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Abstract

In this paper, we establish a single server retrial queueing system with two types of customers,
admission control, balking, emergency vacation, differentiate breakdown, and restoration. There are
two distinct factors which must be considered when classifying priority and ordinary customers. The
non-preemptive priority discipline proposed by this concept. Ordinary and priority customers arrive in
accordance with Poisson processes. For both priority and ordinary customers, the server continuously
offers a single service that is distributed arbitrarily. In this study, we compute the Laplace transforms
of the time-dependent probabilities of system states using a probability generating function and the
supplementary variable technique. The sensitivity analysis of system descriptions is assisted by study of
numerical findings.
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1. Introduction

When a customer arrives and discovers the server is busy, they are asked to leave the service
area and join a trial queue known as orbit, which separates queues with repeated efforts. Once
a certain period has gone, the orbiting the customer may resubmit their service request. Any
customer in the orbit can repeatedly request services without affecting the other customers in the
orbit. In computer and communication systems, such queues have a unique function. Numerous
researchers explored two various customer types in retrial queues Wang ([26]; Dimitriou [12]; Wu
and Lian [27]; Rajadurai et al.[23]).

Several aspects of daily life involve priority queues, especially when specific groups of
individuals are given special attention, e.g. telecommunications field. Priority systems are a
inestimable scheduling tool that allows messages of several types to receive a wide range of
service. Due to this, the priority queue has earned a lot of attention in the literature Ayyappan
and Thilagavathy [5], Kim et al. [19], Bhagat and Madhu Jain [8], Rismawati et al. [24], Pandey
and Pal [22].

The service channel will temporarily fail if the regularly busy server breaks down, which
could happen at any time. In other words, the server is temporarily unavailable. Fiems et al. [13]
focused at the single-server queueing system with two different kinds of server disruption. Jain
and Agarwal [16] considered an unreliable server M[X]/M/1 queueing system with multiple
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types of server breakdowns. Zhang and Zhu [29] investigated retrial queueing model with
vacations and two types of breakdowns. Jayakumar and Senthilnathan [17] described the server
breakdown without interruption in a batch arrival queueing system with multiple vacations and
closedown. Yi-chih Hsieh and Andersland [28] explored steady-state queue length distribution
and mean queue length of Markov queueing systems subject to random breakdowns. Ayyappan
and Sankeetha [7] discussed single server that provides both regular and optional service with
vacation, breakdown and repair.

In 1957, Haight conducted the first study on the phenomenon of balking, in which customers
decide not to wait in queue if the server is not present. Customers may become frustrated in
several types of scenarios, including call centres, computer systems, websites, and telephone
switchboards. Artalejo and Lopez-Herrero [3] introduced an M/G/1 retrial queue with balking.
A M[X]/G/1 queue with variable vacations and balking was researched by Ke [18]. An M/G/1
retrial queue with non-persistent customers was mentioned by Gao and Wang [14] where the
server was susceptible to failure because of the negative arrivals.

The following admission control policy was examined in this study. An arriving batch of low
priority customers may be allowed to join the orbit with probability a or may not be allowed with
probability (1 − a). For instance, the company may not be able to select one candidate from all
the applicants during an interview. Some selection criteria could be used, such as a screening
process, a group discussion, etc. A single server batch arrival queueing system with two service
phases, an admission control system, and Bernoulli vacation was examined by Choudhury [9].
Artalejo et al. [4] generalised this queue to discrete-time. A M/Ek/1 queuing system’s control
approach was created by Madhu and Indhu [20]. A single server batch arrival retrial queueing
system with two service phases and a Bernoulli admission algorithm was obtained by Choudhury
and Deka [10].

