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Abstract

In the present paper, we create an algorithm to address the transportation problem with numerous
objectives and indexes. The transportation problem exists when there are more supply points, more
demand points, and various means of transportationare used to meet demand or when moving certain
types of goods. The transportation problem may frequently be more complex than the typical form of
transportation problem. We create a model that blends fuzzy multi-objective programming and the mult -
index transportation problem by using LINDO software to resolve all related problems. Additionally,
the decision-maker may present a variety of data and it may be furt her improved. The new algorithm for
addressing transport problems in fuzzy environments is demonstrated numerically.

Key Words: Fuzzy transportation problem (FTP), Linear Programming Problem(LP
P), Multi-index transportation problem (MITP)

1. Introduction

The transportations prolem has a extensive range of real-world applications and can be seen as a
specific example of the LPP. It is one of the best optimization techniques and has a wide range of real-
world applications. a combination of various goods from any of them origins to any of the n destination
places. In order to reduce the overall cost of a transportation issue, we control the amount to be
transported from all origins to all destinations. Wemay not have focused on a single objective function
in this situation, which is multi-objective. All of the objectives of MOTP are in competition with one
another, and all of the restrictionsare of the equality kind. The technique for multi-objective fuzzy
linear programming with uncertain goals. The multi-objective transportation problem has the best
compromise solution when applied to fuzzy linear programming.
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Numerous academics have evaluated the use of the MITP to optimization, mathematical
modelling and industry. Wang et al. [10] established a decomposition technique for handling the
standard three-index transportation problem thatis entirely dependent on the successive adjustment
of the optimality criterion. They looked at the transportation problem's solution using a linear and
quadratic objective function. In addition to recommending the adoption of such transportation
efficiency, Rautman et al. [8] find a solution to the shipment scheduling conflict by utilising a multi-
index transportation problem method to optimize the integral system Bitet al. [4] used a
fuzzy programming method with a hyperbolic membership function to solve the Multi-Objective
Capacitated Transportation Problem, in which the targets are non-commensurable and incompatible
and the deliver and demand constraintsareall of the same kind. In order to identify the best and most
effective compromise solution to a multi-objective capacitated transportation problem, fuzzy
programming withhyperbolic membership function wasapplied. For thefirst time, all parameters are
taken into consideration when using fuzzy multi index bi-criteria constant fee bottleneck
transportation (FMIBCFCBTP) by Sungeeta et al.[9]. An algorithm was created to detect FMIBCFCBTP
fuzzy time-value change-off pairings. A numerical example was provided to explain the said
algorithm. An exponential membership function wasemployedin the fuzzy programming method by
Kaur et al. [5] toresolve a multi-objectiveand multi-index transportation problem. The main emphasis
is on reducing the prices, decreasing rates, and underutilized capacity of transporting raw materials
via various modes of transportation from various points of origin to various destination sites. Each
target function is given a unique form of non-linear membership function by employing the fuzzy
programming technique tosolve actual transport problems using an exponential function and creating
a non-dominated compromise solution. To tackle the multi-index fixed charge bi-criterion
transportation problem , Archana and Veena [2] provided a method for determining the ideal trade-off
pair amongst efficient cost-time trade-off pairs.

The linear-multi-objective-solid transportation problem was approached from a fuzzy-linear
programming perspective by Bit et al. [3]. The outcome is a compromise approach that is both cost-
effective and ideal. The fuzzy linear programming approach was used to develop the FORTRAN
programme. With profit maximisation and time minimization as the objectives, Anjana et al. [1]
developed a multi-objective multi-object strong transportation problem (MMSTP) with fuzzy
inequality constraints. Fuzzy chance programming and the additional specificity opportunity -necessity
principle are used to create a method for changing the ambiguous MMSTP to the equivalent-
deterministicshape. The fuzzy interactivesatisfied method was used to develop optimal compromise
solutions for the MMSTP through a generalised reduced gradient strategy. The finest non-dominating
solution was created using the technique for order preference by similar to perfect solution. An
algorithm was created by Porchelvi and Anitha [7] to address the multi-objective transportation
problem. The source and destination parameters , along with the cost coefficients of the goal function,
are expressed as interval costs. To solve MOTP, they used fuzzy programmingtechniques with linear
membership functions for various costs.

