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Abstract 

The paper deals with a system composed of two-non identical units (unit-1 and unit-2).  Initially, 
unit-1 is operative and unit-2 is kept in cold standby. The cold standby unit can’t fail in its standby 
mode. Each unit of the system has two possible modes: Normal (N) and total failure (F). When the 
unit-1 fails the cold standby (unit-2) becomes operative instantaneously with the help of a perfect 
and instantaneous switching device. A single repairman is always available with the system to 
repair a failed unit and failed RM. Unit-1 gets priority in operation and repair over unit-2. 
However, the RM gets priority in repair over any of the units. The RM machine is good initially 
and can’t fail unless it becomes operative.  The system failure occurs when both the units are in 
total failure mode. The joint distribution of failure and repair times for each unit is taken bivariate 
exponential distribution. Each repaired unit works as good as new. Using regenerative point 
technique, various important measures of system effectiveness have been obtained. 

Keywords: Transition probabilities, mean sojourn time, bi-vairate exponential 
distribution, reliability, MTSF, availability, expected busy period of repairman, 
net expected profit. 

1. Introduction

 Two units standby system models have been investigated by a large number of authors including 
A. Kumar, D. Pawar and S.C. Malik [11], P. Chaudhary, A. Sharma and R.Gupta [3], P. Chaudhary
and A. Sharma [2], N.Kumar and N. Nandal [12], P. Gupta and P. Vinodiya [9], R. Gupta and
P.Bhardwaj [5], R. Gupta and A. Tyagi [8], N. Kumar, S.C. Malik and N. Nandal [10], P. Chaudhary
and S. Masih [1], P. Chaudhary and L. Tyagi[4] by using the concepts of warm standby with
common cause failure and human error, correlated failure and repairs, two types of repairmen,
two priority units warm standby with preparation for repair, two unit priority standby with
repair, two unit cold standby with two operating modes.

 In the analysis of above system models it has been assumed that a failed unit is always 
repairable manually and after repair the unit becomes as good as new. There are many situations 
where a repair machine (RM) is needed to repair a failed unit and the RM may also fail during the 
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repair of a failed unit .In this case the RM is first taken up for repair and the failed unit waits for 
getting repair. 

For example, in case of nuclear reactors, marine equipment etc. the robots are used for the 
repair of such type of systems. It is evident that a robot being a Machine, may fail while 
performing its intended task. In this case the repairman will repair the RM first and then begins 
the repair of the failed unit. 

Keeping above fact in view, the present chapter deals with the analysis of a two non-identical 
units cold standby system model with constant failure and general repair rates assuming that the 
first unit gets priority in operation and repair both. The RM may also fail during the repair of a 
unit. The failure rate of RM is taken as constant and its repair rate as general. 

The objective of the present paper is to provide the analysis of a two non-identical unit 
standby system with correlated failure time and repair machine failure. The joint distributions of 
failure and repair times of each unit are taken to be bivariate exponential distribution with p.d.f. of 
the type- 

i i-α x -β y
i i i i 0 i i i

i i i

f (x , y ) = α β (1 - r )e I (2 α β r x y )

; i = 1 , 2 ; x , y , α , β > 0 ; 0 r < 1
2 k

0 2
k = 0

(z /2 )
W h e re , I =

(k !)




is the modified Bessel function of type-I  and order zero. Gupta et al. [6] and Gupta and Shivakar 
[7] have analyzed some of two unit redundant system models by taking the joint distribution of
failure and repair as bivariate exponential having the above form of pdf.

 Using regenerative point technique, the following measures of system effectiveness are 
obtained- 

i. Transition probabilities and mean sojourn times in various states. 
ii. Reliability and Mean time to system failure (MTSF).
iii. Point-wise and steady-state availabilities of the system as well as expected up time

of the system during time interval (0, t).
iv. Expected busy period of repairman in the repair of unit-1 and unit-2 during time

interval (0, t).
v. Net expected profit earned by the system in time interval (0, t).

2. System description and assumptions

1. The system consists of two non-identical units (unit-1 and unit-2). Initially, unit-1
is operative and unit-2 is kept in cold standby. The cold standby unit can’t fail in
its standby mode.

