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This manuscript focuses on the statistical properties and estimation methods of the exponentiated Suja 

distribution, which is characterized by two parameters: scale and shape. From a frequentist perspective, our 

primary emphasis is on estimation techniques. Additionally, we derive statistical and reliability characteristics 

for the model. We explore various estimation procedures, including order statistics, entropies, reliability analysis, 

and the maximum likelihood method. To assess the model's superiority and practical utility, we analyze real 

lifetime data sets. Overall, this study provides a comprehensive analysis of the exponentiated Suja distribution, 

offering insights into its statistical properties, estimation techniques, and real-life applications. 
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This article presents a novel class of estimators designed for post-stratification to estimate the mean of a study 
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Error (MSE), we demonstrate the potential to improve estimation accuracy up to the first order of approximation. 
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estimator in enhancing the accuracy of mean estimation in post-stratification studies. By accurately estimating 

population parameters, our novel class of estimators contributes to more informed decision-making in various 

fields of study. The utilization of auxiliary variables allows for better utilization of available information and 

leads to more reliable and robust conclusions. Overall, the novel class of estimators introduced in this article 

represents a valuable contribution to the field of post-stratification. As researchers continue to explore and apply 

these estimators, they have the potential to revolutionize data analysis methods, becoming indispensable tools for 

survey and research design. The improvements in estimation accuracy brought about by these estimators are 

particularly crucial in situations where reliable data is scarce or challenging to obtain, making them invaluable 

for decision-makers and researchers alike. With the increased accuracy and efficiency of our proposed estimators, 

they provide a pathway for better resource allocation, cost-effective decision-making, and improved policy 

formulation. Policymakers and researchers can confidently rely on these estimators to produce more accurate 

results and achieve better outcomes in various domains. In conclusion, the novel class of estimators for post-

stratification presented in this article opens up new avenues for advancing statistical estimation methods. The 

fusion of auxiliary variables with traditional poststratification techniques represents a powerful approach to 

enhance estimation accuracy. Embracing and incorporating these estimators into research practices will 

undoubtedly bring us closer to making data-driven decisions that have a meaningful impact on society. 

ASSESSMENT OF GENERALIZED LIFETIME PERFORMANCE INDEX FOR LINDLEY 
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Abhimanyu S Yadav, Mahendra Saha, Amartya Bhattacharya, Arindam Gupta 

A meaningful subject of discourse in manufacturing industries is the assessment of the lifetime performance 

index. In manufacturing industries, the lifetime performance index is used to measure the performance of the 

product. A generalized lifetime performance index (GLPI) is defined by taking into consideration the median of 

the process measurement when the lifetime of products follows a parametric distribution may serve better the 

need of quality engineers and scientists in industry. The present study constructs various point estimators of the 

GLPI based on progressive type II right censored data for the Lindley distributed lifetime in both classical and 

Bayesian setup. We perform Monte Carlo simulations to compare the performances of the maximum likelihood 

and Bayes estimates with a gamma prior of Cy (L) under progressive type-II right censoring scheme. Finally, the 

validity of the model is adjudged through analysis of a data set. 
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D. Vedavathi Saraja, B. Jayakumar, Madhulika Mishra, Priya Deshpande, C. Subramanian, Rashid

A. Ganaie, Aafaq A. Rather, Bilal Ahmad Bhat

In this study, we introduce a novel extension of the Tornumonkpe distribution, known as the length biased 

Tornumonkpe distribution. This distribution holds particular significance as it belongs to the family of weighted 

distributions, specifically the length biased variant. Through an in-depth analysis, we explore the mathematical 

and statistical properties of this distribution, shedding light on its unique characteristics. To estimate the model 

parameters of this new distribution, we employ the well-established technique of maximum likelihood estimation. 

This allows us to accurately determine the parameters and enhance our understanding of the distribution's 

behavior. To demonstrate the practical applicability and advantages of the length biased Tornumonkpe 

distribution, we showcase its performance using a real-life time data set. Through this empirical examination, we 

investigate the distribution's superiority and flexibility, providing valuable insights into its potential use in 

various domains. 

ENHANCING ENGINEERING SCIENCES WITH UMA DISTRIBUTION: 

A PERFECT FIT AND VALUABLE CONTRIBUTIONS ..........................................................................  99 

R. A. Ganaie, C. Subramanian, V. P. Soumya, R. Shenbagaraja, Mahfooz Alam, D. Vedavathi 

Saraja, Rushika Kinjawadekar, Aafaq A. Rather, Showkat A. Dar 

In this study, we introduce a novel class of distributions called the length biased Uma distribution. This 
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distribution is a specific instance of the broader weighted distribution family, known for its versatility in various 

applications. We explore the structural properties of the length biased Uma distribution and propose a robust 

parameter estimation technique based on maximum likelihood estimation. To assess its efficacy, we apply the 

newly introduced distribution to two real-world datasets, evaluating its flexibility and performance in 

comparison to existing models. The results obtained demonstrate the potential of the length biased Uma 

distribution as a valuable addition to the repertoire of statistical distributions, offering valuable insights for a 

wide range of practical applications. 

A NOVEL EXTENSION OF INVERSE EXPONENTIAL DISTRIBUTIONS: 

A HEAVY-TAILED MODEL WITH UPSIDE DOWN BATHTUB SHAPED HAZARD RATE ........  112 

Jabir Bengalath, Bindu Punathumparambath 

Heavy-tailed distributions have garnered interest due to their advantageous statistical and reliability 

characteristics, rendering them valuable in applied fields such as economics, finance, and risk management. Such 

distributions offer robust properties, making them pertinent to studies in various areas like econometrics, 

statistics, and insurance. Thus, the primary objective of this paper is to propose a Two parameter right skewed- 

upside down bathtub type, heavy tailed distribution, which is a generalisation of Inverse Exponential distribution 

and is referred to as Modi Inverse Exponential distribution. We derive several mathematical and statistical 

features, including quantile function, mode, median, skewness, kurtosis, and mean deviation. Additionally, the 

reliability and hazard rate functions are also derived. Stochastic ordering and order statistics of the proposed 

distribution were derived. We also investigate the tail behaviour of the proposed model. Furthermore, estimation 

methods such as maximum likelihood estimation and its asymptotic confidence bound, percentile method, and 

Cramer-von-Mises method were examined. To demonstrate the appropriateness of the suggested model, we have 

considered two distinct real datasets along with three distinct models and concluded that the proposed model is 

more adaptable. 
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RELIABILITY MODEL FOR WEIBULL DISTRIBUTION: A COMPARISON 

OF ARTIFICIAL NEURAL NETWORK (ANN) AND RESPONSE SURFACE  

ANALYSIS (RSA) ............................................................................................................................................  128 

Dr. Saurabh L. Raikar, Prof. Rajesh S. Prabhu Gaonkar 

Stress strength interference theory is widely used in evaluating the reliability of mechanical components. Various 

interference models have been developed when stress and strength follow a wide range of distributions. But when 

stress and strength follow Weibull distribution, a closed form of interference model is not available. This paper 

deals with developing a methodology for obtaining a closed form interference model for a given application when 

the stress and strength follow Weibull distribution. The method of artificial neural network (ANN) and response 

surface analysis (RSA) are used in modelling and analysis. The validation experiment has been conducted and 

the error obtained shows that the proposed methodology performs reasonably well. 

RELIABILITY MODELLING OF UTENSILS MANUFACTURING 

SYSTEM WITH TEMPERATURE DEPENDENT MAINTENANCE .....................................................   141

Manisha Gaba, Dalip Singh, Sheetal, Kajal Sachdeva 

In this paper, a stochastic model for utensils manufacturing system with preventive maintenance (PM) is 

analysed in detail. The operation is affected by variation in the temperature dependent maintenance. The entire 

manufacturing process of utensils goes through four subsystems viz., Circle cutting subsystem 1, Pressing 

subsystem 2, Spinning subsystem 3 and Polishing & Packing 4. The system has series structure of all the 

subsystems. The system is put under PM on the winter time and after PM it operates as new. The PM time 

distributions are considered as arbitrary and the time to failure as well as repair of each subsystem follows a 

negative exponential distribution. All random variables are statistically independent. Several measures for 

evaluating the effectiveness of a system, including mean time to system failure (MTSF), system availability (in 

summer and winter), busy period of repairman and expected number of repairs (in summer and winter) are 
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derived using a regenerative point technique and Markov process. The system is also analysed for particular 

values of the parameters. 

OPTIMIZING MULTI-OBJECTIVE MULTI-INDEX TRANSPORTATION 

PROBLEMS: A SMART ALGORITHMIC SOLUTION WITH LINDO SOFTWARE ........................   154

Ajjaz Maqbool Dar, K. Selvakumar, S. Ramki, K. M. Karuppasamy, Jameel A. Ansari, Aafaq A. 

Rather 

In the present paper, we create an algorithm to address the transportation problem with numerous objectives and 

indexes. The transportation problem exists when there are more supply points, more demand points, and various 

means of transportation are used to meet demand or when moving certain types of goods. The transportation 

problem may frequently be more complex than the typical form of transportation problem. We create a model that 

blends fuzzy multi-objective programming and the multiindex transportation problem' by using LINDO 

software to resolve all related problems. Additionally, the decision-maker may present a variety of data and it 

may be further improved. The new algorithmfor addressing transport problems in fuzzy environments is 

demonstrated numerically. 

CHARACTERIZATION OF NEW QUASI LINDLEY DISTRIBUTION BY TRUNCATED 

MOMENTS AND CONDITIONAL EXPECTATION OF ORDER STATISTICS ...............................   168

Mohd. Amir, Mohammad Faizan, Rafiqullah Khan 

Characterization of a probability distribution plays an important role in probability and statistics. Before a 

particular probability distribution model is applied to fit the real-world data, it is necessary to confirm whether 

the given probability distribution satisfies the underlying requirements by its characterization. The aim of this 

paper is to find characterization results New Quasi Lindley distribution. These results are established using the 

relation between truncated moments and failure rate functions and conditional expectation of adjacent order 

statistics. The first characterization result is based on relation between left truncation moment and failure rate 

function while the second result is based on relation between right truncated moment and reverse failure rate 

function. In the third characterization result we used conditional expectation of order statistics when the 

conditioned one is adjacent order statistics. Further, some of its important deductions are also discussed. 

ANALYSIS OF AN M/M/1/K FEEDBACK WORKING 

VACATION QUEUE WITH RENEGING ...................................................................................................   178

Krishan, Neetu Gupta 

The analysis of an M/M/1/N feedback working vacation queueing system with reneging is presented in this paper 

Customers may become impatient and even disappointed when they see a long line. In the literature on queueing, 

customer dissatisfaction caused on by unsatisfactory service is referred as feedback. In the case of feedback, 

customers retry services after receiving unsatisfactory or incomplete. First, we create the equations for the steady-

state probabilities using the Markov process method. The steady-state probabilities are then solved by the matrix 

method. We then provide some system performance measures. We create a cost model using performance analysis. 

Finally, we give some numerical examples to show how the various model parameters affect the system's 

behaviour 

PERFORMANCE CHARACTERIZATION OF TWO-SERVER 

BATCH SERVICE QUEUE WITH SECOND OPTIONAL SERVICE ....................................................  189 

Andwilile Abrahamu George, P. Vijaya Laxmi 

In this paper, we analyze the performance of a finite capacity two-server Markovian batch service queueing model 

with second optional service. The servers provide two kinds of services, the first essential service (FES), which is 

provided to all incoming customers and the second optional service (SOS) to those who demand it after 

completing FES. The service times of the two servers are identical and are exponentially distributed. Matrix-
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decomposition method is used to obtain the steady-state probabilities of the model. Numerical results and 

discussion are presented to demonstrate the impact of the model parameters on the system behavior. Furthermore, 

the cost model optimization is developed to determine the optimal service rates using the Quasi-Newton method 

to minimize the expected cost. Finally, the findings of this work show that the blocking probability is 

monotonically decreases as finite buffer size increases and approaches its minimum value of zero when finite 

buffer is sufficiently large. 

PROPERTIES OF QUADRASOPHIC FUZZY SET AND ITS APPLICATIONS .................................  208 

G. Aruna, J. Jesintha Rosline

Fuzzy set theory is a distinctive way of approaching ambiguous information. In this artifact, we introduce a new 

extension of fuzzy set known as Quadrasophic Fuzzy set and its properties. The Quadrasophic Fuzzy set has four 

parameters. The attributes and operations of the Quadrasophic Fuzzy sets are defined with pertinent examples. 

The arithmetic aggregator operators with a redefined level of 0.5 are introduced. The theorems of aggregator 

operators of Quadrasophic Fuzzy sets are explained using mathematical formulations. Suitable results and 

examples are provided to enlighten the proposed method. The arithmetic aggregator operators of the proposed 

method have been used in decision- making to get the optimal solution with supplementary statistics. 

Additionally, the selection of appropriate fertilizer in farming is demonstrated using the operators of the 

suggested model. A decision-making approach is also used to develop the proposed method in order to identify the 

ideal solution. An illustration is provided to examine the unique feature of the proposed method to resolve the 

decision-making problems with a perfect solution. 

A PENTAGONAL FUZZY-BASED SOLUTION OF MULTIPLE OBJECTIVE LPP ...........................   221

Junaid Basha M, Nandhini S, Nur Aisyah Abdul Fataf 

In this paper, the researchers compare proposed approach and Excel solver. In this proposed technique, the 

researchers converted fuzzy multiple objective linear programming problems (FMOLPP) into multiple objective 

linear programming problems (MOLPP) with the help of Defuzzified mean of maxima method. Before that, the 

researchers changed the pentagonal fuzzy numerical valuation to a triangular fuzzy value by using the proposed 

theorem. Further, the crisp value of MOLPP is solved using standard simplex algorithms. Then the outcomes of 

the optimal solutions are compared with both the results. 

DIFFERENT ESTIMATION METHODS FOR THE PARAMETER 

OF XGAMMA DISTRIBUTION AND THEIR COMPARISON ............................................................   229

Sukanta Pramanik, Sandipan Maiti 

The xgamma distribution is vital in reliability/survival analysis and biomedical research. In this article, different 

estimation methods are proposed for the parameter of this distribution. The distribution is a unique finite mixture 

of exponential distribution and gamma distribution. Some further properties of the distribution that are not 

available in the earlier literature are studied. We consider the maximum likelihood estimator, least squares 

estimator, weighted least squares estimator, percentile estimator, the maximum product spacing estimator, the 

minimum spacing absolute distance estimator, the minimum spacing absolute log-distance estimator, Cram er 

von Mises estimator, Anderson Darling estimator, right-tailed Anderson Darling estimator, and compare them 

using a comprehensive simulation study. For comparison purposes, the estimators’ bias and mean squared error 

are considered. A real data example is also a part of this work. Some model selection techniques are used to choose 

the best fitting of the distribution to the data. 

CONFIDENCE INTERVAL USING MAXIMUM LIKELIHOOD ESTIMATION FOR THE 

PARAMETERS OF POISSON TYPE LENGTH BIASED EXPONENTIAL CLASS MODEL ............  242 

Rajesh Singh, Preeti A. Badge, Pritee Singh 

In this research paper, Confidence interval using Maximum likelihood estimation is obtained for Poisson type 

Length biased exponential class for the parameters. Failure intensity, mean time to failure and likelihood function 
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for the parameter is obtained. Confidence interval has been derived for parameters using maximum likelihood 

estimation. To study the performance of confidence interval, average length and coverage probability are 

calculated using Monte Carlo simulation technique. From the obtained intervals it is concluded that Confidence 

interval for the parameter perform better for appropriate choice of execution time and certain values of parameters. 

A TWO NON IDENTICAL UNITS COLD STANDBY SYSTEM 

WITH CORRELATED FAILURE TIME AND REPAIR MACHINE FAILURE ....................................   252

Alka Chaudhary, Shivali Sharma and Anika Sharma 

The paper deals with a system composed of two-non identical units (unit-1 and unit-2). Initially, unit-1 is 

operative and unit-2 is kept in cold standby. The cold standby unit can't fail in its standby mode. Each unit of 

the system has two possible modes: Normal (N) and total failure (F). When the unit-1 fails the cold standby (unit-

2) becomes operative instantaneously with the help of a perfect and instantaneous switching device. A single

repairman is always available with the system to repair a failed unit and failed RM. Unit-1 gets priority in

operation and repair over unit-2. However, the RM gets priority in repair over any of the units. The RM machine

is good initially and can't fail unless it becomes operative. The system failure occurs when both the units are in

total failure mode. The joint distribution of failure and repair times for each unit is taken bivariate exponential

distribution. Each repaired unit works as good as new. Using regenerative point technique, various important

measures of system effectiveness have been obtained.

DECISION MAKING THROUGH FUZZY LINEAR PROGRAMMING APPROACH ....................   263

Pandit U. Chopade, Mahesh M. Janolkar, Kirankumar L. Bondar 

In this study a real world industrial MPS problem is addressed using the SMF approach. A decision maker, 

analyst and implementer, all play significant roles in making judgements in an uncertain environment, which is 

where this difficulty arises in the chocolate manufacturing business. As analysts our goal is to identify a solution 

with a higher LOS that will enable the decision maker to reach a conclusion. Because all the coefficients including 

the goals, technical and resource factors are well defined. The MPS problem is taken into consideration. With 24 

constraints and 6 variables, this is regarded as one of the sufficiently large problem, which LOV is appropriate 

for getting satisfactory OR can be determined by a decision maker. To increase the satisfactory income, the 

decision maker can also advice to the analyst some feasible modification to FI. This collaborative process between 

the analyst, decision maker and implementer must continue until the best possible solution is found and put into 

action. 

DENSITY BY MODULI AND LACUNARY STATISTICAL 

CONVERGENCE OF DOUBLE SEQUENCES ........................................................................................... 276  

A. G. K. Ali, A. M. Brono, A. Masha 

In this paper, we introduced and studied the concept of lacunary statistical convergence of double sequence with 

respect to modulus function where the modulus function is an unbounded double sequence. We also introduced 

the concept of lacunary strong convergence of double sequence via modulus function. We further characterized 

those lacunary convergence of double sequence for which the lacunary statistically convergent of double sequence 

with respect to modulus function equals statistically convergent of double sequence with respect to modulus 

function. Finally, we established some inclusion relations between these two lacunary methods and proved some 

essential analogue for double sequence. 

ESTIMATION OF STRESS STRENGTH RELIABILITY USING PRANAV DISTRIBUTION ........  288 

Ankitha Lukose, Chacko V M 

This paper deals with the estimation of stress strength reliability parameter R, which is the probability of Y less 

than X when X and Y are two independent distribution with different scale parameter and same shape parameter 

The maximum likelihood method is used to find an estimator for R. We also obtain the asymptotic distribution of 
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the maximum likelihood estimator ofR. Based on this asymptotic distribution, the asymptotic confidence interval 

can be obtained. We also propose bootstrap confidence interval for the parameter R. Analysis of a simulated data 

and a real life data have been presented for illustrative purposes. 

FAST AND ROBUST BIVARIATE CONTROL 

CHARTS FOR INDIVIDUAL OBSERVATIONS......................................................................................  296 

Sajesh T A 

There are various circumstances where it is important to simultaneously monitor or control two or more related 

quality characteristics. Independently tracking these quality characteristics might be quite deceptive. Hotelling's 

T2 chart, in which the T2 statistics are generated using the classical estimates of location and scatter, is the most 

well-known multivariate process monitoring and control approach. It is well known that the existence of outliers 

in a dataset has a significant impact on classical estimators. Any statistic that is computed using the classical 

estimates will be distorted by even a single outlier. The non-robustness issue is investigated in this study, which 

also suggests four robust bivariate control charts based on the robust Gnandesikan-Kettenring estimator. This 

study employs four highly robust scale estimators, with the best breakdown point, namely the Qn estimator, Sn 

estimator, MAD estimator, and t estimator, in order to robustify the Gnandesikan- Kettenring estimator. 

Through the use of a Monte Carlo simulation and a real-life data, the performance of the suggested control charts 

is assessed. The four techniques all outperform the traditional method and provide greater computing efficiency. 

STATISTICAL MODELS FOR FORECASTING EMERGENCY 

SITUATIONS OF MAN-CAUSED CHARACTER ....................................................................................   309

Valery Akimov, Ekaterina Ivanova, Yuri Shishkov 

The aim of the study is to develop predictive and analytical solutions for technogenic threats for urban areas, the 

mathematical basis of which is Bayesian classifiers. The result of the work is a formalized description of models 

for predicting the consequences of a heat supply shutdown; consequences of a power outage; consequences of oil 

and oil products spills; the consequences of the discharge of liquid technological waste into the hydrosphere; the 

consequences of the release of hazardous chemicals into the environment. 

CHARACTERIZATION OF CHANDBHAS-P DISTRIBUTION 

AND ITS APPLICATIONS IN MEDICAL SCIENCE ...............................................................................  314 

Praseeja C B, Prasanth C B, C Subramanian, Unnikrishnan T 

The current research attempts the length biased version of new two-parameter Sujatha distribution, which is 

referred as ChandBhas-P Distribution (CBPD). Its different structural properties are discussed and the model 

parameters of this novel distribution are predicted by using the Maximum Likelihood Estimation. The 

distribution was examined with two real lifetime sets of data. The first set of data is birth weight of new born 

babies, randomly selected from a hospital at Thrissur, kerala and the second set is the weight of children of age 

range between three months to four years-collected from a few babysitting centres and play schools across 

Thrissur, and both are employed in order to discuss the goodness of fit. 

FORECASTING OF EXTREME RISK USING MARKOV-SWITCHING GARCH MODELS: 

EVIDENCE FROM GLOBAL ENERGY MARKETS .................................................................................  325 

S. Kavitha, G. Mokesh Rayalu, D. Pachiyappan, P. Manigandan

This paper investigates the Markov-Switching GARCH and Single-Regime (SR) GARCH models for the 

extreme-risk prediction of the global energy markets. Using daily data from Jan. 2020 to July. 2022, we find the 

MS-GARCH-types models are appropriate for both developed and emerging energy markets because they 

efficiently measure the extreme risk of energy commodities in various cases. Meanwhile, the regime-switching 

model's capture-dynamic structures in the financial markets and this model is only better than single-regime 

models in terms of long position risk predicting, rather than short position risk forecasting. That is, on the 
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downside risk predicting, it just outperforms the single regime. Through competitive models, this study examines 

the risk forecast of energy commodities in different conditions. The findings have strong implications for investors 

and policymakers in selecting the appropriate model to predict the extreme risk of energy commodities when 

facing asset allocation, portfolio selection, and risk management. 

PRICE RISK ANALYSIS USING GARCH FAMILY MODELS: 

EVIDENCE FROM INDIAN NATIONAL STOCK EXCHANGE FUTURE MARKET ......................  338 

M. Valavan, Mohammed Ahmar Uddin, S. Rita

The prediction of time-varying volatility plays an important role in financial data. In the paper, a comprehensive 

analysis of the mean return and conditional variance of NSE index is performed to use GARCH, EGARCH and 

TGARCH models with Normal innovation and Student's t innovation. Conducting a bootstrap simulation study 

which shows the Model Confidence Set (MCS) captures the superior models across a range of significance levels. 

The experimental results show that, under various loss functions, the GARCH using Student's t innovation 

model is the best model for volatility predictions of NSE among the six models. 

IDZ DISTRIBUTION: PROPERTIES AND APPLICATION ..................................................................   346

Idzhar A. Lakibul 

This paper introduces a novel two - parameter continuous distribution. This distribution is derived from the 

mixture of the Exponential, Weibull and Ailamujia distributions. The derived distribution is named as "Idz 

distribution". The probability density function of the Idz distribution is derived and some of its plots are 

presented. It can be observed that the Idz distribution can generate right tailed unimodal, non-monotonic 

decreasing and exponential shapes. Further, survival and hazard functions of the Idz distribution are derived. It 

reveals that the hazard function of the Idz distribution can accommodate three types of failure rate behaviors, 

namely, non-monotonic constant, right tailed unimodal and nonmonotonic decreasing. Moreover, some 

properties of Idz distribution such as moments, mean, variance, moment generating function, order statistics and 

maximum likelihood estimates are derived. In addition, the proposed distribution is applied into a Breast Cancer 

data and compare with the Exponentiated Generalized Inverse Rayleigh distribution, the Ailamujia Inverted 

Weibull distribution and the New Extended Exponentiated Weibull distribution. Result shows that the Idz 

distribution gives better estimates as compared with the said distributions for a given dataset. 

A LITERATURE REVIEW ON DISCRETE-TIME QUEUEING MODELS ...........................................   355

Harini R, Indhira K 

In this paper, a quantitative research survey is carried out on discrete-time queueing models. In real-life scenarios, 

the idea of discrete-time queues has taken on a new meaning. This survey mainly focuses on the unfolding of 

discrete-time queueing models in recent decades, challenges implied on them and their influence in various fields. 

The ultimate goal of this paper is to provide enough information to all the researchers and analysts who toil in 

this field and wish to know more about these models. A few open issues and intriguing future research paths has 

been discussed. 

QUANTILE RESIDUAL ENTROPY FOR SOME LIFE TIME DISTRIBUTIONS ...............................  372 

Javid Gani Dar, Mohammad Younus Bhat, Shahid Tamboli, Shaikh Sarfaraj, Aafaq A. Rather, 

Maryam Mohiuddin, Showkat Ahmad Dar 

This study explores the concept of residual entropy as an alternative approach to traditional entropy measures. 

The field of information theory, built upon Shannon's entropy, has been instrumental in understanding the 

dynamics of systems. However, existing literature has recognized the limitations of applying traditional entropy 

measures to systems that have already been in existence for a certain duration. This study delves into the concept 

of residual entropy, acknowledging the need for a more suitable approach for such systems. Specifically, we 

investigate the characteristics of residual entropy using a quantile-based framework. By deriving the quantile 
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residual entropy function for various lifetime models, we gain insights into the reordering and ageing phenomena 

captured by the quantile version of the residual entropy equation. Our findings contribute to an enhanced 

understanding of residual entropy and provide a novel perspective on analyzing and interpreting the behavior of 

established systems. 

SAMPLING PLANS BASED ON TRUNCATED LIFE 

TEST FOR LOGISTIC FAMILY OF DISTRIBUTIONS ...........................................................................   382

Sriramachandran G V 

In this article, we develops optimal sample size for acceptance number (zero and one) for single and double 

sampling plans by fixing consumer's risk and test completion time, with the assumption that, the life of the item 

follows logistic family of distributions (i.e. Logistic Rayleigh distribution/Logistic exponential 

distribution/Logistic Weibull distribution). The optimal size obtained for single and double sampling plans for 

logistic family of distributions are compared with baseline distributions and the results are discussed. 

ECONOMIC ORDER QUANTITY MODEL FOR IMPERFECT 

ITEMS WITH SHORTAGE BACKORDERING ........................................................................................  391 

Priyanka Singh, A. R. Nigwal, U. K. Khedlekar 

This study presents the development of an economic order quantity model (EOQ) specifically designed for 

imperfect quality items. The model takes into consideration three distinct scenarios: (a) Model I trigger a reorder 

when the inventory level reaches zero; (b) Model II initiates a reorder when the backordered quantity equals the 

imperfect quantity; (c) Model III initiates a reorder when the shortage persists. To distinguish between perfect 

and imperfect quality products, a screening process is implemented for each product lot. Upon product delivery 

from the supplier to the vendor, all received products undergo immediate inspection through the screening 

process. Following the EOQ ordering policy, the vendor sells imperfect products to customers at a reduced cost 

at the end of the cycle, rather than returning them to the supplier. To fulfil the remaining demand for high-quality 

products, the vendor procures such products from a local vendor at a higher price. This study optimizes the 

duration of positive inventory, selling price, and total profit per unit time. Model I, which exhibits the longest 

duration of positive inventory, demonstrates greater business stability compared to the other two models. The 

concavity property is analytically and numerically demonstrated, and a sensitivity analysis is provided to explore 

the impact of model parameters on outputs. 

DESIGNING A HYBRID SINGLE SAMPLING PLAN FOR LIFE-TIME 

ASSESSMENT USING THE EXPONENTIAL-RAYLEIGH DISTRIBUTION .....................................  410 

Radhika A, Nandhini M, Jeslin J 

The approach of statistical quality control known as "product control" deals with the steps involved in making judgments 

on one or more batches of completed goods produced by production processes. One of the main categories of product control 

is sampling inspection by variables, which includes processes for selecting numerous individual units based on sample 

measurements for a quality characteristic under investigation. These approaches are predicated on the knowledge of the 

functional form of the probability distribution and the presumption that the quality feature is measured on a continuous 

scale. The literature on product control contains inspection techniques that were created with the implicit presumption 

that the quality characteristic is distributed normally with the associated attributes. In this study, a single variable 

sampling plan is developed and assessed under the assumption that the quality characteristic will be distributed using an 

Exponential-Rayleigh distribution. This article discusses the development of reliability sampling plans for intermittent 

test batches using type-I and type-II censoring data. To build a sampling strategy using the Exponential-Rayleigh 

distribution, this work offers a two-parameter continuous probability distribution. One of the main categories of acceptance 

sampling is sampling inspection by variables, which involves processes for making decisions regarding the disposition of 

numerous individual units based on sample measurements of those units for a quality feature under investigation. Assume 

that the sample inspection's number of defective items follows the Poisson distribution. The suggested SSP's ideal 

parameters are determined using a multi-objective genetic algorithm, which is concerned with concurrently minimizing 

the average number of samples and inspection costs a maximizing the likelihood of the acceptance sampling plan. The 
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Rayleigh distribution is an appropriate model for life-testing studies, and the Exponential Rayleigh Distribution is studied 

as a model for a lifetime random variable. The paper also analyses the effectiveness of reliable single sampling plans designed 

using the median lifetime of products. The efficiency of these sampling plans is evaluated in terms of sample size and 

sampling risks. Poisson probabilities are used to determine the parameters of the sampling plans, to protect both producers 

and consumers from risks. For manufacturing enterprises to analyze the viability of the sample plan, necessary tables and 

procedures are constructed with acceptable examples. 

REDESCENDING M-ESTIMATOR BASED LASSO FOR FEATURE SELECTION ..........................   419

R. Muthukrishnan, C. K. James

Aim: Regression analysis is one of the statistical methods which helps to model the data and helps in prediction, a large 

data set with higher number of variables will often create problem due to its dimensionality and hence create difficulties to 

gather important information from the data, so it is a need of a method which can simultaneously choose important variables 

which contains most of the information and hence helps to fit the model. Least absolute shrinkage and selection operator 

(LASSO) is a popular choice for shrinkage estimation and variable selection. But LASSO uses the conventional least 

squares technique for feature selection which is very sensitive to outliers. As a result, when the data set is contaminated 

with bad observations (Outliers), the LASSO technique gives unreliable results, so in this paper the focus is to create a 

method which can resist to outliers in the data and helps in giving a meaningful result. Method: proposed a new procedure, 

a LASSO method by adding weights which uses the concept of redescending M-estimator, which can resist outliers in both 

dependent and independent variables. The observation with greater importance receives a higher weight and less weight to 

the least important observation. Findings: The efficiency of the proposed method has been studied in the real and simulation 

environment and compared with other existing procedures with measures like Median Absolute Error (MDAE), False 

Positive Rate (FPR), False Negative Rate (FNR), Mean Absolute Percentage Error (MAPE). The proposed method with 

the redescending M-estimator shows a higher resistance to outliers compared to conventional LASSO and other robust 

existing procedures. Conclusion: The study reveals that the proposed method outperforms other existing procedures in 

terms of MDAE, FPR, FNR and MAPE, indicating its superior performance in variables selection under outlier 

contaminated datasets. 

PARAMETER ESTIMATION OF SCALE MUTH DISTRIBUTION(SMD) UNDER TYPE-1 

CENSORING USING CLASSICAL AND BAYESIAN APPROACHES ...............................................   429

Agni Saroj, Prashant K. Sonker, Shalini Kumari, Rakesh Ranjan, Mukesh Kumar 

The lifetime distributions are used to understand and explain the real life circumstances in various fields (medical, 

engineering, etc.). Many times it is very tough task to complete an experiment with complete data due to lack of time, 

money or some other factors and get the data in incomplete form. to draw the information from such type of data (incomplete 

data), we use some censoring techniques. In the field of statistics, there are several censoring techniques available where 

type-I censoring is most commonly used due to its simplicity. In this article, the scale Muth distribution (SMD) is 

considered as a lifetime distribution under type-I censoring scheme. The parameter estimation has been done by classical 

as well as Bayesian approach. Under the classical paradigm, two most popular methods were used maximum likelihood 

estimation (MLE) and the maximum product of spacing estimation (MPSE). And under the Bayesian paradigm, we used 

the informative priors for each parameter and obtained the estimates by considering the squared error loss function using 

an approximation method, Metropolis Hasting (MH) algorithm. The performance of each estimator is evaluated by their 

mean squared error or simulated risk. Also, a real data set is used to illustrate the real phenomena and to estimate the 

parameter using above-mentioned techniques under type-I censoring scheme. 

ROBUST MAHALANOBIS DEPTH BASED ON MINIMUM REGULARIZED COVARIANCE 

DETERMINANT ESTIMATOR FOR HIGHDIMENSIONAL DATA ..................................................   446

R Muthukrishnan, Surabhi S Nair 

Handling of high-dimensional data is an important issue in robust literature. For analyzing data, location measure plays 

a vital role in almost all statistical methods. The location parameter of a distribution is used to find the central value. Many 

computational methods are used to find the measure of location for analyzing data. The data depth procedure is one 

approach to finding the true representative of the entire data and it is one of the key concepts in multivariate data analysis. 

Data depth is a term used to describe how deep a particular point is inside the broad multivariate data cloud. Instead of the 
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typical smallest to biggest rank, the sample points can be ordered from the center outward. Mahalanobis depth is one of the 

popular depth procedures. The traditional approach used to find Mahalanobis depth is based on Mahalanobis distance, it 

is based on the classical sample mean vector and covariance matrix. So the conventional Mahalanobis depth is sensitive to 

outliers and may fail when the data is contaminated. To solve this problem, the Minimum Covariance Determinant (MCD) 

estimators are used instead of classical estimators. However, the MCD estimators cannot be calculated in high dimensional 

data sets, in which the variable number is higher than the subset size. To calculate Mahalanobis depth values in high 

dimensional data, propose a new depth function namely the Robust Regularized Mahalanobis Depth (RRMD), which can 

be calculated in high dimensional data sets. The proposed procedure is based on Minimum Regularized Covariance 

Determinants (MRCD) estimators, this study shows that the proposed depth function is successful in finding the deepest 

point in high dimensional data sets with real and simulation studies up to a certain level of contamination. 

DISCRETE INVERSE GAMMA DISTRIBUTION 

BASED LOAD-SHARE MODEL WITH APPLICATION ........................................................................  453 

Rachna Srivastava, Pramendra Singh Pundir 

In reliability engineering, the multi-component load-sharing models are being used to amplify system's reliability. This 

study consists of the k-component load-sharing parallel system model considering each component's failure time 

distribution as discrete inverse gamma. The classical and Bayesian analysis for this model is performed. The maximum 

likelihood estimates along with their standard errors for the parameters, system's reliability function, hazard rate function 

and reversed second rate of failure function are obtained. The asymptotic confidence intervals as well as two bootstrap 

intervals like bootstrap-p and bootstrap-t confidence intervals are constructed. Further, Bayes estimates along with their 

posterior standard errors and highest posterior density credible intervals for the parameters and system's reliability 

characteristics are obtained by using Markov Chain Monte Carlo techniques. A detailed simulation table is formed to 

demonstrate the effectiveness of the theory developed. Finally, a real data set is used to illustrate the applicability of the 

model. 

SURVIVAL ANALYSIS OF A MULTI-STATE SEMI-MARKOV MODEL ON INFECTIOUS 

DISEASE CONSIDERING VARIOUS LEVELS OF SEVERITY ............................................................  466 

Sujata Sukhija, Rajeev Kumar 

The aim of the paper is to carry out survival analysis of a novel multi-state model on infectious disease considering various 

levels of severity using semi-Markov processes. Various levels of severity of the disease over time and transitions between 

these severity levels have been considered. Transition probabilities and expected waiting times are derived. Expressions for 

mean survival time, expected total time in home isolation, and expected total time in hospital are obtained. The analysis of 

the proposed model is carried out through numerical computation and plotting several graphs. Important conclusions are 

drawn. The modelling framework proposed here can be used to model any infectious disease irrespective of disease states. 

The study will be helpful in designing effective measures to control the infectious disease and selecting the appropriate 

intervention policies. 

ON AN IMPATIENT CONSUMER QUEUE WITH SECONDARY SERVICE, MULTIPLE 

VACATIONS AND SERVER BREAKDOWNS .........................................................................................  481 

K. Jyothsna, P. Vijaya Kumar, P. Vijaya Laxmi

This study presents a limited buffer secondary service queue with multiple vacations and server breakdowns. The model 

under consideration includes two types of impatient policies: balking and reneging. After the completion of the essential 

primary service, only few consumers choose to proceed with secondary service with a certain probability. During the active 

period of the server, it is subject to breakdown and the broken down server is immediately sent for repair. Further, the 

server will go on vacation as soon as there are no waiting consumers in the queue. On returning from a vacation, if the 

system is still empty the server leaves for another vacation and continues to do so until atleast one consumer is found at a 

vacation termination epoch. The model is analyzed under steady-state conditions and the explicit expressions of various 

performance indices are evaluated. A few numerical results illustrate how the model parameters have an effect on the 

performance metrics. 
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MODELING OF RELIABILITY AND SURVIVAL DATA WITH EXPONENTIATED 

GENERALIZED INVERSE LOMAX DISTRIBUTION ............................................................................   493

Sule Omeiza Bashiru, Ibrahim Ismaila Itopa 

In this paper, a new four-parameter distribution is developed and studied by combining the properties of the exponentiated 

generalized-G family of distributions and the features of the Inverse Lomax distribution. The newly developed distribution 

is called the exponentiated generalized inverse Lomax distribution that extends the classical inverse Lomax distribution. 

The shape of the hazard rate function is very flexible because it possesses increasing, decreasing, and inverted (upside-

down) bathtub shapes. Some important characteristics of the exponentiated generalized inverse Lomax distribution are 

derived, including moments, moment generating function, survival function, hazard function and order statistics. The 

method of maximum likelihood estimation is used to obtain estimates of the unknown parameters of the new model. The 

application of the new model is based on two real-life data sets used to show the modeling potential of the proposed 

distribution. The exponentiated generalized inverse Lomax distribution turns out to be the best by capturing important 

details in the structure of the data sets considered. 

RELIABILITY ANALYSIS OF THE SHAFT SUBJECTED TO TWISTING MOMENT AND 

BENDING MOMENT FOR NORMALLY DISTRIBUTED STRENGTH AND STRESS ..................   502 

Md. Yakoob Pasha, M. Tirumala Devi, T. Sumathi Uma Maheswari 

Shaft is the rotating component that transmits power from one place to another. The shafts are commonly subject to 

torsional and bending moments and combinations of these moments. In general, shafts are subjected to a combination of 

torsional and bending stresses. The design of a shaft is essential, subject to its strength and stress. This paper presents the 

reliability analysis of the shaft subjected to (a) twisting moment, (b) bending moment and (c) combined twisting and 

bending moment for which stress and strength follow the normal distribution. 

GROUP RUNS AND MODIFIED GROUP RUNS 

CONTROL CHARTS FOR MONITORING LINEAR REGRESSION PROFILES ..............................  513 

Onkar Ghadge, Vikas Ghute 

Profile monitoring is a critical tool for manufacturing industries to evaluate and maintain quality performance, as well as 

detect faults. The process of profile monitoring involves observing how variables interact with one another throughout a 

given period. This enables the understanding of any changes in their functional relationship over time. Generally, control 

charts are used for monitoring profiles. This paper proposes two new methods to enhance the monitoring of simple and 

multiple linear regression profiles in Phase II. The proposed methods are based on group runs (GR) and modified group 

runs (MGR) control charting schemes. The procedure to obtain optimal design parameters for the proposed methods is 

discussed in detail. The effectiveness of the suggested techniques is assessed through the ARL standard. The study found 

that the proposed GR and MGR monitoring methods displayed superior performance compared to other available 

monitoring methods in the literature. A real-life example is illustrated using proposed GR and MGR charting schemes. 

ON A CLASS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS 

ADMITTING QUARTER-SYMMETRIC METRIC CONNECTION .....................................................   525

S. Sunitha Devi, K. L. Sai Prasad

In this present paper, a class of Lorentzian almost paracontact metric manifolds known as the LP-Kenmotsu (Lorentzian 

para-Kenmotsu) is considered that accepts a connection of quarter-symmetric. In this work, it was found that an LP-

Kenmotsu manifold is either <p-symmetric or concircular <p-symmetric with respect to quarter-symmetric metric 

connection if and only if it is symmetric with respect to the Riemannian connection, provided the scalar curvature 

ofRiemannian connection is constant. 
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EVALUATION OF SAMPLE SIZE AND EFFICIENT 

FIELD SAMPLING PLAN IN HDP APPLE ORCHARDS .......................................................................   533

Tabasum Mushtaq, Mushtaq A. Lone, S. A. Mir, Sonali Kedar Powar, Aafaq A. Rather, Adil H. 

Khan, Faizan Danish 

An essential stage in research is choosing an adequate sample size and sampling strategy. In order to obtain the most 

accurate estimates possible when surveying high density apple orchards, this paper provides the proper procedure for 

selecting the sample and an effective sampling strategy. For this study, primary information gathered during a two-year 

period from the SKUAST-Kashmir exotic apple block Plate I was employed. This investigation was conducted using the 

TCSA of exotic apple trees of the Gala and Fuji types. The sample was obtained using a variety of sampling techniques in 

order to find the parameters of population. Findings revealed that using proportional allocation of a stratified sample 

technique, in both the varieties, produces the most efficient population parameter estimates. 

ESTIMATION OF STRESS-STRENGTH RELIABILITY BASED ON KME MODEL ........................   539

Kavya P., Manoharan M. 

In reliability theory the estimation of stress-strength reliability is an important problem. It has many applications in 

engineering and physics areas. In many practical situations, the assumption of identical strength distributions may not be 

quite realistic because components of a system are of different structure. Here we establish the estimation of stress-strength 

reliability of the KM-Exponential (KME) distribution. In this article, we consider the case that the stress-strength variables 

are independent. KME distribution is parsimonious in parameter and has decreasing failure rate. The stress-strength 

reliability based on KME model is estabished and using maximum likelihood estimation method, the estimation of the 

stress-strength reliability is derived and also the asymptotic distribution. Simulation method is used to show the 

performance of the parameters and the 95% confidence interval is also calculated. With the help of simulated data, we 

depict the application of the stress-strength reliability of KME distribution. 

REDUNDANCY OPTIMIZATION FOR A SYSTEM 

COMPRISING ONE OPERATIVE UNIT AND N HOT STANDBY UNITS .......................................  547 

Parveen, Dalip Singh, Anil Kumar Taneja 

In many industries and applications, downtime or failure can have serious consequences, such as financial losses, safety 

hazards, or reputational damage. A hot standby unit can help minimize the impact of such events by providing a backup 

that can quickly and seamlessly take over in the event of a failure. Further, the question of as to how many hot standby 

units should be used also needs to be addressed. So, an N+1-Unit-system is investigated wherein N units are on hot 

standby, whereas one unit is operational and the system is such that the hot standby units can take over seamlessly if the 

single operative unit fails. The system breaks down completely when all the units fail. It is assumed that the failure rates 

of all the operational units and the redundant units will vary exponentially. To get different performability measurements, 

the regenerative point technique has been applied to optimize the value ofN. 

FUZZY CONTROL CHARTS BASED ON RANKING OF PENTAGONAL FUZZY NUMBERS ....   563

Mohammad Ahmad, Weihu Cheng, Zhao Xu, Abdul Kalam, Ahteshamul Haq 

A Control Chart is a fundamental approach in Statistical Process Control. When uncommon causes of variability are 

present, sample averages will plot beyond the control boundaries, making the control chart a particularly effective process 

monitoring approach. Uncertainties are caused by the measuring system, including the gauges operators and ambient 

circumstances. In this paper, the concept of fuzzy set theory is used for dealing with uncertainty. The control limits are to 

converted into fuzzy control limits using the membership function. The fuzzy X-R and X-S control chart is developed by 

using the ranking of the pentagonal fuzzy number system. An illustrative example is done with the discussed technique to 

make fuzzy X-R and X-R control charts and increase the flexibility of the control limit. 
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N-POWER HALF LOGISTIC-G FAMILY: APPLICATIONS

TO MEDICAL AND TRAFFIC DATA ........................................................................................................  575

Pankaj Kumar, Laxmi Prasad Sapkota, Vijay Kumar 

This research article introduces a novel family of distributions achieved through the methodology of the n-power 

transformation technique. The study focuses on one specific member that is inverse Weibull distribution within this family, 

which showcases a hazard function exhibiting distinct J, reverse-J, bathtub, or monotonically increasing shapes. The article 

explores the essential characteristics of this distribution and employs the maximum likelihood estimation (MLE) method 

to estimate its associated parameters. To evaluate the accuracy of the estimation procedure, a simulation experiment is 

conducted, revealing a decrease in biases and mean square errors as sample sizes increase, even when working with small 

samples. Furthermore, the practical application of the proposed distribution is demonstrated by analyzing two real medical 

and traffic datasets. By employing model selection criteria and conducting goodness-of-fit test statistics, the article 

establishes that the proposed model surpasses existing models in performance. The application of this research work can be 

significant in various fields where modeling and analyzing hazard functions or survival data are essential, while also 

making contributions to probability theory and statistical inferences. 

POWER KOMAL DISTRIBUTION WITH PROPERTIES AND APPLICATION IN 

RELIABILITY ENGINEERING .....................................................................................................................  591 

Rama Shanker, Mousumi Ray, Hosenur Rahman Prodhani 

The statistical analysis and modeling of reliability data from engineering is really a challenge for statistician because the 

reliability data from engineering are stochastic in nature. Recently one parameter Komal distribution was introduced in 

statistics literature for the analysis and modeling of failure time data from engineering. Komal distribution, being one 

parameter distribution, does not provide good fit to some engineering data due to its theoretical or applied point of view. 

In this article we propose a two-parameter power Komal distribution, which includes Komal distribution as particular case, 

for the analysis and modeling of data from reliability engineering. Its statistical properties including behavior of probability 

density function and cumulative distribution function for varying values of parameters have been presented. The first four 

raw moments and the variance of the proposed distribution has been derived and given. The expressions for hazard rate 

function and mean residual life function have been obtained and their behaviors for varying values of parameters have been 

presented. The stochastic ordering which is very much useful comparing the stochastic nature has also been discussed. 

Method of maximum likelihood has been discussed for estimating the parameters. Application of the distribution has been 

investigated using a real lifetime dataset from engineering. The goodness of fit of power Komal distribution has been tested 

using Akaike Information criterion and Kolmogorov-Smirnov statistic. The goodness of fit of power Komal distribution 

shows that it gives much closure fit over two-parameter power Garima distribution, Power Shanker distribution and 

Weibull distribution and one parameter exponential distribution, Shanker distribution, Garima distribution and Komal 

distribution. As the power Komal distribution gives much better fit over Weibull distribution, which is very much useful 

for modeling and analysis of data from reliability engineering, the final recommendation is that the power Komal 

distribution should be preferred over the considered distributions including Weibull for modeling data from reliability 

engineering. 

PROFIT ANALYSIS OF REPAIRABLE COLD STANDBY SYSTEM 

UNDER REFRESHMENTS ............................................................................................................................   604

Ajay Kumar, Ashish Sharma 

In the generation of science and technology, every company wants to increase the reliability of their products. So, they used 

the concept of cold standby redundancy, timely repair of the failed unit and providing limited refreshments to the available 

technician when required. This paper aims to explore the system of two identical units where the primary unit is operative 

and the secondary unit is in cold standby mode. When the primary unit fails due to any fault then secondary unit starts 

working immediately. Here, times of failure of unit and technician refreshment request follow the general distribution 

whereas times of repair of unit and refreshment follow the exponential distributions. Such types of systems are used in 

industries and education systems to prevent losses. The system's performance is calculated by using concepts of mean time 
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to system failure, availability, busy period of the server, expected number of visits made by the server and profit function 

using the semi-Markov process and regenerative point technique. Tables are used to explore the performance of the system. 

POWER WEIBULL QUANTILE FUNCTION AND IT'S RELIABILITY ANALYSIS .........................   613

Jeena Joseph, Sonitta Tony 

In this article, we propose a new class of distributions defined by a quantile function, which is the sum of the quantile 

functions of the Power and Weibull distributions. Various distributional properties and reliability characteristics of the 

class are discussed. To examine the usefulness of the model, the model is applied to a real life datasets. Parameters are 

estimated using maximum likelihood estimation technique. 

GENERALISED EXPONENTIAL RATIO-CUM-PRODUCT ESTIMATOR 

FOR ESTIMATING POPULATION VARIANCE IN SIMPLE RANDOM SAMPLING ...................   625

Rafia Jan, T. R. Jan, Faizan Danish 

This study presents a comprehensive investigation into the estimation of population variance for a study variable using 

Simple Random Sampling, with the incorporation of two auxiliary variables. To address the challenges of variance 

estimation in complex scenarios, a novel approach termed the "Proposed Generalized Exponential Ratio-cum-Product 

Estimator" is introduced. This innovative estimator belongs to a class of estimators that rely on exponential functions of 

the auxiliary variables, providing enhanced precision and efficiency in variance estimation. To thoroughly assess the 

performance of the proposed estimators, the research develops equations for both Mean Square Errors and Biases, unveiling 

their statistical properties. The study systematically explores the conditions under which these estimators demonstrate 

superior efficiency compared to traditional alternative estimators, thereby enabling researchers to identify contexts where 

their utilization is most beneficial. The empirical aspect of the research constitutes a significant contribution to the study's 

validity. Through empirical analysis, the proposed estimators are directly compared against the conventional Unbiased 

Sample Variance Estimator, showcasing their clear superiority in terms of efficiency. Furthermore, Mean Square Errors 

and Percent Relative Efficiency are calculated for all estimators and subjected to theoretical and empirical comparisons 

with existing estimation methods. These findings corroborate the advantageous attributes of the proposed estimator in real-

world scenarios, reinforcing its practicality and reliability in various research domains. Beyond methodological 

developments, this study also delves into the real-world implications and applications of the proposed estimators. It 

highlights the potential benefits of utilizing these estimators in situations where study variables exhibit intricate 

relationships with auxiliary variables, offering valuable insights into multifaceted data sets and multidimensional factors. 

Additionally, a comprehensive sensitivity analysis is undertaken to assess the robustness of the proposed estimators under 

varying assumptions and sampling schemes. The researchers' meticulous evaluation enhances the credibility of the 

proposed estimators and ensures their adaptability across diverse practical scenarios. Overall, this study's significance 

extends beyond statistical theory, presenting valuable practical implications for researchers and practitioners across 

different fields. Improved population variance estimation leads to enhanced decision-making, optimal resource allocation, 

and deeper insights into underlying phenomena. By introducing the proposed estimator and thoroughly examining its 

performance through rigorous theoretical and empirical analyses, this research lays a solid foundation for more robust and 

efficient variance estimation techniques. The insights gained from this study can reshape statistical practices, paving the 

way for advancements in diverse scientific disciplines and inspiring further knowledge exploration. 

EXPONENTIAL-PARETO MIXTURE DISTRIBUTION ..........................................................................   632

Irina Peshkova 

In this paper we introduce the Exponential-Pareto mixture distribution. This distribution is associated as mixture of light 

and heavy-tailed data which arise in a wide class applications including risk analysis. Characteristic function, failure rate 

function, mean excess, conditional excess distribution are derived. It is proved that the limiting distribution of maxima 

among n values of rv's with Exponential-Pareto distribution has Frechet-type form. The maximal likelihood estimation of 

parameters is discussed. The upper bound of uniform distance between Exponential-Pareto mixture and Pareto 

distributions is derived. 
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RELIABILITY ASSESSMENTS USING STOCHASTIC DEGRADATION PROCESS FOR 

CURRENT TIME ANALYSIS CUMULATIVE DAMAGE MODELS ....................................................  646 

G. Sathya Priyanka, S. Rita, M. Iyappan

The reliability study of such incredibly reliable items is inappropriate for the use of failure time data analysis and testing 

methodologies. More trustworthy information can be obtained from degradation data than from standard censored failure-

time data, especially in cases where few or no failures are anticipated. The market for lighting has given a lot of attention 

to high-power white light emitting diodes (HPWLEDs). But as one of the more dependable electronic goods, it may not be 

expected to fail in either a traditional or even an accelerated life test. DDDM, or data-driven degradation methodology, is 

used in this research. Using data on lumen maintenance gathered from the IES LM-80-08 lumen maintenance test standard 

and based on the general degradation path model, the dependability of HPWLED was predicted. Testing such devices in 

typical working situations, and occasionally even under worse conditions, is difficult enough without trying to collect an 

adequate amount of time-to-failure data. Modern items are made with superb quality and high reliability in mind. Some 

safety-critical parts and systems are even made to last for an incredibly long time in order to prevent the disastrous effects 

of probable breakdowns. A cumulative damage model based on stochastic degradation processes has been developed in this 

paper. A suitable numerical representation is used to support the analytical findings. As a result, the degradation analysis 

approach has been developed to address dependability modeling issues using data on product degradation gleaned from 

historical records or degradation testing. 

SOFTWARE QUALITY ANALYSIS BASED ON SELECTIVE PARAMETERS USING 

ENHANCED ENSEMBLE MODEL ..............................................................................................................  657 

Rakhi Singh, Mamta Bansal, Surabhi Pandey 

Software Quality Analysis refers to the process of evaluating and assessing the quality of software products or applications. 

It involves analyzing various aspects of the software to determine its level of quality, identify potential issues or defects, 

and make informed decisions to expand the software's overall quality. There are investigated different software quality 

models based on machine learning algorithms. Nevertheless, the explored approaches have an inconsistent understanding 

of the software product quality and high complexity. This research presents an enhanced ensemble model (EEM) that 

involves Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Extreme Learning Machine (ELM) to assess 

the optimal outcomes. This model performance is computed based on multiple selective parameters namely functional 

suitability and maintainability of the software and compared along with several algorithms namely Decision Tree, Random 

Forest, AdaBoost, and Naive Bayes. The outcome of this ensemble model demonstrates that it offers highly accurate results 

for software validation, verification, and overall product development process to analyze the functional suitability as well 

as software maintainability. The measured accuracy on Decision Tree, Random Forest, Naive Bayes, AdaBoost, and EEM 

is found 92.08%, 93.35%, 94.50%, 95.60%, and 99.14%, respectively 

OPTIMIZATION OF SYSTEM PARAMETERS OF 2: 3 GOOD 

SERIAL SYSTEM USING DEEP LEARNING ............................................................................................  670 

Shakuntla Singla, Shilpa Rani, Umar Muhammad Modibbo, Irfan Ali 

In this paper, Optimization of System Parameters of 2:3 Good Serial System controlled with the help of a controlling unit 

Using Deep Learning Optimization with packing unit in series with priority in repair and single server which never fails 

is carried out. There are three units of different capacities working in parallel in which if three/two units are working then 

the system is working at full/reduced capacity. Working of these online parallel and offline units is managed by the 

controlling unit, which also manages the preventive maintenance of all type of units, together with a 24/7 repair facility is 

modeled for reliability performance measurements. Taking exponential failure and repair rates of units and facilities a 

steady state transition diagram (depicting transition rates and states) is drawn using Markov process. The system 

parameters are modelled using Regenerative Point graphical Technique (RPGT) and optimized using Deep learning 

methods such as Adam, SGD, RMS prop. The results of the optimization may be used to validate and challenge existing 

models and assumptions about the systems. 
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RAP AND AVAILABILITY ANALYSIS OF MANUFACTURING SYSTEM: SMO AND PSO .......   680

Sarita Devi, Nakul Vashishth, Deepika Garg 

In today's scenario manufacturing industries are highly complex and prone to failure. That's why redundancy allocation 

problem (RAP) and time dependent availability analysis plays a major role for the successful life cycle of a manufacturing 

industry. RAP is a Np-hard problem which is very difficult to solve by traditional methods. Therefore in this paper, RAP 

for the Manufacturing system is solved by Spider monkey optimization. SMO is recent meta-heuristic technique. Till now 

it is not used to solve RAP. Further results are compared with the Particle swarm optimization algorithm and comparison 

validates the better performance of SMO in this problem. As mentioned above, for avoiding the complete breakdown of the 

manufacturing system time- dependent availability is analyzed in this study. Firstly failure and repair data is collected 

from the manufacturing system then with the help of this information transition diagram is developed. Further equations 

are developed from transition diagram by using Markov birth death process then equations are solved with the use of 

Runge-Kutta method. This methodology is implemented in MATLAB. 

INTEGRATING TESTING COVERAGE, EFFORT AND CHANGE POINT IN A SOFTWARE 

RELIABILITY GROWTH MODEL: A COMPREHENSIVE ANALYSIS ..............................................  692 

Sudeep Kumar, Anu G Aggarwal 

Software reliability growth models (SRGMs) are essential for forecasting and controlling the reliability of software systems. 

In present article, we propose an enhanced SRGM that incorporates three important factors: testing coverage, testing effort, 

and change point detection. We introduce a novel testing coverage function that captures the delayed S-shaped behaviour 

commonly observed in software reliability growth. Weibull distribution is utilized to model the testing effort. Finally, we 

address the impact of change points in software reliability. To assess how well our suggested model works, we conducted 

experiments using real-world software failure data provide by Tandem computers. The results demonstrate that our model 

outperforms existing SRGMs by providing more accurate predictions and a better understanding of the interplay between 

testing coverage, testing effort, and change points. 

PREDICTION OF RELIABILITY CHARACTERISTICS 

OF THRESHER PLANT BASIS ON GENERAL AND COPULA DISTRIBUTION ............................  701 

Urvashi, Shikha Bansal 

In the agriculture field industry, farming tools play an important role. Any type of machinery's performance is influenced 

by factors including dependability, accessibility, and operating conditions. Different types of modern machinery are being 

used in today's modern world, so the farming system has become very easy. Thresher plants are essential equipment in the 

agriculture field industry, and these plants have many uses. A transition diagram for the system is used to develop a 

mathematical model of the thresher plant. Partial differential equations are created associated with the help of a transition 

diagram and solved using Laplace transforms and the supplementary variables approach to assessing the system's 

reliability. The copula approach was used to design the experiment, and the same methodology was used to assess the 

outcomes. The main aim of the present article is to evaluate the reliability factors, Profit, and sensitive analysis of a 

threshers plant. It is also possible to compute the dependability factor with the aid of general distributions and compare it 

to that copula distribution. 

APPLICATION OF MACHINE LEARNING ALGORITHMS IN THE PROBLEMS OF 

IMPROVING MODE RELIABILITY OF MODERN POWER SYSTEMS .............................................   716

Viktor Kurbatsky, Huseyngulu Guliyev, Nikita Tomin, Famil Ibrahimov, Nijat Huseynov 

In order to increase the regime reliability of energy systems, the experience of applying machine learning algorithms and 

models for various issues of operative-dispatching and counter-accident management was reviewed. It is indicated that an 

effective solution to this problem is the use of machine learning algorithms and models that are able to learn to predict and 

control the operating modes of the power system, taking into account many changing influencing factors. The experience 

of using machine learning technology in the tasks of operational dispatch and emergency control of EPS is presented, which 

clearly shows the prospects of such studies for subsequent practical implementation in the work of various automated 

control systems for electric power networks of power systems. Until recently, models based on neural network structures 
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have remained the most popular among machine approaches in predictive problems. The advantages of using this structure 

are shown, first of all, by the fact that the neural network structure makes it possible to obtain models with good 

approximating abilities. A comparative analysis of the effectiveness of various models in predicting electricity consumption 

is given. The issues of voltage and reactive power regulation in the electrical network of power systems using an artificial 

neural network are considered and the effectiveness of this approach is shown. A model and algorithm for estimating voltage 

stability in power system nodes under various influencing factors is proposed, as well as results are presented that confirm 

the reliability of the results obtained. 

OPTIMIZATION OF PRIORITY SERVICE WITH EFFICIENT COORDINATION OF 

ADMISSION CONTROL, EMERGENCY VACATION OF AN UNRELIABLE SERVER .................   729

G. Ayyappan, S. Nithya

In this paper, we establish a single server retrial queueing system with two types of customers, admission control, balking, 

emergency vacation, differentiate breakdown, and restoration. There are two distinct factors which must be considered 

when classifying priority and ordinary customers. The non-preemptive priority discipline proposed by this concept. 

Ordinary and priority customers arrive in accordance with Poisson processes. For both priority and ordinary customers, 

the server continuously offers a single service that is distributed arbitrarily. In this study, we compute the Laplace 

transforms of the time-dependent probabilities of system states using a probability generating function and the 

supplementary variable technique. The sensitivity analysis of system descriptions is assisted by study of numerical 

findings. 

PERFORMANCE ANALYSIS OF BULK ARRIVAL GENERAL SERVICE QUEUE WITH 

FEEDBACK, IMPATIENT CUSTOMERS AND SECOND OPTIONAL SERVICE ............................   744

P. Vijaya Laxm, Hasan A. Qrewi, E. Girija Bhavani

This paper analyzes the steady state behavior of batch arrival non-Markovian service queue with feedback, balking, 

reneging, and second optional service (SOS). The steady-state probabilities are computed using the probability generating 

function. After completing the first essential service (FES), if a customer is unsatisfied with it, he may choose to rejoin the 

system (feedback), opt for the SOS, or depart from the system with specific probabilities. Once a customer arrives, he decides 

immediately to join the queue or refuses to join (balking). Furthermore, after joining the queue if a customer does not get 

service within a specific time, may become impatient, and decide to leave the line without getting any service (reneging). 

Reneging time follows exponential distribution while service time (FES and SOS) follow general distribution. Also, the 

cost model was presented to determine the optimal service rates to minimize the expected cost. Finally, various performance 

measures and numerical illustrations are provided. 

RELIABILITY MODELLING OF A PARALLEL-COLD 

STANDBY SYSTEM WITH REPAIR PRIORITY ......................................................................................   760

Puran Rathi, Anuradha, S.C. Malik 

This paper deals with the reliability modelling of a parallel cold standby system of four units. The units operate in two 

phases; phase-I and phase-II. In phase-I, two identical units (called main units) work in parallel and the other two identical 

units (called duplicate units) have been taken as spare in cold standby. The units of phase-I and of the phase-II are not 

identical. The priority to repair the units of phase-I has been given over the repair of the units of the phase-II. However, no 

priority is given for operation of the units of both phases. There is a single repair facility which tackles all types of faults 

whenever occurred in the system. After repair each unit works as new and the switches devices are considered as perfect. 

The repair time of the units follows arbitrary probability distribution while the failure time of the units is assumed as 

constant. The behaviour of mean sojourn time (MST), transition probabilities, mean time to system failures (MTSF), 

availability, expected number of repairs for both phase-I and phase-II units, expected number of visits of the server, busy 

period of the server and finally the profit function are obtained in steady state by making use of well-known semi-Markov 

process (SMP) and Regenerative Point Technique (RPT) for arbitrary values of the parameters in steady state. Novelty 

and Application: A four-unit system is configured in two phases namely; phase-I and phase-II under some novel 

assumptions with a practical visualization in metallic bush manufacturing industries. 
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ANALYSIS OF M, MAP/PH\, PH2/1 NON-PREEMPTIVE PRIORITY QUEUEING MODEL 

WITH DELAYED WORKING VACATIONS, IMMEDIATE FEEDBACK,IMPATIENT 

CUSTOMER, DIFFERENTIATE BREAKDOWN AND PHASE TYPE REPAIR ..................................   771

G. Ayyappan, N. Arulmozhi

The arrival of high priority customers is governed by the Poisson process while that of low priority customers is governed 

by the Markovian Arrival Process, and the service times are determined by a distinct Phase-type distribution. When the 

service is finished and the system is empty, the server stays idle for a random period (delay time). If a customer arrives 

within the delayed period, the server resumes normal service to the customer immediately. Otherwise, at the end of the 

delayed period, the server will take a working vacation and will instantly provide slow service to customers (high priority 

customers only). The Matrix analytic method is used to investigate the system. We also discussed the steady-state vector 

and busy period for our concept. The estimated and visually displayed performance measures of the system 

ANALYSIS OF MAP/ PH1, PH2, PH3/1 QUEUEING-INVENTORY 

SYSTEM WITH TWO COMMODITIES .....................................................................................................   791

S. Meena, N. Arulmozhi, G. Ayyappan, K. Jeganathan

In this work, a single server implements a two-commodity inventory queueing system. We assume that both commodities 

have a finite capacity. Customers arrive by a Markovian Arrival Process, there is a need for a single item, and either or 

both types of commodities are required, and this requirement is modeled using certain probabilities. The lead times are 

exponentially distributed, and the service times have a PH distribution. We use matrix analytical techniques to investigate 

the queueing inventory system and adopt an (s, S)-type replenishment policy that is dependent on the type of commodity. 

In the steady state, the joint and individual probability distribution of the Esystem, inventory level, and server status is 

obtained. A few significant performance measures are attained. Our mathematical concept is then illustrated with a few 

numerical examples. 

EXPLORING THE ADAPTABILITY OF THE UNIT INVERSE 

WEIBULL DISTRIBUTION FOR MODELING DATA ON THE UNIT INTERVAL .........................   806

Shameera T, BlNDU P.P 

This paper derives a new lifetime distribution called the unit inverse Weibull distribution (UIWD) from inverse weibull 

distribution. Various statistical properties such as the survival function, hazard rate function, revised hazard rate function, 

cumulative hazard rate function, moments, and quartiles have been discussed. Additionally, we have explored other 

properties like skewness, kurtosis, order statistics, and the quantile function. Various methods of estimation, including 

maximum likelihood, moments, percentiles, and the Cramer-Von Mises, have been discussed. Simulation studies were 

conducted to assess the accuracy and precision of the parameters. Comparative analyses were performed to highlight the 

effectiveness and utility of the proposed model in comparison to other existing models, using two real-life applications. 

Finally, real life data analysis reveals that derived distribution can provide a better fit than several well-known 

distributions. 

On MIXTURE OF BURR XII AND NAKAGAMI 

DISTRIBUTIONS: PROPERTIES AND APPLICATIONS ......................................................................  821 

Hemani Sharma, Parmil Kumar 

The Burr XII and Nakagami distributions hold significant importance in both lifetime distribution and wealth distribution 

analyses. The Burr XII distribution serves as a valuable tool for understanding the distribution of wealth and wages within 

specific societies, while the Nakagami distribution finds its application in the realm of communication engineering. The 

incorporation of finite mixture distributions, aimed at accounting for unobserved variations, has gained substantial 

traction, particularly in the estimation of dynamic discrete choice models. This research delves into the fundamental 

characteristics of the mixture Burr XII and Nakagami distributions. The study introduces parameter estimation techniques 

and explores various aspects, including the cumulative distribution function, hazard rate, failure rate, inverse hazard 

function, odd function, cumulative hazard function, rth moment, moment generating function, characteristic function, 

25



Table of Contents 
RT&A, No 4 (76) 

Volume 18, December 2023 

 

moments, mean and variance, Renyi and Beta entropies, mean deviation from mean, and mean time between failures 

(MTBF). The paper also addresses the estimation of the mixing parameter through a Bayesian approach. To illustrate the 

effectiveness of the proposed model, two real-life datasets are examined. 

STARTING MODE OF SYNCHRONOUS MACHINES WITH MASSIVE ROTORS ......................   842

Laman Hasanova, Nurali Yusifbayli 

It is known that in synchronous machines with massive rotors, it is required to take into account the change in the 

equivalent rotor of active resistance depending on the frequency of the current in the rotor at starting of these machines. A 

three-phase mathematical model of these machines has been compiled, the equations of which are written in axes rotating 

at the speed of the machine rotor. Study of the start-up modes of these machines and operation in synchronous mode with 

a load surge (dynamic mode) has been carried out on this model. The studies have allowed for making the following 

conclusions. When starting synchronous machines with massive rotors, it is most preferable to take into account the change 

in the equivalent resistance in the form of a linear sliding function. It was found out that in the synchronous mode of 

operation of these machines, including in stable dynamic modes, there is no need to take into account changes in the rotor 

resistance-sliding, since the sliding in these modes oscillatory damps around zero, thereby not affecting changes in the 

value of the equivalent resistance. Therefore, in these modes it is recommended to consider the value of this resistance 

constant and definite at slip equal to zero. 

DESIGNING OF PHASE II ARL-UNBIASED 52-CHART 

WITH IMPROVED PERFORMANCE USING REPETITIVE SAMPLING ..........................................  850 

Sonam Jaiswal, Nirpeksh Kumar 

In this paper, we consider a two-sided Phase II S2-chart with probability limits because the surveillance of both an increase 

and decrease in the process variance plays a decisive role in a continuous quality improvement program. We propose a two-

sided average run length unbiased S2-chart under the repetitive sampling with probability limits for a fixed in-control 

average run length and average sample size to eliminate the average run length biasedness. It is well established that the 

Shewhart-type charts are less sensitive to detect small to moderate changes in the process parameters. Therefore, a repetitive 

sampling scheme is taken into consideration to improve the S2-chart's ability to detect changes in the process variance. 

Under the repetitive sampling methodology, the detection ability of the chart is improved by using more than one samples 

if the first sample does not provide sufficient evidence to decide whether the process is in-control or out-of-control. The 

proposed chart is compared with the existing charts, such as the equal tailed standard Shewhart S2-chart and unequal 

tailed S2-chart under repetitive sampling. Results show that the proposed chart is more efficient than the existing chart. 

Finally, an illustration has been provided in the favor of the proposed chart with the help of a published dataset. 

EVALUATION OF PERFORMANCE MEASURES 

FOR RELIABLE AND SECURE PHISHING DETECTION SYSTEM ...................................................   861

Pratikkumar A Barot, Sunil A Patel, H B Jethva 

Phishing is an illegal act and security breach which acquires a user's confidential information without consent. Anti-

phishing techniques used to detect and prevent such malicious acts to provide data safety to the end user. Researchers 

proposed an anti-phishing solution with the help of techniques like the blacklist record, heuristic function, visual similarity, 

and machine learning algorithm. In recent times many researchers proposed machine learning techniques for phishing 

detection and achieve more than 90% accuracy. However, there is reliability issue in the accuracy measures used by the 

researchers. In real life, the phishing dataset is unbalanced. Most of the researchers ignore this data quality during their 

research work design. In the case of unbalanced data, traditional accuracy measure does not give proper performance 

evaluation. It shows biased performance evaluations. In this paper, we experimented with an unbalanced dataset of phishing 

detection and did detailed result analysis to highlight the reliability issue of traditional performance evaluation measures 

for unbalanced data classification. We experiment with four classification algorithms and found that more than 90% of 

accuracy does not entitle any classifier as secure and safe if the dataset is unbalanced. Our work highlights the data factors 

and algorithmic limitations that compromise the system security and data safety. 
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DEVELOPING A NEW HUNTSBERGER TYPE SHRINKAGE ESTIMATOR FOR THE 

ENTROPY OF EXPONENTIAL DISTRIBUTION UNDER DIFFERENT LOSS FUNCTIONS ........   871

Priyanka Sahni, Rajeev Kumar 

The aim of the paper is to develop a new Huntsberger type shrinkage estimator for the entropy function of the exponential 

distribution. The present paper proposes a Huntsberger type shrinkage estimator for the entropy function of the exponential 

distribution. This Huntsberger type shrinkage entropy estimator is based on test statistic, which eliminates arbitrariness 

of choice of shrinkage factor. For the developed estimator risk expressions under LINEX loss function and squared error 

loss function have been calculated. To assess the efficacy of the proposed estimator, numerical computations are performed, 

and graphical analysis is carried out for risk and relative risks for the proposed estimator. It is also compared with the 

existing best estimator for distinct degrees of asymmetry and different levels of significance. Based on the criteria of relative 

risk, it is found that the proposed Huntsberger type shrinkage estimator is better than the existing estimator for the entropy 

function of the exponential distribution for smaller values of level of significance and degrees of freedom. 

THE SABUR DISTRIBUTION: PROPERTIES 

AND APPLICATION RELATED TO ENGINEERING DATA ...............................................................  882 

Aijaz Ahmad, Afaq Ahmad, Aafaq A. Rather 

This paper introduces a novel probability distribution called the Sabur distribution (SD), characterized by two parameters. 

It offers a comprehensive analysis of this distribution, encompassing various properties such as moments, moment-

generating functions, deviations from the mean and median, mode and median, Bonferroni and Lorenz curves, Renyi 

entropy, order statistics, hazard rate functions, and mean residual functions. Furthermore, the paper delves into the 

graphical representation of the probability density function, cumulative distribution function and hazard rate function to 

provide a visual understanding of their behavior. The distribution's parameters are estimated using the well-known method 

of maximum likelihood estimation. The paper also showcases the practical applicability of the Sabur distribution through 

real-world examples, underscoring its performance and relevance in various scenarios. 

COST & PROFIT ANALYSIS OF TWO-DIMENSIONAL STATE M/M/2  

QUEUING MODEL WITH CORRELATED SERVERS, MULTIPLE VACATION, 

BALKING AND CATASTROPHES .............................................................................................................   893

Sharvan Kumar, Indra 

The present study obtains the time-dependent solution of a two-dimensional state Markovian queuing model with infinite 

capacity, correlated servers, multiple vacation, balking and catastrophes. Inter arrival times follow an exponential 

distribution with parameters A and service times follow Bivariate exponential distribution BVE (p, p, v) where p is the 

service time parameter and v is the correlation parameter. Both the servers go on vacation with probability one when there 

are no units in the system and the servers keeps on taking a sequence of vacations of random length each time the system 

becomes empty, till it finds at least one unit in the system to start each busy period referred as multiple vacation. The unit 

finds a long queue and decides not to join it; may be considered as balking. All the units are ejected from the system when 

catastrophes occur and the system becomes temporarily unavailable. The system reactivates when new units arrive. 

Occurrence of catastrophes follow Poisson distribution with rate £,. Laplace transform approach has been used to find the 

time-dependent solution. By using differential-difference equations, the recursive expressions for probabilities of exactly i 

arrivals and j departures by time t are obtained. The probabilities of this model are consistent to the results of "Pegden & 

Rosenshine". The model estimates the total expected cost, total expected profit and obtained the optimal values by varying 

time t for cost and profit. These important key measures give a greater understanding of the model behaviour. Numerical 

analysis and graphical representations have been done by using Maple software. 
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INNOVATIVE METHODS OF ENSURING 

THE FUNCTIONAL SAFETY OF TRAIN CONTROL SYSTEMS .........................................................   909

I.B. Shubinsky, E.N. Rozenberg, H. Schabe

The paper examines the specificity of the modern intelligent control systems. The Big Data technology and Data Science 

algorithms open up great potential in train traffic management based on hazard prevention. An example is given of high 

reliability and acceptable accuracy of hazardous railway infrastructure failure prediction using methods based on artificial 

intelligence. A great deal of attention is given to economical methods of ensuring the required levels of functional safety of 

train control systems. For that purpose, the efficiency of the digital twin-based method was evaluated. It is shown that, 

under certain conditions, this method allows significantly reducing the cost of a control system while achieving an 

acceptably high level of functional safety. The method of virtual second channels is based on the same principle of using 

information redundancy rather than hardware redundancy. The paper presents and analyses the method of virtual second 

channels in respect to an axle counter-based train control system. It is established that it is possible to ensure a safety 

integrity level of an entire control system with a virtual second channel at least as high as SIL3. The above methods ensure, 

on the one hand, a reduction of the amount of equipment and significantly lower cost of the systems and, on the other hand, 

requires the creation of additional software and substantiation of the acceptability of the achieved level of functional safety. 

This matter is within the competence of the developer of the control system. 

A FUZZY INNOVATIVE ORDERING PLAN USING STOCK DEPENDENT HOLDING COST 

OF INSPECTION WITH SHORTAGES IN TIME RELIABILITY DEMAND USING TFN .............   921

Sivan V, Thirugnanasambandam K, Sivasankar N, Sanidari 

The considerations in this paper are, the demand is consistent with time deterioration, the holding cost is dependent based 

on the quantity of stock available in the system, and the ordering cost is linear and time-dependent. This system should be 

considered in terms of fuzziness. It is assumed that the shortages are permitted partially, the order is inspected, defective 

items are identified, by using penalty cost, the defective items should be minimized. Under the classical model and fuzzy 

environment, the mathematical equation is arrived at to find the optimal solution of total relevant cost with optimal order 

quantity and time using triangular fuzzy numbers. Defuzzification has been accomplished through the use of the signed 

distance method of integration. The solutions have been arrived and the model numerical problem of three levels of values 

(lower, medium and upper) in parametric changes has been verified. Using Sensitivity analysis, the solution is used to 

validate the changes in different parameter values of the system. To demonstrate the convexity of the TRC function over 

time, it has used a three-dimensional mesh graph. 

STOCHASTIC ANALYSIS OF JUICE PLANT SUBJECT TO REPAIR FACILITY .............................  940 

Amit Kumar, Pinki Kumari 

The performance of a juice plant is analyzed by using the base state and the regenerative point graphical technique. The 

juice plant under consideration consists of three distinct units. It is considered that units A and B may be in a complete 

failed state through partial failure mode but unit C is in only partially failed state. If one of the units A or B or C partially 

fails then the system works in a reduced state. When any unit is completely failed then the system is in failed state and no 

unit can fail further when the system is in a failed state. A technician is always available to repair the failed unit. In this 

paper, the failure time and repair time follow general distributions. Tables are used to describe the reliability measures such 

as mean time to system failure, availability and profit values of juice plant. 

STOCHASTIC MODEL ON EARLY-STAGE BREAST 

CANCER WITH TWO TYPES OF TREATMENTS ...................................................................................  948 

Suman, Rajeev Kumar 

The aim of the paper is to study effectiveness of the different treatments of early-stage breast cancer through analysis of a 

stochastic model. The early-stage breast cancer is a term used to describe breast cancer that is detected at an early stage of 

development, typically before it has spread to other parts of the body. Early detection of breast cancer is critical as it greatly 

increases the chances of successful treatment and saves lives. At early-stage breast cancer of the patient, two types of 

treatment namely, tamoxifen and tamoxifen combined with radiation therapy are commonly used. As it is essential to 
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consider innovative and cost-effective strategies for early detection and treatment. Investigations through analysis of the 

stochastic model on early-stage breast cancer with these two types of treatments may help the stakeholders. Keeping this in 

view, in the present paper, a stochastic model is developed for the early-stage breast cancer considering two treatment 

types, namely tamoxifen and tamoxifen combined with radiation therapy. The model is analyzed by Markov process and 

regenerative point technique. Mean sojourn time refers to the average amount of time spent by a patient in a particular 

state before transitioning to another state and mean survival time refers to the average time a patient survives after 

diagnosis of breast cancer. Mean sojourn time and mean survival time have been calculated. Sensitivity analysis is a 

technique to understand how changes in input variables or parameters affect the output or outcome of a model and it helps 

assess the robustness, reliability, and stability of a model by quantifying the impact of variations in input factors. The paper 

also includes sensitivity and relative sensitivity analyses of the model which explore the impact of different parameters on 

the survivability of the patient. The MATLAB software has been used for numerical computing and plotting various 

graphs. The investigation through our analysis of the stochastic model shows that the mean survival time lessens with the 

rise in the rates of transition and mean survival time from the treatment, tamoxifen plus radiation is higher than the 

treatment, tamoxifen only. It is concluded that tamoxifen plus radiation is more effective and useful than only tamoxifen 

for treatment of early-stage breast cancer. 

SYNTHETIC RELIABILITY MODELING AND PERFORMANCE ENHANCEMENT FOR 

MULTI-UNIT SERIAL SYSTEMS: UNVEILING INSIGHTS VIA GUMBEL-HOUGARD 

FAMILY COPULA APPROACH ...................................................................................................................   964

Ismail Muhammad Musa, Ibrahim Yusuf 

This paper presents a comprehensive study of a series-parallel system comprising four interconnected subsystems: 

subsystem-1, subsystem-2, subsystem-3, and subsystem-4. Subsystem-1 stands as a single unit, subsystem-2 consists of 

three identical units in active parallel, subsystem-3 involves two identical units in series, while subsystem-4 incorporates 

two identical units in parallel. The system operates under good conditions, considering various failure rates and repair 

rates. The investigation employs Laplace transforms and Supplementary variable techniques to analyze the system's 

performance. Key reliability parameters, including Availability, Reliability, Mean Time to Failure (MTTF), Sensitivity, 

and Cost, are evaluated for specific values of failure and repair rates. The paper delves into the intricate analysis of a multi-

unit series system, focusing on its reliability and performance evaluation. The study employs the Gumbel-Hougard Family 

Copula approach, a sophisticated and robust methodology to capture the interdependencies among system units. By 

utilizing this advanced technique, the paper provides a comprehensive understanding of the system's behavior under 

varying operating conditions. Various reliability and performance metrics, including Availability, Mean Time to Failure 

(MTTF), and Component Importance Measures, are thoroughly examined, offering valuable insights for optimizing the 

system's reliability and performance. The results are presented in a clear and visually appealing manner, utilizing tables 

and figures to aid in the comprehension of the findings. 

A BAYESIAN PREDICTION FOR THE TOTAL FERTILITY RATE  

OF AFGHANISTAN USING THE AUTO-REGRESSIVE INTEGRATED 

MOVING AVERAGE (ARIMA) MODEL ...................................................................................................  980 

Sayed Rahmi Khuda Haqbin and Athar Ali Khan 

In this article, a simple methodology to predict the total fertility rate of Afghanistan via a Bayesian statistical analysis 

method has been applied. R- statistical analysis tool is used for data analysis. To forecast, the "bayesforecast" package is 

needed. It is a substitute package in Rfor the "forecast" package in the traditional (frequentest) statistical method. The 

Bayesian data analysis using the specific case of the general auto-regressive integrated moving average model (ARIMA) is 

processed as follows; As the first step, the stationarity of the given data-set is assessed, the time series has been made 

stationary by taking differences. After fitting several models, as the most appropriate fitted model, the ARIMA (1, 2,1) 

model has been fitted to the data. The accuracy of the fitted model is examined, and thereafter, the developed model is 

analyzed. The posterior computation is done, using the Markov Chain Monte Carlo (MCMC) simulation method. The 

method ultimately focuses on drawing relevant inferences including the 16 years prediction, and the results are; in general, 

found to be satisfactory. 
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EXPONENTIATED DISCRETE HYPO EXPONENTIAL 

DISTRIBUTION AND ITS GENERALIZATIONS ...................................................................................   998

Krishnakumari.K, Dais George 

Generalizations of standard probability distributions is a thought-provoking concept in statistical literature and was 

inspired by many researchers in recent days. This is because the addition of parameters may increase the flexibility of the 

new models. Now a days various generalization techniques are available in literature. In this work, we proposed a 

generalization of discrete hypo exponential distribution and studied its various properties. A real data analysis is carried 

out and check the flexibility of the new model by comparing it with other standard distributions. Two generalizations of 

the proposed distribution are introduced. 

AN INNOVATIVE APPROACH FOR RELIABILITY MODELING 

OF HVDC CONVERTER STATION ...........................................................................................................   1011

Aditya Tiwary, R. S. Mandloi 

Assessment of reliability indices is important when availability and unavailability of the system or systems or components 

or group of components are to be assessed. There are various reliability indexes which are very important for overall 

performance of any complex engineering system. Reliability block diagram modeling is required to be formulated for 

evaluating different essential and important reliability parameters of any complex engineering system. In view of above, 

in this paper, reliability block diagram modeling of HVDC converter station is represented and formulated. The schematic 

diagram of the HVDC converter station is available in literature and based on that schematic diagram the modeling of 

HVDC converter station is formulated in this paper. After the reliability block diagram modeling of HVDC converter 

station, the mean time to failure (MTTF) of each and every components of HVDC converter station are also evaluated and 

represented in the result and discussion section. The reliability of each and every component of the HVDC converter station 

is evaluated and expressed in result section. Assessment of unavailability is also obtained and shown in result section. 

TIME DEPENDENT BEHAVIOUR OF A SINGLE SERVER QUEUEING SYSTEM WITH 

DIFFERENTIATED WORKING VACATIONS SUBJECT TO SYSTEM DISASTER ........................  1019 

V Karthick, V Suvitha 

This study investigates the time dependent behaviour of the single server queue with differentiated working vacations. The 

model also takes into account the possibility of a disaster happening during busy periods and working vacations, with the 

repair procedure starting right away. The time-dependent probabilities of system size are described in terms of modified 

Bessel functions in the paper using explicit equations that were generated using generating functions. Numeric instances 

have been added to support the theoretical findings even more. 

ON THE PROPERTIES AND APPLICATIONS OF TOPP-LEONE 

GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION ............................................................................   1032

Sule Omeiza, Bashirub O.Y., Halid Anyigba, Kogi State, 

In this study, we introduce a new four-parameter continuous probability distribution known as the Topp-Loene Gompertz 

Inverse Rayleigh (TLGoIRa) distribution. This novel model extends the Gompertz Inverse Rayleigh distribution. We 

present various mathematical properties of the distribution, including moments, moment generating functions, quantile 

functions, survival functions, hazard functions, reversed hazard functions, and odd functions. We also derive the 

distribution of order statistics, yielding both the maximum and minimum order statistics. This process of parameter 

estimation using the maximum likelihood estimation method is discussed. Furthermore, we present two real-life 

applications that illustrate the effectiveness and robustness of the TLGoIRa distribution when compared to several 

considered lifetime models. Our analysis reveals that the TLGoIRa distribution demonstrates superior robustness in 

comparison to the competing lifetime models. Additionally, the study highlights the distribution's efficacy in fitting 

biomedical datasets. 
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SOME APPLICATIONS OF TRANSMUTED LOG-UNIFORM DISTRIBUTION ............................   1046

Ashin K Shaji, Rani Sebastian 

As a generalization of the Log Uniform distribution, Transmuted Log - Uniform distribution is introduced and its 

properties are studied. We obtained graphical representations of its pdf, cdf, hazard rate function and survival function. 

We have derived statistical properties such as moments, mean deviations, and the quantile function for the Transmuted 

Log-Uniform distribution. We also obtained the order statistics of the new distribution. Method of maximum likelihood is 

used for estimating the parameters. Estimation of stress strength parameters is also done. We applied the Transmuted Log-

Uniform distribution to a real data set and compared it with Transmuted Weibull distribution and Transmuted Quasi-

Akash distribution. It was found that the Transmuted Log-Uniform distribution was a better fit than the Transmuted 

Weibull distribution and Transmuted Quasi-Akash distribution distributions based on the values of the AIC, CAIC, BIC, 

HQIC, the Kolmogorov-Smirnov (K-S) goodness-of-fit statistic and the p-values. 

MEASUREMENTS OF BRIDGE STRUCTURES USING NON-DESTRUCTIVE TESTING 

METHODS AND THEIR STABILITY IN WIND GUSTS .......................................................................  1056 

Alena Rotaru 

As bridge structures become older and older, they are subject to wear and tear due to ageing, weather conditions or 

environmental effects, as well as due to surprise structural modifications substantially affecting the condition of the 

structures. Therefore, the condition assessment of bridge structures is a must for the safety and absence of risk. The 

condition assessment of bridge structures is also necessary for the maintenance and repair of existing structures having 

been in service for more than 30 years, in order to avoid breakdowns and save human lives. This paper states the condition 

assessment performed with the use of various nondestructive test methods. 

STATISTICAL MODELS FOR FORECASTING NATURAL EMERGENCIES...................................   1067

Valery Akimov, Maxim Bedilo, Olga Derendiaeva 

The article considers predictive-analytical solutions for natural hazards for urbanized areas, the mathematical basis of 

which is Bayesian classifiers. The result of the work is a formalized description of models for predicting forest fires, the 

consequences of earthquakes and floods resulting from floods. 
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Abstract 

This research article introduces and explores the area biased techniques of the Suja distribution, 

presenting novel derivations and insights. The estimation of the one-parameter area biased Suja 

distribution is accomplished using maximum likelihood, providing a robust framework for modeling real-

world data. A comprehensive study of several statistical properties is conducted to unveil the 

characteristics and behaviors of this new model. To demonstrate its practical applicability, the proposed 

distribution is applied to real data of weather temperature. The analysis showcases the distribution's 

effectiveness in capturing the intricacies of temperature patterns, revealing its potential utility in weather 

modeling and related applications. The research contributes to the advancement of statistical modeling 

techniques and enriches our understanding of the Suja distribution's versatility in handling diverse 

datasets. 

Keywords: Area-biased distribution, Suja distribution, Maximum likelihood 

Estimator 

1. Introduction

The concept of area- biased distribution was explained earlier by Fisher [5].  He first introduced 

weighted distribution which is a combination of model specification and data interpretation. Also, 

stated that “the estimation of frequencies based on the effective methods of ascertainment”. The size-

biased are the special cases of the weighted distribution. Later, Rao [16] explained that the weighted 

distributions as many applications such as medicine, reliability, ecology, behavioral science, finance, 

insurance, etc. A discrete Poisson area-biased Lindley distribution was purposed by Bashir and Rasul 

[3] and explained its properties. Also, applied in biological data and compared with Poisson

distribution. Zahida et.al. [18] Purposed a new extension of Weibull distribution called area- biased

weighted Weibull distribution. The characterization of this model was derived and shown how the

model fitted to the problem of ball bearing data. Rama Shanker [10] introduced a new one- parameter

Suja distribution and estimated the parameter using method of moments and maximum likelihood.

The important properties were explained and finally, compared this model with other one-parameter

distributions by applying a real lifetime data.

Ayesha Fazal [2] introduced an area-biased Poisson exponential distribution with its moments and 

other properties, Also, the goodness of fit for this model has been discussed to show how it fit in real 
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data sets. Many studies on length biased distribution case has been published, for example; Rather and 

Subramanian [11], Rather and Subramanian [12], Rather and Ozel [13], Rather and Subramanian [19], 

Rather et al. [18]. A new generalized area- biased Aradhana distribution was introduced by Elangovan 

and Mohanasundari [4] and estimated the parameters by maximum likelihood estimator. Finally, 

applied a real lifetime data set in the model to show how it works. The new extension of Suja 

distribution called length-biased Suja distribution was given by Ibrahim Al-omari and Islam Khaled 

[6]. The various properties of this model were explained and shown the usefulness of the model in the 

real data set. Later, Ibrahim Al-omari et.al. [7] extended the length-biased Suja distribution to power 

length-biased Suja distribution with its characteristics and estimated the two parameters of this 

proposed distribution by maximum likelihood method. Finally, they illustrated a real data to show the 

performance of this model. Arun Kumar Rao and Himanshu Pandey [1] studied the parameter 

estimation of area-biased Rayleigh distribution by using maximum likelihood estimation and Bayesian 

estimation with quasi and inverted gamma priors. The weighted Suja distribution as an extension of 

most important Suja distribution was discussed by Islam Khaled and Ibrbhim Al-Omari [8]. Also, 

explained its statistical properties and application in the ball bearings data. The new generalization 

method as area-biased was introduced by Nuri Celik [9] for beta, Rayleigh and log-normal 

distributions. Also, the main statistical properties and parameters estimation were studied. At last, 

some of the real data examples were used. Shanker, Upadhyay and Shukla [17] were given a new two 

parameter quasi Suja distribution with its characteristics and parameters estimation. Also, they 

illustrated with real data to show its performance. 

2. Area-biased Suja Distribution (ABSD)

The probability density function (p.d.f.) and cumulative distribution function (c.d.f.) of the Suja 

distribution is given by 

𝑓(𝑦, 𝛼) =
𝛼5

𝛼4 + 24
(1 + 𝑦4)𝑒−𝛼𝑧 ; 𝑦 > 0, 𝛼 > 0  (1) 

𝐹(𝑦, 𝛼) = 1 − [1 +
(𝛼4𝑦4 + 4𝛼3𝑦3 + 120𝛼2𝑦2 + 24𝛼𝑦)

𝛼4 + 24
]  ; 𝑦 > 0, 𝛼 > 0  (2) 

We know that, the weighted function  is 

𝑓𝑤(𝑦) =
𝑤(𝑦)𝑓(𝑦)

𝐸(𝑤(𝑦))
 ; 𝑥 > 0  (3) 

Where, w(x) be a non-negative weight function.  𝐸(𝑤(𝑦)) = ∫ 𝑤(𝑦)𝑓(𝑦)𝑑𝑦 < ∞
∞

0
, 𝑤(𝑦) = 𝑦𝑐  

𝑓𝑤(𝑦) =
𝑦𝑐𝑓(𝑦)

𝐸(𝑦𝑐)
 ; 𝑦 > 0 (4) 

where,   𝐸(𝑦𝑐) =  ∫ 𝑦𝑐  𝑓(𝑦) 𝑑𝑦
∞

0
 

For area-biased function, put c=2, 

𝑓𝐴𝐵(𝑦) =
𝑦2𝑓(𝑦)

𝐸(𝑦2)
 ; 𝑦 > 0 (5) 

where, 

𝐸(𝑦) =  ∫ 𝑦2 𝑓(𝑦)𝑑𝑦
∞

0

(6) 

substitute (1) in (6), we get 

𝐸(𝑦) =
2(𝛼4 + 360)

𝛼2(𝛼4 + 24)
(7) 

Thus, the p.d.f. and c.d.f. of the area-biased Suja distribution (ABSD) can be obtained as 

𝑓𝐴𝐵𝑆𝐷(𝑦; 𝛼) =  
𝛼7

2(𝛼4 + 24)
𝑦2(1 + 𝑦4)𝑒−𝛼𝑦 ;  𝑦 > 0; 𝛼 > 0 (8)
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𝐹𝐴𝐵𝑆𝐷(𝑦; 𝛼) =  
1

2𝛼4 + 720
[𝛼4𝛾(3, 𝛼𝑦) + 𝛾(7, 𝛼𝑦)]  (9) 

The graphical representation of the p.d.f. and c.d.f. of area-biased Suja distribution (ABSD) are also 

shown below: 

Fig. 1: Pdf plot of ABSD Fig. 2: Cdf plot of ABSD 

3. Reliability Analysis

3.1 Reliability Function 

The survival function of the area-biased Suja distribution is given by 

𝑆(𝑦) = 1 − 𝐹(𝑦) 

𝑆(𝑦) = 1 −
1

2𝛼4 + 720
[𝛼4𝛾(3, 𝛼𝑦) + 𝛾(7, 𝛼𝑦)] 

3.2 Hazard Function 

The hazard function is also known as the hazard rate, instantaneous failure rate or force of mortality 

and is given by 

ℎ(𝑦) =
𝑓𝐴𝐵𝑆𝐷(𝑦; 𝛼)

1 − 𝐹𝐴𝐵𝑆𝐷(𝑦; 𝛼)

ℎ(𝑦) =
𝛼7𝑦2(1 + 𝑦4)𝑒−𝛼𝑦

(2𝛼4 + 720) − [𝛼4𝛾(3, 𝛼𝑦) + 𝛾(7, 𝛼𝑦)]

3.3 Reverse Hazard Function 

The reverse hazard function or reverse hazard rate is given by 

ℎ𝑟(𝑦) =
𝑓𝐴𝐵𝑆𝐷(𝑦; 𝛼)

𝐹𝐴𝐵𝑆𝐷(𝑦; 𝛼)

ℎ𝑟(𝑦) =
𝛼7𝑦2(1 + 𝑦4)𝑒−𝛼𝑦

[𝛼4𝛾(3, 𝛼𝑦) + 𝛾(7, 𝛼𝑦)]
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3.4 Mill’s Ratio 

The Mills ratio of the area-biased Suja distribution is 

Mills Ratio =
1

ℎ𝑟(𝑦)

=
[𝛼4𝛾(3, 𝛼𝑦) + 𝛾(7, 𝛼𝑦)]

𝛼7𝑦2(1 + 𝑦4)𝑒−𝛼𝑦

4. Moments

The moments of ABSD have been derived to describe the characteristic of the proposed model. Then, 

the 𝑟𝑡ℎ order moment E(𝑦𝑟) of ABSD is derived as 

𝜇𝑟
′ = 𝐸(𝑦𝑟) = ∫ 𝑦𝑟∞

0
𝐹𝐴𝐵𝑆𝐷(𝑦; 𝛼)𝑑𝑦 (10)

𝜇𝑟
′ =

𝛼7

2𝛼4+720
∫ 𝑦𝑟+2(1 + 𝑦4)𝑒−𝛼𝑦 𝑑𝑦

∞

0
  (11) 

𝜇𝑟
′ =

𝛼4Γ(r + 3) + Γ(r + 7)

𝛼𝑟(2𝛼4 + 720)
 (12) 

In equation (12), when r=1, the mean of ABSD which is given by 

𝜇1
′ =

3(𝛼4 + 840)

𝛼(𝛼4 + 360)

Similarly, when r=2, 3, 4 in equation (4.1), we will get 

𝜇2
′ =

12(𝛼4 + 1680)

𝛼2(𝛼4 + 360)

𝜇3
′ =

60(𝛼4 + 3024)

𝛼3(𝛼4 + 360)

𝜇4
′ =

360(𝛼4 + 5040)

𝛼4(𝛼4 + 360)

The central moments about the mean of this distribution are given as 

𝜇0 = 𝜇0
′ = 1 

𝜇0 = 0 

𝜇2 = 𝜇2
′ − (𝜇1

′ )2 =
12(𝛼4 + 1680)

𝛼2(𝛼4 + 360)
− (

3(𝛼4 + 840)

𝛼(𝛼4 + 360)
)

2

Therefore, the variance of ABSD is 

𝜇2 =
9(𝛼8 + 2160𝛼4 + 571200)

𝛼2(𝛼4 + 360)2

𝜇3 = 𝜇3
′ − 3𝜇2

′ 𝜇1
′ + 2(𝜇1

′ )3 =
60(𝛼12 + 8280𝛼8 + 388800𝛼4 + 108864000)

𝛼3(𝛼4 + 360)3

𝜇4 = 𝜇4
′ − 4𝜇3

′ 𝜇1
′ + 6𝜇2

′ (𝜇1
′ )3 − 3(𝜇1

′ )4

𝜇4 =
45(𝛼4 + 360)(𝛼12 + 21048𝛼8 + 15871680𝛼4 + 741208320)

𝛼4(𝛼4 + 360)4

The standard deviation (σ), co-efficient of variation (C.V.), co-efficient of skewness (√𝛽1), co-efficient of 

kurtosis (𝛽2) and index of dispersion (𝛾) of ABSD are obtained as 

𝜎 =
3√𝛼8 + 2160𝛼4 + 571200

𝛼(𝛼4 + 360)

𝐶. 𝑉. =
𝜎

𝜇1
′ =

√𝛼8 + 2160𝛼4 + 571200

(𝛼4 + 840)

√𝛽1 =
𝜇3

𝜇2

3
2

=
2(𝛼12 + 8280𝛼8 + 388800𝛼4 + 108864000)

9(𝛼8 + 2160𝛼4 + 571200)
3
2

𝛽2 =
𝜇4

𝜇2

=
5(𝛼12 + 21048𝛼8 + 15871680𝛼4 + 7412083200)

𝛼2(𝛼4 + 360)(𝛼8 + 2160𝛼4 + 571200)

RT&A, No 4 (76) 
Volume 18, December 2023 

35



C. Subramanian, M. Subhashree, Aafaq A. Rather

EXPLORING NOVEL EXTENSION OF SUJA DISTRIBUTION …

𝛾 =
𝜎2

𝜇1
′ =

3(𝛼8+2160𝛼4+571200)

𝛼(𝛼4+360)(𝛼4+840)
(13) 

Fig. 3: Coefficient of variation for ABSD Fig. 4: Index of dispersion for ABSD 

Fig. 5: Coefficient of skewness for ABSD Fig. 6: Coefficient of kurtosis for ABSD 

4.1 Harmonic Mean 

The Harmonic mean of the aspired model can be derived as 

𝐻. 𝑀. =  𝐸 [
1

𝑦
] = ∫

1

𝑦

∞

0
𝑓𝐴𝐵𝑆𝐷(𝑦)𝑑𝑦 (14) 

𝐻. 𝑀. = ∫
1

𝑦

∞

0

𝛼7

2(𝛼4+360)
𝑦2(1 + 𝑦4)𝑒−𝛼𝑦 𝑑𝑦 (15) 

Therefore, 

𝐻. 𝑀. =  
𝛼(𝛼4 + 120)

2(𝛼4 + 360)

4.2 Moment Generating Function and Characteristic Function 

Assume Y have area-biased Suja distribution, we will get the moment generating function of Y as 

𝑀𝑦(𝑡) = 𝐸(𝑒𝑡𝑦) = ∫ 𝑒𝑡𝑦∞

0
𝑓𝐴𝐵𝑆𝐷(𝑦)𝑑𝑦 (16)
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Using Taylor’s expansion, 

𝑀𝑦(𝑡) = ∫ ∑
(𝑡𝑦)𝑗

𝑗!

∞
𝑗=0

∞

0
𝑓𝐴𝐵𝑆𝐷(𝑦)𝑑𝑦 = ∑

𝑡𝑗

𝑗!

∞
𝑗=0 𝜇𝑗

′ (17) 

𝑀𝑦(𝑡) =
1

2(𝛼4+360)
∑

𝑡𝑗

𝑗!𝛼𝑗 (𝛼4Γ(r + 3) + Γ(r + 7))∞
𝑗=0  (18) 

In the same way, we will get the characteristics function of SBJD can be obtained as 

𝜑𝑦(𝑡) = 𝐸[𝑒𝑖𝑡𝑦] =
1

2(𝛼4+360)
∑

(𝑖𝑡)𝑗

𝑗!𝛼𝑗 (𝛼4Γ(r + 3) + Γ(r + 7))∞
𝑗=0  (19) 

5. Order Statistics

Let Y1, Y2, ………,Yn be the random variable drawn from the continuous population. Their p.d.f. be 𝑓𝑦(𝑦) 

and cumulative density function be 𝐹𝑦(𝑦). Then, assume Y(1),Y(2),……..,Y(n) be the order statistics of a 

random sample. 

Thus, the probability density function of rth order statistics Y(r) is given by 

𝑓𝑦(𝑟)
(𝑦) =

𝑛!

(𝑛 − 𝑟)! (𝑟 − 1)!
𝑓(𝑦)[𝐹𝑦(𝑦)]

𝑟−1
[1 − 𝐹𝑦(𝑦)]

𝑛−𝑟
 (20) 

Putting the equation (8) and (9) in equation (20), the probability density function of rth order statistics 

Y(r) of ABSD is given by 

𝑓𝑦(𝑟)
(𝑦) =

𝑛!

(𝑛−𝑟)!(𝑟−1)!
{

𝛼7𝑦2(1+𝑦4)𝑒−𝛼𝑦 

2(𝛼4+360)
} x {

[𝛼4𝛾(3,𝛼𝑦)+𝛾(7,𝛼𝑦)]

2(𝛼4+360)
}

𝑟−1

(21) 

x {1 −
[𝛼4𝛾(3, 𝛼𝑦) + 𝛾(7, 𝛼𝑦)]

2(𝛼4 + 360)
}

𝑛−𝑟

Then, the probability density function of higher order statistics Y(n) can be derived as 

𝑓𝑦(𝑛)
(𝑦) = {

𝑛𝛼7𝑦2(1+𝑦4)𝑒−𝛼𝑦 

2(𝛼4+360)
} x {

[𝛼4𝛾(3,𝛼𝑦)+𝛾(7,𝛼𝑦)]

2(𝛼4+360)
}

𝑛−1

(22) 

Hence, the probability density function of 1st order statistics Y(1) can be obtained as 

𝑓𝑦(1)
(𝑦) = {

𝑛𝛼7𝑦2(1+𝑦4)𝑒−𝛼𝑦 

2(𝛼4+360)
} x {1 −

[𝛼4𝛾(3,𝛼𝑦)+𝛾(7,𝛼𝑦)]

2(𝛼4+360)
}

𝑛−1

(23) 

6. Maximum Likelihood Estimator and Fisher Information Matrix

The maximum likelihood estimator is the best numerical stability estimator to estimate the parameters 

of the distribution when compared with other estimating methods. Thus, we used this method to 

estimate the parameters of ABSD which is derived below: 

Let Y(1), Y(2), ………,Y(n) be the random sample of size n drawn from the ABSD, then, the likelihood 

function of ABSD is 

𝐿(𝑦; 𝛼) = ∏ 𝑓𝐴𝐵𝑆𝐷(𝑦; 𝛼)

𝑛

𝑖=1

=
𝛼7𝑛

2𝑛(𝛼4 + 360)𝑛
∏ 𝑦𝑖

2(1 + 𝑦𝑖
4)𝑒−𝛼𝑦𝑖

𝑛

𝑖=1

The natural log likelihood function is 

log 𝐿(𝑦; 𝛼) = 7𝑛 log 𝛼 − 𝑛 log(2𝛼4 + 720) + 2 ∑ log 𝑦𝑖 + ∑ log(1 + 𝑦𝑖
4) − 𝛼 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1     (24)

By differentiating equation (24) with respect to 𝛼, the maximum likelihood estimates of 𝛼 can be 

attained as 

𝜕 log 𝐿

𝜕𝛼
=

7𝑛

𝛼
−

8𝑛𝛼3

(2𝛼4 + 720)
− ∑ 𝑦𝑖 = 0

𝑛

𝑖=1

 (25) 

Because of the complicated form of likelihood equation (25), algebraically it is very difficult to solve the 

system of non-linear equation. Therefore, we use R and wolfram Mathematica for estimating the 

required parameters. 
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7. Likelihood ratio Test

This test is used to compare the goodness of fit of the two models based on the ratio of their likelihoods. 

Suppose Y(1), Y(2), ………,Y(n) be a random sample from the ABSD. To test, the random sample of size n for 

ABSD, the hypothesis is 

𝐻0: 𝑓(𝑦) = 𝑓𝑆𝐷(𝑦; 𝛼)   𝑎𝑔𝑎𝑖𝑠𝑡    𝐻1: 𝑓(𝑦) = 𝑓𝐴𝐵𝑆𝐷(𝑦; 𝛼) 

To check whether the random sample of size n comes from the Suja distribution or size-biased Suja 

distribution, the likelihood ratio is 

∆=
𝐿1

𝐿0

= ∏
𝑓𝐴𝐵𝑆𝐷(𝑦; 𝛼)

𝑓𝑆𝐷(𝑦; 𝛼)

𝑛

𝑖=1

= [
𝛼2(𝛼2 + 24)

2(𝛼4 + 360)
]

𝑛

∏ 𝑦𝑖
2

𝑛

𝑖=1

Therefore, the null hypothesis is rejected if 

∆= [
𝛼2(𝛼2 + 24)

2(𝛼4 + 360)
]

𝑛

∏ 𝑦𝑖
2 > 𝑘

𝑛

𝑖=1

∆∗= ∏ 𝑦𝑖
2

𝑛

𝑖=1

> 𝑘∗ 𝑤ℎ𝑒𝑟𝑒 𝑘∗ = 𝑘 [
𝛼2(𝛼2 + 24)

2(𝛼4 + 360)
]

𝑛

> 0

We can conclude, for large sample size n, 2log is distributed as chi-square distribution with one degree 

of freedom. Also, p-value is attained from the chi-square distribution. If p (∆∗>𝑘∗), where 𝑘∗ = ∏ 𝑦𝑖
𝑛
𝑖=1  is

less than the specified level of significance and ∏ 𝑦𝑖
𝑛
𝑖=1  is the observed value of the statistic ∆∗, then,

reject null hypothesis. 

8. Applications

It is a measure to check how a statistical model fits a data set. Here, we will discuss how the proposed 

model is fit to a data set which is illustrated below. Also, compare with Suja distribution to show better 

fit of area-biased Suja distribution. Let us represent the data set of weather temperature in Bangladesh 

from 2016 to 2019 by Shawkat Sujon in the website: 

https://www.kaggle.com/datasets/shawkatsujon/bangladesh-weather-dataset-from-1901-to2019. The 

data set is given as follows: 

Table 1: Data of weather temperature in Bangladesh from 2016 to 2019 

Year 2016 2016 2016 2016 2016 2016 2016 

Month 1 2 3 4 5 6 7 

Temperature 17.34 22.12 25.93 28.25 27.94 28.96 28.17 

Year 2016 2016 2016 2016 2016 2017 2017 

Month 8 9 10 11 12 1 2 

Temperature 28.85 28.58 27.74 23.45 21.43 19.36 21.31 

Year 2017 2017 2017 2017 2017 2017 2017 

Month 3 4 5 6 7 8 9 

Temperature 23.69 26.91 28.76 28.58 28.27 28.57 28.54 

Year 2017 2017 2017 2018 2018 2018 2018 

Month 10 11 12 1 2 3 4 

Temperature 27.16 24.14 20.59 17.59 21.18 25.41 26.79 

Year 2018 2018 2018 2018 2018 2018 2018 

Month 5 6 7 8 9 10 11 

Temperature 27.32 28.68 28.59 28.88 28.66 26.17 22.76 
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Year 2018 2019 2019 2019 2019 2019 2019 

Month 12 1 2 3 4 5 6 

Temperature 19.13 19.38 20.71 24.4 27.41 28.92 29.18 

Year 2019 2019 2019 2019 2019 2019 

Month 7 8 9 10 11 12 

Temperature 28.72 29 28.28 26.94 23.88 18.51 

In order to compare the distributions, we study the criteria like Akaike Information Criterion (AIC), 

Akaike Information Criterion Corrected (AICC), Bayesian Information Criterion (BIC) and -2logL. The 

better distribution is which compatible to lesser values of AIC, BIC, AICC and -2logL. 

Table 2: Comparison of distributions 

Distribution MLE S.E -2logL AIC BIC AICC 

Suja �̂� = 0.1965312 0.0126848 327.644 329.644 331.5152 329.730 

Length-biased Suja �̂� = 0.2358445 0.0138967 319.7202 321.7202 323.5914 321.8071 

Area-biased Suja �̂� = 0.2751537 0.0150105 313.2269 315.2269 317.0981 315.3138 

9. Conclusion

In conclusion, this article presents a comprehensive investigation of the area-biased Suja distribution 

(ABSD), a noteworthy extension of the weighted distribution paradigm. The obtained probability 

density function (p.d.f.) and cumulative distribution function (c.d.f.) enrich the theoretical foundations 

of the ABSD, laying a solid groundwork for its application in various domains. 

One significant advantage of the ABSD is its robust parameter resiliency, which leads to enhanced 

performance and more accurate results compared to other distributions. The maximum likelihood 

estimator proves to be an effective tool for estimating the distribution's parameter, and its validity is 

confirmed through the likelihood ratio test, reinforcing the reliability of our findings. The in-depth 

analysis of various statistical properties provides valuable insights into the ABSD's behavior and 

characteristics, fostering a deeper understanding of this novel model. 

In particular, when applied to weather temperature data, the ABSD demonstrates superior 

compatibility compared to both the standard Suja distribution and the length-biased Suja distribution. 

The results suggest that the ABSD better captures the intricate patterns and variations inherent in 

weather temperature datasets. 

The findings presented in this article not only enhance the understanding of the ABSD but also 

contribute to the broader field of statistical modeling. The improved performance in weather 

temperature analysis highlights the practical applicability of the ABSD in real-world scenarios. This 

distribution's versatility and ability to handle diverse datasets make it a promising candidate for future 

research and application across various domains. As the field of statistical modeling continues to 

evolve, the ABSD offers a valuable addition to the toolkit of data analysts and researchers alike. 
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Abstract 

The article considers a statistical model for predicting emergency situations of a biological and 

social nature. Particular attention is paid to the calculation of indicators of resource provision of the 

medical care system and mortality rates during the spread of the epidemic. 

Keywords: forecasting model; Bayesian classifiers; emergency situations of a 

biological and social nature; indicators of resource provision of the medical care 

system; mortality rates during the spread of the epidemic. 

I. Introduction
The spread of the new coronavirus infection COVID-19 in the world in three years has led to  

more than five hundred million infections and more than six million deaths. The high dynamics of 

growth in morbidity and mortality has led not only to a serious burden on the healthcare system in 

almost all countries of the world, but also to the development of scientific methods for modeling 

epidemics and pandemics. In particular, in [1], a statistical model for predicting epidemics using 

Bayesian classifiers is proposed. 

The main input data for the formation of the basic training set of this model are the following 

groups of parameters: input data characterizing the settlement (hereinafter - NP); input data 

characterizing the socio-economic indicators of the NP; input data characterizing the composition 

and size of the population of the NP; input data characterizing the demographic indicators of the 

NP; input data characterizing the symptoms and course of a respiratory viral disease (hereinafter 

referred to as RVD); input data characterizing the level of provision of the population with medical 

care resources in the settlement; input data characterizing the epidemiological situation in the NP 

(with the development of an epidemic caused by RVD); results of forecasting and modeling of the 

spread of the epidemic caused by the PR in the NP. 

II. Methods

Calculation of indicators of resource provision of the medical care system. 
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The indicators of the availability of resources for the system of providing medical care in the 

territory during the spread of the epidemic include [2]: the indicator of the availability of 

hospitalized infectious patients with beds; indicator of availability of oxygen concentrators; 

indicator of availability of intensive care beds; the indicator of availability of artificial lung 

ventilation devices (hereinafter - ALV); indicator of provision of medical institutions with senior 

medical personnel; indicator of provision of medical institutions with paramedical personnel. 

The indicator of bed capacity of hospitalized infectious patients (Iib) is determined by the formula 

[3]: 

𝐼𝑖𝑏 =
𝐾к.𝑖𝑙

𝐾𝑔𝑖
, 

Where: 

𝐾к.𝑖𝑙 - the number of beds for hospitalized infectious patients, units; 

𝐾𝑔𝑖  - the total number of hospitalized infectious patients, people. 

The index of provision with oxygen concentrators ((Ikk) is determined by the formula: 

 

𝐼кк =
𝐾к.кк

𝐾кк

, 

Where: 

𝐾к.кк — number of oxygen concentrators, units; 

𝐾кк — the total number of hospitalized, with the need for oxygen supply, pers. 

The indicator of provision with an intensive care bed fund (Iit) is determined by the formula: 

𝐼𝑖𝑡 =
𝐾к.𝑖𝑡

𝐾𝑡𝑏

, 

Where: 

𝐾к.𝑖𝑡 — number of beds in the intensive care unit (hereinafter referred to as RIIT), units.; 

𝐾𝑡𝑏 — total number of hospitalized infectious patients, pers. 

The indicator of provision with ventilators (or similar devices) (Iivl) is determined by the formula: 

𝐼𝑖𝑣𝑙 =
𝐾а.𝑖𝑣𝑙

𝐾𝑖𝑣𝑙

, 

 

Where: 

𝐾а.𝑖𝑣𝑙 — number of ventilators (or similar devices), units; 

𝐾𝑖𝑣𝑙  — total number of hospitalized infectious patients with the need to connect to 

ventilators (or similar devices), people 

The indicator of provision of medical institutions with senior medical personnel (Istmp) is 

determined by the formula: 

 

𝐼𝑠𝑡𝑚𝑝 =
𝐾𝑠𝑡𝑚𝑝

𝐾𝑔𝑖
 

Where: 

𝐾𝑠𝑡𝑚𝑝 — indicator of senior medical personnel, people; 

𝐾𝑔𝑖  — total number of hospitalized infectious patients, pers. 

The indicator of provision of medical institutions with paramedical personnel (Isrmp, units 

per 1000 people) is determined by the formula: 

𝐼𝑠𝑟𝑚𝑝 =
𝐾𝑠𝑟𝑚𝑝

𝐾𝑔𝑖
 

Where: 

𝐾𝑠𝑟𝑚𝑝 — indicator of the average medical personnel, people; 

𝐾𝑔𝑖  — total number of hospitalized infectious patients, pers. 

Calculation of mortality rates during the spread of the epidemic 
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The indicators of mortality during the spread of the epidemic and in the conditions of its 

absence include [2]: the mortality rate due to respiratory diseases during the spread of the 

epidemic; mortality rate due to diseases of the circulatory system during the spread of the 

epidemic; mortality rate due to neoplasms during the spread of the epidemic; overall mortality rate 

due to respiratory diseases, diseases of the circulatory system and neoplasms during the spread of 

the epidemic (in the absence of it). 

The mortality rate due to respiratory diseases ((Isod, units per 1000 people) is determined by the 

formula [4]: 

𝐼𝑠𝑜𝑑 =
𝐾𝑠𝑜𝑑

𝐾𝑛𝑝

∙ 1000, 

Where: 

𝐾𝑠𝑜𝑑 — the number of deaths due to respiratory diseases per month, people; 

𝐾𝑛𝑝 — population of the settlement, pers. 

Mortality rate due to diseases of the circulatory system (Isbk, unit per 1000 people.) is 

determined by the formula: 

𝐼𝑠𝑏𝑘 =
𝐾𝑠𝑏𝑘

𝐾𝑛𝑝

∙ 1000, 

Where: 

𝐾𝑠𝑏𝑘 — the number of deaths due to diseases of the circulatory system per month, people; 

𝐾𝑛𝑝 — population of the settlement, pers. 

