State 0 (𝑂𝑚 , 𝑂𝑝) Operative state of the system where both subsystems viz. making 

and packing subsystems are operative 

State 1 (𝑂𝑚 , 𝐹𝑢𝑟𝑝1
) Operative state of the system where packing subsystem is under 

minor repair 

State 2 (𝐹𝑢𝑟𝑚 , 𝐹𝑤𝑟𝑝1
) Failed state of the system where making subsystem is under repair 

and the packing subsystem is waiting for minor repair 

State 3 (𝐹𝑢𝑟𝑚 , 𝐷𝑝) Failed state of the system where making subsystem is under repair 

and the packing subsystem is in down state 

State 4 (𝐷𝑚 , 𝐹𝑢𝑟𝑝2
) Failed state of the system where making subsystem is in down 

state and the packing subsystem is under major repair 

 

This section is devoted to notations used in the present study. All notations are specified in Table 1 

and Table 2.  

 

3. Description of the system and Assumptions  

3.1. Description of the system 
 

This paper deals with a food industrial system in which production is based on the make-and-pack 

strategy. This system has two subsystems; one for making and another for packing the product so 

formed. The making subsystem has four units working in series and the packing subsystem has two 

units working in series which further have five and three subunits working in parallel respectively 

(see Figure 1). When there are failures in the making subsystem then the system will completely fail 

and the packing subsystem will be kept in a down state to manage the production because the 

packing subsystem will not have material for packing, while the packing subsystem can behave in 

two manners when it has failures depending on the type of failures i.e. minor or major failures. 

When minor failures are there, then the system will work in the same manner (as it is assumed that 

the failures will be repaired within negligible time or online we can say) but in case of major failures, 

the system will completely fail and in that case also the making subsystem will be in the down state 

as if not kept in the down state then the surplus product will form which will not be worked upon 

further due to failure of the packing subsystem. Also, when there will be a simultaneous failure in 

both subsystems, then the priority of repair will be given to making subsystem. It is due to the reason 

that the failures in the packing subsystem, at the same time, can be handled by shifting the material 

to other subunits working in parallel; as per the information from the officials of the food processing 

plant. Five states are there depicting the possibilities taken with the system (see Figure 2) which are 

described in Table 2. 

 

3.2. Assumptions 
 

The following assumptions have been taken throughout the paper discussion: 

• Initially, both the making and packing subsystems are in operative condition. 

• The system will be in the state of complete failure only in two cases; either there is     

a failure in the making subsystem or there is a major failure in the packing 

subsystem. 
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• The operator and fitter both work together for repair only when there is a failure 

in making subsystem as it has priority of repair.  

• The failure times and repair times follow exponential and general distributions 

respectively.  

•   The repaired system works as a new one. 

 

 
 

Figure 1: System Block Diagram  

 
 

 
 

Figure 2: State Transition Diagram 

 
 

445



 
Monika, Garima Chopra 

PROFITABILITY ANALYSIS OF A FOOD INDUSTRIAL SYSTEM 

HAVING MAKE-AND-PACK PRODUCTION STRATEGY WITH 

PRIORITY BASIS REPAIR                                                  
                         RT&A, No 2 (73) 

Volume 18, June 2023  

 

4. Solution of Mathematical Model 
 

The time points of entry into 0 to 4 states are the regeneration points and consequently, these states 

are termed as regenerative states. The states 0 and 1 are up states of the system whereas the states 2, 

3, and 4 are failed states of the system. The transition probabilities for the states are mentioned as 

under:  
 

𝑞01(𝑡) = 𝑝𝜆2. 𝑒−(𝜆1+𝜆2)𝑡,   𝑞03(𝑡) = 𝜆1. 𝑒−(𝜆1+𝜆2)𝑡,   𝑞04(𝑡) = 𝑞𝜆2. 𝑒−(𝜆1+𝜆2)𝑡,   𝑞10(𝑡) = 𝑔21(𝑡). 𝑒−𝜆1𝑡,    
 

𝑞12(𝑡) = 𝜆1𝑒−𝜆1𝑡 . 𝐺21(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ,   𝑞21(𝑡) = 𝑔1(𝑡),   𝑞30(𝑡) = 𝑔1(𝑡),   𝑞40(𝑡) = 𝑔22(𝑡). 

 

Further, the non-zero elements 𝑝𝑖𝑗 , where 𝑝𝑖𝑗 = lim
𝑠→0

𝑞𝑖𝑗
∗(𝑠), are 

 

𝑝01 =
𝑝𝜆2

𝜆1+𝜆2
,   𝑝03 =

𝜆1

𝜆1+𝜆2
,   𝑝04 =

𝑞𝜆2

𝜆1+𝜆2
,   𝑝10 = 𝑔21

∗ (𝜆1),   𝑝12 = 1 − 𝑔21
∗ (𝜆1),   𝑝21 = 𝑝30 = 𝑝40 = 1. 

 

From these, we can conclude that 
 

𝑝01 + 𝑝03 + 𝑝04 = 1,   𝑝10 + 𝑝12 = 1. 

 

Corresponding to the states 0 to 4, the mean sojourn times, 𝜇𝑖 are evaluated as: 
 

𝜇0 =
1

𝜆1+𝜆2
,   𝜇1 =

1−𝑔21
∗ (𝜆1)

𝜆1
,   𝜇2 = −𝑔1

∗′
(0),   𝜇3 = −𝑔1

∗′
(0),   𝜇4 = −𝑔22

∗′
(0). 

 

Further, the unconditional mean times, 𝑚𝑖𝑗  used in the solution of the model are as given below: 

 

𝑚01 =
𝑝𝜆2

(𝜆1+𝜆2)2,   𝑚03 =
𝜆1

(𝜆1+𝜆2)2,   𝑚04 =
𝑞𝜆2

(𝜆1+𝜆2)2,   𝑚10 = −𝑔21
∗′

(𝜆1),   𝑚12 = 𝑔21
∗′

(𝜆1) +
1−𝑔21

∗ (𝜆1)

𝜆1
, 

 

 𝑚21 = −𝑔1
∗′

(0),   𝑚30 = −𝑔1
∗′

(0),   𝑚40 = −𝑔22
∗′

(0). 

 

Furthermore, we get 
 

𝑚01 + 𝑚03 + 𝑚04 = 𝜇0,   𝑚10 + 𝑚12 = 𝜇1,   𝑚21 = 𝜇2,   𝑚30 = 𝜇3,   𝑚40 = 𝜇4. 

 

The expressions for reliability measures and profit have been appraised in the upcoming 

subsections. 

 

4.1. MTSF 
 

The MTSF is the metric related to the failure of the system. It provides the expected time to which 

the system is operational before the complete failure. For determining the MTSF of the system, the 

failed states have been considered as the absorbing states. The resulting iterative relations for 𝜙𝑖(𝑡) 

are given below 
 

𝜙0(𝑡) = 𝑄01(𝑡)ⓢ𝜙1(𝑡) + 𝑄03(𝑡) + 𝑄04(𝑡)                                                    (1)    
                                                                            

𝜙1(𝑡) = 𝑄10(𝑡)ⓢ𝜙0(𝑡) + 𝑄12(𝑡)                                                             (2)                                                                      
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Taking Laplace Stieltjes transform of equations (1-2) and solving them, we have 
 

𝜙0
∗∗(𝑠) =

𝑁1(𝑠)

𝐷1(𝑠)
 

 

where, 
 

𝑁1(𝑠) = |
𝑞03

∗ (𝑠) + 𝑞04
∗ (𝑠) −𝑞01

∗ (𝑠)

𝑞12
∗ (𝑠) 1

| and   𝐷1(𝑠) = |
1 −𝑞01

∗ (𝑠)
−𝑞10

∗ (𝑠) 1
| 

 

Assuming that the considered system initiates its journey from the state ‘0’, the MTSF is calculated 

as: 
 

MTSF = lim
𝑠→0

(1−𝜙0
∗∗(𝑠))

𝑠
=

𝑁1

𝐷1
 

 

where, 
 

𝑁1 = 𝑝01. 𝜇1 + 𝜇0 and 𝐷1 = 1 − 𝑝01 . 𝑝10. 

 

4.2. Availability 
 

Availability is a key performance indicator of a production system. This metric is used in the 

production process as it keeps an eye on the continuous operations of the system which results in 

terms of maximum profit for the manufacturers. 

To determine the system availability, let us define 𝐴𝑖(𝑡) as the probability that starting from the 

regenerative state ‘i’, the system is in the up state at the instant ‘t’. Thus, the iterative relations will 

be:  
 

𝐴0(𝑡) =  𝑀0(𝑡) + 𝑞01(𝑡)©𝐴1(𝑡) + 𝑞03(𝑡)©𝐴3(𝑡) + 𝑞04(𝑡)©𝐴4(𝑡)                             (3) 
 

𝐴1(𝑡) = 𝑀1(𝑡) + 𝑞10(𝑡)©𝐴0(𝑡) + 𝑞12(𝑡)©𝐴2(𝑡)                               (4) 
 

𝐴2(𝑡) = 𝑞21(𝑡)©𝐴1(𝑡)                                  (5) 
 

𝐴3(𝑡) = 𝑞30(𝑡)©𝐴0(𝑡)                                  (6) 
 

𝐴4(𝑡) = 𝑞40(𝑡)©𝐴0(𝑡)                                  (7) 

 

where, 
 

 𝑀0(𝑡) = 𝑒−(𝜆1+𝜆2)𝑡 and 𝑀1(𝑡) = 𝑒−𝜆1𝑡 . 𝐺21(𝑡)̅̅ ̅̅ ̅̅ ̅̅  . 

 

Taking Laplace transform of equations (3-7) and then solving them further, the steady-state 

availability is evaluated as 
 

𝐴0 = lim
𝑠→0

[𝑠.
𝑁2(𝑠)

𝐷2(𝑠)
] =

𝑁2

𝐷2
   

 

where,  
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𝑁2(𝑠) = |
|

𝑀0
∗(𝑠) −𝑞01

∗ (𝑠) 0 −𝑞03
∗ (𝑠) −𝑞04

∗ (𝑠)

𝑀1
∗(𝑠) 1 −𝑞12

∗ (𝑠) 0 0

0 −𝑞21
∗ (𝑠) 1 0 0

0 0 0 1 0
0 0 0 0 1

|
| and 

 

𝐷2(𝑠) =
|
|

1 −𝑞01
∗ (𝑠) 0 −𝑞03

∗ (𝑠) −𝑞04
∗ (𝑠)

−𝑞10
∗ (𝑠) 1 −𝑞12

∗ (𝑠) 0 0
0 −𝑞21

∗ (𝑠) 1 0 0

−𝑞30
∗ (𝑠) 0 0 1 0

−𝑞40
∗ (𝑠) 0 0 0 1

|
|
  

 

which gives 
 

𝑁2 = 𝜇0. 𝑝10 + 𝜇1. 𝑝01 and 𝐷2 = 𝑝10. 𝜇0 + 𝑝01. 𝜇1 + (𝑝12. 𝑝01 + 𝑝03. 𝑝10). 𝜇2 + 𝑝10. 𝑝04. 𝜇4. 

 

4.3. Busy period 
 

In our study, we have two repairers i.e., operator and fitter. They have been assigned separate repair 

duties based on the failures in the subsystems. Their busy periods' expressions are evaluated in the 

next two subsections. 

 

4.3.1. Operator’s busy period for repair 
 

To calculate the operator’s busy period with the system, we have the following iterative relations for 

𝐵𝑖
𝑜(𝑡), where 𝐵𝑖

𝑜(𝑡) is defined as the probability when the operator is fully engaged in repair at an 

instant ‘t’, provided that the system moved in regenerative state ‘i’ at t = 0.  
 

𝐵0
𝑜(𝑡) =  𝑞01(𝑡)©𝐵1

𝑜(𝑡) + 𝑞03(𝑡)©𝐵3
𝑜(𝑡) + 𝑞04(𝑡)©𝐵4

𝑜(𝑡)                                            (8) 
 

𝐵1
𝑜(𝑡) = 𝑊1(𝑡) + 𝑞10(𝑡)©𝐵0

𝑜(𝑡) + 𝑞12(𝑡)©𝐵2
𝑜(𝑡)                               (9) 

 

𝐵2
𝑜(𝑡) = 𝑊2(𝑡) + 𝑞21(𝑡)©𝐵1

𝑜(𝑡)                               (10) 
 

𝐵3
𝑜(𝑡) = 𝑞30(𝑡)©𝐵0

𝑜(𝑡)                                (11) 
 

𝐵4
𝑜(𝑡) = 𝑞40(𝑡)©𝐵0

𝑜(𝑡)                                (12) 

 

where, 
 

𝑊1(𝑡) = 𝑒−𝜆1𝑡 . 𝐺21(𝑡)̅̅ ̅̅ ̅̅ ̅̅  and 𝑊2(𝑡) = 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅. 

 

Further, we have taken the Laplace transform of the aforementioned equations (8-12). The obtained 

busy period of the operator in the steady state is 
 

𝐵0
𝑜 = lim

𝑠→0
[𝑠.

𝑁31(𝑠)

𝐷31(𝑠)
] =

𝑁31

𝐷31

 

 

where, 
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𝑁31(𝑠) = |
|

0 −𝑞01
∗ (𝑠) 0 −𝑞03

∗ (𝑠) −𝑞04
∗ (𝑠)

𝑊1
∗(𝑠) 1 −𝑞12

∗ (𝑠) 0 0

𝑊2
∗(𝑠) −𝑞21

∗ (𝑠) 1 0 0
0 0 0 1 0
0 0 0 0 1

|
|   and 

 

𝐷31(𝑠) =
|
|

1 −𝑞01
∗ (𝑠) 0 −𝑞03

∗ (𝑠) −𝑞04
∗ (𝑠)

−𝑞10
∗ (𝑠) 1 −𝑞12

∗ (𝑠) 0 0
0 −𝑞21

∗ (𝑠) 1 0 0

−𝑞30
∗ (𝑠) 0 0 1 0

−𝑞40
∗ (𝑠) 0 0 0 1

|
|
 

 

which gives 
 

𝑁31 = 𝑝01. (𝜇1 + 𝜇2. 𝑝12)  and 𝐷31 = 𝑝10. 𝜇0 + 𝑝01. 𝜇1 + (𝑝12. 𝑝01 + 𝑝03. 𝑝10). 𝜇2 + 𝑝10. 𝑝04. 𝜇4. 

 

4.3.2. Fitter’s busy period for repair 
 

For the fitter’s busy period with the system, the following recursive relations can be obtained where 

𝐵𝑖
𝑓(𝑡) is defined as the probability when the fitter is fully engaged at an instant ‘t’, provided that the 

system moved in regenerative state ‘i’ at t = 0.  
 

𝐵0
𝑓(𝑡) =  𝑞01(𝑡)©𝐵1

𝑓(𝑡) + 𝑞03(𝑡)©𝐵3
𝑓(𝑡) + 𝑞04(𝑡)©𝐵4

𝑓(𝑡)                                          (13) 
 

𝐵1
𝑓(𝑡) = 𝑞10(𝑡)©𝐵0

𝑓(𝑡) + 𝑞12(𝑡)©𝐵2
𝑓(𝑡)                              (14) 

 

𝐵2
𝑓(𝑡) = 𝑊2(𝑡) + 𝑞21(𝑡)©𝐵1

𝑓(𝑡)                               (15) 
 

𝐵3
𝑓(𝑡) = 𝑊3(𝑡) + 𝑞30(𝑡)©𝐵0

𝑓(𝑡)                               (16) 
 

𝐵4
𝑓(𝑡) = 𝑊4(𝑡) + 𝑞40(𝑡)©𝐵0

𝑓
(𝑡)                               (17) 

 

where, 
 

𝑊2(𝑡) = 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅, 𝑊3(𝑡) = 𝐺1(𝑡)̅̅ ̅̅ ̅̅ ̅ and 𝑊4(𝑡) = 𝐺22(𝑡)̅̅ ̅̅ ̅̅ ̅̅ . 

 

The Laplace transform of the equations (13-17) is considered, and we obtain the busy period of the 

fitter as: 
 

𝐵0
𝑓

= lim
𝑠→0

[𝑠.
𝑁32(𝑠)

𝐷32(𝑠)
] =

𝑁32

𝐷32

 

 

where, 
  

𝑁32(𝑠) =
|
|

0 −𝑞01
∗ (𝑠) 0 −𝑞03

∗ (𝑠) −𝑞04
∗ (𝑠)

0 1 −𝑞12
∗ (𝑠) 0 0

𝑊2
∗(𝑠) −𝑞21

∗ (𝑠) 1 0 0

𝑊3
∗(𝑠) 0 0 1 0

𝑊4
∗(𝑠) 0 0 0 1

|
|
   and 
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𝐷32(𝑠) =
|
|

1 −𝑞01
∗ (𝑠) 0 −𝑞03

∗ (𝑠) −𝑞04
∗ (𝑠)

−𝑞10
∗ (𝑠) 1 −𝑞12

∗ (𝑠) 0 0
0 −𝑞21

∗ (𝑠) 1 0 0

−𝑞30
∗ (𝑠) 0 0 1 0

−𝑞40
∗ (𝑠) 0 0 0 1

|
|
 

 

which gives 
 

𝑁32 = 𝑝10. 𝑝04. 𝜇4 + 𝑝03. 𝑝10. 𝜇2 + 𝑝12. 𝑝01. 𝜇2    and 
 

𝐷32 = 𝑝10. 𝜇0 + 𝑝01. 𝜇1 + (𝑝12. 𝑝01 + 𝑝03. 𝑝10). 𝜇2 + 𝑝10. 𝑝04. 𝜇4. 

 

4.4. Profit 
 

The main purpose of every organization is to gain profit to survive in this competitive era. Reliability 

analysis helps us to provide profitable strategies with the aid of measures of system effectiveness. 

The profit earned by the system can be evaluated by the following expression 
 

Profit = 𝐶0. 𝐴0 − (𝐶𝑟𝑜. 𝐵0
𝑜 + 𝐶𝑟𝑓 . 𝐵0

𝑓
) 

 

where, 𝐶0 is revenue per unit up time of the system and 𝐶𝑟𝑜, 𝐶𝑟𝑓  refer to the respective service costs 

per unit time for which the operator and fitter are busy. 

 

5. Numerical Calculation 
 

Based on gathered data from the food industrial plant, we have estimated the rates and probabilities 

involved in the model. The estimated rates and probabilities are given in Table 3. 

 

Table 3: Rates and probabilities 
 

 

Failure rate of making subsystem 0.08 

Failure rate of packing subsystem 0.04 

 Repair rate of making subsystem 1.64 

 Repair rate of packing subsystem due to minor failures     5.37 

 Repair rate of packing subsystem due to major failures     1.76 

Probability that there are minor failures in packing 

subsystem 

    0.22 

Probability that there are major failures in packing 

subsystem 

    0.78 

 

The considered system has been assessed by assuming the repair time for making subsystem as well 

as packing subsystem for both minor and major failures as exponentially distributed with 

parameters 𝛽1, 𝛽21, and 𝛽22 respectively, so that 𝑔1(𝑡) = 𝛽1𝑒−𝛽1𝑡 , 𝑔21(𝑡) = 𝛽21𝑒−𝛽21𝑡, 𝑔22(𝑡) =

𝛽22𝑒−𝛽22𝑡 . 

Correspondingly, we have  𝑝10 =
𝛽21

𝜆1+𝛽21
 , 𝑝12 =

𝜆1

𝜆1+𝛽21
 , 𝜇1 =

1

𝜆1+𝛽21
 , 𝜇2 =

1

𝛽1
 and 𝜇4 =

1

𝛽22
. The 

costs involved are as; 𝐶0 = 100000, 𝐶𝑟𝑜 = 1600, and 𝐶𝑟𝑓 = 3000. Using the rates mentioned in Table 3, 

we have obtained measures of system effectiveness as MTSF = 8.996875124, 𝐴0 = 0.937665183, 𝐵0
𝑜  = 

0.001552568, and 𝐵0
𝑓  = 0.062334817. 
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6. Result and Discussion 
 

We have noticed that although the system performance is governed by the various parameters 

involved, yet the aspect of failure rates of both subsystems is the base of our study. The impact of 

both subsystems’ failure rates on the MTSF, system availability, and overall profit is examined 

graphically. From Figure 3, it is observed that MTSF decreases with the increase in the failure rate 

of the making as well as the packing subsystem. The availability of the system is effected by the 

failure rates of both subsystems which is evident from Figure 4. Here, from the trend of the 

availability of the system with the failure rates of the subsystems, it is clear that availability declines 

with the rise in failure rates of the making subsystem and the packing subsystem.  

 

 

 
 

Figure 3: MTSF v/s Failure rate of making subsystem for various values of 𝜆2 
 
 

 

 
 

Figure 4: Availability v/s Failure rate of making subsystem with various values of 𝜆2 
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Figure 5: Profit v/s system revenue for various values of 𝜆1 

For studying the effect of failure rates on system profit, we have fixed some parameters such as 𝛽1 = 

1.64, 𝛽21 = 5.37, 𝛽22 = 1.76, 𝑝 = 0.22, 𝑞 = 0.78, 𝐶𝑟𝑜 =  1600 and 𝐶𝑟𝑓 =  3000. To examine the effect of 𝜆1 on 

system profit, we have varied the parameter 𝜆1 as 0.04, 0.40, and 0.80. Figure 5 indicates that for the 

varying  𝜆1 as 0.04, 0.40, and 0.80, the profit is positive or zero or negative when the system revenue 

i.e., 𝐶0 is greater or equal or lesser than 5339.423, 7096.091, and 9047.954 respectively. Further, we

have explored the effect of 𝜆2 on profit, by varying the parameter 𝜆2 as 0.04, 0.40, and 0.80. It can be

seen in Figure 6 that for 𝜆2 as 0.04, 0.40, and 0.80, the profit is positive or zero or negative when the

system revenue i.e., 𝐶0 is greater or equal or lesser than 5534.609, 7096.091, and 9772.342 respectively.

Figure 6: Profit v/s system revenue for various values of 𝜆2 

-10000

-5000

0

5000

10000

15000

20000

0 5000 10000 15000 20000 25000

P
ro

fi
t

Revenue

λ₁=0.04
λ₁=0.40
λ₁=0.80

-10000

-5000

0

5000

10000

15000

20000

0 5000 10000 15000 20000 25000

P
ro

fi
t

Revenue

λ₂=0.04
λ₂=0.40
λ₂=0.80

452



Monika, Garima Chopra 

PROFITABILITY ANALYSIS OF A FOOD INDUSTRIAL SYSTEM 

HAVING MAKE-AND-PACK PRODUCTION STRATEGY WITH 

PRIORITY BASIS REPAIR     
      RT&A, No 2 (73) 

Volume 18, June 2023 

7. Conclusion

In the present paper, we have figured out the MTSF, availability, and profitability of the food 

industrial system that is based on the make-and-pack production process in the aspect of the failure 

rates of the subsystems. The graphical interpretation confirms that both reliability metrics, MTSF, 

and system availability reduce with the surge in time and failure rates of both making and packing 

subsystems. It is also found true that the profit of the studied system increases with the increase in 

the system revenue and decreases when the failure rates of the subsystems increase. So, it is 

concluded that for lower values of failure rates, the expected profit is high as compared to higher 

values of failure rates. As far as the subsystems are concerned, it is graphically observed that for the 

same value of failure rate i.e.,  𝜆1, 𝜆2 = 0.04, more revenue is needed for the packing subsystem as 

compared to the making subsystem for profitability. In other words, we can say that for the same 

number of failures in making as well as packing subsystems, the packing subsystem for some values 

of revenue results in loss to the system and at the same time making subsystem provides profit with 

those values. Therefore, priority control of the failures of packing subsystem is more advisable for 

the system’s profitability as when failures will be controlled then revenue will be more. Such 

valuations can help to assess the failure times of the subsystems that can be afforded by the 

manufacturers. The developed model can be compared to the case when there is no priority basis 

repair to see the difference in earned profits. 

Conflict of Interest Declaration: The authors have no conflicts of interest to declare. 
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Abstract 

Nowadays, due to inexpensive and conveniently available internet access at the fingertip, the 

illegitimate sharing of digital multimedia i.e. image, audio, and video is becoming a universal and 

significant threat.  Illegal transmission of digital multimedia through the internet creates an issue of 

authentication and copyright protection; hence, piracy protection is a vital need for protecting digital 

media. Digital watermarking is a method of preventing digital theft in which additional information, 

known as a watermark, is inserted into digital multimedia. This technology was originally designed 

for still photos, but it has subsequently been expanded to include additional multimedia artifacts such 

as audio and video, due to its countless use in today's era.  Digital watermarking is an effective 

method of limiting piracy and providing authenticity and copyright ownership to digital content. 

Watermarking can be performed either in the spatial or in the transform domain. In this paper, a 

hybrid digital video watermarking technique for copyright protection, data security, and content 

authentication of multimedia, based on Discrete Wavelet Transform, Discrete Cosine Transform, and 

Singular Value Decomposition is presented. The authenticity of the content has been ensured by 

embedding a watermark in the transform domain, while copyright protection has been provided by a 

strong watermark. The experimental results show that the proposed schemes achieve a PSNR greater 

than 51 dB on average, which illustrates that the proposed method gives excellent performance for 

robustness, authentication, and security. A comparison of the proposed framework to various 

cutting-edge techniques illustrates its effectiveness and superiority.  

Keywords: Digital Video Watermarking, Robustness, Imperceptible, 

Authentication, Copyright Protection, Discrete Wavelet Transform, Discrete 

Cosine Transform, Singular Value Decomposition 

1. Introduction

Almost everyone's smartphone is connected to one of the several widely available and fairly priced 

high-speed internet networks in today's world. People's conceptions of information transmission have 

been radically altered by the power of digitalization, which now allows them to send and receive text, 

data, images, and even films using their mobile devices. They are inadvertently exposing themselves 

to a serious technological risk of having their personal information misused. Anyone can easily copy 

and distort someone else's work, resulting in a slew of piracy-related concerns as well as a 

detrimental influence on the owner's financial benefits and intellectual property rights [1][2]. The 
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challenges of video watermarking are greater than those of image watermarking. The data in the 

video is inherently more scattered between frames. Uneven distribution of moving and stationary 

areas. The complete video watermarking process can be divided into three stages, as indicated in 

figure 1: watermark attachment or embedding, watermark sending or distribution over the channel, 

and watermark extraction or detection [3]. 

 

 
 

Figure 1: Watermarking Process 

 

Section 2 represents the literature review. Section 3 introduces the three main concepts of the paper 

i.e., Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Singular Value 

Decomposition (SVD). Section 4 introduces the proposed method of video watermarking. Section 5 

represents experimental results and discussion. Section 6 gives the concluding remarks. 

 

2. Literature Review 
 

Digital watermarking has three parameters: data payload, fidelity, and robustness. Digital 

watermarking has long been used to protect still photos, but it is now employed to protect audio and 

video files[4]. A comparison of different works is illustrated in Table 1. 

 

Table 1: Summary of earlier work done 

 

Ref. Technique 

used  

Purpose Scheme 

Type 

Results Attacks Remark  

[5] PCA, 

RDWT 

Robustness, 

Imperceptibility 

Blind PSNR = 67.87,    

MSE = 0.0106,  

NCC = 0.995,   

SSIM = 0.9997 

GN, Rot, Sc, 

Compression, 

RS 

It can be 

improved to 

work for color 

images. 

[6] DWT, SVD, 

Entropy, 

Pixel 

position 

shuffling 

Robustness, 

Imperceptibility, 

Security 

Non-

Blind 

PSNR= 42.6369,       

NC = 1 

JPEG, Rot, 

GN, S&P 

It is not time 

Efficient 

[7] DCT, DWT, 

Arnold 

Robustness, 

Imperceptibility 

Non-

Blind 

PSNR = 47.1836,       

NC = 0.1936 

Rot, Noise, 

RS, JPEG 

No balance 

between PSNR 

and NC value 

is achieved 

[8] 2D –DWT, Robustness, Non- PSNR = 54.96, S&P, Rot, Not good for 
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Encryption Imperceptibility, 

Security 

Blind MSE = 0.2047, CC 

= 0.9749 

JPEG geometric 

attacks and 

have low 

capacity 

[9] DWT, SVD, 

Block 

selection 

scheme 

Robustness, 

Security 

Non-

Blind 

PSNR = 61.7524, 

SSIM = 0.9999, 

Cor = 1 

GN, S&P, 

Rot, JPEG 

It is not good 

for active 

attacks 

[10] DCT, DWT, 

SVD, 

Arnold 

Robustness, 

Imperceptibility, 

Security 

Non-

Blind 

PSNR = 43.88, 

NC = 0.9888, BER 

= 0.2174 

JPEG, S&P, 

GN, Rot, Cr, 

RS 

For the high 

gain factor, the 

quality of the 

watermarked 

image is poor  

 

Abbreviations used for the various attack: 

GN: Gaussian Noise 

Rot: Rotation 

Sc: Scaling 

RS: Resize  

Cr: Cropping 

S&P: Salt and Pepper 
 

3. Transform Domain Methods 
 

The video frame of a host video sequence is translated into the new domain, and then the inverse 

frequency domain is applied after embedding a watermark. Data is converted using transforms like 

the Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Singular Value 

Decomposition (SVD). Each transform has its properties for video frame representation. This 

approach offers the advantages of being more resistant to malicious attacks, more stable, and more 

imperceptible than a spatial domain [11] [12]. 
 

3.1 Discrete Wavelet Transform (DWT): 
 

In discrete wavelet transform, video frame pixels are converted into wavelets, which can 

subsequently be used for wavelet-based compression and coding [13]. A video frame is divided into 

four bands using a mathematical technique called lower resolution approximation (LL), vertical (LH), 

horizontal (HL), and diagonal (D) (HH). The low-frequency component is designated as LL, while the 

high-frequency sections are designated as LH, HH, and HL. Multiple-scale wavelet decompositions 

can be obtained by repeating the process as shown in figure2(b). The low-frequency district 

information is a frame that is quite similar to the original frame. This frequency district contains the 

majority of the original frame's signal information. The level detail, upright detail, and diagonal detail 

of the original image are represented by the frequency districts LH, HL, and HH, respectively. The 

watermark can be inserted in these three subbands to retain higher image quality because human 

eyes are significantly more sensitive to the low-frequency component (the LL subband). They are 

sensitive to changes in the smooth district of a frame, but not too small changes in the edge, profile, or 

streak, according to the HVS character [14]. The watermark's robustness is increased by embedding it 

in higher-level sub-bands. However, the visual integrity may be compromised, as evaluated by PSNR. 

In the high-frequency region, the edges and texture can be easily distinguished using the DWT. As a 

result, it's difficult to see that inserting the watermarking signal into the frame's DWT-converted high-
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frequency band has a large amplitude coefficient. 

  
(a) (b) 

Figure 2: (a) First level of decomposition (b) Second level of decomposition 
 

3.2 Discrete Cosine Transform (DCT): 
 

Watermarking based on DCT can be divided into two types: global and block-based. A full DCT is 

conducted on the entire frame in the former, whereas a frame is divided into non-overlapping blocks 

of a particular size and the DCT is performed on each block [1] [15]. The DCT technique separates the 

coefficients into three frequency bands: low, middle, and high, with the mid-frequency band being 

the most commonly used for watermark embedding. Because the low-frequency band and DC 

component contain the greatest signal energy per frame, they are the most critical portions of a video 

signal, and any change to this band has a significant impact on how the human eye perceives 

distortion both are vulnerable to watermarking attacks [16]. Watermarking with DCT is based on two 

facts. The first is that much of the signal energy is concentrated in the low-frequency sub-band, which 

contains the frame's most significant visual elements. The second fact is that high-frequency frame 

components are frequently deleted due to compression and noise attacks [14]. DCT can be conducted 

in a variety of dimensions, including 1D, 2D, and 3D. In the context of images or frames, 2D DCT is 

used to convert them into a cosine series [15].  
 

  
 

Figure 3: (a) The whole frame (Global) (b) Block-wise process 

 

1D-DCT is given as: 
𝑓(𝑖)  =  𝐹(𝑢) (1) 

 

2D-DCT is given as:   

 

𝐹(𝑢, 𝑣) = ⍺(𝑢)⍺(𝑣) ∑ ∑ 𝑓(𝑖, 𝑗)𝑐𝑜𝑠 [
(2i + 1)uπ

2M
]

𝑀−1

𝑗=0

𝑀−1

𝑖=0

𝑐𝑜𝑠 [
(2i + 1)vπ

2M
] 

Where u,v = 0,1,2,...M-1, M is size of sequence; f(i,j) is image in spatial domain and F(u,v) is in 

frequency domain 

⍺(𝑢) = (
1

√𝑀
  𝑖𝑓 𝑢 = 0) 𝑜𝑟 (√

2

𝑀
 𝑖𝑓  𝑢 ≠ 0) 

                

 

 

 

 

(2) 
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4. Singular Value Decomposition (SVD): 
 

Singular Value Decomposition is a technique used in a variety of applications, including image 

compression, image concealment, and image watermarking. A frame is an array of nonnegative scalar 

entries that can be treated as a matrix from the viewpoint of linear algebra. A matrix can be 

decomposed into three matrices of the same size as the original matrix using the SVD transformation 

[14].  Considering a frame of the video sequence is a square matrix of size  M×M, the formula for SVD 

is defined as, 
 

𝑓 =  USV𝑇  (3) 

Where U and V are orthogonal (or unitary) matrices and S is a diagonal matrix, with the diagonal elements in 

the descending order of S being called the singular values of the frame (f) and 𝑉𝑇is the transpose of 

a MxM matrix containing the orthonormal eigenvectors.  

 

Watermarking strategies based on SVD embed the watermark by changing U, V, or S.  Due to the 

strong stability of the singular values, SVD techniques are commonly used in video watermarking. 

This means that when a little perturbation is applied to a frame, these values do not fluctuate much. 

Although this characteristic of the SVD provides robustness to attacks, a limitation is that performing 

it on an image is computationally expensive[17].   
 

5. Proposed Method 
 

We proposed a DWT, DCT, and SVD-based hybrid watermarking technique using the salient 

properties of DWT, DCT, and the SVD in our suggested watermarking scheme. The algorithm for 

watermark embedding and extraction processes are described in algorithm 1 and algorithm 2 

respectively, which shows how the watermark is embedded with the host frame and how the 

embedded watermark is extracted from the attacked watermarked frame. First of all Host video is 

taken and converted into a sequence of frames. Among them all video frames,  the keyframes are 

selected for further processing. The proposed approach for watermarking is depicted in figure 4.  

 

 
 

Figure 4: Schematic Representation of the Proposed System 
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Algorithm 1: Watermark Embedding Process 

Host Video V, f = Frames of (V) 

Watermark Image W  

W’ = DWT (W)      

W” = DWT (W’)  // Two Level DWT 

Result1 = DCT on HH2(W”) as per eqn. (2) 

IR1 = SVD (Result1) as per eqn. (3)   // Intermediate Result1 

fRow = All frames of Video V 

for f = 1 to n where f = All keyframes of Video V 

{ 

f’ = DWT(f) 

f” = DWT (f’) 

Result 2 = DCT on HH2(f”) as per eqn. (2) 

IR2 = SVD (Result 2) as per eqn. (3)     // Intermediate Result 2 

IR3 = IR1 + IR2    // Embedding Process 

RR1 = ISVD (IR3) 

RR2 = IDCT (RR1) 

Ri = IDWT (RR2) 

Final Result FR = ∑ Rin
i=1  

} 

 

Algorithm 2: Watermark Extraction Process 

Watermarked Video FR 

Rawf = frames (FR) 

F = keyframe (Rawf)  

For f=1 to n where f = All keyframes of Video FR 

{ 

f’ = DWT(f) 

f” = DWT(f’) 

R1 = DCT on HH2(f”) as per equ (2) 

IR1 = SVD (R1) as per equ (3)    

R2 = IDCT (S (IR1)) on singular values only. 

R = IDWT (R2) 

Final Extracted Result FER = ∑ Rin
i=1  

} 

 

6. Experimental Results and Discussion 
 

In this proposed watermarking algorithm various mp4 videos of different backgrounds and different 

lengths are used. Videos are converted into a sequence of frames, frame size is 1280×720. Figure 5 

shows the cameraman's image taken as a watermark of size 256×256. Figure 6 shows a frame of videos 

taken as input videos. Imperceptibility and robustness are the attributes that are assessed for the 

proposed scheme based on PSNR and MSE values. The term imperceptibility refers to the fact that the 

video's quality should not be compromised once the watermark is applied. After embedding the 

watermark,  Peak Signal to Noise Ratio (PSNR) is used to calculate the imperceptibility, the 

degradation in the watermarked video, compared to the host video. PSNR is expressed as a decibel 

scale. Higher the value of PSNR higher the quality of the video. PSNR is represented as shown in 

equation (4). Watermark robustness refers to the fact that the watermark is not destroyed after 

intentional or unintentional attacks and may still be utilized to offer certification. It is calculated "after 

the attack." Mean Square Error (MSE) measures the mean of the square of the original watermark and 
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the extracted watermark from the attacked frame for robust capabilities. The lower the value of MSE 

lower will be the error. MSE is represented as shown in equation (5). 

 

PSNR =  10𝑙𝑜𝑔10[ 
𝑃2

𝑀𝑆𝐸
 ] 

(4) 

Where P is the peak signal value. P is equal to 255 for frames having a channel depth of 8-bit. 

 

MSE =  
1

𝑎𝑏
∑ ∑[c(x, y)  −  e(x, y)]2

𝑏

𝑦=1

𝑎

𝑥=1

 
(5) 

Where a and b are the height of the original frame and distorted frame, respectively. c(x,y) is the pixel value of 

the host video frame and e(x,y) is the pixel value of the embedded video frame. 
 

 
 

Figure 5: Watermark 

 

 

   

Test Video 1 

(HonourableVCSirMessage) 

Test Video 2 

(Battle for Middle Earth 2 Goblins 

Fighting) 

Test Video 3 

(Filmstro & Film Riot One Minute 

Short Film) 
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Test Video 4 

(Gandalf vs Mordor Heroes) 

Test Video 5 

(Lord Of The Rings Battle For 

Middle Earth 2) 

Test Video 6 

(Perfection - 1 Minute Short Film) 
 

Figure 6: Frame of various host videos 

 

 
The PSNR values of the watermarked videos are shown in Table 2. These values demonstrate the 
scheme's undetectable property, as the PSNR values are high, implying that there is very little quality 
distortion after embedding the watermark. The graphical representations of the same are shown in 
figure 7. 

 

Table 2: Performance results in terms of PSNR (in dB) 

 

Test Data DCT+SVD DCT+DWT+ SVD DWT+DCT+SVD 

Test Video 1 54.9353 51.9685 55.1118 

Test Video 2 53.8887 51.4956 54.1171 

Test Video 3 53.9193 53.6994 54.0628 

Test Video 4 51.8861 51.2743 52.5427 

Test Video 5 50.8698 50.0266 51.5588 

Test Video 6 53.8909 52.9037 54.5608 
 

 
The MSE values of the watermark are shown in Table 3. These MSE values show the average term 
difference between the original video and the output, watermarked video. The lower the MSE values 
show the lower the level of degradation. The graphical representations of the same are shown in 
figure 8. 
 
 

Table 3: Values of MSE of the watermark embedded in various host videos 

 

Test Data DCT+SVD DCT+DWT+ SVD DWT+DCT+SVD 

Test Video 1 3.2097287e-06 6.3554344e-06 3.0818992e-06 

Test Video 2 3.2443077e-06 4.086472e-06 3.0875129e-06 

Test Video 3 3.2215482e-06 4.266353e-06 3.0920397e-06 

Test Video 4 7.2462806e-06 7.457069e-06 7.0825214e-06 

Test Video 5 7.2585012e-06 9.938821e-06 6.984163e-06 

Test Video 6 4.2426826e-06 5.1242314e-06 3.498743e-06 
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Figure 7: Comparision between various combinations for imperceptibility 
 

 
 

Figure 8: Comparision between various combinations for robustness 
 

 

The current state of the art as discussed in the literature review section mainly focuses on the few 

numbers of bits or blocks within an image or a few numbers of images which make them more prone 

to various attacks such as geometric attacks, active attacks, compression attack, JPEG attack and many 

more. While the proposed approach is designed for watermarking the entire video with a special 

focus on keyframes thereby safeguarding the system from various attacks. 
 

7. Conclusion and future work 
 

The proposed DWT+DCT+SVD digital video watermarking technique outperforms the state-of-the-art 

methods while being more robust and safe. The DWT takes care of the finer variations of the images 

at various scales and it also helps in the localization of information. The DCT plays an important role 
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in capturing a finite sequence of data points and the SVD is pivotal for preserving important 

geometrical insights.  In the pursuit of the added advantage of DWT, DCT, and SVD combination the 

computational time of the proposed approach can be considered as a small trade-off against a 

significant improvement in watermarking performance. As a part of future work, the same approach 

may be deployed and analyzed for analog systems such as audio signals. Also, the experimental 

analysis to discretize the scale parameter will be an interesting study to pursue.  
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Abstract

Regression Analysis is statistical technique to model data. But the presence of outliers and influential
points affect data modelling and its interpretation. Robust regression analysis is an alternative choice
to this. Here we made an attempt to study different robust estimators and propose a new robust
reweighted Sn covariance based regression estimator. We have evaluated the performance empirically
and the simulation study shows our proposed estimator is preferable to OLS and other robust regression
estimators in terms of the MSE criteria. Also, proposed robust Sn covariance regression estimator produce
outperforming results for regression equivaraince and breakdown criterion. Robustness of the proposed
estimator is proved empirically. The proposed method is innovatively used to model fluid data. R software
is used for simulation and study.

Keywords: robust Sn regression,influential observations, modelling,data analysis,

1. Introduction

One of the most essential statistical methods in data modelling is regression analysis. It helps in
the prediction of a link between the predictors and the response variable. All academic disciplines,
including social science, health science, engineering, physical science, and others, frequently use
it. Regression Analysis mainly rely on ordinary least squares method, which is very vulnerable in
the midst of the outliers. Informally outlier can be defined as those observations which lie out of
the place with respect to other observations in the data set. Thus, when there are polluted points
in the data set, robust regression was created as an improved and effective alternative to least
squares. There are numerous robust regression techniques; among them some are resistant too.
In this paper, we discuss about some of the mainstream and efficient robust regression techniques
for contaminated data in multiple linear regression models. Apart from that, multiple regression
can achieve efficiently through expressing classical normal equations in covariance matrix form.
In this paper, apart from discussing robust regression estimators, we propose a robust reweighted
regression based on Sn covariance matrix. The main inherent idea is to compare the techniques
using simulated data set, and determine the properties of the proposed estimator through vast
empirical simulations alone. Simulation is done and evaluated by using Monte Carlo technique.
Section 2 briefly describes about the OLS method, necessity of robust techniques and important
robust estimators developed over years and propose a new reweighted regression estimator based
on robust covariance matrix technique. Section 3 of this paper presents different simulation
methods for comparing proposed estimator and other robust regression estimators, along with
that, properties of the proposed estimator studied through wide simulation. Section 4 provides
the real life data application and conclusion of the paper.
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2. Ordinary Least Squares

Linear regression model is about estimating the parameter β ∈ Rp

yi = xiβ + ϵi i = 1, 2, 3..., n. (1)

where (xi, yi) ∈ (Rp, R) comprise the data and β is the p- dimensional unknown vector and ϵi are
unknown errors. The best-known estimator of β is the least square estimators obtained by:

min
n

∑
i=1

(yi − xiβ)
2

The least square estimators are very popular because of Gauss Markov theorem and very easy to
use. These classical estimators are the best when their assumptions are met by the data. Whenever
there are outliers in the data, OLS results in unstable estimate prediction and are renowned
for misbehaving. The data may contain outliers for a number of reasons, including incorrect
data entry, incorrect scoring, and unusual sample data. In regression, outliers can be classified
according to their location and effect. Observations would be unusual with respect to y values
or x values. They are categorised as outliers, leverages and influential points based on how
they affect the model. The impact of these observations depends on the location where they
occur. Extreme values in the predicted variables are called as leverages. Leverages measure
how far an independent variable deviates from its mean. The direction of the distance between
the remaining data points is not taken into account by leverages. Leverages do not affect the
estimates of the regression coefficients. It affects the model summary statistics, standard errors
of regression coefficient etc. Influential points are those points with unusual x coordinate and
the unusual y value. The regression coefficients are noticeably affected by influential points.
Influential points pull the regression model in its direction. Outliers in either the x or y directions
constitute a significant hazard to least square estimators. Statistical or graphical methods can
be used to identify outliers. Mahalanobis distance is a statistical procedure used to locate the
outliers in the x direction. We cannot say Mahalanobis distance as a perfect method, as it fails
to detect the outliers in y direction. Other statistical outlier diagnostics works on the idea of
erasing one observation at a time and recalculates the regression coefficients; they are called as
regression diagnostics, in which diagnostic quantities are obtained using the data with aim of
identifying influential points. Following the identification, they are either eliminated or corrected,
and then the least squares analysis is performed. As a result, such statistics estimate the change in
regression coefficients that would occur if a single observation were removed following analysis.
These statistics are also known as deletion statistics, useful for pinpointing influential points.
Cook distance, Studentised residuals, DFFITS, DFBETAS and Jacknife residuals are some of
such deletion statistics. Calculation of these diagnostic statistics become complicated when
there are multiple unusual observations. Robust regression estimation is alternative strategy
for handling outliers. Robust methods aim to create estimators that are immune to outliers.
Diagnostic tools remove outliers before fitting the data using the least square approach, whereas,
Robust regression, on the other hand, fits a regression model to the great majority of the data
before identifying outliers as regions with substantial residuals. The breakdown point, concept
of bounded influence and relative efficiency are ideas that are pertinent to the study of robust
regression. The presence of single outlier can completely invalidate the OLS estimator. Contrast
to it; we will see estimators that can handle certain percentage of outliers. This particular concept
is called as breakdown point and [3] provided the first explanation of a breakdown point.It’d
only evaluate location in a single dimension.Also,[5] provided broad description of braekdown,
but it was highly mathematical in nature and asymptotic.It was [4], suggested a limited sample
version of breakdown point.
For a sample Z of n observations,

Z = (x11, ..., x1p, y1), ...., (xn1, ....xnp, yn)
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Let T represents a regression estimator. When T is applied to such a sample, the result is a
regression coefficient vector as T(Z) = β̂. Let j of the sample data points swapped by arbitrary
values and call them as corrupted sample Z

′
. The maximal bias generated by such contamination

is then calculated as:
bias(j; T, Z) = supZ′ ∥T(Z

′
)− T(Z)∥,

Where the supremum is over all possible Z′. If the bias is infinite, j outliers have a significant
impact on the estimator. Thus, breakdown of the estimator T at the sample Z is defined as

ϵ∗n(T, Z) = min(
j
n

; bias(j; T, Z) is in f inite).

Or the least amount of contamination that an estimator can tolerate is known as the breakdown
point. The breakdown point of ordinary least estimator is ϵ∗n(T, Z) = 1

n . That is, even the presence
of single outlier in the data set can affect least square estimators.

