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Abstract

The aim of the paper is to carry out survival analysis of a novel multi-state model on infectious disease
considering various levels of severity using semi-Markov processes. Various levels of severity of the disease
over time and transitions between these severity levels have been considered. Transition probabilities and
expected waiting times are derived. Expressions for mean survival time, expected total time in home
isolation, and expected total time in hospital are obtained. The analysis of the proposed model is carried
out through numerical computation and plotting several graphs. Important conclusions are drawn. The
modelling framework proposed here can be used to model any infectious disease irrespective of disease
states. The study will be helpful in designing effective measures to control the infectious disease and
selecting the appropriate intervention policies.
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1. Introduction

Modelling infectious diseases has always been an area of interest for researchers in various fields
for the sake of prevention and control of these diseases. According to World Health Organization
2019 report [17], infectious diseases are still in the top ten leading causes of death. In low income
countries, six of the top ten causes of death are infectious diseases including neonatal conditions,
lower respiratory infections, diarrhoeal diseases, malaria, tuberculosis, HIV/AIDS [17]. As per
the above report, there was 50% drop in Disability Adjusted Life Years (DALYs) since 2000 due to
infectious, maternal, perinatal and nutritional conditions.

Multi-state Markov models have been frequently used to study the progression of diseases
such as cancer [7, 11, 15], HIV infection [4, 20], renal disease [9] and many more. For a Markov
model, it is assumed that the holding time in a state is exponentially distributed. For many real-
world situations, such as time to failure and time to discover a fault, the exponential distribution
may be acceptable. In fact, the exponential distributions have memoryless property. In some cases,
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the memoryless property could be seen as a problematic assumption. For example, patients who
respond well to a treatment are likely to respond well to the treatment in the future, violating the
Markov property [5]. To overcome this limitation, semi-Markov processes came into existence.

Semi-Markov processes are very important generalizations of Markov processes. While
Markov processes assume that holding time in a state is exponentially distributed, semi-Markov
processes relax the assumption allowing any arbitrary distributions for holding time in a state.
Semi-Markov processes were defined by Levy [12] and Smith [14]. Since then, semi-Markov
process concepts have been applied to solve various problems like electronics and missile related
problems, to improve reliability of various systems, for cost-benefit analysis of a system, for
economic decision making problem and so on. The field of biomedical science is not an exception
to this, for example, see [1, 2, 6, 8, 10, 13, 16]. Weiss and Zelen [16] applied the theory of
semi-Markov processes to the construction of a stochastic model for interpreting data obtained
from clinical trials on patients with acute leukemia. Kao [10] derived results for computing the
mean and variance of times in transient states and times to absorption in a transient semi-Markov
process. Davidov [6] developed expressions for the steady-state probabilities for regenerative
semi-Markov processes. Castelli et al. [2] performed cost-effective analysis to compare the
follow-up strategies in colorectal cancer study. Goshu and Dessie [8] analysed hospital data
obtained from a cohort of AIDS patients who have been under antiretroviral therapy follow-up
and estimated the conditional probability of transitions between two states for a finite time period.
Cao et al. [1] developed a semi-Markov model to analyse the long-term cost effectiveness of heart
failure management programmes. Ramezankhani et al. [13] applied a multi-state semi-Markov
model to estimate the number of years of life lost due to diabetes with and without cardiovascular
disease.

However, the majority of the literature studies were focused on the disease’s progressive
stages and omitted the transitions back to normal state. We tried to bridge this gap through our
article. There were some studies which included the transitions back to normal state however
their main focus was to understand the threshold dynamics of the disease, for example, see [18],
[19]. Further, since infectious diseases typically necessitate isolation, such as measles, cholera,
diphtheria, infectious tuberculosis, plague, smallpox, yellow fever, and viral hemorrhagic fevers
[3], home isolation is one of the possible states of our model. Moreover, through our model,
we estimated the expected length of stay in home isolated state which has not been reported
in previous studies. Besides, it is a well known fact that elderly patients, pregnant women and
patients with co-morbidities are at risk of developing severe and critical illness and transition rates
would be different in each category of severity illness. Thus, it becomes necessary to consider
separate states for each category of severity. Keeping this in mind, we have considered the four
states as mild disease state, moderate disease state, severe disease state and critical disease state.
This brings another novelty to this model.

Keeping these in mind, a novel multi-state model for infectious disease based on the theory
of semi-Markov processes is proposed. Various levels of severity of the disease over time have
been considered. Thus, our model included every transition that a patient who is infected might
experience. As in the model, the general scenario for an infectious disease have been considered,
the model can be used to study and gain insights about any infectious disease. The paper is
organized as follows. The newly developed multi-state semi-Markov model is described in Section
2. Transition probabilities and expected waiting times are derived and theoretical expressions
regarding mean survival time, expected total time in home isolation and expected total time in
hospital are obtained in Section 3. Numerical computations are performed in Section 4. Finally,
conclusions are presented in Section 5.