The mortality rate due to neoplasms (Isn) is determined by the formula: 

 

𝐼𝑠𝑛 =
𝐾𝑠𝑛

𝐾𝑛𝑝

∙ 1000, 

 

Where: 

𝐾𝑠𝑛 — the number of deaths due to neoplasms per month, people; 

𝐾𝑠𝑝 — population of the settlement, pers. 

Then the overall mortality rate due to respiratory diseases, diseases of the circulatory 

system and neoplasms during the spread of the epidemic is determined by the following 

relationship: 

Where: 

𝐼𝑠𝑜𝑑 — mortality rate due to respiratory diseases, units. per 1000 people; 

𝐼𝑠𝑏𝑘 — mortality rate due to diseases of the circulatory system, units. per 1000 people; 

𝐼𝑠𝑛 — mortality rate due to neoplasms, units per 1000 people. 

 

III. Results 
Thus, this article considers a statistical model for predicting emergency situations of a 

biological and social nature. Particular attention is paid to the calculation of indicators of resource 

provision of the medical care system and mortality rates during the spread of the epidemic. 

 

IV. Discussion 
 

The discussion of the verbal and mathematical foundations of predictive modeling of 

emergency situations of a biological and social nature during the development of an epidemic 

caused by EIA is quite active in the scientific literature [5–10]. 

𝐼𝑠𝑚 = 𝐼𝑠𝑜𝑑 + 𝐼𝑠𝑏𝑘 + 𝐼𝑠𝑛 ,  
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At the previous conference RISK - 2022, the authors presented reports on the issues of 

predictive modeling of natural and man-made emergencies [11, 12]. 
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Abstract 

This manuscript focuses on the statistical properties and estimation methods of the 

exponentiated Suja distribution, which is characterized by two parameters: scale and 

shape. From a frequentist perspective, our primary emphasis is on estimation techniques. 

Additionally, we derive statistical and reliability characteristics for the model. We explore 

various estimation procedures, including order statistics, entropies, reliability analysis, 

and the maximum likelihood method. To assess the model's superiority and practical utility, 

we analyze real lifetime data sets. Overall, this study provides a comprehensive analysis of 

the exponentiated Suja distribution, offering insights into its statistical properties, 

estimation techniques, and real-life applications. 

Keywords: Exponentiated technique, Suja distribution, Order statistics, 

Entropies, Reliability analysis, Maximum likelihood Estimation. 

1. Introduction

A new theory of distributions was introduced by Gupta et al. [1], who discussed a new family of 

distributions namely the exponentiated exponential distribution. The family has two parameters scale 

and shape, which are similar to the weibull and gamma family. Later Gupta and Kundu [2] studied 

some properties of the distribution. They observed that many properties of the new family are similar 

to those of the weibull or gamma family. Hence the distribution can be used an alternative to a weibull 
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or gamma distribution. The two parametric gamma and weibull are the most popular distributions 

for analyzing any lifetime data. The gamma distribution has a lot of applications in different fields 

other than lifetime distributions. the two parameters of gamma distribution represent the scale and 

the shape parameter and because of the scale and shape parameter, it has quite a bit of flexibility to 

analyze any positive real data. But one major disadvantage of the gamma distribution is that, if the 

shape parameter is not an integer, the distribution function or survival function cannot be expressed 

in a closed form. This makes gamma distribution little bit unpopular as compared to the weibull 

distribution, whose survival function and hazard function are simple and easy to study. Nowadays 

exponential distributions and their mathematical properties are widely studied for applied science 

experimental data sets. Rodrigues et al. [3] studied the exponentiated generalized Lindley distribution. 

Hassan et al. [4] discussed the exponentiated Lomax geometric distribution with its properties and 

applications. Nasiru et al. [5] obtained exponentiated generalized power series family of distributions. 

Rather and Subramanian [6] discussed the exponentiated Mukherjee-Islam distribution. Rather and 

Subramanian [7] obtained the exponentiated Ishita distribution with properties and applications. 

Maradesa Adeleke [10] discussed exponentiated exponential Lomax distribution and its Properties. 

Nasir et al [11] obtained the exponentiated Burr XII power series distribution with properties and its 

applications. Recently, Rather and Subramanian [8] discussed the exponentiated Garima distribution 

with applications in engineering sciences. 

Suja distribution is a newly introduced one parametric lifetime model proposed by Shanker [9] 

for engineering sciences. The potentiality and usefulness of the proposed distribution in modeling 

lifetime data was greater as compared to other one parametric distributions namely Lindley, 

exponential, sujatha, Shanker and Aradhana. The different statistical properties of the proposed 

model have been derived and discussed such as order statistics, moments and associated measures, 

hazard and mean residual life function, stochastic ordering, Bonferroni and Lorenz curves and stress 

strength reliability. The parameters of the proposed distribution are estimated by employing the 

maximum likelihood estimation method. Finally, the goodness of fit of the proposed Suja distribution 

has been described by analyzing the real life data set and the fit has been found quite satisfactory over 

Lindley, exponential, Shanker, Aradhana, Sujatha and Amarendra distributions.   

2. Exponentiated Suja Distribution (ESD)

The probability density function (pdf) of Suja distribution is given by 

    )1(0,0;41
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and the cumulative distribution function (cdf) of the Suja distribution is given by 
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A random variable X is said to have an exponentiated distribution, if its cumulative distribution 

function is given by  

  )3(0,';)()(  
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Then X is said to have an exponentiated distribution. 

The probability density function of X is given by 
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on Substituting (2) in (3), we will get the cumulative distribution function of Exponentiated Suja 

distribution 

RT&A, No 4 (76) 
Volume 18, December 2023 

47



K. Selvakumar, J. A. Ansari, K. Kavitha, C. Subramanian, D. V. Saraja,

A. A. Khan, R. A. Ganaie, A. A. Rather, M. Mohiuddin

A NEW EXTENDED EXPONENTIATED DISTRIBUTION …

)5(0,0,0;
244

24221233444
11)( 

































 






 xθxe

xxxx
xF

and the probability density function of Exponentiated Suja distribution can be obtained as 

 
)6(

1

244

24221233444
11

244

415
)(





















































θxe
θxxxxθxex

xf

The graphical representation of Pdf and Cdf are shown in Fig. 1 and Fig. 2. 

Fig. 1: Pdf plot of exponentiated Suja distribution  Fig. 2: Cdf plot of exponentiated Suja distribution 

3. Reliability Analysis

In this section, we will discuss the survival function, hazard function and Reverse hazard rate function 

of the Exponentiated Suja distribution. Many researchers have discussed system reliability by using 

different techniques like Tillman et al [14], Wei et al. [15] and Wang [16]. 

The survival function of Exponentiated Suja distribution is given below and its graphical 

representation is in Fig. 3. 
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The hazard function is also known as hazard rate, instantaneous failure rate or force of mortality and 

is given by 
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The reverse hazard rate is given by 
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Fig. 3: Survival function of exponentiated Suja distribution 

4. Statistical Properties

4.1 Moments 

Suppose X is a random variable following exponentiated Suja distribution with parameters α and θ, 

then the rth order moment E(X r) for a given probability distribution is given by 
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Equation (10) will become 
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Equation (12) becomes   

  )14(
)1(41

244

24221233444

0 0

1
)1(

244

5
)( 

 










































 





o
dx

iθx
exrx

k
θxxxx

i k k

i

i

irXE








After simplification, we obtain 
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Since equation (15) is a convergent series for all r ≥ 0, therefore all the moments exist. 

Therefore 
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Therefore, the Variance of X can be obtained as 
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4.2 Harmonic mean 

The Harmonic mean for the proposed Exponentiated Suja distribution can be obtained as 
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Using Binomial expansion in equation (19), we get 
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On using Binomial expansion in equation (20), we obtain 
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After the simplification of equation (21), we obtain 
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4.3 Moment Generating Function and Characteristics Function 

Let X have an ESD, then the moment generating function of X is obtained as 
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Similarly, the Characteristics function of Exponentiated Suja distribution is given by 
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5. Order Statistics

Order statistics has wide field in reliability and life testing. There is also an extensive role of order 

statistics in several aspects of statistical inference. Let X(1), X(2), ….., X(n) be the order statistics of a 

random sample X1, X2, ….Xn drawn from the continuous population with probability density function 

fx(x) and cumulative distribution function Fx(x), then the pdf of rth order statistics X(r) can be written 

as 
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Substitute the values of equation (5) and (6) in equation (25), we will obtain the pdf of rth order 

statistics X(r) for exponentiated Suja distribution and is given by 
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The probability density function of higher order statistics X(n)  can be obtained as 
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Similarly, the pdf of first order statistics X(1) can be obtained as 
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6. Maximum Likelihood Estimation

In this section, we will discuss the maximum likelihood estimators of the parameters of exponentiated 

Suja distribution. Let X1, X2,….Xn be the random sample of size n from the Exponentiated Suja 

distribution, then the likelihood function can be written as 
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The log likelihood function is given by 
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The maximum likelihood estimates of α, θ which maximizes (30), must satisfy the normal equations 

given by
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Where ψ (.) is the digamma function. 

At this point it is important to mention that the analytical solution of the above system of non-linear 

equation is unknown. Algebraically it is very difficult to solve the complicated form of likelihood 

system of nonlinear equations. Therefore, we use R and wolfram mathematics for estimating the 

required parameters. 
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7. Information Measures

7.1 Renyi Entropy 

Entropies quantify the diversity, uncertainty, or randomness of a system. The Renyi entropy is named 

after Alfred Renyi in the context of fractual dimension estimation, the Renyi entropy forms the basis 

of the concept of generalized dimensions. The Renyi entropy is important in ecology and statistics as 

index of diversity. The Renyi entropy is also important in quantum information, where it can be used 

as a measure of entanglement. For a given probability distribution, Renyi entropy is given by 
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Using binomial expansion in (35), we get 
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Again using binomial expansion in (16), we get 
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After the simplification of (37) we obtain 
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7.2 Tsallis Entropy 

A generalization of Boltzmann-Gibbs (B-G) statistical mechanics initiated by Tsallis has gained a great 

deal to attention. This generalization of B-G statistics was proposed firstly by introducing the 

mathematical expression of Tsallis entropy for a continuous random variable it is defined as 
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Using binomial expansion in (40), we get 
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Again using binomial expansion in (41), we obtain 

)42(
0 0

)(

0
)41(

244

24221233444)1(
)1(

244

5
1

1

1































































 






















i k
dx

iθx
ex

k
θxxxx

k

i

i

i 












After the simplification of (42), we get 
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8. Data Analysis

In this section, we use two real-life data sets in exponentiated Suja distribution and the model has 

been compared with Suja and exponential distributions 

Data Set 1: The following data set of 40 patients suffering from blood cancer (leukemia) is reported by 

one of ministry of health hospitals in Saudi Arabia by Abouammah et al. [13]. The ordered lifetimes 

(in years) is provided below in table 1. 

Table 1: Data represents the blood cancer patients (leukemia) 

 0.315 0.496 0.616 1.145 1.208 1.263 1.414  2.025  2.036  2.162  

2.211 2.37  2.532  2.693  2.805  2.91  2.912  2.192 3.263 3.348 

3.348 3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244 

4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 5.381 

Data set 2: The second data set represents the tensile strength, measured in GPa, of 69 carbon fibers 

tested under tension at gauge lengths of 20mm which were originally reported by M. G. Bader and A. 

M. Priest [12]. The data set is provided below in table 2.

Table 2: Data regarding the tensile strength (GPa) of 69 carbon fibers 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 

1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098 2.14 2.179 

2.224 2.240 2.253 2.270 2.272 2.274 2.301 2.301 2.359 2.382 

2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554 
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2.566 2.57 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 

2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.88 2.954 3.012 

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585 

In order to compare the exponentiated Suja distribution with Suja and exponential distribution, we 

consider the Criteria like BIC (Bayesian information criterion), AIC (Akaike information criterion), 

AICC (Corrected Akaike information criterion) and -2logL. The better distribution is which 

corresponds to lesser values of AIC, BIC, AICC and -2logL. For calculating AIC, BIC, AICC and -2logL 

can be evaluated by using the formulas as follows. 

LnkBIC
kn

)k(k
AIC AICCLkAIC log2log     and   

1

12
       log22 






Where k is the number of parameters in the statistical model, n is the sample size and -2logL is the

maximized value of the log-likelihood function under the considered model. 

Table 3: Fitted distributions of the two data sets and criteria for comparison 

Data 

sets 

Distribution MLE S.E -2logL AIC BIC AICC 

 1 

Exponentiated 

Suja 1.9201488

3.9557520









ˆ

ˆ

0.1531425

1.2186387









ˆ

ˆ 120.79

2 

124.79

2 

128.16

9 

125.11

7 

Suja 1.41132109ˆ  0.08834353ˆ  142.66

9 

144.66

9 

146.35

8 

144.77

5 

Exponential 0.31839887 ˆ  0.05034278ˆ  171.55

7 

173.55

7 

175.24

6 

173.67 

2 

Exponentiated 

Suja 6448593.3ˆ

3523215.91ˆ









2307272.0ˆ

077905.45ˆ







 77.545

3 

81.545

3 

85.631

4 

81.728 

Suja 6558639.1ˆ  0831825.0ˆ  164.25

2 

166.25

2 

168.29

5 

166.31

2 

Exponential 40927188.0ˆ  0542091.0ˆ  215.84

6 

217.84

6 

219.88

9 

217.90

5 

From table 3, it can be easily seen that the exponentiated Suja distribution have the lesser AIC, BIC, 

AICC and -2logL values as compared to Suja and exponential distributions. Hence we can conclude 

that the exponentiated Suja distribution leads to a better fit than the Suja and exponential 

distributions. 

9. Conclusion

In conclusion, this study has introduced a new generalization of the Suja distribution, known as the 

exponentiated Suja distribution, which incorporates two parameters: scale and shape. The distribution 

was generated using the exponentiated technique, and the parameters were estimated using the 

maximum likelihood estimator. Various statistical properties and reliability measures of the 

exponentiated Suja distribution were discussed. 

Furthermore, the study demonstrated the practical applications of the new distribution in 

real-life time data. The results of two real lifetime data sets were compared with the Suja and 

exponential distributions, revealing that the exponentiated Suja distribution provides a better fit than 

both alternatives. 
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These findings highlight the potential of the exponentiated Suja distribution to enhance the 

modeling and analysis of data in various fields, such as clinical trials, epidemiological studies, and 

public health research. The improved fit observed in real-life applications suggests that the 

exponentiated Suja distribution can offer more accurate predictions and better capture the underlying 

characteristics of the data. 

Overall, this study contributes to the field of biostatistics by introducing a novel distribution 

and demonstrating its advantages over existing models. Further research and applications of the 

exponentiated Suja distribution are encouraged to explore its full potential in various domains of 

statistical analysis and decision-making. 
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Abstract 

This article presents a novel class of estimators designed for post-stratification to estimate the mean of a study variable 

using information from auxiliary variables. Through a rigorous examination of bias and Mean Square Error (MSE), we 

demonstrate the potential to improve estimation accuracy up to the first order of approximation. We also thoroughly 

explore both Conditional and Unconditional post-stratification properties, enhancing our understanding of the 

estimator's performance. To assess the effectiveness of our proposed estimator, we conduct a comprehensive numerical 

illustration. The results affirm its superiority over existing estimators in both Conditional and Unconditional Post-

stratification scenarios, exhibiting the highest Percentage Relative Efficiency. Additionally, graphical analysis reveals 

that Conditional post- stratification outperforms Unconditional post-stratification. These findings underscore the 

significant practical value of our proposed estimator in enhancing the accuracy of mean estimation in post-stratification 

studies. By accurately estimating population parameters, our novel class of estimators contributes to more informed 

decision-making in various fields of study. The utilization of auxiliary variables allows for better utilization of available 

information and leads to more reliable and robust conclusions. Overall, the novel class of estimators introduced in this 

article represents a valuable contribution to the field of post-stratification. As researchers continue to explore and apply 

these estimators, they have the potential to revolutionize data analysis methods, becoming indispensable tools for survey 

and research design. The improvements in estimation accuracy brought about by these estimators are particularly crucial 

in situations where reliable data is scarce or challenging to obtain, making them invaluable for decision-makers and 

researchers alike. With the increased accuracy and efficiency of our proposed estimators, they provide a pathway for 

better resource allocation, cost-effective decision-making, and improved policy formulation. Policymakers and researchers 

can confidently rely on these estimators to produce more accurate results and achieve better outcomes in various 

domains. In conclusion, the novel class of estimators for post-stratification presented in this article opens up new 

avenues for advancing statistical estimation methods. The fusion of auxiliary variables with traditional post-

stratification techniques represents a powerful approach to enhance estimation accuracy. Embracing and incorporating 

these estimators into research practices will undoubtedly bring us closer to making data-driven decisions that have a 

meaningful impact on society. 

Keywords: Conditional post stratification, Unconditional post stratification, Mean square 

error. 

I. Introduction

A common statistical method used in research studies to increase the precision and 

representativeness of survey data is post-stratification. It entails breaking down the sample 

population into discrete subgroups according to certain traits or factors, such age, gender, income 

level, or geography. Researchers can reduce potential biases and improve the generalizability of 

the results by stratifying the population to make sure that each subgroup is appropriately 

represented in the sample. After stratifying the sample, researchers can determine the population 

parameters by giving each subgroup the proper weights depending on its relative size. This 

method enables researchers to account for differences and generate more accurate and trustworthy 

estimates when the sample does not properly reflect the makeup of the target population. By 
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taking into account population changes and enhancing the precision of inferential statistics, post-

stratification is a useful tool that improves the validity and robustness of study findings. 

Auxiliary variable information is used in various types of literature to estimate population 

mean or variance. The significance of post-stratification and the proper framework for statistical 

inference were covered in [1]. By utilizing auxiliary data and empirical research, [2] proposed 

estimators for population mean and shown that the proposed estimator outperformed the 

alternative. For judgement post-stratification, [3] offered an alternative estimate that regularly 

beats the usual non-parametric mean estimator, and they noted a decrease in Mean Square Error 

(MSE) in their proposed estimator compared to the standard estimator. [4] proposed a class of 

estimators and compared them with a few already in use. They came to the conclusion that their 

suggested class of estimators performed well based on a numerical investigation. In post-stratified 

sampling, [5] created a new family of combined estimators of the population mean, and the 

outcomes are empirically demonstrated. Exponential estimators are later proposed in post-

stratification by [6], and its bias and MSE equations are obtained. The theoretical findings are 

further supported by a numerical analysis. [7] suggested an estimator of the population mean 

utilizing information from an auxiliary variable and demonstrated the superiority of the proposed 

estimator over others through comparison analysis. Additionally, [8] constructed a generalized 

class of estimators for population variance and demonstrated the effectiveness of the suggested 

estimator through a numerical investigation. Through empirical research, [9] demonstrated the 

superiority of the suggested estimator and developed a new family of exponential estimators. The 

ratio and product type exponential estimators were improved in the case of post-stratification by 

[10]. They demonstrated that the suggested estimator performed more effectively after 

stratification than unbiased, ratio, and product estimators.  Additionally, [11] raises the issue of 

estimating a population proportion in a decision following stratification. They conducted Monte 

Carlo simulation research to evaluate the performance of proportion estimators. According to [12], 

a family of Ratio estimators and the formulations for bias and an MSE are constructed in the case 

of the non-response issue. It is demonstrated by numerical analysis that the suggested estimator 

has reduced MSE values. A novel class of estimators was recently developed [13], and by 

numerical analysis, under ideal circumstances, the proposed class of estimators outperformed the 

previously taken into consideration existing estimators.[14] suggested some post-stratification 

enhanced estimators. They demonstrated the effectiveness of the proposed estimator using two 

real data sets. In this paper, a class of estimators for estimating population mean under post-

stratification has been developed.  

II. Terminology

Consider a finite population 𝜒 = {1,2, … 𝑁} of size N is stratified into K strata with  ℎ𝑡ℎ stratum 

each of which has Nhunits such that ∑ Nh = 𝑁.𝐾
ℎ=1   With the use of Simple random sampling 

without replacement, a sample with the dimension nh is taken from ℎ𝑡ℎ stratum. Let d serve as

study(dependent) variable and i serve as auxiliary (independent) variable. We have used the 

following notations:  

• D̅ = ∑ WhD̅h
K
h=1   is the population mean of study variable 

• I ̅ = ∑ WhIh̅
K
h=1  is the population mean of auxiliary variable 

• D̅h =
1

Nh

∑ dhi
Nh
i=1 and   Ih̅ =

1

Nh

∑ ihi
Nh
i=1  are the stratum means of study and auxiliary variables 

• Sdh
2 =

1

(Nh−1)
∑ (dhi − D̅h)

2Nh
i=1 is the variance of study variable at ℎ𝑡ℎ stratum

• Sih
2 =

1

(Nh−1)
∑ (ihi − Ih̅)

2Nh
i=1 is the variance of auxiliary variable at ℎ𝑡ℎ stratum

• Sdih =
1

(Nh−1)
∑ (dhi − D̅h)((ihi − Ih̅)Nh

i=1 is the covariance at ℎ𝑡ℎ stratum

• Cdh
2 =

1

D̅
2

(Nh−1)
∑ (dhi − D̅h)

2Nh
i=1  be the square of coefficient of variation of d 
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• Cih
2 =

1

I ̅
2

(Nh−1)
∑ (ihi − Ih̅)

2Nh
i=1  be the square of coefficient of variation of i 

• ρ
dih

=

1

Nh−1
∑ (dhi−D̅h)(ihi−Ih̅)

Nh
i=1

(D̅h∗Cdh)(Ih̅∗Idh)
 be the correlation coefficient of d and i. 

• Wh =
Nh

N
 represents stratum weight. 

I. Properties of Estimators in Unconditional Post-Stratification

To derive bias and mean squared error (MSE), we write 

d̅h = D̅h(1 + e0h), ih̅ = Ih̅(1 + e1h), 

e0 =
∑ WhD̅he0h

K
h=1

D̅
and  e1 =

∑ WhIh̅e1h
K
h=1

I ̅

Where 

e0h =
d̅h−D̅h

D̅h
and e1h =

ih̅−Ih̅

Ih̅

E (e0h) = E (e1h) = 0 

E(e0h
2 ) =  [

1

nWh

−
1

Nh

] Cdh
2  

E(e1h
2 ) =  [

1

nWh

−
1

Nh

] Cih
2  

E (e0he1h) =  [
1

nWh
−

1

Nh
]  ρdihCihCdh.   

we will find the expected values of error terms as 

E (e0) = E (
∑ WhFh(y)e0h

K
h=1

F(y)
) =  

1

F(y)
(∑ WhFh(y)E(e0h)

K

h=1

) =  0 

Similarly,  

E (e0) = E (e1) = 0 

E (e0
2) = E (

∑ WhD̅h
2 e0h

K
h=1

D̅
)

2

=
1

D̅2
∑ Wh

2D̅h
2E(e2

0h
)K

h=1

     =  
1

D̅2
∑ Wh

2D̅h
2K

h=1 [
1

nWh
−

1

Nh
] Cdh

2  

     =  
1

D̅2
∑ Wh

2D̅h
2K

h=1 [
1

nWh
−

1

Nh
] Cdh

2  

     =  
1

D̅2 [
1

n
−

1

N
] ∑ WhSdh

2 =  VD(say)

Similarly, 

E (e1
2)  =

1

I̅2
[
1

n
−

1

N
] ∑ ∑ WhSih

2

𝐾

ℎ=1

= VI 

E (e0e1) =  
1

D̅I̅
[

1

n
−

1

N
] ∑ WhSdih

K
h=1 = VDI (1) 

II. Properties of Estimators in Conditional Post-Stratification

E 1(e0
2) =

1

D̅
2 ∑ Wh

2 (
1

nh

−
1

Nh

)

K

h=1

Sdh
2 = V1D(say)

E 1(e1
2) =

1

 I ̅
2 ∑ Wh

2 (
1

nh

−
1

Nh

)

K

h=1

Sih
2 = V1I
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E 1(e0e1) =
1

D̅I ̅
∑ Wh (

1

nh
−

1

Nh
) Sdih

K
h=1 = V1DI (2) 

III. Estimators in Literature

We write the following estimators in terms of Unconditional case in post-stratification as 

a. The usual unbiased estimator of population mean D̅ = ∑ Wh
K
h=1 D̅h is given by 

u1 = d̅ps = ∑ Whd̅h
K
h=1    (3) 

Using the results from Stephen (1945), the variances of d̅ps to the first degree of approximation is 

given by 

For Unconditional post-stratification,  

Var(u1a) = [
1

n
−

1

N
] ∑ ∑ WhSdh

2K
h=1 +

1

n2
∑ (1 − Wh)K

h=1 Sdh
2   (4) 

Where Var(u1a) is the Unconditional variance of post stratified estimator d̅ps. 

and  Sdh
2 =

1

Nh−1
∑ (dhi − D̅h)2Nh

i=1

For Conditional post- stratification, 

Var(u1b) = ∑ Wh
2𝐾

ℎ=1 [
1

𝑛h
−

1

Nh
] Sdh

2   (5) 

Var(u1b) is the Conditional variance of post stratified estimator d̅ps. 

b. The Ratio estimator for population mean according to Naik and Gupta [2] is given by

u2 = d̅ps (
I ̅

ip̅s
) 

Where ip̅s = ∑ Whih̅
K
h=1

Up to the first degree of approximation, the MSE of estimator u2 is given by 

MSE (u2) =  D̅
2

[VD + VI [1 − 2 (
VDI

VI
)]]  (6) 

c. The usual product estimator is given by

u3 = d̅ps (
ip̅s

I ̅
) 

Up to the first degree of approximation, the MSE of estimator u3 is given by 

MSE (u3) = D̅
2

[VD + VI [1 + 2 (
VDI

VI
)]]  (7) 

d. The Usual regression estimator for D̅ is given by

u4 = d̅ps + bps(I ̅ − ip̅s)

The MSE of estimator u4 is given by 

MSE (u4) = D̅
2
VD(1 − ξ

DI
2 )  (8) 

Where ξ
DI
2 =

VDI
2

VDVI
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e. Koyuncu [7] proposed a class of estimators as

u5 = [r1d̅ps + r2(I ̅ − ip̅s)] (
apsI+̅bps

apsip̅s+bps
) 

Its MSE is given by 

MSE (u5) = D̅
2[1 + r1

2A1 + r2
2A2 + 2r1r2A3 − 2r1A4 − 2r2A5]  (9) 

Where A1 = 1 + VD + φ
ps

VI [3φ
ps

− 4 (
VDI

VI
)] 

A2 =
VI

R2

A3 =
VI

R
(2φ

ps
−

VDI

VI

) 

A4 = 1 + φ
ps

VI (φ
ps

−
VDI

VI

) 

A5 = (
VI

R
) φ

ps
, R=

D̅

I ̅
 , φ

ps
=

apsI ̅

apsI+̅bps
 , 

r1 =
A2A4−A3A5

A1A2−A3
2 and r2 =

A1A5−A3A4

A1A2−A3
2 . 

f. Sharma and Singh [9] proposed exponential type estimators as

Ratio type exponential estimator 

u6a = d̅ps exp (
I ̅ − ip̅s

I ̅ + ip̅s

) 

Product type exponential estimator as 

u6b = d̅ps exp (
ip̅s −   I ̅

ip̅s + I ̅
) 

u6c = d̅ps exp (
α(I ̅ − ip̅s)

I ̅ + ip̅s

) 

Where α being a suitable constant 

The MSEs of the above estimators as 

MSE (u6a) =  D̅
2

{VD +
VI

4
[1 − 4 (

VDI

VI
)]} 

MSE (u6b) = D̅
2

{VD +
VI

4
[1 + 4 (

VDI

VI
)]}         

MSE (u6c) = D̅2 {VD +
αVI

4
[α − 4 (

VDI

VI
)]}     (10)

Where α = 2 ∗ (
VDI

VI
) 

g. Sharma and Singh [9] suggested a class of estimators as

u7 = [r1d̅ps + r2(I ̅ − ip̅s)]exp (
aps(I ̅ − ip̅s)

aps(I ̅ + i
p̅s)

+ 2bps

) 

Where aps, bpsare either real numbers or the functions of the auxiliary variable. 

Its MSE is given by  
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MSE (u7) = D̅
2 [1 + r1

2B1 + r2
2B2 + 2r1r2B3 − 2r1B4 − 2r2B5]  (11) 

Where B1 = 1 + VD + φ
ps

VI [φ
ps

− 2 (
VDI

VI
)] 

B𝟐 =
VI

R2

B3 =
VI

R
(φ

ps
−

VDI

VI

) 

B4 = 1 + φ
ps

VI

8
(3φ

ps
− 4

VDI

VI

) 

B5 = (
VI

2R
) φ

ps

r1 =
B2B4−B3B5

B1B2−B3
2 and r2 =

B1B5−B3B4

B1B2−B3
2 . 

h. Singh et al. [13] suggested another class of estimators for population mean as

u8 = [r1d̅ps + r2 exp   (
δaps(I ̅ − ip̅s)

aps(I ̅ + ip̅s) + 2bps

)] (
apsI ̅ + bps

apsip̅s + bps

)

η

Where (δ, η)are constants belongs to real numbers like (-1,0,1). 

MSE (u8) = D̅2 [1 + r1
2C1 + r2

2C2 + 2r1r2C3 − 2r1C4 − 2r2C5]    (12) 

Where, C1 = 1 + VD − 4ηφ
ps

VDI + η(2η + 1)φ
ps
2 VI 

C𝟐 =
1

I ̅
2

R
2 [ 1+θ(2θ + 1)φps

2 VI] 

C3 =
1

IR̅
[1 +

(η + θ)(η + θ + 1)

2
φ

ps
2 V

I
− (η + θ)φ

ps
VDI]

C4 = 1 + φ
ps

η

2
(

(η + 1)

2
φ

ps

VI − 2VDI) 

C5 =
1

IR̅
[1 +

θ(θ+1)

2
φ

ps
2 V

I
]

θ = (2𝑆dih − 1)/2 ,  r1 =
C2C4−C3C5

C1C2−C3
2 and r2 =

C1C5−C3C4

C1C2−C3
2 . 

We have written the above considered pre-existing estimators in Unconditional case. If we change 

the expectations of error terms like in equation (2), we get the estimators in Conditional case. 

IV. Suggested class of estimators in post stratification

We propose a class of estimators for population mean D̅ as 

uprop = [r1d̅ps + r2 (I ̅ − ip̅s)  − r3d̅ps (
apsI+̅bps

apsip̅s+bps
)] exp (

I−̅ip̅s

I+̅ip̅s
)

η

 (13) 

Where (r1, r2, η) are suitable constants and (aps, bps) are either constants or functions of auxiliary 

variable. 

Expressing the equation (13) in terms of  e0h and e1h, we have  
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uprop = [r1 ∑ WhD̅h

K

h=1

(1 + e0h)

+ r2 (∑ WhIh̅

K

h=1

− ∑ WhIh̅

K

h=1

(1 + e1h)) −  r3 ∑ WhD̅h

K

h=1

(1 + e0h)(1

+ φ
ps

e1)−1]  exp (
∑ WhIh̅

K
h=1 − ∑ WhIh̅(1 + e1h)K

h=1

∑ WhIh̅
K
h=1 + ∑ WhIh̅(1 + e1h)K

h=1

)

η

Where φ
ps

=
apsI ̅

apsip̅s+bps

=[r1D̅(1 + e0) + r2 (I ̅ − I(̅1 + e1)) − r3D̅(1 + e0)(1 + φ
ps

e1)
−1

]  exp (
I−̅I(̅1+e1)

I+̅I(̅1+e1)
)

η

=[r1D̅(1 + e0) − r2I ̅ e1 −  r3D̅(1 + e0)(1 − φ
ps

e1 + φ
ps
2 e1

2]  exp (
−e1

2+e1
)

η

=[r1D̅(1 + e0) − r2I ̅ e1 −  r3D̅(1 + e0 − φ
ps

e1 − φ
ps

e0e1 + φ
ps
2 e1

2)]  [1 −
η

2
e1 +

3

8
ηe1

2]

uprop − D̅ =D̅ {[(r
1

− 1) + r1e0 − r2m e1 −  r3(1 + e0 − φ
ps

e1 − φ
ps

e0e1 + φ
ps
2 e1

2)]  [1 −
η

2
e1 +

3

8
ηe1

2]} 

    (14) 

Where m = 
I̅

D̅

uprop − D̅ = D̅ {(r
1

− 1) + e0(r
1

− r3) − r3 + e1 (−r2m + r3φ
ps

−
η(r

1
− 1)

2
−

ηr3

2
)

+ e1
2  (

3η(r
1

− 1)

8
+ r2 (

mη

2
) − r3φ

ps
2 − r3

ηφ
ps

2
− r3

3η

8
)

+ e0e1 (−r1

η

2
+ r3φ

ps
+ r3

η

3
)} 

By taking expectation on both sides of equation (14), we get bias as 

Bias (uprop)= D̅ {(r
1

− 1) − r3 + VI [
3η(r1−1)

8
+ r2 (

mη

2
) − r3 (φ

ps
2 +

ηφps

2
+

3η

8
)] + VDI (−r1

η

2
+ r3φ

ps
+

r3

η

3
)}

By taking square on both sides of equation (14), we have 

(uprop − D̅)
2

= D̅
2

{((r
1

− 1) −  r3)
2

+ e0
2(r

1
− r3)2 + e1

2 (r2m − r3φ
ps

+
η(r1−1)

2
+

ηr3

2
)

2

−

2e0e1 [(r
1

− r3) (r2m − r3φ
ps

+
η(r1−1)

2
+

ηr3

2
)] + 2((r

1
− 1) +  r3) [e0 (r

1
− r3) − e1 (r2m − r3φ

ps
+

η(r1−1)

2
−

ηr3

2
)] + e1

2 [(
3η(r1−1)

8
+ r2 (

mη

2
) − r3φ

ps
2 − r3

ηφps

2
− r3

3η

8
)] + e0e1 (−r1

η

2
+ r3φ

ps
+ r3

η

3
)}

 (15) 

By considering expectation on both sides of equation (15), we get MSE as 

MSE (uprop)= D̅
2

{((r
1

− 1) −  r3)
2

+ VD(r
1

− r3)2 + VI (r2m − r3φ
ps

+
η(r1−1)

2
−

ηr3

2
)

2

− 2VDI [(r
1

−

r3) (r2m − r3φ
ps

+
η(r1−1)

2
−

ηr3

2
)] + VI [(

3η(r1−1)

8
+ r2 (

mη

2
) − r3φ

ps
2 − r3

ηφps

2
− r3

3η

8
)] + VDI (−r1

η

2
+

r3φ
ps

+ r3

η

3
)}

= D̅
2

{ (r
1

− 1)2 + ( r3)2 − 2r3(r
1

− 1) + VD(r
1

− r3)2 + VI (r2m − r3φ
ps

+
η(r1−1)

2
−

ηr3

2
)

2

−

2VDI [(r
1

− r3) (r2m − r3φ
ps

+
η(r1−1)

2
−

ηr3

2
)] + VI [(

3η(r1−1)

8
+ r2 (

mη

2
) − r3φ

ps
2 − r3

ηφps

2
− r3

3η

8
)] +
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VDI (−r1

η

2
+ r3φ

ps
+ r3

η

3
)}

 We rewrite the above equation as 

MSE (uprop)= D̅
2

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3] 

        (16) 

Where   ϑ1 = −2 +
3η

8
VI + ηVDI −

η2

2
VI −

η

2
VDI

ϑ2 =1+VD +
η2

4
VI −  ηVDI 

ϑ3 = −m ηVI +
mη

2
VI 

ϑ4 = m2VI

ϑ5 = 2 +  
η2

2
VI + φ

ps
 ηVI − φ

ps
2 VI −

η

2
φ

ps
VI −

3η

8
VI + ηVDI + φ

ps
VDI +

η

3
VDI

ϑ6 =1+VD + φ
ps
2 VI +

η2

4
VI + φ

ps
VI − 2φ

ps
VDI −  ηVDI

ϑ7 =  m ηVI − 2mVDI 

ϑ8 = −2 − VD −
η2

2
VI − φ

ps
 ηVI + 2φ

ps
VDI +  2ηVDI

ϑ9 =  −2mφ
ps

VI − mηVI + 2mVDI

To get the values of r1, r2 and r3, differentiate equation (16) with respect to r1, r2 and r3 and equate 

them to zero.  We get,  

r3 =
(2ϑ2ϑ3−ϑ1ϑ7)(2ϑ4ϑ8−ϑ7ϑ9)−(ϑ5ϑ7−ϑ3ϑ8)(ϑ7

2−4ϑ2ϑ4)

(ϑ7ϑ8−2ϑ2ϑ9)(2ϑ4ϑ8−ϑ7ϑ9)−(ϑ7
2−4ϑ2ϑ4)(ϑ8ϑ9−2ϑ6ϑ7)

=θ1(say) 

r2 =
(2ϑ2ϑ3−ϑ1ϑ7)−θ1(ϑ7ϑ8−2ϑ2ϑ9)

(ϑ7
2−4ϑ2ϑ4)

 = θ2(say) 

r1= 
−(ϑ7θ2+ϑ8θ1+ϑ1)

2ϑ2

V. Efficiency comparison

Theoretically, we establish the following criteria to assess the effectiveness of suggested estimator 

and those estimators taken into consideration in the literature.  

By comparing equations (4) and (16), we have 

MSE (uprop) − MSE(u1a)< 0 

D̅
2

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 +  ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3] < [
1

n
−

1

N
] ∑ ∑ WhSdh

2K
h=1 +

1

n2
∑ (1 − Wh)K

h=1 Sdh
2  

By comparing equations (5) and (16), 

MSE (uprop) − MSE(u1b)< 0 

D̅
2

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 +  ϑ7r1r2 + ϑ8r1r3 +

ϑ9r2r3]    <   ∑ Wh
2𝐾

ℎ=1 [
1

𝑛h
−

1

Nh
] Sdh

2  

By comparing equations (6) and (16), 

MSE (uprop) − MSE (u2)< 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3] < [VD +

VI [1 − 2 (
VDI

VI
)]]
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By comparing equations (7) and (16), 

MSE (uprop) − MSE (u3) < 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<[VD +

VI [1 + 2 (
VDI

VI
)]] 

By comparing equations (8) and (16), 

MSE (uprop) − MSE (u4) < 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<VD(1-ξ
DI
2 ) 

By comparing equations (9) and (16), 

  MSE (uprop) − MSE (u5) < 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<[1 + r1
2A1 + r2

2A2 +

2r1r2A3 − 2r1A4 − 2r2A5]
By comparing equations (10) and (16), we have 

MSE (uprop) − MSE (u6a)< 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 +  ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<{VD +

VI

4
[1 − 4 (

VDI

VI
)]}

MSE (uprop) <   MSE (u6b) 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<{VD +

VI

4
[1 + 4 (

VDI

VI
)]}

MSE (uprop) − MSE (u6c) < 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 +  ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<{VD +

ΑvI

4
[α − 4 (

VDI

VI
)]}

By comparing equations (11) and (16), 

MSE (uprop) − MSE (u7) < 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]< [1 + r1
2B1 + r2

2B2 +

2r1r2B3 − 2r1B4 − 2r2B5] 

By comparing equations (12) and (16), 

MSE (uprop) − MSE (u8) < 0 

[1 −
3η

8
VI + ϑ1r1 + ϑ2r1

2 + ϑ3r2 + ϑ4r2
2 + ϑ5r3 + ϑ6r3

2 + ϑ7r1r2 + ϑ8r1r3 + ϑ9r2r3]<[1 + r1
2C1 + r2

2C2 +

2r1r2C3 − 2r1C4 − 2r2C5]

VI. Empirical study

We use information from the Ministry of Education of the Turkish Republic from 2007 on the 

number of teachers as the study variable (d) and the number of students classifying more or less 

than 750 in primary and secondary schools as the auxiliary attribute (i) for 923 districts across 6 

regions (as 1: Marmara) 2, Atlantic, 3, Mediterranean, and 4, Central Anatolia Black Sea 5 and 6: 

East and Southeast Anatolia). Table 1 provides the data's summary statistics. We used Neyman 

allocation to place the samples in different strata. 

The functions of auxiliary variable which we used in numerical calculation are: 

∑ Wh Cih = 0.266448, ∑ Wh Sih =0.246447 and ∑ Wh ρ
dih

= 0.145833
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In the case of unconditional post stratification, Table.2 shows the MSE values for our suggested 

estimator and the other estimators that were taken into consideration, together with the PRE 

values. It has been noted that the proposed estimator exhibits the maximum relative efficiency. It is 

also same in case of Conditional post stratification by observing Table.3. 
Table 1. Data Descriptive Statistics

Stratum no. 𝐍𝐡 𝐧𝐡 �̅�𝐡 𝐈 ̅
𝐡 𝐒𝐝𝐡 𝐒𝐢𝐡 𝐒𝐝𝐢𝐡 𝛃

𝟐(𝐢𝐡)

1 127 31 703.74 0.952 883.835 0.213 25.267 16.922 

2 117 21 413 0.974 644.922 0.159 9.982 35.579 

3 103 29 573.17 0.932 1033.467 0.253 37.453 10.34 

4 170 38 424.66 0.888 810.585 0.316 44.625 4.231 

5 205 22 267.03 0.912 403.654 0.284 21.04 6.675 

6 201 39 393.84 0.95 711.723 0.218 18.66 15.56 

Table 2. Unconditional case: MSE and PRE values of existing estimators and proposed estimator. 

S. No. Estimator MSE value Percentage Relative 

Efficiency 

1. u1a 2539.82 100 

2. u2 2400.58 105.80 

3. u3 2629.67 96.58 

4. u4 2398.50 105.89 

5. u5 2397.75 105.92 

6. u6𝑎 2405.89 105.57 

7. u6𝑏  2520.44 100.77 

8. u6𝑐  2398.50 105.89 

9. u7 2397.75 105.93 

10. u8 1931.21 131.51 

11. uprop 1714.78 148.11 

Table 3. Conditional case: MSE and PRE values of existing estimators and proposed estimator. 

S. No. Estimator MSE value Percentage Relative 

Efficiency 

1. u1b 2229.27 100 

2. u2 1638.65 136.10 

3. u3 2983.40 77.32 

4. u4 846.88 263.23 

5. u5 846.78 263.26 

6. u6𝑎 1913.52 116.50 

7. u6𝑏  2585.89 86.21 

8. u6𝑐  2204.72 101.11 

9. u7 846.78 263.26 

10. u8 519.11 429.44 

11. uprop 68.54 3252.51 

We may conclude that conditional post stratification outperformed unconditional post 

stratification by comparing MSE and PRE values in Tables.2 and 3. 
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Figure 1. MSE values for both Unconditional and Conditional Post-stratified estimators. 

We have presented the estimators in Table 2 and 3 in the above figure graphically. A line that 

represents the MSE values of Unconditional post stratified estimators can be seen in the picture 

together with a line with markers that represents the MSE values of conditional post stratified 

estimators. According to the graphic, conditional post stratified estimators have lower MSE values 

than unconditional post stratified estimators. 

VII. Conclusion

In this research paper, we introduced a novel class of estimators and derived their Mean Square 

Error (MSE). We also investigated existing estimators and considered two cases in post-

stratification: conditional and unconditional. Through a real data analysis, we computed the MSE 

and Percentage Relative Efficiency (PRE) values for all estimators presented in this study. The 

results, as shown in Table 2 and 3, clearly demonstrate that our proposed estimator exhibits the 

highest relative efficiency compared to the other estimators considered. Furthermore, we observed 

from the figure 1 that conditional post-stratification outperformed unconditional post-stratification 

in our analysis. These findings highlight the potential of our proposed estimators for enhancing 

mean estimation accuracy in post-stratification studies. 
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Abstract

A meaningful subject of discourse in manufacturing industries is the assessment of the lifetime per-
formance index. In manufacturing industries, the lifetime performance index is used to measure the
performance of the product. A generalized lifetime performance index (GLPI) is defined by taking into
consideration the median of the process measurement when the lifetime of products follow a parametric
distribution may serve better the need of quality engineers and scientists in industry. The present study
constructs various point estimators of the GLPI based on progressive type II right censored data for the
Lindley distributed lifetime in both classical and Bayesian setup. We perform Monte Carlo simulations to
compare the performances of the maximum likelihood and Bayes estimates with a gamma prior of CY(L)
under progressive type-II right censoring scheme. Finally, the validity of the model is adjudged through
analysis of a data set.

Keywords: Bayesian estimation, Metropolis-Hastings method, Process Capability Index, Maxi-
mum likelihood estimator.

1. Introduction

Process Capability Indices (PCIs) have wide use in industries for evaluating a manufacturing
process and whether or not it can produce articles within the specified limits. PCIs aim to quantify
the capability of a process (X) to meet some specifications related to a measurable characteristic of
its produced items. These specifications are determined through the lower specification limit (L),
the upper specification limit(U) and the target value (T). PCI is an effective means to measure a
process’s performance and potential capabilities. In the manufacturing industry, PCIs are utilized
to assess whether product quality meets customer expectations. Since capability is typically
defined in dictionaries as the ability to carry out a task or achieve a goal, a better process capability
implies better product quality. If the process capability is evaluated with product survival lifetime,
it is clear that a larger lifetime means better product quality, higher reliability, and the process is
capable. Hence, the lifetime of products exhibit the larger- the better quality characteristic of time
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orientation. It should be noted that the lifetime of products does not follow a normal distribution.
For instance, [14], [34], [6], [24] and [17] pointed out that the product lifetime possesses an
exponential distribution. The description of the lifetime by the Weibull distribution was noted
by [34], [40], [41] and [16]. In addition, [34] also mentioned that lifetime follows a gamma
distribution. Since the lifetime of products exhibits the larger-the-better quality characteristic of
time orientation, [35] and [23] recommended the use of the capability index (lifetime performance
index) for evaluating the lifetime performance of electronic components, where L is the lower
specification limit. Also, there are many different PCIs available in the literature. The hypothesis
testing procedures are developed by [20] and [45] using the maximum likelihood estimator of PCI
for Pareto distribution under type-II censored sampling and progressive type-I interval censoring,
respectively. A hypothesis testing procedure was developed by [42] for the PCI of the Gompertz
distribution based on the progressive type-I interval censored sample. The MLE was used by [46]
to estimate the PCI of Rayleigh distribution based on the progressive type-I interval censored
sample and developed a new hypothesis testing procedure utilizing an asymptotic distribution
of this estimator. Some classical estimations and bootstrap confidence interval methods for the
PCIs are derived by [36, 37] when the process follows exponentiated exponential and normal
distributions, respectively. The classical and Bayes estimates of PCIs are obtained by [12, 13] for
generalized exponential and normal distributions, respectively. For an expository review, the
reader may follow the following articles of bibliography of the literature on PCIs, viz., [25], [38],
[48] and [1].

The lifetime performance index (LPI) is defined by [23], denoted by CL, which mainly
originated from the concept of symmetry of lifetime distributions. The uniformly minimum
variance unbiased estimator (UMVUE) for CL was obtained by [39] and considered the problem of
the hypothesis testing procedure for the exponential distribution. The UMVUE of CL to develop
the confidence interval under exponential distribution was obtained by [9]. The maximum
likelihood estimator of the lifetime performance index based on first-failure progressive right
type-II censored sample for Lindley distribution was obtained by [18]. The maximum likelihood
estimates of the lifetime performance index based on progressive first failure censoring scheme
Weibull, exponential and two-parameter exponential distributions, were obtained by [2, 3, 4]
respectively. The lifetime performance index of products based on progressively Type-II censored
for the Pareto samples was evaluated by [5]. The MLE, some Bayesian estimators, and credible
intervals were given by [49] for the lifetime performance index of the Pareto distribution based
on the general progressive type-II censored data. Approximate and exact parametric bootstrap
confidence intervals are proposed by [50] for the process performance index of power-normal
distribution. Most of the time, lifetime distributions are not necessarily symmetric. In this
case, the median of the process distribution plays an important role than the process mean (µ).
Therefore, it should be better if the index deals with the distribution’s median (µe). If µ is replaced
by µe, the inferential aspects and their property studies will be somewhat complicated. Using
the median, [32] proposed a generalized process capability index (GPCI) that is the ratio of the
proportion of specification conformance (or process yield) to the proportion of desired (or natural)
conformance. In the same tune, [33] defined a GLPI given as

CY(L) =
0.5 − F(L)

0.5 − α
(1)

=
1 − 2F(L)

1 − 2α
.

Here F(·) denotes the cumulative distribution function (CDF) of the process distribution and
α = P(X < LDL) with LDL being the lower desirable limit (practitioners sometimes take it as
a lower tolerance limit). Here (1 − α) is the confidence level close to unity. Statistical inference
for CY(L), viz., properties of GLPI order, testing procedure for GLPI and parametric bootstrap
confidence intervals based on a complete sample for the Lindley and in particular for exponential
distribution have been obtained by [33].
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In the case of a complete sample, it is necessary to continue the experiment until the last
item (or product) fails. Sometimes, many articles have very long lifetimes, and the experiment
continues for a very long period, so that the results may be of little interest or use. Then, it may be
desirable to terminate the test before all the items under test fail, and the resulting observations
will be called the censored sample. Various types of censored samples exist, including type II,
progressive type II, and progressive first-failure censored samples. The testing of the hypothesis
problem was proposed by [43] based on the maximum likelihood estimator (MLE) of CL for
two-parameter exponential distribution under type-II right censored sample. Based on a type-II
right censored sample, the confidence interval using Pareto distribution was obtained by [20, 21].
A hypothesis testing procedure was proposed by [27, 28] based on MLE and UMVUE with the
exponential distribution under progressive type-II right censored samples, respectively. The MLE
of CL was obtained by [19] under progressive first-failure censored samples from two-parameter
exponential distributions. The CL for the exponential lifetime products are evaluated by [29, 30]
based on type-II censored data. They obtained Bayes’s estimate of CL for the Rayleigh lifetime
products based on upper record values, respectively. Recently, [11] assessed the lifetime perfor-
mance index for Weibull distributed products based on progressive type-II right censored samples.

In this article, we consider a progressive type-II right censoring scheme, which is helpful in a
specific fraction of individuals at risk that may be removed from the experiment at each of several
ordered failure times. Therefore, a progressive censoring scheme allows us to incorporate the
removals before the experiment’s termination into analysis, which is a very common situation in
life-testing experiments. To the best of our knowledge thus far, an attempt has yet to be made to
study the GLPI CY(L) based on a progressive type-II right censoring scheme. Filling up this gap
is the aim of the present study. In this article, we consider the GLPI CY(L), introduced by [33] that
could be used for either normal or non-normal and either continuous or discrete characteristics
and is very simple and could be used comfortably by the practitioners.
The paper is arranged as follows. In section 2, The MLE and the Bayes estimate of CY(L) are
suggested based on progressive type II right censored sample for the Lindley distributed lifetime.
In section 3, the testing procedure due to the GLPI is done. In section 4, an extensive Monte
Carlo study is carried out to compare the performances of CY(L) based on considered methods
of estimation (MLE and Bayes) in terms of their corresponding mean squared errors (MSEs). A
real-world application has been discussed to illustrate the proposed index under progressive
type-II right censored samples in section 5. A brief concluding remark is made in section 6.

2. Estimation of CY(L) under progressively type-II censored sample for

Lindley products

Suppose that the lifetime of products may be modeled by Lindley distribution and let X denote
the lifetime of such product. Hence, the probability density function (PDF) and cumulative
distribution function (CDF), specified by Lindley distribution (see, [31]) are given as

f (x) =
θ2

θ + 1
(1 + x)e−xθ , x > 0, θ > 0 (2)

and

F(x) = 1 − 1 + θ + xθ

θ + 1
e−xθ , x > 0, θ > 0 (3)
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respectively, where, θ is the parameter. Now, for a process whose distribution can be regarded as
Lindley, the GLPI is given as

CY(L) =

{
1 − 2F(L)

1 − 2α

}

=

1 − 2
(

1 − 1+θ+θL
1+θ e−θL

)
1 − 2α

 . (4)

Here, in the following subsections, we derived the maximum likelihood estimate (MLE) and
the Bayes estimate of CY(L) under progressively type-II right censoring scheme for Lindley
distributed products, respectively.

2.1. Maximum likelihood estimate of CY(L)

The experimenter may not always observe the lifetimes of all the products (or items) put
on tests for conducting life testing experiments. The reason may be time limitation and/or
other restrictions (such as money, mechanical or experimental difficulties, material resources,
etc.) on data collection. Therefore, censored samples may arise in practice. In an industrial
experiment, products (or items) may break accidentally. These lead us into the area of progressive
type-II censoring. Under this scheme, n units are placed on test at time zero, and m failures are
observed. When the first failure is observed, r1 of the surviving units are randomly selected
and removed. At the second observed failure, r2 of the surviving units are randomly selected
and removed. Termination of the experiment occurs when the m-th failure is observed, and the
remaining rm = n − ∑m−1

j=1 rj − m surviving units are all removed. Inferences for the data obtained
by progressive censoring have been investigated, among others, by [10], [7], [15], and [44]. So, in
this paper, we consider the case of the progressive type-II right censoring.

Let x1:m:n, x2:m:n, ..., xm:m:n be a progressive type-II right censored sample where x1:m:n, x2:m:n,
..., xm:m:n denote the observed failure times and r1, r2, ..., rm denote the corresponding num-
bers of items removed (withdrawn) from the test. If m be the number of failures observed
before termination, then x1:m:n ≤ x2:m:n ≤ ..., ≤ xm:m:n be the observed ordered lifetimes. For
convenience, we will write xi:m:n as x(i). Let ri denote the number of items removed at the
time of the ith failure, 0 ≤ ri ≤ n − ∑i−1

j=1 rj − i, i = 2, 3, ..., m − 1 with 0 ≤ r1 ≤ n − 1 and

rm = n − ∑m−1
j=1 rj − m, where ri’s and m are pres-specified integers [see, Viveros and Balakrishnan

(1994)]. The complete sample ( r1 = r2 = ... = rm = 0 ) and type-II right censored samples (
r1 = r2 = ... = rm−1 = 0, rm = n − m) are special cases of this scheme. For further details and
for relevant references the reader may follow the article of [7]. The likelihood function of θ under
progressive type-II right censoring scheme is given by

l(θ) = A
m

∏
i=1

f (x(i); θ)[1 − F(x(i); θ)]ri , where A = n(n − r1 − 1)...(n −
m−1

∑
j=1

rj − m + 1)

= A.
θ2m

(1 + θ)m+∑m
i=1 ri

e−θ ∑m
i=1(1+ri)x(i)

m

∏
i=1

(1 + x(i))
m

∏
i=1

(1 + θ + θx(i))
ri (5)

Therefore, the log-likelihood function is given by

L(θ) = ln l(θ) = k + 2m ln θ − (m +
m

∑
i=1

ri) ln(1 + θ)− θ
m

∑
i=1

(1 + ri)x(i)

+
m

∑
i=1

ri ln(1 + θ + θx(i)), (6)
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where k is constant, independent of θ. Now, for MLE of the parameter θ, ∂L(θ)
∂θ = 0

=⇒ 2m
θ

− m + ∑m
i=1 ri

1 + θ
−

m

∑
i=1

(1 + ri)x(i) +
m

∑
i=1

ri(1 + x(i))
1 + θ + θx(i)

= 0. (7)

The explicit solution for the parameter θ through the above non-linear equation is not possible.
Hence, to solve this equation for θ, we have to proceed by some numerical method, from the
previous equation,

∂2L(θ)
∂θ2 = −2m

θ2 +
m + ∑m

i=1 ri

(1 + θ)2 −
m

∑
i=1

ri(1 + x(i))2

(1 + θ + θx(i))2 .

Hence, the Fisher’s information I(θ) is obtained as;

I(θ) = −E(
∂2L(θ)

∂θ2 ) =
2m
θ2 − m + ∑m

i=1 ri

(1 + θ)2 +
m

∑
i=1

riE

[
(1 + X(i))

2

(1 + θ + θX(i))
2

]
(8)

Further, after obtaining the solution above mentioned non-linear equation, the MLE of the index
CY(L) can be directly computed using invariance property of MLE. Let θ̂ be the solution of the
non-linear equation, then the MLE ĈY(L) of CY(L) is given by

ĈY(L) =

1 − 2
(

1 − 1+θ̂+θ̂L
1+θ̂

e−θ̂L
)

1 − 2α

 . (9)

The asymptotic distribution of MLE θ̂ is normal distribution N(θ, I−1(θ)). Hence, the two-sided
tail asymptotic 100(1 − α)% confidence interval for the parameter θ is given by{

θ̂ ∓ τα/2

√
I−1(θ̂)

}
,

where I(θ̂) = 2m
θ̂2 − m+∑m

i=1 ri
(1+θ̂)2 + ∑m

i=1
ri(1+x(i))

2

(1+θ̂+θ̂x(i))2 and τα/2 is the upper α/2-point of standard

normal deviate. The asymptotic distribution of MLE ĈY(L) is also normal distribution N(CY(L),
Var(ĈY(L)) with

Var(ĈY(L)) =
[

∂CY(L)
∂θ

]2

× Var(θ̂) =
[
−2θL{1 + (1 + θ)(1 + L)}e−θL

(1 − 2α)(1 + θ)2

]2

× I−1(θ).

The asymptotic variance is approximated as

V̂ar(ĈY(L)) ≈
[
−2θ̂L{1 + (1 + θ̂)(1 + L)}e−θ̂L

(1 − 2α)(1 + θ̂)2

]2

× I−1(θ̂).

2.2. Bayes estimate of CY(L)

In this section, we obtain the Bayes estimator of CY(L) under the assumption that the parameter θ
is random variable and follows some prior distribution. Let the prior distribution of θ is assumed
to be Gamma with parameter (k, a). Then the distribution of θ is given as

g(θ) =
ak

Γ(k)
e−aθθk−1, θ > 0 (10)

Now, the posterior distribution of θ by using Equations (2.5) and (2.9) is given as

g(θ | x) ∝
θ2m+k−1

(1 + θ)m+∑m
i=1 ri

e−θ(a+∑m
i=1(1+ri)x(i))

m

∏
i=1

(1 + θ + θx(i))
ri ; θ > 0. (11)
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Hence, the Bayes estimate of the parameter θ under squared error loss function is obtained by the
following Equation:

Eθ(θ) = ζ
∫

θ

θ2m+k

(1 + θ)m+∑m
i=1 ri

e−θ(a+∑m
i=1(1+ri)x(i))

m

∏
i=1

(1 + θ + θx(i))
ri dθ (12)

where ζ is a proportionality constant. The computation of the Bayes estimate of the index CY(L)
under the same assumption of prior and loss function is not possible directly from the above
posterior distribution. Since, the explicit form of the posterior PDF is not available but the
associated plot exhibit a more or less assume the shape of normal probability distribution. Thus,
the Metropolis-Hastings method with normal proposal distribution is to be used to generate
random numbers from respective posterior distribution using the Gibbs algorithm. The following
steps are taken to generate the posterior random deviates from the above posterior is as follows:

• Start with an initial guess θ(0).

• Set t = 1.

• Using the Metropolis-Hastings, generate θ(t) from g(θ | x) with the N
(

θ(t−1), 1
)

proposal
distribution.

• Compute CY(L)(t) from Equation (1)

• Set t = t + 1.

• Repeat steps 3-5, T times.

Note that in step 3, we use the Metropolis-Hastings algorithm with q(θ(t−1), σ2) proposal
distribution as follows:

1. Let x = θ(t−1).

2. Generate y from the proposal distribution q.

3. Let p(x, y) = min
(

1,
gθ(y)q(x)
gθ(x)q(y)

)
.

4. Accept y with the probability p(x, y) or accept x with the probability 1 − p(x, y).

The posterior deviates for CY(L) using the above mentioned steps is simulated using the random
deviates of θ by plug-in principal. Let CY(L)1, CY(L)2, · · · , CY(L)T be the T simulated posterior
deviates, then the approximate posterior mean, and posterior variance of CY(L) are given by

Ê(CY(L)|x) = 1
T

T

∑
t=1

CY(L)t

and

MSE(CY(L)|x) = 1
T

T

∑
t=1

(
CY(L)t − CY(L)

)2

respectively.

3. Testing procedure for the generalized lifetime performance index

using progressive type-II samples

In this section, following statistical hypothesis testing will be performed to access whether the
CY(L) adheres the required level. The proposed hypothesis testing procedure using progressive
type-II samples can be performed for CY(L), summarized as follows:
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1. Determine the lower specification limit L and the GLPI, C0
Y.

2. Construct the null hypothesis H0 : CY(L) ≤ C0
Y against the alternative H1 : CY(L) > C0

Y.

3. Specify the level of significant α.

4. Compute ĈY(L) and V̂ar(ĈY(L)) ≈ [−2θ̂L{1+(1+θ̂)(1+L)}e−θ̂L

(1−2α)(1+θ̂)2 ]2.I−1(θ̂).

5. Set critical region ω : ĈY(L) > C0
Y + τα

√
V̂ar(ĈY(L)).

4. Simulation and discussion based on progressively type-II censored

sample.

In this section, a comparison study has been carried out through simulation study under pro-
gressively type II censoring scheme between maximum likelihood and the Bayes estimate of
CY(L) in terms of their corresponding mean squared errors (MSEs) for the considered set up.
All the calculations have been made by using R software (see, [22]). The progressive type-II
right censored sample from the considered lifetime distribution for the different variation of the
parameter (θ), censoring parameters (n, m), censoring schemes (r′is) and lower desired limit (L)
is generated by following the algorithm suggested by [8] algorithm, as stated below:

1. Generate m independent Uniform(0, 1) observations W1, W2, ..., Wm.

2. Set Vi = W1/(i+rm+rm−1+...+rm−i+1)
i for i = 1, 2, ..., m.

3. Set Ui = 1 − Vm.Vm−1...Vm−i+1 for i = 1, 2, ..., m. Then U1, U2, ..., Um is the required progres-
sive type-II censored sample from the Uniform (0, 1) distribution.

4. Finally, we set Ui = 1 − 1+θ+Xiθ
θ+1 e−Xiθ , and solve this equation by Newton-Raphson method

to get Xi for i = 1, 2, ..., m. Then X1, X2, ..., Xm is the required progressive type-II censored
sample from the distribution (2).

The simulated MSE of the MLE and the Bayes estimate of CY(L) have been presented in Tables
1-6 for different censoring schemes with some particular choices of θ and L. From the Tables 1-6,
it is found that the MSE of each estimator is decreasing with n, the sample size. This verifies the
consistency property of all the estimators. It is also observed that the performance of the Bayes
estimation is relatively better than the MLE under all the considered choices.

5. Applications

A real data set is cited to illustrate the MLE, Bayes estimate of LPI CL (see, [23]) and the proposed
GLPI CY(L) for progressive type-II right censoring scheme for the Lindley distributed lifetime.
The considered data set is described in detail by [33] (also available in [26]), and the goodness
of fit test to Lindley distribution is discussed therein. The data set is primarily fitted to the
exponential model in Lawless. [33] have checked the data set with the Lindley distribution and
found it to be a better fit. Thus, from the same data set, the progressive type-II censored data
are generated for the different values of m = 10, 15, L=100 and the censoring schemes, and the
corresponding MLE and Bayes estimates of CY(L) is reported in the Table 7. The Bayes estimates
for the real data set is computed under non-informative prior.
Now, the proposed testing procedure of the GLPI CY(L) is performed for the above chosen
schemes as follows. For the considered data set, the progressive type-II censored data are
generated for the same censoring schemes, mentioned in Table 8, respectively. The MLE of the
parameter θ for the Lindley distribution is obtained from the Eqn. (2.7) for all the considered
schemes and the same are reported in Table 8. The statistical test for testing the null hypothesis
H0 : CY(L) ≤ 1 against the alternative hypothesis H1 : CY(L) > 1 has been performed for the
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Table 1: MLEs of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley distribution
for θ = 0.50 under progressively type-II censoring scheme [True CY(L) = 1.073193 when L = 0.1 and
CY(L) = 0.992842 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)MLE MSE[ĈY(L)MLE] ĈY(L)MLE MSE[ĈY(L)MLE]

7[0]*10, 8 0*10 1.07058 0.00149 0.98230 0.01431
2, 0*7 1.06040 0.00316 0.99986 0.01086

1,1, 0*6 1.06686 0.00326 0.99877 0.01036
0*7, 2 1.06560 0.00272 0.98734 0.01451

0*6, 1*2 1.07203 0.00191 0.99791 0.00939
1, 0*6, 1 1.06470 0.00424 0.97192 0.01438

0*3, 1*2, 0*3 1.06315 0.00349 0.99770 0.00973
7[0]*20, 16 0*20 1.07081 0.00072 0.99550 0.00439

4, 0*15 1.06834 0.00083 1.00409 0.00546
1*4, 0*12 1.06991 0.00108 0.99523 0.00572

0*15, 4 1.07087 0.00106 0.98304 0.00653
0*12, 1*4 1.07045 0.00138 1.00387 0.00463
2,0*14,2 1.06791 0.00096 1.06689 0.00177

0*7, 2*2, 0*7 1.06902 0.00092 0.99288 0.00449
7[0]*30, 24 0*30 1.07523 0.00048 0.99840 0.00301

6,0*23 1.06878 0.00068 0.97993 0.00392
1*6, 0*18 1.06788 0.00077 0.99505 0.00416

0*23, 6 1.06747 0.00088 0.99042 0.00439
0*18, 1*6 1.06858 0.00057 1.00475 0.00349
3, 0*22, 3 1.06891 0.00063 0.99489 0.00358

0*9, 1*6, 0*9 1.07182 0.00050 0.98809 0.00379
7[0]*50, 40 0*50 1.07370 0.00028 0.99244 0.00218

10, 0*39 1.06526 0.00050 0.98831 0.00264
2*5, 0*35 1.07372 0.00028 0.98873 0.00256
0*39, 10 1.07123 0.00045 0.99057 0.00281

0*30, 1*10 1.06765 0.00052 0.99992 0.00220
5, 0*38, 5 1.07045 0.00032 0.98705 0.00375

0*18, 2*5, 0*17 1.07152 0.00038 0.98859 0.00329
Note: In the table, Scheme (0 ∗ 3, r) indicates that at 1st, 2nd and 3rd failure, no active unit is withdrawn or removed but at 4th failure, r

active units are drawn or removed.
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Table 2: Bayes estimates of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley
distribution for θ = 0.50 under progressively type-II censoring scheme [True CY(L) = 1.073193 when
L = 0.1 and CY(L) = 0.992842 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)Bayes MSE[ĈY(L)Bayes] ĈY(L)Bayes MSE[ĈY(L)Bayes]

7[0]*10, 8 0*10 1.07597 0.00135 0.97546 0.01372
2, 0*7 1.06649 0.00283 0.99215 0.01049

1,1, 0*6 1.07202 0.00310 0.99148 0.00999
0*7, 2 1.07260 0.00245 0.97842 0.01403

0*6, 1*2 1.07847 0.00168 0.98854 0.00911
1, 0*6, 1 1.07092 0.00416 0.96363 0.01415

0*3, 1*2, 0*3 1.06895 0.00315 0.99046 0.00958
7[0]*20, 16 0*20 1.07378 0.00066 0.99127 0.00437

4, 0*15 1.07176 0.00077 0.99953 0.00533
1*4, 0*12 1.07317 0.00101 0.99098 0.00568

0*15, 4 1.07475 0.00098 0.97784 0.00658
0*12, 1*4 1.07413 0.00128 0.99871 0.00449
2,0*14,2 1.07175 0.00088 1.06302 0.00169

0*7, 2*2, 0*7 1.07239 0.00085 0.98837 0.00439
7[0]*30, 24 0*30 1.07714 0.00047 0.99551 0.00297

6,0*23 1.07127 0.00063 0.97659 0.00390
1*6, 0*18 1.07023 0.00072 0.99216 0.00409

0*23, 6 1.07036 0.00081 0.98673 0.00420
0*18, 1*6 1.07131 0.00052 1.00128 0.00341
3, 0*22, 3 1.07160 0.00059 0.99127 0.00345

0*9, 1*6, 0*9 1.07408 0.00048 0.98499 0.00360
7[0]*50, 40 0*50 1.07486 0.00028 0.99075 0.00209

10, 0*39 1.06679 0.00047 0.98640 0.00240
2*5, 0*35 1.07516 0.00027 0.98682 0.00247
0*39, 10 1.07291 0.00044 0.98830 0.00273

0*30, 1*10 1.06939 0.00049 0.99764 0.00193
5, 0*38, 5 1.07212 0.00030 0.98480 0.00357

0*18, 2*5, 0*17 1.07286 0.00037 0.98670 0.00292
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Table 3: MLEs of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley distribution
for θ = 0.75 under progressively type-II censoring scheme [True CY(L) = 1.038898 when L = 0.1 and
CY(L) = 0.891517 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)MLE MSE[ĈY(L)MLE] ĈY(L)MLE MSE[ĈY(L)MLE]

10, 8 0*10 1.02408 0.00490 0.90298 0.01973
2, 0*7 1.03005 0.00589 0.88015 0.02835

1,1, 0*6 1.02637 0.00580 0.90158 0.02385
0*7, 2 1.02057 0.00629 0.91253 0.02451

0*6, 1*2 1.02306 0.00557 0.92649 0.02055
1, 0*6, 1 1.03016 0.00484 0.88536 0.03157

0*3, 1*2, 0*3 1.01554 0.00776 0.90067 0.01950
20, 16 0*20 1.03593 0.00230 0.89003 0.01112

4, 0*15 1.03237 0.00296 0.88569 0.01545
1*4, 0*12 1.03649 0.00246 0.90247 0.01130

0*15, 4 1.02421 0.00318 0.89690 0.01192
0*12, 1*4 1.02827 0.00291 0.88864 0.01237
2,0*14,2 1.03430 0.00229 1.03440 0.00274

0*7, 2*2, 0*7 1.03789 0.00200 0.89309 0.01031
30, 24 0*30 1.03208 0.00159 0.88711 0.00637

6,0*23 1.03609 0.00180 0.89093 0.00982
1*6, 0*18 1.03655 0.00173 0.88934 0.00759

0*23, 6 1.03475 0.00164 0.89663 0.00958
0*18, 1*6 1.03212 0.00182 0.89877 0.00774
3, 0*22, 3 1.03816 0.00202 0.89079 0.01046

0*9, 1*6, 0*9 1.03469 0.00183 0.89383 0.00753
50, 40 0*50 1.03908 0.00077 0.89749 0.00487

10, 0*39 1.03609 0.00114 0.89273 0.00453
2*5, 0*35 1.03278 0.00128 0.89426 0.00483
0*39, 10 1.03953 0.00110 0.90031 0.00463

0*30, 1*10 1.03555 0.00109 0.89815 0.00530
5, 0*38, 5 1.03578 0.00128 0.89571 0.00574

0*18, 2*5, 0*17 1.03867 0.00089 0.89162 0.00504

RT&A, No 4 (76) 
Volume 18, December 2023 

78



abhimanyu s yadav, mahendra saha, amartya bhattacharya,
arindam gupta

ASSESSMENT OF GLPI FOR LD

Table 4: Bayes estimates of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley
distribution for θ = 0.75 under progressively Type-II censoring scheme [True CY(L) = 1.038898 when
L = 0.1 and CY(L) = 0.891517 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)Bayes MSE[ĈY(L)Bayes] ĈY(L)Bayes MSE[ĈY(L)Bayes]

10, 8 0*10 1.03297 0.00455 0.89338 0.01833
2, 0*7 1.03916 0.00579 0.87174 0.02609

1,1, 0*6 1.03618 0.00560 0.89210 0.02173
0*7, 2 1.03254 0.00582 0.90036 0.02258

0*6, 1*2 1.03506 0.00509 0.91270 0.01865
1, 0*6, 1 1.04124 0.00444 0.87482 0.02897

0*3, 1*2, 0*3 1.02560 0.00733 0.88980 0.01799
20, 16 0*20 1.04061 0.00223 0.88503 0.01078

4, 0*15 1.03777 0.00285 0.88032 0.01488
1*4, 0*12 1.04167 0.00237 0.89705 0.01079

0*15, 4 1.03095 0.00294 0.88995 0.01139
0*12, 1*4 1.03464 0.00272 0.88194 0.01196
2,0*14,2 1.04039 0.00220 1.02836 0.00293

0*7, 2*2, 0*7 1.04343 0.00193 0.88711 0.00992
30, 24 0*30 1.03536 0.00152 0.88355 0.00628

6,0*23 1.03974 0.00175 0.88705 0.00954
1*6, 0*18 1.04011 0.00168 0.88558 0.00743

0*23, 6 1.03937 0.00157 0.89173 0.00930
0*18, 1*6 1.03660 0.00174 0.89408 0.00747
3, 0*22, 3 1.04224 0.00197 0.88630 0.01015

0*9, 1*6, 0*9 1.03840 0.00177 0.88977 0.00734
50, 40 0*50 1.04110 0.00076 0.89530 0.00479

10, 0*39 1.03837 0.00111 0.89024 0.00445
2*5, 0*35 1.03504 0.00124 0.89184 0.00473
0*39, 10 1.04223 0.00109 0.89728 0.00452

0*30, 1*10 1.03823 0.00106 0.89516 0.00518
5, 0*38, 5 1.03836 0.00125 0.89290 0.00565

0*18, 2*5, 0*17 1.04098 0.00088 0.88919 0.00497
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Table 5: MLEs of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley distribution
for θ = 1.50 under progressively type-II censoring scheme [True CY(L) = 0.916334 when L = 0.1 and
CY(L) = 0.560892 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)MLE MSE[ĈY(L)MLE] ĈY(L)MLE MSE[ĈY(L)MLE]

7[0]*10, 8 0*10 0.92111 0.01876 0.59670 0.06439
2, 0*7 0.92292 0.02211 0.58234 0.07653

1,1, 0*6 0.92693 0.01922 0.55731 0.06999
0*7, 2 0.92967 0.01968 0.57833 0.07527

0*6, 1*2 0.93835 0.01868 0.60658 0.06007
1, 0*6, 1 0.92819 0.02075 0.59201 0.06345

0*3, 1*2, 0*3 0.91772 0.02080 0.57585 0.06962
7[0]*20, 16 0*20 0.92597 0.00852 0.57983 0.02738

4, 0*15 0.91773 0.01063 0.56602 0.03939
1*4, 0*12 0.92573 0.01097 0.57893 0.03167

0*15, 4 0.91871 0.01025 0.58104 0.03375
0*12, 1*4 0.91498 0.01218 0.59792 0.03509
2,0*14,2 0.91435 0.01054 0.58679 0.03709

0*7, 2*2, 0*7 0.91880 0.00977 0.57989 0.03197
7[0]*30, 24 0*30 0.91462 0.00617 0.56864 0.01894

6,0*23 0.91960 0.00780 0.57341 0.02488
1*6, 0*18 0.92418 0.00739 0.57963 0.02501

0*23, 6 0.92321 0.00829 0.57843 0.02103
0*18, 1*6 0.92471 0.00667 0.56706 0.02135
3, 0*22, 3 0.91766 0.00781 0.57184 0.01984

0*9, 1*6, 0*9 0.91798 0.00590 0.55905 0.02281
7[0]*50, 40 0*50 0.91497 0.00387 0.57058 0.01225

10, 0*39 0.91995 0.00436 0.56369 0.01427
2*5, 0*35 0.92503 0.00390 0.56944 0.01577
0*39, 10 0.92130 0.00401 0.56377 0.01520

0*30, 1*10 0.91975 0.00443 0.57915 0.01139
5, 0*38, 5 0.91687 0.00477 0.56287 0.01436

0*18, 2*5, 0*17 0.91364 0.00370 0.55129 0.01093
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Table 6: Bayes estimates of CY(L) and their MSEs with L = 0.1 and L = 0.3, samples generated from the Lindley
distribution for θ = 1.5 under progressively Type-II censoring scheme [True CY(L) = 0.916334 when
L = 0.1 and CY(L) = 0.560892 when L = 0.3].

2[0]*n,m 2[0]*Schemes L=0.1 L=0.3
ĈY(L)Bayes MSE[ĈY(L)Bayes] ĈY(L)Bayes MSE[ĈY(L)Bayes]

7[0]*10, 8 0*10 0.90365 0.01723 0.58724 0.05271
2, 0*7 0.90402 0.01989 0.57706 0.05956

1,1, 0*6 0.90828 0.01743 0.55465 0.05433
0*7, 2 0.90508 0.01810 0.57052 0.05563

0*6, 1*2 0.91331 0.01689 0.59403 0.04676
1, 0*6, 1 0.90561 0.01861 0.58232 0.05013

0*3, 1*2, 0*3 0.89825 0.01857 0.57098 0.05346
7[0]*20, 16 0*20 0.91626 0.00821 0.57459 0.02488

4, 0*15 0.90710 0.01022 0.56201 0.03504
1*4, 0*12 0.91540 0.01042 0.57481 0.02815

0*15, 4 0.90527 0.01001 0.57409 0.02974
0*12, 1*4 0.90220 0.01193 0.59034 0.03104
2,0*14,2 0.90213 0.01034 0.57034 0.03124

0*7, 2*2, 0*7 0.90799 0.00946 0.57521 0.02814
7[0]*30, 24 0*30 0.90805 0.00612 0.56529 0.01775

6,0*23 0.91221 0.00761 0.57023 0.02298
1*6, 0*18 0.91709 0.00714 0.57655 0.02317

0*23, 6 0.91407 0.00807 0.57355 0.01931
0*18, 1*6 0.91574 0.00648 0.56287 0.01980
3, 0*22, 3 0.90917 0.00764 0.56766 0.01829

0*9, 1*6, 0*9 0.91040 0.00581 0.55630 0.02116
7[0]*50, 40 0*50 0.91096 0.00385 0.56855 0.01179

10, 0*39 0.91526 0.00428 0.56163 0.01363
2*5, 0*35 0.92053 0.00379 0.56757 0.01504
0*39, 10 0.91552 0.00393 0.56076 0.01451

0*30, 1*10 0.91423 0.00437 0.57613 0.01084
5, 0*38, 5 0.91159 0.00473 0.56055 0.01368

0*18, 2*5, 0*17 0.90905 0.00370 0.54963 0.01048
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pre-chosen level of significance α = 5% and L = 100. Also, the estimate of GLPI CY(L) and the
one-sided 95% confidence interval for CY(L), i.e., [LB, ∞) are computed and are reported in Table
8. From the obtained result it can be verified that the value of C0

Y = 1 does not belong to the
one-sided confidence interval, thus the null hypothesis H0 is rejected. Hence, the rejection of
the null hypothesis indicates that the GLPI for the considered censored observations meets the
required level.

Table 7: Real data estimates of CL and CY(L) for different censoring schemes where L = 100.

n m Schemes ĈLMLE ĈLBayes ĈY(L)MLE ĈY(L)Bayes
6[0]*19 3[0]*10 0,1*9 1.29976 1.31230 1.06033 1.06053

1*9,0 1.32879 1.30256 1.07422 1.07421
0*4,3*3,0*3 1.33256 1.32036 1.08983 1.08686

3[0]*15 0*11,1*4 1.26546 1.27359 1.05995 1.05736
1*4,0*11 1.24328 1.25370 1.06700 1.05697

0*6,1*4,0*5 1.25042 1.23734 1.08076 1.07896
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6. Conclusions

The present article considers the problem of estimating the GLPI, introduced by [32], under
progressive type-II right censored sample where the lower specification limit is given for the
Lindley distributed products. The model parameter and the GLPI are obtained by the MLE and
Bayes estimation methods, respectively. A comparison study has been carried out through the
Monte Carlo simulation study under a progressive type-II censoring scheme between MLE and
the Bayes estimate of GLPI in their corresponding MSEs. A real data set is analyzed to study
the performance of the proposed index. Though the approach of classical estimation and Bayes
estimation are different in direction, assuming the gamma prior and using MCMC method, we
discussed the Bayes estimation of CY(L). The Bayes estimate of the performance index is relatively
better than MLE in terms of corresponding MSEs. The proposed procedure can be extended to
obtain the confidence interval of CY(L) based on MLE and Bayes estimate to evaluate whether
the product quality meets the required level. In our upcoming course of work, the problem will
be attempted. We may use the MLE and the Bayes estimate of CY(L) based on the progressive
type-II right censored sample to draw conclusions about additional lifetime distributions in future.
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Abstract 

In this study, we introduce a novel extension of the Tornumonkpe distribution, known as the length 

biased Tornumonkpe distribution. This distribution holds particular significance as it belongs to the 

family of weighted distributions, specifically the length biased variant. Through an in-depth analysis, 

we explore the mathematical and statistical properties of this distribution, shedding light on its unique 

characteristics. To estimate the model parameters of this new distribution, we employ the well-

established technique of maximum likelihood estimation. This allows us to accurately determine the 

parameters and enhance our understanding of the distribution's behavior. To demonstrate the practical 

applicability and advantages of the length biased Tornumonkpe distribution, we showcase its 

performance using a real-life time data set. Through this empirical examination, we investigate the 

distribution's superiority and flexibility, providing valuable insights into its potential use in various 

domains. 

Keywords: Length biased distribution, Tornumonkpe distribution, order statistics, 

maximum likelihood estimation 

1. Introduction

Weighted distributions have emerged as a unifying and powerful tool to address biases in unequally 

weighted sample data, providing a comprehensive approach for modeling and representing statistical 

information. This concept was initially suggested by Fisher [2], exploring the influence of 

ascertainment methods on the distribution of recorded observations. Subsequently, Rao [5] further 

developed and unified the theory, particularly in situations where standard distributions were 

inadequate for capturing observations with equal probabilities. The theory of weighted distributions 

also provides an integrative conceptualization for model stipulation and data representation 

problems. The weighted distributions are used as a tool in selection of appropriate models for 

observed data especially when samples are drawn without a proper frame. The weighted distribution 

reduces to length biased distribution when the weight function considers only the length of units of 
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interest. The concept of length biased sampling was introduced by Cox [1] and Zelen [12]. The 

application of length biased distributions has found widespread use in various biomedical areas, 

including family history analysis, survival analysis, clinical trials, intermediate events, reliability 

theory, and population studies. In situations where a proper sampling frame is absent, length biased 

distributions offer an elegant solution by sampling items at a rate proportional to their lengths, thereby 

granting larger values a higher probability of being sampled. Many studies on length biased 

distribution has been published, for example; Rather and Subramanian [6], Rather and Subramanian 

[7], Rather and Ozel [8], Rather and Subramanian [9], Rather et al. [10]. 

Tornumonkpe distribution is a recently executed one parametric continuous probability 

distribution proposed by Nwikpe [4]. Its various mathematical and statistical properties such as order 

statistics, crude and raw moments, moment generating function, hazard rate function, graphs of pdf, 

cdf and hazard function and Renyi entropy have been discussed. Its parameter has also been estimated 

by using the maximum likelihood estimation.  

2. Length Biased Tornumonkpe (LBT) Distribution

The probability density function of Tornumonkpe distribution is given by 
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Suppose the random variable X following non-negative condition with probability density function

)(xf .Let )(xw
 be its non-negative weight function, then the probability density function of weighted 

random variable wX is given by 
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Depending upon the various choices of weighted function w(x) obviously when w(x) = xc, resulting 

distribution is known as weighted distribution. In this paper, we have to study the length biased 

version of Tornumonkpe distribution called as length biased Tornumonkpe distribution. So, the

weight function considered at w(x) = x, resulting distribution is called length biased distribution with 

its probability density function given by  
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By substituting equations (1) and (4) in equation (3), we will obtain the probability density function of

length biased Tornumonkpe distribution as 
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and the cumulative distribution function of length biased Tornumonkpe distribution can be obtained 

as 
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After the simplification of equation (6), we will obtain the cumulative distribution function of length 

biased Tornumonkpe distribution as 
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   Figure 1: Pdf plot of LBT distribution 
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 Figure 2: Cdf plot of LBT distribution

3. Survival Analysis

In this section, we will discuss about the survival function, hazard rate function, reverse hazard rate 

function and Mills ratio of proposed length biased Tornumonkpe distribution. 

3.1 Survival function 

The survival or reliability function of the length biased Tornumonkpe distribution can be obtained as 
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3.2 Hazard function 

The hazard function is also known as hazard rate or failure rate or force of mortality and is given by 
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3.3 Reverse hazard function 

The reverse hazard rate function is given by 
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3.4 Mills Ratio 
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Fig. 3: Survival plot of LBT distribution 
x 

Fig. 4: Hazard plot of LBT distribution 

4. Statistical Properties

In this section, we will discuss various statistical properties of length biased Tornumonkpe 

distribution those include moments, harmonic mean, moment generating function and characteristic 

function. 
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4.1 Moments 

Let X be the random variable following length biased Tornumonkpe distribution with parameter θ, 

then the rth order moment E(X r) of proposed distribution can be obtained as  
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After the simplification of equation (15), we obtain 
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Now putting r = 1, 2, 3 and 4 in equation (16), we will obtain the first four moments of length biased 

Tornumonkpe distribution as 
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4.2 Harmonic mean 

The harmonic mean for proposed length biased Tornumonkpe distribution can be obtained as 
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After the simplification of equation (27), we obtain 
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4.3 Moment generating function and characteristic function 

Let X be the random variable following length biased Tornumonkpe distribution with parameter θ, 

then the moment generating function of proposed distribution can be obtained as 
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Using Taylor’s series, we obtain 
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Similarly, the characteristic function of length biased Tornumonkpe distribution can be obtained as 
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5. Order Statistics

Consider X(1), X(2),…, X(n) be the order statistics of a random sample X1, X2,…, Xn from a continuous 

population with probability density function fx (x) and cumulative distribution function FX(x), then 

the probability density function of rth order statistics X(r) is given by 
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By using the equations (5) and (7) in equation (36), we will obtain the probability density function of 

rth order statistics of length biased Tornumonkpe distribution as 
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Therefore, the probability density function of higher order statistic X(n) of length biased 

Tornumonkpe distribution can be obtained as  
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and the probability density function of first order statistic X(1) of length biased Tornumonkpe 

distribution can be obtained as 
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6. Likelihood Ratio Test

Let X1, X2,…., Xn  be the random sample of size n from length biased Tornumonkpe distribution. To 

examine its significance, we use the hypothesis. 
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In order to investigate, whether the random sample of size n comes from the Tornumonkpe 

distribution or length biased Tornumonkpe distribution, the following test statistic is used. 
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We should refuse to accept the null hypothesis, if 
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For large sample of size n, 2log Δ is distributed as chi-square distribution with one degree of freedom 

and also p-value is obtained by using the chi square distribution. Thus, we should refuse to accept the 

null hypothesis, when the probability value is given by 
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7. Bonferroni and Lorenz Curves

The bonferroni and Lorenz curves are known as income distribution or classical curves are mostly 

being used to measure the distribution of inequality in income or poverty. The bonferroni and Lorenz 

curves are defined as 
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After simplification, we obtain 
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8. Parameter Estimation

In this section, we will discuss the method of maximum likelihood estimation to estimate the 

parameters of length biased Tornumonkpe distribution. Let X1, X2,…., Xn  be a random sample of size 

n from length biased Tornumonkpe distribution, then the likelihood function can be defined as 
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The log likelihood function is given by 
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 Now differentiating the log likelihood equation (52) with respect to parameter θ. We must satisfy the 

following normal equation 
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The above likelihood equation is too complicated to solve it algebraically. Therefore, we use numerical 

technique like Newton-Raphson method for estimating the required parameter of proposed 

distribution.

    In order to use the asymptotic normality results for obtaining the confidence interval. We have 

that if )ˆˆ(    as resultsthestatecanWeMLEthedenotes ).(  of
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9. Applications

In this section, we have fitted a real life data set in length biased Tornumonkpe distribution in order 

to show that length biased Tornumonkpe distribution fits better over Tornumonkpe, exponential and 

Lindley distributions. The real life data set is given below as 

The following data set represents the failure times in hours of an accelerated life test of 59 

conductors without any censored observation is obtained by Lawless [3] and the data set is given 

below in table 1. 

Table 1: Data regarding the failure times in hours 

2.997 4.137 4.288 4.531 4.700 4.706 5.009 5.381 5.434 5.459 5.589 5.640 

5.807 5.923 6.033 6.071 6.087 6.129 6.352 6.369 6.476 6.492 6.515 6.522 

6.538 6.545 6.573 6.725 6.869 6.923 6.948 6.956 6.958 7.024 7.224 7.365 

7.398 7.459 7.489 7.495 7.496 7.543 7.683 7.937 7.945 7.974 8.120 8.336 

8.532 8.591 8.687 8.799 9.218 9.254 9.289 9.663 10.092 10.491 11.038 

To compute the model comparison criterion values along with the estimation of unknown parameters, 

the technique of R software is used. In order to compare the performance of length biased 

Tornumonkpe distribution over Tornumonkpe, exponential and Lindley distributions, we use the 

criterion values such as AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), 

AICC (Akaike Information Criterion Corrected) and -2logL. The better distribution is which 

corresponds to the lesser values of AIC, BIC, AICC and -2logL. For calculating the criterion values like 

AIC, BIC, AICC and -2logL following formulas are used. 

1

)1(2
log2log,log22






kn

kk
AICAICCLnkBICLkAIC          and         

Where n is the sample size, k is the number of parameters in statistical model and –2logL is the 

maximized value of log-likelihood function under the considered model. 
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Table 2: Shows Comparison and Performance of fitted distributions 

Distributions MLE S.E -2logL AIC BIC AICC 

Length Biased 

Tornumonkpe 

0.55730745ˆ  0.03557811ˆ  270.4884 272.4884 274.5659 272.5585 

Tornumonkpe 0.41550194ˆ  0.03053944ˆ  285.505 287.505 289.5825 287.5751 

Exponential 0.14326745ˆ  0.01865093ˆ  347.2809 349.2809 351.3585 349.3510 

Lindley 0.25722036ˆ  0.02393044ˆ  316.7054 318.7054 320.783 318.7755 

From results given above in table 2, it has been clearly realized and observed that the length biased 

Tornumonkpe distribution has lesser AIC, BIC, AICC and -2logL values as compared to the 

Tornumonkpe, exponential and Lindley distributions. Hence, it can be revealed that length biased 

Tornumonkpe distribution leads to a better fit over Tornumonkpe, exponential and Lindley 

distributions.  

10. Conclusion

In this article, we have introduced the length biased Tornumonkpe distribution as a novel approach 

within the field. By applying the length biased technique to its baseline distribution, we have 

generated a new distribution that exhibits unique properties and characteristics. Throughout our 

analysis, we have explored and derived various structural properties of the length biased 

Tornumonkpe distribution. These properties include moments, the shape of the probability density 

function (PDF) and cumulative distribution function (CDF), mean and variance, harmonic mean, 

survival function, hazard rate function, moment generating function, reverse hazard rate function, 

order statistics, Bonferroni and Lorenz curves. Through a comprehensive study of these properties, 

we have gained valuable insights into the behavior and statistical properties of the length biased 

Tornumonkpe distribution. To estimate the parameters of the length biased Tornumonkpe 

distribution, we employed the widely used technique of maximum likelihood estimation. This 

allowed us to obtain reliable estimates and enhance our understanding of the distribution's 

characteristics. 

Furthermore, we have validated the practical applicability and superiority of the length biased 

Tornumonkpe distribution through its examination with real-life data sets. By comparing its fit with 

other well-known distributions such as the Tornumonkpe, exponential, and Lindley distributions, we 

have demonstrated that the length biased Tornumonkpe distribution outperforms these alternatives 

in terms of goodness-of-fit. 

Finally, the length biased Tornumonkpe distribution represents a significant advancement in 

statistical modeling. Its distinctive properties, derived through rigorous analysis, and its superior fit 

with real-life data sets emphasize its potential for various applications. Researchers and practitioners 

can benefit from incorporating the length biased Tornumonkpe distribution into their analyses, 

enabling more accurate and robust modeling in diverse fields. 
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Abstract 

In this study, we introduce a novel class of distributions called the length biased Uma distribution. 

This distribution is a specific instance of the broader weighted distribution family, known for its 

versatility in various applications. We explore the structural properties of the length biased Uma 

distribution and propose a robust parameter estimation technique based on maximum likelihood 

estimation. To assess its efficacy, we apply the newly introduced distribution to two real-world datasets, 

evaluating its flexibility and performance in comparison to existing models. The results obtained 

demonstrate the potential of the length biased Uma distribution as a valuable addition to the repertoire 

of statistical distributions, offering valuable insights for a wide range of practical applications. 

Keywords: Length biased distribution, Uma distribution, Reliability analysis, Order 

statistics, Maximum likelihood estimation. 

1. Introduction

In probability distribution theory, the concept of weighted probability models have attained a great 

importance for modeling different lifetime data sets occurring from various practical and applied 

fields like engineering, medical sciences, insurance, finance etc. There are several situations were 

classical distributions may not provide best fit to lifetime data. In such situation attempt has been 

made to generalize standard distribution by introducing an extra parameter to it. This extra parameter 

can be introduced through various techniques. One of such technique is of weighted technique. Fisher 

[7] introduced the concept of weighted distribution to model the ascertainment bias which was later

formalized by Rao [16] in a unifying theory for problems were the observations fall in non-

experimental, non-replicated and non-random categories. The weighted distributions are remarkable
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for efficient modeling of statistical data and prediction obviously when classical distributions are not 

suitable. The weighted distributions were formulated in such a situation to record the observation 

according to some weight function. The weighted distribution reduces to length biased distribution 

when the weight function considers only the length of units of interest. The probability of selecting an 

individual in a population is proportional to its magnitude is called length biased sampling. However, 

when observations are selected with probability proportional to their length, resulting distribution is 

called length biased distribution. The concept of length biased distribution was introduced by Cox [5] 

in renewal theory. Length biased sampling situation occurs were a proper sampling frame is absent. 

In such cases items are sampled at a rate proportional to their lengths so that the larger values could 

be sampled with higher probability.  

    A significant and remarkable contribution has been done by several authors to develop some 

important length biased probability models along with their applications in various fields. Oluwafemi 

and Olalekan [15] discussed on length and area biased exponentiated weibull distribution based on 

forest inventories. Ekhosuehil et al. [6] proposed the weibull length biased exponential distribution 

with statistical properties and applications. Atikankul et al. [2] discussed on the length biased 

weighted Lindley distribution with applications. Ratnaparkhi and Nimbalkar [18] presented the 

length biased lognormal distribution and its application in the analysis of data from oil field 

exploration studies. Mathew [14] proposed the reliability test plan for the Marshall Olkin length 

biased Lomax distribution.  Mustafa and Khan [13] obtained the length biased power hazard rate 

distribution with its properties and applications. Chaito et al. [3] discussed on the length biased 

Gamma-Rayleigh distribution with applications.  Al-omari and Alanzi [1] introduced the inverse 

length biased Maxwell distribution with statistical inference and application. Ghorbal [11] discussed 

on properties of length biased exponential model with applications. Ganaie and Rajagopalan [9] 

presented the weighted power Garima distribution with applications in blood cancer and relief times. 

Recently, Chaito and Khamkong [4] discussed on length-biased weibull-Rayleigh distribution for 

application to hydrological data.      

    Uma distribution is a recently introduced one parametric continuous lifetime distribution 

proposed by Shanker [19]. Its various statistical properties like moments, mean residual life function, 

hazard rate function, reverse hazard function, stochastic ordering, coefficient of variation, skewness, 

kurtosis and index of dispersion have been discussed. For estimating its parameter the method of 

maximum likelihood estimation has been discussed.  

2. Length Biased Uma (LBU) Distribution

The probability density function of Uma distribution is given by 
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Consider X be the non-negative random variable with probability density function )(xf .Let its non-

negative weight function be )(xw , then the probability density function of weighted random variable 

wX  is given by 
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For various forms of weight function w(x) obviously when w(x) = xc, resulting distribution is called 

weighted distribution. In this paper, we have considered the weight function at w(x) = x to obtain the

length biased version of Uma distribution and its probability density function is given by 
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By using the equations (1) and (4) in equation (3), we will obtain the probability density function of 

length biased Uma distribution as 
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After the simplification of equation (6), we will obtain the cumulative distribution function of length 

biased Uma distribution as 
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Fig. 1: Pdf plot of LBU distribution Fig. 2: Cdf plot of LBU distribution 

3. Reliability Analysis

In this section, we will discuss about the reliability function, hazard rate function, reverse hazard rate 

function and Mills ratio of the proposed length biased Uma distribution. 

3.1 Reliability function 

The reliability function is termed as survival function and the reliability function of executed length 

biased Uma distribution can be determined as 
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3.2 Hazard function 

The hazard function is also known as failure rate or force of mortality and is given by 
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3.3 Reverse hazard function 

The reverse hazard rate function is given by 
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3.4 Mills Ratio 

The Mills Ratio of proposed model is given by 
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Fig. 3:  Reliability plot of LBU distribution Fig. 4: Hazard rate plot of LBU distribution

4. Order Statistics

Suppose X(1), X(2),…, X(n) be the order statistics of a random sample X1, X2,…, Xn from a continuous 

population with cumulative distribution function FX(x) and probability density function fx (x) then 

the probability density function of rth order statistics X(r) is given by 
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Now substituting the equations (5) and (7) in equation (12), we will obtain the probability density 

function of rth order statistics X(r) of length biased Uma distribution as
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Therefore, the probability density function of higher order statistic X(n) of length biased Uma 

distribution can be determined as
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and probability density function of first order statistic X(1) of length biased Uma distribution can be 

determined as 
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5. Test for Length biasedness of Length biased Uma distribution

Consider X1, X2,…., Xn  be the random sample of size n from length biased Uma distribution. To 

analyse its flexibility consider the hypothesis. 
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In order to determine, whether the random sample of size n comes from Uma distribution or length 

biased Uma distribution, the following test statistic rule is employed. 
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Equivalently, we should also refrain to retain the null hypothesis where 
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Whether, the 2log Δ is distributed as chi-square distribution with one degree of freedom if the sample 

is large of size n and also p-value is determined by using chi-square distribution. Thus, we should 

refuse to accept the null hypothesis, if the probability value is given by 
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6. Statistical properties

In this section, we will derive about the different structural properties of length biased Uma 

distribution those include moments, harmonic mean, moment generating function and characteristic 

function. 

6.1 Moments 

Let X be the random variable following length biased Uma distribution with parameter θ, then the rth 

order moment E(X r) of proposed distribution can be obtained as  
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After simplification, we obtain from equation (22) 
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Now substituting r = 1, 2, 3 and 4 in equation (23), we will obtain the first four moments of length 

biased Uma distribution as 
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6.2 Harmonic mean 

The harmonic mean for proposed length biased Uma distribution can be obtained as 
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After simplification, we obtain 
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6.3 Moment generating function and characteristic function 

Let X be the random variable following length biased Uma distribution with parameter θ, then the 

moment generating function of executed distribution can be determined as 
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 Similarly, the characteristic function of length biased Uma distribution can be determined as 
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7. Bonferroni and Lorenz Curves

The bonferroni and Lorenz curves are also termed as income distribution or classical curves are mostly 

being used in economics to measure the distribution of inequality in income or poverty. The 

bonferroni and Lorenz curves can be written as 
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After simplification, we obtain 
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8. Maximum Likelihood Estimation and Fisher’s Information Matrix

In this section, we will discuss the method of maximum likelihood estimation to estimate the 

parameters of length biased Uma distribution. Consider X1, X2,…., Xn  be a random sample of size n 

from the length biased Uma distribution, then the likelihood function can be defined as 
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The log likelihood function is given by 
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By differentiating log likelihood equation (47) with respect to parameter θ and must satisfy the 

following normal equation 
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The above likelihood equation is too complicated to solve it algebraically. Therefore, we use numerical 

technique like Newton-Raphson method for estimating required parameter of proposed distribution. 

To use the asymptotic normality results for determining the confidence interval. We have that if 
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9. Application

In this section, we have applied the two real data sets in length biased Uma distribution to determine 

its goodness of fit and then comparison has been developed in order to realize that the length biased 

Uma distribution provides quite satisfactory results over Uma, Shanker, Garima and Lindley 

distributions. The two real data sets are given below as 

The following first real data set reported from Lawless [12] represents the failure times in hours of an 

accelerated life test of 59 conductors without any censored observation. and the data set is given below 

in table 1. 
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Table 1: Data regarding the failure times in hours of an accelerated life test of 59 conductors by Lawless (2003) 

2.997 4.137 4.288 4.531 4.700 4.706 5.009 5.381 5.434 5.459 5.589 5.640 

5.807 5.923 6.033 6.071 6.087 6.129 6.352 6.369 6.476 6.492 6.515 6.522 

6.538 6.545 6.573 6.725 6.869 6.923 6.948 6.956 6.958 7.024 7.224 7.365 

7.398 7.459 7.489 7.495 7.496 7.543 7.683 7.937 7.945 7.974 8.120 8.336 

8.532 8.591 8.687 8.799 9.218 9.254 9.289 9.663 10.092 10.491 11.038 

The following data set obtained from Folks and Chhikara [8] and studied by Gadde et al. [10] 

represents runoff amounts at Jug Bridge, Maryland and the data set is given as under in table 2  

Table 2: Data regarding the runoff amounts at Jug Bridge, Maryland reported by Gadde et al. (2019) 

0.17 1.19 0.23 0.33 0.39 0.39 0.40 0.45 0.52 0.56 

0.59 0.64 0.66 0.70 0.76 0.77 0.78 0.95 0.97 1.02 

1.12 1.24 1.59 1.74 2.92 

To compute the model comparison criterions along with estimation of unknown parameters, the 

technique of R software is applied. In order to compare the performance of length biased Uma 

distribution over Uma, Shanker, Garima and Lindley distributions, we use criterion values like AIC 

(Akaike Information Criterion), BIC (Bayesian Information Criterion), AICC (Akaike Information 

Criterion Corrected), CAIC (Consistent Akaike Information Criterion), Shannon’s entropy H(X) and -

2logL. The distribution is better which shows corresponding criterions AIC, BIC, AICC, CAIC, H(X) 

and -2logL values smaller as compared with other distributions. For determining the criterion values 

AIC, BIC, AICC, CAIC, H(X) and -2logL given below following formulas are used. 

n
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kn
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 Where n is the sample size, k is the number of parameters in statistical model and –2logL is the 

maximized value of log-likelihood function under the considered model. 

Table 3: Shows MLE and S. E Estimate for Data set 1 and Data set 2 

Data set 1 

Distributions     MLE S.E

Length Biased Uma    0.69944543ˆ        0.04014727ˆ   

Uma 0.54873604ˆ        0.03478584ˆ   

Shanker 0.27241572ˆ         0.02435319ˆ   

Garima 0.21941841ˆ         0.02422882ˆ   

Lindley  0.25722036ˆ          0.02393044ˆ   

Data set 2 

Length biased Uma 3.5827918ˆ  0.3376072ˆ 

Uma 2.3356047ˆ   0.2501545ˆ   
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Shanker 1.5164881ˆ  0.2188903ˆ 

Garima 1.5342883ˆ  0.2647162ˆ 

Lindley  1.6358862ˆ  0.2574658ˆ 

Table 4: Shows Comparison and Performance of fitted distributions for Data 1 

Distributions -2logL  AIC   BIC  AICC  CAIC   H(X) 

LBU    261.0041 263.0041 265.0817  263.0742  263.0742   4.4237 

Uma    274.1516  276.1516   278.2291   276.2217  276.2217  4.6466 

Shanker   308.9524   310.9524  313.03  311.0225  311.0225  5.2364 

Garima  335.3371  337.3371  .339.4147  337.4072    337.4072  5.6836 

Lindley   316.7054  318.7054  320.783  318.7755  318.7755  5.3678 

Table 5: Shows Comparison and Performance of fitted distributions for Data 2 

Distributions -2logL  AIC    BIC  AICC  CAIC   H(X)

LBU  32.62635    34.62635  35.84523     34.8002  34.8002  1.3050 

Uma  42.32838  44.32838  45.54726  44.5022  44.5022  1.6931 

Shanker  40.29075  42.29075   43.50963  42.4646  42.4646  1.6116 

Garima    40.39727    42.39727   43.61614  42.5711  42.5711   1.6158  

Lindley      39.60251  41.60251  42.82138  41.7764  41.7764  1.5841 

From results given above in table 4 and table 5, it has been clearly revealed and observed that the 

length biased Uma distribution has lesser AIC, BIC, AICC, CAIC, H(X) and -2logL values as compared 

to the Uma, Shanker, Garima and Lindley distributions. Hence, it can be concluded that the length 

biased Uma distribution leads to a better fit over Uma, Shanker, Garima and Lindley distributions.  

9. Conclusion

This article introduces a novel distribution known as the length-biased Uma distribution, which has 

been carefully developed and compared to its baseline distribution. Throughout the study, various 

essential characteristics of the length-biased Uma distribution, including moments, reliability 

function, hazard rate function, reverse hazard function, shapes of PDF, CDF, hazard, and reliability 

function, order statistics, Bonferroni, and Lorenz curves, have been thoroughly explored and 

presented. 

Furthermore, the article employs the maximum likelihood estimation method to estimate the 

parameters of the length-biased Uma distribution, enhancing the robustness and applicability of the 

proposed model. 

To assess its practical effectiveness, the newly introduced distribution has been tested with 

two real-world datasets. The results demonstrate the superiority of the length-biased Uma 

distribution over existing distributions such as Uma, Shanker, Garima, and Lindley distributions. This 

superiority is evidenced by the significantly improved performance and satisfactory outcomes 

obtained from the proposed length-biased Uma distribution. 

In conclusion, the study provides valuable insights into the characteristics and applications 

of the length-biased Uma distribution, making it a promising addition to the field of statistical 

modeling and probability theory. The findings open up new avenues for researchers and practitioners 

to explore the potential of this distribution in various real-world scenarios and data analyses. 

RT&A, No 4 (76) 
Volume 18, December 2023 

110



R. A. Ganaie, C. Subramanian, V. P. Soumya, R. Shenbagaraja, M. Alam, 

D. V. Saraja, R. Kinjawadekar, A. A. Rather, S. A. Dar

ENHANCING ENGINEERING SCIENCES WITH UMA …

References 
[1] Al-Omari, A. I. and Alanzi, A. R. A. (2021). Inverse length biased Maxwell distribution:

Statistical inference with an application. Computer Systems Science & Engineering, 39(1), 147-164. 

[2] Atikankul, Y., Thongteeraparp, A., Bodhisuwan, W. and Volodin, A. (2020). The length-

biased weighted Lindley distribution with applications. Lobachevskii Journal of Mathematics, 41(3), 308-

319. 

[3] Chaito, T., Nanthaprut, P., Nakharutai, N. and Khamkong, M. (2022). The length-biased

Gamma-Rayleigh distribution with applications. Thailand Statistician, 20(2), 293-307. 

[4] Chaito, T. and Khamkong, M. (2022). The length-biased Weibull-Rayleigh distribution for

application to hydrological data. Lobachevskii Journal of Mathematics, 42, 3253-3265. 

[5] Cox, D. R. (1962). Renewal theory, Barnes and Noble, New York.

[6] Ekhosuehil, N., Kenneth, G. E. and Kevin, U. K. (2020). The Weibull length biased

exponential distribution: Statistical properties and applications. Journal of Statistical and Econometric 

Methods, 9(4), 15-30.  

[7] Fisher, R. A. (1934). The effects of methods of ascertainment upon the estimation of

frequencies. Annals of Eugenics, 6, 13-25. 

[8] Folks, J. L. and Chhikara, R. S. (1978). The inverse Gaussian distribution and its statistical

application a review. Journal of the Royal Statistical Society: Series B (Methodological), 40(3), 263-275. 

[9] Ganaie, R. A., Rajagopalan, V., Nair, S. R. and Kanan, M. (2023). A new generalization of

power Garima distribution with applications in blood cancer and relief times. Journal of Statistics 

Applications & Probability, 12(2), 371-394. 

[10] Gadde, S., Rosaiah, K. and Prasad, S. (2019). Bootstrap confidence intervals of cnpk for

type-ii generalized log-logistic distribution. Journal of industrial Engineering International, 15, 87-94. 

[11] Ghorbal, A. B. (2022). On properties of length-biased exponential model. Mathematical

Problems in Engineering. 2022 https://doi.org/10.1155/2022/9779767. 

[12] Lawless, J. F. (2003). Statistical Models and methods for Lifetime data, 2nd ed., John Wiley

and Sons, New Jersey. 

[13] Mustafa, A. and Khan, M. I. (2022). The length-biased power hazard rate distribution:

Some properties and applications. STATISTICS IN TRANSITION new series, 23(2), 1-16. 

[14] Mathew, J. (2020). Reliability test plan for the Marshall Olkin length biased Lomax

distribution. Reliability: Theory & Applications, 15, No. 2(57), 36-49. 

[15] Oluwafemi, O. S. and Olalekan, D. M. (2017). Length and area biased exponentiated

weibull distribution based on forest inventories. Biometrics & Biostatistics International Journal, 6(2), 

311-320.

[16] Rao, C. R. (1965). On discrete distributions arising out of method of ascertainment, in

classical and Contagious Discrete, G.P. Patiled; Pergamum Press and Statistical publishing Society, 

Calcutta. 320-332.  

[17] R core team (2019). R version 3.5.3: A language and environment for statistical computing.

R Foundation for statistical computing, Vienna, Austria.URL https:// www.R-project .org/. 

[18] Ratnaparkhi, M. V. and Naik-Nimbalkar, U. V. (2012). The length-biased lognormal

distribution and its application in the analysis of data from oil field exploration studies. Journal of 

Modern Applied Statistical Methods, 11(1), 255-260. 

[19] Shanker, R. (2022). Uma distribution with Properties and Applications. Biometrics &

Biostatistics International Journal, 11(5), 165-169. 

RT&A, No 4 (76) 
Volume 18, December 2023 

111

https://doi.org/10.1155/2022/9779767


Jabir Bengalath, Bindu Punathumparambath
A NOVAL EXTENSION OF INVERSE EXPONENTIAL DISTRIBUTIONS

A NOVEL EXTENSION OF INVERSE EXPONENTIAL
DISTRIBUTIONS: A HEAVY-TAILED MODEL WITH
UPSIDE DOWN BATHTUB SHAPED HAZARD RATE

Jabir Bengalath

•
Department of Statistics, Govt. Arts and Science College, Calicut, University of Calicut, Kerala, India.

jabirbengu@gmail.com

Bindu Punathumparambath

•
Department of Statistics, Govt. Arts and Science College, Calicut, University of Calicut, Kerala, India.

ppbindukannan@gmail.com

Abstract

Heavy-tailed distributions have garnered interest due to their advantageous statistical and reliability
characteristics, rendering them valuable in applied fields such as economics, finance, and risk management.
Such distributions offer robust properties, making them pertinent to studies in various areas like
econometrics, statistics, and insurance. Thus, the primary objective of this paper is to propose a Two
parameter right skewed- upside down bathtub type, heavy tailed distribution, which is a generalisation
of Inverse Exponential distribution and is referred to as Modi Inverse Exponential distribution. We
derive several mathematical and statistical features, including quantile function, mode, median, skewness,
kurtosis, and mean deviation. Additionally, the reliability and hazard rate functions are also derived.
Stochastic ordering and order statistics of the proposed distribution were derived. We also investigate
the tail behaviour of the proposed model. Furthermore, estimation methods such as maximum likelihood
estimation and its asymptotic confidence bound, percentile method, and Cramer-von-Mises method were
examined. To demonstrate the appropriateness of the suggested model, we have considered two distinct
real datasets along with three distinct models and concluded that the proposed model is more adaptable.

Keywords:Inverse Exponential distribution, Modi Inverse Exponential distribution, Moments,
Tail Behaviour, Order Statistics, Parameter estimation.

1. Introduction

During the recent years, heavy-tailed distributions have gained attention as an attractive subject
for various research and studies. References to some works on these distributions can be found in
[1],[2],[3],[4],[5]. These distributions possess excellent statistical and reliability properties, making
them practical for many applied sciences such as economics, finance, econometrics, statistics, risk
management, and insurance. Several authors have developed inferential results under financial
modeling, as seen in [6],[7],[8],[9],[10]. There exist various heavy-tailed distributions in many
practical situations, such as financial sciences, reliability engineering and bio-medical science,data
are usually positive, and their distribution is uni-modal hump shaped and extreme values yielding
heavier tails than the classical models. For example, in health science research (1). The medical
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expenditure that exceed a given threshold and (2). Length of stay in hospital, presents highly
skewed, heavy tailed data for which standard classical distributions and simple variable transform
are insufficient to provide an adequate fit to such data. The Exponential distribution has been
widely used for analyzing life-time data. However, its usefulness is restricted to scenarios with
a constant hazard rate, which can be difficult to justify in practical situations. To address this
problem, so many alternative models for life-time data have been developed. Among them,
distributions like Weibull and gamma have been extensively employed when dealing with life-
time data exhibiting a monotonically increasing or decreasing hazard rate. The UBT failure rate
distributions commonly appear in medical and biological fields like in lung cancer patient data
(see [11], in bladder cancer patient data (see [28] ) and in breast carcinoma patient data (see
[12]. The inverse transform method is a widely used approach to derive the inverse form of
different lifetime distributions. The distribution family obtained by this method, known as the
generalized inverted family, often exhibits the characteristic"upside-doun bathtub" hazard rate
pattern. These distributions have the advantage of being the number of parameters required and
are straightforward to apply. For instance, Notable examples of such a distribution include the
inverted gamma distribution (IED) proposed by Lin et al[13] and the Inverse Lindley Distribution
(ILD), introduced by Sharma et al[14]. In addition,The transmuted inverse exponential distribution
was presented by Oguntunde and Adejumo [15]. In the same year, Khan et al [16] propose the
transmuted inverse Weibull distribution. In addition, in 2014, Sharma et al [17]introduce the
transmuted inverse Rayleigh distribution. Then, in 2016, Sharma et al [18] further introduced the
generalized inverse Lindley distribution. The purpose of this study is to propose a new inverted
probability model with UBT type of failure rate. For this purpose , we consider A one parameter
Inverse exponential distribution. Let X be the random variable having the probability density
function (pdf) is given by

g(x) =
θ

x2 e−
θ
x , x > 0, θ > 0. (1)

and the cumulative distribution function (cdf) is

G(x) = e−
θ
x , x > 0, θ > 0. (2)

for all x > 0 , where θ > 0. Furthermore, K. Modi et al [19] introduced a new family of distri-
butions name Modi family of distribution in his paper titled a new family of distributions with
applications on two real data sets on the survival problem. where he proposed a new probability
distribution by taking base line distribution by exponential distribution with one parameter.
This paper aims to substitute αβ with γ within the established family, resulting in a modified
probability density function(pdf) and cumulative distribution function(cdf) is given by.

fY(x) =
(1 + γ)(γg(x))
(γ + G(x))2 , γ > 0. (3)

and

FY(x) =
(1 + γ)G(x)

γ + G(x)
, γ > 0. (4)

where g(x) and G(x) are the pdf and cdf of the baseline distribution. Moreover, We can easily
verified that the given Modi family satisfies the identifiable properties and other properties which
is required for a probability distribution. Hence, this familiy of distribution can be used to
generate more flexible probability distributions. The hazard function of equation (1) is given by,

hY(x) =

[
1 + γ

γ + G(x)

]
hX(x), γ > 0.

Where hX(x) is the hazard function of the baseline distribution.
Acknowledging the need for more flexible lifetime distributions, we introduce a new family of

probability distribution known as the Modi Inverse Exponential distribution with two parameters.
which can be extensively used to fit and analyze data in a variety of field. The paper is
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organized as follows: Section 2 specifies the Modi Inverse Exponential distribution, whereas
Section 3 provides the Modi Inverse Exponential distribution Properties, which include the
Hazard function, Survival function, Quantile function,Mode, Median, Skewness, Kurtosis, Mean
Deviation, Stochastic Ordering, Order statistics. In Section 4, we look at the Modi inverted
exponential distribution’s tail behaviour. Section 5 We investigated different method of estimation
which includes Maximum likelihood estimation and its asymptotic confidence bound, Percentile
method and Cramer-von Mises method is discussed Section 5, we conduct a simulation study to
validate the proposed model’s estimations, and two real data sets are analysed to demonstrate
the efficacy of the proposed model. The conclusion is provided in Section 6.

2. Modi Inverse Exponential Distribution

A random variable X is said to have Modi Inverse Exponential distribution (MIE) if its cumulative
distribution function (cdf) is given by

F(x) =
(γ + 1)

1 + γe
θ
x

, x > 0, γ > 0, θ > 0. (5)

and its pdf is,

f (x) =
θγ(γ + 1)e

θ
x

(xγe
θ
x + x)2

, x > 0, γ > 0, θ > 0. (6)

The shape of the distribution might provide important insights into its characteristics, such
as whether it is symmetrical or skewed. In this context, the MIE(γ, θ) distribution is represented
by its cumulative distribution function (cdf) in Figure 2 and its probability density function (pdf)
in Figure 1 for different values parameter.

Figure 1: Pdf plot of MIE distribution for different parameter values

Theorem 1. Given that X follows the MIE (γ, θ) distribution with f (x) and F(x) as given in (6)
and (5) respectively, then:
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Figure 2: cdf plot of MIE distribution for different parameter values

1. limx→∞ f (x) = 0
2. limx→∞ F(x) = 1

proof. Trivial and hence omitted.