Recent research regarding various vacation policies adopted by service providers has produced
a considerable impact on queueing systems. This is a result of its widespread application in many
kinds of real-life situations, particularly in flexible production systems, communication systems,
and computer systems. Shekar et al. [25] introduced a single server queueing system’s emergency
vacation. This vacation policy states that the working server may take a vacation in an emergency
without finishing the service to customers who are waiting in service interruption. A priority
retrial queueing system that involves working vacations and vacation interruptions, emergency
vacations, negative arrivals, and delayed repairs was studied by Ayyappan and Thamizhselvi [6].
With two different vacation possibilities, Anna Bagyam and Udhaya Chandrika [2] investigated a
single server retrial queueing system. [1] has highlighted the transient behaviour of a multiple
vacations queue with frustrated clients. [11] investigated a M[X]/G/1 queueing system with a
single vacation policy. Ayyappan and Meena developed the phase type queueing model with
degrading service, breakdown and Vacation.

In this study, we investigate a single server retrial priority queueing system with admission
control, balking, emergency vacation, differentiate breakdown and restoration. Incoming ordinary
customers have the option of entering the orbit or exiting the system if the server is down. If the
server is busy suddenly they go for vacation and the interrupted customer wait in the queue and
get fresh service after return from vacation. The regular busy period server may breakdown at
any instance. Hard and soft failure are the two kind of system failures. Hard failure is defined
as an equipment failure that requires a repairman with specialized knowledge to be physically
present, which is a time-consuming process. While soft failure is defined as failure brought on
by circumstances rather than a physical problem and usually resolved by restarting the system.
After breakdown that the system will take some time for its refunctioning. This recovering period
is called the restoration.

The rest of the paper is organized as follows: Mathematical model is described in Section 2 and
queue size distribution is analyzed in Section 3. An explicit expression for governing equation is
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enlisted in Section 4. Steady state analysis is discussed in Section 5. Stability condition discussed
in Section 6. Particular cases are obtained in Section 7. The effect of system performance measures
is illustrated in Section 8. Numerical and graphical results are derived and conclusion is obtained
in Section 9 and 10.

Figure 1: Schematic representation

2. Description of the Model

• Arrival Process : Two different types of units arrive in batches with independent Poisson
compound process. Let λp, λo > 0 represent the corresponding arrival rates for priority
and ordinary customers. Assume that the first order probabilities for priority and ordinary
customers λpcidt (i = 1, 2, 3, ...) and λocjdt (j = 1, 2, 3, ...) respectively. The system has i
and j batch size customers enters within a short period of time (t, t + dt). Here, 0 ≤ ci ≤ 1,
∑∞

i=1 ci = 1 , 0 ≤ cj ≤ 1, ∑∞
j=1 cj = 1.

• Retrial Service Process : Ordinary customers are known as retrial customers. These
customers will go back to the orbit and will request repeatedly for their service after some
time if the server is busy or unavailable. Retrial customers service time has rate β(ν) that
follows the general distribution.

• Regular Service Process : Ordinary and priority customers ordinate in batches with
distinct queues. Service rate follows general distribution and server renders single service
for priority customers and ordinary customers with service rate µi(ν), i = 1, 2 respectively.
When the priority queue is empty, the service for ordinary customers begins.

• Admission Control: The server will follow the admission control policy for ordinary
customers if it is overloaded in priority or ordinary customers. The server may grant
ordinary customers admission with probability a or restricted entry with probability (1 − a).

• Differentiate Breakdown and restoration : The rates of hard and soft failure are expo-
nentially distributed with rate α1 and α2 respectively. For soft failure, the restoration time
follows exponential distribution with rate η1 and for hard failure restoration time follows
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general distribution with rate η2(ν).
• Balking: Incoming ordinary customers have the option of entering the orbit with probability

b or exiting the system with probability 1 − b, if the server is down.
• Emergency Vacation: During the service term, the server has the opportunity to take an

unexpected vacation at the exponentially distributed rate θ. The emergency vacation time
for interruptions of priority and ordinary customers follows general distributions with rate
γ(ν).

3. Analysis of queue size distribution

This section deals with the derivation of governing equations. On account of non-Markovian
queueing system, probability generating function and supplementary variable have been used to
solve this model.
Let
N1(t) = Number of priority customers in the queue at time t,
N2(t) = Number of ordinary customers in the orbit at time t,
Y(t) = State of the server at time t.
Here M0(t), B0

i (t) for i = 1, 2., (R(2))0(t) and E0(t) indicates elapsed retrial time, elapsed service
time for priority and ordinary customers, elapsed restoration period, elapsed emergency vacation
at time t.

