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Abstract

In this research, we present an approach to model lifetime data by a weighted three-parameter probability
distribution utilizing the exponential and gamma distributions. We have presented some of the essential
characteristics such as the shapes of pdf, cdf, moments, incomplete moments, survival function, hazard
function, mean residual life, stochastic ordering, and order statistics of the proposed distribution.
Furthermore, we also presented the Bonferroni index and Lorenz curve of the proposed distribution. The
maximum likelihood approach is used to estimate the parameters of the distribution. Finally, the proposed
probability distribution is compared to goodness of fit with Lindley, Akash, exponential, two-parameter
Lindley, cubic transmuted Rayleigh, and Exponential-Gamma distributions for the real-time data set.

Keywords: Lifetime distribution, Hazard function, Mean residual life function, Order statistic,
Maximum likelihood estimation.

1. Introduction

A scientific approach to the statistical modeling of a wide variety of random events has been made
possible by finite mixture of probability models. Due to its adaptability in representing compli-
cated data, finite mixture models have drawn significant interest recently, both from a theoretical
and practical perspective. Karl Pearson [15] conducted one of the earliest significant analyses
utilizing mixture models. He modeled a proportional combination of two normal probability
density functions with varying means and variances. A variety of probability distributions were
subsequently utilized by many authors to fit a combination of probability distributions. Similarly,
Lindley [17] also modeled the ‘Lindley distribution’ which is a combination of an exponential
distribution with a scale parameter of θ and a gamma distribution having a shape parameter of 2
and a scale parameter of θ with their corresponding mixing proportions, θ

θ+1 and 1
θ+1 respectively.

A probability density function (pdf) and cumulative distribution function (cdf) for the Lindley
distribution were included below.

f (x) =
θ2(1 + x)e−θx

θ + 1
; x > 0, θ > 0 (1)

F(x) = 1−
[

1 +
θx

θ + 1

]
e−θx; x > 0, θ > 0 (2)

Shanker [22] used the finite mixture model to propose the Akash distribution, which is
described by its pdf and cdf.
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f (x) =
θ3(1 + x2)e−θx

θ2 + 2
; x > 0, θ > 0 (3)

F(x) = 1−
[

1 +
θx(θx + 2)

θ2 + 2

]
e−θx; x > 0, θ > 0 (4)

Furthermore, the finite mixing model is

f (x) = w1g1(x) + w2g2(x) (5)

Where Shanker [22] uses the mixing proportion for Akash distribution with weights as
w1 = θ2

θ2+2 and w2 = 2
θ2+2 . Here, g1(x) and g2(x) denotes pdf of exponential (θ) and gamma (3,

θ) distribution respectively.

We make changes to the Akash distribution to make it more inclusive and adaptable. Shanker
[22] used the term θ to describe the parameters of an exponential and a gamma distribution. In
this study, we presented a new probability distribution, which we called the Exp-Gamma distri-
bution. The proposed distribution is more flexible and it performs like the Generalized version
of the Akash distribution. We did this by employing the scale parameter λ for the exponential
distribution and shape parameter 3, and the scale parameter β for the gamma distribution with
the mixture proportion of θ2

θ2+2 and 2
θ2+2 respectively.

This paper is also arranged in the following manner. In section 2, we present the Exp-Gamma
distribution. Section 3 contains the usual moments and their related measures for the Exp-Gamma
distribution. Section 4 deals with reliability analysis. Log-odds rate is calculated in section 5.
Section 6 discusses Entropy. Section 7 deals with stochastic ordering. The order statistics for the
Exp-Gamma distribution are given in section 8. The Lorenz and Bonferroni curves are presented
in Section 9. The section 10 Zenga index is derived. In section 11, it is discussed how to estimate
the Exp-Gamma distribution’s parameters using the maximum likelihood method. Finally, section
12’s proposed distribution as an application makes use of real-time data.

2. Exponential-Gamma Distribution(Exp-Gamma)

The probability distribution of the Exp-Gamma distribution can be described by its probability
density function and cumulative distribution function.

f (x; θ, λ, β) =
1

θ2 + 2

[
θ2λe−λx + β3x2e−βx

]
(6)

F(x) =
θ2(1 − e−λx) + 2 − e−βx(x2β2 + 2xβ + 2)

θ2 + 2
(7)

for, x ≥ 0, θ ≥ 0, λ ≥ 0, β ≥ 0.