3. Some Statistical Properties of MIE Distribution

This section contains various statistical features associated with the new distribution that have
been derived.

3.1. Hazard Rate Function

The hazard function characterizing a specific phenomenon elucidates the inherent nature of the
failure rate that is associated with lifetime of the specific equipment. For the cdf and pdf provided
in equations (5) and (6), respectively, the expression for h(x) is as follows:

h(x) =
(γ + 1)θe

θ
x

x2(e
θ
x − 1)(γe

θ
x + 1)

(7)

The hazard rate function plot in Figure 3 shows various curves indicating different values of
the parameters γ and θ. We can gain useful insights about the nature of the model’s failure
rate by using this visual depiction, which reveals a distinct right-skewed pattern and UBT type
failure model.The mathematical verification of this assertion may also be established through the
utilization of the outcome presented by Glaser [20]. Glaser demonstrated that the Condition for
UBT can be established if and only if the following conditions are met: φ′(t) > 0 for all t ∈ (0, t0),
φ′(t0) = 0, φ′(t) < 0 for all t > t0, and satisfying limt→0 f (t) = 0 where φ is equal to − f ′(t)

f (t) and
f (t) is the first derivative of the density function with respect to t. For our proposed model, it is
evident that.

φ(t) = −2t(1 + e
θ
t γ) + θ − e

θ
t γθ

t2(1 + e
θ
t γ)

and

φ′(t) =
2((t + e

θ
t tγ)2 − e

θ
t γθ2 + t(θ − e

2θ
t γ2θ)

t4(1 + e
θ
t γ)2
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Figure 3: Hazard plot of MIE distribution for different parameter values

Since, the above equation is not provided in an explicit form to derive the solution, a simulation
study was performed.It was observed that for t0 ≈ 0.4488, φ′(t) > 0 for all t ∈ (0, t0), φ′(t0) = 0,
φ′(t) < 0 for all t > t0. Also, from Equation (6), we verified that limx→0 f (t) = 0. Therefore,
it can be deduced that the MIE(γ,θ) distribution proposed exhibits a right-skewed distribution,
which is characterized by an UBT shape of hazard rate. This distribution is particularly useful
when analyzing medical and reliability data.

3.2. Survival Function

The survival function describes the probability that a unit, component, or individual will not fail at
a given time. The expression for survival function S(x) is stated as follows, and its corresponding
survival plot is presented in Fiqure 4:

S(x) =
γ(e

θ
x − 1)

γe
θ
x + 1

, (8)

Theorem 2. The limit of the hazard rate function of MIE(γ, θ) distribution as x → ∞ is zero.

i.e, lim
x→∞

h(x) = 0.

Proof. Trivial and hence omitted. ■

3.3. The Odd Function

The Odd Function is obtained using the relation Q(x) = F(x)
s(x) and is given by

Q(x) =
γ + 1

γ(e
θ
x − 1)

, (9)
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Figure 4: Survival plot of MIE distribution for different parameter values

3.4. Reverse Hazard Rate Function

The Revised Hazard Rate Function is obtained by using the relation,

ϕ(x) =
f (x)
F(x)

=
θγe

θ
x

x2(γe
θ
x + 1)

,
(10)

3.5. Cumulative Hazard Function

The Cumulative Hazard Function is obtained using the relation,

C(x) = − log(S(x))

= − log

[
γ(e

θ
x − 1)

γe
θ
x + 1

]
,

(11)

3.6. Quantile Function, Skewness and Kurtosis

The MIE distribution can be simulated using the inverse cdf method,

X =

 θ

ln
(

γ+1−u
γu

)
 , (12)

where, u is a uniform random variable, 0 < u < 1. The qth quantile of the MIE distribution is
obtained as:

xq =

 θ

ln
(

γ+1−q
γq

)
 , (13)

By making use of equation (13), we are able to calculate the first and third quartiles by substituting
q = 0.25 and q = 0.75, correspondingly. Once we have obtained these values, we can subsequently
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calculate Galton’s [[21]] skewness (Sk) and Moor’s [[22]] Kurtosis (Kr) by means of the given
formulae.
The measure of skewness Sk,

Sk =
Q(6/8)− 2Q(4/8) + Q(2/8)

Q(6/8)− Q(2/8)
, (14)

and the measure of Kurtosis, Kr

Kr =
Q(7/8)− Q(5/8) + Q(3/8)− Q(1/8)

Q(6/8)− Q(2/8)
, (15)

3.7. Median

Since the distribution proposed is a heavily tailed, right-skewed distribution, the most appropriate
measure of central tendency is the median.The median of the proposed distribution can be
obtained by utilizing q = 0.5 in the quantile function, as delineated in equation (13). So median
Md

Md =

 θ

ln
(

γ+1−0.5
γ(0.5)

)
 , (16)

3.8. Mode

if a random variable X has the PDF given by equation (6), then the corresponding mode is given
by f ′(x) = 0, thus we obtain

f ′(x) =
e

θ
x θγ(1 + γ)

(
e

θ
x (θ − 2x)− γ(θ + 2x)

)
(

e
θ
x + γ

)3
x4

= 0

=⇒
(

e
θ
x (θ − 2x)− γ(θ + 2x)

)
= 0

For various values of γ and θ, we can estimate the value of x by using an optimization technique
in R. If γ = 3 and θ = 4, we obtain the mode as 1.93755.

3.9. Mean Deviation

The mean deviation from the median is a statistical measure, serves as an indicator of population
dispersion. Let "M" stand in for the median of the MIE Distributions specified in equation (16).
The mean deviation from the median may be computed as follows:

ρ(x) = E|x − M| =
∫ ∞

0
|x − M| f (x)dx,

it can be obtained the following equation ρ = µ − 2W(M) where W(M) is

W(M) = θγ(γ + 1)
∫ M

0

e
θ
x

x2(γe
θ
x + 1)2

dx, (17)

This integral may be readily computed numerically using tools such as R, MATLAB, Mathcad,
and others. Thus, obtaining the mean deviation from the median is desired.
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Figure 5: Mode plot of MIE distribution for different parameter value

3.10. Stochastic Ordering

Let X1 and X2 be random variables with cumulative distribution functions (cdf’s) F1(x) and F2(x),
respectively. X1 is said to be stochastically greater than or equal to X2 if F1(x) ≤ F2(x) for all x.
(see Gupta et al [23] for more detail).

Theorem 3. Let X1 ∼ MIE(γ1, θ1) and X2 ∼ MIE(γ2, θ2). X1 is said to be stochastically greater
than X2 if γ1 = γ2 = γ and θ1 > θ2.
Proof. Let’s consider θ1 > θ2 and γ1 = γ2 = γ, the ratio simplifies to:

F1(x)
F2(x)

=

γ+1

1+γe
θ1
x

γ+1

1+γe
θ2
x

Since θ1 > θ2, we have:

e
θ1
x

e
θ2
x

> 1

Therefore, when θ1 > θ2 and γ1 = γ2 = γ, F1(x) is stochastically smaller than F2(x) for all
x > 0. ■

3.11. Order Statistics

In this section, we derive a compact expression for the pdf of the ith order statistic of the Modi
inverse exponential distribution. Let X1, X2, X3, ..., Xn be a simple random sample from the Modi
inverse exponential distribution with cdf and pdf given by equations (5) and (6), respectively. Let
X1:n ≤ X2:n ≤ X3:n ≤ ... ≤ Xn:n denote the order statistics obtained from this sample. We now
give the pdf of Xr:n, denoted as fr:n(x), and the rth moments of Xr:n, for i = 1, 2, ..., n, which are
given by:

fr:n(x) = Cr:n [F(x; γ, θ)]r−1 [1 − F(x; γ, θ)]n−r f (x; γ, θ), (18)
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for all x > 0, where F and f are given by equations (5) and (6), respectively, and Cr:n = n!
(n−1)!(n−r)! .

Thus, using the binomial series expansion:

(1 − x)α−1 =
∞

∑
j=0

(−1)j
(

α − 1
j

)
xj.

We obtain:

fr:n(x) = Cr:n

∞

∑
s=0

(−1)s
(

n − r
s

)
[F(x; γ, θ)]r+s−1 f (x; γ, θ),

= Cr:n

∞

∑
s=0

(−1)s
(

n − r
s

)[
γ + 1

1 + γe
θ
x

]r+s−1
θγ(γ + 1)e

θ
x

(xγe
θ
x + x)2

,

= Cr:n

∞

∑
s=0

(−1)s
(

n − r
s

)
θγ(γ + 1)r+s(1 + γe

θ
x )r+s−1e

θ
x (xγe

θ
x + x)−2. (19)

4. Tail Area Property

According to Klugman et al [24]and Nair et al [25] a distribution is classified as a heavy-tailed
distribution when it displays the heavy tail property. These types of distributions are characterized
by the lack of one or more orders of moments. Specifically, the absence of the first moment, which
represents the distribution’s arithmetic mean, indicates the presence of the distribution’s heavy
tail property. The proposed distribution’s arithmetic mean can be derived by solving:

θγ(γ + 1)
∫ ∞

0

e
θ
x

x(γe
θ
x + 1)2

dx,

which is a divergent integral,then the arithmetic mean of the corresponding distribution cannot
be determined. Consequently, based on this criterion, the proposed distribution can be classified
as a heavy-tailed distribution. Another method for evaluating the heavy tail attribute of the
distribution is to examine whether the ratio of the hazard rate to x approaches zero as x approaches
infinity; if it does, then the distribution displays the characteristic of a heavy-tailed distribution.
For the proposed distribution:

(γ + 1)θe
θ
x

x3(e
θ
x − 1)(γe

θ
x + 1)

→ 0

This fact can be proven by implementing L’Hpital’s rule. As a result, the distribution put forward
exhibits a heavy-tailed distribution.

In our analysis, we additionally consider the examination of the heavy tail characteristic of
the distribution via an alternative methodology. This methodology involves the observation of
the ratio of two survival functions. If the ratio of survivals approaches infinity as x approaches
infinity, then one survival function is considered to be heavier than the other. Moreover, the
limiting case of the ratio of two survival functions provides the limiting case of two probability
density functions. Therefore, this ratio also indicates the ratio of two density functions.

lim
x→∞

S1(x)
S2(x)

= lim
x→∞

S′
1(x)

S′
2(x)

= lim
x→∞

f1(x)
f2(x)

here, we conduct a comparison between the proposed distribution and the Pareto Type II distribu-
tion. The survival function of the Pareto Type II distribution is expressed as S(x) = P(X > x) =(
1 + x

λ

)−α. For α > 1, the ratio between the two distributions tends to infinity as x approaches
infinity. This suggests that the tail of the proposed distribution. Figure 6 provides the plot of the
tail density for the proposed distribution in comparison with two other distributions, namely the
normal distribution and the Parato Type II distribution.
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Figure 6: Tail behaviour of Normal, Parato type II and MIE densities

Remark 1: A distribution is said to be heavy-tailed distribution if and only if∫ ∞

0
eλx f (x) dx = ∞ for all λ > 0.

Hence MIE(γ,θ) is heavy tailed becuase it satisfies condition.

Remark 2: if a distribution is said to be heavy-tailed, if the right probabilities are heavier
than the exponential distribution if

lim
x→∞

1 − F(x)
e−λx = ∞ for all λ > 0.

Hence MIE(γ,θ) distribution also satisfies this condition.

Definition: An ultimately positive function f is called regularly varying at infinity with index
γ ∈ R if for any fixed c > 0:

lim
x→∞

f (cx)
x

= cγ.

The aforementioned theorem demonstrates that the density function derived from the MIE(γ,θ)
in equation (6) exhibits regularly varying tails.

Theorem 4. The density function of the MIE(γ,θ) distribution is a function with regularly varying
tails.

Proof. Using the density function (6), we have:

lim
x→∞

f (cx)
f (x)

= lim
x→∞

e
θ
cx x2(γe

θ
x + 1)2

e
θ
x (x + cx)2(γe

θ
cx + 1)2

= 1,

applying limits, the above simplifies to:

lim
x→∞

f (cx)
f (x)

= 1,
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Hence the proof. ■
Definition: An ultimately positive function f is long-tailed and is said to belong to class L if and
only if:

lim
x→∞

f (x + y)
f (x)

= 1, for all y > 0.

Theorem 5. The MIE(γ,θ)Distribution belongs to the class L.

Proof.

lim
x→∞

f (x + y)
f (x)

=
e

θ
x+y x2(γe

θ
x + 1)2

e
θ
x (x + y)2(γe

θ
x+y + 1)2

= 1,

Hence, f belongs to the class L. ■
Definition: An ultimately positive function f belongs to the class D of dominated variation
distributions if there exists c > 0 such that:

lim
x→∞

f (x)
f (2x)

= c, for all x > 0.

Theorem 6. The MIE(γ,θ) Distribution belongs to the class D of dominated variation distributions.

Proof.

lim
x→∞

f (x)
f (2x)

=
22e

θ
x

(
γe

θ
2x + 1

)2

e
θ

2x

(
γe

θ
x + 1

)2 = 4,

hence f belongs to the class of dominated variation distributions. ■

4.1. Different method of Estimation

In this section, we are looking at three estimation methods for estimating the unknown model
parameters of the proposed model. The procedures are detailed below

4.2. Maximum Likelihood Estimation

Let X be a random variable with the pdf of the Modi inverse exponential distribution defined in
equation (6), then its log-likelihood function is defined by:

log L(x; γ, θ) = n log θ + n log γ + n log(γ + 1)

+ θ
∞

∑
i=0

1
xi

− 2
∞

∑
i=0

log(xiγe
θ
xi + xi)

(20)

Thus, the non-linear normal equations are given as follows:

∂ log L(x; γ, θ)

∂θ
=

n
θ
+

n

∑
i=0

1
xi

− 2
n

∑
i=0

e
θ
xi γ

(xi + e
θ
xi γxi)

(21)

∂ log L(x; γ, θ)

∂γ
=

n
γ
+

n
1 + γ

− 2
n

∑
i=0

e
θ
xi xi

(xi + e
θ
xi γxi)

(22)

The equations from (21) to (22) above are not in closed form. We refer to using some iterative
procedure such as Newton Raphson, Bisection methods, or some other method to obtain the
approximate maximum likelihood estimates (MLE) of these parameters for the solution of these
explicit equations.
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4.3. The Asymptotic Confidence Bounds:

The maximum likelihood estimators (MLE) of the unknown parameters γ, θ in the MIE (γ, θ) do
not have closed-form solutions. As a result, the exact distribution of the MLE cannot be derived.
However, asymptotic confidence bounds can be obtained based on the asymptotic distribution
of the MLE. The information matrix is calculated by taking the second partial derivatives of
equations (21) to (22) and is given as:

∂2 log L(x; γ, θ)

∂θ2 =− n
θ2 − 2

n

∑
i=0

 e
2θ
xi γ2

(xi + e
θ
xi γxi)2

+
e

θ
xi γ

xi(xi + e
θ
xi γxi)

 (23)

∂2 log L(x; γ, θ)

∂γ2 = − n
γ2 − n

(1 + γ)2 − 2
n

∑
i=0

−
e

2θ
xi x2

i

(xi + e
θ
xi γxi)2

 (24)

∂2 log L(x; γ, θ)

∂γ, θ
= −2

n

∑
i=0

− e
2θ
xi γxi

(xi + e
θ
xi γxi)2

+
e

θ
xi

(xi + e
θ
xi γxi)

 (25)

So that the observed information matrix is given by:

I = −
[

I11 I12
I21 I22

]
Hence, the variance-covariance matrix is approximated as:

V ≈ I−1 =

[
V11 V12
V21 V22

]
To obtain the estimate of V, we replace the parameters by their corresponding maximum likelihood
estimators (MLEs) to get:

V̂ ≈
[

V̂11 V̂12
V̂21 V̂22

]
Using the above variance-covariance matrix, one can derive the (1 − β)100% confidence intervals
for the parameters θ and γ as follows:

γ̂ ± Z γ
2

√
var(γ̂), θ̂ ± Z γ

2

√
var(θ̂).

4.4. The Percentile Method

Let X(j) be the jth order statistic, i.e., X(1) < X(2) < . . . < X(n). if pj denote some estimate of
F(xj; θ, γ), then the estimate of θ and γ can be obtained by minimizing

n

∑
j=1

xj −

 θ

ln
(

γ+1−pj
γpj

)
2

;

with respect to θ and γ. Several types of estimators for pj can be used [26], and this paper

considers pj =
j

n+1 .

4.5. Method of Cramer-von Mises

Cramer-von-Mises type minimum distance estimators aim to minimize the disparity between the
theoretical and empirical cumulative distribution functions. It has been demonstrated empirically
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that these estimators have a lesser bias than other minimum distance estimators. The Cramer-
von-Mises estimators γ̂CME, and θ̂CME, are the values of γ, and θ that minimizing

W(γ, θ) =
1

12n
+

n

∑
i=1

[
F (ti ; γ, θ)− 2i − 1

2n

]2
(26)

where ti is the i-th ordered observation, and F(ti; γ, θ) is the cumulative distribution function
of the MIED with parameters γ and θ. To estimate the parameters, we differentiate the above
equation partially with respect to the parameters γ and θ, respectively, and equate them to zero to
get the normal equations. Since the normal equations are nonlinear, we can use iterative methods
to obtain the solutions.

5. Simulation Study and Data Analysis

5.1. Simulation Study

In this section, we conduct a comprehensive Monte Carlo simulation study that is repeated 1000
times in order to compare the performance of the previously discussed estimators. We evaluate
these estimators using Mean Squared Error (MSE) and make comparisons across sample sizes
n = 50, 100, 150, 200 for two distinct parameter settings: γ = 1 and θ = 0.05, and γ = 0.9 and
θ = 2.5. The simulation-based outcomes provide estimates denoted as ˆγPM, ˆθPM, ˆγML, ˆθML, ˆγCM,
and ˆθCM for the Percentile Method (PM), Maximum Likelihood Estimation (MLE), and Cramer-
von Mises (CVM) method. The corresponding MSE values are displayed in parentheses. Notably,
as sample size n increases, the Mean Squared Error (MSE) tends to decrease, indicating improved
estimation accuracy. Table 1 and Table 2 present the simulation results.

n PM MLE CVM
ˆγPM ˆθPM ˆγML ˆθML ˆγCM ˆθCM

50 0.0836 0.0203 0.0013 0.0206 0.0900 0.0102
(0.3486) (6.918 × 10−04) (8.709 × 10−04) (5.277 × 10−04) (0.4250) (0.0050)

100 0.0406 0.0097 0.0005 0.0102 0.0425 0.0049
(0.1623) (1.303 × 10−04) (6.057 × 10−04) (1.144 × 10−04) (0.1819) (0.0026)

150 0.0269 0.0065 0.0004 0.0067 0.0282 0.0033
(0.1069) (6.499 × 10−05) (1.357 × 10−04) (5.123 × 10−05) (0.1195) (0.0017)

200 0.0203 0.0049 0.0004 0.0050 0.0213 0.0024
(0.0804) (3.696 × 10−05) (4.004 × 10−05) (3.308 × 10−05) (0.0896) (0.0013)

Table 1: Simulation outcomes obtained for the parameter value of γ = 1 and θ = 0.05 are presented herein. The
values enclosed within the parentheses denote the Mean Squared Error (MSE) values.

5.2. Data Analysis

In this section, we demonstrate the usefulness of the proposed Modi Inverse Exponential distri-
bution with parmeter γ and θ . We fit this distribution to a real-life data set and compare the
results with some recent efficient models, namely the Inverse Generalized Weibull distribution,
Generalized Inverse Generalized Weibull distribution. The corresponding PDFs are presented
below:

• Inverse Generalized Weibull Distributions:

f (x, α, β, λ) = αβλβe−(
λ
x )

β

x−(β+1)
(

1 − e−(
λ
x )

β
)α−1

,

• Generalized Inverse Generalized Weibull Distribution:
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n PM MLE CVM
ˆγPM ˆθPM ˆγML ˆθML ˆγCM ˆθCM

50 0.0564 0.0725 1.9823 0.05313 0.0065 0.0362
(3.926 × 10−03) (3.08 × 10−02) (0.2345) (3.09 × 10−02) (4.036 × 10−03) (3.103 × 10−02)

100 0.02762 0.0354 1.2356 0.0256 0.0029 0.0177
(2.591 × 10−05) (2.044 × 10−04) (0.0083) (2.055 × 10−04) (2.688 × 10−05) (2.064 × 10−04)

150 0.01835 0.0232 0.8017 0.0168 0.0019 0.0116
(2.536 × 10−07) (2.024 × 10−06) (0.0072) (2.048 × 10−06) (2.682 × 10−07) (2.053 × 10−06)

200 0.0138 0.0174 0.2211 0.0127 0.0014 0.0087
(4.744 × 10−09) (3.928 × 10−08) (0.0037) (3.991 × 10−08) (5.322 × 10−09) (4.046 × 10−08)

Table 2: Simulation outcomes obtained for the parameter value of γ = 0.9 and θ = 2.5 are presented herein. The
values enclosed within the parentheses denote the Mean Squared Error (MSE) values.

f (x, α, β, λ, γ) = αβγλβe−γ( λ
x )

β

x−(β+1)
(

1 − e−γ( λ
x )

β
)α−1

,

Data Set 1: This data set has been taken from [27]. The data on survival of 40 patients suf-
fering from leukemia, from the Ministry of Health Hospitals in Saudi Arabia, was taken from
Abouammoh et al. (1994):

115 181 255 418 441 461 516 739 743 789 807 865 924 983
1024 1062 1063 1165 1191 1222 1222 1251 1277 1290 1357 1369 1408 1455
1478 1549 1578 1578 1599 1603 1605 1696 1735 1799 1815 1852

Table 3: Estimates and Goodness-of-fit measures based on AIC, BIC, AICC, and CAIC for Data Set 1

Distribution Estimates Log-Likelihood AIC BIC AICC CAIC
MIE γ = 0.1350 -326.978 656.822 660.199 657.146 660.199

θ = 1.7856
IGWD α = 0.0426 -346.170 698.340 703.406 699.006 703.406

β = 1.3546
θ = 2.7048

GIGWD α = 0.0323 -367.455 742.909 749.664 744.052 749.664
β = 0.9067
θ = 1.2614
c = 4.2107

From Table 3, it shows that the proposed Modi Inverse Exponential distribution model has
the lowest AIC, BIC, AICC, and CAIC values among the other distributions, suggesting that it
provides the best fit to the dataset.

Data Set 2: This data set represents survival times in Days, from a Two-Arm Clinical Trial
considered by [28] and [29]. The survival time in days for the 31 patients from Arm B are:

37 84 92 94 110 112 119 127 130 133 140 146 155 159 173 179
194 195 209 249 281 319 339 432 469 519 633 725 817 1557 1776

From Table 4, we can see that our proposed model MIE has minimum AIC, BIC, AICC, and
CAIC values compared to IGWD and GIGWD distributions. Thus, we can infer that the newly
proposed model is a better fit for the given data compared to the other models.
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Table 4: Estimates and Goodness-of-fit measures based on AIC, BIC, AICC, and CAIC for Data Set 2

Distribution Estimates Log-Likelihood AIC BIC AICC CAIC
MIE γ = 0.0618 -206.657 417.315 420.183 417.744 420.183

θ = 1.1340
IGWD α = 0.0596 -217.366 440.733 445.035 441.622 445.035

β = 1.8165
θ = 4.5081

GIGWD α = 0.0665 -217.015 442.032 447.767 443.570 447.767
β = 0.8546
θ = 4.9719
c = 1.0867

6. Conclusion

In this article, We establishes the Modi Inverse Exponential distribution which a right skewed
heavy tailed UBT shaped probability model. The related structural properties are derived and
represented in the respective sections. Furthermore, we explore the tail behavior of the suggested
model and conclude that it is heavy-tailed. To estimate the distribution’s parameters, different
estimation methods such as method of maximum likelihood, method percentile and Method of
Cramer-von Mises are used. For the simulated data set, the results are shown in Table 1 and
2. We can see that the estimated values obtained are near to the predefined parameters, and
as n increases, MSE decreases, confirming the law of large numbers. However, the application
to two real-life data sets shows that the MIE distribution has a better fit than other competing
models, such as the Inverse Generalized Weibull distribution (IGWD) and Generalized Inverse
Generalized Weibull distribution, based on goodness-of-fit measures AIC, BIC, AICC, and CAIC.
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Abstract 

Stress strength interference theory is widely used in evaluating the reliability of mechanical 

components. Various interference models have been developed when stress and strength follow a 

wide range of distributions. But when stress and strength follow Weibull distribution, a closed form 

of interference model is not available. This paper deals with developing a methodology for obtaining 

a closed form interference model for a given application when the stress and strength follow Weibull 

distribution. The method of artificial neural network (ANN) and response surface analysis (RSA) 

are used in modelling and analysis. The validation experiment has been conducted and the error 

obtained shows that the proposed methodology performs reasonably well. 

Keywords: Weibull distribution, stress strength interference, reliability, ANN, 

RSM 

I. Introduction

Reliability is gaining increasing importance in recent years as it takes into account the uncertainty 

present in the properties. One of the most common theories used in estimating reliability is the 

stress strength interference theory. The theory says that if X and Y follow a particular distribution, 

then their interference area gives the probability of failure [1]. Many interference models have been 

developed when stress and strength follow various distributions like normal, lognormal, 

exponential, etc. But, when stress and strength follow Weibull distribution, the closed form of 

interference model is not available. Weibull distribution is widely used statistical and reliability 

studies because of its ability to fit a wide range of data.  

II. Stress Strength interference models

Reliability models have been developed when strength and stress are seen to be following normal, 

lognormal, exponential distribution, etc. [2]. This section presents reliability models for some of the 

most widely used distributions.  

I. Reliability when stress and strength follow normal distribution

Consider the strength (random variable X) and stress (random variable Y) follow normal
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distribution with pdf 

𝑓(𝑥) =
1

δ𝑥√2π
exp(−

1

2
(
x − μ𝑛𝑥

δ𝑥

)
2

) (1) 

and 

𝑓(𝑦) =
1

δ𝑦√2π
exp(−

1

2
(
y − μ𝑛𝑦

δ𝑦
)

2

) (2) 

respectively, where μ𝑛𝑥 is the mean of strength, δ𝑥 is the standard deviation of strength, μ𝑛𝑦 is the 

mean of stress and δ𝑦 is the standard deviation of strength. As per the interference theory, the 

reliability of the system will be equal to [3] 

𝑅 = ∫
1
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1
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)(∫
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0
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∞

0

 (3) 

On simplifying the above equation, the reliability can be obtained as 

𝑅 = ɸ

(

μ𝑛𝑥 − μ𝑛𝑦

√δ𝑥
2 + δ𝑦

2

)

(4) 

II. Reliability when stress and strength follow lognormal distribution

Consider that the strength (random variable X) and stress (random variable Y) follow lognormal

distribution with pdf

𝑓(𝑥) =
1

x. δ𝑥√2π
exp (−

1

2
(
ln(x) − μ𝑛𝑥

δ𝑥

)
2

) (5) 

and 

𝑓(𝑦) =
1

y. δ𝑦√2π
exp(−

1

2
(
ln(y) − μ𝑛𝑦

δ𝑦
)

2

) (6) 

respectively, where μ𝑛𝑥 is the mean and δ is the standard deviation of ln(X), μ𝑛𝑦 is the mean and δ𝑦 

is the standard deviation of ln(Y). As per the interference theory, the reliability of the system will 

be equal to [4] 

𝑅 = ∫
1

x. δ𝑥√2π
exp(−

1
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δ𝑥

)
2

)(∫
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 (7) 

On simplifying the above equation, the reliability can be obtained as 

𝑅 = ɸ

(

μ𝑛𝑥 − μ𝑛𝑦

√δ𝑥
2 + δ𝑦

2

)

(8) 

III. Reliability when stress and strength follow exponential distribution

Consider that the strength (random variable X) and stress (random variable Y) follow lognormal

distribution with pdf
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𝑓(𝑥) = 𝜆𝑥𝑒
−𝜆𝑥𝑥  (9) 

and 

𝑓(𝑦) = 𝜆𝑦𝑒−𝜆𝑦𝑦 (10) 

where 𝜆 is the rate parameter.  

As per the interference theory, the reliability of the system will be equal to 

𝑅 = ∫ 𝜆𝑥𝑒
−𝜆𝑥𝑥 (∫ 𝜆𝑦𝑒−𝜆𝑦𝑦𝑑𝑦

𝑥

0

)𝑑𝑥
∞

0

 (11) 

On simplifying the above equation, the reliability can be obtained as [5] 

𝑅 =
𝜆𝑦

𝜆𝑥 + 𝜆𝑦
(12) 

IV. Reliability when stress and strength follow Weibull distribution

Consider that the strength (random variable X) and stress (random variable Y) follow Weibull

distribution with pdf

𝑓(𝑥) =
𝑝1

𝜎1
𝑝1

(𝑥 − μ1)
𝑝1−1 exp {−(

𝑥 − μ1
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} , 𝑥 > μ1, 𝜎1 > 0, 𝑝1 > 0 (13) 

and 
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} , 𝑦 > μ2, 𝜎2 > 0, 𝑝2 > 0 (14) 

where μ1, 𝜎1𝑎𝑛𝑑𝑝1 are the location, scale and shape parameter respectively for strength and 

μ2, 𝜎2𝑎𝑛𝑑𝑝2 are location, scale and shape parameter respectively for stress. As per the interference 

theory, the reliability of the system will be equal to  

𝑅 = ∫
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 (16) 

Equation 16 cannot be solved further and hence, the calculation of stress-strength reliability for 

Weibull distribution has to be solved using numerical or graphical methods [6]. This can 

sometimes lead to complications and is time consuming. 

Similarly, the reliability models have been developed for other distributions of stress and strength. 

S. Nadarajah, 2003 [7] developed stress-strength interference for stress and strength following

lifetime distributions i.e. exponential and gamma distribution. He has also developed a reliability

model for stress and strength following bivariate gamma distribution [8]. Patowary et al., 2013 [9]

studied and proposed a mathematical model for stress-strength reliability for stress and strength

following mixture of distributions. An inference on reliability was also drawn, stating standby

redundancy aids in achieving high reliability. An et al., 2008 [10] developed a discrete stress-

strength interference model based on universal generating function. K. Shen, 1992 [11] proposed a

new empirical approach based on the subinterval probabilities of stress and strength in the
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interference region to compute the unreliability bounds. Kotz et al., 2003 [12] reviewed the stress-

strength interference models and showed practical results in application of stress-strength 

interference concepts in industrial systems. Many studies have been carried out in developing 

stress-strength reliability models for various distributions. However, it has been identified that the 

reliability model for stress and strength following Weibull distributions has not been developed 

yet.  

III. Design of experiments

Design of experiments (DOE) is a systematic tool to find the relations between the input variables 

and the response. DOE gives a significant experimental setup sufficient to find the relation 

between input variables and output response which helps in saving time, cost and resources. 

Taguchi method and response surface analysis (RSA) are some of the widely used techniques in 

DOE. Taguchi method is used to obtain a set of significant experiments and to find the most 

influential parameter towards the response. RSA is also used to obtain a set of significant 

parameters and analyze for the influencing parameters. Additionally, RSA gives a prediction 

model of input variables and the output response. Khare et al, 2018 [13] used DOE in optimizing 

the surface roughness of AA 6061 material in turning operation. The cutting speed, feed rate, depth 

of cut and rake angle were taken as the input parameters while the surface roughness was taken as 

the response. Taguchi’s method was used for carrying out the DOE and analysis. It was found that 

the rake angle was the most influential parameter towards the surface roughness followed by 

cutting speed. The set of optimum parameters was also found. Similarly Taguchi analysis has been 

used by many researchers in their studies [14]–[17]. Laghari et al., 2018 [18] developed prediction 

models for tool wear and surface roughness in turning of Al/SiCp workpiece using response 

surface analysis (RSA). Cutting speed, feed rate and depth of cut were taken as the independent 

variables towards the response. The response surface analysis was proved to be effective in 

modeling the prediction equation. Ammeri et al., 2015 [19] combined Taguchi method and RSA in 

determining the optimal lot size for the manufactured product in supply chain. RSA has been used 

to develop models and carrying out analysis of parameters and response [20]–[23]. Nair et al., 2004 

[24] used design of experiments for design of accelerated test experiments for reliability

improvement. Rigdon et al., 2022 [25] studied on the use of design of experiments to understand

and improve product reliability. A detailed description of the statistical distributions, methods to

model reliability, various DOE methods that can be used and the analysis that can be carried out

has been made in this research.

IV. Weibull stress strength model

Weibull distribution is most commonly used to describe mechanical systems. The interference 

model of reliability when the stress and strength follow Weibull distribution is given as: 

𝑅 = ∫
𝑝2

𝜎2

(
s − μ2

𝜎2

)
𝑝2−1

𝑒
−

(𝑠−μ2)
𝜎2    [∫ (

𝑙 − μ1

𝜎1

)
𝑝1−1

𝑒
−

(𝑙−μ1)
𝜎1 𝑑𝑙

𝑠

0

] 𝑑𝑠
∞

0

 (17) 

The integration of the above model is complicated and does not have a closed form. This study 

attempts to obtain the closed form of stress-strength reliability using design of experiments (DOE) 

when the stress and strength follow Weibull distribution. Minitab 16 was the software used to 

conduct design of experiments and analysis. The design chosen was L27 for 6 factors of 3 level 

each. The parameters chosen for DOE are shown in Table 1. The results of design of experiments 

with response are displayed in Table 2. The stress-strength equation was partly solved manually 

RT&A, No 4 (76) 
Volume 18, December 2023 

131



Dr. Saurabh L. Raikar, Prof. Rajesh S. Prabhu Gaonkar 
A NOVEL METHODOLOGY IN DEVELOPING STRESS-STRENGTH 
RELIABILITY MODEL 

and partly using Wolfram Mathematica software. 

Table 1 Factors and levels for stress and strength following Weibull distribution 

Distribution Factors Levels 

Stress 

Shape Parameter: 𝑝1 0.5, 1.5, 2.5 

Scale Parameter: 𝜎1 1, 1.5, 2 

Location Parameter: μ1 0, 0.5, 1 

Strength 

Shape Parameter: 𝑝2 1.5, 2.5, 3.5 

Scale Parameter: 𝜎2 1, 1.5, 2 

Location Parameter: μ2 1.5, 2, 2.5 

Table 2 Design of experiments for stress and strength following Weibull distribution 

Stress Strength Reliability 

p1 σ1 μ1 p2 σ2 μ2 R 

0.5 1 0 1.5 1 1.5 0.78155 

0.5 1 0 1.5 1.5 2 0.83273 

0.5 1 0 1.5 2 2.5 0.86709 

0.5 1.5 0.5 2.5 1 1.5 0.67035 

0.5 1.5 0.5 2.5 1.5 2 0.74267 

0.5 1.5 0.5 2.5 2 2.5 0.79106 

0.5 2 1 3.5 1 1.5 0.56323 

0.5 2 1 3.5 1.5 2 0.65846 

0.5 2 1 3.5 2 2.5 0.72007 

1.5 1 0.5 3.5 1 2 0.97066 

1.5 1 0.5 3.5 1.5 2.5 0.996097 

1.5 1 0.5 3.5 2 1.5 0.979634 

1.5 1.5 1 1.5 1 2 0.722195 

1.5 1.5 1 1.5 1.5 2.5 0.8851964 

1.5 1.5 1 1.5 2 1.5 0.743035 

1.5 2 0 2.5 1 2 0.815387 

1.5 2 0 2.5 1.5 2.5 0.91893406 

1.5 2 0 2.5 2 1.5 0.85073635 

2.5 1 1 2.5 1 2.5 0.99773487 

2.5 1 1 2.5 1.5 1.5 0.91938117 

2.5 1 1 2.5 2 2 0.993511113 

2.5 1.5 0 3.5 1 2.5 0.99883877 

2.5 1.5 0 3.5 1.5 1.5 0.97996489 

2.5 1.5 0 3.5 2 2 0.998682329 

2.5 2 0.5 1.5 1 2.5 0.87792976 

2.5 2 0.5 1.5 1.5 1.5 0.6762277 

2.5 2 0.5 1.5 2 2 0.87038164 
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I. Response surface analysis

Response surface analysis has been successfully implemented in modelling studies. In this article, 

the response surface analysis was carried out to model an equation for stress and strength 

following Weibull distribution and to study the two-parameter interaction towards the reliability. 

The equation for reliability model developed using response surface analysis is  

R = 0.879 + 0.1346 p1 - 0.6489 σ1 - 0.3621 μ1 + 0.2496 p2 + 0.5987 σ2 - 0.4066 μ2 

- 0.04577 p1*p1 + 0.0502 σ1* σ1 + 0.0215 μ1* μ1 - 0.01542 p2* p2 - 0.0504 σ2* σ2

+ 0.0009 μ2* μ2 - 0.00085 p1* σ2 + 0.04883 p1*μ2 - 0.0652 σ1* σ2 + 0.2211 σ1* μ2

- 0.0930 μ1* σ2 + 0.1933 μ1*μ2 - 0.0925 p2* σ2

(18) 

The R-sq value for the above equation is 99.82% which shows that the equation can predict 

reliability with significantly less variability. Figure 1 shows the main effects plot for reliability. It 

can be seen that the reliability increases with increase in location and scale parameter of strength, 

and decrease with increase in location and scale parameter of stress. A notable observation that can 

be made is that reliability increases with increase in shape parameter of both the stress and 

strength distribution.  Figure 2 shows the interaction plot for reliability. Figure 3 shows contour 

plot of two parameter interaction towards reliability for stress and strength following Weibull 

distribution. When the parameters are held at middle values from the levels considered, a high 

reliability greater than 0.9 is obtained when parameter set lies in a region inscribed by the origin 

and the following as shown in the figure: p1 greater than 1.4 and σ1 on the minimum side 

preferably lesser than 1.4 in p1 x σ1 interaction, μ1 lesser than 0.25 and p1 greater than 1.7 in μ1 x 

p1 interaction, μ2 greater than 2.2 and p1 greater than 1.7 in μ2 x p1 interaction, μ1 lesser than 0.5 

and σ1 lesser than 1.4 in μ1 x σ1 interaction, p2 greater than 2.4 and σ1 on the minium side in p2 x 

σ1 interaction, σ2 greater than 1.5 and σ1 lesser than 1.25 in σ2 x σ1 interaction, σ1 close to 1 in μ2 

x σ1 interaction, and σ2 greater than 1.75 and μ1 lesser than 0.2 σ2 x μ1 interaction. 

Figure 1 Main effects plot for reliability for Weibull stress and strength 
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Figure 2 Interaction plot for reliability for Weibull stress and strength 

Figure 3 Contour plot for reliability in case of stress and strength following Weibull distribution 
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the ability to communicate with other neurons, much like the synapses in a human brain. An 

artificial neuron receives a signal, processes it and sends a signal to the neurons connected to it. 

Each neuron computes its output using a non-linear function of the sum of its inputs, where the 

"signal" at a connection is a real value. The method of ANN has been used in many recent 

applications and has shown great performance in modelling studies [26]. Abbasi et al., 2008 [27] 

deployed ANN method in estimation of the three parameters of Weibull distribution and obtained 

satisfactory results. Also, the authors compared the method with other techniques used in the 

application and concluded that the application of ANN is easier compared to the other methods. 

In this study, the inputs to ANN model are the parameters of the distribution and the output is 

stress-strength reliability. ANN model consisting of 6 nodes in the input layer, a single hidden 

layer with 5 nodes and a single node output layer has been selected and is depicted in Figure 4.  

Figure 4 ANN model with an input layer, hidden layer and output layer 

The model equation is given by 

𝑦(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝑏2 + ∑ [𝑤𝑘𝑓𝑠𝑖𝑔 (𝑏1𝑘 + ∑𝑤𝑖𝑘𝑥𝑖

𝑚

𝑖=1

)]

ℎ

𝑘=1

 (19) 

where, 

y is the output, xi is the input of ith node, k is the number of nodes in hidden layer,  

k is the number of nodes in the hidden layer. 

wik is the weight connecting ith node in the input layer and kth node in the hidden layer. 

wk is the weight connecting the kth node in the hidden layer and the output node. 

b1k is the bias of the kth node in the hidden layer, b2 is the bias of the output node. 

The function fsig is given by  

𝑓𝑠𝑖𝑔(𝑎) =
2

1 + 𝑒−2𝑎
− 1 (20) 

Around 70% of the data points have been used in training, 15% for validation and 15% for testing. 

Levenberg-Marquardt algorithm has been used and the training is conducted till the regression 

coefficients for training, validation and testing are more than 0.98 and the MSE is less than 10-3. 

The regression plots for training, validation and testing are shown on Figure 5. Weights and biases 

of the trained neural network are as follows: 
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𝑊𝑖𝑘 =

[

0.643333 0.821043 0.609942 −0.82412 −0.56263 −1.03838

−1.41695 0.404932 −1.0738 −0.43627 0.54569 1.152087

2.417915 −0.47916 0.179956 1.587887 0.295953 0.896151

0.212642 −0.16882 −2.00698 −0.05127 0.636396 0.046588

1.813323 −0.9575 −0.69993 −0.90945 0.643434 −0.25748]
 

𝑏1𝑘 =

[
 
 
 
 
 
 
−1.79789

0.793825

−0.1424

−1.06508

1.602905]

𝑏2 = [−0.31431]             𝑊𝑘 =

[
 
 
 
 
 
 
−0.50302

0.031225

0.308233

−0.02231

0.502355]

Figure 5 Regression plot for ANN model 
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III. Validation experiment

Two parameter sets are considered for the validation experiment. The parameter values are as 

shown below: 

p1 = 2.5    σ1 = 1    μ1 = 0    p2 = 3.5    σ2 = 2    μ2 = 2 

p1 = 0.5    σ1 = 1   μ1 = 0   p2 = 2.5   σ2 = 2   μ2 = 2.5 

The results of the validation experiment using RSA and ANN have been depicted in Table 3 & 

Table 4 respectively. A set of 100, 1000 and 10000 numbers were generated for both the stress and 

strength distributions. Simulation was carried out using Matlab software. The distribution plot of 

corresponding stress-strength interference is shown in Figure 6. The error in probability obtained 

from both the models and that obtained from simulation is below 1% and is depicted in Figure 7 

for RSA and Figure 8 for ANN. The optimization of equation 18 was carried out and the reliability 

obtained was 0.99999 with the parameter set p1 = 2.5, σ1 = 1, μ1 = 0, p2 = 1.5, σ2 = 1, μ2 = 2.5. The 

distribution plot with the optimum set of parameters is shown in Figure 6. 

Table 3 Results of validation experiment for stress and strength following Weibull distribution 

using RSM 

Sr No. Parameters Sample 

Size 

Reliability 

using 

Simulation 

R estimated as 

per proposed 

model 

Bias Error (%) 

1 p1 = 2.5, σ1 = 1   

μ1 = 0, p2 = 3.5   

σ2 = 2, μ2 = 2 

100 0.9876 0.99633 0.00873 0.88396 

1000 0.99143 0.99633 0.0049 0.49424 

10000 0.99612 0.99633 0.00021 0.02108 

2 p1 = 0.5, σ1 = 1   

μ1 = 0, p2 = 2.5   

σ2 = 2, μ2 = 2.5 

100 0.8732 0.8687 -0.0045 0.5153 

1000 0.87078 0.8687 -0.0021 0.24116 

10000 0.86973 0.8687 -0.0010 0.11843 

Table 4 Results of validation experiment for stress and strength following Weibull distribution 

using ANN 

Sr No. Parameters Sample 

Size 

Reliability 

using 

Simulation 

R estimated as 

per proposed 

model 

Bias Error (%) 

1 p1 = 2.5, σ1 = 1   

μ1 = 0, p2 = 3.5   

σ2 = 2, μ2 = 2 

100 0.9876 0.9961 0.0085 0.86067 

1000 0.99143 0.9961 0.00467 0.471037 

10000 0.99612 0.9961 -0.00002 0.002008 

2 p1 = 0.5, σ1 = 1   

μ1 = 0, p2 = 2.5   

σ2 = 2, μ2 = 2.5 

100 0.8732 0.8663 -0.0069 0.790197 

1000 0.87078 0.8663 -0.00448 0.514481 

10000 0.86973 0.8663 -0.00343 0.394375 
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Figure 6 Distribution plots for stress and strength following Weibull distribution 

Figure 7 Plot of error in estimation of stress-strength reliability for Weibull distribution using RSA 

Figure 8 Plot of error in estimation of stress-strength reliability for Weibull distribution using ANN 
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Figure 8 Stress-strength interference with optimum set of parameters for Weibull distribution 

V. Conclusion

In this study an attempt has been made to derive a methodology in obtaining the closed form 

stress strength interference model for stress and strength following Weibull distribution. Design of 

experiments approach has been used and analysis has been carried out using Taguchi and RSA 

method. The reliability model has been developed for the considered set of parameters. The 

validation experiments with errors obtained less than 1% shows that the proposed method 

performs well. The optimum set of parameters was determined for the given range having 

reliability of 0.9999. Further studies can be carried out in this area by considering the different 

range of parameters and its effect on the reliability model. Also, considering dynamic nature of 

strength as seen in many cases, the studies can be accordingly modified.  
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Abstract

In this paper, a stochastic model for utensils manufacturing system with preventive maintenance (PM) is
analysed in detail. The operation is affected by variation in the temperature dependent maintenance. The
entire manufacturing process of utensils goes through four subsystems viz., Circle cutting subsystem 1,
Pressing subsystem 2, Spinning subsystem 3 and Polishing & Packing 4. The system has series structure
of all the subsystems. The system is put under PM on the winter time and after PM it operates as new.
The PM time distributions are considered as arbitrary and the time to failure as well as repair of each
subsystem follows a negative exponential distribution. All random variables are statistically independent.
Several measures for evaluating the effectiveness of a system, including mean time to system failure
(MTSF), system availability (in summer and winter), busy period of repairman and expected number of
repairs (in summer and winter) are derived using a regenerative point technique and Markov process.
The system is also analysed for particular values of the parameters.

Keywords: Utensils Manufacturing System; MTSF; Availability; Regenerative Point Technique,
and Preventive Maintenance (PM).

1. Introduction

Over the years researchers have made significant contribution to the reliability field. With
the advent of advanced technological system, the expectations of the people have increased
extremely for the use of flawless system at least for considerably period. To cater the demand

RT&A, No 4 (76) 
Volume 18, December 2023 

141

mailto:manishagaba887@gmail.com
mailto:dsmdur@gmail.com
mailto:rtksheetal@gmail.com
mailto:kajal.rs.maths@mdurohtak.ac.in


Manisha Gaba, Dalip Singh, Sheetal, Kajal Sachdeva
RELIABILITY MODELLING OF UTENSILS MANUFACTURING
SYSTEM WITH TEMPERATURE DEPENDENT MAINTENANCE

and expectation of the people, researcher have developed various stochastic models considering
the aspects of different repair and obtaining performance affecting measures which include
Teng et al. [1], Yusuf and Yusuf [2], Manocha and Taneja [3], Gupta et al. [4], Fagge et al. [5],
Rajesh et al. [6], Kumar and Malik [7], Rajesh and Taneja [8], Jain and Malik [9], Rahbi et al. [10],
Sheetal and Taneja [11, 12], Sachdeva et al. [13], Rizwan et al. [14, 15]. Singh and Mahajan [16]
studied reliability of utensils manufacturing plant-a case study. Kumar and Kumar [17] studied
mathematical modelling of stainless-steel utensils manufacturing plant using fuzzy reliability.
This research investigated several failure modes in order to increase system reliability. There may
be instances where the system’s operation is impacted by temperature-dependent maintenance.
Thus, the objective of this paper is to make a contribution in this regard because none of the
research described above examined the impact of temperature-dependent maintenance on the
operation of the system.
Despite playing a significant part in our daily lives, the manufacturing facility for utensils with
preventative maintenance has not yet been covered. With this in mind, the present study took
into account four subsystems of the manufacturing facility for utensils, with constant rates of
subsystem failure and repair, and it covered stochastic modelling of the facility for utensils with
preventive maintenance using the regenerative point technique and Markov process. As a result,
PM of the unit is required after a certain amount of time to increase reliability and availability.
Also, an effort was made to discuss the plant’s availability in relation to various failure and repair
rates.
The system needs to be maintained since low temperature harm the quality of utensils. By
employing lubrications, replacement of a nut, screw, or other component of the system, cleaning,
or other techniques to create high-quality utensils, the system is made operational as quickly
as feasible. Preventive maintenance can therefore be used to increase system reliability and
availability. It’s also interesting to note that there hasn’t been much work documented in the
reliability literature so far on reliability modelling of the utensil manufacturing facility subject to
preventive maintenance. Utensils plant can have a variety of parts but mainly the plant consists
for four subsystems like cutting system, pressing system, spinning system and polishing and
packing system. In winter there is low temperature spinning system goes in reduced capacity
because of breakdown of rubber plate which is used in dye.
The mean time to system failure (MTSF), availability (in summer and winter), busy period analysis
of repairman for repair (in summer and winter), expected number of visits of the repairman for
repair (in summer and winter), and expected number of visits of the repairman for preventive
maintenance are a few of the several ways that system efficacy can be measured that are obtained.
Further the profit incurred to the system is obtained. Graphical representations of various
intriguing system efficacy behaviours have been produced.

2. System Description, Notations and Assumptions

Utensils manufacturing plants are widely used to produce various kinds of utensils. Utensils
plant can have a variety of parts but mainly the plant consists of four subsystems like cutting
system, pressing system, spinning system and polishing and packing system. Manufacturing of
utensils entails the press or spin forming of metal, which frequently involves complex geometries
with straight sides and as well as curves of various radii. Below is a list of every system and
notation needed for the mathematical formulation.

2.1. Description of the System

Sub-system MC (Circle Cutting Machine)
As needed, sheets are cut into circular shapes.
Sub-system MP (Pressing Machine)
The circle that was cut using a circular saw is now being sent to a pressing machine. Here, it is
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pressed using various dies in accordance with the size and shape of various types of kitchenware.
Due to their shallow depth, some products, including as plates and bojanthal are ready for
polishing right away.
Sub-system MS (Spinning Machine)
According to their dies, the product created by pressing is sent for spinning. Some goods don’t
require further annealing before polishing, but others require it because of their deeper shapes.
To eliminate contaminants, these items must be subjected to acid cleaning (Acid is a combination
of Sulphuric and nitric acid).
Sub-system MD (Polishing & Packing)
The final process has produced a product that is polished-ready. This stage involves packing and
polishing the final product.

2.2. Notations

m1(t), M1(t) probability and cumulative density functions by
which the system go for preventive maintenance

m2(t), M2(t) probability and cumulative density functions for
completion of preventive maintenance time

w1(t), W1(t) probability and cumulative density functions for
changing the summer to winter season

w2(t), W2(t) probability and cumulative density functions for
changing the winter to summer season

a1, a2, a3, a4 rate of failure for subsystem MC, MP, MS, MS
b1, b2, b3, , b4 rate of repair for subsystem MC, MP, MS, MS
MC, MP, MS subsystem MC, MP, MS operative
MCUR, MPUR, MSUR, MSUR subsystem MC, MP, MS, MS under repair
MS subsystem MS in reduced state
MDPM subsystem MD under preventive maintenance
⊙ Laplace Stieltjes Convolution
© Laplace Convolution
qij probability density function of the first passage time from

regenerative state i to regenerative state j
pij steady state transition probability from state i to state j
mij the unconditional mean time taken to transit to any regenerative

state i from the epoch of entry into regenerative state j
µi mean sojourn time in the regenerative state i before transiting

to any other state
ϕi(t) cumulative distribution function (c.d.f.) of the first passage

time from a regenerative state i to a failed state
AS0, AW0 availability in summer, winter
BS0, BW0 busy period of the repairman due to repair in summer,

winter
VS0, VW0 expected number of visits of repairman for repair during summer, winter
PM0 expected number of visits of the repairman for preventive

maintenance

2.3. Assumptions

• The failure and repair rates are independent and exponential in general.

• None of the sub-systems are experiencing simultaneous failures.
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• Subsystem MD has never failed.

• The repaired system works just like the new system.

• Subsystems are only repaired when they are in reduced or failed state.

3. Analysis of Model

In Fig. 1, the system model’s possible transition diagram is shown.

Figure 1: State Transition Diagram

3.1. Description of the Model and Transition Probabilities

3.1.1 Description of the model

Various states of the model for the system consisting four subsystems with season wise (summer
and winter) and the state transition diagram is displayed in above Fig. 1. States 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11 and 12 of the state transition diagram are regeneration points and hence these
states are regenerative states for the model. States 0 and 1 are the states four subsystem work
and so represents operative state during summer and winter respectively. States 2 and 5 are the
states where the sub-system MC go in failed states during summer and winter respectively so
represents failed state. States 3 and 6 are the states where sub-system MP go in failed states
during summer and winter respectively so represents failed state. States 4 and 11 are the states

RT&A, No 4 (76) 
Volume 18, December 2023 

144



Manisha Gaba, Dalip Singh, Sheetal, Kajal Sachdeva
RELIABILITY MODELLING OF UTENSILS MANUFACTURING
SYSTEM WITH TEMPERATURE DEPENDENT MAINTENANCE

where sub-system MS go in failed states during summer and winter respectively so represents
failed state. State 8 is the state where sub-system MS go in reduced capacity during winter so
represents reduced state. States 9 and 10 are the states where sub-system MC and sub-system
MP go in failed states respectively so represents failed state also in those states sub-system MS
is in reduced capacity. States 7 and 12 are the states where sub-system MD under preventive
maintenance. Also, in the state 7 the sub-system MS work in full capacity, in the state 12 the
sub-system MS work in reduced capacity.

3.1.2 State Transition Probabilities

In Fig. 1, the system’s transition diagram is depicted, indicating the various states of the system.
Expressions for qij(t) (for all required combinations of i and j) are found based on the state
transition diagram, and same are provided below:

q01(t) = e−(a1+a2+a3)tw1(t) q02(t) = a1e−(a1+a2+a3)tW1(t)
q03(t) = a2e−(a1+a2+a3)tW1(t) q04(t) = a3e−(a1+a2+a3)tW1(t)
q10(t) = e−(a1+a2)tF10(t) q15(t) = a1e−(a1+a2)tF1(t)
q16(t) = a2e−(a1+a2+a3)tF1(t) q17(t) = a3e−(a1+a2+a3)tF17(t)
q18(t) = e−(a1+a2+a3)tF18(t) q20(t) = b1e−b1t

q30(t) = b2e−b2t q40(t) = b3e−b3t

q51(t) = b1e−b1t q61(t) = b2e−b2t

q71(t) = m2(t) q81(t) = e−(a1+a2+a4)tG8,1(t)
q89(t) = a1e−(a1+a2+a3)tG8(t) q8,10(t) = a2e−(a1+a2+a3)tG8(t)
q8,11(t) = a4e−(a1+a2+a4)tG8(t) q8,12(t) = e−(a1+a2+a4)tG8,12(t)
q98(t) = b1e−b1t q10,8(t) = b2e−b2t

q11,1(t) = b4e−b4t q12,8(t) = m2(t)

where

G8(t) = M1(t)G2(t) G8,1(t) = M1(t)g2(t)
G8,12(t) = m1(t)G2(t) F10(t) = M1(t)G1(t)w2(t)
F17(t) = m1(t)G1(t)W2(t) F18(t) = M1(t)g1(t)W2(t)
F1(t) = M1(t)G1(t)W2(t)

Transition probabilities pij(t) from state i to state j can be calculated by taking Laplace transform
of above obtained values of qij(t) and then using the following mathematical relationship between
pij and q∗ij(s)
pij = lims→0 q∗ij(s)
values of for all required combinations of i and j are obtained and the same are given as follows:

p01 = w∗
1(a1 + a2 + a3) p02 = a1

(a1+a2+a3)
[1 − w∗

1(a1 + a2 + a3)]

p03 = a2
(a1+a2+a3)

[1 − w∗
1(a1 + a2 + a3)] p04 = a3

(a1+a2+a3)
[1 − w∗

1(a1 + a2 + a3)]

p10 = F∗
10(a1 + a2) p15 = a1F∗

1 (a1 + a2)
p16 = a2F∗

1 (a1 + a2) p17 = F∗
17(a1 + a2)

p18 = F∗
18(a1 + a2) p71 = m∗

2(0)
p81 = G∗

81(a1 + a2 + a4) p89 = a1G∗
8 (a1 + a2 + a4)

p8,10 = a2G∗
8 (a1 + a2 + a4) p8,11 = a4G∗

8 (a1 + a2 + a4)
p8,12 = G∗

8,12(a1 + a2 + a4) p12,8 = m∗
2(0)

p20 = p30 = p40 = p51 = p61 = p98 = p10,8 = p11,1 = 1
We may verify that
p01 + p02 + p03 + p04 = 1
p10 + p15 + p16 + p17 + p18 = 1
p81 + p89 + p8,10 + p8,11 + p8,12 = 1
p20 = p30 = p40 = p51 = p61 = p71 = p98 = p10,8 = p11,1 = p12,8 = 1

RT&A, No 4 (76) 
Volume 18, December 2023 

145



Manisha Gaba, Dalip Singh, Sheetal, Kajal Sachdeva
RELIABILITY MODELLING OF UTENSILS MANUFACTURING
SYSTEM WITH TEMPERATURE DEPENDENT MAINTENANCE

3.1.3 Mean Sojourn time (µi)

If Ti denotes the stay time of the system in state i, then using the following mathematical
relationship between µi and Ti
µi =

∫ ∞
0 P[Ti > t]dt

values of µi for all required values of i are found, and the same are provided as:
µ0 =

∫ ∞
0 e−(a1+a2+a3)tW1(t)dt

µ1 =
∫ ∞

0 e−(a1+a2)tF1(t)
µ2 = µ5 = µ9 = 1

b1

µ3 = µ6 = µ10 = 1
b2

µ4 = 1
b3

µ7 = µ12 =
∫ ∞

0 M2(t)dt
µ11 = 1

b4
The unconditional mean time (mij) which the system under consideration takes to move to state
j where counting of the time starts as soon as it enters into state i can be obtained using the
following mathematical relationship between mij and qij(t)
mij=

∫ ∞
0 tqij(t)dt,

values of for all required combinations of i and j thus obtained and given as follows:

µ0 = m01 + m02 + m03 + m04 µ1 = m10 + m15 + m16 + m17 + m18
µ2 = m20 = 1

b1
µ3 = m30 = 1

b2

µ4 = m40 = 1
b3

µ5 = m51 = 1
b1

µ6 = m61 = 1
b2

µ7 = m71 =
∫ ∞

0 tm2(t)dt
µ8 = m81 + m89 + m8,10 + m8,11 + m8,12 µ9 = m98 = 1

b1

µ10 = m10,8 = 1
b2

µ11 = m11,1 = 1
b4

µ12 = m12,8 =
∫ ∞

0 tm2(t)dt

4. System Performance Measures

4.1. Mean Time to System Failure

We retain failed states as absorbing states in order to calculate the system’s MTSF. Using recursive
relations for ϕi(t) can be obtained and the same are given as:
ϕ0(t) = Q01(t)⊙ ϕ1(t) + Q02(t) + Q03(t) + Q04(t)
ϕ1(t) = Q10(t)⊙ ϕ0(t) + Q15(t) + Q16(t) + Q17(t) + Q18(t)⊙ ϕ8(t)
ϕ7(t) = Q71(t)⊙ ϕ1(t)
ϕ8(t) = Q81(t)⊙ ϕ1(t) + Q89(t) + Q8,10(t) + Q8,11(t) + Q8,12(t)⊙ ϕ12(t)
ϕ12(t) = Q12,8(t)⊙ ϕ8(t)
By solving these relations for ϕ∗∗

0 (s) using the Laplace Stieltjes transformation of these relations,
we get
ϕ∗∗

0 (s) = N(s)
D(s) ,

where
N(s) = q∗8,12(s)q

∗
12,8(s)[(q

∗
02(s) + q∗03(s) + q∗04(s))(q

∗
17(s)q

∗
71(s)− 1)− q∗01(s)(q

∗
15(s) + q∗16(s))]

+ (q∗02(s) + q∗03(s) + q∗04(s))(1 − q∗18(s)q
∗
81(s)) + q∗17(s)q

∗
71(s)) + q∗01(s)(q

∗
15(s) + q∗16(s))

+ q∗01(s)q
∗
18(s)(q

∗
89(s) + q∗8,10(s) + q∗8,11(s))

D(s) = 1 + q∗01(s)q
∗
10(s)q

∗
8,12(s)q

∗
12,8(s)− q∗01(s)q

∗
10(s)q

∗
17(s)q

∗
71(s)q

∗
8,12(s)q

∗
12,8(s)− q∗17(s)q

∗
71(s)

− q∗18(s)q
∗
81(s)− q∗8,12(s)q

∗
12,8(s)

Using above calculated value of ϕ∗∗
0 (s) , MTSF can be obtained when the system under considera-

tion starts from the state 0 and the same is given as follows:
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T0 = lims→0
1−ϕ∗∗

0 (s)
s = N

D ,
where
N = µ0[(1 − p17)(1 − p8,12)− p18 p81]− µ1 p01 p8,12 + µ8 p01 p18 + µ7[p18 p8,12 + (1 − p8,12)p17]
D = (1 − p8,12)(1 − p01 p10 − p17)− p18 p81

4.2. Availabilities in Summer and Winter

During Summer
To determine the availability in summer AS0(t) of the system, recursive relations thus obtained
using probabilistic arguments, are given as:
AS0(t) = M0(t) + q01(t)©AS1(t) + q02(t)©AS2(t) + q03(t)©AS3(t) + q04(t)©AS4(t)
AS1(t) = q10(t)©AS0(t) + q15(t)©AS5(t) + q16(t)©AS6(t) + q17(t)©AS7(t) + q18(t)©AS8(t)
AS2(t) = q20(t)©AS0(t)
AS3(t) = q30(t)©AS0(t)
AS4(t) = q40(t)©AS0(t)
AS5(t) = q51(t)©AS1(t)
AS6(t) = q61(t)©AS1(t)
AS7(t) = q71(t)©AS1(t)
AS8(t) = q81(t)©AS1(t)+ q89(t)©AS9(t)+ q8,10(t)©AS10(t)+ q8,11(t)©AS11(t)+ q8,12(t)©AS12(t)
AS9(t) = q98(t)©AS8(t)
AS10(t) = q10,8(t)©AS8(t)
AS11(t) = q11,1(t)©AS1(t)
AS12(t) = q12,8(t)©AS8(t)
where,
M0(t) = e−(a1+a2+a3)tW1(t)
By solving these relations for AS∗

0(s) using the Laplace transform of these relations, we get
AS∗

0(s) =
N1(s)
D1(s)

where,
N1(s) = M∗

0(s)[1− q∗18(s)q
∗
11,1(s)q

∗
8,11(s)− q∗15(s)q

∗
51(s)− q∗16(s)q

∗
61(s)− q∗17(s)q

∗
71(s)− q∗18(s)q

∗
81(s)

− q∗89(s)q
∗
98(s)− q∗8,10(s)q

∗
10,8(s)− q∗8,12(s)q

∗
12,8(s) + (q∗15(s)q

∗
51(s) + q∗16(s)q

∗
61(s)

+ q∗17(s)q
∗
71(s))(q

∗
89(s)q

∗
98(s) + q∗8,10(s)q

∗
10,8(s) + q∗8,12(s)q

∗
12,8(s))]

D1(s) = [q∗02(s)q
∗
20(s) + q∗03(s)q

∗
30(s) + q∗04(s)q

∗
40(s)][q

∗
15(s)q

∗
51(s) + q∗16(s)q

∗
61(s) + q∗17(s)q

∗
71(s)

+ q∗18(s)q
∗
81(s)+ q∗89(s)q

∗
98(s)+ q∗8,10(s)q

∗
10,8(s)+ q∗8,12(s)q

∗
12,8(s)− 1]+ (q∗01(s)q

∗
10(s)+ q∗15(s)q

∗
51(s)

+ q∗16(s)q
∗
61(s) + q∗17(s)q

∗
71(s))(q

∗
89(s)q

∗
98(s) + q∗8,10(s)q

∗
10,8(s) + q∗8,12(s)q

∗
12,8(s)− 1) + q∗18(s)

q∗11,1(s)q
∗
8,11(s)(q

∗
02(s)q

∗
20(s) + q∗03(s)q

∗
30(s) + q∗04(s)q

∗
40(s)− 1) + (q∗02(s)q

∗
20(s) + q∗03(s)q

∗
30(s)

+ q∗04(s)q
∗
40(s))(q

∗
15(s)q

∗
51(s) + q∗16(s)q

∗
61(s) + q∗17(s)q

∗
71(s))(q

∗
89(s)q

∗
98(s) + q∗8,10(s)q

∗
10,8(s)

+ q∗8,12(s)q
∗
12,8(s))

Using above calculated value of AS∗
0(s) availability in summer can be obtained in steady-state

and the same is given as follows:
AS0 = lims→0 sAS∗

0(s) =
N1
D1

where,
N1 = µ0 p10(p81 + p8,11)
D1 = (µ0 + µ2 p02 + µ3 p03 + µ4 p04)p10(p81 + p8,11) + (µ1 + µ5 p15 + µ6 p16 + µ7 p17)p01(p81 + p8,11)

+ (µ8 + µ9 p89 + µ10 p8,10 + µ12 p8,12)p01 p18

During Winter
Similarly, steady-state availability during winter are given as follows:
AW0 = lims→0 sAW∗

0 (s) =
N2
D1

where,
D1 already defined and
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N2 = µ1 p01(p81 + p8,11)

4.3. Busy Period Analysis

Busy period of the repairman due to repair in summer
Similarly, steady-state Busy period of the repairman due to repair in summer are given as follows:
BS0 = lims→0 sBS∗

0(s) =
N3
D1

where,
D1 already defined and
N3 = (µ2 p02 + µ3 p03 + µ4 p04)p10(p81 + p8,11)
During Winter
Similarly, steady-state Busy period of the repairman due to repair in winter are given as follows:
BW0 = lims→0 sBW∗

0 (s) =
N4
D1

where,
D1 already defined and
N4 = p01[p18(µ9 p89 + µ10 p8,10 + µ11 p8,11) + (µ5 p15 + µ6 p16)(p81 + p8,11)]

4.4. Expected Number of Visits of the Repairman for Repair

During summer
Similarly, steady-state number of visits of the repairman during summer are given as follows:
VS0 = lims→0 sVS∗

0(s) =
N5
D1

where,
D1 already defined and
N5 = p10(1 − p01)(p81 + p8,11)
During Winter
Similarly, steady-state number of visits of the repairman during winter are given as follows:
VW0 = lims→0 sVW∗

0 (s) =
N6
D1

where,
D1 already defined and
N6 = p01 p18(1 − p81 − p8,12) + p01(1 − p10 − p17 − p18)(p81 + p8,11)

4.5. Expected Number of Visits of the Repairman for Preventive Maintenance

Similarly, steady-state number of visits of the repairman for preventive maintenance are given as
follows:
PM0 = lims→0 sPM∗

0(s) =
N7
D1

where,
D1 already defined and
N7 = p01 p17(p81 + p8,11) + p01 p18 p8,12

5. Cost-Benefit Analysis

Profit of the system under consideration can be obtained by subtracting the costs due to repair,
per visit charges of the repairman for repair in summer and winter and per visit charges of
the repairman for preventive maintenance. The same can expressed in terms of the various
performance measures obtained through the model developed in this given as follows:
Pro f it = CS0 AS0 + CW0 AS0 − CS1BS0 − CW1BW0 − CS2VS0 − CW2VW0 − C3PM0
where,
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CS0 : revenue during summer, per unit uptime
CW0 : revenue during winter, per unit uptime
CS1 : revenue during summer per unit time for repair
CW1 : revenue during winter per unit time for repair
CS2 : Cost per visit during summer for repair
CW2 : Cost per visit during winter for repair
C3 : Cost per visit for preventive maintenance

6. Numerical Interpretation

To obtain various numerical outcomes, the following specific case is used:

w1(t) = αe−αt w2(t) = βe−βt

m1(t) = γe−γt m2(t) = δe−δt

g1(t) = λe−λt g2(t) = µe−µt

µ0 = 1
a1+a2+a3+α µ1 = 1

a1+a2+a3+β+γ

µ2 = 1
b1

µ3 = 1
b2

µ4 = 1
b3

µ5 = 1
b1

µ6 = 1
b2

µ7 = 1
δ

µ8 = 1
a1+a2+a4+µ+γ µ9 = 1

b1

µ10 = 1
b2

µ11 = 1
b4

µ12 = 1
δ p01 = α

a1+a2+a3+α

p02 = a1
a1+a2+a3+α p03 = a2

a1+a2+a3+α

p04 = a3
a1+a2+a3+α p10 = β

a1+a2+a3+γ+β

p15 = a1
a1+a2+a3+γ+β p16 = a2

a1+a2+a3+γ+β

p17 = a3
a1+a2+a3+γ+β p18 = γ

a1+a2+a3+γ+β

p81 = µ
a1+a2+a4+γ+µ p89 = a1

a1+a2+a4+γ+µ

p8,10 = a2
a1+a2+a4+γ+µ p8,11 = a4

a1+a2+a4+γ+µ

p8,12 = γ
a1+a2+a4+γ+µ

p20 = p30 = p40 = p51 = p61 = p71 = p98 = p10,8 = p11,1 = p12,8 = 1

where
a1 = 0.235, a2 = 0.0381, a3 = 0.01589, a4 = 0.02673, b1 = 0.887, b2 = 0.793, b3 = 0.821,
b4 = 0.896, α = 0.615, β = 0.83, λ = 0.034, γ = 0.00937, δ = 0.870, µ = 0.875, CS0 = 15000,
CS1 = 1500, CW0 = 15000, CW1 = 1600, CS2 = 1450, CW2 = 1550, C3 = 1400.
Various graphs have been plotted but all the graphs have not been shown here to use minimum
space and to avoid repetition of similar interpretations. However, the users of such systems may
plot graph of their interest as per the requirement and may take important decision regarding
profitability of the system. Regarding the availability and nature of MTSF, various rates have been
depicted as shown in Fig. 2 ,3, 4 and 5 which reveal that MTSF, Availability and profit decreases
as failure rates increases. However, their values go in the direction δ and b2. Some of the plotted
graphs are shown as follows:
The MTSF behaviour for different values of β is shown in Fig. 2. MTSF decreases as the failure
rate value (a2) rises. Higher values of β correspond to higher values in it.
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Figure 2: MTSF versus Failure Rate (a2) for different values of (β)

The availability behaviour in the summer for various repair rate values (b2) is displayed in Fig.
3. As the failure rate (a2) rises, summer availability decreases. Additionally, it has been noted
that when b2 values rise, so does availability.

Figure 3: Availability in Summer versus Failure rate (a2) for different values of Repair rate (b2)

The way that profit acts in relation to revenue in the summer (CS0) for various values of the
cost paid for repair in the summer (CS1) is shown in Fig. 4. As revenue values rise in the summer
(CS0), profit rises as well. Additionally, it has been seen that as (CS1) values rise, the profit falls.
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Figure 4: Profit versus Revenue in Summer (CS0) for different values of cost paid for paid in Summer (CS1)

Fig. 5 illustrates the behaviour of profit in relation to revenue during the winter (CW0) for
various costs (C3) associated with preventive maintenance. With an increase in winter revenue
values (CW0), profit rises. Additionally, it has been seen that as C3 values rise, the profit falls.

Figure 5: Profit versus Revenue in Winter (CW0) for different values of cost (C3) paid for paid for Preventive
Maintenance

Values of parameters taken and cut-off points obtained from the above figures are tabulated
as follows:

Fig Varied Parameters Condition Interpretation
CS1 = 5500 CS0> 11700.3105 System is profitable

4 CS1 = 6000 CS0> 13059.0062 System is profitable
CS1 = 6500 CS0> 14417.1842 System is profitable
CW1 =5000 CW0>15261.2412 System is profitable

5 CW1 =6000 CW0>16863.2744 System is profitable
CW1 =7000 CW0>18465.3067 System is profitable

RT&A, No 4 (76) 
Volume 18, December 2023 

151



Manisha Gaba, Dalip Singh, Sheetal, Kajal Sachdeva
RELIABILITY MODELLING OF UTENSILS MANUFACTURING
SYSTEM WITH TEMPERATURE DEPENDENT MAINTENANCE

7. Conclusion

In the current study, a reliability model is developed using a system for producing utensils. The
findings for a specific situation demonstrate the relevance of research since cut-off points may
be used to set lower and upper limits for a variety of factors. For instance, setting a product’s
pricing so that the system is profitable depends on the cut-off point for revenue per unit uptime.
The cut-off points facilitate many crucial judgments for the profits according to revenue.
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Abstract 

In the present paper, we create an algorithm to address the transportation problem with numerous  

objectives and indexes. The transportation problem exists when there are more supply points, more 

demand points, and various means of transportation are used to meet demand or when moving certain 

types of goods. The transportation problem may frequently be more complex than the typical form of 

transportation problem. We create a model that blends fuzzy multi-objective programming and the multi-

index transportation problem‘ by using LINDO software to resolve all related problems. Additionally, 

the decision-maker may present a variety of data and it may be furt her improved. The new algorithm for 

addressing transport problems in fuzzy environments is demonstrated numerically. 

Key Words: Fuzzy transportation problem (FTP), Linear Programming Problem(LP

P), ‘Multi-index transportation problem (MITP) 

1. Introduction

The transportations prolem has a extensive range of real-world applications and can be seen as a 

specific example of the LPP. It is one of the best optimization techniques and has a wide range of real-

world applications. a combination of various goods from any of the m origins to any of the n destination 

places. In order to reduce the overall cost of a transportation issue, we control the amount to be 

transported from all origins to all destinations. We may not have focused on a single objective function  

in this situation, which is multi-objective. All of the objectives of MOTP are in competition with one 

another, and all of the restrictions are of the equality kind. The technique for multi-objective fuzzy 

linear programming with uncertain goals. ‘The multi-objective transportation problem has the best 

compromise solution‘when applied to fuzzy linear programming. 
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Numerous academics have evaluated the use of the MITP to‘optimization, mathematical 

modelling‘ and industry. Wang et al. [10] established a decomposition technique for handling the 

standard three-index‘transportation problem‘that is entirely‘dependent on‘the successive adjustment 

of the optimality criterion. They looked at the transportation problem's solution using a linear and 

quadratic objective function. In addition to recommending the adoption of such transportation 

efficiency, Rautman et al. [8] find a solution to the shipment scheduling conflict by utilising a multi-

index transportation problem method to optimize the integral system Bit‘et al. [4] used a 

fuzzy‘programming method with a hyperbolic‘membership function‘to solve the Multi-Objective 

Capacitated Transportation Problem, in which the targets are non-commensurable and incompatible 

and the deliver and demand constraints are all of the same kind. In order to identify the best and most 

effective‘compromise solution‘to a ‘multi-objective capacitated transportation problem, fuzzy 

programming‘with hyperbolic membership function was applied. ‘For the first time, all parameters‘are 

taken into‘consideration when using fuzzy multi index bi-criteria constant fee bottleneck 

transportation‘ (FMIBCFCBTP) by‘Sungeeta et al. [9]. An algorithm was created to detect FMIBCFCBTP 

fuzzy time-value change-off pairings. A numerical example was provided to explain the said 

algorithm.‘An exponential membership function‘ was employed in the fuzzy programming method by 

Kaur et al. [5] to resolve a multi-objective and multi-index transportation problem. The main emphasis 

is on reducing the prices, decreasing rates, and underutilized capacity of transporting raw materials 

via various modes of transportation from various points of origin to various destination sites. Each 

target function is given a unique form of non-linear membership function by employing the fuzzy 

programming technique to solve actual transport problems using an exponential function and creating 

a non-dominated compromise solution. To tackle the‘multi-index fixed charge bi-criterion 

transportation problem‘, Archana and Veena [2] provided a method for determining the ideal trade-off 

pair amongst efficient cost-time trade-off pairs. 

The linear-multi-objective-solid transportation problem was approached from a fuzzy -linear 

programming perspective by Bit et al. [3]. The outcome is a compromise approach that  is both cost-

effective and ideal. The fuzzy linear programming approach was used to develop the FORTRAN 

programme. With profit maximisation and time minimization as the objectives, Anjana et al. [1] 

developed a multi-objective multi-object strong transportation problem (MMSTP) with fuzzy 

inequality constraints. Fuzzy chance programming and the additional specificity opportunity-necessity 

principle are used to create a method for changing the ambiguous MMSTP to the equivalent -

deterministic shape. The fuzzy interactive satisfied method was used to develop optimal compromise 

solutions for the MMSTP through a generalised reduced gradient strategy. The finest non -dominating 

solution was created using the technique for order preference by similar to perfect solut ion. An 

algorithm was created by Porchelvi and Anitha [7] to address the multi-objective transportation 

problem.‘The source and destination parameters’, along with the cost coefficients of the goal function, 

are expressed as interval costs. To solve MOTP, they used fuzzy programming techniques with linear 

membership functions for various costs. 

2. Mathematical Model

The MOMITP,we assume 
ijlp be a multidimensional array klandnjmi  111 , and let P = ijp ,

jlq Q  and ilrR be multi-matrices then the MITP is as fallows 

Min Z =   
i j l

X p ijlijl (1) 

Such that 

jiallforpij ,
i

ijlX
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liallforril ,
j

ijlX

ljallforq jl ,
j

ijlX , & ljiallfor ,,,0ijlX  (2) 

it further, implies that 


ljlji

iljlilij
l

jlij rqrpqp ;; (3) 

All the 3-conditions are necessary but not sufficient. MOMITP is defined as fallows  

Minimize
)2()2()1()1(

ij

m

i
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j
ijij

m

i

n

j
ijk xvxvZ  (4) 

Such that 
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The following set of conditions are necessary for the existance solution. 
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3. Proposed Algorithm

Step 1: Formulate a FTP. 

Step 2: Solving the MOTP, k times, taking, one at a time, we first develop a matrix form inorder to get 

corresponding values for each objectives for each solution. 
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Where, each kiX i ,..2,1,   represent the isolated optimal solutions to the K distinct transportation 

problems for k distict objective-functions ,,)( jiXZZ i
jij  kjiwhere ........3,2,1,  , respectavelly the 

𝑖𝑡ℎ row and 𝑗𝑡ℎ column members of the  matrix.  

Step 3: Using step 2, we set upper and lower bounds for each objective and defining the range of values 

for the membership function that represents the degree of acceptance and rejection for a perticular 

solution.tThe values of such functions can be calculated as. 

))(( rrk XZMaxU 

))(( rrk XZMinL  , kr0 , 

Where  
kU  and 

kL are rtespectivelly the upper and lower bound for  the (
thk objective function )kZ

Kk ........3,2,1 , 
kkk LUd  ,the degradation allowance for objective k . 

Step 4: We define the membership function as: 

)16(

)(,0

,)(,
))((

1

)(,1

})({
1



































kk

kkkkkk
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UXZ
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d
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XZL
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Step 5: We use a LMF for the initial fuzzy model, the crisp model can be simplified as: 

Minimize   

Subject to  

,)(  kkk UdXZ   (17) 

jipx i

n

j
ij ,,1

)1( 

jpx i

n

j
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)2(

iqx j
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i
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)1(

jqx j
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i
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)2(

jirxx ijijij ,,)2()1( 

0,0 )2()1(  ijij xx

Above system of LP can be solved by using LONDO statistical software.) 

Step 6: Using the precise mathematical Programming approach, we are able to solve the crisp model. 

Min   

KkUdxC kkij
k
ij .,.........2,1,   ,  (18) 
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0,0 )2()1(  ijij xx

Another membership function, like the  Hyperbolic Tangent function, is one that we utlise. 

Min   
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Where,
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 , where S is number of constraints.

jixij ,,0  and 0 . 

Step 7: An intuitionistic fuzzy optimization for MOLP is defined as. 
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Kkwhere ..,.........2,1 . 

4. Illustrations

Example 4.1: Consider the fuzzy MOMITP discussed by Lohgaonkar et al. [6] 
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Example 4.2: 
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If no errors are found, then the LINGO Solver status window appears of the illustration 4.1 is 

given below (by changing variable Y to X and also, taking )1(
11X  and )2(

11X  respectively X11M 

and X11N so on. In LINGO solver) 

Figure 1: Illustration of model 4.1 on LINGO window 

By closing above window, we can view the solution of the Model 4.1 is given 

(Global optimal solution found). 

Objective value:  298.0000 

Infeasibilities:  0.000000 

Total solver iterations: 4 

Model Class: LP 

Total variables:  24 

Nonlinear variables: 0 

Integer variables: 0 

Total constraints: 27 

Nonlinear constraints: 0 

Total nonzeros  96 

Nonlinear nonzeros: 0 
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Table 1: Optimal Solution of model 4.1 

Variable  Value Reduced Cost 

X11M 5.000000  0.000000 

X12M 4.000000  0.000000 

X13M 0.000000  6.000000 

X21M 8.000000  0.000000 

X22M 1.000000  0.000000 

X23M 5.000000  0.000000 

X31M 1.000000  0.000000 

X32M 0.000000  6.000000 

X33M 5.000000  0.000000 

X41M 0.000000  2.000000 

X42M 7.000000  0.000000 

X43M 0.000000  9.000000 

X11N 0.000000  3.000000 

X12N 3.000000  0.000000 

X13N 3.000000  0.000000 

X21N 0.000000  1.000000 

X22N 3.000000  0.000000 

X23N 4.000000  0.000000 

X31N 3.000000  0.000000 

X32N 1.000000  0.000000 

X33N 1.000000  0.000000 

X41N 2.000000  0.000000 

X42N 1.000000  0.000000 

X43N 3.000000  0.000000 

If no errors are found, then the LINGO Solver status window appears for the illustration 4.2 is given 

below  

Figure 2: Illustration of model 4.2 on LINGO window 
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By closing above window, we can view the solution of the Model 4.2 is given( 

(Global optimal solution found). 

Objective value:  283.0000 

Infeasibilities:  0.000000 

Total solver iterations: 3 

Model Class: LP 

Total variables  24 

Nonlinear variables: 0 

Integer variables: 0 

Total constraints: 27 

Nonlinear constraints: 0 

Total nonzeros:  96 

Nonlinear nonzeros: 0 

Table 2: Optimal Solution of model 4.2 

Variable Value Reduced Cost 

X11M 3.000000 0.000000 

X12M 6.000000 0.000000 

X13M 0.000000 1.000000 

X21M 8.000000 0.000000 

X22M 4.000000 0.000000 

X23M 2.000000 0.000000 

X31M 1.000000 0.000000 

X32M 0.000000 1.000000 

X33M 5.000000 0.000000 

X41M 2.000000 0.000000 

X42M 2.000000 0.000000 

X43M 3.000000 0.000000 

X11N 2.000000 0.000000 

X12N 1.000000 0.000000 

X13N 3.000000 0.000000 

X21N 0.000000 1.000000 

X22N 0.000000 4.000000 

X23N 7.000000 0.000000 

X31N 3.000000 0.000000 

X32N 1.000000  0.000000 

X33N 1.000000  0.000000 

X41N 0.000000  0.000000 

X42N 6.000000 0.000000 

X43N 0.000000  0.000000 

Now, we can determine Z1 and Z2, for (X (2) , X (1)) respectively as given below 

Z2 (X (1)) =295 and Z1(X (2)) =335, and written in the form of matrix. 
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We find 

Minimize 𝛼 

)22(33537)(1  aXZ

)23(29512)(2  aXZ

We Solve the above crisp model and the Solver window appears given below

Figure 3: Illustration of model 22 and 23 on LINGO window 

By closing above window, we can view the solution of the Model 22 and 23 is given 

(Global optimal solution found). 

Objective value:  0.7540984 

Infeasibilities: 0.000000 
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Total solver iterations:  7 

Elapsed runtime seconds: 0.11 

Model Class: LP 

Total variables:  25 

Nonlinear variables: 0 

Integer variables: 0 

Total constraints: 29 

Nonlinear constraints:  0 

Total nonzeros:  123 

Nonlinear nonzeros: 0 

Table 3: Optimal Solution of crisp model 22 and 23 

Variable Value Reduced Cost 

 A 0.7540984 0.000000 

X11M 5.000000 0.000000 

X12M 3.316940 0.000000 

X13M 0.6830601 1.000000 

X21M 7.000000 0.000000 

X22M 3.683060 0.000000 

X23M 3.316940 0.000000 

X31M 0.000000 0.4918033E-01 

X32M 0.000000 0.2622951 

X33M 6.000000 0.000000 

X41M 2.000000 0.000000 

X42M 5.000000  0.000000 

X43M 0.000000 0.1639344E-01 

X11N 0.000000  0.1311475 

X12N 3.683060  0.000000 

X13N 2.316940  0.000000 

X21N 1.000000  0.000000 

X22N 0.3169399  0.000000 

X23N 5.683060  0.000000 

X31N 4.000000 0.000000 

X32N 1.000000  0.000000 

X33N 0.000000  0.000000 

X41N 0.000000  0.4918033E-01 

X42N 3.000000 0.000000 

X43N 3.000000  0.000000 

92.28504.307
*

2
*

1  ZZ 754.0
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Subject to the condition  (21) 

Solver window of model (24) appears below 

Figure 4: Illustration of model 24 on LINGO window 

Solution of above model (24) is given by 

(Global optimal solution found). 

Objective value:  1.525591 

Infeasibilities:  0.000000 

Total solver iterations:  7 

Elapsed runtime seconds: 0.17 

Model Class: LP 

Total variables:   25 

Nonlinear variables: 0 

Integer variables: 0 

Total constraints: 29 

Nonlinear constraints:  0 

Total nonzeros:  123 

Nonlinear nonzeros: 0 
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Table 4 : Optimal solution of model 24 

Variable Value Reduced Cost 

 A 1.525591  0.000000 

X11M 5.000000 0.000000 

X12M 3.316273  0.000000 

X13M 0.6837270  0.000000 

X21M 7.000000 0.000000 

X22M 3.683727  0.000000 

X23M 3.316273  0.000000 

X31M 0.000000 0.4918033E-01 

X32M 0.000000 1.574803 

X33M 6.000000 0.000000 

X41M 2.000000 0.000000 

X42M 5.000000  0.000000 

X43M 0.000000 0.9842520E-0 

X11N 0.000000  0.7874016 

X12N 3.683727  0.000000 

X13N 2.316273  0.000000 

X21N 1.000000  0.000000 

X22N 0.3162730  0.000000 

X23N 5.683727  0.000000 

X31N 4.000000 0.000000 

X32N 1.000000  0.000000 

X33N 0.000000  0.000000 

X41N 0.000000  0.2952756 

X42N 3.000000 0.000000 

X43N 3.000000  0.000000 

92.28504.307
*

2
*

1  ZZ

Where 𝑤 =tanh-1 (2𝛼 − 1) 𝑎𝑛𝑑   w=1.52, 92.0  

𝜇1
𝑒 {𝑍1(𝑋)}=

{

1,   298 ≤ 𝑍1 (𝑋)
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Z

e

298

2

1 1

0,    𝑍1(𝑋) ≥ 335

298 ≤ 𝑍1(𝑋) ≤ 335 , 𝑑𝑘1 = 37

𝜇2
𝑒 {𝑍2(𝑋)}=

{

1,   283 ≤  𝑍1 (𝑋)
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e
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0,    𝑍2(𝑋) ≥ 295

283 ≤  𝑍2(𝑋) ≤ 295, 𝑑𝑘2 = 12

Maximize 

Such that 








 


 37

29804.307
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The solution of the problem is given by  89.0  
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5. Conclusion

A fuzzy MOMIT algorithm is constructed in this paper, and with the help of numerical examples, a 

solution is demonstrated using three various kinds of membership functions, including linear, 

hyperbolic, and exponential membership functions. The numerous modes of transporting goods  

between points of origin and destination are represented by the multi-index transportation problem.

The crisp model becomes a linear one when the hyperbolic membership functionis used. When 

compared to the linear membership function and hyperbolic membership function, the optimum 

compromise solution is drastically different. However, there is no significant different between the 

linear membership function's solution and the exponential membership function's ideal compromise 

solution. 

There are numerous methods that future research in the field of fuzzy programming might be 

carried out. For problems involving many scales and several objectives in linear programming, 

employing fuzzy programming to design decision support systems will be particularly beneficial in 

real-world scenarios. Future research may take into account the use of fuzzy programming to solve 

MOTP’s when the supply and demand factors are simply made up of fuzzy integers. There is still room 

for more research into duality theory and post optimality analysis in multi -objective two- and three-

dimensional transportation problems. The demand parameters, agency capacity, and mode of 

transportation capacity can be anticipated as random variables tha t follow specific probability 

distributions in multi-index transportation problems, in addition to the two index transportation 

problem. 
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Abstract 

Characterization of a probability distribution plays an important role in probability and statistics. 

Before a particular probability distribution model is applied to fit the real world data, it is necessary 

to confirm whether the given probability distribution satisfies the underlying requirements by its 

characterization. The aim of this paper is to find characterization results New Quasi Lindley 

distribution. These results are established using the relation between truncated moments and 

failure rate functions and conditional expectation of adjacent order statistics. The first 

characterization result is based on relation between left truncation moment and failure rate 

function while the second result is based on relation between right truncated moment and reverse 

failure rate function. In the third characterization result we used conditional expectation of order 

statistics when the conditioned one is adjacent order statistics.  Further, some of its important 

deductions are also discussed. 

Keywords: New quasi Lindley distribution, Characterization, Truncated 

moments, Failure rate function, Reversed failure rate function, Order statistics. 

1. Introduction

Characterization is a condition involving certain properties of a random variable

)...,,,( 21 nXXXX  , which identifies the associated distribution function )(xF . The property 

that uniquely determines )(xF  may be based on a function of random variables whose joint 

distribution is related to that of )...,,,( 21 nXXXX  . The only method of finding distribution 

function )(xF  exactly, which avoids the subjective choice, is a characterization theorem. A 

theorem is on a characterization of a distribution function if it concludes that a set of conditions is 

satisfied by )(xF  and only by )(xF . There has been a vast development in the field of 
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characterizing distributions through different techniques; mainly characterization through 

distributional properties, moments and conditional expectation.Characterization of a probability 

distribution plays an important role in probability and statistics. There has been a great interest, in 

recent years, in the characterizations of probability distributions by truncated moments (see, for 

example [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] amongst others). 

Lindley distribution was introduced by [11]. A random variable X is said to have Lindley 

distribution with parameter   if its probability density function )( pdf is of the form 

.0,0;)1(
1

)(
2




  


  xexxf x
   (1) 

Its distribution function )(df  is 

.0,0;
1

1
1)( 




  



  xe
x

xF x
 (2) 

Various properties of this distribution have been discussed by [12] and they showed, in many 

ways (1) provides a better model for some applications than the exponential distribution. 

A two-parameter distribution called quasi Lindley distribution (QLD) has been introduced by 

[13]. A distribution with parameters   and is said to have quasi Lindley distribution if its pdf  

is of the form 

1,0,0;
1

)(
),;( 




  




  xe

x
xf x

   (3) 

and the df  is 

.1,0,0;
1

1
1),;( 




  




  xe

x
xF x

 (4) 

It can easily be seen that at   , the QLD reduces to the Lindley distribution and at 0 , 

it reduces to the gamma distribution with parameters ),2(  .[13] have discussed its various 

properties and showed that this QLD is a better model than the Lindley distribution for modeling 

waiting and survival times data. 

A new form of quasi Lindley distribution called new quasi Lindley distribution (NQLD) is 

introduced by [14]. The pdf  of NQLD is given by 

2

2

2

,0,0;)(),;( 



  


  xexxf x

   (5) 

It can easily be seen that at   , the new QLD (5) reduces to the Lindley distribution (1) 

and at 0 , it reduces to the exponential distribution with parameter . 

The df  of the new QLD is obtained as 

2

2

2

,0,0;1),;( 



  




  xe

x
xF x

 .        (6) 

The failure rate function )( frf  of New Quasi Lindley distribution with parameters   and   is 

given by 

.
)(

)(1

)(
)(

2
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x

x

xF

xf
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    (7) 

The reverse failure rate function )(rfrf of NQLD with parameters  and   is given by 

.
)()(

)(

)(

)(
)(
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2

xe

x

xF

xf
x
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  (8) 

The 
thk moment (about the origin) of the NQLD with parameters   and    is given by 
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.
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  (9) 

Several properties of NQLD have been given by [14] and they showed that NQLD is more 

flexible than Lindley distribution, exponential distribution, and QLD. They also showed that 

NQLD is closer fit than exponential distribution, Lindley distribution and QLD in goodness of fit. 

Several characterization results of Lindley distribution has been given by [6]. They 

characterized Lindley distribution through left and right truncated moments. Conditional 

expectation of order statistics is used to characterize Lindley distribution by [7]. In this paper, we 

have obtained characterization results for quasi Lindley distribution. 

2. Characterizations through Truncated Moments:

First, we give the following two lemmas which are used to prove Theorem 1 and Theorem 2 

respectively. 

Lemma 1: Suppose that the random variable X  has an absolutely continuous df  )(xF with 

0)(,0)0(  xFF for all )(')(, xFxfpdfx  ,
)](1[

)(
)(

xF

xf
xrfrf


 . Let )(xg be a 

continuous function in 0x  and  )]([0 XgE . If 

)()(]|)([ xrxhxXxgE  0x  

where h(x) is a differentiable function in 0x , then 

0,
)(

)(')(
exp)(

0








 
  xdy

yh

yhyg
Kxf

x

where 0K is a normalizing constant [6]. 

Lemma 2: Suppose that the random variable X  has an absolutely continuous cdf  )(xF

with 0)(,0)0(  xFF  for all )(')(, xFxfpdfx  ,
)(

)(
)(

xF

xf
xrfrf  . Let )(xg  be a 

continuous function in 0x  and  )]([0 XgE . If 

)()(]|)([ xrxwxXxgE  0x  

where w(x) is a differentiable function in 0x , then 
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  xdy

yw

ygyw
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where 0K is a normalizing constant [6]. 

Theorem 1: Suppose that the random variable X  has absolutely continuous distribution with the 

pdf )(xf and df )(xF  with 0)0( F , 0)( xF for all 0x  and frf
)(1

)(
)(

xF

xf
xr


 .

Assume that  ][0 kXE for a given positive integer k . Then X has NQLD with parameters 

 and   if and only if
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From relation among dfpdf , and frf , we have 
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The following integration result given by [15] (pg-340) is used to solve the above integration
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Using (14), we can write (13) as 
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and hence the necessary part 
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Using the recurrence relations of the k ’s, we have
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From (15) and (16), we have 
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Also from (15) 
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Taking logarithm both sides of above equation, we have
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Differentiating (18) with respect to x , we have 
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From (17) and (19), we have 
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Integrating (20) over ),0( x , we have
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Using Lemma 1 given by [6] in (21), we have 
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which is the pdf  of NQLD and hence sufficiency part. 

Remark 1: Putting    in Theorem 1 we get the characterizing result for Lindley distribution 

obtained by [6]. 

Remark 2: Putting 0  in Theorem 1 we get the characterizing result for exponential )(  

distribution. 

Theorem 2: Suppose that the random variable X  has absolutely continuous distribution with the 

pdf )(xf and df )(xF  with 0)0( F , 0)( xF for all 0x  and the rfrf
)(

)(
)(

xF

xf
x  . 

Assume that  ][0 kXE for a given positive integer k . Then X   has NQLD if and only if 
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The following integration result given by [15] (pg-340) is used to solve the above integration 
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From (24) and (25), we have 
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and hence the necessary part. 
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From equations (16) and (26), we have 
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Also from equation (26) 
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Differentiating (28) with respect to x , we have 
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Using (27) in above equation, we have 
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Integrating (29) over ),0( x , we have
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Using Lemma 2 given by [6], we have 
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which is the pdf  of NQLD and hence the theorem. 

Remark 3: Putting    in Theorem 2 we get the characterizing result for Lindley distribution 

obtained by [6]. 

Remark 4: Putting 0  in Theorem 2 we get the characterizing result for exponential )(  

distribution. 

Characterization through conditional expectation of order statistics 

Theorem 3: Let X  be a continuous random variable with )(xFdf  and )(xfpdf . Then for 
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if and only if X has the df given in (6). 

Proof: First we will prove (6) implies (31). 

We have 
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Integrating (32) by parts and then re arranging, we have 
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From (33), we have 
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Taking the limits of integral in (34) from 0 to x , we have 
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Using the result given by [16], we have 
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and hence the theorem. 

Remark 5: Putting   in Theorem 3, we get the characterization result for Lindley distribution 

as obtained by [7]. 

Remark 6: Putting 0  in Theorem 3, we get the characterization result for exponential )(  

distribution. 

3. Applications
A probability distribution can be characterized in many ways and the method under study here is 

one of them. We have used here the relation between truncated moments and failure rate functions 

as well as conditional expectation of order statistics conditioned on an adjacent order statistics to 

characterize the new quasi Lindley distribution. That is, we have characterized the new quasi 

Lindley distribution if the regression equation truncated from both sides is given, i. e. the data are 

truncated from left side at x and truncated from right side at y. In real practice, several times we 

get the data of which observations are missing either in beginning or in the end. In such type of 

data we can use the result of this paper.  
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Abstract

The analysis of an M/M/1/N feedback working vacation queueing system with reneging is presented
in this paper. Customers may become impatient and even disappointed when they see a long line. In the
literature on queueing, customer dissatisfaction caused on by unsatisfactory service is referred as feedback.
In the case of feedback, customers retry services after receiving unsatisfactory or incomplete. First, we
create the equations for the steady-state probabilities using the Markov process method. The steady-state
probabilities are then solved by the matrix method. We then provide some system performance measures.
We create a cost model using performance analysis. Finally, we give some numerical examples to show
how the various model parameters affect the system’s behaviour.

Keywords: reneging, performance measure, steady-state probabilities, cost model

1. Introduction

Because of the wide range of applications in practical situations such as inventory systems,
hospital emergency rooms dealing with critical patients, computer and communication systems,
impatient telephone switchboard customers, and manufacturing and production systems, many
researchers have been drawn to performance modelling of Markovian queues with different
customer behaviour. In queueing literature, feedback is defined as consumers’ dissatisfaction due
to poor service quality.

Takacs [1] studied feedback queue with a single server and determined the queue size distri-
bution. Dhosi [2] give an overview of some general decomposition results and the methodology
used to obtain these results for two vacation models. The analysis of a M/M/1 queue with
multiple and single working vacations was presented by Vijaya Laxmi et al. [3]. Wortman et al.,
[4] investigated M/GI/1 Bernoulli feedback queue, where the server goes on vacation according
to Bernoulli schedules. Zhang et al. [5] presented an analysis for an M/M/1/N queueing system
with balking, reneging and server vacations.

Kumar et al. [6] studied optimization of an M/M/1/N feedback queue with retention
of reneged customer. Rakesh and sumeet [7] researched a multi-server Markovian feedback
queueing model with finite capacity that includes balking, reneging, and keeping reneged
customers. Jewkes and Buzacott, [8] examined queueing system of a K class M/G/1 with
feedback. Vijaya Laxmi and Jyothsna [9] worked on the effect of balking and reneging in a single
server queue under variant working vacation policy.Bouchentouf et al. [10] analyzed and dealt
with variant multiple working vacations and impatience timers of Bernoulli feedback queueing
system that is dependent on the server states.
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Sundar et al. [11] talks about a single server queuing system where units come in batches of
different sizes under a Poisson stream. In k stations, the server offers services. Each station’s
service times are distributed randomly. The system uses the feedback, vacation, and reneging
principles. Van den Berg and Boxma, [12] studied feedback mechanism of an M/M/1 queue with
a general probability. Bouchentouf et al. [13] studied the examination of a Bernoulli feedback,
single vacation, waiting server, and impatient customer Markovian queueing system.

With Bernoulli feedback, synchronous multiple and single working vacations, balking and
reneging during busy and working vacation periods, Yahiaoui et al. [14] investigated the cost
optimization analysis of a discrete-time, finite capacity, multiserver queueing system. Choi et
al., [15, 16] considered M/M/c retrial queues with feedback, geometric loss, and multi-class
customers and the Bernoulli feedback policy of an M/G/1 queue. A single server M/M/1/N
feedback queueing system with vacation, balking, reneging, and retention of reneged customers
is the subject of a study by Bouchentouf et al. [17]. Kumar et al., [18, 19, 20] studied retrial queue
with Bernoulli feedback, control retrial rate with balking and multi-server, as well as a generalized
M/G/1 feedback queue in which customers are either “positive" or “negative".

Bouchentouf and Guendouzi [21] deal with the study of an MX/M/c Bernoulli feedback
queueing system with two different policies of synchronous vacations and waiting servers. Ke and
Chang [22] studied balking and Bernoulli feedback with a general retrial queue, where a modified
vacation policy is operated by the server. Markovian queueing system with working vacation,
Bernoulli schedule interruption, setup time with feedback, reneging of impatient customers, and
retention of reneged customers are all discussed by Gupta [23]. Jeeva and Kumari [24] gave a
mathematical method to generate the membership function with non-linear programming of
the M/G/1 system, feedback, and bulk arrival queues with server vacation facility, in which
departure probability, service time, arrival rate, vacation time, and batch size was all considered
as fuzzy numbers. Jain [25] presented various schemes under a probability-based model for
queue scheduling operating system. M/G/1 feedback queue is also studied by [26, 27, 28].

In this paper, a single server with a finite capacity queueing system is analyzed. Performance
analysis of the Markovian feedback working vacation queue with and reneging is also discussed.
Customer dissatisfaction as a result of poor service quality is referred to as feedback in queueing
literature. Customers retries service after receiving partial or incomplete service in the case of
feedback. The model assumptions are described in section 2. The steady-state equations and their
matrix solution is calculated in section 3 and 4 respectively. The system’s performance measures
are discussed in section 5. Numerical results and cost analysis of the system are described in
sections 6 and 7 and the further paper concludes in the next section.

2. Model Assumptions

We consider a M/M/1/K queueing model to analyze its performance and effectiveness of
feedback working vacation queue with balking and reneging. The basic assumptions underlying
the model are as:

1. Customer’s arrival follows a Poisson distribution with arrival rate λ.

2. When the server is unoccupied, then customer may join the system with probability q or
leave with complementary probability p = (1 − q). probability of not joining. If a customer
receives service and is dissatisfied, they may leave the system or return with a probability
of p1 = 1 − q1 depending on whether they were a feedback customer or not.

3. Every customer has to wait for a certain time interval T, before being served. If the service
hasn’t begun by then, the customer may become irritated and leave the line, the density
function is given below with the random variable T is

d(t) = αe−αt, t ≥ 0, α > 0.

with mean as 1
α .
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4. Since the departure and arrival rate of the impatient customer without service is indepen-
dent, therefore the average reneging rate r(k) is defined by the function as

r(k) = (k − i)α, i ≤ k ≤ K, i = 0, 1

r(k) = 0, k > K

5. The server goes on vacation when the system is empty. After a vacation has ended, the server
resumes regular service if there are still patrons in line; otherwise, he leaves for another
vacation. The server remains operational and offers service to the arriving customers at a
different service rate while on vacation. The assumption is that the vacation and service
periods will follow a Poisson distribution with parameters ϕ and η, respectively. While on
regular duty and while on working vacation, inter-arrival times, vacation times, and service
times are all separate from one another.

v(t) = ηe−ηt, t ≥ 0, η > 0.

where η is the vacation rate of a server.

3. Steady-state Equation

In this section, we use the Markov process method to derive the steady-state probabilities. Let ϑ0,k
represent the probability that there are k customer in the system when the server is unavailable,
When the server is online, ϑ1,k represents the probability that k customers are present in the
system. By using the Markov process theory, we are able to generate the following collection of
steady-state equations.

0 = −λϑ0,0 + (ηp1 + α)ϑ0,1 + µp1ϑ1,1 (1)

0 = λϑ0,k−1 − (ηp1 + kα + λ + ϕ)ϑ0,k + (ηp1 + (k + 1)α)ϑ0,k+1 (2)

0 = λϑ0,K−1 − (ηp1 + Kα + ϕ)ϑ0,K (3)

0 = −(λ + ηp1)ϑ1,1 + (µp1 + α)ϑ1,2 + ϕϑ0,1 (4)

0 = λϑ1,k−1 − (λ + µp1 + (k − 1)α)ϑ1,k + (µp1 + kα)ϑ1,k+1 + ϕϑ0,k (5)

0 = λϑ1,K−1 − (µp1 + (K − 1)α)ϑ1,K + ϕϑ0,K (6)

4. Solution

The steady-state probabilities ϑj,k, j = 0, 1, j ≤ k ≤ K, are acquired when a set of equations has been solved (1)-
(6) using matrices. Let Υ = (Υ0, Υ1) be the steady-state probability vector, where Υ0 = (ϑ0,0, ϑ0,1, · · · , ϑ0,K)
and Υ1 = (ϑ1,1, ϑ1,2, · · · , ϑ1,K). The equation (1)-(6) the matrix form of which reads as

ΥΘ = 0 (7)

ΥE = 1 (8)

where Θ is the block-formed transition rate matrix for the Markov process and E is a column vector
with each component equal to one

Θ =

(
B1 B2
B3 B4

)
The elements of the matrices B1, B2, B3 and B4 are given by
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B1 =



−λ, if k = j = 1,

λ, if k = j − 1, j ≥ 2,

ηp1 + jα, if k = j + 1,

uj, if k = j, j ≥ 2,

0, or else

B2 =

{
ϕ, if k = j + 1,

0, or else

B3 =

{
µp1, if k = j = 1,

0, or else

B4 =


vj, if k = j,
λ, if k = j − 1, j ≥ 2,

µp1 + (j − 1)α, if k = j + 1,

0, or else

where for 1 ≤ j ≤ K, uj = −(ηp1 + (j − 1)α + λ); vj = −(λ + µp1 + (j − 1)α). B1 is a square matrix of
order K + 1, B2 is a (K + 1)× K, B3 is a K × (K + 1), B4 and is a square matrix of order K.
Based on the partition, Υ = (Υ0, Υ1), equation (7) and (8) can be written as:

Υ0B1 + Υ1B3 = 0 (9)

Υ0B2 + Υ1B4 = 0 (10)

Υ0E0 + Υ1E1 = 1 (11)

where E0, E1 are, respectively, column vectors of orders K + 1 and K, each with one element.
From equation (9), we have

Υ0 = −Υ1B3B−1
1 (12)

Using equation (12) in (10) and (11), we get

Υ1(I − B3B−1
1 B2B−1

4 ) = 0 (13)

Υ1(E1 − B3B−1
1 E0) = 1 (14)

The matrices B2 and B3 can be written as

B3 =

(
v1 O1
O2 O3

)
K×(K+1)

, B2 = ϕ

(
O1

IK×K

)
(K+1)×K

where O1, O2 and O3 are zero matrices of order 1 × K, (K − 1) × 1 and (K − 1) × K, respectively. Let
B1

−1 = [bk,j](K+1)×(K+1) and w = (b1,1, b1,2, · · · , b1,K+1) denotes the 1st row of B1
−1.

B3B−1
1 =

(
v1w
O4

)
K×(K+1)

(15)

where O4 is a zero matrix of order (K − 1)× (K + 1)
Kow,

B2B−1
4 = ϕ

(
O1
B−1

4

)
(K+1)×K

(16)

From equation (15) and (16), we have

B3B−1
1 B2B−1

4 = v1ϕ

(
w0B−1

4
O3

)
(K+1)×K

(17)
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where w0 = (b1,2, b1,3, · · · , b1,K+1)
Let us partition Υ1 as

[
ϑ1,1, Υ̃1

]
where Υ̃1 = [ϑ1,k, 2 ≤ k ≤ K]1×(K−1). From equation (13) and (17), we have

[
ϑ1,1, Υ̃1

]
=
[
ϑ1,1, Υ̃1

] (v1ϕw0B−1
4

O3

)
As a result, the probabilities of the system’s length for the regular service period are given by

ϑ1,kthe = ϑ11v1ϕw0B−1
4 ϵi, 1 ≤ k ≤ K,

where ϵi is a column vector whose kth component is unity and the remaining components are zero. From
equation(12) and (15), the system length probabilities of the server being on working vacation is given by

[ϑ0,0, ϑ0,1, · · · ϑ0,K ] = −
[
ϑ1,1, Υ̃1

] (v1w
O4

)
Hence,

ϑ0,k = −ϑ1,1v1wϵk+1, 0 ≤ k ≤ K

By applying the normalization condition ∑k
j=0 ∑K

k=j ϑk,j = 1 the only unknown ϑ1,1 is obtained as

ϑ1,1 =

(
v1ϕ

K

∑
k=1

w0B−1
4 ϵi − v1

K

∑
k=0

wϵk+1

)−1

(18)

This completes the evaluation of steady-state probabilities.

5. Performance Measures

The steady-state probabilities can then be used to calculate several model performance metrics. The
probability that the server is actively performing routine service PB, the typical number of users in the
system RR, and the likelihood that the server is on vacation PV are all given by

PB =
K

∑
k=1

ϑ1,k; (19)

PV =
K

∑
k=0

ϑ0,k = 1 − PB (20)

LQ =
1

∑
j=0

K

∑
k=0

(k − j)ϑj,k (21)

LS =
K

∑
k=1

k(ϑ0,k + ϑ1,k); (22)

RR =
1

∑
j=0

K

∑
k=0

(k − j)αϑj,k (23)

where (k − j)α is the instantaneous reneging rate.

6. Cost Model

In the following subsection, service rates are used as the decision variables to formulate the cost function of
total expected cost function per unit of time. The best service rates with the lowest overall expected cost
function are what we are trying to determine. The following cost parameters are presumptive:
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Table 1: Cost per unit time

Cost per When
unit time

C1 customer waiting for service
C2 A customer reneges
C3 busy server
C4 server on working vacation
C5 feedback customer during service period
C6 feedback customer during working vacation period

The total expected cost function (TEC) per unit of time may be defined as follows using the definitions
of each of the cost components mentioned above:

TEC = C1LS + C2RR + µ(C3 + q1C5) + η(C4 + q1C6) (24)

where LS and RR are given in equation (22) and (23) respectively.

7. Numerical Results

To illustrate how the various model parameters affect the ideal service rate µ, the ideal expected cost
of the system f (µ), and other system performance measures, we present some numerical examples in
this subsection. We fix the maximum number of customers in the system K = 15 and the cost elements
C1 = 10, C2 = 12, C3 = 20, C4 = 14, C5 = 12, C6 = 18.

(i) Effect of λ on performance measures and cost: Here, we study the variation of the performance
measures defined in equation (22),(23) and (24). Figure 1(a)-(c) display the sensitivity of performance
measures with parameters λ for three different values of K, arrival rate λ, q = 0.02, p1 = 0.3, µ =
5, η = 0.01, α = 0.1, ϕ = 0.1 are considered. From (a) for the different number of customers K and the
arrival rate λ of customer, the length of the system RR increases. From (b) when the arrival rate λ

of customer increases the average reneging rate RR increases. Figure (c) when the arrival rate λ of
customer increases the expected total cost TEC increases lightly.

Figure 1: Variation in performance measures with respect to λ of (a) Expected length of the system (b) Expected no.
of customer loss (c) Total expected cost of the system, where q = 0.02, p1 = 0.3, µ = 5, η = 0.01, α =
0.1, ϕ = 0.1, K, and λ = 3, 3.1, · · · , 3.4 respectively.

(ii) Effect of µ on performance measures and cost: Figure 2(a)-(c) shows the sensitivity of performance
measures with parameters µ for different value of K, arrival rate λ, q = 0.02, p1 = 0.3, λ = 3, η =
0.01, α = 0.1, ϕ = 0.1 are considered. From (a) for the different number of customers K and the service
rate µ of customer, the length of the system RS decreases as obvious. From (b) when the service rate µ

of customer increases the average customer loss RR also decreases. Figure (c) when the service rate µ

of customer increases the expected total cost TEC increases when system capacity decreases.
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Figure 2: Variation in performance measures with respect to µ of (a) Expected length of the system (b) Expected no.
of customer loss (c) Total expected cost of the system, where q = 0.02, p1 = 0.3, λ = 5, η = 0.01, α =
0.1, ϕ = 0.1, K, and µ = 5, 5.1, · · · , 5.4 respectively.

(iii) Effect of α on performance measures and cost: The sensitivity of performance measures with
parameters α of under three different value of K, arrival rate α, q = 0.02, p1 = 0.3, λ = 3, µ = 5, η =
0.01, ϕ = 0.1 are considered can be viewed in figure 3(a)-(c). From (a) for the different number of
customers K and the case parameter α of increases the length of the system RR decreases. From (b)
when the parameter α, the average customer loss LR also decreases. Figure (c) when the parameter α

increases the expected total cost TEC decreases greatly.

Figure 3: Variation in performance measures with respect to α of (a) Expected length of the system (b) Expected
no. of customer loss (c) Total expected cost of the system, where q = 0.02, p1 = 0.3, λ = 3, µ = 5, η =
0.01, ϕ = 0.1, K, and α = 0.1, 0.101, · · · , 0.114 respectively.

(iv) Effect of η on performance measures and cost: Figure 4(a)-(c) represents the sensitivity of performance
measures with parameter η for three different value of K, arrival rate q = 0.02, p1 = 0.3, λ = 3, µ =
5, α = 0.1, ϕ = 0.1 are considered. From (a) for the different number of customer K and the parameter
η increases the length of the system RR decreases lightly. From (b) the average customer loss LR
decreases more when the system capacity is high. Figure (c) when the parameter η increases the
expected total cost TEC decreases lightly.

Figure 4: Variation in performance measures with respect to η of (a) Expected length of the system (b) Expected no. of
customer loss (c) Total expected cost of the system, where q = 0.02, p1 = 0.3, λ = 3, µ = 5, α = 0.1, ϕ =
0.1, K, and η = 0.1, 0.11, · · · , 0.25 respectively.

(v) Effect on performance measures and cost with respect to k: Figure 5(a)-(c) display the sensitivity of
performance measures with parameters µ under three parameters for different value of K, arrival rate
λ = 3, 3.1, · · · , 3.4, µ = 5, 5.1, · · · , 5.4 and α = 0.1, 0.101, · · · , 0.114 q = 0.02, p1 = 0.3, η = 0.01, ϕ =
0.1 are considered. From (a) when we make the variation in K, then RR increases greatly w.r.t. λ, but
increases very slowly w.r.t. µ and α. From (b) when we make the variation in the parameter α then
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the average customer loss is less. Figure (c) total cost of the system is low after making a variation in
α and k.

Figure 5: Variation in performance measures with respect to λ, µ, α of (a) Expected length of the system (b) Expected
no. of customer loss (c) Total expected cost of the system, where q = 0.02, p1 = 0.3, η = 0.01, ϕ = 0.1,
and k = 1, 2, · · · , 15, λ = 3, 3.1, · · · , 3.4, µ = 5, 5.1, · · · , 5.4 and α = 0.1, 0.101, · · · , 0.114 respectively.

(vi) Effect on system lengh w.r.t. parameters in pair: Figure 6(a)-(e) display the sensitivity of performance
measures with parameters and system capacity K = 15 From (a)-(c) making variation in λ and other
three parameters µ, α,η, RR is increasing and decreasing as obvious. From (d) and (e) making variation
in µ and other three parameters α and η, RR is decreasing. From (f) when making variation in α and
η, RR is decreasing when α and η increasing.

Figure 6: Variation in length of the system with respect to (a) λ and µ (b) λ and α (c) λ and η (d) µ and α (e)
µ and η (f) α and η,where λ = 3, 3.1, · · · , 6.5, µ = 5, 5.1, · · · , 8.5, η = α = 0.1, 0.011, · · · , 0.045 else
q = 0.02, p1 = 0.3, λ = 3, µ = 5, η = 0.01, α = 0.1, ϕ = 0.1, K = 15 respectively.

(vii) Effect on average reneging rate w.r.t. parameters in pair: Figure 7(a)-(e) shows the sensitivity of
performance measures with parameters and system capacity K = 15 From (a)-(c) making variation in
λ and other three parameters µ, α, η, RR is increasing and decreasing as obvious. From (d) and (e)
making variation in µ and other three parameters α and η, LR is decreasing. From (f) when making
variation in α and η, LR is decreasing when α and η increasing.
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Figure 7: Variation in average customer loss with respect to (a) λ and µ (b) λ and α (c) λ and η (d) µ and α (e)
µ and η (f) α and η,where λ = 3, 3.1, · · · , 6.5, µ = 5, 5.1, · · · , 8.5, η = α = 0.1, 0.011, · · · , 0.045 else
q = 0.02, p1 = 0.3, λ = 3, µ = 5, η = 0.01, α = 0.1, ϕ = 0.1, K = 15 respectively.

(viii) Effect on total expected cost w.r.t. parameters in pair: Figure 8(a)-(e) display the sensitivity of
performance measures with parameters and system capacity K = 15 From (a)-(c) making variation in
λ and other three parameters µ, α,η, TEC is increasing and decreasing as obvious. From (d) and (e)
making variation in µ and other three parameters α and η, TEC is decreasing. From (f) when making
variation in α and η, TEC is decreasing when α and η increasing.

