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Abstract

In this article, a simple methodology to predict the total fertility rate of Afghanistan via a Bayesian
statistical analysis method has been applied. R- statistical analysis tool is used for data analysis. To
forecast, the ”bayesforecast” package is needed. It is a substitute package in R for the ”forecast” package
in the traditional (frequentest) statistical method. The Bayesian data analysis using the specific case of the
general auto-regressive integrated moving average model (ARIMA) is processed as follows; As the first
step, the stationarity of the given data-set is assessed, the time series has been made stationary by taking
differences. After fitting several models, as the most appropriate fitted model, the ARIMA (1, 2, 1) model
has been fitted to the data. The accuracy of the fitted model is examined, and thereafter, the developed
model is analyzed. The posterior computation is done, using the Markov Chain Monte Carlo (MCMC)
simulation method. The method ultimately focuses on drawing relevant inferences including the 16 years
prediction, and the results are; in general, found to be satisfactory.

Keywords: Fertility, Total Fertility Rate, Age -Specific Fertility Rate, Auto-regressive Integrated
Moving Average Model, Stationarity, Hamiltonian Monte Carlo Algorithm, Prediction.

1. Introduction

Demography is the ”study of the human population” [1]. The size of families and children’s
numbers had a substantially decreased trend over the 20th century. Especially after 1960, the
family size and the number of children (fertility) have been showing a broadly favorable pattern
for sustainable development. These changes in the population resulted from a declining fertility
rate. The economic development level of a nation could be related to its fertility. The developed
countries have been showing a lower level of fertility trend, along with a better education
system, a revolutionary change in urbanization, greater wealth, and other factors. On the other
hand, undeveloped countries have been showing a higher fertility trend, the increased level of
fertility associated with a desire for family, labor, and caregivers in old age, lack of education,
unawareness of contraceptives, strict adherence to traditional religious beliefs, and lower rates
of female employees. Population growth and dependency ratios are directly affected by fertility
changes. Over the past century, fertility has been one of the most determinants, of the population
growth rate. Infant and child survival will be increased to provide greater access to education
and health services, especially for women. By improving the participation of women in the labor
force and empowering and reducing the number of children, women have over a lifetime. Low
levels of fertility also contributed by improving maternal health, reducing the mortality rate of
children, poverty alleviation, and economic development. Our objective; in this article includes
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the future prediction of the fertility of a population. Clearly, for this purpose, we must use some
summary index of fertility. The Total Fertility Rate is a composite measure of the fertility of a
population, it is the most significant component for Fertility projections.

1.1. Total Fertility Rate

The total fertility rate calculates how many children a cohort woman will have. so it represents
the average Family Size of the population. The total fertility rate is the sum of the Age-Specific
Fertility Rate (ASFR) over all ages of the childbearing period and is expressed as "per woman"
i.e., the sum divided by 1000. The average number of children a woman would have over her
lifetime of reproductive potential, which is between the ages of 15 and 49, is the population’s
total fertility rate.

Forecasting the fertility rate has a long history of being the interest of demographers. The total
number of live births in Australia, which is significant for population growth has been forecasted
by using an auto-regressive moving average model [2]. Another most important demo-graphical
forecasted characteristic could be the mortality forecast of the U.S. through the application of a
time series method [3].

Fitted a bi-variate auto-regressive model which acted as a transform function model for
forecasting the total fertility rate and mean ages of childbearing in the U.S annual data [4]. Age-
specific mortality in the United States is predicted for the long term, with confidence intervals,
using time series methods from 1990 to 2065. [5]. In a different publication, a parameterized
model used the age profiles of fertility to quickly and simply describe age-specific rates. Future
vital rate profiles are projected using time series models of the parameters, which reflect the
temporal patterns of the age profiles [6].

A mixed two methods; statistical time series and mathematical demography and applied to
predict stochastic models of fertility rates and the mortality rates of the U.S. dataset then by
using the random-matrix product theory forecasted various measures of demography [7]. In a
well-done study, a range of non-stationary dynamic factor models were used to jointly estimate
the total fertility rate changes within the rather homogeneous clusters of Southern European
countries in order to investigate the viability of the forecast. [8]. In this research, three methods
for forecasting demographic processes are used. The population forecasting for the demographic
data from 1980 to 2005 is particularly intriguing. Exogenous variable structural modelling based
on theory and expectation [9]. A recent work applied ARIMA model for the total fertility rate of
Pakistan is similar work of the paper from a classical perspective [10]. One another work lately
has been conducted by using the two-time series models (ARIMA and ARIMAX) for live birth
forecasting in Nigeria, which is a measure of population changes [11]. Numerous methods for
predicting fertility have been mentioned; the ones that have been discussed thus far were mostly
developed for wealthy nations that have already passed the fertility transition stage and currently
exhibit low fertility patterns. Another important consideration is that the developed methods
are used from traditional viewpoints. Pre-transition (high fertility), the fertility transition, and
post-transition are the three phases of the changes in total fertility rate in a Bayesian projection
model for the total fertility rate of country-specific forecasts of all countries (low fertility). The
model is based on the most recent data from the United Nations Population Division [12].