2. Model Formulation

A semi-Markov model is proposed considering a person having an infectious disease showing the
transition between various states. There are nine states in the model in which a healthy individual
has the possibility to transit (see Figure 1). Infected persons can experience a range of clinical
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manifestations, from no symptoms to critical illness. Infected persons can generally be divided
into categories based on the severity of their illnesses: mild illness, moderate illness, severe illness,
and critical illness. In light of this, we have taken into account the corresponding four states in
increasing order of illness severity. Transitions from mild illness to moderate illness, moderate
illness to severe illness, and so forth are permitted since a patient is at risk of developing severe
and critical illness. Keeping this in mind, we have taken into consideration the deteriorating rates
from mild illness to moderate illness, moderate illness to severe illness and so on. More details
are described in the notations below.

Other assumptions made in the model are as under:
(i) All normal persons are exposed to the disease.
(ii) Testing of all infected persons is done.
(iii) Clinical testing is not perfect, i.e. there may be an error in testing.
(iv) Patient is home isolated if test results are false negative while patient is hospitalised if the
test results are positive.
(v) All random variables are independent of each other.

The following states are considered in the model:
S0 Normal state
S1 Asymptomatic state
S2 Symptomatic state
S3 Home isolated state
S4 Mild disease state
S5 Moderate disease state
S6 Severe disease state
S7 Critical disease state
S8 Death state

The following notation is used:

β incidence rate
α testing rate
λ1/λ2/λ3 deteriorating rate from mild illness to mod-

erate illness/moderate illness to severe ill-
ness/severe illness to critical illness

g1(t)/g2(t)/g3(t)/g4(t)/g5(t) probability density function of recovery
time in home isolated state/mild disease
state/moderate disease state/severe disease
state/critical disease state

G1(t)/G2(t)/G3(t)/G4(t)/G5(t) cumulative distribution function of recov-
ery time in home isolation/mild disease
state/moderate disease state/severe disease
state/critical disease state

h1(t)/h2(t)/h3(t)/h4(t)/h5(t) probability density function of time to death in
home isolation/mild disease state/moderate
disease state/severe disease state/critical dis-
ease state

H1(t)/H2(t)/H3(t)/H4(t)/H5(t) cumulative distribution function of time
to death in home isolation/mild disease
state/moderate disease state/severe disease
state/critical disease state

Wi(t) probability that the patient is in home isolation
at instant t without passing through any other
state
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p/q probability of an infected person to be asymp-
tomatic/ symptomatic (p + q = 1)

p1/q1 probability of an asymptomatically infected
person to be tested false negative/positive (p1 +
q1 = 1)

p2/q2 probability of an symptomatically infected
person to be tested false negative/positive
(p2 + q2 = 1)

r1/r2/r3/r4 probability that a patient is diagnosed with
mild illness/ moderate illness/severe ill-
ness/critical illness (r1 + r2 + r3 + r4 = 1)

a2/b2 probability that an home isolated person will
recover/ move to death state (a1 + b1 = 1)

a2/b2/c1 probability that a person with mild ill-
ness will recover to normal state/move to
death/deteriorate to moderate illness (a2 + b2 +
c1 = 1)

a3/b3/c2 probability that a person with moderate ill-
ness will recover to normal state/move to
death/deteriorate to severe illness(a3 + b3 +
c2 = 1)

a4/b4/c3 probability that a person with severe ill-
ness will recover to normal state/move to
death/deteriorate to critical illness (a4 + b4 +
c3 = 1)

a5/b5 probability that a person with critical illness
will recover to normal state/move to death
state (a5 + b5 = 1)

The following symbols/abbreviations are used:
SpO2 Pulse oximetry
R.R. Respiratory Rate
* Laplace Transform symbol
** Laplace Transform symbol
© Laplace Convolution symbol
s Laplace-Stieltjes Convolution symbol
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Normal State

Infected State

Death State

Figure 1: State Transition Diagram. Possible states which an individual may occupy are
depicted in the figure.
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3. Analysis

Let qij(t)/Qij(t) represents probability density function/cumulative distribution function of first
passage time from state Si to state Sj without visiting any other state in (0, t]. Thus, the time
dependent transition probabilities are given by

q01(t) = pβe−βt q02(t) = qβe−βt q13(t) = p1αe−αt

q14(t) = r1q1αe−αt q15(t) = r2q1αe−αt q16(t) = r3q1αe−αt

q17(t) = r4q1αe−αt q23(t) = p2αe−αt q24(t) = r1q2αe−αt

q25(t) = r2q2αe−αt q26(t) = r3q2αe−αt q27(t) = r4q2αe−αt

q30(t) = a1g1(t) q38(t) = b1h1(t) q40(t) = a2g2(t)
q45(t) = c1λ1e−λ1t q48(t) = b2h2(t) q50(t) = a3g3(t)
q56(t) = c2λ2e−λ2t q58(t) = b3h3(t) q60(t) = a4g4(t)
q67(t) = c3λ3e−λ3t q68(t) = b4h4(t) q70(t) = a5g5(t)
q78(t) = b5h5(t)