To obtain a bivariate Markov process {N1(t), N2(t), Y(t), t > 0}, Y(t) denotes the server state.
Here Y(t) = (0,1,2,3,4,5), which mean as follows: 0, the server is idle; 1, server is in retrial state; 2,
busy with priority customers; 3, busy with ordinary customers; 4, restoration; 5, on Emergency
vacation.

Let us assume that, M0(0) = 0, M0(∞) = 1, B0
i (0) = 0, B0

i (∞) = 1, (R(2))0(0) = 0,
(R(2))0(∞) = 1 and E0(0) = 0, E0(∞) = 1 be continuous at ν = 0 for i = 1, 2.

If the elapsed time is ν, let function β(ν), µ1(ν), µ2(ν), η2(ν) and γ(ν) represent the con-
ditional probability of completion rates for the retrial period, high priority and low priority
customer’s service period, restoration period, and emergency vacation period.

β(ν) =
dM(ν)

1 − M(ν)
; µi(ν) =

dBi(ν)

1 − Bi(ν)
, i = 1, 2 η2(ν) =

dR(2)(ν)

1 − R(2)(ν)

γ(ν) =
dE(ν)

1 − E(ν)
; are the hazard rate functions of M(.), Bi(.), R(2)(.) and E(.) respectively.

The probability I0,n(ν, t) = PrN1(t) = 0, N2(t) = 0, Y(t) = 0 and probability densities are as
follows:

I0,n(ν, t)dν = Pr{N1(t) = 0, N2(t) = n, Y(t) = 1; ν ≤ I0(t) ≤ ν + dν}, n ≥ 1

P(1)
m,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 2; ν ≤ B0

1(t) ≤ ν + dν},

P(2)
m,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 3; ν ≤ B0

2(t) ≤ ν + dν},

R(2)
m,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 4; ν ≤ R0(t) ≤ ν + dν},

Em,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 5; ν ≤ E0(t) ≤ ν + dν}

for ν ≥ 0, t ≥ 0, m ≥ 0 and n ≥ 0.
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4. Equation Governing the System

∂

∂t
P(1)

m,n(ν, t) +
∂

∂ν
P(1)

m,n(ν, t) =− (λp + aλo + α1 + α2 + µ1(ν) + θ)P(1)
m,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciP
(1)
m−i,n(ν, t)

+ aλo(1 − δ0n)
n

∑
j=1

cjP
(1)
m,n−j(ν, t) for m, n ≥ 1.

(1)

∂

∂t
P(2)

m,n(ν, t) +
∂

∂ν
P(2)

m,n(ν, t) =− (λp + aλo + α1 + α2 + µ1(ν) + θ)P(2)
m,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciP
(2)
m−i,n(ν, t)

+ aλo(1 − δ0n)
n

∑
j=1

cjP
(2)
m,n−j(ν, t) for m, n ≥ 1.

(2)

∂

∂t
I0,n(ν, t) +

∂

∂ν
I0,n(ν, t) =− (λp + λo + β(ν))I0,n(ν, t) for n ≥ 1. (3)

∂

∂t
Em,n(ν, t) +

∂

∂ν
Em,n(ν, t) =− (λp + bλo + γ(ν))Em,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciEm−i,n(ν, t)

+ bλo(1 − δ0n)
n

∑
j=1

cjEm,n−i(ν, t) for m, n ≥ 1.

(4)

d
dt

R(1)
m,n(ν, t) +

d
dν

R(1)
m,n(ν, t) =− (λp + bλo + η1)R(1)

m,n(t) + λp(1 − δ0m)
m

∑
i=1

ciR
(1)
m−i,n(t)

+ α1

∫ ∞

0
(P(1)

m,n(ν, t) + P(2)
m,n(ν, t))dν

+ bλo(1 − δ0n)
n

∑
j=1

cjR
(1)
m,n−i(t) for m, n ≥ 1.