2. Mathematical Model

The MOMITP,we assume p;, be a multidimensional array 1<i<m,1<j<n and 1<I<kandletP= P,
Q =qj and R=rj be multi-matrices then the MITP is as fallows
MinZ= IXpyX 1)
i

Such that
XXy =py foralli, j
i
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inﬂ =r;, foralli,l

forall j,|,& X;;>0, foralli, j,I

2 X5 =0 il
j

it further, implies that
2P = |qu| L 2 Pjj :;ril 205 :%ril
i i j

@)

®)

All the 3-conditions arenecessary but not sufficient. MOMITP is defined as fallows

Minimize Z; = ZZV(l) +ZZV(2)

Such that

n

2 =py, Vi

i

¢y (2)

XX =Py Vi

J

m

2% =0y, V]

1

m

in('Z) :q2j ’ VJ

1

xP+x$? =1, Vi, j

x,(Jl) >0, X(Z) >0

The following set of conditions are necessary for the existance solution.

n -
Z_ril =Py + Paiy V1,

r|I q11+q211 VJ

M:

P =20, Vi, ]

-3 M5 —Lde
M=

P2i= 20, Vi, ]

—

Z il <min (py +0y5) +min (py +0z;), Vi, ]

3. Proposed Algorithm

Step 1: Formulate a FTP.

)

®)

(©)

)

®)
©)

(10)

(11)

(12)

(13)

(14)

(15)

Step 2: Solving the MOTP, k times, taking, one ata time, we first develop a matrix form inorder to get

corresponding values for each objectives for each solution.

Z; Z, Zy
X4 Zy Zy Zyy
Xy [ Zn Zy Zy
Xk [ L Zyy Zyy
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Where, each Xi,i =12,.k represent the isolated optimal solutions to the K distinct transportation
problems for k distict objective functions Z;;=Z; (X i) Vi, j, wherei,j=123........ k, respectavelly the

ith row and jth column members of the matrix.
Step 3: Using step 2, we set upper and lower bounds for each objective and defining the range of values
for the membership function that represents the degree of acceptance and rejection for a perticular

solution. Thevalues of such functions can be calculated as.

Ui’ =Max(Z, (X))

L =Min(Z, (X,)), 0<r<k,

Where Uf' and Lj arertespectivelly theupper and lower bound for the ( k™ objective functionZ, )
k=123........ K, d =U{ —L{ the degradation allowance for objective K .

Step 4: We define the membership function as:

1 27, (X)
(41(X)-L)
1 L<Z, (X , Whered, =Uy' - Ly
w203= g LD e )
0, Z,(X)2Uy¢
Step 5: We use a LMF for the initial fuzzy model, the crisp model canbe simplified as:
Minimize &
Subject to
Zk (X)+0.’dk SU”, (17)
zﬂ”—mpvnj
ZX =Pai v J
Z X(l) —qu

i
m -
inﬁ-z)=qz,-, vj

x(l) +x§2 =r;

ij Vi ]

x>0, x? 20
Above system of LP can be solved by using LONDO statistical software.
Step 6: Using the precise mathematical Programming approach, weare ableto solve the crisp model.
Min «
Ci‘JS Xij+adkSU,f,k=1,2, .......... K, (18)

n - -
in(jl)= Pai v'l J

n
) x(z) Pi, Vi,

m
ZX(Z _qZJ’ VJ

X +x$ =r;

i Vi)
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x>0, x{? >0
Another membership function, like the Hyperbolic Tangent function, is one that weutlise.
Min &

1 Ug +Lg

1 k
>= 4+ =tanh +7Z , 19
azo+3 { > K}k 19)

S . .
Where, 7, =————, whereS is number of constraints.
M

kL
Xij >0,Vi,jand ¢ >0.

Step 7: An intuitionistic fuzzy optimization for MOLP is defined as

1, L, >Z, (X)
ez (Xp=le 2L %) L4 <Z, (X)<UF where d=U{-L¢  (0)
0, Z (X)>Uf
wherek=12,........... K.
4. ustrations

Example 4.1: Consider thefuzzy MOMITP discussed by Lohgaonkar et al. [6]
Minimize Z; = 4Y{{ +3Y{3 +5Y3 +8YS) + 6 YL +2YSY +7Y{) + 4YSY)
+ Y +9Y +10Y +12Y5) +8YS) +6Y S +3Y3 + 58
+4Y2) +YE +9YD +2YD) +6YZ +4YS +9YF +3Y3

Subject to

Y +v 9 4P =9

Y +YS +vS =14

Y +YD +v =6

VDY +vY =7

AU AR ACIEY

YD v 2 1y =7

YD v 2 1y @) =5

YO +Y2 +v2 =6

YO v D v 0 oy D —14

YO +vD v v =12

YO 4y Qv v @ =10
NS AU AR
YA +v2vDvD —g
YA +v2vPv@ 11
Y +Y 2 =5
Y9 +v2 =7
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Example 4.2:

Y1(31) +Y1(32) =
v v -
Y v -
v v -

1 2
Y3(1) + Y3(1 )