The steady state transition probabilities, pij = lim
t→∞

∫ t
0 qij(t) dt are obtained as

p01 = p p02 = q p13 = p1 p14 = r1q1 p15 = r2q1
p16 = r3q1 p17 = r4q1 p23 = p2 p24 = r1q2 p25 = r2q2
p26 = r3q2 p27 = r4q2 p30 = a1 p38 = b1 p40 = a2
p45 = c1 p48 = b2 p50 = a3 p56 = c2 p58 = b3
p60 = a4 p67 = c3 p68 = b4 p70 = a5 p78 = b5

Let Ti denote the waiting time in state Si then the expected waiting time in state Si is given by
µi =

∫ ∞
0 P(Ti > t) dt. Thus, the expected waiting times are obtained as

µ0 =
1
β

µ1 =
1
α

µ2 =
1
α

µ3 = −a1g∗
′

1 (0)− b1h∗
′

1 (0)

µ4 =
c1

λ1
− a2g∗

′
2 (0)− b2h∗

′
2 (0) µ5 =

c2

λ2
− a3g∗

′
3 (0)− b3h∗

′
3 (0)

µ6 =
c3

λ3
− a4g∗

′
4 (0)− b4h∗

′
4 (0) µ7 = −a5g∗

′
5 (0)− b5h∗

′
5 (0)

The expected waiting time in state Si given that the next state visited is Sj, is defined as
mij =

∫ ∞
0 tqij(t) dt = −q∗

′
ij (0). Thus, the following relations are satisfied:

m01 + m02 = µ0
m13 + m14 + m15 + m16 + m17 = µ1
m23 + m24 + m25 + m26 + m27 = µ2
m30 + m38 = µ3
m40 + m45 + m48 = µ4
m50 + m56 + m58 = µ5
m60 + m67 + m68 = µ6
m70 + m78 = µ7

Theorem 1. If T0 is the mean survival time for the patient starting in state S0 then

T0 =
N
D

,
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where

N = µ0 + p01µ1 + p02µ2 + p01 p13µ3 + p01 p14µ4 + p01 p15µ5 + p01 p16µ6 + p01 p17µ7

+ p02 p23µ3 + p02 p24µ4 + p02 p25µ5 + p02 p26µ6 + p02 p27µ7 + p01 p14 p45µ5

+ p01 p15 p56µ6 + p01 p16 p67µ7 + p02 p24 p45µ5 + p02 p25 p56µ6 + p02 p26 p67µ7

+ p01 p14 p45 p56µ6 + p02 p24 p45 p56µ6 + p01 p15 p56 p67µ7 + p02 p25 p56 p67µ7

+ p01 p14 p45 p56 p67µ7 + p02 p24 p45 p56 p67µ7

and

D = 1 − p01 p13 p30 − p01 p14 p40 − p01 p15 p50 − p01 p16 p60 − p01 p17 p70 − p02 p23 p30

− p02 p24 p40 − p02 p25 p50 − p02 p26 p60 − p02 p27 p70 − p01 p14 p45 p50 − p01 p15 p56 p60

− p01 p16 p67 p70 − p02 p24 p45 p50 − p02 p25 p56 p60 − p02 p26 p67 p70 − p01 p14 p45 p56 p60

− p01 p15 p56 p67 p70 − p02 p24 p45 p56 p60 − p02 p25 p56 p67 p70 − p01 p14 p45 p56 p67 p70

− p02 p24 p45 p56 p67 p70.

Proof. Let ϕi(t) denote the cumulative distribution function of passage time from state Si to
the absorbing state.

The individual in state S0 at t = 0 can reach the absorbing state at time t in two possible
ways:
(i) The individual transited from state S0 to state S1 in time τ (τ < t) and reached the absorbing
state in t − τ time.
(ii) The individual transited from state S0 to state S2 in time τ (τ < t) and reached the absorbing
state in t − τ time.