2. Each unit of the system has two possible modes: Normal (N) and total failure (F).
3. When the unit-1 fails the cold standby (unit-2) becomes operative instantaneously

with the help of a perfect and instantaneous switching device.
4. A single repairman is always available with the system to repair a failed unit and

failed RM.
5. Unit-1 gets priority in operation and repair over unit-2. However, the RM gets

priority in repair over any of the units.
6. The RM machine is good initially and can’t fail unless it becomes operative.
7. The system failure occurs when both the units are in total failure mode.
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8. The joint distribution of failure and repair times for each unit is taken bivariate
exponential with density function given by ,

i i-α x -β y
i i i i 0 i i i

i i i

f (x , y ) = α β (1 - r )e I (2 α β r x y )

; i = 1 , 2 ; x , y , α , β > 0 ; 0 r < 1

 
2k

0 2
k 0

(z / 2)
Where, I

(k!)






9. Each repaired unit works as good as new.

3. Notations and states of the system
3.1. Notations: 

E : Set of regenerative states. 
i iX ,Y :  Random variable denoting the failure and repair time for unit-

1and unit-2 respectively ;( i=1, 2)       
if (x, y)  : Joint probability density function of i i(X ,Y ) ;( i=1, 2) 

i ix y
i i i 0 i i i i i i(1 r )e I (2 r xy)dx ; x, y, , 0; 0 r 1           

k
i i i

0 i i i 2
k 0

( r xy)
Where, I (2 r xy)

(k!)





 
  

 ig x : Marginal p.d.f. of iX x ; (i=1, 2) 
i i(1 r )x

i i(1 r )e   

 i ik y X x : Conditional p.d.f. of iY given iX x ; (i=1, 2) 

           

   
 

i i i

j
y r x i i i

i 2
j 0

r xy
e

j!


  



 
  

   (k)
ij ijg ,g 

 
: P.d.f. of transition time from state iS  to jS  and iS  to jS  via kS .

   (k)
ij ijp ,p 

      
: Steady-state transition probabilities from state iS to jS  and iS to jS

via kS .

   (k)
ij|x ij|xp ,p 

    
: Steady-state transition probabilities from state iS to jS  and iS to jS

via kS when it is known that the unit has worked for time x before
its failure.

 : Symbol for Laplace Transform i.e. st
ij ijg (s) e q (t)dt  

 ~ : Symbol for Laplace Stieltjes Transform i.e.  st
ij ijQ (s) e dQ (t)t 

 © : Symbol for ordinary convolution i.e. 
t

0

A(t)©B(t)= A(u)B(t-u)du
 : waiting time of unit-1. 

3.2. Symbols for the states of the system 

1o 2oN ,N : Unit-1and Unit-2 is in N-mode and operative. 

2sN  : Unit-2 is in N-mode and kept into cold standby. 

1r 2r F ,F : Unit-1 and unit-2 is in F-mode and under repair. 
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1w 2wF ,F : Unit -1 and Unit -2 is in F-mode and waiting for repair. 

 gRM : Repair machine is good. 

 oRM : Repair machine is operative. 

 rRM  : Repair machine is failed and under repair. 
 Considering the above symbols in view of the assumptions stated earlier, we have the 

following states of the system: 
Up States Failed States 

1o 2s
0

g

N ,N
S

RM

 
   
 

1r 2w
3

o

F ,F
S

RM

 
  
 

1r 2o
1

o

F ,N
S

RM

 
  
 

1w 2w
4

r

F ,F
S

RM

 
  
 

1w 2o
2

r

F ,N
S

RM

 
  
 

1o 2w
5

r

N ,F
S

RM

 
  
 

1o 2w
6

r

N ,F
S

RM

 
  
 

The transition diagram of the system model along with the transition rate or transition time 
c.d.f. is shown in Fig.1. The epochs of the transition into state 4 2 6 5S from S and S from S are non-
regenerative.

Figure 1: Correlation Model 

†The limits of integration are 0 to   whenever they are not mentioned. 
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4. Transition Probabilities and Mean Sojourn Times

Let X(t)  be the state of the system at epoch t, then  X(t); t 0  constitutes a continuous parametric

Markov-Chain with state space  0 6E S toS .The various measures of system effectiveness are

obtained in terms of steady-state transition probabilities and mean sojourn times in various states.  