2.1. Proposed Method

OLS estimator can express as solution to 2 proposed by [8] in the following way. Let z = (x, y)
be the joint variable of independent and dependent variables. Letµ be the location and Σ be the
scatter matrix of z. Partitioning µ and Σ yields the notation

µ =

(
µx
µy

)
and Σ =

(
Σxx Σxy
Σxy Σyy

)
(2)

Generally the estimates µ̂ and Σ̂ are estimated in empirical way.The least square estimates of β
and α can be written as function of µ̂ and Σ̂,namely,

β̂ = Σ̂−1
xx Σ̂xy, α̂ = µ̂y − β̂T µ̂x. (3)

Major drawback of the above mentioned estimators is, classical estimators of location and scatter
are sensitive to the presence of the outliers. Robustification of the classical estimators of scatter
and location improve the performance of the estimators and [9] in their paper proposed a robust
method for detecting multiple outliers and thus robust covariance matrix estimation in multidi-
mensional data set denoted as Sn method. Another objective of our paper is to propose a robust
reweighted regression estimator based on Sn covariance estimator in equation (4). In this paper
the performance of the proposed robust reweighted Sn regression estimator of the joint variable z
is evaluated and studied through empirical simulations. The performance and properties of the
estimator is investigated through wide range of simulations and Mean Squared error is used to
compare the performance of proposed estimator with other estimators in different scenarios.
Let X = X1, X2, X3, . . . ., Xp be a n × p matrix of size n and p being the number of variables. The
robust covariance matrix based on Sn method of the matrix X is defined as:

Sn(Xi, Xj) = medimedj ̸=i[(xi − xj)(yi − yj)] , i, j = 1, 2, 3, ...p, (4)

where med is an abbrevation for low median ([ n+1
2 ]th order statistic ). Inner median will be taken

up by [n/2]th order statistic for odd value of n. The corresponding correlation matrix of equation
4 is defined as:

δSn(X) = DCOVSn(X)Dt (5)

where D is the diagonal matrix with diagonals 1/Sn(xi), i = 1, 2, 3, .., p. Here Sn(xi) is nothing
but robust scale estimator of univariate random variable X and is defined as,

Sn(X) = 1.1926 medi medj|xi − xj|

The covariance matrix mentioned in equation 4 is non-positive semi definite and [7] in their
paper describe procedure to solve non positive semi definite and obtain positive semi definite
and approximately affine equivariant estimators. The following steps provide us positive semi
definite dispersion matrix and robust estimates:

     RT&A, No 2 (73) 

  Volume 18, June 2023 

468



Lakshmi R, Dr. Sajesh T A
Robust Sn Covariance Regression

• Let ej be the eigen vector corresponding to the eigen value λj of correlation matrix δSn . Let
E be p × p matrix with columns ej for j = 1, 2, . . . , p.

• Let R = D−1E and zi = R−1Xi and Z be an orthogonalised matrix with rows zT
i (i =

1, 2, 3 . . . .n) and columns Zj(j = 1, 2, . . . , p).
The resulting robust Sn estimate of location and scatter is defined as:

µ̂Sn = Rv and Σ̂Sn = RΓRT (6)

where v = (med(Z1), med(Z2), ..., med(Zp))Tand Γ = diag(Sn(Z1)
2, ..., Sn(Zp)2). Here med

stands for median and Sn is the univariate robust scale estimate. The process can be iterate to
enhance the estimates by replacing covariance estimator used in equation 5 with above Σ̂Sn . Let
us call the robust estimator 6 of location and scatter as initial Sn estimator of z. The associated
robust squared Mahalanobis distance of each observation zi is defined as The resulting robust Sn
estimate of location and scatter is defined as:

RD(zi) = (zi − µ̂Sn)
tΣ̂−1

Sn
(zi − µ̂Sn)

Robust Mahalanobis distance is an efficient outlier detection method. Let wi be a weighted
function based on the above Mahalanobis distance defined as wi = w(RD(zi)).The reweighted
estimators take over the robustness properties of initial estimators with increasing their efficiency
([6]). Therefore the reweighted Sn location and scatter matrix be obtained as:

µ̂wSn =
∑n

i=1 wizi

∑n
i=1 wi

and Σ̂wSn =
∑n

i=1 wi(zi − ˆµwSn)(zi − ˆµwSn)
T

∑n
i=1 wi

. (7)

The weights above are computed as wi = w(RD(zi)) = I(RD(zi) ≤ c), which assign weight 1 to
the zi for i = 1, 2, .., n, where

c = χ2
0.95,p if p < 15

χ2
0.95,pmed(rd1, ...rdn)

χ2
0.5,p

if p ≥ 15 (8)

Based on µ̂wSn and Σ̂wSn we obtain β̂wSn and α̂wSn the robust reweighted Sn regression estimator
defined as:

β̂Sn = (Σ̂wSn)
−1
xx (Σ̂wSn)xy and α̂Sn = (µ̂wSn)y − (β̂Sn)

T(µ̂wSn)x. (9)

The efficiency, breakdown and affine equivariant property of the proposed estimator 9 is evaluated.

3. Simulation Study

Simulation study is done to evaluate the performance of the proposed robust reweighted Sn
regression estimator. And the results are compared with ordinary least squares and some of the
other robust regression estimators like: LTS, LMS, S, and MM estimator. The simulations are
done in R and all the values are reported in tables at the end of the paper. Consider the linear
regression model form:

y = α + Xβ + ϵ

where X is n × p matrix, β = (β1, .., βp)T is the unknown regression coefficient vector of size
p × 1,α is the unknown intercept of the model and ϵ is the i.i.d error term and are independent
from X. The X variables are distributed as N(0p, Ip), where Ip is the p- dimensional identity
matrix. Following sets of dimensions and sample sizes are considered in this study respectively:
p=5, 10, and 20 with n=50,100,500. The simulations are repeated 1000 times and each time
parameter estimates are noted.
Mainly three simulation scenarios, as that found in the literature [2] are considered here.
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• The dependent variable is generated from standard normal distribution with corresponding
regression coefficients including intercept equals zero, and standard normal errors are
considered [NES].

• The dependent variable is simulated from t distribution with 3 degrees of freedom with
corresponding regression coefficients including intercept equals zero and heavy tailed errors
(t distribution with 3 degrees of freedom) [HTS].

• Regression with normal error, some percentage(δ) of randomly selected observation in
independent variable replaced as N(λ

√
χ2
(0.99,p), 1) and the dependent variables were re-

placed as N(k
√

χ2
(0.99,1), 1)where λ,k=0.5,1,1.5,2,3,5,7,8,10. The percentage of contamination

considered in this scenario is 10% and 20%.

3.1. Efficiency

It is a well-known fact that ordinary least squares have maximum efficiency under normal errors.
Thus under normal error case, the efficiency of each robust method is calculated relative to OLS.
Let Φ = (βT , α)Tbe the joint vector of regression parameters, intercept and slope. Dimension of Φ
is (p + 1)× 1. The finite efficiency for the joint estimator Φ̂Re of a robust method (Re) is defined
as:

E f f =
1/1000 ∑1000

i=1 ∥Φ̂i
OLS − Φ∥2

2

1/1000 ∑1000
i=1 ∥Φ̂i

Re − Φ∥2
2

Table1 exhibit the simulated efficiency of Φ̂, of proposed robust reweighted Sn estimator and
other robust regression estimators, with respect to the classical least square estimator, under
normal error scenario described above. In the table, bold letters in each row represents the highest
efficiency and italic letters represent the lowest efficiency. Estimators with higher efficiencies are
represented in bold and lowest efficiencies are represented in italics. Among the estimators under
consideration, proposed reweighted Sn estimator exhibits highest efficiency throughout all the
randomly chosen dimensions and sample size considered. MM estimator also possesses efficiency
greater than 90% in some of the cases under consideration. Among the estimators LMS perform
poorly. The proposed estimator has highest efficiency for all randomly chosen sample sizes and
dimensions considered.
In the second scenario, we are considering heavy tailed error distribution. Thus least square
estimators cannot be maximum efficient estimator. Hence we consider the Mean Squared Error of
the estimators instead of E f f . The table 2 results shows that proposed estimator out perform
in all scenarios with mean squared error lower than other estimators. Also, as the sample size
increases the mean squared error decreases for all the robust methods.

3.2. Robustness

To study the robustness, simulations accordingly in third scenario [CS] defined above are carried
out. Here we have randomly considered different dimensions (p=5 and 10) with sample size
(50 and 500). The criteria used here to compare the different estimators is mean squared error
of the estimated joint parameter vector Φ̂, averaged over 1000 simulation runs, similar criteria
considered in [2].Tables 3 to 9 below shows the maximum (across λ and k) MSE for both estimated
intercept and slope for different combination of dimension and sample size. We are considering
the maximum value of mean squared error obtained over all considered k values, for each value
of lambda.

i.e.MSEλ(.) = maxkϵ[0.5,1,1.5,2,3,5,7,8,10]MSEλ,k(.)

Lowest value of MSE in each row is notated in bold letter in the tables.Tables 3 to 9 gives MSEλ(.)
of different robust estimators and proposed estimator. Among the values, proposed estimator
shows minimum MSE in all cases considered. For higher dimensions, proposed estimator possess
very low MSE than other estimators, even when percentage of contamination increases, proposed
estimator shows low MSE and consistently maintain low error throughout different level of
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contamination. Here we can see for same dimension, when number of observations increases,
mean squared error of reweighted Sn estimator decreases. Thus the performance of proposed
estimator increases with increase in the number of observations. Proposed estimator out perform
in all the scenarios constantly. MM and S estimators mainly collapse for λ,k =0.5, 1, 1.5, 2, 3 of
contamination. And for other values of (λ,k), MM and S estimators perform moderately with MSE
values mostly greater than proposed estimator. LTS and LMS estimators performs consistently
for all values of λ,k, but the mean squared error obtained is higher than proposed estimator
in all scenarios. Among all the scenarios, OLS possess highest mean squared error than other
estimators.

3.3. Breakdown Property

The breakdown point evaluates the maximum percentage of outliers an estimator can tolerate.
50% is the highest breakdown value an estimator can attain. Even though high contamination
level occurs rarest of rare in general, here we propose to study the performance of the estimators
in extreme contamination and evaluate the consistency in their performance. It has shown that
repeated median regression estimator has 50% asymptotic breakdown point through simple
mathematical induction by [11] . The same lemma quoted in [11] is applicable for reweighted
Sn estimator, since the estimator is nothing but nested median of observations. For this, a
criterion [CS] is used with percentage of contamination 30%, 35%, 40%. Dimensions consid-
ered here are 5 and 30. And we consider the maximum MSE across all combinations of λ,k.
i.e.MMSE(.) = maxλϵ[0.5,1,1.5,2,3,5,7,8,10]MSEλ(.). The results are shown in table 10.
In general, robust estimators like LTS, S, and MM have high breakdown point, but their compu-
tations are challenging. In all these mentioned methods regression estimators are obtained by
resampling algorithm. Resampling algorithms are used to obtain number of subsamples, and then
robust regression estimators are obtained by making use of an initial high breakdown estimator.
Thus all these established methods depend purely on number of subsamples and initial estimates.
Reweighted Sn estimator proposed here is not dependant on resampling and initial estimates.
Also, proposed estimator possess high empirical breakdown even to large contamination and
higher dimension.
Based on all simulation results, we can observe that all robust estimators, except our suggested
estimator, have a constant increase in mean square error value, which reaches a maximum as
the fraction of outliers in the vertical direction reaches a maximum for a certain lambda value.
Although both MM and S estimators are stated to have a high breakdown, S estimator performs
poorly as the dimension of the variable grows. MM estimator could be consider to be as reason-
ably good robust estimator, shows low MSE among other established robust estimators. However,
the MSE of MM estimator is much higher than that of proposed reweighted Sn estimator. As
the percentage of outliers in the data increases, LTS perform poorly. Even though LTS has a 50%
breakdown point, the performance of LTS estimator depends merely on the correct choice of
tuning constant h, here we used default value h=0.5. Throughout various levels of contamination,
our suggested reweighted Sn estimator consistently maintains a low MSE. Also, even in higher
dimensions, the proposed estimator has a lower MSE than other well-known robust estimators,
indicating that proposed estimator is more resistant to large numbers of outliers, which can be
termed as high empirical breakdown point.

3.4. Equivariance Property

Rather than theoretical goodness, practical usefulness of an estimator is determined by equivari-
ance, breakdown and robustness properties. These three qualities are considerable properties of a
regression estimator and discussed in our paper. Breakdown property is described in the above
section. For regression estimators three types of equivariance are considered:

1. Regression equivariance is defined as: if we transform the dependent variable by adding a
linear function of independent variables, is equal to adding the coefficients of this linear
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function to the estimators.

2. y- equivariance is defined as, if the dependent variable is transformed linearly, then the
estimators get transformed in the same manner.
Let Φ̂(X, Y) = (β̂T , α̂)T , where X is n × p matrix and Y is n × 1 matrix. Then (1) and (2) can
be combined to form: Φ̂(X, Yb + Xg + u) = Φ̂(X, Y)b + (gT , u)T , where bϵR, a non-zero
constant, g is p× 1 vector and uϵR is any constant. Keeping X as same and transforming the
dependent variable as Yb + Xg + u, then the resulting estimator would be: β̂new = b(β̂) + g
and α̂new = bα̂ + u.

3. x- equivariance is defined as, if the independent variables are linearly transformed, then the
equivalent transformed estimator is: Φ̂(XA, Y) = (β̂T(A−1)T , α̂)T .

That is, if the independent variables are transformed as XA, with a non-singular p × p matrix A,
the resulting new estimators are β̂new = A−1 β̂and α̂new = α̂.It is not possible to explore available
transformations, so, [7] and [10] proposed in their papers, to generate A matrices randomly for
the purpose of checking x-equivariance as A = TD, where T a random orthogonal matrix and D
is a p × p diagonal matrix with diagonal entries are independently and uniformly distributed.
The methods outlined above are employed in our paper to investigate the suggested estimator’s
equivariance property. When the above mentioned transformations are performed on simulated
data sets, the MSE of the suggested estimator is examined. Here we consider two dimensions,
p=5 and p=30. Also, we consider contaminated scenario [CS] with contamination of 10% and 20%.
First the estimator is applied to untransformed data and the estimator obtained Φ̂Sn is recorded.
The above mentioned transformed data is then used to estimate x-equivariance, y-equivariance,
regression equivariance, and the resulting new estimator Φ̂Snnewis stored. The MSE is calculated
between Φ̂Snnew and estimator value which has to be obtained if the above properties hold. The
estimator consistently performs and maintains low MSE. Even when the contamination increases
with increase in dimension, the estimator exhibits low MSE. Low MSE indicates that the model
can be predicted more accurately. The suggested estimator is essentially affine equivariant since
the model’s error is managed and kept low.
Table 11 shows MMSE results for x- equivariance. From the table, we can see that the error
remains controlled and low for varied proportion of vertical outliers and leverage points. The
error value increases as the dimension increases, but in a regulated manner. The suggested
estimator is nearly x-equivariant since the errors are controlled.
Table 12shows the MMSE for y-equivariance and regression equivariance. The mean square error
remains very low throughout for different proportion of vertical outliers and leverage points. Also,
we can see mean square error shows decreasing pattern as dimension increases. Though mean
square error increases with increase in the percentage of contamination level, the increments are
very small and close to zero. As a result, we can state that the mean square error is well-controlled
and kept to a minimum in all scenarios evaluated. Thus the proposed estimator is approximately
y-equivariant and regression equivariant. We have empirically demonstrated three equivariance
features using simulated samples with contamination at various degrees and dimensions.

4. Real life data application

4.1. Fluid Dynamics

A substance capable of flowing is termed as a fluid. Fluids are of two types, namely liquids and
gases. The study of fluid’s behaviour at rest (termed fluid statics) and in motion (termed fluid
dynamics) is jointly known as fluid mechanics. Many real-world applications, including cancer
treatment, car radiators, air conditioning, refrigeration, microwave ovens, blow moulding, and
petrochemical processing, heavily rely on heat and mass transmission. Through extensive studies
scientists have been successful in improving these transmission qualities. Choi and Eastman were
the first to notice that the introduction of nano sized particles in a conventional fluid was able to
bring a significant improvement in these transmission qualities. Internal heat sources play an
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important role in various heat transfer applications.
For its vital role in photo thermal and photodynamic therapy, the dynamics of water-based TiO2
nano liquid over an elongated nonlinear surface was elucidated by [1]. The flow problem was
modeled using partial differential equations which were solved using finite-difference based bvp5c
technique with the help of apposite similarity transformations. Further, the authors employed
response surface methodology and sensitivity analysis to elucidate the heat transfer rate for
the consequence of magnetic field (0.5 ≤ M ≤ 1.5), thermal radiation (0.5 ≤ Rd ≤ 1.5) and
exponential heat source (0.2 ≤ QE ≤ 0.4). The optimal heat transfer rate was observed when
M=0.5,Rd =1.5, and QE =0.2.
Recently, researchers have examined the influence of effectual parameters on the engineering
quantities using statistical methods like regression analysis, and response surface methodology.
By establishing a quantitative relationship between the independent (relevant characteristics) and
dependent (physical process of interest) variables, the inclusion of these statistical techniques
tends to broaden perception. Typographical errors while handling such data is a possibility,
owing to those outliers could occur in such datasets, which should be tackled scientifically.
In this paper, the fluid data for conducting multiple linear regression analysis has been derived
from Areekara et al. The derived data has been analyzed using proposed regression estimator
along with other robust regression estimators. The data consist of 20 observations with three
independent variables and one independent variable. Initially we analyze the performance in
original data without outlier and then we conduct the same procedure by replacing 10th and
19th observation into outliers. The results are reported in tables 13 and 14 below.Proposed
estimator performs in normal scenario and outlier injected data as that of other existing robust
estimator like MM, S estimators. We have also reported the OLS estimated values, from which
it is clear that classical method fails in the performance of outliers. Also, LTS, LMS regression
methods fail to perform in these data sets due to their computational complexity. Thus we have
shown in our paper that, for conducting linear regression analysis in such fluid data sets, it is
always better to use robust regression methods; even there are no outliers in the data set. Also,
proposed estimator works well even without outliers in the datasets. In this paper, the fluid data
for conducting multiple linear regression analysis has been derived from Areekara et al. The
derived data has been analyzed using proposed regression estimator along with other robust
regression estimators. The data consist of 20 observations with three independent variables and
one independent variable. Initially we analyze the performance in original data without outlier
and then we conduct the same procedure by replacing 10th and 19th observation into outliers. The
results are reported in tables 13 and 14 below.Proposed estimator performs in normal scenario
and outlier injected data as that of other existing robust estimator like MM, S estimators. We have
also reported the OLS estimated values, from which it is clear that classical method fails in the
performance of outliers. Also, LTS, LMS regression methods fail to perform in these data sets
due to their computational complexity. Thus we have shown in paper that, for conducting linear
regression analysis in such fluid data sets, it is always better to use robust regression methods;
even there are no outliers in the data set. Also, proposed estimator works well even without
outliers in the datasets.

4.2. Belgian Phone Call Data

Belgian phone calls data was published by Belgium Statistical Survey and [[6]] used the data
in their work. The data consists of annual count of international calls from Belgium during the
period 1950 to 1973. The data comprise of two variables, the year (X) and the number of call
received (Y). The data contains six outliers in Y direction. From the table 9 below, it is clear
that, OLS provides highly misleading estimates in the presence of anomalies. Also, M and LMS
performances are not remarkable. MM, S and LTS don’t exhibits remarkable performance in
outlier detection and in providing estimates. Among them, Sn estimator detects the outlying
observations as (15th, 16th, 17th, 18th, 19th, 20th, and 24th observation) and MM estimator detects
outlying observations as (15th, 16th, 17th, 18th, 19th, 20th, and 21st observation). Thus, proposed
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estimator performs well and detects outliers correctly as that of MM estimator and it can be
considered as an add-on to the covariance based regression method.

5. Conclusion

Classical regression analysis is very sensitive to the presence of contaminated observations.
Several robust alternative methods are available in the literature. In this paper, we propose
an improved robust reweighted Sn regression estimator. Here we are proposing a new robust
regression technique using alternative form of OLS. We propose a new robust reweighted robust
Sn regression estimator. The properties and performance of our proposed estimator are inferred
through wide range of empirical simulation methods. Also, the performance of proposed
estimator in fluid dynamics data and Belgian phone call data is evaluated. Proposed estimator
exhibit a consistent performance in all the cases considered. The robustness property, affine
equivariance and breakdown property of the proposed estimator is compared with OLS, MMS,
LTS, LMS, S estimators using simulation study. And in all scenarios considered, proposed
estimator outperforms other existing robust estimators. The results are tabulated below. Although
many robust regression estimators have already been proposed in the literature, we could add
proposed estimator to the list of available regression estimators, since proposed estimator exhibit
excellent performance than other estimators. A thorough comparison has done and we can
conclude that proposed estimator possess high breakdown, robustness equivariance property.
Also, the proposed estimator is suitable for multiple regression estimation and is a good alternative
to the classical estimator. Developing theoretical properties of the proposed estimator is the future
aim of our work.

Table 1: Table showing efficiency in case of Normal error scenario

p n Sn MM S LTS LMS
5 30 0.9684 0.9309 0.2813 0.6708 0.0873

50 0.9286 0.9228 0.2814 0.4639 0.1797
100 0.9235 0.8951 0.2312 0.5166 0.1299
500 0.9857 0.9309 0.2728 0.7414 0.0509

10 50 0.9466 0.9832 0.2520 0.6917 0.0292
100 0.9429 0.8461 0.2888 0.4819 0.1211
500 0.9852 0.8706 0.1992 0.6314 0.0315

1000 0.9283 0.9321 0.2123 0.7119 0.0163
30 100 0.8751 0.7409 0.2617 0.7157 0.0033

500 0.9628 0.8706 0.1992 0.6314 0.0315
1000 0.9335 0.9321 0.2123 0.7119 0.0163
5000 0.9817 0.7409 0.2617 0.7157 0.0033
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Table 2: Table showing the MSE in case of t tailed error distribution

p n Sn MM S LTS LMS
5 30 0.4530 0.5326 1.1059 0.9081 2.0202

50 0.2429 0.2501 0.5465 0.3708 0.8954
100 0.1083 0.1192 0.2059 0.1391 0.4232
500 0.0196 0.0203 0.0349 0.0224 0.1449

10 50 0.5387 0.5307 2.3917 0.8783 2.4023
80 0.2996 0.3984 0.6684 0.3959 1.3699

100 0.2111 0.3667 0.4762 0.2979 0.9966
500 0.0396 0.1467 0.0629 0.0421 0.5392

30 100 0.3448 0.8933 2.2357 1.2430 6.2807
150 0.4834 0.5339 0.8678 0.6666 4.2174
500 0.0254 0.0971 0.2479 0.1269 3.2732

Table 3: Table 3(1) showing MSEλ(.) for n=500,p=5,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.1595 2.7088 1.7421 0.4396 0.8785 91.915

1 0.1158 2.2949 1.8572 1.7479 1.0189 37.916
1.5 0.1166 1.7354 1.8309 1.7042 1.0428 18.686

2 0.1158 2.6151 2.6478 1.8624 1.0528 10.881
3 0.1114 2.7446 2.5763 1.8506 1.0556 4.9069
5 0.1139 1.7846 1.8011 2.6581 1.0500 1.7826
7 0.1122 0.9074 0.9328 2.4172 1.0560 0.9135
8 0.1142 0.6917 0.7117 2.6076 1.0563 0.6882

10 0.1162 0.4473 0.4600 1.8004 1.0519 0.4438

Table 4: Table 3(2) showing MSEλ(.) for n=500,p=5,δ=20%

λ Sn MM S LTS LMS OLS
0.5 1.6434 7.3536 7.4798 7.5241 1.0062 134.02

1 0.1488 10.669 9.9103 9.7256 1.0749 42.848
1.5 0.1216 10.811 9.7874 9.7707 1.0882 19.762

2 0.1217 7.2620 10.175 10.198 1.0854 11.196
3 0.1209 4.9965 5.0651 5.0491 1.0857 4.9839
5 0.1169 1.7835 1.8156 1.8243 1.0707 1.7938
7 0.1195 0.9116 0.9263 0.9398 1.0579 0.9109
8 0.1207 0.4474 0.7124 0.7150 1.0662 0.6961

10 0.1153 0.4455 0.3032 0.3072 1.0812 0.4463

Table 5: Table 3(3) showing MSEλ(.) for n=50,p=5,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.6232 3.0231 2.8642 3.2983 1.1107 99.802

1 0.4038 2.6021 2.8603 3.0759 1.1709 38.799
1.5 0.3998 2.6271 2.7735 3.4003 1.1968 18.827

2 0.3867 2.6629 2.8132 3.6539 1.1950 11.005
3 0.3904 2.8386 2.7222 3.3677 1.2375 4.9652
5 0.3834 1.6583 1.7868 1.6814 1.2058 1.8273
7 0.3945 0.9234 0.6863 0.9836 1.2035 0.9278
8 0.3804 0.7253 0.8329 0.7483 1.1877 0.7016

10 0.3995 0.4704 0.5515 0.5209 1.1998 0.4827
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Table 6: Table 3(4) showing MSEλ(.) for n=50,p=5,δ=20%

λ Sn MM S LTS LMS OLS
0.5 1.1457 11.154 12.784 18.499 99.802 139.16

1 0.4178 12.066 12.407 18.179 38.799 42.948
1.5 0.4215 12.643 12.710 20.576 18.827 19.915

2 0.4124 10.342 10.441 11.408 11.005 11.268
3 0.4169 5.0657 5.2375 5.2001 4.9652 5.0114
5 0.4113 1.1892 1.8959 1.8915 1.8273 1.8074
7 0.4014 0.9862 1.0382 0.9977 1.5036 0.9311
8 0.4133 0.7476 0.8552 0.8458 1.1879 0.7362

10 0.4158 0.3324 0.6009 0.5703 1.1999 0.4736

Table 7: Table 3(5) showing MSEλ(.) for n=50,p=10,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.4056 6.8755 7.5017 8.4836 1.1244 1.0269

1 0.4073 7.8391 7.6248 9.9929 1.1958 1.1821
1.5 0.4216 7.8541 7.1342 9.2994 1.2212 12.714

2 0.3726 6.2529 6.1745 6.6639 1.2174 7.1902
3 0.3356 3.6121 3.2540 3.2603 1.2399 3.2836
5 0.3475 1.2000 1.2886 1.2639 1.2546 1.1877
7 0.3509 0.6345 0.4943 0.6841 1.2516 0.6207
8 0.3512 0.4756 0.5748 0.5516 1.2623 0.4852

10 0.3568 0.3197 0.2922 0.3760 1.2248 0.4229

Table 8: Table 3(6) showing MSEλ(.) for n=50,p=10,δ=20%

λ Sn MM S LTS LMS OLS
0.5 0.7139 42.630 37.898 7.5892 1.1537 108.34

1 0.4418 28.875 28.031 7.1634 1.1952 28.931
1.5 0.4239 13.086 13.160 7.2613 1.2349 12.923

2 0.4079 7.4023 7.5233 6.2072 1.2334 7.2643
3 0.4008 3.3492 2.2409 3.1659 1.2526 1.5981
5 0.4797 1.2284 1.3222 1.2963 1.2698 1.1756
7 0.4125 0.6363 0.7376 0.7444 1.2424 0.6244
8 0.4533 0.5037 0.4316 0.5726 1.2968 0.4769

10 0.4229 0.2499 0.4273 0.3948 1.2854 0.3298

Table 9: Table 3(7) showing MSEλ(.) for n=500,p=10,δ=10%

λ Sn MM S LTS LMS OLS
0.5 0.1655 4.0859 4.5578 0.2901 1.0055 90.827

1 0.1626 5.8239 4.5036 1.1616 1.0425 27.440
1.5 0.1598 5.9110 5.3589 2.6196 1.0638 12.582

2 0.1603 5.8077 4.6791 4.5252 1.0524 7.1467
3 0.1618 3.1899 3.2266 2.6401 1.0529 3.1912
5 0.1622 1.1576 1.1758 4.6335 1.0474 1.1535
7 0.1612 0.5905 0.4584 5.3122 1.0526 0.5885
8 0.1558 0.4490 0.3022 4.5747 1.0559 0.4499

10 0.1589 0.2865 0.3001 4.6989 1.0422 0.2879
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Table 10: Table.4 showing the MMSE(.)for checking breakdown property

Method 5 30
δ=30 % δ=35 % δ=40 % δ=30 % δ=35 % δ=40 %

OLS 12.438 12.721 12.934 8.6068 10.133 11.681
Sn 0.5108 1.5456 1.7754 0.9073 1.0807 2.1518
MM 6.3341 9.2566 6.1267 7.4952 9.2222 12.584
S 6.8982 8.6637 13.662 36.451 34.157 30.675
LTS 47.399 48.661 206.54 886.55 1055.6 1033.1

Table 11: Table 5 showing the MMSEλ(Φ̂Snnew) for checking x-equivariance

p=5 p=30
λ δ=10% δ=20% δ=10% δ=20%

0.5 0.01953 0.03739 0.10566 0.13301
1 0.05469 0.03865 0.29562 0.32564

1.5 0.03992 0.03566 0.11913 0.17027
2 0.03909 0.01530 0.13167 0.25173
3 0.03842 0.01900 0.16799 0.28351
5 0.03488 0.03279 0.16283 0.18638
7 0.03771 0.03911 0.19997 0.25546
8 0.01948 0.03119 0.10239 0.10734

10 0.02028 0.02552 0.12871 0.27826

Table 12: Table.6 showing the MMSEλ(Φ̂Snnew)for checking y-equivariance and regression equivariance

p=5 p=30
λ δ=10% δ=20% δ=10% δ=20%

0.5 0.00319 0.00216 0.00067 0.00276
1 0.00145 0.00173 0.00013 0.01238

1.5 0.00102 0.00814 0.00039 0.01591
2 0.00056 0.00139 0.00039 0.00005
3 0.00109 0.00135 0.00050 0.00073
5 0.00178 0.00106 0.00141 0.00077
7 0.00021 0.00020 0.00024 0.00038
8 0.00012 0.00062 0.00064 0.00082

10 0.00011 0.00000 0.00438 0.00034

Table 13: Table 7 showing output of fluid data without outlier

Sn OLS MM S LMS
β0 1.1056 1.9304 1.8018 1.7995 2.0497
β1 -0.1617 -0.1614 -0.1036 -0.0899 -0.2098
β2 0.5713 0.5711 0.6274 0.6297 0.5077
β3 -2.1968 -2.1954 -2.2016 -2.2424 -2.2676

Table 14: Table 8 showing output of fluid data with outliers

Sn OLS MM S LMS
β0 1.1109 0.6438 1.95204 2.0321 1.7494
β1 -0.1547 0.0015 -0.1748 -0.2001 -0.1914
β2 0.5688 0.9332 0.5556 0.5163 0.6315
β3 -2.1839 0.2489 -2.2495 -2.2708 -1.7389
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Table 15: Table 9 showing results on Belgian Phone Call data

Method Intercept Coefficient of X MSE
OLS 58.566 0.587 78.1372
Sn 2.986 6.062 5001.829
MM 47.931 8.831 10041.74
S 48.060 8.894 10228.44
LTS 47.769 9.094 10717.14
LMS 48.439 8.658 9674.762
M 57.412 0.626 92.58984
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Abstract 
 

Ranked set sampling is an approach to data collection originally combines simple random sampling 

with the field investigator's professional knowledge and judgment to pick places to collect samples. 

Alternatively, field screening measurements can replace professional judgment when appropriate 

and analysis that continues to stimulate substantial methodological research. The use of ranked set 

sampling increases the chance that the collected samples will yield representative measurements. 

This results in better estimates of the mean as well as improved performance of many statistical 

procedures. Moreover, ranked set sampling can be more cost-efficient than simple random sampling 

because fewer samples need to be collected and measured. The use of professional judgment in the 

process of selecting sampling locations is a powerful incentive to use ranked set sampling. This 

paper is devoted to the study, we introduce an approach to the mean estimators in ranked set 

sampling. The amount of information carried by the auxiliary variable is measured with the on 

populations and samples and to use this information in the estimator, the basic ratio and the 

generalized exponential ratio estimators are as an improved form of a difference cum exponential 

ratio type estimator under the ranked set sampling in order to estimate the population mean Y of 

study variate Y using single auxiliary variable X. The expressions for the mean squared error of 

propose estimator under ranked set sampling is derived and theoretical comparisons are made with 

competing estimators. We show that the proposed estimator has a lower mean square error than the 

existing estimators. In addition, these theoretical results are supported with the aid of some real 

data sets using R studio. Therefore, Under RSS architecture, a better difference cum exponential 

ratio type estimator has been suggested. The estimator's mathematical form has been developed, and 

its efficiency requirements have been developed in relation to various already-existing estimators 

from the literature. By imputing various values for the constants used in the creation of our 

proposed estimator, we also provide several specific situations of our estimator. 

 

 

Keywords: mean squared error, auxiliary variable, median, coefficient of variation, kurtosis 

 

1. Introduction 
 

It is well known that the information of the auxiliary variable is commonly used in order to 

increase efficiency and precision in sample surveys. It has also a role in the related methods of 

estimation, such as ratio, product, and regression. If the correlation between the study variable (Y) 

and the auxiliary variable (X) is highly positive, the ratio method of estimation is used. If not, the 

product method of estimation is employed effectively provided that this correlation is highly 

479

mailto:Saba.riyaz.syed@gmail.com
mailto:khalidstat34@gmail.com
mailto:showkatmaq@gmail.com


 
Saba Riyaz, Khalid Ul Islam Rather, Showkat Maqbool, T. R. Jan 
RATIO ESTIMATOR OF POPULATION MEAN … 

RT&A, No 2 (73) 
Volume 18, June 2023  

 

negative. In recent years, there have been many articles on estimators for the population mean in 

the Sampling Theory Literature, such as unbiased estimators in general form for estimating the 

finite population mean in stratified random sampling [1], a generalized ratio estimator is proposed 

by using some robust measures with single auxiliary variable [2 and 3], an efficient families of 

ratio-type estimators to estimate finite population mean using known correlation coefficient 

between study variable and auxiliary variable by [5 and 6], Estimation of rare and clustered 

population mean using stratified adaptive cluster sampling and using auxiliary character in 

stratified random sampling [7 and 8]. The estimation of population mean using auxiliary attribute 

under ranked set sampling (RSS) [9, 10 and 11]. The problem of exponential estimator for 

estimating the population mean considered under RSS using attribute, two phase sampling by [12, 

13, 14, and 15]. 

In addition to the Simple Random Sampling (SRS) method, RSS, which may be considered 

as a controlled random sampling design, was first introduced to estimate the pasture yield by [16]. 

The RSS procedure involves randomly drawing n sets of n units each from the population for 

which the mean is to be estimated. It is assumed that the units in each set can be ranked visually. 

From the first set of n units, the lowest unit ranked is measured. From the second set of n units, the 

second lowest unit ranked is measured. This process continues until the nth ranked unit is 

measured. The gain in efficiency by a computation involving five distributions illustrated by [16]. 

As a simple introduction to the concept of RSS, when X is a random variable with a density 

function F(x) and (x1,x2,...,xn) are the unobserved values from n units, we may then rank them by 

visual inspection or based on a concomitant variable. RSS involves selecting one unit among every 

ranked set consisting of m units for quantification.  

The RSS method can be briefly described step by step as follows:   

Step 1: Randomly select m2 units from the target population.  

Step 2: Allocate the m2 selected units as randomly as possible into m sets, each of size m.  

Step 3: Without knowing any values of the variable of interest, rank the units within each set with 

respect to variable of interest. This may be based on personal professional judgment or done with 

concomitant variable correlated with the variable of interest.  

Step 4: Choose a sample for actual quantification by including the smallest ranked unit in the first 

set, the second smallest ranked unit in the second set and this process continues in this way until 

the largest ranked unit is selected from the last set. 

Step 5: Repeat Steps 1 through 4 for n cycles to obtain a sample of size mn for actual quantification. 

[17] 

When it is ranked on the auxiliary variable, let 𝑦(𝑖), 𝑥(𝑖) denote an ith  judgment ordering in the ith set 

for the study variable and the ith order statistic in the ith set for the auxiliary variable, respectively.   

In the remaining part of this article, the estimators for the population mean under RSS are 

mentioned in Section 2, the adapted estimator from the SRS to RSS is given in Section 3, theoretical 

and numerical comparisons of the adapted estimator are performed with the existing adapted 

estimators in literature in Sections 4 and 5, respectively. 

2. Estimators in literature 

The estimator of the population ratio using the RSS as defined by [19]. 

𝑡𝑅𝑠𝑠 =
�̅�[𝑛]

�̅�[𝑛]

                                                                                                         (2.1) 

Where �̅�[𝑛] =
1

𝑛
∑ 𝑦(𝑖)𝑛

𝑖=1   and �̅�[𝑛] =
1

𝑛
∑ 𝑥(𝑖)𝑛

𝑖=1 . Note that the estimator in (2.1) can also be used for 

the population total and mean. Then, the estimator for the population mean can be written as 

follows: 

�̅�𝑟𝑅𝑠𝑠 =
�̅�[𝑛]

�̅�[𝑛]

�̅�                                                                                                     (2.2) 
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Where it is assumed that the population mean �̅� of the auxiliary variable x is known and the MSE 

equation of the estimator in (2.2) can be given by 

𝑀𝑆𝐸(�̅�𝑟𝑅𝑠𝑠) ≅
1

𝑚𝑟
(𝑆𝑦

2 − 2𝑅𝑆𝑦𝑥 + 𝑅2𝑆𝑥
2) −

1

𝑚2𝑟
(∑ 𝜏𝑦(𝑖)

2 − 2𝑅 ∑ 𝜏𝑦𝑥(𝑖) + 𝑅2 ∑ 𝜏𝑥(𝑖)
2

𝑚

𝑖=1

𝑚

𝑖=1

𝑚

𝑖=1

)                (2.3) 

Where, 𝑅 =
�̅�

�̅�
, 𝑆𝑥

2 is the population variance of the auxiliary variable, 𝑆𝑦
2

 
is the population variance 

of the study variable, Syx is the population covariance between the auxiliary and study variables, 

𝜏𝑥(𝑖) = (𝜇𝑥(𝑖) − �̅�), 𝜏𝑦(𝑖) = (𝜇𝑦(𝑖) − �̅�), and 𝜏𝑦𝑥(𝑖) = (𝜇𝑦(𝑖) − �̅�)(𝜇𝑥(𝑖) − �̅�). Here, �̅�  is the population 

mean of the study variable. Note that the values of 𝜇𝑥(𝑖) and 𝜇𝑦(𝑖) 
depend on the order statistics 

from some specific distributions and these values can be found in [19]. We would like to remind 

that the values of 𝜇𝑥(𝑖) and 𝜇𝑦(𝑖) 
can be taken to be same in the absence of judgment error if the 

variables have the same distribution (see the appendix of [20] 

The following estimator by adapting [21] to the RSS proposed by [22]:   

 

�̅�𝑘𝑅𝑠𝑠 =
𝑘�̅�[𝑛]

�̅�[𝑛]
�̅�                                                                                                                            (2.4)  

Where k is a constant.  

 The MSE of the estimator in (2.4) is given by  

𝑀𝑆𝐸(�̅�𝑟𝑅𝑠𝑠) ≅
1

𝑚𝑟
(𝑘∗2𝑆𝑦

2 − 2𝑅𝑘∗𝑆𝑦𝑥 + 𝑅2𝑆𝑥
2) + �̅�2(𝑘∗ − 1)2

−
1

𝑚2𝑟
(∑ 𝑘∗2𝜏𝑦(𝑖)

2 − 2𝑅𝑘∗ ∑ 𝜏𝑦𝑥(𝑖) + 𝑅2 ∑ 𝜏𝑥(𝑖)
2

𝑚

𝑖=1

𝑚

𝑖=1

𝑚

𝑖=1

)                                                      (2.5) 

where 𝑘∗ =
1+𝛾𝜌𝐶𝑥𝐶𝑦−𝑊𝑦𝑥(𝑖)

1+𝛾𝐶𝑦
2−𝑊𝑦[𝑖]

2 , Here, 𝑊𝑦𝑥(𝑖) =
1

𝑚2𝑟�̅��̅�
∑ 𝜏𝑦𝑥(𝑖)

𝑚
𝑖=1  and 𝑊𝑦[𝑖]

2 =
1

𝑚2𝑟�̅�2
∑ 𝜏𝑦(𝑖)

2𝑚
𝑖=1 , 𝛾 =

1

𝑚𝑟
 
, 𝐶𝑥 

and 𝐶𝑦 are the population coefficients of variation of the auxiliary and study variables, 

respectively, 𝜌  is the population correlation between the auxiliary and the study variables. 

3. Proposed estimator 

An improved difference cum-exponential ratio type is defined for estimating �̅� as following         

[18 and 21] 

�̅�𝑅𝐾 = {𝑡1�̅�[𝑛] + 𝑡2(�̅� − �̅�[𝑛])} {exp [
�̅� − �̅�[𝑛]

�̅� + �̅�[𝑛]

]}                                                               (3.1) 

To obtain the MSE of �̅�𝑅𝐾 , write  

�̅�(𝑛) = �̅�(1 +∈0),   and    �̅�(𝑛) = �̅�(1 +∈1), 

Such that   𝐸(∈0) = 𝐸(∈1) = 0,  

and     𝐸(∈0)2 = 𝑉 (
�̅�(𝑛)

�̅�2 ) =
1

𝑚𝑟

1

�̅�2 [𝑆𝑦
2 −

1

𝑚
∑ 𝑡𝑦(𝑖)

2 ] = [𝜃𝐶𝑦
2 − 𝑤𝑦(𝑖)

2 ], 

𝐸(∈1)2 = 𝑉 (
�̅�(𝑛)

�̅�2 ) =
1

𝑚𝑟

1

�̅�2 [𝑆𝑥
2 −

1

𝑚
∑ 𝑡𝑦(𝑖)

2 ] = [𝜃𝐶𝑥
2 − 𝑤𝑥(𝑖)

2 ], 

𝐸(∈0∈1) =
1

𝑚𝑟

1

�̅��̅�
[𝑆𝑦𝑥 −

1

𝑚
∑ 𝑡𝑦(𝑖)

2 ] = [𝜃𝐶𝑦𝑥 − 𝑤𝑦𝑥(𝑖)], 

Where 𝑊𝑥[𝑖]
2 =

1

𝑚2𝑟�̅�2
∑ 𝜏𝑥(𝑖)

2𝑚
𝑖=1

 Expressing (1.1) in terms of e’s, 

�̅�𝑅𝐾 = {𝑡1�̅�(1 +∈0) + 𝑡2(�̅� − �̅�(1 +∈1))} {exp [
�̅� − �̅�(1 +∈1)

�̅� + �̅�(1 +∈1)
]} 

�̅�𝑅𝐾 = {𝑡1�̅� + 𝑡1�̅� ∈0− 𝑡2�̅� ∈1} {exp (−
∈1

2
) [1 +

∈1

2
]

−1

}                                            (3.2) 

Expanding the right hand side of (1.2) and retaining terms up to the second power of e’s, 
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�̅�𝑅𝐾 = {𝑡1�̅� + 𝑡1�̅� ∈0− 𝑡2�̅� ∈1} {exp (−
∈1

2
) [1 +

∈1

2
+

∈1
2

4
]}  

�̅�𝑅𝐾 = {𝑡1�̅� + 𝑡1�̅� ∈0− 𝑡2�̅� ∈1} {1 −
∈1

2
+

∈1
2

4
+

∈1
2

8
}                                              (3.3) 

From (3.3), 

�̅�𝑅𝐾 − �̅� = �̅� {(𝑡1 − 1) + 𝑡1 ∈0−
𝑡1 ∈1

2
− 𝑡2𝑅 ∈1−

𝑡1 ∈0∈1

2
+

𝑡2𝑅 ∈1
2

2
+

3𝑡1 ∈1
2

8
}                                     (3.4) 

Squaring (3.4) and then taking expectation of both sides, the MSE of the estimator �̅�𝑅𝐾  is  

𝑀𝑆𝐸(�̅�𝑅𝐾) = �̅�2{𝑡1
2𝜑1 − 𝑡1𝜑2 + 𝑡2

2𝑅2𝜑3 − 𝑡1𝑡2𝑅𝜑4}                                                         (3.5) 

Where, 

𝜑1 =  𝛾{𝐶𝑦
2 + 𝐶𝑥

2 − 2𝐶𝑦𝑥} − {𝑤𝑦[𝑖]
2 + 𝑤𝑥[𝑖]

2 − 2𝑤𝑦𝑥[𝑖]} 

𝜑2 =  𝛾{𝐶𝑥
2} − {𝑤𝑥[𝑖]

2 } 

𝜑3 =  𝛾 {
3

4
𝐶𝑥

2 − 𝐶𝑦𝑥} + {
3

4
𝑤𝑥[𝑖]

2 − 𝑤𝑦𝑥[𝑖]} 

𝜑4 =  𝛾{𝐶𝑥
2 − 𝐶𝑦𝑥} + {𝑤𝑥[𝑖]

2 − 𝑤𝑦𝑥[𝑖]} 

Obtain the optimum 𝑡1 and 𝑡2 to minimize 𝑀𝑆𝐸(�̅�𝑅𝐾). Differentiate 𝑀𝑆𝐸(�̅�𝑅𝐾) with respect to 𝑡1 and 

𝑡2 and equating the derivatives to zero, optimum values of 𝑡1 and 𝑡2  is given by 

𝑡1𝑜𝑝𝑡 =
2𝜑2𝜑3

4𝜑1𝜑3 − 𝜑4
2
 

 

𝑡2𝑜𝑝𝑡 =
𝜑2𝜑4

4𝜑1𝜑3 − 𝜑4
2
 

Substituting the value of 𝑡1𝑜𝑝𝑡 and 𝑡2𝑜𝑝𝑡 in (3.5), we get the minimum value of  𝑀𝑆𝐸(�̅�𝑅𝐾) as 

𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾) = �̅�2{𝑡1
2𝜑1 − 𝑡1𝜑2 − 𝑡2

2𝑅2𝜑3}                                                                      (3.6) 

4. Efficiency 
In this section, the performances of the proposed estimator have been demonstrated over the 

traditional ratio estimator in the RSS and the estimator of [23] respectively, as follows: 
𝑀𝑆𝐸(�̅�𝑟𝑅𝑠𝑠) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾) > 0 

{(1 − 𝑡1
2)𝜑1 + 𝑡1𝜑2 + 𝑡2

2𝑅2𝜑3} > 0                                                                    (4.1) 

 

𝑀𝑆𝐸(�̅�𝑘𝑅𝑠𝑠) − 𝑀𝑆𝐸𝑚𝑖𝑛(�̅�𝑅𝐾) > 0 
{(𝑘∗ − 1)2 + (1 − 𝑡1

2)𝜑1 + 𝑡1𝜑2 + 𝑡2
2𝑅2𝜑3} > 0                                                   (4.2) 

 
Table 1: Some members of exponential ratio type estimator in ranked set sampling 

Estimator t1 t2 

�̅�𝑅𝐾1 = {�̅�[𝑛] + (�̅� − �̅�[𝑛])} {exp [
�̅� − �̅�[𝑛]

�̅� + �̅�[𝑛]

]} 1 1 

�̅�𝑅𝐾2 = {(�̅� − �̅�[𝑛])} {exp [
�̅� − �̅�[𝑛]

�̅� + �̅�[𝑛]

]} 0 1 

�̅�𝑅𝐾3 = {�̅�[𝑛]} {exp [
�̅� − �̅�[𝑛]

�̅� + �̅�[𝑛]

]} 1 0 

 

5. Numerical example 

To observe performances of the estimators, we use some real-life populations. The descriptions of 

these populations are given below: 

Population I {source: [24]} 
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Y: Acceleration of automobiles 

X: Engine horsepower of automobiles 

Objective: To estimate population mean of Acceleration of automobiles. 

The summary statistics are given below: 
𝑁 = 392, 𝑛 = 30, 𝑚 = 10, 𝑟 = 3, 𝜇𝑥 = 104.4694, 𝜇𝑦 = 15.5413, 𝑆𝑦 = 2.7589, 𝑆𝑥 = 38.4912, 

 𝐶𝑥 = 0.3684, 𝐶𝑦 = 0.1775, 𝐶𝑥𝑦 = −0.0451, 𝛽2(𝑥) = 0.6541, 𝛽1(𝑥) = 1.079, 𝜌𝑥𝑦 = 0.9091 

 

Population II {source: [25]} 

Y: Body Mass Index (BMI) of Crohn’s disease patients 

X: Weight of Crohn’s disease patients 

Objective: To estimate population mean of Body Mass Index (BMI) of Crohn’s disease patients. 