Figure 8: Variation in total expected cost with respect to (a) λ and µ (b) λ and α (c) λ and η (d) µ and α (e) µ

and η (f) α and η,where λ = 3, 3.1, · · · , 6.5, µ = 5, 5.1, · · · , 8.5, η = α = 0.1, 0.011, · · · , 0.045 else
q = 0.02, p1 = 0.3, λ = 3, µ = 5, η = 0.01, α = 0.1, ϕ = 0.1, K = 15 respectively.

1

Conclusion

In this study, we investigated Markovian feedback queue with reneging and working vacations. We have
obtained the steady-state probabilities and solve them using the matrix technique. The model results
may be useful in modeling various production and service processes involving feedback and impatient
customers. The analysis of the model is restricted to a fixed size. The model’s unrestricted size case can also
be investigated. Furthermore, to obtain time-dependent results model can be solved in a transient state.
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Abstract

In this paper, we analyze the performance of a finite capacity two-server Markovian batch service queueing
model with second optional service. The servers provide two kinds of services, the first essential service
(FES), which is provided to all incoming customers and the second optional service (SOS) to those who
demand it after completing FES. The service times of the two servers are identical and are exponentially
distributed. Matrix-decomposition method is used to obtain the steady-state probabilities of the model.
Numerical results and discussion are presented to demonstrate the impact of the model parameters on the
system behavior. Furthermore, the cost model optimization is developed to determine the optimal service
rates using the Quasi-Newton method to minimize the expected cost. Finally, the findings of this work
show that the blocking probability is monotonically decreases as finite buffer size increases and approaches
its minimum value of zero when finite buffer is sufficiently large.

Keywords: Two-server, Batch service queue, First essential service, Second optional service.

Mathematical Subject Classification: 60k25, 90B22.

I. Introduction

In everyday life, there are various queueing circumstances where all incoming customers demand
the FES and only some may demand the SOS provided by the same server. Currently, this
has taken a major consideration by various researchers such as Wang and Kuki [23] wherein
they analysed the performance of retrial queueing system with SOS. They obtained the queue
length, waiting time and busy period using the method of discrete transformation. SOS with a
single server fixed batch service queueing system during repeated vacations has been studied
by Ayyappan et al., [3]. They analyzed the model using the probability generating function and
Rouche’s theorem to obtain the probability of the number of customers present in the queue
while the server is busy or on vacation.

Multi-server retrial queue with SOS has been presented by Ke et al., [13]. They derived
stationary probabilities using matrix analytic approach. An M/M/1 queue with SOS and
working breakdown has been analysed by Yang and Chen [24] who derived the stationary
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probability distribution of the system size using the matrix geometric method. Other extensive
studies conducted on an assortment of queueing models with SOS are found in Gupur [10];
Kalyanaraman and Murugan [12]; Ke et al., [14]; Uma and Punniyamoorthy [22], etc.
For the most part, customers get the service individually. However, this rule may not work in all
circumstances, since in some places, the server provide service in batch (groups) of customers
instead of serving individually. Batch services are more useful in telecommunication, where data
bundle is transmitted in the accumulated large entities (batches), in the field of transportation, in
a manufacturing system, in a smart city crowdsourcing application for mobile, etc.

Batch service queue has been broadly studied by numerous researchers. Goswami and
Samanta [8] presented the two heterogeneous servers with a discrete-time bulk service queueing
system and derived a closed-form expression of the stationary probabilities at arbitrary epoch. The
manufacturing bulk service queues using Bayesian hierarchical models are presented by Armero
and Conesa [2]. They developed the inferential method for the parameter of the governing
model using hierarchical models. Barbhuiya and Guptal [6] analysed the GI/MY/1 queue,
wherein the closed form explicit formulations of the system distribution at pre arrival and
arbitrary epochs in terms of roots of the characteristic equation generated were derived using the
supplementary variable approach and the difference equation method. The queue for bulk service
with delayed vacation has been analyzed by Krishna Reddy and Anitha [15]. They obtained
stationary probabilities and waiting time distribution of an incoming customer. Ayyappan et al.,
[4] studied the single server fixed batch service queueing system. The server serves exactly k
items at a time. If he finds less than k items in the queue, he takes a multiple vacation of length a.
Batch service with multi-server queue model has been presented by Ghimire et al., [7], wherein
they computed the stationary probability, queue length size and the amount of waiting time in
the queue.

A Markovian single server queueing system has been widely studied by numerous researchers
for the last few decades. Due to increasing demand for services, single server operations can
lead to congestion in the system such as manufacturing and production, medical clinics, in
telecommunication system, etc. Multi-servers have also been studied by various researchers
to reduce congestion, Hwang et al., [11]. The queueing system with two servers that are
heterogeneous and a variant vacation policy has been studied by Yue and Tian [25], where the two
servers take vacations together whenever the system becomes empty. They obtained the explicit
expressions of the stationary distribution of the system size. Krishnamoorthy and Sreenivasan
[16] investigated a queueing system using two heterogeneous servers, one of which is regularly
accessible while the other goes on vacation whenever there are no customers waiting for service
and service times of the two servers are exponentially distributed with different service rates.
They analyzed the model using matrix geometric method to obtain the mean waiting time in the
steady state regime. Kumar et al., [17] investigated the two server queue with heterogeneous
servers that were vulnerable to catastrophes wherein any arriving item requires exactly one server
for the service and the service rates are different. They obtained both transient and stationary
probabilities of number of items in the system using probability generating function and the
modified Bessel function of the first kind. Similar studies are found in Ammar [1] and Kumar
and Sharma [19] with impatient behavior wherein the service times are independently and
exponentially distributed with different service rate. They obtained the explicit transient and
steady state probabilities by using probability generating function. Recently, Kumar et al.,[18]
generalized the work of Kumar and Sharma [19] by introducing the concept of feedback and
reverse balking. They used an iterative approach to obtain the probabilistic measures of the
model.

Queues with limited waiting space are more realistic in real-life circumstances. For example,
routers servicing incoming packets with varying speeds in a network are examples of this scenario.
If the server is busy, the incoming items wait in the queue, but the incoming items are deemed
lost when the waiting space is full. One of the major considerations of a system designer in this
situation is to provide enough buffer space to keep the blocking probability to a minimum. The
limited buffer size queues have been researched by various authors such as Sikdar and Gupta [21],
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who analyzed a queue for batch arrival and batch service with a limited buffer size with single
and repeated vacations. They obtained stationary probability distributions of the number of items
in the queue at departure and pre-arrival epochs. Moreover, they presented the average queue
length, waiting time and the blocking probability as the performance measures. Gupta et al.,[9]
analyzed a queue for bulk services on a single server with finite buffers and vacation. Using the
supplementary variable and embedded Markov chain methods, they obtained the stationary joint
distribution of the queue length and the kind of vacation that the server has taken at different
epochs. Banerjee [5] presented a queue with a limited capacity and workload-dependent service.
They used the embedded Markov chain technique and the supplementary variable approach to
obtain stationary probabilities at a departure and arbitrary epoch.

In view of the growing demands for service in practice, our objective here is to investigate the
performance of finite buffer two-server batch queue with SOS. In existing literature reviews, no
work has been reported with a combination of two-server batch queue with SOS. This inspires us
to investigate a two-server batch queue with SOS. Consideration of SOS with varying batch size
service makes the model more versatile. The main contributions of this paper are as follows.

• First, we derive the stationary probabilities by using matrix-decomposition method.

• Second, we develop a cost function to optimize service rates for both FES and SOS using
Quasi-Newton method so that the expected total cost is minimized.

The remaining part of the paper is structured as follows: Mathematical model description and its
formulation are presented in Section 2. In Section 3, we discuss steady state probabilities where
the servers are busy or idle in both FES and SOS. The performance measures are discussed in
Section 4. The presentation of numerical analysis and discussion is in Section 5. The cost model
optimization is developed in Section 6 and in Section 7, we conclude the paper.

II. Model Description and Mathematical Formulation

We consider a finite buffer M/Mb/2/N queue model with SOS, where arrival occurs according
to a Poisson process with parameter λ. The servers provide two kinds of service, FES, which is
provided to all incoming items and SOS to those whose demand it after completing FES. The
item opts the SOS with probability r (0 ≤ r ≤ 1) or leave the system after completion FES with
the probability (1− r). Furthermore, It is assumed that the service times of two servers are
independently, identically and exponentially distributed, each with service rate µ1 in FES and µ2
in SOS. The queue has limited waiting space of size N. The arriving customers are blocked from
entering the queue whenever the queue size is N. The average rate of service for FES is given by

µi1 =

{
µ1, for i = 1,
2µ1, for i = 2.

The average rate of service for SOS is given by

µj2 =

{
µ2, for j = 1,
2µ2, for j = 2,

where i and j are the number of servers in FES and SOS, respectively.
The servers process a partial batch up to a maximum capacity size of b. If there are less than
b in the queue, one of the servers begins service to those customers. If there are more than 2b
waiting in the queue, then the servers take a batch of size b each based on the order of arrival,
while others in excess of 2b customers, wait in the queue.

Andwilile Abrahamu George and P. Vijaya Laxmi
PERFORMANCE CHARACTERIZATION OF TWO-SERVER B
ATCH SERVICE QUEUE WITH SECOND OPTIONAL SERVICE

RT&A, No 4 (76) 
Volume 18, December 2023 

191



Figure 1: Transition rate diagram for b = 2

Figure 1 is the state transition diagram showing the various transition states of the queueing
model.

I. Formulation of Mathematical Model

At time t ≥ 0, let N(t) be the number of items in the queue, S(t) be the number of servers in FES
and J(t) be the number of servers in SOS, where S(t) and J(t) are defined as follows:

S(t) = i, 0 ≤ i ≤ 2, and J(t) = j, 0 ≤ j ≤ 2.

We observe that, {(N(t), S(t), J(t)); t ≥ 0} defines a three dimensional Markov process in contin-
uous time with state space

E = {(n, i, j); 0 ≤ n ≤ N; 0 ≤ i ≤ 2; 0 ≤ j ≤ 2, i + j ≤ 2} .

Let the transient probabilities are defined as

Pn,i,j(t) = Pr {N(t) = n, S(t) = i, J(t) = j} ,

0 ≤ n ≤ N; 0 ≤ i ≤ 2; 0 ≤ j ≤ 2, i + j ≤ 2,

where P0,i,j(t) is the transient probability that i and j servers are busy with FES or SOS with no
customer waiting in the queue, where 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j ≤ 2.
Pn,i,j(t) is the transient probability that all servers are busy with FES or SOS with n customer
waiting in the queue, where 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2, 1 ≤ n ≤ N.
The above set of probabilities at steady state are denoted by P0,i,j and Pn,i,j, respectively. The
following set of equations are obtained using the probabilistic arguments.
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λP0,0,0 = (1− r)µ1P0,1,0 + µ2P0,0,1, (1)

(λ + µ1)P0,1,0 = λP0,0,0 + 2(1− r)µ1P0,2,0 + µ2P0,1,1, (2)

(λ + 2µ1)P0,2,0 = λP0,1,0 + 2(1− r)µ1

b

∑
i=1

Pi,2,0 + µ2

b

∑
i=1

Pi,1,1, (3)

(λ + 2µ1)Pn,2,0 = λPn−1,2,0 + 2(1− r)µ1Pn+b,2,0 + µ2Pn+b,1,1, 1 ≤ n ≤ N − b, (4)

(λ + 2µ1)Pn,2,0 = λPn−1,2,0, N − b + 1 ≤ n ≤ N − 1, (5)

2µ1PN,2,0 = λPN−1,2,0, (6)

(λ + µ2)P0,0,1 = (1− r)µ1P0,1,1 + 2µ2P0,0,2 + rµ1P0,1,0, (7)

(λ + 2µ2)P0,0,2 = rµ1P0,1,1, (8)

(λ + 2µ2)Pn,0,2 = λPn−1,0,2 + rµ1Pn,1,1, 1 ≤ n ≤ N − 1, (9)

2µ2PN,0,2 = λPN−1,0,2 + rµ1PN,1,1, (10)

(λ + µ1 + µ2)P0,1,1 = λP0,0,1 + (1− r)µ1

b

∑
i=1

Pi,1,1 + 2µ2

b

∑
i=1

Pi,0,2 + 2rµ1P0,2,0, (11)

(λ + µ1 + µ2)Pn,1,1 = λPn−1,1,1 + (1− r)µ1Pn+b,1,1 + 2µ2Pn+b,0,2 + 2rµ1Pn,2,0,

1 ≤ n ≤ N − b, (12)

(λ + µ1 + µ2)Pn,1,1 = λPn−1,1,1 + 2rµ1Pn,2,0, N − b + 1 ≤ n ≤ N − 1, (13)

(µ1 + µ2)PN,1,1 = λPN−1,1,1 + 2rµ1PN,2,0. (14)

The steady state equations (1)-(14) can be represented as matrix-form

PQ=0, (15)

where 0 denotes the column vector with all elements equal to zero, and

Q =



−λ M12 M13 0 M15 M16 M17
M21 M22 M23 M24 M25 M26 M27
M31 M32 M33 M34 M35 M36 M37

0 M42 M43 M44 M45 M46 M47
M51 M52 M53 M54 M55 M56 M57
M61 M62 M63 M64 M65 M66 M67
M71 M72 M73 M74 M75 M76 M77


is a (3N + 6)× (3N + 6) square matrix. The entries of the matrix Q are listed below:

M12 =
(
λ 0

)
1×2 , M13 =

(
0 0 · · · 0

)
1×N , M15 =

(
0 0 · · · 0

)
1×N ,

M27 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

, M17 =
(
0 0 · · · 0

)
1×N , M21 =

(
(1− r)µ1

0

)
2×1

,

M23 =

(
0 0 · · · 0
λ 0 · · · 0

)
2×N

, M24 =

(
0

2rµ1

)
2×1

, M25 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

,

M16 =
(
0 0

)
1×2 , M26 =

(
rµ1 0
0 0

)
2×2

, M31 =


0
0
...
0


N×1

, M32 =


0 ri2
...

...
0 0
0 0


N×2

,

M51 =


0
0
...
0


N×1

, M33 =



α λ 0 · · · 0 0
A10 α λ · · · 0 0
A20 A21 α · · · 0 0

...
...

...
. . .

...
...

AN−20 AN−21 AN−22 · · · α λ
AN−10 AN−11 AN−12 · · · AN−1N−2 −2µ1


N×N

,
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where

α = −(λ + 2µ1), ri2 = 2(1− r)µ1, for i = 1, 2, · · · , b, and b ≤ N,

Aij =

{
2(1− r)µ1, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M34 =


0
0
...
0


N×1

, M35 =


2rµ1 0 · · · 0

0 2rµ1 · · · 0
...

...
. . .

...
0 0 · · · 2rµ1


N×N

, M44 = −(λ + µ1 + µ2),

M37 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


N×N

, M42 =
(
µ2 0

)
1×2 , M43 =

(
0 0 · · · 0

)
1×N ,

M45 =
(
λ 0 · · · 0

)
1×N , M46 =

(
(1− r)µ1 rµ1

)
1×2 , M47 =

(
0 0 · · · 0

)
1×N ,

M52 =


0 si2
...

...
0 0
0 0


N×2

, M53 =



0 0 0 · · · 0 0
B10 0 0 · · · 0 0
B20 B21 0 · · · 0 0

...
...

...
. . .

...
...

BN−20 BN−21 BN−22 · · · 0 0
BN−10 BN−11 BN−12 · · · BN−1N−2 0


N×N

,

where
si1 = (1− r)µ1 and si2 = µ2, for i = 1, 2, · · · , b, and b ≤ N,

Bij =

{
µ2, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M55 =



λ′ λ 0 · · · 0 0
C10 λ′ λ · · · 0 0
C20 C21 λ′ · · · 0 0

...
...

...
. . .

...
...

CN−20 CN−21 CN−22 · · · λ′ λ
CN−10 CN−11 CN−12 · · · CN−1N−2 −(µ1 + µ2)


N×N

, M61 =

(
µ2
0

)
2×1

,

where λ′ = −(λ + µ1 + µ2).

Cij =

{
(1− r)µ1, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M22 =

(
−(λ + µ1) λ
2(1− r)µ1 −(λ + 2µ1)

)
2×2

, M57 =


rµ1 0 · · · 0
0 rµ1 · · · 0
...

...
. . .

...
0 0 · · · rµ1


N×N

,

M62 =

(
0 0
0 0

)
2×2

, M63 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

, M67 =

(
0 0 · · · 0
λ 0 · · · 0

)
2×N

,
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M65 =

(
0 0 · · · 0
0 0 · · · 0

)
2×N

, M66 =

(
−(λ + µ2) 0

2µ2 −(λ + 2µ2)

)
2×2

, M64 =

(
λ
0

)
2×1

,

M71 =


0
0
...
0


N×1

, M72 =


0 0
0 0
...

...
0 0


N×2

, M73 =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


N×N

,

M74 =


wi1

...
0
0


N×1

, M75 =



0 0 0 · · · 0 0
D10 0 0 · · · 0 0
D20 D21 0 · · · 0 0

...
...

...
. . .

...
...

DN−20 DN−21 DN−22 · · · 0 0
DN−10 DN−11 DN−12 · · · DN−1N−2 0


N×N

,

where
wi1 = 2µ2, for i = 1, 2, · · · , b, and b ≤ N,

Dij =

{
2µ2, if i−j

b = 1 for 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 2, b ≤ N,
0, otherwise.

M54 =


si1
...
0
0


N×1

, M36 =


0 0
0 0
...

...
0 0


N×2

, M76 =


0 0
0 0
...

...
0 0


N×2

, M56 =


0 0
0 0
...

...
0 0


N×2

,

M77 =



−(λ + 2µ2) λ 0 · · · 0 0
0 −(λ + 2µ2) λ · · · 0 0
0 0 (−λ + 2µ2) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −(λ + 2µ2) λ
0 0 0 · · · 0 −2µ2


N×N

,

In the following sequel, we use a matrix decomposition approach to obtain the stationary
probabilities in a recursive manner. Let P0,0,0, P1, P2, P0,1,1, P3, P4, P5 be the vectors of
stationary probabilities where P1 = (P0,1,0, P0,2,0), P2 = (P1,2,0, P2,2,0, · · · , PN,2,0), P3 =
(P1,1,1, P2,1,1, · · · , PN,1,1), P4 = (P0,0,1, P0,0,2), P5 = (P1,0,2, P2,0,2, · · · , PN,0,2).

From equation (15) it follows that

−λP0,0,0 + P1M21 + P4M61 = 0, (16)

P0,0,0M12 + P1M22 + P2M32 + P0,1,1M42 + P3M52 = 0, (17)

P1M23 + P2M33 + P3M53 = 0, (18)

P1M24 − P0,1,1M44 + P3M54 + P4M64 + P5M74 = 0, (19)

P2M35 + P0,1,1M45 + P3M55 + P5M75 = 0, (20)

P1M26 + P0,1,1M46 + P4M66 = 0, (21)

P3M57 + P4M67 + P5M77 = 0. (22)

Equation (21) yields

P4 = P1Φ1 + P0,1,1Φ2, (23)
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where Φ1 = −M26M−66
1 and Φ2 = −M46M−66

1.
Using equation (23) into equation (16), we obtain

P0,0,0 =
1
λ
[P1Φ3 + P0,1,1Φ4] , (24)

where Φ3 = M21 + Φ1M61 and Φ4 = Φ2M61.
From equation (22), we obtain

P5 = P3Φ5 + P1Φ6 + P0,1,1Φ7, (25)

where Φ5 = −M57M−1
77 , Φ6 = −Φ1M67M−1

77 and Φ7 = −Φ2M67M−1
77 .

Substituting equation (25) into equation (20), we get

P3 = (P2Φ8 + P0,1,1Φ9 + P1Φ10)Φ−1
11 , (26)

where Φ8 = −M35, Φ9 = −(M45 + Φ7M75), Φ10 = −Φ6M75
and Φ11 = M55 + Φ5M75.
Using equation (26) into equation (18), we get

P2 = (P1Φ12 + P0,1,1Φ13)Φ−1
14 , (27)

where Φ12 = −(M23 + Φ10M53Φ−1
11 ), Φ13 = −Φ9M53Φ−1

11
and Φ14 = M33 + Φ8M53Φ−1

11 .
Using equations (27) into equation (26), we have

P3 = P1Φ15 + P0,1,1Φ16, (28)

where Φ15 = Φ12Φ−1
14 Φ8Φ−1

11 + Φ10Φ−1
11 and Φ16 = Φ13Φ−1

14 Φ8Φ−1
11 + Φ9Φ−1

11 .
Substituting equations (24), (27) and (28) into equation (17), we have

P1 = P0,1,1Φ17, (29)

and Φ17 is given by

Φ17 = −AB−1,

where A = Φ4M12 + λΦ13Φ−1
14 M32 + λM42 + λΦ16M52,

B = Φ3M12 + λM22 + λΦ12Φ−1
14 M32 + λΦ15M52.

Substituting the value of P1 into equations (23), (24), (25), (27) and (28), respectively, we obtain

P4 = P0,1,1(Φ17Φ1 + Φ2), (30)

P0,0,0 = P0,1,1
1
λ
(Φ17Φ3 + Φ4), (31)

P5 = P0,1,1(Φ17Φ15Φ5 + Φ16Φ5 + Φ17Φ6 + Φ7), (32)

P2 = P0,1,1(Φ17Φ12Φ−1
14 + Φ13Φ−1

14 ), (33)

P3 = P0,1,1(Φ17Φ15 + Φ16). (34)

Now all probabilities have been expressed as a function of P0,1,1. The normalization condition is

P0,0,0 + P0,1,1 + P1e1 + P2e2 + P3e2 + P4e1 + P5e2 = 1, (35)

where e1 and e2 are vectors with all of the entries equal to one of dimensions (2× 1) and (N × 1),
respectively.

Substituting equations (29), (30), (31), (32), (33) and (34) into (35), we get

P0,1,1 =
λ

Φ18
, (36)
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where

Φ18 = Φ17Φ3 + Φ4 + λ(1 + Φ17e1 + Φ17Φ12Φ−1
14 e2 + Φ13Φ−1

14 e2

+ Φ17Φ15e2 + Φ16e2 + Φ17Φ1e1 + Φ2e2 + Φ17Φ15Φ5e2

+ Φ16Φ5e2 + Φ17Φ6e2 + Φ7e2).

The derivation is complete for all stationary probabilities, which can be used to find the measures
of performance of the model.

III. Measures of Performance

In this section, we list out some key measures of performance that reflect the bahaviour of the
model.

• Let Ls denote the mean number of customers in the system when the servers are busy

Ls =
b

∑
l=1

b

∑
m=1

N

∑
n=0

(n + l + m)Pn,i,j, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2.

• Let Lq denote the mean number of customers in the queue when the servers are busy

Lq =
N

∑
n=1

nPn,i,j, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2. (37)

• The arriving customers are blocked from entering the queue whenever the queue size is N.
In this case the blocking probability (Pblock) is given by

Pblock = PN,2,0 + PN,1,1 + PN,0,2. (38)

• The effective arrival rate is given by

λe f f = λ(1− Pblock) = λ

(
N−1

∑
n=0

Pn,i,j

)
, 0 ≤ i ≤ 2, 0 ≤ j ≤ 2, i + j = 2.

The expected waiting time in the system using Little’s law, we get

Ws =
Ls

λe f f
.

• The expected waiting time in the queue using Little’s law, we get

Wq =
Lq

λe f f
. (39)

• Percentage Variation (P.V.) in waiting time (Wq) is defined as

P.V. =
|(Wq)b2 − (Wq)b1|

(Wq)b1
× 100%,

where (Wq)b1 and (Wq)b2 are the waiting time of two values of b.
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I. Practical Application of the Model

The queueing model described in this paper has an application in hospital management systems.
The model can be applied to situations where the outpatients request an appointment for HIV
testing in the clinic centre. The clinic officer monitors the length of booking windows for
appointments of the outpatients, but since, in most cases, there is a limited number of doctors, it
leads to an unbalanced ratio between the number of outpatients and the doctors. This situation
leads to an increase in the length of the booking window and brings the long waiting for
appointments. Therefore, to shorten outpatients waiting time, we limit the size of the booking
window and assume the clinic centre has a limited slots capacity during a limited length of the
booking window. The clinic centre capacity can be divided into sessions/periods of an equal
amount of slots. The slots are termed as the maximum size of the outpatient appointments
per session. In this scenario, we consider the pooled testing being used to screen the blood of
outpatients to detect HIV infections. The slots are taken into service as the primary test for blood
sample testing, which is tested in groups. The slots that test positive results opt for a secondary
test for further testing. In contrast, all outpatients in the slots are cleared and exempted from
further testing if slots test negative. In this situation, appointment, doctors, pooled test (testing in
group), limited length of the booking window, primary test and secondary test correspond to the
arrivals, servers, batch testing, limited queue capacity, FES and SOS, respectively, in queueing
terminology. In the next section, this model application in practice is analyzed with a numerical
investigation.

IV. Numerical Investigation

In this section, we present the applicability of the solutions obtained using matrix-decomposition
method. We compute the model numerically by taking the model parameters that have close
incidence with the practical situations as N = 14, b = 3, λ = 0.6, µ1 = 0.4, µ2 = 0.3, r = 0.4,
with the assumption that b ≤ N, where

• λ = Appointment rate of outpatients to the clinic centre,

• µ1 = Service rate during primary test,

• µ2 = Service rate during secondary test,

• r = Probability of opting secondary test,

• b = Maximum number of appointment of outpatients per session,

• N = Maximum capacity of the outpatients at the clinic centre.

Table 1: Variation in different measures of performance with the change in service rate (µ1 and µ2)

µ1 Lq Wq Pblock µ2 Lq Wq Pblock
0.1 3.745370 6.480820 0.038017 0.1 6.193580 10.32330 0.105915
0.2 1.727790 2.884150 0.001948 0.2 1.423120 2.371980 0.001781
0.3 1.116660 1.861360 0.000308 0.3 0.836311 1.393880 0.000123
0.4 0.836311 1.393880 0.000123 0.4 0.655543 1.092590 0.000029
0.5 0.678974 1.131630 0.000078 0.5 0.569728 0.949556 0.000014
0.6 0.580261 0.967104 0.000061 0.6 0.520022 0.866710 0.000009
0.7 0.513680 0.856134 0.000053 0.7 0.487796 0.812998 0.000008
0.8 0.466371 0.777284 0.000048 0.8 0.465319 0.775536 0.000007
0.9 0.431387 0.718978 0.000045 0.9 0.448812 0.748024 0.000006
1.0 0.404684 0.674474 0.000042 1.0 0.436214 0.727027 0.000005
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Table 1 shows the effect of the service rate of primary test (µ1) and secondary test (µ2) on some
performance measures. We observe that increasing µ1(µ2) decreases Lq, Wq and Pblock. This is
because as µ1(µ2) increases, outpatients are served faster so that the queue length and the waiting
time decrease. Moreover, Pblock tends to zero due to faster services.
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Figure 2: Effect of buffer size on the blocking probability

Figure 2 shows the impact of buffer size (N) on the blocking probability (Pblock) for different
batch sizes b. We observe that Pblock monotonically decreases as N increases and reaches its
minimum value zero as N is sufficiently larger. Moreover, when N is kept fixed, Pblock decreases
with the increase of b, as we expect. This is because as b incrases, more number of outpatients are
taken for service in a batch, which leads to a decrease in size of the queue. Hence Pblock decreases.
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Figure 3: Effect of finite buffer size on the expected waiting time in the queue (Wq)
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In Figure 3, we observe that for fixed N, Wq decreases as b increases. This is because, as b
increases, more outpatients are served in a batch at a time, as a result, Wq decreases. Further,
for fixed b, except b = 1, the waiting time is more prominently increasing when N lies in [3, 6].
However, when the buffer size increases beyond 6, the waiting time is not much affected by
increasing N, since the arrival rate is constant and the doctors serve the outpatients in batches
b > 1. When b = 1, the waiting time increases monotonically as N increases. The reason is that
by increasing the buffer size, more outpatients accumulate in the queue, and the doctor serves
one outpatient at a time, this leads to an increase in the queue length. Hence, the waiting time
increases compared to b = 3 (b = 5).
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Figure 4: Impact of the arrival rate on the expected queue length

Figure 4 shows the impact of λ on the expected queue length (Lq) for different values of N. It
is clear that as λ increases, Lq increases for all values of N, as it should be. Moreover, for a fixed
λ, as N increases, more outpatients accumulate in the queue thereby an increasing trend can be
seen in Lq.
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Figure 5: Impact of arrival rate on the blocking probability
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Figure 5 shows the impact of λ on Pblock. As intuitively expected, Pblock increases with the
increase of λ. Furthermore, for a fixed λ, Pblock is high for smaller values of N, which is true.
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Figure 6: Impact of arrival rate on the percentage variation in expected waiting time

Figure 6 shows the impact of arrival rate λ on the P.V. in Wq in two cases, case 1: P.V. of b = 1
vs b = 3 and case 2: b = 1 vs b = 5. As λ increases, the P.V. in Wq for case 1 and case 2 initially
increases up to λ = 0.7 and for λ > 0.7 it slightly decreases. Moreover, the P.V. in Wq varies
widely as λ increases. This means that as arrival rate increases, there is a high probability of
blocking outpatients to enter the clinic centre.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Arrival rate ( )

0

5

10

15

E
x
p

e
c
te

d
 w

a
it

in
g

 t
im

e
 i
n

 t
h

e
 q

u
e
u

e

b = 1

b = 3

b = 5

Figure 7: Impact of arrival rate on the anticipated waiting time

For different values of b, we show the impact of λ on the anticipated waiting time (Wq) in
Figure 7. As λ increases, the inflow of outpatients to the clinic centre increases, which tends to a
longer queue. Hence, Wq increases. Further, Wq shows an opposite trend with the increase of
batch size taken for the service, as intuitively expected.
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Figure 8: Impact of arrival rate on the anticipated waiting time in the system

Figure 8 demonstrates the impact of λ on the anticipated waiting time in the system (Ws) for
different values of r. For a fixed r, it is observed that Ws increases with the increase of λ, as we
expect. Furthermore, for a fixed λ, Ws is smaller in the absence of secondary test (r = 0.0), and
as r increases, more number of outpatients are tend to secondary test (SOS), which leads to an
increase in Ws.
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Figure 9: Effect of batch size on blocking probability

Figure 9 shows the effect of b on the blocking probability (Pblock) for different r. As b increases,
more outpatients are served in batch and leave the queue, which results in a decrease of Pblock.
Furthermore, for fixed b, Pblock increases as r increases. The reason is that the outpatients opting
for secondary test increase the expected waiting time of other outpatients to be served.
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Figure 10: Effect of probability r on the expected queue length

Figure 10 depicts the effect of r on the anticipated queue length (Lq). We observe that as r
increases, outpatients opt for secondary test, thereby increasing the expected queue length. Also,
for a fixed r, as batch size increases, more outpatients are served at a time, resulting in a decrease
in Lq.

V. Cost Model Optimization

In this section, we present the total anticipated cost function per item per unit time. The main
goal is to figure out the optimal value of service rates µ1 and µ2 for primary and secondary tests,
respectively, so that the cost is minimized. We apply the Quasi-Newton technique to derive the
optimal values of the service rates.

I. Quasi-Newton Method

Quasi-Newton method is reliable and efficient for finding a minimizer of a nonlinear function by
estimating the curvature along a sequence of search directions with some fixed tolerance (say
ε). Let µi denote the current point at iteration i = 0, 1, 2, · · · The gradient of f at µi is denoted
−→∇ f (µi) and abbreviated to

−→∇ f (µ). We use H(µi) to denote a positive definite matrix which is
an estimate of the inverse Hessian

−→∇ 2 f (µi)−1. It is important to note that if f is not differentiable
at µi+1 we say that the algorithm breaks down (in theory) and if

−→∇ f (µ) = 0 we say it terminates
at a smooth stationary point (for more details the reader may refer [?]).

II. Algorithm for Quasi-Newton method

The steps of Quasi-Newton method can be described as follows:

Step 1: Pick any starting trial solution for µ0 = (µ0
1, µ0

2) and compute f (µ0
1, µ0

2).

Step 2: While | ∂ f
∂µ1
| > ε or | ∂ f

∂µ2
| > ε; do step 3− 5.

Step 3: Compute the cost gradient
−→∇ f (µ) = [ ∂ f

∂µ1
, ∂ f

∂µ2
]T and the cost Hessian matrix H(µ) = ∂2 f

∂µ2
1

∂2 f
∂µ1∂µ2

∂2 f
∂µ2∂µ1

∂2 f
∂µ2

2

 at point −→µ (i), provided that ∂2 f
∂µ2

1
( ∂2 f

∂µ2
2
)− ( ∂2 f

∂µ1∂µ2
)2 6= 0, which enables the
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existence of inverse of H(µ).

Step 4: Update the new trial solution µ(i+1) = µ(i) − [H(µ(i))]−1−→∇ f (µ(i)).

Step 5: Set i = i + 1 and return to step 2. If the gradient is sufficiently smaller than ε, then stop.

To implement the above algorithm, we propose the cost function f (µ1, µ2) per item per unit time
as

f (µ1, µ2) = cqLq + c1µ1 + c2µ2 + 2c3. (40)

Let us consider the following optimization problem:

f (µ∗1 , µ∗2) = Minimize
s.t µ1>µ2

f (µ1, µ2),

where the various cost components are defined as follows:
cq = cost per unit per item present in the queue,
c1 = cost per unit time when the servers are in FES,
c2 = cost per unit time when the servers are in SOS,
c3 = fixed cost for purchase of one server.
The goal of using this cost model is to give emphasis on the service rates in order to have a cost
benefit and less congestion at the queueing system.
We apply the Quasi-Newton technique to obtain the optimal value of service rates (µ1, µ2).
Assuming the values to the coefficients of the expected total cost function in (40) as cq =
$600, c1 = $300, c2 = $400, c3 = $200, ε = ε1 = ε2 = 10−7 and λ = 0.6, b = 3, r = 0.4 and
N = 14. Starting with the initial values (µ0

1, µ0
2) = (0.4, 0.3), the following Table values have been

calculated.

Table 2: Quasi-Newton Method.

Iteration 0 1 2 3
µ1 0.40000 0.53331 0.64672 0.69485
µ2 0.30000 0.37052 0.43434 0.46377
f (µ1, µ2) 1141.79 1010.26 974.409 971.328
Lq 0.83631 0.50344 0.34443 0.29561
∂ f
∂µ1

-914.739 -308.569 -68.0794 -2.25317
∂ f

∂µ2
-1275.38 -437.473 -99.3126 -3.79388

Hessian
[

6861.83 2.13400
2.13400 18086.7

] [
2720.75 2.82643
2.82643 6854.12

] [
1414.49 2.10218
2.10218 3374.53

] [
1098.71 1.79815
1.79815 2530.27

]
Iteration 4 5 6 7
µ1 0.69690 0.69667 0.69669 0.69669
µ2 0.46530 0.46513 0.46515 0.46515
f (µ1, µ2) 971.324 971.324 971.324 971.324
Lq 0.29358 0.29378 0.29376 0.29376
∂ f

∂µ1
0.25677 -0.02454 0.00303 -0.00029

∂ f
∂µ2

0.34083 -0.04239 0.00402 -0.00050

Hessian
[

1087.19 1.78470
1.78470 2494.97

] [
1088.50 1.78605
1.78605 2498.18

] [
1088.38 1.78590
1.78590 2497.79

] [
1088.39 1.78592
1.78592 2497.83

]

From Table 2, we find that the minimum cost per unit time is f (µ∗1 , µ∗2) = $971.324 at
(µ∗1 , µ∗2) = (0.69669, 0.46515) achieved at seventh iteration.
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Table 3: The optimal service rates (µ1, µ2) and cost function f (µ1, µ2) obtained in variation of b and r.

µ∗1 µ∗2 Lq f (µ∗1 , µ∗2)
r = 0.2 0.80571 0.572062 0.234602 1011.3

b = 1 r = 0.5 0.728169 - - -
r = 0.8 0.691397 - - -
r = 0.2 0.687462 0.357727 0.243295 895.306

b = 3 r = 0.5 0.698797 0.505399 0.314466 1000.48
r = 0.8 0.700593 0.598757 0.367520 1070.19
r = 0.2 0.670994 0.327201 0.250341 882.383

b = 5 r = 0.5 0.687876 0.475721 0.321209 989.377
r = 0.8 0.697033 0.570477 0.373146 1061.19
r = 0.2 0.667993 0.319684 0.252881 880.000

b = 7 r = 0.5 0.685428 0.469603 0.323526 987.585
r = 0.8 0.695602 0.565179 0.375082 1059.80
r = 0.2 0.667434 0.317632 0.25369 879.497

b = 9 r = 0.5 0.684913 0.468318 0.32414 987.285
r = 0.8 0.695243 0.564205 0.375558 1059.59

In Table 3, we observe that

• For fixed b, as r increases, we observe that µ∗1 shows an increasing trend. However, for b = 1,
as r increases, the reverse trend is observed in µ∗1 . This is necessary in order to balance the
system in the profitable manner. On the other hand, it is obvious that µ∗2 , Lq and f (µ∗1 , µ∗2)
increase with the increase of r.

• Similarly, for a fixed r, as b increases, µ∗1 , µ∗2 and f (µ∗1 , µ∗2) all decreases except Lq which
increases as b increase. Lq increase because the service rates decrease in order to balance
the system profitably.

• For b = 1 and r = (0.5)0.8, the service rate in secondary test (SOS) does not satisfy the
condition µ1 > µ2. Hence, we exclude those values.

In general, we observe the following features of the queueing system:

• As service rates increases, blocking probability, expected waiting time, and queue size
decrease.

• The blocking probability is higher for smaller values of buffer size.

• An increase in arrival rate increases the blocking probability, expected waiting time, and
queue size.

• An increase in batch size decreases the blocking probability, expected waiting time, queue
size, and optimum cost.

• An increase of r probability increases the optimum cost.

VI. Conclusion

A two-server batch service queueing model with SOS is studied using matrix-decomposition
method. The cost model optimization was also developed to determine the optimal service
rates to minimize the cost. Performance measures and numerical illustrations discussed in this
paper provide valuable insights about the functioning of clinic centre in providing the services
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of primary and secondary test. The clinic offices will benefit from the simplified numerical
simulations, which will help them increase system efficiency.

In future work, we will incorporate a two-server batch service queue with SOS, adding the
concepts of working vacations and vacation interruption. Also, we will consider the transient
state in the current model with batch arrival.
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Abstract

Fuzzy set theory is a distinctive way of approaching ambiguous information. In this artifact, we introduce
a new extension of fuzzy set known as Quadrasophic Fuzzy set and its properties. The Quadrasophic
Fuzzy set has four parameters. The attributes and operations of the Quadrasophic Fuzzy sets are
defined with pertinent examples. The arithmetic aggregator operators with a redefined level of 0.5 are
introduced. The theorems of aggregator operators of Quadrasophic Fuzzy sets are explained using
mathematical formulations. Suitable results and examples are provided to enlighten the proposed method.
The arithmetic aggregator operators of the proposed method have been used in decision- making to get
the optimal solution with supplementary statistics. Additionally, the selection of appropriate fertilizer in
farming is demonstrated using the operators of the suggested model. A decision making approach is also
used to develop the proposed method in order to identify the ideal solution. An illustration is provided to
examine the unique feature of the proposed method to resolve the decision-making problems with a perfect
solution.

Keywords: Quadrasophic Fuzzy set, Operations, Aggregated operator, Decision making , QF-
VIKOR

1. Introduction

The most crucial factor in analyzing the vagueness state is the fuzzy set. The theory of
fuzzy sets and its numerous extensions help in solving decision-making issues and are useful
in real-world circumstances that involve uncertain data. To address the newly introduced non-
membership parameter the Intuitionistic fuzzy set was introduced by Atanassov [1] . R. Yager
[7] develops the idea of the Pythagorean fuzzy set (PFS) in order to address the IFS deficiency.
To tackle a bipolar environment, Zhang [8] proposed the concept of a bipolar fuzzy set. Cuong
proposed the idea of a Picture fuzzy set to manage the neutral environment. The Neurosophic
fuzzy set was a concept that Florentin Smarandache [2] presented to handle three new parameters .

There is a great deal of unclear information available today. Poor choices can cause
a person to suffer in life. A successful existence depends on making decisions. Every field
relies heavily on decisions to move forward in the right direction. For the examination of
decision-making, fuzzy set theory is useful. The authors devised a variety of strategies to find
the MCDM problem’s ideal answer. Some of the operators used in MCDM problems comprise
the fuzzy weighted technique, arithmetic and geometric operators, power operators, Yager’s
operator, Dombi’s operator, weighted ordered arithmetic and geometric, and hybrid operator. To
obtain precise outcomes, authors today use cutting-edge techniques to tackle decision-making
problems. And also, in order to obtain the results in an appropriate manner, several authors have
incorporated the current models into new methodologies. Also, various extensions of the fuzzy
set are used in decision-making environments to produce the best results. The use of MDCM
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is widespread, including applications in areas like business management, operations research,
neural-network, and medical science.

C. Jana et al. [5] analyzed the role of bipolar fuzzy Dombi aggregation operators in the
multi-attribute decision-making process. K. Mohana and R. Jansi [6] developed the weighted
arithmetic operator and applied it to the MCDM problem in a bipolar-Pythagorean environment.
The VIKOR technique [10] for decision-making was employed by several authors.

A new idea in fuzzy set design, known as a Quadrasophic fuzzy set (QFS), employs
two new parameters. Restricted membership values are a QFS exclusive feature that helps it
effectively manage uncertain situations. QFS has four parameters: positive membership functions,
restricted positive, restricted negative, and negative. The system’s advantages and disadvantages
are revealed by the restricted value. As a result, QFS consists of techniques with built-in values
that make it simpler to understand the situation and deliver accurate results.

In this artifact, Section 2 provides the preliminary definitions. Basic operations of QFS and
results are given in Section 3, certain properties, operations and theorems of QFS are presented in
Section 4 with pertinent examples. The comparison study with other current models is presented
in Section 5 to corroborate our findings. Section 6 illustrates the use of QFS to analyze fertilizer
in agricultural decision-making. The novel application of the QF-VIKOR technique in decision-
making is shown in Section 7 and Section 8 supplies the conclusion with its scope for further
research.

2. Preliminaries

Intuitionistic Fuzzy sets [4]: An intuitionistic fuzzy set I in the non-empty set X is defined as
I = {( x, µ( x) , ν( x) ; x ∈ X) } where the function µ( x) , ν( x) : X → [ 0, 1] represents the mem-
bership degree and the non- membership degree value with the condition 0 ≤ µ( x) + ν( x) ≤ 1.
The value π( x) = 1− µ( x) − ν( x) is named as the degree of indeterminacy ∀x ∈ X.

Pythagorean Fuzzy set [7] : A Pythagorean fuzzy set P, is defined as P = {( x, µ( x) , ν( x) ; x ∈
X} where the function µ (x) , ν (x):X → [ 0, 1] represents the membership degree and the
non- membership degree value with the condition 0 ≤ µ2

P( x) + ν2
P( x) ≤ 1. The value

πP (x) =
√

1− ( µ2
P( x) + ν2

P( x) ) is named as the degree of indeterminacy for ∀x ∈ X.

Picture fuzzy sets [3]: A picture fuzzy set ( PFS) on the universe U is defined as P =
{( x, µ( x) , η( x) , ν( x) ) } where µ( x) ∈ [ 0, 1] is the positive membership degree of x in P,
η( x) ∈ [ 0, 1] is the neutral membership degree and ν( x) ∈ [ 0, 1] is the negative membership
degree.

Bipolar fuzzy sets [8] : Let X be the non-empty fuzzy set. The bipolar fuzzy set B = {B−, B+}
is defined in X. B+ ∈ [ 0, 1] is the satisfaction degree of x in B, B− ∈ [−1, 0] is the satisfaction
degree of the implicit counter property of x in B.

Properties of Pythagorean fuzzy set [7]: Let PF1, PF2 ∈ PFS( x) then the result as follows,

PF1 + PF2 = {x,
√
( µPF1( x) ) 2 + ( µPF2( x) ) 2 − ( µPF1( x) ) 2( µPF2( x) ) 2,

νPF1( x) νPF2( x) } , ∀x ∈ X.
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3. Quadrasophic Fuzzy Set

Quadrasophic fuzzy set: The Quadrasophic fuzzy set ( QFS) on the universal set X is defined as

Q = {( x, η( x) , λη( x) , λµ( x) , µ( x) ) |x ∈ X}

where µ( x) : X → [ 0, 1] is the degree of high positive membership of x in Q, η( x) : X → [−1, 0]
is the degree of high negative membership of x in Q, λµ( x) : X → [ 0, 0.5] is the degree
of restricted positive membership of x in Q,λη( x) : X → [−0.5, 0] is the degree of restricted
negative membership of x in Q. And it satisfies the following condition: for all x ∈ X, −1 ≤
µ( x) + η( x) ≤ 1, −0.5 ≤ λ ≤ 0.5 and 0 ≤ µ2 + η2 + λ2 ≤ 3 where λ =Length of ( λµ, λη) . Let
QFS( x) denotes the collection of all Quadrasophic fuzzy set on X.

3.1. Operations of Quadrasophic Fuzzy Set

Intersection of QFS : The intersection of two quadrasophic fuzzy set Q1 and Q2 in QFS is defined
as:

Q1 ∩Q2 = {max( ηQ1( x) , ηQ2( x) ) , max( ληQ1
(x) , ληQ2

(x) ) ,

min( λµQ1
(x) , λµQ2

(x) ) , min( µQ1( x) , µQ2( x) ) }∀x ∈ X.

Union of QFS: The union of Q1 and Q2 in Quadrasophic fuzzy set is defined as:

Q1 ∪Q2 = {min( ηQ1( x) , ηQ2( x) ) , min( ληQ1
(x) , ληQ2

(x) ) ,

max( λµQ1
(x) , λµQ2

(x) ) , max( µQ1( x) , µQ2( x) ) }∀x ∈ X.

Subset: Let Q1, Q2 ∈ Q defined on the non - empty set X then Q1 is the subset of Q2 denoted
by Q1 ⊆ Q2, if for each x ∈ X; ηQ1( x) ≥ ηQ2( x) , ληQ1( x) ≥ ληQ2( x) , λµQ1( x) ≤ λµQ2( x) ,
µQ1( x) ≤ µQ2( x) .

Complement of QFS: The complement of the set Q1 ∈ Q in X is represented as QC
1 and is

defined as QC
1 = ( ηC, λC

η , λC
µ , µC), where ηC = −1− η, λC

η = −0.5− λη , λC
µ = 0.5− λµ and

µC = 1− µ.

Equal Set: Let Q1, Q2 ∈ Q be defined on the non empty set X then Q1 is equal set to Q2
denoted by Q1 = Q2 if for each x ∈ X;

ηQ1( x) = ηQ2( x) , ληQ1
(x) = ληQ2

(x) , λµQ1
(x) = λµQ2

(x) , µQ1( x) = µQ2( x) .

Distance Metric of QFS : The normalized Hamming distance between any QFS set Q1, Q2 ∈
Q( x) is defined as,

dQh( Q1, Q2) =
1

2n

n

∑
i=1

[
∣∣∣ηQ1( xi) )

2 − ( ηQ2( xi) )
2
∣∣∣+ ∣∣∣( ληQ1

(xi) )
2 − ( ληQ2

(xi) )
2
∣∣∣

+
∣∣∣( λµQ1

(xi) )
2 − ( λµQ2

(xi) ) )
2
∣∣∣+ ∣∣∣( µQ1( xi) )

2 − µQ2( xi) )
2
∣∣∣] .

The normalized Euclidean distance between any QFS set Q1, Q2 ∈ Q( x) is defined as,

dQh( Q1, Q2) =

√
1

2n

n

∑
i=1

[ ηQ1( xi) ) 2 − ( ηQ2( xi) ) 2] 2 + [ ]( ληQ1
(xi) ) 2 − ( ληQ2

(xi) ) 2] 2

+[ ( λµQ1
(xi) ) 2 − ( λµQ2

(xi) ) ) 2] 2 + [ ( µQ1( xi) ) 2 − µQ2( xi) ) 2] 2
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Proposition 1. The QFS is not the simplification of bipolar fuzzy set.

Proof. Let Q1 = ( ηQ1 , ληQ1 , λµQ1 , µQ1) be the set in QFS and B1 = {b−1 , b+1 } be the set in
BFS. Although positive ( b+1 ) and negative ( b−1 ) degree of membership exists in BFS, there is
no restricted level. It does not give the information about the partial belongingness or level of
influential. In QFS, separate parameter is fixed to trace the level of restricted. Hence, QFS differs
from BFS. �

Remark 1. If both membership grade of positive and negative restricted value is zero. Then, QFS
is equal to BFS.

4. Certain Properties of Quadrasophic Fuzzy Set

In this segment, the operations and Quadrasophic fuzzy set weighted arithmetic operator
( QFWA) is defined and proved with theorems and illustrated with model.
Algebraic Sum : Let Q1, Q2 ∈ Q
i) If Q1 = ( ηQ1 , ληQ1 , λµQ1 , µQ1) and Q2 = ( ηQ2 , ληQ2 , λµQ2 , µQ2) be any QFS, then the algebraic
sum is defined as:

Q1 ⊕Q2 = {−(−ηQ1) (−ηQ2) ,−(−ληQ1
) (−ληQ2

) ,√
0.5λ2

µQ1
+ 0.5λ2

µQ2
− ( 0.5λ2

µQ1
) ( 0.5λ2

µQ2
) ,
√

µ2
Q1

+ µ2
Q2
− µ2

Q1
µ2

Q2
}

Then ,

Q1 ⊕Q2 = {−(−ηQ1) (−ηQ2) ,−(−ληQ1
) (−ληQ2

) ,

( ( 1− ( 1− 0.5λ2
µQ1

) + ( 1− ( 1− 0.5λ2
µQ2

) − ( 1− ( 1− 0.5λ2
µQ1

) .( 1− ( 1− 0.5λ2
µQ2

) )
1
2 ,

( ( 1− ( 1− µ2
Q1
) + ( 1− ( 1− µ2

Q2
) − ( 1− ( 1− µ2

Q1
) .( 1− ( 1− µ2

Q2
) )

1
2 }

ii) For α ≥ 0,

αQ1 = {−(−ηQ1)
α,−(−ληQ1)

α, ( 1− ( 1− 0.5λ2
µQ1

) α)
1
2 , ( 1− ( 1− µ2

Q1
) α)

1
2 }.

Theorem 1. If Q1 = ( ηQ1 , ληQ1 , λµQ1 , µQ1) and Q2 = ( ηQ2 , ληQ2 , λµQ2 , µQ2) be any two set in
QFS defined in the non-empty set X and for α1, α2 ≥ 0 the results follow:
i) Q1 ⊕Q2 = Q2 ⊕Q1

Q1 ⊕Q2 = {−(−ηQ1) (−ηQ2) ,−(−ληQ1
) (−ληQ2

) ,√
0.5λ2

µQ1
+ 0.5λ2

µQ2
− ( 0.5λ2

µQ1
) ( 0.5λ2

µQ2
) ,
√

µ2
Q1

+ µ2
Q2
− µ2

Q1
µ2

Q2
}

= {−(−ηQ2) (−ηQ1) ,−(−ληQ2
) (−ληQ1

) ,√
0.5λ2

µQ2
+ 0.5λ2

µQ1
− ( 0.5λ2

µQ2
) ( 0.5λ2

µQ1
) ,
√

µ2
Q2

+ µ2
Q1
− µ2

Q2
µ2

Q1
}

= Q2 ⊕Q1

ii) α( Q1 ⊕Q2) = ( αQ1 ⊕ αQ2)

α( Q1 ⊕Q2) = α{−(−ηQ1) (−ηQ2) ,−(−ληQ1
) (−ληQ2

) ,

( 1− ( 1− ( 0.5λ2
µQ1

+ 0.5λ2
µQ2
− ( 0.5λ2

µQ1
× 0.5λ2

µQ2
) ) ) )

1
2 ,

( 1− ( 1− ( µ2
Q1

+ µ2
Q2
− µ2

Q1
.µ2

Q2
) ) )

1
2 }

= {−(−ηQ1)
α(−ηQ2)

α,−(−ληQ1
) α(−ληQ2

) α,

( 1− ( 1− ( 0.5λ2
µQ1

+ 0.5λ2
µQ2
− ( 0.5λ2

µQ1
× 0.5λ2

µQ2
) ) ) α)

1
2 ,

( 1− ( 1− ( µ2
Q1

+ µ2
Q2
− µ2

Q1
.µ2

Q2
) ) α)

1
2 }
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( αQ1 ⊕ αQ2) = {−(−ηQ1)
α,−(−ληQ1

) α, ( 1− ( 1− 0.5λ2
µQ1

) α)
1
2 , ( 1− ( 1− µ2

Q1
) α)

1
2 }

⊕ {−(−ηQ2)
α,−(−ληQ2

) α, ( 1− ( 1− 0.5λ2
µQ2

) α)
1
2 , ( 1− ( 1− µ2

Q2
) α)

1
2 }

= {−(−ηQ1)
α(−ηQ2)

α,−(−ληQ1
) α(−ληQ2

) α,

( 1− ( 1− 0.5λ2
µQ1

) α( 1− 0.5λ2
µQ2

) α)
1
2 , ( 1− ( 1− µ2

Q1
) α( 1− µ2

Q2
) α)

1
2 }

= {−(−ηQ1)
α(−ηQ2)

α,−(−ληQ1
) α(−ληQ2

) α,

( 1− ( 1− ( 0.5λ2
µQ1

+ 0.5λ2
µQ2
− ( 0.5λ2

µQ1
× 0.5λ2

µQ2
) ) ) α)

1
2 ,

( 1− ( 1− ( µ2
Q1

+ µ2
Q2
− µ2

Q1
.µ2

Q2
) ) ) α)

1
2 }

Hence, α( Q1 ⊕Q2) = ( αQ1 ⊕ αQ2)
iii) α1Q1 ⊕ α2Q1 = ( α1 ⊕ α2) Q1

α1Q1 ⊕ α2Q1 = α1{(−ηQ1) , (−ληQ1
) , ( 1− ( 1− 0.5λ2

µQ1
) )

1
2 , ( 1− ( 1− ( µ2

Q1
) )

1
2 }

⊕ α2{(−ηQ1) , (−ληQ1
) , ( 1− ( 1− 0.5λ2

µQ1
) )

1
2 , ( 1− ( 1− ( µ2

Q1
) )

1
2 }

= {−(−ηQ1)
α1(−ηQ1)

α2 ,−(−ληQ1
) α1(−ληQ1

) α2 ,

( 1− ( 1− 0.5λ2
µQ1

) α1( 1− 0.5λ2
µQ1

) α2)
1
2 , ( 1− ( 1− µ2

Q1
) α1( 1− µ2

Q1
) α2)

1
2 }

= {−(−ηQ1)
α1+α2 ,−(−ληQ1

) α1+α2 ,

( 1− ( 1− 0.5λ2
µQ1

) α1+α2)
1
2 , ( 1− ( 1− µ2

Q1
) α1+α2)

1
2 }

( α1 ⊕ α2) Q1 = ( α1 ⊕ α2) {(−ηQ1) , (−ληQ1
) , ( 1− ( 1− 0.5λ2

µQ1
) )

1
2 , ( 1− ( 1− ( µ2

Q1
) ) )

1
2 }

= {−(−ηQ1)
α1+α2 ,−(−ληQ1

) α1+α2 ,

( 1− ( 1− 0.5λ2
µQ1

) α1+α2)
1
2 , ( 1− ( 1− µ2

Q1
) α1+α2)

1
2 }

Hence, α1Q1 ⊕ α2Q1 = ( α1 ⊕ α2) Q1

Example 1: Consider Q1 = (−0.5,−0.2, 0.4, 0.7) and Q2 = (−0.6,−0.4, 0.5, 0.8)
i) Since, −0.5 ≥ −0.6, −0.2 ≥ −0.4, 0.4 ≤ 0.5, 0.7 ≤ 0.8
=⇒ Q1 ⊆ Q2.
Assume n = 0.5 then −0.25 ≥ −0.3, −0.1 ≥ −0.2, 0.2 ≤ 0.25, 0.35 ≤ 0.4
=⇒ nQ1 ⊆ nQ2( for any positive integer n) .
ii) The union of Q1 and Q2 is: Q1 ∪Q2 = (−0.6,−0.4, 0.5, 0.8)
Assume n = 0.5 then n( Q1 ∪Q2) = (−0.3,−0.2, 0.25, 0.4)
nQ1 = (−0.25,−0.1, 0.2, 0.35) , nQ2 = (−0.3,−0.2, 0.25, 0.4)
=⇒ nQ1 ∪ nQ2 = (−0.3,−0.2, 0.25, 0.4)
Thus, n( Q1 ∪Q2) = nQ1 ∪ nQ2.
iii) The intersection of Q1 and Q2 is: Q1 ∩Q2 = (−0.5,−0.2, 0.4, 0.7)
If n = 0.5, then n( Q1 ∩Q2) = (−0.25,−0.1, 0.2, 0.35)
=⇒ nQ1 ∩ nQ2 = (−0.25,−0.1, 0.2, 0.35)
Thus, n( Q1 ∩Q2) = nQ1 ∩ nQ2.

Theorem 2. Let Q1 = ( ηQ1 , ληQ1 , λµQ1 , µQ1) and Q2 = ( ηQ2 , ληQ2 , λµQ2 , µQ2) be any two QFS
set defined in the non-empty set X and for n ≥ 0 the results follow:
i) If Q1 ⊆ Q2 then nQ1 ⊆ nQ2.
ii) n( Q1 ∪Q2) = nQ1 ∪ nQ2.
iii) n( Q1 ∩Q2) = nQ1 ∩ nQ2.

Proof. The proof is obvious by Example 1.
�
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QFWA Operator: Let Qs = ( ηs, ληs , λµs , µs) ( s = 1, 2, . . . , n) be the set of QFS. Then QFWA
( Quadrasophic Fuzzy Weighted Arithmetic operator) with respect to αi=( α1, α2, . . . , αn) is the
weight vector, where αi ∈ [ 0, 1] such that ∑n

i=1 αi = 1 is a function defined from Qn → Q. Then
QFWA is defined as:

QFWA( Q1, Q2, . . . , Qn) = ⊕n
i=1αiQi

= ( α1Q1 + α2Q2 + · · ·+ αnQn)

Theorem 3. Let Qs = ( ηs, ληs , λµs , µs) ( s = 1, 2, 3 . . . , n) be the set of QFS defined in the non-
empty set X. Then QFWA operator of QFS is defined as

QFWA( Q1, Q2, . . . , Qs) = (−
s

∏
k=1

(−ηQk )
αk ,−

s

∏
k=1

(−ληQk
) αk ,

(1−
s

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , (1−

s

∏
k=1

( 1− µ2
Qk
) αk )

1
2 ) (1)

Proof. The proof follows the method of mathematical induction. Assume that n = 2 then,

QFWA( Q1, Q2) = α1Q1 ⊕ α2Q2 = α1( ηQ1 , ληQ1
, λµQ1

, µQ1) ⊕ α2( ηQ2 , ληQ2
, λµQ2

, µQ2)

α1Q1 ⊕ α2Q1 = α1{(−ηQ1) , (−ληQ1
) , ( 1− ( 1− 0.5λ2

µQ1
) )

1
2 , ( 1− ( 1− ( µ2

Q1
) )

1
2 }

⊕ α2{(−ηQ1) , (−ληQ1
) , ( 1− ( 1− 0.5λ2

µQ1
) )

1
2 , ( 1− ( 1− ( µ2

Q1
) )

1
2 }

= {−(−ηQ1)
α1(−ηQ1)

α2 ,−(−ληQ1
) α1(−ληQ1

) α2 ,

( [ 1− ( 1− 0.5λ2
µQ1

) α1 ] + [ 1− ( 1− 0.5λ2
µQ2

) α2 ]

− [ 1− ( 1− 0.5λ2
µQ1

) α1 ] [ 1− ( 1− 0.5λ2
µQ2

) α2 ] )
1
2 ,

( [ 1− ( 1− µ2
Q1
) α1 ] + [ 1− ( 1− µ2

Q2
) α2 ]

− [ 1− ( 1− µ2
Q1
) α1) [ 1− ( 1− µ2

Q2
) α2 ] )

1
2 }

= {−
2

∏
k=1

(−ηQk )
αk ,−

2

∏
k=1

(−ληQk
) αk , ( 1− ( 1− 0.5λ2

µQ1
) α1) ( 1− 0.5λ2

µQ2
) α2)

1
2 ,

( 1− ( 1− µ2
Q1
) α1( 1− µ2

Q2
) α2)

1
2 }

α1Q1 ⊕ α2Q2 = {−
2

∏
k=1

(−ηQk )
αk ,−

2

∏
k=1

(−ληQk
) αk , ( 1−

2

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 ,

( 1−
2

∏
k=1

( 1− µ2
Qk
) αk )

1
2 }

For n = s assume Equation 1 is true. Thus, the result follows:

QFWA( Q1, Q2, . . . , Qs) = (−
s

∏
k=1

(−ηQk )
αk ,−

s

∏
k=1

(−ληQk
) αk ,

(1−
s

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , (1−

s

∏
k=1

( 1− µ2
Qk
) αk )

1
2 )
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For n = s + 1,

QFWA( Q1, Q2, . . . , Qs+1) = ⊕s
k=1( αkQk) ⊕ ( αs+1Qs+1)

= (−
s

∏
k=1

(−ηQk )
αk ,−

s

∏
k=1

(−ληQk
) αk ,

(1−
s

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , ( 1−

s

∏
k=1

( 1− µ2
Qk
) αk )

1
2 ) )

⊕ ( (−ηQs+1)
αs+1 , (−ληQs+1

) αs+1 ,

( 1− ( 1− 0.5λ2
µQs+1

) αs+1)
1
2 , ( 1− ( 1− µ2

Qs+1
) αs+1)

1
2 )

QFWA( Q1, . . . , Qs+1) = (−
s

∏
k=1

(−ηQk )
αk ⊕ (−ηQs+1)

αs+1 ,

−
s

∏
k=1

(−ληQk
) αk ⊕ (−ληQs+1

) αs+1 ,

(1−
s

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 ⊕ ( 1− ( 1− 0.5λ2

µQs+1
) αs+1)

1
2 ,

( 1−
s

∏
k=1

( 1− µ2
Qk
) αk )

1
2 ⊕ ( 1− ( 1− µ2

Qs+1
) αs+1)

1
2 )

= {(−
s+1

∏
k=1

(−ηQk )
αk ,−

s+1

∏
k=1

(−ληQk
) αk ,

( 1−
s

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 + ( 1− ( 1− 0.5λ2

µQs+1
) αs+1)

1
2

− ( 1−
s

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 ( 1− ( 1− 0.5λ2

µQs+1
) αs+1 ] )

1
2 ,

( 1−
s

∏
k=1

( 1− µ2
Qk
) αk )

1
2 + ( 1− ( 1− µ2

Qs+1
) αs+1)

1
2

− ( 1−
s

∏
k=1

( 1− µ2
Qk
) αk )

1
2 ( 1− ( 1− µ2

Qs+1
) αs+1)

1
2 }

QFWA( Q1, Q2, . . . , Qs) = (−
s+1

∏
k=1

(−ηQk )
αk ,−

s+1

∏
k=1

(−ληQk
) αk ,

(1−
s+1

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , (1−

s+1

∏
k=1

( 1− µ2
Qk
) αk )

1
2 )

Hence 1 is true for n = s + 1. By, the method of mathematical induction we conclude 1 is true for
any n > 0. �

Example 2: Let Qk = ( ηk, ληk , λµk , µk) , k = 1, 2, 3, 4 be any four Quadrasophic fuzzy
set.Consider Q1 = (−0.7,−0.3, 0.3, 0.5) , Q2 = (−0.5,−0.2, 025, 0.7) , Q3=(−0.8,−0.4, 0.3, 0.7) ,
and Q4 = (−0.6,−0.4, 0.5, 0.9) . We assume the weight vector is α = ( 0.2, 0.3, 0.4, 0.1) . Then

QFWA(Q1, Q2, Q3, Q4) = ⊕4
k=1( αkQk)

= 0.2(−0.7,−0.3, 0.3, 0.5) + 0.3(−0.5,−0.2, 025, 0.7)

+ 0.4(−0.8,−0.4, 0.3, 0.7) + 0.1(−0.6,−0.4, 0.5, 0.9)

= (−0.657,−0.307, 0.221, 0.708)

Theorem 4 (Idem-potency Property). If Qk = ( ηk, ληk , λµk , µk) , k=1, 2, 3, . . . , n be the set of QFS
and Qk = Q ∀k. Then QFWA(Q1, Q2, Q3, . . . , Qn) = Q.
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Proof. Consider

QFWA(Q1, Q2, Q3, . . . , Qn) = ⊕n
k=1( αkQk)

QFWA( Q1, Q2, . . . , Qn) = (−
n

∏
k=1

(−ηQk )
αk ,−

n

∏
k=1

(−ληQk
) αk ,

(1−
n

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , (1−

n

∏
k=1

( 1− µ2
Qk
) αk )

1
2 )

( since Qk = Q)

= ( (−ηQ) , (−ληQk
) , ( 1− ( 1− 0.5λ2

µQ
) )

1
2 ,

( 1− ( 1− µ2
Q) )

1
2 )

QFWA(Q1, Q2, Q3, . . . , Qn) = Q.

�

Theorem 5 (Monotonicity). Let Qk and Q
′
k be the pair of sets in QFS. If Qk < Q

′
k ∀k, then

QFWA( Q1, Q2, Q3, . . . , Qn) = QFWA( Q
′
1, Q

′
2, Q

′
3, . . . , Q

′
n) .

Proof. If Qk, Q
′
k ∈ QFS and Qk < Q

′
k ∀k, then

(−
n

∏
k=1

(−ηQk )
αk ,−

n

∏
k=1

(−ληQk
) αk , (1−

n

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 ,

(1−
n

∏
k=1

( 1− µ2
Qk
) αk )

1
2 ) ≤ (−

n

∏
k=1

(−η
′
Qk
) αk ,−

n

∏
k=1

(−λ
′
ηQk

) αk ,

(1−
n

∏
k=1

( 1− ( 0.5λ
′
µQk

) 2) αk )
1
2 , ( 1−

n

∏
k=1

( 1− ( µ
′
Qk
) 2) αk )

1
2 )

QFWA( Q1, Q2, Q3, . . . , Qn) = QFWA( Q
′
1, Q

′
2, Q

′
3, . . . , Q

′
n) .

�
Example 3: Consider Q1 = (−0.7,−0.3, 0.4, 0.8) and Q2 = (−0.6,−0.2, 0.5, 0.7) be two sets in
QFS. The weight vector is α = ( 0.5, 0.5) .

Solution: Consider ( s) for smaller and ( l) for larger value of membership.
We know that,

2

∏
k=1

(−ηQk( s)
) αk <

2

∏
k=1

(−ηQk )
αk <

2

∏
k=1

(−ηQk( l)
) αk

= (−0.7) 0.5(−0.7) 0.5 < (−0.7) 0.5(−0.6) 0.5 < (−0.6) 0.5(−0.6) 0.5

= −0.7006 < −0.6481 < −0.600.

Also,
2

∏
k=1

(−ληQk( s)
) αk <

2

∏
k=1

(−ληQk
) αk <

2

∏
k=1

(−ληQk( l)
) αk

= −0.299 < −0.244 < −0.199

Also,

( 1−
2

∏
k=1

( 1− 0.5λ2
µQk( s)

) αk )
1
2 < ( 1−

2

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 < ( 1−

2

∏
k=1

( 1− 0.5λ2
µQk( l)

) αk )
1
2

= 0.282 < 0.320 < 0.353
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Also,

( 1−
2

∏
k=1

( 1− µ2
Qk( s)

) αk )
1
2 < ( 1−

2

∏
k=1

( 1− µ2
Qk
) αk )

1
2 < ( 1−

2

∏
k=1

( 1− µ2
Qk( l)

) αk )
1
2

= 0.700 < 0.756 < 0.800

{−
2

∏
k=1

(−ηQk( s)
) αk ,−

2

∏
k=1

(−ληQk( s)
) αk , ( 1−

2

∏
k=1

( 1− 0.5λ2
µQk( s)

) αk )
1
2 , ( 1−

2

∏
k=1

( 1− µ2
Qk( s)

) αk )
1
2 }

< {−
2

∏
k=1

(−ηQk )
αk ) ,−

2

∏
k=1

(−ληQk
) αk , ( 1−

2

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , ( 1−

2

∏
k=1

( 1− µ2
Qk
) αk )

1
2 }

< {−
2

∏
k=1

(−ηQk( l)
) αk ,−

2

∏
k=1

(−ληQk( l)
) αk , ( 1−

2

∏
k=1

( 1− 0.5λ2
µQk( l)

) αk )
1
2 , ( 1−

2

∏
k=1

( 1− µ2
Qk( l)

) αk )
1
2 }

And thus, the set of smaller membership grade is lesser than actual membership grade which is
lesser than the larger membership grade.

Table 1: Comparative study between QFS and Bipolar environment

Type of operator Environment Results

Dombi Weighted [5] Bipolar Fuzzy Q4 > Q1 > Q2 > Q5 > Q3
environment 0.706 > 0.694 > 0.661 > 0.600 > 0.583

Proposed method Quadrasophic Q4 > Q1 > Q2 > Q5 > Q3
Fuzzy Set 0.134 > 0.124 > 0.121 > 0.057 > 0.017

Table 2: Comparative study between QFS and Bipolar Pythagorean environment

Type of operator Environment Results

Weighted Average[6] Bipolar Pythagorean Q1 > Q2 > Q3 > Q4
environment 0.383 > 0.189 > −0.031 > −0.102

Proposed method Quadrasophic Fuzzy set Q1 > Q2 > Q4 > Q3
0.256 > 0.084 > −0.045 > −0.052

Table 3: Types, ratio and duration of fertilizer

Fertilizer types Composition in ratio Duration

f1 120:40:40 Short
f2 150:60:50 Medium
f3 150:80:50 Long

Theorem 6 (Bounded property). Consider Qk = ( ηk, ληk , λµk , µk) , k=1, 2, 3, . . . , n be the set of
QFS. If
Q( s) = min( Q1, Q2, Q3, . . . , Qn) = ( ηk( s)

, ληk( s)
, λµk( s)

, µk( s)
) and

Q( l) = max( Q1, Q2, Q3, . . . , Qn) = ( ηk( l)
, ληk( l)

, λµk( l)
, µk( l)

) ) .

Then Q( s) < QFWA( Q1, Q2, Q3, . . . , Qn) < Q( l) .
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Proof. By the example 3, the proof is obvious.

(−
n

∏
k=1

(−ηQk( s)
) αk ,−

n

∏
k=1

(−ληQk( s)
) αk ,

( 1−
n

∏
k=1

( 1− 0.5λ2
µQk( s)

) αk )
1
2 , ( 1−

n

∏
k=1

( 1− µ2
Qk( s)

) αk )
1
2 )

< (−
n

∏
k=1

(−ηQk )
αk ,−

n

∏
k=1

(−ληQk
) αk , ( 1−

n

∏
k=1

( 1− 0.5λ2
µQk

) αk )
1
2 , ( 1−

n

∏
k=1

( 1− µ2
Qk
) αk )

1
2 )

< (−
n

∏
k=1

(−ηQk( l)
) αk ,−

n

∏
k=1

(−ληQk( l)
) αk ,

( 1−
n

∏
k=1

( 1− 0.5λ2
µQk( l)

) αk )
1
2 , ( 1−

n

∏
k=1

( 1− µ2
Qk( l)

) αk )
1
2 )

=⇒ Q( s) < QFWA( Q1, Q2, Q3, . . . , Qn) < Q( l) . �

Table 4: Decision Matrix of Quadrasophic Fuzzy Set

Fertilizer s1 s2 s3

f1 (-0.8,-0.4,0.3,0.6 ) (-0.7,-0.3,0.5,0.8) (-0.6,-0.2,0.3,0.7)
f2 (-0.7,-0.3,0.2,0.4) (-0.5,-0.3,0.5,0.7) (-0.4,-0.2,0.4,0.8)
f3 (-0.4,-0.2,0.4,0.8) (-0.7,-0.3,0.4,0.8) (-0.6,-0.3,0.3,0.6)

5. Comparative study

In this segment, to corroborate our method, a comparison study is performed to prove
that the proposed method generates better and more accurate results than the other existing
methodologies. The Table 1 and 2 gives the study of comparison.

Table 5: Normalized decision matrix of QFS

Fertilizer s1 s2 s3

f1 (-0.2,-0.1,0.2,0.4 ) (-0.7,-0.3,0.5,0.8) (-0.6,-0.2,0.3,0.7)
f2 (-0.3,-0.2,0.3,0.6) (-0.5,-0.3,0.5,0.7) (-0.4,-0.2,0.4,0.8)
f3 (-0.6,-0.3,0.1,0.2) (-0.7,-0.3,0.4,0.8) (-0.6,-0.3,0.3,0.6)

Table 6: QFWA value of QFS

Fertilizer QFWA value

f1 (-0.4519,-0.183,0.25,0.683)
f2 (-0.3923,-0.225,0.28,0.724)
f3 (-0.628,-0.299,0.2096,0.6259)

6. Application of Quadrasophic Fuzzy Set in agricultural field

The QFS has a special function that allows the difficulties to be solved perfectly. In this
segment, we design a technique to deal with the decision-making assessment based on the QFWA
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Table 7: Decision Matrix of Quadrasophic Fuzzy Set

M1 M2 M3

B1 (-0.7,-0.4,0.2,0.6 ) (-0.6,-0.3,0.4,0.7) (-0.5,-0.3,0.1,0.3)
B2 (-0.5,-0.2,0.1,0.3) (-0.3,-0.2,0.4,0.8) (-0.2,-0.1,0.3,0.7)
B3 (-0.3,-0.1,0.4,0.7) (-0.6,-0.3,0.2,0.7) (-0.5,-0.3,0.2,0.5)

Table 8: Score Value of Quadrasophic Fuzzy Set

M1 M2 M3

B1 -0.1 0.06 -0.13
B2 -0.1 0.23 0.23
B3 0.23 0 -0.03

operator and score function of QFS.

Crop yields are significantly influenced by fertilizers. Several types of fertilizers are
applied to the soil to improve cultivation. The two primary types of fertilizer used in agriculture
are organic and inorganic materials. For various purposes during the cultivation process, three
primary plant nutrients: nitrogen, potassium, and phosphorus are used in different ratios.
Suppose that the farmer wants to get better yields from the cultivation in medium term. The
following Table 3 lists the type, ratio, and length of time employed in the cultivation for better
results. Let F = { f1, f2, f3} be the set of alternative fertilizers used on agricultural land.

Membership grade of QFS in Agriculture :
η− refers to the side effects of using fertilizer
λη−refers to the rate of soil pollution
λµ− refers to the rate of soil potential
µ− refers to the rate of fertilizer absorption level
Let s = {s1, s2, s3} be the group of criteria satisfied by the fertilizers used in the cultivation land.
where, s1− to upgrade the soil fertility, s2− to promote the cultivation and s3− healthy crop.
Step 1: The Table 4 provides the QFS decision matrix.

Step 2: The normalized QFS decision matrix is presented in the Table 5 by considering s1 as the
cost factor.
Step 3: Assume that α = ( 0.3, 0.3, 0.4) is the weight vector of each criteria.
Step 4: Use the QFWA operator to find the aggregated value. The Table 6 presents the QFWA
value of a normalized QFS decision matrix.
Step 5: Apply the formula sv( Q) =

µ( x) +λµ( x) +η( x) +λη( x)
3 to find the score value of QFSDM.

Figure 1: Values of QSk, QRk, and QQk
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Table 9: QFS positive and negative ideal solutions

s( ∗)l s(−)l

M1 (-0.3,-0.1,0.4,0.7) (-0.7,-0.4,0.1,0.3)
M2 (-0.3,-0.2,0.4,0.8) (-0.6,-0.3,0.2,0.7)
M3 (-0.2,-0.1,0.3,0.7) (-0.5,-0.3,0.1,0.3)

Table 10: Value of QSk, QRk, QQk

QSk QRk QQk

B1 0.5324 0.3028 0.6378
B2 0.5802 0.3000 0.5
B3 0.51421 0.3000 0
Ranking B3, B1, B2 B3 = B2, B1 B3, B2, B1

sv( f1) = 0.0993, sv( f2) = 0.1289, and sv( f3) = −0.0306.
Step 6: Rank the score value: sv( f2) > sv( f1) > sv( f3) .
The fertilizer f2 is therefore the ideal option for the best production in a medium period of
time. Evidently, a medium-duration cultivation technique uses the nutrient ratio 150:60:50. The
application gives sufficient justification for QFS to be able to determine the most appropriate
decision.

7. A novel MCDM QF-VIKOR technique

A VIKOR technique focuses on ranking options and identifying compromises that are closest
to the ideal answer. To define and identify the optimal solution of the Quadrasophic Fuzzy Set,
we employ the QF-VIKOR technique in this segment.Consider a businessman who wants to boost
profits from their investment in the share marketing sector. Let M = {M1, M2, M3} be the
set of investment criteria that leads to the alternative businesses B1, B2, and B3.
Step 1: The QFS decision-making matrix is shown in Table 7.
Step 2:The QFS Score matrix is shown in Table 8.
Step 3:The Table 9 shows the values of the QFS ideal solutions, both positive and negative.
Step 4: Assume that the weight vector for each criterion is α = {0.3, 0.4, 0.3}
Step 5:The values of QSk, QRk, QQk are provided in the Table 10 using the distance metric 3.1.

Rank the alternatives as well. where, [9] QSk = ∑n
l=1 αl

d( s( ∗)l ,skl)

d( s( ∗)l ,s(−)l )
, QRk = maxl αl

d( s( ∗)l ,skl)

d( s( ∗)l ,s(−)l )

QQk = β( QSk−QS( ∗) )
( QS(−)−QS( ∗) ) + ( 1−Qβ) ( QRk−QR( ∗) )

( QR(−)−QR( ∗) )
and QS( ∗) = minQSl , QS(−) = maxQSl , QR( ∗) =

minQRl , and QR( ∗) = maxQRl , Qβ ∈ [ 0, 1] .
Step 6: Figure 1 shows that B3 is the minimum value. We evaluate how effectively the compromise
solution of QQk accepts B3 and B2. QQ( B2) − QQ( B3) ≥ 1

n−1 =⇒ 0.5 ≥ 1
3−1 = 0.5 ≥ 0.5

Similarly for QSk and QRk .
Hence, the greatest alternative is B3, whereas B2 and B3 are the compromise solutions.

Therefore, the ideal firm to invest in for increased profit is B3.

8. Conclusion

The definitions, characteristics, and some Quadrasophic Fuzzy set operations are defined
in this artifact. Theorems and results are also demonstrated using pertinent examples and
remarks. To validate our technique, comparative research was conducted in several fuzzy
environments. The use of Quadrasophic Fuzzy set in the field of agriculture to identify appropriate
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fertilizer has been explored. Further,the QF-VIKOR approach is introduced with its new decision-
making application. The use of Quadrasophic Fuzzy set is grounded in the notion that it also
works in artificial intelligence, neural-networks, and medicine. Other aggregation operators
and their uses in various fields will be examined in further work. Due to its unique parameter
classification, Quadrasophic Fuzzy set will also be functional in many domains, including
corporate management and psychology.
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Abstract

In this paper, the researchers compare proposed approach and Excel solver. In this proposed technique, the
researchers converted fuzzy multiple objective linear programming problems (FMOLPP) into multiple
objective linear programming problems (MOLPP) with the help of Defuzzified mean of maxima method.
Before that, the researchers changed the pentagonal fuzzy numerical valuation to a triangular fuzzy value
by using the proposed theorem. Further, the crisp value of MOLPP is solved using standard simplex
algorithms. Then the outcomes of the optimal solutions are compared with both the results.

Keywords: pentagonal fuzzy number, triangular fuzzy number, MOLPP, Defuzzified mean of
maxima

1. Introduction

In a 2014 study [1], the Pentagonal Fuzzy Number (PFN) and its mathematical operations were
described in this article. These operations were used to resolve a few cases. The problem with
five points of approximation could be resolved with a pentagonal fuzzy number. In the 2017
study [2], this paper aims to describe the fundamental idea of a PFN. The researchers examine
canonical pentagonal fuzzy numbers (CPFN) utilizing internal arithmetic operations and α-cut
procedures. Internal arithmetic features had been studied with the idea of PFN. The CPFN and
associated arithmetic operations were given special consideration. This research provides a PFN
modification. PFNs of many types are created. Here, a specific kind of PFN’s arithmetic opera-
tion was discussed. This article also discusses the distinction between two pentagonal-valued
functions. The abovementioned numbers were used to demonstrate pentagonal fuzzy results
for the fuzzy equation [3]. The 2018 concepts [4], portfolio optimization technique builds on the
standard Markowitz mean-variance model and uses PFN to represent returns. The valuation
and variance of fuzzy numbers were defined using the alpha-level set approach. The proposed
model performs more effectively than the conventional mean-variance method. In this study [5],
modeling techniques over multiple PFNs were presented. These similarity criteria depend on
geometric distance, lp-metric distance, graded mean integration form, and the perimeter of a PFN.
The ideas of symmetric PFNs and quadratic PFNs, as well as their geometrical examples, were
introduced in this study [6]. In addition, define the fundamental operations of arithmetic, such
as the addition and subtraction of two symmetric PFNs. This work suggests a straightforward
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method for solving the fuzzy transportation problem in the context of a fuzzy environment,
where the rates of conveyance, the availability of resources at the providers, and the consumption
at the targets were all represented as PFNs. With the use of a strong ranking method and innova-
tive fuzzy arithmetic on PFNs, the fuzzy transportation problem was solved without having to
transform it to its equivalent crisp formulation [7].
The focus of 2019 work [8] discusses the fuzzy optimum solution to fully fuzzy linear program-
ming problems (FFLPP) using PFNs. It had been suggested that new methods using multiple
ranking functions would be used to solve FFLPP with PFNs. In this study [9], various methods of
interval-valued pentagonal fuzzy numbers (IVPFN) connected to various membership functions
(MF) were investigated, taking into account the prevalence of various interval-valued fuzzy
numbers in specialized studies. Additionally, the concept of MF was substantially generalized to
nonlinear membership functions for observing the asymmetries and symmetries of pentagonal
fuzzy structures. By using the parameters as PFNs, the produced intellects were applied to a
game challenge, leading to a new approach for simulating actual issues and a better knowledge
of the parameters’ uncertainties during the testing process. In the 2020 study, using a ranking
function and comparing the results with completely fuzzy LPP, a technique was suggested for
solving fuzzy LPP utilizing PFNs. It involves observing that which produces optimum results
[10]. The 2021 study, implementing the Leasing Strategy, aims to lower the machine’s rental price.
A strong ranking approach and fuzzy arithmetic pentagonal fuzzy numbers were utilized to
solve the fuzzy flow-shop scheduling problem without translating the processing time into its
equivalent crisp results [11]. In this research design [12], fuzzy results were used to represent
the pertinent samples of imprecise rainfall data that were gathered in southern and northern
India. Moreover, fuzzy numbers were removed by explicit classification using the PFN pivot
points more extensively than the PFN. After the fuzzy phase, a pertinent statistical technique was
applied to assess the hypotheses, allowing for better decision-making. In a 2022 study, three steps
make up the suggested study technique. With the mean approach of α-cut, the coefficients are
first defuzzified. In the second step, a crisp multi-objective quadratic fractional programming
model (MOQFP) was built to create a non-fractional system based on an iterative parametric
technique. Then, for the final step, the Σ-constraint approach was used to turn this multi-objective,
non-fractional model into one with a single objective [13].
The remaining research is organized as follows: 2. Preliminary and Theorem, 3. Proposed
algorithm, 4. Numerical example, and 5. Conclusions.

2. Preliminary and Theorem

2.1. Fuzzy set

Let Q be a non-empty set. A fuzzy set P in Q is identified by its membership function µP̃(y) :
Q→[0, 1] and µP̃(y) is described as the degree to which an element is such a member y in fuzzy
set P for each y∈Q. Then a fuzzy set P in Q is a collection of ordered pairs [14].

P̃ = {(y, µP̃(y))/y∈Q}

Theorem 1. In this theorem, we convert the pentagonal fuzzy number into a triangular fuzzy
number (∑5

i=1Q̃i are convert into ∑3
i=1Q̃i). By finding the results of pentagonal gradient points?

And then obtain the three-tuples fuzzy process transformed as a Defuzzified mean of the maxima
of the crisp process.

Proof. Case 1: Let us take the pentagonal fuzzy number

S̃ = ∑5
i=1Q̃i

= (Q̃1, Q̃2, Q̃3, Q̃4, Q̃5; ω̃1, ω̃2)
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Since, (Q̃1, Q̃2, Q̃3, Q̃4, Q̃5; ω̃1, ω̃2) are the pentagonal fuzzy numbers and also we known that
(Q̃1, Q̃2, Q̃3, Q̃4, Q̃5) are real numbers.
In this case the pentagonal fuzzy number of ω̃1 and ω̃2 is the graded point of Q̃2 and Q̃4 [15].
So, the value of ω̃1 = ω̃2 = 0 means the graded points of Q̃2 = Q̃4 = 0
Thus, the values of pentagonal fuzzy number transformed as triangular fuzzy numbers.
So, we can write as, S̃ = (Q̃1, Q̃3, Q̃5) (or) S̃ = (Q̃1, Q̃2, Q̃3).
As a result, we can obtain three tuples of fuzzy number value, which we refer to as triangular
fuzzy number.
Hence, the triangular fuzzy number is S̃ = ∑3

i=1Q̃i
Case 2: Let us take three-tuples triangular fuzzy number

S̃ = ∑3
i=1Q̃i = (Q̃1, Q̃2, Q̃3)

Now, we are converting the three-tuples fuzzy process to the Defuzzified mean of the maxima
(MoM) crisp process.

The Defuzzified process of MoM =
∑Q̃s∈DQ̃s

|D| , Where |D| is the number of counted values of Q̃s.
Since triangular fuzzy numbers have three tuples only, we submit the three tuples in the MoM
process.
Thus, the value of MoM = Q̃1,Q̃2,Q̃3

3 = Rs, Here we take three-tuples, so the value of |D| = 3 and
where Rs is the crisp value.
Therefore, the numerical result has been changed from a fuzzy to a crisp process as per the above
format. ■

3. Proposed algorithm

• We take that first pentagonal numerical example; convert it into triangular values, and then
Defuzzified as per 1 of the mean of maxima.

• A three-tuples of fuzzy MOLPP utilized in the form of as usual simplex algorithm and the
transformed into Defuzzified mean of maxima MOLPP crisp values.

• Here, we used the usual simplex algorithm to solve the objective function and constraints.
• Discover the valuation of each of the particular objective functions that are to be maximized

or minimized.
• Test the feasibility of the solution in step 3. If it is feasible, then go to step 6. Otherwise, use

the dual simplex method to remove infeasibility.
• To give a name to the optimum valuation of the objective functions as rw.
• Step 4 should be repeated with w = 1, 2, 3, 4 and 5. We are only considering five objective

functions in this work.
• Find an optimum solution to each LP problem obtained in step 7.
• Then, LP objective problems with an efficient, optimal solution will receive it. Otherwise,

we have to follow the same procedure.

4. Numerical example

Max w̃1 = (1, 0, 2, 0, 3)x̃1 + (7, 0, 8, 0, 9)x̃2

Max w̃2 = (10, 10, 11, 11, 12)x̃1 + (12, 13, 13, 14, 14)x̃2

Max w̃3 = (20, 0, 21, 22, 22)x̃1 + (16, 16, 17, 0, 18)x2 x̃2

Min w̃4 = (6, 6, 7, 7, 8)x̃1 + (2, 2, 3, 4, 4)x̃2

Min w̃5 = (25, 0, 26, 0, 27)x̃1 + (13, 0, 14, 0, 15)x̃2
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S.to

(2, 0, 3, 0, 4)x̃1 + (11, 0, 12, 0, 13)x̃2≤(4, 0, 5, 0, 6)

(1, 1, 2, 2, 3)x̃1 + (6, 7, 7, 8, 8)x̃2≤(9, 9, 10, 11, 11)

(5, 0, 6, 6, 7)x̃1 + (3, 3, 4, 0, 5)x̃2≤(14, 14, 15, 16, 16)

x̃21, x̃2≥0̃ (1)

By 1 using as per Theorem1 (Case 1) to convert pentagonal fuzzy numerical values into triangular
fuzzy values.

Max w̃1 = (1, 2, 3)x̃1 + (7, 8, 9)x̃2

Max w̃2 = (10, 11, 12)x̃1 + (12, 13, 14)x̃2

Max w̃3 = (20, 21, 22)x̃1 + (16, 17, 18)x̃2

Min w̃4 = (6, 7, 8)x1 x̃1 + (2, 3, 4)x̃2

Min w̃5 = (25, 26, 27)x̃1 + (13, 14, 15)x̃2

S.to

(2, 3, 4)x̃1 + (11, 12, 13)x̃2≤(4, 5, 6)

(1, 2, 3)x̃1 + (6, 7, 8)x̃2≤(9, 10, 11)

(5, 6, 7)x̃1 + (3, 4, 5)x̃2≤(14, 15, 16)

x̃1, x̃2≥0̃ (2)

By 2 using as per Theorem1 (Case 2) to convert three-tuples of fuzzy numerical values into crisp
values.

Max w1 = 2x1 + 8x2

Max w2 = 11x1 + 13x2

Max w3 = 21x1 + 17x2

Min w4 = 7x1 + 3x2

Min w5 = 26x1 + 14x2

S.to

3x1 + 12x2≤5

2x1 + 7x2≤10

6x1 + 4x2≤15

x1, x2≥0 (3)

As per the algorithm used, the usual simplex techniques and Excel solver approaches.
First objective function:

Max w1 = 2x1 + 8x2

S.to

3x1 + 12x2 + x3 = 5
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2x1 + 7x2 + x4 = 10

6x1 + 4x2 + x5 = 15

x1, x2, x3, x4, x5≥0

Max w1 = 3.3336

Table 1: Excel solver

Decision variables x1 x2 Objective value (Max w1)
Value 0 0.416667 3.333333333

Coefficients 2 8

LHS RHS
Constraints 1 3 12 5 ≤ 5
Constraints 2 2 7 3.3333333333 ≤ 10
Constraints 3 6 4 107 ≤ 15

Second objective function:

Max w2 = 11x1 + 13x2

S.to

3x1 + 12x2 + x3 = 5

2x1 + 7x2 + x4 = 10

6x1 + 4x2 + x5 = 15

x1, x2, x3, x4, x5≥0

Max w2 = 18.337

Table 2: Excel solver

Decision variables x1 x2 Objective value (Max w2)
Value 1.666667 0 18.33333333

Coefficients 11 13

LHS RHS
Constraints 1 3 12 5 ≤ 5
Constraints 2 2 7 3.333333333 ≤ 10
Constraints 3 6 4 10 ≤ 15

Third objective function:

Max w3 = 21x1 + 17x2

S.to

3x1 + 12x2 + x3 = 5

2x1 + 7x2 + x4 = 10

6x1 + 4x2 + x5 = 15

x1, x2, x3, x4, x5≥0
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Max w3 = 35.007

Table 3: Excel solver

Decision variables x1 x2 Objective value (Max w3)
Value 1.666667 0 35

Coefficients 21 17

LHS RHS
Constraints 1 3 12 5 ≤ 5
Constraints 2 2 7 3.333333333 ≤ 10
Constraints 3 6 4 10 ≤ 15

Fourthd objective function:

Min w4 = 7x1 + 3x2

S.to

3x1 + 12x2 + x3 = 5

2x1 + 7x2 + x4 = 10

6x1 + 4x2 + x5 = 15

x1, x2, x3, x4, x5≥0

Min w4 = −11.667

Table 4: Excel solver

Decision variables x1 x2 Objective value (Min w4)
Value 1.666667 0 -11.66666667

Coefficients -7 -3

LHS RHS
Constraints 1 3 12 5 ≤ 5
Constraints 2 2 7 3.333333333 ≤ 10
Constraints 3 6 4 10 ≤ 15

Fifth objective function:

Min w5 = 26x1 + 14x2

S.to

3x1 + 12x2 + x3 = 5

2x1 + 7x2 + x4 = 10

6x1 + 4x2 + x5 = 15

x1, x2, x3, x4, x5≥0

Min w5 = −43.342
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Table 5: Excel solver

Decision variables x1 x2 Objective value (Min w5)
Value 1.666667 0 -43.33333333

Coefficients -26 -14

LHS RHS
Constraints 1 3 12 5 ≤ 5
Constraints 2 2 7 3.333333333 ≤ 10
Constraints 3 6 4 10 ≤ 15

Table 6: Final table

Comparison of w

S.no Excel solver Proposed technique

1 3.3333 3.3336
2 18.333 18.337
3 35 35.007
4 −11.667 −11.667
5 −43.333 −43.342

5. Conclusion

In this work, the researchers first take a pentagonal triangular fuzzy number and then convert
it into a triangular fuzzy number with the use of Theorem 2.1. Furthermore, the triangular or
tri-tuple fuzzy valuations are changed into Defuzzified crisp values. The algorithm employs the
mean maxima method of crisp values to solve the standard linear programming simplex method.
As a comparison result of our proposed LPP simplex method to Excel’s solver simplex method,
our proposed results are more optimal than Excel’s solver.
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Abstract

The xgamma distribution is vital in reliability/survival analysis and biomedical research. In this article,
different estimation methods are proposed for the parameter of this distribution. The distribution is a
unique finite mixture of exponential distribution and gamma distribution. Some further properties of the
distribution that are not available in the earlier literature are studied. We consider the maximum likelihood
estimator, least squares estimator, weighted least squares estimator, percentile estimator, the maximum
product spacing estimator, the minimum spacing absolute distance estimator, the minimum spacing
absolute log-distance estimator, Cramér von Mises estimator, Anderson Darling estimator, right-tailed
Anderson Darling estimator, and compare them using a comprehensive simulation study. For comparison
purposes, the estimators’ bias and mean squared error are considered. A real data example is also a part of
this work. Some model selection techniques are used to choose the best fitting of the distribution to the
data.

Keywords: Bootstrap confidence intervals; classical methods of estimation; entropy; mixture
distribution; stress-strength reliability.

1. Introduction

The xgamma distribution was introduced by Sen et al. [14]. It is a mixture distribution of
F1(x) ∼ Exp(θ) and F2(x) ∼ Gamma(3, θ) with their mixing proportions π1 = θ/(1 + θ) and
π2 = 1 − π1 respectively. The probability density function (pdf) and cumulative distribution
function (cdf) of the xgamma distribution are, respectively, given by

f (x; θ) =
θ2

(1 + θ)

(
1 +

θ

2
x2
)

e−θx, x > 0, θ > 0 (1)

and

F(x; θ) = 1 −

(
1 + θ + θx + θ2x2

2

)
(1 + θ)

e−θx, x > 0, θ > 0. (2)
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The distribution has gained widespread popularity using reliability, survival analysis and biomed-
ical research. The distribution does not belong to the regular exponential family of distributions;
hence, the statistical inferential aspects are not used for the exponential family. The present
study aims to estimate the parameter of the xgamma distribution with seven different methods.
From the literature survey, there is little attempt made in this direction, and this article is an
effort to fill the gap. For this reason, the maximum likelihood estimator (MLE), least squares
estimator (LSE), weighted least squares estimator (WLSE), Crmer“von Mises estimator (CvME),
Maximum product of spacings estimator (MPSE), Anderson-Darling estimator (ADE), and Right-
tail Anderson-Darling estimator (RADE) have been considered for estimation.
The article is organized as follows. Section 2 introduces some further properties of the xgamma
distribution. In Section 3, we introduce seven different methods of estimation. A comprehensive
Monte Carlo simulation study is presented to evaluate the performances of these estimators
concerning bias and mean squared error (MSE) criteria in Section 4. In Section 5, we consider a
real data illustration. The concluding remarks are made in Section 6.

2. New Properties

This section discusses some new statistical properties that have yet to be available in earlier
literature.

2.1. Incomplete Moments, Mean Deviations, and Lorenz and Benferroni Curves

The rth incomplete moment, say, mI
r(t), of the xgamma distribution is given by

mI
r(t) =

∫ t

0
xr f (x)dx

=
γ(r + 1, θt)
(1 + θ)θr−1 +

γ(r + 3, θt)
2(1 + θ)θr .

Apart from range and standard deviation, mean deviation about the mean, δ1 and median,
δ2 are used as measures of spread in a population. Incomplete moments are used to define
δ1 = 2µ

′
1F(µ

′
1)− 2mI

1(µ
′
1) and δ2 = µ

′
1 − 2mI

1(µe),respectively. Here, µ
′
1 = E(X) is to be obtained

from rth moment of xgamma distribution with r = 1, F(µ
′
1) is to be calculated from (2), mI

1(µ
′
1) is

the first incomplete function obtained from the above equation with r = 1.

The Lorenz and Benferroni curves are defined by L(p) = mI
1(xp)/µ

′
1 and B(p) = mI

1(xp)

(pµ
′
1)

, respec-

tively, where xp = F−1(p) can be computed numerically by the quantile function with u = p.
These curves are significantly used in economics, reliability, demography, insurance, and medicine.
We refer to Pundir, Arora, and Jain[28] and the references cited therein for details on this aspect.

2.2. Entropies

The entropy measures the variation of the uncertainty of X, a random variable. A popular entropy
measure is Renyi entropy [13]. If X has the pdf, f(x), then Renyi entropy is defined by

HR(β) =
1

1 − β
ln

{∫ ∞

0
f β(x)dx

}
(3)

where β > 0 and β ̸= 1. Suppose X has the pdf in (2). Then, the Renyi entropy of xgamma
distribution is

HR(β) =
1

1 − β
ln

{
β

∑
i=0

(
β

i

)
θ2β−i−1

2i(1 + θ)β

Γ(2i + 1)
β2i+1

}
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Shannon measure of entropy is defined as

H( f ) = E[− ln f (X)]

=

{
θ + 3
θ + 1

}
− ln

{
θ2

1 + θ

}
−

∞

∑
i=1

(−1)i Γ(2i + 1)
2i(1 + θ)θi−1 −

∞

∑
i=1

(−1)i Γ(2i + 3)
2i+1(1 + θ)θi

2.3. Stress-Strength Reliability

The Stress-Strength model is the life of a component with a random strength X subjected to a
random stress Y. When a component experiences stress greater than its capacity to withstand, i.e.,
strength, it breaks and works well when X > Y. So, Stress-Strength Reliability is R = P(Y < X).
Let X ∼ xgamma(θ1) and Y ∼ xgamma(θ2) be independent random variables. Then Stress-
Strength Reliability

R = P(Y < X)

=
∫ ∞

0
Gy(x) f (x)dx

= 1 −
θ2

2
(θ1 + θ2)(1 + θ1)(1 + θ2)

.[
(1 + θ1) +

θ1

(θ1 + θ2)
+

θ2
1 + θ1θ2 + θ2

(θ1 + θ2)2 +
3θ1θ2

(θ1 + θ2)3 +
6θ2

1θ2

(θ1 + θ2)4

]
.

Also if θ1 = θ2 = θ, then

R =
1 − θ

2
.

2.4. Moments of the residual life

The residual life function is essential in reliability/survival analysis, social studies, bio-medical
sciences, economics, population study, the insurance industry, maintenance and product quality
control, and product technology. Let X denote the lifetime of a unit at age t, then Xt = X − t |
X > t is the remaining lifetime beyond that age t.

The cdf F(x) is uniquely determined by the rth moment of the residual life of X (for r = 1, 2, ...)
[Navarro, Franco, and Ruiz [10], and it is given by

mr(t) =
1

F̄(t)

∫ ∞

t
(x − t)rdF(x)

=
(1 + θ)eθx

(1 + θ + θx + θ2x2

2 )

[
r

∑
i=0

(−1)i
(

r
i

)
ti Γ(r + 1 − i, θt)
(1 + θ)θr−i−1 +

r

∑
i=0

(−1)i
(

r
i

)
ti Γ(r + 3 − i, θt)

2(1 + θ)θr−i

]
.

In particular, if r = 1, then m1(t) represents an important function called the mean residual life
(MRL) function, representing the average life length for a unit alive at age t.

2.5. Moments of the reversed residual life

In some real-life situations, uncertainty is not only related to the future but can also refer to the
past. Consider a system whose state is observed only at a specific preassigned inspection time t.
If the system is inspected for the first time and found to be ‘down’, failure relies on the past, i.e.
on which instant in (0, t) it has failed. So, the study of a dual notion of the residual life that deals
with the past time seems worthwhile [see Di Crescenzo and Longobardi [6]]. If X, a random
variable denotes the lifetime of a unit is down at age t, then X̄t = t − X | X < t indicates the idle
time or inactivity time or reversed residual life of the unit at age t.
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In the case of forensic science, people may be interested in estimating X̄t to ascertain a person’s
exact time of death. In the Insurance industry, it represents the period that remained unpaid by a
policyholder due to death. The rth moment of X̄t (for r = 1, 2, ...) is given by

m̄r(t) =
1

F(t)

∫ t

0
(t − x)rdF(x)

=
1{

1 − (1+θ+θx+ θ2x2
2 )e−θx

(1+θ)

} [
r

∑
i=0

(−1)i
(

r
i

)
tr−i γ(i + 1, θt)

(1 + θ)θi−1 +
r

∑
i=0

(−1)i
(

r
i

)
tr−i γ(i + 3, θt)

2(1 + θ)θi

]

In particular, if r = 1, then m̄1(t) represents a function called the mean idle time or inactivity
time (MIT) or reversed residual life (MRRL) function that indicates the mean inactive life length
for a unit which is first observed down at age t. The properties of the MIT function have been
explored by Ahmad, Kayid, and Pellerey [1] and Kayid and Ahmad [7].

3. Estimation on distribution parameter

In this section, we describe seven estimation methods, namely, MLE, LSE, WLSE, CvME, MPSE,
ADE and RADE, to obtain the estimators of the parameter θ of the xgamma distribution.

3.1. Maximum likelihood estimator

Let (X1, X2, . . . , Xn) is a random sample from the distribution in (1). Then, the log-likelihood
function is given by

ℓ(θ) = 2n log θ − n log(1 + θ) +
n

∑
i=1

log(1 +
θ

2
X2

i )− θ
n

∑
i=1

Xi. (4)

The derivative of the log-likelihood function is

dℓ(θ)
dθ

=
2n
θ

− n
1 + θ

−
n

∑
i=1

Xi +
n

∑
i=1

X2
i

2

1 + θ
2 X2

i
. (5)

Equating this to zero does not yield a closed-form solution for the MLE; thus, a numerical method,
like Newton Raphson, is used to solve this equation.

3.2. Ordinary and weighted least squares estimator

The ordinary least squares and weighted least squares estimators were proposed by Swain et al.
[16] to estimate the parameters of Beta distributions. Suppose F(Xi:n|θ) denotes the cumulative
distribution function of the ordered random variables X1:n < X2:n < · · · < Xn:n of size n from a
distribution function F(·|θ). Therefore, in this case, the least square estimator of θ, say, θ̂LSE can
be obtained by minimizing the function

S(θ) =
n

∑
i=1

[
F (Xi:n|θ)−

i
n + 1

]2

with respect to θ, where F(·|θ) is the cdf, given in Eqn. 2. Equivalently, this can be obtained by
solving:

n

∑
i=1

[
F (Xi:n | θ)− i

n + 1

]
η1 (Xi:n | θ) = 0,
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where,

η1 (Xi:n | θ) =
1

1 + θ

[
θ + (θ2 − 1)(1 + Xi:n) + θ

(
θ2

2
− 1

)
X2

i:n

]
e−θXi:n . (6)

The weighted least squares estimator of θ, say, θ̂WLSE, can be obtained by minimizing

W (θ) =
n

∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F (Xi:n | θ)− i

n + 1

]2
.

This estimator can also be obtained by solving the following:

n

∑
i=1

(n + 1)2 (n + 2)
i (n − i + 1)

[
F (Xi:n | θ)− i

n + 1

]
η1 (Xi:n | θ) = 0

where η1 (· | θ) is given in Equation (6).

3.3. Cramèr-von-Mises estimator

To motivate our choice of Cramèr-von-Mises type minimum distance estimators, MacDonald [8]
provided empirical evidence that the estimator’s bias is smaller than the other minimum distance
estimators. Thus, the Cramèr-von-Mises estimator of θ, say θ̂CvME can be obtained by minimizing

C(θ) =
1

12n
+

n

∑
i=1

[
F (Xi:n|θ)−

2i − 1
2n

]2

with respect to θ. This estimator can also be obtained by solving the non-linear equations

n

∑
i=1

[
F (Xi:n | θ)− 2i − 1

2n

]
η1 (Xi:n | θ) = 0

where η1 (· | θ) is given in Equation (6).

3.4. Maximum product of spacings estimator

The maximum product spacing method was introduced by Cheng and Amin [4] as an alternative to
MLE to estimate the unknown parameters of continuous univariate distributions. The maximum
product spacing method was also derived independently by Ranneby [12] as an approximation
to the Kullback-Leibler measure of information. To motivate our choice, Cheng and Amin [5]
proved that this method is as efficient as the MLE estimators and consistent under more general
conditions. We define the uniform spacings of a random sample from the xgamma distribution
as:

Di(θ) = F (Xi:n | θ)− F (Xi−1:n | θ) , i = 1, 2, . . . , n,

where F(X0:n | θ) = 0 and F(Xn+1:n | θ) = 1. Clearly ∑n+1
i=1 Di(θ) = 1. The maximum product of

spacings estimator θ̂MPSE, of the parameter θ is obtained by maximizing, with respect to θ, the
geometric mean of the spacings:

G (θ) =

[
n+1

∏
i=1

Di(θ)

] 1
n+1

(7)

or, equivalently, by maximizing the function

H (θ) =
1

n + 1

n+1

∑
i=1

log Di(θ) (8)
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The estimator θ̂MPSE of the parameter θ can be obtained by solving the non-linear equation

d
dθ

H (θ) =
1

n + 1

n+1

∑
i=1

1
Di(θ)

[η1(Xi:n|, θ)− η1(Xi−1:n|, θ)] = 0

where, η1 (· | θ) is given in Equation (6).

3.5. Anderson-Darling and Right-tail Anderson-Darling estimators

The Anderson-Darling (AD) test [see Anderson and Darling [2]] is an alternative to other statistical
tests for detecting sample distribution’s departure from normality. Specifically, the Anderson-
Darling test converges very quickly towards the asymptote [see Anderson and Darling [3], Pettitt
[11] and Stephens [15]]. The Anderson-Darling estimator θ̂ADE of the parameter θ are obtained
by minimizing, with respect to θ, the function:

A(θ) = −n − 1
n

n

∑
i=1

(2i − 1)
{

log F (Xi:n | θ) + log F (Xn+1−i:n | θ)
}

. (9)

This estimator can also be obtained by solving the non-linear equations:

n

∑
i=1

(2i − 1)

[
η1 (Xi:n | θ)

F (Xi:n | θ)
−

η1
(
Xn+1−i:n | θ

)
F (Xn+1−i:n | θ)

]
= 0

where, η1 (· | θ) is defined in Equation (6).

The right-tail Anderson-Darling estimator θ̂RADE of the parameter θ is obtained by minimiz-
ing, with respect to θ, the function:

R(θ) =
n
2
− 2

n

∑
i=1

F (Xi:n | θ)− 1
n

n

∑
i=1

(2i − 1) log F (Xn+1−i:n | θ) . (10)

These estimators can also be obtained by solving the non-linear equations:

−2
n

∑
i=1

η1 (Xi:n | θ) +
1
n

n

∑
i=1

(2i − 1)
η1

(
Xn+1−i:n | θ

)
F (Xn+1−i:n | θ)

= 0

where, η1 (· | θ) is defined in Equations (6).

4. Simulation Study

In this section, we have carried out a Monte Carlo simulation study to assess the performance of
the proposed estimators (MLE, LSE, WLSE, CvME, MPSE, ADE and RADE) of the parameter
θ for the xgamma distribution. First, we generate random data from the xgamma distribution
where we can use the fact that the xgamma distribution is a special mixture of the exponential(θ)
and gamma(3, θ) distributions. To generate random data Xi, i = 1, 2, 3, .... n, from the xgamma
distribution with parameter θ, we can use the following algorithm:

1. Generate Ui ∼ uniform(0, 1), i = 1, 2, 3, .... n

2. Generate Vi ∼ exponential(θ), i = 1, 2, 3, .... n

3. Generate Wi ∼ gamma(3, θ), i = 1, 2, 3, .... n

4. If Ui ≤ θ/(1 + θ), then set Zi = Vi. Otherwise, set Zi = Wi
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Table 1: True value of θ and the average bias of the different estimation procedures for xgamma distribution

θ n MLE LSE WLSE CvME MPSE ADE RADE
10 0.003704 0.002111 0.001874 0.002768 0.001992 0.001884 0.001008
20 0.001981 0.001151 0.001088 0.001505 0.001511 0.001123 0.000638

0.1 40 0.000934 0.000556 0.000529 0.000735 0.001200 0.000531 0.000310
70 0.000544 0.000318 0.000318 0.000421 0.000845 0.000302 0.000156

100 0.000392 0.000223 0.000233 0.000296 0.000657 0.000219 0.000120
10 0.025356 0.016170 0.014216 0.021056 0.009505 0.014093 0.008516
20 0.011770 0.007034 0.006230 0.009586 0.009145 0.006256 0.003748

0.5 40 0.005585 0.003072 0.002902 0.004403 0.007156 0.002951 0.001367
70 0.003144 0.002050 0.002021 0.002805 0.005178 0.001866 0.000982

100 0.001619 0.000868 0.000826 0.001398 0.003546 0.000768 0.000143
10 0.066489 0.051949 0.046934 0.063382 0.021548 0.041516 0.027305
20 0.027416 0.017687 0.015768 0.023747 0.016970 0.014983 0.008669

1 40 0.017020 0.012473 0.012031 0.015611 0.013533 0.011465 0.007898
70 0.008023 0.004010 0.004044 0.005801 0.011038 0.003737 0.002373

100 0.005219 0.002871 0.003082 0.004134 0.008104 0.002752 0.001560
10 0.107576 0.079362 0.071569 0.097780 0.039168 0.062468 0.040920
20 0.051824 0.037330 0.033998 0.047283 0.029162 0.032012 0.021111

1.5 40 0.024598 0.015411 0.014735 0.020502 0.023889 0.013955 0.009203
70 0.014383 0.009096 0.009045 0.012023 0.017182 0.008117 0.005517

100 0.011339 0.008878 0.008546 0.010944 0.011182 0.008025 0.005675

A Monte Carlo simulation study was carried out considering N = 5000 times for selected values
of n, θ. For the first simulation, samples of sizes 10, 20, 40, 70 and 100 were considered, and
values of θ were taken as 0.1, 0.5, 1.0, 1.5. The required numerical evaluations are carried out
using R 3.1.1 software. The following two measures were computed:

1. Average bias of the simulated estimate θ̂, for i=1, 2, 3, .....,N is 1
N ∑N

i=1(θ̂i − θ)

2. Average Mean Square Error (MSE) of the simulated estimate θ̂, for i=1, 2, 3, ....., N is
1
N ∑N

i=1(θ̂i − θ)2

In Table 1, we have calculated the average bias of the parameter θ using MLE, LSE, WLSE,
CvME, MPSE, ADE and RADE.
In Table 2, we have calculated the average MSEs of the parameter θ using MLE, LSE, WLSE,
CvME, MPSE, ADE and RADE.
Table 1 shows that
(i) Bias decreases as n increases.
(ii) Bias decreases as the values of θ increases.
Table 2 shows that
(i) MSE decreases as n increases.
(ii) MSE decreases as the values of θ increases.
Comparing the Tables 1 − 2 and Figures 1 − 2, even though the MLE is comparatively easy to
calculate, the ADE or RADE is preferable from the bias and MSE point of view.

5. Data Analysis

The data set is given by Murthy et al. [9] and represents the failure time of 20 components.
The data are 0.072, 4.763, 8.663, 12.089, 0.477, 5.284, 9.511, 13.036, 1.592, 7.709, 10.636, 13.949,
2.475, 7.867, 10.729, 16.169, 3.597, 8.661, 11.501 and 19.809. A summary of these data is: n = 20,
x̄ = 8.42945, s = 5.322056, skewness = 0.1769692, kurtosis = 2.430915. The box plot and the Total
Time on Test (TTT) plot of these observations are displayed in Figure 3. The box plot indicates
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Figure 1: Average bias and MSE of the estimator of xgamma distribution for different estimation procedures
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Figure 2: Average bias and MSE of the estimator of xgamma distribution for different estimation procedures
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Table 2: True value of θ and the average MSEs of the different estimation procedures for xgamma distribution

θ n MLE LSE WLSE CvME MPSE ADE RADE
10 0.000439 0.000502 0.000483 0.000506 0.000381 0.000443 0.000414
20 0.000199 0.000229 0.000217 0.000230 0.000184 0.000209 0.000197

0.1 40 0.000091 0.000106 0.000100 0.000106 0.000088 0.000097 0.000093
70 0.000052 0.000061 0.000057 0.000062 0.000050 0.000056 0.000053

100 0.000036 0.000042 0.000039 0.000042 0.000036 0.000039 0.000037
10 0.013628 0.016936 0.015879 0.017242 0.011157 0.013783 0.012303
20 0.005962 0.007405 0.006890 0.007501 0.005361 0.006442 0.005854

0.5 40 0.002634 0.003267 0.003026 0.003294 0.002502 0.002930 0.002677
70 0.001539 0.001940 0.001776 0.001949 0.001497 0.001739 0.001597

100 0.001069 0.001308 0.001205 0.001312 0.001057 0.001189 0.001106
10 0.069448 0.100324 0.093373 0.101749 0.053900 0.072068 0.062812
20 0.028016 0.034550 0.031993 0.035101 0.024756 0.029757 0.027279

1 40 0.012726 0.015990 0.014680 0.016163 0.011771 0.014040 0.012747
70 0.007001 0.008904 0.008123 0.008952 0.006748 0.007925 0.007184

100 0.004781 0.006223 0.005606 0.006245 0.004748 0.005514 0.004999
10 0.178790 0.256766 0.239198 0.260282 0.136610 0.181424 0.156670
20 0.073687 0.097266 0.089498 0.098933 0.063242 0.080475 0.071668

1.5 40 0.032243 0.041780 0.037965 0.042180 0.029828 0.036235 0.032962
70 0.017389 0.022625 0.020359 0.022757 0.016632 0.019824 0.018033

100 0.012620 0.016351 0.014757 0.016432 0.007166 0.014528 0.013152
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Figure 3: Box plot and TTT plot for the failure time data
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Table 3: Summarized results of fitting different distributions for failure time data set

xgamma Akash Exponential Lindley Shankar Sujatha

ℓ -60.0189 -61.6744 -62.6346 -61.3792 -62.2797 -61.8345
AIC 122.0378 125.3488 127.2693 124.7583 126.5595 125.6689
BIC 123.0336 126.3445 128.2650 125.7541 127.5552 126.6647
CAIC 122.5357 125.5710 127.4915 124.9805 126.7817 125.8912
HQIC 122.2322 125.5431 127.4636 124.9527 126.7538 125.8633

Table 4: Estimated values with SEs for fitting different distributions for failure time data set

xgamma Akash Exponential Lindley Shankar Sujatha

θ̂MLE 0.3005 0.3427 0.1186 0.2162 0.2352 0.3293
(SE) (0.0105) (0.0254) (0.0315) (0.0202) (0.0237) (0.0247)
θ̂LSE 0.2503 0.3150 0.0954 0.1930 0.2067 0.3026
(SE) (0.0112) (0.0235) (0.0235) (0.0164) (0.0200) (0.0225)
θ̂WLSE 0.2610 0.3192 0.1041 0.2002 0.2133 0.3073
(SE) (0.0124) (0.0237) (0.0265) (0.0176) (0.0208) (0.0229)
θ̂CvME 0.2512 0.3309 0.1003 0.2019 0.2179 0.3174
(SE) (0.0113) (0.0245) (0.0252) (0.0178) (0.0214) (0.0237)
θ̂MPSE 0.3024 0.3171 0.0964 0.1945 0.2083 0.3047
(SE) (0.0178) (0.0236) (0.0239) (0.0167) (0.0201) (0.0227)
θ̂ADE 0.2690 0.3206 0.1071 0.2134 0.2166 0.3208
(SE) (0.0133) (0.0238) (0.0275) (0.0197) (0.0212) (0.0240)
θ̂RADE 0.2381 0.3268 0.1034 0.1969 0.2284 0.3285
(SE) (0.0107) (0.0243) (0.0263) (0.0170) (0.0227) (0.0246)

that the distribution is right-skewed. The TTT plot suggests an increasing failure rate; thus, the
xgamma distribution could be appropriate for modeling the current data. Figure 4 shows the
fitted probability distribution and empirical distribution function of the xgamma distribution
based on different estimates of the parameter to the data set. Table 3 summarises the results
of fitting different distributions. Based on the results listed in the table, we conclude that the
xgamma distribution provides the best fit with the lowest values of model selection criteria.
The xgamma model provides the closest fit to the data. In Table 4, we have presented different
estimates of θ under various distributional assumptions to the data and their corresponding
standard error (SE). It is also noticed that the SE is the least for the assumption of xgamma
distribution, and the MLE and RADE are efficient estimates.