1 2
Y3(2) + Y3(2) _

1 2
Y3(3) + Y3(3 )

1 2
Y2 +YD

1 2
Y4(2) + Y4(2) =

1 2
YR + YD

V{0V 20, i-1.2.3.4

=3

(1)

and j=1,2,3

Minimize Z, =5Y{ +6Y(3 +7YS) +4YS) +5Y) +2Y) + 1YY + 3D

Subject to

Y9 +Y9 +Y =9

YO 1y v D 14

YO YD+ v® =6

Y Y +Yg =7

Yl(lz ) +Y1(22) +Y1(32) =6

Y 1v2 v =7

Y& +vP 4 v@ =5

YO +vD 1 v@ -6

YO Y9 +v 9 +v D =14
Y9 +Y9 +vH +vD =12
Y9 +Y2 +vd +vS =10

+4YD +4YF +2YE) +3YH) +10YP +9Y3) +9YR) + 7YP
+OYSD) +2Y3 +8YD + 7Y +9YSD +8YD +4YT) + 512

Y 4D 4D 4D =5
Y2 42 4y 1y =8
Y@ +v2 v @ 1v@ 11

YO 4y @ =5
Yl(zl) +Y1(22) =7
Yl%) + Y1(32) =3
V9 vP s
Y5 +Y
v v o

2
2(2) =4
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YD +vP =4

YD +Y{2 =1

Y& +YE =6

YD P =2

Y@ YD =8

Y@ YD =3

YiP,Vi#? =20,i=1,2,34 and j=123

If no errors arefound, then the LINGO Solver status window appears of the illustration 4.11is

given below (by changing variableY to X and also, taking Xﬁ) and Xl(f) respectively X11M
and X11N so on. In LINGO solver)

| | &
Sobver Status “Wariables
Model Class: LP Total: 24
MNonlinear: 1]
State: Global Opt Integers: o
O bjective: 298 Constraints
Infeasibility: (1] Total: 27
MNonlinear: 1]
lterations: 4
MNonzeros
Extended Solver Status T otal: 96
Monlinear: o

Solver Type:

Best Obj: Generator Memorny L sed (K]
Obj Bound: 23
Steps: E lapsed Runtime [l mnm: s<s)
Auctive:

Update Interval: | 2

00 :00:00

Close

Figure 1: Illustration of model4.1 on LINGO window

By closing above window, we can view the solution of the Model 4.1 is given

(Global optimal solution found).

Objectivevalue: 298.0000
Infeasibilities: 0.000000
Total solver iterations: 4

Model Class: LP

Total variables: 24
Nonlinear variables: 0

Integer variables: 0

Total constraints: 27
Nonlinear constraints: 0

Total nonzeros 96
Nonlinear nonzeros: 0
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Table 1: Optimal Solutionof model 4.1

Variable Value Reduced Cost
X11M 5.000000 0.000000
X12M 4.000000 0.000000
X13M 0.000000 6.000000
X21M 8.000000 0.000000
X22M 1.000000 0.000000
X23M 5.000000 0.000000
X31M 1.000000 0.000000
X32M 0.000000 6.000000
X33M 5.000000 0.000000
X41M 0.000000 2.000000
X42M 7.000000 0.000000
X43M 0.000000 9.000000
X11N 0.000000 3.000000
X12N 3.000000 0.000000
X13N 3.000000 0.000000
X21N 0.000000 1.000000
X22N 3.000000 0.000000
X23N 4.000000 0.000000
X31N 3.000000 0.000000
X32N 1.000000 0.000000
X33N 1.000000 0.000000
X41N 2.000000 0.000000
X42N 1.000000 0.000000
X43N 3.000000 0.000000

If no errors are found, then the LINGO Solver status window appears for the illustration 4.2 is given

below
u Solver Status W ariables
rModel Class: F Total: 24
N ormlirvear: (u]
State: Slobal Ot Integers: (n}
O bjectivee: 283 (e e
Infe asibility: o T otal: 26
N omlirve s (u ]
Iteratiors: < |
MNonzeros
Exterwded Sobqer Status T otail: 94
N orlirvear: [n]
Sobser T yppe:
Best Oby: ; ; B G enaerator bermorns Ul saed (K]
29

Obj B ovirwd:

Steps: E lapseaed R urntinmes [k mnmn: =)
A bive - - - o0 : 00 00
Update Intersalk: |2 | Close

Figure 2: Illustration of model4.2 on LINGO window
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By closing above window, we can view the solution of the Model 4.2 is given

(Global optimal solution found).
Objectivevalue:
Infeasibilities:

Total solver iterations:
Model Class:

Total variables
Nonlinear variables:
Integer variables:
Total constraints:
Nonlinear constraints:
Total nonzeros:

Nonlinear nonzeros:

283.0000
0.000000

3
LP
24
0
0
27
0
96
0

Table 2: Optimal Solutionof model 4.2

Variable Value Reduced Cost
X11M 3.000000 0.000000
X12M 6.000000 0.000000
X13M 0.000000 1.000000
X21M 8.000000 0.000000
X22M 4.000000 0.000000
X23M 2.000000 0.000000
X31M 1.000000 0.000000
X32M 0.000000 1.000000
X33M 5.000000 0.000000
X41M 2.000000 0.000000
X42M 2.000000 0.000000
X43M 3.000000 0.000000
X11IN 2.000000 0.000000
X12N 1.000000 0.000000
X13N 3.000000 0.000000
X21IN 0.000000 1.000000
X22N 0.000000 4.000000
X23N 7.000000 0.000000
X31N 3.000000 0.000000
X32N 1.000000 0.000000
X33N 1.000000 0.000000
X41IN 0.000000 0.000000
X42N 6.000000 0.000000
X43N 0.000000 0.000000

Now, we can determine Zi1and Z>, for (X @.X @) respectively as given below

Z>X M)=295 and Z1(X @) =335, and written in the form of matrix.
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Zl ZZ

x® 1298 295

@ | 335 283
From the above, we have U{' =335 U% =295 Ly =298 L, =283
We define Ziand Z: respectively

1, if Z,(X) <298
). Zy(X)—298 .
(X)) =11- LS, i 298 2,(X) <335
o, if Z,(X) =335
dkl :37
1, if Z,(X)<283
Z,(X)-283 .
X)=q1-=2 "= if 283<Z;(X)<295
H(X) 205283 1(X)
0, if Z,(X)>295
dk2 :12
We find
Minimize a
Z,(X)+37a<335 (22)
Z,(X)+12a<295 (23)

We Solve the above crisp model and the Solver window appears given below

Lingo 190 Solver Status [Linao1] Tl
Sobsyer Status Wariables
Model Class: LF Total: 25
M orlirve ar: o
State: Slobal Opt Integers: (n]
D bjechive: 0O. 754098 e I A
Infe asibility: o T otal: 29
M orliresar: o
Iterations: 7
MNonzeros
E xternded Solver Status T otal: 123
M orlirvear: (0]
Solver Tppe:
Best Objg: ) . . Gensrator bdemony Llsed (K]
20

O bj B owred:

Steps: E lapsed Funtinee: [hibc nonn: s
At - - - o0 : 00 : 00
Update Interval: |2 | | Sl I

Figure 3: Illustration of model 22 and 23 on LINGO window

By closing above window, we can view the solution of the Model 22 and 23 is given
(Global optimal solution found).

Objective value: 0.7540984

Infeasibilities: 0.000000
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Total solver iterations: 7
Elapsed runtime seconds: 0.11
Model Class: LP
Total variables: 25
Nonlinear variables: 0
Integer variables: 0
Total constraints: 29
Nonlinear constraints: 0
Total nonzeros: 123
Nonlinear nonzeros: 0

Table 3: Optimal Solutionof crisp model 22 and 23

Variable Value Reduced Cost

A 0.7540984 0.000000
X11M 5.000000 0.000000
X12M 3.316940 0.000000
X13M 0.6830601 1.000000
X21M 7.000000 0.000000
X22M 3.683060 0.000000
X23M 3.316940 0.000000
X31M 0.000000 0.4918033E-01
X32M 0.000000 0.2622951
X33M 6.000000 0.000000
X41M 2.000000 0.000000
X42M 5.000000 0.000000
X43M 0.000000 0.1639344E-01
X11N 0.000000 0.1311475
X12N 3.683060 0.000000
X13N 2.316940 0.000000
X21N 1.000000 0.000000
X22N 0.3169399 0.000000
X23N 5.683060 0.000000
X31N 4.000000 0.000000
X32N 1.000000 0.000000
X33N 0.000000 0.000000
X41N 0.000000 0.4918033E-01
X42N 3.000000 0.000000
X43N 3.000000 0.000000

7, =307.04 7, =28592 a=0.754
Maximize &
o el
22 2

Further implies that

Maximize w

U/‘ L
Zka "rtanh 71(20!—1)S Mfk
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6(4- XD +3- XD +5.- XD +8- X +6- X +2- XY +7-XE + 4. XY +1. X +9. X