01p 1, 21
2 2

1
p

( (1 r ))


 

 43p dG t 1,  65
1 1

1
p

( (1 r ))


  

 


2 2(1 r ) t t
10 | x 2 2 1

1 2 2

*
1 2 2

p 1 r e e dK (t | x)

K [ (1 r ) | x]

k [ (1 r ) | x],

    

   

   



   
   

   

2 2

2 2

(1 r ) t
12 | x 1

(1 r ) t
1

*
1 2 2

2 2

p e dK t | x

e dt 1 K t | x

1 k [ (1 r ) | x]
1 r

  

  

 

    

 
          




     

     
 
   

2 2

2 2

1 r t t
13 | x 2 2 1

1 r t
2 2 1

2 2 *
1 2 2

2 2

p 1 r e e dtK t | x

1 r e dt 1 K t | x

1 r
1 k [ (1 r ) | x]

1 r

  

    

  

     

  
          




 
 

 

t
34 | x 1

t
1

*
1

p e dtK t | x

e dt 1 K t | x

1 k | x ,





 

    

  




 
  
 

t
35 | x 1

1

*
1

p e dK t | x

K | x

k | x



 

 



 
 

  
  

t
50 | x 2

2 1 1

*
2 1 1

p e dK t |x

K 1 r | x

k 1 r | x



     

    



     

     
 
   

1 1

1 1

1 r t t
53 | x 1 1 2

1 r t
1 1 2

1 1 *
2 1 1

1 1

p 1 r e e dtK t | x

1 r e dt 1 K t | x

1 r
1 k [ (1 r ) | x]

1 r

  

    

  

     

  
           




   

   

1 11 r t
56 | x 2

*
2 1 1

1 1

p e dt 1 K t | x

1 k [ (1 r ) | x]
1 r

        

 
           


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     

 

2 2
4 (1 r )t
23

2 2

p 1 e dG t

1
1 ,

1 r

  

 
   



     1 1
4 (1 r )t
63

1 1

p 1 e dG t

1
1

(1 r )

  

 
  



It can be easily verified that 
01 45 | xp p 1  ,  12 13p p 1  ,  34p 1  

 4
20 | x 25 | xp p 1,   6

50 | x 52 | xp p 1  (1-5) 
From the conditional steady state transition probabilities, the unconditional steady state transition 
probabilities can be obtained by using the result- 

ij ij | xp p g(x)dx 

Thus, 
1 1

10
2 2 1 1

(1 r )
p

[ (1 r ) (1 r ) ]

 


     

 
1 1

12
2 2 2 2 1 1

(1 r )
p 1

1 r [ (1 r ) (1 r ) ]

  
           

 
 

2 2 1 1
13

2 2 2 2 1 1

1 r (1 r )
p 1

1 r [ (1 r ) (1 r ) ]

    
           

1 1
34

1 1

(1 r )
p 1 ,

[ (1 r ) ]

  
      

1 1
35

1 1

(1 r )
p

[ (1 r ) ]

 


   

 

 
   

2 2
50

2 2 1 1

1 r
p

1 r 1 r

 


      

 
 

1 1 2 2
53

1 1 1 1 2 2

1 r (1 r )
p 1

1 r [ (1 r ) (1 r ) ]

    
           

 
2 2

56
1 1 1 1 2 2

(1 r )
p 1

1 r [ (1 r ) (1 r ) ]

  
           

 

Thus, we have 
01 43p p 1  ,  10 12 13p p p 1    34 35p p 1   

50 53 56p p p 1     4
21 23p p 1,   4

65 63p p 1   (6-11) 

5. Mean Sojourn Time

The mean sojourn time i  in state iS is defined as the expected time taken by the system in state iS

before transiting into any other state. If random variable iU denotes the sojourn time in state iS

then, 
 i iP U t dt  

The mean sojourn times in various states are as follows- 
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0
1 1

1
,

(1 r )
 

  1
2 2 1 1

1

(1 r ) (1 r )
 

   

2
2 2

1
,

(1 r )
 