In the same way, we aim to model the TFR of Afghanistan via the ARIMA model and achieve
it is 10 years forecast by harnessing the attributes of the Bayesian paradigm. The procedures of
this article are as follows:

• A real dataset of the total fertility rate (TFR) of Afghanistan has been provided.

• By taking two time differences the non-stationary time series came into the form of stationary
series.

• The given data set has been analyzed from the Bayesian perspective using the "Bayesforecast"
package, in R statistical language and software.
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• "bayesforecast" package in R is a package provides many functions for data analysis in the
Bayesian prospective.

• "bayesforecast" package is a Stan-endded pack.

• Stan is probabilistic programming language, which is made easy the data analysis, when
there is complex probabilistic model.

• Stan work by taking sample of the equivalent to the posterior distribution fo the model, by
different algorithms.

• NUTS(MCMC) algorithm, which is Stan sampling algorithm is applied in this article for the
sampling purpose of the posterior distributions.

• The model fitting procedure is done by the help of Bayesian model fitting criteria "WAIC"
and "LOOIC".

• The ACF and PACF plot of the original data and differenced data has been given, it could
be a proper judge property for model fitting.

• After all the fitted and proper model which is decided for the given data is; ARIMA (1,2,1)
model.

2. Methods

In this section, very briefly the method which is applied for this study are expressed. The Total
Fertility Rate data-set in Afghanistan has been given. The assigned object is Bayesian prediction
of Total Fertility rate in Afghanistan at least for 16 future years. For further analysis, we have
been applied Bayesian method of forecasting. The Bayesian substitute R forecast package (in
classical statistics), is bayesforecast R package.The stationarity of the data tested, in a Bayesian
standpoint, about the model decided. ARIMA(1,2,1) model selected for further analysis. After all
analysis series, we reach to a satisfactory result.

2.1. ARIMA(p,d,q) Model

A time series Yt is said to follows an auto-regressive integrated moving average (ARIMA) model
if the dth difference Zt = ∇dYt is stationary and follows (ARMA) process. If Zt ∼ ARMA(p, q)
model, we say that Yt is an ARIMA (p, d, q) process. Where the three parameters; "p" in the
Auto-regressive terms represents the current values depending on it’s p − previous values (lag
values), while "q" in the moving average terms represents the current deviation from the mean
depending on q’s previous deviations and "d" is the number of differences, by taking, it makes a
non-stationary time series in the format of stationary. When stationary is not an issue, then we
can define an auto-regressive moving average (ARMA) model as follows;

Zt = et + ϕ1Z1 + ϕ2Z2 + ...... + ϕpZt − θ1e1 − θ2e2 − ...... − θqet (1)

Zt = et +
p

∑
i=1

ϕiZt−i −
q

∑
j=1

θjet−j (2)

Where; et is a white noise process, and ϕi parameter which is the coefficient of the authoritative
terms Zt−i, and θj the parameter, which is the coefficient of the moving average et−j terms. Using
the backshift operator, we can write this more succinctly, and ϕ1, ..., ϕp are the auto-regressive
parameters to be estimated, θ1, ., θq are the moving average parameters to be estimated and e1, ., et
a series of unknown random errors (residuals) that are assumed to follow a normal distribution.
The (ARMA) model can be simplifies when Box-Jenkins back-shift operator applied, simplified
(ARMA) model as follows:
The auto-regressive AR(p) model;
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Zt − ϕ1Zt−1 − ϕ2Zt−2 − ...... − ϕpZt−p = et

Where;
ϕ(B) = 1 − ϕ1B − ......... − ϕpBp and θ(B) = 1 − θ1B − θ2B2 − ..... − θqBq are polynomials in B

of degrees of p and q respectively. For the process to be stationary the root of ϕ(B) = 0 must
lie outside the unit circle, if the root of θ(B) = 0 is also outside the unit circle, it is called the
invertible, there is a unique model corresponding to the likelihood in that case.

we can write Equation 1 in the form of;

ϕ(B)Zt = θ(B)et (3)

The Equation 3 is the Backshift form of the ARMA (p, q) and the experience suggests in data
analysis models with AR and MA components often fit better data than the AR and MA pure. at
the same method from Equation 2 we can write;

(1 −
p
∑

i=1
ϕiBi)Zt = (1 −

q
∑

i=1
θjBj)et ⇒ (

p
∑

i=1
ϕiBi)Zt = (

q
∑

i=1
θjBj)et

ϕp(B)Zt = θq(B)et (4)

The above (ARMA) model can be extended and written using differences;

BZt = Zt−1

The difference operator ∇ = 1 − B is;

BZt = (1 − B)Zt = Zt − Zt−1.

