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Abstract

In this paper, we analyze the performance of a finite capacity two-server Markovian batch service queueing
model with second optional service. The servers provide two kinds of services, the first essential service
(FES), which is provided to all incoming customers and the second optional service (SOS) to those who
demand it after completing FES. The service times of the two servers are identical and are exponentially
distributed. Matrix-decomposition method is used to obtain the steady-state probabilities of the model.
Numerical results and discussion are presented to demonstrate the impact of the model parameters on the
system behavior. Furthermore, the cost model optimization is developed to determine the optimal service
rates using the Quasi-Newton method to minimize the expected cost. Finally, the findings of this work
show that the blocking probability is monotonically decreases as finite buffer size increases and approaches
its minimum value of zero when finite buffer is sufficiently large.
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I. Introduction

In everyday life, there are various queueing circumstances where all incoming customers demand
the FES and only some may demand the SOS provided by the same server. Currently, this
has taken a major consideration by various researchers such as Wang and Kuki [23] wherein
they analysed the performance of retrial queueing system with SOS. They obtained the queue
length, waiting time and busy period using the method of discrete transformation. SOS with a
single server fixed batch service queueing system during repeated vacations has been studied
by Ayyappan et al., [3]. They analyzed the model using the probability generating function and
Rouche’s theorem to obtain the probability of the number of customers present in the queue
while the server is busy or on vacation.

Multi-server retrial queue with SOS has been presented by Ke et al., [13]. They derived
stationary probabilities using matrix analytic approach. An M/M/1 queue with SOS and
working breakdown has been analysed by Yang and Chen [24] who derived the stationary
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probability distribution of the system size using the matrix geometric method. Other extensive
studies conducted on an assortment of queueing models with SOS are found in Gupur [10];
Kalyanaraman and Murugan [12]; Ke et al., [14]; Uma and Punniyamoorthy [22], etc.
For the most part, customers get the service individually. However, this rule may not work in all
circumstances, since in some places, the server provide service in batch (groups) of customers
instead of serving individually. Batch services are more useful in telecommunication, where data
bundle is transmitted in the accumulated large entities (batches), in the field of transportation, in
a manufacturing system, in a smart city crowdsourcing application for mobile, etc.

Batch service queue has been broadly studied by numerous researchers. Goswami and
Samanta [8] presented the two heterogeneous servers with a discrete-time bulk service queueing
system and derived a closed-form expression of the stationary probabilities at arbitrary epoch. The
manufacturing bulk service queues using Bayesian hierarchical models are presented by Armero
and Conesa [2]. They developed the inferential method for the parameter of the governing
model using hierarchical models. Barbhuiya and Guptal [6] analysed the GI/MY/1 queue,
wherein the closed form explicit formulations of the system distribution at pre arrival and
arbitrary epochs in terms of roots of the characteristic equation generated were derived using the
supplementary variable approach and the difference equation method. The queue for bulk service
with delayed vacation has been analyzed by Krishna Reddy and Anitha [15]. They obtained
stationary probabilities and waiting time distribution of an incoming customer. Ayyappan et al.,
[4] studied the single server fixed batch service queueing system. The server serves exactly k
items at a time. If he finds less than k items in the queue, he takes a multiple vacation of length a.
Batch service with multi-server queue model has been presented by Ghimire et al., [7], wherein
they computed the stationary probability, queue length size and the amount of waiting time in
the queue.

A Markovian single server queueing system has been widely studied by numerous researchers
for the last few decades. Due to increasing demand for services, single server operations can
lead to congestion in the system such as manufacturing and production, medical clinics, in
telecommunication system, etc. Multi-servers have also been studied by various researchers
to reduce congestion, Hwang et al., [11]. The queueing system with two servers that are
heterogeneous and a variant vacation policy has been studied by Yue and Tian [25], where the two
servers take vacations together whenever the system becomes empty. They obtained the explicit
expressions of the stationary distribution of the system size. Krishnamoorthy and Sreenivasan
[16] investigated a queueing system using two heterogeneous servers, one of which is regularly
accessible while the other goes on vacation whenever there are no customers waiting for service
and service times of the two servers are exponentially distributed with different service rates.
They analyzed the model using matrix geometric method to obtain the mean waiting time in the
steady state regime. Kumar et al., [17] investigated the two server queue with heterogeneous
servers that were vulnerable to catastrophes wherein any arriving item requires exactly one server
for the service and the service rates are different. They obtained both transient and stationary
probabilities of number of items in the system using probability generating function and the
modified Bessel function of the first kind. Similar studies are found in Ammar [1] and Kumar
and Sharma [19] with impatient behavior wherein the service times are independently and
exponentially distributed with different service rate. They obtained the explicit transient and
steady state probabilities by using probability generating function. Recently, Kumar et al.,[18]
generalized the work of Kumar and Sharma [19] by introducing the concept of feedback and
reverse balking. They used an iterative approach to obtain the probabilistic measures of the
model.