The following images Figure 1 and Figure 2 show a few potential pdf and cdf shapes for an
Exp-Gamma distribution for various parameter values. The Akash and Gamma distributions
are the special cases of the Exp-Gamma distribution when λ = β = θ and θ = 0 respectively.
According to Figure 1, the Exp-Gamma distribution presents a variety of pdf patterns, including
right-skewed and reversed-J shaped, pdf parameters that have fixed values.
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Figure 1: The shape of the pdf of the Exp-Gamma distribution with varying parameter values.

Figure 2: The form of the Exp-Gamma distribution’s cdf changes when the parameter values change.
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3. Moments and related measures

The rth moment (raw moments) has been obtained as

E(Xr) =
∫ ∞

0
xr f (x)dx

=
∫ ∞

0
xr 1

θ2 + 2
[θ2λe−λx + β3x2e−βx]dx

=
1

θ2 + 2

[
θ2Γ(r + 1)

λr +
Γ(r + 3)

βr

] (8)

when r = 1, 2, 3, 4 then the results follow.

The Exp-Gamma distribution’s first four moments are:

Mean(µ) = E(X) =
βθ2 + 6λ

βλ(θ2 + 2)

E(X2) =
2β2θ2 + 24λ2

β2λ2(θ2 + 2)

E(X3) =
6β3θ2 + 120λ3

β3λ3(θ2 + 2)

E(X4) =
24β4θ2 + 720λ4

β4λ4(θ2 + 2)
As a result, the Exp-Gamma distribution’s central moments are calculated as

µ2 = Variance =
12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ)

β2λ2(θ2 + 2)2

µ3 =
2[13β3θ2 + 6β3θ4 + 60λ3θ4 + 24λ3θ2 − 36λ2βθ4 − 36λβ2θ2 − 54λ2βθ2 − 84λ3]

β3λ3(θ2 + 2)3

µ4 =

[
24β4θ2(0.375θ6 + 3θ4 + 8θ2 + 8)− 48λ4(93 + 114θ2 + 51θ4 − 1.5θ6)+

72λ2β2θ2(12 + 2θ4 + θ2)− 72β3θ2(8λ + 4λθ2 + θ4)

−192λ3βθ2(5.5 + θ2 + 2.5θ4)

]
1

β4λ4(θ2 + 2)4

With the use of the aforementioned moments, closed-form formulas for the Exp-Gamma
distribution’s skewness, kurtosis, variation, and index of dispersion are produced. The variance-
to-mean ratio is known as the index of dispersion (DI). The model is appropriate for datasets
with low dispersion if the DI value is less than 1. The model works well with overly distributed
datasets if the DI value is greater than 1.

skewness(x) =
E(X3)− 3E(X2)µ + 2µ3

σ3

=
2[13β3θ2 + 6β3θ4 + 60λ3θ4 + 24λ3θ2 − 36λ2βθ4 − 36λβ2θ2 − 54λ2βθ2 − 84λ3]

(12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ))
3
2

Kurtosis =
E(X4)− 4E(X3)µ + 6E(X2)µ2 − 3µ4

σ4
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Kurtosis =

[
24β4θ2(0.375θ6 + 3θ4 + 8θ2 + 8)− 48λ4(93 + 114θ2 + 51θ4 − 1.5θ6)+

72λ2β2θ2(12 + 2θ4 + θ2)− 72β3θ2(8λ + 4λθ2 + θ4)

−192λ3βθ2(5.5 + θ2 + 2.5θ4)

]
1

(12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ))2

COV =
σ

µ
=

(12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ))
1
2

βθ2 + 6λ

DOI(γ) =
σ2

µ
=

12λ2 + θ2(β2θ2 + 24λ2 + 4β2 − 12λβ)

(βλ(θ2 + 2))(βθ2 + 6λ)

As seen in the table 1 to 5, the mean, variance, skewness, kurtosis, and index of dispersion are
all expressed in quantitative terms.

From the tables, we can infer that the proposed distributions have the following features:

* The mean of the proposed function is a declining function of θ, λ, and, β.
* The Exp-Gamma distribution is positively skewed for all the parameter values.
* Every positively skewed set of data can fits the suggested distribution.
* When the parameter values of the Exp-Gamma distribution are less than 1, then the Exp-

Gamma distribution belongs to the light-tailed distribution, and when it exceeds the value
of 1, then it belongs to the heavy-tailed distribution.

* The Exp-Gamma distribution is appropriate for both over- and under-dispersed datasets, as
evidenced by the increasing and diminishing DI behavior.