Power in the Backshift operator is equal to the possible difference that a time series can take;

B2Zt = B(BZt) = B(Zt−1) = Zt−2

for the second difference we can write;

∇2Zt = (1 − B)(1 − B)Zt = (1 − 2B + B2)Zt = Zt − 2Zt−1 + Zt−2

eventually the "d" difference can be write;

Yt −
d

∑
k=1

Yt = (1 − B)dZt (5)

"d"is the order of differencing, in that case. The formal ARIMA (p, d, q) model in the Backshif
form is produced by replacing ”Zt” in the ARMA model with the differences described above
[15].

ϕp(B)(1 − B)dZt = θq(B)et (6)

The Equation 6 is the Backshift format of the ARIMA(p,d,q) model, with "d" difference.

3. Data and Model Specification

There is a yearly data-set, the total fertility rate of Afghanistan, from the year of 1983-2022
reported by the; (World bank open data, free and open access to global development data), the
data-set is taken from the; https://www.macrotrends.net/countries/AFG/afghan/fertility-rate.
For a better accuracy the total fertility rate data-set in Afghanistan for the year of 1983-2022 are
presented as bellow;
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Table 1: Afghanistan - Historical Total Fertility Rate form 1982 to 2022.

1982-1992 7.450 7.454 7.458 7.461 7.465 7.469 7.472 7.474 7.477 7.479 7.482
1993-2003 7.516 7.551 7.585 7.620 7.654 7.560 7.465 7.371 7.276 7.182 7.041
2004-2014 6.900 6.760 6.619 6.478 6.272 6.066 5.859 5.653 5.447 5.269 5.090
2015-2022 4.912 4.733 4.555 4.414 4.273 4.133 3.992

The allocated projection of Afghanistan’s total fertility rate for the next 16 years is the objective
of this article. Graphical illustration is the first step in characterising a data-set for the analysis
technique; thus, as a time series data-set has been provided, the most appropriate plot for the
given data-set is time plot, as shown in Figure 1. From a plotted data, the below tips could be
found;

• Patterns

• Unusual observations

• Change over time

• Relationship between variables

Figure 1: Displays the time series plot of the Total Fertility Rate of Afghanistan.

As we mentioned above, Figure 1 shows a constant pattern, from 1982 to 1998, a very short
increase, afterwards, then the total fertility rate of the country has been showing a decreasing
trend till 2022. Over all Figure 1 is visualized a decreasing trend, therefore, for fitting ARIMA
model, testing the stationarity is the versatile condition. In a stationary time series, the statistical
properties (mean, variance...) are independent of time, it does not depend on the time at which
the series is observed. Time series with seasonality and trend patterns are not stationary, the trend
and seasonality affect the value of the time series at different point of time. A series with the
same pattern in any point of time is a stationary time series, (e.g: white noise series). Stationary
time series will have not predictable pattern in the long- term [14].

3.1. Differencing to eliminate a trend

Differencing is the way to remove trends (non-stationarity) in a time series data. A difference
operator is defined as;

∇yt = yt − yt−1, (7)
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as well as, more broadly, for order d

∇dyt = (1 − B)dyt, (8)

Where B denotes the backshift operator (i.e., Bky − t = ytk f ork ≥ 1) A random walk, for example,
is one of the most basic and extensively used time series models, although it is not stationary. We
may create a random walk model like follows:

yt = yt−1 + wt, wt ∼ N(0, q). (9)

When the difference operator is applied to Equation 9, it produces a time series of Gaussian white
noise errors wt:

∇(yt = yt−1 + wt)
yt − yt−1 = yt−1 − yt−1 + wt
yt − yt−1 = wt
[16].

3.1.1 Making use of the ‘diff()‘ function

There are many methods for making a non-stationary (time series with trend, seasonality, cyclic,...)
data-set in the form of stationary. For the total fertility rate data-set, we applied two times
differencing to making the time series stationary. Let’s use R’s diff() function to remove the trend
from the total fertility rate time series. We will give some factors for identifying the stationarity
of time series data; the correlation between a variable and itself at various time lags is known
as the auto-correlation function (ACF). With the linear dependency of other yt−1, yt−2, ..., yt−k
eliminated, the partial autocorrelation function (PACF) assesses the linear correlation between a
series yt and a lagged version of itself yt + k. In this part, for the very important point, we will

Figure 2: Displays the observed and differenced Total Fertility Rate of Afghanistan.

consider the Figure 2, and assesses it for further understanding of the process. In Figure 2 in the
first row and first column is the time plot of the observed data, and the rest two other plots are
the correlogram of the observed total fertility rate of Afghanistan, ACF and PACF respectively.
The things we are going to learn from the correlogram are listed in bellow;
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• The ACF at lag 0 is plotted as a

• reference point because it defaults to 1 (i.e., the correlation of a time series with itself).

• The blue horizontal lines represent the CIs for approximately 95%; and

• The auto-correlation is really high.