6. Concluding remarks

In this paper, different estimation procedures of the parameter of the xgamma distribution have
been studied. Simulation studies are carried out for seven different initial values. As the sample
size increases, the MSEs and biases of all estimators decrease and become close to each other. In
a small sample situation, the MSEs of the ADE and RADE are smaller than the others. A real
data application is conducted to show the appropriateness of xgamma distribution in practical
data modelling. The xgamma distribution was compared with some known distributions and
presented the estimates according to various parameter estimators. The xgamma distribution
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Figure 4: The fitted pdfs and cdfs of xgamma distribution for different methods of estimation based on failure time data

is the best-fitting model for some failure time data, and the ADE and RADE are preferable for
estimating the parameter even though the MLE has computational ease.
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Abstract 

In this research paper, Confidence interval using Maximum likelihood estimation is obtained for Poisson 
type Length biased exponential class for the parameters. Failure intensity, mean time to failure and 
likelihood function for the parameter is obtained. Confidence interval has been derived for parameters 
using maximum likelihood estimation. To study the performance of confidence interval, average length 
and coverage probability are calculated using Monte Carlo simulation technique. From the obtained 
intervals it is concluded that Confidence interval for the parameter perform better for appropriate choice of 
execution time and certain values of parameters.  

Keywords: Length biased exponential distribution, Software reliability growth model, 
Maximum likelihood estimation (MLE), Confidence interval using MLE, Average 
length and coverage probability. 

I. Introduction

In this research paper Poisson type length biased exponential class model is considered according to 

Musa and Okumoto [9] classification scheme. Seenoi et al [12] proposed length biased exponentiated 

invented weibull distribution including some probability functions and moments of this distribution. Mir 
et al [6] introduced a length biased Beta distribution and also given a test for detection of length 
biasedness of beta distribution. The exponential exponentiated distribution proposed by Gupta and 
Kundu [4] which is special case of the exponentiated Weibull family. Mudholkar and Shrivastava [7] 
proposed the exponentiated weibull distribution as an extension of the weibull family obtained by 
adding the second shape parameter. Gupta and Keating [3] developed relationship between the survival 
function, the failure rate and mean residual life of exponential distribution and its length biased form. 
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Mudholkar et al [8] applied exponentiated weibull distribution to serve survival data and showed those 
hazard rates are increasing, decreasing bathtub shape and unimodal. Neppala et al [11] proposed Pareto 
type II based software reliability growth model with interval domain data using maximum likelihood 
estimation to estimate the parameter. Singh et al [13] proposed Bayes estimators for length biased 
distribution compared with ML estimators. Cunha and Rao [1] estimated credible interval and confidence 
interval through MLE for lognormal distribution also compared average length and coverage probability 
of the calculated interval. In the field of software reliability most of the work done on point estimation 
which give single guess value. Interval estimation with confidence interval gives more information than a 
point estimate. Confidence interval will be derived for both finite and infinite failure type models. 
Interval estimate indicates the error related to point estimate by the extent of its range and by probability 
of the true population parameter lying within that range. Thus, the purpose of this research paper is to 
study confidence interval using maximum likelihood estimation.  

      The association of the paper is such that section II presents length biased exponential model and 
derivation of failure intensity and expected number of failures using Length biased exponential 
distribution. Section III presents Likelihood function and derivation of maximum likelihood estimates of 
the parameters. Section IV contains derivation of confidence limits for the parameters θ0 and θ1 using 
maximum likelihood estimation. Results are discussed in the section V while concluding remarks are 
provided in section VI.    

II. Model Formulation and Evaluation

 Consider that software is tested for its performance and observed the time of failure occurs during 
software system performance. Let the number of failures present in software be 0,and  te be the execution 
time i.e. time during which CPU is busy and me be the number of failures observed up to execution time 
te. Consider that time between the failures ti (i=1,2,………me ) follows the exponential distribution with 
parameter θ1. The length biased exponential distribution is given as 

 (1) 

Where  denotes the length biased exponential distribution. 

The failure intensity function is obtained by using equation (1)  

     , ,                                                                                                     (2) 

Where, θ0 express the number of failures and θ1 express the for failure rate. 

The mean failure function i.e. expected number of failures at time te can be obtained by using equations 
(2) and given by:

      (3)  
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Where,   and by solving (see Gradshteyn and Ryzhik [2]) we get, 

 , , ,     (4) 

The study of behavior of failure intensity and expected number of failure of length biased exponential 
class model has been done by Singh et al [13]. They have compared the MLE's and Bayesian estimators on 
the basis of risk efficiencies. 

III. Maximum Likelihood Estimation

 Maximum likelihood estimation is most preferable because of its easy computation, greater 
efficiency and better numerical stability. It requires likelihood function for estimation. The likelihood 
function of parameters and   is obtained with the help of failure intensity (2) and expected number of 
failures (4) (see for details Musa et al [10]) given by: 

   (5) 

     Where,  

After taking the logarithm of both sides of above equation and applying the procedure of obtaining the 
MLE’s for parameters and , the MLE’s are 

(6) 

and 

(7)  

respectively.  
The values of  and  can be obtained by solving simultaneous equations (6) and (7) using any 
available standard numerical method viz. Bisection Method, Newton Rapson method. Singh et al [13] 
obtained maximum likelihood estimates for parameters of length biased exponential model. They 
compared maximum likelihood estimates and Bayes estimates on the basis of risk efficiencies and 
concluded that Bayes estimates preferred over maximum likelihood estimates. 

IV. Confidence Interval using maximum likelihood estimation

    Now to obtain confidence interval for both the parameter, it requires variance-covariance matrix 
for Σ all the MLE. Variance-covariance matrix is derived using Fisher information matrix. For asymptotic 
variance we can calculate Fisher information matrix which is negative second partial derivative of log 
likelihood function (see for details Kale [5]). Second derivative of log likelihood function can be given as 
follows: 

 (8) 

             (9) 
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 Using equation (8) confidence limits for parameter θ0 is given by: 

    (10) 

   (11) 

For parameter θ1 confidence limits using equation (9) are given by: 

             (12) 

(13) 

By substituting tabulated values of Zα, 95% confidence interval can be obtained. 

V. Discussion and Results

Here, 95% confidence interval using maximum likelihood estimation is obtained for the parameters θ0 i.e. 
total number of failures and θ1. Confidence interval for the proposed length biased exponential model is 
calculated as defined equation (1). To study the performance of confidence interval, sample size me was 
generated up to execution time te and  it was repeated 1000 times from the length biased exponential 
distribution for distinct values of θ0 and θ1.Using Monte Carlo simulation technique 95% confidence 
interval has been obtained. The values of average length and coverage probability have been obtained by 
assuming execution time  , and parameters  , and  . 
Average length and coverage probability obtained for confidence interval has been summarized in the 
tables 1to 10 

     Table 1 to 5 represents the 95% confidence interval for the parameter θ0. From the table, it is 
seen that as values of parameter θ0 increases the calculated average length decreases and there is slight 
increase in calculated average length as values of parameter θ1 increases. From table it can be seen that 
values of coverage probability decreases as θ0 increases and as θ1 increases coverage probability 
increases. Similarly, it can also be observed that as execution time te increases average length increases. As 
average length decreases it effects on coverage probability. Coverage probability decreases as average 
length decreases and it increases as execution time increases.  

          The table 6 to 10 represents the 95% confidence interval for the parameter θ0. From the table, it 
is seen that the values of average length increases as θ0 increases and average length increases slightly as 
θ1 increases. From table it can be seen that values of coverage probability increases as θ0 increases and as 
θ1 increases coverage probability also increases. Similarly, it can also be observed that execution time te 

increases average length decreases and coverage probability also decreases as execution time increases. 
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Table 1: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 15 

*The values in the parenthesis are coverage probability.

Table 2: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 20. 

*The values in the parenthesis are coverage probability.

    θ0 
θ1 

24 26 28 30 32 

0.02 
57.16894 
(0.995) 

56.38039 
(0.995) 

55.55027 
(0.994) 

54.65604 
(0.994) 

53.83833 
(0.992) 

0.04 
57.222518 

(0.995) 
56.39313 
(0.995) 

55.63409 
(0.995) 

54.70139 
(0.994) 

54.12473 
(0.993) 

0.06 
57.233046 

(0.995) 
56.42863 
(0.994) 

55.65794 
(0.995) 

54.90752 
(0.994) 

54.16633 
(0.993) 

0.08 
57.233615 

(0.995) 
56.45414 
(0.995) 

55.67368 
(0.995) 

54.92776 
(0.994) 

54.23347 
(0.993) 

0.1 
57.243652 

(0.995) 
56.50778 
(0.995) 

55.71389 
(0.995) 

54.93576 
(0.994) 

54.27069 
(0.993) 

    θ0 
   θ1 

24 26 28 30 32 

0.02 
57.605773 

(0.995) 
57.18747 
(0.995) 

56.78515 
(0.994) 

56.38402 
(0.994) 

55.94543 
(0.992) 

0.04 
57.612651 

(0.995) 
57.21467 
(0.995)  

56.84414 
(0.994) 

56.41711 
(0.994) 

56.02504 
(0.993) 

0.06 
57.61924 
(0.995) 

57.23135 
(0.995) 

56.85961 
(0.994) 

56.44942 
(0.9944) 

56.07487 
(0.993) 

0.08 
57.62179 
(0.995) 

57.2444 
(0.995) 

56.89678 
(0.994) 

56.46993 
(0.994) 

56.09547 
(0.993) 

0.1 
57.63312 
(0.995) 

57.26667 
(0.995) 

56.90905 
(0.995) 

56.53445 
(0.995) 

56.18467 
(0.994) 
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Table 3: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 25. 

*The values in the parenthesis are coverage probability.

Table 4: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 30. 

*The values in the parenthesis are coverage probability.

    θ0 
   θ1 

24 26 28 30 32 

0.02 
57.687913 

(0.995) 
57.35914 
(0.995) 

57.05328 
(0.995) 

56.72293 
(0.994)  

56.39379 
(0.993) 

0.04 
57.694764 

(0.995) 
 57.38959 

(0.995) 
57.05003 
(0.995) 

56.73697 
(0.994) 

56.42135 
(0.994) 

0.06 
57.70429 
(0.996) 

57.38601 
(0.995) 

57.07483 
(0.995) 

56.77586 
(0.994) 

56.47019 
(0.994) 

0.08 
57.725421 

(0.996) 
57.38709 
(0.995) 

57.09107 
(0.995) 

56.77883 
(0.994) 

56.48683 
(0.994) 

0.1 
 57.728669 

(0.996) 
57.40079 
(0.995) 

57.11992 
(0.995) 

56.78598  
(0.995) 

56.50296 
(0.994) 

θ0 
θ1 

24 26 28 30 32 

0.02 
57.757765 

(0.996) 
57.47327 
(0.995) 

57.18907 
(0.995) 

56.92065 
(0.994) 

56.70381 
(0.994) 

0.04 
57.760038 

(0.996) 
57.48198 
(0.995) 

57.19682 
(0.995) 

56.95059 
(0.994) 

56.72307 
(0.994) 

0.06 
57.760261 

(0.996) 
57.48631 
(0.995) 

57.21524 
(0.995) 

56.96878 
(0.995) 

56.73889 
(0.994) 

0.08 
 57.765491 

(0.996) 
57.49554 
(0.995) 

57.23952 
(0.995) 

57.01431 
(0.995) 

56.75868 
(0.994) 

0.1 
57.765513 

(0.997) 
57.53795 
(0.996) 

57.27481 
(0.995) 

57.04687 
(0.995) 

57.02576 
(0.995) 
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Table 5: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 35.

*The values in the parenthesis are coverage probability.

Table 6: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 15. 

*The values in the parenthesis are coverage probability.

    θ0 
   θ1 

24 26 28 30 32 

0.02 
57.784104 

(0.997) 
57.53507 
(0.996) 

57.33528 
(0.995) 

57.04729 
(0.995) 

56.85084 
(0.994) 

0.04 
57.786394 

(0.997) 
57.54886 
(0.996) 

57.34892 
(0.995) 

57.06216 
(0.995) 

56.87181 
(0.994) 

0.06 
57.793615 

(0.997) 
57.55129 
(0.996) 

57.35886 
(0.995) 

57.07193 
(0.995) 

56.87427 
(0.994) 

0.08 
57.797047 

(0.997) 
57.57595 
(0.996) 

57.35927 
(0.995) 

57.08127 
(0.995) 

56.88975 
(0.994) 

0.1 
57.798991 

(0.998) 
57.58077 
(0.996) 

57.37618 
(0.995) 

57.13901 
(0.995) 

57.00542 
(0.995) 

    θ0 
θ1 

24 26 28 30 32 

0.02 
0.023096 
(0.996) 

0.023270 
(0.996) 

0.023425 
(0.996) 

0.023611 
(0.997) 

0.023803 
(0.997) 

0.04 
0.023100  
(0.996) 

0.023273 
(0.996) 

0.023426 
(0.996) 

0.023648 
(0.997) 

0.023842 
(0.997) 

0.06 
0.023103 
(0.996) 

0.023279 
(0.996) 

0.023448 
(0.996) 

0.023651 
(0.997) 

0.023856 
(0.997) 

0.08 
0.023103 
(0.996) 

0.023297 
(0.996) 

0.023461 
(0.996) 

0.023671 
(0.997) 

0.023865 
(0.997) 

0.1 
0.023107 
(0.996) 

0.023298 
(0.996) 

0.023488 
(0.996) 

0.023691 
(0.997) 

0.023871 
(0.998) 
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Table 7: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 20. 

*The values in the parenthesis are coverage probability.

Table 8: Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 25. 

*The values in the parenthesis are coverage probability.

    θ0 
θ1 

24 26 28 30 32 

0.02 
0.019317 
(0.995) 

0.019425 
(0.995) 

0.019531 
(0.995) 

0.019644 
(0.996) 

0.019751 
(0.996) 

0.04 
0.019321 
(0.995) 

0.019431 
(0.995) 

0.019535 
(0.995) 

0.019657 
(0.996) 

0.019779 
(0.996) 

0.06 
0.019321 
(0.995) 

0.019435 
(0.995) 

0.019546 
(0.995) 

0.019664 
(0.996) 

0.019786 
(0.996) 

0.08 
0.019323 
(0.995) 

0.019440 
(0.995) 

0.019551 
(0.995) 

0.019679 
(0.996) 

0.019802 
(0.996) 

0.1 
0.019325 
(0.995) 

0.019448 
(0.995) 

0.019568 
(0.995) 

0.019685 
(0.996) 

0.019826 
(0.996) 

    θ0 
θ1 

24 26 28 30 32 

0.02 
0.016918 
(0.994) 

0.017003 
(0.995) 

0.017076 
(0.995) 

0.017164 
(0.995) 

0.017245 
(0.995) 

0.04 
0.016919 
(0.994) 

0.017006 
(0.995) 

0.017083 
(0.995) 

0.017166 
(0.995) 

0.017262 
(0.995) 

0.06 
0.016924 
(0.994) 

0.017008 
(0.995) 

0.017088 
(0.995) 

0.017167 
(0.995) 

0.017269 
(0.995) 

0.08 
0.016927 
(0.995) 

0.017010 
(0.995) 

0.017094 
(0.995) 

0.017177 
(0.995) 

0.017276 
(0.994) 

0.1 
0.016928 
(0.995) 

0.017013 
(0.995) 

0.017093 
(0.995) 

0.017181 
(0.995) 

0.017284 
(0.996) 
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Table 9 : Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 30. 

*The values in the parenthesis are coverage probability.

Table 10 : Average length and coverage probability of 95% confidence interval  calculated for the different values parameters 
θ0 = (24:2:32) and θ1 = (0.02:0.02:0.1) and te= 35. 

*The values in the parenthesis are coverage probability.

    θ0 
θ1 

24 26 28 30 32 

0.02 
0.015232 
(0.994) 

0.015288 
(0.994) 

0.015349 
(0.994) 

0.015427 
(0.994) 

0.015466 
(0.994) 

0.04 
0.015235 
(0.994) 

0.015298 
(0.994) 

0.015363 
(0.994) 

0.015431 
(0.994) 

0.015473 
(0.994) 

0.06 
0.015236 
(0.994) 

0.015301 
(0.994) 

0.015364 
(0.994) 

0.015434 
(0.994) 

0.015477 
(0.994) 

0.08 
0.015237 
(0.994) 

0.015303 
(0.994) 

0.015368 
(0.994) 

0.015442 
(0.994) 

0.015481 
(0.994) 

0.1 
0.015256 
(0.994) 

0.015328 
 (0.994) 

0.015372 
(0.994) 

0.015467 
(0.994) 

0.015489  
(0.994) 

    θ0 
θ1 

24 26 28 30 32 

0.02 
0.013966 
(0.993) 

0.01402 
(0.993) 

0.014061 
(0.993) 

0.014124 
(0.993) 

0.014167 
(0.994) 

0.04 
0.013967 
(0.993) 

0.014014 
(0.993) 

0.014064 
(0.993) 

0.014129 
(0.993) 

0.014171 
(0.994) 

0.06 
0.013968 
(0.993) 

0.014023 
(0.993) 

0.014067 
(0.993) 

0.014136 
(0.993) 

0.014176 
(0.994) 

0.08 
0.013969 
(0.993) 

0.014029 
(0.993) 

0.014076 
(0.993) 

0.014141 
(0.993) 

0.014184 
(0.994) 

0.1 
0.013972  
(0.993) 

0.014033 
(0.993) 

0.014086 
(0.993) 

0.014153 
(0.994) 

0.014186 
(0.994) 
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VI. Conclusion

Confidence interval through MLE is derived in this paper, the confidence interval suggested for the 
parameters of Poisson type length biased exponential class as SRGM. From the computation and above 
discussion it is concluded that proposed confidence interval maintained high coverage probability for 
different values of parameters for fixed execution time. Confidence interval for parameter θ0 can be 
preferred for small execution time whereas Confidence interval for parameter θ1 can be preferred for 
large execution time. 
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Abstract 

The paper deals with a system composed of two-non identical units (unit-1 and unit-2).  Initially, 
unit-1 is operative and unit-2 is kept in cold standby. The cold standby unit can’t fail in its standby 
mode. Each unit of the system has two possible modes: Normal (N) and total failure (F). When the 
unit-1 fails the cold standby (unit-2) becomes operative instantaneously with the help of a perfect 
and instantaneous switching device. A single repairman is always available with the system to 
repair a failed unit and failed RM. Unit-1 gets priority in operation and repair over unit-2. 
However, the RM gets priority in repair over any of the units. The RM machine is good initially 
and can’t fail unless it becomes operative.  The system failure occurs when both the units are in 
total failure mode. The joint distribution of failure and repair times for each unit is taken bivariate 
exponential distribution. Each repaired unit works as good as new. Using regenerative point 
technique, various important measures of system effectiveness have been obtained. 

Keywords: Transition probabilities, mean sojourn time, bi-vairate exponential 
distribution, reliability, MTSF, availability, expected busy period of repairman, 
net expected profit. 

1. Introduction

 Two units standby system models have been investigated by a large number of authors including 
A. Kumar, D. Pawar and S.C. Malik [11], P. Chaudhary, A. Sharma and R.Gupta [3], P. Chaudhary
and A. Sharma [2], N.Kumar and N. Nandal [12], P. Gupta and P. Vinodiya [9], R. Gupta and
P.Bhardwaj [5], R. Gupta and A. Tyagi [8], N. Kumar, S.C. Malik and N. Nandal [10], P. Chaudhary
and S. Masih [1], P. Chaudhary and L. Tyagi[4] by using the concepts of warm standby with
common cause failure and human error, correlated failure and repairs, two types of repairmen,
two priority units warm standby with preparation for repair, two unit priority standby with
repair, two unit cold standby with two operating modes.

 In the analysis of above system models it has been assumed that a failed unit is always 
repairable manually and after repair the unit becomes as good as new. There are many situations 
where a repair machine (RM) is needed to repair a failed unit and the RM may also fail during the 
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repair of a failed unit .In this case the RM is first taken up for repair and the failed unit waits for 
getting repair. 

For example, in case of nuclear reactors, marine equipment etc. the robots are used for the 
repair of such type of systems. It is evident that a robot being a Machine, may fail while 
performing its intended task. In this case the repairman will repair the RM first and then begins 
the repair of the failed unit. 

Keeping above fact in view, the present chapter deals with the analysis of a two non-identical 
units cold standby system model with constant failure and general repair rates assuming that the 
first unit gets priority in operation and repair both. The RM may also fail during the repair of a 
unit. The failure rate of RM is taken as constant and its repair rate as general. 

The objective of the present paper is to provide the analysis of a two non-identical unit 
standby system with correlated failure time and repair machine failure. The joint distributions of 
failure and repair times of each unit are taken to be bivariate exponential distribution with p.d.f. of 
the type- 

i i-α x -β y
i i i i 0 i i i

i i i

f (x , y ) = α β (1 - r )e I (2 α β r x y )

; i = 1 , 2 ; x , y , α , β > 0 ; 0 r < 1
2 k

0 2
k = 0

(z /2 )
W h e re , I =

(k !)




is the modified Bessel function of type-I  and order zero. Gupta et al. [6] and Gupta and Shivakar 
[7] have analyzed some of two unit redundant system models by taking the joint distribution of
failure and repair as bivariate exponential having the above form of pdf.

 Using regenerative point technique, the following measures of system effectiveness are 
obtained- 

i. Transition probabilities and mean sojourn times in various states. 
ii. Reliability and Mean time to system failure (MTSF).
iii. Point-wise and steady-state availabilities of the system as well as expected up time

of the system during time interval (0, t).
iv. Expected busy period of repairman in the repair of unit-1 and unit-2 during time

interval (0, t).
v. Net expected profit earned by the system in time interval (0, t).

2. System description and assumptions

1. The system consists of two non-identical units (unit-1 and unit-2). Initially, unit-1
is operative and unit-2 is kept in cold standby. The cold standby unit can’t fail in
its standby mode.

2. Each unit of the system has two possible modes: Normal (N) and total failure (F).
3. When the unit-1 fails the cold standby (unit-2) becomes operative instantaneously

with the help of a perfect and instantaneous switching device.
4. A single repairman is always available with the system to repair a failed unit and

failed RM.
5. Unit-1 gets priority in operation and repair over unit-2. However, the RM gets

priority in repair over any of the units.
6. The RM machine is good initially and can’t fail unless it becomes operative.
7. The system failure occurs when both the units are in total failure mode.
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8. The joint distribution of failure and repair times for each unit is taken bivariate
exponential with density function given by ,

i i-α x -β y
i i i i 0 i i i

i i i

f (x , y ) = α β (1 - r )e I (2 α β r x y )

; i = 1 , 2 ; x , y , α , β > 0 ; 0 r < 1

 
2k

0 2
k 0

(z / 2)
Where, I

(k!)






9. Each repaired unit works as good as new.

3. Notations and states of the system
3.1. Notations: 

E : Set of regenerative states. 
i iX ,Y :  Random variable denoting the failure and repair time for unit-

1and unit-2 respectively ;( i=1, 2)       
if (x, y)  : Joint probability density function of i i(X ,Y ) ;( i=1, 2) 

i ix y
i i i 0 i i i i i i(1 r )e I (2 r xy)dx ; x, y, , 0; 0 r 1           

k
i i i

0 i i i 2
k 0

( r xy)
Where, I (2 r xy)

(k!)





 
  

 ig x : Marginal p.d.f. of iX x ; (i=1, 2) 
i i(1 r )x

i i(1 r )e   

 i ik y X x : Conditional p.d.f. of iY given iX x ; (i=1, 2) 

           

   
 

i i i

j
y r x i i i

i 2
j 0

r xy
e

j!


  



 
  

   (k)
ij ijg ,g 

 
: P.d.f. of transition time from state iS  to jS  and iS  to jS  via kS .

   (k)
ij ijp ,p 

      
: Steady-state transition probabilities from state iS to jS  and iS to jS

via kS .

   (k)
ij|x ij|xp ,p 

    
: Steady-state transition probabilities from state iS to jS  and iS to jS

via kS when it is known that the unit has worked for time x before
its failure.

 : Symbol for Laplace Transform i.e. st
ij ijg (s) e q (t)dt  

 ~ : Symbol for Laplace Stieltjes Transform i.e.  st
ij ijQ (s) e dQ (t)t 

 © : Symbol for ordinary convolution i.e. 
t

0

A(t)©B(t)= A(u)B(t-u)du
 : waiting time of unit-1. 

3.2. Symbols for the states of the system 

1o 2oN ,N : Unit-1and Unit-2 is in N-mode and operative. 

2sN  : Unit-2 is in N-mode and kept into cold standby. 

1r 2r F ,F : Unit-1 and unit-2 is in F-mode and under repair. 
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1w 2wF ,F : Unit -1 and Unit -2 is in F-mode and waiting for repair. 

 gRM : Repair machine is good. 

 oRM : Repair machine is operative. 

 rRM  : Repair machine is failed and under repair. 
 Considering the above symbols in view of the assumptions stated earlier, we have the 

following states of the system: 
Up States Failed States 

1o 2s
0

g

N ,N
S

RM

 
   
 

1r 2w
3

o

F ,F
S

RM

 
  
 

1r 2o
1

o

F ,N
S

RM

 
  
 

1w 2w
4

r

F ,F
S

RM

 
  
 

1w 2o
2

r

F ,N
S

RM

 
  
 

1o 2w
5

r

N ,F
S

RM

 
  
 

1o 2w
6

r

N ,F
S

RM

 
  
 

The transition diagram of the system model along with the transition rate or transition time 
c.d.f. is shown in Fig.1. The epochs of the transition into state 4 2 6 5S from S and S from S are non-
regenerative.

Figure 1: Correlation Model 

†The limits of integration are 0 to   whenever they are not mentioned. 
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4. Transition Probabilities and Mean Sojourn Times

Let X(t)  be the state of the system at epoch t, then  X(t); t 0  constitutes a continuous parametric

Markov-Chain with state space  0 6E S toS .The various measures of system effectiveness are

obtained in terms of steady-state transition probabilities and mean sojourn times in various states.  

01p 1, 21
2 2

1
p

( (1 r ))


 

 43p dG t 1,  65
1 1

1
p

( (1 r ))


  

 


2 2(1 r ) t t
10 | x 2 2 1

1 2 2

*
1 2 2

p 1 r e e dK (t | x)

K [ (1 r ) | x]

k [ (1 r ) | x],

    

   

   



   
   

   

2 2

2 2

(1 r ) t
12 | x 1

(1 r ) t
1

*
1 2 2

2 2

p e dK t | x

e dt 1 K t | x

1 k [ (1 r ) | x]
1 r

  

  

 

    

 
          




     

     
 
   

2 2

2 2

1 r t t
13 | x 2 2 1

1 r t
2 2 1

2 2 *
1 2 2

2 2

p 1 r e e dtK t | x

1 r e dt 1 K t | x

1 r
1 k [ (1 r ) | x]

1 r

  

    

  

     

  
          




 
 

 

t
34 | x 1

t
1

*
1

p e dtK t | x

e dt 1 K t | x

1 k | x ,





 

    

  




 
  
 

t
35 | x 1

1

*
1

p e dK t | x

K | x

k | x



 

 



 
 

  
  

t
50 | x 2

2 1 1

*
2 1 1

p e dK t |x

K 1 r | x

k 1 r | x



     

    



     

     
 
   

1 1

1 1

1 r t t
53 | x 1 1 2

1 r t
1 1 2

1 1 *
2 1 1

1 1

p 1 r e e dtK t | x

1 r e dt 1 K t | x

1 r
1 k [ (1 r ) | x]

1 r

  

    

  

     

  
           




   

   

1 11 r t
56 | x 2

*
2 1 1

1 1

p e dt 1 K t | x

1 k [ (1 r ) | x]
1 r
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2 2
4 (1 r )t
23

2 2

p 1 e dG t

1
1 ,

1 r

  

 
   



     1 1
4 (1 r )t
63

1 1

p 1 e dG t

1
1

(1 r )

  

 
  



It can be easily verified that 
01 45 | xp p 1  ,  12 13p p 1  ,  34p 1  

 4
20 | x 25 | xp p 1,   6

50 | x 52 | xp p 1  (1-5) 
From the conditional steady state transition probabilities, the unconditional steady state transition 
probabilities can be obtained by using the result- 

ij ij | xp p g(x)dx 

Thus, 
1 1

10
2 2 1 1

(1 r )
p

[ (1 r ) (1 r ) ]

 


     

 
1 1

12
2 2 2 2 1 1

(1 r )
p 1

1 r [ (1 r ) (1 r ) ]

  
           

 
 

2 2 1 1
13

2 2 2 2 1 1

1 r (1 r )
p 1

1 r [ (1 r ) (1 r ) ]

    
           

1 1
34

1 1

(1 r )
p 1 ,

[ (1 r ) ]

  
      

1 1
35

1 1

(1 r )
p

[ (1 r ) ]

 


   

 

 
   

2 2
50

2 2 1 1

1 r
p

1 r 1 r

 


      

 
 

1 1 2 2
53

1 1 1 1 2 2

1 r (1 r )
p 1

1 r [ (1 r ) (1 r ) ]

    
           

 
2 2

56
1 1 1 1 2 2

(1 r )
p 1

1 r [ (1 r ) (1 r ) ]

  
           

 

Thus, we have 
01 43p p 1  ,  10 12 13p p p 1    34 35p p 1   

50 53 56p p p 1     4
21 23p p 1,   4

65 63p p 1   (6-11) 

5. Mean Sojourn Time

The mean sojourn time i  in state iS is defined as the expected time taken by the system in state iS

before transiting into any other state. If random variable iU denotes the sojourn time in state iS

then, 
 i iP U t dt  

The mean sojourn times in various states are as follows- 
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0
1 1

1
,

(1 r )
 

  1
2 2 1 1

1

(1 r ) (1 r )
 

   

2
2 2

1
,

(1 r )
 

   3
1 1

1

(1 r )
 

 

 4 G t dt 1,   5
1 1 2 2

1

(1 r ) (1 r )
 

   

6
1 1

1

(1 r )
 

  (12-18) 

6. Analysis of Characteristics
6.1. Reliability and MTSF 

Let iR (t) be the probability that the system operates during (0, t) given that at t=0 system starts 
from iS E  . To obtain it we assume the failed states 3S  and 4S as absorbing. By simple 
probabilistic arguments, the value of 0R (t) in terms of its Laplace Transform (L.T.) is given by 

 
   

  
* * * *
56 65 12 21 0 01 1 01 12 2

* * * * * *
56 65

*
0

12 21 01 10

1 q q 1 q q Z q Z q q Z

1 q q 1 q q q q
R s

         
 

  
  (1) 

We have omitted the argument’s from *
ijq (s) and *

iZ (s) for brevity. *
iZ (s) ; i = 0, 1, 2, 5, 6 are the 

L. T. of
  1 1(1 r )t

0Z t e 

      2 21 r t
11Z t e K t | x dt,

  
        2 21 r t

2Z t e G t dt
 

 
    1 11 r t

5Z t e ,        1 11 r t

6Z t e G t dt
 

   (2-6) 
Taking the Inverse Laplace Transform of (1), we can get the reliability of the system when 

system initially starts from state 0S  . 
The MTSF is given by, 

     
   

 
56 65 12 21 0 1 12 2

0 0 0
s 0 56 65 12 21 10

1 p p 1 p p p
E T R t limR s

1 p p 1 p p p




         
    

  (7) 

6.2. Availability Analysis 

Let  iA t  be the probability that the system is up at epoch t, when initially it starts operation from

state iS E . Using the regenerative point technique and the tools of Laplace transform, one can 

obtain the value of  0 A t
 
in terms of its Laplace transforms i.e.  *

0 A s  given as follows-

   
 

1
0

1

N s
A s

D s
   (8) 

Where, 

          4 6 6 * 4* * * * * * *
1 0 01 1 2 01 12 13 34 45 5 01 12 13 34 4525 52 52 25N s 1 q q Z q Z Z q q q q q q Z q q q q q q                           

and 

         4 * 6 * 6 * 4 ** * * * * * * * * * * * * * * *
1 01 12 20 01 13 20 34 45 01 12 50 01 13 34 45 5025 52 52 25D s 1 q q q q q q q q q q q q q q q q q q q q      (9)
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Where,  iZ t , i=0,1,2,5,6 are same as given in section 6.1.

The steady-state availability of the system is given by 
   0 0 0

s 0t
A A tli sm lim A s


    (10) 

We observe that 
 1 D 0 0

Therefore, by using L. Hospital’s rule the steady state availability is given by 
 
 

1 1
0 ' 's 0

1 1

N s N
A lim

D s D
   (11) 

Where, 
    4 6

1 0 1 2 13 50 5 12 2025 52N (0) 1 p p 1 p p 1 p p                 

and 

             4 6 6(4) (6)'
1 0 1 3 13 1 13 20 2 12 2025 52 25 52 52D 1 p p p 1 p p n 1 p p p n 1 p p             (12) 

The expected up time of the system in interval (0, t) is given by 

   
t

up 0
0

  t A u du  

So that,     0
up

A s
s

s


   (13) 

6.3. Busy Period Analysis 

Let  1
iB t and  2

iB t be the respective probabilities that the repairman is busy in the repair of unit-

1 failed due to first repair with priority of unit-1 and unit-2 failed due to second repair at epoch t, 
when initially the system starts operation from state iS E . Using the regenerative point technique 
and the tools of L. T., one can obtain the values of above two probabilities in terms of their L. T. i.e. 

 1*
iB s

 
and  2*

iB s as follows-

1* 2
i

1

N (s)
B (s) ,

D (s)
 2* 3

i
1

N (s)
B (s)

D (s)


 (14-15) 
Where, 

            4 * 4 ** * * * * * * * * * * * * * * *
2 1 01 56 65 34 43 35 43 56 53 3 01 56 65 12 1363 23N s Z q 1 q q 1 q q q q q q q Z q 1 q q q q q (16)          

 

and 

    4* * *
3 01 35 13 12 523N s q q q q q Z   

and  1D s  is same as defined by the expression (9) of section 6.2.

The steady state results for the above two probabilities are given by- 
 1 1 '

0 0 2
s 0

1B s B s Nlim \ D


    and   2 2 '
0 0 3

s 0
1B s B s Nlim \ D



    (17-18) 

Where, 

            4 4
2 1 56 65 34 35 56 53 3 56 65 12 1363 23N 0 1 p p 1 p p p p p 1 p p p p p           

(19)

    4
4 35 13 12 523N 0 p p p p     (20) 

and '
1D is same as given in the expression (12) of section 6.2. 
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The expected busy period in repair of unit-1 failed due to first repair with priority of unit-1 
and unit-2 failed due to second repair during time interval (0, t) are respectively given by- 

   
t

1 1
b 0

0

t B u du,    and    
t

2 2
b 0

0

t B u du  
So that, 

   1
01

b

B s
s

s


   and    2

02
b

B s
s

s


   (21-22) 

7. Profit Function Analysis

The net expected total cost incurred in time interval (0, t) is given by 
P (t) = Expected total revenue in (0, t) - Expected cost of repair in (0, t) 

      1 2
0 up 1 b 2 bK t K t K t       (23) 

Where, 0K is the revenue per- unit up time by the system during its operation. 1K  and 2K are 
the amounts paid to the repairman per-unit of time when the system is busy in repair of unit-1 
failed due first repair with priority of unit-1 and unit-2 failed due to second repair respectively. 

The expected total profit incurred in unit interval of time is 1 2
0 0 1 0 2 0P K A K B K B    

8. Particular Case

Let, 
tG(t) e  

In view of above, the changed values of transition probabilities and mean sojourn times. 

   21 65
2 2 1 1

1 1
p , p

1 r 1 r
 
       

 

 
4
23

2 2

1
p 1 ,

1 r
 

   
  

 
4
63

1 1

1
p 1

1 r
 

   

2
2 2

1
,

(1 r )
 

   6
1 1

1

(1 r )
 

  

9. Graphical Study of Behaviour and Conclusions

For a more clear view of the behaviour of system characteristics with respect to the various 
parameters involved, we plot curves for MTSF and profit function in Fig. 2 and Fig. 3 w.r.t. α1=for 
three different values of correlation coefficient 1 =0.15, 0.45, 0.85 and two different values of repair 
parameter r2  =0.8, 0.9 while the other parameters are θ =0.9,= β2= =0.4, r1 =0.7, α2= =0.8,  =0.9. It is 

clearly observed from Fig. 2 that MTSF increases uniformly as the value of α1=and r2 increase and it 
decrease with the increase in α1=. Further, to achieve MTSF at least 80 units we conclude for smooth 
curves that the values of α1=must be less than 0.1, 0.13 and 0.4 respectively for 1 =0.15, 0.45, 0.85 
when r2  =0.8. Whereas from dotted curves we conclude that the values of α1=must be less than 0.1, 
0.11 and 0.22 for 1 =0.15, 0.45, 0.85 when r2  =0.9. 

Similarly, Fig.3 reveals the variations in profit (P) with respect to α1 for three different values of 
1 =0.15, 0.45, 0.75 and two different values of r2  =0.01, 0.03, when the values of other parameters 
θ =0.8,=β2==0.98, r1 =0.3, α2==0.6,  =0.8, K0=95, K1=250 and K2=225. Here also the same 
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trends in respect of 1α ,1  and r2  are observed in case of MTSF. Moreover, we conclude from the 
smooth curves that the system is profitable only if 1α is less than 0.1, 0.19 and 0.59 respectively for 
1 =0.15, 0.45, 0.75 when r2  =0.01. From dotted curves, we conclude that the system is profitable 
only if 1α is less than 0.1, 0.25 and 0.32 respectively for 1 =0.15, 0.45, 0.75 when r2  =0.03. 

Figure 2: Behaviour of MTSF with respect to α1, β1 and r2

Figure 3: Behaviour of PROFIT (P) with respect to α2, β1 and r2 
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Abstract 
 

In this study a real world industrial MPS problem is addressed using the SMF approach. A 

decision maker, analyst and implementer, all play significant roles in making judgements in an 

uncertain environment, which is where this difficulty arises in the chocolate manufacturing 

business. As analysts our goal is to identify a solution with a higher LOS that will enable the 

decision maker to reach a conclusion. Because all the coefficients including the goals, technical and 

resource factors are well defined. The MPS problem is taken into consideration. With 24 constraints 

and 6 variables, this is regarded as one of the sufficiently large problem, which LOV is appropriate 

for getting satisfactory OR can be determined by a decision maker. To increase the satisfactory 

income, the decision maker can also advice to the analyst some feasible modification to FI. This 

collaborative process between the analyst, decision maker and implementer must continue until the 

best possible solution is found and put into action.  

 

Keywords: Linear Programming problem, S-curve membership function, Uncertainty, 

Mix-Product selection, Decision maker. 
 

Abbreviations 

MPS : mix-product selection 

FLP : fuzzy linear programming  

MF : membership function 

SMF : s-curve membership function 

FO : fuzzy outcome 

FS : fuzzy system 

FI : fuzzy interval 

UOP : units of product 

LOS : level of satisfaction 
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LOV : level of vagueness  

OR : optimal revenue 

OF : objective function  

1. Introduction 
 

A non-linear MF, referred to as the SMF has been used in problems involving interactive FS. The 

modified SMF can be applied and tested for its suitability through an applied problem. In this 

problem, the SMF was applied to reach a decision, when all three coefficients such as OF, technical 

coefficients and resources of MPS were fuzzy. The solution thus obtained is suitable to be given to 

decision maker and implementer for final implementation. The problem illustrated in this paper is 

only one of six cases of MPS problems which occur in real life applications. It will be interesting to 

investigate the fuzzy solution patterns of these above MPS problem. Non-SMF conversion function 

is used for problems related to FLP. The function S can be applied and tested for its effectiveness 

by applied pressure. In this example, the S function is applied to make a decision after binary, such 

as the number of technologies and equipment, of which MPS is complex. Solutions thus obtained 

can provide the decision maker and the coordinator for the final implementation. The wording 

described in this article is just one of the three FPS words that actually have an application. The 

above FPS term is considered to be the real-life situation when it comes to making chocolate. Data 

for this problem are provided in the database of Choco man Inc, USA. Choco man manufactures 

chocolate bars, candies and wafer using a variety of ingredients and formulas.  The goal is to use 

the modified S-function as a system to get the best UOP through the FLP system [1-3]. Compared 

with this FLP system. The recommended method is based on its relationship with the decision 

maker, developer and researcher to find satisfactory solutions for the FLP problem. In the decision-

making process using the FLP model, modifications and source software can be complex, rather 

than providing exact numbers as in the net LP model. For example, machine hours, work, 

requirements, etc. and manufacturing, which is not always good, due to insufficient information 

and uncertainty among potential importers in the environment. Therefore, they should be 

considered as non-essential components and the FLP problem can be solved by using the FLP 

method. The problem of non-compliant MPS has been described. The aim of this article is to find 

the best UOP with high satisfaction and nonsense as the main thing. This problem is considered 

because all the parameters such as technology and hardware changes are uncertain. This is 

considered to be a major overall problem that includes 29 barriers and 8 barriers. Since there are so 

many decisions to make, the best UOP table is described for uncertainty and satisfaction to find a 

solution. with the highest UOP level and the highest satisfaction. It should be borne in mind that a 

high UOP does not mean it will lead to a high level of satisfaction. The best UOP was calculated at 

the satisfaction level using the FLP method. OF indicates that a high UOP will not lead to a high 

level of satisfaction. The results of this work suggest that the best decision is based on the negative 

impact on the FS of the MPS. In addition, high levels of UOP are obtained when blur is low in the 

system [4-25]. 

2. FLP Model 
 

A general model of classical LP is formulated as,  

  

( )Max w dy=  ; The standard formulation subject to 

; 0B c y   

 

(2.1) 

Where d  and y  are the m-part vector, B is n m  matrix. Since we live in an uncertain 
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environment, the number of objective functions ( )d , the number of matrix technologies ( )B  and 

the variability of assets ( )d  are complex. Therefore, an infinite number can be displayed, so that 

the problem can be solved by the FLP system. FLP problems are designed as follows: 

 
*( )Max w d y=  ; The fuzzy formulation subject to 

* *; 0B y c y   

 

(2.2) 

Where w is the vector of the decision change, 
* * *, &B c d are zero numbers. The function of 

addition and multiplication is explained by fact that in-depth numbers are derived from the 

extension principles of Li [26]. Njikọ Inequalities are provided by some relationship and work 

objectives, w, must take into account the given LP problem. The approach of Mohammed [27] is 

being considered to solve the problem of FLP 2 depletion., which means that the solution will 

probably be to some satisfaction. First, design the team function for the zero parameter of 
* * *, &B c d . Here, non-existent team functions, such as logic, are used. Here klvb represents the 

work of members; &k lvc vd  are the numerical functions for matrix B  for  

1,2,3... & 1,2,3,...k n l m= = . kc  is the numerical variable for 1,2,3...k n=  and ld  are the 

integers of purpose point w  for 1,2,3,...l m= . 

Then, with the appropriate change in the concept of agreement between the non- *

lb k  numbers; 

*c k  and 
*

ld k  & l , words for 
*

lb k , *c k  and *d l  will be obtained. When an agreement between 

*

lb k ; The solution *c k  and *d l  will be [28]; 

 

dl kl kV v vb vc= = =  for all 

1,2,3... & 1,2,3,...k n l m= =   

 

(2.3) 

Therefore, we can obtain,  

 

( ); ( )& ( )D pd v B pb v C pc v= = =  (2.4) 

 

Where [0,1]v  in , &pd pb pc  are distinct functions [29], of , &vd vB vc  resp. Equation (2.2) 

would be;  

 

( ) [ ( )]Max w pd v y= ; fuzzy formulation subject to 

[ ( )] ( ); 0pb v y pc v y   

 

(2.5) 

 

First, create a group function for the complex part of * *&B c . Here, non-uniform functions are 

used as S-curve function [30]. klvb  represents the work of members; where klb  is the coefficient of 

matrix B  for 1,2,3...,29k = and 1,2,3,...8l = , kc  is the material variable for 1,2,3...,29k = . 

Group function is also obtained for kb  and beard time, &kb kcc c for 
*

kc . Similarly, we can create 

team work for a number of non-core technologies and their production [31]. Due to the high cost of 

production and the need to meet certain production and demand conditions, the problem of 

inefficiency arises in the manufacturing process. This problem also arises in the production of 

chocolate when deciding on the combination of ingredients to create different types of products. 

This is called here the choice of product mix [32]. 
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 3. The Fuzzy MPS 
 

There are products that can be made by mixing different ingredients and using k  type processing. 

It is expected that the infrastructure will be massive. There are also some restrictions by the retail 

department, such as the requirement for the product mix, the requirement of the main product 

line, as well as the minimum and maximum query for each product. Not everything that is needed 

in these circumstances is obvious. It is important to achieve maximum UOP and satisfaction using 

the FLP method. Since the number of technologies and equipment changes is running high, the 

results of the UOP would be foolish. FLP problem, customized in size. 2 can be written: 

 
8

1

( ) l

l

Max w y
=

= , subject to             
  

 

8
* *

1

kl l k

l

b y c
=

 , where 0, 1,2,...8.ly l =  
 

(3.1) 

where 
* *&kl kb c  are fuzzy parameters. 

 

3.1 Fuzzy Resource Variable kvc  

For an interval 
b c

k k kc c c  ,    

( )
1

b c bk
k k k k

c b c c c c

c
b

De
− −

=

+
               

 

 

 

( )
( )

1
1

k

b

k k

k b
cc k

c c c

De c c





 −
= − 

 −  

 
 

(3.1.1) 

( )
( )

1
ln 1

k

b

k k

k b
cc k

c c c

Dc c





  −
 = − 

  −   

 

 

( )1 1
ln 1

k

k b

c ka

k k

c

c c c
c c

D D 

    −
   = + − 

   
   

 

 

Since kc is a non-trivial material change therefore, from (3.2)  

( )
* 1

ln 1

k

k b

c kb

k k

c

c c c
cc c

D 

    −
   = + − 

   
   

 

 

(3.1.2) 

 

3.2  Fuzzy Constraints 

The products, materials and equipment requirements are shown in Tables 1 as well as 2, 

respectively. Tables 3 as well as 4 provide the mix size and use the required material to make each 

product. 
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Table 1: Product’s Demand. 

Item Fuzzy Interval ( 1000 )units  

Milk Chocolate, (200 gram) [450-575) Gram 

Milk Chocolate, (50 gram) [750-950) Gram 

Crunchy Chocolate, (200 gram) [350-450) Gram 

Crunchy Chocolate, (50 gram) [550-700) Gram 

Chocolate with Nuts (200 gram) [250-325) Gram 

Chocolate with Nuts (50 gram) [450-575) Gram 

Chocolate Candy [150-200) Gram 

Wafer [350-450) Gram 

Table 2: Material and Ease of Access 

Raw Material  Fuzzy Interval (x1000 units) 

Coco (Kilo Gram) [75-125) Kilo Gram 

Milk (Kilo Gram) [90-150) Kilo Gram 

Nuts (Kilo Gram) [45-75) Kilo Gram 

Sugar (Kilo Gram) [150-450) Kilo Gram 

Flour (Kilo Gram) [15-25) Kilo Gram 

Aluminum Foil (Kilo Gram) [375-625) Kilo Gram 

Paper (Per Feet Square) [375-625) Per Feet Square 

Plastic (Per Feet Square) [375-625) Per Feet Square 

Cooking (Ton per H) [750-1250) Ton Per H 

Mixing (Ton per H) [150-250) Ton Per H 

Forming (Ton per H) [1125-1875) Ton Per H 

Grinding (Ton per H) [150-250) Ton Per H 

Wafer Making (Ton per H) [75-125) Ton Per H 

Cutting (H) [300-350) H 

Packaging 1 (H) [300-500) H 

Packaging 2 (H) [900-1500) H 

Labor (H) [750-1250) H 

 

There are two unclear barriers such as access to the equipment and restrictions on the capacity of 

the equipment. These barriers are inevitable for any object and property depending on the 

consumption of the property, to trade and acquire property. These selections are based on the FLP 

resolution of Chocoman Inc. Decision changes for the FPSP are defined as: 

 

1y = 250 grams of chocolate milk to be produced (in 1000) 

2y = 100 grams of chocolate milk to be produced (per 1000) 

3y =Chocolate Crispy of 250 grams to be produced (in 1000) 

4y = 100 grams of Chocolate Crispy to be produced (in 1000) 

5y =Chocolate with 250 grams of fruit to produce (en1000) 

6y =Chocolate contains 100 grams per gram to produce (in 1000) 

7y =Chocolate candies will be produced (in 1000 packages) 

8y =Chocolate wafer production (in 1000 packages) 

 

The Chocoman Marketing Department has issued the following restrictions: 

Product mix required. Large product (250 grams) of any kind should not exceed 60% (uncertain 

value) of small product (100 grams) 
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1 20.6y y                (3.2.1) 

3 40.6y y  (3.2.2) 

5 60.6y y  (3.2.3) 

The required product line is key. Total sales of confectionery products and wafers should not 

exceed 15% (uncertain value) of total confectionery product. 
 

Table 3: Mixing Proportions 

Materials Required Per 1000 

Units 

Product types (fuzzy interval) 

AMC 

150 

AMC 

50 

ACC 

150 

ACC 

50 

ACN 

150 
ACN 50 Candy Wafer 

Coco (Kilo Gram) [60-90) [20-45) 
[105-

130) 
[25-60) 

[150-

250) 
[0-0) 

[1200-

1400) 

[150-

300) 

Milk (Kilo Gram) [0-0) [0-0) [60-90) [0-0) [78-101) [35-80) [230-500) [0-0) 

Nuts (Kilo Gram) 
[325-

456) 

[78-

105) 

[230-

280) 
[34-87) [0-0) [0-0) [110-230) [73-130) 

Sugar (Kilo Gram) 
[172-

201) 
[0-0) [78-99) [0-0) 

[321-

436) 

[103-

120) 
[0-0) [54-90) 

Flour (Kilo Gram) [0-0) [0-0) 
[120-

150) 
[0-0) 

[450-

487) 

[245-

298) 

[1001-

1200) 

[540-

670) 

Aluminum Foil (Kilo Gram) 
[110-

165) 
[78-95) [0-0) [0-0) 

[330-

420) 

[110-

154) 
[0-0) [0-0) 

Paper (Per Feet Square) 
[156-

185) 
[0-0) 

[190-

245) 
[0-0) 

[100-

150) 
[56-89) [0-0) [0-0) 

Plastic (Per Feet Square) [0-0) [0-0) 
[170-

240) 
[40-82) 

[510-

725) 

[120-

179) 
[0-0) [0-0) 

 
Table 4: Facility Usage 

Facility Usage Required 

Per 1000 Units 

Product types (fuzzy interval) 

AMC 

150 
AMC 50 ACC 150 

ACC 

50 
ACN 150 ACN 50 Candy Wafer 

Cooking (Ton per H) 
[0.60-

0.90) 

[0.20-

0.45) 

[0.105-

0.130) 

[0.25-

0.60) 

[0.150-

0.250) 
[0-0) 

[0.1200-

0.1400) 

[0.150-

0.300) 

Mixing (Ton per H) [0-0) [0-0) 
[0.60-

0.90) 
[0-0) 

[0.78-

0.101) 

[0.35-

0.80) 

[0.230-

0.500) 
[0-0) 

Forming (Ton per H) 
[0.325-

0.456) 

[0.78-

0.105) 

[0.230-

0.280) 

[0.34-

0.87) 
[0-0) [0-0) 

[0.110-

0.230) 

[0.73-

0.130) 

Grinding (Ton per H) 
[0.172-

0.201) 
[0-0) 

[0.78-

0.99) 
[0-0) 

[0.321-

0.436) 

[0.103-

0.120) 
[0-0) 

[0.54-

0.90) 

Wafer Making (Ton per 

H) 
[0-0) [0-0) 

[0.120-

0.150) 
[0-0) 

[0.450-

0.487) 

[0.245-

0.298) 

[0.1001-

0.1200) 

[0.540-

0.670) 

Cutting (H) 
[0.110-

0.165) 

[0.78-

0.95) 
[0-0) [0-0) 

[0.330-

0.420) 

[0.110-

0.154) 
[0-0) [0-0) 

Packaging 1 (H) 
[0.156-

0.185) 
[0-0) 

[0.190-

0.245) 
[0-0) 

[0.100-

0.150) 

[0.56-

0.89) 
[0-0) [0-0) 

Packaging 2 (H) [0-0) [0-0) 
[0.170-

0.240) 

[0.40-

0.82) 

[0.510-

725) 

[0.120-

0.179) 
[0-0) [0-0) 

Labor (H) 
[0.325-

0.456) 

[0.78-

0.105) 

[0.230-

0.280) 

[0.34-

0.87) 
[0-0) [0-0) 

[0.110-

0.230) 

[0.73-

0.130) 
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Table 5: OS with S-curve MF for 𝜃 = 14.120. 

Number 
Satisfaction degree 

(𝜽) 
Optimal UOP (w*) Number 

Satisfaction degree 

(𝜽) 
Optimal UOP (w*) 

1 7.562 2438.54 11 50.0115 2965.11 

2 14.076 2500.51 12 52.1911 3001.89 

3 15.2145 2615.83 13 52.8741 3057.48 

4 16.1148 2651.25 14 59.6383 3152.55 

5 18.057 2701.67 15 63.3374 3160.55 

6 24.8497 2845.48 16 63.538 3180.37 

7 28.9782 2848.79 17 64.8241 3204.67 

8 30.3968 2889.39 18 70.4424 3250.39 

9 31.7572 2923.44 19 85.5813 3277.92 

10 42.6513 2955.9 20 95.4286 3344.58 

4. Results 
 

The FPS problem is solved by using MATLAB and its LP application. It provides complexity and a 

degree of satisfaction. The LP application has two extras in addition to the non-existent. There is an 

output w *, the best UOP. 

Table 6: The Vagueness  as well as objective value *w with 50% =  

Vagueness 𝛽 UOP w* Vagueness 𝛽 UOP w* 

1 2465.54 21 3037.45 

3 2533.72 23 3080.78 

5 2568.99 25 3223.61 

7 2631.09 27 3239.79 

9 2730.54 29 3282.03 

11 2740.35 31 3352.45 

13 2778.95 33 3368.74 

15 2784.04 35 3438.1 

17 2833.00 37 3446.69 

19 3011.15   

 

Table 7: Optimal UOP 
*w  

*w  Vagueness   *w  Vagueness   

𝜃 1 3 5 7 𝜃 1 3 5 7 

7.562 2421.27 2478.47 2594.46 2488.84 42.6513 2957.06 2847.5 3230.2 2810.63 

14.076 2514.88 2502.54 2673.13 2509.44 50.0115 2960.57 3010.7 3234.95 2838.32 

15.2145 2638.86 2623.91 2765.32 2574.27 52.1911 2981.24 3017.36 3248.8 2843.2 

16.1148 2639.8 2632.57 2780.56 2604.7 52.8741 3078.7 3080.9 3297.06 3039.16 

18.057 2668.82 2675.98 2797.33 2618.06 59.6383 3079.57 3086.95 3298.37 3157.71 

24.8497 2686.3 2680.99 2919.95 2621.45 63.3374 3132.07 3162.39 3334.88 3206.49 

28.9782 2753.94 2747.67 2930.67 2652.31 63.538 3273.09 3202.78 3415.55 3315.88 

30.3968 2827.54 2773.03 3028.05 2723.29 64.8241 3443.79 3348.41 3426.19 3411.56 
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31.7572 2870.88 2807.2 3189.58 2753.75 70.4424 3479.39 3434.25 3470.15 3476.37 

Different standards of Chocolate production are transferred to the toolbox. The answer can be 

listed in the following tables. From Table 5, it can be seen that a high level of satisfaction provides 

a high UOP. But the best solution to the above problem is at a satisfaction rate of 50%, or 2833 

minutes. From the tables below, we conclude that within the objective, *w is an ever-increasing 

function [33]. 

Table 8: Optimal UOP 
*w  

*w  Vagueness   *w  Vagueness   

𝜃 9 11 13 15 𝜃 9 11 13 15 

7.562 2517.93 2511.75 2700.82 2626.7 42.6513 3006.57 3238.42 3211.28 3082.57 

14.076 2555.17 2562 2817.03 2713.6 50.0115 3106.2 3252.29 3236.27 3155.49 

15.2145 2610.27 2712.45 2818.6 2730.28 52.1911 3110.49 3312.54 3276.6 3166.6 

16.1148 2694.71 2735.65 2917.06 2735.94 52.8741 3155.25 3326.07 3285.56 3215.15 

18.057 2704.95 2778.61 3015.94 2814.01 59.6383 3206.75 3341.22 3292.6 3306.44 

24.8497 2768.05 2785.92 3017.65 2843.42 63.3374 3367.82 3383.69 3312.35 3339.97 

28.9782 2803.52 2982.47 3019.4 2857.43 63.538 3432.71 3393.02 3319.99 3353.86 

30.3968 2912.9 3162.64 3200.54 2919.49 64.8241 3461.5 3394.43 3341.83 3462.87 

31.7572 2959.22 3205.75 3210.48 2936.06 70.4424 3478.85 3435.72 3421.66 3493.17 

 

Table 9: Optimal UOP 
*w  

*w  Vagueness   *w  Vagueness   

𝜃 17 19 21 23 𝜃 17 19 21 23 

7.562 2560.71 2591.74 2598.75 2569.53 42.6513 3279.76 3093.95 3025.39 3012.8 

14.076 2577.5 2681.47 2671.48 2712.04 50.0115 3289.08 3100.34 3089.09 3119.28 

15.2145 2827.45 2695.28 2725.3 2774.99 52.1911 3329.94 3206.97 3105.94 3133.89 

16.1148 2857.61 2745.12 2898.84 2857.97 52.8741 3339.61 3249.02 3118.94 3212.27 

18.057 2877.99 2760.14 2919.28 2910.07 59.6383 3343.42 3287.02 3159.21 3267.98 

24.8497 3081.74 2770.16 2962.64 2962.97 63.3374 3362.92 3361.71 3185.11 3331.74 

28.9782 3093.67 2858.84 2989.96 2977.2 63.538 3373.1 3417.77 3275.53 3457.72 

30.3968 3157.45 3063.62 3018.63 2983.99 64.8241 3440.06 3434.14 3397.49 3486.65 

31.7572 3202.92 3087.9 3020.53 2988.83 70.4424 3492.01 3471.26 3495.27 3498.94 

 

 

270



 
Pandit U. Chopade, Mahesh M. Janolkar, Kirankumar L. Bondar 
DECISION MAKING THROUGH FUZZY  
LINEAR PROGRAMMING APPROACH  

RT&A, No 4 (76) 
Volume 18, December 2023  

 

Table 10: Optimal UOP 
*w  

*w  Vagueness   *w  Vagueness   

𝜃 23 25 27 29 𝜃 23 25 27 29 

7.562 2557.26 2509.77 2624.58 2522.45 42.6513 3110.12 2866.61 3012.12 3001.32 

14.076 2639.95 2531.72 2637.73 2547.82 50.0115 3128.99 2880.25 3060.57 3044.8 

15.2145 2727.12 2561.53 2645.54 2584.66 52.1911 3139.91 2957.15 3075.73 3135.83 

16.1148 2785.23 2610.31 2745.36 2750.06 52.8741 3240.09 3012.5 3126.45 3297.11 

18.057 2845.05 2680.12 2766.93 2756.62 59.6383 3259.24 3066.82 3170.93 3305.56 

24.8497 2879.51 2758.1 2778.77 2762.94 63.3374 3263.83 3118.69 3292.42 3313.34 

28.9782 2937.4 2800.6 2817.91 2832.69 63.538 3378.55 3132.87 3296.45 3384.03 

30.3968 2967.17 2840.55 2893.03 2886.01 64.8241 3422.86 3324.07 3375.38 3404.9 

31.7572 3057.98 2846.94 2961.62 2938.18 70.4424 3483.18 3350.47 3470.84 3428.67 

Table 11: Optimal UOP 
*w  

*w  Vagueness   *w  Vagueness   

𝜃 31 33 35 37 𝜃 31 33 35 37 

7.562 2522.48 2523.96 2533.43 2519.95 42.6513 3144.28 2901.63 3220.44 3041.08 

14.076 2532.12 2608.62 2618.64 2611.46 50.0115 3183.95 2934.68 3236.11 3068.4 

15.2145 2571.52 2618.64 2717.62 2615.81 52.1911 3202.9 3052.3 3264.69 3102 

16.1148 2712.13 2739.13 2749.95 2652.37 52.8741 3213.79 3204.34 3330.91 3109.29 

18.057 2916.79 2771.39 2778.74 2857.52 59.6383 3342.85 3264.08 3393.05 3214.24 

24.8497 2943.77 2797.06 2979.54 2891.37 63.3374 3361.04 3270.6 3426.9 3242.07 

28.9782 3088.17 2828.98 3023.91 2963.05 63.538 3403.39 3377.37 3432.62 3352.56 

30.3968 3126.97 2886.21 3082.34 3010.27 64.8241 3406.28 3467.32 3455.09 3392.32 

31.7572 3130.92 2887.8 3171.68 3020.85 70.4424 3435.75 3483.32 3461.04 3459.68 

 

4.1 UOP of *w for different vagueness values 

Reasonable solutions and some uncertainties in the zero parameter of the technical rate and the 

hardware change are equal to 50%. Thus, the result of the 50% satisfaction level for 1 37   and 

the principle corresponding to *w are shown in Table 6. OF’s of UOP reduce   imprecision and 

increase of the non-linear parameter of the number of technologies and asset exchange. This is 
clearly shown in Table 6. Table 6 is very important for the decision maker when choosing UOP, so 
that the result is at perfect level.  
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4.2 Output for *, &w   

The result in the table below shows that when the inaccuracy of the increase results in a small 

UOP.  

Table 12: *w with resp. to &   

Satisfaction  

Degree ( )  

Vagueness 

 ( )   

Optimal  

UOP 
*( )w   

Satisfaction 

Degree ( )  

Vagueness 

( )   

Optimal 

UOP 
*( )w   

7.562 1 2500.51 50.0115 21 3001.89 

14.076 3 2615.83 52.1911 23 3057.48 

15.2145 5 2651.25 52.8741 25 3152.55 

16.1148 7 2701.67 59.6383 27 3180.37 

18.057 9 2845.48 63.3374 29 3204.67 

24.8497 11 2848.79 63.538 31 3250.39 

28.9782 13 2889.39 64.8241 33 3277.92 

30.3968 15 2923.44 70.4424 35 3338.54 

31.7572 17 2955.9 83.3374 37 3344.58 

42.6513 19 2965.11    

 

It is also seen that SMF has a variety of standards that provide possible solutions with some 

satisfaction. Also, the link between *&w   is provided in Tables 7, 8, 9, 10 and 11. This is clearly 

shown in Table 6. Table 6 is very important for the decision maker when choosing UOP, so that the 

result is a perfect level. From Tables 7, 8, 9, 10 and 11, we find that for each type of satisfaction  , 

the optimal UOP *w  decreases as the endpoint increases between 1 and 37. Similarly, with any 

positive value, the optimal UOP increases as the degree of satisfaction increases. Table 12 is the 

result of the diagonal pattern of *w  in Table 6. This result shows that, when the inaccuracies are 

low at 1,3&5 = , UOP w * is best and reached the lowest satisfaction level, 

7.5%,14.1%&15.2% = . When the odds are high at 33,35&37 = , UOP *w  is best reached 

with high satisfaction level, i.e., 64.8%,70.4%&83.3% = . 

5. Selection of Parameter   and Decision Making 

 

In order for the decision maker to get the best results for the UOP *w , the researcher creates a 

production table. From the table above, the decision maker can select the negative value according 

to his preference. Hair volume is divided into *w  in three parts, namely short, medium and high. 

It can be slightly modified if the input data for the number of technologies and hardware changes. 

It can be called a bunch of empty vanities. The decision can be made by the decision maker by 

choosing the best UOP for *w  and providing solutions for its implementation. 

 

5.1 Discussion 

The results show that the UOP minimum is 2,755.4 with a maximum of 3,034.9. It can be seen that 

when the understanding is between 0 and 1, the maximum value of *w  3 034.9 is obtained by the 

minimum value. Similarly, when over 39, the minimum gain of *w  2,755.4 and the maximum gain 

are obtained. Since the solution for MPS nonsense is the most satisfying solution with a high 

satisfaction degree, it is important to choose a blur between the minimum value and the maximum 

value of *w . 
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6. Conclusion 
 

The purpose of this research project was to find the most effective POU for MPS problems that 

have not been identified. SMF was recently developed as a framework for the task of solving the 

above problems effectively. The decision-making process and its implementation will be easier if 

the decision maker and consultant can work with the analyst to get the best and most satisfactory 

results. There are two more cases to consider in future work of the running technology that is not 

negative and that the dynamic assets are running and not complicated. FS mathematical 

relationships can be developed for MPS problems to find satisfying solutions. The decision maker, 

researcher and practitioner can apply their knowledge and experience to get the best results. 
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Abstract 

 

In this paper, we introduced and studied the concept of lacunary statistical convergence of double 

sequence with respect to modulus function where the modulus function is an unbounded double 

sequence. We also introduced the concept of lacunary strong convergence of double sequence via 

modulus function. We further characterized those lacunary convergence of double sequence for which 

the lacunary statistically convergent of double sequence with respect to modulus function equals 

statistically convergent of double sequence with respect to modulus function. Finally, we established 

some inclusion relations between these two lacunary methods and proved some essential analogue 

for double sequence. 

 

Keywords: modulus function, statistical convergence, lacunary strong 

convergence, lacunary statistical convergence, double sequence. 

 

 

1. Introduction 

 
The concept of statistical convergence was formally introduced by [1] and [2] independently. 

Although statistical convergence was introduced over fifty years ago, it has become an active area 

of research in recent years. It has been applied in various areas such as summability theory [3] and 

[4], topological groups [5] and [6], topological spaces [7], locally convex spaces [8], measure theory 

[9], [10 and [11], Fuzzy Mathematics [12] and [13]. In recent years generalization of statistical 

convergence has appeared in the study of strong summability and the structure of ideals of bounded 

functions, [14]. Extension of the notion of statistical convergence of single sequence to double 

sequences by proposed by [15]. The concept of lacunary statistical convergence of single sequence 

was introduced by [16]. The extension of the concept of lacunary statistical of single sequence to 

double sequences was proposed by [17]. The notion of modulus function was introduced by [18]. 

Following [19] and [20], we recall that a function 𝑓: [0,∞) → [0,∞) is said to be a modulus function 

if it satisfies the following properties 

 

(1) 𝑓(𝑥) = 0 if and only if 𝑥 = 0 

(2) 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) for 𝑥 ≥ 0, 𝑦 ≥ 0, 

(3) 𝑓 is increasing, 

(4) 𝑓 is continuous from the right at 0. 
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It follows that 𝑓 is continuous on [0,∞). The modulus function may be bounded or unbounded. For 

example, if we take 𝑓(𝑥) =
𝑥

𝑥+1
, then 𝑓(𝑥) is bounded. But, 0< 𝑝 < 1, 𝑓(𝑥) = 𝑥𝑝 is not bounded. 

The definition of a new concept of density with help of an unbounded modulus function was 

proposed by [21], as a consequence, they obtained a new concept of non-matrix convergence, 

namely, 𝑓-statistical convergence, which is intermediate between the ordinary convergence and 

statistical and agrees with the statistical convergence when the modulus function is the identity 

mapping. 

Quite recently, [22] and [23] have introduced and studied the concepts of 𝑓-statistical convergence 

of order 𝛼  and 𝑓-statistical boundedness, respectively, by using approach of [21]. Quite recently, 

[24] introduced and studied the concept of 𝑓-lacunary statistical convergence and the concept of 

strong lacunary statistical convergence with respect to modulus function. We further extended and 

introduced some analogues results of double in line with that of [24]. 

Definition 1.1: ([15]): A real double sequence 𝑥 = (𝑥𝑗𝑘) is statistically convergent to a number l if for 

each 𝜀 > 0, the set 

 

{(𝑗, 𝑘), 𝑗 ≤ 𝑛 𝑎𝑛𝑑 𝑘 ≤ 𝑚: |𝑥𝑗𝑘 − 𝑙| ≥ 𝜀}                                                                                                                       (1) 

 

has double natural density zero. In this case we write 𝑠𝑡2 − lim
𝑗𝑘
𝑥𝑗𝑘 = 𝑙  and we denote the set of all 

statistically convergent double sequences by  𝑠𝑡2. 

Definition 1.2 ([17]).The double sequence 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠) is called double lacunary if there exist two 

increasing sequences of integers such that 𝑗0 = 0, ℎ𝑟 = 𝑗𝑟 − 𝑗𝑟−1 → ∞ as 𝑟 → ∞ and 𝑘0 = 0, ℎ𝑠 =

𝑘𝑠−𝑘𝑠−1 → ∞ as 𝑠 → ∞. Let 𝑗𝑟,𝑠 = 𝑗𝑟𝑘𝑠, ℎ𝑟,𝑠 = ℎ𝑟ℎ𝑠̅̅̅ and 𝜃𝑟,𝑠 is determined by 𝐼𝑟,𝑠 = {(𝑗, 𝑘): 𝑗𝑟−1 < 𝑗 ≤

𝑗𝑟 𝑎𝑛𝑑 𝑘𝑠−1 < 𝑘 ≤ 𝑘𝑠}, 𝑞𝑟 =
𝑗𝑟

𝑗𝑟−1
, 𝑞�̅�=

𝑘𝑠

𝑘𝑠−1
 and 𝑞𝑟,𝑠 = 𝑞𝑟𝑞�̅�. 

Definition 1.3 ([17]): Let 𝜃𝑟,𝑠 be a double lacunary sequence, the double number sequence 𝑥 is double 

lacunary statistical convergent to 𝐿 provided that for every 𝜀 > 0, 

 

lim
𝑟,𝑠

1

ℎ𝑟,𝑠
|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗,𝑘 − 𝐿| ≥ 𝜀}| = 0.                                                                                                             (2) 

 

Throughout this paper 𝑠, 𝐿2
∞ and 𝑐 will denote the spaces of all, bounded and convergent double 

sequences of real numbers, respectively. 

 Now in this paper we introduce the concept of 𝑓𝑗,𝑘-lacunary statistical convergence of double 

sequence, where 𝑓𝑗,𝑘 is an unbounded modulus functions of double sequence. 

Definition 1.4: Let 𝑓𝑗,𝑘 be an unbounded modulus functions of double sequence. Let 𝜃𝑟,𝑠= (𝑗𝑟 , 𝑘𝑠) be 

double lacunary sequence. A double sequence 𝑥 = (𝑥𝑗𝑘) is said to be 𝑓𝑗,𝑘-lacunary statistically 

convergent of double sequence to 𝐿 or 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘- convergent to 𝐿, if, for each 𝜀 > 0, 

 

lim
𝑟,𝑠→∞

1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) = 0.                                                                                      (3) 

 

In this case we write  

 

𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
− lim𝑥𝑗𝑘 = 𝐿 or 𝑥𝑗𝑘 → 𝐿 (𝑆𝜃𝑟,𝑠

𝑓𝑗,𝑘
). 

 

For a given double lacunary sequence 𝜃𝑟,𝑠= (𝑗𝑟 , 𝑘𝑠) and unbounded modulus function 𝑓𝑗,𝑘, by  𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 

we denote the set of all 𝑓𝑗,𝑘-lacunary statistically convergent of double sequences. 
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2. Methods 
 

2.1 𝑓𝑗,𝑘-Lacunary Statistical Convergence of Double Sequence 

 
We begin by establishing elementary connections between convergence of double sequence, 𝑓𝑗,𝑘-

lacunary statistical convergence of double sequence and double lacunary statistical convergence. 

Theorem 2.1: Every convergent double sequence is 𝑓𝑗,𝑘-lacunary statistically convergent of sequence, 

that is 𝑐 ⊂ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 for any unbounded modulus functions 𝑓 of double sequence and double lacunary 

statistical convergence sequence 𝜃𝑟,𝑠. 

Proof: Let 𝑥 = (𝑥𝑗𝑘) be any convergent double sequence. Then, for each 𝜀 > 0, the set  

 

{(𝑗, 𝑘) ∈ ℕ × ℕ: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀} is finite. Suppose {(𝑗, 𝑘) ∈ ℕ × ℕ: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀} = 𝑔0. 

 

Now, since {(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀} ⊂ {(𝑗, 𝑘) ∈ ℕ × ℕ: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀} and 𝑓𝑗,𝑘 is modulus increasing, 

therefore  

 

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
≤

𝑓(𝑔0)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
. 

 

Taking limit as 𝑟, 𝑠 → ∞, on both sides, we get  

 

lim
𝑟,𝑠→∞

𝑓𝑗,𝑘 ((𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
= 0, 

 

as 𝑓𝑗,𝑘(ℎ𝑟,𝑠) → ∞ as  𝑟, 𝑠 → ∞. 

 

Theorem 2.2: Every 𝑓𝑗,𝑘-lacunary statistical convergent double sequence is double lacunary 

statistical convergent. 

Proof: Suppose 𝑥 = (𝑥𝑗𝑘) is 𝑓𝑗,𝑘-lacunary statistically convergent double sequence to 𝐿. Then by the 

definition of limit and the fact that 𝑓𝑗,𝑘 being modulus is subadditive, for every 𝑝 ∈ ℕ, there exist 

𝑟0, 𝑠0 ∈ ℕ such that, for 𝑟, 𝑠 ≥ 𝑟0, 𝑠0, we have 

 

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) ≤
1

𝑝
𝑓𝑗,𝑘(ℎ𝑟,𝑠) ≤

1

𝑝
𝑓𝑗,𝑘 (

ℎ𝑟,𝑠
𝑝
) = 𝑓𝑗,𝑘 (

ℎ𝑟,𝑠
𝑝
) 

 

Since 𝑓𝑗,𝑘 is increasing, we have 

 
1

ℎ𝑟,𝑠
|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}| ≤

1

𝑝
. 

 

Hence, 𝑥= (𝑥𝑗𝑘) is a double lacunary statistically convergent to 𝐿. 

Remark 2.1: It seems that the inclusion 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
⊂ 𝑆𝜃𝑟,𝑠  is strict. But right now we are not in a position to 

give an example of a double sequence which is 𝑆𝜃𝑟,𝑠-convergent but not 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘-convergent. So it is left 

as an open problem. 

Remark 2.2: From theorem 2.1 and 2.2, we can say that the concept of 𝑓𝑗,𝑘-lacunary statistical 

convergence is intermediate between the usual notion of convergence of double sequence and the 

double lacunary statistical convergence of double sequences. 

We now establish a relationship between 𝑓𝑗,𝑘-lacunary statistical convergence of double sequences 

and double lacunary strong convergence with respect to modulus functions 𝑓𝑗,𝑘 of double sequence. 
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Theorem 2.3 Let 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠) be a double lacunary sequence, then consider the following: 

(a) For any unbounded modulus functions 𝑓 for which lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0 and there is a positive 

constant 𝑐 such that 𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦), for all 𝑥 ≥ 0, 𝑦 > 0, 

(i) 𝑥𝑗𝑘 → 𝐿 (𝑁𝜃𝑟,𝑠
𝑓𝑗,𝑘
) implies 𝑥𝑗𝑘 → 𝐿 (𝑆𝜃𝑟,𝑠

𝑓𝑗,𝑘
), 

(ii) 𝑁
𝜃𝑟,𝑠

𝑓𝑗,𝑘 is a proper subset of  𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘. 

(b) 𝑥 ∈ 𝐿∞
2  and 𝑥𝑗𝑘 → 𝐿 (𝑁𝜃𝑟,𝑠

𝑓𝑗,𝑘
) imply 𝑥𝑗𝑘 → 𝐿 (𝑆𝜃𝑟,𝑠

𝑓𝑗,𝑘
), for any unbounded modulus functions 

𝑓𝑗,𝑘 of double sequence. 

(c) 𝑁
𝜃𝑟,𝑠

𝑓𝑗,𝑘
∩ 𝐿∞

2 = 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
∩ 𝐿∞

2  for any unbounded modulus function 𝑓𝑗,𝑘 of double sequence for 

which lim
𝑡→∞

𝑓(𝑡)

𝑡
> 0 and there is a positive constant 𝑐 such that 𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦), for all 

𝑥 ≥ 0, 𝑦 ≥ 0. 

Proof: (a) (i) For any double sequence 𝑥 = (𝑥𝑗𝑘) and 𝜀 >0, by the definition of a modulus function (1) 

and (3) we have  

1

ℎ𝑟,𝑠
∑ ∑𝑓𝑗,𝑘(|𝑥𝑗𝑘 − 𝐿|) ≥

1

ℎ𝑟,𝑠
𝑓𝑗,𝑘 ( ∑ ∑|𝑥𝑗𝑘 − 𝐿|

𝑗,𝑘∈𝐼𝑟,𝑠

) ≥

𝑗,𝑘∈𝐼𝑟,𝑠

1

ℎ𝑟,𝑠
𝑓𝑗,𝑘

(

 
 

∑ ∑|𝑥𝑗𝑘 − 𝐿|
𝑗,𝑘∈𝐼𝑟,𝑠

|𝑥𝑗𝑘−𝐿|≥𝜀 )

 
 

 

≥
1

ℎ𝑟,𝑠
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|𝜀) ≥

𝑐

ℎ𝑟,𝑠
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)𝑓(𝜀) 

=
𝑐

ℎ𝑟,𝑠

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(ℎ𝑟,𝑠)𝑓(𝜀) 

 

From where it follows that 𝑥 ∈ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 as 𝑥 ∈ 𝑁
𝜃𝑟,𝑠

𝑓𝑗,𝑘 and lim
𝑟,𝑠→∞

(
𝑓𝑗,𝑘(ℎ𝑟,𝑠)

ℎ𝑟,𝑠
⁄ ) > 0. 

(ii) To show the strictness of inclusion, consider the double sequence 𝑥 = (𝑥𝑗𝑘) such that 𝑥𝑗𝑘 is to be 

1,2, …,[√ℎ𝑟,𝑠] at the first [√ℎ𝑟,𝑠] integers in 𝐼𝑟,𝑠, and 𝑥𝑗𝑘=0 otherwise. Note that (𝑥𝑗𝑘) is not bounded. 

Also, for every 𝜀 > 0, 

 
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 0}|) =

𝑓𝑗,𝑘(√ℎ𝑟,𝑠)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
=
𝑓𝑗,𝑘(√ℎ𝑟,𝑠)

√(ℎ𝑟,𝑠)
×

ℎ𝑟,𝑠

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
×
[√ℎ𝑟,𝑠]

ℎ𝑟,𝑠
→ ∞ as 𝑟 → ∞, 

 

Because lim
𝑟,𝑠→∞

(
𝑓𝑗,𝑘([√ℎ𝑟,𝑠])

([√ℎ𝑟,𝑠])
⁄ ), lim

𝑟,𝑠→∞
(𝑓𝑗,𝑘

(ℎ𝑟,𝑠)
ℎ𝑟,𝑠
⁄ ) are positive and 

lim
𝑟,𝑠→∞

(
𝑓𝑗,𝑘([√ℎ𝑟,𝑠])

([√ℎ𝑟,𝑠])
⁄ ) = 0. 

 

Thus, 𝑥𝑗𝑘 → 0(𝑆𝜃𝑟,𝑠
𝑓𝑗,𝑘
). On other hand, 

 

1

ℎ𝑟,𝑠
∑ ∑𝑓𝑗,𝑘(|𝑥𝑗𝑘 − 𝐿|) =

𝑓𝑗,𝑘(1) + 𝑓𝑗,𝑘(2) + ⋯+ 𝑓𝑗,𝑘([√ℎ𝑟,𝑠])

ℎ𝑟,𝑠
𝑗,𝑘∈𝐼𝑟,𝑠

≥
𝑓𝑗,𝑘(1 + 2 +⋯+ [√ℎ𝑟,𝑠]

ℎ𝑟,𝑠

=

𝑓𝑗,𝑘 ([√ℎ𝑟,𝑠]  (
([√ℎ𝑟,𝑠] + 1)

2
⁄ ))

ℎ𝑟,𝑠
≥ 𝑐

𝑓𝑗,𝑘([√ℎ𝑟,𝑠])𝑓𝑗,𝑘 (
([√ℎ𝑟,𝑠] + 1)

2
⁄ )

ℎ𝑟,𝑠

= 𝑐 ×
𝑓𝑗,𝑘([√ℎ𝑟,𝑠])

[√ℎ𝑟,𝑠]
×

𝑓𝑗,𝑘 (
([√ℎ𝑟,𝑠] + 1)

2
⁄ )

([√ℎ𝑟,𝑠] + 1)
2
⁄

×

[√ℎ𝑟,𝑠] (
([√ℎ𝑟,𝑠] + 1)

2
⁄ )

ℎ𝑟,𝑠
> 0 
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As 𝑐, lim
𝑟,𝑠→∞

(𝑓𝑗,𝑘([√ℎ𝑟,𝑠])/[√ℎ𝑟,𝑠]), lim
𝑟,𝑠→∞

(𝑓𝑗,𝑘([√ℎ𝑟,𝑠] + 1)/2)/(([√ℎ𝑟,𝑠] + 1)/2), and  

 

lim
𝑟,𝑠→∞

([√ℎ𝑟,𝑠])(([√ℎ𝑟,𝑠] + 1)/2)/ℎ𝑟,𝑠) are positive. Hence 𝑥𝑗𝑘 ↛ 0(𝑁𝜃𝑟,𝑠
𝑓𝑗,𝑘
). 

(b) Suppose that 𝑥𝑗𝑘 → 𝐿 (𝑆𝜃𝑟,𝑠
𝑓𝑗,𝑘
) and 𝑥 ∈ 𝐿∞

2 , say |𝑥𝑗𝑘 − 𝐿| ≤ 𝐻 for all 𝑗, 𝑘 ∈ ℕ. Given 𝜀 > 0, we have 

 
1

ℎ𝑟,𝑠
∑ ∑𝑓𝑗,𝑘(|𝑥𝑗𝑘 − 𝐿|) =

𝑗,𝑘∈𝐼𝑟,𝑠

1

ℎ𝑟,𝑠
∑ ∑𝑓𝑗,𝑘(|𝑥𝑗𝑘 − 𝐿|) +

𝑗,𝑘∈𝐼𝑟,𝑠

|𝑥𝑗𝑘−𝐿|≥𝜀

∑ ∑𝑓𝑗,𝑘(|𝑥𝑗𝑘 − 𝐿|) ≤
𝑗,𝑘∈𝐼𝑟,𝑠

|𝑥𝑗𝑘−𝐿|<𝜀

1

ℎ𝑟,𝑠
|{(𝑗, 𝑘)

∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|𝑓𝑗,𝑘(𝐻) +
1

ℎ𝑟,𝑠
ℎ𝑟,𝑠𝑓𝑗,𝑘(𝜀). 

 

Taking limit on both sides as 𝑟, 𝑠 → ∞, we get lim
𝑟,𝑠→∞

(
1

ℎ𝑟,𝑠
)∑ ∑𝑓𝑗,𝑘(|𝑥𝑗𝑘 − 𝐿|) = 0,𝑗,𝑘∈𝐼𝑟,𝑠  in view of 

theorem 2.2 and the fact that 𝑓𝑗,𝑘 is increasing. 

(c) This is an immediate consequence of (a) and (b) 

Remark 2.3 The example given in part (a) of the above theorem shows that the boundedness 

condition cannot be omitted from the hypothesis of part (b). 

 

3. Results 
 

3.1 𝑓𝑗,𝑘-Lacunary Statistical Convergence of Double Sequence Versus 𝑓𝑗,𝑘-Statistical 

Convergence of Double Sequence 
 

In this section we study the inclusion 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
⊂ 𝑆𝑓𝑗,𝑘 and 𝑆𝑓𝑗,𝑘 ⊂ 𝑆

𝜃𝑟,𝑠

𝑓𝑗,𝑘 under certain restrictions on 𝜃𝑟,𝑠 

and 𝑓𝑗,𝑘. 

Lemma 3.1.1: For any double lacunary sequence 𝜃𝑟,𝑠 and unbounded modulus function 𝑓𝑗,𝑘 for which 

lim
𝑡→∞

(𝑓(𝑡)/𝑡) > 0 and there is a positive constant 𝑐 such that 𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦), for all 𝑥 ≥ 0 , 𝑦 ≥ 0, 

one has 𝑆𝑓𝑗,𝑘 ⊂ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 if and only if lim inf
𝑟,𝑠
𝑞𝑟,𝑠 > 1. 

Proof: Sufficiency: If lim inf
𝑟,𝑠
𝑞𝑟,𝑠 > 1 then there exists 𝛿 > 0 such that 𝑞𝑟,𝑠 ≥ 1 + 𝛿 for sufficiently large 

𝑟, 𝑠. Since ℎ𝑟,𝑠 = 𝑘𝑟,𝑠 − 𝑘𝑟−1,𝑠−1, we have 

 

ℎ𝑟,𝑠
𝑘𝑟,𝑠

≥ (
𝛿

1 + 𝛿
)
2

 

 

For sufficiently large 𝑟, 𝑠. If 𝑥𝑗𝑘 → 𝐿(𝑆
𝑓𝑗,𝑘), then, for given 𝜀 > 0 and sufficiently large 𝑟, 𝑠 we have 

 

1

𝑓𝑗,𝑘(𝑗𝑟𝑘𝑠)
𝑓𝑗,𝑘(|{𝑗 ≤ 𝑗𝑟  𝑎𝑛𝑑 𝑘 ≤ 𝑘𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) ≥

𝑓
𝑗,𝑘(|{(𝑗,𝑘)∈𝐼𝑟,𝑠:|𝑥𝑗𝑘−𝐿|≥𝜀}|)

𝑓𝑗,𝑘(𝑗𝑟𝑘𝑠)
=

𝑓𝑗,𝑘(ℎ𝑟,𝑠)

𝑓𝑗,𝑘(𝑗𝑟𝑘𝑠)
×

𝑓
𝑗,𝑘(|{(𝑗,𝑘)∈𝐼𝑟,𝑠:|𝑥𝑗𝑘−𝐿|≥𝜀}|)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
= (

𝑓𝑗,𝑘(ℎ𝑟,𝑠)

ℎ𝑟,𝑠
) ∙ (

𝑗𝑟𝑘𝑠

𝑓𝑗,𝑘(𝑗𝑟𝑘𝑠)
) (

ℎ𝑟,𝑠

𝑗𝑟𝑘𝑠
)
𝑓
𝑗,𝑘(|{(𝑗,𝑘)∈𝐼𝑟,𝑠:|𝑥𝑗𝑘−𝐿|≥𝜀}|)

𝑓𝑗,𝑘(𝑗𝑟𝑘𝑠)
≥ (

𝑓𝑗,𝑘(ℎ𝑟,𝑠)

ℎ𝑟,𝑠
) (

𝑗𝑟𝑘𝑠

𝑓𝑗,𝑘(𝑗𝑟𝑘𝑠)
) (

𝛿

1+𝛿
)
2

∙

𝑓
𝑗,𝑘(|{(𝑗,𝑘)∈𝐼𝑟,𝑠:|𝑥𝑗𝑘−𝐿|≥𝜀}|)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
. 

 

This proves the sufficiency. 

Necessity: Assume that lim inf
𝑟,𝑠
𝑞𝑟,𝑠 = 1. We can select a subsequence (𝑗𝑟(𝑖)𝑘𝑠(𝑗)) of 𝜃𝑟,𝑠 satisfying 

 
𝑗𝑟(𝑖)𝑘𝑠(𝑗)

𝑗𝑟(𝑖)−1𝑘𝑠(𝑗)−1
< 1 +

1

𝑖𝑗
,
𝑗𝑟(𝑖)𝑘𝑠(𝑗)

𝑗𝑟(𝑖)−1𝑘𝑠(𝑗)−1
> 𝑖𝑗, 
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Where 𝑟(𝑖) ≥ 𝑟(𝑖 − 1) + 2 and 𝑠(𝑗) ≥ 𝑠(𝑗 − 1) + 2. 

Define a bounded double sequence by  

𝑥𝑗𝑘 = {
1 𝑖𝑓 𝑗, 𝑘 ∈ 𝐼𝑟,𝑠(𝑖,𝑗), 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 = 1,2,3, …

0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

It is shown that 𝑥 ∉ 𝑁𝜃𝑟,𝑠  but 𝑥 ∈ 𝜔. Thus, we have 𝑥 ∉ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
. Hence 𝑆𝑓𝑗,𝑘 ⊄ 𝑆

𝜃𝑟,𝑠

𝑓𝑗,𝑘. But this is a 

contradiction to the assumption that 𝑆𝑓𝑗,𝑘 ⊂ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘. This contradiction shows that our assumption is 

wrong. Hence lim inf
𝑟,𝑠
𝑞𝑟,𝑠 > 1. 

Remark 3.1.1: The double sequence 𝑥 = (𝑥𝑗𝑘), constructed in the necessity part of the above lemma, 

is an example of 𝑓𝑗,𝑘-statistically convergent double sequence which is not 𝑓𝑗,𝑘-lacunary statistically 

convergent of double sequence. 

Lemma 3.1.2: For any double lacunary sequence 𝜃𝑟,𝑠 and unbounded modulus functions 𝑓𝑗,𝑘 for 

which lim
𝑡→∞

(𝑓(𝑡)/𝑡) > 0 and there is a positive constant 𝑐 such that 𝑓(𝑥𝑦) > 𝑐𝑓(𝑥)𝑓(𝑦), for all 𝑥 ≥

0, 𝑦 ≥ 0 one has 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
⊂ 𝑆𝑓𝑗,𝑘 if and only if lim sup

𝑟,𝑠
𝑞𝑟,𝑠 > 1. 

Proof: Sufficiency: If 𝑙𝑖𝑚 sup
𝑟,𝑠
𝑞𝑟,𝑠, then there is 𝐻 > 0 such that 𝑞𝑟,𝑠 < 𝐻 for all 𝑟, 𝑠. Now, suppose that 

𝑥𝑗𝑘 → 𝐿 (𝑆𝜃𝑟,𝑠
𝑓𝑗,𝑘
) and lim

𝑟,𝑠→∞
(𝑓(ℎ𝑟,𝑠)/ℎ𝑟,𝑠) = 𝐿

′. Therefore, for given 𝜀 > 0, there exist 𝑟0, 𝑠0 ∈ ℕ such that 

for all 𝑟, 𝑠 > 𝑟0, 𝑠0 

 

𝑓𝑗,𝑘(ℎ𝑟,𝑠)

ℎ𝑟,𝑠
< 𝐿′ + 𝜀, 

 
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) < 𝜀. 

 

Let 𝑁𝑟,𝑠 = |{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|. Using this notion, we have 

 
𝑓𝑗,𝑘(𝑁𝑟,𝑠)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
< 𝜀 ∀ 𝑟, 𝑠 > 𝑟0, 𝑠0. 

 

Now, let 𝑀 =max{𝑓𝑗,𝑘(𝑁1,1), 𝑓𝑗,𝑘(𝑁2,2), … , 𝑓𝑗,𝑘(𝑁𝑟0,𝑠0)} and let 𝑚, 𝑛 be integers such that 𝑗𝑟−1 < 𝑚 ≤ 𝑗𝑟  

and 𝑘𝑠−1 < 𝑛 < 𝑘𝑠, then we can write 

 
1

𝑓𝑗,𝑘(𝑚𝑛)
𝑓𝑗,𝑘(|{𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) ≤

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
∙ 𝑓𝑗,𝑘(|{𝑗 ≤ 𝑚, 𝑘 ≤ 𝑛: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) 

 

=
1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
𝑓𝑗,𝑘(𝑁1,1, 𝑁2,2 +⋯+ 𝑁𝑟0,𝑠0 + 𝑁𝑟0+1,𝑠0+1 +⋯+ 𝑁𝑟,𝑠) 

 

≤
1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
(𝑓𝑗,𝑘(𝑁1,1) + 𝑓𝑗,𝑘(𝑁2,2) + ⋯+ 𝑓𝑗,𝑘(𝑁𝑟0,𝑠0) + 𝑓𝑗,𝑘(𝑁𝑟0+1,𝑠0+1) + ⋯+ 𝑓𝑗,𝑘(𝑁𝑟,𝑠))

≤
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+ [𝑓𝑗,𝑘(𝑁𝑟0+1,𝑠0+1) + ⋯+ 𝑓𝑗,𝑘(𝑁𝑟,𝑠)]

=
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
[
𝑓𝑗,𝑘(ℎ𝑟0+1,𝑠0+1)

ℎ𝑟0+1,𝑠0+1

𝑓𝑗,𝑘(𝑁𝑟0+1,𝑠0+1)

𝑓𝑗,𝑘(ℎ𝑟0+1,𝑠0+1)
ℎ𝑟0+1,𝑠0+1 +⋯

+
𝑓𝑗,𝑘(ℎ𝑟,𝑠)

ℎ𝑟,𝑠

𝑓𝑗,𝑘(𝑁𝑟,𝑠)

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
ℎ𝑟,𝑠] +

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
[(𝐿′ + 𝜀)𝜀ℎ𝑟0+1,𝑠0+1 +⋯+ (𝐿

′ + 𝜀)𝜀ℎ𝑟,𝑠] 
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=
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
𝜀(𝐿′ + 𝜀)[ℎ𝑟0+1,𝑠0+1 +⋯+ ℎ𝑟,𝑠]

=
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
𝜀(𝐿′ + 𝜀)[𝑗𝑟𝑘𝑠 − 𝑗𝑟0𝑘𝑠0]

<
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+ 𝜀(𝐿′ + 𝜀) (

𝑗𝑟𝑘𝑠
𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)

)

=
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+ 𝜀(𝐿′ + 𝜀)

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)/𝑗𝑟−1𝑘𝑠−1

𝑗𝑟𝑘𝑠
𝑗𝑟−1𝑘𝑠−1

=
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+ 𝜀(𝐿′ + 𝜀)𝑞𝑟,𝑠

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)/𝑗𝑟−1𝑘𝑠−1

<
𝑟0𝑠0𝑀

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)
+ 𝜀(𝐿′ + 𝜀)𝐻 ∙

1

𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)/𝑗𝑟−1𝑘𝑠−1
, 

 

From where the sufficiency follows immediately, in view of the above fact that 

 

lim
𝑟,𝑠→∞

(𝑓𝑗,𝑘(𝑗𝑟−1𝑘𝑠−1)/𝑗𝑟−1𝑘𝑠−1) > 0. 

 

Necessity: Suppose that lim sup
𝑟,𝑠
𝑞𝑟,𝑠 = ∞. We can select a subsequence (𝑗𝑟(𝑖)𝑘𝑠(𝑗)) of double lacunary 

sequence 𝜃𝑟,𝑠 such that 𝑞𝑟(𝑖),𝑠(𝑗) > 𝑖𝑗. Define a bounded double sequence 𝑥 = (𝑥𝑗𝑘) by 

 

𝑥𝑗𝑘 = {
1 𝑖𝑓 𝑗𝑟(𝑖)𝑘𝑠(𝑗) < 𝑗𝑘 ≤ 2𝑗𝑟(𝑖)−1𝑘𝑠(𝑗)−1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖, 𝑗 = 1,2,3, … ,

0                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

It is shown that 𝑥 ∈ 𝑁𝜃 but 𝑥 ∉ 𝜔. We conclude that 𝑥 ∈ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘, but 𝑥 ∉ 𝑆𝑓𝑗,𝑘 , for every 𝑓𝑗,𝑘-statistically 

convergent of double sequence is statistically convergent double sequence. 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
⊄ 𝑆𝑓𝑗,𝑘 . But this is a 

contradiction to the assumption that 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
⊂ 𝑆𝑓𝑗,𝑘 . This contradiction shows that lim sup

𝑟,𝑠
𝑞𝑟,𝑠 < ∞. 

Remark 3.2.1: The double sequence 𝑥 = (𝑥𝑗𝑘), constructed in the necessity part of the above lemma, 

is an example of 𝑓𝑗,𝑘-lacunary statistically convergent double sequence which is not 𝑓𝑗,𝑘-statistically 

convergent double sequence. 

Combining lemma 3.1.1 and 3.2.1 we have the following. 

Theorem 3.1.1: For any double lacunary sequence 𝜃𝑟,𝑠 and unbounded modulus functions 𝑓𝑗,𝑘 for 

which lim
𝑡→∞

(𝑓(𝑡)/𝑡) > 0 and there is positive constant 𝑐 such that 𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦), for all 𝑥 ≥ 0, 𝑦 ≥

0, one has 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
= 𝑆𝑓𝑗,𝑘 if and only if 1 < lim inf

𝑟,𝑠
𝑞𝑟,𝑠 < lim sup

𝑟,𝑠
𝑞𝑟,𝑠 < ∞. 

Theorem 3.2.1: For any double lacunary sequence 𝜃𝑟,𝑠 and unbounded modulus functions 𝑓𝑗,𝑘 for 

which lim
𝑡→∞

(𝑓(𝑡)/𝑡) > 0 and there is positive constant 𝑐 such that 𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦), for all 𝑥 ≥ 0, 𝑦 ≥

0, one has  

 

𝑆𝑓𝑗,𝑘 = ∩
lim inf

𝑟,𝑠
𝑞𝑟,𝑠>1

𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
= ∪
lim sup

𝑟,𝑠
𝑞𝑟,𝑠<∞

𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
.                                                                                                               (4) 

 

Proof: In view lemma 3.1, we have 𝑆𝑓𝑗,𝑘 ⊂ ∩
lim inf

𝑟,𝑠
𝑞𝑟,𝑠>1

𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
. Suppose if possible 𝑥 = (𝑥𝑗𝑘) ∈

∩
lim inf

𝑟,𝑠
𝑞𝑟,𝑠>1

𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 but 𝑥 ∉ 𝑆𝑓𝑗,𝑘 . We have (𝑥𝑗𝑘) ∈ 𝑆𝜃𝑟,𝑠
𝑓𝑗,𝑘 for all 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠) for which lim inf

𝑟,𝑠
𝑞𝑟,𝑠 > 1. If we 

take 𝜃𝑟,𝑠 = (2
𝑟+𝑠), then, in view theorem 3.1, we have 𝑆

𝜃𝑟,𝑠

𝑓𝑗,𝑘
= 𝑆𝑓𝑗,𝑘 and so 𝑥 ∈ 𝑆𝑓𝑗,𝑘, contrary to our 

assumption. Hence 𝑆𝑓𝑗,𝑘 = ∩
lim inf

𝑟,𝑠
𝑞𝑟,𝑠>1

𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
. The remaining part can be proved similarly and hence is 

omitted. 

Remark 3.3.1: The double sequence 𝑥 = (𝑥𝑗𝑘) constructed in part (a) of theorem 2.1 belongs to 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 
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for every double lacunary sequence 𝜃𝑟,𝑠, as well unbounded modulus functions 𝑓𝑗,𝑘 for which  

lim
𝑡→∞

(𝑓(𝑡)/𝑡) > 0 and there is a positive constant 𝑐 such that 𝑓(𝑥𝑦) ≥ 𝑐𝑓(𝑥)𝑓(𝑦) for all 𝑥 ≥ 0, 𝑦 ≥ 0. 

Hence ∩ lim 𝑖𝑛𝑓
𝑟,𝑠
𝑞𝑟,𝑠 𝑆𝜃𝑟,𝑠

𝑓𝑗,𝑘
≠ 𝜙. 

3.2 Inclusion Between two Lacunary Methods of 𝑓𝑗,𝑘-Statistical Convergence. 
 

Our first results shows that, for certain modulus function 𝑓𝑗,𝑘, if 𝜃𝑟,𝑠
′  is a lacunary refinement of the 

double lacunary sequence 𝜃𝑟,𝑠 𝑆𝜃𝑟,𝑠′
𝑓𝑗,𝑘

⊂ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘
. To establish this result, we first recall the definition of 

double lacunary refinement of double sequence. 

Definition 3.2.1: The double lacunary sequence 𝜃𝑟,𝑠
′ = (𝑗𝑟

′ , 𝑘𝑠
′) is called a double lacunary refinement 

of double lacunary sequence 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠) if (𝑗𝑟 , 𝑘𝑠) ⊂ (𝑗𝑟
′ , 𝑘𝑠

′). 

Theorem 3.2.1: If 𝜃𝑟,𝑠
′ = (𝑗𝑟

′ , 𝑘𝑠
′) is a double lacunary refinement of 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠) and 𝑓𝑗,𝑘 is an 

unbounded modulus functions of double sequence such that 

 

|𝑓𝑗,𝑘(𝑥) − 𝑓𝑗,𝑘(𝑦)| = 𝑓𝑗,𝑘(|𝑥 − 𝑦|), ∀ 𝑥 > 0, 𝑦 > 0,                                                                                                   (5) 

 

Then 𝑥 ∈ 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘 implies 𝑥 ∈ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘. 

 

Proof: Suppose each 𝐼𝑟,𝑠 of 𝜃𝑟,𝑠 contains the points (𝑗𝑟(𝑖)
′ 𝑘𝑠(𝑗)

′ )
𝑖,𝑗=1

𝑣(𝑟,𝑠)
 of 𝜃𝑟,𝑠

′  so that  

 
𝑗𝑟−1, 𝑘𝑠−1 < 𝑗𝑟,1

′ , 𝑘𝑠,1
′ < 𝑗𝑟,2

′ , 𝑘𝑠,2
′ < ⋯ < 𝑗𝑟,𝑣(𝑟)

′ , 𝑘𝑠,𝑣(𝑠)
′ = 𝑗𝑟 , 𝑘𝑠 

 

where 𝐼𝑟,𝑠
′ = {(𝑗, 𝑘): 𝑗𝑟−1

′ < 𝑗′ ≤ 𝑗𝑟−1
′  𝑎𝑛𝑑 𝑘𝑠−1

′ < 𝑘′ ≤ 𝑘𝑠
′}. 

 

Note that, for all (𝑟, 𝑠), 𝑣(𝑟, 𝑠) ≥ 1 because (𝑗𝑟 , 𝑘𝑠) ⊂ (𝑗𝑟−1
′ , 𝑘𝑠−1

′ ). Let 𝑥𝑗𝑘 → 𝐿 (𝑆𝜃𝑟,𝑠′
𝑓𝑗,𝑘
). Therefore, for 

each 𝜀 > 0, we have  

 

lim
𝑟,𝑠→∞

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

1

𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ )

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟(𝑖),𝑠(𝑗)
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) = 0, 

 

where ℎ𝑟(𝑖),𝑠(𝑗)
′ = 𝑘𝑟(𝑖),𝑠(𝑗)

′ − 𝑘𝑟(𝑖−1),𝑠(𝑗−1)
′  and ℎ(𝑟,1),(𝑠,1)

′ = 𝑘(𝑟,1),(𝑠,1)
′ − 𝑘𝑟−1,𝑠−1,

′  whence 

 

lim
𝑟,𝑠→∞

∑ ∑
1

𝑓
𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)

′ )𝐼𝑟(𝑖),𝑠(𝑚)
′ ⊂𝐼𝑟(𝑖),𝑠(𝑚)

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟(𝑖),𝑠(𝑗)
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) = 0. 

 

For each 𝜀 > 0, we have  

 
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

=
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
∙ 𝑓𝑗,𝑘 (|{(𝑗, 𝑘) ∈ ∪

𝐼𝑟(𝑖),𝑠(𝑗)
′ ⊂𝐼𝑟,𝑠

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

𝐼𝑟(𝑖),𝑠(𝑗)
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) 

 

=
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
∙ 𝑓𝑗,𝑘

(

 
 

∑ ∑|{(𝑗, 𝑘) ∈ 𝐼𝑟(𝑖),𝑠(𝑗)
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|

𝐼𝑟(𝑖),𝑠(𝑗)
′ ⊂𝐼𝑟,𝑠

1≤𝑖,𝑗≤𝑣(𝑟,𝑠) )
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≤
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
∑ ∑𝑓𝑗,𝑘 ({(𝑗, 𝑘) ∈ 𝐼𝑟(𝑖),𝑠(𝑗)

′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀})

𝐼𝑟(𝑖),𝑠(𝑗)⊂𝐼𝑟,𝑠
′

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

=
1

𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ )

∑ ∑𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ )

𝐼𝑟(𝑖),𝑠(𝑗)
′ ⊂𝐼𝑟,𝑠

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

∙
1

𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ )

𝑓𝑗,𝑘 ({(𝑗, 𝑘) ∈ 𝐼𝑟(𝑖),𝑠(𝑗)
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}). 

 

Also, in view of the choice of unbounded modulus functions 𝑓 and using the fact that  𝜃𝑟,𝑠
′ = (𝑗𝑟

′ , 𝑘𝑠
′) 

is increasing, we have  

 

∑ ∑𝑓𝑗,𝑘(ℎ(𝑟,𝑖),(𝑠,𝑗)
′ ) =

𝐼𝑟(𝑖),𝑠(𝑗)
′ ⊂𝐼𝑟,𝑠

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

𝑓𝑗,𝑘(ℎ(𝑟,1),(𝑠,1)
′ ) + 𝑓𝑗,𝑘(ℎ(𝑟,2),(𝑠,2)

′ ) + ⋯+ 𝑓𝑗,𝑘(ℎ(𝑟,𝑠),𝑣(𝑟,𝑠)
′ )

= 𝑓𝑗,𝑘(𝑗(𝑟,1)
′ , 𝑘(𝑠,1)

′ ) + 𝑓𝑗,𝑘(𝑗(𝑟,2)
′ , 𝑘(𝑠,2)

′ ) +⋯

+ 𝑓𝑗,𝑘 ((𝑗(𝑟,𝑣(𝑟))
′ , 𝑘(𝑠,𝑣(𝑠))

′ ) − (𝑗(𝑟,𝑣(𝑟)−1)
′ , 𝑘(𝑠,𝑣(𝑠)−1)

′ ))

= 𝑓𝑗,𝑘(|(𝑗𝑟,1
′ , 𝑘𝑠,1

′ ) − (𝑗𝑟−1
′ , 𝑘𝑠−1

′ )|) + 𝑓𝑗,𝑘(|(𝑗𝑟,2
′ , 𝑘𝑠,2

′ ) − (𝑗𝑟,1
′ , 𝑘𝑠,1

′ )|) + ⋯

+ 𝑓𝑗,𝑘(|(𝑗𝑟,𝑣(𝑟)
′ , 𝑘𝑠,𝑣(𝑠)

′ ) − (𝑗(𝑟,𝑣(𝑟)−1
′ , 𝑘(𝑠,𝑣(𝑠)−1

′ )|)

= |𝑓𝑗,𝑘(𝑗𝑟,1
′ , 𝑘𝑠,1

′ ) − 𝑓𝑗,𝑘(𝑗𝑟−1
′ , 𝑘𝑠−1

′ )| + |𝑓𝑗,𝑘(𝑗𝑟,2
′ , 𝑘𝑠,2

′ ) − 𝑓𝑗,𝑘(𝑗𝑟,1
′ , 𝑘𝑠,1

′ )| + ⋯

+ |𝑓𝑗,𝑘(𝑗𝑟,𝑣(𝑟)
′ , 𝑘𝑠,𝑣(𝑠)

′ ) − 𝑓𝑗,𝑘(𝑗(𝑟,𝑣(𝑟)−1
′ , 𝑘(𝑠,𝑣(𝑠)−1

′ )|

= 𝑓𝑗,𝑘(𝑗𝑟,1
′ , 𝑘𝑠,1

′ ) − 𝑓𝑗,𝑘(𝑗𝑟−1
′ , 𝑘𝑠−1

′ ) + 𝑓𝑗,𝑘(𝑗𝑟,2
′ , 𝑘𝑠,2

′ ) − 𝑓𝑗,𝑘(𝑗𝑟,1
′ , 𝑘𝑠,1

′ ) + ⋯

+ 𝑓𝑗,𝑘(𝑗𝑟,𝑣(𝑟)
′ , 𝑘𝑠,𝑣(𝑠)

′ ) = 𝑓𝑗,𝑘(𝑗(𝑟,𝑣(𝑟)−1
′ , 𝑘(𝑠,𝑣(𝑠)−1

′ ) = |𝑓𝑗,𝑘(𝑗(𝑟,𝑣(𝑟)−1
′ , 𝑘(𝑠,𝑣(𝑠)−1

′ )|

= 𝑓𝑗,𝑘(|𝑗(𝑟,𝑣(𝑟)−1
′ , 𝑘(𝑠,𝑣(𝑠)−1

′ |) = 𝑓𝑗,𝑘(|ℎ𝑟,𝑠|) = 𝑓𝑗,𝑘(ℎ𝑟,𝑠). 

 

Thus, we have  

 
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) ≤

1

∑ ∑𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ )

𝐼𝑟(𝑖),𝑠(𝑗)
′ ⊂𝐼𝑟,𝑠

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

∑ ∑𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ )𝑡𝑟(𝑖),𝑠(𝑗),𝐼𝑟(𝑖),𝑠(𝑗)

′ ⊂𝐼𝑟,𝑠

1≤𝑖,𝑗≤𝑣(𝑟,𝑠)

 

(6) 

where 

 

𝑡𝑟(𝑖),𝑠(𝑗) = (𝑓𝑗,𝑘(ℎ𝑟(𝑖),𝑠(𝑗)
′ ))

−1
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟(𝑖),𝑠(𝑗)

′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|). 

 

Since the term on the right hand of (6) is regular weighted mean transformation of the double 

sequence 𝑡𝑟(𝑖),𝑠(𝑗), which tend to zero as 𝑟, 𝑠 → ∞, therefore the term on the right hand side of  (6) also 

tends to zero as 𝑟, 𝑠 → ∞. Thus,  

 
1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) → 0 as 𝑟, 𝑠 → ∞. Hence 𝑥 ∈ 𝑆

𝜃𝑟,𝑠

𝑓𝑗,𝑘
. 

 

Theorem 3.2.2: Let 𝑓𝑗,𝑘 be an unbounded modulus functions and  𝜃𝑟,𝑠
′ = (𝑗𝑚

′ , 𝑘𝑛
′ ) is a double lacunary 

refinement of double lacunary sequence 

 

 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠). Let 𝐼𝑟,𝑠 = {(𝑗, 𝑘): 𝑗𝑟−1 < 𝑗 ≤ 𝑗𝑟 𝑎𝑛𝑑 𝑘𝑠−1 < 𝑘 ≤ 𝑘𝑠}, ℎ𝑟 = 𝑗𝑟 − 𝑗𝑟−1 and ℎ𝑠 = 𝑘𝑠−𝑘𝑠−1, 

 

 where   

 

ℎ𝑟,𝑠 = ℎ𝑟ℎ𝑠̅̅̅, 𝑟, 𝑠 = 1,2,3, …, and 𝐼𝑚,𝑛
′ = {(𝑗, 𝑘): 𝑗𝑚−1

′ < 𝑗′ ≤ 𝑗𝑚
′  𝑎𝑛𝑑 𝑘𝑛−1

′ < 𝑘′ ≤ 𝑘𝑛
′ }, ℎ𝑚

′ = 𝑗𝑚
′ − 𝑗𝑚−1

′  and 

ℎ𝑛
′ = 𝑘𝑛

′ − 𝑘𝑛
′ , where  ℎ𝑚,𝑛

′ = ℎ𝑚
′ ℎ𝑛

′ , 𝑚, 𝑛 = 1,2,3, …, if there exists 𝛿 > 0, such that  

284



 
A. G. K. Ali, A. M. Brono and A. Masha 
DENSITY BY MODULI 

RT&A, No 4 (76) 
Volume 18, December 2023  

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
≥ 𝛿 for every 𝐼𝑚,𝑛

′ ⊂ 𝐼𝑟,𝑠, 

 

Then 𝑥 ∈ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 and 𝑥 ∈ 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
. 

 

Proof: For any 𝜀 > 0, and for 𝐼𝑚,𝑛
′ ⊂ 𝐼𝑟,𝑠, we can find 𝐼𝑟,𝑠 such that 𝐼𝑚,𝑛

′ ⊂ 𝐼𝑟,𝑠, then we have 

 
1

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑚,𝑛
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) ≤

1

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

=
𝑓𝑗,𝑘(ℎ𝑟,𝑠)

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

≤
1

𝛿

1

𝑓𝑗,𝑘(ℎ𝑟,𝑠)
𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) 

 

From where it follows that 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 ⊂ 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
. 

In the next theorem we deal with a more general situation. 

Theorem 3.2.3: Let 𝑓 and 𝑔 be any two modulus functions of double sequence such that 𝑓(𝑥) ≤ 𝑔(𝑥), 

for all 𝑥 ∈ [0,∞), and 𝜃𝑟,𝑠
′ = (𝑗𝑚

′ , 𝑘𝑛
′ ) is a double lacunary refinement of the double sequence 

 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠). Let  𝐼𝑟,𝑠 = {(𝑗, 𝑘): 𝑗𝑟−1 < 𝑗 ≤ 𝑗𝑟  𝑎𝑛𝑑 𝑘𝑠−1 < 𝑘 ≤ 𝑘𝑠}, ℎ𝑟 = 𝑗𝑟 − 𝑗𝑟−1 and ℎ𝑠 = 𝑘𝑠−𝑘𝑠−1, 

where  ℎ𝑟,𝑠 = ℎ𝑟ℎ𝑠̅̅̅, 𝑟, 𝑠 = 1,2,3, …, and  𝐼𝑚,𝑛
′ = {(𝑗, 𝑘): 𝑗𝑚−1

′ < 𝑗′ ≤ 𝑗𝑚
′  𝑎𝑛𝑑 𝑘𝑛−1

′ < 𝑘′ ≤ 𝑘𝑛
′ }, ℎ𝑚

′ = 𝑗𝑚
′ −

𝑗𝑚−1
′  and ℎ𝑛

′ = 𝑘𝑛
′ − 𝑘𝑛

′ , where  ℎ𝑚,𝑛
′ = ℎ𝑚

′ ℎ𝑛
′ , 𝑚, 𝑛 = 1,2,3, …, if there exists 0 < 𝛿 ≤ 1, such that 

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑔𝑗,𝑘(ℎ𝑟,𝑠)
≥ 𝛿 for every 𝐼𝑚,𝑛

′ ⊂ 𝐼𝑟,𝑠, 

Then 𝑥 ∈ 𝑆
𝜃𝑟,𝑠

𝑔𝑗,𝑘 and 𝑥 ∈ 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
. 

 

Proof: For any 𝜀 > 0, and every 𝐼𝑚,𝑛
′ , we can find 𝐼𝑟,𝑠 such that 𝐼𝑚,𝑛

′ ⊂ 𝐼𝑟,𝑠, then we have 

 
1

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑓𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑚,𝑛
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) ≤

1

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑔𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑚,𝑛
′ : |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

≤
1

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

𝑔𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

=
𝑔𝑗,𝑘(ℎ𝑟,𝑠)

𝑓𝑗,𝑘(ℎ𝑚,𝑛
′ )

1

𝑔𝑗,𝑘(ℎ𝑟,𝑠)
𝑔𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|)

≤
1

𝛿

1

𝑔𝑗,𝑘(ℎ𝑟,𝑠)
𝑔𝑗,𝑘(|{(𝑗, 𝑘) ∈ 𝐼𝑟,𝑠: |𝑥𝑗𝑘 − 𝐿| ≥ 𝜀}|) 

 

From where it follows that 𝑆
𝜃𝑟,𝑠

𝑔𝑗,𝑘
 ⊂ 𝑆

𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
. 

In the next theorem we show that the inclusion 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 ⊂ 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
 is possible if even if none of 𝜃𝑟,𝑠 and 𝜃𝑟,𝑠

′  

is refinement of the other. 

Theorem 3.2.4: Let 𝑓 be an unbounded modulus functions such that  

 
|𝑓(𝑥) − 𝑓(𝑦)| = 𝑓(|𝑥 − 𝑦|), ∀ 𝑥 ≥ 0, 𝑦 ≥ 0.                                                                                                         (7) 

 

Suppose 𝜃𝑟,𝑠
′ = (𝑗𝑚

′ , 𝑘𝑛
′ ) and 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠). Let  𝐼𝑟,𝑠 = {(𝑗, 𝑘): 𝑗𝑟−1 < 𝑗 ≤ 𝑗𝑟  𝑎𝑛𝑑 𝑘𝑠−1 < 𝑘 ≤ 𝑘𝑠}, ℎ𝑟 = 𝑗𝑟 −

𝑗𝑟−1 and ℎ𝑠 = 𝑘𝑠−𝑘𝑠−1, where  ℎ𝑟,𝑠 = ℎ𝑟ℎ𝑠̅̅̅, 𝑟, 𝑠 = 1,2,3, …, and 𝐼𝑚,𝑛
′ = {(𝑗, 𝑘): 𝑗𝑚−1

′ < 𝑗′ ≤ 𝑗𝑚
′  𝑎𝑛𝑑 𝑘𝑛−1

′ <

𝑘′ ≤ 𝑘𝑛
′ }, ℎ𝑚

′ = 𝑗𝑚
′ − 𝑗𝑚−1

′  and ℎ𝑛
′ = 𝑘𝑛

′ − 𝑘𝑛
′ , where  ℎ𝑚,𝑛

′ = ℎ𝑚
′ ℎ𝑛

′ , 𝑚, 𝑛 = 1,2,3, …, and 𝐼𝑝,𝑞,𝑚,𝑛 = 𝐼𝑝,𝑞 ∩

𝐼𝑚,𝑛 , 𝑝, 𝑞,𝑚, 𝑛 = 1,2,3, …, if there exists 𝛿 > 0 such that  
𝑓𝑗,𝑘(𝜎𝑝,𝑞,𝑚,𝑛)

𝑔𝑗,𝑘(ℎ𝑟,𝑠)
≥ 𝛿 for every 𝑝, 𝑞,𝑚, 𝑛 = 1,2,3, …, 

provided 𝜎𝑝,𝑞,𝑚,𝑛 > 0, where 𝜎𝑝,𝑞,𝑚,𝑛 denotes the length of the interval 𝐼𝑝,𝑞,𝑚,𝑛 then  𝑥 ∈ 𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘  implies 
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𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
. 