Queues with limited waiting space are more realistic in real-life circumstances. For example,
routers servicing incoming packets with varying speeds in a network are examples of this scenario.
If the server is busy, the incoming items wait in the queue, but the incoming items are deemed
lost when the waiting space is full. One of the major considerations of a system designer in this
situation is to provide enough buffer space to keep the blocking probability to a minimum. The
limited buffer size queues have been researched by various authors such as Sikdar and Gupta [21],
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who analyzed a queue for batch arrival and batch service with a limited buffer size with single
and repeated vacations. They obtained stationary probability distributions of the number of items
in the queue at departure and pre-arrival epochs. Moreover, they presented the average queue
length, waiting time and the blocking probability as the performance measures. Gupta et al.,[9]
analyzed a queue for bulk services on a single server with finite buffers and vacation. Using the
supplementary variable and embedded Markov chain methods, they obtained the stationary joint
distribution of the queue length and the kind of vacation that the server has taken at different
epochs. Banerjee [5] presented a queue with a limited capacity and workload-dependent service.
They used the embedded Markov chain technique and the supplementary variable approach to
obtain stationary probabilities at a departure and arbitrary epoch.

In view of the growing demands for service in practice, our objective here is to investigate the
performance of finite buffer two-server batch queue with SOS. In existing literature reviews, no
work has been reported with a combination of two-server batch queue with SOS. This inspires us
to investigate a two-server batch queue with SOS. Consideration of SOS with varying batch size
service makes the model more versatile. The main contributions of this paper are as follows.

• First, we derive the stationary probabilities by using matrix-decomposition method.

• Second, we develop a cost function to optimize service rates for both FES and SOS using
Quasi-Newton method so that the expected total cost is minimized.

The remaining part of the paper is structured as follows: Mathematical model description and its
formulation are presented in Section 2. In Section 3, we discuss steady state probabilities where
the servers are busy or idle in both FES and SOS. The performance measures are discussed in
Section 4. The presentation of numerical analysis and discussion is in Section 5. The cost model
optimization is developed in Section 6 and in Section 7, we conclude the paper.

II. Model Description and Mathematical Formulation

We consider a finite buffer M/Mb/2/N queue model with SOS, where arrival occurs according
to a Poisson process with parameter λ. The servers provide two kinds of service, FES, which is
provided to all incoming items and SOS to those whose demand it after completing FES. The
item opts the SOS with probability r (0 ≤ r ≤ 1) or leave the system after completion FES with
the probability (1− r). Furthermore, It is assumed that the service times of two servers are
independently, identically and exponentially distributed, each with service rate µ1 in FES and µ2
in SOS. The queue has limited waiting space of size N. The arriving customers are blocked from
entering the queue whenever the queue size is N. The average rate of service for FES is given by

µi1 =

{
µ1, for i = 1,
2µ1, for i = 2.

The average rate of service for SOS is given by

µj2 =

{
µ2, for j = 1,
2µ2, for j = 2,

where i and j are the number of servers in FES and SOS, respectively.
The servers process a partial batch up to a maximum capacity size of b. If there are less than
b in the queue, one of the servers begins service to those customers. If there are more than 2b
waiting in the queue, then the servers take a batch of size b each based on the order of arrival,
while others in excess of 2b customers, wait in the queue.
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Figure 1: Transition rate diagram for b = 2

Figure 1 is the state transition diagram showing the various transition states of the queueing
model.

I. Formulation of Mathematical Model

At time t ≥ 0, let N(t) be the number of items in the queue, S(t) be the number of servers in FES
and J(t) be the number of servers in SOS, where S(t) and J(t) are defined as follows:

S(t) = i, 0 ≤ i ≤ 2, and J(t) = j, 0 ≤ j ≤ 2.

We observe that, {(N(t), S(t), J(t)); t ≥ 0} defines a three dimensional Markov process in contin-
uous time with state space

E = {(n, i, j); 0 ≤ n ≤ N; 0 ≤ i ≤ 2; 0 ≤ j ≤ 2, i + j ≤ 2} .