Figure 2 shows that although the partial autocorrelation at lag-1 is quite strong (equaling the ACF
at lag − 1), the other values at lags > 1 are comparatively low, in contrast to what we observed
for the ACF. Indicies for the time lag are again real-valued in the PACF plot, but there is no
value for lag-0 since it is impossible to eliminate any intermediate autocorrelation between t and
t − k when k = 0, and as a result, the PACF does not exist at lag-0. Now the second row of the
Figure 2 shows a differenced and stationary of the total fertility rate of Afghanistan, for model
identifying as per ACF and PACF which are given the second row of the Figure 2 second and
third columns, the ACF show auto-correlation at lag-1 and PACF shows also correlation to lag-1
and decreasing correlation toward zero. Therefore, we will go to the other model fitting criteria
of Bayesian approaches.

3.2. Model Specification

In a next step, after visualizing the time series data, checking stationarity, and removing trend
of the data, we will approximate a model for the given data for further statistical analysis. The
model used ought to call for the fewest parameters, whose values may be calculated from the
observable series. Everything should be made as standardized but not simpler, according to a
quotation from Albert Einstein in Parzen (1982, p. 68). For fitting a model to the data, few more
steps are very important.

3.2.1 Bayesian Model Fitting Criteria

There are various methods for assessing and contrasting Bayesian models. The posterior predictive
checks can be used to evaluate the model’s fit to the data. It can be instructive to assess the
prediction accuracy of each model under consideration, compare them, and decide what to do
next if all of the models under consideration have discrepancies with the data [17].

As the total fertility rate data set is in use,we can do a WAIC and LOOIC criteria test for
model selection.

Watanable-Akaike Infromation Criteria (WAIC): It has also been suggested to utilise the log
pointwise posterior predictive density, with the posterior variance of the likelihood being used to
derive the effective number of parameters.

lppd =
n

∑
i=1

log
∫

p(yi|θ)p(θ|y)dθ. (10)

For more details; [18].
ˆelppdwaic =

ˆlppd − p̂waic (11)

WAIC =
n

∑
i=1

logE[p(yi|θ, y)]) + 2
n

∑
i=1

varpost(logp(yi|θ)). (12)

For more details;[19].
Where the posterior mean of the likelihood of the ith observation is E[p(yi|theta, y)]) and

∑n
i=1 varpost(logp(yi|θ)) the variance of each variable in the log predictive density summed over

n data points. Prior knowledge is taken into account by the WAIC, and the posterior distribution
is used in a non-normalway[16].

Leave-One-Out Cross Validation: When using the leave-one-out information criterion (LOO-
IC), N-1 observations are used as the validation sample, the process is repeated N times, resulting
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in a different observation being predicted each time, and the prediction results are added up to
produce an estimate of expected log predictive density (elpd) that closely resembles the outcomes
that would be obtained by gathering new data and performing the validation. We put the
calculations into a R package named "loo".

Table 2: Displays the WAIC and LOOIC.

ARIMA Models LOOIC WAIC
ARIMA(2,2,2) -153.5 -155.5
ARIMA(0,2,2) -155.8 -156.0
ARIMA(2,2,1) -155.0 -156.8
ARIMA(2,2,0) -156.0 -156.3
ARIMA(1,2,0) -156.0 -155.5
ARIMA(0,2,1) -156.6 -156.9
ARIMA(1,2,1) -157.0 -156.9
ARIMA(1,2,2) -154.8 -156.1

The WAIC and LOOIC are given for several ARIMA models, as per Table 2 ; ARIMA (1,2,1)
Model has been showing the proper and best model among all other models, with lesser WAIC
and LOOIC.

4. Bayesian Formulation

A Bayesian model is a parametric model as classical(or frequentest) model, but in Bayesian an
addition prior probability distribution for the parameters of the model have to be defined. And
the parameters of the model treat as a random variable rather to unknown constants. For a
Bayesian model, the components are listed as bellow:

• the data, denoted by Z.

• the parameters, denoted by the Greek letters.

• the distributions of the model, given by a specification f (Z|θ) or F(Z|θ)

• the prior distribution, specification of f (θ) or F(θ) or the distribution of the θ .

f is the probability distribution (cdf), F is a symbol which denotes the cumulative distribution
density(cdf), θ is the prior.

4.1. Bayes’ theorem

As a starting point for the Bayesian analysis, we would like to bring the Bayes’ Theorem which
is the important formula for Bayesian. Bayes’ theorem is based on the conditional probability
distribution:

f (θ | Z) =
f (Z | θ) f (θ)

f (Z)
(13)

f(x) is the unconditional (or prior) pdf of x. The proportionality format of the Equation 13 is;

f (θ | Z) ∝ f (Z | θ) f (θ) (14)

In the Equation 14 the f (θ | Z) is the posterior; the posterior is proportional to the likelihood
times to the prior. The model is emphasized that the proportionality of the posterior is specifically
related to the θ. As the demonstrator is independent of θ we easily ignore it.
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4.2. Choosing the Prior Distribution of the Parameters

For the four parameters the location, scale, auto-regressive, and moving average parameters, ,
we must describe a four-dimensional joint prior distribution in the general case. However, it
is common practise to assume the parameters’ prior independence, which means that before
examining the data, we are unaware of whether the parameters are positively or negatively
connected. We can just define four distinct priors for the four parameters with independence. We
investigate weakly informative prior distributions.