Table 1: Mean values of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 4.6667 4.3333 4.2222 4.1667 4.1333 4.1111
1 2.6667 2.3333 2.2222 2.1667 2.1333 2.1111
1.5 2.0000 1.6667 1.5556 1.5000 1.4667 1.4444
2 1.6667 1.3333 1.2222 1.1667 1.1333 1.1111
2.5 1.4667 1.1333 1.0222 0.9667 0.9333 0.9111
3 1.3333 1.0000 0.8889 0.8333 0.8000 0.7778

2

0.5 3.3333 2.6667 2.4444 2.3333 2.2667 2.2222
1 2.3333 1.6667 1.4444 1.3333 1.2667 1.2222
1.5 2.0000 1.3333 1.1111 1.0000 0.9333 0.8889
2 1.8333 1.1667 0.9444 0.8333 0.7667 0.7222
2.5 1.7333 1.0667 0.8444 0.7333 0.6667 0.6222
3 1.6667 1.0000 0.7778 0.6667 0.6000 0.5556

3

0.5 2.7273 1.9091 1.6364 1.5000 1.4182 1.3636
1 2.1818 1.3636 1.0909 0.9545 0.8727 0.8182
1.5 2.0000 1.1818 0.9091 0.7727 0.6909 0.6364
2 1.9091 1.0909 0.8182 0.6818 0.6000 0.5455
2.5 1.8545 1.0364 0.7636 0.6273 0.5455 0.4909
3 1.8182 1.0000 0.7272 0.5909 0.5091 0.4545
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Table 2: The variance of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 12.8889 13.8889 14.4691 14.8056 15.0222 15.1728
1 3.5556 3.2222 3.3580 3.4722 3.5556 3.6173
1.5 2.2222 1.4444 1.4321 1.4722 1.5111 1.5432
2 1.8889 0.8889 0.8025 0.8056 0.8222 0.8395
2.5 1.7956 0.6622 0.5314 0.5122 0.5156 0.5240
3 1.7778 0.5556 0.3951 0.3611 0.3556 0.3580

2

0.5 10.2222 10.2222 10.6173 10.8889 11.0756 11.2099
1 3.8889 2.5556 2.5062 2.5556 2.6089 2.6543
1.5 3.1111 1.3333 1.1358 1.1111 1.1200 1.1358
2 2.9722 0.9722 0.7006 0.6389 0.6256 0.6265
2.5 2.9689 0.8356 0.5195 0.4356 0.4089 0.4010
3 3.0000 0.7778 0.4321 0.3333 0.2978 0.2840

3

0.5 7.8347 6.7190 6.7769 6.8864 6.9779 7.0496
1 3.9669 1.9587 1.7190 1.6798 1.6820 1.6942
1.5 3.5152 1.2094 0.8705 0.7817 0.7542 0.7466
2 3.4463 0.9917 0.6033 0.4897 0.4473 0.4298
2.5 3.4552 0.9114 0.4932 0.3647 0.3134 0.2899
3 3.4821 0.8788 0.4408 0.3023 0.2451 0.2176

Table 3: Skewness of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 0.0252 0.0224 0.0205 0.0194 0.0187 0.0182
1 0.1912 0.2015 0.1910 0.1794 0.1705 0.1639
1.5 0.5940 0.6636 0.6800 0.6587 0.6306 0.6054
2 1.0277 1.5293 1.5954 1.6119 1.5773 1.5279
2.5 1.2964 2.9363 3.0324 3.1345 3.1482 3.0980
3 1.4238 4.7520 5.1614 5.3091 5.4316 5.4400

2

0.5 0.0494 0.0592 0.0574 0.0554 0.0539 0.0528
1 0.2053 0.3950 0.4645 0.4738 0.4680 0.4593
1.5 0.3739 0.9375 1.3331 1.5255 1.5893 1.5990
2 0.4567 1.6424 2.4939 3.1600 3.5401 3.7158
2.5 0.4828 2.3873 3.9009 5.1726 6.1719 6.8048
3 0.4856 2.9913 5.5430 7.5000 9.2689 10.6651