The summary statistics are given below: 
𝑁 = 117, 𝑛 = 20, 𝑚 = 5, 𝑟 = 4, 𝜇𝑥 = 69.0256, 𝜇𝑦 = 26.0624, 𝑆𝑦 = 4.9888, 𝑆𝑥 = 14.2438, 

 𝐶𝑥 = 0.2063, 𝐶𝑦 = 0.1914, 𝐶𝑥𝑦 = 0.0325,  𝛽2(𝑥) = 0.7746, 𝛽1(𝑥) = 0.6571, 𝜌𝑥𝑦 = 0.8222 

 

Population III {source: [26]} 

Y: Body Mass Index (BMI) 

X: Thigh Circumference 

Objective: To estimate population mean of Body Mass Index (BMI). 

The summary statistics are given below: 
N = 36, n = 8, m = 4, r = 2, μx = 49.3806, μy = 25.678, Sy = 3.8198, Sx = 3.7599, 

 Cx = 0.0761, Cy = 0.1488, Cxy = 0.0066,  β2(x) = −0.6159, β1(x) = −0.0607, ρxy = 0.9848 

 

Percent Relative Efficiencies (PREs) of our proposed estimators along with competitor estimators 

from literature have been presented in Table 2, 3 and 4 for different real-life populations. 
 

Table 2: PRE of Estimators for Population I  

 
rRSSy  RSSy  �̅�𝑅𝐾1 �̅�𝑅𝐾2 �̅�𝑅𝐾3 �̅�𝑅𝐾  

rRSSy  100      

RSSy  212.19 100     

�̅�𝑅𝐾1 245.19 231.72 100    

�̅�𝑅𝐾2 241.45 210.47 98.81 100   

�̅�𝑅𝐾3 238.97 189.37 90.84 93.08 100  

�̅�𝑅𝐾  361.74 275.18 249.18 245.15 213.49 100 

Table 2, revealed the percent relative efficiencies (PRE) of estimators for population I. It is observed 

that the proposed difference cum exponential ratio type estimator in ranked set sampling �̅�𝑅𝐾  

proved to be the best estimator in the sense of having highest percent relative efficiency than usual 

unbiased estimators�̅�𝑟𝑅𝑆𝑆, �̅�𝑘𝑅𝑆𝑆 for the population I. The generalized form of proposed difference 

cum exponential ratio type estimator �̅�𝑅𝐾 is 361.74% more efficient than the existing estimator 

rRSSy  and 275.18% more efficient than �̅�𝑘𝑅𝑆𝑆. Moreover, the special cases of our proposed 

generalized estimator  �̅�𝑅𝐾1,  �̅�𝑅𝐾2 and �̅�𝑅𝐾3 are also proved to be more efficient than existing 

estimators. These results suggest using proposed difference cum exponential ratio type estimator 

to estimate population mean of Acceleration of automobiles.
 

Table 3:  PRE of Estimators for Population II 

 rRSSy  RSSy  �̅�𝑅𝐾1 �̅�𝑅𝐾2 �̅�𝑅𝐾3 �̅�𝑅𝐾  

rRSSy  100      

RSSy  204.74 100     

�̅�𝑅𝐾1 238.48 238.29 100    
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�̅�𝑅𝐾2 237.37 204.28 93.92 100   

�̅�𝑅𝐾3 221.49 174.28 89.32 82.74 100  

�̅�𝑅𝐾  352.86 252.48 248.82 229.23 190.48 100 

Table 3, showed the percent relative efficiencies (PRE) of estimators for population II. It is observed 

that the proposed difference cum exponential ratio type estimator in ranked set sampling �̅�𝑅𝐾  also 

proved to be the best estimator in the sense of having highest percent relative efficiency than usual 

unbiased estimators �̅�𝑟𝑅𝑆𝑆, �̅�𝑘𝑅𝑆𝑆 for the population II. The generalized form of proposed difference 

cum exponential ratio type estimator �̅�𝑅𝐾 is 352.86% more efficient than the existing estimator 

rRSSy  and 252.48% more efficient than �̅�𝑘𝑅𝑆𝑆. Moreover, the special cases of our proposed 

generalized estimator �̅�𝑅𝐾1,  �̅�𝑅𝐾2 and �̅�𝑅𝐾3 are also proved to be more efficient than existing 

estimators. These results suggest using proposed difference cum exponential ratio type estimator 

to estimate population mean of Body Mass Index (BMI) of Crohn’s disease patients. 

Table 4:  PRE of Estimators for Population III 

 
rRSSy  RSSy  �̅�𝑅𝐾1 �̅�𝑅𝐾2 �̅�𝑅𝐾3 �̅�𝑅𝐾  

rRSSy  100      

RSSy  238.48 100     

�̅�𝑅𝐾1 275.28 264.82 100    

�̅�𝑅𝐾2 263.82 249.27 98.47 100   

�̅�𝑅𝐾3 239.83 237.42 97.38 98.37 100  

�̅�𝑅𝐾  384.27 283.38 259.37 278.38 239.57 100 

Table 4, showed the percent relative efficiencies (PRE) of estimators for population III. It is 

observed that the proposed difference cum exponential ratio type estimator in ranked set sampling 

�̅�𝑅𝐾  also proved to be the best estimator in the sense of having highest percent relative efficiency 

than usual unbiased estimators�̅�𝑟𝑅𝑆𝑆, �̅�𝑘𝑅𝑆𝑆 for the population III. The generalized form of proposed 

difference cum exponential ratio type estimator �̅�𝑅𝐾  is 384.27% more efficient than the existing 

estimator rRSSy  and 283.38% more efficient than �̅�𝑘𝑅𝑆𝑆. Moreover, the special cases of our proposed 

generalized estimator �̅�𝑅𝐾1, �̅�𝑅𝐾2 and �̅�𝑅𝐾3 are also proved to be more efficient than existing 

estimators. These results suggest using proposed difference cum exponential ratio type estimator 

to estimate population mean of Body Mass Index (BMI). 

6. Conclusion 
In this paper, by using coefficient of variation and median of the auxiliary variable, the modified 

ratio estimators of population mean have been proposed under ranked set sampling (RSS).  Large 

sample approximations to the mean square errors of these estimators have been derived and 

compared with the MSE of the usual ratio estimator and other existing estimators of same class. 

Through numerical illustration is concluded that the proposed estimator performs much better 

than the classic ratio estimator as well as the estimators given by Mehta and Mandowara (2016) 

based on RSS. Thus, the proposed new estimator can be used instead, in order to increase the 

efficiency of parameter estimates. 
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Abstract

The company or industry can increase system reliability and provide stress-free operation by adding
redundant equivalent subsystems to the active unit. The warm standby system is accessible if the
operational unit malfunctions, and the cold standby system can take over. This paper aims to analyze a
system comprised of one operative unit, cold standby unit, and one warm standby unit. Cold standby is
activated to become warm standby when the operative unit fails, and warm standby becomes operational
immediately. A minor defect causes the warm standby unit to fail, whereas a major fault causes the
operational unit to fail. Such systems are used by many businesses, sectors, and facilities to prevent
operational and reputational losses. Cut-off values for the failure rate, activation rate, revenue cost, and
cost per repairman visit have been calculated to determine when the system is profitable. Various system
performance measures have been defined by using the Markov process and regeneration point method.

Keywords: Cold Standby, Profit Analysis, Redundancy, Warm Standby

1. Introduction

The major focus of modern technology is to improve system reliability so that it can meet
consumer demand. This results in the development of more expensive, sophisticated systems
with significant repair costs in the event of failure. Redundancy is a desirable choice as a result.
Standby redundancy is one of several strategies for implementing redundancy. It is a redundancy
that has a secondary unit in case the active unit fails. Countless researchers have studied the
coupling of redundant systems in the optimization of system reliability. Goel and Gupta [1]
assumed three types of failures for a hot standby system. Tuteja et al.[2] investigated a redundant
two-unit cold standby system with regular and expert maintenance personnel. When a system
malfunctions or an ordinary repairman is unable to fix the problem, an expert repairman is
contacted. Kumar et al.[3] examined a two-unit cold standby system that was repaired by an
expert repairman when it failed. When the expert is working on the first unit failure and the
second unit fails at the same time, the assistant repairman can fix the problem while following the
expert’s instructions. El-Said and EL-Sherbery [4] discussed regarding two units on cold standby
with post-repair inspection. Parashar and Taneja[5] analyzed a two-unit PLC hot standby system,
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one as the master unit and the other as the slave unit, with minor repairs being performed by
regular repairmen and major repairs being handled by specialist repairmen. Mahmoud and
Moshref [6] considered standby system that experienced both hardware and human error failure.
For a two unit cold standby system, Manocha and Taneja[7] modified the outcome provided by EL-
Said and EL-Sherbery. By taking into account the non-regenerative state and all possible general
distributions, a stochastic model has been developed by them. Malhotra and Taneja [8] identified
two different cable manufacturing industry reliability models. Model 1 uses a single unit while
Model 2 has a cold standby system with two units. Manocha et al. [9] created a stochastic model
for a hot standby database system with two units. Database administrators handle issues with
the primary or backup database systems. Adlakha et al.[10] took into consideration a two-unit
cold standby communication system that was first packed and assembled as necessary. One
is in use, and the other is on cold standby. Batra and Taneja[11]-[14] optimized the standby
units with one or two operational units in the system. A comparative analysis is also performed
to determine which of these models is preferable for system profitability. Levitin et al. [15]
considered a system with the potential for shocks during data transfer and operation. Every
shock shortens an element’s lifespan and causes deterioration; as a result, the operating unit is
immediately switched out for a cold standby unit. Malhotra et al. [16] examined the expected rest
period and expected maintenance period for a two-unit cold standby system in a pharmaceutical
company. Jia et al. [17] developed a stochastic model for a demand-based warm standby system
with capacity storage.
It is noticeable that the combination of hot, warm, and cold standby units has not yet been
investigated, despite the fact that many industrial systems have these unit backups to manage
emergencies. In light of this, the present study aims to create a stochastic model with a single
operational unit, warm and cold standby units. The rest of the article is organized as follows.
In Section 2, system assumptions are listed. Sections 3 and 4 include notations to be applied in
the study and state descriptions. Section 5 covers the transition probabilities and mean sojourn
time. Sections 6, 7 and 8 describe various system performance metrics, profit functions, and their
corresponding numerical assessments. In section 9, the paper is concluded with some insightful
real-world applications.

2. Assumptions

Initially, we have one operating, one warm standby, and one cold standby unit. The warm standby
unit becomes active immediately in the event of the operative unit malfunctioning, and the cold
standby unit is activated to become the warm standby unit. Before any event is over, the activation
process must be finished. The operative unit fails due to a serious problem, but warm standby
fails due to a small problem. The system is still functioning if at least one unit is up and running.
Each and every parameter is exponential and statistically independent.

3. Notations

The various notations for rates/probabilities are as follows:

λ/λ1 Failure rate of operative/warm standby unit
β Activation rate of cold standby unit
α1/α2 Repair rate on major/minor fault
BJ0(t) Probability that a repairman is working on a major repair to the

system at time t without transitioning to another regenerative state
at time t=0

Bi(t) Probability that system will remain in state i while operating
rather than switching to other state.

BM0(t) Probability that a repairman working on a minor repair to the
system in regenerative state i at time t without switching into
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another regenerative state at time t = 0

For other notations, one may refer to [11]

4. States Description

The state transition diagram (Figure 1) shows the following states at a given time point as:

State 0: (O, ws, cs); State 1: (Fwmjr, O, CSa); State 2: (Fwmnr, O, CSa);
State 3: (Fmjr, O, ws); State 4: (Fmnr, O, ws); State 5: (Fmjr, Fwmjr, O);
State 6: (Fmjr, O, Fwmnr); State 7: (Fmnr, Fwmjr, O); State 8: (Fmnr, O, Fwmnr);
State 9: (Fmjr, Fwmjr, Fwmjr); State 10: (Fmjr, Fwmjr, Fwmnr); State 11: (Fmnr, Fwmjr, Fwmjr);
State 12: (Fmnr, Fwmjr, Fwmnr);

where,

O : operative unit.
ws : warm standby unit.
cs : cold standby unit.
CSa : cold standby under activation.
Fmjr : under major repair.
Fmnr : under minor repair.
Fwmjr : waiting for major repair.
Fwmnr : waiting for minor repair.

5. Model Development

Figure 1 represents the transition between states of system. The operative states are {0,1,2,3,4,5,6,7,8}
and failed states are {9,10,11,12}. A regenerative process is a stochastic process having time points
at which the process probabilistically restarts itself, and the associated state of the system is
known as the regenerative state, otherwise non-regenerative. Our analysis consistently considers
the exponential distribution those results in memorylessness. All the states in the present model
are, therefore, regenerative states. Hence, the defined system’s possible transitions between
different states and entry points into a specific state follow Markov and regenerative processes.
The densities qij(t), transition from state i to j is as:
q01(t) = λe−(λ+λ1)t, q02(t) = λ1e−(λ+λ1)t, q13(t) = βe−βt

q24(t) = βe−βt, q30(t) = α1e−(λ+λ1+α1)t q35(t) = λe−(λ+λ1+α1)t

q36(t) = λ1e−(λ+λ1+α1)t, q40(t) = α2e−(λ+λ1+α2)t, q47(t) = λe−(λ+λ1+α2)t

q48(t) =λ1e−(λ+λ1+α2)t q53(t) = α1e−(λ+α1)t, q59(t) = λe−(λ+α1)t

q64(t) = α1e−(λ+α1)t, q6,10(t) = λe−(λ+α1)t q73(t) = α2e−(λ+α2)t

q7,11(t) = λe−(λ+α2)t, q84(t) = α2e−(λ+α2)t, q8,12(t) = λe−(λ+α2)t

q95(t) = α1e−α1t, q10,7(t) = α1e−α1t, q11,5(t) = α2e−α2t

q12,5(t) = α2e−α2t

(1)

Now defining steady state probability,

pij = lim
s→0

q∗ij(s) = lim
s→0

L[q∗ij(t)] = lim
s→0

∫ ∞

0
e−stqij(t)dt (2)

p01 = λ
λ+λ1

p02 = λ1
λ+λ1

; p13 = 1; p24 = 1

p30 = α1
λ+λ1+α1

p35 = λ
λ+λ1+α1

p36 = λ1
λ+λ1+α1

p40 = α2
λ+λ1+α2

p47 = λ
λ+λ1+α2

p48 = λ1
λ+λ1+α2

p53 = α1
λ+α1

p59 = λ
λ+λ1

p64 = α1
λ+α1

p6,10 = λ
λ+α1

p73 = α2
λ+α2

p7,11 = λ
λ+α1
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p84 = α2
λ+α2

p8,12 = λ
λ+α2

p95 = 1 p10,7 = 1
p11,5 = 1 p12,7 = 1

(3)

Figure 1: State Transition Diagram

The Mean Sojourn Time (µi), i.e., the stay time in particular state i,in state Si as:

µi = E(t) =
∫ ∞

0
t.(corresponding p.d. f . f or moving f rom ith state)dt. (4)

µ0 =
∫ ∞

0
e−(λ+λ1)tdt =

1
λ + λ1

, µ1 =
∫ ∞

0
e−(β)tdt =

1
β

µ2 =
∫ ∞

0
e−(β)tdt =

1
β

, µ3 =
∫ ∞

0
e−(λ+λ1+α1)tdt =

1
λ + λ1 + α1

µ4 =
∫ ∞

0
e−(λ+λ1+α2)tdt =

1
λ + λ1 + α2

, µ5 =
∫ ∞

0
e−(λ+α1)tdt =

1
λ + α1

µ6 =
∫ ∞

0
e−(λ+α1)tdt =

1
λ + α1

, µ7 =
∫ ∞

0
e−(λ+α2)tdt =

1
λ + α2

µ8 =
∫ ∞

0
e−(λ+α2)tdt =

1
λ + α2

, µ9 =
∫ ∞

0
e−(α1)tdt =

1
α1

µ10 =
∫ ∞

0
e−(α1)tdt =

1
α1

, µ11 =
∫ ∞

0
e−(α2)tdt =

1
α2

µ12 =
∫ ∞

0
e−(α2)tdt =

1
α2

,

(5)

When counting from the epoch of entry into state i, the unconditional mean time that the system
needs to transit any regenerative state j is calculated mathematically as

mij =
∫ ∞

0
tqij(t)dt = q

′∗
ij (0) (6)

m01 + m02 = µ0 m13 = µ1 m24 = µ2 m30 + m35 + m36 = µ4
m40 + m47 + m48 = µ4 m53 + m59 = µ5 m64 + m6,10 = µ6 m73 + m7,11 = µ7
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m84 + m8,12 = µ8 m95 = µ9 m10,7 = µ10 m11,5 = µ11
m12,7 = µ12

(7)

6. System Performance Measures

6.1. Mean Time to System Failure (MTSF):

By using the definition of ϕi(t) and Qij(t) define in section 3 and regarding the failed state as
absorbing state , we have the recurrence relation for ϕi(t) from Figure 1 as
ϕ0(t) = Q01(t) s ϕ1(t) + Q02(t) s ϕ2(t)
ϕ1(t) = Q13(t) s ϕ3(t)
ϕ2(t) = Q24(t) s ϕ4(t)
ϕ3(t) = Q30(t) s ϕ0(t) + Q35(t) s ϕ5(t) + Q36(t) s ϕ6(t)
ϕ4(t) = Q40(t) s ϕ0(t) + Q47(t) s ϕ7(t) + Q48(t) s ϕ8(t)
ϕ5(t) = Q53(t) s ϕ3(t) + Q59(t) s ϕ9(t)
ϕ6(t) = Q64(t) s ϕ4(t) + Q610(t) s ϕ10(t)
ϕ7(t) = Q73(t) s ϕ4(t) + Q711(t) s ϕ11(t)
ϕ8(t) = Q84(t) s ϕ4(t) + Q812(t) s ϕ12(t)
Taking Laplace Stieljes transform of above equation and solving for ϕ∗∗

0 (s), by crammer rule, we
get
ϕ∗∗

0 (s) = M1(s)
T1(s)

where,

M1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −Q∗∗
01 (s)−Q∗∗

02 (s) 0 0 0 0 0 0
0 1 0 −Q∗∗

13 (s) 0 0 0 0 0
0 0 1 0 −Q∗∗

24 (s) 0 0 0 0
0 0 0 1 0 −Q∗∗

35 (s)−Q∗∗
36 (s) 0 0

0 0 0 0 1 0 0 −Q∗∗
47 (s)−Q∗∗

48 (s)
−Q∗∗

59 (s) 0 0 −Q∗∗
53 (s) 0 1 0 0 0

−Q∗∗
610(s) 0 0 0 −Q∗∗

64 (s) 0 1 0 0
−Q∗∗

711(s) 0 0 −Q∗∗
73 (s) 0 0 0 1 0

−Q∗∗
812(s) 0 0 0 −Q∗∗

84 (s) 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and

T1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −Q∗∗
01 (s)−Q∗∗

02 (s) 0 0 0 0 0 0
0 1 0 −Q∗∗

13 (s) 0 0 0 0 0
0 0 1 0 −Q∗∗

24 (s) 0 0 0 0
−Q∗∗

30 (s) 0 0 1 0 −Q∗∗
35 (s)−Q∗∗

36 (s) 0 0
−Q∗∗

40 (s) 0 0 0 1 0 0 −Q∗∗
47 (s)−Q∗∗

48 (s)
0 0 0 −Q∗∗

53 (s) 0 1 0 0 0
0 0 0 0 −Q∗∗

64 (s) 0 1 0 0
0 0 0 −Q∗∗

73 (s) 0 0 0 1 0
0 0 0 0 −Q∗∗

84 (s) 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The mean time to system failure (MTSF) is given by:

MTSF = lim
s→0

1 − ϕ∗∗
0 (s)

s

= lim
s→0

1 − M1(s)
T1(s)

s

= lim
s→0

T1(s)− M1(s)
sT1(s)
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Apply L’Hospital Rule , We get:

MTSF = lim
s→0

T
′
1(s)− M

′
1(s)

sT′
1(s) + T1(s)

=
T

′
1(0)− M

′
1(0)

T1(0)

which is evaluated by solving determinants in M1(s), T1(s) and then further required steps using
MATLAB.

6.2. Availability Analysis

We can obtain the following expression for the availability by proceeding the same way as in
earlier section 6.1,
A∗

0(s) =
M2(s)
T2(s)

where,

M2(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B∗
0 (s)−q∗01(s)−q∗02(s) 0 0 0 0 0 0 0 0 0 0

B∗
1 (s) 1 0 −q∗13(s) 0 0 0 0 0 0 0 0 0

B∗
2 (s) 0 1 0 −q∗24(s)0 0 0 0 0 0 0 0

B∗
3 (s) 0 0 1 0 −q∗35(s)−q∗36(s) 0 0 0 0 0 0

B∗
4 (s) 0 0 0 1 0 0 −q∗47(s)−q∗48(s) 0 0 0 0

B∗
5 (s) 0 0 0 0 1 0 0 0 −q∗59(s) 0 0 0

B∗
6 (s) 0 0 0 −q∗64(s) 0 1 0 0 0 −q∗6,10(s) 0 0

B∗
7 (s) 0 0 −q∗73(s) 0 0 0 1 0 0 0 −q∗7,11(s) 0

B∗
8 (s) 0 0 0 −q∗84(s) 0 0 0 1 0 0 0 −q∗8,12(s)
0 0 0 0 0 −q∗95(s) 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −q∗10,7(s) 0 0 1 0 0
0 0 0 0 0 −q∗11,5(s) 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −q∗12,7(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
B∗

i (s) = L(Bi(t)) = lims→0
∫ ∞

0 e−stBi(t)dt

T2(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −q∗01(s)−q∗02(s) 0 0 0 0 0 0 0 0 0 0
0 1 0 −q∗13(s) 0 0 0 0 0 0 0 0 0
0 0 1 0 −q∗24(s) 0 0 0 0 0 0 0 0

−q∗30(s) 0 0 1 0 −q∗35(s)−q∗36(s) 0 0 0 0 0 0
−q∗40(s) 0 0 0 1 0 0 −q∗47(s)−q∗48(s) 0 0 0 0

0 0 0 0 0 1 0 0 0 −q∗59(s) 0 0 0
0 0 0 0 −q∗64(s) 0 1 0 0 0 −q∗6,10(s) 0 0
0 0 0 −q∗73(s) 0 0 0 1 0 0 0 −q∗7,11(s) 0
0 0 0 0 −q∗84(s) 0 0 0 1 0 0 0 −q∗8,12(s)
0 0 0 0 0 −q∗95(s) 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −q∗10,7(s) 0 0 1 0 0
0 0 0 0 0 −q∗11,5(s) 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −q∗12,7(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The steady-state availability is given by

A0 = lim
s→0

sA∗
0(s) = lim

s→0

s.M2(s)
T2(s)

After being solved, this takes on an indeterminant form. Applying the L’Hospital Rule, we thus
obtain:

A0 = lim
s→0

sM
′
2(s) + M2(s)

T′
2(s)
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= lim
s→0

M2(s)
T′

2(s)
=

M2(0)
T2′(0)

Further calculations have been performed using MATLAB since there is a huge determinant and
it’s derivative to solve.

6.3. Busy Period Analysis for Major Repair

The average time for which repairman is busy for major repair of the system is given by
BJ∗0 (s) =

M3(s)
T2(s)

where

M3(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −q∗01(s)−q∗02(s) 0 0 0 0 0 0 0 0 0 0
0 1 0 −q∗13(s) 0 0 0 0 0 0 0 0 0
0 0 1 0 −q∗24(s) 0 0 0 0 0 0 0 0

W∗
3 (s) 0 0 1 0 −q∗35(s)−q∗36(s) 0 0 0 0 0 0
0 0 0 0 1 0 0 −q∗47(s)−q∗48(s) 0 0 0 0

W∗
5 (s) 0 0 0 0 1 0 0 0 −q∗59(s) 0 0 0

W∗
6 (s) 0 0 0 −q∗64(s) 0 1 0 0 0 −q∗6,10(s) 0 0
0 0 0 −q∗73(s) 0 0 0 1 0 0 0 −q∗7,11(s) 0
0 0 0 0 −q∗84(s) 0 0 0 1 0 0 0 −q∗8,12(s)
0 0 0 0 0 −q∗95(s) 0 0 0 1 0 0 0

W∗
10(s) 0 0 0 0 0 0 −q∗10,7(s) 0 0 1 0 0
0 0 0 0 0 −q∗11,5(s) 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −q∗12,7(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and T2(s) is same as mention in section 6.2
In steady state, the average time for which repairman is busy for major repair of the system is
given by:

BJ0 = lim
s→0

sBJ∗0 (s) = lim
s→0

s.M3(s)
T2(s)

After being solved, this takes on an indeterminant form. Applying the L’Hospital Rule, we thus
obtain:

BJ0 = lim
s→0

sM
′
3(s) + M3(s)

T′
2(s)

= lim
s→0

M3(s)
T′

2(s)
=

M3(0)
T2′(0)

Further calculations have been performed using MATLAB since there is a huge determinant and
it’s derivative to solve.

6.4. Busy Period Analysis for Minor Repair

The average time for which repairman is busy for minor repair of the system is given by
BM∗

0(s) =
M4(s)
T2(s)
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where,

M4(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −q∗01(s)−q∗02(s) 0 0 0 0 0 0 0 0 0 0
0 1 0 −q∗13(s) 0 0 0 0 0 0 0 0 0
0 0 1 0 −q∗24(s) 0 0 0 0 0 0 0 0
0 0 0 1 0 −q∗35(s)−q∗36(s) 0 0 0 0 0 0
0 0 0 0 1 0 0 −q∗47(s)−q∗48(s) 0 0 0 0
0 0 0 −q∗73(s) 0 1 0 0 0 −q∗59(s) 0 0 0
0 0 0 0 −q∗64(s) 0 1 0 0 0 −q∗6,10(s) 0 0

W∗
7 (s) 0 0 0 0 0 0 1 0 0 0 −q∗7,11(s) 0

W∗
8 (s) 0 0 0 −q∗84(s) 0 0 0 1 0 0 0 −q∗8,12(s)
0 0 0 0 0 −q∗95(s)0 0 0 0 1 0 0
0 0 0 0 0 0 0 −q∗10,7(s) 0 0 1 0 0

W∗
11(s) 0 0 0 0 −q∗11,5(s) 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −q∗12,7(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where,T2(s) is same as mention in section 6.2
In steady state, the average time for which repairman is busy for minor repair of the system is
given by

BM0 = lim
s→0

sBM∗
0(s) = lim

s→0

s.M4(s)
T2(s)

After being solved, this takes on an indeterminant form. Applying the L’Hospital Rule, we thus
obtain:

BM0 = lim
s→0

sM
′
4(s) + M4(s)

T′
2(s)

= lim
s→0

M4(s)
T′

2(s)
=

M4(0)
T2′(0)

Further calculations have been performed using MATLAB since there is a huge determinant and
it’s derivative to solve.

6.5. Expected Number of the Visit of the Repairman

The expected number of server’s visits obtained as:
V∗

0 (s) =
M5(s)
T2(s)

where,

M5(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−q∗01(s)−q∗01(s)−q∗02(s) 0 0 0 0 0 0 0 0 0 0
−q∗02(s) 1 0 −q∗13(s) 0 0 0 0 0 0 0 0 0

0 0 1 0 −q∗24(s) 0 0 0 0 0 0 0 0
0 0 0 1 0 −q∗35(s)−q∗36(s) 0 0 0 0 0 0
0 0 0 0 1 0 0 −q∗47(s)−q∗48(s) 0 0 0 0
0 0 0 0 0 1 0 0 0 −q∗59(s) 0 0 0
0 0 0 0 −q∗64(s) 0 1 0 0 0 −q∗6,10(s) 0 0
0 0 0 −q∗73(s) 0 0 0 1 0 0 0 −q∗7,11(s) 0
0 0 0 0 −q∗84(s) 0 0 0 1 0 0 0 −q∗8,12(s)
0 0 0 0 0 −q∗95(s) 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −q∗10,7(s) 0 0 1 0 0
0 0 0 0 0 −q∗11,5(s) 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −q∗12,7(s) 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and T2(s) is same as mention in section 6.2
In steady state, the expected number of server’s visits obtained as

V0 = lim
s→0

sV∗
0 (s) = lim

s→0

s.M5(s)
T2(s)

After being solved, this takes on an indeterminant form. Applying the L’Hospital Rule, we thus
obtain:

V0 = lim
s→0

sM
′
5(s) + M5(s)

T′
2(s)

= lim
s→0

M5(s)
T′

2(s)
=

M5(0)
T2′(0)

Further calculations have been performed using MATLAB since there is a huge determinant and
it’s derivative to solve.

7. Profit Analysis:

Profit is the difference between total value generated and total expenditure. Thus, in steady state,
the expected profit is
Profit (P) = C0(A0)− C1(BJ0)− C2(BM0)− C3(V0)
where
C0= Revenue per unit up time
C1= Cost per unit up time for which the repairman is busy for major repair.
C2= Cost per unit up time for which the repairman is busy for minor repair.
C3= Cost per visit of the repairman

8. Numerical analysis

Various profit function graphs have been generated to determine the effect of various parameters,
as illustrated. Assuming the hypothetical value of parameters as
λ = 0.1, λ2 = 0.2, β = 0.3, α1 = 0.4, α2 = 0.05, C0 = 200, C1 = 500, C2 = 350, C3 = 50
The change in profit function (P) for different value of failure rate ( λ)and revenue(CO) shown in
Figure 2.

Figure 2: Profit for varied λ and Co
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Figure 3: Profit for varied C0 and α1

It can be seen that, as the failure rate (λ) of operative unit increases, profit decreases and with
increases in unit revanue (CO), the profit increases.
Similarly, in figure 3, the effect of repair rate( α1)on profit function has revealed . As the value
of repair rate( α1) higher, the profit also become higher. Moreover, the change in profit due to
activation rate (β) and cost per visit of repairman (C3) is shown in Figure 4.

Figure 4: Profit for varied β and C3

With increase in β and C3 the profit decreases.Figure 5 reveals the change in profit w.r.t. C2
and λ1 respectively. With increase in C2 and failure rate (λ1) of warm standby unit, the profit
decreases.
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Figure 5: Profit for varied C2 and λ1

The bounds of λ,C0,β and C2 for profitable of system depicted in Table 1. It can be interpreted
for C0 = 300 , failure rate should be less than equal to 0.003 for system to be profitable.
Similarly, interpretation can be done for other value from previous figures 2, 3, 4 and located in
Table 1.

Table 1: Profit Analysis of the model

Fig No. Parameter value Profit≥ 0 if

C0 = 300 λ ≤ 0.03
2 C0 = 350 λ ≤ 0.05

C0 = 400 λ ≤ 0.08
α1 = 0.05 C0 ≥ 450

3 α1 = 0.02 C0 ≥ 550
α1 = 0.5 C0 ≥ 700

C3 = 5000 β ≤ 0.015
4 C3 = 3000 β ≤ 0.02

C3 = 1000 β ≤ 0.025
λ = 0.005 C2 ≤ 662.5

5 λ = 0.002 C2 ≤ 887.5
λ = 0.001 C2 ≤ 1000

9. Conclusion

A system reliability model that takes into account one operational, one cold standby, and one
warm standby unit is examined. Various system measures have been drafted. The exponential
case is studied numerically. Profit declines in accordance to the failure rate, activation rate, and
cost per visit of the repairman. On the other hand, profit increases as revenue rises. Cut-off points
for the system’s cost and revenue per unit of time have also been determined in order to analyze
the profitability element, which may aid them in making crucial judgments about the system’s
economics.
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Abstract

Objective: In the present paper we consider a two-state retrial queueing system with feedback having
two heterogeneous parallel servers and impatient customers. Transient state probabilities for exact number
of arrivals and departures from the system will be obtained when both, one or none of the servers is busy.
Numerical and graphical solutions will also be obtained. Methods: The difference-differential equations
governing the system are solved recursively, Laplace transform is then used to obtain the transient state
probabilities for exact number of arrivals and departures from the system. Findings: Time dependent
probabilities are obtained when both, one and none of the servers is busy. Numerical and Graphical
solutions are also obtained using MATLAB programming. Novelty: In past research, models considered
arrivals and departures from the orbit whereas in present model arrivals and departures from the system
are studied along with the concept of feedback. Applications: This type of model is implemented in
computer systems.

1. Introduction

In addition to classical queueing systems, there exists a new class of queueing models, popularly
known as retrial queueing models. Recently, a significant contribution has been provided in this
direction. The retrial queueing systems are characterized by an arriving customer who is served
instantly if it finds the server free else leaves the service area and joins the virtual queue (orbit)
and repeats its demand for service after a random amount of time from the orbit. ‘Basic problems
of telephone traffic and the influence of repeated calls’ published by [1] which is the initial work
on retrial queues. Books [2], [3] are available as a great source for retrial queues.

Orbit

blocked customersretrials

primary customers
Server

departing customers

Figure 1: Basic Structure of a Retrial Queueing System
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In [4] the author analyzed ‘Some new results for the M/M/1 queue’ in which a closed
form solution with finite sums is obtained for the probability that exactly i number of arrivals,
j services occur over a time interval t. In [5] authors worked on ‘Performance analysis of a
two-state queueing model with retrials’ where they obtained the transient state probabilities for
exact number of arrivals and departures from the system.
In some systems various servers posses different service rate depending on the requirements and
other reasons, these servers are called heterogeneous or non-identical servers. Here the same type
of job is rendered by different servers with different service rates. The expressions for the Laplace
transforms of the waiting time as well as arbitrary moments are derived in [6]. ‘Retrial queueing
model with two heterogeneous server using matrix geometric method’ done by [7] where the
stationary analysis has been carried out using matrix geometric method.
In case of higher demand for any service, reneged and balked i.e., impatient customers are usually
observed. A wide study has been done in this direction for both standard and retrial queueing
systems. In [8] blocking probability and the mean number of customers in the orbit was derived.
‘A Single Server Retrial Queue with Impatient Customers’ is analyzed in [9].
In some situations, customers seek service again as a result of dissatisfaction from the received
service. This concept is known as feedback. For instance: when a message faces a failed
transmission in multiple access telecommunication systems, it can be sent again. ‘On multiserver
feedback retrial queues with balking and control retrial rate’ published by [10]. The author in
[11] analyzed ‘On an unreliable-server retrial queue with customer feedback and impatience’.
The time dependent probability generating function was obtained using supplementary variable
technique in [12].
The section wise description of the paper is as follows:
The model is described theoretically as well as mathematically in section 2. In section 3 the
transient state probabilities are obtained. Verification of some results is given in section 4. The
numerical and graphical results are obtained in section 5. Section 6 gives the busy period
probabilities along with its graphical representation. Finally, the paper is concluded in section 7
and followed by references at the end.

2. Model Description

We considered a two-state retrial queueing model with feedbak having two non-identical parallel
servers and impatient customers. The primary or fresh customers arrive at system following
Poisson process. On arrival if the entering customer finds any of the servers free it is served
immediately else it may balk from the system or may join the orbit and retry for service as a
repeated call or secondary customer. The secondary customers also follow Poisson process. The
customers retrying from orbit in case getting busy servers may renege from the orbit. Also, if
the customer after service feels unsatisfied may join the orbit in order to obtain satisfied service.
Service times follow exponential distribution.

• Arrival Process: The primary calls arrive at the system following Poisson process with mean
arrival rate λ.

• An arriving customer joins the first server with probability a1 and second with probability
a2.

• The Retrial Process: On arrival of a customer if any of the servers is free, it is served
immediately. Otherwise, the customer joins the orbit and calls repeatedly until any of the
servers is free. The retrial customers also follow Poisson process with parameter θ.

• Impatience: The fresh customers on encountering busy server may balk with probability
(1 − β), β > 0. Also, the customers retring for service from orbit as secondary customers on
encountering busy server may renege with probability (1 − α),α > 0.

• Feedback Rule: After receiving service, the customer joins the orbit with probability γ (i.e.,
when unsatisfied) and departs from the system with probability 1-γ.
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• The Service Process: Service times follow exponential distribution with parameters µ1 for
first server and µ2 for second server.

The input flow of primary calls, intervals between repetitions, service times are statistically
independent.
Laplace Transformation of f̄ (s) of f (t) is given by:

f̄ (s) =
∫ ∞

0
e−st f (t)dt; Re(s) > 0

The Laplace Inverse of

Q(p)
P(p)

=
n

∑
k=1

mk

∑
l=1

tmk−leakt

(mk − l)!(l − 1)!
×
(

d
dp

)l−1 Q(p)
P(p)

(p − ak)
mk ∀ p = ak, ai ̸= ak f or i ̸= k

where

P(p) = (p − a1)
m1(p − a2)

m2 ...(p − an)
mn

Q(p) is a polynomial o f degree < m1 + m2 + m3 + ... + mn − 1

The Laplace Inverse of

N̄a,b,c
n1,n2,n3

(s) =
1

(s + a)n1 + (s + b)n2 + (s + c)n3
is

Na,b,c
n1,n2,n3

(t) =
n3

∑
l=1

l

∑
m=1

e−attn3−l(−1)m+1( l−1
m−1)

(
∏l−m−1

g1=0 (n1 + g1)
) (

∏m−2
g2=0 (n2 + g2)

)
(n3 − l)!(m − 1)!(b − a)n2+m−1(c − a)n1+l−m

+
n2

∑
l=1

l

∑
m=1

e−bttn2−l(−1)m+1( l−1
m−1)

(
∏l−m−1

g1=0 (n1 + g1)
) (

∏m−2
g2=0(n3 + g2)

)
(n2 − l)!(m − 1)!(a − b)n3+m−1(c − b)n1+l−m

+
n1

∑
l=1

l

∑
m=1

e−cttn2−l(−1)m+1( l−1
m−1)

(
∏l−m−1

g1=0 (n2 + g1)
)
((n3 + g2))

(n1 − l)!(m − 1)!(a − c)n3+m−1(b − c)n2+l−m

I f L−1 { f (s)} = F(t) and L−1 {g(s)} = G(t), then

L−1 { f (s) g(s)} =
∫ 1

0
F(u)G(t − u)du = F ∗ G,

F*G is called the convolution of F and G.

2.1. The Two Dimensional State Model

2.1.1 Definitions

Pi,j,0(t) = Probability that there are exactly i number of arrivals, j number of

departures from the system by time t when both the servers are free.

Pi,j,1,k(t) = Probability that there are exactly i number of arrivals,j number of

departures from the system by time t and kth(k = 1 or 2) server is busy .

Pi,j,2(t) = Probability that there are exactly i number of arrivals, j number of

departures from the system by time t and both the servers are busy.

Pi,j(t) = Probability that there are exactly i number of arrivals, j number of

departures from the system by time t.
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Pi,j(t) = Pi,j,0(t) + Pi,j,1,1(t) + Pi,j,1,2(t) + Pi,j,2(t), ∀ i, j; i ≥ j

Pi,j,1(t) = Pi,j,1,1(t) + Pi,j,1,2(t)

Pi,j,0(t) = 0, i < j; Pi,j,1,k(t) = 0, (k = 1 or 2) i < j; Pi,j,2(t) = 0, i < j

Initially

P0,0,0(0) = 1;

Pi,j,0(0) = 0; Pi,j,1,k(0) = 0 (k = 1 or 2); Pi,j,2(0) = 0; i ̸= j

2.2. Difference-Differential Equations Governing the System

d
dt

Pi,j,0(t) = −(λ + (i − j)θ)Pi,j,0(t) + µ1(1 − γ)Pi,j−1,1,1(t) + µ1γPi,j,1,1(t)+

µ2(1 − γ)Pi,j−1,1,2(t) + µ2γPi,j,1,2(t); i ≥ j ≥ 0 (1)

d
dt

P1,0,1,1(t) = −(λ + µ1)P1,0,1,1(t) + λa1P0,0,0(t) + θa1P1,0,0(t) (2)

d
dt

P1,0,1,2(t) = −(λ + µ2)P1,0,1,2(t) + λa2P0,0,0(t) + θa2P1,0,0(t) (3)

d
dt

Pi,j,1,1(t) = −(λ + µ1 + (i − j − 1)θ)Pi,j,1,1(t) + λa1Pi−1,j,0(t) + (i − j)θa1Pi,j,0(t)+

µ2(1 − γ)Pi,j−1,2(t) + µ2γPi,j,2(t); i > 1, i > j ≥ 0 (4)

d
dt

Pi,j,1,2(t) = −(λ + µ2 + (i − j − 1)θ)Pi,j,1,2(t) + λa2Pi−1,j,0(t) + (i − j)θa2Pi,j,0(t)+

µ1(1 − γ)Pi,j−1,2(t) + µ1γPi,j,2(t); i > 1, i > j ≥ 0 (5)

d
dt

Pi,j,2(t) = −(λβ + µ1 + µ2 + (i − j − 2)θ(1 − α))Pi,j,2(t) + λ
{

Pi−1,j,1,1(t) + Pi−1,j,1,2(t)
}

+ λβ(i − δi−2,j)Pi−1,j,2(t) + (i − j − 1)θ
{

Pi,j,1,1,(t) + Pi,j,1,2(t)
}
+

(i − j − 1)θ(1 − α)Pi,j−1,2(t); i ≥ 2, i < j ≥ 0 (6)

Using Laplace Transform f̄ (s) of f (t) given by

f̄ (s) =
∫ ∞

0
e−st f (t)dt; Re(s) > 0

and using initial condition in equations (1) to (6), we have

(s + λ + (i − j)θ)P̄0,0,0(s) = µ1(1 − γ)P̄i,j−1,1,1(s) + µ1γP̄i,j,1,1(s) + µ2(1 − γ)P̄i,j−1,1,2(s)

+ µ2γP̄i,j,1,2(s); i ≥ j ≥ 0 (7)

(s + λ + µ1)P̄1,0,1,1(s) = λa1P̄0,0,0(s) + θa1P̄1,0,0(s) (8)

(s + λ + µ2)P̄1,0,1,2(s) = λa2P̄0,0,0(s) + θa2P̄1,0,0(s) (9)

(s + λ + µ1 + (i − j − 1)θ)P̄i,j,1,1(s) = λa1P̄i−1,j,0(s) + (i − j)θa1P̄i,j,0(s)+

µ2(1 − γ)P̄i,j−1,2(s) + µ2γP̄i,j,2(s); i > j ≥ 0 (10)

(s + λ + µ2 + (i − j − 1)θ)P̄i,j,1,2(s) = λa2P̄i−1,j,0(s) + (i − j)θa2P̄i,j,0(s)+

µ1(1 − γ)P̄i,j−1,2(s) + µ1γP̄i,j,2(s); i > j ≥ 0 (11)

(s + λβ + µ1 + µ2 + (i − j − 2)θ(1 − α))P̄i,j,2(s) = λ
{

P̄i−1,j,1,1(s) + P̄i,j,1,2(s)
}
+

λβ(1 − δi−2,j)P̄i−1,j,2(s) + (i − j − 1)θ
{

P̄i,j,1,1(s) + P̄i,j,1,2(s)
}

+ (i − j − 1)θ(1 − α)P̄i,j−1,2(s); i > j ≥ 0 (12)
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where

δi−2,j =

{
1; i − 2 = j
0; otherwise

3. Solution of the Problem

Solving equations (7) -(12) recursively, we get:

P̄0,0,0(s) =
1

s + λ
(13)

P̄i,0,0(s) =
µ1γ

s + λ + iθ
P̄i,0,1,1(s) +

µ2γ

s + λ + iθ
P̄i,0,1,2(s); i ≥ 1 (14)

P̄1,0,1,1(s) =
λa1

s + λ + µ1
P̄0,0,0(s) +

θa1

s + λ + µ1
P̄1,0,0(s) (15)

P̄1,0,1,2(s) =
λa2

s + λ + µ2
P̄0,0,0(s) +

θa2

s + λ + µ2
P̄1,0,0(s) (16)

P̄i,i,0(s) =
λ

s + λ

[
µ1(1 − γ)a1

s + λ + µ1
+

µ2(1 − γ)a2

s + λ + µ2

]
P̄i−1,i−1,0(s)+

θ

s + λ

[
µ1(1 − γ)a1

s + λ + µ1
+

µ2(1 − γ)a2

s + λ + µ2

]
P̄i,i−1,0(s)+

µ1(1 − γ)µ2(1 − γ)

s + λ

[
1

s + λ + µ1
+

1
s + λ + µ2

]
P̄i,i−2,2(s); i ≥ 1 (17)

P̄i,i−1,1,1(s) =
λa1

s + λ + µ1
P̄i−1,i−1,0(s) +

θa1

s + λ + µ1
P̄i,i−1,0(s) +

µ2(1 − γ)

s + λ + µ1
P̄i,i−2,2(s);

i ≥ 2 (18)

P̄i,i−1,1,2(s) =
λa2

s + λ + µ2
P̄i−1,i−1,0(s) +

θa2

s + λ + µ2
P̄i,i−1,0(s) +

µ1(1 − γ)

s + λ + µ2
P̄i,i−2,2(s);

i ≥ 2 (19)

P̄i,1,1,1(s) =
λa1

s + λ + µ1 + (i − 2)θ
P̄i−1,1,0(s) +

(i − 1)θa1

s + λ + µ1 + (i − 2)θ
P̄i,1,0(s)+

µ2(1 − γ)

s + λ + µ1 + (i − 2)θ
P̄i,0,2(s) +

µ2γ

s + λ + µ1 + (i − 2)θ
P̄i,1,2(s); i ≥ 3 (20)

P̄i,1,1,2(s) =
λa2

s + λ + µ2 + (i − 2)θ
P̄i−1,1,0(s) +

(i − 1)θa2

s + λ + µ2 + (i − 2)θ
P̄i,1,0(s)+

µ1(1 − γ)

s + λ + µ2 + (i − 2)θ
P̄i,0,2(s) +

µ1γ

s + λ + µ2 + (i − 2)θ
P̄i,1,2(s); i ≥ 3 (21)

P̄i,0,2(s) =
λ

s + λβ + µ1 + µ2 + (i − 2)θ(1 − α)
{P̄i−1,0,1,1(s) + P̄i−1,0,1,2(s)}+

λβ

s + λβ + µ1 + µ2 + (i − 2)θ(1 − α)
P̄i−1,0,2(s)+

(i − 1)θ
s + λβ + µ1 + µ2 + (i − 2)θ(1 − α)

{P̄i,0,1,1(s) + P̄i,0,1,2(s)} ; i ≥ 3 (22)

P̄i,j,2(s) =
i−j

∑
k=1

{
i−j−2

∏
p=k−1

(
λi−j−kβi−j−(k+1)

s + λβ + µ1 + µ2 + pθ(1 − α)

)
η
′
k(s)

}{
P̄j+k,j,1,1(s) + P̄j+k,j,1,2(s)

}

     RT&A, No 2 (73) 

  Volume 18, June 2023 

502



Neelam Singla, Harwinder Kaur
A TWO-STATE FEEDBACK RETRIAL QUEUEING SYSTEM HAVING TWO
HETEROGENEOUS PARALLEL SERVERS AND IMPATIENT CUSTOMERS

+
i−j−1

∑
k=1

{
i−j−2

∏
p=k−1

(
(λβ)i−j−k−1kθ(1 − α)

s + λβ + µ1 + µ2 + pθ(1 − α)

)}
P̄j+k+1,j−1,2(s);

i ≥ j + 2, j ≥ 1 (23)

where

η
′
k =


1 k = 1

1 +
(k − 1)θβ

s + λβ + µ1 + µ2 + (k − 2)θ(1 − α)
k = 2 to i − j − 1

(k − 1)θ
s + λβ + µ1 + µ2 + (k − 2)θ(1 − α)

k = i − j

P̄i,j,1,1(s) =
λa1

s + λ + µ1 + (i − j − 1)θ
P̄i−1,j,0(s) +

(i − j)θa1

s + λ + µ1 + (i − j − 1)θ
P̄i,j,0(s)+

µ2(1 − γ)

s + λ + µ1 + (i − j − 1)θ

[
i−j

∑
k=0

{
i−j−1

∏
p=k

(
λi−j−kβi−j−(k+1)

s + λβ + µ1 + µ2 + pθ(1 − α)