Let the transient probabilities are defined as

Pn,i,j(t) = Pr {N(t) = n, S(t) = i, J(t) = j} ,

0 ≤ n ≤ N; 0 ≤ i ≤ 2; 0 ≤ j ≤ 2, i + j ≤ 2,

where P0,i,j(t) is the transient probability that i and j servers are busy with FES or SOS with no
customer waiting in the queue, where 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j ≤ 2.
Pn,i,j(t) is the transient probability that all servers are busy with FES or SOS with n customer
waiting in the queue, where 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2, 1 ≤ n ≤ N.
The above set of probabilities at steady state are denoted by P0,i,j and Pn,i,j, respectively. The
following set of equations are obtained using the probabilistic arguments.
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λP0,0,0 = (1− r)µ1P0,1,0 + µ2P0,0,1, (1)

(λ + µ1)P0,1,0 = λP0,0,0 + 2(1− r)µ1P0,2,0 + µ2P0,1,1, (2)

(λ + 2µ1)P0,2,0 = λP0,1,0 + 2(1− r)µ1

b

∑
i=1

Pi,2,0 + µ2

b

∑
i=1

Pi,1,1, (3)

(λ + 2µ1)Pn,2,0 = λPn−1,2,0 + 2(1− r)µ1Pn+b,2,0 + µ2Pn+b,1,1, 1 ≤ n ≤ N − b, (4)

(λ + 2µ1)Pn,2,0 = λPn−1,2,0, N − b + 1 ≤ n ≤ N − 1, (5)

2µ1PN,2,0 = λPN−1,2,0, (6)

(λ + µ2)P0,0,1 = (1− r)µ1P0,1,1 + 2µ2P0,0,2 + rµ1P0,1,0, (7)

(λ + 2µ2)P0,0,2 = rµ1P0,1,1, (8)

(λ + 2µ2)Pn,0,2 = λPn−1,0,2 + rµ1Pn,1,1, 1 ≤ n ≤ N − 1, (9)

2µ2PN,0,2 = λPN−1,0,2 + rµ1PN,1,1, (10)

(λ + µ1 + µ2)P0,1,1 = λP0,0,1 + (1− r)µ1

b

∑
i=1

Pi,1,1 + 2µ2

b

∑
i=1

Pi,0,2 + 2rµ1P0,2,0, (11)

(λ + µ1 + µ2)Pn,1,1 = λPn−1,1,1 + (1− r)µ1Pn+b,1,1 + 2µ2Pn+b,0,2 + 2rµ1Pn,2,0,

1 ≤ n ≤ N − b, (12)

(λ + µ1 + µ2)Pn,1,1 = λPn−1,1,1 + 2rµ1Pn,2,0, N − b + 1 ≤ n ≤ N − 1, (13)

(µ1 + µ2)PN,1,1 = λPN−1,1,1 + 2rµ1PN,2,0. (14)

The steady state equations (1)-(14) can be represented as matrix-form

PQ=0, (15)

where 0 denotes the column vector with all elements equal to zero, and

Q =



−λ M12 M13 0 M15 M16 M17
M21 M22 M23 M24 M25 M26 M27
M31 M32 M33 M34 M35 M36 M37

0 M42 M43 M44 M45 M46 M47
M51 M52 M53 M54 M55 M56 M57
M61 M62 M63 M64 M65 M66 M67
M71 M72 M73 M74 M75 M76 M77


is a (3N + 6)× (3N + 6) square matrix. The entries of the matrix Q are listed below:

M12 =
(
λ 0

)
1×2 , M13 =

(
0 0 · · · 0

)
1×N , M15 =

(
0 0 · · · 0

)
1×N ,

M27 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

, M17 =
(
0 0 · · · 0

)
1×N , M21 =

(
(1− r)µ1

0

)
2×1

,

M23 =

(
0 0 · · · 0
λ 0 · · · 0

)
2×N

, M24 =

(
0

2rµ1

)
2×1

, M25 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

,

M16 =
(
0 0

)
1×2 , M26 =

(
rµ1 0
0 0

)
2×2

, M31 =


0
0
...
0


N×1

, M32 =


0 ri2
...

...
0 0
0 0


N×2

,

M51 =


0
0
...
0


N×1

, M33 =



α λ 0 · · · 0 0
A10 α λ · · · 0 0
A20 A21 α · · · 0 0

...
...

...
. . .

...
...

AN−20 AN−21 AN−22 · · · α λ
AN−10 AN−11 AN−12 · · · AN−1N−2 −2µ1


N×N

,
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where

α = −(λ + 2µ1), ri2 = 2(1− r)µ1, for i = 1, 2, · · · , b, and b ≤ N,

Aij =

{
2(1− r)µ1, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M34 =


0
0
...
0


N×1

, M35 =


2rµ1 0 · · · 0

0 2rµ1 · · · 0
...

...
. . .

...
0 0 · · · 2rµ1


N×N

, M44 = −(λ + µ1 + µ2),

M37 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


N×N

, M42 =
(
µ2 0

)
1×2 , M43 =

(
0 0 · · · 0

)
1×N ,

M45 =
(
λ 0 · · · 0

)
1×N , M46 =

(
(1− r)µ1 rµ1

)
1×2 , M47 =

(
0 0 · · · 0

)
1×N ,

M52 =


0 si2
...