   3
1 1

1

(1 r )
 

 

 4 G t dt 1,   5
1 1 2 2

1

(1 r ) (1 r )
 

   

6
1 1

1

(1 r )
 

  (12-18) 

6. Analysis of Characteristics
6.1. Reliability and MTSF 

Let iR (t) be the probability that the system operates during (0, t) given that at t=0 system starts 
from iS E  . To obtain it we assume the failed states 3S  and 4S as absorbing. By simple 
probabilistic arguments, the value of 0R (t) in terms of its Laplace Transform (L.T.) is given by 

 
   

  
* * * *
56 65 12 21 0 01 1 01 12 2

* * * * * *
56 65

*
0

12 21 01 10

1 q q 1 q q Z q Z q q Z

1 q q 1 q q q q
R s

         
 

  
  (1) 

We have omitted the argument’s from *
ijq (s) and *

iZ (s) for brevity. *
iZ (s) ; i = 0, 1, 2, 5, 6 are the 

L. T. of
  1 1(1 r )t

0Z t e 

      2 21 r t
11Z t e K t | x dt,

  
        2 21 r t

2Z t e G t dt
 

 
    1 11 r t

5Z t e ,        1 11 r t

6Z t e G t dt
 

   (2-6) 
Taking the Inverse Laplace Transform of (1), we can get the reliability of the system when 

system initially starts from state 0S  . 
The MTSF is given by, 

     
   

 
56 65 12 21 0 1 12 2

0 0 0
s 0 56 65 12 21 10

1 p p 1 p p p
E T R t limR s

1 p p 1 p p p




         
    

  (7) 

6.2. Availability Analysis 

Let  iA t  be the probability that the system is up at epoch t, when initially it starts operation from

state iS E . Using the regenerative point technique and the tools of Laplace transform, one can 

obtain the value of  0 A t
 
in terms of its Laplace transforms i.e.  *

0 A s  given as follows-

   
 

1
0

1

N s
A s

D s
   (8) 

Where, 

          4 6 6 * 4* * * * * * *
1 0 01 1 2 01 12 13 34 45 5 01 12 13 34 4525 52 52 25N s 1 q q Z q Z Z q q q q q q Z q q q q q q                           

and 

         4 * 6 * 6 * 4 ** * * * * * * * * * * * * * * *
1 01 12 20 01 13 20 34 45 01 12 50 01 13 34 45 5025 52 52 25D s 1 q q q q q q q q q q q q q q q q q q q q      (9)
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Where,  iZ t , i=0,1,2,5,6 are same as given in section 6.1.

The steady-state availability of the system is given by 
   0 0 0

s 0t
A A tli sm lim A s


    (10) 

We observe that 
 1 D 0 0

Therefore, by using L. Hospital’s rule the steady state availability is given by 
 
 

1 1
0 ' 's 0

1 1

N s N
A lim

D s D
   (11) 

Where, 
    4 6

1 0 1 2 13 50 5 12 2025 52N (0) 1 p p 1 p p 1 p p                 

and 

             4 6 6(4) (6)'
1 0 1 3 13 1 13 20 2 12 2025 52 25 52 52D 1 p p p 1 p p n 1 p p p n 1 p p             (12) 

The expected up time of the system in interval (0, t) is given by 

   
t

up 0
0

  t A u du  

So that,     0
up

A s
s

s


   (13) 

6.3. Busy Period Analysis 

Let  1
iB t and  2

iB t be the respective probabilities that the repairman is busy in the repair of unit-

1 failed due to first repair with priority of unit-1 and unit-2 failed due to second repair at epoch t, 
when initially the system starts operation from state iS E . Using the regenerative point technique 
and the tools of L. T., one can obtain the values of above two probabilities in terms of their L. T. i.e. 

 1*
iB s

 
and  2*

iB s as follows-

1* 2
i

1

N (s)
B (s) ,

D (s)
 2* 3

i
1

N (s)
B (s)

D (s)


 (14-15) 
Where, 

            4 * 4 ** * * * * * * * * * * * * * * *
2 1 01 56 65 34 43 35 43 56 53 3 01 56 65 12 1363 23N s Z q 1 q q 1 q q q q q q q Z q 1 q q q q q (16)          

 

and 

    4* * *
3 01 35 13 12 523N s q q q q q Z   

and  1D s  is same as defined by the expression (9) of section 6.2.