)
ψ

′
k(s)

}
{

P̄j+k,j−1,1,1(s) + P̄j+k,j−1,1,2(s)
}
+

i−j

∑
k=1

{
i−j−1

∏
p=k−1

(
(λβ)i−j−kkθ(1 − α)

s + λβ + µ1 + µ2 + pθ(1 − α)

)}
P̄j+k,j−2,2(s)

]

+
µ2γ

s + λ + µ1 + (i − j − 1)θ

[
i−j

∑
k=1

{
i−j−2

∏
p=k−1

(
λi−j−kβi−j−(k+1)

s + λβ + µ1 + µ2 + pθ(1 − α)

)
η
′
k(s)

}
{

P̄j+k,j,1,1(s) + P̄j+k,j,1,2(s)
}
+

i−j−1

∑
k=1

{
i−j−2

∏
p=k−1

(
(λβ)i−j−k−1kθ(1 − α)

s + λβ + µ1 + µ2 + pθ(1 − α)

)}
P̄j+k+1,j−1,2(s)

]
;

i ≥ j + 2, j > 1 (24)

P̄i,j,1,2(s) =
λa2

s + λ + µ2 + (i − j − 1)θ
P̄i−1,j,0(s) +

(i − j)θa2

s + λ + µ2 + (i − j − 1)θ
P̄i,j,0(s)+

µ1(1 − γ)

s + λ + µ1 + (i − j − 1)θ

[
i−j

∑
k=0

{
i−j−1

∏
p=k

(
λi−j−kβi−j−(k+1)

s + λβ + µ1 + µ2 + pθ(1 − α)

)
ψ

′
k(s)

}
{

P̄j+k,j−1,1,1(s) + P̄j+k,j−1,1,2(s)
}
+

i−j

∑
k=1

{
i−j−1

∏
p=k−1

(
(λβ)i−j−kkθ(1 − α)

s + λβ + µ1 + µ2 + pθ(1 − α)

)}
P̄j+k,j−2,2(s)

]

+
µ1γ

s + λ + µ1 + (i − j − 1)θ

[
i−j

∑
k=1

{
i−j−2

∏
p=k−1

(
λi−j−kβi−j−(k+1)

s + λβ + µ1 + µ2 + pθ(1 − α)

)
η
′
k(s)

}
{

P̄j+k,j,1,1(s) + P̄j+k,j,1,2(s)
}
+

i−j−1

∑
k=1

{
i−j−2

∏
p=k−1

(
(λβ)i−j−k−1kθ(1 − α)

s + λβ + µ1 + µ2 + pθ(1 − α)

)}
P̄j+k+1,j−1,2(s)

]
;

i ≥ j + 2, j > 1 (25)

where

ψ
′
k =


1 k = 0

1 +
kθβ

s + λβ + µ1 + µ2 + (k − 1)θ(1 − α)
k = 1 to i − j − 1

kθ

s + λβ + µ1 + µ2 + (k − 1)θ(1 − α)
k = i − j
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η
′
k =


1 k = 1

1 +
(k − 1)θβ

s + λβ + µ1 + µ2 + (k − 2)θ(1 − α)
k = 2 to i − j − 1

(k − 1)θ
s + λβ + µ1 + µ2 + (k − 2)θ(1 − α)

k = i − j

P̄i,j,0(s) =
µ1(1 − γ)

s + λ + (i − j)θ
P̄i,j−1,1,1(s) +

µ1γ

s + λ + (i − j)θ
P̄i,j,1,1(s) +

µ2(1 − γ)

s + λ + (i − j)θ
P̄i,j−1,1,2(s)

+
µ2γ

s + λ + (i − j)θ
P̄i,j,1,2(s); i > j > 1 (26)

Taking the Laplace inverse of (13)-(26), we get the transient state probabilities as:

P0,0,0(t) = e−λt (27)

Pi,0,0(t) = µ1γe−(λ+iθ)t ∗ Pi,0,1,1(t) + µ2γe−(λ+iθ)t ∗ Pi,0,1,2(t); i ≥ 1 (28)

P1,0,1,1(t) = λa1e−(λ+µ1)t ∗ P0,0,0(t) + θa1e−(λ+µ1)t ∗ P1,0,0(t) (29)

P1,0,1,2(t) = λa2e−(λ+µ2)t ∗ P0,0,0(t) + θa2e−(λ+µ2)t ∗ P1,0,0(t) (30)

Pi,i,0(t) =
[

λa1µ1(1 − γ)e−λt
{

1
µ1

− e−µ1t

µ1

}
+ λa2µ2(1 − γ)e−λt

{
1

µ2
− e−µ2t

µ2

}]
∗ Pi−1,i−1,0(t)

+

[
θa1µ1(1 − γ)e−λt

{
1

µ1
− e−µ1t

µ1

}
+ θa2µ2(1 − γ)e−λt

{
1

µ2
− e−µ2t

µ2

}]
∗ Pi,i−1,0(t)

µ1(1 − γ)µ2(1 − γ)e−λt
[{

1
µ1

− e−µ1t

µ1

}
+

{
1

µ2
− e−µ2t

µ2

}]
∗ Pi,i−2,2(t); i ≥ 1 (31)

Pi,i−1,1,1(t) = λa1e−(λ+µ1)Pi−1,i−1,0(t) + θa1e−(λ+µ1)Pi,i−1,0(t) + µ2(1 − γ)e−(λ+µ1)Pi,i−2,2(t);

i ≥ 2 (32)

Pi,i−1,1,2(t) = λa2e−(λ+µ2)Pi−1,i−1,0(t) + θa2e−(λ+µ2)Pi,i−1,0(t) + µ1(1 − γ)e−(λ+µ2)Pi,i−2,2(t);

i ≥ 2 (33)

Pi,1,1,1(t) = λa1e−(λ+µ1+(i−2)θ)t ∗ Pi−1,1,0(t) + (i − 1)θa1e−(λ+µ1+(i−2)θ)t ∗ Pi,1,0(t)+

µ2(1 − γ)e−(λ+µ1+(i−2)θ)t ∗ Pi,0,2(t) + µ2γe−(λ+µ1+(i−2)θ)t ∗ Pi,1,2(t); i ≥ 3 (34)

Pi,1,1,2(t) = λa2e−(λ+µ2+(i−2)θ)t ∗ Pi−1,1,0(t) + (i − 1)θa2e−(λ+µ2+(i−2)θ)t ∗ Pi,1,0(t)+

µ1(1 − γ)e−(λ+µ2+(i−2)θ)t ∗ Pi,0,2(t) + µ1γe−(λ+µ2+(i−2)θ)t ∗ Pi,1,2(t); i ≥ 3 (35)

Pi,0,2(t) = λe−(λβ+µ1+µ2+(i−2)θ(1−α))t ∗ {Pi−1,0,1,1(t) + Pi−1,0,1,2(t)}+ λβ

e−(λβ+µ1+µ2+(i−2)θ(1−α))t ∗ Pi−1,0,2(t) + (i − 1)θλe−(λβ+µ1+µ2+(i−2)θ(1−α))t∗
{Pi,0,1,1(t) + Pi,0,1,2(t)} ; i ≥ 3 (36)

Pi,j,2(t) = λi−j−1βi−j−2
i−j−2

∏
p=0

{
e−(λβ+µ1+µ2+pθ(1−α))t tp

p!

}
∗
{

Pj+1,j,1,1(t) + Pj+1,j,1,2(t)
}

+
i−j−1

∑
k=2

λi−j−kβi−j−(k+1)
i−j−2

∏
p=k−1

{
e−(λβ+µ1+µ2+pθ(1−α))t tp−k+1

(p − k + 1)!

}
∗
{

Pj+k,j,1,1(t) + Pj+k,j,1,2(t)
}

+
i−j−1

∑
k=2

(λβ)i−j−k(k − 1)θ
i−j−2

∏
p=k−2

{
e−(λβ+µ1+µ2+pθ(1−α))t tp−k+2

(p − k + 2)!

}
∗
{

Pj+k,j,1,1(t) + Pj+k,j,1,2(t)
}

+ (i − j − 1)θe−(λβ+µ1+µ2+(i−j−2)θ(1−α))t ∗
{

Pi,j,1,1(t) + Pi,j,1,2(t)
}

; i ≥ j + 2, j ≥ 1 (37)
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Pi,j,1,1(t) = λa1e−(λ+µ1+(i−j−1)θ) ∗ Pi−1,j,0(t) + (i − j)θa1e−(λ+µ1+(i−j−1)θ) ∗ Pi,j,0(t)+

µ2(1 − γ)λi−j−1βi−j−2e−(λ+µ1+(i−j−1)θ)t
i−j−1

∑
k=1

λi−j−kβi−j−(k+1)

i−j−1

∏
p=k


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k+1 −

e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t p−k

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k−r+1

 ∗
{

Pj+k,j−1,1,1(t) + Pj+k,j−1,1,2(t)
}
+

µ2(1 − γ)e−(λ+µ1+(i−j−1)θ)t
i−j−1

∑
k=1

(λβ)i−j−k
i−j−1

∏
p=k


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k+1 −

e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t p−k+1

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k−r+2

 ∗
{

Pj+k,j−1,1,1(t) + Pj+k,j−1,1,2(t)
}
+

µ2(1 − γ)e−(λ+µ1+(i−j−1)θ)t(i − j)θ


1(

µ1

β
+

µ2

β
+

(i − j − 1)θ(1 − α)

β

)−

e
−

µ1

β
+

µ2

β
+
(i − j − 1)θ(1 − α)

β

t

(
µ1

β
+

µ2

β
+

(i − j − 1)θ(1 − α)

β

)


∗
{

Pi,j−1,1,1(t) + Pi,j−1,1,2(t)
}
+ µ2(1 − γ)e−(λ+µ1+(i−j−1)θ)t

i−j

∑
k=1

(λβ)i−j−k kθ(1 − α)
i−j−1

∏
p=k−1


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k+2 − e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t

p−k+1

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k−r+2

 ∗ Pj+k,j−2,2(t) + µ2γe−(λ+µ1+(i−j−1)θ)tλi−jβi−j−1

i−j−2

∏
p=0


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p+1 − e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t p

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−r+1


∗
{

Pj+1,j,1,1(t) + Pj+1,j,1,2(t)
}
+ µ2γe−(λ+µ1+(i−j−1)θ)t

i−j−1

∑
k=2

λi−j−kβi−j−(k+1)

i−j−2

∏
p=k−1


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k+2 − e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t

p−k+1

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k−r+2
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∗
{

Pj+k,j,1,1(t) + Pj+k,j,1,2(t)
}
+ µ2γe−(λ+µ1+(i−j−1)θ)t

i−j−1

∑
k=2

(k − 1)θ(λβ)i−j−k
i−j−2

∏
p=k−2


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k+3 − e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t

p−k+2

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k−r+3

 ∗
{

Pj+k,j,1,1(t) + Pj+k,j,1,2(t)
}
+ µ2γe−(λ+µ1+(i−j−1)θ)t

(i − j − 1)θ


1(

µ1

β
+

µ2

β
+

(i − j − 2)θ(1 − α)

β

) − e
−

µ1

β
+

µ2

β
+
(i − j − 2)θ(1 − α)

β

t

(
µ1

β
+

µ2

β
+

(i − j − 2)θ(1 − α)

β

)


∗
{

Pi,j,1,1(t) + Pi,j,1,2(t)
}
+ µ2γe−(λ+µ1+(i−j−1)θ)t

i−j−1

∑
k=2

kθ(1 − α)(λβ)i−j−k−1

i−j−2

∏
p=k−1


1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k+2 − e
−

µ1

β
+

µ2

β
+

pθ(1 − α)

β

t

p−k+1

∑
r=0

tr

r!
1(

µ1

β
+

µ2

β
+

pθ(1 − α)

β

)p−k−r+2

 ∗ Pj+k+1,j−1,2(t); i ≥ j + 2, j > 1 (38)

Pi,j,1,2(t) = λa2e−(λ+µ2+(i−j−1)θ) ∗ Pi−1,j,0(t) + (i − j)θa2e−(λ+µ2+(i−j−1)θ) ∗ Pi,j,0(t)+

µ1(1 − γ)λi−j−1βi−j−2e−(λ+µ2+(i−j−1)θ)t
i−j−1

∏
p=0


1(

µ1

β
+

µ1

β
+

pθ(1 − α)

β

)p+1 −

e
−

µ2

β
+

µ1

β
+

pθ(1 − α)

β

t p

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−r+1

 ∗
{

Pj,j−1,1,1(t) + Pj,j−1,1,2(t)
}

+ µ1(1 − γ)e−(λ+µ2+(i−j−1)θ)t
i−j−1

∑
k=1

λi−j−kβi−j−(k+1)
i−j−1

∏
p=k


1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k+1 −

e
−

µ2

β
+

µ1

β
+

pθ(1 − α)

β

t p−k

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k−r+1

 ∗
{

Pj+k,j−1,1,1(t) + Pj+k,j−1,1,2(t)
}

+ µ1(1 − γ)e−(λ+µ1+(i−j−1)θ)t
i−j−1

∑
k=1

(λβ)i−j−k
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1(
µ2

β
+

µ1

β
+

(i − j − 1)θ(1 − α)

β

)− e
−

µ2

β
+

µ1

β
+
(i − j − 1)θ(1 − α)

β

t

(
µ2

β
+

µ1

β
+

(i − j − 1)θ(1 − α)

β

)


∗
{

Pi,j−1,1,1(t) + Pi,j−1,1,2(t)
}

+ µ1(1 − γ)e−(λ+µ2+(i−j−1)θ)t
i−j

∑
k=1

(λβ)i−j−k kθ(1 − α)

i−j−1

∏
p=k−1


1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k+2 − e
−

µ2

β
+

µ1

β
+

pθ(1 − α)

β

t p−k+1

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k−r+2


∗ Pj+k,j−2,2(t) + µ1γe−(λ+µ2+(i−j−1)θ)tλi−jβi−j−1

i−j−2

∏
p=0


1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p+1 − e
−

µ2

β
+

µ1

β
+

pθ(1 − α)

β

t p

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−r+1


∗
{

Pj+1,j,1,1(t) + Pj+1,j,1,2(t)
}
+ µ1γe−(λ+µ2+(i−j−1)θ)t

i−j−1

∑
k=2

λi−j−kβi−j−(k+1)

i−j−2

∏
p=k−1


1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k+2 − e
−

µ2

β
+

µ1

β
+

pθ(1 − α)

β

t

p−k+1

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k−r+2

 ∗
{

Pj+k,j,1,1(t) + Pj+k,j,1,2(t)
}

+ µ1γe−(λ+µ2+(i−j−1)θ)t
i−j−1

∑
k=2

(k − 1)θ(λβ)i−j−k

i−j−2

∏
p=k−2


1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k+3 − e
−

µ2

β
+

µ3

β
+

pθ(1 − α)

β

t

p−k+2

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k−r+3

 ∗
{

Pj+k,j,1,1(t) + Pj+k,j,1,2(t)
}
+ µ1γe−(λ+µ2+(i−j−1)θ)t

+ (i − j − 1)θ


1(

µ2

β
+

µ1

β
+

(i − j − 2)θ(1 − α)

β

) − e
−

µ2

β
+

µ1

β
+
(i − j − 2)θ(1 − α)

β

t

(
µ2

β
+

µ1

β
+

(i − j − 2)θ(1 − α)

β

)


∗
{

Pi,j,1,1(t) + Pi,j,1,2(t)
}

     RT&A, No 2 (73) 

  Volume 18, June 2023 

507



Neelam Singla, Harwinder Kaur
A TWO-STATE FEEDBACK RETRIAL QUEUEING SYSTEM HAVING TWO
HETEROGENEOUS PARALLEL SERVERS AND IMPATIENT CUSTOMERS

+ µ1γe−(λ+µ2+(i−j−1)θ)t
i−j−1

∑
k=2

kθ(1 − α)(λβ)i−j−k−1

i−j−2

∏
p=k−1


1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k+2 − e
−

µ2

β
+

µ1

β
+

pθ(1 − α)

β

t

p−k+1

∑
r=0

tr

r!
1(

µ2

β
+

µ1

β
+

pθ(1 − α)

β

)p−k−r+2

 ∗ Pj+k+1,j−1,2(t); i ≥ j + 2, j > 1 (39)

Pi,j,0(t) = µ1(1 − γ)e−(λ+(i−j)θ)tPi,j−1,1,1(t) + µ1γe−(λ+(i−j)θ)tPi,j,1,1(t)+

µ2(1 − γ)e−(λ+(i−j)θ)tPi,j−1,1,2(t) + µ2γe−(λ+(i−j)θ)tPi,j,1,2(t); i > j > 1 (40)

4. Verification of Results

1. Summing equations (13)-(26) over i and j we get:

∞

∑
i=0

i

∑
j=0

{
P̄i,j,0(s) + P̄i,j,1,1(s) + P̄i,j,1,2(s) + P̄i,j,2(s)

}
=

1
s

and hence

∞

∑
i=0

i

∑
j=0

{
Pi,j,0(t) + Pi,j,1,1(t) + Pi,j,1,2(t) + Pi,j,2(t)

}
= 1

which is the verification of our results.

2. Define Qn,m(t) = Probability that there are n customers in the orbit when m(m = 0, 1, 2)
servers are busy at time t.
When server is free, it is represented by probability Qn,0(t)

Qn,0(t) =
∞

∑
j=0

Pj+n,j,0(t)

The number of customers in the orbit in this case are calculated by using the following
formula:
n = (number o f arrivals − number o f departures)
When one server is busy(m = 1), it is represented by the probability Qn,m,k(t)

Qn,m,k(t) =
∞

∑
j=0

Pj+n+m,j,m,k(t); k = 1, 2

The number of customers in the orbit in this case are calculated by using the following
formula:
n = (number o f arrivals − number o f departures − m )
When both servers are busy (m = 2), it is represented by the probability Qn,m(t)

Qn,m(t) =
∞

∑
j=0

Pj+n+m,j,m(t)
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The number of customers in the orbit in this case are calculated by using the following
formula:
n = (number o f arrivals − number o f departures − m )
Using above definitions in equations (1) to (6) and let µ1=µ2=1, γ=0, β=1 and α=1 and using
Qn,1,1 + Qn,1,2 = Qn,1 and let a1 = a2 = 1

2 and adding equations we get:

(λ + nθ)Qn,0 = Qn,1; n ≥ 0 (41)

(λ + nθ + 1)Qn,1 = λQn,0 + (n + 1)θQn+1,0 + 2Qn,2; n ≥ 0 (42)

(λ + 2)Qn,2 = λQn,1 + (n + 1)θQn+1,1 + λ(1 − δn,0)Qn−1,2; n ≥ 0 (43)

which coincides with the results (1)-(3) of [2].

5. Numerical Solution and Graphical Representation

Using MATLAB programming the following numerical results are generated for the case ρ=0.8,
η=0.6, γ=0.7, r1=0.6 (r2=1-r1), a1=0.5 (a2=1-a1), β=0.7 and α=0.6. Observing the tables below for
various time instants t it could be concluded that the sum of probabilities approaches to 1.

Table 1: At t=1

P0,0,0 P1,0,0 P1,1,0 P1,0,1,1 P2,0,1,1 P1,0,1,2 P2,0,1,2 P2,0,2 P3,0,2 Sum
0.4493 0.0444 0.0232 0.1393 0.0128 0.1525 0.0174 0.1016 0.0222 0.9627

Table 2: At t=15

P8,5,0 P8,6,0 P8,7,0 P8,8,0 P8,4,1,1 P8,5,1,1 P8,6,1,1 P8,7,1,1 P7,4,1,2 P7,5,1,2 P8,3,1,2
0.0192 0.0409 0.0504 0.0272 0.0146 0.0349 0.0502 0.0307 0.0057 0.0057 0.0061

P8,4,1,2 P8,5,1,2 P8,6,1,2 P8,7,1,2 P6,2,2 P6,3,2 P6,4,2 P7,2,2 P7,3,2 P7,4,2 P7,5,2
0.0221 0.0532 0.0772 0.048 0.0064 0.0111 0.0071 0.0052 0.0137 0.0179 0.0093

P8,2,2 P8,3,2 P8,4,2 P8,5,2 P8,6,2 Sum
0.0066 0.0288 0.0778 0.1262 0.0963 0.8925

Table 3: t=25

P0,0,0 P1,0,0 P8,5,0 P8,6,0 P8,7,0 P8,8,0 P8,6,1,1 P8,7,1,1 P8,5,1,2 P8,6,1,2 P8,7,1,2
0 0 0.0043 0.0377 0.1635 0.2894 0.0451 0.0966 0.0114 0.07 0.1549

P8,4,2 P8,5,2 P8,6,2 Sum
0.0041 0.0254 0.0843 0.9867

Table 4: At t=35

P0,0,0 P4,3,0 P6,4,0 P8,5,0 P8,7,0 P8,8,0 P8,6,1,1 P8,7,1,1 P8,7,1,2 P8,5,2 Sum
0 0 0 0.0002 0.1247 0.6225 0.0111 0.0732 0.01188 0.0013 0.9518

The probabilities against time are graphically represented in following figures:
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Figure 2

Figure 3

The probabilities P2,1,1, P3,1,1 and P4,1,1 for both the servers 1 and 2 against time t are depicted
in figures 2 and 3. From both the figures it is clearly interpreted that probabilities start increasing
from 0 at t=0 in the beginning and then start decreasing. Also, the curve peaks are higher for
lower number of arrivals. If we compare both the graphs, the probabilities are higher for second
server than first because of the difference in r1 and r2.

Figure 4

Figure 4 depicts the probabilities P4,0,2, P5,0,2 and P6,0,2 against time t. Beginning with value
0 at t=0 the probabilities increases rapidly to their highest values and then decreases gradually.
Also, the probabilities are higher for lower number of arrivals when both the servers are busy.

6. Busy Period Probabilities

The probability that the server is busy is given as:

P(Server is busy) = ∑
i>j≥0

(Pi,j,1,1(t) + Pi,j,1,2(t) + Pi,j,2(t)) (44)
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The probability that the system is busy is given as:

P(System is busy) = ∑
i>j≥0

(Pi,j,0(t) + Pi,j,1,1(t) + Pi,j,1,2(t) + Pi,j,2(t)) (45)

6.1. Numerical and Graphical Representation of Busy Period

Following [13] work and using MATLAB programming the numerical results are generated. The
probability for system busy and server busy are studied by varying the value of ρ and keeping
other parameters as constant(η=0.6, γ=0.7, r1=0.6 (r2=1-r1), a1=0.5 (a2=1-a1), β=0.7 and α=0.6).

Probability(System Busy) Probability(Server Busy)
t ρ=0.4 ρ=0.6 ρ=0.8 ρ=0.4 ρ=0.6 ρ=0.8
0 0 0 0 0 0 0
1 0.3122 0.4295 0.5269 0.2772 0.3855 0.4773
2 0.5073 0.6541 0.7571 0.4290 0.5674 0.6713
3 0.6358 0.7801 0.867 0.5286 0.6732 0.771
4 0.7235 0.8542 0.9229 0.5999 0.7413 0.8286
5 0.7848 0.8995 0.9527 0.6532 0.7874 0.864
6 0.8286 0.9281 0.9694 0.6940 0.8196 0.8866
7 0.8606 0.9467 0.979 0.7256 0.8425 0.9009

Figure 5

In figure 5 the probabilities for System busy and Server busy are plotted against time t for the
case when ρ=0.8, η=0.6, γ=0.7, r1=0.6 (r2=1-r1), a1=0.5 (a2=1-a1), β=0.7 and α=0.6. It is shown that
both the probabilities increases rapidly and then decreases gradually Also, System busy remains
higher than Server busy as required.

7. Conclusion

We considered a retrial queueing system with non-identical parallel servers having feedback and
impatient customers. The transient state probabilities for exact number of arrivals and departures
from the system are obtained when both, none or one servers are busy. Various results are also
been verified. Numerical and graphical representations are provided in order to study the effect
of change of various parameters.
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Abstract 

In engineering applications and reliability literature, stress-strength models play a crucial role. 

The goal of this study is to develop more accurate stress-strength models by addressing the 

reliability estimation in multi-component systems with non-identical component strengths and 

stress. In the context of lower record values, the system's reliability is assessed using both 

classical and Bayesian approaches. In classical estimation, the maximum likelihood estimator of 

the reliability function is constructed, and a simulation study based on measurements of 

precision is used to assess the behavior of various estimates. The Bayesian estimators of 

reliability under general entropy, logarithmic and precautionary loss functions are computed. 

The suggested Bayesian estimates are calculated using the Markov Chain Monte Carlo method 

through a simulation study because there is no one particular way to do it. We found through 

simulated research that the accuracy of measurements decreases as the number of records rises. 

The theoretical results are validated using an example from actual data sets. 

Keywords: Exponentiated Pareto model; Lower record data; Bayesian inference; 

General entropy loss function. 

MSC: 62N05; 62D99; 62F15; 62F40; 94A20 

1. Introduction

Record values are crucial when collecting observations is challenging or when they are lost 

during experimental operations. Real-world problems needing destructive stress testing, industrial 

quality control trials, and statistics on the weather, the economy, and sports all depend critically on 

record values. Only observations that exceed or fall below the most recent extreme values are 

recorded in this case. The total number of observations is frequently much lower than the overall 

sample size and only successive severe items are measured. Suppose that  , 1,2,...iU i  is an

unlimited sequence of independent and identically distributed (iid). An observation Ui is called a 

lower record value (LRV) if i jU U  for each i j . 

The stress-strength (SS) model is a fundamental of reliability testing. When a stress Y 

surpasses strength X , the SS framework ( )P X Y   indicates the possibility of failure. In other 

words, the system keeps functioning as long as the stress does not outweigh its ability. Reference 

[1] was the author who initially presented this idea, and [2] later developed it. Many studies have
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addressed inferences based on various methods and distributional presumptions; for some recent 

works, see [3-10]. 

To build a system with two or more components, the basic idea of ( )P X Y   can be 

changed. Reliability in a multi-component SS (MSS) model was first created in [11], who 

investigated the MSS model under the assumption that c  out of t  system components, where, 
(1 )c t   components survive a common random stress .Y  The MSS is applicable to several 

fields, including communications, logistics, military, and manufacturing operations. For 

illustration, if only four of a car's eight cylinders are burning, it might be possible to drive the 

vehicle. It can therefore be expressed as 4 out of 8: G system. 

Assume that if c (1 )c t   or more of the components cooperate, a system with t  similar 

components will function. In its operational setting, the system is subjected to a stress Y  that is a 

random variable with cumulative distribution function (cdf)  G y . The component strengths, or

the minimal stresses necessary to manufacture failure, are iid random variables with cdf  F x ,

then the reliability of the c-out-of-t system is represented by 
,c t which is developed in [12], is

given by: 

 , 1 2

0

( , ,..., )

[1 ( )] ( ) ( ).

c t t

t
i t i

i c

P at least cof X X X exceed Y

t
F x F x dG x

i







 

 
  

 
 

For various SS distributions and sampling procedures, many authors addressed the 

estimation of reliability in MSS models based on different sampling scheme, for example, see [13-

19]. 

Due to the different topologies of system components, the assumption of comparable strength 

distributions may not be feasible in many actual circumstances. With systems that have backup 

components, this is frequently the situation. The strengths of different items, even those 

constructed of the same material, can vary. For instance, heat treating metals to acquire desired 

mechanical properties in the field of mechanics can lead to various types of breaking when the 

metal is quenched or cooled. As a result, the strengths of the components vary. Another example, if 

two different ropes are used to consolidate a rope, the tensile strengths of both ropes may not be 

evenly distributed. A model that at least incorporates non-identical random strengths for system 

components appears to be more realistic, see [20]. 

Assume a system has t  components, of which 1t are of kind 1, 2t are of kind 2,…, and the 

remainder 
1

1

n

n i

i

t t t




  components are of kind n . Let (.),   1,  2, ,  iF i n  , be the cdf of the 

random strengths for components of the ith kind. Assume that Y  is a common stress with cdf  .Q

that all components are subjected to. The system will function as long as the c-out-of-the-t 

components can resist the stress. Reference [21] presented the system reliability 
1 1,..., , ,...,n nc c t t with

non-identical component strengths as follows: 

1

1 1

1 1

,..., , ,...,

1 10

... (1 ( )) ( ( )) ( ),
n

i i i

n n

n n

tt n n
i j t j

c c t t i i

j c j c i ii

t
F x F x dQ x

j





   

  
     

  
               (1) 

where summation ranges over all possible combinations  1 2,  , ,  nj j j with 0 i ij t  for 

  1,  2,  ... ,  i n such 
1

n

i

i

c j t


  . Each ic indicates the minimal number of components of the

ith  type that the system needs to function.

Considering the investigation of a system with two different sorts of components, the model 

(1) can be expressed as follows:
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1 2

1 1 1 2 2 2

1 2 1 2

1 1 2 2

1 2

, , , 1 1 2 2

1 2 0

(1 ( )) ( ( )) (1 ( )) ( ( )) ( ).
t t

j t j j t j

c c t t

j c j c

t t
F x F x F x F x dQ x

j j



 

 

  
     

  
        (2) 

In order to construct more realistic models, The Bayesian estimation of 
1 2 1 2, , ,c c t t assuming

the Weibull and exponential distributions on the strength and stress variates, respectively, was 

taken into consideration in [22] and [23]. The exponentiated Pareto distribution (EPD) was used to 

estimate 
1 2 1 2, , ,c c t t for non-identical MSS in [24]. Recently, [25] studied the case of non-identical

component-strengths from the family of Kumaraswamy generalized distributions under upper 

record data. Reference [26] examined the estimation of 
1 2 1 2, , ,c c t t when component strengths and

stress follow inverse Lomax distribution based on complete sample. Reference [27] proposed the 

estimation of 
1 2 1 2, , ,c c t t when component strengths and stress follow Weibull distributions under

generalized progressive hybrid censoring scheme. 

It is important to note that the majority of the work on the estimate of the SS reliability 

conducted to date requires to employ complete or censored samples and that record values are 

rarely used. Particularly in the estimation of MSS systems of non-identical component-strengths, 

we are interested in developing MSS models within the record scheme in the case of non-identical 

component-strengths, where component strengths and stress follow an EPD. A maximum 

likelihood estimator (MLE) of 
1 2 1 2, , ,c c t t is derived under LRV and a simulation study is

investigated. The general entropy loss function (GELF), the logarithmic loss function (LLF), and 

the precautionary loss function (PLF) are used to derive the Bayesian estimator of 
1 2 1 2, , , .c c t t  Since 

these estimators are incapable of being reduced to simple closed forms, we use the Markov Chain 

Monte Carlo (MCMCO) approach for Bayesian estimates of 
1 2 1 2, , , .c c t t  To show the relevance of our 

work, we also examined real data sets. 

The following is how the rest of the essay is presented. The formulation of 
1 2 1 2, , , ,c c t t and

its MLE under LRV along with a numerical analysis is provided in Section 2. Section 3 discusses 

the Bayesian estimators of 
1 2 1 2, , , ,c c t t  through GELF, LLF, and PLF. The MCMCO technique is 

presented in Section 4. For the purposes of illustration, Section 5 includes real data sets. Final 

remarks are included in Section 6. 

2. Model Description and Classical Estimation of 
1 2 1 2, , ,c c t t

In this section, a model description of 
1 2 1 2, , ,c c t t is provided. The MLE of

1 2 1 2, , ,c c t t is obtained

in the presence of LRV. Numerical analysis is also carried out. 

2.1. Expression of 
1 2 1 2, , ,c c t t

Here, expression of 
1 2 1 2, , ,c c t t is provided when the strength and stress random variables

follow the EPD. 

The EPD may be successfully used to assess numerous lifetime data sets, as argued in [28]. 

The EPD has a very flexible structure as a result of its decreasing or upside-down bathtub shape 

failure rates depending on shape parameters. This property provides advantages for modeling 

extreme events, particularly in hydrology. Furthermore, the EPD is a reasonable equivalent to the 

exponential distribution because of its heavier or lighter tail features. A variety of lifetime data 

might seem nice in the EPD. The EPD 's cdf is expressed by  

 ( ) 1 1  ,  0,  0, 0,F x x x


 


  


  


where   and   are the shape parameters. The associated probability density function (pdf) is 

given by: 
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1

( 1)
( ) 1 1  1  ,  0,  0, 0.f x x x x

 
  


  

    
 

 

Several scholars addressed the EP's research and applications, for instance see [29]. 

From the total of t system components in the model (2), let the first 
1t  of first kind component 

strengths follow EPD 1( , )  , while the remaining 2 1t t t  of kind 2 component strengths follow

EPD 2( , )  . Also, suppose that Y follows EPD 3( , )  independently. The respective distribution 

functions are as below: 

 ( ) 1 1  ,  , , 0, 1,2,  
i

i iF x x x i


 



    


  (3) 

 
3

3( ) 1 1  ,  , , 0.Q y y y


 


  
 

     (4) 

By replacing 
1 2,  ,  F F Q given in (2) by (3) and (4), the formula of

1 2 1 2, , ,c c t t for such a system is as

follows: 

     

     

1 2

1 11 1 21 2

1 2 1

3

2

1 1 2 2

2 22

1 2 ( )

, , ,

1 2

1
( 1)(

0

)

3

(1 ( ) ) ( ) (1 ( ) )

(

1 1  1 1  1 1  

1 1  1 1 1 . )   

t t
j t j j

c c t t

j c j c

t j

t
x x x

x x x

j j

x d

t     


    

  


  













  
          

  

 


   




  

Let  1 1 ,z x


    
1

1 ,dz x



 

   then 
1 2 1 2, , ,c c t t is as follows

1 2

1 1 2 21 2

1 2 1 2

1 1

2 3

2

1

2

1 2 ( 1

3

1
1 2 ( ) )

, , ,

1 2 0

(1 ) (1 ) .
t t

t j t jj j

c c t t

j c j c

t t
z z z dz

j j

      







  
     

  
  

Using the binomial expansion for 11(1 )
j

z


 and 22(1 )
j

z


 leads to the following 

1 1 2 2

1 2 1 2 1 2

1 2

31 2

1

)

, , , , , ,

(

3

0

, , , 3

1 1 1 2 3

1)

2 2

(

,
( ) ( )

nt j t j

c c t t j j m n

j n

m

j m

E z dz

E

m t j n t j

 



  

   
 


     


  (5) 

where 
1 2 1 2

1 2

1 1 2 2

1 2 1 2

, , ,

0 0 1 2

( 1) .
t t j j

m n

j j m n

j c j c m n

t t j j
E

j j m n



   

    
     

    
 

Note that expression (5) depends on the parameters 1 , 2 and 3 .

2.2. The MLE of 
1 2 1 2, , ,c c t t under LRV

In order to find the MLE of 
1 2 1 2, , ,c c t t based on LRV, we first need to obtain the MLE of the

parameters 1 , 2  and 3 assuming   is given known. So, let  1 ,..., nr r r  1 ,..., mp p p and 

 1 ,..., ws s s  be three independent sets of LRV of sizes  n, m, and w from EPD 1( , )  , EPD 2( , ) 

and EPD 3( , )  respectively. The likelihood function of the observed records, according to [30], is 

defined by: 
1

1

1

( ; )
( ) , ... .(

( ; )
| )

d
i

d d

i i

L
h u

h u u u
H u

u









            (6) 

Hence, the observed LRV data ,r p  and ,s  given  , based on (6), are given as below: 

     RT&A, No 2 (73) 

  Volume 18, June 2023 

516



Amal S. Hassan, Doaa M. Ismail, and Heba F. Nagy 
ANALYSIS OF A NON-IDENTICAL COMPONENT-STRENGTHS 

1

32

1 1 2 2 3 3
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1 2 3

1 1
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1 1

1
( 1) 1
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( ) (1 (1 (1 [ ]

[ ] [ ] (1 ( ) (1 ( )

(1 ( ) ,

) ) )
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         (7) 

where 1 (1 ,)i ir
    1 (1 ,)j jp     and 1 (1 ,)u us

    1,..., ,i n 1,..., ,j m

1,..., .u w

Consequently, the joint log-likelihood function, denoted by ln ,  is derived as:

 

 

1 2 3

1

1 2 3

1

1 1

1 1

ln ln( ) ln( ) ln( ) ( ) ln( ) ( 1)ln(1 ln(1 ln(1

( 1)ln[ ]  ( 1)ln[ ] ( 1)ln[ ] ( 1)ln(1 ln( )

( 1)ln(1

) ) )

)

) ln( ) ( 1)ln(1 l ( )) n

n m w

i i

n

n m w

i

m w

j u

j u

j u

n m w r p s

r

n m

s

w

p

    

       

   





 

 

           

         

        







  .

Given that  is a known, the following are the partial derivatives of ln  with respect to 1 2,   and 

3  respectively 

1 1

ln
ln[ ],n

n


 


 

 2 2

ln
ln[ ],m

m


 


 

 3 3

ln
ln[ ].w

w


 


 



Then, the MLEs of 1 2,   and
3 denoted by 1 2

ˆ ˆ,   and 3̂  are obtained by setting 1ln   , 

2ln   and 3ln   to be zero. Hence 
1 2
ˆ ˆ,  and 

3̂ are obtained as 

1 2 3, , .
ln[ ] ln[ ] ln[

ˆ ˆ ˆ
]n m w

n m w

 



 

  
    (8) 

Therefore, based on invariance property, we obtain the MLE of 
1 2 1 2, , ,c c t t by inserting 1 2

ˆ ˆ, 

and 
3̂ in (5) as follows 

1 2

1 2 1 2

, , , 3

, , ,

1 1 1 2 2 2 3

ˆ
ˆ .

ˆ ˆ ˆ( ) ( )

j j m n

c c t t

E

m t j n t j



  
 

     
 (9) 

2.3. Numerical Study 

The MLE for the MSS variables is thoroughly numerically analysed in this subsection. In order to 

assess the accuracy of estimates for various parameter values and record numbers, two criteria are 

used: absolute biases (ABs) and mean squared errors (MSEs). The numerical research is performed 

in the following way: 

 Create LRV samples based on the parameter values provided.

 The parameters values are selected as 1 2 3( , , )   = (0.5,0.5,0.2), (1.1,0.5,0.2), (0.5,0.5,0.5) and

(1.1,1,0.2) for  1   in all situations. The specified values for c-out-of-t systems are  1 2 1 2,  ,  ,  c c t t  = 

(1,1,2,2), (1,2,2,2), (2,1,2,2) and (2,2,2,2). 

 The true values at  1 2 1 2,  ,  ,  c c t t = (1,1,2,2) are 0.533, 0.871, 0.758 and 0.809, at  1 2 1 2,  ,  ,  c c t t = 

(1,2,2,2) are 0.3, 0.746,0.573 and 0.591, at  1 2 1 2,  ,  ,  c c t t =(2,1,2,2) are 0.301, 0.760, 0.573 and 0.724, and 

at  1 2 1 2,  ,  ,  c c t t  = (2,2,2,2) are 0.2, 0.687, 0.477 and 0.562. 

 The sample sizes of LRV samples  ,  ,  n m w  are selected to be (2,2,2), (5,5,5), (7,7,7), (10,10,10),

(2,2,3), (5,5,6), (7,7,8) and (10,10,11).

 5000 repetitions are used to evaluate the ABs and MSEs of
1 2 1 2, , ,

ˆ
c c t t .

     RT&A, No 2 (73) 

  Volume 18, June 2023 

517



Amal S. Hassan, Doaa M. Ismail, and Heba F. Nagy 
ANALYSIS OF A NON-IDENTICAL COMPONENT-STRENGTHS 

0

0.005

0.01

M
e

an
 S

q
u

ar
e

 E
rr

o
r 

(0.5,0.5,0.2) (1.1,0.5,0.2)
(0.5,0.5,0.5) (1.1,1,0.2)

 The simulated outcomes are shown in Table 1 and are illustrated in Figures 1–6.

 As the number of records increases, the MSEs of
1 2 1 2, , ,

ˆ
c c t t for all values of  1 2 1 2,  ,  ,  c c t t decrease 

(Figure 1). For all true value of parameters, the MSE of 
1 2 1 2, , ,

ˆ
c c t t decreases at  1 2 1 2,  ,  ,  c c t t = 

(2,2,2,2) when the number of records n = m (Figure 2). 

Figure1: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )    

values at 1 2 1 2( , , , ) (1,1,2,2)c c t t   and n = m = w 

Figure 2: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )    

values at 
1 2 1 2( , , , )c c t t = (2,2,2,2) and n=m 

 Figure 3 demonstrates that as the number of n, m and w increases, the ABs of
1 2 1 2, , ,

ˆ
c c t t for all

actual values of 1 2 3( , , )    are decreasing.

 Figure 4 illustrates that the MSEs of
1 2 1 2, , ,

ˆ
c c t t at  1 2 1 2,  ,  ,  c c t t = (2,2,2,2) are larger than the MSEs 

of 
1 2 1 2, , ,

ˆ
c c t t for others values of  1 2 1 2,  ,  ,  c c t t . 

Figure 3: ABs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )    

values at 
1 2 1 2( , , , )c c t t = (1,2,2,2) and n = m = w  

Figure 4: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different

1 2 1 2( , , , )c c t t

values at n = m = w and 1 2 3( , , ) (1.1,0.5,0.2)     

 Figure 5 illustrates that the MSEs of
1 2 1 2, , ,

ˆ
c c t t at  1 2 1 2,  ,  ,  c c t t = (1, 1, 2, 2) are smaller than the 

MSEs of 
1 2 1 2, , ,

ˆ
c c t t for others values of  1 2 1 2,  ,  ,  c c t t . 

 Figure 6 illustrates that the MSEs of
1 2 1 2, , ,

ˆ
c c t t decrease when the true value of

1 2 1 2, , ,c c t t

increases.
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Figure 5: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for different 1 2 3( , , )   and

1 2 1 2( , , , )c c t t values at n = m = w =7

Figure 6: MSEs of 
1 2 1 2, , ,

ˆ
c c t t for 1 2 3( , , )   = (1.1, 0.5, 0.2)

at n = m = w =2  

Table1: Numerical results of 
1 2 1 2, , ,

ˆ
c c t t for different values of 1 2 3( , , )    

1 2 3( , , ) (0.5,0.5,0.2)    1 2 3( , , ) (1.1,0.5,0.2)   

 1 2 1, 2, ,c c t t
Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE  1 2 1, 2, ,c c t t

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

(1,1,2,2) 0.758 

(2,2,2) 0.0303 0.0009 

(1,1,2,2) 0.809 

(2,2,2) 0.0772 0.0060 

(5,5,5) 0.0255 0.0006 (5,5,5) 0.0546 0.0029 

(7,7,7) 0.0197 0.0003 (7,7,7) 0.0506 0.0025 

(10,10,10) 0.0182 0.0002 (10,10,10) 0.0394 0.0015 

(2,2,3) 0.0244 0.0005 (2,2,3) 0.0284 0.0008 

(5,5,6) 0.0137 0.0002 (5,5,6) 0.0282 0.0007 

(7,7,8) 0.0075 0.0001 (7,7,8) 0.0205 0.0004 

(10,10,11) 0.0066 0.0001 (10,10,11) 0.0212 0.0004 

(1,2,2,2) 0.573 

(2,2,2) 0.0371 0.0013 

(1,2,2,2) 0.591 

(2,2,2) 0.0872 0.0076 

(5,5,5) 0.0372 0.0013 (5,5,5) 0.0664 0.0044 

(7,7,7) 0.0293 0.0008 (7,7,7) 0.0564 0.0031 

(10,10,10) 0.0233 0.0004 (10,10,10) 0.0530 0.0028 

(2,2,3) 0.0345 0.0011 (2,2,3) 0.0628 0.0039 

(5,5,6) 0.0307 0.0009 (5,5,6) 0.0484 0.0023 

(7,7,8) 0.0281 0.0007 (7,7,8) 0.0302 0.0009 

(10,10,11) 0.0118 0.0001 (10,10,11) 0.0305 0.0009 

(2,1,2,2) 0.573 

(2,2,2) 0.0306 0.0009 

(2,1,2,2) 0.724 

(2,2,2) 0.0863 0.0074 

(5,5,5) 0.0276 0.0007 (5,5,5) 0.0583 0.0034 

(7,7,7) 0.0238 0.0005 (7,7,7) 0.0364 0.0026 

(10,10,10) 0.0210 0.0003 (10,10,10) 0.0202 0.0004 

(2,2,3) 0.0233 0.0005 (2,2,3) 0.0303 0.0009 

(5,5,6) 0.0162 0.0003 (5,5,6) 0.0285 0.0008 

(7,7,8) 0.0128 0.0002 (7,7,8) 0.0272 0.0007 

(10,10,11) 0.0115 0.0001 (10,10,11) 0.0264 0.0007 

(2,2,2,2) 0.477 

(2,2,2) 0.0978 0.0095 

(2,2,2,2) 0.562 

(2,2,2) 0.1046 0.0109 

(5,5,5) 0.0530 0.0028 (5,5,5) 0.0794 0.0063 

(7,7,7) 0.0317 0.0010 (7,7,7) 0.0770 0.0059 

(10,10,10) 0.0305 0.0008 (10,10,10) 0.0619 0.0038 

(2,2,3) 0.0622 0.0038 (2,2,3) 0.0705 0.0049 

(5,5,6) 0.0437 0.0019 (5,5,6) 0.0629 0.0039 

(7,7,8) 0.0323 0.0010 (7,7,8) 0.0450 0.0020 

(10,10,11) 0.0211 0.0001 (10,10,11) 0.0346 0.0012 
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1 2 3( , , ) (0.5,0.5,0.5)    1 2 3( , , ) (1.1,1,0.2)   

 ,, ,c c t t1 2 1 2

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE  ,, ,c c t t1 2 1 2

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

(1,1,2,2) 0.533 

(2,2,2) 0.0972 0.0094 

(1,1,2,2) 0.871 

(2,2,2) 0.0267 0.0007 

(5,5,5) 0.0958 0.0091 (5,5,5) 0.0222 0.0005 

(7,7,7) 0.0922 0.0085 (7,7,7) 0.0190 0.0003 

(10,10,10) 0.0515 0.0026 (10,10,10) 0.0183 0.0001 

(2,2,3) 0.0707 0.0050 (2,2,3) 0.0173 0.0003 

(5,5,6) 0.0628 0.0039 (5,5,6) 0.0130 0.0002 

(7,7,8) 

(10,10,11) 

0.0395 

0.0251 

0.0015 

0.0010 

(7,7,8) 

(10,10,11) 

0.0122 0.0001 

0.0113 0.0001 

(1,2,2,2) 0.3 

(2,2,2) 0.1002 0.0100 

(1,2,2,2) 0.746 

(2,2,2) 0.0423 0.0017 

(5,5,5) 0.0984 0.0096 (5,5,5) 0.0296 0.0008 

(7,7,7) 0.0977 0.0095 (7,7,7) 0.0217 0.0004 

(10,10,10) 0.0728 0.0053 (10,10,10) 0.0176 0.0002 

(2,2,3) 0.0717 0.0049 (2,2,3) 0.0228 0.0005 

(5,5,6) 0.0684 0.0046 (5,5,6) 0.0216 0.0004 

(7,7,8) 

(10,10,11) 

0.0558 

0.0301 

0.0031 

0.0018 

(7,7,8) 

(10,10,11) 

0.0128 

0.0121 

0.0001 

0.0001 

(2,1,2,2) 0.301 

(2,2,2) 0.0957 0.0091 

(2,1,2,2) 0.760 

(2,2,2) 0.0396 0.0015 

(5,5,5) 0.0954 0.0091 (5,5,5) 0.0288 0.0007 

(7,7,7) 0.0947 0.0088 (7,7,7) 0.0215 0.0003 

(10,10,10) 0.0701 0.0049 (10,10,10) 0.0170 0.0001 

(2,2,3) 0.0720 0.0051 (2,2,3) 0.0222 0.0004 

(5,5,6) 0.0636 0.0040 (5,5,6) 0.0211 0.0002 

(7,7,8) 

(10,10,11) 

0.0422 

0.0288 

0.0017 

0.0011 

(7,7,8) 

(10,10,11) 

0.0121 

0.0118 

0.0001 

0.0001 

(2,2,2,2) 0.2 

(2,2,2) 0.1028 0.0105 

(2,2,2,2) 0.687 

(2,2,2) 0.0430 0.0020 

(5,5,5) 0.0530 0.0098 (5,5,5) 0.0317 0.0009 

(7,7,7) 0.0317 0.0085 (7,7,7) 0.0220 0.0005 

(10,10,10) 0.0301 0.0050 (10,10,10) 0.0178 0.0003 

(2,2,3) 0.0906 0.0082 (2,2,3) 0.0230 0.0006 

(5,5,6) 0.0437 0.0019 (5,5,6) 0.0235 0.0005 

(7,7,8) 

(10,10,11) 

0.0323 

0.0299 

0.0010 

0.0010 

(7,7,8) 

(10,10,11) 

0.0130 

0.0128 

0.0002 

0.0002 

3. Bayesian Estimation of 
1 2 1 2, , ,c c t t

We will look in this section at the Bayesian estimator of 
1 2 1 2, , ,c c t t under the assumption that

1 2,  and 
3 are random variables.