Thus, we obtain
ϕ0(t) = Q01(t) s ϕ1(t) + Q02(t) s ϕ2(t)

Similarly, the following equations are obtained:
ϕ1(t) = Q13(t) s ϕ3(t) + Q14(t) s ϕ4(t) + Q15(t) s ϕ5(t) + Q16(t) s ϕ6(t) + Q17(t) s ϕ7(t)
ϕ2(t) = Q23(t) s ϕ3(t) + Q24(t) s ϕ4(t) + Q25(t) s ϕ5(t) + Q26(t) s ϕ6(t) + Q27(t) s ϕ7(t)
ϕ3(t) = Q30(t) s ϕ0(t) + Q38(t)
ϕ4(t) = Q40(t) s ϕ0(t) + Q45(t) s ϕ5(t) + Q48(t)
ϕ5(t) = Q50(t) s ϕ0(t) + Q56(t) s ϕ6(t) + Q58(t)
ϕ6(t) = Q60(t) s ϕ0(t) + Q67(t) s ϕ7(t) + Q68(t)
ϕ7(t) = Q70(t) s ϕ0(t) + Q78(t)

Taking Laplace-Stieltjes transform of the above system of equations, rearranging the terms
and solving the above system of equations for ϕ∗∗

0 (s), we obtain

ϕ∗∗
0 (s) =

N1(s)
D1(s)

where

N1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −Q∗∗
01 (s) −Q∗∗

02 (s) 0 0 0 0 0
0 1 0 −Q∗∗

13 (s) −Q∗∗
14 (s) −Q∗∗

15 (s) −Q∗∗
16 (s) −Q∗∗

17 (s)
0 0 1 −Q∗∗

23 (s) −Q∗∗
24 (s) −Q∗∗

25 (s) −Q∗∗
26 (s) −Q∗∗

27 (s)
Q∗∗

38 (s) 0 0 1 0 0 0 0
Q∗∗

48 (s) 0 0 0 1 −Q∗∗
45 (s) 0 0

Q∗∗
58 (s) 0 0 0 0 1 −Q∗∗

56 (s) 0
Q∗∗

68 (s) 0 0 0 0 0 1 −Q∗∗
67 (s)

Q∗∗
78 (s) 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

D1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −Q∗∗
01 (s) −Q∗∗

02 (s) 0 0 0 0 0
0 1 0 −Q∗∗

13 (s) −Q∗∗
14 (s) −Q∗∗

15 (s) −Q∗∗
16 (s) −Q∗∗

17 (s)
0 0 1 −Q∗∗

23 (s) −Q∗∗
24 (s) −Q∗∗

25 (s) −Q∗∗
26 (s) −Q∗∗

27 (s)
−Q∗∗

30 (s) 0 0 1 0 0 0 0
−Q∗∗

40 (s) 0 0 0 1 −Q∗∗
45 (s) 0 0

−Q∗∗
50 (s) 0 0 0 0 1 −Q∗∗

56 (s) 0
−Q∗∗

60 (s) 0 0 0 0 0 1 −Q∗∗
67 (s)

−Q∗∗
70 (s) 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Solving the above determinants, we get

N1(s) = Q∗∗
01 (s)Q

∗∗
13 (s)Q

∗∗
38 (s) + Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
48 (s) + Q∗∗

02 (s)Q
∗∗
23 (s)Q

∗∗
38 (s)

+ Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
48 (s) + Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
58 (s) + Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
68 (s)

+ Q∗∗
01 (s)Q

∗∗
17 (s)Q

∗∗
78 (s) + Q∗∗

02 (s)Q
∗∗
25 (s)Q

∗∗
58 (s) + Q∗∗

02 (s)Q
∗∗
26 (s)Q

∗∗
68 (s)

+ Q∗∗
02 (s)Q

∗∗
27 (s)Q

∗∗
78 (s) + Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
58 (s)

+ Q∗∗
01 (s)Q

∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
68 (s) + Q∗∗

02 (s)Q
∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
58 (s)

+ Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
68 (s) + Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
02 (s)Q

∗∗
26 (s)Q

∗∗
67 (s)Q

∗∗
78 (s) + Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
68 (s)

+ Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
68 (s) + Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
01 (s)Q

∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

D1(s) = 1 − Q∗∗
01 (s)Q

∗∗
13 (s)Q

∗∗
30 (s)− Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
40 (s)− Q∗∗

02 (s)Q
∗∗
23 (s)Q

∗∗
30 (s)

− Q∗∗
01 (s)Q

∗∗
15 (s)Q

∗∗
50 (s)− Q∗∗

02 (s)Q
∗∗
24 (s)Q

∗∗
40 (s)− Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
50 (s)− Q∗∗

01 (s)Q
∗∗
17 (s)Q

∗∗
70 (s)− Q∗∗

02 (s)Q
∗∗
26 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
27 (s)Q

∗∗
70 (s)− Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
50 (s)

− Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
50 (s)− Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)− Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
02 (s)Q

∗∗
26 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)− Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)− Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
01 (s)Q

∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

Mean survival time for the patient starting in state S0 is given by

T0 = lims→0
1 − ϕ∗∗

0 (s)
s

Using the above value of ϕ∗∗
0 (s), we obtain

T0 =
N
D

,
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where

N = µ0 + p01µ1 + p02µ2 + p01 p13µ3 + p01 p14µ4 + p01 p15µ5 + p01 p16µ6 + p01 p17µ7