Remark 3.2.1: If the condition in theorem 4.4 is replaced by 𝑓(𝜎𝑝,𝑞,𝑚,𝑛)/𝑓(ℎ𝑚,𝑛
′ ) ≥ 𝛿 for every 

𝑟, 𝑠,𝑚, 𝑛 = 1,2,3, …, provided 𝜎𝑝,𝑞,𝑚,𝑛 > 0, where 𝜎𝑝,𝑞,𝑚,𝑛 denotes the length of the interval 𝐼𝑝,𝑞,𝑚,𝑛 =

𝐼𝑝,𝑞 ∩ 𝐼𝑚,𝑛 , 𝑝, 𝑞,𝑚, 𝑛 = 1,2,3, …, it can be seen that 𝑥 ∈ 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
 implies 𝑥 ∈ 𝑆

𝜃𝑟,𝑠

𝑓𝑗,𝑘. 

Combining remark 4.1 and theorem 4.4, we get the following. 

Theorem 3.2.5: Let 𝑓 be an unbounded modulus functions such that  

 
|𝑓(𝑥) − 𝑓(𝑦)| = 𝑓(|𝑥 − 𝑦|), ∀ 𝑥 ≥ 0, 𝑦 ≥ 0.                                                                                                       (8) 

 

Suppose 𝜃𝑟,𝑠
′ = (𝑗𝑚

′ , 𝑘𝑛
′ ) and 𝜃𝑟,𝑠 = (𝑗𝑟 , 𝑘𝑠) are two double lacunary sequences. Let  𝐼𝑟,𝑠 =

{(𝑗, 𝑘): 𝑗𝑟−1 < 𝑗 ≤ 𝑗𝑟  𝑎𝑛𝑑 𝑘𝑠−1 < 𝑘 ≤ 𝑘𝑠}, ℎ𝑟 = 𝑗𝑟 − 𝑗𝑟−1 and ℎ𝑠 = 𝑘𝑠−𝑘𝑠−1, where  ℎ𝑟,𝑠 = ℎ𝑟ℎ𝑠̅̅̅, 𝑟, 𝑠 =

1,2,3, … , 𝐼𝑚,𝑛
′ = {(𝑗, 𝑘): 𝑗𝑚−1

′ < 𝑗′ ≤ 𝑗𝑚
′  𝑎𝑛𝑑 𝑘𝑛−1

′ < 𝑘′ ≤ 𝑘𝑛
′ }, ℎ𝑚

′ = 𝑗𝑚
′ − 𝑗𝑚−1

′  and ℎ𝑛
′ = 𝑘𝑛

′ − 𝑘𝑛
′ , where  

ℎ𝑚,𝑛
′ = ℎ𝑚

′ ℎ𝑛
′ , 𝑚, 𝑛 = 1,2,3, …, and 𝐼𝑝,𝑞,𝑚,𝑛 = 𝐼𝑝,𝑞 ∩ 𝐼𝑚,𝑛, 𝑝, 𝑞,𝑚, 𝑛 = 1,2,3, …, if there exists 𝛿 > 0 such 

that  

 
𝑓𝑗,𝑘(𝜎𝑝,𝑞,𝑚,𝑛)

𝑔𝑗,𝑘(ℎ𝑟,𝑠+ℎ𝑚,𝑛
′ )

≥ 𝛿 for every 𝑝, 𝑞,𝑚, 𝑛 = 1,2,3, …, 

 

provided 𝜎𝑝,𝑞,𝑚,𝑛 > 0, where 𝜎𝑝,𝑞,𝑚,𝑛 denotes the length of the interval 𝐼𝑝,𝑞,𝑚,𝑛 then  𝑆
𝜃𝑟,𝑠

𝑓𝑗,𝑘 = 𝑆
𝜃𝑟,𝑠
′

𝑓𝑗,𝑘
. 

 

4. Discussion 

 
The concept of modulus lacunary statistical convergence of double sequence was introduced via 

modulus functions where the modulus function is bounded or unbounded. We have also introduced 

the concept of lacunary strong convergence of double sequence with respect modulus function. We 

established some inclusion relations between these two lacunary methods and proved some 

essential analogues results for double sequence. This concept can be further extended in the direction 

of fuzzy numbers of double sequence. 
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Abstract

This paper deals with the estimation of stress strength reliability parameter R, which is the probability
of Y less than X when X and Y are two independent distribution with different scale parameter and same
shape parameter. The maximum likelihood method is used to find an estimator for R. We also obtain the
asymptotic distribution of the maximum likelihood estimator of R. Based on this asymptotic distribution,
the asymptotic confidence interval can be obtained. We also propose bootstrap confidence interval for
the parameter R. Analysis of a simulated data and a real life data have been presented for illustrative
purposes.

Keywords: stress strength model, maximum-likelihood estimator, bootstrap confidence intervals,
asymptotic distributions and confidence interval

1. Introduction

One of the significant, challenging, but manageable problems in reliability analysis is the calcula-
tion of stress-strength reliability using a variety of distributions. Estimating the stress-strength
parameter, R, is very helpful in the statistical literature. For instance, if X represents the strength
of a system under a stress, Y, then R is a measure of system performance that arises naturally from
the mechanical dependability of a system. Only when the applied stress exceeds the system’s
strength at any point does the system fail. Many lifespan distributions are utilised in reliability
analysis. Terms like exponential, Weibull, log-Normal, and their generalisations are commonly
used in dependability analysis. The exponential, Lindley, and Weibull distributions are more
often used than the gamma and lognormal distributions because their survival functions can
both be expressed in closed forms and do not require numerical integration. While sharing a
common parameter, the exponential and Lindley distributions differ in that the hazard rate of
the exponential is constant whereas the hazard rate of the Lindley is monotonically dropping.
Although the Lindley distribution has been used by many academics to model lifetime data and
is crucial for understanding stress-strength reliability modelling, there are numerous instances
in which modelling actual lifetime data may not be appropriate from a theoretical or practical
standpoint. Recently, a number of academics presented many distributions, with the new ones
showing a better fit than the currently popular distributions. In order to fix a problem with new
models while utilising better fitted models in stress-strength analysis, one may need to carefully
examine the estimation process. If the estimation process fails using the available methodologies,
one may not be able to do so. Therefore, it is crucial to estimate multiple reliability factors, and
researchers must focus more on estimates while utilising better fitted models.
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In the literature, it has been debated how to estimate a stress strength model’s reliability
or survival probability when X and Y have known distributions. A number of authors have
examined the survival probabilities of a single component stress-strength (SSS) model for various
distributions, including Raqab and Kundu[12], Kundu and Gupta [9], [6], Constantine and
Karson[4], and Downtown[5]. The issue of estimating R has been investigated by a number
of authors. Church and Harris [3] developed the MLE of R when X and Y are independently
and normally distributed. Awad et al study’s on the MLE of R under the condition that X
and Y have bivariate exponential distributions was published in 1981. In a simulation research,
Awad and Gharraf [2] compared three estimations of R when X and Y are independent Burr
random variables with different distributions. Estimates for R where X and Y are Burr Type X
distributions were reported by Ahmad et al.[1] and Surles and Padgett[16],[17]. Other papers
which describes the same idea on different distributions are Akhila and Chacko [18],Kundu
and Raqab [11],saraccouglu,Kinaci and Kundu [14] and Shahsanaei, Fatemeh and Daneshkhah,
Alireza [15].

In this paper, we consider the problem of estimating the stress strength parameter R = P[Y <
X], when X and Y be independent strength and stress random variables having Pranav distribution
with parameters θ1 and θ2 respectively. Krishna Kumar Shukla [8]introduced Pranav distribution
which is a mixture of two distributions, exponential distribution having scale parameter θ and
gamma distribution having shape parameter 4 and scale parameter θ, and their mixing proportion
of θ, θ4

θ4+6 and 6
θ4+6 respectively. The probability density function (pdf) of Pranav lifetime

distribution can be defined as

f (x, θ) =
θ4

θ4 + 6
(θ + x3)e−θx, x > 0, θ > 0 (1)

The corresponding cumulative distribution function(c.d.f) is

F(x, θ) = 1 −
[

1 +
θx(θ2x2 + 3θx + 6

θ4 + 6

]
e−θx, x > 0, θ > 0 (2)

The estimation of the stress strength parameter R = P[Y < X], when X and Y are both one-
parameter Pranav distributions with parameter θ1 and θ2 respectively, is an unsolved problem.
Statistical inference on stress-strength parameters are important in reliability analysis. It is
observed that the maximum likelihood estimators can be obtained implicitly by solving two
nonlinear equations, but they cannot be obtained in closed form. So, MLE’ s of parameters
are derived numerically. It is not possible to compute the exact distributions of the maximum
likelihood estimators, and we used the asymptotic distribution and we constructed approximate
confidence intervals of the unknown parameters.

The rest of the paper is organized as follows. In Section 2, the MLE of R is computed. The
asymptotic distribution of the MLE’ s are provided in Section 3. Bootstrap confidence interval is
presented in Section 4. In Section 5, simulation study is given. Theoretical results are verified by
analyzing data set in Section 6 and conclusions are given in Section 7.

2. Maximum Likelihood Estimator of R

In this section, the procedure of estimating the reliability of R = P[Y < X] models using Pranav
distributions, is considered. It is clear that

R = P[Y < X]

=
∫ ∞

0
f (x, θ1)F(x, θ2) dx (3)

where f (x,y), is the joint probability density function (pdf) of random variables X and Y, having
Pranav distributions. If the r.v’ s X and Y are independent, then f (x, y) = f (x)g(y), where f (x)
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and g(y) are the marginal pdf’ s of X and Y, so that

R =
∫ ∞

0

(
θ4

θ4 + 6
(θ + x3)e−θx

)(
1 −

[
1 +

θx(θ2x2 + 3θx + 6
θ4 + 6

]
e−θx

)
dx (4)

On simplification we get

R = 1 −

θ1


360θ1θ2

2 + 1080θ3
2 + 144θ2(θ1 + θ2)

2+
6(θ1θ3

2 + θ4
2 + 6)(θ1 + θ2)

3+
6(θ1θ2)

2(θ1 + θ2)
4 + 6θ1θ2(θ1 + θ2)

5+
θ1(θ

4
2 + 6)(θ1 + θ2)

6


(θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7

(5)

If we have two ordered random samples representing strength (X1,X2...Xn) and stress (Y1,Y2,....,Ym)
having sizes n and m respectively, following Pranav distribution with parameters θ1 and θ2, re-
spectively. A technique for figuring out a model’s parameter values is called maximum likelihood
estimation. The parameter values were selected to maximise the likelihood that the model’s
described process resulted in the observed data. The optimal distribution for a collection of
data is chosen using the maximum likelihood estimate (MLE). A reliable method for estimating
parameters is maximum likelihood. So, a variety of estimation scenarios can apply maximum
likelihood estimations. With those parameter values, the likelihood of those observed outcomes
is the same as the probability of those observed events. Thus, the likelihood function for the
combined random sample can be calculated:

L =
n

∏
i=1

θ4
1

θ4
1 + 6

(θ1 + x3
i ) e−θ1x3

i

n

∏
j=1

θ4
2

θ4
2 + 6

(θ2 + y3
j )e

−θ2y3
j (6)

the log likelihood is

l = logL = 4nlogθ1 − nlog(θ4
1 + 6) +

n

∑
i=0

(log(θ1 + x3
i ))− θ1

n

∑
i=0

xi

+ 4mlogθ2 − mlog(θ4
2 + 6) +

m

∑
j=1

(log(θ2 + y3
j ))− θ2

m

∑
j=1

yj (7)

The solution of the following non-linear equations yield the MLE of the parameters parameters θ1
and θ2. Differentiating (7) with respect to parameters θ1 and θ2, we obtain

∂l
∂θ1

=
4n
θ1

−
4nθ3

1
(θ4

1) + 6
+

n

∑
i=0

1
θ1 + x3

i
−

n

∑
i=0

xi (8)

∂l
∂θ2

=
4m
θ2

−
4mθ3

2
(θ4

2) + 6
+

m

∑
j=0

1
θ2 + x3

j
−

m

∑
j=0

yj (9)

The second partial derivatives of (7) with respect to parameters θ1 and θ2, are

∂l2

∂θ2
1
=

−4n
θ2

1
−

4nθ2
1(18 − θ4

1)

(θ4
1 + 6)2

−
n

∑
i=0

1
(θ1 + x3

i )
2

(10)

∂l2

∂θ2
2
=

−4m
θ2

2
−

4mθ2
2(18 − θ4

2)

(θ4
2 + 6)2

−
m

∑
j=0

1
(θ2 + y3

j )
2

(11)

MLE of R is obtained as

R̂ = 1 −

θ̂1

 360θ̂1(θ̂2
2
+ 1080θ̂2

3
+ 144θ̂2(θ̂1 + θ̂2)

2+

6(θ̂1θ̂2
3
+ θ̂2

4
+ 6)(θ̂1 + θ̂2)

3 + 6(θ̂1θ̂2)
2(θ̂1 + θ̂2)

4+

6θ̂1θ̂2(θ̂1 + θ̂2)
5 + θ̂1(θ̂2

4
+ 6)(θ̂1 + θ̂2)

6


(θ̂1

4
+ 6)(θ̂2

4
+ 6)(θ̂1 + θ̂2)7

(12)
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Where θ̂1 and θ̂2 are the maximum likelihood estimators of θ1 and θ2 respectively. This is used in
estimation of stress strength for given data.

3. Asymptotic Distribution and Confidence Interval

The asymptotic distribution and confidence interval of the MLE of R are obtained in this section.
To find an asymptotic variance of the MLE R̂ML, let us denote the Fisher information matrix of
θ = (θ1, θ2) as I(θ) = [Ii j(θ); i, j = 1, 2], i.e.,

I(θ) = E

 −∂2l
∂θ2

1

−∂2l
∂θ1∂θ2

−∂2l
∂θ2∂θ1

∂2l
∂θ2

2

 (13)

To establish normality assumption we define

d(θ) = (
∂R
∂θ1

,
∂R
∂θ2

)
′

(14)

= (d1, d2)
′

(15)

R is in the form
R = 1 − U

V
P (16)

Hence
∂R
∂θi

= −
[
(

U
V
)
′
P + P

′ U
V

]
, i = 1, 2 (17)

U = θ1 (18)

V = (θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
7 (19)

P = 360θ̂1(θ̂2
2
+ 1080θ̂2

3
+ 144θ̂2(θ̂1 + θ̂2)

2+

6(θ̂1θ̂2
3
+ θ̂2

4
+ 6)(θ̂1 + θ̂2)

3 + 6(θ̂1θ̂2)
2(θ̂1 + θ̂2)

4+

6θ̂1θ̂2(θ̂1 + θ̂2)
5 + θ̂1(θ̂2

4
+ 6)(θ̂1 + θ̂2)

6 (20)

The partial derivatives of U
V and P with respect to θ1 is

∂P
∂θ1

= 360θ2
2 + 288θ2(θ1 + θ2) + 18θ1θ3

2 + (θ1 + θ2)
2+

6θ3
2(θ1 + θ2)

3 + 18θ2(θ1 + θ2)
2 + 18(θ1 + θ2)

2+

24(θ1θ2)
2(θ1 + θ2)

3 + 12θ1θ2
2(θ1 + θ2)

4 + 30θ1θ2(θ1 + θ2)
4+

6θ2(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + (θ4
2 + 6)(θ1 + θ2)

6 (21)

(
U
V
)
′
=

 (θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
7−

7θ1(θ
4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
6−

4θ4
1(θ

4
2 + 6)(θ1 + θ2)

7


[(θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7]2

(22)
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Then partial derivative of R with respect to θ1 becomes

∂R
∂θ1

= −

[
−7θ1(θ

4
2 + 6)(θ4

2 + 6)(θ1 + θ2)
6 − 4θ4

1(θ
4
2 + 6)(θ1 + θ2)

7+
(θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)

7

]
((θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7)2

×

 360θ1θ2
2 + 1080θ3

2 + 144θ2(θ1 + θ2)
2+

6(θ1θ3
2 + θ4

2 + 6)(θ1 + θ2)
3 + 6(θ1θ2)

2(θ1 + θ2)
4+

6(θ1θ2)
2(θ1 + θ2)

4 + 6θ1θ2(θ1 + θ2)
5 + θ1(θ

4
2 + 6)(θ1 + θ2)

6



+


360θ2

2 + 288θ2(θ1 + θ2) + 18θ1θ3
2(θ1 + θ2)

26θ3
2(θ1 + θ2)

3+
18θ2(θ1 + θ2)

2 + 18(θ1 + θ2)
2 + 24(θ1θ2)

2(θ1 + θ2)
3

+12θ1θ2
2(θ1 + θ2)

4 + 30θ1θ2(θ1 + θ2)
4+

6θ2(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + (θ4
2 + 6)(θ1 + θ2)

6


× θ1

(θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)7
(23)

The partial derivatives of U
V and P with respect to θ2 is

∂P
∂θ2

= 720θ1θ2 + 3240θ2
2 + 288θ2(θ1 + θ2) + 144(θ1 + θ2)

2

+ 18θ1θ3
2(θ1 + θ2)

2 + 18θ1θ2
2(θ1 + θ2)

3 + 18θ4
2(θ1 + θ2)

2 + 24θ3
2(θ1 + θ2)

3

+ 18(θ1 + θ2)
2 + 24(θ1θ2)

2(θ1 + θ2)
3 + 12θ2

1θ2(θ1 + θ2)
4 + 30θ1θ2(θ1 + θ2)

4

+ 6θ1(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + 4θ1θ3
2(θ1 + θ2)

6 (24)

(
U
V
)
′
= −

[
−7θ1(θ

4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
6 − 4θ1θ3

2(θ
4
1 + 6)(θ1 + θ2)

7]
((θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7)2

(25)

Then the partial derivative of R with respect to θ2 becomes

∂R
∂θ2

= −
[
−7θ1(θ

4
1 + 6)(θ4

2 + 6)(θ1 + θ2)
6 − 4θ1θ3

2(θ
4
1 + 6)(θ1 + θ2)

7]
((θ4

1 + 6)(θ4
2 + 6)(θ1 + θ2)7)2

×

 360θ1θ2
2 + 1080θ3

2 + 144θ2(θ1 + θ2)
2+

6(θ1θ3
2 + θ4

2 + 6)(θ1 + θ2)
3 + 6(θ1θ2)

2(θ1 + θ2)
4+

6(θ1θ2)
2(θ1 + θ2)

4 + 6θ1θ2(θ1 + θ2)
5 + θ1(θ

4
2 + 6)(θ1 + θ2)

6



+


720θ1θ2 + 3240θ2

2 + 288θ2(θ1 + θ2) + 144(θ1 + θ2)
2+

18θ1θ3
2(θ1 + θ2)

2 + 18θ1θ2
2(θ1 + θ2)

3 + 18θ4
2(θ1 + θ2)

2 + 24θ3
2(θ1 + θ2)

3+
18(θ1 + θ2)

2 + 24(θ1θ2)
2(θ1 + θ2)

3 + 12θ2
1θ2(θ1 + θ4

2) + 30θ1θ2(θ1 + θ2)
4+

6θ1(θ1 + θ2)
5 + 6θ1(θ

4
2 + 6)(θ1 + θ2)

5 + 4θ1θ3
2(θ1 + θ2)

6


× θ1

(θ4
1 + 6)(θ4

2 + 6)(θ1 + θ2)7
(26)

We obtain the asymptotic distribution of R̂ML as

√
n + m(R̂ML − R) → N(0, d

′
(θ)I−1(θ)d(θ)) (27)

AV(R̂ML) =
1

n + m
d
′
(θ)I−1(θ)d(θ) (28)

i.e, AV(R̂ML) = V(θ̂1)d2
1 + V(θ̂2)d2

2 + 2d1d2Cov(θ̂1, θ̂2) (29)

Asymptotic 100(1 − α) percentage confidence interval for R

R̂ML ± Zα/2

√
AV(R̂ML) (30)
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4. Bootstrap Confidence Interval

In this section, we use confidence intervals based on the parametric percentile bootstrap methods
(we call it from now on as Boot-p) based, [10]. Bootstrapping is a technique for estimating the
variability in a statistic by sampling with replacement from observed data. Permutation tests are a
type of re-sampling that is linked to re-sampling. The bootstrap is frequently used to evaluate the
accuracy of an estimate based on a sample of data from a larger population. The bootstrap’s main
advantage is that it allows statisticians to construct confidence intervals on parameters without
making irrational assumptions. This was one of the first of many discoveries in computational
statistics, which has now become the standard method for practically all work. It creates multiple
re-samples (with replacement) from a single set of observations, and computes the effect size of
interest on each of these re-samples. To estimate confidence intervals of R in this methods, the
following steps are used.

1. Estimate θ, say θ̂, from the sample using MLE method.

2. Generate a bootstrap sample using θ̂. Using these bootstrap sample obtain the bootstrap
estimate of θ, say θ̂∗ and compute the bootstrap estimate of R.

3. Repeat Step [2] N-BOOT times to get the parametric bootstrap estimates of R

4. Let ĈDF = P(θ̂∗ ≤ x), be the cumulative distribution function of R̂. Define θ̂Boot−p(x) =

ĈDF
−1

(x) for a given x. The approximate (100 − α)% confidence interval for θ is given by

(θ̂BOOT−P(α/2), θ̂BOOT−P(1 − (α/2))) (31)

5. Simulation Study

To measure the efficacy of R’s estimators, we provide some results based on the inversion method
in this section. According to its definition, data simulation is the process of using a significant
amount of data to replicate or simulate real-world settings in order to determine the optimal
course of action, predict future events, or test a model. The many forms of data simulations are
numerous. In simulation statistics, artificially generated data are used to test a hypothesis or
statistical method. Every time a new statistical method is created or used, certain assumptions
need to be verified. Simulated data is used by statisticians to test their theories. For this purpose,
we have generated 1000 samples from independent Pranav(θ1) and Pranav(θ2) distributions. We
considered sets of parameter values (1) and (1.99) parameter values. The bias and the mean
square error (MSE) of the parameter estimates are calculated. In Table 5.1, the average biases,
mean squared errors (MSE) and confidence intervals of the estimates of R is given.

Table 1: Simulation Results

(n,m) R(ML) Bias MSE AS(CI) BT(CI)

(7,7) 0.8982136 0.1017854 0.01036027 0.8783155,0.9181117 0.8947541,0.8999972
(15,15) 0.8982252 0.1017738 0.0103579 0.8782696,0.9181808 0.8966189,0.8994737
(20,20) 0.8982344 0.1017646 0.01035603 0.8783453,0.9181235 0.8965753,0.8999412
(22,22) 0.8985076 0.1014914 0.0103005 0.8787993,0.9182159 0.8969416,0.8993731
(25,25) 0.8985383 0.1014607 0.01029428 0.8789089,0.9181677 0.8973348,0.898984

From the simulation results, it is observed that as the sample size (n, m) increases the biases and
the MSE decrease. Thus the consistency properties of all the methods are verified.
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6. Data Analysis

In this section we present a data analysis of the strength data reported by Badar and Priest(1982).
The data represent the strength data measured in GPA, for single carbon fibers and impregnated
1000-carbon fiber tows. Single fibers were tested under tension at gauge lengths of 1, 10, 20 and
50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths of 20, 50, 150 and 300
mm. It is already observed that the Weibull model does not work well in this case. Surles and
Padgett[16], [17] and Raqab and Kundu[12] observed that generalized Rayleigh works quite well
for these strength data. For illustrative purposes we are also considering the same transformed
data sets as it was considered by Raqab and Kundu [9], the single fibers of 20 mm (Data Set I)
and 10 mm (Data Set II) in gauge lengths with sample sizes 69 and 63 respectively. They are
presented below:
Data Set I: 0.312 0.314 0.479 0.552 0.700 0.803 0.861 0.865 0.944 0.958 0.966 0.997 1.006 1.021 1.027
1.055 1.063 1.098 1.140 1.179 1.224 1.240 1.253 1.270 1.272 1.274 1.301 1.301 1.359 1.382 1.382 1.426
1.434 1.435 1.478 1.490 1.511 1.514 1.535 1.554 1.566 1.570 1.586 1.629 1.633 1.642 1.648 1.684 1.697
1.726 1.770 1.773 1.800 1.809 1.818 1.821 1.848 1.880 1.954 2.012 2.067 2.084 2.090 2.096 2.128 2.233
2.433 2.585 2.585
Data Set II: 0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 0.597 0.645 0.654 0.674 0.718 0.722 0.725
0.732 0.775 0.814 0.816 0.818 0.824 0.859 0.875 0.938 0.940 1.056 1.117 1.128 1.137 1.137 1.177 1.196
1.230 1.325 1.339 1.345 1.420 1.423 1.435 1.443 1.464 1.472 1.494 1.532 1.546 1.577 1.608 1.635 1.693
1.701 1.737 1.754 1.762 1.828 2.052 2.071 2.086 2.171 2.224 2.227 2.425 2.595 3.220
These data were first used by Badar and Priest(1982) and later used by Raqab and Kundu[13] and
Hassan and Kumaraswamy [7].

Table 2: Data Analysis Results

Length(in mm) MLE K-S statistic P-value

10 1.596362 0.62319 0.7571
20 1.715981 0.79365 0.4375

Table 6.1 gives the result of the goodness of fit test. Maximum likelihood estimates are
1.596362 and 1.715981.The estimated value of the stress strength reliability using these estimates
is 0.8850866.The 95% asymptotic confidence interval for R is (0.8530591,0.9171141) and 95%
bootstrap confidence interval for R is (0.8748553 ,0.8895613).

7. Conclusion

In this paper, we considered the problem of estimating stress strength reliability using Pranav
distribution. The maximum likelihood estimate of stress strength reliability, R̂ is obtained.
Also, asymptotic 100(1 − α)% confidence interval for the reliability parameter is computed.
Bootstrap confidence interval for the reliability parameter is also computed. When the sample
size is increased, mean square error caused by the estimates comes nearer to zero by extensive
simulation. Finally, real data sets are analyzed
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[14] Buğra Saraçoğlu, Ismail Kinaci, and Debasis Kundu. On estimation of r = p(y < x) for
exponential distribution under progressive type-ii censoring. Journal of Statistical Computation
and Simulation, 82(5):729–744, 2012.

[15] Fatemeh Shahsanaei and Alireza Daneshkhah. Estimation of stress-strength model in the
generalized linear failure rate distribution. arXiv preprint arXiv:1312.0401, 2013.

[16] JG Surles and WJ Padgett. Inference for p(y < x) in the burr type x model. Journal of Applied
Statistical Science, 7(4):225–238, 1998.

[17] JG Surles and WJ Padgett. Inference for reliability and stress-strength for a scaled burr type
x distribution. Lifetime data analysis, 7:187–200, 2001.

[18] Akhila K Varghese and VM Chacko. Estimation of stress-strength reliability for akash
distribution. Reliability: Theory & Applications, 17(3 (69)):52–58, 2022.

RT&A, No 4 (76) 
Volume 18, December 2023 

295



Sajesh T A 
ROBUST BIVARIATE CONTROL CHART 

RT&A, No 4 (76) 
Volume 18, December 2023 

 

FAST AND ROBUST BIVARIATE CONTROL CHARTS 

FOR INDIVIDUAL OBSERVATIONS 
 

Sajesh T A 

 

Department of Statistics, St. Thomas College (Autonomous), Thrissur, Kerala, India 
*sajesh.t.abraham@gmail.com 

 

Abstract 

 

There are various circumstances where it is important to simultaneously monitor or control two or 

more related quality characteristics. Independently tracking these quality characteristics might be quite 

deceptive. Hotelling's T2 chart, in which the T2 statistics are generated using the classical estimates of 

location and scatter, is the most well-known multivariate process monitoring and control approach. It 

is well known that the existence of outliers in a dataset has a significant impact on classical estimators. 

Any statistic that is computed using the classical estimates will be distorted by even a single outlier. 

The non-robustness issue is investigated in this study, which also suggests four robust bivariate control 

charts based on the robust Gnandesikan-Kettenring estimator. This study employs four highly robust 

scale estimators, with the best breakdown point, namely the Qn estimator, Sn estimator, MAD 

estimator, and τ estimator, in order to robustify the Gnandesikan- Kettenring estimator. Through the 

use of a Monte Carlo simulation and a real-life data, the performance of the suggested control charts is 

assessed. The four techniques all outperform the traditional method and provide greater computing 

efficiency. 

 

Keywords: Gnandesikan- Kettenring estimator, Qn estimator, Sn estimator, MAD, τ 

estimator. 

 

1. Introduction 

 

Bivariate control charts are specifically designed for situations where two variables are observed 

simultaneously. It enables the detection of patterns or trends that signal a shift or alteration in the 

process. There are two separate phases, namely Phase I and Phase II when constructing the control 

chart [1]. Historical data is used in Phase I to determine control limits, estimate the unknown 

parameters of the in-control process, and evaluate the process' stability. Phase II involves applying the 

estimated parameters and control limits discovered in Phase I to the data gathered during the actual 

production process in order to analyse it and find any deviations or out-of-control signals. Phase II's 

goal is to keep track of and maintain the process' stability in accordance with the defined control limits. 

The most frequently used multivariate control chart for monitoring the variability of a 

multivariate industrial process is the Hotelling's T2 control chart. Let xi, i = 1, 2, …, n be a two-

dimensional vector of measurements made on a process at the time period i, then for the sample x = {x1, 

x2, . . ., xn}, the Hotelling’s T2 statistic is defined as  

 

                                          𝑇2(𝒙𝑖) = (𝒙𝑖 − 𝜽)𝑇𝜮−1(𝒙𝑖 − 𝜽).                                                            (1) 

  

It is assumed that, when the process is in statistical control, xi’s are independent bivariate normal 

random vectors with mean vector θ and covariance matrix.  If both θ and Σ are known, 𝑇𝑖
2 follows a 

Chi-square distribution with 2 degrees of freedom. When the population parameters θ and Σ are 

unknown, the T2 statistic is constructed using the classical estimators of mean vector (𝒙) and covariance 

matrix (S) as given below, 
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                                           𝑇2(𝒙𝑖) = (𝒙𝑖 − 𝒙)𝑇𝑺−1(𝒙𝑖 − 𝒙),                                                               (2) 

 

where 𝒙 = [
�̅�1

�̅�2
] and 𝑺 =  [

𝑆11 𝑆12

𝑆21 𝑆22
] , 𝑆12 = 𝐶𝑜𝑣(𝑋1,  𝑋2). When constructing control charts using phase I 

data, the classical estimators, which are unfortunately highly susceptible to the influence of outliers, 

can produce inaccurate findings (known as the masking problem). Researchers have suggested several 

methods in the literature to lessen the negative effects of outliers in response to this problem. The 

control charts can be made more robust and reliable in the presence of outliers by using robust 

estimators. Through the use of robust estimators, which are more resistant to the presence of outliers, 

the conventional estimators are swapped out in these alternative methods. 

This paper proposes a robust bivariate control chart that can effectively handle spurious 

outliers. The proposed control chart makes use of the covariance estimator introduced by 

Gnanadesikan and Kettenring [2], which is based on the identity  

 

                                        cov(𝑋, 𝑌) =
1

4
(𝜎(𝑋 + 𝑌)2 − 𝜎(𝑋 − 𝑌)2),                                                   (3) 

 

where σ is the standard deviation and X, Y is a pair of random variables. By replacing σ by a robust 

scale estimator, one can easily robustify the Gnanadesikan and Kettenring (GK) estimator. The robust 

GK estimator is defined as 

  

                                      covR(𝑋, 𝑌) =
1

4
(𝑠𝑅(𝑋 + 𝑌)2 − 𝑠𝑅(𝑋 − 𝑌)2),                                               (4) 

 

where 𝑠𝑅 is a robust scale estimator. This study has considered four robust scale estimators with an 

optimal breakdown point to robustify the GK estimators. These robust GK estimators were then used 

for the construction of bivariate control charts. The Lower control limits (LCL) of these control charts 

are set to zero and the Upper Control limits (UCL) were estimated by fitting the quantiles. The 

performance of these control charts is examined and compared with that of classical bivariate control 

chart through Monte Carlo simulation.  

 

2. Robust scale estimators 
 

For a variety of applications, from genuine scale problems to outlier identification, and as auxiliary 

factors for more complicated analysis, robust estimates of scale are crucial. The broad population of 

users of statistical methods seems to have a somewhat lower level of acceptance for robust estimation 

of scale. Previously, the interquartile range, which has a breakdown point of 25%, was the only robust 

scale estimator to be found in the majority of statistical software packages.  

 

i) Median Absolute Deviation (MAD) 

 

A preliminary or auxiliary estimate of scale is frequently required in robust estimation. A very robust 

scale estimator is the median absolute deviation about the median (MAD), given by 

 

                                                MAD = 𝑏 med𝑖{|𝑥𝑖 − med𝑗(𝑥𝑗)|},                                                           (4) 

 

where ‘med’ denotes median. The MAD has the best possible breakdown point (50%, twice as much as 

the interquartile range), and its influence function is bounded, with the sharpest possible bound among 

all scale estimators. The MAD was first promoted by Hampel [3], who attributed it to Gauss. The 

constant b in equation (4) is needed to make the estimator consistent for the parameter of interest. In 

the case of the usual parameter a at Gaussian distributions, we need to set b = 1.4826. In spite of many 

advantages, the MAD also has some drawbacks. Its efficiency at Gaussian distributions is very low; 
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whereas the location median's asymptotic efficiency is still 64%, the MAD is only 37% efficient. Also, it 

takes a symmetric view on dispersion.  

 

ii) τ Estimator 

 

Yohai and Zamar [4] introduced a new class of robust scale estimates called τ estimates which possesses 

optimal breakdown value. Let ρ be a real function satisfying the following properties: 
1. 𝜌(0) = 0. 

2. 𝜌(−𝑢) =  𝜌(𝑢). 
3. 0 ≤ 𝑢 ≤ 𝑣 implies that 𝜌(𝑢) ≤  𝜌(𝑣). 

4. ρ is continuous. 

5. Let a = Sup ρ(u); 0 < a < ∞ 

6. If ρ(u) < a and 0 ≤ 𝑢 < 𝑣, then 𝜌(𝑢) < 𝜌(𝑣). 

7.  

Let ρ1 an ρ2 bet two functions satisfying above assumptions. Then for a given sample u = (u1, …, un) the 

τ estimate for scale is defined as  

 

                                               𝜏𝑛(𝒖) = 𝑠2(𝒖)
1

𝑛
∑ 𝜌2 (

𝑢𝑖

𝑠(𝒖)
 )𝑛

𝑖=1 ,                                                          (5) 

 

where s be a M estimate of scale based on ρ1. This estimator possesses approximately 80% efficiency 

when c = 3. Moreover, τ estimate is asymptotically normal and has bounded influence function. 

Maronna and Zamar [5] used this estimate for introducing a multivariate outlier detection technique in 

which they have considered s = MAD and ρ2(x) = min (x2, c2). This study also used the considerations of 

Maronna and Zamar for s and ρ2. 

 

iii) Sn and Qn Estimator 

 

To address the lower efficiency drawback of MAD, Rousseeuw and Croux [6] introduced two robust 

scale estimators with optimal breakdown value of 50%, namely, Sn estimator and Qn estimator. Sn 

estimator is defined as  

 

𝑆𝑛 = 𝑐 med
𝑖

{med
𝑗

|𝑥𝑖 − 𝑥𝑗|}.                                                              (6) 

 

The factor c is for consistency, and its default value is 1.1926. Moreover, the asymptotic efficiency Sn is 

58.23% which is much higher than MAD. A drawback of MAD, and Sn, is that their influence functions 

have discontinuities. The Qn estimator is solution for this drawback. It is defined as  

 

𝑄𝑛 = 𝑑{|𝑥𝑖 − 𝑥𝑗|; 𝑖 < 𝑗}
(𝑘)

,                                                               (7) 

 

where d is a constant factor and 𝑘 = (
ℎ
2

) ≈
(

𝑛
2)

4
, where ℎ = [

𝑛

2
] + 1 is roughly half of the observations. 

The estimator Qn, shares the attractive properties of Sn simple and explicit formula, a definition that is 

equally suitable for asymmetric distributions, and a 50% breakdown point. In addition, we will see that 

its influence function is smooth, and that its efficiency at Gaussian distributions is very high (about 

82%). Rousseeuw and Croux [6] showed that, although Qn is more efficient, Sn is more preferable in 

most of the applications because of its low gross-error sensitivity.   

 

3. Proposed Bivariate Robust Control Charts 
 

Let {x1, . . ., xn} be a set of Phase I data follows bivariate normal distribution with mean vector θ and 

covariance matrix Σ. Let y ∉ {x1, . . ., xn}be a Phase II observation, then it is known that 
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𝑇2(𝒚) ~ [
2(𝑛2− 1)

𝑛(𝑛 − 2)
] 𝐹(2,𝑛−2)                                                                (8) 

 

where T2(y) is as defined in Equation (1) and 𝐹(𝑣1,𝑣2) is F distribution with (v1, v2) degrees of freedom [7]. 

Since this statistic is not robust to the presence of outliers, in the proposed robust control chart we use 

robust Hotelling’s T2 statistic, denoted by 𝑇𝑅
2. It is obtained by replacing the classical estimates used for 

the computation of Hotelling’s T2 statistic by their robust counterpart.  Suppose xmed and SGK represent 

the component wise median vector and robust GK covariance matrix, respectively. We define a robust 

Hotelling’s T2 for y based on these estimates by 

 

                                  𝑇𝑅
2 (𝒚) = (𝒚 − 𝒙𝒎𝒆𝒅)𝑇 𝑺𝐺𝐾

−1 (𝒚 − 𝒙𝒎𝒆𝒅),                                               (9)     

                                             

where 𝑺𝐺𝐾 = [
𝑠𝑅(𝑋1)2 𝑐𝑜𝑣𝑅(𝑋1, 𝑋2)

𝑐𝑜𝑣𝑅(𝑋1, 𝑋2) 𝑠𝑅(𝑋2)2 ]. By applying Slutsky theorem [8], the asymptotic distribution 

of 𝑇𝑅
2 can be obtained as Chi square distribution with 2 degrees of freedom. As 𝑛 → ∞ 

 

                  (𝒚 − 𝒙𝒎𝒆𝒅)𝑇𝑺𝐺𝐾
−1 (𝒚 − 𝒙𝒎𝒆𝒅)

𝐷
→ (𝒚 − 𝜽)𝑇𝜮−1(𝒚 − 𝜽) ~𝝌(2)

2 .                           (10) 

 

This asymptotic distribution, though, only holds true for large sample sizes. We employ Monte Carlo 

simulations to estimate quantiles for different sample sizes in order to determine the control limits for 

the suggested control charts. The sample size and quantiles of 𝑇𝑅
2 were then fitted with a smooth curve. 

For modest Phase I sample sizes, these fits can be utilised to determine the proper control limits of the 

proposed control charts. 

 

3.1. Estimation of Control Limits for the proposed control charts 
 

Upper control limits of the proposed control charts are obtained by modelling the quantiles of 𝑇𝑅
2, for a 

given Phase I sample size n, computed from N=10000 trials. Phase I samples are generated from a 

standard bivariate normal distribution N2(0, I) and 99%, 95%, 99.73% and 99.9% quantiles of 𝑇𝑅
2 are 

computed using Sn, Qn, MAD and τ estimates. In each trial, for each data set, we also generate a new 

random observation yi from N2(0, I) (treated as a Phase II observation) and calculate the corresponding 

𝑇𝑅
2 (𝒚𝑖) value using robust GK covariance estimates. By inverting the empirical distribution function of 

𝑇𝑅
2 (𝒚𝑖), computed for n = 10, 15, 20, . . . ,500, we obtain Monte Carlo estimates of the 99%, 95%, 99.73% 

and 99.9% quantiles.  

Scatter plots of the empirical quantiles of 𝑇𝑅
2 (𝒚𝑖) versus the sample size n suggest that we could 

model the quantiles using a family of regression curves of the form 𝑓(𝑛) = 𝑎 +
𝑏

𝑛𝑐. Scatter plots of the 

empirical 99% quantiles of 𝑇𝑅
2 (𝒚𝑖) computed using the four robust scale estimates are shown in figure 

1. Since the 𝑇𝑅
2 statistic asymptotically follow 𝜒(2)

2  distribution, following two parameter family of 

curves is used for both robust GK control charts: 

 

                                                      𝑓1−𝛼(𝑛) = 𝝌(2,1−𝛼)
2 +

𝑏1−𝛼

𝑛𝑐1−𝛼 ,                                                             (11) 

 

where 𝝌(2,1−𝛼)
2  is the 1 − α quantile of the χ2 distribution with 2 degrees of freedom and b1−α and c1−α are 

constants with overall false alarm probability α. Fitting this curve to the data will help us to estimate 

the desired upper control limits of the proposed control charts for any Phase I sample of size n. Note 

that, as n increases, f1−α(n) approaches 𝜒(2,1−𝛼)
2 . Table 1 gives the least-square estimates of the parameters 

b1−α and c1−α. Using Table 1 and Equation (11), we can compute the 99%, 95%, 99.73% and 99.9% quantiles 

of 𝑇𝑅
2 (𝒚𝑖) for Phase I sample size n. The regression curves given by Equation (9) fit well to all the cases 

in Table 1, yielding R2 values of at least 90.7%.  
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Figure 1: Simulated Quantiles of 𝑇𝐺𝐾
2  and the Fitted Curves for α = 0.01 

 

Table 1: The Least-Squares Estimates of the Regression Parameters b1−α and c1−α for Confidence Levels 1 − α = 

0.99, 0.95, 0.9973 and 0.999. 

α Parameters GK(Qn) GK(Sn) GK(MAD) GK(τ) 

0.01 

b1−α 13120.00 1281.00 5496.00 1145.00 

c1−α 2.451 1.598 1.758 1.632 

R2 0.983 0.963 0.985 0.954 

0.05 

b1−α 228.80 249.50 462.60 324.20 

c1−α 1.437 1.399 1.373 1.447 

R2 0.916 0.930 0.976 0.942 

0.0027 

b1−α 120600.00 11440000.00 721800.00 2610.00 

c1−α 2.945 4.66 3.22 1.656 

R2 0.987 0.990 0.990 0.907 

0.001 

b1−α 556600.00 26090.00 41240.00 3973.00 

c1−α 3.526 1.947 1.769 1.826 

R2 0.968 0.920 0.950 0.930 

0.1 

b1−α 31530.00 248.30 219.4 118.60 

c1−α 1.65 1.574 1.31 1.281 

R2 0.951 0.919 0.967 0.947 
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3.2. Computational algorithm for obtaining the proposed control chart 
 

A step-by-step approach for constructing proposed robust control chart is given as follows: 

 

Phase I 

1. Select the confidence level 1 – α and sample size n. 

2. Collect the Phase I data {x1, x2, ..., xn} at predetermined periodic intervals and compute robust 

estimates of location and scale parameters using this data. 

3. Use Table 1 to select the least square estimates of the parameters b1−α and c1−α for the desired α, then 

use equation (11) to determine the upper control limit. 

 

Phase II 

4. Compute 𝑇𝑅
2 for each of the new observation as per Equation (11) and plot it on a control chart with 

the control limits determined in Phase I. 

5. Analyse the chart and look for any out-of-control points or non-random patterns.  

 

4. Performance of the Proposed Control Charts 

 
We carried out numerous simulations to assess and compare the efficiency of the proposed control 

charts under normal and contaminated situations. The control chart's efficacy is assessed by analysing 

its ability to detect changes and the rate of false detections in the process behaviour using different 

estimators in Phase I. We measure the performance of the control chart by success rate (SR)- which is the 

proportion of statistic values that exceed the control limits across 1000 replications, which provides an 

estimate of the likelihood of detecting changes and false alarm rate (FAR) – which is the false detections 

in the process behaviour based on the Phase II data. Phase I data are generated using the following 

contaminated model: 

(1 − ε) N2(θ0, Σ0) + ε N2(θ 1, Σ1), 

 

where ε is the proportion of outliers, θ0 and Σ0 are the in-control parameters and θ1 and Σ1 are the out-

of-control parameters of location and scatter. Without loss of generality, θ0 is set to be a zero vector. We 

have generated the phase I data sets for n = 25, 50, 100 and 1000, ε = 0, 0.1 and 0.2 and α = 0.001, 0.0027, 

0.01, 0.05 and 0.1.  The probability of detecting a change depends on the values of θ1, Σ0 and Σ1 and 

hence we consider three different contaminated models in which the values of θ 1, Σ0 and Σ1 vary. 

 

Case A: Independent Variables 
 

In this case, the two variables (Quality Characteristics) x1 and x2 are assumed to be independent. The 

contaminated normal model considered is as follows: 

 

(1 − ε) N2(0, I2) + ε N2(θ1, I2), 

 

where I2 is the identity matrix of size 2. In this case, we compare the behaviour of different robust 

alternatives when there are different-sized changes in the average of all the variables if the variables 

are independent. 

 

Case B: Correlated Variables 
 

In this case, two variables, x1 and x2 are assumed to be correlated. The contaminated normal model 

considered is as follows: 

(1 − ε) N2(0, Σ0) + ε N2(θ1, Σ0), 

301



Sajesh T A 
ROBUST BIVARIATE CONTROL CHART 

RT&A, No 4 (76) 
Volume 18, December 2023 

 

where Σ0 = [
1 0.9

0.9 1
]. We have used this value of Σ0 to analyse whether the correlation level affects the 

detection probability of each alternative. 

 

Table 2: SR (FAR) obtained for Case A with different values of θ1 and ε 

n θ1 ε GK(Qn) GK(Sn) GK(MAD) GK(τ) Classical 

50 (0,0) 0 100 (1.9) 100 (1.0) 99.8 (0.8) 100 (1.3) 100 (1.3) 

10 100 (1.4) 100 (1.0) 99.9 (0.4) 100 (1.1) 100 (1.1) 

20 100 (1.3) 100 (0.9) 99.8 (0.6) 100 (0.6) 100 (0.6) 

(5,5) 0 100 (2.0) 100 (1.6) 99.7 (1.3) 100 (1.2) 100 (1.5) 

10 98.8 (0.3) 98.8 (0.3) 97.7 (0.4) 98.6 (0.1) 22.1 (0.2) 

20 86.2 (0.0) 80 (0.0) 76.8 (0.0) 74.3 (0.1) 2 (0.2) 

(10,10) 0 100 (1.1) 99.9 (0.3) 99.7 (0.5) 100 (1.7) 100 (0.8) 

10 99.4 (0.3) 99.1 (0.1) 97.9 (0.3) 99.1 (0.4) 0.6 (0.4) 

20 88.3 (0.0) 80.8 (0.0) 79.8 (0.1) 75.8 (0.2) 0.4 (0.3) 

100 (0,0) 0 100 (1.2) 100 (1.0) 100 (1.0) 100 (1.2) 100 (1.2) 

10 100 (1.5) 100 (1.4) 100 (1.3) 100 (1.3) 100 (1.3) 

20 100 (1.4) 100 (1.3) 100 (1.2) 100 (0.7) 100 (0.7) 

(5,5) 0 100 (0.6) 100 (0.7) 100 (0.9) 100 (1.5) 100 (0.6) 

10 99.7 (0.2) 99.6 (0.1) 99.8 (0.3) 99.8 (0.4) 30.2 (0.4) 

20 92.5 (0.0) 90.4 (0.0) 93.5 (0.0) 83.9 (0.0) 2.5 (0.1) 

(10,10) 0 100 (1.5) 100 (1.2) 99.9 (0.7) 100 (0.7) 100 (1.1) 

10 99.8 (0.2) 99.8 (0.3) 99.8 (0.5) 99.6 (0.4) 0.1 (0.2) 

20 91.1 (0.1) 89.4 (0.1) 92.5 (0.1) 85.8 (0.2) 0.4 (0.4) 

500 (0,0) 0 100 (1.9) 100 (1.9) 100 (1.8) 100 (1.8) 100 (1.8) 

10 100 (1.5) 100 (1.4) 100 (1.4) 100 (1.4) 100 (1.4) 

20 100 (0.8) 100 (0.9) 100 (0.9) 100 (0.8) 100 (0.8) 

(5,5) 0 100 (1.4) 100 (1.2) 100 (1.4) 100 (1.2) 100 (1.2) 

10 99.8 (0.0) 99.8 (0.0) 99.9 (0.0) 99.8 (0.1) 34.5 (0.0) 

20 94.8 (0.0) 95.5 (0.0) 98.1 (0.0) 89.3 (0.0) 2.4 (0.3) 

(10,10) 0 100 (0.6) 100 (0.7) 100 (0.8) 100 (1.8) 100 (0.6) 

10 99.8 (0.1) 99.9 (0.1) 99.9 (0.2) 99.9 (0.2) 0.7 (0.1) 

20 94.6 (0.0) 95.1 (0.0) 97.8 (0.1) 88.1 (0.0) 0.4 (0.2) 

1000 (0,0) 0 100 (1.0) 100 (0.9) 100 (0.8) 100 (0.9) 100 (0.9) 

10 100 (0.8) 100 (0.8) 100 (0.9) 100 (0.8) 100 (0.8) 

20 100 (0.6) 100 (0.5) 100 (0.5) 100 (0.7) 100 (0.7) 

(5,5) 0 100 (0.8) 100 (0.8) 100 (1.0) 100 (0.7) 100 (0.6) 

10 99.9 (0.2) 99.9 (0.2) 100 (0.3) 100 (0.0) 34.9 (0.3) 

20 94.9 (0.0) 95.8 (0.1) 98.3 (0.1) 89.5 (0.0) 2 (0.4) 

(10,10) 0 100 (1.8) 100 (1.9) 100 (1.7) 100 (0.8) 100 (1.8) 

10 99.8 (0.1) 99.8 (0.1) 100 (0.2) 99.8 (0.1) 0.8 (0.2) 

20 93.8 (0.0) 94.7 (0.0) 98.3 (0.1) 89 (0.0) 0.3 (0.2) 

 

Case C: Correlated Variables and Regression Outliers 
 

Here, the two variables x1 and x2 are assumed to be correlated and regression outliers are introduced. 

The contaminated normal model considered is as follows:    

 

(1 − ε) N2(0, Σ0) + ε N2(θ1, Σ1), 
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where Σ0 = [
1 0.9

0.9 1
] and Σ1 = [

0.1 0
0 0.1

]. In this case, we analyse and compare the proposed robust 

methods in terms of the so-called good leverage and regression outliers. 

In all the three cases, we consider θ1 as a vector of size 2 where the elements are all 0 (when 

there is no change), 5 or 10 (which is a good leverage point).  This process is repeated 1000 times, and 

in each trial, a random observation, z1k from N2(0, ΣU) and another observation, z2k from N2(θC, ΣC) are 

generated, for k = 1, 2, …, 1000. Here, ΣU is the scale estimator used for generating uncontaminated 

observations in Phase I data, and θC and ΣC are the location and scale estimates used for generating 

contaminated observations in Phase I model. The success rates are computed as the percentages of z2k’s 

that are successfully detected, and the false alarm rates are computed as the percentages of z1k’s that are 

falsely detected. The results obtained for α = 0.01 is presented here.  

 

Table 3: SR (FAR) obtained for Case B with different values of θ1 and ε 

n θ1 ε GK(Qn) GK(Sn) GK(MAD) GK(τ) Classical 

50 (0,0) 0 95.6 (4.1) 90.6 (4.6) 84.6 (2.7) 97 (2.8) 97.4 (0.8) 

10 95.6 (4.3) 91.4 (3.2) 84.6 (2.7) 96.3 (2.7) 96.3 (0.9) 

20 95.5 (3.4) 90.9 (4.8) 82.4 (1.7) 95.7 (2.6) 96.4 (1.4) 

(5,5) 0 94.7 (4.5) 91.2 (3.8) 83.6 (3.0) 96.9 (1.4) 97 (0.9) 

10 84.7 (3.0) 77.1 (2.9) 67.2 (1.7) 79.7 (3.1) 17.9 (0.4) 

20 57 (2.3) 48.2 (1.9) 40.5 (1.7) 40.2 (1.1) 2.3 (0.2) 

(10,10) 0 95.3 (3.4) 91.2 (3.5) 82.4 (2.8) 97.1 (2.5) 98.3 (1.2) 

10 84.4 (3.9) 76.2 (1.9) 67.4 (2.6) 80.3 (2.6) 0.7 (0.2) 

20 57.1 (2.5) 46.3 (1.3) 43.8 (0.8) 41.1 (2.1) 0.8 (0.4) 

100 (0,0) 0 98.6 (3.3) 96.3 (4.7) 94.2 (3.9) 98.6 (2.4) 98.4 (1.3) 

10 97.9 (2.0) 95 (3.7) 92.2 (3.4) 97.6 (2.2) 97.4 (1.1) 

20 98.5 (1.8) 95.8 (3.4) 92.4 (3.5) 97.9 (0.9) 97.8 (0.4) 

(5,5) 0 98.5 (2.7) 96 (4.8) 93.2 (3.6) 98.1 (0.9) 98.1 (1.0) 

10 90.4 (1.5) 86.9 (2.6) 86.7 (3.1) 85.8 (2.0) 23.5 (0.9) 

20 63.3 (0.9) 56.8 (2.0) 61.4 (2.7) 49.6 (1.9) 2.8 (0.2) 

(10,10) 0 98.8 (2.1) 96 (3.7) 93 (3.6) 98.5 (1.7) 98.7 (1.1) 

10 91.2 (0.7) 87.4 (2.2) 87.6 (2.6) 88.2 (2.1) 0.8 (0.3) 

20 62.4 (0.7) 57.5 (2.5) 60.1 (2.0) 51.2 (1.6) 0.7 (0.6) 

500 (0,0) 0 99.2 (1.0) 99 (2.2) 98.8 (2.8) 99.3 (1.2) 99.2 (1.0) 

10 99.1 (1.1) 98.9 (2.7) 98.1 (3.5) 99 (1.1) 99 (1.1) 

20 98.6 (1.3) 98.6 (2.6) 97.8 (3.5) 98.7 (1.5) 98.6 (1.5) 

(5,5) 0 98.6 (1.1) 98.7 (2.9) 98.3 (3.9) 99 (1.2) 98.4 (1.1) 

10 90.8 (0.7) 91.9 (2.6) 94 (3.2) 90 (0.7) 25.6 (0.6) 

20 62.4 (0.0) 63.8 (0.8) 74.8 (1.6) 53.5 (0.8) 3.1 (0.3) 

(10,10) 0 98.3 (1.7) 98.2 (2.2) 97.6 (3.8) 98.5 (1.4) 98.4 (1.7) 

10 90.9 (0.1) 92.4 (1.5) 93.1 (2.5) 91.1 (0.4) 0.7 (0.2) 

20 64.6 (0.0) 66.6 (0.9) 77.1 (1.4) 55 (0.3) 0.6 (0.4) 

1000 (0,0) 0 99 (0.2) 98.9 (0.5) 98.7 (1.3) 99 (0.3) 98.9 (0.2) 

10 98.1 (1.3) 98.1 (1.6) 97.8 (1.7) 98 (1.1) 97.9 (1.1) 

20 99.1 (0.6) 98.9 (1.6) 98.8 (2.1) 99.1 (0.8) 98.9 (0.7) 

(5,5) 0 98.8 (1.3) 98.7 (1.5) 98.7 (2.6) 98.7 (1.2) 98.8 (1.1) 

10 91.3 (0.0) 92.4 (0.5) 93.9 (2.0) 91.8 (0.5) 25.8 (0.2) 

20 64.7 (0.0) 66.7 (0.1) 76.4 (1.1) 53.4 (0.3) 3.2 (0.6) 

(10,10) 0 98.3 (1.6) 98.1 (2.1) 98 (2.7) 98.7 (1.2) 98.3 (1.6) 

10 90.1 (0.1) 91.8 (0.4) 93.8 (1.4) 90.8 (0.4) 0.5 (0.2) 

20 64.8 (0.0) 67.2 (0.0) 77.3 (1.1) 53.1 (0.3) 0.7 (0.1) 

303



Sajesh T A 
ROBUST BIVARIATE CONTROL CHART 

RT&A, No 4 (76) 
Volume 18, December 2023 

 

Table 2 presents the results obtained from simulations conducted for Case A samples. The 

findings clearly indicate that when the phase I data contains outliers, the control charts based on robust 

methods exhibit a high success rate with minimal FAR compared to the classical control chart. 

Furthermore, the success rates of the proposed control charts improve with increasing sample size. 

Conversely, when the phase I data is uncontaminated, the robust control charts demonstrate similar 

performance to their classical counterpart.  

 

Table 4: SR (FAR) obtained for Case C with different values of θ1 and ε 

n θ1 ε GK(Qn) GK(Sn) GK(MAD) GK(τ) Classical 

50 (0,0) 0 97.9 (4.7) 96.2 (4.9) 91.6 (2.3) 99.6 (2.4) 100 (1.2) 

10 98.8 (3.8) 97.1 (3.1) 95.3 (2.4) 99.3 (2.7) 100 (1.3) 

20 99 (4.1) 98.8 (4.1) 96.5 (3.9) 99.1 (4.3) 100 (1.8) 

(5,5) 0 98.3 (3.7) 96.8 (3.3) 90 (2.7) 99.2 (1.9) 100 (0.6) 

10 95.1 (2.1) 85.6 (2.8) 75.9 (2.1) 91.5 (3.7) 8.4 (0.2) 

20 78.6 (0.2) 45.9 (1.3) 38 (1.1) 36.7 (2.0) 0.9 (0.3) 

(10,10) 0 98.8 (5.2) 94.9 (4.0) 90.8 (2.9) 99.1 (2.6) 100 (1.0) 

10 96.3 (3.2) 87.8 (2.5) 77.4 (1.7) 92.7 (2.9) 0.8 (0.6) 

20 76.6 (1.7) 47.6 (1.4) 37.1 (1.0) 38 (1.5) 0.6 (0.4) 

100 (0,0) 0 100 (2.5) 98.2 (3.3) 96 (3.7) 99.9 (1.6) 100 (1.0) 

10 100 (2.1) 99.2 (2.6) 97.7 (3.5) 99.9 (1.7) 100 (0.6) 

20 99.9 (2.8) 99.7 (3.1) 99.5 (5.2) 99.8 (3.3) 100 (1.9) 

(5,5) 0 99.8 (2.6) 98.4 (2.9) 95.7 (2.5) 100 (1.6) 100 (0.5) 

10 99.7 (0.6) 94.6 (3.5) 93.3 (2.0) 98.4 (2.7) 10.6 (0.1) 

20 91.2 (0.1) 62.4 (2.3) 68.4 (1.6) 47.4 (1.3) 1.2 (0.4) 

(10,10) 0 99.9 (3.5) 98 (4.5) 96.4 (4.3) 100 (1.9) 100 (1.5) 

10 99.9 (0.7) 96.1 (3.4) 94 (3.2) 98 (2.7) 0.6 (0.1) 

20 92.9 (0.2) 65.5 (1.8) 68.9 (1.5) 50.6 (1.5) 0.2 (0.1) 

500 (0,0) 0 100 (1.0) 99.9 (1.9) 99.4 (3.4) 100 (1.0) 100 (0.8) 

10 100 (1.5) 100 (1.8) 99.8 (3.5) 100 (1.6) 100 (1.3) 

20 100 (2.1) 100 (2.4) 100 (3.8) 100 (2.1) 100 (1.7) 

(5,5) 0 100 (1.3) 100 (2.5) 99.9 (3.3) 100 (1.7) 100 (1.4) 

10 100 (0.4) 99.6 (1.5) 98.7 (2.3) 100 (0.5) 11 (0.6) 

20 98.9 (0.0) 85.3 (1.0) 95.7 (1.0) 56.4 (1.4) 1.8 (0.0) 

(10,10) 0 100 (1.3) 99.9 (2.5) 99.6 (3.3) 100 (1.5) 100 (1.4) 

10 100 (0.2) 99.8 (0.8) 98.9 (2.6) 100 (0.4) 0.9 (0.4) 

20 99.2 (0.0) 87.9 (1.2) 95.4 (1.9) 58.8 (1.0) 0.4 (0.2) 

1000 (0,0) 0 100 (1.1) 100 (1.5) 99.9 (1.9) 100 (1.3) 100 (1.3) 

10 100 (1.7) 100 (2.0) 100 (3.3) 100 (2.0) 100 (1.7) 

20 100 (1.9) 100 (2.5) 100 (3.5) 100 (1.7) 100 (1.7) 

(5,5) 0 100 (0.9) 100 (1.2) 99.9 (1.8) 100 (0.8) 100 (0.8) 

10 100 (0.3) 99.9 (0.8) 100 (1.2) 100 (0.5) 10 (0.3) 

20 99.7 (0.0) 89.9 (0.3) 98.9 (0.9) 57.1 (0.4) 2 (0.3) 

(10,10) 0 100 (1.0) 100 (1.0) 100 (2.2) 100 (1.3) 100 (1.0) 

10 100 (0.1) 100 (0.8) 99.8 (1.6) 100 (0.0) 0.6 (0.2) 

20 99.9 (0.0) 88.2 (0.1) 98.5 (1.1) 59.4 (0.0) 0.2 (0.1) 
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Results obtained for Case B samples are presented in table 3. It is clear that the proposed control 

charts perform well with respect to SR and FAR in almost all cases. Even though, their performance is 

not very satisfactory in cases of small samples with high contamination, their SR and FAR are getting 

better with increasing sample size.  

In all the three cases the proposed robust GK based control charts are performing better than 

the classical control chart in contaminated situations and they show similar performance as that of 

classical chart in uncontaminated cases. It is interesting to see that, among the robust control charts, the 

one based on GK(Qn) shows better success rate than other robust control charts when n < 500 while the 

control chart based on GK(MAD) outperform others for large samples when the data from Case A and 

Case B. But, when the data come from Case C, in all the cases GK(Qn) based control chart shows superior 

performance. 

 

4.1. Time Complexity 
 

The proposed methods' significantly faster computation times are a key benefit. To compare the 

computation times of these approaches for various sample sizes, a simulation study was done. The 

simulation study consists of 10,000 trials, and the average running time is presented in table 5. Among 

the robust methods, the control chart based on GK(Sn) is multiple times faster than the other three 

methods when n ≤ 500 while GK(MAD)-based control chart performs faster than the other compared 

methods when n > 500. 

 

Table 5: Running time (in seconds) 

n GK(Qn) GK(Sn) GK(MAD) GK(τ) 

50 0.000128 0.000080 0.000207 0.000361 

100 0.000222 0.000093 0.000231 0.000361 

500 0.001065 0.000290 0.000304 0.000516 

1000 0.002231 0.000526 0.000397 0.000992 

 

4.2. Real life data 
 

A data set given by Quesenberry [9] has been used to evaluate the performance of the proposed 

methods in real life data. The original data consists of 11 quality variables measured on 30 products 

from a production process. For our comparison purposes, we consider the third and fourth variables 

as our bivariate data. Bivariate control charts using the proposed robust methods and the classical 

methods are developed for this data and presented in figure 3. From charts it is clear that the data is 

outlier-free, and none of the methods, including classical method, commit any false detection. In order 

to evaluate performance in a contaminated situation, we artificially created two outlying observations. 

Observations 7 and 16 are changed from (21.5, 5.08) and (21.5, 15.32), to (22.75, 5.08) and (22.75, 15.32) 

respectively, by adding a very small shift of 1.25 in the first variable. Control charts of the contaminated 

data set are given in figure 3, and it is clear that except for the classical control chart, all the proposed 

control charts detected these outliers.  
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Figure 2: Control charts for uncontaminated Quesenberry data 
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Figure 3: Control charts for contaminated Quesenberry data 

 

5. Conclusions 

 

When quality characteristics are interdependent, monitoring them simultaneously is crucial. Using 

univariate techniques to monitor or analyse these data is frequently ineffective. The Hotelling's T2 

control chart, which is created using the classical estimates of location and scatter, is the most well-

known multivariate process monitoring and control method. Unfortunately, the existence of outliers 
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has a significant impact on the classical estimates, which results in incorrect T2 statistics computation. 

In light of this, using Hotelling's T2 control chart based on classical estimates will be quite deceptive. 

We address this problem for the bivariate case in this paper and suggest four robust control charts to 

handle outliers. The proposed control charts make use of the covariance estimator introduced by 

Gnanadesikan and Kettenring [2]. Four highly robust estimators - the Qn estimator, Sn estimator, MAD 

estimator, and τ estimator - were used to robustify the GK estimator. These estimators have a bounded 

influence function and an ideal break down value. 

Four different robust control charts for bivariate quality characteristics were introduced using 

GK(Qn), GK(Sn), GK(MAD) and GK(τ) estimators. The upper control limits of these robust control charts 

are obtained by simulating the empirical quantiles of robust T2 statistics, while the lower control limits 

are set to zero. Performance of the proposed methods is evaluated through Monte Carlo simulation. 

Three cases of contaminated Phase I datasets were considered for various amounts of contaminations 

and in all the cases the proposed methods outperform the classical chart. The proposed methods were 

also applied to real-life datasets, and even though the data contained outliers, they were still able to 

identify the out-of-control observation. Another advantage of the proposed methods is their fast 

computation which will reduce computational complexity. 
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Abstract 

The aim of the study is to develop predictive and analytical solutions for technogenic threats for 

urban areas, the mathematical basis of which is Bayesian classifiers. The result of the work is a 

formalized description of models for predicting the consequences of a heat supply shutdown; 

consequences of a power outage; consequences of oil and oil products spills; the consequences of the 

discharge of liquid technological waste into the hydrosphere; the consequences of the release of 

hazardous chemicals into the environment. 

 

Keywords: predictive and analytical solutions; Bayes method; man-made 

emergencies; shutdown of heat supply; power outage; spill of oil and oil 

products; discharge of liquid technological waste into the hydrosphere; release of 

hazardous chemicals into the environment. 

 

 

I. Introduction 
 

The subject of the work is technogenic threats to urban areas with the aim of their formalized 

description using Bayesian classifiers. The main part of the work contains five sections: a model for 

predicting the consequences of a heat supply shutdown; a model for predicting the consequences 

of a power outage; a model for predicting the consequences of an oil spill and oil products; a 

model for predicting the consequences of the discharge of liquid technological waste into the 

hydrosphere; model for predicting the consequences of the release of hazardous chemicals into the 

environment. 

 

II. Methods 
 

The main input data for the formation of the basic training set of the model for predicting the 

consequences of a heat supply shutdown are the following data: characteristics of heat supply 

systems and consumers; failure characteristics of heat supply systems; characteristics of reduced 

(emergency) heat supply to consumers; parameters of the meteorological situation [1]. 

The main calculated dependencies for determining the reliability indicators of heat supply to 

a consumer connected to the heat network of the heat supply system are presented in [2]. 

In the short-term forecasting model, probabilistic assessment using a Bayesian classifier is 

subject to hypotheses that estimate the deviation of the predicted time until the restoration of heat 
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supply as a result of the failure of the heat network section from its calculated value. 

In the medium-term forecasting model, the hypotheses given in Table 1 are subject to 

probabilistic assessment using a Bayesian classifier. 

 
Table 1: List of hypotheses of the medium-range forecasting model 

Hypot

hesis 

number 

Content of the hypothesis 

1. During the heating period, there were (will be recorded) cases of a decrease in 

the air temperature in consumer buildings below the limit value 

2. During the heating period, cases of interruptions in the supply of the estimated 

amount of heat and a decrease in air temperature in the buildings of consumers of 

the first category below the standard values were recorded (will be recorded) 

3. During the heating period, cases of exceeding the time for eliminating accidents 

in the TS system by more than 54 hours were recorded (will be recorded) for 

consumers of the second category 

Based on the results of the probabilistic assessment, the level of threat is determined for each 

consumer (by the worst value). 

Statistical model for predicting the consequences of a power outage 

The initial data of the model for predicting the consequences of a power outage are: 

characteristics of electrical energy consumers located on the territory of a municipal district; 

characterization of massive damage to power grid facilities [3]. 

In case of accidents on power grids, it is important to timely identify consumers, the 

consequences of stopping the transmission of electrical energy to which, due to damage to the 

power grid facilities of grid organizations or equipment of power generation facilities, cause the 

greatest damage to the life of the population. 

To this end, for each de-energized consumer of electrical energy, an index of the priority of 

restoration of power supply is determined, which takes into account the following factors: 

classifying the consumer of electrical energy as consumers whose limitation of the mode of 

consumption of electrical energy may lead to economic, environmental or social consequences; the 

degree of participation of the consumer of electric energy in ensuring the life of the population; the 

number of people in the buildings of the consumer of electrical energy; the estimated time at which 

the consumer can function when the main power supply is turned off if he has an independent 

power source - an autonomous backup power source; the time of the year and the day of the week 

in which the consumers of electrical energy were de-energized [4]. 

The power supply restoration priority index of the j-th transformer substation is determined 

according to Table 2. 

 
Table 2: Criteria for determining the index of priority of restoration of electricity supply to consumers 

Inde

x value 

Power 

restoration priority 
Index criteria 

1 Максимальны

й 

𝐹𝑗 ≤ 50, in the absence of de-energized consumers with a 

relative importance coefficient equal to 1 

2 Average 50,01 < 𝐹𝑗 ≤ 80, in the absence of de-energized consumers 

with a coefficient of relative importance equal to 1; 

𝐹𝑗 ≤ 50, in the presence of de-energized consumers with a 

coefficient of relative importance equal to 1 

3 Minimum 80,01 < 𝐹𝑗 ≤ 100, in the absence of de-energized 

consumers with a coefficient of relative importance equal to 1; 

50,01 < 𝐹𝑗 ≤ 100, in the presence of de-energized 

consumers with a coefficient of relative importance equal to 1 
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Statistical Model for Predicting the Consequences of an Oil and Oil Product Spill 

In the general case, the process of developing a statistical model for predicting the 

consequences of an oil and oil spill includes: collecting initial information and forming a basic 

training set; selection of a Bayesian classifier, preparation of methods for analyzing and 

interpreting the results of statistical processing. 

The main initial data describing the characteristics of an oil and oil product spill (hereinafter 

referred to as ROP) are: input data characterizing the main parameters of the ROP; input data 

characterizing the storage tanks for oil and oil products (hereinafter referred to as NN); input data 

characterizing the meteorological situation; input data characterizing the properties of NN; input 

data characterizing the site of a possible RUI [5]. 

The main predictive parameters of the RNN are: the predicted area of the RNN in time 

corresponding to the forecast step; the predicted mass of the spilled HH after a time corresponding 

to the step of the forecast; forecasting water pollution, fire, explosion. 

The output data of the model for medium-term forecasting are the results of a probabilistic 

assessment of the possibility of RNR from the storage tanks of HH during the forecasting period 

(10 days). 

The output data of the model for short-term forecasting are [6]: 

a) data implemented using the Bayesian classifier: the deviation of the actual value of the 

mass of the spilled HH onto the site as a result of RNN from its calculated value during the day 

every 3 hours; deviation of the actual value of the area of the contaminated territory as a result of 

RNR from its calculated value during the day every 3 hours; probabilistic assessment of the 

emergence of man-made threats as a result of RNN; probabilistic assessment of pollution of a 

water body as a result of ROP; 

b) initial data used at each step of forecasting. 

Statistical model for predicting the consequences of the discharge of liquid technological 

waste into the hydrosphere 

The main input data for the formation of the basic training set of the model for predicting the 

consequences of the discharge of liquid technological waste into the hydrosphere are the following 

groups of parameters: parameters of systems (posts) for monitoring discharges of liquid 

technological waste (hereinafter referred to as LTW) located in close proximity to the sources of 

discharges of liquid technological waste from industrial facilities; parameters of systems (posts) for 

monitoring discharges of liquid waste; characteristics of sources of liquid waste disposal; 

characteristics of sections of a water body (hereinafter - VO); characteristics of the hydrological 

situation [7]. 

In this model, hypotheses are subject to probabilistic assessment using a Bayesian classifier: 

for predicting the concentrations of substances that make up the LTO; to predict the decline in 

chemical oxygen demand (hereinafter - COD) and biochemical oxygen demand (hereinafter - BOD) 

[8]. 

 To predict the decline in COD and BOD, the hypotheses indicated in Table 3 are applied. 

 

Table 3: List of hypotheses of the model for predicting the decline in COD and BOD 

Numb

er 

hypot

heses 

Content of the hypothesis 

1. At the observed values of the concentration of the substance that is part of the 

LTO, as a result of its discharge into the WW, the COD indicator dropped (drops) 

below 6.0 mg/dm3 

2. At the observed values of the concentration of the substance that is part of the 

LTO, as a result of its discharge into the WA, the BOD indicator dropped (drops) 

below 2.1 mg /dm3 

Note - The content of each hypothesis in the past tense is used at the training stage of the 
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SAM-SO, and the content of the hypothesis in the future tense is used when predicting the 

corresponding events on new values of the observed parameters. 

The output data of the model are: a probabilistic assessment of the predicted concentrations of 

various types of LTL in a given period of time at systems (posts) for monitoring discharges during 

the spread of the LTL discharge; probabilistic assessment of the decrease in COD and BOD 

indicators as a result of the discharge of liquid waste; assessment of the level of water pollution 

based on the overall water quality index SCWQI. 

Statistical model for predicting the consequences of the release of hazardous chemicals into 

the environment 

The main input data for the formation of the basic training set of the model for predicting the 

consequences of the release of hazardous chemicals into the environment are the following groups 

of parameters: parameters of systems (posts) for monitoring emissions of hazardous substances 

located along the perimeter of industrial facilities that have sources of hazardous chemical 

emissions; parameters of systems (posts) for monitoring emissions of OHV; characteristics of the 

meteorological situation; characteristics of sources and parameters of OHV emissions [1]. 

In this model, the following parameters are subject to probabilistic assessment using a 

Bayesian classifier: the release rate and concentration of OHV at the location of the system (post) 

for monitoring OHV emissions [9]. 

The output data of the model are: probabilistic assessment of the predicted concentrations of 

various types of OHV in a given period of time at systems (posts) for monitoring emissions during 

the propagation of the OHV release; assessment of air pollution levels based on the SCAQI general 

air quality index. 

 

III. Results 

 
 

Thus, this article discusses predictive and analytical solutions for technogenic threats for 

urbanized areas, the mathematical basis of which is Bayesian classifiers. The result of the work is a 

formalized description of statistical models for predicting the consequences of a heat supply 

shutdown; consequences of a power outage; consequences of oil and oil products spills; the 

consequences of the discharge of liquid technological waste into the hydrosphere; the 

consequences of the release of hazardous chemicals into the environment. 

 

IV. Discussion 
The discussion of the verbal and mathematical foundations of predictive modeling of 

technogenic emergencies is quite active in the scientific literature [10 - 12]. 

The scientific novelty of the developed models lies in a single scientific approach to their 

creation, namely, the use of a statistical processing method based on Bayes' theorem. 
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Abstract 

The current research attempts the length biased version of new two-parameter Sujatha distribution, 

which is referred as ChandBhas-P Distribution (CBPD). Its different structural properties are 

discussed and the model parameters of this novel distribution are predicted by using the Maximum 

Likelihood Estimation. The distribution was examined with two real lifetime sets of data. The first 

set of data is birth weight of   new born babies, randomly selected from a hospital at Thrissur, kerala 

and the second set is the weight of children of age range between three months to four years- 

collected from a few babysitting centres and play schools across Thrissur, and both are employed in 

order to discuss the goodness of fit.  

Keywords: estimation, Survival analysis, two-parameter Sujatha distribution, 

Length biased distribution, data. 

1. Introduction

Statistical probability distributions are often the foundation of data analysis in the real world. 

However, data from other domains, including environmental, biomedical, financial, and other 

areas, may not match the conventional distributions. Thus, it becomes necessary to create new 

distributions that will effectively capture extreme skewness and kurtosis while improving the 

goodness-of-fit of empirical distributions. 

The most common classical distributions often fail to fit and forecast data in a variety of 

applied fields, such as engineering, the biological and environmental sciences, the medical and life 

sciences, finance, and economics. As a result, many generalized families are seen to be an 

improvement for developing and expanding the typical classical distributions. The recently created 

families provide more application versatility and have been thoroughly investigated in many 

fields. Because of their versatility, these extended families have been used to represent data in 

many applied fields. The statistical distribution theory often involves adding a new parameter to a 
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distribution family function that already exists. A class of distribution functions may often be 

made more flexible by adding parameters, which could be extremely helpful for data analysis. 

The introduction of an extra parameter into the paradigm, which generates flexibility in 

nature, allows for the weighted distributions to play a vital part in distribution theory since it 

offers a new comprehension of the classical distributions that are already in use. In particular, the 

weighted distributions have been employed to help in the acceptable model’s selection for 

observed data when samples are taken without a suitable frame. The weighted distributions are 

used to describe heterogeneity, extraneous variance, and clustered sampling in the data set. The 

weighted distribution arises when data from a sample are noted with uneven probabilities, and it 

offers a solution for issues when the observations fall into non-replicated, non-experimental, as 

well as non-random categories. The weighted distributions offer a special method for addressing 

issues with model formulation and data interpretation. The probability of occurrences as seen and 

transcribed is modified by using the weighted distributions. The weighted distributions are 

reduced to length-biased distributions when the function of weight considers just the unit’s length 

of interest. 

The notion of weighted distributions was created to record the observation in accordance 

with certain weight functions. Fisher [8] executed the weighted distribution to analyze how the 

approach of ascertainment might affect the type of recorded observation’s distribution.  Rao [13] 

later developed it into a unified theory w.r.t modeling statistical data when it was discovered that 

the common practice of utilizing standard distributions was incorrect. Zelen [18] and Cox [4] first 

proposed the idea of length-biased sampling. In the system of renewal concept, Cox [5] first 

presented the statistical explanation of length-biased distribution. Length-biased sampling 

circumstances could arise in survival analysis, reliability theory, clinical trials, as well as 

population research when an appropriate sample frame is missing. 

A significant contribution was conducted by various investigators to create certain 

important length-biased probability distributions by handling its different lifetime data sets from 

heterogeneous fields of application. Dar et al. [6] presented Poisson size-biased “Lindley 

distribution” and its uses. Ganaie and Rajagopalan [9] detailed a “length-biased weighted quasi-

gamma distribution” with characterizations and uses. Beghriche and Zeghdoudi [3] explained a 

size-biased gamma Lindley distribution. Ekhosuehil et al. [7] proposed the Weibull length-biased 

exponential distribution with statistical properties and uses. Alhyasat et al. [1] expressed power 

size biased 2-parameter Akash distribution. Sen et al. [15] discussed weighted X-gamma 

distribution with application and properties. Rasool and Ahmad [12] introduced power “length-

biased weighted Lomax distribution” with uses. Mobarak et al. [10] studied the size-biased 

weighted transmuted Weibull distribution. Sanat [14] proposed the beta-length biased Pareto 

distribution along with properties. Hussein and Al-Kadim [2] presented Rayleigh distribution and 

length-biased weighted exponential with the application. Recently, Khan and Mustafa [11] 

implemented the length-biased powered inverse “Rayleigh distribution” with uses, which 

demonstrates more flexibility as compared to conventional distribution. 

The new two-parameter Sujatha distribution is a recently suggested two-parametric 

lifespan model by Tesfay and Shanker [16], of which the one-parameter Akash distribution and 

Sujatha distribution are special cases of the same. Tesfay and Shanker [17] also proposed two 

parameters of Sujatha distribution which include size-biased Lindley along with Sujatha 

distribution.  

2. ChandBhas-P Distribution (CBPD)

The probability density function(pdf) of the new two-parameter Sujatha distribution is,
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and the cumulative density function (cdf) of the new two-parameter Sujatha distribution is 

presented by 
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Suppose, )(xf  is the pdf of X (a non-negative random Variable), then the pdf of weighted wX is 

presented as
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There are several forms of weighted models. Particularly when w(x) = xc, results a distribution 

known as a weighted distribution. The length-biased form of the new two -parameter Sujatha 

distribution is analyzed herewith. The distribution that results from our consideration of the 

"weight function" at w(x) = x is termed the “length-biased distribution” with pdf,  
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We  get the pdf of the CBP distribution by putting eqs. (1) & (4) into eq. (3). 
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and the cdf of CBP Distribution is, 
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After the simplification of eq. (6), we get the cdf of CBPD distribution as 
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The nature of the pdf and cdt is clear from the Figure 1. & Figure 2. For different α and θ. When α 

& θ decreases the pdf curve became less skewed. 
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Figure 1. pdf of CBP Distribution 

Figure 2. cdf of CBP Distribution 

3. Characteristics of the CBPD

3.1 Survival function 
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3.2 Hazard Rate 

It is also known as hazard function or failure rate and it is presented as 
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The following figures represent the Survival function and Hazad rate of the new distribution. The 

decreasing nature of survival functions of CBPD with increase in x for different ‘α’ & ‘θ’ is clear 

from Figure 3. The nature of hazard rate with different α & θ is noticed from Figure 4. 
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Figure 3. Survival function of CBP Distribution with different ‘α’ & ‘θ’ 

Figure 4. The nature of hazard rate OF CBPD with different α & θ 

4. Statistical Properties

4.1 Moments 

The rth order moment )( rXE can be calculated by considering the random variable X with the 

CBPD and parameters θ and α, 
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By simplifying equation (8), we obtain 
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By putting r = 1, 2, 3, & 4 into equation. (9), we get the first four moments of the CBP distribution. 
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After the simplification of equation (10), we obtain 
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4.3 Moment generating & Characteristic function 

The function of the proposed distribution may be constructed using X as the random variable 

following length biased new 2 parameters with α and θ distribution. 
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 Similarly the characteristic function of CBP distribution is, 
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5. Results and Discussions

5.1 Likelihood Ratio Test. 

Consider a random sample “X1, X2, …, Xn” of size n selected from the CBP distribution. The 

hypothesis is to be tested for examining its significance. 

To investigate and analyze, whether the random n sample size obtained from the CBP distribution, 

the given below test statistic rule is applied. 
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Whether for the large size nsample, 2log Δ indicates distributed as “chi-square distribution” with 

1degree of freedom as well as this distribution is applied for examining the value of p. Therefore, 

we reject to maintain the “null hypothesis” when the value of probability is provided as 
𝑝(𝛥∗ > 𝛽∗),  
here𝛽∗ = ∏ 𝑥𝑖 s lower than a particular level of significance  and ∏ 𝑥𝑖 .𝑛
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5.2. MLE of CBP distribution 

By MLE, estimate the parameters of the CBP distribution. The likelihood function for - X1, X2,..., 

and Xn - a random sample of  n size from the CBPD is, 
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By differentiating the log-likelihood eq. (13) w.r.t parameters θ and α. We get,
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It is vital to note that the preceding system of nonlinear equations has an analytical solution that is 

too complex to be solved algebraically. So, we predict the suggested distribution's parameters 

using R and Wolfram mathematics.

 The asymptotic normality findings must be used for the purpose of calculating the confidence 

interval.  

We have that if )ˆ,ˆ(ˆ  = represents the MLE of ),(  = . The results can be executed as,
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Since  𝛽 being unknown, we predict 𝐼−1(𝛽)  by 𝐼−1(�̂�) and this could be utilized to get the confidence 
 intervals for 𝜃&𝛼. 

6. Applications of CBP Distribution in real life Data.

We analyzed and examined the two real lifetime sets of Bio-medical data for fitting CBP 

distribution and the fit was compared with some related distributions. (New Two-Parameter 

Sujatha, Two-Parameter Sujatha, Sujatha, Exponential, and Lindley distributions). 
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Data set I: The following set of data represents the birth weight (Kg) of randomly selected new 

born babies from a hospital at Thrissur, Kerala (Table 1). 

Table 1: Data regarding the birth weight (Kg) of new born babies 

2.910 3.640 2.770 2.190 2.420 1.910 

3.1091 3.385 3.145 3.215 2.495 3.515 

4.380 3.110 3.280 3.860 4.040 4.170 

3.640 3.210 2.870 3.230 4.220 1.520 

2.610 3.360 2.840 3.140 2.530 1.580 

4.275 3.380 4.870 3.100 2.800 4.280 

Data set II: The following data (Table 2) represents the weight (Kg) of 100 randomly selected 

children- of age range between three months to four years- collected from a few babysitting centres 

and play schools across Thrissur, 

Table 2: weight (kg) of 100 Children (age between 3months to 4 years) from a babysitting record. 

8.75 12.25 12.50 6.50 16.00 14.50 6.75 14.50 7.50 9.00 

7.50 7.00 7.75 7.50 7.25 7.00 6.50 6.75 10.00 5.50 

8.75 6.75 12.25 12.50 6.50 14.00 14.50 6.50 15.50 12.50 

10.00 8.75 7.25 8.00 7.50 9.00 7.00 8.75 7.00 7.50 

12.00 6.75 5.00 7.50 6.50 7.25 5.25 7.50 5.50 8.75 

7.25 14.50 6.75 7.50 7.00 6.75 12.25 8.75 7.00 7.50 

7.00 7.75 7.50 7.25 7.00 6.50 6.75 10.00 9.00 7.00 

6.75 12.25 12.50 6.50 16.00 14.50 6.50 16.00 5.50 6.75 

8.75 7.25 8.00 7.50 9.00 7.00 8.75 7.00 12.50 6.50 

6.75 5.00 7.50 6.50 7.25 5.25 7.50 5.50 6.50 7.50 

Table 3: Performance & Comparison of Fitted Distributions for a set of Data 1 

“Distributions MLE S.E -2logL AIC BIC AICC 

CBP distribution 

1.1139 ˆ

0.001 ˆ

=

=





0.0495ˆ

0.009ˆ

=

=





118.94 123.07 126.29 123.49 

Two Parameter Sujatha 

0.819

0.001ˆ

=

=





0.0539ˆ

0.011 ˆ

=

=





125.79 129.83 133.01 130.20 

New Two Parameter 

Sujatha 
0.698ˆ

0.001ˆ

=

=





0.2110ˆ

0.020ˆ

=

=





133.96 137.97 141.09 138.32 

Sujatha 0.691ˆ = 0.067ˆ = 134.19 136.20 137.790 136.29 

Exponential 0.3047ˆ = 0.051ˆ = 157.59 159.56 161.137 159.68 

Lindley 0.50694ˆ = 0.061509ˆ = 144.19 146.19 147.775 146.31 

Table 4: Performance &Comparison of Fitted distributions for a set of Data 2 

Distributions MLE S.E -2logL AIC BIC AICC 

CBP distribution 

0.469ˆ

0.001ˆ

=

=





0.025ˆ

 020.0ˆ

=

=





223.80 227.81 231.29 228.10 

Two Parameter 

Sujatha 
0.347ˆ

0.001ˆ

=

=





0.019ˆ

0.0001ˆ

=

=





233.79 237.79 241.36 238.09 
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New Two 

Parameter Sujatha 
0.350ˆ

0.001ˆ

=

=





0.022ˆ

0.010ˆ

=

=





234.20 238.20 241.69 238.49 

Sujatha 0.336ˆ = 0.029ˆ = 236.58 238.58 240.36 238.67 

Exponential 0.121ˆ = 0.0183ˆ = 273.58 275.58 277.36 275.67 

Lindley 0.2208ˆ = 0.0237ˆ = 251.81 253.81 255.59 253.90 

The R software is utilized to calculate the model comparison criteria values as well as the estimate 

of unknown parameters (Table 3 and Table 4). We take into account of standard criteria’s like AICC 

(“Akaike Information Criterion Corrected”), BIC (“Bayesian Information Criterion”),AIC (“Akaike 

Information Criterion”), and -2logL to compare the performance of CBP distribution along with the 

new 2-parameter Sujatha, two-parameter Sujatha, Sujatha, Lindley and Exponential distributions. 

The distribution with the lowest values of AICC, BIC,-2logL, and AIC is the optimal distribution. 

From the Table 3 & table 4, the CBP distribution has lower AIC, AICC,BIC, as well as -2logL values 

than the New Two-Parameter Sujatha, Sujatha, Two Parameter Sujatha, Lindley and Exponential 

distributions. Therefore, it is confirmed that the CBP distribution offers a better match than the 

new Two-Parameter Sujatha, Two-parameter Sujatha, Sujatha, Exponential, and Lindley 

distributions for fitting of such bio-medical data. Hence the significance of the new distribution is 

established.    

7. Conclusions

Here, a novel distribution is known as the ChandBhas-P distribution was implemented utilizing 

the length-biased approach in comparison to the conventional distribution. Its various statistical 

properties were derived and studied. Harmonic mean, moments, the shape of the cdf and pdf, the 

mean, variance, and standard deviation, as well as survival functions, hazard rate functions, order 

statistics, reverse hazard rate functions, Bonferroni, & Lorenz curves are observed. The MLE of the 

parameters of the distribution has been calculated. Two Biomedical data sets have been used to 

test the new distribution's superiority, and the findings show that the CBP distribution offers a far 

better fit than the new two-parameter Sujatha, Sujatha, two-parameter Sujatha, exponential, as well 

as Lindley distributions in the case of such biological data. 
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Abstract 

 

This paper investigates the Markov-Switching GARCH and Single-Regime (SR) GARCH models 

for the extreme-risk prediction of the global energy markets. Using daily data from Jan. 2020 to 

July. 2022, we find the MS-GARCH-types models are appropriate for both developed and emerging 

energy markets because they efficiently measure the extreme risk of energy commodities in various 

cases. Meanwhile, the regime-switching model's capture-dynamic structures in the financial 

markets and this model is only better than single-regime models in terms of long position risk 

predicting, rather than short position risk forecasting. That is, on the downside risk predicting, it 

just outperforms the single regime. Through competitive models, this study examines the risk 

forecast of energy commodities in different conditions. The findings have strong implications for 

investors and policymakers in selecting the appropriate model to predict the extreme risk of energy 

commodities when facing asset allocation, portfolio selection, and risk management.       

 

Keywords: MS- GARCH, extreme risk, energy markets, prediction. 

 

 

I. Introduction 
 

To ensure economic stability and improve national security, energy commodities are among the 

most important natural resources used by countries as inputs in transportation, industry, and 

many other economic sectors. Natural gas, oil, coal is the most used major energy sources [1,2]. The 

oil demand is rose steadily in 2018, with China and India leading its major consumption in the 

United States. The US, which overtook Saudi Arabia in mid-2020, is currently the world’s largest 

oil exporter and heavy crude oil importer [3]. Natural gas consumption increased by 4.6%, which is 

almost half of global energy consumption. The global demand for coal energy has continued to rise 

for two years since 2018. The coal-driven electricity supply is very important in Asia to meet India, 
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China, Indonesia, South and East Asia. Since natural gas and coal are the main sources of 

electricity and heating, an increment in the price of energy products is expected to affect household 

cash flow. In contrast, oil is a fundamental input for industrial production, thus severely affecting 

inflation rates. 

The global pandemic has revealed the vulnerability of the world economy and energy 

commodities to external shocks. For example, the covid-19 oil demand shock triggered an 

estimated 10% drop in demand, leading to a more than 60% price drop from Jan. to Apr. 2020. To 

prevent the shock, OPEC members agreed to reduce oil production by an estimated 9.7 million b/d 

in Apr.2020. Also, [4] show that volatile oil prices can trigger price fluctuations in other energy 

products have widespread effects on the international economy. The volatility of oil prices in the 

1970s attracted much interest from financial investors, academia, and policymakers as oil-

importing and exporting countries became a major factor in various economic sectors. Early 

pioneers studied the relationship between oil prices and economic activity-demonstrating the 

significant impact of oil price on macroeconomic activity and the partial responsibility for the post-

world war-II US recession from 1973 to 1983 [5]. There are several methods for predicting 

fluctuations, but the most popular literature is the GARCH models.  

Since a key contribution made by [6], who generalized autoregressive conditional 

heteroscedasticity (GARCH) was introduced by [7], a common in modelling VaR is that GARCH-

type models are related to conditional error distribution [8]. This model depends on the suitably 

estimated volatility. However, conventional GARCH-type specifications belonging to the single 

regime model are difficult to capture structural changes during economic cycles. Furthermore, by 

[9], the generalized Markov regime Switching-ARCH model was introduced by [10], a researcher 

on volatility with regimes in the financial market. A study has found that the MS-GARCH 

provides far superior to the single regime GARCH on the modelling volatility [11,12].  

The contribution of this study is different from two recent extreme risk studies on the two-

type of models [13] confirmed that the MS-GARCH-type models had improved predictive 

accuracy than the standard GARCH-type models on downside risk predictions for global energy 

commodities. First, they should mainly investigate volatility predictions between three Single 

Regime-GARCH models and six-types of Regime-Switching models and the just involved two 

quantiles of the upside Value at Risk content in the appendix. Secondly, according to descriptive 

analyses of return series, they consider innovations as Normal distribution, but different 

distributions have a major impact on the model fit, estimation of volatility, and Value at Risk 

calculation. Based on this point, we consider the most common and effective distributions (Normal 

(N) and student-t (S)) for modelling. Third, they only investigated VaR prediction, whereas we also 

complement ES (expected shortfall) predicting related to extreme risk. To make more reliable 

conclusions, this operation compares the differences in risk measures between the two types of 

models in depth.  

Fourth, [14] used the same back testing method for evaluating forecasting performance on 

volatility to assess VaR prediction, whereas we use two prevalent back testing methods used by 

substantial scientists and researchers [15,16,17,18,19,20] in the field of risk management, to estimate 

the extreme risk prediction between the two models. When we read them in the global energy 

commodity risk prediction, we put the RS models and their SR counterparts on the same condition. 

These procedures ensure that the results are more reliable. As a result, our research differs from 

[13] and [21] regarding energy commodity risk predicting. The literature related to the risk 

prediction of energy commodities via the MS-GARCH model is still limited. If the RS model shows 

better performance in risk measures, it will be recommended to apply for portfolio optimization 

and risk management. Otherwise, predicting risk values may make capital allocation insufficiently 

efficient as policymakers and investors set up ineligible assets against market risks.  

The rest of this paper is as follows. In section 2, we present the econometric methodology 
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adopted; section 3 describes data and summaries the descriptive statistics of the global energy 

commodity return series. In section 4 describes estimation results, and section 5, conclusions of this 

paper.   

2. Methodology 

2.1 GJR-GARCH model 
The GJR-GARCH model is given by Glosten et al. [22]. GJR-GARCH (1,1) is written as: 
 

Jk,t
2 = 𝜇0,k + 𝛼𝜆1,k

2 I{yt−1 30} − 𝛽𝜆2,k
2 I{yt−1 < 0}yt−1 + 𝛿Jk,t−1

2                                      (1) 

 

Where the asymmetric effect is attributed to component 𝜆2,k
2 yt−1 where the parameter yt−1 = 0 

if 𝜆𝑡 > 0 means shocks on volatility from bad news and 𝑦𝑡−1 = 1 otherwise. 

 

2.2 EGARCH model 
The Exponential GARCH (EGARCH) Model of Nelson [23] is given by: 
 

In (𝐽𝑘,𝑡) = 𝜇0,𝑘 + 𝛼1,𝑘(|𝜂𝑘,𝑡−1| − 𝐸[𝑛𝑘,𝑡−1 ∣]) + 𝛼2,𝑘𝜂𝑘,𝑡−1 + 𝛽𝑘In (𝐽𝑘,𝑡−1)                        (2) 

 

Where 𝐸[|𝜂𝑘,𝑡−1|] is a conditional expectation on regime 𝑘, and we have 𝜃𝑘 =

(𝜇0,𝑘, 𝛼1,𝑘 , 𝛼2,𝑘, 𝛽𝑘)
𝑇
 for (k = 1, … , K). This specification model deals with the asymmetric reaction of 

volatility to previous returns i.e., leverage effect [24,25]. Covariance stationary into each regime is 

obtained by needful that 𝛽k > 0. 

 

2.3 TGARCH model 
Zakoian 1994[26], introduces the Threshold GARCH (TGARCH) model specification, where the 

conditional volatility is an explanatory variable instead of the conditional variance. This model is 

given by: 
 

Jk,t
1/2

= 𝜇0,k + (𝛼1,kI{yt−1 30} − 𝛼2,kI{yt−1 < 0}yt−1 + 𝛽kJk,t−1
1/2

                                   (3) 

 

We have 𝜃 = (𝜇0,k, 𝛼1,k, 𝛼2,k, 𝛽k)
T

 for (k = 1 … , K). To ensure positivity, we needful than 𝜇0,k >

0, 𝛼1,k > 0, 𝛼2,k > 0 and 𝛽k ≥ 0. Obtained by requiring that for Co-variance stationarity in each 

regime 𝛼1,k
2 + 𝛽k

2 − 2𝛽k(𝛼1,k + 𝛼2,k) E[𝜂t,kI{𝜂t,k < 0}] − (𝛼1,k
2 − 𝛼2,k

2 ) E[𝜂t,kI{𝜂t,k < 0}] < 1  Francq and 

Zakoïan [27]. The quantities of E[𝜂t,kI{𝜂t,k < 0}] and E[𝜂t,k
2 I{𝜂t,k < 0}] required for the conditions of 

co-variance stationarity in the TGARCH model [28]. We assume two different probability 

distributions for D(.) we use student normal (𝑁) and student-t (𝑆) distribution. Then explore the 

advantages of incorporating the skewness in our analysis by considering the standard skewed 

versions of N, and S obtained using the mechanism of [29] and [30]. 𝐾 ∈ (1,2,3) are the number of 

regimes: we label our specification SR when K = 1 and MS when K = 3. 

 

2.4 Model Estimation 
We estimate all selected models by using maximum likelihood (ML) techniques. This approach 

requires the estimation of the likelihood function. The first step in this process is to generate the 

likelihood for MS-GARCH model specifications by collecting the vector of model parameter into 

Ω ≡ (𝜃1, 𝜉1, … , 𝜃𝑘 , 𝜉𝑘 , 𝑃). The conditional density of 𝑦𝑡 in a state ℎ𝑡 = 𝑘 given Ω and 𝜏t−1 is denoted 

by f(yt ∣ ht = k, Ω, 𝜏t−1) integrating out state ℎ𝑡 we obtain the density of yt given Ω and 𝜏𝑡−1 only. 

The discrete integration is obtained as 
 

f(yt ∣ Ω, 𝜏t−1) ≡ ∑  k
i ∑  k

j pi,j𝛿i,t−1 × fD(yt ∣ st = j, Ω, 𝜏t−1)                                     (4) 

 

Where 𝛿i,t−1 ≡ P[st−1 = i ∣ Ω, 𝜏t−1] represents the filtered probability of state 𝑖 at time t − 1 and 
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where pi,j is the transition probability of moving from 𝑖 to state 𝑗. The filtered probabilities 

(𝛿i,t; k = 1, … , K; 1, … , T) are obtained via Hamilton filter. Finally, the likelihood function is 

obtained from Eq. (2) as follows: 
 

L(Ω ∣ 𝜏T) ≡ ∏  T
t=1 f(yt ∣ Ω, 𝜏t−1)                                                          (5) 

 

The estimator of maximum likelihood Ω̂ is obtained by maximizing the algorithm of Eq (5). 

 

2.6 Risk Measures 
Value at risk is the general estimate of the maximal loss when the position declines due to market 

movements in the financial domain. One step forward conditional probability density with the two 

regimes is computed: 
 

f(yt ∣ Ω, 𝜏t) ≡ ∑  2
h=1 𝜋h,tfD(yt ∣ st = k, Ω, 𝜏t−1)                                   (6) 

 

Since, The PDF is a combination of two-regime distribution, 𝜋ℎ,𝑡 = ∑𝑖=1
2  𝑝𝑖,ℎ𝐽𝑖,𝑡−1 where 𝜃i,t−1 =

P(st−1 = i ∣ Ω, 𝜏t−1) is filtered probability, a one step ahead cumulative distribution function (CDF) 

with regimes is obtained through its conditional probability density distribution: 
 

F(yt ∣ Ω, 𝜏t−1) ≡ ∫  
𝜀t

−¥
f(x ∣ Ω, 𝜏t−1)dx                                                 (7) 

 

Where the model parameters Ω is estimation by ML in equation (7). Financial regulators 

utilize VaR to evaluate risks at a particular probability level. The following is how VaR is defined: 
 

Pr [st < VaR] = 1 − p

VaRt
1−p

= ut + �̂�st−1 + z1−pht

                                                             (8) 

 

Where VaRt∣t−1
1−p

 is represents the maximal loss of long-position and 𝐹𝑍 is CDF of innovations 

zt. 
 

F(yt ∣ Ω, 𝜏t−1) = F(zt ∣ Ω, 𝜏t−1)hy

VaRt
1−p

= ut + �̂�st−1 + F−1(1 − p ∣ Ω, 𝜏t−1)ht

                                          (9) 

 

 When calculating the risk of a short position, p substitutes for 1 − 𝑝. Despite its simplicity 

and ease of implementation, VaR has drawbacks due to its lack of coherence as a risk measure. On 

the other hand, expected shortfall (ES) as measures of average losses exceeding VaR can over- 

come this flaw through entailing the magnitude of losses. As a result, we calculate ES to compare 

the predicting performance of the two types of models. ES is calculated as follows: 
 

ES1−p = E(st ∣ st < VaR1−p)

ESt∣t−1
1−p

=
1

1−p
∫ xf(x ∣ 𝜏t−1)dx 

VaRt
1−p

−∞
 
                                                (10) 

 

The short and long positions of VaR and ES at two quantiles are investigated in this research. 

 

3. Data and Descriptive Statistics 

 
This study used daily data from January 2, 2019, to July 8, 2022. Each series of datasets includes 

4049 observations. The first sub-sample is used for in-sample analysis and parameter estimation, 

while the second sub-sample, the last 1,500 observations from the entire sample, is used for out-of-

sample forecasting. The six types of energy commodities are namely, Crude oil brent, Petroleum, 
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Gasoline, Heating oil, Natural gas, and Crude oil WTI, which are obtained from the Federal 

Reserve Economic Database (FRED) (https://fred.stlouisfed.org/). Energy commodity prices used in 

modelling, are calculated by where is the spot prices of the global energy commodity at time t. 

Figure 1, shows that the global energy commodity prices and returns are reported in respectively. 

 

 
Graph 1: Global energy prices  

 

Table .1 reports descriptive statistics for the energy price. We obtain that the mean values for 

Crude Oil Brent, Petroleum, Gasoline, Heating Oil, Natural Gas, and Crude Oil WTI is 0.0054%, 

0.0035%, 0.0059%, 0.0046, -0.0187, and 0.0189 respectively. Meanwhile, the values of minimum and 

maximum have reflected the presence of small extreme returns. The estimation of unconditional 

volatility is through standard deviation, Natural Gas have the highest volatility. 
 

Table 1: Descriptive statistics of energy price 

Metrics Crude Oil Brent Petroleum Gasoline Heating Oil Natural Gas Crude Oil WTI 

Mean  0.0054 0.0035 0.0059 0.0046 -0.0189 0.0189 

Min  -27.976 -19.211 -38.535 -19.995 -18.054 -28.220 

Max  19.077 13.723 22.396 10.946 26.771 31.963 

Std.dev  2.305 1.955 2.656 2.079 3.203 2.655 

Skewness  0.254 0.112 0.998 0.380 0.556 0.212 

Kurtosis  13.753 8.473 25.923 9.319 7.729 24.806 

PP test  -4328.1* -4153.4* -4329.9* -4286.1* -4126.3* -4173.5* 

ADF test  -14.092* -14.391* -14.265* -15.412* -16.037* -14.219* 

Q-(10) 27.973** 24.496** 28.306** 13.445 31.323*** 30.555*** 

Jarque-Bera  19544*** 5060.1*** 89280*** 6832.9*** 3979.9*** 80217*** 

ARCH-LM (10) 760*** 553 *** 583*** 1034*** 921*** 972*** 

 

Table-1 is also showing negative and positive but significant skewness for energy commodities 

return series which means that energy commodities return series have longer left-tails and fat-tails 

than the normal distribution. The kurtosis is highly significant for energy commodities return 

series and Gasoline display larger Kurtosis than the other return series. Values of Jarque-Bera 

obtained through (Jarque & Bera, 1980) depicting the rejection of normality. The significant values 

of Phillip Perron (PP) [31] and Augmented Dickey-Fuller (ADF)[32] test indicating that energy 

commodities return series are stationary. Ljung-Box is showing the (Ljung & Box, 1978) Q-statistics 

at 10th order for autocorrelation in raw data are extremely significant and rejecting the null 

hypothesis of no autocorrelation. ARCH-(1) test for restricted heteroscedasticity giving a strong 

indication of ARCH effect in energy commodities returns series, this evidence suggests that the 

usefulness and suitability of GARCH-type methods for prediction and modelling their time-

varying conditional volatility. These findings usually indicate the high degree of perseverance in 
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the conditional-volatility procedure of energy commodity prices. 

 

4. Empirical Results  

 
In this section, the estimation result of the MS-GARCH-type models with student normal (N), 

student-t (S) distribution is presented in Table 2.  

 

4.1. In-Sample Estimation  

 
The estimated parameters for the MS-GARCH and EGARCH models are given in Table 2. 

According to our results, the parameters for conditional variance are statistically significant for 

energy commodity prices. Almost all parameters of the EGARCH and MSGARCH (GJR-GARCH-

EGARCH-TGARCH, GARCH-EGARCH, GJR-GARCH-TGARCH, EGARCH-TGARCH, GJR-

GARCH, and TGARCH) models are significant, especially βk is the leverage parameter, which 

implies the leverage effects of significant volatility. The energy commodity markets reveal strong 

evidence of asymmetric volatility, while negative news responds with strong shocks to energy 

commodity fluctuations. Therefore, more useful to capture the volatility of five types of energy 

commodities based on the two types of models. Meanwhile, Table-2 represents the transition 

probabilities, which mean three significant regimes volatility in the energy commodities. 

Therefore, the dynamic structure of energy commodities will change over periods. 

Considering practical fitting capabilities, three types of criteria are used to test their appropriate 

performance, including Bayesian Information Criterion (BIC), Akaike Information Criterion (AIC), 

and log-likelihood (LL). These results reveal significant evidence of fitting efficacy for the energy 

commodity return series. The MS-GARCH model is successfully for Crude Oil Brent, Petroleum, 

Gasoline, Heating oil, and Crude Oil WTI, and it is not excellent to the counterpart in the Natural 

gas due to highest BIC and AIC values. Thus, these results confirm that the MS-GARCH modelling 

energy commodity prices dataset is appropriate and outperforms the single-regime counterpart in 

more cases. Nevertheless, good in-sample model fits may not generate accurate and predictions of 

reliable risk. 

       
Table 2: Modelling volatilities of energy commodity price by using MS-GARCH 

Global 

energy 

markets 

Crude Oil 

Brent 

Petroleum    Gasoline  Heating 

Oil 

Natural Gas  Crude Oil 

WTI 

Models 

(Regime-3) 

 

GJR-GARCH-

TGARCH 

GARCH- 

EGARCH 

 

GJR-GARCH -

TGARCH 

 EGARCH-

TGARCH 

GJR-GARCH TGARCH 

 

Regime-1 

μ1  

0 .0001 

(0.000)*** 

0.0011 

(0.001)** 

0.0108 

(0.010)** 

0.0137 

(0.007)** 

0.2958(0.188)** 0.1003 

(0.041)** 

α1  0.0562 

(0.000)*** 

0.0014 

(0.001)** 

0.0032 

(0.004)** 

0.0100 

(0.008)** 

0.0161(0.016)** 0.0134 

(0.013)** 

α2-1  0.9206 

(0.000)*** 

0.0083 

(0.005)*** 

0.0092 

(0.001)*** 

0.0462 

(0.005)*** 

0.0436 (0.004)* 0.0311 

(0.016)** 

1β  0.0992 

(0.000)*** 

0.9959 

(0.001)*** 

0.9842 

(0.012)*** 

0.9604 

(0.010)*** 

0.9157(0.037)*** 

 

0.8966 

(0.018)*** 

-2  - - - - 3.0072(0.002)*  

ξ-2  - 1.0436 

(0.0043)** 

- - - 4.0236 

(0.0815)** 

Regime-2 

μ2  

0.3544 

(0.000)*** 

0.0164 

(0.0052)** 

0.0186 

(0.0128)** 

0.0064 

(0.0043)* 

0.0825 

(0.0378)* 

0.0164 

(0.0078)** 
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α2  0.34790 

(0.0000)*** 

0.0067 

(0.0019)** 

0.0253 

(0.0159)** 

0.0361 

(0.0412)* 

0.0752 

(0.0471)** 

0.0588 

(0.0370)** 

α2-2  0.6860 

(0.000)*** 

0.0421 

(0.0061)*** 

0.0112 

(0.0036)*** 

0.0325 

(0.0065)*** 

0.0132 

(0.0021)** 

0.4301 

(0.0531)** 

β2  0.8728 

(0.000)*** 

0.9527 

(0.131)*** 

0.9700 

(0.0034)*** 

0.6424 

(0.0017)*** 

0.9138 

(0.0071)*** 

0.9366 

(0.0028)*** 

-2  - 3.8740 

(0.8006)** 

2.0114 

(0.2213)* 

- 2.0351 

(0.0641)* 

- 

ξ-2  - - - - - - 

Regime -3 

μ3  

 

0.9902 

(0.000)*** 

 

0.3313 

(0.1966)** 

 

0.1103 

(0.024)* 

 

11.2219 

(2.7450)*** 

 

39.3173 

(8.7254)*** 

 

3.3297 

(1.4864)** 

3α  0.0091 

(0.0001)*** 

0.0378 

(0.0543)** 

4.6579 

(2.5728)*** 

0.9999 

(0.000)*** 

0.0835 

(0.0117)*** 

0.4381 

(0.4013)** 

2-3α  0.2988 

(0.000)*** 

0.9527 

(0.0131)*** 

0.2188 

(1.7872)* 

0.0624 

(0.0012)*** 

0.9998 

(0.0072)*** 

0.3463 

(7.5013)** 

β3  0.0091 

(0.000)*** 

0.4903 

(0.6123)*** 

0.7803 

(0.0079)*** 

0.0018 

(0.000)* 

0.000 

(0.000)** 

0.6535 

(0.0058)*** 

-3  - 1.2856 

(0.0485)* 

- 

 

- 1.2852 

(0.085)* 

- 

ξ-3  - - - - - - 

Probabilities 

Ρ1,1
 

 

0.7342 

 

0.9847 

 

0.9425 

 

0.9364 

 

0.7290 

 

0.7287 

Ρ2,1
 0.6555 0.4096 0.2860 0.9592 0.1148 0.9744 

Ρ3,1
 0.8334 0.6531 0.9582 0.5550 0.9172 0.6105 

LL -821.98 -778.19 -874.02 -802.52 -1000.88 -854.2 

AIC 1645.96 1559.38 1752.04 1607.05 2003.76 1712.4 

BIC 1655.14 1568.38 1761.63 1616.63 2013.34 1721.98 

                                       

Moreover, risk management sectors and professional are particularly interested in risk predictions. 

Based on these considerations, we continue to analyze the results of prediction risk at different 

horizons and significant levels from two types of models. 

  

4.2 Out-of-Sample Risk Forecasting   
   
The previous hypotheses are addressed in this sub-section. To learn more about risk prediction for 

the two types of models, large-scale comparison studies are conducted. One-ahead and five-ahead 

forecasts are used in these comparisons between regime-switching and single-regime scenarios. 

Each energy commodity market's predicting results include the upside and downside risk, as well 

as the two quantiles of two distributions. The reason for including so many cases in the empirical 

process is that these adequate experiments reveal the differences between the two types of models. 

Indeed, this procedure is used to generate much more precise results and subsequently reach 

robust conclusions. In fact, the VaR and ES methods are combined to measure the extreme risk of 

energy commodities in a comprehensive way. Downside risk is considered long position, and 

upside is short position. Table 3 and 4 provide the one-day predict outcomes for six-types of 

energy commodities, whereas Table 5 and 6 indicates the five-day predict results. Each table has 

three benchmark models: GARCH, GJR-GARCH, and TGARCH, each of which include the 

Regime-Switching (RS) model and the Single-Regime (SR) counterpart with two distributions.  

Table 3 and 4 shows that the predicting outcomes for Brent, Petroleum, Gasoline, Heating Oil, 

Natural Gas, and WTI one-day risk predictions, respectively. When the same distribution is 

employed, the figures in bold in the table denote the better model between the single-regime 
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model and the regime-switching equivalent in terms of predicting performance. This kind would 

be better if it has more bold figures than the other under a basic GARCH-type model, such as 

GARCH, EGARCH, or TGARCH. In this method, the predicting results are assessed using the 

bolded figures in the table. Apart from the EGARCH case for Natural gas, the RS model is just 

superior to the corresponding RS in terms of downside risk under the same distribution for the 

developed energy commodities. Interestingly, the findings on upside risk outcomes of the gasoline 

have conversed with the downside. In the case of the emerging oil market, the RS model 

outperforms the SR model in terms of downside risk, apart from the EGARCH example, however, 

this conclusion is inconsistent with the upside. 

 

The evidence from the one-day ahead findings just shows that the RS model outperforms the SR 

model only on the downside, not on the upside. This conclusion is appropriate for both developed 

and emerging markets. Furthermore, the predicting horizon may have an impact on the result, and 

a five-day-ahead forecast is made based on this consideration. 

 

To summarise, our findings support the two previously proposed predictions about the risk 

predicting abilities of the two types of conditional variance models. In terms of energy 

commodities downside risk predicting, the RS model just outperforms the SR model. The RS 

models are also appropriate for developing energy commodities. More precisely, risk predicting 

results represent some important findings. First, the MS-GARCH-types models are suitable for 

both developed and emerging energy commodities, particularly predicting downside risk. If two 

types of models are used for the five-day prediction, there are some changes in the risk predictions 

of the upside risk. Second, our findings require policymakers, risk managers, and investors when 

hedging and investing in energy commodities, as they must carefully control possible extreme 

risks. The complex model with regime-switching may not always provide far superiority to, all the 

time, the SR model in the case of risk predictions for both long and short positions. More 

importantly, some risk management practitioners and scholars may consider the regime-switching 

model a preferable option for risk predicting. However, the results obtained based on the regime-

switching model can lead to massive losses because this model does not always measure the 

financial tail risk well, especially for the upside risk in this paper.  