+10-XP +12- XY +8-X? +6- XD +3- X2 +5.XP +4. X7 +1. X2 +9.X® +2. XY

+6-XQ+4-X%+9.-X% +3.X%)+37- <1899
6(5- XY +6-XD+7-XD +4.XP +5- X +2. XP +1. X + 3. XD +4. XY +4- XY
+2- XD +3- XY +10- XD +9. XD +9. XD +7.XD +9.X2 +2. XD +8-X? +7-XY

+9-ngs) +8-X§21) +4-X5121) +5-X§23))+12-0(S1734
Subject to the condition (21)

Solver window of model (24) appears below

Solver Status
M odel Class:

State:
D bjective:
Infeasibility:

lterations:

Extended Solver Status

Solbver Type:
Best Oby:
Obj Bournd:
Steps:

Auctive:

Update Intemal: |2

P

Global Opt

1.52559
1]
7

“Wanables
T atal: 25
M onlinear: (1]
Integers: (1]
Constraints
T atal: 29
M onlinear: (1]
Mornzeros
T otal: 123
M orline ar: (1]

Generator Memany Ulsed (K]
20

Elapsed RBuntime [hh:mm:ss)
O0:00:00

Close

Solution of abovemodel (24) is given by

(Global optimal solution found).
Objective value:

Infeasibilities:

Total solver iterations:
Elapsed runtimeseconds:

Model Class:

Total variables:
Nonlinear variables:
Integer variables:
Total constraints:
Nonlinear constraints:
Total nonzeros:
Nonlinear nonzeros:

1.525591
0.000000
7

0.17

LP

25

0

0

29

0

123

165

Figure 4: Illustration of model 24 on LINGO window



A.M. Dar, K. Selvakumar, S. Ramki, K. M. Karuppasamy, J. A. Ansari,

Aafaq A.Rather

OPTIMIZING MULTI-OBJECTIVE MULTI-INDEX ...

RT&A, No 4 (76)
Volume 18, December 2023

Table 4 : Optimal solutionof model 24

Variable Value Reduced Cost
A 1.525591 0.000000
X11M 5.000000 0.000000
X12M 3316273 0.000000
X13M 0.6837270 0.000000
X21M 7.000000 0.000000
X22M 3.683727 0.000000
X23M 3316273 0.000000
X31M 0.000000 0.4918033E-01
X32M 0.000000 1.574803
X33M 6.000000 0.000000
X41M 2.000000 0.000000
X42M 5.000000 0.000000
X43M 0.000000 0.9842520E-0
X11N 0.000000 0.7874016
X12N 3.683727 0.000000
X13N 2.316273 0.000000
X21N 1.000000 0.000000
X22N 0.3162730 0.000000
X23N 5.683727 0.000000
X31N 4.000000 0.000000
X32N 1.000000 0.000000
X33N 0.000000 0.000000
X41N 0.000000 0.2952756
X42N 3.000000 0.000000
X43N 3.000000 0.000000
7,/ =307.04 Z, =28592
Wherew =tanh1(2a — 1) and w=1.52, =0.92
1, 298 <7z, (X)
ns{z,00}= e-i[zldfgg] 298 < Z,(X) <335, dy, =37
lo, z,(0 >335
1, 283< 7, (X)
1s{z,00}= e-;(zzdfﬂ 283 < Z,(X) <295, dy, =12

Maximize &
Such that

lo, 7,00 > 295

3( 307.04-298

a<e ?

The solution of the problemis given by «a=0.89

166

87 Jand a<le

1

2

(

285.92-283

12

)
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5. Conclusion

A fuzzy MOMIT algorithm is constructed in this paper, and with the help of numerical examples, a
solution is demonstrated using three various kinds of membership functions, including linear,
hyperbolic, and exponential membership functions. The numerous modes of transporting goods
between points of origin and destination are represented by the multi-index transportation problem.
The crisp model becomes a linear one when the hyperbolic membership functionis used. When
compared to the linear membership function and hyperbolic membership function, the optimum
compromise solution is drastically different. However, there is no significant different between the
linear membership function's solution and the exponential membership function's ideal compromise
solution.

There are numerous methods that future research in the field of fuzzy programming might be
carried out. For problems involving many scales and several objectives in linear programming,
employing fuzzy programming to design decision support systems will be particularly beneficial in
real-world scenarios. Future research may take into account the use of fuzzy programming to solve
MOTP’s when thesupply and demand factors aresimply madeup of fuzzy integers. Thereis still room
for more research into duality theory and post optimality analysis in multi-objective two- and three-
dimensional transportation problems. The demand parameters, agency capacity, and mode of
transportation capacity can be anticipated as random variables that follow specific probability
distributions in multi-index transportation problems, in addition to the two index transportation
problem.
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