(5)

∂

∂t
R(2)

m,n(ν, t) +
∂

∂ν
R(2)

m,n(ν, t) =− (λp + bλo + η2(ν))R(2)
m,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciR
(2)
m−i,n(ν, t)

+ bλo(1 − δ0n)
n

∑
j=1

cjR
(2)
m,n−i(ν, t) for m, n ≥ 1.

(6)

d
dt

I0,0(t) = −(λp + λo)I0,0(t) +
∫ ∞

0
P(1)

0,0 (ν, t)µ1(ν)dν + R(1)
0,0 (t)η1

+
∫ ∞

0
P(2)

0,0 (ν, t)µ2(ν)dν +
∫ ∞

0
R(2)

0,0 (ν, t)η2(ν)dν

+
∫ ∞

0
E0,0(ν, t)γ(ν)dν.

(7)
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Define, the boundary conditions at ν = 0

I0,n(0, t) =
∫ ∞

0
E0,n(ν, t)γ(ν)dν +

∫ ∞

0
P(1)

0,n (ν, t)µ1(ν)dν + R(1)
0,n(t)η1

+
∫ ∞

0
P(2)

0,n (ν, t)µ2(ν)dν +
∫ ∞

0
R(2)

0,n(ν, t)η2(ν)dν, for n ≥ 0.
(8)

P(1)
m,n(0, t) =

∫ ∞

0
P(1)

m+1,n(ν, t)µ1(ν)dν + R(1)
m+1,n(t)η1 +

∫ ∞

0
P(2)

m+1,n(ν, t)µ2(ν)dν

+
∫ ∞

0
Em+1,n(ν, t)γ(ν)dν +

∫ ∞

0
R(2)

m+1,n(ν, t)η(ν)dν + λpcm+1 I0,n(t),
(9)

P(2)
0,0 (0, t) = λoc1 I0,0(t) +

∫ ∞

0
I0,1(ν, t)β(ν)dν (10)

P(2)
0,n (0, t) = λocn+1 I0,0(t) +

∫ ∞

0
I0,n+1(ν, t)β(ν)dν +

n

∑
i=1

λoCi(ν, t)

+
∫ ∞

0
I0,n+1−i(ν, t)dν for n ≥ 1.

(11)

P(2)
0,n (0, t) = λocn+1 I0,0(t) +

∫ ∞

0
I0,n+1(ν, t)β(ν)dν +

n

∑
i=1

λoCi(ν, t)

+
∫ ∞

0
I0,n+1−i(ν, t)dν for n ≥ 1.

(12)

R(2)
m,n(0, t) = α2

∫ ∞

0
P(1)

m,n(ν, t)µ1(ν)dν + α2

∫ ∞

0
P(2)

m,n(ν, t)dν for m, n ≥ 0. (13)

P(1)
m,n(0) = P(2)

m,n(0) = Em,n(0) = R(1)
m,n(0) = R(2)

m,n(0) = 0, for m, n ≥ 0 and I0,0 = 1,

I0,n(0) = 0, for n ≥ 1 are the initial conditions.
(14)

Now, we define the Probability Generating Function (PGF),

I(ν, t, zo) =
∞

∑
n=1

zn
o I0,n(ν, t); A(ν, t, zp, zo) =

∞

∑
m=0

∞

∑
n=0

zm
o zn

p Am,n(ν, t);

A(ν, t, zp) =
∞

∑
m=0

zm
p Am(ν, t); A(ν, t, zo) =

∞

∑
n=0

zn
o An(ν, t); (15)

here A = P(1), P(2), E, R(1), R(2).
By applying Laplace transforms to equations (1) to (13) and by using (14) and (15) , we obtain the
following equations:

I0(ν, s, zo) = I0(0, s, zo)e−(s+λp+λo)ν−
∫ ν

0 β(t)dt, (16)

P(1)
(ν, s, zp, zo) = P(1)(0, s, zp, zo)e−ϕ1(s,z)ν−

∫ ν
0 µ1(t)dt, (17)

P(2)
(ν, s, zp, zo) = P(2)(0, s, zp, zo)e−ϕ1(s,z)ν−

∫ ν
0 µ2(t)dt, (18)