...
0 0
0 0


N×2

, M53 =



0 0 0 · · · 0 0
B10 0 0 · · · 0 0
B20 B21 0 · · · 0 0

...
...

...
. . .

...
...

BN−20 BN−21 BN−22 · · · 0 0
BN−10 BN−11 BN−12 · · · BN−1N−2 0


N×N

,

where
si1 = (1− r)µ1 and si2 = µ2, for i = 1, 2, · · · , b, and b ≤ N,

Bij =

{
µ2, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M55 =



λ′ λ 0 · · · 0 0
C10 λ′ λ · · · 0 0
C20 C21 λ′ · · · 0 0

...
...

...
. . .

...
...

CN−20 CN−21 CN−22 · · · λ′ λ
CN−10 CN−11 CN−12 · · · CN−1N−2 −(µ1 + µ2)


N×N

, M61 =

(
µ2
0

)
2×1

,

where λ′ = −(λ + µ1 + µ2).

Cij =

{
(1− r)µ1, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M22 =

(
−(λ + µ1) λ
2(1− r)µ1 −(λ + 2µ1)

)
2×2

, M57 =


rµ1 0 · · · 0
0 rµ1 · · · 0
...

...
. . .

...
0 0 · · · rµ1


N×N

,

M62 =

(
0 0
0 0

)
2×2

, M63 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

, M67 =

(
0 0 · · · 0
λ 0 · · · 0

)
2×N

,
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M65 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

, M66 =

(
−(λ + µ2) 0

2µ2 −(λ + 2µ2)

)
2×2

, M64 =

(
λ
0

)
2×1

,

M71 =


0
0
...
0


N×1

, M72 =


0 0
0 0
...

...
0 0


N×2

, M73 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


N×N

,

M74 =


wi1

...
0
0


N×1

, M75 =



0 0 0 · · · 0 0
D10 0 0 · · · 0 0
D20 D21 0 · · · 0 0

...
...

...
. . .

...
...

DN−20 DN−21 DN−22 · · · 0 0
DN−10 DN−11 DN−12 · · · DN−1N−2 0


N×N

,

where
wi1 = 2µ2, for i = 1, 2, · · · , b, and b ≤ N,

Dij =

{
2µ2, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M54 =


si1
...
0
0


N×1

, M36 =


0 0
0 0
...

...
0 0


N×2

, M76 =


0 0
0 0
...

...
0 0


N×2

, M56 =


0 0
0 0
...

...
0 0


N×2

,

M77 =



−(λ + 2µ2) λ 0 · · · 0 0
0 −(λ + 2µ2) λ · · · 0 0
0 0 (−λ + 2µ2) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(λ + 2µ2) λ
0 0 0 · · · 0 −2µ2


N×N

,

In the following sequel, we use a matrix decomposition approach to obtain the stationary
probabilities in a recursive manner. Let P0,0,0, P1, P2, P0,1,1, P3, P4, P5 be the vectors of
stationary probabilities where P1 = (P0,1,0, P0,2,0), P2 = (P1,2,0, P2,2,0, · · · , PN,2,0), P3 =
(P1,1,1, P2,1,1, · · · , PN,1,1), P4 = (P0,0,1, P0,0,2), P5 = (P1,0,2, P2,0,2, · · · , PN,0,2).

From equation (15) it follows that

−λP0,0,0 + P1M21 + P4M61 = 0, (16)

P0,0,0M12 + P1M22 + P2M32 + P0,1,1M42 + P3M52 = 0, (17)

P1M23 + P2M33 + P3M53 = 0, (18)

P1M24 − P0,1,1M44 + P3M54 + P4M64 + P5M74 = 0, (19)

P2M35 + P0,1,1M45 + P3M55 + P5M75 = 0, (20)

P1M26 + P0,1,1M46 + P4M66 = 0, (21)

P3M57 + P4M67 + P5M77 = 0. (22)

Equation (21) yields

P4 = P1Φ1 + P0,1,1Φ2, (23)
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where Φ1 = −M26M−66
1 and Φ2 = −M46M−66

1.
Using equation (23) into equation (16), we obtain

P0,0,0 =
1
λ
[P1Φ3 + P0,1,1Φ4] , (24)

where Φ3 = M21 + Φ1M61 and Φ4 = Φ2M61.
From equation (22), we obtain

P5 = P3Φ5 + P1Φ6 + P0,1,1Φ7, (25)

where Φ5 = −M57M−1
77 , Φ6 = −Φ1M67M−1

77 and Φ7 = −Φ2M67M−1
77 .