 

Table 3: One-day forward risk predictions of DQ-test in energy commodities 

DQ test Brent Petroleum    Gasoline  Heating oil Natural gas  WTI 

Long Position-0.01 

Single-Regime   

GARCH-N 

0.672 0.4371 0.6745 0.9572 0.3421 0.4351 

EGARCH- N  0.8845 0.5076 0.623 0.7643 0.4576 0.2001 

TGARCH- N 0.6713 0.5354 0.4032 0.6872 0.432 0.3982 

GARCH-S 0.2152 0.3573 0.3561 0.6461 0.04 0.3065 

EGARCH- S 0.5302 0.1765 0.431 0.4701 0.5762 0.371 

TGARCH- S 0.3965 0.2301 0.319 0.0231 0.3321 0.3361 

MS-GARCH 

GARCH-EGARCH-

TGARCH- N- S 

0.0545 0.1298 0.6802 0.1065 0.0365 0.7865 

GARCH- EGARCH- N- S 0.1643 0.5587 0.9171 0.1494 0.0294 0.5431 

GARCH -TGARCH N- S 0.0476 0.8385 0.7562 0.2542 0.154 0.8142 

EGARCH-TGARCH- N- S 0.1457 0.6814 0.8362 0.1376 0.3751 0.6803 

EGARCH- N- S 0.1223 0.5467 0.8062 0.046 0.1361 0.745 

TGARCH- N- S 0.1098 0.1452 0.9301 0.0636 0.4316 0.7714 
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Short position-0.05 

Single-Regime   

GARCH-N 

0.1764 0.3461 0.6262 0.1265 0.0001 0.1782 

EGARCH-N 0.4761 0.4087 0.5342 0.134 0.0089 0.2214 

TGARCH- N 0.36 0.5371 0.6942 0.1042 0.1563 0.3672 

GARCH-S 0.4753 0.4401 0.5643 0.1243 0.1264 0.4583 

EGARCH- S 0.4748 0.415 0.6301 0.1561 0.0463 0.5301 

TGARCH- S 0.5851 0.5215 0.7164 0.1164 0.084 0.5751 

MS-GARCH 

GARCH-EGARCH-

TGARCH- N- S 

0.084 0.1165 0.823 0.2367 0.1567 0.6632 

GARCH- EGARCH- N- S 0.1315 0.5681 0.8813 0.2224 0.1653 0.6436 

GARCH -TGARCH N- S 0.1097 0.8409 0.842 0.3923 0.4303 0.7841 

EGARCH-TGARCH- N- S 0.3925 0.8409 0.9217 0.2576 0.0935 0.8024 

EGARCH- N- S 0.2517 1 0.8806 0.1604 0.3623 0.6421 

TGARCH- N- S 0.32 0.303 0.8325 0.0487 0.138 0.8715 

 

Table 4: One-day forward risk predictions of CC-test in energy commodities 

            CC-test Brent Petroleum    Gasoline  Heating oil Natural gas  WTI 

Long Position-0.01 

Single-Regime   
GJR-GARCH-N 

1783 0.3152 0.1132 0.4214 0.221 0.6571 

EGARCH-N 0.4603 0.3105 0.2315 0.3244 0.0431 0.571 

TGARCH- N 0.34 0.1004 0.1048 0.3531 0.0935 0.8122 

GARCH-S 0.4253 0.419 0.119 0.4413 0.0652 0.6142 

EGARCH- S 0.3831 0.3362 0.3362 0.371 0.1043 0.865 

TGARCH- S 

MS GARCH 

0.2016 0.3254 0.2431 0.631 0.041 0.5304 

EGARCH-TGARCH- N- S 0.6705 0.761 0.1115 0.4294 0.221 0.7853 

GARCH- EGARCH- N- S 0.5341 0.7112 0.6704 0.5506 0.1425 0.8664 

GARCH -TGARCH N- S 0.8506 0.5044 0.3546 0.8403 0.0972 0.8553 

EGARCH-TGARCH- N- S 0.6131 0.7532 0.2437 0.8403 0.1612 0.896 

EGARCH- N- S 0.7733 1 0.3356 0.1689 0.1047 0.7364 

TGARCH- N- S 1 0.5377 0.2422 0.0559 0.224 0.572 

Short position-0.05 

Single-Regime   
GJR-GARCH-N 

0.5661 0.551 0.7631 0.7451 0.0043 0.587 

EGARCH-N 0.6631 0.6142 0.3623 0.4632 0.2305 0.3756 

TGARCH- N 0.31 0.4852 0.3621 0.5102 0.065 0.767 

GJR-GARCH-S 0.4748 0.3421 0.2306 0.6772 0.0004 0.4603 

EGARCH- S 0.5661 0.4212 0.0432 0.0421 0.1267 0.655 

TGARCH- S 0.776 0.1502 0.139 0.4682 0.0001 0.467 

MS-GARCH 

GARCH-EGARCH-

TGARCH- N- S 

0.774 0.3371 0.0079 0.7145 0.1087 0.7541 

GARCH- EGARCH- N- S 0.5663 0.3998 0.1446 0.5723 0.0465 0.7567 

GARCH -TGARCH N- S 0.4746 0.6073 0.105 0.6147 0.108 1 

EGARCH-TGARCH- N- S 0.773 0.5903 0.0105 0.8563 0.1123 0.5366 
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GJR-GARCH- N- S 0.885 0.3912 0.1845 1 0.1268 0.362 

TGARCH- N- S 0.6842 0.2467 0.1343 0.5377 0.0132 0.3789 

.  

 

 

Table 5: five-day forward risk predictions of Dynamic Quantile (DQ)-test in global energy commodities 

DQ-test Brent Petroleum    Gasoline  Heating oil Natural gas  WTI 

Long Position-0.01 

Single-Regime   

GJR-GARCH-N 

0.773 0.0856 0.6261 0.3685 0.0531 0.614 

EGARCH-N 1 0.1506 0.5831 0.371 0.0253 0.4731 

TGARCH- N 0.615 0.3132 0.3102 0.4631 0.1564 0.5362 

GJR-GARCH-S 0.771 0.331 0.5771 0.74 0.0531 0.4001 

EGARCH- S 0.788 0.2310 0.3194 0.5525 0.682 0.3134 

TGARCH- S 0.3925 0.3135 0.4849 0.3891 0.5412 0.3134 

MS-GARCH 

GARCH-EGARCH-TGARCH- 

N- S 

0.4745 0.7253 0.8384 0.4061 0.3048 0.8254 

GARCH- EGARCH- N- S 0.34 0.7468 1 0.311 0.109 0.7856 

GARCH -TGARCH N- S 0.6671 0.8734 0.5351 0.2472 0.0362 0.861 

EGARCH-TGARCH- N- S 0.5667 0.7887 0.406 0.05 0.0595 0.8662 

GJR-GARCH- N- S 0.2361 0.9567 0.6814 0.5632 0.159 0.8988 

TGARCH- N- S 0.34 0.8935 0.2943 0.4273 0.5362 0.7411 

Short position-0.05 

Single-Regime   

GJR-GARCH-N 

0.32 0.5661 0.0557 0.3139 0.0045 0.8065 

EGARCH-N 0.2041 0.732 0.165 0.7465 0.0288 0.703 

TGARCH- N 0.1587 0.661 0.3782 0.3135 0.2766 0.9302 

GARCH-S 0.461 0.4741 0.5501 0.3135 0.0119 0.8092 

EGARCH- S 0.2351 0.1746 0.1739 0.5131 0.0231 0.7632 

TGARCH- S 0.6623 0.5312 0.4428 0.4543 0.0047 0.6134 

MS-GARCH 

GARCH-EGARCH-TGARCH- 

N- S 

0.3925 0.8314 1 0.2174 0.045 0.706 

GARCH- EGARCH- N- S 0.2573 0.7319 1 0.3411 0.319 0.9302 

GARCH -TGARCH N- S 0.885 0.8664 0.6813 0.6339 0.1202 0.819 

EGARCH-TGARCH- N- S 0.663 0.945 0.5362 0.5659 0.0288 0.6213 

GJR-GARCH- N- S 0.9262 0.9267 0.6813 0.2308 0.9561 0.8975 

TGARCH- N- S 0.3926 0.8127 0.2943 0.2945 0.2108 0.6687 

  

Table 6: five-day forward risk predictions of Conditional Correlation (CC)-test in global energy commodities 

CC-test Brent Petroleum    Gasoline  Heating oil Natural gas  WTI 

Long Position-0.01 

Single-Regime   

GARCH-N 

0.2413 0.4351 0.2413 0.5361 0.0219 0.7472 

EGARCH-N 0.7541 0.8484 0.8384 0.1345 0.0192 0.8365 

TGARCH- N 0.6748 0.5959 0.5501 0.7696 0.082 0.7541 

GARCH-S 0.671 0.406 0.981 0.5377 0.0687 0.81 

EGARCH- S 0.8346 0.3742 0.6851 0.7631 0.1216 0.8501 
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TGARCH- S 0.7812 0.82 0.5351 0.592 0.001 0.6725 

MS-GARCH 

GARCH-EGARCH-TGARCH- 

N- S 

0.5385 0.5043 0.434 0.5132 0.0425 0.5825 

GARCH- EGARCH- N- S 0.6878 0.4293 0.3132 0.7425 0.0712 0.7113 

GARCH -TGARCH N- S 0.7886 0.8403 0.5771 0.7631 0.002 0.7603 

EGARCH-TGARCH- N- S 0.941 1 0.3493 1 0.0015 0.7718 

EGARCH- N- S 0.5806 0.5484 0.0691 1 0.0245 0.9103 

TGARCH- N- S 0 1 0.5342 0.5674 0.0166 0.8826 

Short position-0.05 

Single-Regime   

GARCH-N 

0.7523 0.4134 0.1732 0.4601 0.0661 0.7652 

EGARCH-N 0.934 0.1954 0.5506 0.1203 0.3134 0.7164 

TGARCH- N 0.6531 0.63 0.3235 0.0261 0.0772 0.5972 

GARCH-S 0.778 0.1421 0.1686 0.2876 0.0961 0.7261 

EGARCH- S 0.6578 0.1833 0.3136 0.0324 0.591 0.7278 

TGARCH- S 0.7751 0.1696 0.1686 0.2621 0.0053 0.5315 

MS-GARCH 

GARCH-EGARCH-TGARCH- 

N- S 

0.7412 0.1661 0.5384 0.3402 0.0094 0.6811 

GARCH- EGARCH- N- S 0.7415 0.3126 0.6976 0.3914 0.0044 0.1928 

GARCH -TGARCH N- S 0.8598 0.0961 0.3135 0.2085 0.0144 0.789 

EGARCH-TGARCH- N- S 0.8758 0.5509 0.077 0.3431 0.0054 0.5149 

EGARCH- N- S 0.662 0.6813 0.039 0.0187 0.0002 0.6834 

TGARCH- N- S 0.7886 0.5362 0.597 0.1543 0.0002 0.5696 

 
These findings on downside risk prediction are consistent with Teterin et al.[32], who 

demonstrated that the RS model had better prediction accuracy for developed stock markets than 

the SR model. This conclusion is extended to the commodities market, specifically the developed 

and emerging energy commodities. However, our conclusions are different from [33,34,35] who 

indicated that the RS model isn’t always better than the SR model. The key reason for this is that 

our research differs significantly from Zhao et al.[36,37], who did not compare the two types of 

models under the same distribution. Their findings are valid for two specific RS-GARCH models 

and the three SR-GARCH model instead of the MS-GARCH-type models and their SR 

counterparts.        

 

5. Conclusion  

 
In this work, we investigate the risk predicting performances between the regime-

switching (RS) and single regime (SR) for the global energy commodities. For obtaining robust 

results, plenty of comprehensive comparisons are implemented, and a related process of 

comparisons is operated under the same condition. Especially in every energy market, the long 

and short positions are considered together to see their differences from the downside and upside 

results. Therefore, empirical results of the in-sample analysis report that the MS model 

outperforms the SR counterparts in global energy commodity cases. This conclusion that is gained 

through the risk predictions is suitable for one-day and five-day-ahead cases of energy 

commodities (Crude oil brent, Petroleum, Gasoline, Heating oil, Natural gas, and Crude oil WTI), 

some evidence seems interesting in that the upside results are affected by more horizons, but the 
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findings based on the downside risk are stable.  

Investors and policymakers who aim to the specific purpose of economic should be 

vigilant to use the RS model for risk management for long and short positions. Meanwhile, 

automotive manufactures and energy-intensive global energy commodity prices are directly and 

indirectly susceptive. They are also carefully making appropriate productions plans when faced 

with extreme price changes in the future. 
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Abstract 

 

The prediction of time-varying volatility plays an important role in financial data. In the paper, a 

comprehensive analysis of the mean return and conditional variance of NSE index is performed to 

use GARCH, EGARCH and TGARCH models with Normal innovation and Student’s t 

innovation. Conducting a bootstrap simulation study which shows the Model Confidence Set 

(MCS) captures the superior models across a range of significance levels. The experimental results 

show that, under various loss functions, the GARCH using Student’s t innovation model is the best 

model for volatility predictions of NSE among the six models. 

 

Keywords: time-varying volatility, NSE index, bootstrap simulation, GARCH-type 

models. 

 

1. Introduction 
 

Forecasting market risk is a widely studied subject that has captured the interest of scholars due to 

its highly non-linearity and volatility. Thus, several approaches use these data for model testing. 

Generalized auto regressive conditional heteroscedasticity (GARCH) models are one of the most 

used models to study volatility. Although response to these models is generally good, they are 

unable to successfully capture extreme changes in the complete time series. Due to this 

shortcoming, one of the focuses of research has been to work on alternatives that can better 

approximate the non-linear part of the series mainly using GARCH, such as Markov Switching 

GARCH. This algorithm has been used extensively in stock markets and for market risk, because it 

is able to theoretically approximate any non-linear function with minimal error. In practice, the use 

of MSGARCH allows us to improve forecasting systems as well as forecasts from econometric 

models with excellent results. 

 Multi-period volatility forecasts feature prominently in asset pricing, folio allocation, risk-

management, and most other areas of finance where horizon measures of risk are necessary. Such 

forecasts can be constructed quite different ways. The first approach is to estimate a horizon-
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specific of the volatility, such as a weekly or monthly GARCH, that can then form direct 

predictions of volatility over the next week, month, etc. approach is to estimate a daily model and 

then iterate forward the daily to obtain weekly or monthly predictions. The forecasting literature 

refers first approach as "direct" and the second as "iterated". A third method mixed-data sampling 

(MIDAS) approach introduced by [1]. A MIDAS model uses, for example, daily returns to produce 

directly multi-period volatility forecasts and can as a middle ground between the direct and the 

iterated approaches. Volatility literature (see [2]) has mostly focused regressions-based models. It 

is the purpose of this paper to introduce ideas similar to MIDAS models in GARCH-type models. 

The advantages of this are that one focuses directly on multi-period forecasts, as in the direct while 

one preserves the use of high-frequency. 

 We propose a unifying framework, based on a generic GARCH-that addresses the issue of 

volatility forecasting involving forecast a different frequency than the information set. Hence, we 

propose GARCH models that can handle volatility forecasts over the next days and use past daily 

data, or tomorrow's expected volatility using intra-daily returns. We call the class of models High 

Frequency Based Projection-Driven GARCH models as the GARCH dynamics by what we call 

HYBRID processes. HYBRID-GARCH models - nature - relate to many topics discussed in the 

extensive literature forecasting. These topics include - but are not limited to - iterated forecasting, 

temporal aggregation, weak versus semi-strong GARCH, and various estimation procedures. 

      Exchange rates are a relevant topic of study because they serve as indicators of economic 

competition between nations and also because commercial relationships between countries are 

regulated by the value of competing currencies. In the past, the value of an exchange rate was set 

by the economic authorities of each nation based on monetary policy. However, since 1971, the 

world economy has changed and currently many countries follow a regime where parities are 

determined based on the supply and demand of the foreign exchange market, making the 

exchange rate market more volatile and less predictable. Since then, forecasting the variation in 

exchange rates has been a matter of interest for the decision-making bodies of government entities, 

banks, insurers, investors or people who trade with parities. Studying these changes poses several 

challenges such as determining which variables are relevant for a given currency or which method 

is superior to another for forecasting. In this sense, the use of time series models to model 

economic variables has been broad such as Autoregressive Moving Average (ARMA)  and its 

derivatives, which include Vector Autoregressive model (VAR), the Vector Error Correction model 

(VECM), Cointegration model and Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) model. The remaining paper is organized as follows: In section 2, we present the 

econometric models. In section 3, we summarize the descriptive statistics of NSE sector. In section 

4, we present the estimation procedures. In section 5, we describe the MCS test based on the 

bootstrap simulation. In section 6, concludes. 

ARCH (Autoregressive Conditional Heteroskedasticity) and Generalized ARCH (GARCH) 

models have emerged as the most proeminent tools for estimating volatility, because they are 

adequate to capture the random movement of the financial data series. Many researchers have 

studied over time the performance of GARCH models on explaining volatility of mature stock 

markets, but only a few have tested GARCH models using daily data from Central and Eastern 

European stock markets (see, for example, [3],[4],[5],[6],[7],[8]). The focus of our paper is on 

forecasting stock market volatility in Romania, a market which has not been thoroughly 

investigated. 

Several studies results have confirmed that asymmetric GARCH-models fit better stock 

markets returns volatility for emerging CEE countries. Lupu [9] found that an EGARCH 

(Exponential GARCH) model is suitable for the logarithmic returns of the Romanian composite 

index BET-C covering the period 03/01/2002- 17/11/2005. Furthermore [10] employed different 
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asymmetric GARCH-family models (EGARCH, PGARCH, and TGARCH) using U.S. and 

Romanian daily stock return data corresponding to the period 2002-2010. They found that 

volatility estimates given by the EGARCH model exhibit generally lower forecast error and are 

therefore more accurate than the estimates given by PGARCH and TGARCH models. [11] 

examines the presence of volatility at the Karachi Stock Exchange( KSE) through the use of 

Autoregressive Conditional Heteroskedasticity(ARCH)and Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) models introduced by Engle (1982), Bollerslev (1986) 

and Nelson (1991). The empirical result confirms the presence of high volatility at Karachi Stock 

Exchange throughout the study period. The volatility was found in clustering and stochastic 

manner. The results of GARCH analysis show a random-walk behavior so market can be termed as 

very uncertain and very risky for short-term and medium-term investors.  

 

2. Material and Methods  
 

        The volatility of a stock price can be used as an indicator of the uncertainty of stock returns. In 

a financial market, volatility is measured in terms of standard deviation σ or σ2 compute variance 

from a set of observations as follow:  

1 2
( )

1 1

2
= −

− =

n
y ytn t

                                                                 (1) 

                

       here y  and ty   are the mean return and return, respectively. Return is defined to be the total 

gain or loss from an investment over a given period of time. In this paper, we compute the daily 

closing prices are as 

                         
pty = 10log( )t pt-1

                                                              (2) 

 

where pt is stock closed price at time t. Then prices are converted into logarithmic returns, ty

denotes pt  the continuously compounded daily returns of the underlying assets at time t. We 

assume that the conditional mean equation of stock return is constructed as the constant term plus 

residuals error 

                                           y = μ + ε , ε = σ zt t t t t                                                                    (3) 

                                                     

where { tz } is a sequence of independent identically distributed random variables with zero 

mean and unit variance,  is the conditional variance of   derived from mean equation, it is also 

known as current day’s variance or volatility. Larger   implies higher volatility and higher risk.  

 

2.1. Parametric models GARCH (1, 1) is written as following is  
The standard variance model for financial data is GARCH. GARCH assumes a Gaussian 

observation model and a linear transition function for the variance: the time-varying variance 
2

σt  

is linearly dependent on p previous variance values and q previous squared time series values, so 

                                                  
q p2 2 2

σ = α + α + ε + β σt j t-j i t-i0 j=1 i=1
                                                           (4) 

        Hence, GARCH (1,1) is defined as  
q p2 2 2

σ = α + α + ε + β σt j t-j i t-i0 j=1 i=1
 Where ω > 0, α ≥ 0, β 

≥ 0, α +β < 1. First, ω > 0 means that volatility cannot have a zero or negative mean. Second, the 

positive parameters α, β show that the conditional variance forecasts will increase if there is a large 
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fluctuation in returns, the model thus capturing the stylized feature of volatility clustering. Finally, 

α +β < 1 indicates the persistence of shocks to volatility will eventually fade away, which depicts 

another stylized characteristic of volatility, mean reversion.  

2.2. Exponential-GARCH (EGARCH) (1,1) is defined as following is 
A more flexible and often cited GARCH extension is Exponential GARCH (EGARCH) 

(Hamilton, 1994). The default EGARCH (p, q) model in Econometrics is of the form: t t tz =  with 

Normal innovation or Student’s t innovation distributions and 

                           
ε ε ε2 2 t-1 t-1 t-1log(σ ) = ω+βlog(σ )+ α[ - E( )]+ r( )t t-1 σ σ σt-1 t-1 t-1

                               (5) 

 where the parameter α captures the volatility clustering effect and the r measures the 

leverage effect. The conditional variance is in logarithmic form, which implies that the model has 

the following features: first, 
2

t will always be positive regardless of the sign of the parameters, 

therefore no constraints of non-negativity are needed. Second, the asymmetrical effect is not 

quadratic but exponential, if r < 0 it indicates a leverage effect. EGARCH model allows good news 

and bad news to have a different impact on volatility because the level of is included 
εt-1

σt-1

 with a 

coefficient r. 

 

2.3. MCS test based on bootstrap simulation: 
When obtaining the predicted values, we can compare it with the real Proxy variables of a 

volatility deviation size. However, the loss of function which is used to measure the prediction 

error is no consensus. The paper uses two loss functions: mean square error and mean absolute 

deviation to measure the forecasting error. It is not easy to choose the best model which is always 

the best under all loss function or all data samples. Since, [12] offers some resolution of this 

quandary, the metric for assessing the forecasts of volatility models is the Bootstrap method of 

superior predictive ability (SPA) test. But use SPA test, we must need to choose the basic model, it 

is very vital to choose it which can affect the result. In order to overcome the defects of SPA test, 

the paper use the MCS test which is a modified version of SPA test. 

 

2.4. MCS test procedure 

We define a set of models which are denoted by M = {1, . . . , m},0  

the models are indexed by i = 1, . . . ,m, and model is forecasts of 
2

t  is denoted by 
2

hi,t ,  

We rank models according to their expected loss using one of two loss functions: MSE, 

2 2 2 2 2
L(h , σ ) = (h - σ )t ti,t i,t and

2 2 2 2
L(h , σ ) = h - σt ti,t i,t . The loss differential between models i and j, is 

given by
2 2 2 2

d = L(h , σ )- L(h - σ ) i, j = 1, . . . , m, t = 1, . . . , nt ti j, t i,t j,t  The MCS is determined after 

sequentially trimming the set of candidate models, 0M . At each step, the hypothesis  

H  : E(d ) = 0, for all i, jÎM Ì Mi j, t0 0                                                  (6) 

The hypothesis, 0H , is a test for (Equal Predictive Ability) EPA over the models in M and 

if 0H  is rejected, the worst performing model is eliminated from M. The trimming ends when the 

first non-rejection occurs. The set of surviving models is the model confidence set 
*M  , By holding 

the significance level,α, fixed at each step of the MCS procedure, we construct a (1 − α)-confidence 

set, 
*M  ,for the best models in M0. However, the trimming model which is mentioned in the 

sequential inspection have a drawback. At each step in the test, we need to test the predictive 
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power of any two prediction models and calculate a test statistic. To overcome this drawback, our 

tests for EPA employ the rang statistic, RT , and the semi-quadratic statistic, 
sqT  given by  

                             
€

(d )i ji < j
T = maxR

v(d )i j Î M i j



         

2
(d )i ji<j

T =sq
var(d )i j



                                 (7) 

Where the sum is taken over the models in M, and i j
€(d )v  is an estimate of i j(d )v .Both of 

the test statistic value is larger, it means rejecting the EPA hypothesis. In fact, their distribution is 

very complicated, and the covariance structure depends on the predictive value of each prediction 

model. So, the paper uses a bootstrap simulation study to find the p-value of the two statistics. 

 

3. Data and Experimental Results   
 

The whole sample consists of 2537 daily data spanning from 4 Jan. 2010 to 16 Mar. 2023, we select 

subsample of size 2000, dated from 4 Jan. 2010 to 24 Feb. 2023, as the training set for the 

parameter’s estimation for models and the remaining sample of size 537 daily data, from 25 Feb. 

2022 to 16 Mar. 2023 is used as the test set or for out of sample forecasting. 

 
Table 1: Summary statistics of NSE 

 Descriptive statistics 

Sample  2575 Mean 9.844 

Std. dev 8.693 Skewness  0.237 

Kurtosis  -1.44 JB 243.87 

 
 

Then we need to calculate logarithmic returns   pty = 10log( )t pt-1

. Table 1 summarizes 

the descriptive statistics of NSE index throughout the whole period. Table 1 remarks that these 

facts suggest a highly competitive and volatile mark. The Skewness is 0.2371853 > 0, the positive 

skewness indicates that there is a high probability of gain in the market. The value of the Kurtosis 

is -1.444026 > 3, it suggests that the market is volatile with high probability of extreme events 

occurrences. The JB.test is 243.87 which shows that the returns deviate from normal distribution 

significantly and exhibit leptokurtic. Hence the distribution of the index is not the normal 

distribution, and it has the feature of asymmetric, zero mean and left side. 

 

Table 1: Unit Root Test of NSE 

Test Critical value  P.value  alternative hypothesis 

ADF  test 

KPSS test 

PP test 

-13.512 

0.065 

-3225.2 

0.01 

0.01 

0.01 

Stationary 

Stationary 

Stationary  
 

The table 2, reports the unit root tests of the NSE. The Augmented Dickey and Fuller-ADF 

test for the null of non – stationary. Critical value -13.512.KPSS indicates the Kwiatkowski, Phillips, 

Schmidt and shin test for the null of stationary. Critical value: 0.065915. PP. test indicates the 

Phillips-Perron test for the null of non- hypothesis. Critical value -3225.2 it means that the series yt 

is stationary time series.     

   

3.1. Detecting ARCH effects of NSE returns 

From the Fig. 1, we can see that the returns appear to fluctuate around a constant level but 
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exhibit volatility clustering. Large changes in the returns tend to cluster together, and small 

changes tend to cluster together. So, the preliminary judgment shows that the series exhibits the 

conditional heteroscedasticity. Now the paper use ARCH-LM to detect whether NSE returns have 

ARCH effects. 

According to the heteroskedasticity test ARCH, the value of F-statistic is 0.004301 and the 

probability 0.0002< 0.05, R-squared = 9.444 and Adjusted R-squared = 0.9443, the probability is 

0.0002 < 0.05, and the number of lags is 1, the test of the residuals for ARCH(1) rejects the null 

hypothesis of no conditional heteroskedasticity, so it is clear that NSE returns have ARCH effects. 

Then we can use GARCH-type models to forecast the volatility. 

 

4. Estimation result 
 

Apply the return series to the GARCH and EGARCH models with Normal innovation and 

Student’s innovation, and then we get their parameters. The estimation results and diagnosis are 

shown in Table 2 and Table 3. 

 

Figure 1. Daily return and volatility of NSE 

Table 2. Estimation results by GARCH models 

Statistics GARCH-T GARCH-N 

 Parameter St. Error        t-value            Pr(>|t|) parameter     St. Error         t-value            Pr(>|t) 

mu  -0.002 0.002  -1.104 0.020*     0.023  0.0313 -1.104 0.047*     

Omega 0.0008 0.000  4.636 0.000*** 0.004 0.025 4.636  0.025* 

alpha1 0.114 0.025               4.431 0.000*** 0.214 0.356 4.431 0.049* 

beta1 0.871 0.24                  3.596              0.000*** 0.375 0.242 3.039 0.000*** 

beta2 0.000 0.215 0.6367 0.034* 0.003 0.215 0.580           0.040* 

Information 

Criteria: 

Log Likelihood : 476.0085 Log Likelihood : 485.2743 

Akaile             -0.840 -0.740 

Bayes      -0.790  -0.696 

Note. *,**, and *** denotes level of significant at 10%, 5% and 1%, respectively. 

 

Table 3. Estimation results by EGARCH models 

Statistics EGARCH-T EGARCH-N 

 Parameter     St. Error        t-value             Pr(>|t|) Parameter      St. Error t-value Pr(>|t|) 

mu  0.036 0.038 0.966 0.333 0.836 0.166 5.027 0.000 

ar1 0.982 0.003 2.482 0.000 0.999  0.000 1.512 0.000 

ma1 -0.746 0.038 -2 .379 0.000 -0.820 0.019 -4.319               0.000 

Omega -0.027 0.004 -5.884  0.000 -0.012  0.001       -9.364               0.000  

alpha1 0.002 0.023 0.101 0.919 0.106 0.021        4.980                0.000 

alpha2 0.060 0.031 1.942 0.052 -0.030 0.015        -1.951               0.050 

beta1 0.998 0.001 7.618 0.000 0.997 0.000           1.4290              0.000 

gamma1 0.493 0.069 7.136 0.000 0.342 0.050         6.799 0.000 

gamma2 -0.231 0.074 -3.096 0.001 -0.272  0.049 -5.539 0.000 
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Information 

Criteria: 

Log Likelihood : 476.0085 Log Likelihood : 485.2743 

Akaike                             -0.840 -0.740 

Bayes -0.790  -0.696 

Note. *,**, and *** denotes level of significant at 10%, 5% and 1%, respectively. 

 

Among the parametric models, with Normal innovation and Student’s t innovation, In 

GARCH-N, the value of LL is 419.724, AIC is -1.989 and BIC -1.063, each parameter is significant. 

In EGARCH-N, the value of LL is 485.2743, AIC is −0.740 and BIC is −0.863, each parameter is 

significant. In GARCH-T, the value of LL is 403.819, AIC is -0.929 and BIC is -0.863, each parameter 

is significant. In EGARCH-T, the value of μ, α1  is not significant. In EGARCH-N, the value of α1  

also are not significantly. Hence according to highest value of Log Likelihood (LL) and smallest 

value of AIC and BIC. Hence the series best fit is EGARCH-N. 

 

4.1. The MCS test results 

          The Table 4 shows the MCS test results by using bootstrap simulation at 1000 times. Figures 

in the table represent MCS test p-value. When greater, p-value indicates that they more reject the 

null hypothesis. The paper sets a basis p-value which is p = 0.1. If p-value is less than 0.1, then the 

volatility forecasting model is poor. So, the model will be removed in the MCS inspection process. 

Conversely, it survives in MCS. 

 
Table 4. MCS test results of realized volatility models 

 MSE MAD  
Model 

RT  sqT  RT  sqT  

GARCH-N 0.161 0.185 0.136 0.042 

GARCH-T 0.211 0.231 0.191 0.152 

EGARCH-N 0.035 0.052 0.064 0.042 

EGARCH-T 0.021 0.035 0.033 0.053 

 
 So, the model will be removed in the MCS inspection process. Conversely, it survives in MCS. 

According to the table, when the loss function is the MSE, the p-values of in the GARCH-N and 

GARCH-T models are more than 0.1. But other 2 models are less than 0.01. It means that 

EGARCH-N, EGARCH-T, volatility forecasting models will be removed in the MCS inspection 

process. Considering the loss function for MAD, we find that only the p-value of GARCH-T model 

is more than 0.1. Hence using the loss function of MSE and MAD, we find that the value of TR  Tsq

in the GARCH-T model are more than 0.1. Therefore, GARCH-T model is the best one. 

 

V. Conclusion 

 
The study uses NSE prices to predict daily volatility changes in the stock market. First, we 

use descriptive statistics to show that the index series has the feature of asymmetric zero mean and 

left side, it is not the normal distributed. Second, we consider Dickey-Fuller Unit Root Tests to find 

the series is stationary time series. And then using ARCH-Lagrange multiplier to detect NSE 

returns have ARCH effects. In this study, NSE index volatility models are estimated with Normal 

innovation and Student’s t innovation distributions to find the effect of distribution selection on 

forecasting performance of the models. According to highest value of Log likelihood (LL) and 

smallest value of AIC and BIC, the result suggests that the GARCH model with Student’s t 

innovation enables more accurate forecasting than EGARCH.  

The paper use MCS test to find the best model. Under the evaluation criteria of loss functions 
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MSE and MAD, the empirical results show that GARCH-T model is the best model for forecasting 

volatility. Although the prediction’s results represent that GATCH-T model is not so good, it can 

be used as an assistant tool in financial applications. The study has also multiple significantly: first, 

the stock index futures in favor of investors to make rational investment decisions in advance. 

Second, it helps to improve risk management of institutional and individual investors. Finally, 

there is conducive to the development of relevant policies and regulatory authorities to improve 

supervision. 
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Abstract

This paper introduces a novel two - parameter continuous distribution. This distribution is derived from
the mixture of the Exponential, Weibull and Ailamujia distributions. The derived distribution is named
as "Idz distribution". The probability density function of the Idz distribution is derived and some of
its plots are presented. It can be observed that the Idz distribution can generate right tailed unimodal,
non-monotonic decreasing and exponential shapes. Further, survival and hazard functions of the Idz
distribution are derived. It reveals that the hazard function of the Idz distribution can accommodate
three types of failure rate behaviors, namely, non-monotonic constant, right tailed unimodal and non-
monotonic decreasing. Moreover, some properties of Idz distribution such as moments, mean, variance,
moment generating function, order statistics and maximum likelihood estimates are derived. In addition,
the proposed distribution is applied into a Breast Cancer data and compare with the Exponentiated
Generalized Inverse Rayleigh distribution, the Ailamujia Inverted Weibull distribution and the New
Extended Exponentiated Weibull distribution. Result shows that the Idz distribution gives better estimates
as compared with the said distributions for a given dataset.

Keywords: Weibull distribution, Exponential distribution, Ailamujia distribution.

1. Introduction

Non-negative continuous probability distribution is important in modelling real lifetime data,
specifically, in the field of reliability, engineering and biomedical science. There are popular
classical limetime distributions such as the exponential, log-normal, log-logistic, Weibull, Rayleigh
and the Frechet distributions. But due to the complexity of the lifetime data, the classical
distributions need to generalize or extend in order to cater the complex behaviour of the data. One
method for extending the classical distribution is by using the generated family of distributions
like the Exponentiated - G family of distributions [7], Marshall-Orkin - G family of distributions
[11], Beta - G family of distributions [4] and other existing families of distributions.

Another method of facing the complex behaviour of the lifetime data is by using mixture
distribution of two or more probability distribution functions. A random variable X is assumed
to have a mixture of two or more probability distribution functions f1(x), f2(x), f3(x),..., fn(x) if
its probability density function m(x) = ∑n

i=1 ai fi(x) with ai ∈ [0, 1] and ∑n
i=1 ai = 1. Years ago,

several distributions have been derived from the mixing distributions, for example, the Aradhana
distribution [13] which is a mixtures of the Gamma (2, θ), the Gamma (3, θ) and the Exponential
(θ) distributions with corresponding mixing proportions 2θ

θ2+2θ+2 , 2
θ2+2θ+2 and θ2

θ2+2θ+2 . Other
identified mixture distributions such as the Rama distribution [14], Darna distribution [15],
Shanker distribution [12], Gharaibeh distribution [6], Alzoubi distribution [2] and Benrabia
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distribution [3].
In this paper, the concept of mixture distribution is used to propose a two - parameter

distribution named as Idz distribution which is a mixture of three distributions, namely, the
Weibull (λ, β) distribution [17], exponential (λ) distribution [8] and the Ailamujia (λ) distribution

[10] with mixing proportions λβ2

λβ2+λβ+1 , λβ
λβ2+λβ+1 and 1

λβ2+λβ+1 , respectively. Other goals of the
paper are the following: (i) to derive some properties of Idz distribution such as its moments,
moment generating function, mean, variance, order statistics and maximum likelihood estimates
of the proposed distribution parameters; and (ii) to apply the proposed distribution into a real
dataset and compare with the Exponentiated Generalized Inverse Rayleigh, the Ailamujia Inverted
Weibull and the New Extended Exponentiated Weibull distributions.

This paper is arranged as follows: Idz distribution is introduced in section 2. In section 3,
some properties of Idz distribution are derived. Order Statistics of the ID distribution is given in
section 4 while the maximum likelihood estimates of the ID parameters is presented in section
5. In section 6, the application of Idz distribution is illustrated . Some concluding remarks is
presented in section 7.

2. Idz Distribution

This section presents the definition of the Idz distribution and its special cases with the illustration
of its pdf.

A random variable X is said to have an Idz distribution (ID) with parameters λ and β if the
probability density function of X is given by

f (x, λ, β) =
λ2e−λx[β + 4xe−λx + β3xβ−1eλ(x−xβ)]

λβ2 + λβ + 1
, (1)

where x ≥ 0, λ > 0 and β > 0. The corresponding cumulative distribution function of X is given
by

F(x, λ, β) = 1 − λβe−λx + (2λx + 1) e−2λx + λβ2e−λxβ

λβ2 + λβ + 1
. (2)

(a) (b)

(c) (d)

Figure 1: pdf plots of Idz distribution (ID) for different sets of values of the parameters: (a) λ = 2.5 and varying
values of β; (b) λ = 0.5 and varying values of β; (c) β = 0.5 and varying values of λ ; and (d) β = 2.5 and
varying values of λ.

Figure 1 shows some possible density shapes of the ID distribution and it reveals that the
pdf of the ID distribution can generate right tailed unimodal, non-monotonic decreasing and
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exponential shapes.

Special Cases of Idz distribution

1. If β = 1 then ID reduces to

f (x, λ) =
2λ2e−λx(1 + 2xe−λx)

2λ + 1
. (3)

2. If λ = 1 then ID reduces to

f (x, β) =
e−x[β + 4xe−x + β3xβ−1ex−xβ

]

β2 + β + 1
. (4)

3. If β = 2 then ID reduces to

f (x, λ) =
2λ2e−λx[1 + 2xe−λx + 4xeλ(x−x2)]

6λ + 1
. (5)

We name the probability distribution functions (pdf) (3), (4) and (5) as the pdfs of the Edz
distribution, Laks distribution and Alds distribution, respectively.

3. Statistical Properties

In this section, we derive some properties of Idz distribution such as its moments, mean, variance,
moment generating function, survival fuction and hazard function.

3.1. Moments

Theorem 1. Let X be a random variable that follows an Idz distribution then the rth moment of
X denoted by µ′

r is given by

µ′
r =

λ1−r

λβ2 + λβ + 1

βΓ(r + 1) +
Γ(r + 2)

λ2r +
β2Γ

(
r
β + 1

)
λ

r
β −r

 , (6)

where r = 1, 2, 3, ..., n and Γ(·) is a gamma function.

Proof. The rth moment of X is defined by

µ′
r = E[Xr]

=
∫ ∞

−∞
xr f (x)dx

=
∫ ∞

0
xr λ2e−λx[β + 4xe−λx + β3xβ−1eλ(x−xβ)]

λβ2 + λβ + 1
dx

=
λ2

λβ2 + λβ + 1

(
β
∫ ∞

0
xre−λxdx + 4

∫ ∞

0
xr+1e−2λxdx + β3

∫ ∞

0
xrxβ−1e−λxβ

dx
)

=
λ2

λβ2 + λβ + 1

[
β

(
1

λr+1

)
Γ(r + 1) + 4

(
1

2λ

)r+2
Γ(r + 2) + β3

(
1

βλ
r
β +1

)
Γ
(

r
β
+ 1
)]

=
λ1−r

λβ2 + λβ + 1

βΓ(r + 1) +
Γ(r + 2)

λ2r +
β2Γ

(
r
β + 1

)
λ

r
β −r

 .

■
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Corollary 1. Let X be a random variable with moment given in equation (6) then the mean µ and
variance σ2 of X are, respectively, given by

µ =
1
c

[
βΓ(2) +

Γ(3)
2λ

+ β2λ
β−1

β Γ
(

1
β
+ 1
)]

and

σ2 =
1
c

λ−1

βΓ(3) +
Γ(4)
4λ

+
β2Γ

(
2
β + 1

)
λ

2
β −2

− 1
c

βΓ(2) +
Γ(3)
2λ

+
β2Γ

(
1
β + 1

)
λ

1−β
β

2 ,

where c = λβ2 + λβ + 1.

Proof. The mean of X is derived when r = 1 in (6). Hence,

µ =
1
c

[
βΓ(2) +

Γ(3)
2λ

+ β2λ
β−1

β Γ
(

1
β
+ 1
)]

,

where c = λβ2 + λβ + 1. Next, the variance of X denoted by σ2 can be computed as

σ2 = µ′
2 − (µ′

1)
2.

Now, the 2nd raw moment µ′
2 of X is obtained by setting r = 2 in equation (6). It follows that

µ′
2 =

λ−1

c

βΓ(3) +
Γ(4)
4λ

+
β2Γ

(
2
β + 1

)
λ

2
β −2

 .

Therefore, the variance σ2 of X is

σ2 =
λ−1

c

βΓ(3) +
Γ(4)
4λ

+
β2Γ

(
2
β + 1

)
λ

2
β −2

−
{

1
c

[
βΓ(2) +

Γ(3)
2λ

+ β2λ
β−1

β Γ
(

1
β
+ 1
)]}2

=
1
c

λ−1

βΓ(3) +
Γ(4)
4λ

+
β2Γ

(
2
β + 1

)
λ

2
β −2

− 1
c

βΓ(2) +
Γ(3)
2λ

+
β2Γ

(
1
β + 1

)
λ

1−β
β

2 .

■

3.2. Moment Generating Function

Theorem 2. Let X be a random variable that follows an Idz distribution then the moment
generating function of X is given by

Mx(t) =
∞

∑
r=0

trλ1−r

(λβ2 + λβ + 1) r!

βΓ(r + 1) +
Γ(r + 2)

λ2r +
β2Γ

(
r
β + 1

)
λ

r
β −r

,

where t ∈ R.

Proof. The moment generating function of X is defined by

MX(t) = E(etX) =
∫ ∞

−∞
etx fX(x)dx.

Using equation (1), we have

MX(t) =
∫ ∞

0
etx f (x, λ, β)dx.
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Recall that etx = ∑∞
r=0

tr

r! xr. Then,

MX(t) =
∫ ∞

0

∞

∑
r=0

tr

r!
xr f (x, λ, β)dx =

∞

∑
r=0

tr

r!

∫ ∞

0
xr f (x, λ, β)dx =

∞

∑
r=0

tr

r!
µ′

r.

Using equation (6) and hence,

Mx(t) =
∞

∑
r=0

trλ1−r

(λβ2 + λβ + 1) r!

βΓ(r + 1) +
Γ(r + 2)

λ2r +
β2Γ

(
r
β + 1

)
λ

r
β −r

,

where t ∈ R. ■

3.3. Reliability Analysis

Let X be a random variable with cdf (2) and pdf (1) then the survival S(x, λ, β) and hazard
h(x, λ, β) functions of X are respectively, given by

S(x, λ, β) =
λβe−λx + (2λx + 1) e−2λx + λβ2e−λxβ

λβ2 + λβ + 1
, x ≥ 0, λ > 0, β > 0

and

h(x, λ, β) =
λ2[β + 4xe−λx + β3xβ−1eλ(x−xβ)]

λβ + (2λx + 1) e−λx + λβ2e−λ(x−xβ)
.

(a) (b)

(c) (d)

Figure 2: hf plots of Idz distribution (ID) for different sets of values of the parameters: (a) λ = 2.5 and varying values
of β; (b) λ = 0.5 and varying values of β; (c) β = 0.5 and varying values of λ ; and (d) β = 2.5 and
varying values of λ.

Figure 2 presents some possible shapes of the hazard function of the ID distribution and it
reveals that the hazard function of the ID distribution can accommodate non-monotonic constant,
right tailed unimodal and non-monotonic decreasing behaviors.

4. Order Statistics

Let X(1), X(2),..., X(n) be the order statistics of a random sample X1, X2,..., Xn drawn from the
continuous population with probability density function (pdf) fX(x) and cumulative distribution
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function FX(x), then the pdf of rth order statistics X(r) is given by

fX(r)
(x) =

n!
(r − 1)!(n − r)!

fX(x)[FX(x)]r−1[1 − FX(x)]n−r. (7)

The pdf of rth order statistics X(r) of the ID distribution is derived by inserting (2) and (1) into (7)
and is

fX(r)
(x, λ, β) =

n!λ2e−λx[β + 4xe−λx + β3xβ−1eλ(x−xβ)]

(r − 1)!(n − r)! (λβ2 + λβ + 1)[
1 − λβe−λx + (2λx + 1) e−2λx + λβ2e−λxβ

λβ2 + λβ + 1

]r−1

[
λβe−λx + (2λx + 1) e−2λx + λβ2e−λxβ

λβ2 + λβ + 1

]n−r

. (8)

The pdf of the smallest or 1st order statistics of the ID distribution is obtained by setting r = 1 in
equation (8) and is

fX(1)
(x, λ, β) =

n!λ2e−λx[β + 4xe−λx + β3xβ−1eλ(x−xβ)]

(n − 1)! (λβ2 + λβ + 1)n[
λβe−λx + (2λx + 1) e−2λx + λβ2e−λxβ

]n−1
.

If r = n then the pdf of the nth or largest order statistics of ID distribution is given by

fX(n)
(x, λ, β) =

n!λ2e−λx[β + 4xe−λx + β3xβ−1eλ(x−xβ)]

(n − 1)! (λβ2 + λβ + 1)[
1 − λβe−λx + (2λx + 1) e−2λx + λβ2e−λxβ

λβ2 + λβ + 1

]n−1

.

5. Maximum Likelihood Estimation

Let X1, X2,..., Xn be a random sample of size n from Idz distribution (ID). Then the likelihood
function of ID is given by

L =
n

∏
i=1

λ2e−λxi [β + 4xie−λxi + β3xβ−1
i eλ(xi−xβ

i )]

λβ2 + λβ + 1
. (9)

Then, the log-likelihood function of ID is

l = 2n log(λ)− λ
n

∑
i=1

xi +
n

∑
i=1

log[β − 4xie−λxi + β3xβ−1
i eλ(xi−xβ

i )]− n log(λβ2 + λβ + 1). (10)

The partial derivatives of (10) with respect to parameters β and λ are presented as follow:

∂l
∂β

=
n

∑
i=1

1 + β3xβ−1
i

[
3
β +

(
1 − λxβ

i

)
log(xi)

]
eλ
(

xi−xβ
i

)

β − 4xie−λxi + β3xβ−1
i eλ

(
xi−xβ

i

) − nλ(2β + 1)
λβ2 + λβ + 1

; (11)

and

∂l
∂λ

=
2n
λ

−
n

∑
i=1

xi +
n

∑
i=1

β3xβ−1
i

(
xi − xβ

i

)
eλ
(

xi−xβ
i

)
− xie−λxi

β − 4xie−λxi + β3xβ−1
i eλ

(
xi−xβ

i

) − nβ(β + 1)
λβ2 + λβ + 1

. (12)

The maximum likelihood estimates of the parameters β and λ of Idz distribution can be computed
by setting equations (11) and (12) equal to zero. This can be done by using any numerical method
like the Newton-Raphson iterative method.
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6. Application

This section presents the application of Idz distribution to a medical dataset. In this application,
we use breast cancer data from Lee [9]. This dataset is taken from a large hospital in a period
from 1929 to 1938 and it represents the survival times of 121 patients with breast cancer. The
observations are given as follow: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0,
11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4,
20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0,
37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0,
45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0,
61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0,
109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0 and 154.0.

Fatima [5] used the above dataset for their proposed model named as the Exponentiated
Generalized Inverse Rayleigh distribution (EGIR) and compared with the Exponentiated Inverse
Rayleigh (EIR), the Generalized Inverse Rayleigh (GIR) and the Inverse Rayleigh (IR) distributions.
They found that the EGIR had the best fit for the Breast Cancer dataset.

Here, we compare the proposed distribution with the EGIR, the Ailamujia Inverted Weibull
distribution (AIW) [16] and the New Extended Exponentiated Weibull distribution (NEEW) [1].
The probability density functions of EGIR, AIW and NEEW are given as follow:

fEGIR(x) = 2
αγ

λ2x3 e−(λx)−2
(

1 − e−(λx)−2
)α−1 [

1 −
(

1 − e−(λx)−2
)α]γ−1

, x > 0, α, λ, γ > 0;

fAIW(x) = 4αθ2x−2α−1e−2θx−α
, x > 0, θ, α > 0;

and

fNEEW(x) =
αλxλ−1e−αxλ

(1 − e−αxλ
)

[
eθ(1−eαxλ

)(2 + θ − θe−αxλ
) + 2

]
eθ + 1

, x ≥ 0, α, λ, θ > 0.

In this application, we use the following diagnostics statistics: (i) Akaike Information Criterion
(AIC); (ii) Bayesian Information Criterion (BIC); (iii) Kolmogorov - Smirnov (K-S); (iv) Cramer
- von Mises (W∗); and (v) Anderson - Darling (A). Furthermore, a package "fitdistrplus" in R
software is also used. In addition, the results are shown in the following tables. Table 1 presents
the maximum likelihood estimates of the fitted models for Breast Cancer dataset while Table 2
indicates that Idz distribution gives better estimate for the given dataset since it has a smallest
values of some diagnostics statistics as compared with the EGIR, AIW and NEEW distributions.
Also, same result is noticed from Figure 3.

Table 1: ML estimates of the fitted models using different distributions

Distribution α̂ β̂ θ̂ λ̂ γ̂

ID 1.68335961 0.02058629
EGIR 0.3331558 5986.6441628 2239.7157204
AIW 0.5159137 4.8684926

NEEW 0.1099727 1.7984615 0.7582980
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Table 2: Some diagnostic statistics of the fitted models using different distributions

Distribution AIC BIC K − S A W∗

ID 1164.159 1169.751 0.05341806 0.51366194 0.06178559
EGIR 1279.365 1287.753 0.2180867 9.7828973 1.5945699
AIW 1250.729 1256.321 0.1723414 7.0402261 1.1024897

NEEW 1167.178 1175.565 0.07776119 0.45898966 0.06532455

Figure 3: Estimated pdf of the fitted models for the Breast Cancer dataset.

7. Concluding Remarks

This paper derives a novel two - parameter continuous distribution called as Idz distribution. Some
properties of Idz distribution such as moments, mean, variance, moment generating function,
survival function, hazard function and order statistics were derived. Maximum likelihood
method was used to estimate the parameters of Idz distribution. The applicability of the
proposed distribution was examined by applying into a breast cancer data and compared with
the Exponentiated Generalized Inverse Rayleigh (EGIR), the Ailamujia Inverted Weibull (AIW)
and the New Extended Exponentiated Weibull (NEEW) distributions. It was found that the Idz
distribution provides better fit for the given dataset as compared with the said distributions.
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Abstract

In this paper, a quantitative research survey is carried out on discrete-time queueing models. In
real-life scenarios, the idea of discrete-time queues has taken on a new meaning. This survey mainly
focuses on the unfolding of discrete-time queueing models in recent decades, challenges implied on them
and their influence in various fields. The ultimate goal of this paper is to provide enough information to
all the researchers and analysts who toil in this field and wish to know more about these models. A few
open issues and intriguing future research paths has been discussed.

Keywords: Discrete-time queues, Geo/G/1 and GI/Geo/1 queues, Geo/G/1 retrial queues,
Discrete-time retrial queues.

1. Introduction

Waiting in a queue has been a part of our day-to-day lives because, as a process, it has various
significant purposes. Queueing theory analyses the entire structure of waiting in a queue. Erlang
was a pioneer in the discipline of queueing theory in the early 20th century, and now it has
become a well-established research area in the past few decades. Initially, the research was done
with the succor of continuous-time (CT) queueing models. Yet in the contemporary period, there
has been a recognisable fluctuation from CT to discrete-time (DT) queueing systems (QS) and
their counterparts as well. This change is primarily because of the noticeable relevance of DT
queues in the fields of communication and computer systems, where the digital information
is disseminated in the mould of fixed-length "packets," each of which requires a fixed-length
transmission time known as slots. Events are constrained to take place during these slots. A DT
queue, for example, might accept and serve at most one packet during a slot. Multiple events
may occur during each slot on a network-wide basis. Herwig Bruneel [25] analysed a general
single-server DT queueing model and its major principal performance measures were procured
with the succor of a unifying analysis. Also, numerous fundamental relationships among the
main quantitative measurements of a QS in general were derived, which was mainly helpful
in studying the queueing phenomena, especially in the discipline of computerized messaging
sectors. Many researchers then referred to books by Bruneel and Kim [24], Woodward [94], Takagi
[72] and Miyazawa and Takagi [60], which helped them learn more about DT queueing models.

Due to network complexity and an expanding customer base, consumer behaviour and
the retry phenomenon may have had a substantial impact on how well a system performs.
Consumers who show up, discover the service completely occupied and hesitant to stay, choose
to leave momentarily, but return at a subsequent period. Before retrying to occupy a server, such
consumers are supposed to be in orbit, a virtual waiting room. Retrial queues (RQ) are frequently
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used to mimic these situations. A basic RQ model is presented in Fig. 1.

Figure 1: A basic retrial queueing system

To illustrate, if a consumer attempts to contact a call centre for assistance while the agents
are busy, the consumers are likely to call at an inconvenient hour. This modelling is utilised in
assorted fields, including call centres, cellular networks, and LAN. Meanwhile, in the recent two
decades, researchers have begun to focus on DT retrial models. Rein Nobel [63] provided a high-
level overview of several models for discrete-time late arrival retrial queues and demonstrated
the importance of striking a balance between customers’ active and passive roles in order to
achieve optimal performance. Various DT retrial QS were investigated, and many results were
established, which have been used in solving numerous issues in telecommunication networks,
telephone switching sectors, computer systems, and networks in the past two decades.

A brief survey of various DT queueing models and DT retrial queueing models have been
conducted. Readers who practice in these fields will find it quite useful. The remaining portion
of this paper has been organised in the following manner: In Section 2, DT queueing models
are reviewed. Section 3 presents the work on DT Geo/G/1 and GI/Geo/1 queues. DT Geo/G/1
retrial queues have been examined in Section 4. Section 5 reviews some of the other DT retrial
queueing models. Section 6 details the difficulties in using the DT concepts, while Section 7
describes the methods employed in DT queueing models. Few distinct applications of DT queues
are addressed in Section 8. Section 9 presents a few recent advancements in DT queues. Finally,
the future scope and some open problems and the concluding remarks of the review are offered
in Sections 10 and 11 respectively.

2. Discrete-time Queueing Models

In queueing theory, initially appearing only in scientific literature, DT queueing models in
recent decades have been well-proportioned. It has largely been driven by potential applications
that utilize slotted time. By analysing the proficiency of DT multi-server queues with priorities,
K. Laevens and H. Bruneel [41] derived basic formulae to reckon some key metrics like variances,
mean values, and tail probabilities. Dieter Fiems et al. [30] proved that DT single-server queue
subjugated to server interruptions was able to reckon the proficiency of low-priority traffic in a
two-priority Head-of-Line scheduling discipline. The issues of channel errors on wireless ATM
multiplexers were investigated by Mehmet Ali et al. [59] by analysing the functioning of the
DT queue with countless buffer. Dieter Fiems et al.[31] again studied a discrete GI/G/1 QS
subjugated to server interruptions generated by a renewal process and further showed that this
system can reckon the proficiency of a multi-class priority scheduling system. M. Mehmet Ali and
X. Song [58] examined DT priority queues with correlated arrivals (CA) (i.e.with binary Markov
sources) and derived a closed form of expression for the probability generating function (PGF) of
queue length and finally extended the results to multiple priority queues. Alfa [4] presented an
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informative work about utilizing a matrix-analytic approach to study various queues in DT.
Jinting Wang et al. [84] analysed the DT correlated on-off source QS with negative customers

(NC) and demonstrated that this system can simulate loss in the radio interface of HSDPA
systems. Also, they came to the conclusion that the impression of NC should be acknowledged in
pursuance of the wireless communication networks in an error-prone transmission environment.
I. Atencia and A. V. Pechinkin [20] studied a DT QS with optional LCFS priority discipline and
examined most of its principal characteristics. An MMBP/Geo/1 DT queue has been scrutinized
by Jinting Wang et al. [85] with correlated positive and NC arrivals and its mean buffer content
and the stationary probabilities have been determined. Ultimately, they concluded that when
time slots with persistent size are defined, this queue will be supportive in analysing the radio
link layer of HSDPA systems. I. Atencia [11] after analysing a DT QS with the customers arriving
where the system follows LCFS discipline or to enroll in the queue where servers may fail and
yet be repaired, proposed that the study of the server breakdowns (SB) can be brought into a
realistic approach by reckoning with the modifications in the renewal times. With the succor of
the Markovian approach, A. Senthil Vadivu et al. [80] scrutinized a DT infinite capacity QS with
an on-off source and service time with two states of server and NC. There has been a rise in the
popularity of non-deterministic service times in DT models because of the more intricate and
erratic service mechanisms in today’s communications networks. As a result, Peixia Gao et al. [34]
devised a generating-functions method for analyzing a DT multi-server QS with geometrically
distributed service times. In the analysis of a finite buffer DT multiple working vacation queue
with impatient clients and congestion-dependent service rates, Jyothsna et al. [37] determined
the steady-state system length distributions via a matrix technique and give a recursive solution.
From the recursive solution of the DT queue, the corresponding CT queue is further calculated.

Recently, F. Verdonck et al. [82] focused on a DT multi-server QS with varying server
availability by introducing server interruptions and a CA process. They also assumed the QS to
alternate between two distinct dynamic characteristics having a random cluster of servers and
determined the allocation of the system content at several observation points. The repercussions
of assorted forms of variance on the setup behavior was also investigated and finally, they
concluded that this paradigm is suitable for many real-life applications. Jens Baetens et al. [22]
investigated a variable-capacity DT two-class batch-service queue in which all clients wait in
a single queue and are served in the order in which they arrived and moreover clients of the
same class are the only ones the server can service, hence the number of clients in a batch is
equal to the number of successive clients of the same class. Using a supplementary variable
technique (SVT), the repercussions of disasters on the processing of a DT single-server QS were
studied by Mustafa Demircioglu et al. [29] and they concluded that the mean system content
reduces with increasing irregularity for the QS with disasters. In order to evoke retransmission in
communication packet networks, Kempa [38] has studied the time-dependent queue behavior (i.e.,
transient state) of a DT queue with a finite buffer and feedback. Larisa and Andrey [45] studied a
discrete-time queueing system with a regenerative input flow and heterogeneous servers that may
have independent interruptions, where the subsequent moments of breakdowns are specified by
a renewal mechanism and are independent of the system state.

Alfa [5] introduced a new way to analyze the GI/G/1/K system via the matrix-analytical
method. The novelties stem from the Markov-based depiction of the arrival and service processes,
at least one of which is based on the elapsed time approach, and the unusual organization of the
state space. The packet loss distribution of a finite buffer single server queue subject to a DT batch
Markovian arrival process (DBMAP) and a DT Markovian service process (DMSP)is investigated
through a matrix-analytical method by Yung-Chung Wang et al. [90]. Using statistical measures,
we will analyze the sporadic behavior of packet loss in terms of both loss period and loss distance.
Using a DT GI[X]/G[Y]/1 queueing model, Alfa and He [6] investigated an algorithmic strategy
based on the matrix-analytic approach. They also introduced and studied the Markov chain that
underlies the ageing of service-receiving clients.
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3. Discrete-time Geo/G/1 and GI/Geo/1 Queueing Models

Zhe George Zhang and Naishuo Tian [101] scrutinized the DT Geo/G/1 system with collective
adjustable vacations and showed that the optimal control issue of vacation policies can be dis-
cussed with the succor of this paradigm. Again, a DT GI/Geo/1 queue with server vacations
was analysed by Naishuo Tian and Zhe George Zhang [74]. The stationary distributions and the
waiting times of the customers were procured by using the matrix-geometric method (MGM).
Also, this model can be stretched to a vacation with a finite maximum value that is quite widely
distributed. Ji-Hong Li and Nai-Shuo Tian [49] examined a DT GI/Geo/1 queue with working
vacations (WV) and vacation interruption and showed that this QS can be helpful in modelling
few realistic obstacles in communication networks and computers. Ji-Hong Li et al.[50] extended
a GI/M/1 queue with WV to a DT GI/Geo/1 queue with umpteen WV, which was further
discussed using MGM. For negative binomial distributions, the closed property of conditional
probability was also determined and verified.

A DT Geo[X]/G/1 queue with an uncertain server and collective adaptive delayed vacation
policies was scrutinized by Yinghui Tang et al. [73] where the transient and steady-state distri-
butions of the queue length were obtained and the stochastic decomposition (SD) property of
the steady-state queue length was demonstrated. It is feasible to obtain a connection amidst the
generating functions of steady-state queue length at departure epoch and an arbitrary epoch.The
study of reliability problems became significant since the QS is unreliable. Furthermore, some
key metrics were employed to assess the repercussions of diverse specifications on numerous
functioning characteristics. A DT Geo/G/1 QS with a random threshold policy, namely a (p, N)
policy, was analysed by Tsung-Yin Wang and Jau-Chuan Ke [91] and with reference to p and N,
they conferred the convex combination of the QS characteristics. A randomised vacation policy
was pioneered by Tsung-Yin Wang et al. [92] for a DT Geo/G/1 QS that takes at most J vacations.
Using the generating function technique, few quantitative measurements of the QS were derived,
and this model has great relevance in practical systems as well. The estimation of M/G/1 CT QS
with D-policy from a DT Geo/G/1 system with D-policy was probed by Se Won Lee et al. [46].
Moreover, the repercussions of threshold D were also studied. Doo Ho Lee and Won Seok Yang
[47] were the first ones to look into the conjuction of the disaster phenomenon and the N-policy
under DT on Geo/G/1 QS and concluded that this could be useful to minimise power consump-
tion in wireless sensor networks (WSNs). At the same time it also help network engineers to
design and operate WSNs. Renbin Liu and Zhaohui Deng [53] examined a DT N-policy Geo/G/1
QS with repairable server and feedback, and the steady-state system size distribution (SSD) was
derived by renewal process theory and probability analysis whose application is applied in a
network access proxy system.

Jianjun Li and Liwei Liu [48] scrutinized a DT Geo/G/1 QS with vacations in a random
environment and obtained the PGF using SVT and showed that it can be estimated to M/G/1 QS.
A more realistic approach to real life problems was offered by the DT Geo/G/1/ QS with changes
in vacation times, which was analysed by Ivan Atencia [12]. A state that occurs in a computer
network centre with virus infection was investigated and compared with a DT Geo/G/1 QS with
single vacation and disaster arrivals by S. Jeyakumar and P. Gunasekaran [35] and also the PGF
of the queue length and the mean queue length of the QS were derived, which have proven
to be valuable in a variety of real-world settings. Shaojun Lan and Yinghui Tang [42] were the
initial ones to analyse the DT Geo/G/1 QS Bernoulli feedback, modified multiple vacations, and
N-policy. The customers waiting time has been reduced, the system’s queue length has been
controlled, moreover the switching costs of the QS has been largely economised by this QS. Finally,
to investigate the cost optimization problem, a cost structure was also established. F. P. Barbhuiya
and U. C. Gupta [23] studied a DT batch arrival GI/Geo/1 QS with numerous WV. Using SVT and
the shift operator method, the closed-form expressions of steady-state system content distribution
have been derived, and the impression of assorted specification on the functionality of the QS
have also been conferred. A repairable DT Geo/G/1 QS with tragedies and working breakdown
was analysed by Shan Gao et al. [33] which contributes to a more practical service schedule for
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the growth of DT queues with tragedies and breakdowns. Futhermore, a manufacturing system
can be feasibly modelled using this. Recently, Vaishnawi [81] looked at the accuracy of a DT
Geo[X]/G/1 recurrent model with Bernoulli feedback and two distinct forms of vacations.

3.1. Discrete Markovian Queueing models

Bara Kim and Jeongsim Kim [40] investigated a DT batch Markovian arrival process (D −
BMAP)/G/1 RQ and found a light-tailed asymptotic distribution for the amount of consumers
at embedded epochs. Jesus R. Artalejo and Quan-Lin Li [9] introduced an efficient generalisation
of the DT Markovian arrival process (D-MAP) by analysing an RQ that follows a new discrete
block state-dependent arrival (D-BSDA) distribution. Also, this model aids in creating more
sophisticated models. Matrix analysis and the embedded Markov chain technique were used to
determine the joint state probabilities at different epochs (arbitrary, pre-arrival, and departure) in
Yu and Alfa [99] study of a DT single-server finite-buffer queue with a Markovian arrival process.
Nandi and Samanta [86] provided a consolidated view of a system subject to shocks following the
rules of a D-MAP, a stochastic model in which the arrival timings of events rely on one another.
The results of this research can be used to real-world issues that manufacturing engineers
encounter, improving a certain class of stochastic systems in which the shock magnitudes are
isolated. By re-blocking the transition probability matrix in its desired GI/G/1 structure with
rectangular boundary blocks, Das and Samanta [27] was able to determine the queue-length
distribution at pre-arrival epochs for both the late arrival system with delayed access and the
early arrival system of an GI[X]/DMSP(a,b)/1 queue using the RG-factorization method based
on censoring technique. Similarly, Samanta and Das [68] examined DBMAP/DBMSP/1 queue
by re-blocking the transition probability matrix to the desired M/G/1 structure via a censoring
methodology-based UL-type RG-factorization approach in order to determine the stationary
probability vectors at an external observer’s epoch for a fixed-size batch service queue via a
matrix-analytic approach. Samanta and Nandi [69] examines a single-server, infinite-buffer
queueing system in which customers arrive in varying-sized groups in DT. The pre-arrival
epoch probabilities are calculated using the UL-type RG-factorization for the Toeplitz type block-
structured Markov chain, which is based on the censoring method. A renewal-input N-policy
DT GI/D − MSP/1/∞ QS was again studied by Samanta and Nandi [70]. The pre-arrival epoch
duration distribution of the system is calculated using a matrix-geometric approach. We use
the Markov renewal theory to calculate the random epoch distribution of system lengths. The
optimal value of N is found by minimizing the expected cost function, which is assumed to be
linear in terms of units of time.

3.2. Discrete-time Geo/Geo/1 Queueing Models

The enhancement of queueing theory on NC and disasters to the DT Geo/Geo/1 QS was
probed by Ivan Atencia and P. Moreno [19] and some of the key metrics of the QS have been
found along with its ergodicity condition. A restricted source DT Geo/Geo/1 QS with disasters
was analysed by F. Jolai et al. [36] that has been used to design an email contact center plus with
the succor of disasters, a clearing performance in a real-life source system can also be modelled.
R. Sudhesh and R. Sebasthi Priya [71] investigated a DT Geo/Geo/1 QS with repair, feedback,
and disaster. Busy-period distribution was determined in reference to Catalan numbers, and
quantitative measurements like reliability and availability were determined, on top of some key
metrics for steady and transient state system-size probabilities. Lee and Ke [52] constructed
and studies the steady-state solutions of a Geo/Geo/1 queue under the QBD (quasi-birth-death)
model, which accounts for server failures and reboots. In this case, the QBD model is level-
independent up to a fixed threshold but level-dependent indefinitely above that. Cramer’s rule,
which goes along with QR factorization, can be used to solve the level-dependent structure of
the suggested model. For this reason, they first calculated the states’ probabilities using the
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finite level-independent technique, and then switch to the algorithm of infinite level-dependent
QBDs. Artalejo et al. [8] investigated the performance metrics of a Geo/Geo/c type DT queue
with geometric repeated attempts and provided many algorithmic approaches for their efficient
computation.

4. Discrete-time Geo/G/1 Retrial Queueing Models

Tao Yang and Hui Li [97] were the pioneer to peruse the steady-state distribution of the DT
Geo/G/1 RQ and showed that the SD law holds for this QS. Also, they proved that this QS
can be ultilized to imprecise the CT M/G/1 RQ. Not only that, but also, this model has great
applications in communication and computer systems where consumer retrials are a conventional
phenomenon. A DT Geo1, Geo2/G/1 RQ with two kind of calls was studied by B. D. Choi and
J. W. Kim [26], which seems to have applicability in telephone switching systems and mobile
cellular systems. The association between a CT M/G/1 RQ with a Bernoulli schedule and its DT
counterpart was established by Hui Li and Tao Yang [51] by analysing a DT Geo/G/1 RQ with a
Bernoulli schedule. I. Atencia and P.Moreno [18] studied a DT Geo[X]/GH/1 RQ with Bernoulli
feedback and demonstrated that this QS is sometimes utilized to approximate M[X]/GH/1 RQ
with Bernoulli feedback, plus they derived various quantitative measurements of the QS. An
estimation of M/G/1 RQ with general retrial times was again given by I. Atencia and P.Moreno
[15] by examining a DT Geo/G/1 RQ with general retrial times. With impatient consumers and a
server prone to startup problems, Aboul-Hassan et al. [3] dealt with a Geo/G/1 RQ in DT. To
simplify the computation of significant distributions, recursive formulas were constructed. To
learn how impatience impacts system performance generally, a simulation study has also been
performed constructed.

R. Artalejo et al. [7] scrutinized a DT Geo[X]/G/1 RQ with batch arrivals where individual
customers have admission control, plus the underlying Markov chain was also studied, and finally
they concluded by approximating CT M/G/1 RQ with batch arrivals and admission control.
I. Atencia and P.Moreno [16] investigated a DT Geo/G/1 RQ with starting failures once more.
They devised two SD laws (SDL) and found the measure of proximity betwixt the SSDs. Also,
they proved that this QS can be estimated to M/G/1 RQ with starting failures. I. Atencia and
P. Moreno [17] studied a DT Geo/G/1 RQ with a breakdown and repairs again, which led to
even more findings of DT RQ with active breakdowns. A stochastic distribution law was also
derived and perhaps they even pioneered the idea of generalized service time. Jinting Wang and
Qing Zhao [89] investigated a DT Geo/G/1 RQ contingent on starting fiaso and second optional
service. Formulae for the stationary distribution along with two SDL were procured and few
statistical paradigm were presented. The amount of consumers within the system’s generating
functions and in the orbit had been determined along with two SDLs and limits for the distance
between the SSDs were given by Jinting Wang and Qing Zhao [88] by analysing a DT Geo/G/1
RQ with general retrial time and starting failures. A. Aboul-Hassan et al. [2] scrutinized a DT
Geo/G/1 RQ with general retrial time and balking customers. They proved that as a fusion of
two unrelated random variables, the SSD can be indicated. Also, a set of recursive formulae were
obtained, and finally, they concluded that when the QS is considerably charged, the repercussions
of balking is more apparent, whereas it has a slight impact on busy probability and the average
system magnitude for light loads. Bara Kim and Jeongsim Kim [39] examined a DT Geo/G/1
RQ and they found the tail of the queue size distribution and proved that it was asymptotically
geometric and also showed that it has been inconsistent with the CT M/G/1 retrial queue. A DT
Geo[X]/G/1 RQ with general retrial times had been scrutinized by Abdel-Karim Aboul-Hassan et
al. [1] where the generating functions of the system state distribution plus the orbit magnitude
and SSD were derived. Also, a study was conducted on the consequences of bulk arrivals and
general retrial times on the stability region, and they concluded that the upper bound of the
stability region rapidly reduces by boosting the average bulk size (i.e)., the whole mean batch
size has a significant issue on the QS’s functioning.

The repercussions of periodic customers was studied by I. Atencia et al. [13] by analysing
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a DT Geo/G/1 RQ with recurrent customers, that has various relevance on computers and
communication networks. This QS is also affiliated to the vacation queue. Using Discrete Fourier
transform inversion, the probability mass function of the QS was also obtained. I. Atencia et al.
[14] scrutinized a DT Geo/G/1 RQ with Bernoulli feedback, starting failures, and general retrial
times in order to obtain various analytical expressions and moreover, CT QS can be roughly
estimated by this model. Also, this QS can be asigned to assorted versions of server interruptions.
Jinbiao Wu et al. [95] studied a DT Geo/G/1 RQ with anticipatory restart and crash, and its
ergodicity constraint was derived by analysing the Markov chain. Using the generating function
technique, the system state distribution plus the orbit magnitude and SSD was obtained, and
furthermore, the SD property was also investigated. Shan Gao et al. [32] examined a repairable
Geo/G/1 RQ with Bernoulli feedback, recurrent cunsumers, and general retrial times. Using
SVT, the Markov chain was studied, and some queueing measures were estimated by solving the
Kolmogrov equations. Numerical illustrations were also done to prove the sensitiveness of the
QS performance.

A DT Geo1, GeoX
2 /G1, G2/1 RQ with two grouping of consumers and feedback was scrutinized

by Zaiming Liu and Shan Gao [54] where they studied the Markov chain and procured some
quantitative measurements of the QS in the steady-state. Also, the connection between DT
system and its continuous counterpart was investigated. A DT Geo/G/1 RQ with favoured,
intolerant consumers and general retrial times was analysed by Jinbiao Wu et al. [96]. The system
state distribution plus the orbit size and SSD were determined. Apart from the SD property,
its equivalent CT QS were also investigated. A DT Geo/G/1 RQ with general retrial time and
Bernoulli vacation was probed by Jinting Wang [83] and he obtained its ergodicity condition
along with its two SDL. This paradigm is mainly presented to enhance the view of DT scenarios
with vacations from retrial queueing theory.

Yue Dequan and Zhang Feng [100] studied a DT Geo/G/1 RQ with general retrial times and
a J-vacation policy. The generating abilities of the amount of consumers in the orbit and in the
QS, along with the SD outcome for the system size, were procured, and finally, the end result of
some frameworks of the QS were also investigated. A DT Geo/G/1 RQ with J vacations where
the server subjugated to two contrasting kinds of breakdowns was examined by Feng Zhang
and Zhifeng Zhu [102] and a few quantitative measurements of the QS were derived. Further
numerical analysis was carried out to look into the implications of vacations and collapse of
the system. Feng Zhang and Zhifeng Zhu [103] studied DT Geo/G/1 RQ with two contrasting
kinds of vacations, the non-exhaustive random vacation policy and the exhaustive single vacation
policy, and illustrated that the system magnitude has a solely unique SD property. Finally, the
repercussions of assorted parameters on few of the main key metrics of the system were presented.

Sheweta Upadhyaya [76] shown how to obtain expressions for system size, orbit size, and other
critical metrics using the generating function methodology and other key metrics by analysing
a DT Geo[X]/G/1 RQ using Bernoulli feedback. The congestion issues endured frequently in
various digital systems can be feasibly cleared up with the succor of this paradigm, and it
was also proved that this model assit network developers in detaching its system size into two
queueing models, one with lacking retrials and the other being the conventional DT RQ. Lately,
Shweta Upadhyaya [77] employed the generating function approach and the SVT to analyze a DT
Geo[X]/G/1 RQ with Bernoulli feedback and a starting failure, and then she deployed the particle
swarm optimisation technique to achieve the optimal values for a few critical system parameters,
for instance the total system cost, by minimizing it. The initial work on a DT Geo/G/1 RQ with
non-pre-emptive priority, general retrial times, working vacations, and vacation disruption was
probed by Shaojun Lan and Yinghui Tang [43]. The closed-form expressions for the PGF of the
stationary distribution of diverse server states, the amount of consumers in the priority queue,
in the orbit, and in the QS were found using SVT and the generating function method, and this
model can be executed in many real-life congestion scenarios. Again, the pioneer work on a
DT Geo/G/1 RQ with probabilistic pre-emptive priority, balking consumers, initial defects, and
substitutions of repair times was reported by Shaojun Lan and Yinghui Tang [44] where they
introduced the concept of replacements. Some quantitative measurements were obtained, and a
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cost structure for determining the optimal replacement probability while minimising the system
cost was also established.

Pavai Madheswari et al. [55] investigated a general service RQ with recurring clients that
operated on a single server in DT and as a special case of the suggested model, several of the
current results are generated. Malik and Upadhyaya [57] have recently discussed a DT Geo/G/1
RQ, with retrials, preferred and impatient units, single vacations, and state-dependent policies
and again they [56] focused on studying a DT Geo/G/1 RQ in which, in order to ensure client
satisfaction and enhance service quality, the server offers both essential and discretionary services.
Shweta Upadhyaya [78] discussed about the periodic customers, high-priority customers, and
impatient customers make up the arrival stream in an unreliable DT Geo/G/1 RQ with Bernoulli
feedback. Recent research conducted by Rajasudha et al. [67] compares the performance of a
batch arrival single server DT RQ under three distinct vacation regimes.

4.1. Discrete-time Geo/Geo/1 Retrial Queueing Models

An investigation on DT Geo/Geo/1 RQ with a server subjugated to failures and a general
server lifetime was probed by P. Moreno [61] and diverse quantitative measurements were also
estimated. Finally, some numerical analyses were presented. Jin-Ting Wang and Peng Zhang [87]
extended the evaluation of retrial queueing theory on NC to DT retrial G QS by analysing a DT
Geo/Geo/1 retrial G-queue with server breakdowns and repairs. Using G-queues, the reliability
modelling was widen to the DT scenario for the maiden time using this model. The marginal
functions of the orbit size, besides the ergodicity condition had also been determined. Sheweta
Upadhyaya’s [75] study on a DT Geo[X]/Geo/1 RQ with a functioning vacation plan, aided to
design numerous realistic as well as economic gridlock circumstances. Using the MGM, diverse
quantitative measurements were obtained. Futhermore, with the succor of a straightforward
delve technique gleaned from a heuristic method, joint optimal values were also determined.
Also, this model is feasibly regarded as an economical tool. An elementary and basic study on DT
Geo/Geo/1 retrial G-queues with server breakdown and repair was probed by A.Azhagappan
et al. [21] where they acquired the model’s ergodicity condition by analysing the Markov chain
underlying the QS.

5. Other Discrete-time Retrial Queueing Models

R. Artalejo and M. J. Lopez-Herrero [10] conducted a contemplation on DT multi-server RQ
with a defined population. In the study conducted by Rein Nobel and Pilar Moreno [64] on a DT
single-server QS with retrials, they calculated ergodicity conditions, the vestigial service epoch,
and average orbit size, besides some quantitative measurements. A distinct aspect to handle the
combinations of various conditions like positive arrival, negative arrival, server breakdowns, and
customer retrial was given by Jinting Wang and Peng Zhang [93] by analysing a DT single-server
RQ with NC and an unreliable server. A DT inventory system with retrial demands that tends to
access in aggrement with a Bernoulli process where the inventory has been refilled in accordance
with (s, S) policy was probed by C. Periyasamy [65]. A DT GI/G/1 RQ with Bernoulli retrials and
time restraint vacation was examined by Jin-ting Wang et al. [86] which further, with the aid of
the Markov-based methodology, feasibly be analysed by a level-dependent quasi-birth-and-death
(LDQBD) method that enhances the system’s computability with a technical perspective. Recently,
Upadhyaya et al. [79] analysed a DT bulk-entry recurrent- RQ to examine problems with traffic
management and control in ATM networks. First, they used the generating function approach
to obtain the required performance indices, and then they utilized an adaptive neuro-fuzzy
interface system (ANFIS) to get a rough approximation of all the estimated findings. Finally, they
used computational analysis of the model, involving particle swarm optimisation and genetic
algorithm techniques, to make the system more cost-effective. Rajasudha and Arumuganathan
[66] adopted a hybrid method to simulate and analyze the behavior of a system infected with
malware. Malware is filtered out and system performance is enhanced due to a likelihood
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estimation. To account for the peculiarities of the damaged system, a DT single-server RQ with
two kinds of arrivals is addressed. Xiaoyun Yu et al. [98] introduced an innovative k-out-of-n : G
repairable QS that incorporates Bernoulli shocks and retrial into it under the DT assumption as a
mechanism of redundancy to considerably increase the system’s reliability. Additionally,the DT
Markov processes theory is used to assess the system’s performance.

6. Challenges on using Discrete Time Queueing models

While many of the current contributions focus on single arrival DT systems, there are various
practical scenarios where batch arrival DT systems can exist but have received little attention. An
additional difficulty in DT queues is posed by working vacation polices. Moreover, multi-stage
DT systems have not been explored due to the focus on single-stage DT systems until this point.
Traditional queuing systems are well-known and widely utilized, but their assumptions are often
too far-fetched for comfort, therefore fuzzy queues are employed to reflect real scenarios instead.
Fuzzy queues are more accurate and realistic than the usual queue method. Fuzzy parameter
analysis of DT queues is a growing problem.

7. Techniques employed in Discrete-time models

Many authors have presented new methods for analyzing queueing models that take DT into
consideration. They employ strategies such as supplementary variable technique, generating
function method, matrix-geometric method (matrix analytic method), quasi-birth-and-death
process, quasi Newton method, Markov based approach, UL-type RG-factorization, (s,S) policy,
Newton–Raphson’s method, method of exclusion, discrete Fourier transform method, partial
repeat-after-interruption service strategy, truncation method, transform technique, routine method,
direct search method based on heuristic approach to obtain the optimal cost, numerical inversion
and maximum entropy techniques, theory of difference equation, renewal process theory, proba-
bilistic analysis method, embedded Markov chain technique, etc. In the study of DT queueing
systems, most of the parameters we consider display a stochastic process, therefore the variables
we denote arrival rate, retrial rate, service rate, balking rate, reneging rate, breakdown rate, repair
rate, vacation rate, feedback rate as random variables.

8. Applications of Discrete-time Queueing models

Several DT queueing models can be extrapolated from practical situations. The creators of these
DT queueing models can use the resulting overview to direct their decision-making. This section
provides a brief summary of some application-focused research articles that have addressed DT
queueing models.

Wireless sensor networks: While digital communication protocols are managed by a “ slot,”which
is equivalent to a time interval, DT queues are better suited for this analysis. Since data packets
in wireless sensor networks are vulnerable to being lost due to external attacks or shocks, DT
queues are applied to a power-saving technique. Understanding the appropriate operation of
the N-policy for power saving in a wireless sensor networks is realistically vital when dealing
with sensor nodes under unstable network connections. Since the N-policy lessens the amount of
initial power used to toggle a radio server in sensor nodes between its busy and idle states, it is
an effective power-saving method. Thus, Doo and Won [47] analysed a DT queue with N-policy
and applied in wireless sensor networks.
Wireless ATM multiplexer: Mehmet Ali et al. [59] looked into how wireless ATM is affected by
channel faults. Their efforts will be useful for a cell in a wireless ATM network that includes a
base station and a number of users on mobile devices. Since the wireless access point acts as
an interface to the wired ATM network, the latter can now serve mobile users. While all the
mobile users are assumed to experience the same channel condition at any one time, the uplink
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wireless channel can be modeled as a DT queueing system fed by On-Off sources and served by a
two-state Markovian server, and then analyzed accordingly.
Wireless local communication: In order to put a number on how much of an impact multimedia
services have over a wireless local communications channel with Rayleigh fading, a DBMAP
queuing model [90] is used. In this case, a wireless link with sporadic defects and a high data
rate is used, with the time axis slotted. Error processes of varying granularity can be modeled
using this framework. It can monitor problems at multiple levels, including the bit and packet
levels, among others.
Email contact center: The DT model may find use in the increasingly common incoming email
contact center. Users from various offices, faculties, and research centers send and receive
emails over the network using the office automation system to communicate with potential
customers.Everything from requesting a channel to sending and receiving data happens at regular
intervals. Thus, with these systems, sending emails, preprocessing, and processing requests are
all done in a defined amount of time. While this may be fine for email, it is blatantly unacceptable
for incoming phone calls. This is why a DT model of the system is more appropriate here [[36],
[92]].
Computer and communication systems: Like bits and bytes, the inter-arrival times of packets and their
forward transmission periods are the elementary units of time in computer and communication
systems (such as time division multiple access (TDMA)).DT queueing activities can only happen
at regularly spaced epochs, which has provided a strong impetus for studying this phenomenon.
Furthermore, DT queues can be used to approximate the continuous systems, but not the other
way around, making them a better fit for defining the behaviors of data communication and
computer networks [42], [74].

9. Advancements in Discrete Time Queueing models

Once a model has been built and is ready to go into operation, the first thing a manufacturer or
analyst will want to know is whether or not it is cost effective. This highlights the importance of
’cost analysis’ in determining a model’s sufficiency. As a result, system designers are able to make
more informed choices and reduce potential dangers. In view of this, many authors [[79],[77],
[81], [66]] employing methods such as particle swarm optimization, artificial bee colony, genetic
algorithm, etc., have attained the cost optimization for their queueing models.
Combining the strengths of neural networks and fuzzy logic systems, an adaptive neuro fuzzy
inference system (ANFIS) is a form of artificial intelligence. Like a neural network, ANFIS can
learn and make judgments based on data, but it can also deal with fuzzy or incomplete data in the
same way as a fuzzy logic system can. Because of this, ANFIS is particularly well-suited for uses
where data is volatile or unreliable. Recently, many studies [[79],[81]] have been conducted re-
cently comparing the numerical findings of retry QS to those obtained using neuro-fuzzy methods.

10. Future Scope

The focus of research has shifted in recent years from continuous-time queues to their DT ana-
logues. Applications of DT queues in environments where time is slotted are mostly responsible
for this change. However, there have been many studies and publications in the field of DT
models, there are still many questions that need to be answered. This section primarily suggests
some potential avenues for future study.
Many potential extensions on the DT models with heterogeneous service have not been inves-
tigated because previous research mostly focused on single service phase DT models. These
unanswered questions may, in part, be attributable to the “ curse of dimensionality, ”which
results from the complexity of the underlying systems. One promising area of study is the
formation of approximations to these intricate DT models. Moreover, few works have been done
on quorum queues, so investigating DT quorum queues is a promising area for future study.
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Additionally, the transient behaviour of DT queues will be an intriguing aspect to investigate as
well. Further, complex vacation policies, such as hybrid vacation, coxian vacation, and Bernoulli
working vacation, are yet another path to explore while analyzing DT queues.

11. Conclusion

A comprehensive investigation on DT queueing models and DT retrial queueing models has been
conducted in this paper. The primary purpose of this review is to access the current level of
understanding in the discipline of DT queueing models, identify key authors, research papers,
theories and conclusions, and identify the knowledge gaps in this field. The applications of
these QS are widely applied in our day-to-day life, precisely in the field of communication and
computer systems, where time is slotted. The ideas affiliated to the DT Geo/G/1 QS and retrial
QS scrutinized in several research papers have been synthesized. Distinct techniques and various
challenges involved in DT queues are discussed. Further, recent advancements in DT queues
are also presented. Thus, a diverse collection of literature has been reviewed, with appropriate
references mentioned.
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Abstract 

 

This study explores the concept of residual entropy as an alternative approach to traditional entropy 

measures. The field of information theory, built upon Shannon's entropy, has been instrumental in 

understanding the dynamics of systems. However, existing literature has recognized the limitations of 

applying traditional entropy measures to systems that have already been in existence for a certain 

duration. This study delves into the concept of residual entropy, acknowledging the need for a more 

suitable approach for such systems. Specifically, we investigate the characteristics of residual entropy 

using a quantile-based framework. By deriving the quantile residual entropy function for various lifetime 

models, we gain insights into the reordering and ageing phenomena captured by the quantile version of 

the residual entropy equation. Our findings contribute to an enhanced understanding of residual entropy 

and provide a novel perspective on analyzing and interpreting the behavior of established systems. 

 

Keywords: Shannon entropy, Residual entropy, Quantile function, Residual entropy. 

 

 

1. Introduction 
 

Physicists first created the idea of entropy in the backdrop of the equilibrium thermodynamics, which 

was then broadened with the creation of statistical mechanics. Claude Shannon devised a mathematical 

notion called entropy to describe the stochastic nature of missing data in phone-line transmissions [19]. 

According to the concept of differential entropy for a continuous random variable X having density 

functions 𝑓𝑋(𝑥) is given by 

𝐻(𝑋) = − ∫ 𝑓𝑋(𝑥) log 𝑓𝑋(𝑥)𝑑𝑥
∞

0
     (1) 

In order to generalize the Shannon entropy evaluation, Mathi and Haubold [12] created a new 

generalized entropy evaluation linked to a random variable  𝑋 having pdf 𝑓(𝑥),  is expressed as 

372

mailto:javid.dar@sitpune.edu.in
mailto:younis.bat@islamicuniversity.edu.in
mailto:shahidt@sitpune.edu.in
mailto:sarfarajs@sitpune.edu.in
mailto:aafaq7741@gmail.com
mailto:6masmariam7@gmail.com


J. G. Dar, M. Y. Bhat, S. Tamboli,  

S. Sarfaraj, A. A. Rather, M. Mohiuddin, S. A. Dar 

QUANTILE RESIDUAL ENTROPY FOR SOME LIFE TIME … 

RT&A, No 4 (76) 

Volume 18, December 2023 

 

 𝑀𝛼(𝑋) =
1

𝛼−1
(∫ [𝑓(𝑥)]2−𝛼𝑑𝑥 − 1

∞

−∞
), 0 < 𝛼 < 2, 𝛼 ≠ 1    (2) 

When 𝛼 → 1  (2) goes to the Shannon entropy measure defined in (1). 

One feature of (2), as described in [11] and [20], is that combining the maximal entropy concept with 

normalization and power limitations prompts the widely recognized route model [12]. It should be 

highlighted that the route model incorporates several well-known statistical distributions as special 

instances.  

The date is frequently abbreviated in reliability as well as life evaluation, thus equation (1) isn't 

an acceptable metric in such cases. Thus, if there is data about the present age, that may be utilized for 

determining its degree of unpredictability, Shannon's entropy is inapplicable. Ebrahimi [7] proposes a 

more realistic method that takes ageing into consideration and is characterized as  

𝐻(𝑋; 𝑡) = − ∫
𝑓(𝑥)

 𝐹(𝑡)
log

𝑓(𝑥)

 𝐹(𝑡)

∞

𝑡
𝑑𝑥      (3) 

where �̅�(𝑡) is the survival function. For 𝑡 = 0, (3) reduces to (1) 

The remainder of the Mathai-Haubold (Dar and Al-Zahrani, [5]) entropy functional can be expressed 

for a positive random parameter X, which represents the lifespan of a unit at time t. It is given by 

equation (4) 

𝑀𝛼(𝑋; 𝑡) =
1

𝛼−1
{∫

𝑓2−𝛼(𝑥)

𝐹2−𝛼(𝑡)
𝑑𝑥 −

∞

𝑡
1} , 0 < 𝛼 < 2, 𝛼 ≠ 1    (4) 

Any theoretical studies and implementations that utilize the aforementioned metrics depend upon the 

distribution function, however they may not be appropriate in cases when the distributions aren’t 

analytically tractable. A different technique to investigate is to employ quantile functions, which are 

specified by 

𝑄(𝑢) = 𝐹−1(𝑢) = 𝑖𝑛𝑓{𝑥/𝐹(𝑥) ≥ 𝑢}, 0 ≤ 𝑢 ≤ 1     (5) 

Gilchrist [9] has presented an alternative to the distribution function in statistical data analysis and 

modeling known as the quantile function (QF). QF is often favored since it provides a straightforward 

analysis with less influence from extreme observations. To learn more about the properties and 

usefulness of QF in identifying models, Nair and Sankaran [14], Sunoj et al [17], and related sources 

offer detailed studies. Researchers have become increasingly interested in using quantile-based entropy 

measures as an alternative approach to measuring the uncertainty of a random variable. These 

measures possess unique properties compared to the distribution function approach. Sunoj and 

Sankaran [17] have recently explored the quantile version of Shannon entropy and its residual form as  

𝐻 = ∫ log 𝑞(𝑝) 𝑑𝑝
1

0
      (6) 

and 

𝐻(𝑢) = 𝐻(𝑋; 𝑄(𝑢)) = log(1 − 𝑢) +
1

1−𝑢
∫ log 𝑞(𝑝)𝑑𝑝

1

𝑢
    (7) 

respectively, where the quantile density function 𝑞(𝑢) =
𝑑𝑄(𝑢)

𝑑𝑢
 can be defined by 𝑓𝑄(𝑢) = 𝑓(𝑄(𝑢)) and 

Using these definitions, equation (8) is expressed as, 

𝑞(𝑢)𝑓(𝑄(𝑢)) = 1      (8) 

Further, Nanda et.al. [13] introduced quantile based Renyi’s entropy function and study properties and 

applications of the proposed measure.     

In this paper, we introduce a novel quantile-based version of the generalized residual entropy 

function and examine its key properties. We first demonstrate that the proposed measure provides a 

unique determination of the quantile distribution functions and derive an entropy function for specific 

quintile functions that lack an explicit form for distribution functions. Additionally, we define ordering 

and aging properties based on the quantile residual entropy function and analyze their characteristics. 

Lastly, we present a characterization of certain lifetime models that are valuable in analyzing lifetime 

data. 

This paper is organized as follows. Section 2 outlines the development of our new quantile-

based residual entropy measure and explores its properties. Section 3 delves into the aging and 
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ordering properties of the quantile-based residual entropy. Finally, Section 4 presents a set of 

characterization theorems based on the quantile residual entropy measure. 

 

2. Quantile based M-H Residual Entropy 
 

From equation (5), we can see that for a continuous distribution function F, the composite function 

F(Q(u)) is equal to u, represented as FQ(u). We can define the density quantile function as fQ(u) = f(Q(u)) 

and the quantile density function as 𝑞(𝑢) = 𝑄′(𝑢) where the prime notation indicates differentiation. 

Equation (4) and (8) together yield the expression for the quantile version of the M-H residual entropy. 

𝑀𝛼(𝑋; 𝑄(𝑢)) =
1

𝛼−1
{

∫ (𝑓𝑄(𝑝))
2−𝛼

𝑞(𝑝)𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1} , 0 < 𝛼 < 2, 𝛼 ≠ 1   (9) 

𝑀𝛼(𝑋; 𝑄(𝑢))      =
1

𝛼−1
{

∫ 𝑞𝛼−1(𝑝)𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1}     (10) 

The expression (10) is known as the quantile M-H residual entropy, which quantifies the average level 

of uncertainty in the conditional density with respect to predicting an outcome of X up until the 100 (1-

u)% point of the distribution. Following theorem shows the uniqueness of quantile version of residual 

entropy. 

Theorem 2.1: Show that the quantile version of   residual entropy determines the underlying 

distribution uniquely. 

Proof:  Differentiating (10) with respect to 𝑢, we get   

(𝑞(𝑢))
𝛼−1

= (1 − 𝑢)1−𝛼 [
(2 − 𝛼){(𝛼 − 1)𝑀𝛼(𝑋; 𝑄(𝑢)) + 1}

−(1 − 𝑢)(𝛼 − 1)𝑀𝛼
′ (𝑋; 𝑄(𝑢))

]   (11) 

The equation establishes a clear connection between the quantile density function q(u) and 

𝑀𝛼(𝑋; 𝑄(𝑢)), which shows that quantile version of M-H  residual entropy determine the underlying 

distribution uniquely. The next two theorems gives the bounds of 𝑀𝛼(𝑋; 𝑄(𝑢)). The proof follows by 

using (10). 

Theorem 2.2: If  𝑀𝛼(𝑋; 𝑄(𝑢)) is increasing 𝑢, then 

𝑞(𝑢) ≤ (≥)
1

1−𝑢
[(𝛼 − 2){(𝛼 − 1)𝑀𝛼(𝑋; 𝑄(𝑢)) + 1}]

1

1−𝛼 𝑓𝑜𝑟 0 < 𝛼 < 1 (1 < 𝛼 < 2)  (12) 

If  𝑀𝛼(𝑋; 𝑄(𝑢)) is deccreasing 𝑢, then 

𝑞(𝑢) ≥ (≤)
1

1−𝑢
[(𝛼 − 2){(𝛼 − 1)𝑀𝛼(𝑋; 𝑄(𝑢)) + 1}]

1

1−𝛼 𝑓𝑜𝑟 0 < 𝛼 < 1(1 < 𝛼 < 2)   (13) 

In the following section, we will derive the quantile version of the residual entropy for several lifetime 

models.  

 

2.1 Govindarajulu’s Distribution 
 

Firstly, we will consider Govindarajulu's distribution, for which the quantile function and quantile 

density function are given by: 

𝑄(𝑢) = 𝑎{(𝑏 + 1)𝑢𝑏 − 𝑏𝑢𝑏+1} and 𝑞(𝑢) = 𝑎𝑏(𝑏 + 1)(1 − 𝑢)𝑢𝑏−1, 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

Quantile based residual M-H Entropy of  𝑟𝑡ℎ  for Govindarajulu distribution as 

𝑀𝛼(𝑋; 𝑄(𝑢)) =
1

𝛼−1
{

(𝑎𝑏)𝛼−1(𝑏+1)𝛼−1𝛽𝑢((𝑏−1)(𝛼−1)+1;𝛼)

(1−𝑢)𝛼−1 − 1}    (14) 

where 𝛽𝑢(𝑎; 𝑏) is an incomplete beta function. 

 

2.2 Uniform Distribution 

 
𝑄(𝑢) = 𝑎 + (𝑏 − 𝑎)𝑢 and 𝑞(𝑢) = (𝑏 − 𝑎), 0 ≤ 𝑢 ≤ 1; 𝑎 < 𝑏. 
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𝑀𝛼(𝑋; 𝑄(𝑢)) =
1

𝛼−1
{(𝑏 − 𝑎)𝛼−1(1 − 𝑢)𝛼−1 − 1}     (15) 

 

2.3 Pareto-I Distribution 

 

𝑄(𝑢) = 𝑏{(1 − 𝑢)−1
𝑎⁄ }  and 𝑞(𝑢) =

𝑏

𝑎
{(1 − 𝑢)−(1+

1

𝑎
)
} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{(

𝑏

𝑎
)

𝛼−1 𝑎(1−𝑢)
1
𝑎(1−𝛼)

𝑎(2−𝛼)+(1−𝛼)
− 1}     (16) 

 

2.4 Generalized Pareto Distribution 

 

𝑄(𝑢) =
𝑏

𝑎
{(1 − 𝑢)−𝑎

𝑎+1⁄ − 1}  and 𝑞(𝑢) =
𝑏

𝑎+1
{(1 − 𝑢)−(

𝑎

𝑎+1
+1)

} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{(

𝑏

𝑎+1
)

𝛼−1 (1+𝑎)(1−𝑢)
𝑎

𝑎+1(1−𝛼)

(1+𝑎)(2−𝛼)+𝑎(1−𝛼)
− 1}      (17) 

 

2.5 Re-Scaled Beta Distribution 
 

𝑄(𝑢) = 𝑅{1 − (1 − 𝑢)
1

𝑐⁄ }  and 𝑞(𝑢) =
𝑅

𝑐
{(1 − 𝑢)

1

𝑐
−1} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{(

𝑅

𝑐
)

𝛼−1 𝑐(1−𝑢)
1
𝑐(𝛼−1)

𝑐(2−𝛼)+(𝛼−1)
− 1}     (18) 

 

2.6 Exponential distribution 
 

𝑄(𝑢) = −
log(1−𝑢)

𝜆
  and 𝑞(𝑢) =

1

𝜆(1−𝑢)
, 0 ≤ 𝑢 ≤ 1; 𝜆 > 0. 

𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
{

1

(2−𝛼)𝜆𝛼−1 − 1}      (19) 

 

2.7 Power distribution 
 

𝑄(𝑢) = 𝑎𝑢
1

𝑐  and 𝑞(𝑢) =
𝑎

𝑐
𝑢

1

𝑐
−1, 0 ≤ 𝑢 ≤ 1; 𝜆 > 0 

𝑀𝛼(𝑋, 𝑄(𝑢)) =
1

𝛼−1
{(

𝑎

𝑐
)

𝛼−1 𝑐

𝑐(2−𝛼)+(𝛼−1)
[

1−𝑢
(2−𝛼)+

1
𝑐(𝛼−1)

(1−𝑢)2−𝛼 ] − 1}    (20) 

 

Following tables and figures gives the computations and comparison of quantile of M-H residual 

entropy respectively for different parameters for some life time distributions 
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Fig. 1: Quantile residual entropy plot of exponential distribution 

 
 

Table 1: Qunitile M-H residual entropy values exponential distribution 

 

Parameter Values 

  

0.1 0.6 0.9 1.5 3.5 9.4 

  

0.1 1.03749 0.74184 0.57922 0.26877 -0.69467 -3.28247 

0.3 1.26090 0.84087 0.64798 0.31244 -0.59119 -2.60456 

0.5 1.57836 0.96720 0.73509 0.36701 -0.49444 -2.08792 

0.7 2.04824 1.13355 0.84901 0.43757 -0.40051 -1.68863 

0.9 2.77883 1.36182 1.00437 0.53291 -0.30420 -1.37418 

1.1 3.98806 1.69344 1.22880 0.66961 -0.19719 -1.11935 

1.3 6.16792 2.21721 1.58149 0.88318 -0.06324 -0.90201 

1.5 10.64911 3.16398 2.21637 1.26599 0.13809 -0.69534 

1.7 22.43749 5.38030 3.69781 2.15666 0.55265 -0.43639 

1.9 87.14758 16.48519 11.10518 6.60281 2.48718 0.36780 
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Fig. 2: Qunitile residual entropy plot for Pareto I Distribution 

 
 

Table-2: Qunitile residual entropy values for Pareto I Distribution 

Paramet

ers 

a=0.5, b=0.3, 

u=0.5 

a=1.4, b=0.3, 

u=0.5 

a=2.5, b=0.3, 

u=0.5 

a=0.5, b=0.9, 

u=0.9 

a=0.5, b=2.3, 

u=0.9 

a=5.3, b=0.3, 

u=0.9 

  

0.1 1.759 4.442 7.484 0.655 0.281 0.133 

0.3 1.912 3.821 5.670 0.945 0.490 0.273 

0.5 2.066 3.157 4.075 1.431 0.895 0.590 

0.7 2.366 2.695 3.002 2.246 1.695 1.320 

0.9 3.029 2.445 2.322 3.813 3.472 3.194 

1.1 4.955 2.446 1.929 8.073 8.867 9.639 

1.3 30.698 2.973 1.805 63.668 84.366 108.375 

1.5 -5.453 7.239 2.217 -14.245 -22.773 -34.569 

1.7 -2.207 -3.718 21.216 -7.214 -13.912 -24.956 

1.9 -1.275 -0.988 -1.045 -5.188 -12.070 -25.585 

 

 

 
Fig. 3: Qunitile residual entropy plot for uniform distribution 
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Table-3: Qunitile residual entropy values for uniform distribution 

Paramet

ers 

a=0.9, b=2.5, 

u=0.5 

a=1.4, b=2.5, 

u=0.5 

a=2.3, b=2.5, 

u=0.5 

a=0.5, b=0.6, 

u=0.9 

a=0.5, b=0.9, 

u=0.9 

a=0.5, b=1.5, 

u=0.9 

  

0.1 -0.247 -0.792 -7.715 -68.995 -19.022 -7.715 

0.3 -0.242 -0.742 -5.731 -34.456 -12.169 -5.731 

0.5 -0.236 -0.697 -4.325 -18.000 -8.000 -4.325 

0.7 -0.231 -0.655 -3.318 -9.937 -5.422 -3.318 

0.9 -0.226 -0.616 -2.589 -5.849 -3.797 -2.589 

1.1 -0.221 -0.580 -2.057 -3.690 -2.752 -2.057 

1.3 -0.216 -0.547 -1.663 -2.496 -2.064 -1.663 

1.5 -0.211 -0.517 -1.368 -1.800 -1.600 -1.368 

1.7 -0.207 -0.489 -1.144 -1.372 -1.278 -1.144 

1.9 -0.202 -0.462 -0.971 -1.094 -1.050 -0.971 

 

The quantile residual entropy plots for the exponential, Pareto-I, and uniform distributions are shown 

in Figs. 1, 2, and 3. In the case of an exponential distribution, we have an increasing entropy plot for 

increasing values of the parameters and. For various parameter combinations, the entropy plot under 

the Pareto-I distribution exhibits both increasing and decreasing behavior. For various parameter 

values, the entropy plot under a uniform distribution also exhibits an increasing trend. Entropy values 

for exponential, Pareto-I, and uniform distributions are shown in Tables 1, 2, and 3, which depicts the 

same behavior as mentioned for graphical displays. 

 

3. Ageing and Ordering Properties of Quantile based M-H Residual Entropy 
 

These nonparametric classes of life distribution are defined using residual M-H quantile entropy. 

Definition increasing (decreasing) M-H residual quantile entropy (IMHRQE) is claimed to exist for X. 

(DMHRQE) if 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing (decreasing) in 𝑢 ≥ 0. 

Definition 3.2: If (𝑋 ≤𝑀𝐻𝑄𝐸 𝑌), then X is smaller than Y in the M-H quantile entropy order. 

𝑀𝛼
𝑋(𝑄𝑋(𝑢)) ≤ 𝑀𝛼

𝑌(𝑄𝑌(𝑢)) for all  𝑢 ∈ [0,1]    (21) 

Definition 3.3: If (𝑋 ≤𝑀𝐻𝑄𝐹𝑅 𝑌), then X is smaller than Y in the M-H quantile failure rate. 

𝐻𝑋(𝑢) ≥ 𝐻𝑌  ∀ 𝑢 ≥ 0 

The following lemma is useful in proving the results in monotonicity of 𝑀𝛼(𝑋, 𝑄(𝑢)). 

Let 𝑓(𝑢, 𝑥): 𝑅+
2 → 𝑅+ and 𝑔: 𝑅+ → 𝑅+  be any two functions, according to Lemma 3.1  Given that the 

integrals exist, if _∫ 𝑓(𝑢, 𝑥)𝑑𝑥
∞

𝑢
  is increasing and g(u) is increasing (decreasing)  in u, then 

∫ 𝑓(𝑢, 𝑥)𝑔(𝑥)𝑑𝑥
∞

𝑢
 is   increasing (decreasing) in u. 

Theorem 3.1: Consider that X is a continuous random variable that is non-negative and contains the 

quantile function 𝑄𝑋(. )  and density function 𝑞𝑋(. ).   Define 𝑌 = ∅(𝑋),  as a nonnegative, where ∅(. ) 

increasing, convex(concave) function. (i)  Because whenever 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing (decreasing) in 

u, For  1 < 𝛼 < 2, 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing (decreasing) in u as well. (ii)  Because 

whenever𝑀𝛼(𝑋, 𝑄(𝑢))   is increasing (decreasing) in u, For  0 < 𝛼 < 1, 𝑀𝛼(𝑋, 𝑄(𝑢))  is increasing 

(decreasing) in u as well. 

Proof: (i) Using the stated condition, we may infer that 𝑀𝛼(𝑋, 𝑄(𝑢) =
1

𝛼−1
[

∫ 𝑞𝑋
𝛼−1(𝑝)𝑑𝑝

1
𝑢

(1−𝑢)2−𝛼 − 1]  increasing 

(decreasing) in u and denote 𝑞𝑋(. )  as the quantile density function of X. 

According to definition 11 
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𝑀𝛼
𝑌(𝑌, 𝑄𝑌(𝑢)) =

1

𝛼−1
[

∫ 𝑞𝑌
𝛼−1(𝑝)𝑑𝑝

1
𝑢

(1−𝑢)2−𝛼 − 1]     (22) 

𝑀𝛼
𝑌(𝑌, 𝑄𝑌(𝑢)) =

1

𝛼−1
[

∫ [𝑞𝑋(𝑝)∅′(𝑄𝑋(𝑝))]
𝛼−11

𝑢

(1−𝑢)2−𝛼 − 1]    (23) 

𝑀𝛼
𝑌(𝑌, 𝑄𝑌(𝑢)) =

1

𝛼−1
[

∫ (𝑞𝑋(𝑝))
𝛼−1

(∅′(𝑄𝑋(𝑝)))𝛼−11
𝑢

(1−𝑢)2−𝛼 − 1]    (24) 

(∅′(𝑄𝑋(𝑝))𝛼−1 is increasing (decreasing) and is non-negative, therefore by Lemma 3.1, (3.1) increasing 

(decreasing), which proves (i) of the Theorem. This is because 1 < 𝛼 < 2 and ∅  is non-negative, 

increasing (decreasing), and convex(concave) function. 

Similarly, when 0 < 𝛼 < 1, (∅′(𝑄𝑋(𝑝))𝛼−1 increasing (decreasing)  in p because is increasing 

and convex. As a result, theorem (3.1) is increasing (decreasing) in u, demonstrating the second part of 

the theorem. The preceding Theorem is immediately applied as follows. 

Assume 𝑌 = 𝑋
1

𝛼, 𝛼 > 0.  as well as X has an exponential distribution with a failure rate of. The 

Weibull distribution with 𝑄(𝑢) = 𝜆−
1

𝛼(− log(1 − 𝑢))
1

𝛼.  becomes then shown in Y. In the occurrence of 

1 < 𝛼 < 2, (0 < 𝛼 < 1)., the non-negative increasing function 1 < 𝛼 < 2, (0 < 𝛼 < 1). is convex 

(concave). The Weibull distribution is hence increasing (decreasing) M-H quantile residual entropy if 

EE, according to Theorem 3.1: We now present a lemma that indicates the closure of the MHQE order 

under increasing convex transformation. 

Let 𝑓(𝑢, 𝑥): [0,1] × 𝑅+ → 𝑅+  be such that ∫ 𝑓(𝑢, 𝑥)𝑑𝑥 ≥ 0, ∀ 𝑢 ∈ [0,1]
1

𝑢
 and g(x) be any non-

negative function in x, then prove Lemma 3.2. ∫ 𝑓(𝑢, 𝑥)𝑔(𝑥)𝑑𝑥 ≥ 0, ∀ 𝑢 ∈ [0,1]
1

𝑢
 Theorem 3.2 states that 

if 𝑋 ≤𝑀𝐻𝑄𝐸 𝑌., consequently let X and Y be two random variables. Following that, for any non-negative 

increasing convex function ∅, ∅(𝑋) ≤𝑀𝐻𝑄𝐸 ∅(𝑌). 

Proof: To show that ∅(𝑋) ≤𝑀𝐻𝑄𝐸 ∅(𝑌), it is enough to show that 

1

𝛼−1
[

∫ (𝑞𝑋(𝑝))𝛼−1(∅′(∅𝑋(𝑝)))
𝛼−1

𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1] ≤
1

𝛼−1
[

∫ (𝑞𝑌(𝑝))𝛼−1(∅′(∅𝑌(𝑝)))
𝛼−1

𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1]    ∀ 𝑢 ∈ [0,1]   (25) 

Two cases arise: 

(i) Consider the case when 1 < 𝛼 < 2. Since 𝑋 ≤𝑀𝐻𝑄𝐸 𝑌, we have ∀ 𝑢 ∈ [0,1] 

1

𝛼−1
[

∫ (𝑞𝑋(𝑝))𝛼−1𝑑𝑝
1

𝑢

(1−𝑢)2−𝛼 − 1] ≤
1

𝛼−1
[

∫ (𝑞𝑌(𝑝))𝛼−11
𝑢

(1−𝑢)2−𝛼 − 1]     (26) 

 

which is equalvient to 

∫ (𝑞𝑋(𝑝))𝛼−1𝑑𝑝
1

𝑢
≤ ∫ (𝑞𝑌(𝑝))𝛼−1𝑑𝑝

1

𝑢
     (27) 

Thus, ∀ 𝑢 ∈ [0,1] 𝑞𝑋(𝑢) ≤ 𝑞𝑌(𝑢) and consequently 𝑄𝑋(𝑢) ≤ 𝑄𝑌(𝑢).  have been deduced from (27). 

Meanwhile, ∅′(∅𝑋(𝑢)) ≤ ∅′(∅𝑌(𝑢))  is caused by ∅′(. ) increasing in u because (.) is convex. Thus 

inequality (12) follows from (13) and Lemma 3.2. 

(ii)  Consider the case when 0 < 𝛼 < 1.  

The proof develops in a way that's similar to the rest of the case (i). 

Theorem 3.3: If 𝑋 ≤𝑀𝐻𝑄𝐹𝑅 𝑌, then 𝑋 ≤𝑀𝐻𝑄𝐸 𝑌.  

Proof: It is simple and hence omitted. 

 

4. Characterization Theorems 
 

The hazard quantile function, which is a simplification of the well-known hazard function and is 

valuable in reliability analysis, is a significant quantile measure. 

𝐻(𝑢) = ℎ(𝑄(𝑢)) =
𝑓𝑄(𝑢)

(1−𝑢)
=

1

(1−𝑢)𝑞(𝑢)
    (28) 

Next we state some characterization results of some well-known life time’s distribution based on 
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quantile residual entropy. 

Theorem 4.1:  Let X represent a random variable with an M-H residual entropy of the following form: 

𝑀𝛼(𝑋; 𝑄(𝑢)) =  
1

𝛼−1
{𝐶(𝐻(𝑢))

1−𝛼
− 1} , 0 < 𝛼 < 2, 𝛼 ≠ 1   (29) 

only if and when  

𝐶 =
1

2−𝛼
, then X has an exponential distribution. 

With a quantile density function, X has a Pareto distribution.  

If 𝐶 <
1

2−𝛼
. 𝑡ℎ𝑒𝑛 𝑞(𝑢) =

𝑏

𝑎
{(1 − 𝑢)−(1+

1

𝑎
)
} , 0 ≤ 𝑢 ≤ 1; 𝑎, 𝑏 > 0 

If 𝐶 >
1

2−𝛼
., X has a quantile density function of 𝑞(𝑢) =

𝑏

𝑎
{(1 − 𝑢)(

1

𝑎
−1)

} , 0 ≤ 𝑢 ≤ 1;  𝑏 > 0, 𝑎 > 1 with a 

finite range distribution. 𝑋 has uniform distribution if 𝐶 = 1. 

Proof: From section 2, the necessary part follows. 

For converse part, let (29) is true, then using (9), we have 

∫ 𝑞𝛼−1(𝑝)𝑑𝑝
1

𝑢
=  𝐶(𝐻(𝑢))

1−𝛼
(1 − 𝑢)2−𝛼     (30) 

Now using 𝐻(𝑢) =
1

(1−𝑢)𝑞(𝑢)
  in (30), subsequently separating it on both sides with regard to u, we obtain 

𝑞′(𝑢)

𝑞(𝑢)
= (

𝑐−1

𝑐𝛼−𝑐
) (

1

1−𝑢
)     (31) 

This gives 

𝑞(𝑢) = 𝐴(1 − 𝑢)
(

𝑐−1

𝑐−𝑐𝛼
)     (32) 

where A remains constant.  

As a result, if 𝐶 =
1

2−𝛼
, 𝐶 <

1

2−𝛼
, 𝐶 >

1

2−𝛼
, 𝐶 = 1, X has distributions that are respectively exponential, 

Pareto, and finite range. 

 

5. Conclusion 

 
This study has shed light on the concept of residual entropy and its relevance in the context of systems 

that have already been in existence for a specific duration. While Shannon's entropy serves as the 

foundation of information theory, the notion of residual entropy has emerged due to its inadequacy for 

such systems. By adopting a quantile-based approach, we have explored the characteristics of residual 

entropy in detail. 

Through the derivation of the quantile residual entropy function for various lifetime models, 

we have provided a novel perspective on analyzing and understanding the dynamics of established 

systems. Our investigation has further allowed us to delve into the reordering and ageing aspects 

inherent in the quantile version of the residual entropy equation. 

By extending the application of entropy measures to incorporate quantiles, we have bridged 

the gap in assessing the behavior of systems with a history of existence. This has opened up new 

avenues for research in information theory and its practical implications. 

Overall, our study emphasizes the importance of considering residual entropy based on 

quantiles, offering a more comprehensive understanding of system dynamics and enabling more 

accurate analyses in various domains. Further research can build upon these findings to explore 

additional applications and refine the quantile-based approach to residual entropy. 
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Abstract 

In this article, we  develops optimal sample size for acceptance number (zero and one) for single and 

double sampling plans by fixing consumer’s risk and test completion time, with the assumption that,  

the life of the item follows logistic family of distributions (i.e. Logistic Rayleigh distribution/Logistic exponential 

distribution/Logistic Weibull distribution). The optimal size obtained for single and double 

sampling plans for logistic family of distributions are compared with baseline distributions and the 

results are discussed. 

Keywords: Consumer risk, single sampling plans; double sampling plans; logistic 

Rayleigh distribution; logistic exponential distribution; logistic Weibull distribution. 

I. Introduction

Based on the quality standards prescribed, quality assurance people uses acceptance sampling 

plan (ASP) to validate the lot.  The main focus of ASP is to reduce consumer’s risk (CR) as 

well as producer’s risk (PR).  By fixing the CR, the minimum sample sizes (MSS) to be used 

for ASP are obtained. If time parameter is included with ASP, to determine the MSS to guarantee 

certain median life of products (MLP), then ASP is called as ASP with truncated life test (TLT).  

Here it is assumed that MLP follows some probability distributions. ASP with TLT can be 

performed with a given acceptance number c (ACN) say zero and one to find the MSS that 

guarantees a given MLP at a given consumer confidence level 1- P* , where P* is called as 

consumer's risk (CR). Accordingly, the lot is rejected if; actual MLP is less than the specified MLP.  

If the decision to accept or reject the lot is based on the single sample taken from the lot, then it is 

called as single acceptance sampling plan (SASP) with TLT, otherwise a second sample is taken and 

decision is based on both first and second sample, then it is termed as double acceptance sampling 

plan (DASP) with TLT. 

Many researchers have proposed these types of ASP with TLT. In the ASP literature, Epstein 

[6] was the first to consider TLT with an exponential distribution (ED), SASP and DASP for 

TLT
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based on transmuted Rayleigh distribution (RD) was studied by Mahendra Saha et al.[8], ASP 

based TLT for the Generalized Weibull Model by Shovan Chowdhury [13], ASP based on TLT for 

extended ED, by Amer I. Al-Omari et al. [1], TLT based ASP for generalized ED by 

Muhammad Aslam et al.[10], TLT in ASP based on exponentiated ED by Suresh et al.[11], ASP for 

Generalized RD based on TLT, by Tzong-ru tsai [14], ASP based on TLT for weighted ED [15] are 

important to mention. 

An approach that helps in defining logistic compounded model was given by Yingjie 

Lan et.al [16] and they proposed logistic–exponential distribution (L-ED).  In this line, by taking 

baseline distribution as RD, Logistic- Rayleigh distribution (L-RD) was defined by Arun Kumar 

Chaudhary et al. [2] and stated various properties and applications. By same process, Logistic-

Weibull distribution (L-WD) was introduced by taking baseline distribution as WD by Arun Kumar 

Chaudhary    et al. [3] and studied its properties and applications. In this article, we develop 

SASP and DASP with TLT, assuming that MLP follows L-RD or L-ED or L-WD. For CR fixed 

at 1% and 2% level, MSS to guarantee certain MLP are obtained for these plans. 

The structure of the remaining article is: In Section 2, we described the L-RD/ L-ED /L-

WD and studied some of its properties. Section 3 presents the design of SASP with TLT, if MLP 

follows L-RD, L-ED and L-WD.  MSS required to maintain CR at 1% and 2% level are obtained for 

different test time and the results obtained are tabulated in this section. Section 4 presents the design 

of DASP with TLT if MLP follows L-RD, L-ED and L-WD and for this ASP, MSS required to maintain 

CR at 1% and 2% level are obtained for different test time.  Section 5 compares the MSS obtained 

for SASP and DASP with some baseline distributions.    Finally, conclusion is placed in Section 6. 