TFR ∼ ARIMA(1, 2, 1)
mu0 = ϵ0 ∼ t(0, 2.5, 7)

σ0 ∼ t(0, 1, 7)
ar1 ∼ N(0, 0.5)
ma1 ∼ N(0, 0.5)

we can write the proportional prior density of the defined parameters;

π1(ϵ0) ∝ (1 + ϵ2
0

7 )
−4

π2(ϕ1) ∝ exp−
ϕ2

1
0.5

π3(θ1) ∝ exp−
θ1

2

0.5

π4(σ0) ∝ (1 + σ2
0
7 )−4

4.3. Likelihood Function for the Model

Z : Z1, Z2, ..., ZT−d are the observations, from Equation 2, the conditional density of Zt over
Zt−1, Zt−2,
..., Zt−p is given by;

f (Zt | Zt−1, Zt−2, ...., Zt−p; ϵ0, ϕi, θj, σ2) ∝ (
1
σ2 )exp

−1
2σ2 (Zt−ϵ0−∑

p
i=1 ϕiZt−i−∑

q
j=1 θjϵt−j)

2
(15)

From Equation 15 the likelihood function of the given density, can be approximated by its
conditional forms;

L(Z | ϵ0, ϕi, θj, σ2) ∝
T−d

∏
t=p+1

f (Zt | Zt−1, Zt−2, ...., Zt−p; ϵ0, ϕi, θj), (16)

For more details; [17].
For simplification we can write;

L(Z | ϵ0, ϕi, θj, σ2) ∝ (
1
σ2 )

(T−d−p)
2 exp−

1
2σ2 ∑T−d

t=p+1(Zt−ϵ0−∑
p
i=1 ϕiZt−i−∑

q
j=1 θjϵt−j)

2
(17)

where; ϕi = ϕ1, ϕ2, ..., ϕp, θj = θ1, θ2, ..., θq. If one has a sample size of T, and would like to estimate
a ARMA(p,q), there are many ways to estimate the parameters of the model: For the two times
differenced Total Fertility Rate series in Afghanistan, the Likelihood can be defined from Equation
17 as;

f (Z | ϵ0, ϕ1, θ1, σ2) ∝ (
1
σ2 )

(T−2−1)
2 exp(−

1
2σ2 )∑T−2

t=2 (Zt−ϵ0−ϕ1Zt−1−θ1ϵt−1)
2

(18)

where Zt obviously ∇yt [18].

4.4. Posterior Distribution Function of the Model

As, it has been discussed in Section 4.1, Bayesian approach is the implication of the Bayes’theorem
for further details Section 4.1. The prior and likelihood for the given data-set (total fertility rate)
have been defined, now by applying the Bayes’ theorem we can reach to the posterior distribution
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of the Bayesian distribution of the data-set, once the posterior defined, it will be easy to apply
any probabilistic programming language for fitting the posterior in a model and estimate the
parameters. From Section 4.1, the posterior;

posterior ∝ likelihood × prior
log(posterior) = log(prior) + log(likelihood)

p(ϵ0, ϕ1, θ1, σ2 | Z) ∝ (1 +
ϵ2

0
7
)−4exp−

ϕ2
1

0.5 exp−
θ2
1

0.5 (1 +
σ2

7
)−4×

(
1
σ2 )

(T−3)
2 exp(−

1
2σ2 )∑T−2

t=2 (Zt−ϵ0−ϕ1Zt−1−θ1ϵt−1)
2

(19)

From Equation 19, it is obvious which eventually we reach to a joint joint posterior distribution of
all parameters, we can find the marginal density function of each parameter and then generate
sample. As we obtained a joint posterior distribution of all parameters, we can find the marginal
density function of each parameter and then generate sample. In this article, which is the total
fertility rate data-set, in a Bayesian approach, we are going to analyse the data-set and estimate
the parameters. As we know the most important step for a Bayesian data analysis is; to create
a joint posterior function of all the parameters, now we have the joint posterior function of the
parameters. There are many computational tools for the Bayesian data analysis, as we will discuss
in Section 5, we only run the Code in R, in "bayesforecast" package’ fucntion stansarima()
fucntion, which is a Bayesian forecast’package in R, based of Stan, and using the MCMC
simulation method, the sampling algorithm in this function is NUTS(MCMC).