Following [31], the prior distributions for 1 2,  and 3 are assumed to have the gamma

distribution with the following pdfs 

  1 1 11

1 1 1 ,
a b

e
    

   2 2 21

2 2 2 ,
a b

e
    

 and   3 3 3

33

1

3 ,
a b

e
    



where, the hyper-parameters; a1, a2, a3, b1, b2 and b3 are considered to be known. The joint prior 

distribution of 1 2 3( , , )    , assuming parameters independence is as follows: 

3 1 1 2 2 3 31 2 1 ( )1 1

1 2 3( ) .
a b b ba a

e
          



Based on the observed samples, the joint density function of 1 2 3( , , )     and the data are: 
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As a result, the posterior density function of 1 2 3( , , )     can be expressed as 

 
   

   

*

1 2 3

0 0 0

, , |
| , , .

, , |

L r p s
r p s

L r p s d d d

  
 

     
 



 

The Bayesian estimator of 
1 2 1 2, , ,c c t t , based on GELF, indicated by

1 2 1 2, , ,c c t t is derived as follows:

 
1 2 1 2 1 2 1 2 1 2 1 2

1
1

, , , , , , , , 1,

0

*

3

0

2

0

[ ( ) ] ( ) .| , ,c c t t c c t t c c t tE r p s d d d


      


  

 

 
     

 
          (10) 

Additionally, the Bayesian estimator of
1 2 1 2, , ,c c t t , under LLF indicated by

1 2 1 2, , ,c c t t is as follows:

 
1 2 1 2 1 2 1 2 1 2 1 2

*

, , , , , , , , ,

0 0

1 2 3

0

exp( (log ) exp log .| , ,c c t t c c t t c c t t r p s d dE d    
  

     
 
       (11) 

The Bayesian estimator of 
1 2 1 2, , ,c c t t for PLF indicated by

1 2 1 2, , ,c c t t is as follows:

 
1 2 1 2 1 2 1 2 1 2 1 2

*

1 2

0.5

2 2

, , , , ,

0

3

0

, , , ,

0

|( ) ., ,c c t t c c t t c c t tE r p s d d d    
   

     
 
       (12) 

It is difficult to find an explicit formula for (10)–(12) because the posterior density function 

 * | , ,r p s  has a composite structure. In order to obtain Bayesian estimates, we calculate these 

integrations using the Metropolis-Hastings (M-H) technique using the MCMCO algorithm. 

4. MCMCO Methodology

The MCMCO simulation is used to investigate the behavior 
1 2 1 2, , ,c c t t ’s MSS. Bayes

estimates (BE) under different loss functions are produced using gamma priors. The 
1 2 1 2, , ,c c t t ’s BE

accuracy is measured using the ABs, and MSEs. The various LRV options are  ,  ,  n m w = (2, 2, 2), (5, 

5, 5), (7, 7, 7), (10, 10, 10), (2, 2, 3), (5, 5, 6), and (7, 7, 8). The possible sets of hyperparameter values 

are considered to be: Prior I: (2, 1.5, 3, 2, 1.5, 1.1) and Prior II:(1, 1.4, 1, 2, 2.5, 3).  

The outcomes are based on 5,000 replications. The M-H process is a popular subgroup of 

the MCMCO technique in the Bayesian literature for modeling departures from the posterior 

density and producing accurate anticipated results. The main difficulty with the MCMCO is 

getting the BEs of 
1 2 1 2, , ,c c t t from GELF, LLF, and PLF using the M-H approach after simulating

samples from the posterior density. It converges to the desired distribution using 

acceptance/rejection criteria. The M-H algorithm (see [32]) operates as follows: 

a) Set the starting parameter value of
1 2 1 2

0

, , ,c c t t and the sample number N.

b) For i = 2 to N, set 
1 2 1 2 1 2 1 2

1

, , , , , ,

i

c c t t c c t t

   . 

c) Create u using the uniform (0,1).

d) Choose a candidate parameter
1 2 1 2

*

, , ,c c t t from the proposal density.
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* *

*

g
u

g

   

   
 , then set 

1 2 1 2 1 2 1 2

*

, , , , , ,

i

c c t t c c t t  ; otherwise, set 
1 2 1 2 1 2 1 2, , , , , ,

i

c c t t c c t t  . 

f) Return to step (b) and perform the aforementioned actions N times using 1i i  .

Using the outputs of the study, which are shown in Tables 2, 3, and are illustrated by Figures 7–12, 

we come up with the following conclusions: 

 The MSEs and ABs of 
1 2 1 2, , ,c c t t estimates via the GELF, LLF and PLF decrease with increasing

the record numbers n, m, w rises for all true values of  1 2 1 2,  ,  ,  c c t t , (Tables 2, 3). 

 The ABs of 
1 2 1 2, , ,c c t t estimates via the GELF, LLF and PLF have the smallest values at

 1 2 1 2,  ,  ,  c c t t = (1, 1, 2, 2), (Tables 2, 3). 

 At true value 
1 2 1 2, , , 0.748c c t t  , the MSE of 

1 2 1 2, , ,c c t t via PLF take the smallest values in case of

prior I except at (7, 7, 8) (see Figure 7). 

 At true value 
1 2 1 2, , , 0.748c c t t  , the AB of 

1 2 1 2, , ,c c t t at PLF gets the fewest values for a distinct

number of records excepting at ( , , ) (7,7,8)n m w   via prior I (see Figure 8). 

Figure 7: MSEs of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  at 

1 2 1 2( , , , )c c t t = (1, 2, 2, 2) for prior I

Figure 8: ABs of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  at

1 2 1 2( , , , )c c t t = (1, 1, 2, 2) for prior I

 The MSEs of 
1 2 1 2, , , ,c c t t

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   under the GELF, LLF and PLF, respectively, decrease 

as the number of records n = m = w increases via prior II (see Figure 9). 

 At true value 
1 2 1 2, , , 0.760c c t t  , the MSEs of 

1 2 1 2, , , ,c c t t  
1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   under the GELF, LLF

and PLF, respectively, get the least values for similar record values of (n, m) via prior II (see 

Figure 10). 
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Figure 9: MSEs of  
1 2 1 2 1 2 1 2, , , , , ,, ,c c t t c c t t   and 

1 2 1 2, , ,c c t t at

1 2 1 2( , , , )c c t t = (2 ,1, 2, 2) for prior II

Figure 10: MSEs of  
1 2 1 2 1 2 1 2, , , , , ,, ,c c t t c c t t   and 

1 2 1 2, , ,c c t t at

true value 
1 2 1 2, , , 0.760c c t t   for prior II 

 At true value
1 2 1 2, , , 0.746c c t t  , the MSEs of 

1 2 1 2, , ,c c t t gets the smallest values compared to

1 2 1 2, , , ,c c t t and
1 2 1 2, , ,c c t t for similar record values except at    ,  ,  10,10,10n m w   via prior II (see

Figure 11). 

 Figure 12 illustrates that the ABs of
1 2 1 2, , , ,c c t t

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   decrease as true value of 

1 2 1 2, , ,c c t t increases for    ,  ,  2,2,2n m w  .

Figure 11: MSEs of 
1 2 1 2 1 2 1 2, , , , , ,, ,c c t t c c t t   and 

1 2 1 2, , ,c c t t at

1 2 1 2( , , , )c c t t =(1, 2, 2, 2) for prior II

Figure 12: The ABs for all true values of 
1 2 1 2, , ,c c t t at

2n m w    for prior II 

Table 2: Numerical results of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  for prior I 

1 2 1 2( , , , ) (1,2,2,2)c c t t  1 2 1 2( , , , ) (1,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.871 

(2, 2, 2) 

0.02036 0.00041 0.746 

(2, 2, 2) 

0.04300 0.00184 

LLF 0.01541 0.00023 0.03373 0.00113 

PLF 0.006413 0.00004 0.01229 0.00015 

GELF 

(5,5,5) 

0.00542 2.9E-05 

(5,5,5) 

0.04175 0.00174 

LLF 0.00048 2.3E-07 0.03295 0.00108 

PLF 0.00067 4.5E-07 0.01169 0.00013 

GELF (7,7,7) 0.00314 9.9E-06 (7,7,7) 0.03750 0.00140 
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LLF 0.00036 1.3E-07 0.02955 0.00087 

PLF 0.00023 5.4E-08 0.01078 0.00011 

GELF 

(10,10,10) 

0.00293 8.6E-06 

(10,10,10) 

0.00323 1.0E-05 

LLF 0.00030 1.3E-07 0.00289 8.3E-06 

PLF 0.00020 4.2E-08 0.00005 3.2E-09 

GELF 

(2,2,3) 

0.02601 0.00067 

(2,2,3) 

0.03778 0.00142 

LLF 0.02085 0.00043 0.02893 0.00083 

PLF 0.00891 0.00007 0.01107 0.00012 

GELF 

(5,5,7) 

0.01449 0.00021 

(5,5,7) 

0.02832 0.00080 

LLF 0.00995 0.00009 0.02031 0.00041 

PLF 0.00407 1.6E-05 0.00797 6.3E-05 

GELF 

(7,7,8) 

0.000286 8.1E-06 

(7,7,8) 

0.00768 5.9E-05 

LLF 0.00103 1.0E-06 0.00161 2.6E-06 

PLF 0.00058 3.3E-07 0.00177 3.1E-06 

1 2 1 2( , , , ) (2,1,2,2)c c t t  1 2 1 2( , , , ) (1,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.760 

(2,2,2) 

0.04292 0.00184 0.687 

(2,2,2) 

0.02976 0.00088 

LLF 0.03398 0.00115 0.019006 0.00036 

PLF 0.01359 0.00018 0.00830 6.8E-05 

GELF 

(5,5,5) 

0.03351 0.00112 

(5,5,5) 

0.01627 0.00026 

LLF 0.02530 0.00064 0.00513 2.6E-05 

PLF 0.00979 9.5E-05 0.00013 1.8E-08 

GELF 

(7,7,7) 

0.02497 0.00062 

(7,7,7) 

0.00552 3.0E-05 

LLF 0.01697 0.00028 0.00244 5.9E-06 

PLF 0.00664 4.4E-05 0.00016 2.6E-08 

GELF 

(10,10,10) 

0.01358 0.00051 

(10,10,10) 

0.00491 6.11E-10 

LLF 0.01511 0.00017 0.00235 2.04E-11 

PLF 0.00544 3.2E-05 0.00015 2.03E-10 

GELF 

(2,2,3) 

0.04676 0.00218 

(2,2,3) 

0.02680 0.01649 

LLF 0.04676 0.00144 0.01649 0.00027 

PLF 0.01530 0.00023 0.00663 4.41E-05 

GELF 

(5,5,7) 

0.02963 0.00087 

(5,5,7) 

0.00534 2.8E-05 

LLF 0.02181 0.00047 0.00193 3.7E-06 

PLF 0.01002 0.00010 0.00187 3.5E-06 

GELF 

(7,7,8) 

0.00357 1.2E-05 

(7,7,8) 

0.00017 3.11E-10 

LLF 0.00270 7.3E-06 0.00105 6.55E-11 

PLF 0.00031 9.9E-08 0.00135 3.44E-10 

Table 3: Numerical results of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t  for prior II 

1 2 1 2( , , , ) (1,1,2,2)c c t t  1 2 1 2( , , , ) (1,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.871 

(2,2,2) 

0.01134 0.00012 0.746 

(2,2,2) 

0.02343 0.00054 

LLF 0.00566 3.2E-05 0.01414 0.00020 

PLF 0.002903 8.4E-06 0.005499 3.0E-05 

GELF 

(5,5,5) 

0.00355 1.2E-05 

(5,5,5) 

0.02311 0.00047 

LLF 0.00161 2.6E-06 0.01241 0.00015 

PLF 0.00072 5.2E-07 0.00421 2.7E-05 

GELF 

(7,7,7) 

0.00206 4.2E-06 

(7,7,7) 

0.02277 0.00037 

LLF 0.00153 2.3E-06 0.01187 0.00011 

PLF 0.00103 1.8E-07 0.00365 1.1E-04 

GELF 
(10,10,10) 

0.00201 3.4E-06 
(10,10,10) 

0.02148 0.00029 

LLF 0.00140 1.2E-07 0.01099 3.0E-05 
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PLF 0.00099 5.2E-08 0.00301 1.0E-04 

GELF 

(2,2,3) 

0.02524 0.00164 

(2,2,3) 

0.03074 0.00426 

LLF 0.02358 0.00121 0.03009 0.00077 

PLF 0.00799 0.00080 0.00784 1.7E-05 

GELF 

(5,5,7) 

0.02470 0.00135 

(5,5,7) 

0.02457 0.00333 

LLF 0.02157 0.00117 0.02847 0.00051 

PLF 0.00630 0.00060 0.00780 1.1E-05 

GELF 

(7,7,8) 

0.02110 0.00124 

(7,7,8) 

0.01354 0.00251 

LLF 0.01110 0.00101 0.02147 0.00039 

PLF 0.00558 0.00038 0.00660 1.8E-06 

1 2 1 2( , , , ) (2,1,2,2)c c t t  1 2 1 2( , , , ) (2,2,2,2)c c t t 

Loss 

function 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

Real 

1 2 1 2, , ,c c t t
 , ,n m w AB MSE 

GELF 0.760 

(2,2,2) 

0.02320 0.00136 0.687 

(2,2,2) 

0.02377 0.00056 

LLF 0.01312 0.00078 0.01288 0.00016 

PLF 0.00445 0.00008 0.00515 2.6E-05 

GELF 

(5,5,5) 

0.03524 0.00128 

(5,5,5) 

0.02228 0.00035 

LLF 0.02600 0.00071 0.01147 0.00012 

PLF 0.00931 8.1E-05 0.00478 1.8E-06 

GELF 

(7,7,7) 

0.03421 0.00088 

(7,7,7) 

0.02147 2.4E-05 

LLF 0.02387 0.00050 0.01133 2.9E-06 

PLF 0.00900 2.4E-05 0.00330 2.9E-08 

GELF 

(10,10,10) 

0.03321 0.00051 

(10,10,10) 

0.02140 6.1E-08 

LLF 0.02340 0.00044 0.01110 2.0E-07 

PLF 0.00875 3.2E-06 0.00250 2.0E-08 

GELF 

(2,2,3) 

0.03476 0.02336 

(2,2,3) 

0.02131 0.01356 

LLF 0.03554 0.00744 0.01109 0.00124 

PLF 0.02447 0.00037 0.00190 2.4E-05 

GELF 

(5,5,7) 

0.03124 0.01235 

(5,5,7) 

0.02110 0.01254 

LLF 0.02490 0.00625 0.01148 0.00120 

PLF 0.02300 0.00035 0.00166 1.4E-05 

GELF 

(7,7,8) 

0.03009 0.00147 

(7,7,8) 

0.01999 0.00124 

LLF 0.02370 0.00420 0.01122 0.00110 

PLF 0.02298 0.00021 0.00150 1.0E-06 

Note that: E-0k stands for 10-k, k is integer 

5. Actual Data Implementation

In this part, we illustrate our principles using three real datasets. We consider the real data 

sets reported in [33] where the data represent the time to break down (in minutes) of insulating 

fluids to electrodes at voltage levels 34 kV, 36 kV and 38 kV. The Kolmogorov-Smirnov (KS) test is 

used to separately fit each of the three datasets with the EPD along with the corresponding P-value 

(PV) (see Table 4). The empirical cdf and estimated pdf for these data are explained in Figure 13. 

At levels 34 kV, 36 kV and 38 kV, the times to break down are reported respectively as follows 

Data Group I 

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.5 8.27 33.91 

32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89 
Data Group II 

1.97 0.59 2.58 1.69 2.71 25.5 0.35 0.99 3.9 3.67 

2.07 0.96 5.35 2.9 13.77 
Data Group III 

0.47 0.73 1.4 0.74 0.39 1.13 0.09 2.38 
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Data K-S PV 

Group I 0.167 0.6013 

Group II 0.185 0.6127 

Group III 0.277 0.5013 

Data I 

Data II 

Data III 
Figure 13: Characteristics and limitations of K-S test for the three data groups 

We assume that electrical fluid of specimen considered being good if 1 out of 2 specimens are 

functioning properly at constant voltage. Form data group I, II and III, three sets of lower record 

values r = (0.96, 0.19), p = (1.97, 0.59, 0.35) and s = (0.47, 0.39, 0.09) are obtained, respectively. From 

,  r p , and s , we find that 2, 3, 3n m w   , then we calculate the estimates of 
1 2 1 2, , ,c c t t using

the ML and Bayesian approaches within GELF, LLF and PLF. Using the above LRVs, the MLE and 

BE of 
1 2 1 2, , ,c c t t , are calculated in Table 5.

Table 5: Bayes and ML estimates of 
1 2 1 2, , ,c c t t , for the real data

MLE of 
1 2 1 2, , ,c c t t


BE of

1 2 1 2, , ,c c t t


GELF LLF PLF 

0.5851 0.7673 0.7743 0.7956 
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Table 4: The K-S test and corresponding P-values for groups I, II and III 

526



Amal S. Hassan, Doaa M. Ismail, and Heba F. Nagy 
ANALYSIS OF A NON-IDENTICAL COMPONENT-STRENGTHS 

In the present work, we investigate the stress-strength reliability in a multi-component system 

with non-identical component strengths where both the stress and strength variables are the EPD. 

The ML and Bayesian procedures are used to analyse the reliability of MSS. Strength and stress 

distribution samples are used, and their measurements are presented in LRVs. We use MCMCO 

techniques in order to evaluate the accuracy of the various Bayesian estimates. The simulation 

study shows that for four choices of  1 2 1 2,  , ,  c c t t , the MSEs and ABs decrease with the number of 

records, supporting the MLE's consistency characteristic of 
1 2 1 2, , ,c c t t . Additionally, as the true

value of 
1 2 1 2, , ,c c t t increases, the MSEs of

1 2 1 2, , ,
ˆ

c c t t drop. Regarding the MCMCO approach, we

deduce that the MSEs and ABs of 
1 2 1 2, , ,c c t t via PLF generally hold the lowest values in majority of

cases. The ABs and MSEs of 
1 2 1 2, , , ,c c t t  

1 2 1 2 1 2 1 2, , , , , ,,c c t t c c t t   under different loss functions decrease as 

the number of records rises. The use of actual data demonstrates that our model's reliability 

estimates are very near to one, demonstrating its practical usefulness. 

Conflicts of Interest: The authors declare no conflict of interest. 
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Abstract 

Multi Criteria Decision Making techniques often face the challenge of determining criteria weights. 

The weights of criteria can significantly impact the outcomes of the decision-making process. 

Therefore, it is crucial to pay close consideration to the objectivity characteristics of criteria weights. 

Many weighting methods were discussed by various authors and utilized to solve various decision-

making complications in Analytical Hierarchy Process (AHP), Entropy method, Weighing Score 

Method (WSM), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Best 

worse method (MWM), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Criteria 

Importance Through Intercriteria Correlation (CRITIC) method, ELECTRE, etc. This research article 

gives an overview of various weighting strategies that can be used in multi-criteria optimization and 

proposes a novel approach to determine criteria weights using Pythagorean fuzzy sets to handle 

uncertainties in the decision maker’s preferences for allocating software reliability. The comparative 

analysis shows that the proposed weighting method has the advantage of being simple and 

straightforward in comparison to the existing weighting methods. The evaluation confirms that this 

novel approach is effective enough to determine objective weights. 

Keywords: Criteria Weights, software reliability, MCDM, Entropy, AHP, 

Pythagorean fuzzy number 

1. Introduction

Software systems have become an essential part of everyone's daily lives. The number of failures 

experienced by a specific user of software determines its reliability. The reliability goal is determined 

by the expectations of users and developers. Reliability refers to the degree to which the 

developments of software program enable it to perform its exact end-item use. software reliability, 

like functionality, usability, overall performance, serviceability, capability, maintainability, and 

documentation, is an important best trait. For software-primarily based systems utilized in 

protection-crucial packages which include computer relaying of energy transmission lines, software 

reliability assessment is critical. To give tools for estimating them, numerous software reliability 

models have been developed [1,2]. Early-stage software reliability prediction models are critical 

because they enable the early detection of cost overruns, issues with the software development 

process, and optimal development strategies [3]. Various components influence the overall 

operation of the software to varying degrees, and therefore information on component prominence 

can reveal critical information for software designers and test engineers. Additionally, software 
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dependability is estimated utilising antique data collected and an assumed distribution curve, 

making it inherently unstable. This model specifies how reliable software modules and programmes 

must be to maximise user utility while considering the system's financial and technical constraints. 

The reliability goal is determined by the expectations of users and developers. The degree to which 

the attributes of software enable it to perform its special end-item use is known as software 

reliability. Along with functionality, usability, overall performance, serviceability, capability, install 

ability, maintainability, and documentation, software reliability is a crucial quality trait.  

Our research has concentrated on the problem of reliability allocation in a software system 

known as software hierarchy, which includes functions, programmes, and modules [4]. In this field, 

allocation of reliability is a relatively unexplored domain. To address the issue of reliability 

allocation, techniques of mathematical programming such as maximisation of reliability, 

minimization of cost, and multi-criterion decision-making models have been used. Numerous 

decision-making approaches have been discussed by various researchers for representing complex 

commercial or technical procedures. 

Techniques for multiple-criteria decision-making (MCDM) have recently attained amazing 

popularity and wide use. Several researchers have employed AHP in testing consistency of software 

for reliability distribution or for issues with choosing suitable module. Sitorus et al. discussed the 

problem of choosing suitable method for mining and mineral processing in MCDM problems [5]. 

Methods such as AHP [6], weighted score method [7], VIKOR-TODIM [8], TOPSIS [9], DEMATEL 

[10], and other weighting methods have been proposed. Applications of decision making in public 

transport [11], location preferences of bridges [12], industrial symbiosis [13], and evaluating 

sustainable manufacturing strategies [14] were also discussed in the literature. In MCDM problem, 

selecting a suitable weighting method is a difficult task. Pamučar proposed full consistency method 

in MCDM which has cater smaller number of pairwise comparisons [15]. This method allows to 

produce realistic criteria weight coefficient values, which helps in reasonable judgement. These 

weighting methods are divided into several methods for directly and indirectly weighting criteria. 

A simulation study is provided to evaluate the effectiveness of approaches for transforming the 

ranks of multiple criteria into weights in multi-criteria decision-making [16,17]. Methods of 

weighting might be integrative, subjective, or both. Diakoulaki et al. suggested a method for 

calculating objective weights that is based on the quantification of two key MCDM concepts [18]. A 

sample of industrial businesses are subjected to the application of the suggested approach. The 

results demonstrated that the strategy guarantees a better compromise of the evaluated criteria 

when compared to those achieved by other sets of objective weights. Chatterjee et al. applied fuzzy 

AHP method for calculating the weights of functions, programmes, and modules to assess the 

dependability of the elements during the design and model phase of a software project [19]. In 

industrial health and risk evaluation, a new method has been presented [20]. The fuzzy VIKOR and 

Pythagorean fuzzy AHP are incorporated into the risk assessment process. To convert qualitative 

data into quantitative, Saaty proposed a numerical scale of one to nine where one denoting the ‘equal 

importance’ and nine ‘great importance [21]. FARE (Factor Relationship), a new technique for 

calculating the weights of the criteria based on the connections between all the criteria describing 

the phenomenon under consideration, is proposed [22]. An overview of several weighting 

approaches that can be used with multi-criteria optimization techniques is given in the work of Odu 

[23]. This approach concentrated on the utility of the various weighing methods for MCDM and 

suggested that subjective techniques are easy to compute as compared to objective one. Kasim 

presented subjective and objective weights methods for addressing MCDM problems applicable to 

real world scenario [24]. An MCDM-approach was proposed by Gupta et al. to rank a variety of 

SRGMs in software reliability [25]. To demonstrate the viability of the suggested strategy employing 

an entropy distance-based approach, an exploratory study is being conducted. In a hierarchy 

relating the expectations of clients, software technologists, and systems analyst for the software 
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system, Neha et al. described an allocation approach where preferences were assigned in terms of 

Pythagorean fuzzy numbers [26]. An example problem served as the basis for the proposed solution. 

For rating and assessing the services provided in hotels, Zoraghi et al. introduced a fuzzy MCDM 

prototype by incorporating both subjective and objective weights [27]. In the context of sustainable 

energy, Sahin proposed a comprehensive and comparative analysis of weighting MCDM methods 

[28]. 

This work proposes a novel technique for estimating the objective weights of criteria based on 

the elimination impact of criteria. This method employs a novel concept for weighing criteria. This 

method determines criterion weights based on the elimination impact of each criterion on alternative 

performance. Criteria with a greater impact on performance are given more weight. We provide 

some computer assessments to demonstrate effectiveness of our method after introducing it in a 

systematic manner. In practise, it is difficult for even a single decision-maker to provide numerical 

relative weights for various decision criteria. 

This paper delivers an outline of various weighting methods that can be used with multi-criteria 

optimization techniques. The remainder of the paper is structured as follows: In section 2, we review 

the pioneered methods for determining criteria weights which will be helpful in the study for 

comparison purposes. Proposed methodology and algorithm are described in detail in section 3. 

Section 4 describes the proposed method's application using a real-life case study. Section 5 explains 

the comparison analysis of reliability allocation between the proposed method and the existing 

methods of determining criteria weights. Finally, section 6 concludes the paper by discussing 

prospects. 

 

2.   Methods 

2.1.   Determination of Criteria Weights 

 
It might be challenging to select an appropriate weighting approach to resolve a multi-criteria 

decision problem. Some researchers have ignored the challenge of evaluating the criteria weights 

because they think that all decision-makers are aware of their importance. To avoid altering the 

MCDM models and provide accurate model outputs, it is necessary to take the validity of the 

acquired criteria weights into account. employing a variety of weighting methods. By enhancing the 

rationality, efficiency, and clarity of decision-making process, MCDM methodologies can aid in 

enhancing the quality of decisions. The authors pointed out that MCDM includes a variety of 

decision criteria and options, is recognised as a key component of recent operational research and 

decision science which comprises of multiple criteria and multiple decision alternatives. The 

methods used to establish the criteria weights that can be categorised as subjective and objective 

methods. While the objective approach chooses weights by arithmetic operations that disregard the 

decision makers' subjective judgement data, the subjective approach selects weights exclusively 

based on the considerations or judgements of decision makers. Because both subjective and objective 

approaches have advantages and disadvantages, an integrated or combined method appears to be 

preferable in determining weights of criteria [29]. To solve this problem, we investigated a technique 

for creating MCDM for ranking utilising fuzzy logic that relied on subjective and objective weights. 

We put forward few essential objective and subjective methods of determining weights for 

solving MCDM problems in optimum allocation of software reliability.  

 

2.1.1.  Entropy Method 
 

Because the decision matrix for a group of potential materials contains a certain amount of data, the 

entropy approach is used to determine the weight in a specific situation. Based on a predetermined 

decision matrix, entropy operates. Entropy is a measure of how much uncertainty a discrete 
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probability distribution can convey.  Shannon developed an entropy approach that can be applied 

to determine the weights of the criteria in any MCDM problem [30]. The working algorithm based 

on Shannon's entropy [30] can be demonstrated in a series of steps:  

Step 1: Create the decision matrix 𝘋𝑖𝑗, which includes the evaluations of the options to be evaluated.  

𝘋𝑖𝑗 =

[
 
 
 
 
𝒹11    𝒹12   … 𝒹1𝑛
𝒹21     𝒹22   … 𝒹2𝑛
𝒹31     𝒹32   … 𝒹3𝑛………………… . .
𝒹𝑚1   𝒹𝑚2   … 𝒹𝑚𝑛]

 
 
 
 

 

Step 2: Normalize the decision matrix 𝘋𝑖𝑗 as 

𝒫𝑖𝑗 =
𝘋𝑖𝑗

∑ 𝘋𝑖𝑗
𝑛
𝑗=1

     (1) 

Step 3: Calculate the entropy for each selection criterion 𝔈 as  

𝔈𝑖 = 𝔈0∑𝒫𝑖𝑗 × 𝐼𝑛(𝒫𝑖𝑗)    (2) 

where 𝔈0 is the entropy constant computed by (𝐼𝑛 𝑚)−1 

Step 4: Compute diversity degree of the knowledge involved in the outcomes of the 𝑖𝑡ℎ criteria as 

Ď𝑖 = 1 − 𝔈𝑖     (3) 

Step 5: Compute the normalised weights of the selected criteria as follows: 

𝜃𝑖 =
1−𝔈𝑖

∑ (1−𝔈𝑖)
𝑚
𝑖=1

=
Ď𝑖

∑ Ď𝑖
𝑚
𝑖=1

    (4) 

 

2.1.2.  Analytical Hierarchy Process (AHP) Method 
 

The AHP is a method that prioritises each choice by establishing the objectives or the hierarchy of 

relevance of attributes [31]. By condensing, dividing, and comparing numerous attributes, the AHP 

minimises cognitive errors. It can compare both qualitative and quantitative indices. As a result, it 

is frequently used in many different contexts, such as selection, evaluation, resource allocation, 

conflict resolution, priority and ranking, and optimization. The general procedure of finding weights 

using AHP is as follows: 

Step 1: Creating a hierarchical structure with a goal at the top, attributes, or criteria at the second, 

and alternatives at the third. 

Step 2: Determine the importance of various attributes or criteria in relation to the goal. A pairwise 

comparison matrix is created using a scale of relative importance (Table 1). 

Step 3: Geometric mean (GM) suggested by Buckley [32] is employed to aggregate the pairwise 

comparison matrices as 

ŕ𝑖𝑗∼ = √(ŕ𝑖𝑗1∼⊗ ŕ𝑖𝑗2∼…⊗ ŕ𝑖𝑗𝑛∼)
𝑛                           (5) 

where  𝑛 stands for the DMs and ŕ𝑖𝑗∼ represents triangular values. Equation 

𝒫 ⊗𝒬 = (𝜇𝒫 , υ𝒫 , 𝛾𝒫) ⊗ (𝜇𝒬 , υ𝒬 , 𝛾𝒬) = (𝜇𝒫 ∗ 𝜇𝒬 , υ𝒫 ∗  υ𝒬 , 𝛾𝒫 ∗ 𝛾𝒫, )       (6) 

is used to multiply two fuzzy numbers. 

Step 4: Fuzzy weights for all criteria are calculated using the formula 

                                        𝜛𝑖 = ŕ𝑖 ⊗ (ŕ1⊗ ŕ1⊗…⊗ ŕ1)
−1                                                     (7) 

where ŕ𝑖 is the vector summation of each ŕ𝑖𝑗∼.       

Step 5: We need to de-fuzzified these fuzzy weights to get weights in crisp value for all criteria 

using centre of area formula as 

𝜛𝑖 =
𝜇𝒫+ υ𝒫+𝛾𝒫

3
      (8) 

Step 6: Normalize these weights to get the weight total as 1. These weights can be further used for 

ranking of alternatives.  
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Table 1: Saaty’s Scale Explanation 

Linguistic Term Importance Explanation 

Strongly low important (SLI) 0.142857 Values for inverse comparison 

Very low important (VLI) 0.2 Values for inverse comparison 

Low important (LI) 0.333333 Values for inverse comparison 

Below average important (BAI) 0.5 Values for inverse comparison 

Above average important (AAI) 2 
Moderate advantage of the one element 

compared to the other 

High important (HI) 3 
High favouring of one element compared to the 

other 

Very high important (VHI) 5 

One element is given very high importance and 

has domination in practice compared to the other 

element 

Strongly high important (SHI) 7 

One element is favoured in comparison with the 

other based on strongly proved evidence and 

facts 

Exactly equal (EE) 1 
Both elements have equal contribution in the 

objective 

 

2.1.3.  Fuzzy AHP using Triangular Fuzzy Numbers (TFN) 
 

Basic AHP has been enhanced by utilising fuzzy logic since it does not include vagueness for 

subjective judgments. Through the linguistic variables, which are represented as triangular numbers 

in F-AHP, pairwise comparisons of both criteria and alternatives were carried out [33]. Van 

Laarhoven and Pedrycz carried out one of the earliest implementations of fuzzy AHP [34]. For 

pairwise comparisons, they defined the triangle membership functions. Following that, Buckley 

contributed to the discussion by identifying the fuzziness of comparison ratios with triangle 

membership functions [32]. A novel technique for using triangular numbers in pair-wise 

comparisons was also presented by Chang [35]. 

A fuzzy number ℱ = (𝑙,𝑚, 𝑢) is defined as TFN [36] if its membership function 

𝜇𝐴(𝑧) = {

𝑧−𝑙

𝑚−𝑙
,    𝑙 ≤ 𝑧 ≤ 𝑚

𝑢−𝑧

𝑢−𝑚
,    𝑚 ≤ 𝑧 ≤ 𝑢

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (9) 

Graphically, TFN has been presented in Figure 1. 

 
Figure 1: TFN 
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The laws of operation for addition, multiplication, and inverse are defined as follows: 

(𝑙1, 𝑚1, 𝑢1) + (𝑙2, 𝑚2, 𝑢2) = (𝑙1 + 𝑙2, 𝑚1 +𝑚2, 𝑢1 + 𝑢2) 
(𝑙1, 𝑚1, 𝑢1) × (𝑙2, 𝑚2, 𝑢2) = (𝑙1 × 𝑙2, 𝑚1 ×𝑚2, 𝑢1 × 𝑢2) 

(𝑙1, 𝑚1, 𝑢1)
−1 = (

1

𝑢1
,
1

𝑚1

,
1

𝑙1
) 

The membership function δℳ of the fuzzy number ℳ can also be expressed [37] as 

                                  𝜇𝐴(𝑧) =

{
 

 
𝜇A
𝐿(𝑧),          𝑎 ≤ 𝑧 ≤ 𝑏
1,                   𝑏 ≤ 𝑧 ≤ 𝑐

𝜇A
𝑈(𝑧),          𝑐 ≤ 𝑧 ≤ 𝑑

           0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

                     (10) 

where 𝜇A
𝐿(𝑧) and 𝜇A

𝑈(𝑧) are the lower and upper membership functions of fuzzy number A, 

respectively and 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑. 

The procedure of fuzzy AHP suggested by Cheng’s extent analysis is as follows: 

(1) Draw the hierarchal diagram. 

(2) Describe pair-wise comparisons in the form of fuzzy numbers. 

(3)    Gather data as a fuzzy pairwise comparison matrix based on DMs judgement and expressed  

     as 

(

(1,1,1) (𝑙12, 𝑚12, 𝑢12)   … (𝑙1𝑛, 𝑚1𝑛, 𝑢1𝑛)

(𝑙21, 𝑚21, 𝑢21) (𝑙22, 𝑚22, 𝑢22)   … (𝑙2𝑛, 𝑚2𝑛, 𝑢2𝑛)
… . … . … .

(𝑙𝑛1, 𝑚𝑛1, 𝑢𝑛1) (𝑙𝑛2, 𝑚𝑛2, 𝑢𝑛2) (1,1,1)

) 

(4) Calculate Ṧ𝑖  for every row of pair-wise comparison matrix using the expression 

 Ṧ𝑖 = ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1 ⊗ [∑ ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]

−1
 (11) 

where Ḿ𝑔𝑖
𝑗

 is TFN of pairwise comparison patterns. The values of ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1  ,  ∑ ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1  and 

[∑ ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]

−1
 are obtained by the expressions 

∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1 = (∑ 𝑙𝑗 ,
𝑚
𝑗=1  ∑ 𝑚𝑗,

𝑚
𝑗=1  ∑ 𝑢𝑗

𝑚
𝑗=1 ) (12)          

∑ ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 = (∑ 𝑙𝑖 ,

𝑛
𝑖=1  ∑ 𝑚𝑖 ,

𝑛
𝑖=1  ∑ 𝑢𝑖

𝑛
𝑖=1 ) (13)         

[∑ ∑ Ḿ𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]

−1
= (

1

∑ 𝑢𝑖
𝑛
𝑖=1

,
1

∑ 𝑚𝑖
𝑛
𝑖=1

,
1

∑ 𝑙𝑖
𝑛
𝑖=1

 )  (14) 

(5) Compute the magnitude of Ṧ𝑖 w.r.t. each other. If 𝕄1 = (𝑙1, 𝑚1, 𝑢1) and 𝕄2 = (𝑙2, 𝑚2, 𝑢2) are two 

TFNs, then, the magnitude of 𝕄1 w.r.t. 𝕄2 is defined as follows 

𝒱(𝕄2 ≥ 𝕄1) = {

1,                                      𝑖𝑓 𝑚2 ≥ 𝑚1

0,                                         𝑖𝑓 𝑙1 ≥ 𝑢2
𝑙1−𝑢2

(𝑚2−𝑢2)−(𝑚1−𝑙1)
,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

On the other hand, the magnitude of a TFN from k as another TFN is obtained by the following 

expression 

𝒱(Ḿ ≥ Ḿ1, Ḿ2, … ,Ḿ𝑘) = 𝒱[(Ḿ ≥ Ḿ1) 𝑎𝑛𝑑 (Ḿ ≥ Ḿ2) 𝑎𝑛𝑑 …(Ḿ ≥ Ḿ𝑘) ] 

= 𝑀𝑖𝑛 𝒱(Ḿ ≥ Ḿ𝑖), 𝑖 = 1,2, …𝑘 (16) 

(6) Calculate the criteria and alternatives weight in pairwise comparison format using the 

expression 

đ†(𝐴𝑖) = 𝑀𝑖𝑛 𝒱(Ṧ𝑖 ≥ Ṧ𝑘),   𝑘 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑘 ≠ 𝑖  (17) 

where 𝐴𝑖 are n elements. The weight vector is now given by 

𝜔 = [đ†(𝐴1), đ
†(𝐴2), … , đ

†(𝐴𝑛)]
𝑇 (18) 

(7) Compute the final weight vectors after normalization as 

 𝜃 = [đ(𝐴1), đ(𝐴2), … , đ(𝐴𝑛)]
𝑇 (19) 

where 𝜃 is a non-fuzzy number. 

 

2.1.4.  Pythagorean Fuzzy Number (PFN) Method 
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We have evaluated the scale suggested by Gul [20] to determine the significance weight at every 

level of the hierarchical structure for the interval valued PFN. Let us assume that there are 𝑖 

alternatives. 

Step 1: The compromised pairwise comparison matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is structured based on linguistic 

evaluations of experts using the scale proposed [38] in table 2. 

Step 2: The difference matrices Đ = [đ𝑖𝑗]𝑛×𝑛 between the lower and upper values of the membership 

and non-membership functions are calculated using (20) and (21): 

đ𝐿 = 𝜇𝐿
2 − 𝜈𝑈

2  (20) 

đ𝑈 = 𝜇𝑈
2 − 𝜈𝐿

2  (21) 

 

Table 2: Weighing scale for PFN 

Linguistic Term 

Lower value of 

membership degree 

(𝜇𝐿) 

Upper value of 

membership 

degree (𝜇𝑈) 

Lower value of 

non-

membership 

degree (𝜈𝐿) 

Upper value 

of non-

membership 

degree (𝜈𝑈) 

Strongly low important (SLI) 0 0 0.9 1 

Very low important (VLI) 0.1 0.2 0.8 0.9 

Low important (LI) 0.2 0.35 0.65 0.8 

Below average important (BAI) 0.35 0.45 0.55 0.65 

Above average important (AAI) 0.55 0.65 0.35 0.45 

High important (HI) 0.65 0.8 0.2 0.35 

Very high important (VHI) 0.8 0.9 0.1 0.2 

Strongly high important (SHI) 0.9 1 0 0 

Exactly equal (EE) 0.1965 0.1965 0.1965 0.1965 

 

Step 3: Calculate relative multiplicative matrix 𝔐 = [𝔪𝑖𝑗]𝑛×𝑛with the help of (22) and (23):  

𝔪𝐿 = √1000
đ𝐿  (22)            

𝔪𝑈 = √1000
đ𝑈                         (23) 

Step 4: The determinacy value 𝛿 = [𝛿𝑖𝑗]𝑛×𝑛is calculated with the help of (24): 

𝛿𝑖𝑗 = 1 − (𝜇𝐿
2 − 𝜇𝐿

2 ) − (𝜈𝑈
2 − 𝜈𝐿

2)                       (24) 

Step 4: Compute matrix of weights 𝜔 = [𝜔𝑖𝑗]𝑛×𝑛is calculated by multiplying the relative 

multiplicative matrix with the determinacy value as 

𝜔𝑖𝑗 = (
𝔪𝐿+𝔪𝑈

2
) 𝛿𝑖𝑗            (25) 

Step 5: Normalize weights 𝜃𝑖 with the help of (26) as 

𝜃𝑖 =
∑ 𝜔𝑖𝑗
𝑛
𝑗=1

∑ ∑ 𝜔𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

                        (26) 

These weights can be further used for ranking of alternatives. 

 

 

3.   Proposed Methodology and Algorithm 

 
The assessment of the criteria weights is one of the most crucial phases of multicriteria evaluation. 

As criteria weights plays a significant role in MCDM, it is crucial to pay close attention to the factors 

associated with the criteria weights. Most of the current evaluation techniques for determining the 

weights of the criteria are based on the expert's subjective opinions. The selection of the criteria 

weights has a significant impact on the accuracy of the findings produced by multicriteria evaluation 

methods. In this segment, a technique based on the approach proposed by Keshavarz-Ghorabaee et 
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al. is used to establish the weights of the criteria in a multi-criteria decision-making problem for 

optimal allocation of software reliability [39]. This technique is part of the objective weighting 

techniques used to determine criteria weights. The criteria weights in this method are determined 

by the exclusion effect of each criterion on the implementation of alternatives. In this analysis, the 

performances of the alternatives are calculated using a fundamental use of logarithmic measure with 

equal weights. We utilize the absolute deviation measure to define the effects of eliminating every 

condition. This metric indicates the variance between the performance of the alternative as a whole 

and its performance when a criterion is removed. The procedures for determining objective weights 

are as follows: 

➢ The compromised pairwise comparison matrix 𝒳 = (𝓍𝑖𝑗)𝑚×𝑛 is built using expert linguistic 

evaluations. 

➢ Define fuzzy numbers to be used for pair-wise comparisons. 

➢ Normalize the decision matrix as  

𝒩𝑖𝑗 =
𝓍𝑖𝑗

∑ 𝓍𝑖𝑗
𝑛
𝑗=1

;    (27)  

𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛 

➢ Calculate the overall performance as follows: 

𝒫𝑖 = 𝑙𝑛 [1 + {
1

𝑛
∑ |𝑙𝑛 (𝒩𝑖𝑗)|
𝑛
𝑖=1 }]                          (28) 

➢ Using the formula, compute the performance of the alternatives by removing the impact of each 

criterion. 

𝒫𝑖𝑗
𝓇 = 𝑙𝑛 [1 + {

1

𝑛
∑ |𝑙𝑛 (𝒩𝑖𝑗)|
𝑛
𝑘,𝑘≠𝑖 }]                          (29) 

➢ Evaluate the sum of absolute deviations between the overall performance and performance of 

the alternatives by eliminating impact of each criterion as 

𝜔𝑖 = ∑ |𝒫𝑖𝑗
𝓇 − 𝒫𝑖|

𝑛
𝑗=1                       (30) 

➢ Determine weights 𝜃𝑖 with the help of (31) as 

𝜃𝑖 =
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖=1

             (31) 

These weights can be further used for ranking of alternatives.  

 

4. Allocation of System Reliability 
 

The user is the ultimate arbiter of a system's performance and dependability. Before designing any 

strategy, it is essential to base it on users’ opinions and perceptions of the dependability of distinct 

functions. The views of the user, the software manager and programmer may disagree. To 

accomplish the goal, it is necessary to incorporate all perspectives on how to assign reliability values 

to different software modules, programmes, and functions. First, we identify our problem and 

establish the system's reliability objective. This objective is based on what the user anticipates from 

the software. We consider the system's target reliability as 90% for the sake of our research. Based 

on this value, we allocate reliability to these modules, functions, and programmes of the system.  

A hierarchy structure (figure 2) is formed based on the problem's objective. There are different tiers 

of modules, programmes, and functions in this structure. The user's decision-making judgement is 

converted into a fuzzy numerical value. Following user feedback on function, software technologists 

express their favourites for the programmes, and finally, computer programmer assign the 

inclinations to the autonomous modules. The total system reliability is shown at the top of this 

hierarchical structure. The user's perspective on the functions is the focus of the hierarchy's second 

level. Users give their opinions based on software's ability to produce the desired results. We have 

taken up four functions and denoted as 𝐹1, 𝐹2, 𝐹3, 𝑎𝑛𝑑 𝐹4. The viewpoint of a software engineer is 

shown at the third stage of the hierarchical structure. The programmes built for the user-preferred 

functions are shown at this level. Each function is allowed to have a different number of 

programmes. We assume programs at this level as 𝑃1, 𝑃2, 𝑎𝑛𝑑 𝑃3. The perspective of the programmer 
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on the software system's modules is included in the hierarchy's bottom level. The system consists of 

4 modules namely 𝑀1,𝑀2, 𝑀3, 𝑎𝑛𝑑 𝑀4.  

 

 
Figure 2: The software hierarchy of the proposed system for reliability allocation 

 

We allocate the reliabilities after determining the weights for the alternatives based on the processes. 

We employ the following mathematical formula to determine the reliability to the priority weights:  

ℜ𝒯𝑖 = ℜ𝒯
𝜃𝑖 

where ℜ𝒯𝑖: Reliability of 𝑡ℎ𝑒 𝑖𝑡ℎ element,  ℜ𝒯: Objective reliability of the system and 𝜃𝑖: weights 

acquired. 

Each element in the hierarchy is interconnected with multiple elements at the top levels. So, we 

choose the one that has the highest level of reliability. For example, if a program 𝑃1 relates to four 

modules 𝑀1, 𝑀2, 𝑀3, 𝑎𝑛𝑑 𝑀4  then reliability allocated will be 

ℜ𝒯𝑃1 = 𝑀𝑎𝑥 {ℜ𝒯𝑀1 , ℜ𝒯𝑀2 , ℜ𝒯𝑀3 , ℜ𝒯𝑀4}. 

where ℜ𝒯𝑃1  represents reliability allocated to program 𝑃1 and ℜ𝒯𝑀1 , ℜ𝒯𝑀2 , ℜ𝒯𝑀3 , 𝑎𝑛𝑑 ℜ𝒯𝑀4  are the 

reliabilities of  modules 𝑀1, 𝑀2, 𝑀3, 𝑎𝑛𝑑 𝑀4 associated with 𝑃1. 

 

4.1.  Application of the proposed framework 
 

In this section, a simplified example has been used to illustrate how the suggested solution can be 

used to the reliable allocation problem. Figure 2 depicts the hierarchical structure of reliability of 

software. 