+ p02 p23µ3 + p02 p24µ4 + p02 p25µ5 + p02 p26µ6 + p02 p27µ7 + p01 p14 p45µ5

+ p01 p15 p56µ6 + p01 p16 p67µ7 + p02 p24 p45µ5 + p02 p25 p56µ6 + p02 p26 p67µ7

+ p01 p14 p45 p56µ6 + p02 p24 p45 p56µ6 + p01 p15 p56 p67µ7 + p02 p25 p56 p67µ7

+ p01 p14 p45 p56 p67µ7 + p02 p24 p45 p56 p67µ7

and

D = 1 − p01 p13 p30 − p01 p14 p40 − p01 p15 p50 − p01 p16 p60 − p01 p17 p70 − p02 p23 p30

− p02 p24 p40 − p02 p25 p50 − p02 p26 p60 − p02 p27 p70 − p01 p14 p45 p50 − p01 p15 p56 p60

− p01 p16 p67 p70 − p02 p24 p45 p50 − p02 p25 p56 p60 − p02 p26 p67 p70 − p01 p14 p45 p56 p60

− p01 p15 p56 p67 p70 − p02 p24 p45 p56 p60 − p02 p25 p56 p67 p70 − p01 p14 p45 p56 p67 p70

− p02 p24 p45 p56 p67 p70.

■

Theorem 2. Expected total time in home isolation for the patient starting in state S0 is given by

µ3(p01 p13 + p02 p23)

D
,

where D has been already specified in Theorem 1.

Proof. Let ψi(t) denote the probability that the patient is in home isolation at instant t, given
that the patient entered state Si at t = 0. Proceeding on similar lines shown in Theorem 1, we
obtained the following recursive relations:
ψ0(t) = q01(t)©ψ1(t) + q02(t)©ψ2(t)
ψ1(t) = q13(t)©ψ3(t) + q14(t)©ψ4(t) + q15(t)©ψ5(t) + q16(t)©ψ6(t) + q17(t)©ψ7(t)
ψ2(t) = q23(t)©ψ3(t) + q24(t)©ψ4(t) + q25(t)©ψ5(t) + q26(t)©ψ6(t) + q27(t)©ψ7(t)
ψ3(t) = W3(t) + q30(t)©ψ0(t)
ψ4(t) = q40(t)©ψ0(t) + q45(t)©ψ5(t)
ψ5(t) = q50(t)©ψ0(t) + q56(t)©ψ6(t)
ψ6(t) = q60(t)©ψ0(t) + q67(t)©ψ7(t)
ψ7(t) = q70(t)©ψ0(t)
where
W3(t) = 1 − a1G1(t)− b1H1(t)

Taking Laplace transform of the above system of equations and solving for ψ∗
0 (s), we obtain

ψ∗
0 (s) =

N2(s)
D1(s)

,

where
N2(s) = W∗

3 (s)(q
∗
01(s)q

∗
13(s) + q∗02(s)q

∗
23(s))

and D1(s) has been already specified in Theorem 1.

Expected total time in home isolation for the patient starting in state S0 is given by∫ ∞

0
ψ0(t) dt = lims→0 ψ∗

0 (s)

=
µ3(p01 p13 + p02 p23)

D
,

where D has been already specified in Theorem 1. ■
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Theorem 3. Expected total time in hospital for the patient starting in state S0 is given by

1
D
(p01 p14µ4 + p01 p15µ5 + p01 p16µ6 + p01 p17µ7 + p02 p24µ4 + p02 p25µ5 + p02 p26µ6

+ p02 p27µ7 + p01 p14 p45µ5 + p01 p15 p56µ6 + p01 p16 p67µ7 + p02 p24 p45µ5 + p02 p25 p56µ6

+ p02 p26 p67µ7 + p01 p14 p45 p56µ6 + p02 p24 p45 p56µ6 + p01 p15 p56 p67µ7 + p02 p25 p56 p67µ7

+ p01 p14 p45 p56 p67µ7 + p02 p24 p45 p56 p67µ7),

where D has been already specified in Theorem 1.

Proof. Let χi(t) denote the probability that the patient is in hospital at instant t, given that the
patient entered state Si at t = 0. Proceeding on similar lines shown in Theorem 1, we obtained
the following recursive relations.
χ0(t) = q01(t)©χ1(t) + q02(t)©χ2(t)
χ1(t) = q13(t)©χ3(t) + q14(t)©χ4(t) + q15(t)©χ5(t) + q16(t)©χ6(t) + q17(t)©χ7(t)
χ2(t) = q23(t)©χ3(t) + q24(t)©χ4(t) + q25(t)©χ5(t) + q26(t)©χ6(t) + q27(t)©χ7(t)
χ3(t) = q30(t)©χ0(t)
χ4(t) = W4(t) + q40(t)©χ0(t) + q45(t)©χ5(t)
χ5(t) = W5(t) + q50(t)©χ0(t) + q56(t)©χ6(t)
χ6(t) = W6(t) + q60(t)©χ0(t) + q67(t)©χ7(t)
χ7(t) = W7(t) + q70(t)©χ0(t)
where
W4(t) = 1 − a2G2(t)− c1(1 − e−λ1t)− b2H2(t)
W5(t) = 1 − a3G3(t)− c2(1 − e−λ2t)− b3H3(t)
W6(t) = 1 − a4G4(t)− c3(1 − e−λ3t)− b4H4(t)
W7(t) = 1 − a5G5(t)− b5H5(t)