4.5. Markov Chain Monte Carlo (MCMC)

The modern method for approximating complex forms of the posterior distribution is the Markov
Chain Monte Carlo (MCMC) simulation method. The concept is akin to treating the posterior
distribution as a population and then drawing samples from it repeatedly. When you draw a large
enough sample (say 1,000), the sample distribution should be extremely close to the population
distribution, as you learnt in basic statistics. The samples drawn in the above comparison are
correlated, thus if the first sample is high, the second one is more likely to be high as well. This
is necessary since there is no direct way to take samples from the posterior distribution, which
typically has a very complex structure; instead, we have various procedures that can lead us
to the posterior indirectly. Correlation between samples is usually not a big deal, except that
we need to draw extra samples to compensate. In Sections 5.1 and 5.2 are given the values of
the parameters and in Section 5.2 plots are showing the trance plot and the sample distribution
of 4,000 samples using MCMC. The shape of the MCMC sample distribution approximates the
shape of the posterior distribution [19].

5. Bayesian Inference Using NUTS(MCMC)

NUTS is an extension of Hamiltonian Monte Carlo (HMC) which is a type of MCMC. NUTS can
even sample from the model with a greater number of parameters, it is a strength of NUTS sampler
algorithm. Stan is a very good probabilistic programming language, the only disadvantage is
that, Stan cannot sample for discrete parameters. NUTS uses a recursive algorithm to build
a set of likely candidate points that spans a wide swath of the target distribution, stopping
automatically when it starts to double back and retrace its steps. Hamiltonian Monte Carlo is
a Markov Chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior and
sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps
informed by first order gradient information [20].

We will describe how to give the data to the model created by the R package "bayesforecast"
in this part. For forecasting, the "bayesforecast" package in R is a Stan end-packed package. We
must use R to give the data as a certain type to the "bayesforecast" package’s function for ARMA
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model fitting in order to accomplish this and obtain the outcome. In "bayesforecast" package, the
model can be estimated using the guidelines below:

stan_sarima(

ts,

order = c(1, 0, 0),

seasonal = c(0, 0, 0),

xreg = NULL,

period = 0,

chains = 4,

iter = 2000,

warmup = floor(iter/2),

adapt.delta = 0.9,

tree.depth = 10,

stepwise = TRUE,

prior_mu0 = NULL,

prior_sigma0 = NULL,

prior_ar = NULL,

prior_ma = NULL,

prior_sar = NULL,

prior_sma = NULL,

prior_breg = NULL,

series.name = NULL,

...)

Using the function stan_sarima()’s from "bayesforecast" package in R the default setting are;
ts =, The ARIMA(p,d,q) order, chains is equaling 4, iterations per chain equaling 1000, and 1000
warmups. used as a warmup to eliminate dependencies in the initial settings. We fit the selected
model to the total fertility rate; by the function above.

5.1. The Estimated Results

The given Table 3: shows the numerical estimated values for the parameters of the fitted model
ARIMA (1,2,1) on the total fertility rate of Afghanistan.

Table 3: Displays the estimated posterior distribution of the parameters

Mean Se %5 % 95 Ness Rhat
Intercept -0.0103 0.0001 -0.0215 -0.0007 4282.407 1.0000

σ0 0.0270 0.0001 0.0221 0.0329 3940.089 1.0015
ϕ1 0.9209 0.0008 0.8339 0.9872 4034.682 1.0000
θ1 0.0658 0.0024 -0.1909 0.3134 4109.169 1.0005

loglik 77.7385 0.0323 73.8071 80.3939 3808.628 1.0034

Table 3 provides a summary of the statistics for the marginalized posterior distribution as
well as the MCMC convergence diagnostics. In line 3, for instance, the marginalized posterior
distribution for parameter ϕ1 is presented. Now, let’s examine each column. The name of the
parameter is displayed in the first column. The posterior mean, also known as the mean of the
marginalized posterior distribution, is the value in the second column. The arithmetic mean of all
the draws in this case, a total of 4000 is used to calculate this. For instance, the posterior mean
of θ1 is 0.0658 , and this finding shows that, on average, the baseline annual income grows by
0.0658with each extra year of work experience. The Monte Carlo standard errors of the Mean
are shown in the third column as Se. By dividing the SD by the square root of N − e f f , it is
calculated. The quantiles of the posterior marginalized distributions are displayed in columns
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four and five. These are calculated using the draw’s quantiles. Stan determines the effective
number of drawings as Ne f f in column 6 using the autocorrelation of the draws. We believe
this value should be at least 100 in order to estimate distributions and perform other statistical
calculations. Additionally, a small value for this parameter suggests that it has probably not
yet converged; this information could be used to improve the model. An indication of MCMC
convergence, R − hat, is computed for each parameter and is shown in column seven. Typically,
it compares the sample variance of each chain using findings from many chains. According to
Section 11.4 [21].