E(ν, s, zp, zo) = E(0, s, zp, zo)e−ϕ2(s,z)ν−
∫ ν

0 γ(t)dt, (19)

R(2)
(ν, s, zp, zo) = R(2)

(0, s, zp, zo)e−ϕ2(s,z)ν−
∫ ν

0 η2(t)dt. (20)

where,

ϕ1(s, z) = s + λp(1 − C(zp)) + aλo(1 − C(zo)) + α1 + α2 + θ, (21)

ϕ2(s, z) = s + λp(1 − C(zp)) + bλo(1 − C(zo)), (22)

ϕ3(s, z) = s + λp(1 − C(zp)) + bλo(1 − C(zo)) + η1, (23)
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P(2)
(0, s, zo) =



λoC(zo)I0,0(s)[1 − λpC(g(zo))[1 − M(s + λp + λo)

s + λp + λo

]
]− [I0,0(s)(s + λp + λo)− 1]

[M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]



z2[1 − λpC(g(zo))
[1 − M(s + λp + λo)

s + λp + λo

]
]

− [M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]

[B2(σ1(z, s)) + θzoE(σ2(z, s))
[1 − B2(σ1(z, s))

σ1(z, s)

]
+[1 − B2(σ1(z, s))

σ1(z, s)

][ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]



, (24)

I(0, s, zo) =



λoC(zo)I0,0(s)[B2(σ1(z, s) + θzoE(σ2(z, s))[1 − B2(σ1(z, s))
σ1(z, s)

]
+

[1 − B2(σ1(z, s))
σ1(z, s)

]
[ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]

− [I0,0(s)(s + λp + λo)− 1]zo



z2[1 − λpC(g(zo))
[1 − M(s + λp + λo)

s + λp + λo

]
]

− [M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]

[B2(σ1(z, s)) + θzoE(σ2(z, s))
[1 − B2(σ1(z, s))

σ1(z, s)

]
+[1 − B2(σ1(z, s))

σ1(z, s)

][ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]



, (25)

P(1)
(0, s, zp, zo) =



λp[C(zp)− C(g(zo))]
[1 − M(s + λp + λo)

s + λp + λo

]
I0(0, s, zo)

+ [B2(ϕ1(z, s))− B2(σ1(z, s)) + θzoE(ϕ2(z, s))[1 − B2(ϕ1(z, s))
ϕ1(z, s)

]
− θzoE(σ2(z, s))

[1 − B2(σ1(z, s))
σ1(z, s)

]
+

[ α1

ϕ3(z, s)
+ α2R(2)

(ϕ2(z, s))
][1 − B2(ϕ1(z, s))

ϕ1(z, s)

]
−

[1 − B2(σ1(z, s))
σ1(z, s)

][ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]


zp − [B1(ϕ1(z, s)) + θzoE(ϕ2(z, s))

[1 − B1(ϕ1(z, s))
ϕ1(z, s)

]
+

[ α1

ϕ3(z, s)
+ α2R(2)

(ϕ2(z, s))
][1 − B1(ϕ1(z, s))

ϕ1(z, s)

]
]


, (26)

E(0, s, zp, zo) = θzpP(1)
(0, s, zp, zo)

[1 − B1(ϕ1(z, s))
ϕ1(z, s)

]
+ θzoP(2)

(0, s, zo)
[1 − B2(ϕ1(z, s))

ϕ1(z, s)

]
,

(27)
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R(2)
(0, s, zp, zo) = α2P(1)

(0, s, z1, z2)
[1 − B1(ϕ1(z, s))

ϕ1(z, s)

]
+ α2P(2)

(0, s, z2)
[1 − B2(ϕ1(z, s))

ϕ1(z, s)

]
,

(28)

σ1(s, z) = s + λp(1 − C(g(zo))) + aλo(1 − C(zo)) + α1 + α2 + θ,

σ2(s, z) = s + λp(1 − C(g(zo))) + bλo(1 − C(zo)),

σ3(s, z) = s + λp(1 − C(g(zo))) + bλo(1 − C(zo)) + η1.