Taking Laplace transform of the above system of equations and solving for χ∗
0(s), we obtain

χ∗
0(s) =

N3(s)
D1(s)

,

where

N3(s) = W∗
4 (s)(q

∗
01(s)q

∗
14(s) + q∗02(s)q

∗
24(s)) + W∗

5 (s)(q
∗
01(s)q

∗
15(s) + q∗02(s)q

∗
25(s)

+ q∗01(s)q
∗
14(s)q

∗
45(s) + q∗02(s)q

∗
24(s)q

∗
45(s)) + W∗

6 (s)(q
∗
01(s)q

∗
16(s) + q∗02(s)q

∗
26(s)

+ q∗01(s)q
∗
15(s)q

∗
56(s) + q∗02(s)q

∗
25(s)q

∗
56(s) + q∗01(s)q

∗
14(s)q

∗
45(s)q

∗
56(s)

+ q∗02(s)q
∗
24(s)q

∗
45(s)q

∗
56(s)) + W∗

7 (s)(q
∗
01(s)q

∗
17(s) + q∗02(s)q

∗
27(s)

+ q∗01(s)q
∗
16(s)q

∗
67(s) + q∗02(s)q

∗
26(s)q

∗
67(s) + q∗01(s)q

∗
15(s)q

∗
56(s)q

∗
67(s)

+ q∗02(s)q
∗
25(s)q

∗
56(s)q

∗
67(s) + q∗01(s)q

∗
14(s)q

∗
45(s)q

∗
56(s)q

∗
67(s)

+ q∗02(s)q
∗
24(s)q

∗
45(s)q

∗
56(s)q

∗
67(s))

and D1(s) has been already specified in Theorem 1.

Expected total time in hospital for the patient starting in state S0 is given by∫ ∞

0
χ0(t) dt = lims→0χ∗

0(s)

= lims→0
N3(s)
D1(s)

Using the above value of N3(s) and simplifying we get the required result. ■
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4. Numerical Computations

Numerical computations for the mean survival time, expected total time in home isolation,
and expected total time in hospital have been performed. For illustrating our model results,
the waiting time distributions are assumed as exponentials, as follows: gi(t) ∼ exp(γi) and
hi(t) ∼ exp(δi) where i=1,2,...,5.

The severity levels of the disease are defined as under.
mild illness SpO2 ≥ 94% on room air and no shortness of breath
moderate illness 90% ≤ SpO2 < 94% on room air or 24 <R.R.≤ 30 breaths

per minute
severe illness SpO2 < 90% on room air or R.R.>30 breaths per minute
critical illness Respiratory failure or septic shock or multiple organ dys-

function or requires life sustaining treatment

In addition, the following values for parameters are assumed:
β=0.031/day, α=0.5/day, γ1=0.074/day, γ2=0.071/day, γ3=0.055/day,
γ4=0.034/day, γ5=0.023/day, λ1=0.12/day, λ2=0.15/day, λ3=0.20/day,
δ1=0.0011/day, δ2=0.0012/day, δ3=0.0015/day, δ4=0.0018/day, δ5=0.0020/day,
p=0.7, q=0.3, p1=0.74, q1=0.26, p2=0.18, q2=0.82, r1=0.83, r2=0.07, r3=0.06, r4=0.04, a1=0.98, b1=0.02,
a2=0.85, b2=0.05, c1=0.10, a3=0.75, b3=0.08, c2=0.17, a4=0.65, b4=0.15, c3=0.20, a5=0.1, b5=0.9.