It is assumed that the goal of our overall system reliability of the system to be 0.90. Assume a 

software with four functions has been created 𝐹1, 𝐹2, 𝐹3, 𝑎𝑛𝑑 𝐹4. The fuzzy values were assigned by 

DMs while performing pairwise comparing. As shown in table 1, linguistic statements were used 

for pairwise comparisons while collecting expert opinions using a scale of relative importance. The 

pairwise comparison matrix is attained as  

 

Table 3: Comparison matric of functions with linguistic statement using expert opinion 

Software 𝐹1 𝐹2 𝐹3 𝐹4 

𝐹1 EE SLI VLI LI 

𝐹2 SHI EE AAI HI 

𝐹3 VHI BAI EE HI 

𝐹4 HI LI LI EE 
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 The relative importance using Saaty scale is shown in table 4 as 

 

Table 4: Comparison matric with relative importance using expert opinion 

Software F1 F2 F3 F4 

F1 1 0.1429 0.5 1 

F2 7 1 0.333333 7 

F3 2 3 1 2 

F4 1 0.1429 0.5 1 

 

The priority weights and allocation of reliabilities to these functions using proposed methodology 

is demonstrated in table 5 as 

 

Table 5: Reliability allocation for functions 

Functions Weights (𝜃𝑖) Reliability provision (ℜ𝒯𝑖 = ℜ𝒯
𝜃𝑖) 

𝐹1 0.017643 (0.90)0.017643 = 𝟎. 𝟗𝟗𝟖𝟏𝟒𝟑 

𝐹2 0.401141 (0.90)0.401141 = 0.958616 

𝐹3 0.315821 (0.90)0.315821 = 0.967272 

𝐹4 0.265395 (0.90)0.265395 = 0.972425 

 

The weights and reliabilities determined for all offered functions in relation to the target reliability 

are shown in the table 5. It has been observed from the above table that the maximum reliability is 

assigned to the function 𝐹1. 𝑖. 𝑒. , 0.998143 followed by 𝐹4, 𝐹3, and 𝐹2 in that order. Furthermore, we 

assign reliability to the programmes associated to each individual function using the target 

reliability of the functions as our benchmark. To meet the needs of each function, relative weights of 

the programmes are computed for reliability criteria. Programs 𝑃1 and 𝑃2 are required for function 

𝐹1, 𝑃1 and 𝑃3 are required for function 𝐹2, 𝑃2 and 𝑃3 are required for function 𝐹3, and 𝑃1, 𝑃2, 𝑃3 are 

required for function 𝐹4,as shown in table 6. 

After converting linguistic statements to relative importance, we find weights and allocate reliability 

to these programs using our methodology as described in table 7. 

The table 7 shows that programme 𝑃1 has been given the highest reliability rating, which is 0.999606, 

followed by 𝑃2 and 𝑃3 in that order. When a single programme is linked to multiple functions, we 

choose the highest level of reliability possible. In a similar way, we assign reliability to four proposed 

modules. To determine the weights of these modules, evaluation patterns as studied are developed. 

Here, all these programs relate to these four modules such as 𝑀1, 𝑀2, 𝑀3, 𝑎𝑛𝑑 𝑀4 and assessment 

pattern of these modules w.r.t. each program in linguistic form is depicted in table 8. 

 

Table 6: Comparison matric of programs with linguistic statement using expert opinion 

(a)                                                                                           (b)  

𝐹1 𝑃1 𝑃2 

𝑃1 EE SLI 

𝑃2 SHI EE 

                        

        (c)                                                                                     (d) 

                                                                                                                                                                                                                        

 

 

 

 

 

𝐹2 𝑃1 𝑃3 

𝑃1 EE BAI 

𝑃3 AAI EE 

𝐹3 𝑃2 𝑃3 

𝑃2 EE BAI 

𝑃3 AAI EE 

𝐹4 𝑃1 𝑃2 𝑃3 

𝑃1 EE SLI BAI 

𝑃2 SHI EE LI 

𝑃3 AAI HI EE 

538



 
H. D. Arora, Anjali Naithani, Surbhi Gupta 
OPTIMAL SOFTWARE RELIABILITY PREDICTION ….. 

RT&A, No 2 (73) 
Volume 18, June 2023  

 

 

Table 7:  Reliability allocation for programs 

Programs Weights (𝜃𝑖) Reliability allocation (ℜ𝒯𝑖 = ℜ𝒯
𝜃𝑖) 

𝑃1 0.00374, 0.107793,0.072205 
𝑀𝑎𝑥 {(0.90)0.00374, (0.90)0.99626, (0.90)0.072205} 

= 𝟎. 𝟗𝟗𝟗𝟔𝟎𝟔 

𝑃2 0.99626, 0.035899, 0.356939 
𝑀𝑎𝑥 {(0.90)0.99626, (0.90)0.035899, (0.90)0.356939} 

= 0.996225 

𝑃3 0.892207, 0.964101, 0.570856 
𝑀𝑎𝑥 {(0.90)0.892207, (0.90)0.964101, (0.90)0.570856} 

= 0.941627 

 

Table 8: Comparison matric of modules with linguistic statement using expert opinion 

(a) (b)  

𝑃1 𝑀1 𝑀2 𝑀3 𝑀4 

𝑀1 EE BAI SLI VLI 

𝑀2 AAI EE BAI SHI 

𝑀3 SHI AAI EE HI 

𝑀4 VHI SLI LI EE 

                       (c) 

𝑃3 𝑀1 𝑀2 𝑀3 𝑀4 

𝑀1 EE VLI SLI SHI 

𝑀2 VHI EE AAI BAI 

𝑀3 SHI BAI EE LI 

𝑀4 SLI AAI HI EE 

 

After converting linguistic statements to relative importance, we find weights and allocate reliability 

to these modules using our methodology as described in table 9. 

 

Table 9: Reliability allocation for modules 

Programs Weights (𝜃𝑖) Reliability allocation (ℜ𝒯𝑖 = ℜ𝒯
𝜃𝑖) 

𝑀1 0.048414, 0.034373, 0.220843 
𝑀𝑎𝑥 {(0.90)0.048414, (0.90)0.034373, (0.90)0.220843} 

= 𝟎. 𝟗𝟗𝟔𝟑𝟖𝟓 

𝑀2 0.287318, 0.28954, 0.33712 
𝑀𝑎𝑥 {(0.90)0.287318, (0.90)0.28954, (0.90)0.33712} 

= 0.970182 

𝑀3 0.374067, 0.134255, 0.260876 
𝑀𝑎𝑥 {(0.90)0.374067, (0.90)0.134255, (0.90)0.260876} 

= 0.985954 

𝑀4 0.290201, 0.541832, 0.181161 
𝑀𝑎𝑥 {(0.90)0.290201, (0.90)0.541832, (0.90)0.181161} 

= 0.981094 

 

From the above table, it has been observed that the module 𝑀1 has been given the highest reliability 

rating, which is 0.996385, followed by 𝑀3, 𝑀4 and 𝑀2 in that order. Before developing the real system, 

all software components are given reliability targets using this allocation technique. These objectives 

must consider the normal user expectations as well as the specifications for the software's structure 

and reliability to be practical and significant. For software reliability allocation, this strategy 

enhances communication between users, software managers, and programmers. 

 

5. Comparative Analysis 

 
In this section, comparison has been carried out by finding criteria weights using existing methods 

as discussed in section 2. Weights calculation and reliability allocation for functions, programs and 

modules has been demonstrated in table 10-13 as shown below: 

 

𝑃2 𝑀1 𝑀2 𝑀3 𝑀4 

𝑀1 EE VLI BAI SLI 

𝑀2 VHI EE AAI LI 

𝑀3 AAI BAI EE SLI 

𝑀4 SHI HI SHI EE 
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Table 10:  Weight calculation and reliability allocation using entropy method 

Functions Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝐹1 0.207905 0.978333 

𝐹2 0.299162 0.968972 

𝐹3 0.217526 0.977342 

𝐹4 0.275407 0.97140 

Programs Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑃1 0.49999, 0.5000, 0.291107 0.969794 

𝑃2 0.50000, 0.5000, 0.524813 0.948683 

𝑃3 0.50000, 0.5000, 0.184080 0.980792 

Modules Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑀1 0.180953, 0.222048, 0.305404 0.981115 

𝑀2 0.254397, 0.343202, 0.308463 0.973553 

𝑀3 0.158464, 0.259382, 0.254434 0.983443 

𝑀4 0.406186, 0.175368, 0.131699 𝟎. 𝟗𝟖𝟔𝟐𝟐 

 

Table 11: Weight calculation and reliability allocation using AHP method 

Functions Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝐹1 0.059249 0.993777 

𝐹2 0.482803 0.950404 

𝐹3 0.313851 0.967473 

𝐹4 0.144097 0.984933 

Programs Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑃1 0.125016, 0.3333, 0.075064 𝟎. 𝟗𝟗𝟐𝟏𝟐𝟐 

𝑃2 0.874984, 0.2500, 0.591723 0.974004 

𝑃3 0.66660, 0.7500, 0.3332130 0.965502 

Modules Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑀1 0.066274, 0.059672, 0.16054 𝟎. 𝟗𝟗𝟑𝟕𝟑𝟑 

𝑀2 0.31181, 0.233218, 0.358978 0.975727 

𝑀3 0.488009, 0.106113, 0.249495 0.988882 

𝑀4 0.133907, 0.60099, 0.230987 0.985991 

 

Table 12: Weight calculation and reliability allocation using fuzzy AHP (TFN) method 

Functions Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝐹1 0.056585 0.994056 

𝐹2 0.376814 0.961077 

𝐹3 0.348631 0.963934 

𝐹4 0.21797 0.977296 

Programs Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑃1 NA, 0.50, 0.212266 0.977884 

𝑃2 NA, 0.3163, 0.433994 0.9672 

𝑃3 0.50, 0.6837, 0.35374 0.963416 

Modules Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑀1 0.130874, 0.072106, 0.233092 0.992432 

𝑀2 0.317613, 0.265214, 0.277064 0.972444 

𝑀3 0.343306, 0.156194, 0.285197 0.983678 

𝑀4 0.208207, 0.506487, 0.204647 0.978669 
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Table 13: Weight calculation and reliability allocation using PFN method 

Functions Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝐹1 0.020534 0.997839 

𝐹2 0.542303 0.944464 

𝐹3 0.31764 0.967087 

𝐹4 0.119524 0.987486 

Programs Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑃1 0.03444, 0.316381, 0.040192 𝟎. 𝟗𝟗𝟓𝟕𝟕𝟒 

𝑃2 0.965556, 0.14101, 0.709697 0.985253 

𝑃3 0.683619, 0.85899, 0.250111 0.973992 

Modules Weights (𝜃𝑖) Max. Reliability allocation (ℜ𝑖 = ℜ
𝜃𝑖) 

𝑀1 0.020222, 0.020222, 0.333048 𝟎. 𝟗𝟗𝟕𝟖𝟕𝟐 

𝑀2 0.366725, 0.202953, 0.206594 0.978844 

𝑀3 0.437906, 0.047376, 0.34180 0.995021 

𝑀4 0.175147, 0.729448, 0.118557 0.987586 

 

Based on the comparison shown in table 10 to table 13 several finding can be made: first, function 𝐹1 

is assigned with maximum reliability by all the methods considered such as entropy method, AHP 

method, fuzzy AHP, PFN and our proposed technique. Secondly, maximum reliability is assigned 

to program 𝑃1 by all except the entropy method and thirdly, for modules 𝑀1 is chosen for the optimal 

allocation of software reliability. The above findings suggest that the suggested methodology 

provides software designers a productive and strategic method for producing highly robust 

software. The achievement of the best system reliability goal requires having a suitable reliability 

allocation method because development of a software is a significant cost factor of computer system. 

By incorporating users' opinions with those of software engineers and programmers, it also 

emphasises how crucial it is to comprehend users' roles in the software industry. As a result, this 

study improves communication between users, software engineers, and programmers. Also, 

employing this study DMs have more liberty and convenience in conveying their thoughts. 

 

6. Conclusions and Future Scope 
 

In MCDM, ascertaining criteria weights is a key issue. Weights are designed to convey the 

comparative importance of certain criteria. Real-world applications always involve varied degrees 

of criterion contribution to the outcomes being considered. Ignoring the issue will lead to wrong 

decisions.  Pairwise comparisons are frequently employed as intermediate decision support when 

the DM finds it difficult to order the options as a whole and immediately regarding a criterion. 

Numerous techniques have been presented, and their efficacy has been compared, to estimate the 

preference values from the pairwise comparison matrix. It is essential to include users’ 

perception while developing and designing software because they play a significant influence in the 

software market. This paper provides selective pioneered methods of computing priority weights 

and discusses the allocation of reliability of a software problem that arises during the designing and 

development phases of a programme. We compare the function based on the user's perception, 

compute the weights for each function, and assign reliability to them using a pairwise comparison 

matrix. We create a comparison matrix for modules considering the opinions of the programmers 

and a comparison matrix for programmes based on the decisions made by software engineers after 

assigning reliability to the functions. Then, based on the developed processes in the technique, 

reliability to programmes and modules is assigned using suggested approach. The study compares 

priority weights determined by entropy method, AHP, fuzzy AHP and Pythagorean fuzzy approach 
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with the weights computed from proposed methodology for validation. We may assert that 

incorporating fresh MCDM techniques based on innovative viewpoints could guarantee the 

reliability of outcomes. Decision-makers can get weights that are more trustworthy by incorporating 

weighting procedures. The success of the software system reliability objective is assured by the 

reliability allocation model proposed in this work. For reliability allocation, this strategy enhances 

communication between consumers, software engineers, and programmers. The study broadens 

developers' comprehension of the impact of users' opinions during the software development phase 

as well as engineers' and programmers' perspectives at various levels of the hierarchy. However, the 

study is only capable of considering at one decision maker's perspective at each level. Furthermore, 

because the study only considers a few methods for computing the weighing criteria for functions, 

programmes, and modules, future investigation will focus on different approaches of decision-

making in the allocation of reliability to software and can incorporate more objective and subjective 

methods for determining priority weights. The suggested approach can enhance future study in a 

vague defined environment, such as fuzzy, Neutrosophic and Fermatean environments. 
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Abstract 

We often see that in a system, the energy is supplied to the system by 𝑝1 sources and its consumed 

through 𝑝2 sources and the sources are linearly dependent with vector 𝒂′ and 𝒃′. The overall

representation of the two sets are related to vectors 𝒂 and 𝒃, such that they are approximated by  𝒂′𝒙  

and 𝒃′𝒚 as in principal component analysis. In this article, a stress strength reliability model R= 

Pr(𝒂′𝒙 >  𝒃′𝒚), when 𝒙 and 𝒚 are distributed dependently multivariate normal distribution is 

proposed, with 𝒂 and 𝒃 are two known vectors. MVUE and MLE of R are obtained. Through 

simulation studies, their performances are compared using different measures. The two-sided 

confidence intervals and lower bounds of R are obtained through exact and asymptotic distribution 

of maximum-likelihood estimators and using bootstrap procedure. Through simulation studies, the 

performances of these confidence intervals are empirically checked using their coverage and the 

accuracy. In this study, we proposed to choose the optimal sample size for an experiment assures an 

adequate power and level. Finally, we applied these interval estimators to a real data set. 

Keywords: Stress-strength, Principal component, Maximum Likelihood Estimator (MLE), 

Minimum Variance Unbiased Estimator (MVUE), Confidence Intervals. 

1. Introduction

The stress-strength model consists in estimating R=Pr(X>Y), the lifetime of a component which has 

a random strength X and it’s subjected to random stress Y. In stress-strength model, the system fails 

if and only if, at any time, the stress is greater than its strength. Birnbaum was first introduced to 

this model [1] and was developed by Birnbaum and McCarty [2]. There has been a huge number of 

works in estimation of the reliability R= P(X>Y) in the field of stress-strength models. It has several 

applications particularly in engineering ideas, like structures, deterioration of rocket motors, static 

fatigue of ceramic parts, fatigue failure of craft structures, and also in mechanical, civil engineering. 

The R=Pr(X>Y) has been formulated for the huge majority of the well-known statistical distributions 

when X and Y are independent random variables belonging to the univariate family and (X,Y) 

follows bivariate distribution with dependence between X and Y. The R has been established for the 

bulk of well-known statistical distributions, including Normal, uniform, exponential, gamma, beta, 

extreme value, Weibull, Laplace, etc [3-7]. 

This stress-strength reliability model may also be useful in clinical trial. Particularly when 

comparing two treatment effects, it may be more useful to draw conclusions regarding the unit's free 

measure, rather than comparing the means [8]. Simonoff, Hochberg and Reiser also used this 

function to find the effect of the treatment, if Y is the response for a control group, and X refers to a 
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treatment group [9].  A numerical procedure obtained by Birnbaum and McCarty based  on  the 

asymptotic distribution to find the sample size needed for setting  up an upper confidence  bound  

with the defined width and confidence coefficient [2]. Using this procedure Owen, Craswell and 

Hanson considered  the same problem in case of bivariate normal distribution to obtained the sample 

size  needed  for specified confidence  bound  and  the  confidence  coefficient [10]. Sen obtained the 

non parametric confidence bounds for P(X<Y) based on independent samples [11]. Govindarazulu 

obtained two-sided confidence intervals for R when X and Y are independent and also dependent 

normal variates [12]. Church and Harris obtained confidence intervals for R in case of independent 

normal varieties [13]. Under the same assumptions, Downton derived the minimum variance 

unbiased estimator (MVUE) of R [14]. They are suggested that an alternative approximation to 

obtained the “best” estimate of R and its confidence intervals by Church and Harris.  Woodward 

and Kelley obtained the uniformly minimum variance unbiased estimator (UMVUE) of R based on 

infinite series [15].  Mukherjee and Sharan obtained the UMVUE for R under the bivariate normal 

distribution [16] and also obtained their asymptotic variance when parameters other than the means 

are known and they proposed an estimator R based on maximum likelihood estimators when all the 

five parameters are unknown. Hor and Seal derived an alternative estimator viz. UMVUE of R under 

the same case of bivariate normal distribution [17].  

All these above works were done under the univariate or bivariate setup. Gupta and Gupta 

first estimated the reliability under multivariate normal setup [18]. They considered the forms of R 

when (𝒙𝑝1x1, 𝒚𝑝2x1) follows multivariate normal distribution with dependence vector between 𝒙𝑝1x1
and 𝒚𝑝2x1. Then, the reliability as R= Pr(𝒂′𝒙 >  𝒃′𝒚) , where 𝒂′ and 𝒃′ are two vectors. This problem

arises when a system in the energy is supplied to the system by 𝑝1 sources and is consumed through 

𝑝2 sources and the sources of energy supplied and consumed are linearly dependent with known 

vector 𝒂′ and 𝒃′. Under this set up, they obtained and compared the MVUE and MLE estimate of R 

with some interesting special cases. Enis and Geisser have demonstrated that, how to obtain the 

exact confidence bounds for R [19]. In this multivariate setup, Reiser and Farragi derived the lower 

confidence bounds for R=P(a'x>b'y) [20] and solved it iteratively and also derived an approximate 

lower confidence bounds for R. In a clinical trial require sample size calculations to determine the 

optimal number of participants (patients) to be included in the trial. Reiser and Guttman introduced 

the method to obtain the sample size for experiments concerned with inference on R, based on 

acceptance sampling theory in the univariate normal setup [21].  

These two vectors 𝒂 and 𝒃 are to be chosen such that the multivariate behaviours are 

approximated by  𝒂′𝒙  and 𝒃′𝒚 as in principal component analysis. Thus, the Principal component 

analysis used to estimate the 𝒂′ and  𝒃′where as Gupta and  Gupta considered only spatial cases of 

𝒂′  and 𝒃′ and compare the MVUE and MLE estimates of R using given mean vector and dispersion 

matrix [18]. The study is carried out on real data set. We do simulation studies to compare the 

performance of MVUE and MLE in teams of variance (VAR), mean square error (MSE) and mean 

absolute error (MAE). Then, it is shown that MVUE of R performs better than MLE. 

We estimate R=P(a'x>b'y) under the multivariate normal setup, whereas Hor and Seal 

derived this under the bivariate normal distribution setup [17]. We choose some set of μ1, μ2, Σ11, Σ12, 

Σ22 and to compute L1 distance between the two distribution functions of MVUE and MLE. We may 

take different choices of parameters to obtain the L1 distance, where the parameter is √𝑛𝛿 =
−√𝑛(𝒃′𝝁𝟐−𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪−𝟐𝓪
′𝜮𝟏𝟐𝒃−𝒃

′𝜮𝟐𝟐𝒃)
1
2

 . In this connection, the distributions function of the two estimators MVUE 

and MLE are derived in section 3. L1 distance between two functions to compare two estimators is 

given in section 4. In section 6, we can deal with the problem to obtain two-sided confidence limits 

and lower bounds for R under the multivariate normal set up. Based on MVUE and MLE, we 

compare the performance between bootstrap and empirically interval estimator in terms of coverage 

and accuracy using simulation study. Finally, we applied these interval estimators to a real data set. 

Finally, in Section 7, we consider the problem of sample size determination. 
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2. Derivation of the Point Estimation of R

2.1. Maximum Likelihood Estimator of R 

Let, xp1x1 and yp2x1  be two random vector such that the distribution of (
𝐱
𝐲) ~ 𝑁𝑝1+𝑝2(µ, ∑)

Where, µ =

1 2

1

2 ( ) 1p p x+

 
 
 

µ

µ
and     ∑ =

1 2 1 2

11 12

21 22 (p p )x(p p )+ +

  
 
  

 

Suppose we have known vectors  𝒂′ and 𝒃′. Then, we want to find the reliability in terms of linear 

combination of 𝒂′𝒙 and 𝒃′𝐲 as R= Pr(𝒂′𝒙 > 𝒃′𝒚) =  Pr(𝒂′𝒙 − 𝒃′𝐲 > 0) 

Now, the distribution of 𝑢 = 𝒂′𝒙 − 𝒃′𝐲  follows 𝑁(µ𝑢, 𝜎𝑢
2),

where,  𝜇𝑢=𝐸 (𝒂′𝒙 − 𝒃′𝐲) = 𝒂′𝝁𝟏 − 𝒃
′𝝁𝟐

and 𝜎𝑢
2 = 𝑉𝑎𝑟(𝒂′𝒙 − 𝒃′𝐲) = 𝒂′∑𝟏𝟏𝒂 − 𝟐𝒂

′∑𝟏𝟐 𝒃 +  𝒃
′∑𝟐𝟐 𝒃

Now, R= Pr(𝒂′𝒙 − 𝒃′𝐲 >  0) = Pr(𝑢 >  0)  

 = ∫
1

√2𝜋𝜎𝑢

∞

0
exp {−

1

2
(
𝑢−𝜇𝑢

𝜎𝑢
)
2

} 𝑑𝑢=∫
1

√2𝜋

∞

− 
𝜇𝑢
𝜎𝑢

exp {−
1

2
𝑧2} 𝑑𝑧= Φ(

𝜇𝑢

𝜎𝑢
) 

The maximum likelihood estimator of µ =

1 2

1

2 ( )p xp

 
 
 

µ

µ
 and  ∑ =

1 2 1 2

11 12

21 22 (p p )x(p p )+ +

  
 
  

 

define as  (
𝒙
𝒚,̅
̅
)  and 𝑺 = (

𝑺𝟏𝟏  𝑺𝟏𝟐 
𝑺𝟐𝟏  𝑺𝟐𝟐 

) respectively. 

We have, 𝜇�̂� = 𝒂
′𝒙 − 𝒃′�̅�  and 𝜎𝑢2̂ = 𝒂

′𝑺𝟏𝟏𝒂 − 𝟐𝒂
′𝑺𝟏𝟐 𝒃 +  𝒃

′𝑺𝟐𝟐 𝒃

So, the maximum likelihood estimate of R is define as R*= Φ(
μû

σu
2̂
)  (1) 

2.2. Principal Component Estimation 

Let us, compute the estimate of 𝒂′ 𝑎𝑛𝑑 𝒃′ by Principal component analysis. Principal component 

analysis explaining the variance-covariance structure ∑𝟏𝟏 𝑎𝑛𝑑 ∑𝟐𝟐 of a set of variables 𝒙 𝑎𝑛𝑑 𝐲 

through a linear combination (𝒂′ 𝑎𝑛𝑑 𝒃′)  of these variables, i.e, explain maximum variability. It is 

noted that, the first principal component has the largest possible variance (that is, accounts for as 

much of the variability in the data as possible), and each succeeding component in turn has the 

highest variance possible under the constraint that it is orthogonal to the preceding components. 

We take the maximum likelihood estimate of ∑𝟏𝟏  as 𝑺𝟏𝟏  and  𝒂′ as 𝒆𝟏
′  normalized eigenvectors of

𝑺𝟏𝟏 corresponding to 𝜆1 eigen value. Similarly, we have estimate of  ∑𝟐𝟐 as 𝑺𝟐𝟐  and  𝒃′ as 𝒍𝟏
′

normalized eigenvectors of 𝑺𝟐𝟐 corresponding to 𝜆1 eigen value. Then from (1) the estimate of R 

define as R*= Φ(
μû

σu
2̂), where 𝜇�̂� = 𝒆𝟏

′ 𝒙 − 𝒍𝟏
′ �̅�  and 𝜎𝑢2̂ = 𝒆𝟏

′ 𝑺𝟏𝟏𝒆𝟏 − 𝟐𝒆𝟏
′ 𝑺𝟏𝟐 𝒍𝟏 + 𝒍𝟏

′ 𝑺𝟐𝟐 𝒍𝟏  .

2.3. Minimum Variance Unbiased Estimator (MVUE) of R 

Now, let us find out Minimum Variance Unbiased Estimator (MVUE) of R=Pr(𝒂′𝒙 − 𝒃′𝐲 > 0). Here, 

it is assumed that the random sample (
𝐱𝛂
𝐲𝛂
) , α = 1,2, … , n are from multivariate normal distribution

i.e. (
𝐱𝛂
𝐲𝛂
)~ 𝑁𝑝1+𝑝2(µ, ∑).

Then, 𝑢𝛂 = (𝒃
′𝒚𝛂 − 𝒂

′𝒙𝛂) ~
2( , )u uN   , α=1,2,….,n be the random sample of size n. Now, (𝑢,̅ 𝑆𝑢

2) 

is a complete sufficient statistic for (𝜇𝑢 , 𝜎𝑢
2), where 𝑢

−
=
1

𝑛
∑ 𝑢𝑖
𝑛
𝛼=1  and 𝑠𝑢

2 =
1

𝑛
∑ (𝑢𝑖 − 𝑢

−
)2𝑛

𝛼=1 , the 

MVUE of R [22] is  
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𝑅
^

= ∫
Γ(
𝑛−1

2
)

Γ(
1

2
)Γ(

𝑛−2

2
)

1

𝑐
(1 − 𝑧2)

𝑛−2

2
−1𝑑𝑧, where  𝑐 =

𝑢
−

(√(𝑛−1)𝑠𝑢

Then the MVUE of  R=Pr(𝒂′𝒙 − 𝒃′𝐲 > 0)  [18] is 

𝑅
^

=

(

0 if 𝑐 > 1
1

2
(1 − 𝐵 (𝑐2;

1

2
,
𝑛−2

2
)) if 0 < 𝑐 ≤ 1

1

2
(1 + 𝐵 ((−𝑐)2;

1

2
,
𝑛−2

2
)) if −1 < 𝑐 ≤ 0

1 if 𝑐 ≤ −1 )

  (2) 

where, 𝑐 =
(𝒆1
′ �̅�−𝒍1

′ �̅�)

(√(𝑛−1)(𝒆1
′ 𝑺11𝒆1−2𝒆1

′ 𝑺12 𝒍𝟏+ 𝒍1
′ 𝑺22 𝒍1)

and  𝐵(𝑘; 𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
∫ 𝑥𝛼−1(1 − 𝑥)𝛽−1
𝑘

0
𝑑𝑥 

2.4. Simulation Study 

The simulation study we performed aim to compare the behaviors of two estimators of R, i.e. �̂�, the 

MVUE and R*= Φ(
μû

σu
2̂) , the estimator based on maximum likelihood estimate of µ =

1 2

1

2 ( )p xp

 
 
 

µ

µ
and 

 ∑ =

1 2 1 2

11 12

21 22 (p p )x(p p )+ +

  
 
  

  . 

For this purpose we compute the following measures:

(i) Mean of �̂� 𝑎𝑛𝑑 𝑅∗

(ii) Variance of �̂� and 𝑅∗ : 𝐸(�̂� − 𝑅)2 and 𝐸(𝑅∗ − 𝑅)2

(iii) Mean square error of �̂� and 𝑅∗ : Var(�̂� )+Bias(�̂� ,R)2 and Var(𝑅∗)+Bias(𝑅∗,R)2 

(iv) Mean absolute error of �̂� and 𝑅∗ : 𝐸(|�̂� − 𝑅|) and 𝐸(|𝑅∗ − 𝑅|)

It is difficult to obtain the analytical form of above expressions for different values of ‘R’. So, we

figure out these by using simulation study. Hence, we generate the random samples of size n from 

(
𝐱
𝐲) ~ 𝑁𝑝1+𝑝2(µ, ∑). For each of sample drown of size n, we compute the above measures by taking

500 replications each time.  

For this purpose, here, R programming language is used. 

Suppose, 

(

𝑥1
𝑥2
𝑦1
𝑦2
𝑦3)

 ~𝑁5(µ, ∑), where , µ′ = (2,4,2,1,2)  ; ∑ =

(

3.61 2.23 −0.10 0.16 2.32
2.23 4.74 3.32 −0.69 1.76
−0.10 3.32 5.68 −2.34 −1.23
0.16 −0.69 −2.34 3.05 1.53
2.32 1.76 −1.23 1.53 4.45 )

Therefore, the estimated values of two known vectors based on first principal component are 𝒂′ = 

(0.614, 0.789) and 𝒃′=(0.737, -0.491, -0.465). Now, we want to estimate R= Pr(𝒂′𝒙 > 𝒃′𝒚) , then the 

exact value of stress strength reliability R is 0.886. We take the sample size of n up to 100 in order to 

achieved exact value for the reliability.  Using (1) and (2), calculated mean, variance MSE and MAE 

of �̂�  and R* based on 500 repetitions are reported in Table 1. It can be observed that Variance of  �̂�  

is lesser than the Variance of R* in each sample size. Also, it is noted that the MSE’s and MAE’s of 

�̂�  are less than MSE’s and MAE ‘s of R*. However, the sample mean of �̂�  is less than the R* in each 

case. But, �̂�  and R* are under-estimates the true value of R, when sample size are small. It is also 

interesting to observe that, the Variance, MSE and MAE of �̂�  and R* are reduces as the sample size 

increases: when n=200 and almost achieved the true value of R. 
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Table 1: Sample Mean, Variance, MSE and MAE of �̂�  and 𝑅∗ 

Sample 

Size 

Sample Mean Variance MSE MAE 

�̂� 𝑹∗ �̂� 𝑹∗ �̂� 𝑹∗ �̂� 𝑹∗ 

10 0.672281 0.675052 0.105394 0.109709 0.150902 0.154031 0.247465 0.250765 

20 0.730188 0.732219 0.094903 0.096861 0.119021 0.120346 0.190329 0.192359 

30 0.755041 0.756586 0.082294 0.083551 0.099306 0.100158 0.152352 0.163332 

40 0.793484 0.795067 0.059074 0.059788 0.067533 0.067956 0.11029 0.11728 

50 0.804974 0.806287 0.054406 0.054921 0.060878 0.061181 0.097016 0.104556 

60 0.812637 0.813826 0.048111 0.048495 0.053412 0.053621 0.909735 0.092666 

70 0.838157 0.839244 0.032573 0.032796 0.034807 0.034926 0.066746 0.068149 

80 0.844905 0.84585 0.030538 0.030711 0.032174 0.03227 0.062998 0.063118 

90 0.84874 0.849622 0.026384 0.026519 0.027727 0.027797 0.055342 0.055777 

100 0.855952 0.856766 0.021074 0.02117 0.021941 0.021988 0.04756 0.04864 

200 0.881041 0.881482 0.003745 0.003751 0.003763 0.003765 0.018152 0.018332 

3. Distribution Function of  𝑅
^

 and 𝑅∗

In this section, we derive the distributions function of 𝑅
^

 and 𝑅∗. We have 

𝑅 =

(

 

0 if 𝑐 > 1
1

2
(1 − 𝐵 (𝑐2;

1

2
,
𝑛−2

2
)) if 0 < 𝑐 ≤ 1

1

2
(1 + 𝐵 ((−𝑐)2;

1

2
,
𝑛−2

2
)) if −1 < 𝑐 ≤ 0

1 if 𝑐 ≤ −1 )

 , 

where 𝐵(𝑥;
1

2
,
𝑛−2

2
) is c.d.f 𝐵(

1

2
,
𝑛−2

2
) and it is clear that 0 ≤ 𝑅

^

≤ 1 for any real number of c. 

Let the distribution function of 𝑅
^

 be 𝐹
𝑅
^(𝑥)  , then 

 𝐹
𝑅
^(𝑥) = 0 if 𝑥 < 0 and 𝐹

𝑅
^(𝑥) = 1 if 𝑥 ⩾ 1 

If 0 ⩽ 𝑥 ⩽
1

2
, then the distribution function of 𝑅

^

 is given by 

𝐹
𝑅
^(𝑥) = 𝑃(𝑅

^

⩽ 𝑥) = 𝑃[(𝑅
^

⩽ 𝑥)⋂{(𝑐 > 0)⋃(𝑐 ⩽ 0)}]   = 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 > 0)] + 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 ⩽ 0)] 

 = 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 > 0)]𝑃[𝑐 > 0] + 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 ⩽ 0)]𝑃[𝑐 ⩽ 0]   

= 𝑃[
1

2
−
1

2
𝐵(𝑐2;

1

2
,
𝑛−2

2
) ⩽ 𝑥]𝑃[

(𝒃′𝒚
_
−𝓪′𝒙

_
)

√(𝑛−1)(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃+𝒃

′𝑺𝟐𝟐𝒃)
1
2

> 0]

= 𝑃[𝐵(𝑐2;
1

2
,
𝑛−2

2
) ⩾ 1 − 2𝑥]𝑃[(𝒃′𝒚

_
− 𝓪′𝒙

_
) > 0] 

,where (𝒃′𝒚
_
− 𝓪′𝒙

_
)~𝑁1((𝒃

′𝝁𝟐 − 𝓪
′𝝁𝟏),

1

𝑛
(𝓪′𝜮𝟏𝟏𝓪 − 𝟐𝓪

′𝜮𝟏𝟐𝒃 + 𝒃
′𝜮𝟐𝟐𝒃))

= 𝑃[𝑐2 ⩾ 𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥)]𝛷(
√𝑛(𝒃′𝝁𝟐 − 𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪 − 𝟐𝓪
′𝜮𝟏𝟐𝒃 + 𝒃

′𝜮𝟐𝟐𝒃)
1
2

) 

= {𝑃[𝑐 ⩾ (𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))

1
2

] + 𝑃[𝑐 ⩽ −(𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))

1
2

]}𝛷(−√𝑛𝛿) 

,where 𝛿 =
−(𝒃′𝝁𝟐−𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪−𝟐𝓪
′𝜮𝟏𝟐𝒃+𝒃

′𝜮𝟐𝟐𝒃)
1
2
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 = {𝑃[
(𝒃′𝒚

_
− 𝓪′𝒙

_
)

√(𝑛 − 1)(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

⩾ (𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))
1
2] +

 𝑃[
(𝒃′𝒚

_
− 𝓪′𝒙

_
)

√(𝑛 − 1)(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

⩽ −(𝐵
(
1
2
,
𝑛−2
2
)

−1 (1 − 2𝑥))
1
2]} 𝛷(−√𝑛𝛿) 

 = {𝑃[−√𝑛𝛿
^

⩾ (𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2] +𝑃[−√𝑛𝛿
^

⩽ −(𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2]}𝛷(−√𝑛𝛿) 

    ,where 𝛿
^

=
−√(𝑛−1)(𝒃′𝒚

_
−𝓪′𝒙

_
)

√𝑛(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃+𝒃

′𝑺𝟐𝟐𝒃)
1
2

 = {𝑃[√𝑛𝛿
^

⩽ −(𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2] +  1 − 𝑃[√𝑛𝛿
^

⩽ (𝑛 − 1)(𝐵
(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2]}𝛷(−√𝑛𝛿) 

 = {𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}𝛷(−√𝑛𝛿)   (3) 

Using the standard distribution theory [23], if 𝒙~ 𝑁𝑝(µ, ∑) then 𝒂′𝒙~𝑁1(𝒂
′µ, 𝒂′∑𝒂 ). Let, 𝒙

_
 and S be

the unbiased estimator of µ and ∑  respectively, then 𝒂′𝒙
_
~𝑁1(𝒂

′µ,
𝟏

𝒏
(𝒂′∑𝒂) ) and 𝑺~ 𝑊𝑝(𝑛 − 1, ∑). 

Thus, we can write, 
𝒂′𝑺𝒂

𝒂′∑𝒂
~𝝌𝒏−𝟏

𝟐 , hence √𝑛 − 1𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′ where 𝑡(𝑛−1),√𝑛𝛿

′   denotes the non - central 

t - distribution with (n - 1) d.f. We use the unbiased estimator of ∑  instead of MLE, then 

√𝑛𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′  with non-centrality parameter√𝑛𝛿 and 𝐹𝑡

(𝑛−1),√𝑛𝛿
′ (. ) be the cdf of non - central t - 

distribution. 

If 
1

2
< 𝑥 < 1,  then the distribution function of 𝑅

^

 is given by 

𝐹
𝑅
^(𝑥) = 𝑃(𝑅

^

⩽ 𝑥)  = 𝑃[(𝑅
^

⩽ 𝑥)⋂{(𝑐 > 0)⋃(𝑐 ⩽ 0)}]  = 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 > 0)] + 𝑃[(𝑅
^

⩽ 𝑥)⋂(𝑐 ⩽ 0)] 

 = 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 > 0)]𝑃[𝑐 > 0] + 𝑃[(𝑅
^

⩽ 𝑥)|(𝑐 ⩽ 0)]𝑃[𝑐 ⩽ 0]   

= 𝑃[
1

2
−
1

2
𝐵(𝑐2;

1

2
,
𝑛−2

2
) ⩽ 𝑥]𝑃[

(𝒃′𝒚
_
−𝓪′𝒙

_
)

√(𝑛−1)(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃+𝒃

′𝑺𝟐𝟐𝒃)
1
2

> 0] +

 𝑃[
1

2
+
1

2
𝐵((−𝑐)2;

1

2
,
𝑛 − 2

2
) ⩽ 𝑥]𝛷(√𝑛𝛿) 

= 𝛷(−√𝑛𝛿) + 𝑃[𝐵(𝑐2;
1

2
,
𝑛 − 2

2
) ⩽ 2𝑥 − 1]𝛷(√𝑛𝛿) 

= 𝛷(−√𝑛𝛿) + 𝑃[𝑐2 ⩽ 𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1)]𝛷(√𝑛𝛿) 

= 𝛷(−√𝑛𝛿) + 𝑃[−(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2 ⩽ 𝑐 ⩽ (𝐵

(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2]𝛷(√𝑛𝛿)

= 𝛷(−√𝑛𝛿) + 𝑃[−(𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2 ⩽ −√𝑛𝛿

^

⩽ (𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2]𝛷(√𝑛𝛿)

= 𝛷(−√𝑛𝛿) + 𝑃[(𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2 ⩾ √𝑛𝛿

^

⩾ −(𝑛 − 1)(𝐵
(
1
2
,
𝑛−2
2
)

−1 (2𝑥 − 1))
1
2]𝛷(√𝑛𝛿)

 = Φ(−√𝑛𝛿) + [𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )  − 
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 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]Φ(√𝑛𝛿) 

Thus, the distribution function of 𝑅
^

 is given by 

 𝐹
𝑅
^(𝑥) = 0 if 𝑥 < 0 and 𝐹

𝑅
^(𝑥) = 1 if 𝑥 ⩾ 1 

If 0 ⩽ 𝑥 ⩽
1

2
, 

𝐹
𝑅
^(𝑥) = {𝐹𝑡

(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}Φ(−√𝑛𝛿) 

If 
1

2
< 𝑥 < 1 , 

𝐹
𝑅
^(𝑥) = Φ(−√𝑛𝛿) + [𝐹𝑡

(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )  − 

 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]Φ(√𝑛𝛿)   (4) 

The MLE estimate of R, 𝑅∗ = 𝛷(
−(𝒃′𝒚

_
−𝓪′𝒙

_
)

(𝓪′𝑺𝟏𝟏𝓪−𝟐𝓪
′𝑺𝟏𝟐𝒃−𝒃

′𝑺𝟐𝟐𝒃)
1
2

) 

Let the distribution function of 𝑅∗ be 𝐹𝑅∗(𝑥) , then 𝐹𝑅∗(𝑥) = 0 if 𝑥 < 0 and 𝐹𝑅∗(𝑥) = 1 if 𝑥 ⩾ 1,

𝐹𝑅∗(𝑥) = 𝑃(𝑅
∗ ⩽ 𝑥) = 𝑃[𝛷(

−(𝒃′𝒚
_
− 𝓪′𝒙

_
)

(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

) ⩽ 𝑥] 

 = 𝑃[
−(𝒃′𝒚

_
− 𝓪′𝒙

_
)

(𝓪′𝑺𝟏𝟏𝓪 − 𝟐𝓪
′𝑺𝟏𝟐𝒃 + 𝒃

′𝑺𝟐𝟐𝒃)
1
2

⩽ 𝛷−1(𝑥)]  = 𝑃[√𝑛𝛿
^

⩽ √(𝑛 − 1)𝛷−1(𝑥)] 

 = 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (√(𝑛 − 1)𝛷−1(𝑥))   (5) 

4. Distance Between 𝐹
𝑅
^(. ) and 𝐹𝑅∗(. )

Let us calculate the distance between two functions (𝐿1) 𝐹
𝑅
^(𝑥) and 𝐹𝑅∗(𝑥) [17], 

𝑈(𝑛, 𝛿) = ∫ |𝐹𝑅∗(𝑥) − 𝐹
𝑅
^(𝑥)|dx

1

0

, for different values of n, μ1, μ2, Σ11, Σ12, Σ22. 

According to this method, this can be taken as a measure of deviation or equal deviation between 𝑅
^

and 𝑅∗. 

Let, 𝑅
−

 be any other estimator of  R, then the maximum deviation between distribution of 𝑅
−

 and 𝑅
^

 as 

𝑀(𝑛, 𝛿) = sup
𝑅
−∫ |𝐹

𝑅
−(𝑥) − 𝐹

𝑅
^(𝑥)|

1

0

dx = ∫ 𝐹
𝑅
^(𝑥)dx

1

0

, if ∫ 𝐹
𝑅
^(𝑥)dx

1

0

>
1

2
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  = 1 − ∫ 𝐹
𝑅
^(𝑥)dx

1

0

, if ∫ 𝐹
𝑅
^(𝑥)dx

1

0

⩽
1

2

The ration 𝑅(𝑛, 𝛿) =
𝑈(𝑛,𝛿)

𝑀(𝑛,𝛿)
 has to be taken as a relative measure of deviation between 𝑅

^

 and 𝑅∗ , the 

maximum deviation between any other estimator of R, i.e. 𝑅
−

 and 𝑅
^

. It' s difficult to get the exact 

expression of this above measures. So, we compute these measure values numerically using R - 

programming. Here we take different choices of 𝛿 for n = 20. The results are reported in table 2. The 

results show that the overall output of MVUE and MLE of R are not too distant and the values for 

these differences are show in columns U(.), M(.) and R(.) of this table. From this table, it is seen that 

empirical values of the parameters and the performance of MVUE of R is better than MLE and also 

Figure 1 shows that, MVUE estimator of R is better than the other estimators, i.e. 𝑅∗. Also, 𝐿1 distance

and graphical impression show this. 

5. Derivation of Var(𝑅
^

) and MSE(𝑅∗)

Now, 𝑉𝑎𝑟( 𝑅 
^

) and 𝑀𝑆𝐸(𝑅∗) are obtained by using equations (3), (4) and (5) as follows: 

Since, 0 <𝑅 
^

<1, then 𝐸 (𝑅 
^

)= ∫ {1 − 𝐹
𝑅
^(𝑥)}dx

1

0

 

If 0 ⩽ 𝑥 ⩽
1

2
, then we have 

𝐸1 (𝑅 
^

)=∫ [1 − {𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +
1

0

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}𝛷(−√𝑛𝛿)] dx 

If 
1

2
< 𝑥 < 1, then we have 

𝐸2 (𝑅 
^

) = ∫ [1 − {Φ(−√𝑛𝛿) + [𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )   −
1

0

 

 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]𝛷(√𝑛𝛿)}] dx 

So, 𝑉𝑎𝑟( 𝑅 
^

)= ∫ 2x{1 − 𝐹
𝑅
^(𝑥)}dx

1

0

 – {E(𝑅
^

)} 2= ∫ 2x[1 − {𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2) +
1

0

 [1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (1 − 2𝑥))
1

2)]}𝛷(−√𝑛𝛿)] dx 

+∫ 2x[1 − {𝛷(−√𝑛𝛿) + [𝐹𝑡
(𝑛−1),√𝑛𝛿
′ ((𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2 )   −
1

0

 

 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (−(𝑛 − 1)(𝐵

(
1

2
,
𝑛−2

2
)

−1 (2𝑥 − 1))
1

2)]𝛷(√𝑛𝛿)}] dx  − {𝐸1 (𝑅 
^

) + 𝐸2 (𝑅 
^

)}2 

Similarly, we can determine 𝑀𝑆𝐸(𝑅∗) = ∫ 2x {1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (√(𝑛 − 1)Φ−1(𝑥))} dx

1

0

 – 

 [∫ {1 − 𝐹𝑡
(𝑛−1),√𝑛𝛿
′ (√(𝑛 − 1)Φ−1(𝑥)) } dx

1

0

]2 
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From Figure 2 and 3 it is observe that the, values of Var(𝑅
^

) and MSE(𝑅∗) are  almost close to zero of 

𝛿. Values of Var(𝑅
^

)  are less as compared to other values of MSE(𝑅∗). Thus, the performance of MVUE 

of R is better than MLE.   

