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Abstract 

In the present investigation, we consider a bulk queue model with the assumption that the server 

may stop working due to random failure during any stage of the service. As soon as the server fails, 

it is immediately sent for repair. The server offers all incoming units the first mandatory service 

and any one of the optional services as per the unit's requirements. For computation purposes, we 

assume that the server offers m+1 services, of which the first one is essential and the remaining are 

optional. The server may take a vacation in accordance with the Bernoulli vacation schedule with 

probability p as soon as both service phases of a unit are completed. As the system empties, the 

server idles and needs some time to set up before initiating the next service. In order to analyse the 

model and derive various steady-state queue length distributions, we incorporated the 

supplementary variables corresponding to service time, vacation time, and repair time and applied 

the probability generating function technique to determine the various system state distributions. 

Using these probability distributions, we derive the explicit form of various performance indices. To 

discuss the validity of the present model, we obtained some well-known results from the queueing 

literature as a special case of the present model by setting appropriate parameters. Finally, to 

analyse the sensitivity of several performance indices, a numerical demonstration is provided. 

Keywords: queue, bulk, essential service, optional service, supplementary 

variable, queue length 

I. Introduction

Most queueing literature makes the assumption that the server in the service station is always available and 

that the service station never fails. These presumptions, meanwhile, are notably irrational. In real-world 

systems, it frequently happens that service stations break down and need to be fixed. We frequently 

experience situations where the entire system pauses owing to a random failure of a unit in computer 

communication networks, flexible manufacturing systems, production systems, and other areas. 

Due to the potential impact on system performance, these types of systems with a repairable service 

facility are highly worth investigating from both an operational and queueing theory perspective. For detailed 

related work on queueing models with unreliable servers, we may refer to the work done by Avi-Itzhak and 

Naor [2], Li et al. [13], Wang and Yang [22], etc. Chaudhury and Tadj [10] discussed the linear cost procedure 

to obtain the optimal stationary policy of an unreliable queueing model with a Bernaulli vacation schedule. 

Rajadurai et al. [17] investigated an unreliable queueing model with a modified vacation schedule and 

applied the supplementary variable technique to obtain the study state queue size distribution. Yang and Wu 

[23] discussed the M/M/1 queueing model with the assumption that there is a state-dependent breakdown

rate under N policy. They assumed that as the system became empty, the server would take a working

vacation. Further, Chakravarthy et al. [5] generalised the model of the working-repair-vacation queue by
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assuming the concept of backup servers, which work at a relatively slow rate during the absence of the main 

server. Recently, Meena et al. [16] applied the supplementary variable technique to analyse the unreliable 

non-Markovian machine system, which comprised both operating and standby machines under N policy. 

     In some queueing situations, servers are unavailable for services for occasional intervals of time; such 

queueing models are termed vacation models. During vacation, the server may perform other types of service 

or may perform scheduled maintenance. Due to their variety of applications in computer systems, 

communication networks, and production and inventory systems, queuing systems with vacations have been 

extensively investigated. A comprehensive and detailed review of the vacation models can be found by Doshi 

[11], Choudhury [6] and Tian and Zhang [20] and Takagi [19]. Yang et al. [24] investigated a retrial queueing 

model with a constant retrial rate under the assumption that as orbit becomes empty, the server takes its first 

essential vacation. Further, the server may take additional option vacations after availing of the first essential 

vacation. Ayyapan and Karpagam [3] discussed an unreliable non Markovian queue model with a standby 

server under Bernoulli's schedule vacation policy. It is assumed that when the main server stops working due 

to random failure, a standby server starts serving the arriving unit. Ahuga et al. [1] applied the Runge-Kutta 

method to investigate a Markovian queueing system with multiple stages of service and vacation, where it is 

assumed that the server may breakdown during the busy period and vacation period. Recently, Rani et al. 

[18] applied  recursive approach to find the steady-state queue size distribution of a finite population

Markovian queueing model with vacation and discouragement factors. They apply the particle swarm

optimisation technique to determine the optimal total cost.