For the above values of parameters, we obtained mean survival time, expected total time in
home isolation and expected total time in hospital and analysed how these parameters vary
corresponding to perturbations in transmission rates, deteriorating rates, and death rates. The
results obtained are depicted below. Figure 2-6 forecasts how variations in the transmission rate
and death rates will affect the mean survival time. Figure 7 illustrates how the expected total
time in home isolation changes as the recovery rate and death rate vary. Figure 8-11 predicts how
perturbations in the recovery rates and deteriorating rates will affect the expected total time in
hospital.
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Figure 2: A plot of T0 with varied β and δ1. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ1) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ1).
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Figure 3: A plot of T0 with varied β and δ2. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ2) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ2).
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Figure 4: A plot of T0 with varied β and δ3. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ3) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ3).
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Figure 5: A plot of T0 with varied β and δ4. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ4) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ4).
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Figure 6: A plot of T0 with varied β and δ5. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ5) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ5).
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Figure 7: A plot of expected total time in home isolation
with varied γ1 and δ1. The behaviour of the ex-
pected total time in home isolation with respect
to the recovery rate (γ1) for different values
of death rate (δ1) is demonstrated. From the
figure, it can be seen that the expected total
time in home isolation decreases as the recov-
ery rate (γ1) increases and gives lower values
for higher values of death rate (δ1).
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Figure 8: A plot of expected total time in hospital with
varied γ2 and λ1. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ2) for different values of
deteriorating rate (λ1) is demonstrated. From
the figure, it can be seen that the expected to-
tal time in hospital decreases as the recovery
rate (γ2) increases and gives lower values for
higher values of deteriorating rate (λ1).
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Figure 9: A plot of expected total time in hospital with
varied γ3 and λ2. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ3) for different values of
deteriorating rate (λ2) is demonstrated. From
the figure, it can be seen that the expected to-
tal time in hospital decreases as the recovery
rate (γ3) increases and gives lower values for
higher values of deteriorating rate (λ2).
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Figure 10: A plot of expected total time in hospital with
varied γ4 and λ3. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ4) for different values of
deteriorating rate (λ3) is demonstrated. From
the figure, it can be seen that the expected to-
tal time in hospital decreases as the recovery
rate (γ4) increases and gives lower values for
higher values of deteriorating rate (λ3).
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Figure 11: A plot of expected total time in hospital with
varied γ5 and δ5. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ5) for different values of
death rate (δ5) is demonstrated. From the fig-
ure, it can be seen that the expected total time
in hospital decreases as the recovery rate (γ5)
increases and gives lower values for higher
values of death rate (δ5).

5. Conclusion

Designing prevention strategies and infection control policies can be benefitted using mathematical
models of infectious diseases. On the basis of the idea of semi-Markov process, a new framework
for modelling infectious diseases have been presented. The analysis of the model aids in examining
the effects of various parameters on various system measures. According to the analysis presented,
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it is concluded that the mean survival time declines as the disease’s transmission rate rises and
has lower values for greater values of death rate. The expected total time in home isolation
reduces with rising recovery rates and has lower values for higher death rates. The expected total
time in hospital decreases as the recovery rate increases and gives lower values for higher values
of deteriorating rate. Through this article, the use and significance of semi-Markov models in
understanding infectious diseases trends is demonstrated. This study may be helpful in selecting
the optimal intervention tactics and creating effective infection control measures.

Declaration of Competing Interest

None.

Acknowledgement

The author Sujata Sukhija delightedly acknowledges Human Resource Development Group of
Council of Scientific & Industrial Research (CSIR), India, for providing fellowship through file
number 09/382(0258)/2020-EMR-I.

References

[1] Cao, Q., Buskens, E., Feenstra, T., Jaarsma, T., Hillege, H., & Postmus, D. (2016). Continuous
time semi-markov models in health economic decision making: An illustrative example in
heart failure disease management. Medical Decision Making, 36(1), 59–71. https://doi.org/
10.1177/0272989x15593080

[2] Castelli, C., Combescure, C., Foucher, Y., & Daures, J.-P. (2007). Cost-effectiveness analysis
in colorectal cancer using a semi-markov model. Statistics in Medicine, 26(30), 5557–5571.
https://doi.org/10.1002/sim.3112

[3] Centers for Disease Control and Prevention. (n.d.). Quarantine and isolation. Retrieved
December 2, 2022, from https://www.cdc.gov

[4] Chakraborty, H., Hossain, A., & Latif, M. A. (2019). A three-state continuous time Markov
chain model for HIV disease burden. Journal of Applied Statistics, 46(9), 1671–1688. https:
//doi.org/10.1080/02664763.2018.1555573

[5] Claris, S., & Delson, C. (2018). Time-homogeneous markov process for hiv/aids progression
under a combination treatment therapy: Cohort study, south africa. Theoretical Biology and
Medical Modelling, 15(1), 1–14. https://doi.org/10.1186/s12976-017-0075-4

[6] Davidov, O. (1999). The steady-state probabilities for regenerative semi-markov processes
with application to prevention and screening. Applied Stochastic Models and Data Analysis,
15(1), 55–63. https://doi.org/https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<55::
AID-ASM358>3.0.CO;2-4

[7] Farahani, M. V., et al. (2020). Application of multi-state model in analyzing of breast cancer
data. Journal of research in health sciences, 19(4), 1–5. https://pubmed.ncbi.nlm.nih.gov/
32291364

[8] Goshu, A. T., & Dessie, Z. G. (2013). Modelling progression of HIV/AIDS disease stages
using semi-markov processes. Journal of Data Science, 11(2), 269–280. https://doi.org/10.
6339/JDS.2013.11(2).1136