3

0.5 0.0877 0.1541 0.1641 0.1639 0.1620 0.1601
1 0.2215 0.7013 1.0708 1.2328 1.2935 1.3129
1.5 0.3088 1.2455 2.3669 3.2923 3.8550 4.1606
2 0.3406 1.7724 3.5959 5.6103 7.3395 8.5668
2.5 0.3483 2.1934 4.8130 7.8061 10.9577 13.7362
3 0.3475 2.4707 5.9817 9.9640 14.4031 18.9349
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Table 4: Kurtosis of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 0.0291 0.0239 0.0212 0.0198 0.0189 0.0183
1 0.4635 0.4655 0.4200 0.3824 0.3567 0.3388
1.5 2.2113 2.3624 2.3568 2.2050 2.0551 1.9358
2 4.5271 7.4158 7.5377 7.4486 7.0975 6.7211
2.5 5.9951 18.3288 18.0734 18.4501 18.1850 17.5152
3 6.6248 35.3808 37.5423 37.7987 38.2654 37.7084

2

0.5 0.0612 0.0709 0.0657 0.0617 0.0590 0.0571
1 0.4662 0.9786 1.1455 1.1349 1.0926 1.0512
1.5 1.0564 3.3125 4.9543 5.6862 5.8242 5.7456
2 1.3369 7.4593 11.9326 15.6581 17.6348 18.3282
2.5 1.4021 12.5799 22.7055 31.2223 38.2278 42.3995
3 1.3871 16.9017 37.7625 53.0000 67.5222 79.2691

3

0.5 0.1318 0.2697 0.2848 0.2798 0.2730 0.2670
1 0.4966 2.1087 3.6540 4.3159 4.5235 4.5574
1.5 0.7823 4.7057 10.6753 16.4434 20.0144 21.8491
2 0.8732 7.9452 18.9774 33.7393 48.0182 58.4636
2.5 0.8850 10.7268 29.1432 52.9549 82.3714 110.9024
3 0.8726 12.5162 40.2223 75.2908 119.4368 170.8054

Table 5: Index of dispersion of the model

θ β
λ

0.5 1 1.5 2 2.5 3

1

0.5 2.7619 3.2051 3.4269 3.5533 3.6344 3.6907
1 1.3333 1.3809 1.5111 1.6026 1.6667 1.7135
1.5 1.1111 0.8667 0.9206 0.9815 1.0303 1.0684
2 1.1333 0.6667 0.6566 0.6905 0.7255 0.7556
2.5 1.2224 0.5843 0.5198 0.5299 0.5524 0.5751
3 1.3333 0.5556 0.4444 0.4333 0.4444 0.4603

2

0.5 3.0667 3.8333 4.3434 4.6667 4.8863 5.0444
1 1.6667 1.5333 1.7350 1.9167 2.0596 2.1717
1.5 1.5556 1.0000 1.0222 1.1111 1.2000 1.2778
2 1.6212 0.8333 0.7418 0.7667 0.8159 0.8675
2.5 1.7128 0.7833 0.6152 0.5939 0.6133 0.6444
3 1.8000 0.7778 0.5556 0.5000 0.4963 0.5111

3

0.5 2.8727 3.5195 4.1414 4.5909 4.9203 5.1697
1 1.8182 1.4364 1.5758 1.7597 1.9273 2.0707
1.5 1.7576 1.0233 0.9576 1.0116 1.0915 1.1732
2 1.8052 0.9091 0.7374 0.7182 0.7455 0.7879
2.5 1.8631 0.8794 0.6459 0.5814 0.5745 0.5906
3 1.9151 0.8788 0.6061 0.5117 0.4814 0.4788

The rth Incomplete moment for Exp-Gamma distribution has been obtained as

RT&A, No 3 (74)
Volume 18, September 2023

141



K.M. Sakthivel and Vidhya G
MIXTURE OF PROBABILITY MODELS

ϕr(x) =
∫ t

0
xr f (x)dx

=
∫ r

0
xr 1

θ2 + 2
[θ2λe−λx + β3x2e−βx]dx

=
1

θ2 + 2

[
θ2γ(r + 1, λt)

λr +
γ(r + 3, βt)

βr

] (9)

when r = 1 the first incomplete moment of the Exp-Gamma distribution is

ϕ1(x) =
1

θ2 + 2

[
βθ2γ(2, λt) + λγ(4, βt)

λβ

]
The related Exp-Gamma distribution moment-generating function is

MX(t) = E(etX) =
∫ ∞

0
etX f (x)dx

=
∞

∑
i=0

ti

i!

(
1

θ2 + 2

[
θ2Γ(i + 1)

λi +
Γ(i + 3)

βi

]) (10)

The corresponding characteristic function of the Exp-Gamma distribution is

ϕX(t) = E(eitX) =
∫ ∞

0
eitX f (x)dx

=
∞

∑
i=0

itk

k!