It happens frequently in various queueing circumstances that when units use the first essential service, 

they subsequently need further services, or more than one service. For a better understanding, we will use the 

example of a car's service centre. Here, units arrive for routine maintenance, and if a serious problem is found 

with any element of the vehicle while it is being serviced, they go for repair or replacement of that 

component. For some comprehensive work in phase service, we may refer to Madan [14], Wang [21], 

Choudhury and Paul [8], Ke [12], etc. Choudhury and Deka [9] discussed a queueing model based on the 

assumption that units arrive one by one and the server is unreliable. But in real life situations where units 

arrive in groups of random size, units may demand more than one type of optional service apart from the 

essential one. Further, there may be a need for startup time to start the service again. Such situations 

motivated us to extend the model of Choudhury and Deka [9] by assuming that 

• Units arrive in batches of random size.

• Second-phase services may choose among the available optional services.

• Server need start up time to start the service again.

• Server may go on vacation under Bernoulli’s vacation schedule.

The remaining paper is organised as follows: In Section II, we describe the brief model description by making 

some basic assumptions. In Section III, the governing equations of the present model are described. In Section 

IV, we derive the steady-state queue size distribution function. In Section V, the performance measures of the 

present model are carried out. In Section VI, some well-known results are established as special cases of the 

present model. Finally, in Section VII, numerical illustration and sensitivity analysis of performance measures 

are done. 

II. Medel description

In the present model, we consider a non-Markovian queueing model with the assumption that units arrive in 

batches of random size, according to poisson arrival fashion. There is a single server that provides the first 

essential services as well as one of the optional services to each arriving unit. As soon as the system becomes 

empty, the server gets turned off and needs startup time to start again when at least one or more units arrive. 

The brief description of notations used for the present model is as follows: 

 : Batch arrival rate of the unit.

)(xS   : Distribution function of set up time.

)(0 xB : Distribution function of essential service time.

)(xBi  : Distribution function of ),...,2,1( mii th = optional  service time.

)(xV   : Distribution function of vacation time.

)(0 xG : Distribution function of repair when its fails during essential service of a unit .

)(xGi : Distribution function of repair when its fails during ),...,2,1( mii th = optional  service. 

)(
0
k

g :The thk moment of repair time when its fails during essential service of a unit 
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)(k

ig :The thk  moment of repair time when its fails during ),...,2,1( mii th = optional service of a unit 

ir : Probability to opt ),...,2,1( mii th = optional  service after essential service. 

p : Probability to opt optional vacation after service completion of a unit. 

)(tNq : Denote  the queue size in system at time t .

)(0 tS : Elapsed  set up time at time t ..

)(0
0 tB : Elapsed service time of essential service at time t .

)(0 tBi : Elapsed service time of ),...,2,1( mii th = optional  service at time t .

)(0 tV : Elapsed vacation time at time t ..

)(0
0 tG : Elapsed repair time at t  time  when its fails during essential service of a unit .

)(0 tGi : Elapsed repair time at t  time  when its fails during ),...,2,1( mii th = optional  service. 

Let )(t denote the state of server at time ,t  where 
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The variables )(0 tS , )(0
0 tB , ),...,2,1()(0 mitBi = , )(0 tV , )(0

0 tG  and ),...,2,1()(0 mitGi = are added as supplementary 

variable in order to obtain  a bivariate  markav process  )(),( tXtNq  where )(tX  assumes values, 
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To construct the model, we define the following probabilities 
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Further it is assume that 
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Further it is assume that )(yG , )(yV functions are continuous at 0=y ,while )(xBi , )(xS  are

continuous at .0=x  

The hazard rate functions for present system is given by 
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III. Governing Equations

The governing equations of the system are 
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We will solve the equations (3.1)-(3.7) under the following boundary condition at 0=x  and 0=y

given by: 
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The normalizing condition for present system is given by 
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IV. Mathematical Analysis

Apply summation formula after multiplying equation (3.2) and (3.3) by appropriate power of z , we get 
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Substitutes the value of  (3.1) into equation (4.1) we get
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Solving equation (3.4), (3.6) and (3.7) in usual manner we get 