Theorem.1 When the system is in regular service, breakdown, emergency vacation and repair
by using the Laplace transforms the probability generating function of the number of customers
in the respective queue is given by.

I0(s, zo) = I0(0, s, zo)
[1 − M(s + λp + λo)

s + λp + λo

]
, (29)

P(1)
(s, zp, zo) = P(1)

(0, s, zp, zo)
[1 − B1(ϕ1(s, z))

ϕ1(s, z)

]
, (30)

P(2)
(s, zp, zo) = P(2)

(0, s, zo)
[1 − B2(ϕ1(s, z))

ϕ1(s, z)

]
, (31)

E(s, zp, zo) = E(0, s, zp, zo)
[1 − E(ϕ2(s, z))

ϕ2(s, z)

]
, (32)

R(2)
(s, zp, zo) = R(2)

(0, s, zp, zo)
[1 − R(2)

(ϕ2(s, z))
ϕ2(s, z)

]
. (33)

Proof: Integrating the preceding equations (29) to (33) with respect to ν and applying the solution
of renewal theory we obtain the following

∫ ∞

0

[
1 − H(ν)

]
e−sνdν =

1 − h(s)
s

. (34)

Here, the LST of the distribution function of a random variable H(ν) is denoted as h(s) . The overall

results of the probability generating functions for the following states, I0(s, zo), P(1)
(s, zp, zo),

P(2)
(s, zp, zo), E(s, zp, zo), and R(2)

(s, zp, zo) are obtained by using equation (29) to (33).

5. Steady State Analysis

According to Tauberian property,

lim
s→0

s f (s) = lim
t→∞

f (t).

Despite of the state of the system, the probability generating function of the queue size is as

follows:

Wq(z1, z2) =
Nr(z1, z2)

Dr(z1, z2)
, (35)
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where

Nr(zp, zo) = N3(z)D1(z)ϕ1(z)ϕ2(z)ϕ3(z)
[1 − M(s + λp + λo)

s + λp + λo

]
+ N1(z)D2(z)(1 − B1(ϕ1(z, s)))F1(z) + N2(z)D1(z)(1 − B2(ϕ1(z, s)))F2(z)

Dr(zp, zo) = D1(z)D2(z)ϕ1(z)ϕ2(z)ϕ3(z),

N1(z) = λp[C(zp)− C(g(zo))]
[1 − M(λp + λo)

λp + λo

]
I0(0, zo) + [B2(ϕ1(z))− B2(σ1(z))

+ θzoE(ϕ2(z)) +
[ α1

ϕ3(z)

[1 − B2(ϕ1(z))
ϕ1(z)

]
− θzoE(σ2(z))

[1 − B2(σ1(z))
σ1(z)

]
+ α2R(2)

(ϕ2(z))
][1 − B2(ϕ1(z))

ϕ1(z)

]
−

[1 − B2(σ1(z))
σ1(z)

][ α1η1

σ3(z)
+ α2R(2)

(σ2(z))
]
],

N2(z) = −[λp(1 − C(g(zo))) + bλo(1 − C(zo))][1 − λpC(g(zo))
[1 − M(λp + λo)

λp + λo

]
]

[M(λp + λo) + C(zo)λo

[1 − M(λp + λo)

s + λp + λo

]
,

N3(z) = −[λp(1 − C(g(zo))) + bλo(1 − C(zo))][B2(σ1(z)) + θzoE(σ2(z))[1 − B2(σ1(z))
σ1(z)

]
+

[1 − B2(σ1(z))
σ1(z)

][ α1η1

σ3(z)
+ α2R(2)

(σ2(z))
]
],

D1(z) = (zp − [B1(ϕ1(z)) + θzoE(ϕ2(z))
[1 − B1(ϕ1(z))

ϕ1(z)

]
+

[ α1η1

ϕ3(z)
+ α2R(2)

(ϕ2(z))
][1 − B1(ϕ1(z))

ϕ1(z)

]
],

D2(z) = zo[1 − λpC(g(zo))
[1 − M(λp + λo)

s + λp + λo

]
]− [M(λp + λo)

+ C(zo)λo

[1 − M(λp + λo)

λp + λo

]
][B2(σ1(z)) + θzoE(σ2(z))[1 − B2(σ1(z))

σ1(z)

]
+

[1 − B2(σ1(z))
σ1(z)

][ α1η1

σ3(z)
+ α2R(2)

(σ2(z))
]
].