(
1

θ2 + 2

[
θ2Γ(k + 1)

λk +
Γ(k + 3)

βk

]) (11)

The Exp-Gamma distribution’s associated cumulant-generating function is

KX(t) = loge MX(t)

=
∞

∏
i=0

loge

(
ti

i!

(
1

θ2 + 2

[
θ2Γ(i + 1)

λi +
Γ(i + 3)

βi

]))
(12)

Probability-weighted moments are derived using a different method for statistical distributions
whose inverse form is difficult to define. The corresponding probability-weighted moment for
the Exp-Gamma distribution can be found using the formula below.

πr,s = E(XrF(x)s)

=
∫ ∞

0
xr f (x)[F(x)]sdx

=
1

(θ2 + 2)s+1

∫ ∞

0
xr[θ2λe−λx + β3x2e−βx][θ2 − θ2e−λx + 2 − e−βx(x2β2 + 2xβ + 2)]sdx

(13)

The corresponding nth conditional moment of the Exp-Gamma distribution is defined as

E[Xn/X > x] =
1

S(x)

∫ ∞

x
xn f (x)dx
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E[Xn/X > x] =
θ2 + 2

∫ ∞
x xn

(
1

θ2+2 [θ
2λe−λx + β3x2e−βx]

)
dx

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

=
−Γ(n + 1, λx)θ2βn − Γ(n + 3, βx)λn

λnβn

(
(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

) (14)

4. Reliability Analysis

4.1. Survival Function

The odds that an item won’t fail before x is specified is the survival function S(x).

S(x) = P(X > x) = 1 − F(x)

= 1 − θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]
θ2 + 2

=
(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

θ2 + 2

(15)

Figure 3: The different shapes of the sf of an Exp-Gamma distribution for different parameter values.
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4.2. Hazard Rate Function

Assume that X is a continuous random variable with pdf f (x) and cdf F(x). The hazard
function of X is

h(x) =
f (x)

1 − F(x)

=
[θ2λe−λx + β3x2e−βx]

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(16)

4.3. Mean Residual Life Function

Assume that X is a continuous random variable with pdf f (x) and cdf F(x). According to X,
the mean residual life function is

m(x) = E[X − x/X > x] =
1

1 − F(x)

∫ ∞

x
[1 − F(t)]dt

=
βθ2e−λx + λ(x2β2 + 4xβ + 6)e−βx

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(17)

The Exp-Gamma distribution’s hazard function can take three different shapes: decreasing
HF, unimodal HF, increasing HF, and decreasing-increasing HF. A declining function is also a
property of the mean residual life function.

Figure 4: Hazard function of the Exp-Gamma distribution for different parameter values. The shape of the hazard
function changes as the parameter values are varied.
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Figure 5: The various forms of an Exp-Gamma distribution’s mean residual life function for various parameter values.

4.4. Mean Inactivity Time

The mean inactive time is the amount of time that has passed after an item’s failure based on
the premise that it failed in (0, t).

ψx(t) = E(X − t/X < t)

= t − ϕ1(t)
F(t)

= t − βθ2γ(2, λt) + λγ(4, βt)

λβ

(
θ2(1 − e−λt) + [2 − e−βt(t2β2 + 2tβ + 2)]

) (18)

4.5. Cumulative Hazard

The cumulative hazard function is

H(x) = − log(1 − F(x))

= log(θ2 + 2)− log

(
(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

)
(19)

4.6. Reversed Hazard Rate

The Reversed Hazard Rate is
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τ(x) =
f (x)
F(x)

=
[θ2λe−λx + β3x2e−βx]

θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(20)

5. Log-odds Rate

The log-odds rate was used by Wang et al. (2003) to propose a model for time to failure as well as
some definition of failure time distributions. By simulating the failure process in terms of the log
odds rate, the model may be used to analyze the distribution of time until failure.

The odds function is given by

πo(x) =
F(x)
S(x)

=
θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(21)

The log-odds function is given by

LO(x) = log
F(x)

1 − F(x)
= (log(θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)])− log((θ2 + 2)−

θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]))
(22)

The log-odds rate is defined as

LOR(x)(x) =
h(x)
F(x)

=
[θ2λe−λx + β3x2e−βx](θ2 + 2)

(θ2 + 2)− θ2(1 − e−λx) + [2 − e−βx(x2β2 + 2xβ + 2)]

(23)

6. Entropy

Entropy is a metric for describing the degree of uncertainty in a random variable (X) for the
probability density function obtained from the lifetime distribution.