,0;})(exp{)](1)[,0(),( 1 −−= xxzaxSzSzxS  (4.3) 

,0;})(exp{)](1)[,0(),( 1 −−= yyzayVzVzyV  (4.4) 

.0,0;})(exp{)](1)[,0,(),,( 1
)()( miyyzayGzxRzyxR i

ii −−=  (4.5) 

On multiplying equations (3.8),(3.9) and (3.13) by  appropriate power of z , then after little simplification, we 

get 
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Solving equations (4.6) and (4.9), we get
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Similarly, from equation (3.10) we have 
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Substituting the value of equation (4.4), (4.8), (4.10) in (4.14) and then using the value of equations (4.7), (4.12) 

- (4.13) we get
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The limiting value of equation (4.15) when 1→z , is given by 
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Evaluating 1→z in equation (4.2),(4.4), (4.8)- (4.13) and using the  equation (4.16) we have 
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From equations (4.17)-(4.23) and  normalizing condition (3.14), we have 
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Theorem 1: The joint probability distribution functions  of system state and queue size, under stability 

condition,  are given by 
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Theorem 2: The marginal probability distribution function of system state queue size are given by 
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Proof: See appendix A. 

Theorem 3: The stationary queue size distribution at random epoch is given by 
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 Proof:  Adding the equations (4.31)-(4.36) we get required result. 

The equation (4.37) can be written as 
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Equation (4.38) shows that the queue size distribution divides into two independent random variables: the 

first )(.
1//

zVacawithoptJ

GM X , the stationary queue size distribution of the unreliable bulk queue with optional 

service including vacation and repair, and the second )(z  is the number of arrivals during idle time 

including setup time.   

Theorem 4: The stationary queue size distribution of system at departure epoch is given by  
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Proof:  See appendix B. 

Equation (4.39) can be written as 
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Thus, the queue size distribution at the departure epoch decomposes into three independent random 

variables: )(.
1//

zVacawithoptJ

GM X ,the stationary queue size distribution of the unreliable bulk queue with 

optional service including vacation and repair; )(z  the number of arrivals during idle time including setup 

time; and  the third independent random variable 
)1)((

)(1

zXE

zX

−

− , the number of customers placed before a

tagged customer.
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V. Performance measures

(a) System state probabilities

By considering limit 1→z  in the marginal probability generating function of the server state queue 

distribution, it is possible to determine the system state probability of the server state. 

• The probability that server is under startup is ,
)}()(1{
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• The probability that server is busy with essential service ),()( 00
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• The probability that server is busy in providing the )1( mii th  optional service 
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• The probability that server is under optional vacation ),()( VEXEpPV =

• The probability that server is under repair when its fail during essential service
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• The probability that server is under repair when its fail during )1( mii th   optional service 
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• Probability that server is idle is given by .
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(b) Average queue length

(i) The mean system size )( qL at arbitrary epoch can be determined using 
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 (5.1) 

(ii) The mean system size )( DL  at departure epoch can be determined using
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From (5.1) and (5.2) we can easily observe that  
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(c) Average waiting time

The average waiting time can be obtained as 
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 (5.3) 

VI. Special cases

In this section, we evaluate some special case by setting appropriate parameter to validate our result with 

existing models.  

 Case (i): By setting 1,1,1)1(,1)0( 1 ====== mrXPSP ; equation (4.39) gives 
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The present model reduces to the model  studied by Chaudhury and Deka [9]. 

Case (ii): By setting 0...,1,1,1)1(,1)0( 211 ========== mmrXPSP  ; equation (4.39) 

gives 
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The present model reduces to the model studied by Chaudhury and madan [7]. 

Case (iii): By setting 0,0...21 ===== pm ; equation (4.39) gives 
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The present model reduces to model investigated by Ke [12].