Table 2: Performance of point estimators: 𝛿  and 100* {𝑈(𝑛, 𝛿),𝑀(𝑛, 𝛿), 𝑅(𝑛, 𝛿) } 

Non-negative values of 𝜹 Negative values of 𝜹 

𝜹 𝑼(𝒏, 𝜹) 𝑴(𝒏, 𝜹) 𝑹(𝒏, 𝜹) 𝜹 𝑼(𝒏, 𝜹) 𝑴(𝒏, 𝜹) 𝑹(𝒏, 𝜹) 

3 0.087 99.865 0.087 -3 0.087 99.865 0.087 

2.898 0.101 99.812 0.101 -2.898 0.101 99.812 0.101 

2.797 0.115 99.742 0.115 -2.797 0.115 99.742 0.115 

2.695 0.128 99.648 0.129 -2.695 0.128 99.648 0.129 

2.593 0.141 99.525 0.141 -2.593 0.141 99.525 0.141 

2.492 0.151 99.364 0.152 -2.492 0.151 99.364 0.152 

2.39 0.157 99.157 0.158 -2.39 0.157 99.157 0.158 

2.288 0.158 98.894 0.16 -2.288 0.158 98.894 0.16 

2.186 0.153 98.561 0.155 -2.186 0.153 98.561 0.155 

2.085 0.139 98.145 0.142 -2.085 0.139 98.145 0.142 

1.983 0.116 97.632 0.119 -1.983 0.116 97.632 0.119 

1.881 0.082 97.004 0.084 -1.881 0.082 97.004 0.084 

1.78 0.036 96.243 0.038 -1.78 0.036 96.243 0.038 

1.678 0.021 95.332 0.022 -1.678 0.021 95.332 0.022 

1.576 0.089 94.252 0.094 -1.576 0.089 94.252 0.094 

1.475 0.166 92.984 0.179 -1.475 0.166 92.984 0.179 

1.373 0.25 91.511 0.273 -1.373 0.25 91.511 0.273 

1.271 0.338 89.817 0.376 -1.271 0.338 89.817 0.376 

1.169 0.424 87.89 0.482 -1.169 0.424 87.89 0.482 

1.068 0.503 85.719 0.587 -1.068 0.503 85.719 0.587 

0.966 0.571 83.3 0.685 -0.966 0.571 83.3 0.685 

0.864 0.623 80.629 0.772 -0.864 0.623 80.629 0.772 

0.763 0.663 77.702 0.853 -0.763 0.663 77.702 0.853 

0.661 0.715 74.501 0.959 -0.661 0.715 74.501 0.959 

0.559 0.843 70.977 1.188 -0.559 0.843 70.977 1.188 

0.458 1.144 67.052 1.706 -0.458 1.144 67.052 1.706 

0.356 1.635 62.739 2.606 -0.356 1.635 62.739 2.606 

0.254 2.057 58.331 3.527 -0.254 2.057 58.331 3.527 

0.153 1.877 54.406 3.45 -0.153 1.877 54.406 3.45 

0.051 0.779 51.323 1.518 -0.051 0.779 51.323 1.518 
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  Figure 1:  𝛿  vs  100 ∗ 𝑅(𝑛, 𝛿) 

    Figure 2:  𝛿  vs  100 ∗ 𝑉𝑎𝑟( 𝑅 )
^

 

  Figure 3:  𝛿  vs  100 ∗ 𝑀𝑆𝐸(𝑅∗) 
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6. Confidence Intervals for R

6.1. Exact Two Sided Confidence Intervals for R 

Here, we have √𝑛𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′ , then the tradition approach for finding the lower limit of R , we use 

the probability 𝑝𝛿𝐿 that 𝑡(𝑛−1),√𝑛𝛿
′  exceeds the value of √𝑛𝛿

^

 as 

𝑝𝛿𝐿 = Pr (𝑡(𝑛−1),√𝑛𝛿
′ > √𝑛𝛿

^

)  = 𝛼/2 

or, 𝑝𝛿𝐿 = Pr (𝑡(𝑛−1),√𝑛𝛿
′ < √𝑛𝛿

^

)  = 1 − 𝛼/2  (6) 

Similarly, we get the upper limit of 𝛿 as 

𝑝𝛿𝑈 = Pr (𝑡(𝑛−1),√𝑛𝛿
′ < √𝑛𝛿

^

)  = 𝛼/2  (7) 

Equation (6) and (7) can be solved numerically. Finally we get the (1-α) level confidence Intervals 

for 𝛿 as (𝛿𝐿 , 𝛿𝑈). 

Then, the  (1-α) level confidence Intervals for R as (Φ(𝛿𝐿 ), Φ(𝛿𝑈 )). 

6.2. Exact Lower Confidence bound for R 

In order to obtain the lower bound of the lower bound of R, we use the probability 𝑝𝛿𝐿𝐵  that 𝑡(𝑛−1),√𝑛𝛿
′

exceeds the value of √𝑛𝛿
^

 as 

𝑝𝛿𝐿𝐵 = 𝑃𝑟 (𝑡(𝑛−1),√𝑛𝛿
′ > √𝑛𝛿

^

)  = 𝛼 

or, 𝑝𝛿𝐿𝐵 = 𝑃𝑟 (𝑡(𝑛−1),√𝑛𝛿
′ < √𝑛𝛿

^

)  = 1 − 𝛼   (8) 

Thus, the (1-α) level confidence lower bound for 𝛿 can be obtained by solving equation (8). Then, 

the  (1-α) level confidence lower bound for R is (Φ(𝛿𝐿𝐵 ). 

6.3. Approximate Two Sided Confidence Intervals for R 

From section 3, we have 𝑃𝑟(𝒂′𝒙 > 𝒃′𝒚) = Φ [
−(𝒃′𝝁𝟐−𝓪

′𝝁𝟏)

(𝓪′𝜮𝟏𝟏𝓪−𝟐𝓪
′𝜮𝟏𝟐𝒃−𝒃

′𝜮𝟐𝟐𝒃)
1
2

] = 𝛷(𝛿) , 

 where  √𝑛𝛿
^

~𝑡(𝑛−1),√𝑛𝛿
′   with non-centrality parameter√𝑛𝛿 

. 

In order to determine the two sided confidence Intervals, we use following well known 

approximation for large n [24] as  
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Z =
[𝑡(𝑛−1),√𝑛𝛿
′ − √𝑛𝛿]

[1 + 
(𝑡
(𝑛−1),√𝑛𝛿
′ )2

2(𝑛 − 1)
]

1
2

 ~𝑁(0,1) 

Using this, 

 𝑃𝑟[−𝑧𝛼/2 ⩽ 
[√𝑛𝛿

^
 − √𝑛𝛿]

[1 + 
(√𝑛𝛿

^
)2

2(𝑛−1)
]

1
2

 ⩽  𝑧𝛼/2] = 1-α 

or, 𝑃𝑟[−𝑧𝛼/2 ⩽ 
[𝛿
^
 − 𝛿]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

 ⩽  𝑧𝛼/2] = 1-α 

or, 𝑃𝑟[𝛿
^

− 𝑧𝛼/2 [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

 ⩽ 𝛿 ⩽  𝛿
^

+ 𝑧𝛼/2 [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

] = 1-α 

Thus, an approximate (1-α) level confidence Intervals for 𝛿 is given by 

(𝛿𝐿 ,𝛿𝑈 ) =  {𝛿
^

− 𝑧𝛼/2  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

 , 𝛿
^

+ [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

𝑧𝛼/2} 

Then, an approximate (1-α) level confidence Intervals for R is represented by 

 (Φ(𝛿𝐿 ), Φ(𝛿𝑈 )) =  {Φ(𝛿
^

− 𝑧𝛼/2  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

)  , Φ(𝛿
^

+ 𝑧𝛼/2  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

)} 

Where, 𝑧𝛼/2 upper critical value for the standard normal distribution 

6.4. Approximate Lower Confidence bound for R 

The lower bounds based on approximate results is given by 

 𝑃𝑟(𝛿𝐿𝐵 ⩽ 𝛿 ) =  1 − α 

or, 𝑃𝑟

(

[𝛿𝐿𝐵  − 𝛿
^
]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

⩽
[𝛿 − 𝛿

^
]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

)

=  1 − α 

or, 𝑃𝑟

(

[𝛿
^
 − 𝛿]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

⩽
[𝛿
^
 − 𝛿𝐿𝐵 ]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

)

=  1 − α 
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or, 𝑃𝑟

(

z ⩽
[𝛿
^
 − 𝛿𝐿𝐵 ]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

)

=  1 − α ,        or, 
[𝛿
^
 − 𝛿𝐿𝐵 ]

[
1

n
 + 

(𝛿
^
)2

2(𝑛−1)
]

1
2

= 𝑧1−α 

or, 𝛿𝐿𝐵 =  𝛿
^

− 𝑧1−α  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

So, an approximate (1-α) confidence lower bound for R as 

 Φ(𝛿𝐿𝐵 ) = Φ( 𝛿
^

− 𝑧1−α  [
1

n
 +  

(𝛿
^
)2

2(𝑛−1)
]

1

2

) 

6.5. Bootstrap confidence Intervals for R

In this subsection, we use the confidence intervals based on percentile bootstrap method. Efron 

suggests the procedure to find out the confidence intervals for a parameter [25] and corrects bias of 

percentile of bootstrap confidence intervals for R proposed by Efron [26]. It works as follows 

(1) Draw random sample (
𝐗𝛂
𝐘𝛂
) , α = 1,2, … , n from multivariate normal distribution, 

where  (
𝐗
𝐘
) ~ 𝑁𝑝1+𝑝2(µ, ∑) 

(2) Generate bootstrap samples (
𝐱𝛂
∗

𝐲𝛂
∗) , α = 1,2, … , n , by using random sample of (

𝐗𝛂
𝐘𝛂
) , α = 1,2, … , n. 

(3) Compute the bootstrap estimates of linear dependent vectors 𝒂′ and 𝒃′ using PC1, say 𝒆′∗ and 𝒍′∗

respectively. Also, Compute the bootstrap MLE estimates of μ1, μ2, Σ11, Σ12, Σ22  by

𝒙∗, 𝒚,̅∗ 𝑺𝟏𝟏
∗ , 𝑺𝟏𝟐,

∗ 𝑺𝟏𝟐
∗ . Using these estimates compute the bootstrap estimate of R, say 𝑅𝐵

∗ .

(4) Repeat steps 2 and 3, number of boot time B (B sufficiently large, i.e. 1000), thus we obtain the

bootstrap distribution of {𝑅𝐵
∗ }.

(5) Estimate (1 − α) bootstrap percentile confidence intervals for R from{𝑅𝐵
∗ }  by taking the

(
α

2
) and (1 −

α

2
) quantiles as (𝑅

𝐵,
α

2

∗ ,  𝑅
𝐵,(1−

α

2
)

∗ ) .

or, (1 − α) bootstrap percentile lower bound for R as 𝑅𝐵,α
∗ .

6.5. Simulation Study 

In this section, we present simulation study to investigate the statistical properties of the interval 

estimators using the given matrix in section 2.4. The simulation study define as follows 

(1) Draw the random samples of size n from (
𝐱
𝐲)~ 𝑁𝑝1+𝑝2(µ, ∑). For each of sample drown of

size n, considered different sample sizes (n=50, 100, 150,….etc). We compute the above 

measures by taking 500 replications each time. 

(2) Estimate MLE estimate of R using PC1 for different sample size and a Confidence Intervals

(two-sided and lower bound) for R.

(3) Compute exact, approximate and bootstrap confidence intervals using step 2, where number

of boot time B=1000.

The results of the simulation study are recorded in Table 3-5. Figure 4-6, represent the exact, 

approximate and bootstrap confidence belt at 90%, 95% and 99% levels. It has been observed that for 
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a small sample size, the estimate of R is getting high and also confidence intervals. The results get 

better as the sample sizes increase and the reliability R gets closer to true value. The same 

phenomenon is observed for the exact, approximate and bootstrap confidence intervals. The overall 

band of exact and approximate confidence intervals is almost same, whereas bootstrap confidence 

intervals give the large confidence band for small sample size. But, exact, approximate confidence 

intervals and Bootstrap confidence intervals all are almost same for large sample size at 90%, 95% 

and 99% levels. All most the same variation found in confidence belt of exact, approximate Cls, but 

irregular variation in bootstrap CIs shows in Figure 4-6.  

Table 3: Exact Confidence Intervals 

Sample 

size 
R* 

90% 95% 99% 

L U LB L U LB L U LB 

50 0.8954 0.8738 0.9349 0.8820 0.8664 0.9394 0.8738 0.8511 0.9473 0.8574 

100 0.8953 0.8782 0.9227 0.8838 0.8731 0.9262 0.8782 0.8629 0.9328 0.8671 

150 0.8948 0.8785 0.9139 0.8828 0.8746 0.9168 0.8785 0.8669 0.9224 0.8701 

200 0.8898 0.8751 0.9128 0.8797 0.8710 0.9159 0.8751 0.8627 0.9218 0.8661 

250 0.8888 0.8743 0.9197 0.8800 0.8692 0.9233 0.8743 0.8588 0.9300 0.8631 

300 0.8887 0.8732 0.9133 0.8782 0.8688 0.9166 0.8732 0.8599 0.9228 0.8636 

350 0.8883 0.8703 0.9070 0.8747 0.8663 0.9101 0.8703 0.8583 0.9159 0.8616 

400 0.8876 0.8653 0.9068 0.8704 0.8608 0.9103 0.8653 0.8517 0.9167 0.8554 

450 0.8874 0.8677 0.9048 0.8722 0.8637 0.9079 0.8677 0.8556 0.9138 0.8589 

500 0.8874 0.8676 0.9047 0.8721 0.8636 0.9079 0.8676 0.8556 0.9138 0.8589 

550 0.8868 0.8688 0.9028 0.8729 0.8652 0.9057 0.8688 0.8579 0.9112 0.8609 

600 0.8864 0.8640 0.9028 0.8729 0.8595 0.9057 0.8688 0.8503 0.9111 0.8609 

Table 4: Approximate Confidence Intervals 

Sample 

size 

90% 95% 99% 

L U LB L U LB L U LB 

50 0.8741 0.9352 0.8823 0.8666 0.9395 0.8741 0.8512 0.9474 0.8576 

100 0.8783 0.9228 0.8840 0.8732 0.9263 0.8783 0.8629 0.9328 0.8672 

150 0.8786 0.9139 0.8829 0.8747 0.9169 0.8786 0.8669 0.9224 0.8701 

200 0.8752 0.9129 0.8798 0.8711 0.9160 0.8752 0.8627 0.9218 0.8661 

250 0.8744 0.9198 0.8802 0.8693 0.9234 0.8744 0.8589 0.9300 0.8632 

300 0.8733 0.9134 0.8783 0.8689 0.9167 0.8733 0.8600 0.9228 0.8636 

350 0.8704 0.9071 0.8748 0.8664 0.9101 0.8704 0.8584 0.9159 0.8616 

400 0.8655 0.9069 0.8706 0.8609 0.9103 0.8655 0.8517 0.9167 0.8555 

450 0.8678 0.9049 0.8723 0.8637 0.9080 0.8678 0.8556 0.9138 0.8590 

500 0.8677 0.9048 0.8722 0.8637 0.9079 0.8677 0.8556 0.9138 0.8589 

550 0.8689 0.9029 0.8730 0.8653 0.9057 0.8689 0.8580 0.9112 0.8609 

600 0.8689 0.9028 0.8730 0.8652 0.9057 0.8689 0.8579 0.9112 0.8609 

Table 5: Bootstrap Confidence Intervals 

Sample 

 size 

90% 95% 99% 

L U LB L U LB L U LB 

50 0.8591 0.9592 0.8701 0.8495 0.9688 0.8591 0.8307 0.9876 0.8383 

100 0.8804 0.9264 0.8855 0.8760 0.9308 0.8804 0.8674 0.9395 0.8709 

150 0.8806 0.9149 0.8844 0.8773 0.9182 0.8806 0.8709 0.9246 0.8735 

200 0.8518 0.9419 0.8617 0.8432 0.9505 0.8518 0.8263 0.9674 0.8331 

250 0.8787 0.9188 0.8832 0.8749 0.9227 0.8787 0.8674 0.9302 0.8704 

300 0.8757 0.9137 0.8799 0.8720 0.9174 0.8757 0.8649 0.9245 0.8678 

350 0.8218 0.9629 0.8373 0.8082 0.9764 0.8218 0.7818 0.9896 0.7925 

400 0.8676 0.9073 0.8720 0.8638 0.9111 0.8676 0.8564 0.9185 0.8594 
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450 0.8695 0.9059 0.8735 0.8660 0.9094 0.8695 0.8592 0.9162 0.8619 

500 0.8692 0.9045 0.8731 0.8658 0.9079 0.8692 0.8592 0.9145 0.8619 

550 0.8703 0.9038 0.8740 0.8671 0.9070 0.8703 0.8608 0.9133 0.8633 

600 0.8705 0.9033 0.8741 0.8674 0.9065 0.8705 0.8612 0.9126 0.8637 

 Figure 4: Exact Confidence Intervals 

 Figure 5: Approximate Confidence Intervals 
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 Figure 6: Bootstrap Confidence Intervals

6.6. Application on real data set 

In this section, the above methods are applied to sample data set taken from Morrison [27]. This data 

set represent the level of three biochemical compounds found in the brain of twenty mice of the same 

strain in ten pairs. Both mice in each pair were in the same condition in terms of diet and care and 

one in each pair was randomly selected and received periodic administrations of the drug. The 

outcome of tests of the brains of the mice and consists of the amount of the compounds in 

micrograms per gram of the brain tissue. So, we want to determine the effect of the drug for changes 

in the level of three bio-chemical compounds found in the brain by estimating the probability.  

          Here, it is assumed that the (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3) ~𝑁6(µ, ∑). For the given data sets, proportion 

of variance of 𝒙 = (𝑥1, 𝑥2, 𝑥3) and 𝒚 = (𝑦1, 𝑦2, 𝑦3)  for PC1: 0.9996 and 0.8662 respectively, then the 

MVUE of 𝑅 is �̂� = 0.6219 and MLE of 𝑅 is 𝑅∗ = 0.6325. Also, we calculate that the above measure 

by principal component analysis as 𝛿 = 0.3386, 𝑈(𝑛, 𝛿) = 3.266, 𝑀(𝑛, 𝛿)= 60.846,  𝑅(𝑛, 𝛿)= 5.367, Var(𝑅
^

) 

= 0.0216 and MSE(𝑅∗) = 0.0226. The exact, approximate and bootstrap confidence intervals, using the 

sample data set reported in Table 6 and it is shows that that, the exact and approximate CIs are 

almost same band, but confidence band of bootstrap CIs is less than these. 

Table 6: Confidence Intervals for the mice dataset 

Confidence 

Intervals 

90% 95% 99% 

L U LB L U LB L U LB 

Exact 0.4183 0.8067 0.4649 0.3788 0.8336 0.4183 0.3054 0.8790 0.3344 

Approx. 0.4216 0.8092 0.4684 0.3819 0.8359 0.4216 0.3080 0.8807 0.3372 

Bootstrap 0.3846 0.7381 0.4236 0.3507 0.7720 0.3846 0.2845 0.8382 0.3113 
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7. Sample Size Determination for Reliability

In a clinical study, the sample size calculation is to determine the number of subjects needed to have 

a desired power for detecting a clinically meaningful effect, i.e. the significant changes in clinical 

parameters. A study conducted with limited budget and/or some medical facilities, to choose the 

small number of subjects in respect of cost effectiveness and power. Suppose, we are intersected in 

determining the minimum sample size before the study for effect of the drug of three bio-chemical 

compounds of mice [27].  

In this above context, the hypotheses of interest are 

𝐻0 : 𝑅 = 𝑅0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅 = 𝑅1(> 𝑅0)  

or,     𝐻0 : 𝛿 = Φ
−1(𝑅0) = 𝛿0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿 = Φ

−1(𝑅1) = 𝛿1(> 𝛿0)

Then, the test statistic defined as 𝑡 = √𝑛𝛿
^

 where, 𝑡~𝑡(𝑛−1),√𝑛𝛿
′  , α = Type I error and 1-β = power of 

the test. Therefore, there exists an UMP invariant test [28], we rejects 𝐻0 when 𝑡 > 𝑐, where ‘c’ is 

determined by  

𝑃𝐻0 ( 𝑡 > 𝑐) =  α

or, 𝑃𝐻0 ( 𝑡 < 𝑐) = 1 − α

or, 𝑐 = 𝑡(1−α),(𝑛−1),√𝑛𝛿0
′  (9) 

Then the power of test, 

𝑃𝐻1 ( 𝑡 > 𝑐) =  1 − β

or, 𝑃𝐻1 ( 𝑡(𝑛−1),√𝑛𝛿1
′ < 𝑡(1−α),(𝑛−1),√𝑛𝛿0

′  ) =  β          (10) 

We can get the sample size (n) by solving the equation (10) numerically for given value of α and β.  

The values of sample size n are reported in Table 7, in order to calculate sample size for two groups 

(i.e. treatment or control) are effect or not, we set the null hypothesis as  𝐻0 : 𝑅0 = 0.5  against the 

𝑅0 > 0.5. 

Again, we consider the hypotheses, 

𝐻0 : 𝑅 = 𝑅0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅 = 𝑅1(< 𝑅0) 

or, 𝐻0 : 𝛿 = 𝛿0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿 = 𝛿1(< 𝛿0) 

We get, 

𝑃𝐻0 ( 𝑡 < 𝑐) =  α

or, 𝑐 = 𝑡α,(𝑛−1),√𝑛𝛿0
′  (11) 

and, 𝑃𝐻1 ( 𝑡(𝑛−1),√𝑛𝛿1
′ < 𝑡α,(𝑛−1),√𝑛𝛿0

′  ) =  1 − β  (12) 

In order to calculate the sample size, Reiser and Guttman used an approximation of a non-central t-

distribution by a standard normal distribution [21], valid for large n as    
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𝑛 =
𝑧β
2(1+𝛿𝑐

2/2)

(𝛿𝑐 − 𝛿1)
2 =

𝑧(1−α)
2 (1+𝛿𝑐

2/2)

(𝛿𝑐 − 𝛿0)
2 , where 𝛿𝑐 = 

𝛿0𝑧𝛽+𝛿1𝑧𝛼

𝑧𝛽+𝑧𝛼
 (13) 

Example 1.  Suppose the objective of the study is to compare a test drug with a control for changes 

in the level of three bio-chemical compounds found in the mice brain. 

Suppose the hypotheses of interest are 

𝐻0 : 𝑅0 = 0.5  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅1 = 0.7(> 𝑅0) 

or, 𝐻0 : 𝛿0 = 0  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿1 = 0.524(> 𝛿0) 

There is no meaningful effect between test drug and control under 𝐻0  and drug has an effect under 

𝐻1 . Then, by choosing α= 5%, and β= 20%, we find n≈24 using (9) and (10). Thus, a total number of 

24 subjects are required for achieving a 80% power for detection of a clinically meaningful effect at 

the 5% level of significance. 

Example 2. Consider the example of Reiser and Guttman to determine sample size (n) [21] for the 

case 

Prodicer’s risk=consumer’s risk=0.05 

To test, 
𝐻0 : 𝑅0 = 0.95  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝑅1 = 0.90(< 𝑅0) 

or,     𝐻0 : 𝛿0 = 1.645  𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1 : 𝛿1 = 1.282(> 𝛿0) 

Here, Prodicer’s risk and consumer’s risk are equal, i.e. 𝑧𝛼 = 𝑧𝛽 = 𝑧0.05 = 1.645, then we find n≈170 

using (11) and (12). Similarly, we get the same result using (13).  

Table 7: Sample Size Calculation table 

R0:0.5 

R1

𝑷𝒐𝒘𝒆𝒓 = 𝟏 − 𝛃 

70% 80% 90% 

𝑳𝒆𝒗𝒆𝒍 𝒐𝒇 𝒔𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕 = 𝜶 

0.01 0.025 0.05 0.01 0.025 0.05 0.01 0.025 0.05 

0.51 12934 9823 7489 15972 12491 9839 20715 16722 13628 

0.55 517 393 299 638 499 393 827 667 544 

0.6 129 98 75 159 124 98 206 166 135 

0.65 57 44 33 70 55 43 90 73 59 

0.7 32 24 19 39 31 24 50 40 33 

0.75 21 16 12 25 19 15 31 25 20 

0.8 14 11 8 17 13 10 21 17 14 

0.85 10 8 6 12 9 7 15 12 10 

0.9 8 6 5 9 7 5 11 9 7 

0.95 6 4 3 7 5 4 8 6 5 

7. Conclusions

Under the multivariate normal setup, MVUE of stress-strength model of reliability R is obtained, 

although the estimator based on MLE of μ1, μ2, Σ11, Σ12, Σ22. Simulation studies illustrate that, the 

Variance and MSE of two estimators reduces as the sample size increases and they almost achieved 

the true value of R. An application to the given real data set is described and shows that the same 

result as above. So, that the performance of MVUE of R is better than MLE in this case. In addition, 

the L1 distance between distribution functions we see the improvement of such estimators. A 

difference in terms of MSE is much less as the values are given after multiplying by 100, though 

detailed calculations are required for other parametric values. Therefore, we may conclude that our 
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recommend estimator performs better. 

The exact confidence intervals are preferable for marginally short band of confidence 

intervals than the approximate confidence intervals. The performance of bootstrap CIs is slightly 

worse than the exact and approximate CIs in terms of confidence band for small sample size. But the 

performance of bootstrap confidence intervals and other methods of CIs are almost same for large 

sample. Thus, the overall performance of the confidence interval is quite good for exact confidence 

intervals. 

The sample size plays the important role using the stress strength reliability model in order 

to achieve minimum number of observation to evaluate the effectiveness of a new drug. The sample 

size should be massive enough to adequately answer the analysis question. The determination of 

the acceptable sample size involves applied statistical criteria additionally as in clinical studies. In 

order to calculate the sample size, it was necessary to choose the power, the significance level, to 

produce results that are clinically or experimentally meaningful. Under approximation, with 𝛿𝑐 we 

can calculate the sample size easily. But, it better to choose the exact method to get sample size.     
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 Abstract 

In this article, a generalization of length biased weighted generalized uniform distribution called 

Marshall Olkin length biased weighted generalized uniform distribution is introduced and studied. Some 

of the statistical properties of the new distribution such as hazard rate function, compounding, quantile 

function, moments, Renyi and Shannon entropies are discussed. The maximum likelihood estimation of 

the model parameters is done and a simulation study is conducted for confirming the validity of the 

estimates and also introduced a minification process with respect to the model and explored its sample 

path behaviour for different combinations of parameters. Further, the stress strength analysis is carried 

out and the estimate of the reliability is obtained based on a simulation study. 

 

Keywords: Entropy, Length biased weighted generalized uniform distribution, Maximum likelihood 

method, Order statistics, Quantiles, Stress strength analysis. 

  

1. Introduction 

 
The theory of weighted distributions provides a collective access for the problems of model 

specification and data interpretation. Weighted distributions take into account the method of 

ascertainment, by adjusting the probabilities of the actual occurrence of events to arrive at a 

specification of the probabilities of those events as observed and recorded [14]. 

 The uniform distribution is considered as the simplest probability model and is connected to 

all the distributions. Many characterizations and modifications of the generalized uniform distribution 

have been introduced and explored by various researchers [see, 19, 10, 8, 18]. Rather and Subramanian 

[16] introduced and studied the properties of length biased weighted generalized uniform 

distribution. 

The probability density function and cumulative distribution function of length biased 

weighted generalized uniform distribution (LBWGU) are respectively, given by  

 𝑔𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾) =
(𝜃+2)𝑥𝜃+1

𝛾𝜃+2 ;     0 < 𝑥 < 𝛾, 𝜃 > −1 (1) 

 

 𝐺𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾) = (
𝑥

𝛾
)

𝜃+2

;      0 < 𝑥 < 𝛾, 𝜃 > −1 (2) 

Marshall Olkin [11] introduced a new family of distributions by inserting a new shape parameter to 

the existing family of distributions. Let G(x) be the cumulative distribution function (cdf) of a random 

variable X, then the cdf of the Marshall and Olkin family of distributions is  

𝐹(𝑥) =
𝐺(𝑥)

1−(1−𝛽)(1−𝐺(𝑥))
                                     (3) 
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 The corresponding pdf of (3) is given by 

 

 𝑓(𝑥) =
𝛽𝑔(𝑥)

[1−(1−𝛽)(1−𝐺(𝑥))]2, (4) 

where 𝛽 > 0 is a shape parameter. Clearly, for 𝛽 = 1, we obtain the baseline distribution, i.e., F(x) = 

G(x). 

Many authors have introduced various univariate distributions belonging to the 

Marshall-Olkin family of distributions such as Marshall-Olkin Weibull [5], Marshall-Olkin semi Burr 

and Marshall-Olkin Burr [7], Marshall-Olkin Frechet distribution [9], Marshall-Olkin generalized 

exponential distribution [17] and Marshall-Olkin extended generalized Lindley distribution [2]. 

Recently, introduced Marshall-Olkin form of additive Weibull distribution [1], reliability test plan for 

the Marshall-Olkin length biased Lomax distribution [12] and Marshall-Olkin length biased Maxwell 

distribution and its applications [13]. 

The rest of this paper is planned as follows. In section 2, the Marshall-Olkin length biased 

weighted generalized uniform (MOLBWGU) distribution is given, with plots of the pdf and cdf. The 

statistical properties of the new distribution are studied in section 3, including hazard rate function, 

moments, quantile function, compounding properties, order statistics and Renyi and Shannon 

entropies. Estimation of the model parameters are discussed in section 4. In section 5, the application 

of the distribution in time series analysis is discussed. In section 6, the stress strength analysis is 

carried out using a simulation study. Concluding remarks are presented in section 7. 

 

2. Marshall-Olkin Length Biased Weighted Generalized Uniform Distribution 

 
 Let X follows length biased weighted generalized uniform distribution. A new distribution can be 

defined by inserting (2) in (3). The cdf obtained is  

 𝐹𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

,       0 < 𝑥 < 𝛾. (5) 

 Based on (5), the survival function of the MOLBWGU distribution can be expressed as  

 𝑆𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

,      0 < 𝑥 < 𝛾. (6) 

 where 𝜃 > −1 and 𝛽 > 0. 

By putting (1) and (2) in (4), we obtain the pdf of the MOLBWGU distribution as  

 𝑓𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 ,      0 < 𝑥 < 𝛾. (7) 

We refer to this new distribution as the generalization of length biased weighted generalized 

uniform distribution with parameters 𝜃, 𝛾 and 𝛽. 

The shape of the pdf 𝑓(𝑥; 𝜃, 𝛾, 𝛽) depends on parameter 𝛽. If 𝛽 ∈ (0,1) then the pdf is a bell 

shaped function on (0, 𝛾) with 𝑓(0; 𝜃, 𝛾, 𝛽) = 0 and 𝑓(𝛾, 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽

𝛾
. In the case of 𝛽 > 1 then 

the pdf is an increasing function on (0, 𝛾) with 𝑓(0, 𝜃, 𝛾, 𝛽) = 0 and 𝑓(𝛾, 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽

𝛾
. 

Remark 1. If 𝛽 = 1, we obtain length biased weighted generalized uniform distribution introduced by 

Rather and Subramanian [16].  

Remark 2. When 𝜃 = -1 and 𝛽 = 1, MOLBWGU distribution reduces to uniform distribution over 

(0, 𝛾).  

Remark 3. When 𝛾 = 1 and 𝛽 = 1, MOLBWGU distribution reduces to standard power function 

distribution.  

 

566



Jismi Mathew                                                                              RT&A, No 2 (73)  
GENERALIZATION OF WEIGHTED UNIFORM DISTRIBUTION                         Volume 18, June 2023 

 
Figure 1 : Curves of the pdf of the MOLBWGU distribution for different values of the parameters. 

 
Figure 2 : Curves of the cdf of the MOLBWGU distribution for different values of the parameters. 

 

3. Statistical Properties 

 
This section is devoted to some statistical properties of the MOLBWGU distribution.  

 

3.1. Hazard Rate Function 

 

The hrf is given by, ℎ𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2

(1−
(

𝑥
𝛾)

𝜃+2

1−(1−𝛽)(1−(
𝑥
𝛾)

𝜃+2
)

)

, 

 where, 0 < 𝑥 < 𝛾. 

For 𝛽 ∈ (0,1) and 𝛽 > 1, the hrf is evidently increasing failure rate. 
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Figure 3: Curves of the hazard rate function of the MOLBWGU distribution for different values of the parameters. 

 

  The reverse hazard function of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) is given by, 

 

 𝑟𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝑥; 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2

(
(

𝑥
𝛾)

𝜃+2

1−(1−𝛽)(1−(
𝑥
𝛾)

𝜃+2
)

)

. 

 The reverse hazard rate function decreases with 𝑟(0, 𝜃, 𝛾, 𝛽) = 0 and 𝑟(𝛾, 𝜃, 𝛾, 𝛽) =
(𝜃+2)𝛽

𝛾
. 

 

3.2. Compounding 

 
The property that Marshall-Olkin family of distributions can be expressed as a compound distribution 

with exponential distribution as mixing density is useful in obtaining new parameter families of 

distribution in terms of existing ones, expressed Marshall-Olkin extended forms of Weibull, Lomax, 

linear exponential and exponential power family of distributions as a compound distribution [see 5, 4, 

9].  

Theorem 1. Let 𝑋 be a continuous random variable with conditional survival function on 𝛥 = 𝛿 

expressed as �̅�(𝑥|𝛿) = (1 − (
𝑥

𝛾
)𝜃+2) 𝑒

−(1−𝛽)𝛿(
𝑥

𝛾
)𝜃+2

,         0 < 𝑥 < 𝛾, 

and let Δ follows a distribution function with probability density function  

 𝑚(𝛿) = 𝛽 𝑒−𝛽𝛿 , 𝛿 > 0. 

Then the random variable 𝑋 has the 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution.  

Proof: The unconditional survival function of the random variable 𝑋 is given by,  

 �̅�(𝑥) = ∫
∞

−∞
�̅�(𝑥|𝛿)𝑚(𝛿)𝑑𝛿 

      = 𝛽(1 − (
𝑥

𝛾
)𝜃+2) ∫

∞

0
𝑒

−[𝛽+(1−𝛽)(
𝑥

𝛾
)𝜃+2]𝛿

𝑑𝛿 

                 =    
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

 . 

 which is the survival function of the 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution.              

Theorem 2. Let {𝑋𝑖 , 𝑖 ≥ 1} be a sequence of i.i.d. random variables with common survival function 

𝐺′(𝑥). Let 𝑇 be a geometric random variable independently distributed of {𝑋𝑖 , 𝑖 ≥ 1} such that 𝑃(𝑇 =

𝑛) = 𝛽(1 − 𝛽)𝑛−1, 𝑛 = 1,2, … ,0 < 𝛽 < 1 . Let 𝑌𝑇 = 𝑚𝑖𝑛1≤𝑖≤𝑇𝑋𝑖 . Then {𝑌𝑇}  is distributed as 

MOLBWGU(𝜃, 𝛾, 𝛽) if and only if {𝑋𝑖} follows 𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾) .  

Proof: The survival function of the random variable 𝑌𝑇 is  

 𝐻′(𝑥) = 𝑃(𝑌𝑇 > 𝑥) 
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            = ∑∞
𝑛=1 𝑃(𝑌𝑛 > 𝑥)𝑃(𝑇 = 𝑛) 

            = ∑∞
𝑛=1 [𝐺′(𝑥)]𝑛𝛽(1 − 𝛽)𝑛−1 

            =
𝛽𝐺′(𝑥)

1−(1−𝛽)𝐺′(𝑥)
 

           =
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

. 

 which is survival function of MOLBWGU(𝜃, 𝛾, 𝛽) distribution.              

Theorem 3. Let {𝑋𝑖 , 𝑖 ≥ 1} be a sequence of i.i.d. random variables with common survival function 

𝐺′(𝑥). Let 𝑇 be a geometric random variable independently distributed of {𝑋𝑖 , 𝑖 ≥ 1} such that 𝑃(𝑇 =

𝑛) = 𝛽(1 − 𝛽)𝑛−1, 𝑛 = 1,2, … , 0 < 𝛽 < 1 . Let 𝑍𝑇 = 𝑚𝑎𝑥1≤𝑖≤𝑇𝑋𝑖 . Then {𝑍𝑇}  is distributed as 

MOLBWGU(𝜃, 𝛾,
1

𝛽
) if and only if {𝑋𝑖} follows LBWGU(𝜃, 𝛾) distribution.  

Proof: The distribution function of 𝑍𝑇 is  

 𝐾(𝑥) = 𝑃(𝑍𝑇 ≤ 𝑥) 
           = ∑∞

𝑛=1 𝑃(𝑍𝑛 ≤ 𝑥)𝑃(𝑇 = 𝑛) 
          = ∑∞

𝑛=1 [𝐺(𝑥)]𝑛𝛽(1 − 𝛽)𝑛−1 

        =
𝛽𝐺(𝑥)

1−(1−𝛽)𝐺(𝑥)
 

         =
𝛽(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(
𝑥

𝛾
)

𝜃+2 . 

 From this it follows that the survival function of the random variable 𝑍𝑇 is  

𝐾′(𝑥) =

1
𝛽

(1 − (
𝑥
𝛾

)𝜃+2)

1 − (1 −
1
𝛽

) (1 − (
𝑥
𝛾

)
𝜃+2

)

 , 

which implies that 𝑍𝑇 has MOLBWGU(𝜃, 𝛾,
1

𝛽
) distribution.        

       

3.3. Order Statistics 

 
Let (𝑥1, 𝑥2, … , 𝑥𝑛)  be a random sample of size 𝑛  from 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽)  distribution and let 

𝑥1:𝑛, 𝑥2:𝑛, … , 𝑥𝑛:𝑛 be the corresponding order statistics. Then the pdf of the 𝑗𝑡ℎ order statistic for the 

𝑀𝑂𝐿𝐵𝑊𝐺𝑈 distribution is given by  

 𝑓𝑗:𝑛(𝑥) =
𝑛!

(𝑗−1)!(𝑛−𝑗)!

(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 × [
(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑗−1

[
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑛−𝑗

. 

 The 𝑀𝑂𝐿𝐵𝑊𝐺𝑈 distribution has the following pdf for 𝑥1:𝑛  

 𝑓1:𝑛(𝑥) =
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 [
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑛−1

. 

 and the pdf for 𝑥𝑛:𝑛 is given by  

 𝑓𝑛:𝑛(𝑥) = 𝑛
(𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 [
(

𝑥

𝛾
)𝜃+2

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

]

𝑛−1

,    0 < 𝑥 < 𝛾. 

 

3.4. Quantile Function 

 
The 𝑞𝑡ℎ quantile of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution is given by  

 𝑥𝑞 = 𝐹−1(𝑞) = 𝛾 (
𝑞𝛽

1−𝑞(1−𝛽)
)

1

𝜃+2
,         0 ≤ 𝑞 ≤ 1. 

where 𝐹−1(⋅) is the inverse distribution function.  
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In particular the median of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution is given by,  

 m𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝛾 (
𝛽

1+𝛽
)

1

𝜃+2
 . 

 

3.5. Moments 

 
If X has the 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution, then the 𝑠𝑡ℎ order moment is obtained as 

 

 𝔼(𝑋𝑠) = ∫
𝛾

0
𝑥𝑠 (𝜃+2)𝛽𝛾−𝜃−2𝑥𝜃+1

(1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
))

2 𝑑𝑥 

 =
𝛽(𝜃+2)

𝛾3(𝜃+2) ∫
𝛾

0

𝑥𝑠+𝜃+1

(𝛽𝛾𝜃+2+(1−𝛽)𝑥𝜃+2)
2 𝑑𝑥. 

 where 𝔼 denotes the expectation. 

Let 𝑥𝜃+2 = u, above equation reduces to  

 𝔼(𝑋𝑠) =
𝛽

𝛾3(𝜃+2) ∫
𝛾𝜃+2

0

𝑢
𝑠

𝜃+2

(𝛽𝛾𝜃+2+(1−𝛽)𝑢)
2 𝑑𝑢. 

 From Prudnikov [15],  

 ∫
𝑏

𝑎

(𝑥−𝑎)𝛼−1

(𝑐𝑥+𝑑)𝛼+𝑛+1 𝑑𝑥 =
(𝑏−𝑎)𝛼

(𝑎𝑐+𝑑)(𝑏𝑐+𝑑)𝛼
∑𝑛

𝑘=0 𝑛𝐶
𝑘

𝐵(𝛼+𝑘,𝑛−𝑘+1)

(𝑏𝑐+𝑑)𝑘(𝑎𝑐+𝑑)𝑛−𝑘. 

where a, b, c and d are real numbers with (ac+d)(bc+d) > 0; Real part of 𝛼 > 0 and 𝐵(𝑎, 𝑏) =
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
. 

Hence if 𝑠/𝜃 + 2 is a positive integer, we have,  

 ∫
𝛾𝜃+2

0

𝑢
𝑠

𝜃+2

(𝛽𝛾𝜃+2+(1−𝛽)𝑢)
2 𝑑𝑢 =

1

𝛾𝜃+2+𝑠𝛽1+𝑠/(𝜃+2)
∑𝑠/𝜃+2

𝑘=0 𝑠/𝜃 + 2 C
𝑘

𝛽𝑘 

 𝐵(1 + 𝑘 +
𝑠

𝜃+2
, 1 − 𝑘 +

𝑠

𝜃+2
). 

Therefore  

 𝔼(𝑋𝑠) =
1

𝛾4(𝜃+2)+𝑠𝛽𝑠/(𝜃+2)
∑𝑠/𝜃+2

𝑘=0 𝑠/𝜃 + 2 𝐶
𝑘

𝛽𝑘𝐵(1 + 𝑘 +
𝑠

𝜃+2
, 1 − 𝑘 +

𝑠

𝜃+2
). 

 In particular,  

 𝔼(𝑋) =
1

𝛾4𝜃+9𝛽1/(𝜃+2)
∑1/𝜃+2

𝑘=0 1/𝜃 + 2 𝐶
𝑘

𝛽𝑘𝐵(1 + 𝑘 +
1

𝜃+2
, 1 − 𝑘 +

1

𝜃+2
). 

 

 𝔼(𝑋2) =
1

𝛾4𝜃+10𝛽2/(𝜃+2)
∑2/𝜃+2

𝑘=0 2/𝜃 + 2 𝐶
𝑘

𝛽𝑘𝐵(1 + 𝑘 +
2

𝜃+2
, 1 − 𝑘 +

2

𝜃+2
). 

 

3.6. Renyi and Shannon Entropies 

 
The Renyi entropy is defined as 

𝐼𝑅(𝛾) =
1

1 − 𝛾
log ∫

∞

0

𝑓𝛾(𝑥)𝑑𝑥, 𝛾 > 0, 𝛾 ≠ 1. 

 Then, ∫
∞

0
𝑓𝛾(𝑥)𝑑𝑥 = ∫

𝛾

0

𝛽𝛾(𝜃+2)𝛾

𝛾3(𝜃+2)𝛾

𝑥𝑟(𝜃+1)

(𝛽𝛾𝜃+2+(1−𝛽)𝑥𝜃+2)
2𝛾 𝑑𝑥. 

 Let u = 𝑥𝜃+2. Therefore  

 ∫
𝛾

0

𝑥𝑟(𝜃+1)

(𝛽𝛾𝜃+2+(1−𝛽)𝑥𝜃+2)
2𝛾 𝑑𝑥 =

1

𝜃+2
∫

𝛾𝜃+2

0

𝑢
1

𝜃+2
(𝛾−1)(𝜃+1)

(𝛽𝛾𝜃+2+(1−𝛽)𝑢)
2𝛾 𝑑𝑢. 

 Using the equation from Prudnikov [15] and if 
(𝛾−1)(𝜃+3)

(𝜃+2)
 is a positive integer, the above integral 

becomes  

 
1

(𝜃+2)𝛾(𝜃+2)+(𝛾−1)(𝜃+3)𝛽
1+

(𝛾−1)(𝜃+3)
(𝜃+2)

∑
(𝛾−1)(𝜃+3)

(𝜃+2)

𝑘=0

(𝛾−1)(𝜃+3)

(𝜃+2)
𝐶

𝑘
𝛽𝑘 

 𝐵(1 + 𝑘 +
(𝛾−1)(𝜃+3)

(𝜃+2)
, 1 − 𝑘 +

(𝛾−1)(𝜃+3)

(𝜃+2)
). 
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 Therefore the Renyi entropy is  

 𝐼𝑅(𝛾) =
1

1−𝛾
log [

𝛽

(1−𝛾)
(𝜃+2)(𝜃+2)(𝛾−1)

𝛾(4𝜃+9)𝛾−1
∑

(𝛾−1)(𝜃+3)

(𝜃+2)

𝑘=0

(𝛾−1)(𝜃+3)

(𝜃+2)
𝐶

𝑘
𝛽𝑘 

 𝐵(1 + 𝑘 +
(𝛾−1)(𝜃+3)

(𝜃+2)
, 1 − 𝑘 +

(𝛾−1)(𝜃+3)

(𝜃+2)
)]. 

 Thus, the Shannon entropy is  

 𝐸[−log𝑓(𝑥)] = −log[𝛽(𝜃 + 2)𝛾−3(𝜃+2)] − (𝜃 + 1)𝐸[log(𝑋)] + 2𝐸[log(𝛽𝛾𝜃+2 + (1 − 𝛽)𝑥𝜃+2)]. 

 

4. Maximum Likelihood Estimation 

 
The MLE method is used for the parameter estimation of MOLBWGU distribution. Let (𝑥1, 𝑥2, … , 𝑥𝑛) 

be a random sample of size n from the MOLBWGU distribution. The likelihood function for the 

MOLBWGU distribution is,  

 𝐿 = ∏𝑛
𝑖=1

(𝜃+2)𝛽𝛾−𝜃−2𝑥𝑖
𝜃+1

(1−(1−𝛽)(1−(
𝑥𝑖
𝛾

)
𝜃+2

))

2. 

from which the log-likelihood function is obtained as  

 log𝐿 = −2 ∑𝑛
𝑖=1 log (1 − (1 − 𝛽)(1 − 𝛾−𝜃−2𝑥𝑖

𝜃+2)) + (𝜃 + 1) ∑𝑛
𝑖=1 log(𝑥𝑖) 

 +𝑛(−(𝜃 + 2)log(𝛾) + log(𝜃 + 2) + log(𝛽)). 

The partial derivatives of this log-likelihood function is given by  

 
𝜕log𝐿

𝜕𝜃
= −2 ∑𝑛

𝑖=1 −
(1−𝛽)(𝛾−𝜃−2log(𝛾)𝑥𝑖

𝜃+2−𝛾−𝜃−2𝑥𝑖
𝜃+2log(𝑥𝑖))

1−(1−𝛽)(1−𝛾−𝜃−2𝑥𝑖
𝜃+2)

 

 + ∑𝑛
𝑖=1 log(𝑥𝑖) + 𝑛 (

1

𝜃+2
− log(𝛾)). 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛾
= −2 ∑𝑛

𝑖=1
(−𝜃−2)(1−𝛽)𝛾−𝜃−3𝑥𝑖

𝜃+2

1−(1−𝛽)(1−𝛾−𝜃−2𝑥𝑖
𝜃+2)

−
(𝜃+2)𝑛

𝛾
. 

 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
=

𝑛

𝛽
− 2 ∑𝑛

𝑖=1
1−𝛾−𝜃−2𝑥𝑖

𝜃+2

1−(1−𝛽)(1−𝛾−𝜃−2𝑥𝑖
𝜃+2)

. 

 The maximum likelihood estimator (�̂�, 𝛾, �̂�) of the parameters (𝜃, 𝛾, 𝛽) can be obtained by solving 

the equations 
𝜕𝑙𝑜𝑔𝐿

𝜕𝜃
= 0, 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛾
= 0 and 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽
= 0. 