[9] Grover, G., Sabharwal, A., Kumar, S., & Thakur, A. K. (2019). A multi-state markov model
for the progression of chronic kidney disease. Turkiye Klinikleri Journal of Biostatistics, 11(1).
https://doi.org/10.5336/biostatic.2018-62156

[10] Kao, E. P. C. (1974). A note on the first two moments of times in transient states in a
semi-markov process. Journal of Applied Probability, 11(1), 193–198. https://doi.org/10.2307/
3212598

RT&A, No 4 (76) 
Volume 18, December 2023 

479

https://doi.org/10.1177/0272989x15593080
https://doi.org/10.1177/0272989x15593080
https://doi.org/10.1002/sim.3112
https://www.cdc.gov
https://doi.org/10.1080/02664763.2018.1555573
https://doi.org/10.1080/02664763.2018.1555573
https://doi.org/10.1186/s12976-017-0075-4
https://doi.org/https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<55::AID-ASM358>3.0.CO;2-4
https://doi.org/https://doi.org/10.1002/(SICI)1099-0747(199903)15:1<55::AID-ASM358>3.0.CO;2-4
https://pubmed.ncbi.nlm.nih.gov/32291364
https://pubmed.ncbi.nlm.nih.gov/32291364
https://doi.org/10.6339/JDS.2013.11(2).1136
https://doi.org/10.6339/JDS.2013.11(2).1136
https://doi.org/10.5336/biostatic.2018-62156
https://doi.org/10.2307/3212598
https://doi.org/10.2307/3212598


Sujata Sukhija, Rajeev Kumar
SURVIVAL ANALYSIS OF A SEMI-MARKOV MODEL ...

[11] Kay, R. (1986). A markov model for analysing cancer markers and disease states in survival
studies. Biometrics, 42(4), 855–865. https://doi.org/10.2307/2530699

[12] Levy, P. (1954). Processus semi-markoviens. Proc. Int. Congress. Math. (Amsterdam), 3, 416–
426.

[13] Ramezankhani, A., Azizi, F., Hadaegh, F., & Momenan, A. A. (2018). Diabetes and number
of years of life lost with and without cardiovascular disease: A multi-state homogeneous
semi-markov model. Acta Diabetologica, 55(3), 253–262. https://doi.org/10.1007/s00592-017-
1083-x

[14] Smith, W. L. (1955). Regenerative stochastic processes. Proc. Roy. Soc. Ser. A, 232, 6–31.
[15] Uhry, Z., Hédelin, G., Colonna, M., Asselain, B., Arveux, P., Rogel, A., Exbrayat, C., Gulden-

fels, C., Courtial, I., Soler-Michel, P., Molinié, F., Eilstein, D., & Duffy, S. (2010). Multi-state
markov models in cancer screening evaluation: A brief review and case study. Statistical
Methods in Medical Research, 19(5), 463–486. https://doi.org/10.1177/0962280209359848

[16] Weiss, G. H., & Zelen, M. (1965). A semi-markov model for clinical trials. Journal of Applied
Probability, 2(2), 269–285. https://doi.org/10.2307/3212194

[17] World Health Organization. (n.d.). The top 10 causes of death. Retrieved May 4, 2022, from
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

[18] Wu, P., Zhang, R., & Din, A. (2023). Mathematical analysis of an age-since infection and
diffusion HIV/AIDS model with treatment adherence and dirichlet boundary condition.
Mathematics and Computers in Simulation, 214, 1–27. https://doi.org/https://doi.org/10.
1016/j.matcom.2023.06.018

[19] Yang, J., Chen, Z., Tan, Y., Liu, Z., & Cheke, R. A. (2023). Threshold dynamics of an
age-structured infectious disease model with limited medical resources. Mathematics and
Computers in Simulation, 214, 114–132. https://doi.org/https://doi.org/10.1016/j.matcom.
2023.07.003

[20] Zvifadzo, M. Z., F, C. T., Jim, T., & Eustasius, M. (2019). HIV disease progression among
antiretroviral therapy patients in zimbabwe: A multistate markov model. Frontiers in public
health, 7, 326. https://doi.org/10.3389/fpubh.2019.00326

RT&A, No 4 (76) 
Volume 18, December 2023 

480

https://doi.org/10.2307/2530699
https://doi.org/10.1007/s00592-017-1083-x
https://doi.org/10.1007/s00592-017-1083-x
https://doi.org/10.1177/0962280209359848
https://doi.org/10.2307/3212194
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://doi.org/https://doi.org/10.1016/j.matcom.2023.06.018
https://doi.org/https://doi.org/10.1016/j.matcom.2023.06.018
https://doi.org/https://doi.org/10.1016/j.matcom.2023.07.003
https://doi.org/https://doi.org/10.1016/j.matcom.2023.07.003
https://doi.org/10.3389/fpubh.2019.00326