6. Stability Condition

We apply the normalising condition to determine I0,0.

I0,0 + I0(1) + P(1)(1, 1) + P(2)(1, 1) + E(1, 1) + R(1)(1, 1) + R(2)(1, 1) = 1 (36)

I0,0 =
D

′
2ϕ1ϕ

′
2ϕ3 − N

′
2F

′
(1 − B2(ϕ1(z)))

D′
2ϕ1ϕ

′
2ϕ3

(37)

and the utilization factor is given by

ρ =
N

′
2F

′
(1 − B2(ϕ1(z)))
D′

2ϕ1ϕ
′
2ϕ3

(38)

The stability condition for the model under which steady state exists is ρ < 1
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7. Performance Measures

The expected queue size for priority customer is as follows:

Lq1 =
d

dzp
Wq(zp, 1)|zp=1 (39)

The expected orbit size for ordinary customer is as follows:

Lq2 =
d

dzo
Wq(1, zo)|zo=1 (40)

then

Lq1 =
Dr′′(1)Nr(

′′′)(1)− Dr
′′′)(1)Nr′′(1)

3(Dr′′(1))2 , (41)

Lq2 =
Dr′′′(1)Nr(iv)(1)− Dr(iv)(1)Nr′′′(1)

4(Dr′′′(1))2 . (42)

The expected waiting time for priority queue is as follows:

Wq1 =
Lq1

λp
(43)

The expected waiting time for orbit is as follows:

Wq2 =
Lq2

λo
. (44)

8. Particular Cases

Case 1:
Without a priority queue, all arriving customers are accepted into the system; customers do not
balk to orbit, take vacations and no failures, the above model becomes

I0(z) =
I0,0[C(zo)B(ϕ(z))− zo][1 − M(λo)]

B(ϕ(z))[C(zo) + M(λo)(1 − C(zo))]− zo
,

P(2)(z) =
I0,0(1 − B(ϕ(z)))M(λo)

B(ϕ(z))[(1 − C(zo))M(λo)− zo]
.

This result is associated with Gomez-Corral [15].

Case 2:
In the absence of priority queue, when there is no breakdown, no retrial, no balking, no repair
and no vacation then the above model becomes

P(2)(z) =
I0,0(1 − B2(ϕ(z)))

B2(ϕ(z))− zo

This result is associated with Medhi [21].

9. Numerical Results

The numerical and graphical analyses of this model are covered in this section. We assumed that
the distribution of service time, breakdown, repair, and vacation time are all exponential.
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Table 1: Effect of priority arrival rate (λp)

λp I0,0 ρ Lq1 Wq1 Lq2 Wq2

0.5 0.9971 0.0029 1.3928 2.7856 0.2013 0.1006
0.6 0.9963 0.0037 1.8271 3.0452 0.2497 0.1248
0.7 0.9955 0.0045 2.4404 3.4863 0.3016 0.1508
0.8 0.9945 0.0055 3.3321 4.1651 0.3574 0.1787
0.9 0.9934 0.0066 4.6809 5.2010 0.4174 0.2087
1.0 0.9922 0.0078 6.8391 6.8391 0.4819 0.2410

Table 1 demonstrates that the probability of the server being idle reduces as the arrival rate
(λp) of priority customers for the priority queue rises. However, average queue lengths, busy
period and customers average waiting times all rises: we assume the values as λo = 2, α1 = 0.3,
α2 = 0.5 µ = 5, η1 = 3,η2 = 5,θ = 0.5, β = 15,γ = 10, a = 0.5,b = 0.6 and λp = 0.5 to 1.0.