Case(iv):By setting ,0...,0,0... 2121 ========= mm rrrp ; equation (4.39) gives 
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The present model reduces to the model studied by Choudhury [6]

 Case(v):By setting 1)1(,0...,0,0... 210 ========== XPrrp mm ; equation (4.39) gives 
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The present model reduces to the model  studied by Medhi [15].

VII. Numerical illustration

In present section, we will provide the numerical illustration and sensitivity analysis of the various 

performance measures on different parameters of the model. For this, it assume that the first two moments of 

the batch size distribution are given by .1;
)1(
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where i denote the service rate. Further, the distribution of vacation

time is assumed to be Erlangian-2 and has parameter ).2,1( =ii  The first and second moments of vacation 

time distribution are
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 Coding in MATLAB is used to create computer programmes. We now 

present the numerical results in tables (1) -(5). 

Table 1: ,15,3/1,2,01.0,2,2)( 1100210021 ========== vrrrXE 

 .15,15,10,10 210 ==== gggs

Table2: ,15,3/1,2,2,2)( 110021021 ========= vrrrXE 

 2,7.0,15,15,10,10 0210 ====== gggs

Table 3: ,5.0,15,3/1,2,2,2)( 110021021 ========== pvrrrXE 

 .01.0,15,15,10,10 0210 ===== gggs

Table 4: ,5.0,15,3/1,2,2,2)( 110021021 ========== pvrrrXE 

 .2,7.0,15,15,10,10 0210 ====== gggs

Table 5: ,5.0,15,3/1,2,2,2)( 110021021 ========== pvrrrXE 

 01.0,7.0,15,15,10,10 0210 ====== gggs

Table 1: Effect of arrival rate and service rate on 
qL ( qW ) for variation in p

2= 1.2=

3.0=p 7.0=p 3.0=p 7.0=p

 qL qW qL qW qL qW qL qW

0.61 14.174 11.618 18.492 15.157 10.632 8.715 13.275 10.881 

0.63 17.922 14.224 24.894 19.758 12.851 10.199 16.634 13.201 

0.65 23.607 18.160 36.393 27.994 15.857 12.197 21.611 16.624 

0.67 33.253 24.816 63.102 47.091 20.159 15.044 29.755 22.205 

0.69 53.215 38.562 194.278 140.781 26.829 19.441 45.498 32.969 
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Table 2: Effect of p on qL ( qW ) for variation in failure rate and m