6.1. Renyi Entropy

Renyi entropy of a random variable X ∼ Exp − Gamma(θ, λ, β) with pdf is defined as

IR(η) =
1

1 − η
log

∫ ∞

0
f η(x)dx; η > 0, η ̸= 1

=
1

1 − η
log

∫ ∞

0

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)η

dx

=
1

1 − η
log

(
1

(θ2 + 2)η

∫ ∞

0
[θ2λe−λx + β3x2e−βx]η

)
dx

(24)

RT&A, No 3 (74)
Volume 18, September 2023

146



K.M. Sakthivel and Vidhya G
MIXTURE OF PROBABILITY MODELS

6.2. Shannon Entropy

The Shannon Entropy of X ∼ Exp − Gamma(θ, λ, β) is given by

E[− log f (X)] = −
∫

X
f (x) log f (x)dx

= E

[
− log

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)]

= log(θ2 + 2)− E
[

log[θ2λe−λx + β3x2e−βx]

]
= − 1

θ2 + 2

∫
X

[
θ2λe−λx + β3x2e−βx

]
log

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)
dx

(25)

6.3. Generalized Entropy

The Generalized Entropy of X ∼ Exp − Gamma(θ, λ, β) is given by

GE(w, δ) =
1

δ(δ − 1)µδ

[ ∫ ∞

0
xδ f (x)dx

]
− 1

=
1

δ(δ − 1)
(

βθ2+6λ
βλ(θ2+2)

)δ

[ ∫ ∞

0
xδ

(
1

θ2 + 2
[θ2λe−λx + β3x2e−βx]

)
dx

]
− 1

=

(
βδθ2Γ(δ + 1) + λδΓ(δ + 3)

)(
βλ(θ2 + 2)

)δ

(θ2 + 2)λδβδ(δ(δ − 1)(βθ2 + 6λ)δ)
− 1

(26)

7. Stochastic ordering

Stochastic ordering can be used to assess the relative performance of positive continuous
random variables. The size of random variable X is less than that of random variable Y.

• Stochastic order ( X ≤st Y ) if FX(x) ≥ FY(y) for all x.

• Hazard rate order ( X ≤hr Y ) if hX(x) ≥ hY(y) for all x.

• Mean residual life order ( X ≤mrl Y ) if mX(x) ≥ mY(y) for all x.

• Likelihood ratio order (X ≤lr Y ) if fX(x)
fY(y)

decreases in x.

The stochastic ordering of distributions was created by Shaked and Shanthi Kumar (1994) using
the results.

The Exp-Gamma distribution is sorted according to the strongest ’likelihood ratio’. Let
X ∼ Exp − Gamma(θ1, λ1, β1) and Y ∼ Exp − Gamma(θ2, λ2, β2). If, β1 ≥ β2, then X ≤lr Y and
hence X ≤hr Y, X ≤mlr Y and X ≤st Y.we have

fX(x)
fY(x)

=
(θ2

2 + 2)[θ2
1λ1e−λ1x + β3

1x2e−β1x]

(θ2
1 + 2)[θ2

2λ2e−λ2x + β3
2x2e−β2x]

log
fX(x)
fY(x)

= log

[(
θ2

2 + 2
) [

θ1
2λ1e−λ1x + β1

3x2e−β1x]
(θ1

2 + 2)
[
θ22λ2e−λ2x + β23x2e−β2x

] ]
= log

(
θ2

2 + 2
)
+ log

[
θ1

2λ1e−λ1x + β1
3x2e−β1x

]
− log

(
θ2

1 + 2
)
− log

[
θ2

2λ2e−λ2x + β2
3x2e−β2x

]
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d
dx

log
fX(x)
fY(x)

=
θ2

2λ2
2e−λ2x − β2

3 (2xe−β2x − x2βe−β2x)[
θ22λ2e−λ2x + β23x2e−β2x

] −
θ1

2λ1
2e−λ1x + β3

1
(
2xe−β1x − x2βe−β1x)[

θ1
2λ1e−λ1x + β1

3x2e−β1x
]

(27)
Now if θ1 = θ2 = θ, λ1 = λ2 = λ, β1 ≥ β2, then it implies d

dx log fX(x)
fY(x) ≤ 0. This means that

X ≤lr Y and hence X ≤hr Y, X ≤mlr Y and X ≤st Y.