Substituting equation (25) into equation (20), we get

P3 = (P2Φ8 + P0,1,1Φ9 + P1Φ10)Φ−1
11 , (26)

where Φ8 = −M35, Φ9 = −(M45 + Φ7M75), Φ10 = −Φ6M75
and Φ11 = M55 + Φ5M75.
Using equation (26) into equation (18), we get

P2 = (P1Φ12 + P0,1,1Φ13)Φ−1
14 , (27)

where Φ12 = −(M23 + Φ10M53Φ−1
11 ), Φ13 = −Φ9M53Φ−1

11
and Φ14 = M33 + Φ8M53Φ−1

11 .
Using equations (27) into equation (26), we have

P3 = P1Φ15 + P0,1,1Φ16, (28)

where Φ15 = Φ12Φ−1
14 Φ8Φ−1

11 + Φ10Φ−1
11 and Φ16 = Φ13Φ−1

14 Φ8Φ−1
11 + Φ9Φ−1

11 .
Substituting equations (24), (27) and (28) into equation (17), we have

P1 = P0,1,1Φ17, (29)

and Φ17 is given by

Φ17 = −AB−1,

where A = Φ4M12 + λΦ13Φ−1
14 M32 + λM42 + λΦ16M52,

B = Φ3M12 + λM22 + λΦ12Φ−1
14 M32 + λΦ15M52.

Substituting the value of P1 into equations (23), (24), (25), (27) and (28), respectively, we obtain

P4 = P0,1,1(Φ17Φ1 + Φ2), (30)

P0,0,0 = P0,1,1
1
λ
(Φ17Φ3 + Φ4), (31)

P5 = P0,1,1(Φ17Φ15Φ5 + Φ16Φ5 + Φ17Φ6 + Φ7), (32)

P2 = P0,1,1(Φ17Φ12Φ−1
14 + Φ13Φ−1

14 ), (33)

P3 = P0,1,1(Φ17Φ15 + Φ16). (34)

Now all probabilities have been expressed as a function of P0,1,1. The normalization condition is

P0,0,0 + P0,1,1 + P1e1 + P2e2 + P3e2 + P4e1 + P5e2 = 1, (35)

where e1 and e2 are vectors with all of the entries equal to one of dimensions (2× 1) and (N × 1),
respectively.

Substituting equations (29), (30), (31), (32), (33) and (34) into (35), we get

P0,1,1 =
λ

Φ18
, (36)
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where

Φ18 = Φ17Φ3 + Φ4 + λ(1 + Φ17e1 + Φ17Φ12Φ−1
14 e2 + Φ13Φ−1

14 e2

+ Φ17Φ15e2 + Φ16e2 + Φ17Φ1e1 + Φ2e2 + Φ17Φ15Φ5e2

+ Φ16Φ5e2 + Φ17Φ6e2 + Φ7e2).

The derivation is complete for all stationary probabilities, which can be used to find the measures
of performance of the model.

III. Measures of Performance

In this section, we list out some key measures of performance that reflect the bahaviour of the
model.

• Let Ls denote the mean number of customers in the system when the servers are busy

Ls =
b

∑
l=1

b

∑
m=1

N

∑
n=0

(n + l + m)Pn,i,j, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2.

• Let Lq denote the mean number of customers in the queue when the servers are busy

Lq =
N

∑
n=1

nPn,i,j, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2. (37)

• The arriving customers are blocked from entering the queue whenever the queue size is N.
In this case the blocking probability (Pblock) is given by

Pblock = PN,2,0 + PN,1,1 + PN,0,2. (38)

• The effective arrival rate is given by

λe f f = λ(1− Pblock) = λ

(
N−1

∑
n=0

Pn,i,j

)
, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2.

The expected waiting time in the system using Little’s law, we get

Ws =
Ls

λe f f
.

• The expected waiting time in the queue using Little’s law, we get

Wq =
Lq

λe f f
. (39)

• Percentage Variation (P.V.) in waiting time (Wq) is defined as

P.V. =
|(Wq)b2 − (Wq)b1|

(Wq)b1
× 100%,

where (Wq)b1 and (Wq)b2 are the waiting time of two values of b.
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I. Practical Application of the Model

The queueing model described in this paper has an application in hospital management systems.
The model can be applied to situations where the outpatients request an appointment for HIV
testing in the clinic centre. The clinic officer monitors the length of booking windows for
appointments of the outpatients, but since, in most cases, there is a limited number of doctors, it
leads to an unbalanced ratio between the number of outpatients and the doctors. This situation
leads to an increase in the length of the booking window and brings the long waiting for
appointments. Therefore, to shorten outpatients waiting time, we limit the size of the booking
window and assume the clinic centre has a limited slots capacity during a limited length of the
booking window. The clinic centre capacity can be divided into sessions/periods of an equal
amount of slots. The slots are termed as the maximum size of the outpatient appointments
per session. In this scenario, we consider the pooled testing being used to screen the blood of
outpatients to detect HIV infections. The slots are taken into service as the primary test for blood
sample testing, which is tested in groups. The slots that test positive results opt for a secondary
test for further testing. In contrast, all outpatients in the slots are cleared and exempted from
further testing if slots test negative. In this situation, appointment, doctors, pooled test (testing in
group), limited length of the booking window, primary test and secondary test correspond to the
arrivals, servers, batch testing, limited queue capacity, FES and SOS, respectively, in queueing
terminology. In the next section, this model application in practice is analyzed with a numerical
investigation.