 

4.1. Simulation Study 
 

In this section, some simulation results are provided to study the behaviour of the MLEs in terms of 

the sample size. For this purpose, a Monte Carlo simulation study is conducted for 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) 

distribution. The results are obtained from 1000 Monte Carlo replications and the simulations are 

carried out using the statistical software R. In each replication, a random sample of size 25, 50, 100, 150, 

200 is generated for different combinations of 𝜃, 𝛾 and 𝛽 . The initial values of parameters are 𝜃 = 

1.2, 𝛾 = 0.3, 𝛽 = 1.5; 𝜃 = 2 , 𝛾 = 1.5, 𝛽 = 2.5; 𝜃 = 0.5, 𝛾 = 0.5, 𝛽 = 1.5 and 𝜃 = 2, 𝛾 = 1, 𝛽 = 2. Then 

computed mean of the MLEs of the parameters, biases and mean square errors (MSEs) of the 

parameter estimates. Tables 1, 2, 3 and 4 gives the values of the estimates, biases and MSEs of the 

corresponding parameters. From the tables, it can be seen that, as sample size increases the bias and 

MSE of the estimates decreases.  
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Table 1: Estimates, Biases and MSEs for 𝜃 = 1.2, 𝛾 = 0.3 and 𝛽 = 1.5 

 

Sample Size(n)  Parameters  Estimates Biases  MSEs  

 

25 

𝜃  
 𝛾 
 𝛽 

1.2155 

0.3579 

1.5034 

 0.0155  

 0.0579 

 0.0034  

 0.0431  

 0.1046  

 0.0009  

 

50 

 𝜃  
 𝛾 
 𝛽 

1.2143 

0.3565 

1.5022 

 0.0143 

 0.0565  

 0.0022  

 0.0412  

 0.1051  

 0.0003  

 

100 

 𝜃  
 𝛾 
 𝛽 

1.2135 

0.3541 

1.5015 

 0.0135 

 0.0541 

 0.0015  

 0.0159  

 0.1015  

 0.0003  

 

150 

 𝜃  
 𝛾 
 𝛽 

1.2111 

0.3509 

1.5009 

 0.0111 

 0.0509 

0.0009 

 0.0039  

 0.1012 

 0.0002  

 

200 

 𝜃  
 𝛾 
 𝛽 

1.2097 

0.3478 

1.5001 

 0.0097  

 0.0478 

 0.0001  

0.0027 

 0.1004 

 0.0002  

   

 

 

Table 2: Estimates, Biases and MSEs for 𝜃 = 2 , 𝛾 = 1.5 and 𝛽 = 2.5 

  

Sample Size(n)  Parameters  Estimates  Biases  MSEs  

 

25 

 𝜃  
 𝛾 
 𝛽 

 2.6271 

 1.5096 

 2.5242 

 0.6271 

 0.0096 

 0.0242 

 0.4428 

 0.2635 

 0.9715 

 

50 

 𝜃  
 𝛾 
 𝛽 

 2.4927 

 1.5082 

 2.5211 

 0.4927 

 0.0082 

 0.0211  

 0.3527 

 0.0792 

 0.6226 

 

100 

 𝜃  
 𝛾 
 𝛽 

 2.3813 

 1.5065 

 2.5175 

 0.3813 

 0.0065 

 0.0175 

 0.3795 

 0.0489 

 0.6535 

 

150 

 𝜃  
 𝛾 
 𝛽 

 2.3145 

 1.5068 

 2.5148  

 0.3145 

 0.0068 

 0.0148  

 0.1529 

 0.0035 

 0.3614 

 

200 

 𝜃  
 𝛾 
 𝛽 

 2.2501  

 1.5045  

 2.5122 

 0.2501  

 0.0045  

 0.0122 

 0.1358 

 0.0012 

 0.1428  
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Table 3: Estimates, Biases and MSEs for 𝜃 = 0.5, 𝛾 = 0.5 and 𝛽 = 1.5 

 

Sample Size(n)  Parameters  Estimates   Biases  MSEs  

 

25 

 𝜃  
 𝛾 
 𝛽 

 0.5312 

0.5505 

 1.5091 

 0.0312 

 0.0505 

 0.0091  

 0.0803 

 1.5112 

 0.1583 

 

50 

 𝜃  
 𝛾 
 𝛽 

 0.5304 

 0.5447 

 1.5082 

 0.0304 

0.0447 

 0.0082  

 0.0713 

 0.8218 

 0.0685 

 

100 

 𝜃  
 𝛾 
 𝛽 

 0.5275 

 0.5418 

 1.5079  

 0.0275 

 0.0418 

 0.0079 

 0.0752 

 0.7943 

 0.0082  

 

150 

 𝜃  
 𝛾 
 𝛽 

 0.5289 

 0.5345 

 1.5074 

 0.0289 

 0.0345 

 0.0074 

 0.0239 

 0.5728 

 0.0047  

 

200 

 𝜃  
 𝛾 
 𝛽 

 0.5217 

 0.5293  

 1.5066 

 0.0217 

 0.0293 

 0.0066  

 0.0249 

 0.5355 

 0.0032 

  

  

Table 4: Estimates, Biases and MSEs for 𝜃 = 2, 𝛾 = 1 and 𝛽 = 2 

Sample Size(n)  Parameters  Estimates   Biases  MSEs  

 

25 

 𝜃  
 𝛾 
 𝛽 

 2.1827 

1.1578 

 2.1666  

 0.1827 

0.1578 

 0.1666 

 0.3912 

 0.2014 

 0.0009 

 

50 

 𝜃  
 𝛾 
 𝛽 

 2.0915 

 1.1579 

 2.1643 

 0.0915 

 0.1579 

 0.1643  

 0.3373 

 0.2008 

 0.0004 

 

100 

 𝜃  
 𝛾 
 𝛽 

 2.0912 

 1.1458 

 2.1712 

 0.0912 

 0.1458 

 0.1712 

 0.1838 

 0.2007 

 0.0003 

 

150 

 𝜃  
 𝛾 
 𝛽 

 2.0774 

 1.1435 

 2.1626 

 0.0774 

0.1435 

 0.1626  

 0.1425 

 0.2001 

 0.0003 

 

200 

 𝜃  
 𝛾 
 𝛽 

 2.0751 

1.1315  

 2.0125 

 0.0751 

 0.1315 

 0.0125 

 0.0564 

 0.0197 

 0.0002 
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5. Application in Autoregressive Time Series Modeling 
 

In this section, some applications of MOLBWGU distribution in autoregressive time series modelling 

are provided. Now, we construct a first order autoregressive minification process with structure as 

follows,  

 𝑋𝑛 = {
𝜀𝑛, 𝑤. 𝑝. 𝛽
min(𝑥𝑛−1, 𝜀𝑛), 𝑤. 𝑝. 1 − 𝛽, 0 ≤ 𝛽 ≤ 1, 𝑛 ≥ 1,

 (8) 

 where {𝜀𝑛} is a sequence of i.i.d. random variables following LBWGU(𝜃, 𝛾) distribution independent 

of {𝑥𝑛−1, 𝑥𝑛−2, . . . } . Then the process is stationary and is marginally distributed with 

𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) distribution. This leads to the following theorem. 

Theorem 4. In an AR (1)  process with structure (8), {𝑋𝑛 , 𝑛 ≥ 0}  defines a stationary AR (1) 

minification process with 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽)  marginal distribution iff {𝜀𝑛}  is a sequence of 

independently and identically distributed random variable with LBWGU(𝜃, 𝛾) distributon.   

Proof. Consider (8) in terms of survival function  

 �̅�𝑋𝑛
(𝑥) = 𝛽�̅�𝜀𝑛

(𝑥) + (1 − 𝛽)�̅�𝑋𝑛−1
(𝑥)�̅�𝜀𝑛

(𝑥). 

 Under stationary equilibrium it reduces to  

 �̅�𝑋(𝑥) =
𝛽𝐹𝜀𝑛(𝑥)

1−(1−𝛽)𝐹𝜀𝑛(𝑥)
. (9) 

 and hence  

 �̅�𝜀𝑛
(𝑥) =

𝛽𝐹𝑋(𝑥)

1−(1−𝛽)𝐹𝑋(𝑥)
. (10) 

 If 𝜀𝑛 follows LBWGU(𝜃, 𝛾) from(9), we get  

 �̅�𝑋(𝑥) =
𝛽(1−(

𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

. 

which is the survival function of 𝑀𝑂𝐿𝐵𝑊𝐺𝑈(𝜃, 𝛾, 𝛽) . 

Conversely, if we take  

 �̅�𝑋𝑛
(𝑥) =

𝛽(1−(
𝑥

𝛾
)𝜃+2)

1−(1−𝛽)(1−(
𝑥

𝛾
)

𝜃+2
)

. 

from (9) it can show that�̅�𝜀𝑛
(𝑥) is distributed LBWGU(𝜃, 𝛾) with survival function (1 − (

𝑥

𝛾
)𝜃+2). 

 

5.1. Sample Path 
 

To study the behavior of the process we simulate the sample path for various values of 𝛽, the 

properties of sample path shows that the MOLBWGU AR(1) minification process can be used for 

modelling a rich variety of real data. Sample path of MOLBWGU AR(1) process for 𝛾 = 0.5, 𝜃 = 0.9 

and 𝛽= 0.4, 0.5, 0.6 and 0.8 is given in Figure 4.  

  

  
Figure 4: Sample path of the MOLBWGU AR(1) process for 𝛾 = 0.5, 𝜃 = 0.9 and 𝛽= 0.4, 0.5, 0.6 and 0.8.   
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6. Stress Strength Analysis 
 

The stress strength reliability analysis can be regarded as an assessment of reliability of a system in 

terms of random variables X and Y, where X represents strength and Y represents the stress. If the 

stress exceeds strength the system would fail and the system will function if strength exceeds stress. 

The stress strength reliability can be defined as R = P(X >Y ). Gupta [6] obtained various results on the 

MO family in the context of reliability modelling and survival analysis. Then,  

 𝑅 = 𝑃(𝑋 > 𝑌) = ∫
+∞

−∞
𝑃(𝑋 > 𝑌|𝑌 = 𝑦)𝑔𝑌(𝑦)𝑑𝑦 

 =

𝛽1
𝛽2

(
𝛽1
𝛽2

−1)2
(−𝑙𝑛

𝛽1

𝛽2
+

𝛽1

𝛽2
− 1). 

 

Let (𝑥1, 𝑥2, . . . , 𝑥𝑚) and (𝑦1 , 𝑦2, . . . , 𝑦𝑛) be two independent random samples of sizes m and n from 

MOLBWGU distribution with tilt parameters 𝛽1  and 𝛽2  respectively, and common unknown 

parameters 𝛾 and 𝜃 .  

The log likelihood function is given by 

log𝐿 = −2 ∑
𝑚

𝑖=1
log (1 − (1 − 𝛽1)(1 − 𝛾−𝜃−2𝑥𝑖

𝜃+2)) + (𝜃 + 1) ∑
𝑚

𝑖=1
log(𝑥𝑖) + 𝑚(−(𝜃 + 2)log(𝛾) + log(𝜃

+ 2) + log(𝛽1)) − 2 ∑
𝑛

𝑖=1
log (1 − (1 − 𝛽2)(1 − 𝛾−𝜃−2𝑦𝑖

𝜃+2)) + (𝜃 + 1) ∑
𝑛

𝑖=1
log(𝑦𝑖)

+ 𝑛(−(𝜃 + 2)log(𝛾) + log(𝜃 + 2) + log(𝛽2)) 

Then MLE of 𝛽1 and 𝛽2 are the solutions of the nonlinear equations 
𝜕𝑙𝑜𝑔𝐿

𝜕𝛽1
= 0 and 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽2
= 0. The 

elements of Information matrix are given by,  

 𝐼11 = −𝐸 (
𝜕2𝐿

𝜕𝛽1
2) =

𝑚

3𝛽1
2. 

 𝐼22 = −𝐸 (
𝜕2𝐿

𝜕𝛽2
2) =

𝑛

3𝛽2
2. 

 𝐼12 = 𝐼21 = −𝐸 (
𝜕2𝐿

𝜕𝛽1𝜕𝛽2
) = 0. 

 By the property of MLE for 𝑚 → ∞ and 𝑛 → ∞ ,  

 (√𝑚(�̂�1 − 𝛽1), √𝑛(�̂�2 − 𝛽2)) → 𝑁2(0, 𝑑𝑖𝑎𝑔{𝑎11
−1, 𝑎22

−1}). 

where 𝑎11 = lim𝑚,𝑛→∞
𝐼11

𝑚
=

1

3𝛽1
2 and 𝑎22 = lim𝑚,𝑛→∞

𝐼22

𝑛
=

1

3𝛽2
2 

Now from [6] the 95% confidence interval for R is given by  �̂� ± 1.96�̂�1𝑏1(�̂�1, �̂�2)√
3

𝑚
+

3

𝑛
,   

where  𝑏1(𝛽1, 𝜆2) =
𝜕𝑅

𝜕𝛽1
=

𝛽2

(𝛽1−𝛽2)3 [−2(𝛽1 − 𝛽2) + (𝛽1 + 𝛽2)ln
𝛽1

𝛽2
]  and  𝑏2(𝜆1, 𝜆2) =

𝜕𝑅

𝜕𝛽2
=

𝛽1

(𝛽1−𝛽2)3 [2(𝛽1 − 𝛽2) − (𝛽1 + 𝛽2)ln
𝛽1

𝛽2
] = −

𝛽1

𝛽2
𝑏1(𝛽1, 𝛽2).  

 

6.1. Simulation Study 
 

For the simulation study, generate N=10,000 sets of X-samples and Y-samples from the MOLBWGU 

distribution with parameters (𝛽1, 𝛾, 𝜃) and (𝛽2, 𝛾, 𝜃) respectively. The combinations of samples of sizes 

𝑚 = 20,25,30 and 𝑛 = 20,25,30 are studied. The validity of the estimate of R is considered by using 

the following measures, namely average bias of the estimate (�̅�), average mean square error of the 

estimate (AMSE), average confidence interval of the estimate and coverage probability defined by,   

    1.  Average bias (�̅�) of the estimates of 𝑅: 

 
1

𝑁
∑𝑁

𝑖=1 (�̂�𝑖 − 𝑅). 

    2.  Average mean square error of the estimates of 𝑅: 

 
1

𝑁
∑𝑁

𝑖=1 (�̂�𝑖 − 𝑅)2. 

    3.  Average length of the asymptotic 95% confidence interval of 𝑅: 
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1

𝑁
∑𝑁

𝑖=1 2(1.96)�̂�1𝑖𝑏1𝑖(�̂�𝛽1𝑖 , �̂�𝛽2𝑖)√
3

𝑚
+

3

𝑛
. 

    4.  The coverage probability of the confidence intervals given by the proportion of such 

interval that include the parameter 𝑅.  

The numerical values obtained for the measures are presented in Table 5 and 6. The average bias 

decreases as the sample size increases. The coverage probability is close to 0.95 as the sample size 

increases. This simulation results shows that the average bias, average MSE, average confidence 

interval and coverage probability do not show much variability for various parameter combinations.   

 

Table 5: Average bias and average MSE of the simulated estimates of R for 𝛾 = 1 and 𝜃 = 0.9 

 

(𝛽1, 𝛽2) 

 Average Bias (�̅�)  Average Mean Square Error (AMSE) 

(m, n) (0.2,0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) (0.2, 0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) 

(20, 20) 

(20, 25) 

(20, 30) 

(25, 20) 

(25, 25) 

(25, 30) 

(30, 20) 

(30, 25) 

(30, 30) 

-0.0035 

-0.0066 

-0.0092 

-0.0024 

-0.0052 

-0.0077 

-0.0021 

-0.0048 

-0.0075 

-0.0825 

-0.0832 

-0.0839 

-0.0857  

-0.0877 

-0.0878 

-0.0887 

-0.0910 

-0.0908  

-0.0589 

-0.0605 

-0.0614 

-0.0588 

-0.0606 

-0.0611 

-0.0588 

-0.0602 

-0.0611 

0.0286 

0.0289 

0.0279 

0.0233 

0.0241 

0.0234 

0.0199 

0.0204 

0.0205 

0.0042 

0.0041 

0.0039 

0.0041 

0.0039  

0.0038 

0.0040 

0.0038 

0.0037 

0.0115 

0.0117 

0.0117 

0.0115 

0.0118 

0.0118 

0.0116 

0.0118 

0.0118 

0.0040 

0.0041 

0.0042 

0.0040 

0.0041 

0.0041 

0.0040 

0.0040 

0.0041 

0.0052 

0.0052 

 0.0050 

0.0041 

0.0043 

0.0042 

0.0036 

0.0036 

0.0037 

 

  

Table 6: Average length of the confidence interval and coverage probability of the simulated 95% 

 confidence intervals of R for 𝛾 = 1 and 𝜃 = 0.9 

   

 

 

   

 

 

 

 

 

 

 

 

 

7. Conclusion 
 

In this paper, a generalization of LBWGU distribution namely MOLBWGU distribution is developed. 

Some of the statistical properties of the new distribution such as probability density function, hazard 

rate function, moments, quantile function, compounding, distribution of order statistics, Renyi and 

Shannon entropies are derived. We estimated the parameters of the distribution using maximum 

likelihood estimation method and a simulation study is conducted for proving the validity of the 

estimates.  

(𝛽1, 𝛽2) 

 Average Confidence Length  Coverage Probability 

(m, n) (0.2,0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) (0.2, 0.4) (0.4, 0.2) (0.5, 0.1) (0.4, 1.2) 

(20, 20) 

(20, 25) 

(20, 30) 

(25, 20) 

(25, 25) 

(25, 30) 

(30, 20) 

(30, 25) 

(30, 30) 

0.3346 

0.3167 

0.3043 

0.3179 

0.2991 

0.2860 

0.3064 

0.2867 

0.2728 

0.3505 

0.3325 

0.3201 

0.3334 

0.3145 

0.3012 

0.3215 

0.3019 

0.2879 

0.3111 

0.2960 

0.2853 

0.2951 

0.2791 

0.2675 

0.2840 

0.2671 

0.2551 

0.3239 

0.3074 

0.2956 

0.3063 

0.2889 

0.2764 

0.2939 

0.2759 

0.2631 

0.9592 

0.9585 

0.9583 

0.9582 

0.9573 

0.9568 

0.9574 

0.9557 

0.9542 

0.9839 

0.9727 

0.9611 

0.9809 

0.9613 

0.9434 

0.9720 

0.9533 

0.9264 

0.9991 

0.9898 

0.9794 

0.9799 

0.9999 

0.9696 

0.9599 

0.9599 

0.9399 

0.9805 

0.9530 

0.9299 

0.9793 

0.9533 

0.9231 

0.9783 

0.9593 

0.9333 
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Also we developed a minification process using the model and explored its sample path behavior for 

different combinations of parameters. To check the impact of stress on strength of devices and systems, 

the stress strength analysis is carried out and the estimate of the reliability is examined based on a 

simulation study. 
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Abstract

During the development of software and electronic devices, it is inevitable to make mistakes. In large,
developed companies, assigning a request to the right development team or even a department is not an
easy task. Often, the creation of software bug reports and assignment to groups is also formalized by
appropriate processes. The paper presents a novel method of software bug report assignment to a group of
developers or analysts. A specific usage of organizational structure at the company is a key component
of the proposed approach. There are presented results from real use application including both machine
learning predictions and human decisions. Human predictions are not independent, the issues are raised
as to why comparing the results of machine learning models with those of humans may be inappropriate
and what factors influence human decisions. The work also covers conclusive research about potential
benefits of the application of automated assignment of bug reports.

Keywords: Software bug assignment, Software bug triaging, Software bug report, Software bug,
Text analysis

1. Introduction

Discussed problem concerns about assigning a software bug report to correct group automatically
based on given data like description, system information in raw format or already processed by
analyzing tools. Approaches similar to these presented in the paper may be applied to situations
which work with other software development cases like related to feature requests, supporting
questions or similar issues which should be handled during software development or maintenance.
The approach might also be applied to any other different task related to machine learning tasks
like classification or labeling in a similar context. It is expected that if a software bug occurs at
unit testing level it should be handled by one of developers responsible for development of this
unit. More challenging part is when a software bug occurs at the later stage of development or
even in real customer use. For large and complex systems even pointing out department can be a
complicated task [6]. Additionally, there is an assumption that the company is divided into at
least two organization levels, like departments and divisions, as shown in Figure 1. Please note
that the names "department" and "division" and relations between them are shown in Figure 1
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Figure 1: Flow chart of process of transferring reports of bugs inside company, 3 layers shown.

serve only to better illustrate the example. In real use cases testers or customer support engineers
decide which department is most suitable for resolving issue a , while reporting a software defect
or anomaly. Next, a report is being assigned to one of the divisions inside the current department
b or transferred to another one c . The problem of assigning a software bug report to correct

group in that context may be interpreted as:

• assigning to department a or c ,

• assigning to division in context of department b ,

• assigning to division directly e .

2. Related Works

There is a plethora of ways to classify issues, i.e., classifying severity [7] or assigning the issue to
a group which should handle particular case. As there may be numerous bug reports, not all of
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them are handled simultaneously. Among others based on classification of severity decisions are
made as to whether the bug will be fixed now, later or never. In [8] an approach to assign issue to
specified components is presented. In above-mentioned work authors predict if reassignment
of created bug report will occur. For that purpose they are using data which come from major
projects Eclipse and Mozilla. In [2], bug report assignment is done directly to developers. In
the scope was to build time oriented expert model which assigns more priority to developer
who had worked on the similar bugs in the past. There are created activity profiles of people
who deliver corrections with usage of factor for normalizing which uses the time of last usage of
term by developer. [4] addresses bug report assignment to departments. It uses a specific time
dependencies for creating train and test sets. Also one of the scope of that work was to investigate
the impact of different way of preprocessing and vectorization on bug assignment accuracy. [9]
considers bug report assignments to development teams. Moreover, the approach presented in
[9], uses only selected cases to automate bug triaging. Selection is made based on confidence of
the prediction. A threshold (cutoff) for the confidence is used as there exists a trade-off between
accuracy and the number of predictions. [5] presents dual-output deep neural network which
simultaneously predicts developer and team. Authors of that work also indicate the fact that this
approach is robust against organizational changes as relations between teams and developers may
change. In different kind of applications like disease detection and classification, a hierarchical
concept of combination of machine learning models is used in [1]. There are two layers used.
The purpose of the first of them is disease detection and the second one is its classification. The
results also suggest that the hierarchical approach can outperform the flat one, especially in case
of small amount of data. A general concept of hierarchical classification algorithms is described
in [3]. It presents among others different type of structures for hierarchical problems.

Although in [9] was introduced the possibility of transferring bug reports to selected organiza-
tion parts based on the thresholds, there is lack of publication which applies specific context and
additional possibilities which can be gained due to known hierarchical structure, like for instance
combination of models related to different levels especially with usage of tuning of thresholds.

3. Research questions

• What are results of human predictions on department and inside department levels?

• What is the relation between results of machine learning predictions versus human predic-
tions?

• What are the factors impacting human predictions?

• What are minimal requirements for solution applicability in software development com-
pany?

• What are the scenarios of deployment of application?

• What are main advantages and disadvantages of human versus computerized approaches?

4. Proposed solution

The novelty is that the cases incoming into department are being transferred into divisions
(operation (b) in Figure 1) only in specific conditions. In that case a novel combination of machine
learning models may be used, where one of the models predicts which division the issue should
be addressed to, whereas the second one predicts whether the current department is the proper
one. As a result, it is a transfer to proper division only in case if both of used models exceeded
respective threshold. By the threshold we understand the cutoff confidence score based on the
output of machine learning model. The novel features can be expressed as follows:
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• assigning only selected cases of all cases incoming into department (or created inside) to
specific divisions based on confidence level of prediction or state of issue,

• creating a model or other decision system based on at least two classification models, where
at least one of them predicts division and at least one of them predicts department.

That approach is general and it is not limited to one way of creating a model. In a specific
implementation in the company, predictions come from models prepared in a way similar to
the approach presented in [4] . Fields used from bug report are title, description, product and
release. The preprocessing phase uses methods for cleaning the text like removing chosen special
characters, changing to lower letters, removing stopwords and part of content related to company
template. The training set is built from data related to relevant cases from last 365 days up to
date of creation of model. For each case the result of prediction was collected at the time when
formally correct bug report appeared for the first time at A1. Different models are used for
predictions at different levels of organization. Department is being predicted with the use of
logistic regression classifier; division with use of support vector classifier with linear kernel. This
production setup is being updated daily to get the newest available data for training as fast as
possible.

5. Results

The doctoral student conducted research on the possibility of automatic assignment of bug reports
in selected cases. The results of the studies show what the effect on historical data would be if
bug reports were sent to inside department from interface group A1. The predictions come from
the cases which passed formal check of correctness of report filling at the time of use of machine
learning model to make prediction and contain valid log content. Table 1 shows the number
of cases above a certain threshold of a model which would be sent predicting department and
respective precision. Similar research was conducted for model which predicts divisions inside
the department. Table 2 indicates the number of cases which would be transferred from group
A1 to A1B1 and its precision. The results with combination of those two models are placed in
Table 3. Based on above data, the decision about implementation pilot solution with thresholds
0.6 for department, 0.3 for division was made. Within that solution problem reports which meet
the above-mentioned requirements were transferred. For those cases which did not meet these
conditions were only placed information about suggested transfer possibilities. Selected results
are presented in Tables 4 to 6 and Figures 2 to 4. Presented data do not show cases which
were created at early stages of software development and discovered in later phases or even in
customer use. The following notations are used in Table 6:

• Human only - percentage of cases where human prediction was correct, but ML model
prediction was incorrect;

• ML only - percentage of cases where ML model prediction was correct, but human model
prediction was incorrect;

• ML & Human - percentage of cases where both ML and human model predictions were
correct;

• Both incorrect - percentage of cases where neither ML nor human model predictions were
correct.

Additionally, we can see the benefits like that for cases in date ranges from November 2021 to
January 2022 where the decision about transfers was made 79% of them were resolved1 (or fix
was not required2) inside department A1, but for cases where only decision about suggestion was
made only 66% were resolved (or fix was not required) inside.

1Resolved - resolved; not including internal department cases; ended inside department
2Fix not required - fix not required; not including internal department cases; ended inside department including inflow

group A1
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Table 1: General flow of issues in organization.

Threshold set
Cases predicted

as A1

Precision of A1
in the context of

cases above threshold
0.2 266 58
0.3 244 61
0.4 183 64
0.5 130 68
0.6 71 67
0.7 48 71

Table 2: General flow of issues in organization.
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0.2 206 39 20
0.3 148 40 23
0.4 95 42 23
0.5 53 38 23
0.6 28 39 25

6. Discussion on requirements for application of solution inside

company

6.1. Minimal requirements

Although many people at glance think that such solutions have opportunities to be introduced
only in case the predictions are better than human ones, this is not so simple as it is thought. In
the case when machine learning predictions are better than it is rather obvious that is worth to
make it application. Otherwise when it is worse, in some cases it may be also worth developing
and applying such solutions. One of the reasons is that it may work as decision supporting system
which does not make a binding decision, but only delivers suggestions which may be helpful
for cases when a reporter has no idea how to address the problem, and sometimes may ignore
suggestions when is sure where to address that or knows that the suggested target is wrong.
Sometimes an issue with group overloading may occur, like for instance they currently handle
too many bug fixes simultaneously, or have to deliver already committed new important features
to product. Then, from the businesses perspective it may be reasonable to redirect cases to groups
where it is less likely that the corrections will be delivered, but they may deliver detailed analysis
or reject bug report as not valid. That effect may be gained due to tuning of mentioned in this
work thresholds. Even if this change could lead to accuracy reduction, it may help to achieve
business goals.
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Table 3: General flow of issues in organization.
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0.3 0.3 88 36 25
0.3 0.4 60 38 26
0.3 0.5 40 38 25
0.3 0.6 26 41 27
0.4 0.3 65 34 25
0.4 0.4 44 34 25
0.4 0.5 31 34 26
0.4 0.6 21 33 24
0.5 0.3 49 40 29
0.5 0.4 34 40 29
0.5 0.5 21 43 33
0.5 0.6 13 44 30
0.6 0.3 29 57 41
0.6 0.4 20 64 45
0.6 0.5 11 75 55
0.6 0.6 7 80 57

Table 4: Chosen results transferred cases based on ML model decision.

Date range type of resolution Accuracy
November and December Resolved 38 %
November and December Fix not required 55 %

December Resolved 50 %
December Fix not required 80 %

6.2. Human factors

There are usually many validation aspects when comparing machine learning and human
predictions in software bug report assignment process. Some of them are presented in the
following paragraph. One of the most important ones is that the reporters may use an already
introduced decision supporting system. The different aspect is that in cases when multiple groups
delivered correction people can choose which one will be the final main one and may want to
boost human or machine learning result if they wish so. What is more, reporters sometimes ask
before creating reports where reports should be sent before creating formally one. At that step,
many developers might be involved or even the solution might be known before the actual report
is officially processed. Sometimes developer teams ask for verification of some functionality and
create a report directly against them. In those last two cases the final group is known even before
creating bug report. What is more, not always the best accuracy is the aim of introduction of such
solutions. Last, but not least, recently detailed instructions on how to address the most common
types of bug reports and responsibilities of divisions inside department were made to improve
human decision making.
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Figure 2: Number of bug reports meet threshold conditions in function of given thresholds.

Figure 3: Precision of predictions of bug reports meet threshold conditions in function of given thresholds excluding
cases which ended outside of department A1.
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Table 5: Chosen results of suggested cases based.

Date range type of resolution Human accuracy ML model accuracy
November and December Resolved 54 % 38 %
November and December Fix not required 65 % 35 %

December Resolved 56 % 38 %
December Fix not required 64 % 32 %

Table 6: Distribution of specific types of results of suggested cases.

Date range type of resolution Human only ML only ML & Human Both incorrect
Nov and Dec Resolved 31 % 15 % 23 % 32 %
Nov and Dec Fix not required 40 % 10 % 25 % 25 %

Dec Resolved 34 % 16 % 22 % 28 %
Dec Fix not required 40 % 8 % 24 % 28 %

6.3. Advantages and disadvantages of such solutions

The main disadvantage of such solutions, which are often pointed out during automatic transfers,
is the lack of analysis that would provide information on why such a decision was made. The
second issue that will help minimize these defects is the implemented solution, which conveniently
displays to developers’ key information about the content of the base station configuration state
logs at the time of collecting logs, provided of course the logs have collected in the correct way.

7. Next steps that have been taken

Referring to the progress of implementation in industry, prepared an earlier pilot solution
supporting the group A1, dealing with the handling of applications within the department, was
gradually extended to handle more bug reports. The solution was to transfer selected bug reports
from the group symbolically marked as A1 to selected groups in the conditions specified by the
machine learning model and if met the formal conditions for notification. This decision shall be
taken automatically without the need for human verification. The model prepared was also used
for transfers from department A2 to the teams (A1Bx) responsible for analysis in department
A1 as well as transfers to department A2. One of the models prepared is also used as one of
the component models to solve suggesting to the reporter whether the report should be opened
against department A2. In addition, it is also used as a component model for the automatic
transfer solution applications between departments A2 and A3. It was decided to remove a
group responsible for initial investigation inside that department A1 in June this year, thus fully
abandoning one layer of analysis. In connection with these changes, the solution was adapted
so that the submitted applications from department B were sent directly to groups A1Bx . In
addition, the system had to be adapted to indicate new groups after organizational changes,
because on this layer the structure has also changed.

8. Summary

The paper discusses problems related to methods of assignment of reports, feature requests,
supporting questions or similar issues to group of employees, developers, organization unit,
etc. The novelty introduced in this paper is related to the specific usage of the organizational
structure in processes of handling (assigning) an issue. The paper shows possible scenarios
of deployment of application supporting fault management with the use of solution based on
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Figure 4: Precision of predictions of bug reports meet threshold conditions in function of given thresholds including
cases which ended outside of department A1.

machine learning. The study demonstrates factors impacting human predictions, main advantages,
and disadvantages of automated solution against human. Comparison of results between human
and model predictions at both department and inside department levels are presented. Minimal
requirements for the company in case of application of machine learning supporting system in
the company are also defined.
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Abstract

In this research article, we proposed a new two-parametric divergence measure and developed its weighted
version. We also looked at its properties and specific cases with examples and also obtained some results
and bounds for new two prametric weighted generalized divergence measure. With the aid of a numerical
example that determine the distribution function and also studied some inequality for the new proposed
divergence measure. The known divergence measure is the particular case of our proposed measure. The
proposed measure uniquely characterized the distribution function using the proportional hazard rate
model (PHRM). Its residual function is also being worked on.

Keywords: characterization result, Divergence measure, distribution function, proportional haz-
ard rate model, Residual function.

1. Introduction

The idea of information measures plays an important role in the feild of information theory and
other applied sciences.The conception of information measure( uncertianty) was first given by
Shannon entropy [10].He suggested a method for achieving the probability distribution inherent
uncertanity and established that it is a main component of information theory, which today has
numerous applications across many fields.
Suppose X is a hypothetical continous non-negative random variable, then the shannon’s [10]
entropy is defined as

HS(X) = −
∞∫

0

f (x)log f (x)dx (1)

where f represent density function of X.

In addition, it can be written as

HS(X) = E(−log f (x))

The HS(X) is equal to the expected value of (-logf(x)).
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The concept of the distinction between the two density distributions is obtained from their
function and is often used in Shannon entropy. The most common divergence applied in informa-
tion theory is the Kullback-Leibler divergence, also known as relative entropy or Kullback-Leibler
information divergence measure[4] (KL divergence). It is widely used in parameter estimation,
contigency tables and ANOVA tables.

Suppose f(x) and g(x) are the two probability distributions for a continuous random variable
X and Y, then the KL divergence[4] is given by.

DKL( f ||g) =
∞∫

0

f (x)log
f (x)
g(x)

dx (2)

Furthermore, it can be written as

DKL( f ||g) = EKL
[

log
f (x)
g(x)

]
Remarks

1. If g(x)=1, then it simply becomes Shannon’s[10].

2. If g(x)= f(x), then Kullback-Leibler[4] divergence is reduced to zero.

In this regard, Renyi[9] presented the generalization of Kullback-Leibler divergence[4] of order
β, which is defined as

DR( f ||g) = 1
β − 1

log
∞∫

0

f (x)βg(x)1−βdx, β ̸= 1, β > 0 (3)

Remarks

1. If β→ 1, then it just becomes Kullback-Leibler[4] divergence.
Since many researchers have developed distinct generalizations of Kullback-Leibler divergence[4]
in distinct manners, Gupta and Nanda[8] introduced a new generalization of the KL divergence
measure of order "β" defined as follows.

DG( f ||g) = 1
β − 1

log
∞∫

0

(
f (x)
g(x)

)β−1

f (x)dx, β ̸= 1, β > 0 (4)

Remarks

1. If β→ 1, then it simply becomes Kullback-Leibler divergence[4]
Our goal is to develop a new Kullback-Leibler divergence[4] measure that seems to be two-
parametric in nature.

Our proposed measure is defined as follows

Dα,β( f ||g) = 1
β − α

log
∞∫

0

(
f (x)
g(x)

)β−α

f (x)αdx, β ̸= α, α ≥ 1, α, β > 0 (5)

Additionally, it can be expressed as

Dα,β(X||Y) = 1
β − α

log
∞∫

0

( f (x))β (g(x))α−β dx (6)
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Remarks
1. When we take f(x) = g(x) then divergence became zero

2. if α = 1 (5) reduced to the Gupta and Nanda[8] of order β

3. if α = 1, β→ 1 it converge to simply Kullback-Leibler divergence[4]

4. if g(x) = 1, (5) reduces to simply Shannon entropy[10]
The rest of the article consists of the following sections. In Section (2) we study the weighted
generalized divergence measure and in Section (3) we study the weighted generalized residual
divergence measure. In Section 4 we derive some characterization results using the proportional
hazard rate model. Finally we studied some properties and bound the new proposed divergence
measure.

2. Weighted Generalized Divergence Measure

We proposed the weighted generalised divergence measure in this section. Shannon’s measure
and Kullback-Leibler divergence[4] both give the random variable identical weight in real-world
scenarios, but this can be problematic. To solve that problem, weighted entropy first developed
by Belis and Guiasu [1] . The weighted entropy is defined as

HS
w(X) = −

∞∫
0

x f (x)log f (x)dx (7)

Remarks
1. If x= 1, then, it becomes simply Shannon entropy[10].

A factor x that gives more weight to the random variable’s higher value provides as the expression
of the weight function. Shift-dependent is the term for this measure. Suhov and Yasaei Sekeh
Mirali et al.[11], Mirali et.al[6] and Rajesh et al.[7] and many researchers who have presented
numerous weighted measures.
Based on the idea of weighted entropy, in recent years, Yasaei Sekeh et al.[12] gave weight to the
Kullback-Leibler divergence[4] divergence, defined as

DKL
W ( f ||g) =

∞∫
0

x f (x)log
f (x)
g(x)

dx (8)

Remarks

1. If x=1 then, it becomes simply Kullback-Leibler divergence[4].

Additionally, it can be written as

Dw
KL( f ||g) = EKL

[
Xlog

f (x)
g(x)

]
Definition 2.1. Similar to (2) and based on (8) the weighted proposed measure is defined as

Dα,β
w (X||Y) = 1

β − α
log

∞∫
0

x ( f (x))β (g(x))α−β dx (9)

Remarks

1. If x = 1 then, it becomes reduced to (6).
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The following example show how GDM and its weighted form differ from one another.

Example 2.1. Suppose X and Y are two non-negative continuous random variables with the
density function as follows

1. f1(x) = 1, 0 < x < 1 and g1(x) = 2x 0 < x < 1

2. f2(x) = 1, 0 < x < 1 and g2(x) = 2(1 − x) 0 < x < 1
subsequently, the distribution function was characterized by the weighted generalized divergence
measure.

Using (5) after simplification, we get

D1(α,β)( f ||g) = 1
(β − α)

log2α−β

(
1

α − β + 1

)
= D2(α,β)( f ||g) (10)

Again using (9) after simplification, we get

D1(α,β)
w ( f ||g) = 1

(β − α)
log2α−β

(
1

α − β + 2

)
(11)

and

D2(α,β)
w ( f ||g) = 1

(β − α)
log2α−β

(
Γ(α − β + 1)
Γ(α − β + 3)

)
(12)

Where, t = n(β-α)+1, s = (β-α), and B(u,v) =
1∫

0
xu−1(1 − x)v−1dx =

1∫
0

xu−1

(1 + x)u+v =
ΓuΓv

Γ(u + v)
which is known as complete beta function.

We can see from the above example that our proposed measure has the same value without
weight but a different value when given weight,hence we draw the conclusion that the weighted
measure uniquely determines the distribution.

3. Weighted Generalized residual Divergence Measure

In this section, we discuss the generalized residual divergence measure and the weighted gener-
alized residual measure. Shannon’s measure and the Kullback-Leibler divergence measure are
inapplicable to a component that has survived for some units of time. To overcome this problem,
[3] introduced a measure known as the residual measure of entropy. This measure of uncertainty
for a random variable’s remaining lifetime Xt = [X − t|X > t] is defined as

HS(X; t) = −
∞∫

t

f (x)
F̄(t)

log
f (x)
F̄(t)

dx (13)

Remarks
1. If t = 0, then it simply becomes Shannon entropy[10].

The weighted form is represented by (13)[2] and defined as

HS
w(X; t) = −

∞∫
t

x
f (x)
F̄(t)

log
f (x)
F̄(t)

dx (14)

Fayaz Ahmed and Mirza Abdul Khalique Baig
A NEW TWO PARAMETRIC GENERALIZED 
DIVERGENCE MEASURE AND ITS RESIDUAL

     RT&A, No 2 (73) 

  Volume 18, June 2023 

592



Definition 3.1. The generalized residual divergence measure is defined as follows in accordance
with (13) and based on (14)

DKL(X||Y; t) =
∞∫

t

f (x)
F̄(t)

log
(

f (x)/F̄(t)
g(x)/Ḡ(t)

)
dx (15)

Remarks
1. If t=0 then it simply becomes Kullback-Leibler divergence[4].
The generalized residual divergence measure’s weighted form is defined as

DKL
w (X||Y; t) =

∞∫
t

x
f (x)
F̄(t)

log
(

f (x)/F̄(t)
g(x)/Ḡ(t)

)
dx (16)

Remarks
1. If x= 1 then it reduced to (15).

To proceed in this manner, the generalized residual divergence measure Gupta and Nanda[8],
which is defined as

DG(X||Y; t) =
1

β − 1
log

∞∫
t

f (x)
F̄(t)

(
f (x)/F̄(t)
g(x)/Ḡ(t)

)β−1

dx (17)

It can be summarised as

DG(X||Y; t) =
1

β − 1
log

∞∫
t

(
f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)1−β

dx (18)

We proposed the weighted form of (18), which is similar to (17) and is defined as

DG
w(X||Y; t) =

1
β − 1

log
∞∫

t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)1−β

dx (19)

Definition 3.2. Let X and Y be two non-negative random variables. The proposed weighted
residual divergence measure is defined as

Dα,β
w (X||Y; t) =

1
β − α

log
∞∫

t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (20)

Remarks 1. If x = 1 and α = 1 then reduced to (18)

4. Characterization result

Proportional hazard rate model (PHRM)
Definition 4.1. Assume that X and Y are two non-negative random variables with a survival

function F̄(x) and Ḡ(x) respectively. Then the following relationship holds as
Ḡ(x) = F̄(x)µ (µ > 0) or λG(x) = µλF(x)
This mathematical relationship is crucial in the development of various statistical models. Many
statistical disciplines, including medicine, reliability, economics, and survival analysis, employ
this approach.
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Theorem 1. For any t > 0, the following equality is true if random variables X and Y satisfy the
proportional hazard rate model with proportionately constant µ > 0.

Dα,β
w (X||Y; t) =

1
β − α

log

texp(β − α)DG(X||Y; t) +
∞∫

t

(
F̄(v)
F̄(t)

)
exp(β − α)Dw

G(X||Y; t)

 dv (21)

Proof. Rewriting the (20) to

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx =

∞∫
t

 x∫
0

v0dv

 ∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (22)

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx =

∞∫
t

 t∫
0

v0dv +

x∫
t

v0dv

 ∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (23)

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx = t
∞∫

t

(
f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx

+

∞∫
v=t

 ∞∫
x=v

(
f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx

 dv

(24)

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx = exp(β − α)Dα,β(X||Y; t) (25)

Using the proportional hazard rate model in (24), we have

∞∫
t

( f (x))β (g(x))α−β = (F̄(t))β
(Ḡ(t))α−β exp(β − α)Dα,β(X||Y; t) (26)

∞∫
t

( f (x))β (g(x))α−β = (F̄(t))µ(α−β)+β exp(β − α)Dα,β(X||Y; t) (27)

using (23),(24) and (26) in (20) we obtained the desired result.
■

Theorem 2. If the proportional hazard rate model is satisfied by the two random variables X and
Y and proportionally constant µ > 0, and Dα,β

w (X||Y; t) is increasing for all t > 0, then Dα,β
w (X||Y; t)

exclusively determines the F̄(t).

Proof. Rewriting (20) as

exp(β − α)Dw
G(X||Y; t) =

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (28)

Diff. (28) w.r.to t we have

∂

∂t
exp ((β − α)Dw

G(X||Y; t)) = −t (λF(t))
β (λG(t))

α−β

+

∞∫
t

x ( f (x))β (g(x))α−β ∂

∂t
(F̄(t)Ḡ(t))

(29)
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∂

∂t
exp ((β − α)Dw

G(X||Y; t)) = −t (λF(t))
β (λG(t))

α−β

+ [βλF(t)− (α − β)λG(t)] exp(β − α)Dα,β
w (X||Y; t)

(30)

By using the (PHRM)

∂

∂t
exp ((β − α)Dw

G(X||Y; t)) = −t (λF(t))
β (µλF(t))

α−β

+ [βλF(t)− (α − β)µλF(t)] exp(β − α)Dα,β
w (X||Y; t)

(31)

If, we fixed t>0 then λF(t) is the solution of the equation z(xt) = 0 where z(o) = exp(β −
α)Dα,β

w (X||Y; t) ≥ 0 since we assumed that it is increasing in t if xt → ∞ the z(∞) = ∞
Now diff. w.r.to t we have

∂

∂xt
z(xt) = αt(µ)α−β(xt)

(α−1) − [µ(α − β) + β] exp(β − α)Dα,β
w (X||Y; t) (32)

then ∂
∂xt

z(xt) =0

xt =

[
[µ(α − β) + β] exp(β − α)Dα,β

w (X||Y; t)
αt(µ)α−β

] 1
α−1

(33)

then we can say that xt = x0 Here, xt represents λF(t) Hence Dα,β
w (X||Y; t) characterized the

survival function uniquely. ■

5. Properties and Bounds

Log-sum inequality
Definition 5.1. Let X be a bounded integer. If f(x) and g(x) are density functions and x is

integrable, then ∫
f (u)log

f (u)
g(u)

du ≥
[∫

f (u)du
]

log
[

f (u)du
g(u)du

]
Definition 5.2. If Dα,β

w (X||Y; t) is increasing in t. Then, the survival function F̄ is said to have
increasing(decreasing) Dα,β

w (X||Y; t) of order β and type α expressed as IWGRDM or DWGRDM.
It indicate weather F̄ is increasing or decreasing if Dα,β

w (X||Y; t) ≥ (≤)0

Theorem 3. If the X and Y be the two non-negative random variables represent the life spans of
two system components with density function f(x) and g(x) and survival functions respectively,
t>0, then Dα,β

w (X||Y; t) for 0 < β < α where α = 1 attains a lower bound as follows

Dα,β
w (X||Y; t) ≥

∞∫
t

(
f (x)
F̄(t)

)β

log
(

g(x)
Ḡ(t)

)α−β

dx +
1

β − α

∞∫
t

(
f (x)
F̄(t)

)β

logxdx (34)

Proof. With the aid of log-sum inequality, we have

∞∫
t

(
f (x)
F̄(t)

)β

log

(
f (x)
F̄(t)

)β

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dx

≥
∞∫

t

(
f (x)
F̄(t)

)β

dxlog

∞∫
t

(
f (x)
F̄(t)

)β
dx

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dx

(35)
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∞∫
t

(
f (x)
F̄(t)

)β

log

(
f (x)
F̄(t)

)β

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dx

= −log
∞∫

t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (36)

∞∫
t

(
f (x)
F̄(t)

)β

log

(
f (x)
F̄(t)

)β

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dx

= (β − α)Dα,β
w (X||Y; t) (37)

From L.H.S. we have

β

∞∫
t

(
f (x)
F̄(t)

)β

log
(

f (x)
F̄(t)

)
−

∞∫
t

(
f (x)
F̄(t)

)β

logxdx − β

∞∫
t

(
f (x)
F̄(t)

)β

log
(

f (x)
F̄(t)

)

−(α − β)

∞∫
t

(
f (x)
F̄(t)

)β

log
(

g(x)
Ḡ(t)

)
dx

(38)

Using (36) and (37), we derived the result. ■

Theorem 4. The upper bound Dα,β
w (X||Y; t) is valid for 0 < β < α for the random variable X and Y

with the support of (0,k] and also with the pdf f(x) and g(x) and survival function respectively,t>0
then

Dα,β
w (X||Y; t) ≤


∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dxlogx

(
f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dx

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β
dx

+ log(k − t)

 (39)

Proof. We have a log-sum inequality for

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dxlogx
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx ≤
k∫

t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx

k∫
t

x ( f (x))β (g(x))α−β

k∫
t
(F̄(t))β

(Ḡ(t))α−β dx

(40)

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dxlogx
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx =

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx

[
(β − α)Dα,β

w (X||Y; t)− log(k − t)
] (41)

After simplifying, we got the desired result. ■

Theorem 5. Suppose X and Y be two random variables with weighted generalized residual
divergence measure(WGRDM) for 0 < β < α we get

Dα,β
w (X||Y; t) ≤ 1

β − α

 ∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx − 1

 (42)

Proof. From the support of this inequality log ≤ (x − 1) we have

Dα,β
w (X||Y; t) =

1
β − α

log
∞∫

t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (43)
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(β − α)Dα,β
w (X||Y; t) = log

∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (44)

(β − α)Dα,β
w (X||Y; t) =

 ∞∫
t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx − 1

 (45)

After simplification, we obtained the result. ■

Theorem 6. Consequently, if the hazard rate λF(t) or risk rate is decreasing in t then

Dα,β
w (X||Y; t) =

1
β − α

log
∞∫

t

x
(

g(x)
Ḡ(t)

)α−β

dx − βlogλF(t)

 (46)

Proof. The equation (20) is rewritten as

Dα,β
w (X||Y; t) =

1
β − α

log
∞∫

t

x
(

f (x)
F̄(t)

)β ( g(x)
Ḡ(t)

)α−β

dx (47)

Dα,β
w (X||Y; t) =

1
β − α

log
∞∫

t

x
(

F̄(x)
F̄(t)

)β

(λF(x))β
(

g(x)
Ḡ(t)

)α−β

dx (48)

Therefore, F̄(x)≤F̄(t) for x ≥ t which implies that λF(x) ≤ λF(t) then we have

Dα,β
w (X||Y; t) =

1
β − α

log
∞∫

t

x
(

F̄(t)
F̄(t)

)β

(λF(t))
β
(

g(x)
Ḡ(t)

)α−β

dx (49)

After simplifying, we got the desired result. ■

6. Conclusion

In this communication, we proposed a new two parametric weighted generalized divergence
measure of order β and type α. The characterization result is justify by the numerical example
that it uniquely determine the distribution and also we studied its residual function. Finally, we
obtained the bound for the new proposed divergence measure and also studied its properties.
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