8. Order Statistics

If X(1) ≤ X(2) ≤ . . . ≤ X(n) denotes the order statistic of a random sample X1, X2, . . . , Xn from
a continuous population with cdf FX(x) and pdf fX(x) then the pdf X(r) is given by

fX(r)
(x) =

n!
(r − 1)!(n − r)!

fX(x) [FX(x)](r−1) [1 − FX(x)](n−r)

For, r = 1, 2, . . . n. The pdf of the rth order statistic for the Exp-Gamma distribution is calcu-
lated, and the pdf of the largest order statistic X(n) and smallest order statistic X(1) are given below.

nth order statistics

fX(n)
(x) = n fX(x) [FX(x)](n−1)

=
n

θ2 + 2

[
θ2λe−λx + β3x2e−βx

] [ θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2
)]

θ2 + 2

](n−1)

(28)

1st order statistics

fX(1)
(x) = n fX(x) [1 − FX(x)](n−1)

=
n

θ2 + 2

[
θ2λe−λx + β3x2e−βx

] [(θ2 + 2
)
− θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2

)]
θ2 + 2

](n−1)

(29)

The pdf of a median of order statistic is given as

fm+1:n(x) =
(2m + 1)

m!m!
fX(x) [FX(x)]m [1 − FX(x)]m

=
(2m + 1)

m!m!

(
1

θ2 + 2

[
θ2λe−λx + β3x2e−βx

]) [ θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2
)]

θ2 + 2

]m

[(
θ2 + 2

)
− θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2

)]
θ2 + 2

]m

(30)

9. Lorenz and Bonferroni Curves

The Bonferroni and Lorenz curves (Bonferroni, 1930) are used in a variety of sectors, including
economics, demography, insurance, and medicine. An Exp-Gamma distribution’s Bonferroni and
Lorenz curves are calculated as follows:
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Bo(x) =
1

µF(x)

∫ t

0
x f (x)dx =

L0(x)
F(x)

=
βθ2γ(2, λt) + λγ(4, βt)

λβµ
(
θ2
(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

])
Lo(x) =

1
µ

∫ t

0
x f (x)dx =

ϕ1(x)
E(X)

=

[
βθ2γ(2, λt) + λγ(4, βt)

]
λβµ (θ2 + 2)

10. Zenga index

The Gini index is commonly used to account for the extent of income inequality in a population.
The Zenga index (Zenga, 2007) is a relatively new metric and a novel alternative to the Gini index
and other current inequality measurements and curves, and the Zenga index is denoted by z.

z = 1 −
µ−
(x)

µ+
(x)

where,

µ−
(x) =

1
F(x)

∫ x

0
x f (x)dx =

[
βθ2γ(2, λx) + λγ(4, βx)

λβ
(
θ2
(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

])]

µ+
(x) =

1
1 − F(x)

∫ ∞

0
x f (x)dx =

βθ2 + 6λ

βλ
(
(θ2 + 2)− θ2

(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

])]

z = 1−
[

βθ2γ(2, λx) + λγ(4, βx)
(

βλ
((

θ2 + 2
)
− θ2 (1 − e−λx)+ [2 − e−βx (x2β2 + 2xβ + 2

)]))
(βθ2 + 6λ) λβ

(
θ2
(
1 − e−λx

)
+
[
2 − e−βx (x2β2 + 2xβ + 2)

]) ]

11. Estimation of Parameters

In this section, the MLE approach is used to estimate the parameters θ, λ, and β. Consider a
sample drawn at random from the Exp-Gamma distribution. Then the log-likelihood function is
provided by

g(x) =
1

θ2 + 2

[
θ2λe−λx + β3x2e−βx

]
L (xi, θ, λ, β) =

n

∏
i=1

g (xi, θ, λ, β)

L (xi, θ, λ, β) =
n

∏
i=1

(
1

θ2 + 2

[
λθ2e−λxi + β3x2

i e−βxi
])

=

(
n

θ2 + 2

n

∏
i=1

[
λθ2e−λxi + β3x2

i e−βxi
])

The respective sample log-likelihood function is

log L(xi, θ, λ, β) = log n − log(θ2 + 2) +
n

∑
i=1

log[λθ2e−λxi + β3x2
i e−βxi ]

Now that we have differentiating w.r.t. θ, λ, and β, we can write
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∂ log L
∂θ

=
−2θ

(θ2 + 2)

n

∑
i=1

2θλe−λxi[
θ2λe−λxi + β3x2

i e−βxi
] = 0

∂ log L
∂λ

=
n

∑
i=1

θ2 (e−λxi − λxie−λxi
)[

θ2λe−λxi + β3x2
i e−βxi

] = 0

and

∂ log L
∂β

=
n

∑
i=1

x2
i
(
3β2e−βxi − β3xie−βxi

)[
θ2λe−λxi + β3x2

i e−βxi
] = 0

The MLEs are obtained by solving this system of nonlinear equations. The sample likelihood
function can be quantitatively improved by using nonlinear optimization techniques, which are
frequently more practical. R programming can be used to solve these equations numerically.