IV. Numerical Investigation

In this section, we present the applicability of the solutions obtained using matrix-decomposition
method. We compute the model numerically by taking the model parameters that have close
incidence with the practical situations as N = 14, b = 3, λ = 0.6, µ1 = 0.4, µ2 = 0.3, r = 0.4,
with the assumption that b ≤ N, where

• λ = Appointment rate of outpatients to the clinic centre,

• µ1 = Service rate during primary test,

• µ2 = Service rate during secondary test,

• r = Probability of opting secondary test,

• b = Maximum number of appointment of outpatients per session,

• N = Maximum capacity of the outpatients at the clinic centre.

Table 1: Variation in different measures of performance with the change in service rate (µ1 and µ2)

µ1 Lq Wq Pblock µ2 Lq Wq Pblock
0.1 3.745370 6.480820 0.038017 0.1 6.193580 10.32330 0.105915
0.2 1.727790 2.884150 0.001948 0.2 1.423120 2.371980 0.001781
0.3 1.116660 1.861360 0.000308 0.3 0.836311 1.393880 0.000123
0.4 0.836311 1.393880 0.000123 0.4 0.655543 1.092590 0.000029
0.5 0.678974 1.131630 0.000078 0.5 0.569728 0.949556 0.000014
0.6 0.580261 0.967104 0.000061 0.6 0.520022 0.866710 0.000009
0.7 0.513680 0.856134 0.000053 0.7 0.487796 0.812998 0.000008
0.8 0.466371 0.777284 0.000048 0.8 0.465319 0.775536 0.000007
0.9 0.431387 0.718978 0.000045 0.9 0.448812 0.748024 0.000006
1.0 0.404684 0.674474 0.000042 1.0 0.436214 0.727027 0.000005
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Table 1 shows the effect of the service rate of primary test (µ1) and secondary test (µ2) on some
performance measures. We observe that increasing µ1(µ2) decreases Lq, Wq and Pblock. This is
because as µ1(µ2) increases, outpatients are served faster so that the queue length and the waiting
time decrease. Moreover, Pblock tends to zero due to faster services.
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Figure 2: Effect of buffer size on the blocking probability

Figure 2 shows the impact of buffer size (N) on the blocking probability (Pblock) for different
batch sizes b. We observe that Pblock monotonically decreases as N increases and reaches its
minimum value zero as N is sufficiently larger. Moreover, when N is kept fixed, Pblock decreases
with the increase of b, as we expect. This is because as b incrases, more number of outpatients are
taken for service in a batch, which leads to a decrease in size of the queue. Hence Pblock decreases.
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Figure 3: Effect of finite buffer size on the expected waiting time in the queue (Wq)
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In Figure 3, we observe that for fixed N, Wq decreases as b increases. This is because, as b
increases, more outpatients are served in a batch at a time, as a result, Wq decreases. Further,
for fixed b, except b = 1, the waiting time is more prominently increasing when N lies in [3, 6].
However, when the buffer size increases beyond 6, the waiting time is not much affected by
increasing N, since the arrival rate is constant and the doctors serve the outpatients in batches
b > 1. When b = 1, the waiting time increases monotonically as N increases. The reason is that
by increasing the buffer size, more outpatients accumulate in the queue, and the doctor serves
one outpatient at a time, this leads to an increase in the queue length. Hence, the waiting time
increases compared to b = 3 (b = 5).
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Figure 4: Impact of the arrival rate on the expected queue length

Figure 4 shows the impact of λ on the expected queue length (Lq) for different values of N. It
is clear that as λ increases, Lq increases for all values of N, as it should be. Moreover, for a fixed
λ, as N increases, more outpatients accumulate in the queue thereby an increasing trend can be
seen in Lq.
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Figure 5: Impact of arrival rate on the blocking probability
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Figure 5 shows the impact of λ on Pblock. As intuitively expected, Pblock increases with the
increase of λ. Furthermore, for a fixed λ, Pblock is high for smaller values of N, which is true.
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Figure 6: Impact of arrival rate on the percentage variation in expected waiting time

Figure 6 shows the impact of arrival rate λ on the P.V. in Wq in two cases, case 1: P.V. of b = 1
vs b = 3 and case 2: b = 1 vs b = 5. As λ increases, the P.V. in Wq for case 1 and case 2 initially
increases up to λ = 0.7 and for λ > 0.7 it slightly decreases. Moreover, the P.V. in Wq varies
widely as λ increases. This means that as arrival rate increases, there is a high probability of
blocking outpatients to enter the clinic centre.
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Figure 7: Impact of arrival rate on the anticipated waiting time