The MCMC is said to have converged if it meets the condition Rhat < 1.1 for all the parameters.
We must confirm that the MCMC is converged before evaluating the results. Beginners frequently
skip over this stage in favour of moving on to the analysis’ next step, when they could use the
posterior mean, plot the histogram of draws, or quickly interpret the findings using an MCMC
that hasn’t even begun to converge. Without a doubt, avoid this. The try − and − error procedure
must be repeated numerous times before the MCMC converges. Eventually the ARIMA (1,2,1)
model for the time series data as per Equation 1 can be written:

Yt = −0.0103 + 0.92yt−1 + 0.66et−1 (20)

From Table 3, the simulation estimate for E(ϕ1|y) is 0.92009, according the 90% credible interval
which is (0.8339 , 0.9872) of the Table 3 statistically significant. in the same way, the simulation
estimate for E(θ1|y) is 0.06258, it is not statistically significant 90% probability interval for the
variable(parameter) θ1 is ( -0.1909 , 0.3134) . Intercept and the posterior standard deviation values
are given respectively. In Bayesian statistics, the credible interval is analogous to the confidence
interval, but with radically distinct implications. A 90% credible interval, for example, is an
interval that has a 90% chance of containing the true value of the parameter, an interpretation
that is frequently and incorrectly connected with the confidence interval. Because the population
parameter is fixed, frequentists cannot use probability for the parameter; instead, only the sample
is probabilistic, and a 90% confidence interval must be interpreted in the sense that 90% of the
intervals constructed with repeated sampling will contain the true parameter. As we can see in
the Table 3 a 90% credible interval is given for each parameter of the model.

5.2. The estimated results figure

The sported plot of the estimated values are given as Figure 3;

Figure 3: Displays the supported of the estimated parameters.

The probability density functions of the marginalised posterior distributions, which are
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calculated from the draws after warm-up in each chain, are shown on the left column side. The
right column, which additionally displays the trace plots following warm-up. These plots show
that all of the chains are oscillating around a set of values after the warm-up, which indicates that
the MCMC has converged.

6. Model Checking

A common procedure in Bayesian statistics for validating your model is the posterior predective
check [22]. We must first talk about the posterior predictive distribution in order to comprehend
the posterior predictive check. The posterior predictive distribution in a mathematical notation.

p(ŷ|y) =
∫

θ
p(ŷ|θ, y)p(θ|y)dθ (21)

From the Equation 21, θ is the parameter, in our posterior distribution which is discussed in the
Section 4.4, θ is the set of all parameters θ=(ϵ, σ, ϕ1, θ1). The formula is merely provided for your
convenience because we won’t be using it to make posterior predictions. As an alternative, we
will employ simulations to roughly approximate the posterior predictive distribution of ŷ, which
is really an extension of the posterior distribution of θ’s approximation. The posterior predictive
check simply makes a comparison between the observed data and the model’s prediction ẇe
proceed to review the the graphical posterior predictive distribution of the total fertility rate.

Figure 4: Displays the posterior predicted.

From Figure 4, we can see that; the fitted model on the generated draws y − hat is very good
fit. Therefore, we can results, the fitted model is a proper model for the given data-set.

6.1. Check Residuals

We may examine the residuals’ autocorrelation using ”checkresiduals()” in the forecast package
will automatically run a test and display a few common diagnosis charts. Figure 5 is the common
diagnostics charts of the total fertility rate.
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Figure 5: expected values of the posterior predictive errors.

The residuals series (upper part) shows that the given series is white noise. The dash blue
lines are indicated the correlations are significantly not zero. In a white noise series, we expect
each correlation to be zero. For a white noise series, we expect 95% of the spikes to lie within the

2√
T

, where T is the length of the series. If more than 5% of the spikes are not in the blue bounds,
then the series is not white noise probably. The histogram and quantile graph (middle part) show
that the model is around normally distributed. Finally, the residual auto-correlation presents
have showed that there is no correlation between the series segments. A summary result from
the above interpretation is; we can step ahead and do our prediction based, as all the evidences
present a good and fair series.

7. Prediction

Forecasting can be used in many situations: for making a schedule to the staff of a call center
for some times in the future, we need to do a forecast as per call going to be received. For an
inventory or stocking there is need for forecast of stock requirement. Forecast can be for few
minutes beforehand till several years in advance. For making an efficient and effective plan, need
to do forecasting. Forecasting can be done very easy and sometimes very tough. predictability
for an event or quantity related to several factors;

• Understanding the factors to contribute on the event.

• How much data are accessible.

• Is there any effect of forecasting to the things are going to be forecasted [23].

Forecasting fertility; as the demographic characteristics (fertility, mortality, migration) of the
human population is significant for socio-economics planning. There are mentioned lots of fertility
forecasting methods, the methods discussed on the Section 1.1. Mostly, they have developed
for the countries which are rich today and already passed their fertility transition, and at the
current time they have low fertility patterns. Another point, is the developed methods are
applied from the classical perspectives. A Bayesian projection model for the total fertility rate
of country-specified projections of all countries have been done, the developed model consisted
of three phases for the changes in total fertility rate, pre-transition (high fertility), the fertility

RT&A, No 4 (76) 
Volume 18, December 2023 

993



Sayed Rahmi Khuda Haqbin and Athar Ali Khan
A Bayesian Prediction for the Total Fertility Rate OF Afghanistan Using...

transition, and post-transition (low fertility). The model has been built on the United Nations
Population Division’s current [24].