12. Application

Biomedical science lifespan data sets have been fitted with Exp-Gamma distribution. This
section compares the goodness of fit of the Exp-Gamma model to the one-parameter Akash
[22], Lindley [17], Exponential, two-parameter Lindley [26], Cubic transmuted Rayleigh, and
Exponential-Gamma [18] distributions on a real-life data set. A density comparison diagram is
also included in this section.

The data, according to Gross and Clark (1975, P.105), represents the lifetime data on the
minutes of pain alleviation experienced by 20 people who received an analgesic. The details are
as follows:

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0

For a real lifetime dataset, the −2lnL, AIC, AICC, BIC, K − S, CVM, andAD statistics have
been calculated and shown in Table 7 to compare the goodness of fit of the Exp-Gamma, Akash,
Lindley, Exponential, Cubic transmuted Rayleigh, Two parameter Lindley, Exponential-Gamma
distributions.

Table 6: Estimated parameter values of the distributions for the dataset

Model
Parameter
Estimate

Log-Lik

Exp-Gamma θ̂ = 5.3520e−05 , λ̂ = 0.2914
β̂ = 1.5789 -22.8873

Akash θ̂ = 1.1569 -29.7613
Lindley θ̂ = 0.8161 -30.2496
Exponential λ̂ = 0.5263 -32.8371
Cubic transmuted Rayleigh σ̂ = 2.63597

λ̂ = 2.5971 -24.9371
Two parameter Lindley θ̂ = 1.48 -25.8862

α̂ = −0.2914
Exponential-Gamma λ̂ = 0.7361 -62.2516

α̂ = 1.7971
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The variance-covariance matrix of the MLEs is computed as

I(θ̂)−1 =

 1.1362e−01 −9.5914e−06 8.3587e−07

−9.5914e−06 8.0969e−10 −8.1641e−11

8.3587e−07 −8.1641e−11 4.1550e−02


The variances of the MLEs of the parameters of Exp-Gamma θ, λ and β are var(θ̄) = 0.1136,
var(λ̂) = 8.0969e−10 and var(β̄) = 0.0415. And 95% confidence intervals of θ, λ and β are
[−6.60597, 6.60704], [0.29136, 0.29147] and [1.1794, 1.9785] respectively.

Table 7: Criteria for comparison

Model -2lnL AIC AICC BIC AD
K-S

statistic
CVM

Exp-Gamma 45.7745 51.7745 53.2747 54.7617
1.9324
(0.097)

0.2587
(0.1007)

0.3508
(0.1375)

Akash 59.5226 61.5226 61.7471 62.5206
3.3554
(0.0185)

0.3705
(0.0082)

0.6555
(0.0154)

Lindley 60.4991 62.4991 62.7213 63.4948
3.7504
(0.0118)

0.3911
(0.0044)

0.7550
(0.0086)

Exponential 65.6742 67.6742 67.8964 68.6699
4.6035
(0.0046)

0.4395
(0.0009)

0.9630
(0.0026)

Cubic transmuted
Rayleigh

49.8742 53.8742 54.5801 55.8657
2.216
(0.0707)

0.26534
(0.1196)

0.3873
(0.0772)

Two parameter
Lindley

51.7724 55.4375 54.7785 55.8564
3.7822
(0.0085)

0.4102
(0.0075)

0.5275
(0.0058)

Exponential
-Gamma

124.503 128.5032 130.4946 129.2091
41.855
(0.0000)

1.000
(0.0000)

5.4779
(0.0000)

Figure 6: Comparison of model fit for the distributions.

The Exp-Gamma distribution fits the dataset better than the Akash, Lindley, exponential,
two-parameter Lindley, Cubic transmuted Rayleigh, and Exponential-Gamma distributions as
observed from Table 7.
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13. Conclusion

A weighted three-parameter probability distribution is developed in this study for modelling
skewed lifetime data. We derive expansions of important statistical measures like mean, variance,
moments, and moment generating function, etc., as well as maximum likelihood estimation is
used to estimate the Exp-Gamma distribution’s parameters and hazard and reliability functions
are used to examine the distribution’s properties. The proposed distribution was fitted using
real-time data.
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