Table 2: Effect of service rate (µ)

µ I0,0 ρ Lq1 Wq1 Lq2 Wq2

2 0.6611 0.3389 3.7025 1.9418 7.0960 4.3513
3 0.9627 0.0373 2.2242 1.8339 6.3020 3.1121
4 0.9906 0.0094 1.7731 1.5863 5.7105 2.3861
5 0.9966 0.0034 0.3434 1.3856 5.2686 1.1717
6 0.9985 0.0015 0.1792 1.2542 4.9155 0.0896

Table 2 indicates that when the service rate (µ) increases, the probability of the server being
busy reduces. However, average queue lengths, idle time, and customers’ average waiting times
all reduces: we assume the values as λ1 = 0.5, λ2 = 2, α1 = 0.3, α2 = 0.5, η1 = 1, η2 = 6 β = 10,
θ = 0.5,γ = 10, β = 15,a = 0.5,b = 0.6and µ = 2 to 6.

Table 3: Effect of retrial rate (β)

β I0,0 ρ Lq1 Wq1 Lq2 Wq2

10 0.9725 0.0275 2.6038 5.2076 0.7172 0.3586
11 0.9724 0.0276 2.3409 4.6817 0.6998 0.3499
12 0.9722 0.0278 2.1251 4.2503 0.6856 0.3428
13 0.9721 0.0279 1.9449 3.8899 0.6737 0.3369
14 0.9720 0.0280 1.7922 3.5843 0.6636 0.3318
15 0.9719 0.0281 1.6610 3.3220 0.6549 0.3275

Table 3 indicates the probability of the server being busy period rises as the retrial rate rises.
However, average queue lengths, idle time, and customers’ average waiting times all reduces: we
assume the values as λp = 0.5,λo = 2, α1 = 0.3,α2 = 0.6, η1 = 3,µ = 3,θ = 0.5,η2 = 5,a = 0.5,b =
0.6 and β = 10to15.

We assumed to be follow the Erlang-2 distribution for service time, breakdown, repair, and
vacation time in graphical representations. The two-dimensional graphs are shown in Figure 2 -
4. Figure 2 exhibits that the expected length of the queue (Lq1 , Lq2) rises, the expected length of
the queue extends together with the priority arrival rate (λp). The behaviour of the queue sizes
(Lq1 , Lq2 ), which depends on the service rate (µ), is shown in Figure 3, the length of the queue as
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the service rate decreases. Figure 4 shows the expected queue length (Lq1 , Lq2), which depends
on the retrial rate (β), the length of the queue as the service rate decreases.
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Figure 2: Expected queue length vs priority arrival rate λp
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Figure 3: Expected queue length vs service rate µ
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Figure 4: Expected queue length vs Retrial rate β
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Figure 5: Lq1 Vs µ and η2

Figure 6: Lq2 Vs λp and α2

Figure 7: Idle Vs λp and α2

Graphs in three dimensions can be found in Figures 5 - 7. Figure 5 in the reference indicate
that the service rate (µ) and hard failure repair rate (α2) increase, the expected queue size
(Lq2) decease. Figure 6 in the reference indicate that as the priority arrival rate (λ1) and
breakdown(hard failure) rate (α2) increase, the expected queue size (Lq2) rises. Figure 6 in the
reference indicate that as the priority arrival rate (λp) and breakdown (hard failure) rate (α2)
increase, the idle is (I0, 0) rises.

10. Conclusion

In this inquiry, we investigated a single server retrial queueing system with admission control,
balking, non-preemptive priority service, and emergency vacation where the server is susceptible
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to various breakdown and restoration periods. The analytical findings that are supported by
numerical examples can be applied to design outputs in a variety of real-world scenarios. The
supplementary variable technique is used to determine the PGFs for the number of customers
in the system when it is free, busy and restoration period.The average queue length of the orbit
and system contains explicit expressions. The mean busy period and other significant system
performance measures are obtained. Finally, it is demonstrated that this retrial queueing method
works well with the conditional decomposition law. Our technique is more adaptable in dealing
with real-time systems of numerous sectors in many real-life queueing scenarios. This work can
be expanded in various directions by considering the concept of:

• Multi server batch arrival priority queueing model with production inventory system.

• Batch arrival bulk service double orbit retrial queueing system with priority service.
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