In the same way, we aim to model the Total Fertility Rate of Afghanistan via the ARIMA
model and achieve it is 16 years forecast, by harnessing the attributes of the Bayesian paradigm.

7.1. Forecasted Results

In the Table 4, which is numerical forecasted years, from 2022-2037 the 16 years of the total
fertility rate of Afghanistan.

Table 4: Future forecasting

Point Forecast Lo.0.9 Hi.0.9 Lo.0.95 Hi.0.95
2023 3.853670 3.802970 3.903317 3.794032 3.915283
2024 3.718556 3.668241 3.768550 3.656223 3.776726
2025 3.586596 3.533241 3.639957 3.520394 3.650888
2026 3.455740 3.396801 3.510490 3.386231 3.520109
2027 3.332134 3.261010 3.388971 3.242005 3.400166
2028 3.207198 3.120882 3.278480 3.100771 3.290015
2029 3.085855 2.983132 3.162357 2.957278 3.173630
2030 2.967033 2.836914 3.055491 2.812259 3.068283
2031 2.851968 2.693900 2.959655 2.657657 2.972596
2032 2.739253 2.551682 2.859017 2.500849 2.878114
2033 2.626087 2.400823 2.762809 2.352485 2.776872
2034 2.519611 2.262385 2.677497 2.209586 2.693992
2035 2.411963 2.088992 2.588108 2.044437 2.604896
2036 2.311417 1.955690 2.510772 1.883435 2.533944
2037 2.210127 1.821591 2.432696 1.725132 2.452562
2038 2.114983 1.655969 2.371578 1.576980 2.388008

The variable’s values we are are interested to forecast is unknown, therefore, it is a random
variable. The random variable can take a range of random values. In Table 4, the first column is
the years of forecast, the second column is the forecasted point or mean of the future values of
the total fertility rate (which is the random variable). From columns 3-6 are the credible interval
of 90% to 95%. For more details about the credible interval Section 5.1. The value for the total
fertility rate of Afghanistan which is under consideration is given in Table 1, form 1982-2022.
Afterwards, the value of the fertility of the country is random variable, because it is unknown
and we are going to do forecast. In a Bayesian prediction we reach to the forecasting point which
is the Table 4 is the numerical values of the forecasted amount.

7.2. Forecasted Results Figure

From Table 4, which is a 16 years Bayesian prediction of the total fertility rate of Afghanistan.
Year of 2038 is showing a very good results. 2.1 is the Replacement fertility level: Total fertility
of approximately 2.1 children per woman. This value shows the average number of children a
woman would need to have in order to reproduce herself by having a daughter who reaches
reproductive age. Now it is time to go to the graphical representation of the results. Figure 6,
is going ot support the numerical values of Table 4, which is the forecasted values of the total
fertility rate of Afghanistan from 2023-2038.
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Figure 6: Future prediction

Figure 6 are consisted of two parts, from 1982-2022 the observed data, and 2023-2038 is the
forecasted values of the total fertility rate of Afghanistan. The blue line in the Figure 6 shows
the forecasted part of the value of the total fertility rate, which is the averages possible future
value, and numerically was shown in the Table 4. In the Figure 6 it is obvious, there is two types
of shadowed area, the 90% and the 95% credible intervals of the forecasted values. Forecast
accuracy also can be analyzed form the shadowed areas, as much as, our forecasted time increase
the credible interval or probability interval increase. And on the same way as much as years
of forecast is near to the observed value the credible interval is more narrow and it shows the
certainty or accuracy of the forecast.

8. Conclusion

In this article, we were started the work for doing Bayesian data analysis, using the total fertility
rate of Afghanistan data-set. We discussed selecting a statistical model that is assumed to have
generated the observed data, defining the prior and likelihood for the data, summarizing the
posterior distribution, and using the posterior predictive check to assess the model’s fit to the
observed data. The model For the model ARIMA (1,2,1) has been chosen to the data-set. Model
checking conducted, and 16 years forecasting has been done to the data. The total fertility rate
of the country is projected to decline, and specifically it has been expected that approximately
2.1 (average number of children per woman) for the year 2038, this results is a very fundamental
results that is the normal and standard measure of the fertility rate which is called replacement
level of fertility. The importance of the demographic changes, obviously is a concern for the
countries, for the effects on all affairs of human activity, economically, culturally, socially, and
politically, therefore; the predicted value of the total fertility could be a good source for the
government of the country for taken effective steps to control and decrease the fertility rate.

Need of the study: Afghanistan is a deve1oping country. The country has been suffering for a
long time, for a long-term war perspective, awareness of this type of issue could be significant for
the government and policymakers, and non-government organizations to plan in order to monitor
the fertility rate of the country. There was no such study, so there is a great need for the study, it
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can be a good hint for those, who are going to work on the demographic area of Afghanistan.
One important tip is needed to mention is that we have done a prediction for the total fertility

rate of the country for a specific period of future time, based on the series period of past time, no
prediction can be a real future, but it is a motivation work for those, who are concern in such
study.
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