The steady state results for the above two probabilities are given by- 
 1 1 '

0 0 2
s 0

1B s B s Nlim \ D


    and   2 2 '
0 0 3

s 0
1B s B s Nlim \ D



    (17-18) 

Where, 

            4 4
2 1 56 65 34 35 56 53 3 56 65 12 1363 23N 0 1 p p 1 p p p p p 1 p p p p p           

(19)

    4
4 35 13 12 523N 0 p p p p     (20) 

and '
1D is same as given in the expression (12) of section 6.2. 
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The expected busy period in repair of unit-1 failed due to first repair with priority of unit-1 
and unit-2 failed due to second repair during time interval (0, t) are respectively given by- 

   
t

1 1
b 0

0

t B u du,    and    
t

2 2
b 0

0

t B u du  
So that, 

   1
01

b

B s
s

s


   and    2

02
b

B s
s

s


   (21-22) 

7. Profit Function Analysis

The net expected total cost incurred in time interval (0, t) is given by 
P (t) = Expected total revenue in (0, t) - Expected cost of repair in (0, t) 

      1 2
0 up 1 b 2 bK t K t K t       (23) 

Where, 0K is the revenue per- unit up time by the system during its operation. 1K  and 2K are 
the amounts paid to the repairman per-unit of time when the system is busy in repair of unit-1 
failed due first repair with priority of unit-1 and unit-2 failed due to second repair respectively. 

The expected total profit incurred in unit interval of time is 1 2
0 0 1 0 2 0P K A K B K B    

8. Particular Case

Let, 
tG(t) e  

In view of above, the changed values of transition probabilities and mean sojourn times. 

   21 65
2 2 1 1

1 1
p , p

1 r 1 r
 
       

 

 
4
23

2 2

1
p 1 ,

1 r
 

   
  

 
4
63

1 1

1
p 1

1 r
 

   

2
2 2

1
,

(1 r )
 

   6
1 1

1

(1 r )
 

  

9. Graphical Study of Behaviour and Conclusions

For a more clear view of the behaviour of system characteristics with respect to the various 
parameters involved, we plot curves for MTSF and profit function in Fig. 2 and Fig. 3 w.r.t. α1=for 
three different values of correlation coefficient 1 =0.15, 0.45, 0.85 and two different values of repair 
parameter r2  =0.8, 0.9 while the other parameters are θ =0.9,= β2= =0.4, r1 =0.7, α2= =0.8,  =0.9. It is 

clearly observed from Fig. 2 that MTSF increases uniformly as the value of α1=and r2 increase and it 
decrease with the increase in α1=. Further, to achieve MTSF at least 80 units we conclude for smooth 
curves that the values of α1=must be less than 0.1, 0.13 and 0.4 respectively for 1 =0.15, 0.45, 0.85 
when r2  =0.8. Whereas from dotted curves we conclude that the values of α1=must be less than 0.1, 
0.11 and 0.22 for 1 =0.15, 0.45, 0.85 when r2  =0.9. 

Similarly, Fig.3 reveals the variations in profit (P) with respect to α1 for three different values of 
1 =0.15, 0.45, 0.75 and two different values of r2  =0.01, 0.03, when the values of other parameters 
θ =0.8,=β2==0.98, r1 =0.3, α2==0.6,  =0.8, K0=95, K1=250 and K2=225. Here also the same 
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trends in respect of 1α ,1  and r2  are observed in case of MTSF. Moreover, we conclude from the 
smooth curves that the system is profitable only if 1α is less than 0.1, 0.19 and 0.59 respectively for 
1 =0.15, 0.45, 0.75 when r2  =0.01. From dotted curves, we conclude that the system is profitable 
only if 1α is less than 0.1, 0.25 and 0.32 respectively for 1 =0.15, 0.45, 0.75 when r2  =0.03. 

Figure 2: Behaviour of MTSF with respect to α1, β1 and r2

Figure 3: Behaviour of PROFIT (P) with respect to α2, β1 and r2 
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