For different values of b, we show the impact of λ on the anticipated waiting time (Wq) in
Figure 7. As λ increases, the inflow of outpatients to the clinic centre increases, which tends to a
longer queue. Hence, Wq increases. Further, Wq shows an opposite trend with the increase of
batch size taken for the service, as intuitively expected.
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Figure 8: Impact of arrival rate on the anticipated waiting time in the system

Figure 8 demonstrates the impact of λ on the anticipated waiting time in the system (Ws) for
different values of r. For a fixed r, it is observed that Ws increases with the increase of λ, as we
expect. Furthermore, for a fixed λ, Ws is smaller in the absence of secondary test (r = 0.0), and
as r increases, more number of outpatients are tend to secondary test (SOS), which leads to an
increase in Ws.
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Figure 9: Effect of batch size on blocking probability

Figure 9 shows the effect of b on the blocking probability (Pblock) for different r. As b increases,
more outpatients are served in batch and leave the queue, which results in a decrease of Pblock.
Furthermore, for fixed b, Pblock increases as r increases. The reason is that the outpatients opting
for secondary test increase the expected waiting time of other outpatients to be served.
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Figure 10: Effect of probability r on the expected queue length

Figure 10 depicts the effect of r on the anticipated queue length (Lq). We observe that as r
increases, outpatients opt for secondary test, thereby increasing the expected queue length. Also,
for a fixed r, as batch size increases, more outpatients are served at a time, resulting in a decrease
in Lq.

V. Cost Model Optimization

In this section, we present the total anticipated cost function per item per unit time. The main
goal is to figure out the optimal value of service rates µ1 and µ2 for primary and secondary tests,
respectively, so that the cost is minimized. We apply the Quasi-Newton technique to derive the
optimal values of the service rates.

I. Quasi-Newton Method

Quasi-Newton method is reliable and efficient for finding a minimizer of a nonlinear function by
estimating the curvature along a sequence of search directions with some fixed tolerance (say
ε). Let µi denote the current point at iteration i = 0, 1, 2, · · · The gradient of f at µi is denoted
−→∇ f (µi) and abbreviated to

−→∇ f (µ). We use H(µi) to denote a positive definite matrix which is
an estimate of the inverse Hessian

−→∇ 2 f (µi)−1. It is important to note that if f is not differentiable
at µi+1 we say that the algorithm breaks down (in theory) and if

−→∇ f (µ) = 0 we say it terminates
at a smooth stationary point (for more details the reader may refer [?]).

II. Algorithm for Quasi-Newton method

The steps of Quasi-Newton method can be described as follows:

Step 1: Pick any starting trial solution for µ0 = (µ0
1, µ0

2) and compute f (µ0
1, µ0

2).

Step 2: While | ∂ f
∂µ1
| > ε or | ∂ f

∂µ2
| > ε; do step 3− 5.

Step 3: Compute the cost gradient
−→∇ f (µ) = [ ∂ f

∂µ1
, ∂ f

∂µ2
]T and the cost Hessian matrix H(µ) = ∂2 f

∂µ2
1

∂2 f
∂µ1∂µ2

∂2 f
∂µ2∂µ1

∂2 f
∂µ2

2

 at point −→µ (i), provided that ∂2 f
∂µ2

1
( ∂2 f

∂µ2
2
)− ( ∂2 f

∂µ1∂µ2
)2 6= 0, which enables the
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existence of inverse of H(µ).

Step 4: Update the new trial solution µ(i+1) = µ(i) − [H(µ(i))]−1−→∇ f (µ(i)).

Step 5: Set i = i + 1 and return to step 2. If the gradient is sufficiently smaller than ε, then stop.

To implement the above algorithm, we propose the cost function f (µ1, µ2) per item per unit time
as

f (µ1, µ2) = cqLq + c1µ1 + c2µ2 + 2c3. (40)

Let us consider the following optimization problem:

f (µ∗1 , µ∗2) = Minimize
s.t µ1>µ2

f (µ1, µ2),

where the various cost components are defined as follows:
cq = cost per unit per item present in the queue,
c1 = cost per unit time when the servers are in FES,
c2 = cost per unit time when the servers are in SOS,
c3 = fixed cost for purchase of one server.
The goal of using this cost model is to give emphasis on the service rates in order to have a cost
benefit and less congestion at the queueing system.
We apply the Quasi-Newton technique to obtain the optimal value of service rates (µ1, µ2).
Assuming the values to the coefficients of the expected total cost function in (40) as cq =
$600, c1 = $300, c2 = $400, c3 = $200, ε = ε1 = ε2 = 10−7 and λ = 0.6, b = 3, r = 0.4 and
N = 14. Starting with the initial values (µ0

1, µ0
2) = (0.4, 0.3), the following Table values have been

calculated.