2=m 1=m 0=m
p

qL qW qL qW qL qW

01.00 =

0.1 27.349 19.535 17.130 12.236 7.094 5.067 

0.3 33.760 24.114 19.614 14.010 7.623 5.445 

0.5 43.930 31.379 22.869 16.335 8.218 5.870 

0.7 62.558 44.684 27.328 19.520 8.894 6.353 

0.9 107.754 76.967 33.814 24.153 9.668 6.906 

05.00 =

0.1 28.516 20.368 17.578 12.556 7.172 5.123 

0.3 35.519 25.371 20.188 14.420 7.710 5.507 

0.5 46.895 33.496 23.636 16.883 8.317 5.940 

0.7 68.622 49.016 28.406 20.290 9.006 6.433 

0.9 126.698 90.498 35.442 25.316 9.797 6.998 

Table 3: Effect of arrival rate on system state probabilities 


LP SP

0BP
1BP

2BP VP
0RP

1RP
2RP

0.61 0.12934 0.01578 0.61000 0.10167 0.10167 0.04067 0.00061 0.00014 0.00014 

0.63 0.10399 0.01310 0.63000 0.10500 0.10500 0.04200 0.00063 0.00014 0.00014 

0.65 0.07882 0.01025 0.65000 0.10833 0.10833 0.04333 0.00065 0.00014 0.00014 

0.67 0.05382 0.00721 0.67000 0.11167 0.11167 0.04467 0.00067 0.00015 0.00015 

0.69 0.02900 0.00400 0.69000 0.11500 0.11500 0.04600 0.00069 0.00015 0.00015 

Table 4: Effect of service rate on system state probabilities 

0 LP SP
0BP

1BP
2BP VP

0RP
1RP

2RP

2 0.01666 0.00233 0.70000 0.11667 0.11667 0.04667 0.00070 0.00016 0.00016 

2.1 0.05569 0.00780 0.66667 0.11111 0.11111 0.04667 0.00067 0.00015 0.00015 

2.2 0.09117 0.01276 0.63636 0.10606 0.10606 0.04667 0.00064 0.00014 0.00014 

2.3 0.12356 0.01730 0.60870 0.10145 0.10145 0.04667 0.00061 0.00014 0.00014 

2.4 0.15326 0.02146 0.58333 0.09722 0.09722 0.04667 0.00058 0.00013 0.00013 

Table 5: Effect of failure rate on system state probabilities 

0 LP SP
0BP

1BP
2BP VP

0RP
1RP

2RP

0.01 0.01666 0.00233 0.70000 0.11667 0.11667 0.04667 0.00070 0.00016 0.00016 

0.02 0.01577 0.00221 0.70000 0.11667 0.11667 0.04667 0.00140 0.00031 0.00031 

0.03 0.01488 0.00208 0.70000 0.11667 0.11667 0.04667 0.00210 0.00047 0.00047 

0.04 0.01400 0.00196 0.70000 0.11667 0.11667 0.04667 0.00280 0.00062 0.00062 

0.05 0.01311 0.00184 0.70000 0.11667 0.11667 0.04667 0.00350 0.00078 0.00078 

The impact of arrival rate and service rate on the average queue length (waiting time) qL ( qW ) is shown in 

Table 1. The table clearly shows that the qL ( qW ) increases with rising arrivals, however, there is a 

diminishing trend brought on by a rise in service rate. Additionally, there is an increasing tendency in qL ( qW

) with an increase in p for the fixed value of the arrival rate. Table 2 displays the impact of p on the average 

queue length (waiting time). The table clearly shows that there is an increasing tendency in qL ( qW ) as a 

consequence of the growth in p. Additionally seen is a decline in qL ( qW ) as a result of a reduction in the 

availability of optional services. The variation in system state probability caused by variations in arrival 

(service) rates is shown in Table 3(4). It is evident from the data that with an increase in arrival (service) rate 

0BP ,
1BP ,

2BP and VP have growing (declining) trends, whereas LP and SP have decreasing (increasing) 
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trends. Table 5 demonstrates that as the failure rate rises, LP  and SP  tend to decline while
0BP , 

1BP ,
2BP and

VP remain constants. Along with the rise in failure rates, increasing trends can be seen in
0RP ,

1RP , and 
2RP . 

VIII. Conclusion

In the present article, we investigated a queueing model with an unreliable server under the provision of 

Bernoulli vacation, setup time, and two-phase service, where the first service is essential and the second is 

optional, and we had to choose among the available options. In the current study, we use the supplementary 

variable approach to build the model and assess several performance indices expressions. Our model may be 

useful in more flexible queueing circumstances that occur in many manufacturing and production systems, 

where some services may be optional based on the customer's desire and where the manufacture of the items 

must be done in phases, such as assembling, testing, packing, etc. The model studied can be further 

generalised by incorporating feedback services as well as some more features such as N-Policy, retrial, and 

extended vacation policies. 
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Appendix A 

Proof of theorem 1: 

Integrating equations (4.25)-(4.27) with respect to x  and ussing the result
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We get equations (4.31)-(4.33). 

Similarly integrating equations (4.28) with respect to y and using (A.1) we get equation (4.34). On  repeating 

the same process  for equations (4.29) and (4.30) with variable x , y  , and using equation (A.1), we get

equations (4.35)-(4.36).      

Appendix. B 

Proof of theorem 2: 

To obtain the queue size distribution at the departure epoch, on the line of Choudhury and Deka [9], we have 
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where 0k is the normalizing constant and ,...}2,1,0;{ =jj  as the probability that there are j  customers 

in the queue at a departure epoch. 

Multiplying equation (B.1) by 
jz and using j
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Using the condition 1)1( = , we get 
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Using the value of equation (B.3) into (B.2), we get required result. 
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