Table 2: Quasi-Newton Method.

Iteration 0 1 2 3
µ1 0.40000 0.53331 0.64672 0.69485
µ2 0.30000 0.37052 0.43434 0.46377
f (µ1, µ2) 1141.79 1010.26 974.409 971.328
Lq 0.83631 0.50344 0.34443 0.29561
∂ f
∂µ1

-914.739 -308.569 -68.0794 -2.25317
∂ f

∂µ2
-1275.38 -437.473 -99.3126 -3.79388

Hessian
[

6861.83 2.13400
2.13400 18086.7

] [
2720.75 2.82643
2.82643 6854.12

] [
1414.49 2.10218
2.10218 3374.53

] [
1098.71 1.79815
1.79815 2530.27

]
Iteration 4 5 6 7
µ1 0.69690 0.69667 0.69669 0.69669
µ2 0.46530 0.46513 0.46515 0.46515
f (µ1, µ2) 971.324 971.324 971.324 971.324
Lq 0.29358 0.29378 0.29376 0.29376
∂ f

∂µ1
0.25677 -0.02454 0.00303 -0.00029

∂ f
∂µ2

0.34083 -0.04239 0.00402 -0.00050

Hessian
[

1087.19 1.78470
1.78470 2494.97

] [
1088.50 1.78605
1.78605 2498.18

] [
1088.38 1.78590
1.78590 2497.79

] [
1088.39 1.78592
1.78592 2497.83

]

From Table 2, we find that the minimum cost per unit time is f (µ∗1 , µ∗2) = $971.324 at
(µ∗1 , µ∗2) = (0.69669, 0.46515) achieved at seventh iteration.
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Table 3: The optimal service rates (µ1, µ2) and cost function f (µ1, µ2) obtained in variation of b and r.

µ∗1 µ∗2 Lq f (µ∗1 , µ∗2)
r = 0.2 0.80571 0.572062 0.234602 1011.3

b = 1 r = 0.5 0.728169 - - -
r = 0.8 0.691397 - - -
r = 0.2 0.687462 0.357727 0.243295 895.306

b = 3 r = 0.5 0.698797 0.505399 0.314466 1000.48
r = 0.8 0.700593 0.598757 0.367520 1070.19
r = 0.2 0.670994 0.327201 0.250341 882.383

b = 5 r = 0.5 0.687876 0.475721 0.321209 989.377
r = 0.8 0.697033 0.570477 0.373146 1061.19
r = 0.2 0.667993 0.319684 0.252881 880.000

b = 7 r = 0.5 0.685428 0.469603 0.323526 987.585
r = 0.8 0.695602 0.565179 0.375082 1059.80
r = 0.2 0.667434 0.317632 0.25369 879.497

b = 9 r = 0.5 0.684913 0.468318 0.32414 987.285
r = 0.8 0.695243 0.564205 0.375558 1059.59

In Table 3, we observe that

• For fixed b, as r increases, we observe that µ∗1 shows an increasing trend. However, for b = 1,
as r increases, the reverse trend is observed in µ∗1 . This is necessary in order to balance the
system in the profitable manner. On the other hand, it is obvious that µ∗2 , Lq and f (µ∗1 , µ∗2)
increase with the increase of r.

• Similarly, for a fixed r, as b increases, µ∗1 , µ∗2 and f (µ∗1 , µ∗2) all decreases except Lq which
increases as b increase. Lq increase because the service rates decrease in order to balance
the system profitably.

• For b = 1 and r = (0.5)0.8, the service rate in secondary test (SOS) does not satisfy the
condition µ1 > µ2. Hence, we exclude those values.

In general, we observe the following features of the queueing system:

• As service rates increases, blocking probability, expected waiting time, and queue size
decrease.

• The blocking probability is higher for smaller values of buffer size.

• An increase in arrival rate increases the blocking probability, expected waiting time, and
queue size.

• An increase in batch size decreases the blocking probability, expected waiting time, queue
size, and optimum cost.

• An increase of r probability increases the optimum cost.

VI. Conclusion

A two-server batch service queueing model with SOS is studied using matrix-decomposition
method. The cost model optimization was also developed to determine the optimal service
rates to minimize the cost. Performance measures and numerical illustrations discussed in this
paper provide valuable insights about the functioning of clinic centre in providing the services
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of primary and secondary test. The clinic offices will benefit from the simplified numerical
simulations, which will help them increase system efficiency.

In future work, we will incorporate a two-server batch service queue with SOS, adding the
concepts of working vacations and vacation interruption. Also, we will consider the transient
state in the current model with batch arrival.
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