II. Logistic Family of Distributions

Yingjie Lan et.al [16] have presented an approach to define the logistic compounded model 

and introduced the logistic exponential survival distribution. Based on Yingjie Lan et.al [16], the L-

RD was defined by Arun Kumar Chaudhary et al. [2] as follows:  Let be a non-negative 

random variable with a positive shape parameter   and positive scale parameter  then CDF of L-

RD can be defined 

as 
 

 



11

1
1,;

2/2





e

F ,  0,and 0   .  (1) 

The corresponding PDF of L-RD is given by 

 
 

 
0, and 0   ,

11

1   
,;

2
2/

1
2/2/

2

22





























e

ee
f ,  (2) 

The median of the L-RD is given by 
2/1

2log
2












Md . 

The plots of CDF and PDF of L-RD are given in Fig 1 and Fig 2 respectively for shape parameters 

 =0.25, 1, 2 and the scale parameter 1 .
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---Let    be a non-negative random variable with a positive shape parameter   and positive scale 

parameter   then CDF of  L-ED as defined by  Sajid Ali et al. [12] as in equation 3.  
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 Figure 1 : cdf plot of L-RD  Figure 2 : pdf plot of L-RD 

Note that the exponential distribution can be obtained as a special case of L-ED when 1 . The 

corresponding PDF of  L-ED is given in equation 4.  
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The median of the L-ED is given by 







 2log

2


Md . 

The plots of CDF and PDF of L-ED are given in Fig 3 and Fig 4 respectively for shape parameters     

=0.25, 1, 2 and the scale parameter 1 . 

 Figure 3 : cdf plot of L-ED  Figure 4 : pdf plot of L-ED 
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---Let    be a non-negative random variable with a positive shape parameter   and positive scale 

parameter   , then CDF of L-WD as defined by Arun Kumar Chaudhary [3] is given in equation 5.  
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The corresponding PDF of  L-WD is given by 
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The median of the L-WD is given by 
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Md . The plots of CDF and PDF of L-WD are given 

in Fig 5 and Fig 6 respectively for shape parameters  =0.25, 1, 2 and the scale parameter 

0.25. and 1  

 Figure 5 : cdf plot of L-WD  Figure 6 : pdf plot of L-WD 

III. Design of SASP with TLT Based on Median

The assumption made in designing the SASP with TLT is that the products under study have an MLP 

of  .  To test the above assumption, we follow the hypothesis test, with null hypothesis H0: 0  , 

the alternative hypothesis  H1: 0   then it is accepted, where 0  is a precise MLP of the product. 

With *P as CR, the value *1 P  is called the level of significance for the test. Here it may be noted 

that binomial distribution is applied as the size of the sample is considerably excessive. 

As proposed by the ASP, to locate the mss, we have to iterate the inequality 
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of the lot for L-RD, L-ED and L-WD for different values of 

0


 with CR = 2% and 1% level with for 

shape parameters  =0.25, 1, 2 and the scale parameter  1 are calculated and tabulated in the 

Tables 1 respectively. 

Table 1: MSS for SASP 

CR Distribution  C 0



0.5 0.6 0.7 0.8 0.9 1 

1% 

L-RD

0.25 
0 10 9 8 8 7 7 

1 14 13 12 12 11 11 

1 
0 27 19 14 11 9 7 

1 39 28 21 16 13 11 

2 
0 131 60 31 17 11 7 

1 - 87 45 25 16 11 

L-ED

0.25 
0 8 8 8 8 7 7 

1 12 12 11 11 11 11 

1 
0 14 12 10 9 8 7 

1 20 17 15 13 12 11 

2 
0 30 20 14 11 9 7 

1 43 29 21 16 13 11 

L-WD

0.25 
0 8 8 7 7 7 7 

1 11 11 11 11 11 11 

1 
0 10 9 8 8 8 7 

1 15 13 12 12 11 11 

2 
0 14 12 10 9 8 7 

1 21 17 15 13 12 11 

2% 

L-RD

0.25 
0 8 8 7 7 6 6 

1 13 12 11 10 10 9 

1 
0 23 16 12 9 7 6 

1 35 24 18 14 11 9 

2 
0 112 51 26 15 9 6 

1 167 77 40 23 14 9 

L-ED

0.25 
0 7 7 7 6 6 6 

1 11 11 10 10 10 9 

1 
0 12 10 9 8 7 6 

1 18 15 13 12 10 9 

2 
0 25 17 12 9 7 6 

1 38 26 19 14 11 9 

L-WD

0.25 
0 7 7 6 6 6 6 

1 10 10 10 10 10 9 

1 
0 8 8 7 7 6 6 

1 13 12 11 10 10 9 

2 
0 12 10 9 8 7 6 

1 18 15 13 12 10 9 
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IV. Design of DASP with TLT Based on Median

To give more protection to both consumer as well as producers a two stage ASP called the DASP is 

preferred. As the name says it provides double protection to producers because we are testing the 

second sample before taking the final decision on the lot. Hence it provides a total protection to 

producers and hence minimizes the PR. The parameters of the DASP with TLT are n1 first sample 

size, it’s AN c1, n2 second sample size, it’s AN c2 and the testing time t. To accept the lot, it is 

necessary that the sample supports the hypothesis that sample median to be greater than the median 

specified.  Otherwise, the lot will be rejected. Now, we fix the CR not more than (1-P*).  

Then PA of the lot is 

      jnj
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where p is defined in equation (1)  for L-RD/ equation (3)  for  L-ED and equation (5)  for  L-WD and 

depends on ratio 
0


. As we are considering only zero-one failure form i.e., c1 =0 and c2 =1, 

    11 21111



nn

ppnpPA  (9) 

where p is defined in equation (1)  for L-RD/ equation (3)  for  L-ED and equation (5)  for  L-WD. 

Our aim is to find the MSS for DASP, for this we have to minimize equation 9. 

Now, for the given consumer’s confidence level P*, the MSS for both the samples n1 and n2, which 

ensure 0  , can be found by the solution of the following optimization problem, given as: 

  1
211

11nnnASN  
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ppMin

Subject to :      *1
1 11n11 21 Pppp

nn




121 nn 

      21 and nn  are integers                                                                        (10) 

While solving the above optimization problem, it provides many solutions for both n1 and n2.  We 

take the solution which minimizes our objective function i.e. our ASN as our best solution. MSS 

obtained for P* = 0.98 and 0.99 and for different 
0


 are presented in Table 2. 

V. Comparative Study

As we are discussing the ASP with TLT based on L-RD, L-ED and L-WD, the CDF and PDF plots of 

these three distributions are compared at the parameter values  at  =0.25, 1, 2  in  Fig 1 and Fig 2. 

The MSS obtained for L-RD, L-ED and L-WD plans studied here are compared with transmuted RD 

by Mahendra Saha et al [8], generalized RD by Tzong-ru tsai et al.[14], compound RD by Bhupendra 
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Singh [4],  Wenhao Gui [15], generalized ED by Muhammad Aslam [10],  Extended WD by M. S. 

Hamed et al [7], Generalized WD by Shovan Chowdhury[13], and the results obtained are tabulated 

in Table 3. 

Figure 7: Comparison of CDF at   =   0.25, 1 and 2 

Table 2: Sample size n1, n2 and ASN for DASP 

CR Distribution 
0



0.6 0.8 1 1.2 

(n1, n2) ASN (n1, n2) ASN (n1, n2) ASN (n1, n2) ASN 

1% 

L-RD

0.25 (9,6) 9.28 (8,5) 8.24 (7,5) 7.27 (7,3) 7.12 

1 (19,15) 19.71 (11,7) 11.33 (7,5) 7.27 (5,3) 5.18 

2 (61,49) 63.16 (18,11) 18.47 (7,5) 7.27 (4,2) 4.1 

L-ED

0.25 (8,5) 8.25 (8,4) 8.16 (7,5) 7.27 (7,4) 7.19 

1 (12,7) 12.29 (9,5) 9.23 (7,5) 7.27 (6,4) 6.21 

2 (20,17) 20.81 (11,8) 11.39 (7,5) 7.27 (5,4) 5.24 

L-WD

0.25 (8,4) 8.16 (7,6) 7.36 (7,5) 7.27 (7,4) 7.2 

1 (9,7) 9.36 (8,5) 8.24 (7,5) 7.27 (7,3) 7.12 

2 (12,7) 12.31 (9,5) 9.23 (7,5) 7.27 (6,4) 6.21 

2% 

L-RD

0.25 (8,5) 8.36 (7,4) 7.31 (6,5) 6.47 (6,3) 6.21 

1 (17,11) 17.76 (10,5) 10.33 (6,5) 6.47 (5,2) 5.12 

2 (52,47) 55.53 (15,13) 16.04 (6,5) 6.47 (4,1) 4.05 

L-ED

0.25 (7,5) 7.4 (7,3) 7.2 (6,5) 6.47 (6,4) 6.33 

1 (10,8) 10.64 (8,4) 8.28 (6,5) 6.47 (5,4) 5.41 

2 (18,11) 18.75 (10,6) 10.41 (6,5) 6.47 (5,2) 5.12 

L-WD

0.25 (7,3) 7.2 (7,3) 7.18 (6,5) 6.47 (6,4) 6.35 

1 (8,5) 8.39 (7,4) 7.31 (6,5) 6.47 (6,3) 6.22 

2 (10,8) 10.68 (8,4) 8.28 (6,5) 6.47 (5,4) 5.41 
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From Table 3, it is found that the value of MSS for L-WD distribution is low when compared to these 

distributions. Also the plans studied in this article are compared with respect to MSS at CR=1% and 

2%, from table 1, among the three, the L-WD ASP takes MSS for inspection. 

Figure 8 : Comparison of PDF at   =   0.25, 1 and 2 

Table 3: Comparison of MSS for SASP with baseline distributions for SASP 

Distribution c=0 c=1 

Transmuted RD 16 - 

Generalized RD 17 24 

Compounded RD 17 24 

L-RD at  1 27 39 

Generalized ED 14 21 

Weighted ED 19 28 

L-ED  at 1 30 43 

Extended WD 6 9 

Generalized WD 6 10 

L-WD  at 1 10 15 

VI. Conclusion

In this paper we develop single and double sampling plans by fixing consumer’s risk and test 

completion time, with the assumption that, the life of the item follows logistic family of distributions 

(i.e. L-RD/L-ED/L-WD).  MSS for acceptance number (zero and one) for both SASP and DASP are 

obtained. The MSS obtained for single and double sampling plans for logistic family of distributions 

are compared with baseline distributions and the results are discussed. 
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Abstract

This study presents the development of an economic order quantity model (EOQ) specifically designed for
imperfect quality items. The model takes into consideration three distinct scenarios: (a) Model I trigger
a reorder when the inventory level reaches zero; (b) Model II initiates a reorder when the backordered
quantity equals the imperfect quantity; (c) Model III initiates a reorder when the shortage persists.
To distinguish between perfect and imperfect quality products, a screening process is implemented for
each product lot. Upon product delivery from the supplier to the vendor, all received products undergo
immediate inspection through the screening process. Following the EOQ ordering policy, the vendor sells
imperfect products to customers at a reduced cost at the end of the cycle, rather than returning them to
the supplier. To fulfil the remaining demand for high-quality products, the vendor procures such products
from a local vendor at a higher price. This study optimizes the duration of positive inventory, selling
price, and total profit per unit time. Model I, which exhibits the longest duration of positive inventory,
demonstrates greater business stability compared to the other two models. The concavity property is
analytically and numerically demonstrated, and a sensitivity analysis is provided to explore the impact of
model parameters on outputs.

Keywords: EOQ inventory model, screening process, imperfect items, partial backordering

1. Introduction

In practice production does not lead to perfect items always, there may be a certain portion of
imperfect items. Few fractions of imperfect items are usually present in the ordered lot size,
shortage takes place due to the presence of imperfect items and also due to lead time. Initially,
Rosenblatt and Lee [1] and Porteus[2] were thought to be the creation of things with imperfect
quality. An interesting variant has been proposed by Roy et al. [3] who consider an economic
order quantity model in which a percentage of imperfect quality lot size follows a uniform
distribution function. The associated expected average profit function is generalized for the
general distribution function. They discussed the model with partial backlogging and lost sale
cases for imperfect quality products. An ideal inventory model for items of imperfect quality,
inspection faults, shortfall backorders, and sales returns was proposed by Hsu and Hsu [4]. In
their model, a closed-form solution is provided for the optimal order size, the optimal order
point and the maximum number of backordering units. A method to estimate the vendor’s best
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investment in lowering the defect rate in terms of lowering the joint expected yearly total cost
was described in Dey and Giri [5].
The impact of the percentage of defective units on the ordering decisions is analysed in Paul et
al. [6], who proposed a joint replenishment model with and without price discount for multiple
items that indicates the relationship between family cycle length and the integer number of
intervals that the replenishment quality of each item will last. The concavity of profit function is
shown graphically in each case. According to the Jaber et al. [7], imperfect products make supply
chains less sustainable and make the need for change to improve imperfect products worse. They
presented two models for the fraction of imperfect quality items received by one shipment. The
first model assumes that imperfect items are sent to a repair shop. While the second model
assumes that imperfect items are replenished by perfect ones from a local supplier. An EOQ
inventory model is developed Taleizadeh et al. ([8]) with partial backordering and studied four
cases by taking into account the time when the lot of imperfect products comes back to the
buyer’s store after the reparation process. Studied a production lot size and backorders level
under an EPQ inventory model for imperfect production and considered three cases depending
on when the repaired items enter the inventory Taleizadeh et al. [9].

A maintenance policy was implemented by Liao et al. [10] to improve the dependability of a
flawed production system. Two states of production operation are executed, namely: the type I
state (out-of-control state) and the type II state (in-control state).An EOQ model was suggested by
Eroglu and Ozdemir [11] for a production system with backordering for shortages and defective
items. The basic assumption in their model is that 100$ screening of each order-lot contains good
and defective items both. These defective items are a collection of imperfect quality and scrap
items. They observed that the optimal total profit per unit time decreases with an increase in
defective and scrap rates individually. An error in an EOQ model with uncertain supply, qualify
by a random fraction of imperfect items, and 100$ screening process were fixed by Maddah
and Jaber [12] revisiting Salameh and Jaber [14] paper. They proposed a new model that refine
this flaw using renewal theory. The EPQ type inventory model with planned backorders was
proposed by Cárdenas-Barrón [16] and determines the economic production quantity for a single
item, which is manufactured in a single-stage manufacturing system that yield imperfect quality
items as well. Also, all the defective items produced are reworked in the same cycle. Two EPQ
models were presented by Hsu and Hsu [17], and the results demonstrate that the timing of
when to sell the defective goods has a significant impact on the ideal production lot size and the
backorder quantity.

Many researchers deliberated about lot-size inventory models with imperfect items. We refer
the reader to Rosenblatt and Lee [1] for a detailed review of the defective items with rework and
lot size. They considered that the defective quality items could be reworked instantaneously at a
certain extra cost and established that the presence of defective items prompts smaller lot-size.
According to Salameh and Jaber [14], it was proposed that selling imperfect quality items in a
single batch at a reduced price prior to receiving the next shipment leads to an increase in the
average percentage of flawed items, affecting the economic lot size. Besides imperfect production,
other factors such as breakages and damages during the transportation and handling process
may also result in defective items. This result was incorporated in Salameh and Jaber [14]. The
problem of shortages of the item may occur when the imperfect quality items are withdrawn
from stock. Due to high inventory holding cost, overproduction is not a solution of it assumed by
El-Ansary and Robicheaux [18]. The impact of imperfect production processes on the economic
lot-sizing policy was examined by Ben-daya and Hariga [19]. An economic production quantity
model incorporating the rework of imperfect quality items was suggested by Chiu [20]. He
considered that all imperfect items are not repairable, some parts of them are trash and are
discarded. According to Chen [21]’s study, imperfect products frequently have an impact on the
supply chain’s efficiency, inventory holding costs, and production costs. He used a two-echelon
supply chain consisting of a manufacturer and a retailer to deal with the imperfect manufacturing
system problem. The correct equation and numerical outcomes for the error discovered in the
paper by Salameh and Jaber [14] were presented by Cárdenas-Barrón [15]. This error only affects
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the optimum value of the order size. For a more recent study on inventory models with imperfect
quality items, we mention the readers like Zhou et al. [22], Goyal et al. [23], Patro et al. [24],
Keshavarzfard et al. [25], Liao et al. [10], Manna et al. [27], Öztürk [35].

Related recent literature considers that demand is met while screening is being executed,
which, in practice, could result in shortages. In view of this, Maddah et al. [13] relaxed this
consideration by suggesting an order “overlapping” schemes that provides satisfying demand
during the screening process from the “previous order”. An economic production quantity model
with rework at a single-stage manufacturing system with planned backorders was studied by
Chung [33]. He extended Cárdenas-Barrón [16] model and obtained two main results for the
annual total relevant cost. Asadkhani et al. [29] developed four EOQ models with different types
of imperfect items like salvage, repairable, scrap and reject items. The result show that learning
in inspection errors has an important consequence on the profitability. An imperfect production
inventory model that includes arbitrary carbon emissions under successive prepayments was
developed by Manna et al. [26]. The average profit of the integrated model was maximised by
optimising the production rate as well as the defective rate (Manna et al. [28]). This assumption
was made that the production system may change from an in-control state to an out-of-control
state after a time, which is a random variable. To determine the lower bound of the partial
backordering ratio, Yu et al. [36] used an iterative method. By the optimality principle, they show
that the shortage is allowed only if the ratio is greater than its lower bound. A periodic delivery
policy was put forth for a production-inventory model with vendor-buyer integration by Wee
et al. [31]. By combining the assumptions of permissible shortage backordering and the effects
of varying backordering cost values, Wee et al. [30] extended Salameh and Jaber [14] model. In
order to calculate the expected net profit per unit of time, Chang and Ho [32] revisited the work
of Wee et al. [30] and also used the renewal-reward theorem. They used the algebraic methods to
obtain the exact closed-form solutions for optimal lot size, backordering quantity and maximum
expected profit. The existence of a particular optimal lot size that maximises the anticipated total
profit is estimated by Moussawi-Haidar et al. [34]. Also, they studied the effect of deterioration
and holding cost on the optimal lot size and backorder level.

It is significant for a manager of any organization to control and handle the inventories of
perfect and imperfect quality items. However, one of the weaknesses of current inventory models
is the unrealistic assumption that the demand rate is constant. In our study we assume a demand
rate is price sensitive, demand varies with respect to selling price $ p per unit. Each lot received
comprises some percentage of imperfect quality, with a known probability density function f (p).
The imperfect items are sold in the nearby market by reducing the selling price per unit called
salvage price. This type of perfect and imperfect quality item usually occurs in many industries.
In this paper, we consider an EOQ inventory model with demand rate as a function of the selling
price. At the start of the process, the items received from the supplier, which is far away from
the buyer, are inspected. In the meantime, a 100$ inspection process of the lot is carried out at a
rate of α, items of imperfect quality are sorted, kept in one batch and sold at a salvage price of cs
per unit before receiving the next shipment. It is assumed that the imperfect quality items are
collected as a single batch and replaced by the perfect items within the replenishment period T.
Partial backordering is permissible. The optimum selling price and percentage of duration in
which inventory level is positive are obtained by the optimization process to derive an optimal
profit.

In traditional inventory models such as the economic order quantity (EOQ) the sole objective
is to maximize the total profit, typically to minimize holding cost and ordering cost. These models
do not consider the effect of price on the demand rate. Replenishment of imperfect items in an
EOQ inventory model with partial backordering proposed model, which dealt with the optimum
profit function but considered constant demand rate. However, due to the defective items and
inspection process, demand may vary with respect to selling price p. In this direction, this paper
develops an EOQ type inventory model with imperfect items and price-sensitive demand rate for
determining the optimal unit price, percentage of duration in which inventory level is positive and
total profit. The rest of the model explanation is as follows. In section 2, we presented notations
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and assumptions used throughout the proposed paper. In section 3, a mathematical model is
developed for the three cases when partial backordering is allowed. Section 4 presents numerical
examples to exemplify the important aspects of the model. Section 5 show the sensitivity analysis
performed on the proposed models. Section 6 presents managerial implications of the models.
Finally, a conclusion and future research of the present model are provided in section 7.

2. Notations and Assumptions

I. Notations

The following notations are incorporated to depict the proposed model:

T the cycle length,

t1 the time duration in which inspection section occur,

α the inspection rate,

x the fraction of imperfect items,

g(x) the probability density function of imperfect items,

y the fraction of backordered quantity,

π the cost of lost sales,

σ the backordered cost,

he the holding cost of emergency purchased items,

h the holding cost,

co the buyer’s ordering cost,

cp the purchasing cost per unit of an emergency order,

cu the initial purchasing cost of the unit item,

cs the salvage price of imperfect items,

ci the inspection cost,

D(p) the number of units demanded per year where D(p) = a− bp > 0, a, b > 0,

p unit price,

t the percentage of duration in which inventory level is positive,

q the order quantity,

TP the total profit.

II. Assumptions

The proposed model is constructed based on the subsequent assumptions:

1. The planning horizon is infinite.

2. Shortages are admissible. Partial backordering is allowed.

3. Replenishment is allowed and is equal to the imperfect quality items for one cycle period.
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4. Demand is modelled as a price function. The demand rate at selling price p is formulated
as D(p) = a − bp, where a is representing the maximum demand of the item. b is the
coefficient which reflects the choice of price, a, b > 0, such that a− bp > 0.

5. The proportion of imperfect items x and its probability density function are driven at the
end of the cycle length.

6. Purchasing cost cp from a local supplier is higher than the initial purchasing cost cu.
Moreover, initial purchasing cost cu is higher than salvage price cs, cs < cu < cp.

7. When the newly purchased items that replace the imperfect items are added to the stock,
the inventory level is either zero or negative.

8. Inspection rate is constant and known.

9. The inventory level is Imax, at the beginning of the period.

10. In order to distinguish the imperfect items, all products are inspected carefully at the
inspection rate α in time duration t1, where t1 = Imax/α.

11. The inspection rate α per unit time is greater than D(p).

12. The reordered items ρtTD(p) is used to meet the demand during the shortage period
partially.

3. Mathematical Formulation

This section extends the work of Taleizadeh et al., (2000) by assuming a price-sensitive demand
rate. Three cases are explained with the defective items and partial backordering. Inventory man-
agement is a fundamental implementation of price and time control in any modern organization
and retail industry. These days, this implementation is important to a supply manager of any
supply chain to control and maintain the inventories of perfect and imperfect quality items due to
advanced technologies, growing market competition and customer awareness. Consider a vendor
who buys products at the beginning of the inventory cycle and satisfy the customer demands
during the cycle.

I. Model I: The reorder is made when the inventory level is zero

Formulation and solution of the model:
In our model, the initial inventory level at the beginning of the cycle is Imax and is equal to
tTD(p). This inventory contains perfect and imperfect quality items. Inspection section separates
the perfect and imperfect quality items with duration t1 at an inspection rate α, i.e., t1 = tTD(p)

α .
This section identifies xtTD(p) of imperfect quality items and (1− x)tTD(p) is of perfect quality
items. The imperfect items are sold at a reduced price cs so a part of demand of perfect items
is still remain to fulfill. To fulfil the demand of buyers, the perfect quality items are purchased
from a local supplier at a cost cp, equal to the imperfect quality items. The reorder is made when
the inventory level is zero. At the end of the cycle, the shortage is (1− t)TD(p). y fraction of
shortage is backordered at a charge of σ per unit and the rest is lost sales at a charge of π per unit.
The total ordered quantity per cycle is q = tTD(p) + y(1− t)TD(p). The logistic representation
of the physical scenario is shown in Fig. 1. The inventory holding cost per cycle is calculated
from Fig. 1 (summing up the areas) as

HC = h
(
(1− x)2t2T(a− bp)

2
+

xTt2(a− bp)2

α

)
+

hex2t2T(a− bp)
2

(1)

RT&A, No 4 (76) 
Volume 18, December 2023 

395



Priyanka Singh, A.R. Nigwal, U. K. Khedlekar
ECONOMIC ORDER QUANTITY MODEL FOR IMPERFECT ITEMS

Figure 1: Behaviour of the inventory level over time

The shortage cost is given by

SC =
(1− t)2(a− bp)Tσy

2
+ π(1− y)(1− t)(a− bp) (2)

The total revenue per cycle is p{tD(p) + y(1− t)D(p)} where p is the unit price. The total profit
is the difference of total revenue and the total cost per cycle, and is given as

TP(t, p) = p{t(a− bp) + y(1− t)(a− bp)}+ csxt(a− bp)− co

T
− cu(t + y(1− t))(a− bp)

− cpxt(a− bp)− (1− t)2(a− bp)Tσy
2

− h
(
(1− x)2t2T(a− bp)

2
+

xTt2(a− bp)2

α

)
− π(1− y)(1− t)(a− bp)− cit(a− bp)− hex2t2T(a− bp)

2

(3)

Our objective is to develop an optimal inventory model to determine the selling price and the
percentage of duration in which the inventory level is positive and the total profit. The following
cases are considered now

I.1 Case I:

Let the percentage of duration in which inventory level is positive is obtained in terms of
p. Then, we have to maximize TP(p), where t(p) ia a function of p, satisfying the constraints
0 < y ≤ 1, 0 < x ≤ 1, a− bp > 0, p > 0.

In this case, for maximum of TP,

dTP(p)/dp = 0 and d2TP(p)/dp2 < 0,

must be satisfied.
Now, differentiate Eq. (3) with respect to t and equating to zero, we obtain

t(p) =
α(−ci + π + p− cu − πy− py + σTy + cuy− cpx + csx)

T [h{α(x− 1)2 + 2D(p)x}+ α(σy + hex2)]
(4)

The expected value of variable x is substituted in Eq. (4)

t(p) =
α(−ci + π + p− cu − πy− py + σTy + cuy− cpE(x) + csE(x))

T [h{α(E(x)− 1)2 + 2D(p)E(x)}+ α(σy + heE(x)2)]
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Figure 2: Graphical representation of the total profit TP(p) with respect to p

Now Substituting this value in Eq. (3) and differentiating with respect to p leads to

dTP(p)
dp

=
−2bhD(p)heα2x3(M2)2

T(M1)3 − 2bh2D(p)αx(M3)(M2)2

T(M1)3 − D(p)heα2(y− 1)x2(M2)
T(M1)2

− hD(p)α(y− 1)(M3)(M2)
T(M1)2 +

bhD(p)αx(M2)2

T(M1)2 +
bheα2x2(M2)2

2T(M1)2 +
bhα(M3)(M2)2

2T(M1)2

+
2bcihD(p)αx(M2)

T(M1)2 +
2bcphD(p)αx2(M2)

T(M1)2 − 2bhD(p)csαx2(M2)
T(M1)2 +

ciD(p)α(y− 1)
T(M1)

+
D(p)csα(1− y)x

T(M1)
+

cpD(p)α(y− 1)x
T(M1)

+
bciαx(M4)

T(M1)
− bcsαx(M4)

T(M1)

+ bπ(y− 1)
[
−1− x(M2)

T(M1)

]
+

1
2

bσTy
[
−1− x(M2)

T(M1)

]2

+ (D(p)− bp + bcu)

[
y +

αy(M2)
T(M1)

− x(M2)
T(M1)

]
− D(p)σαy(M5)(M4)

T(M1)3

+
(π + p− cu)D(p)α(y− 1)(M4)

T(M1)2

(5)

where

M1 = h(M3) + α(σy + hex2), M2 = ci − p + cu + π(y− 1) + py− σTy− cuy + cpx− csx,

M3 = α(x− 1)2 + 2D(p)x, M4 = α(y− 1)(σy + hex2) + h
[
α(y− 1)(x− 1)2 + 2x{a(y− 1)

+b (ci + cu +π(y− 1)− σTy− cuy + cpx− csx
)
}
]

, M5 = ciα− pα + hTα + cuα + πα(y− 1)

+ pαy− cuαy + 2D(p)hTx + cpαx− csαx− 2hTαx + (h + he)Tαx2

whose solution is given by setting the Eq. (5) to zero and solving for p. Clearly, d2TP(p)
dp2 is negative

(see Fig. 2), which implies that TP(p) is concave.

I.2 Case II.

Let p and the percentage of duration in which inventory levels are positive t be decision
variables.
Here, we have to maximize TP(t, p)
such that 0 < y ≤ 1, 0 < x ≤ 1, a− bp > 0, p > 0.

The expression for ∂TP(t,p)
∂t = 0 and ∂TP(t,p)

∂p = 0, are complicated and it is possible to obtain
the optimal values of p and t analytically by using Mathematica Software and satisfying the

conditions ∂TP2(t,p)
∂t2 < 0, ∂TP2(t,p)

∂p2 < 0 and ∂TP2(t,p)
∂t2 . ∂TP2(t,p)

∂p2 −
(

∂TP2(t,p)
∂p∂t

)2
> 0.

Therefore, we draw a graph of Eq. (3) for the parameter values interpreted in the numerical
example 1. The Fig. 7 demonstrate that the function TP(p, t) is concave having a clear maximum.
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Figure 3: Behaviour of the inventory level over time

For this we have,

∂TP2(t, p)
∂t2 .

∂TP2(t, p)
∂p2 −

(
∂TP2(t, p)

∂p∂t

)2

=
1
α2

[
2bD(p)T{αy + tα(1− y) + bt2hTx}(M1)− {a(α− αy + 4bthTx)

+b (cα− 2pα + thTα + cuα + πα(y− 1) + 2pαy− σTαy + tσTαy− cuαy

−4bthpTx + cpαx− csαx− 2thTαx + thTαx2 + tTheαx2
)
}2
]

(6)

For a particular case it can be proved numerically by considering the data given in section 4,

Example 1, ∂2TP
∂p2 = −19.52 < 0, ∂2TP

∂t2 = −150.48 < 0, ∂2TP
∂p2 . ∂2TP

∂t2 −
(

∂2TP
∂p∂t

)2
= 2893.28 > 0. This

implies that TP(p, t) is concave in nature with respect to p and t.

II. Model II: The reorder is made when the backordered quantity is equal to the imperfect
quality items

Note that t is the percentage of duration in which the inventory level is positive. In the
beginning of cycle, the inventory level begins with the order quantity Imax = tTD(p). These
products are inspected to distinguish perfect and imperfect items separately. At the end of the
inspection process at a rate of α units per unit time during the period t1, a part of the perfect
quality items is used to serve the customer demand at a price of p per unit. At the end of the
cycle, the imperfect quality items xtTD(p) are withdrawn and sold at a salvage price cs. The
reorder items are received when the shortage is equal to xtTD(p). After adding these products to
the negative inventory lot, the inventory level reaches zero. The shortage is (1− t)TD(p). The
backordered percentage of shortage is y and the rest is lost sale. Let x be the fraction of imperfect
items. Specifically, we have t = T1 + T2 where T1 = (1− x)t , T2 = xt. The total ordered quantity
per cycle be q = T1TD(p) + yT2TD(p) + y(1− t)TD(p). The behaviour of the inventory level
over time is illustrated in Fig. 3.
The holding cost per cycle is given as

HC = h
(
(1− x)2t2T(a− bp)

2
+

xTt2(a− bp)2

α

)
(7)
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and the shortage cost per cycle is

SC = σ
yx2t2TD(p)

2
+ σ

y(1− t)2TD(p)
2

+ π(1− y)T2D(p) + π(1− y)(1− t)D(p)

Then the shortage cost can be rewritten as

SC = σ
yx2t2TD(p)

2
+ σ

y(1− t)2TD(p)
2

+ π(1− y)(1− T1)(a− bp) (8)

Therefore, the total profit per cycle of length T becomes

TP(t, p) = p{(1− x)tD(p) + y(1− (1− x)t)D(p)}+ csxtD(p)− co

T
− cu(t + y(1− t))D(p)

− citD(p)− cpxtD(p)− h
(
(1− x)2t2TD(p)

2
+

xt2TD(p)2

α

)
− σyx2t2TD(p)

2

− σy(1− t)2TD(p)
2

− π(1− y)(1− (1− x)t)D(p)

(9)

The following cases are considered

II.1 Case I:

Let the percentage of duration in which inventory level is positive is obtained in terms of p.
Then, we have to maximize TP(p), where t(p) ia a function of p, satisfying the constraints
0 < y ≤ 1, 0 < x ≤ 1, a− bp > 0, p > 0. In this case, for maximum of TP, dTP(p)/dp = 0 and
d2TP(p)/dp2 < 0 must be satisfied. Now, differentiating Eq. (9) with respect to t and equating to
zero, we obtain t(p) = − α(A6)

T(A2) . Substituting this in Eq. (9) and differentiating with respect to p
gives

∂TP
∂p

=
−2bhD(p)σα2yx3(A1)2

T(A2)3 − −2bh2D(p)αx(A5)(A1)2

T(A2)3 +
2bhD(p)csαx2(A1)

T(A2)2 +
bhα(A1)2(A5)

2T(A2)2

− D(p)α2σ(y− 1)(x− 1)yx2(A1)
T(A2)2 − hD(p)α(y− 1)(x− 1)(A1)(A5)

T(A2)2 +
bhD(p)αx(A1)2

T(A2)2

+
2bcihD(p)αx(A6)

T(A2)2 − bciα(A6)
T(A2)

+
2bcphD(p)αx2(A6)

T(A2)2 +
D(p)csα(y− 1)(x− 1)x

T(A2)

+
cpD(p)αx(A4)

T(A2)
− bcsαx(A1)

T(A2)
−

bcpαx(A6)
T(A2)

+
bσTy

2

[
α(A1)
T(A2)

− 1
]2

− bπ(y− 1)
[

1 +
α(x− 1)(A1)

T(A2)

]
− bp

[
y +

α(y− 1)(x− 1)(A1)
T(A2)

]
+

D(p)σαy
T(A2)3 [ciα

−pα + hTα + cuα + pαy− cuαy + 2ahTx− 2bhpTx + cpαx + pαx− csαx− 2hTαx

−pαyx + hTαx2 + σTαyx2 + πα(A4)
] [

σα(y− 1)y(A3) + h{α(y− 1)(x− 1)3

+2x (a(y− 1)(x− 1)b(A7))}] + D(p)cuα(y− 1)
T(A2)2

[
σα(y− 1)y(A3) + h{α(y− 1)(x− 1)3

+2x (a(y− 1)(x− 1) + b(A7))}] +
πD(p)α(y− 1)(x− 1)

T(A2)2

[
σα(y− 1)y(A3) + h{α(y− 1)(x− 1)3 + 2x (a(y− 1)(x− 1) + b(A7))}

]
+

pD(p)α(y− 1)(x− 1)
T(A2)2

[
σα(y− 1)y(A3) + h{α(y− 1)(x− 1)3 + 2x (a(y− 1)(x− 1) + b(A7))}

]
+

pD(p)α(y− 1)(x− 1)
T(A2)2

[
σα(y− 1)y(A3) + h{α(y− 1)(x− 1)3 + 2x (a(y− 1)(x− 1) + b(A7))}

]
+

ciD(p)α(A4)
T(A2)

+ bcu

[
y +

α(A1)
T(A2)

− αy(A1)
T(A2)

]
+ D(p)

[
y +

α(y− 1)(x− 1)(A1)
T(A2)

]
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Figure 4: Graphical representation of the total profit TP(p) with respect to p

where

A1 = (A7)− p(A4), A2 = h{α(x− 1)2 + 2D(p)x}+ σαy(1 + x2), A3 = −(1− x)(1 + x2),

A4 = −(1− x)(1− y), A5 = α(x− 1)2 + 2D(p)x, A6 = p(A4) + (A7)− Ty(α + σ),

A7 = −ci − cu + σTy + cuy− π(A4)− cPx + csx,

A8 = {ciα− pα + hTα + cuα + pαy− cuαy + 2ahTx− 2bhpTx + cpαx + pαx− csαx− 2hTαx− pαyx

+ hTαx2 + σTαyx2 + πα(A4)}
[
σα(y− 1)y(A3) + h{α(y− 1)(x− 1)3 + 2x (−a(A4) + b(A7))}

]
Note that as long as a− bp > 0, it can be shown by differentiating TP(p) with respect to p twice
that TP(p) is concave in p (see Fig. 4).

II.2 Case II.

Let p and the percentage of duration in which inventory levels are positive t be decision variables.
Here, we have to maximize TP(t, p) such that 0 < y ≤ 1, 0 < x ≤ 1, a − bp > 0, p > 0.
The expression for ∂TP(t,p)

∂t = 0 and ∂TP(t,p)
∂p = 0, are complicated and it is possible to obtain

the optimal values of p and t analytically by using Mathematica Software and satisfying the

conditions ∂TP2(t,p)
∂t2 < 0, ∂TP2(t,p)

∂p2 < 0 and ∂TP2(t,p)
∂t2 . ∂TP2(t,p)

∂p2 −
(

∂TP2(t,p)
∂p∂t

)2
> 0. Therefore, we

draw a graph of Eq. (9) for the parameter values interpreted in the numerical example 1. The Fig.
8 demonstrate that the function TP(p, t) is concave having a clear maximum. For this, we have

∂TP2(t, p)
∂t2 .

∂TP2(t, p)
∂p2 −

(
∂TP2(t, p)

∂p∂t

)2

=
1
α2

[
2b(a− bp)T{bht2Tx + (t(1− x)(1− y) + y) α}

{2hx(a− bp) + α
(

h(x− 1)2 + (1 + x2)yσ
)
} − {a (4bhtTx + (1− x)(1− y)α)

+b
(
−4bhptTx + α

(
ci + cu + cpx− csx + (1− x)2htT − cuy− (2p + π)(1− x)(1− y)− Tyσ

+(1 + x2)tTyσ
))
}2
]

(10)

For a particular case it can be proved numerically by considering the data given in section 4,

Example 2, ∂2TP
∂p2 = −19.48, ∂2TP

∂t2 = −150.62, ∂2TP
∂p2 . ∂2TP

∂t2 −
(

∂2TP
∂p∂t

)2
= 2892.35. Note that we have

∂2TP(p, t)/∂p2 < 0, ∂2TP(p, t)/∂t2 < 0, and ∂2TP(p, t)/∂p∂t > 0, which implies that there exist
unique values of p and t that maximize Eq. (9). The optimal solution can be obtained by setting
Eqs. (??) and (??) to zero in Mathematica Software, which leads to TP(p, t) is a concave function.

III. Model III: The reorder is made when the shortage is yet continued

We considered the problem of a lot size at the beginning of the cycle tTD(p), which is
inspected at an inspection rate α in a time duration t1 where t1 = tTD(p)/α. We assumed
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Figure 5: Behaviour of the inventory level over time

that the duration length is divided into four parts. The parts are symbolize by Ti, i = 1, 2, 3, 4.
Let t be the percentage of duration in which inventory level is positive and t = T1 + T2. Also
1− t = t3 + t4. Let x be the fraction of imperfect items found and are sold at the end of the cycle
at a salvage price cs. Then T1 = (1− x)t, T2 = xt. The imperfect items are replaced by perfect
items from the local supplier at the cost of cp. The reorder items are obtained when the shortage
level is (T2 + T3)TD(p). After adding these items to the inventory system, the inventory level is
negative means shortage is still continued. Let y be the fraction of backordered quantity and rest
is considered as lost sale. The backordered quantity has backordered cost σ per unit and the lost
sale cost per unit is π. At the end of the cycle, the shortage level is (T2 + T3 + T4)TD(p). The
ordered quantity per cycle is q = TD(p) + y(1− t)TD(p). The behaviour of the inventory system
is illustrated in Fig. 5. The holding cost per cycle is determined from Fig. 5

HC = h
(
(1− x)2t2T(a− bp)

2
+

xTt2(a− bp)2

α

)
(11)

The shortage cost per cycle is given by

SC = σ
(T2 + T3 + T4)(T3 + T4)yTD(p)

2
+ π(1− y)(T3 + T4)(a− bp) (12)

The total profit per cycle of length T becomes

TP(p, t) = pD(p){t + y(1− t)}+ csxtD(p)− co

T
− cuD(p){t + y(1− t)} − citD(p)

− h
[

D(p)t2T(1− x)2

2
+

xTt2D(p)2

x

]
− σy(1− (1− x)t)(1− t)D(p)T

2

− π(1− y)(1− t)D(p)− cpxtD(p)

(13)

III.1 Case I:

Let the percentage of duration in which inventory level is positive is obtained in terms of p.
Then, we have to maximize TP(p), where t(p) ia a function of p, satisfying the constraints
0 < y ≤ 1, 0 < x ≤ 1, a− bp > 0, p > 0. In this case, for maximum of TP, dTP(p)/dp = 0 and
d2TP(p)/dp2 < 0 must be satisfied.
Differentiating Eq. (13) with respect to t and equating to zero, we obtain t(p) = − α(B2)

2T(B1) .
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Figure 6: Graphical representation of the total profit TP(p) with respect to p

Now, substituting this value in Eq. (13) and differentiating with respect to p, we have

∂TP
∂p

=
2bcihD(p)αx(B2)

T(B1)2 +
2bcphD(p)αx2(B2)

T(B1)2 − 2bhD(p)csαx2(B2)
T(B1)2

+
aciD(p)α(y− 1)

T(B1)
+

2(cp − cs)D(p)α(y− 1)x
T(B1)

− bciα(B2)
T(B1)

−
bαx(cp − cs)(B2)

T(B1)

+
b(p− cu)(B5)

T(B1)
− D(p)(B5)

T(B1)
+ 2bπ(1− y)

(
1 +

α(B2)
2T(B1)

)
+ bσTy

(
1 +

α(B2)
2T(B1)

)
(

1− α(x− 1)(B2)
2T(B1)

)
− hα(B2)

4T(B1)3 {4bhD(p)α(x− 1)2x(B2) + 8bhD(p)2x2(B2)

+ 4D(p)α(y− 1)(x− 1)2(B1) + 8D(p)2(y− 1)x(B1)− bα(x− 1)2(B1)(B2)

− 4bD(p)x(B1)(B2)}+ 2D(p)α(π + p− cu)(y− 1)(B6)
T(B1)2 +

σαyD(p)(x− 1)(B6)(B7)
2T(B1)3

− σαyD(p)(B6)
(B1)2

(
1− α(x− 1)(B2)

2T(B1)

)

(14)

where

B1 = −σαy(x− 1) + h{α(x− 1)2 + 2D(p)x}
B2 = 2ci − 2p + 2cu + 2π(y− 1) + 2py− 2σTy− 2cuy + 2cpx− 2csx + σTyx

B3 = −2pα + 2cuα− 2ciα(y− 1)− 2πα(y− 1)2 + 4pαy− 2hTαy− 2σTαy− 4cuαy

− 2pαy2 + 2cuαy2 + 2cpαx− 2csαx− 4ahTyx + 4bhpTyx− 2cpαyx + 2csαyx

+ 4hTαyx + σTαyx + σTαy2x− 2hTαyx2

B4 = 2ci + 2cu + 2π(y− 1)− 2σTy− 2cuy + 2cpx− 2csx + σTyx

B5 = −2pα + 2cuα− 2ciα(y− 1)− 2πα(y− 1)2 + 4pαy− 2hTαy− 2σTαy− 4cuαy

− 2pαy2 + 2cuαy2 + 2cpαx− 2csαx− 4ahTyx + 4chpTyx− 2cpαyx + 2csαyx

+ 4hTαyx + σTαyx + σTαy2x− 2hTαyx2

B6 = σαy(A4) + h
[
α(y− 1)(x− 1)2 + x{2a(y− 1) + b(B4)}

]
B7 = 2ciα− 2pα + 2hTα + 2cuα + 2πα(y− 1) + 2pαy− 2cuαy + 4ahTx− 4bhpTx

+ 2cpαx− 2csαy− 4hTαx− σTαyx + 2hTαx2

Now, dTP(p)
dp = 0 implies a unique value of p using Mathematica software, which is complex

in nature. Clearly, d2TP(p)
dp2 is negative (see Fig. 6), which implies that TP(p) is concave.
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Figure 7: Graphical representation of the total profit TP(p, t) with respect to p and t

Table 1: Optimal value for the decision variables

p∗ t∗ TP∗(p∗, t∗)
Model I 47.71 21.00% 1278.10
Model II 47.69 14.20% 1276.41
Model III 47.00 16.70% 1272.97

III.2 Case II.

Let p and the percentage of duration in which inventory levels are positive t be decision variables.
Here we have maximize TP(t, p) such that 0 < y ≤ 1, 0 < x ≤ 1, a− bp > 0, p > 0. The expression
for ∂TP(t,p)

∂t = 0 and ∂TP(t,p)
∂p = 0, are complicated and it is possible to obtain the optimal values of

p and t analytically by using Mathematica Software and satisfying the conditions ∂TP2(t,p)
∂t2 < 0,

∂TP2(t,p)
∂p2 < 0 and ∂TP2(t,p)

∂t2 . ∂TP2(t,p)
∂p2 −

(
∂TP2(t,p)

∂p∂t

)2
> 0, where

(
∂2TP
∂p2

)(
∂2TP
∂t2

)
−
(

∂2TP
∂p∂t

)2

= − 1
4α2

[
−8b(a− bp)T{bht2Tx + (t + y− ty)α}{2hx(a− bp)

+(x− 1)α(h(x− 1)− yσ)}+ {2a(4bhtTx + α− yα) + b(−8bhptTx + α{2ci + 2cu + 2cpx− 2csx

+2htT(1− x)2 + 4p(y− 1)− 2cuy− 2π + 2yπ − 2Tyσ + 2tTyσ + Txyσ− 2tTxyσ})}2
] (15)

For a particular case it can be proved numerically by considering the data given in section 4,

Example 3, ∂2TP
∂p2 = −19.50 < 0, ∂2TP

∂t2 = −151.49 < 0, ∂2TP
∂p2 . ∂2TP

∂t2 −
(

∂2TP
∂p∂t

)2
= 2906.43 > 0. Our

objective is to determine the optimum values of p and t, which maximise the total profit per cycle.
We set ∂TP

∂p = 0 = ∂TP
∂t in Mathematica Software, to get the optimum values of p and t. Therefore,

we draw a graph of Eq. (13) for the parameter values interpreted in the numerical example 3.
The Fig. 9 demonstrate that the function TP(p, t) is concave having a clear maximum.

4. Numerical Examples

Example 1. Model I: We considered the values of the parameters in suitable units such that cycle
length T = 0.028 years, market potential a = 700, price sensitivity of demand b = 10, salvage
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Figure 8: Graphical representation of the total profit TP(p, t) with respect to p and t

price cs = $20 per unit, initial purchasing cost cu = $25 per unit, inspection cost ci = $0.5 per
unit, purchasing cost of emergency order cp = $40 per unit, holding cost of emergency order
he = $8 per unit per year, fraction of backordered quantity y = 97%, fraction of imperfect items
x = 0.03, ordering cost co = $100 per order, inventory holding cost h = $5 per unit per year,
inspection rate α = 175200 units per year, backordered cost σ = $20 per unit per unit time,
lost sales cost π = $0.5 per unit, D(p) = a− bp = 222.89 units per year, which gives optimal
unit price p∗ = $47.71 per unit, optimal percentage of duration t∗ = 21%, optimal total profit
TP∗(p∗, t∗) = 1278.10 (see Fig. 7).

We assume that the fraction of imperfect quality items follow a probability density function
with x = U (0, 0.04), g(x) = 1/(0.04− 0). Example 2. Model II: We considered a situation with
the following parameters: T = 0.028, a = 700, b = 10, cs = 20, cu = 25, ci = 0.5, cp = 40,
he = 8, y = 97%, x = 0.03, co = 100, h = 5, α = 175200, σ = 20, π = 0.5. Then, the optimal
unit price and optimal percentage of duration in which inventory level is positive are found by
maximizing the total profit function. We obtain the following optimal solution p∗ = $47.7,
t∗ = 14.2% and TP∗(p∗, t∗) = $1276.41 (see Fig. 8). Example 3. Model III: We assumed a situation
with the following parameters: T = 0.028, a = 700, b = 10, cs = 20, cu = 25, ci = 0.5, cp = 40,
he = 8, σ = 20, y = 97%, x = 0.03, co = 100, h = 5, α = 175200, π = 0.5, which gives p∗ = $47,
t∗ = 16.7% and TP∗(p∗, t∗) = $1272.97 (see Fig. 9).

5. Comments on Numerical Examples

In this section, we prepared numerical analysis for the models. First, we find the optimal
profit for a given set of parameters. Table 1, indicates that Model I is the best choice as it gives
maximum profit. But if we think in reference of duration, then Model II is the good choice as it
gives more profit in less time. Comparative studies in the example show that the total profit per
year using the Model I is usually highest than the Model II and Model III. Also, the total profit of
the Model II is higher than the Model III.

We then execute sensitivity analysis by varying some model parameters and calculating the
optimal price p, optimal percentage of duration in which inventory level is positive t and optimal
total profit TP(p, t) for each parameter set. We performed sensitivity analysis of the optimal
solutions with respect to the length of cycle, T, and price sensitivity of demand, b, the other
parameters are kept fixed at their pre-assumed values. The results are presented in Table 2 and
Table 3. In the first column of Table 2, we vary the cycle length, which assumes the values −20%,
−10%, +50%, +60%, +70%, +80%. The results indicate that as the cycle length increases, the
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Figure 9: Graphical representation of the total profit TP(p, t) with respect to p and t

Figure 10: Behaviour of Percentage of duration t for the three cases against Salvage price cs

Figure 11: Behaviour of Total Profit TP for the three models against salvage price cs
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Table 2: Model I: Optimal solutions for different cycle time, data used here are a = 700, b = 10, cs = 20, cu = 25,
ci = 0.5, cp = 40, he = 8, σ = 20, y = 97%, x = 0.03, co = 100, h = 5, α = 175200, π = 0.5.

T (years) p∗ t∗ TP(p∗, t∗)
− 20% 0.022 47.63 4% 314.00
− 10% 0.025 47.68 13% 854.03
+ 50% 0.042 47.81 41% 2453.80
+ 60% 0.045 47.83 44% 2610.10
+ 70% 0.048 47.84 46% 2746.70
+ 80% 0.050 47.85 47% 2828.58

Table 3: Optimal solutions for different values of parameter b, data used here are T = 0.028, a = 700, cs = 20,
cu = 25, ci = 0.5, cp = 40, he = 8, σ = 20, y = 97%, x = 0.03, co = 100, h = 5, α = 175200, π = 0.5.

b Model I Model II Model III
p∗ t∗ TP(p∗, t∗) p∗ t∗ TP(p∗, t∗) p∗ t∗ TP(p∗, t∗)

7 63.02 89% 5969.72 62.98 80.0% 5957.21 63.02 89.7% 5969.54
8 56.62 60% 3965.11 56.59 52.5% 3957.94 56.62 60.5% 3964.64
9 51.67 38% 2451.49 51.64 31.2% 2447.66 51.67 38.0% 2451.04

10 47.71 21% 1278.10 47.69 14.2% 1276.41 47.00 16.7% 1272.97
11 44.48 6% 350.14 44.47 0.3% 349.86 44.48 5.2% 350.05

optimal solutions p, t and TP(p.t) increase, for fixed a, b, cs, cu, ci, cp, he, σ, y, x, co, h, α and π.
In Table 3, the b takes the values 7, 8, 9, 10 and 11. The results indicate that as the value of b
increases, the optimal solutions decrease, for fixed a, T, cs, cu, ci, cp, he, σ, y, x, co, h, α and π.

Figure 10, represents the variation of variable t with respect to salvage price cs for the three
cases for fixed p∗, a, T, cu, ci, cp, he, σ, y, x, co, h, α and π.
For the fixed p∗ and the above-mentioned values of parameters, Figure 11, represents the variation
of total profit function TP for the three models with respect to salvage price cs.
The main results from the sensitivity analysis are as follows:

(1) As depicted in Fig. 10, when the salvage value of the imperfect quality items increases,
the percentage of the duration in which inventory level is positive, t(Model I), t(Model II)
and t(Model III) also increase. The value of t(Model III) is higher than that of t(Model II).
But t(Model I) is highest always. This reveals the percentage of the duration of positive
inventory is high which shows more stability of the business. Also, t is high that is the
shortages time is less, which also shows a better strategy. This shows that Model I with
partial backordering performs better than the other two models.

(2) As depicted in Fig. 11, when the salvage price of the imperfect quality items increases, the
optimal total profit per year TP for Models I, II and III also increase. The value of TP for
Model I is always higher than that of Model II and Model III. So, Model I is the more perfect
choice for the proposed objective.
It is noted that TP(Model I) > TP(Model II) > TP(Model III).

6. Managerial Implications

Replenishment of perfect items equal to imperfect quality items is well established and
studies in the literature. In this paper, we integrate the EOQ model with replenishment of perfect
quality items equal to imperfect quality items after going through the screening process. We find
the optimal unit price, optimal percentage of duration in which inventory level is positive and
optimal profit for the models with imperfect quality items, and compare the results of the models.
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We examine the effect of changing various model parameters, such as cycle time, salvage price
and holding cost of emergency purchased items. Also, we incorporated partial backordering into
our model. We notice that as the salvage price increases, it is optimal to have more percentage of
duration (t) and total profit (TP). In all three cases, the optimal unit price increases as the cycle
time (T) increases. The effect of price-sensitive parameter (b) significantly impacts the unit price
(p), percentage of duration (t) and total profit (TP). Several studies discuss the techniques to
reduce the effect of imperfect quality items at the vendor level. The cost of reducing the effect of
imperfect quality items and partial backordering by employing appropriate techniques would
help to increase the total profit.

7. Conclusion and Future Research

In this paper, we have developed three different models for the same problem and then
selected the most suitable model that is the optimal inventory model with perfect and imperfect
quantity items, the inspection process, partial backorders and reorders, which gives better results
than the other two. We developed three models: The first model assumes that reordered items are
received when the inventory level is zero. Our analytical and numerical results show that there
exists a unique optimal sales price, lot size and percentage of duration in which inventory level
is positive that maximizes the total profit. The second model assumes that reordered items are
received when the backordered quantity is equal to the imperfect quantity items. The third model
assumes that reordered items are received when backordered is yet continued. We provided
numerical examples and sensitivity analysis to illustrate the outcomes of the above models.
Sensitivity analysis performs to study the effect of different parameters of the system like salvage
price, cycle time, holding cost of emergency purchased items and price-sensitive parameter on
the optimal solutions. Numerical computations show that when the price-sensitive parameter (b)
increases, the optimal unit price (p), the optimal percentage of the duration in which inventory
level is positive (t) and the optimal total profit (TP) decrease for all three models. The percentage
of the duration of positive inventory t is high which shows more stability of the business. Also, t
is high that is the shortages time is less, which also show a better strategy. Model I is the more
perfect choice for the proposed objective as it gives the maximum value of total profit.

Several extensions of the current model are possible. Future studies can be carried out by
considering complete backordering. Another interesting extension is to offering price discounts
on the stock-out items to the EOQ models with imperfect quality items and the screening process.
One way to extend the model is to consider stochastic demand.
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Abstract 

 
The approach of statistical quality control known as “product control” deals with the steps involved 

in making judgments on one or more batches of completed goods produced by production processes. 

One of the main categories of product control is sampling inspection by variables, which includes 

processes for selecting numerous individual units based on sample measurements for a quality 

characteristic under investigation. These approaches are predicated on the knowledge of the 

functional form of the probability distribution and the presumption that the quality feature is 

measured on a continuous scale. The literature on product control contains inspection techniques 

that were created with the implicit presumption that the quality characteristic is distributed 

normally with the associated attributes.  In this study, a single variable sampling plan is developed 

and assessed under the assumption that the quality characteristic will be distributed using an 

Exponential-Rayleigh distribution. This article discusses the development of reliability sampling 

plans for intermittent test batches using type-I and type-II censoring data. To build a sampling 

strategy using the Exponential-Rayleigh distribution, this work offers a two-parameter continuous 

probability distribution. One of the main categories of acceptance sampling is sampling inspection 

by variables, which involves processes for making decisions regarding the disposition of numerous 

individual units based on sample measurements of those units for a quality feature under 

investigation. Assume that the sample inspection’s number of defective items follows the Poisson 

distribution. The suggested SSP’s ideal parameters are determined using a multi-objective genetic 

algorithm, which is concerned with concurrently minimizing the average number of samples and 

inspection costs a maximizing the likelihood of the acceptance sampling plan. The Rayleigh 

distribution is an appropriate model for life-testing studies, and the Exponential Rayleigh 

Distribution is studied as a model for a lifetime random variable. The paper also analyses the 

effectiveness of reliable single sampling plans designed using the median lifetime of products. The 

efficiency of these sampling plans is evaluated in terms of sample size and sampling risks. Poisson 

probabilities are used to determine the parameters of the sampling plans, to protect both producers 

and consumers from risks. For manufacturing enterprises to analyze the viability of the sample plan, 

necessary tables and procedures are constructed with acceptable examples. 

 

Keywords: Reliability Sampling, Exponential Rayleigh Distribution, Median life-

time, Reliable Single Sampling, Single Sampling Plan. 
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I. Introduction 
 

Statistical quality control (SQC) is a valuable technique that can help improve a company's 

production process. One important aspect of SQC is sampling for acceptance or rejection of a lot. 

Acceptance single sampling is a commonly used method for determining whether a lot should be 

accepted or rejected based on classical attribute quality characteristics. Acceptance sampling is a 

widely used technique in Quality Control. The primary objective of the plan is to determine 

optimal plan specifications, including the sample size and acceptance number, to save time and 

cost during the experiment. The study focuses on a group acceptance sampling plan for items with 

MOKw-E distribution. Key design parameters are extracted and operating characteristic function is 

determined for different quality levels. The results will guide future research on Nano quality-level 

topics with different probability distributions [1].  This is particularly important if the product's 

quality is defined by its lifetime. 

Many authors have created Reliability Sampling Plans that rely on the sample size and 

acceptance constant but do not provide a guarantee of product reliability for intermittent testing 

lots or batches. A Modified group chain sampling plan is developed for a truncated life test when 

the lifetime of an item follows Rayleigh distribution. An Optimal number of groups and operating 

characteristic values are obtained by obeying the specified consumer risk, test termination time, 

and mean ratio [2]. The duration of a successful product’s operation is measured in lifetime data, 

which is gathered during life tests, in hours, miles, cycles before failure, or any other pertinent 

parameter. This is referred to as 'Life Data'. These reliability sampling plans are designed to be 

more reliable in terms of accepting products or batches. A new acceptance sampling plan based on 

truncated life tests and Quasi Shanker distribution was developed for quality control. The 

suggested plan provides smaller sample sizes and a substantial sampling economy compared to 

other competitors. It can be used in industry and for further research [3]. Procedures for designing 

and simulating necessary tables are provided to simplify product selection and testing. 

The Exponential and Rayleigh distribution are two of the most important distributions in 

the field of life testing and reliability theory. They possess significant structural properties and 

offer great mathematical flexibility. The concept of truncated single acceptance sampling plan at a 

pre-assigned time. Different acceptance numbers and values for the ratio of the specified test 

duration to the specified mean life are achieved with the given probability levels. It is also 

discovered that the minimal sample sizes guaranteed the specified mean lifetime [4]. The problem 

of acceptance sampling when the life test is truncated at a pre-assigned time is discussed with 

known shape and scale parameters. For different acceptance ratios, different levels of confidence, 

and different proportions of the fixed experimental period to the given median lifetime [5]. 

However, it's important to note that all of these works were carried out assuming that the life 

testing was done under a hybrid censoring scheme. They also only consider the consumer's risk 

while ignoring the risk for the producer in rejecting lots of good products. The paper proposes a 

fuzzy Poisson-based single sampling plan with varying OC curve widths and compares it to the 

binomial-based plan [6]. 

This paper aims to establish the dependability of sampling plans based on exponential 

Rayleigh distribution while considering the levels of producer and consumer risk. Briefly describe 

the theoretical view of Rayleigh distribution in section II. The OC function of the reliability single 

sampling plan is derived in section III, and the procedures for determining and operating the 

sampling plans are explained in section IV. Section V covers the construction of tables for optimal 

sampling plans in specific cases, and an example is provided to illustrate the selection of the 

sampling plan. Finally, the results are summarized in section VI. Two acceptance sampling plans 

based on Weibull Exponential and Weibull Lomax distributions, using the maximum likelihood 

method to estimate model parameters. The proposed plans are compared with existing plans 

based on inspected items [7]. 
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II. Theoretical View of Rayleigh Distribution  

 
The Rayleigh distribution is a continuous probability distribution within the domain of probability 

theory and statistics, applicable to random variables featuring non-negative values. It exhibits a 

correlation with the chi distribution, specifically when endowed with two degrees of freedom, 

although this connection involves rescaling. The eponym for this distribution stems from Lord 

Rayleigh [18]. When the overall magnitude of a vector in the plane is correlated with its directional 

components, a Rayleigh distribution is frequently seen. The Rayleigh distribution might naturally 

appear, for instance, when the two-dimensional analysis of wind velocity is performed. The overall 

wind speed (vector magnitude) will be represented by a Rayleigh distribution if each component 

has zero mean, equal variance, and is normally distributed. The situation of random complex 

numbers with real and imaginary components that are independently and identically distributed 

Gaussian with equal variance and zero mean provides a second illustration of the distribution. In 

that situation, the complex number’s absolute value has a Rayleigh distribution. 

Magnetic Resonance Imaging (MRI) is a field in which the estimation is applied. The 

background data is Rayleigh distributed because MRI pictures are typically interpreted as 

magnitude images even though they are recorded as complex images. As a result, the noise 

variance in an MRI image can be calculated from background data using the technique above [19] 

[20]. The application of the Rayleigh distribution extended to the field of nutrition, where it was 

employed to establish a link between dietary nutrient levels and the physiological responses of 

both humans and animals. This technique represents one approach to compute the nutritional 

response relationship through utilization of the parameter [21]. 

 

III. Operating Characteristic Function of RSSPs under the conditions of  

Exponential Rayleigh distribution 
 

A reliability single sampling plan is a process used to make decisions about submitted lots by 

conducting a life test on randomly selected items. A single sampling plan by variables assumes a 

non-normal Inverse Gaussian distribution for the quality characteristic and develops a procedure 

for determining plan parameters based on specified quality levels [8]. It is characterized by four 

parameters (N, n, c, t): lot size (N), sample size (n), acceptance number (c), and test termination 

time (t). A new sampling plan based on the Generalized Poisson Distribution is proposed and 

studied for its performance measures in lot acceptance [9]. The plan can be implemented by 

selecting items from the lot according to these parameters. Economic Reliability Test Plan (ERTP) is 

developed considering that the lifetime of the submitted items follows a generalized exponential 

distribution. Test termination time is calculated for a given group size, defined acceptance number, 

and producer’s risk [10].   

(1) Choose a random selection of n products from the submitted lot of size N. 

(2) Conduct the life test for the selected items considering t as the test terminated 

time.  Observe the number of failed items X=x. 

(3) Terminate the life test, if either at time of t or X>c before reaching time t, 

whichever is earlier. 

(4) Accept the lot, if x ≤ c at time t; reject the lot if x>c either at time t or earlier. 

Let T be the lifetime of the product, which is distributed according to an exponential 

Rayleigh distribution having the probability density function (PDF) 

 

𝑓(𝑥) =  𝜆𝛽𝑥𝑒
𝛽

2
𝑥2

. 𝑒− 𝜆(𝑒
𝛽
2𝑥2−1)

       𝑥𝜀𝑅;  𝜆, 𝛽 > 0                                          (1) 
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Here λ and β are the shape and scale parameters respectively.  The cumulative distribution 

function of the exponential Rayleigh distribution is given by, 

 

   𝐹 (𝑥) =  1 − 𝜆𝑒− 𝜆(𝑒
𝛽
2𝑥2−1)

       𝑥𝜀𝑅;  𝜆, 𝛽 > 0                                          (2) 

 

Estimate to a parameter β respectively 

𝛽 =
2

𝑚2
𝑙𝑜𝑔 (

1 − 𝑙𝑜𝑔 (
1
2

)

 𝜆
) 

                                              

The lot fraction nonconforming, n, p, can be calculated corresponding to each value of 1/m 

from 

𝐹(𝑋) = 𝐹 (
1

𝑚
) = 𝑝 

 

The performance of a sampling plan may be analyzed using their OC functions.  The OC 

function of a sampling plan is given by 

 
Pa=P (x≤ c) =∑ Pc

x=0 (X = x) 
 

The probability distribution of X can be assumed appropriately as hyper-geometric distribution. 

When n/N ≤0.10, n is large and p is small such that np˂5, the sampling distribution of X can be 

approximated by the Poisson (np) distribution [11].  In light of these facts, it is suggested here 

 

𝑃𝑎(p) = ∑
𝑒−𝑛𝑝(𝑛𝑝)𝑥

𝑥!

𝑐
𝑥=0  

 

 

IV. Determination of Plan Parameters under the conditions of Exponential 

Rayleigh Distribution 

 
The most reliable single sampling plans are established for ER (λ, θ) distribution by using the 

Binomial probability distribution’s OC function. A Special Type of Double Sampling (STDS) plan 

has been proposed to emphasize the importance of acceptance sampling plans in ensuring product 

quality. This plan uses the Generalized Poisson Distribution to achieve the same level of 

acceptance with fewer samples than a single sampling plan [12]. A sampling plan is designed to 

protect both the producer and consumer simultaneously. To ensure protection, two points are 

specified on the OC curve: (p₁, 1-α) and (p₂, β). Here, p₁ represents acceptable quality, α represents 

the producer’s risk, p₂ represents limiting quality, and β represents the consumer’s risk. Derivation 

of the Operating Characteristic (OC) function of the sampling plan, which describes its 

performance in terms of the probability of accepting or rejecting a batch based on the observed 

number of defects. The plan parameters are determined for specific sets of values for (p₁, α, p₂, β), 

which are parameters of the ZIP distribution [13]. An optimal RSSP can be found based on the 

points that meet the following requirements. 

 
𝑃𝑎(𝑝1) ≥ 1 − 𝛼 

 

and 

 
𝑃𝑎(𝑝2) ≤ 𝛽 

These conditions may be written as 
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∑
𝑒−𝑛𝑝₁(𝑛𝑝₁)𝑥

𝑥!

𝑐
𝑥=0   ≥ 1 − 𝛼                                                   (3) 

 

and 

 

∑
𝑒−𝑛𝑝₁(𝑛𝑝₁)𝑥

𝑥!

𝑐
𝑥=0  ≤ 𝛽                                                          (4) 

 

There are various ways to figure out the best values for n and c while adhering to 

conditions (3) and (4). Economic Reliability Test Plans (ERTP) is proposed considering that the 

lifetime of the submitted items follows the Pareto distribution of the second kind [14]. To 

determine the plan parameters, an iterative process is used as outlined below. In summary, when 

given λ, t, m₁, m₂, α, and β, the most effective values for n and c can be found using the following 

steps. 

(1) For specified values of m₁ and m₂ with m₁>m₂, calculate β₁ = 
2

𝑚₁2 log (
1−log (

1

2
)

 𝜆
) and  β₂ 

= 
2

 𝑚₂2 log (
1−log (

1

2
)

 𝜆
) 

(2) Corresponding to t, β₁ and β₂, determine p₁=𝐹𝑇(1/m₁) and p₂=𝐹𝑇(1/m₂)  

(3) Set c=0 

(4) Find the largest n, say 𝑛𝐿, such that 𝑃𝑎(p₁) ≥ 1-α 

(5) Find the smallest n, say 𝑛𝑆, such that 𝑃𝑎(p₂) ≤ β 

(6) If 𝑛𝑆 ≤ 𝑛𝐿, then the optimum plan is (𝑛𝑆, c); otherwise increase c by 1. 

(7) Till the optimum values of n and c are attained, repeat steps 4 through 6. 

A submitted lot may undergo the sampling examination after n and c have been established using 

the hybrid censoring procedures outlined in section 2. 

 

V. Construction of Tables 

 
The values of n and c of the optimum reliability sampling plans are determined using Poisson 

probabilities for the combination of λ, t, m₁, m₂, α, and β. The producer’s risk and consumer’s risk 

are considered at two different levels such as α=0.05, 0.05 and β=0.05, 0.10. The producer’s 

estimated range of mean product lifetime is taken as m₁=4000, 4500, 5000, 5500, 6000, 6500, 7000, 

and 7500 hours respectively. Two different levels of test termination time and one value for shape 

parameter λ as assumed as t=200, 350, 500, and 650 hours and λ=1 respectively. The consumer’s 

projected mean product lifespan is taken as m₂ = 750, 1000, 1250, 1500, 1750, 2000, 2250 hours 

respectively. The optimum reliability sampling plans’ n and c values are shown in Tables 1 

through Table 4. Each cell entry (n, c) in every table reflects the ideal value of the pair (n, c) that 

corresponds to the given values of λ, t, m₁, m₂, α, and β. The Selection of plans from these for the 

given requirements is described in the following illustration. 

 

Illustration 

 
Let the lifetime of the products submitted for inspection be distributed according to ER (1, β). The 

mean lifetime of the products meeting the expectation of the producer and consumer are 

respectively m1=4000 hours and m2=2250 hours. Suppose that the quality inspector prescribes to 

censor the life test at t=500 hours. Then, the values of acceptable quality level and limiting quality 

level can be computed as p1=0.0082 and p2=0.0260. If the producer’s risk and the consumer’s risk as 

α=0.05 and β=0.05, then the plan parameters may be obtained using Poisson probabilities from 

Table 3 as n=556 and c=8. 

 Now, the life-test-based lot-by-lot sampling inspection can be carried out as follows: A 
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sample of 556 products may be selected randomly from the submitted lot. Life tests may be 

conducted on all the sampled products. The life test may be stopped after 500 hours if there have 

been no more than 8 failures. The lot might be approved. On the other hand, if the ninth failure 

occurs before t=500 hours, terminate the life test. The lot may be rejected. 

 
Table 1: Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=200 hours. 

 

 
 

 

t=200, λ=1 

m1 4000 4500 5000 5500 6000 6500 7000 7500 

t/m1 0.05 0.0444 0.04 0.0363  0.0333    0.0307   0.0285 0.0266 

 

m2 

 

t/m2 

       P1 

P2 

 0.0013  0.0010        0.0008     0.0006        0.0005       0.0004    0.0004              0.0003 

750 0.2666  0.0374 (104,1) 

(127,1) 

(104,1) 

(127,1) 

(104,1) 

(127,1) 

(62,0) 

(127,1) 

(62,0) 

(81,0) 

(62,0) 

(81,0) 

(62,0) 

(81,0) 

(62,0) 

(81,0) 

1000 0.2  0.0210 (185,1) 

(226,1) 

(185,1) 

(226,1) 

(185,1) 

(226,1) 

(185,1) 

(226,1) 

(185,1) 

(226,1) 

(185,1) 

(226,1) 

(110,0) 

(226,1) 

(110,0) 

(226,1) 

1250 0.16  0.0134 (395,2) 

(468,2) 

(289,1) 

(468,2) 

(289,1) 

(352,1) 

(289,1) 

(352,1) 

(289,1) 

(352,1) 

(289,1) 

(352,1) 

(289,1) 

(352,1) 

(289,1) 

(352,1) 

1500 0.1333  0.0093 (569,2) 

(829,3) 

(569,2) 

(673,2) 

(416,1) 

(673,2) 

(416,1) 

(507,1) 

(416,1) 

(507,1) 

(416,1) 

(507,1) 

(416,1) 

(507,1) 

(416,1) 

(507,1) 

1750 0.1142  0.0068 (972,3) 

(1331,4) 

(774,2) 

( (1128,3) 

(740,2) 

(916,2) 

(774,2) 

(916,2) 

(566,1) 

(916,2) 

(566,1) 

(690,1) 

(566,1) 

(690,1) 

(566,1) 

(690,1) 

2000 0.1  0.0052 (1762,5) 

(2249,6) 

( (1269,3) 

  (1739,4) 

 (1269,3) 

 (1473,3) 

(1011,2) 

(1473,3) 

(1011,2) 

(1196,2) 

 (1011,2) 

 (1196,2) 

(739,1) 

 (1196,2) 

(739,1) 

(901,1) 

2250 0.0888  0.0041 (2830,7) 

(3470,8) 

(  (2230,5) 

(  (2847,6) 

 (1606,3) 

 (2200,4) 

(1606,3) 

(1864,3) 

(1280,2) 

(1864,3) 

 (1280,2) 

 (1514,2) 

 (1280,2) 

 (1514,2) 

(935,1) 

(1514,2) 

 

In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the   

  Second pair corresponding to (α=0.05, β=0.05). 

 

 

Table 2: Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=350 hours. 

 

 

t=350, λ=1 

m1 4000 4500 5000 5500 6000 6500 7000 7500 

t/m1 0.0875 0.0777 0.07 0.0636 0.0538   0.0538 0.05 0.0466 

 

m2 

 

t/m2 

       P1 

P2 

0.0040 0.0031 0.0025 0.0021 0.0017 0.0015 0.0013 0.0011 

750 0.4666  0.1144 (34,1) 

   (42,1) 

(34,1) 

     (42,1) 

(34,1) 

    (42,1) 

(21,0) 

    (42,1) 

(21,0) 

    (27,0) 

(21,0) 

   (27,0) 

(21,0) 

    (27,0) 

(21,0) 

     (27,0) 

1000 0.35  0.0644 (61,1) 

   (74,1) 

(61,1) 

      (74,1) 

(61,1) 

    (74,1) 

(61,1) 

    (74,1) 

(61,1) 

    (74,1) 

(61,1) 

    (74,1) 

 (36,0) 

     (74,1) 

(36,0) 

     (74,1) 

1250 0.28  0.0412 (129,2) 

    (153,2) 

(95,1) 

     (153,2) 

(95,1) 

   (115,1) 

(95,1) 

   (115,1) 

(95,1) 

    (115,1) 

(95,1) 

   (115,1) 

(95,1) 

    (115,1) 

(95,1) 

    (115,1) 

1500 0.2333  0.0286 (186,2) 

   (271,3) 

(186,2) 

       (220,2) 

(136,1) 

   (220,2) 

(136,1) 

   (166,1) 

(136,1) 

   (166,1) 

(136,1) 

   (166,1) 

(136,1) 

     (166,1) 

(136,1) 

     (166,1) 

1750 0.2  0.0210 (318,3) 

   (435,4) 

(253,2) 

      (369,3) 

(253,2) 

   (299,2) 

(253,2) 

   (299,2) 

(185,1) 

   (299,2) 

(185,1) 

    (226,1) 

(185,1) 

     (226,1) 

(185,1) 

      (226,1) 

2000 0.17

5 

 0.0161 (576,5) 

   (735,6) 

(415,3) 

      (568,4) 

(415,3) 

  (481,3) 

(331,2) 

   (481,3) 

(331,2) 

   (391,2) 

(331,2) 

    (391,2) 

(242,1) 

     (391,2) 

(242,1) 

      (295,1) 

2250 0.1555  0.0127 (924,7) 

  (1133,8) 

(728,5) 

      (930,6) 

(525,3) 

  (719,4) 

(525,3) 

   (609,3) 

(418,2) 

   (609,3) 

(418,2) 

    (495,2) 

(418,2) 

     (495,2) 

(306,1) 

      (495,2) 
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In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the 

Second pair corresponding to (α=0.05, β=0.05). 

 
Table3:  Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=500 hours. 

 

 

t=500, λ=1 

  m1    4000   4500   5000  5500   6000    6500       7000   7500 

t/m1   0.125   0.1111    0.1  0.0909  0.0833     0.0769        0.0714      0.0666 

 

m2 

 

t/m2 

       P1 

P2 

0.0082 0.0065 0.0052 0.0043 0.0036 0.0031  0.0026 0.0023 

750 0.6666  0.2317 (17,1) 

    (21,1) 

(17,1) 

       (21,1) 

(17,1) 

    (21,1) 

(10,0) 

    (21,1) 

(10,0) 

    (13,0) 

(10,0) 

     (13,0) 

 (10,0) 

      (13,0) 

(10,0) 

      (13,0) 

1000 0.5  0.1312 (30,1) 

    (37,1) 

(30,1) 

       (37,1) 

(30,1) 

    (37,1) 

(30,1) 

    (37,1) 

(30,1) 

     (37,1) 

(30,1) 

     (37,1) 

(18,0) 

     (37,1) 

(18,0) 

      (37,1) 

1250 0.4  0.0841 (64,2) 

    (75,2) 

(47,1) 

       (75,2) 

(47,1) 

    (57,1) 

(47,1) 

     (57,1) 

(47,1) 

     (57,1) 

(47,1) 

     (57,1) 

(47,1) 

     (57,1) 

(47,1) 

      (57,1) 

1500 0.3333  0.0584 (92,2) 

   (133,3) 

(92,2) 

      (108,2) 

(67,1) 

    (108,2) 

(67,1) 

    (108,2) 

(67,1) 

     (82,1) 

(67,1) 

     (82,1) 

(67,1) 

     (82,1) 

(67,1) 

      (82,1) 

1750 0.2857  0.0429 (156,3) 

   (214,4) 

(124,2) 

      (181,3) 

(124,2) 

    (147,2) 

(124,2) 

    (147,2) 

(91,1) 

     (147,2) 

(91,1) 

    (111,1) 

(91,1) 

    (111,1) 

(91,1) 

     (111,1) 

2000 0.25  0.0329 (282,5) 

   (360,6) 

(204,3) 

      (279,4) 

(204,3) 

    (236,3) 

(162,2) 

    (236,3) 

(162,2) 

     (192,2) 

(162,2) 

    (192,2) 

 (119,1) 

    (192,2) 

(119,1) 

      (145,1) 

2250 0.2222  0.0260 (453,7) 

   (556,8) 

(357,5) 

      (456,6) 

(257,3) 

    (353,4) 

(257,3) 

    (299,3) 

(205,2) 

     (299,3) 

(205,2) 

    (243,2) 

 (205,2) 

    (243,2) 

(150,1) 

      (243,2) 

 

In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the 

second pair corresponding to (α=0.05, β=0.05). 

 
 

Table 4:  Parameters of RSSPs under the conditions of ER (β, λ=1) Distribution with α=0.05, λ=1 and t=650 hours. 

 

 

t=650, λ=1 

  m1    4000   4500   5000   5500   6000    6500       7000   7500 

t/m1  0.1625 0.1444  0.13  0.1181  0.1083  0.1    0.0928   0.0866 

 

m2 

 

t/m2 

       P1 

P2 

 

0.0139 

 

0.0109 

 

0.0088 

 

0.0073 

 

0.0061 

 

0.0052 

 

 0.0045 

 

0.0039 

750 0.8666  0.3844 (11,1) 

    (13,1) 

 (11,1) 

        (13,1) 

(11,1) 

    (13,1) 

(6,0) 

    (13,1) 

(6,0) 

    (8,0) 

(6,0) 

     (8,0) 

 (6,0) 

      (8,0) 

(6,0) 

      (8,0) 

1000 0.65  0.2205 (18,1) 

   (22,1) 

 (18,1) 

       (22,1) 

(18,1) 

  (22,1) 

(18,1) 

  (22,1) 

 (18,1) 

    (22,1) 

 (18,1) 

    (22,1) 

  (11,0) 

    (22,1) 

 (11,0) 

     (22,1) 

1250 0.52  0.1418 (38,2) 

   (45,2) 

(28,1) 

       (45,2) 

(28,1) 

  (34,1) 

(28,1) 

  (34,1) 

 (28,1) 

   (34,1) 

 (28,1) 

    (34,1) 

  (28,1) 

    (34,1) 

 (28,1) 

     (34,1) 

1500 0.4333  0.0987 (54,2) 

   (79,3) 

(54,2) 

       (64,2) 

(54,2) 

  (64,2) 

(40,1) 

  (64,2) 

(40,1) 

  (49,1) 

 (40,1) 

    (49,1) 

  (40,1) 

    (49,1) 

 (40,1) 

     (49,1) 

1750 0.3714  0.0725 (93,3) 

  (127,4) 

(74,2) 

     (107,3) 

(74,2) 

  (87,2) 

(74,2) 

  (87,2) 

(54,1) 

  (87,2) 

 (54,1) 

     (66,1) 

  (54,1) 

    (66,1) 

 (54,1) 

     (66,1) 

2000 0.325  0.0555 (167,5) 

   (214,6) 

(121,3) 

     (165,4) 

(121,3) 

    (140,3) 

(96,2) 

 (140,3) 

(96,2) 

 (114,2) 

 (96,2) 

    (114,2) 

  (70,1) 

  (114,2) 

 (70,1) 

     (86,1) 

2250 0.2888  0.0439 (268,7) 

   (329,8) 

(212,5) 

(     (270,6) 

(153,3) 

   (209,4) 

(153,3) 

  (177,3) 

  (122,2) 

  (177,3) 

(122,2) 

     (144,2) 

(122,2) 

  (144,2) 

 (89,1) 

   (144,2) 

 

In each cell, the first pair is the value of (n, c) corresponding to (α=0.05, β=0.10) and the 

second pair corresponding to (α=0.05, β=0.05). 
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VI. Conclusion 

 
Under the assumption that the lifespan quality feature is modeled by an Exponential-Rayleigh 

distribution, a method for determining single sampling plans for life tests is derived. The paper 

introduces a sampling plan for a truncated life test, specifically for the Exponential Rayleigh 

distribution with parameters λ and β. The number of groups and acceptance number are provided 

for the special case where λ=1 and the consumer's and producer's risk plan parameters are 

specified. Tables are also included to aid in selecting the optimal plan parameters for products 

with Exponential Rayleigh distribution, ultimately reducing test time and cost. 
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Abstract 

Aim: Regression analysis is one of the statistical methods which helps to model the data and helps in 

prediction, a large data set with higher number of variables will often create problem due to its 

dimensionality and hence create difficulties to gather important information from the data, so it is a need 

of a method which can simultaneously choose important variables which contains most of the information 

and hence helps to fit the model. Least absolute shrinkage and selection operator (LASSO) is a popular 

choice for shrinkage estimation and variable selection. But LASSO uses the conventional least squares 

technique for feature selection which is very sensitive to outliers. As a result, when the data set is 

contaminated with bad observations (Outliers), the LASSO technique gives unreliable results, so in this 

paper the focus is to create a method which can resist to outliers in the data and helps in giving a 

meaningful result. Method: proposed a new procedure, a LASSO method by adding weights which uses 

the concept of redescending M-estimator, which can resist outliers in both dependent and independent 

variables. The observation with greater importance receives a higher weight and less weight to the least 

important observation. Findings: The efficiency of the proposed method has been studied in the real and 

simulation environment and compared with other existing procedures with measures like Median 

Absolute Error (MDAE), False Positive Rate (FPR), False Negative Rate (FNR), Mean Absolute 

Percentage Error (MAPE). The proposed method with the redescending M-estimator shows a higher 

resistance to outliers compared to conventional LASSO and other robust existing procedures. 

Conclusion:  The study reveals that the proposed method outperforms other existing procedures in terms 

of MDAE, FPR, FNR and MAPE, indicating its superior performance in variables selection under outlier 

contaminated datasets.  

Keywords: Feature Selection, LASSO, MAPE 

 

I. Introduction 

One of the most frequent problems we run into in real-time applications and other scientific fields is 

data including outliers. The existence of outliers, according to Chatterjee and Hadi [4], may leads to 

influence the parameter estimation and inaccurate predictions for traditional approaches. Both 

dependent variables and covariates (predictor variables) may contain outliers. As a result, it's crucial 

to deal with outliers in regression analysis. For outlier detection problems, numerous robust regression 

algorithms have been created, such as S- estimator [7], the least median of squares estimator [11], the 

MM- estimator [18], the τ- estimator [19], and so on. It is well known that there are some M- estimator-

based regression methods such as Huber regression which does not delete large residuals, and Tukey 

regression is not Robust against the outliers in the leverage points. [12], Redescending M-estimators are 

more resilient than M-estimators since they totally reject extreme outliers. Alamgir et al. [1] proposed 

an efficient Redescending M-estimator for robust estimation.                                                                                                                                 

 In practice, a large number of variables are often incorporated at the beginning of modelling. The 
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interpretation of models that contain all of the variables is extremely difficult, even when irrelevant 

factors may increase variance. Therefore, one of the most significant issues in data analysis is the choice 

of an important variable. Popular methods for variable selection are penalized regression methods such 

as Least Absolute Shrinkage and Selection Operator (LASSO) [13], Smoothly Clipped Absolute 

Deviation (SCAD) [6] and adaptive LASSO [20], and so on. Most of the methods mentioned above are 

closely related to Ordinary Least Squares (OLS) technique. OLS-based methods are not resistant to 

outliers therefore the outliers can cause problems in a variable selection based on OLS. So, the robust 

variable selection approach has to be studied. There are numerous effective variable selection 

techniques in the literature, including the Least Absolute Deviation (LAD)-LASSO [15], which deals 

with heavy-tailed error, WLAD-LASSO [14], the weighted Wilcoxon-type SCAD method [13], the 

Huber’s criterion and adaptive lasso penalty [9], the quantile regression for analyzing heterogeneity 

ultra-high dimension [16], the variable selection in the semiparametric varying- coefficient partially 

linear model via a penalized composite  quantile loss [8], the Composite Quantile Regression (CQR) 

[21], the   variable selection with the exponential squared loss [17], Penalized least trimmed square 

(LTS) [2],  Maximum Tangent Likelihood Estimator (MTE) [10], and so on. In this paper, a new robust 

feature selection method has been introduced. The improved version of the LASSO method uses a 

weight from a Redescending M-Estimator which can tolerate outliers in the X-Y space. The study based 

on simulation and real data indicates that the proposed robust feature selection procedure performs 

better than other existing methods.           

The paper is organized as follows. In section II provides brief introduction to LASSO method. A new 

technique, Alarm Weight LASSO (AW-LASSO) and its corresponding algorithm is described in Section 

III. In section IV, real data analysis and a simulation study and is carried out to comprehend how well 

the suggested method works. Finally, section V gives summary and conclusion. 

II. LASSO Methods 

Regressions models are commonly used in statistical analysis. A popular use is to model the predicted 

risk of a likely outcome. Unfortunately, using standard regression techniques to create a model from a 

set of candidate variables often results in overfitting, which   increases the number of variables that are 

eventually included in the model and overestimates how well the included variables explain the 

observed variability (an effect known as optimism bias). Extreme (extremely low or very high) risk 

observations are particularly difficult for the model to forecast. A shrinkage and variable selection 

strategy for regression models is LASSO regression. In order to create a model that minimizes the 

prediction error, LASSO regression seeks to discover the variables and corresponding regression 

coefficients. This is accomplished by placing a restriction on the model parameters that causes the 

regression coefficients to decrease towards zero, or more specifically, by requiring that the total 

absolute value of the regression coefficients be smaller than a predetermined value (λ).  The equation 

of the LASSO is given below 

2

1

 = min  | |
n

LASSO i j ij j

i j j

y X


   
=

  
 − + 
   
                                                                               (1) 

Since λ controls the amount of regularization the choice of λ is often made by using an automated k-

fold cross validation approach. If λ = 0 the LASSO is same as OLS. As λ increases, the number of non-

zero components of β decreases, at λ = ∞, the LASSO gives the null model. The above LASSO method 

is based on OLS loss function which is not resistant to outliers, therefore, to address this issue, we 

modified the LASSO by adding a new weight to form Alarm Weight LASSO which is Elaborately 

discussed in the section III. 
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III. Alarm Weight LASSO 

Consider the linear regression model  

, 1,2,3,...,T

i i iy x i n  = + + =                                                                                                    (2)                                                                                             

where Yi is the response variable Xi = (xi1, xi2, …, xip)T  is the p-dimensional covariate vector, β = (β1, β2, …, 

βp)T are the regression parameters, and εi  are the iid random errors. We assume that βo = 0. This can be 

achieved by centering the covariates and response variable. That is, from now on we will consider the 

model   

, 1,2,3,...,T

i i iy x i n = + =                                                                                                            (3) 

To estimate β is to minimize the ordinary least square (OLS) criterion  

2

1

( )
n

T

i i

i

y x 
=

−                                                                                                                                        (4) 

The OLS estimates β by minimizing the error sum of squares, i.e.,  

 

( ) ( ) € min
T

OLS

Y X Y X


  = − −                                                                                                (5) 

The OLS approach to estimate the regression parameter is very sensitive to the outliers. One of the 

alternatives to OLS is to use weighted OLS. Weighted regression is its robustness against outliers. 

Weighted regression can assign less weight to outliers and hence reduce their impact on the estimate of 

the coefficients. Which is obtained by minimizing the OLS criterion 

2

1

( )
n

T

i i i

i

w y x 
=

−                                                                                                                                    (6) 

where wi, for i = 1,2,3,…,n is the weights which is determined by a redescending M-Estimator which 

can resist outliers in both X and Y space. The influence function describes the sensitivity of the overall 

estimate of the outlying data and is defined as  

 

( )

2

2

2( / )

( / ) 4

16
   , | |

(1 )

 0                    , | |

r c

r c

re
r c

r e

r c



−

−




= +




                                                                                                         (7) 

 
The functional relationship between ψ and ρ is given by  

( ) ( )
d

r r
dr

 =                                                                                                                                                    (8) 

Integrating out the  - function under the initial condition, we get the corresponding ( )r  , given by 

 

( )

2

2

2 ( / )

( / ) 3

2

3

2 2(1 3 )
[1- ]    , | |

3 (1 )

2 2(1 3 )
 [1- ]         , | |
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r c

r c

c e
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e
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c e
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 +
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 +

                                                                                         (9) 
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The weight function w(r)=  (r)/r, is as follows 

 

 ( )

2

2

( / ) 2

( / ) 4

(4 )
   , | |

(1 )

 0                    , | |

r c

r c

e
r c

w r e

r c

−

−




= +




                                   (10)                                                                                          

 

where “r” denotes residual and “c” is tuning constant.  

 
Efficiency and robustness are two characteristic of a robust procedures that are inversely connected. As 

a result, choose an estimator with the highest resistance and the lowest efficiency loss. Nobody can 

afford to select a highly robust estimator that is resistant to outliers at the expense of decreasing 

efficiency. These two properties should be balanced in some way. The weight function ensures that the 

residuals with the highest weight (close to 1) correspond to the majority of good observations. Figure 

1, represents the weight function w(r) of redescending M-estimator 

 
             Fig.1: Alarm Weight function of redescending M estimator 

 
From Figure 1, As can be seen, only severely outlying observations are given 0 weights, ensuring that 

good observations are used to their full potential and that extreme outliers are not overly relied upon. 

The equation given in (1) thus modified by adding the weight of the redescending M estimator to form 

Alarm Weight LASSO and the equation is given below. 
2

1

 = min  | |
n

AW LASSO i i j ij j

i j j

w y X


   −

=

  
 − + 
   
                                                                          (11) 

wi represents the weight function and λ is the tuning parameter which is chosen by cross validation 

method. 

  

I. Computational Algorithm 

Consider the LASSO model given in (1). We use Iteratively Least Square Method (IRWLS) algorithm 

for the computation of the AW-LASSO. 

 

Step1: Find the initial estimates of   by using the ridge regression model. 

 

Step2: obtain the corresponding residuals from our initial estimates 

 

Step3: Compute the corresponding weights based on the proposed weight function  

 

Step4: Calculate the new estimate of AW-LASSO coefficients using the IRWLS algorithm 
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Step5: Repeat step 2 to 4 until convergence. 

IV. Experimental Results 

 
In this section various LASSO-type feature selection techniques are compared to the proposed method

ology in a real-world setting. Outliers were present in the real data, which were eliminated using the    

cook distance [5], and the analysis was done using the R programming language. The obtained results 

such as Median Absolute Error (MDAE), Mean Absolute Percentage Error (MAPE), number of variabl

es, for with and without outliers are also discussed. 

 

I. Real data examples 
 
Here we considered two data sets, namely Boston housing data and diabetes data, detailed                            

descriptions are available in the standard packages. The Boston data set has 506 observations of 15             

independent and a dependent variable.  The diabetes data set has 442 observations of 9    independent 

and a dependent variable.  The feature selection procedures have been performed after standardizing 

the variables, with and without outliers and the results are summarised in the table 1.  

 
Table 1: Error values, under with and without outliers  

Methods MDAE MAPE 

No. of  

Variables  

Selected 

 

Selected Variables 

Boston Housing Data 

 

LASSO 

0.303 

(0.123) 

4.27 

(0.783) 

12(12) 

 

Tract, ion, lat, Crim, Zn,  nox, rm, dis, tax, ptratio, b, istat 

(ion, crim, zn, indus, nox, rm, age, dis, tax, ptratio, b, istat) 

 

LAD  

LASSO 

0.267 

(0.177) 

4.07 

(1.20) 

12(15) 

 

Tract, ion, crim, zn, nox, rm, age, dis, tax, ptratio, b, istat 

(Tract, ion, lat, crim, zn, indus, nox, rm, age, dis, rad, tax, 

ptratio, b, istat) 

 

Huber  

LASSO 

0.291 

(0.189) 

3.97 

(1.17) 

11(12) 

 

Tract, ion, crim, nox, rm, age, dis, tax, ptratio, b, istat 

(Tract, ion, crim, zn, indus, rm, age, dis, tax, ptratio, b, 

istat) 

MTE  

LASSO 

0.306 

(0.245) 

4.24 

(1.32) 

10(11) 

 

Tract, ion, crim, nox, rm, dis, tax, ptratio, b, istat 

(ion, crim, zn, indus, rm, age, dis, tax, ptratio, b, istat) 

AW- 

LASSO 

0.301 
(0.124) 

3.59 

(0.783) 
6(11) 

ion, rm, tax, ptratio, b, istat 

(ion, crim, zn, indus, rm, age, dis, tax, ptratio, b, istat) 

Diabetes Data 

LASSO 

0.516 

(0.511) 
1.15 

(1.48) 

4(4) 

 

BMI, BP, S3, S5, (BMI, BP, S3, S5) 

LAD 

LASSO 

0.490 

(0.527) 
1.29 

(1.57) 

4(4) 

 

BMI, BP, S3, S5, (BMI, BP, S3, S5) 

Huber 

LASSO 

0.501 

(0.510) 
1.23 

(1.53) 

4(4) 

 

BMI, BP, S3, S5, (BMI, BP, S3, S5) 

MTE 

LASSO 

0.517 

(0.504) 
1.15 

(1.46) 

4(4) 

 

Bmi, bp, S3, S5, (BMI, BP, S3, S5) 

AW-

LASSO 

0.485 
(0.510) 

1.07 

(1.49) 
4(4) 

bmi, BP, S3, S5, (BMI, BP, S3, S5) 

(.) without outlier 

From the above table it is observed that under with and without outliers the proposed procedure, AW-

LASSO produces the error values are minimum and also select the significant variables when compared 

with the other procedures. 

 

II. Simulation Study 

Simulation studies are carried out to check the efficacy of various methods. In our simulation study, 

the covariates are generated from a multivariate normal distribution with Mean μ = [o]p*1 and variance 
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Σ = [σij] = ρ |i-j| for various levels of correlation, ρ = 0.01, 0.5, 0.9 and number of variables, p=10, 15, 25. 

The model consists of six significant variables and the rest is considered noise variables. The 

performance of the proposed method is compared with various other robust methods along with the 

classical LASSO method. Various levels of contamination (0%, 5%, 10%, 20%) are studied for sample 

size n = 100, 200, 1000.  

 
Table 2: False Negative and False Positive rate of each method under various levels of contamination (0% and 5%) 

Method N Error 

η = 0 η = 5 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

Ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 

100 

FPR 0.36 1.02 0.92 0.64 0.75 0.69 0.43 0.55 0.54 0.93 0.99 0.92 0.69 0.73 0.66 0.47 0.56 0.47 

FNR 0.00 0.00 0.03 0.00 0.00 0.05 0.00 0.00 0.08 0.00 0.00 0.07 0.00 0.00 0.13 0.00 0.01 0.20 

200 

FPR 0.96 0.99 1.03 0.68 0.72 0.74 0.46 0.57 0.57 0.88 1.00 1.00 0.66 0.76 0.75 0.45 0.57 0.52 

FNR 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.07 

1000 

FPR 0.90 1.02 0.99 0.67 0.74 0.78 0.44 0.53 0.58 0.96 1.01 1.03 0.62 0.72 0.77 0.42 0.54 0.58 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LAD 
LASSO 

100 

FPR 0.59 0.73 0.77 0.27 0.42 0.43 0.10 0.18 0.23 0.49 0.67 0.66 0.22 0.31 0.28 0.06 0.09 0.15 

FNR 0.00 0.01 0.16 0.03 0.06 0.26 0.16 0.18 0.41 0.04 0.05 0.26 0.13 0.14 0.46 0.00 0.40 0.62 

200 

FPR 0.67 0.78 0.87 0.31 0.38 0.45 0.09 0.16 0.27 0.49 0.70 0.79 0.20 0.30 0.40 0.06 0.12 0.18 

FNR 0.00 0.00 0.04 0.00 0.00 0.15 0.00 0.04 0.22 0.01 0.00 0.12 0.02 0.04 0.22 0.16 0.14 0.42 

1000 

FPR 0.58 0.78 0.81 0.28 0.42 0.52 0.09 0.17 0.29 0.55 0.69 0.78 0.17 0.30 0.43 0.07 0.11 0.22 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.08 

Huber 
LASSO 

100 

FPR 0.56 0.71 0.74 0.24 0.37 0.40 0.09 0.15 0.20 0.47 0.60 0.63 0.21 0.27 0.25 0.05 0.07 0.12 

FNR 0.00 0.01 0.15 0.03 0.06 0.25 0.17 0.19 0.40 0.04 0.05 0.25 0.13 0.15 0.46 0.47 0.42 0.62 

200 

FPR 0.64 0.73 0.82 0.28 0.33 0.39 0.08 0.14 0.22 0.48 0.67 0.74 0.18 0.27 0.36 0.06 0.10 0.15 

FNR 0.00 0.00 0.04 0.00 0.00 0.12 0.00 0.04 0.20 0.01 0.00 0.11 0.02 0.04 0.21 0.15 0.14 0.43 

1000 

FPR 0.55 0.74 0.77 0.26 0.39 0.46 0.09 0.15 0.23 0.55 0.64 0.75 0.16 0.27 0.39 0.06 0.09 0.18 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.04 

MTE LASSO 

100 

FPR 0.51 0.69 0.73 0.15 0.29 0.39 0.05 0.08 0.18 0.33 0.47 0.54 0.11 0.15 0.19 0.02 0.03 0.10 

FNR 0.35 0.16 0.22 0.69 0.40 0.33 0.75 0.66 0.54 0.55 0.38 0.40 0.79 0.66 0.64 0.91 0.87 0.73 

200 

FPR 0.94 0.92 0.97 0.60 0.60 0.64 0.15 0.26 0.39 0.61 0.78 0.84 0.25 0.32 0.43 0.03 0.07 0.16 

FNR 0.00 0.00 0.00 0.00 0.00 0.02 0.31 0.04 0.09 0.20 0.09 0.08 0.44 0.24 0.17 0.61 0.47 0.36 

1000 

FPR 0.90 0.97 0.93 0.67 0.70 0.74 0.44 0.48 0.53 0.96 0.97 0.96 0.61 0.66 0.71 0.42 0.48 0.53 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

AW-LASSO 

100 

FPR 0.37 0.51 0.51 0.22 0.34 0.35 0.13 0.21 0.22 0.27 0.39 0.37 0.13 0.22 0.17 0.07 0.13 0.12 

FNR 0.00 0.00 0.26 0.00 0.00 0.27 0.00 0.01 0.30 0.00 0.01 0.46 0.01 0.05 0.57 0.00 0.10 0.60 

200 

FPR 0.32 0.47 0.54 0.15 0.26 0.32 0.11 0.17 0.23 0.25 0.35 0.46 0.12 0.19 0.27 0.06 0.11 0.17 

FNR 0.00 0.00 0.13 0.00 0.00 0.16 0.00 0.00 0.15 0.00 0.01 0.30 0.00 0.01 0.31 0.00 0.02 0.34 

1000 

FPR 0.26 0.33 0.49 0.11 0.18 0.30 0.05 0.09 0.19 0.25 0.27 0.46 0.11 0.13 0.25 0.05 0.06 0.15 

FNR 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.00 0.10 0.00 0.00 0.11 

 

The performance of each model is measured by using MDAE, False Negative Rate (FNR), and False 

Positive Rate (FPR). FNR is defined as the proportion of zero coefficient estimates whose corresponding 

true coefficients are nonzero and FPR is defined as the proportion of nonzero coefficient estimates 

whose corresponding true coefficients are zero. The obtained results are summarized in Table 2-5. Also, 

for effective understanding of the performance of various methods, the pictorial representations of 

error measures are given in Figure 2 and 3 respectively. 

 
 

Table 3: False Negative and False Positive Rate of each method under various levels of contamination (10% and 

20%) 

Method N Error 

η = 10 η = 20 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 
100 

FPR 0.93 1.00 0.83 0.65 0.73 0.53 0.48 0.54 0.33 0.90 0.93 0.65 0.63 0.71 0.38 0.45 0.52 0.20 

FNR 0.00 0.00 0.18 0.00 0.01 0.27 0.00 0.02 0.42 0.00 0.04 0.31 0.01 0.04 0.48 0.01 0.08 0.63 

200 

FPR 0.92 1.02 0.97 0.65 0.73 0.68 0.45 0.52 0.50 0.93 1.01 0.87 0.65 0.75 0.65 0.41 0.54 0.42 

FNR 0.00 0.00 0.05 0.00 0.00 0.08 0.47 0.00 0.11 0.00 0.00 0.12 0.00 0.00 0.11 0.00 0.01 0.24 
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1000 

FPR 0.89 0.97 1.01 0.67 0.74 0.76 0.00 0.57 0.00 0.92 1.02 0.99 0.68 0.75 0.75 0.46 0.53 0.57 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.20 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 

LAD LASSO 

100 

FPR 0.44 0.65 0.51 0.16 0.23 0.21 0.03 0.06 0.07 0.39 0.49 0.26 0.09 0.18 0.09 0.00 0.04 0.02 

FNR 0.14 0.09 0.44 0.35 0.32 0.64 0.71 0.57 0.82 0.32 0.29 0.66 0.63 0.49 0.83 0.92 0.77 0.94 

200 

FPR 0.52 0.64 0.69 0.21 0.24 0.28 0.05 0.08 0.11 0.42 0.55 0.52 0.15 0.21 0.21 0.02 0.05 0.06 

FNR 0.01 0.02 0.19 0.13 0.10 0.38 0.40 0.30 0.58 0.06 0.07 0.39 0.29 0.23 0.51 0.75 0.57 0.76 

1000 

FPR 0.46 0.63 0.79 0.20 0.27 0.39 0.07 0.10 0.14 0.44 0.60 0.78 0.16 0.23 0.38 0.05 0.07 0.17 

FNR 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.03 0.00 0.00 0.11 0.00 0.04 0.20 

Huber 
LASSO 

100 

FPR 0.43 0.58 0.50 0.16 0.19 0.19 0.03 0.05 0.06 0.38 0.46 0.26 0.09 0.15 0.08 0.01 0.04 0.01 

FNR 0.14 0.09 0.44 0.35 0.31 0.60 0.69 0.58 0.79 0.31 0.29 0.64 0.61 0.50 0.81 0.86 0.77 0.91 

200 

FPR 0.50 0.62 0.63 0.20 0.22 0.24 0.05 0.07 0.08 0.41 0.54 0.48 0.14 0.19 0.18 0.02 0.04 0.05 

FNR 0.01 0.02 0.19 0.14 0.10 0.38 0.39 0.31 0.59 0.05 0.07 0.40 0.28 0.24 0.52 0.72 0.58 0.79 

1000 

FPR 0.44 0.60 0.76 0.18 0.23 0.34 0.06 0.08 0.11 0.43 0.57 0.71 0.16 0.22 0.33 0.05 0.07 0.13 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.02 0.00 0.00 0.08 0.00 0.04 0.20 

MTE LASSO 

100 

FPR 0.25 0.40 0.41 0.07 0.09 0.15 0.01 0.03 0.04 0.24 0.30 0.21 0.04 0.07 0.06 0.01 0.02 0.01 

FNR 0.65 0.51 0.55 0.85 0.79 0.72 0.90 0.90 0.85 0.72 0.64 0.73 0.89 0.85 0.88 0.92 0.92 0.92 

200 

FPR 0.37 0.50 0.59 0.12 0.12 0.21 0.01 0.02 0.08 0.22 0.30 0.34 0.06 0.07 0.10 0.01 0.01 0.03 

FNR 0.46 0.26 0.25 0.71 0.58 0.50 0.86 0.82 0.63 0.67 0.53 0.56 0.84 0.80 0.69 0.92 0.92 0.85 

1000 

FPR 0.87 0.88 0.94 0.66 0.69 0.69 0.47 0.51 0.00 0.78 0.87 0.90 0.53 0.63 0.65 0.26 0.39 0.47 

FNR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.02 

AW-LASSO 

100 

FPR 0.29 0.38 0.23 0.12 0.18 0.10 0.06 0.12 0.05 0.27 0.37 0.14 0.17 0.21 0.06 0.08 0.14 0.03 

FNR 0.02 0.11 0.68 0.03 0.16 0.73 0.01 0.16 0.84 0.07 0.25 0.79 0.06 0.27 0.85 0.09 0.31 0.90 

200 

FPR 0.25 0.31 0.36 0.11 0.17 0.20 0.06 0.09 0.13 0.26 0.37 0.27 0.12 0.21 0.13 0.06 0.12 0.08 

FNR 0.00 0.04 0.43 0.00 0.04 0.47 0.00 0.07 0.50 0.01 0.10 0.59 0.00 0.11 0.67 0.00 0.15 0.73 

1000 

FPR 0.25 0.27 0.46 0.11 0.12 0.24 0.05 0.06 0.16 0.25 0.27 0.46 0.11 0.14 0.26 0.05 0.06 0.16 

FNR 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.18 0.00 0.00 0.18 0.00 0.00 0.22 

 

False Positive Rate (Figure-2a), the selection of insignificant variables by the method. In                                      

these circumstances, the conventional LASSO has a high False Positive Rate relative to other approach

es, it is because the LASSO tends to select a greater number of coefficients, while the MTE method's       

False Positive Rate rises as the sample size increases. In almost all situations, the AW-LASSO approac

h has a very low False Positive Rate. 

 

False Negative Rate (Figure-2b), or the number of significant variables that the technique failed to              

choose. The AW-LASSO False Negative Rate is usually always zero at all levels, but when the correlat

ion level rises, the approach produces inconsequential results. The MTE technique shows a high rate o

f False Negative, however as the sample size grows, the approach tends to converge to zero. 

 

 
(a). False Positive Rate for various levels of contamination and correlation  

 
(b). False Negative Rate for various levels of contamination and correlation 

 

Figure 2: FPR and FNR under various levels of contamination and correlation 
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Table 4: Median Absolute Error of each method under various levels of contamination (0% and 5%) 

Method N 

η = 0 η = 5 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 

100 1.90 1.91 1.91 1.90 1.87 1.90 1.87 1.84 1.85 2.80 2.49 2.49 2.55 2.70 2.50 2.57 2.56 2.50 

200 1.96 1.96 1.96 1.97 1.96 1.96 1.94 1.93 1.94 2.85 2.37 2.34 2.39 2.75 2.37 2.44 2.41 2.39 

1000 2.02 2.03 2.02 2.02 2.02 2.02 2.01 2.01 2.01 2.80 2.35 2.22 2.30 2.80 2.24 2.35 2.30 2.23 

LAD LASSO 

100 1.99 2.01 2.02 2.37 2.10 2.05 3.10 2.57 2.09 2.51 2.24 2.23 2.40 2.57 2.36 2.44 2.35 2.43 

200 1.98 1.97 1.99 2.11 2.06 2.02 2.36 2.30 2.11 2.29 2.15 2.13 2.20 2.39 2.25 2.37 2.34 2.35 

1000 2.05 2.06 2.08 2.03 2.03 2.02 2.08 2.06 2.04 2.13 2.13 2.14 2.21 2.17 2.17 2.28 2.25 2.21 

Huber LASSO 

100 1.97 2.00 1.99 2.37 2.10 2.02 3.10 2.54 2.09 2.48 2.22 2.21 2.41 2.64 2.34 2.43 2.35 2.42 

200 1.98 1.97 2.00 2.11 2.06 2.01 2.37 2.31 2.09 2.28 2.15 2.12 2.22 2.37 2.23 2.39 2.30 2.37 

1000 2.06 2.07 2.08 2.03 2.03 2.02 2.08 2.07 2.04 2.13 2.13 2.14 2.24 2.18 2.16 2.28 2.25 2.20 

MTE LASSO 

100 3.03 2.15 1.99 4.44 2.75 2.06 4.76 3.44 2.10 2.30 2.20 2.16 2.43 2.63 2.36 2.35 2.26 2.41 

200 1.96 1.96 1.99 2.12 2.01 2.07 3.09 2.10 2.16 2.45 2.30 2.08 2.22 2.57 2.14 2.36 2.28 2.24 

1000 2.06 2.06 2.07 2.02 2.02 2.08 2.20 2.15 2.12 2.14 2.15 2.14 2.21 2.20 2.14 2.16 2.15 2.14 

AW-LASSO 

100 1.95 1.95 1.96 2.12 2.09 1.97 2.14 2.15 2.07 2.14 2.13 2.10 2.14 2.16 2.14 2.15 2.12 2.12 

200 1.97 1.97 1.98 2.10 2.04 1.98 2.11 2.13 2.09 2.16 2.12 2.12 2.15 2.17 2.14 2.14 2.12 2.12 

1000 2.03 2.02 2.02 2.00 1.99 2.00 2.05 2.00 2.02 2.14 2.15 2.13 2.16 2.26 2.17 2.16 2.15 2.15 

 
Table 5: Median Absolute Error of each method under various levels of contamination (10% and 20%) 

Method N 

η = 10 η = 20 

p = 10 p = 15 p = 25 p = 10 p = 15 p = 25 

ρ ρ ρ ρ ρ ρ 

0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 0.01 0.50 0.90 

LASSO 

100 2.90 2.81 2.80 2.96 2.97 2.92 2.96 2.91 2.92 3.88 3.82 3.80 4.12 4.06 4.03 4.20 4.21 4.10 

200 2.89 2.64 2.65 2.74 2.91 2.67 2.96 2.90 2.96 3.97 3.86 3.85 4.06 3.95 3.79 4.21 4.09 4.12 

1000 2.92 2.42 2.55 2.45 2.93 2.41 2.98 2.95 2.93 3.91 3.80 3.81 4.93 3.83 3.73 4.18 4.17 4.14 

LAD LASSO 

100 2.50 2.49 2.47 2.51 2.46 2.63 2.50 2.41 2.85 2.81 2.96 2.96 3.01 2.89 2.70 3.08 3.07 3.39 

200 2.56 2.35 2.42 2.37 2.49 2.57 2.60 2.40 2.71 2.89 2.99 2.99 3.00 2.85 2.81 3.68 3.75 3.33 

1000 2.53 2.28 2.30 2.36 2.35 2.35 2.51 2.47 2.41 2.77 2.63 2.65 2.84 2.78 2.77 3.29 3.11 2.89 

Huber LASSO 

100 2.45 2.50 2.46 2.35 2.44 2.61 2.53 2.42 2.83 2.60 2.96 2.97 2.99 2.81 2.80 3.04 3.03 3.39 

200 2.50 2.35 2.39 2.39 2.39 2.55 2.62 2.41 2.71 2.88 3.00 3.03 2.98 2.69 2.80 3.64 3.77 3.33 

1000 2.52 2.28 2.30 2.36 2.35 2.34 2.51 2.48 2.41 2.67 2.63 2.65 2.85 2.78 2.76 3.29 3.11 2.89 

MTE LASSO 

100 2.60 3.46 2.42 5.72 2.34 2.61 2.70 2.64 2.83 2.82 3.44 3.43 2.92 5.16 3.34 3.29 3.47 3.38 

200 2.62 2.90 2.36 5.23 2.81 2.58 2.75 2.48 2.66 2.84 3.47 3.48 2.96 5.01 3.22 3.17 3.49 3.37 

1000 2.58 2.32 2.31 2.36 2.33 2.31 2.72 2.35 2.42 2.94 2.78 2.79 2.93 2.84 2.72 3.12 2.89 2.75 

AW-LASSO 

100 2.40 2.32 2.36 2.44 2.37 2.32 2.41 2.48 2.52 2.68 2.62 2.63 2.61 2.68 2.65 2.66 2.69 2.65 

200 2.42 2.34 2.35 2.34 2.41 2.37 2.39 2.40 2.36 2.67 2.64 2.66 2.66 2.65 2.66 2.64 2.70 2.70 

1000 2.44 2.32 2.30 2.34 2.33 2.30 2.36 2.33 2.33 2.65 2.76 2.72 2.69 2.77 2.69 2.70 2.77 2.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a). Median Absolute Error for various levels of contamination and correlation 

 

Figure 3: MDAE under various levels of contamination and correlation 
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The ability of the approaches to predict is seen in Figure 3. In comparison to other approaches                      

AW-LASSO has lower MDAE, but if the data contains no outlier the LASSO exhibits a higher predicti

on capacity than other methods and also the MTE method, shows a very high prediction error. Howev

er, the AW-LASSO method always has very low prediction error.  

 

IV. Conclusion 

 
Feature selection is a technique that aids in extracting the important variables from a larger range of 

variables. It is becoming increasingly vital in statistics and is crucial to statistical analysis. In this paper, 

it is proposed a new feature selection method, which uses a weight function from a redescending M-

estimator to modify the ordinary LASSO to form a new feature selection method namely, AW-LASSO. 

The proposed technique performs well in both with and without outlier condition by examining under 

the real datasets namely, the Boston Housing and Diabetic data sets. Further, the simulation studies 

also showed that the superiority of AW-LASSO method over the other methods. The study concluded 

that the proposed method can be used in the field of statistical learning, specifically in prediction 

models.  
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Abstract

The lifetime distributions are used to understand and explain the real life circumstances in various fields

(medical, engineering, etc.). Many times it is very tough task to complete an experiment with complete

data due to lack of time, money or some other factors and get the data in incomplete form. to draw the

information from such type of data (incomplete data), we use some censoring techniques. In the field

of statistics, there are several censoring techniques available where type-I censoring is most commonly

used due to its simplicity. In this article, the scale Muth distribution (SMD) is considered as a lifetime

distribution under type-I censoring scheme. The parameter estimation has been done by classical as well

as Bayesian approach. Under the classical paradigm, two most popular methods were used maximum

likelihood estimation (MLE) and the maximum product of spacing estimation (MPSE). And under the

Bayesian paradigm, we used the informative priors for each parameter and obtained the estimates by

considering the squared error loss function using an approximation method, Metropolis Hasting (MH)

algorithm. The performance of each estimator is evaluated by their mean squared error or simulated

risk. Also, a real data set is used to illustrate the real phenomena and to estimate the parameter using

above-mentioned techniques under type-I censoring scheme.

Keywords: Scale Muth distribution, type-I censoring, classical approach, Bayesian approach, real

data analysis.

1. Introduction

A new popularized lifetime distribution, Muth distribution was introduced by J. E. Muth

[1] in the field of reliability theory. Muth distribution has less probability mass on right tail in
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Volume 18, December 2023 

429

mailto:mukesh.mmv@bhu.ac.in


comparison of some other well known distribution like Weibull, Gamma and log-normal. The

cumulative distribution function (cdf) and probability density function (pdf) of this distribution

are defined respectively:

F(y; α) = 1 − e{αy− 1
α (e

αy−1)} y > 0, α ∈ (0, 1] (1)

f (y; α) =

(eαy − α)e{αy− 1
α (e

αy−1)} y > 0, α ∈ (0, 1]

0 otherwise
(2)

A very few properties of this distribution was given in [1] and mainly focuses on its strict

positive memory and mean residual lifetime. After this Rinne [2] used this distribution as lifetime

model with German data set of car prices for fitting. In 2008, Leemis and McQueston [3] given

a well defined figure and showed the relationship with exponential distribution. When the

shape parameter α → 0 it converges to standered exponential distribution having parameter

1, and given its name as Muth distribution. In 2015, Jodra et.al. [4] again highlighted this

distribution and derived some other statistical properties such as, moment generating function

(mgf), Quantile function, rth moments, moments of order statistics , mode, median and given a

scale transformation form of this distribution named as SMD with scale parameter β > 0 and

shape parameter α ∈ (0, 1].

Estimation of parameters of SMD with classical methods has been done in [4]. After that

many of authors used this distribution with different transformation and derived their properties

and applications such as Jodra et. al. [5] define power Muth distribution, Chesneau and Agiwal

[6] given inverse power Muth distribution and observed that there is no restriction to select

the values of α in eq.[1] as α < 0 and α ∈ (0, 1] but α ̸= 0. In 2022, Saroj et.al. [7] given a

new lifetime distribution with up-side down bathtub (UBT) shape hazard, named as inverse

Muth distribution(IMD) by taking inverse transformation of Muth distribution, and derived some

statistical properties of IMD where it was found that the moment of any order for IMD does

not exist for α ∈ (0, 1]. Also, the scale transformation was considered from the IMD named

as scale inverse Muth distribution with real data applicability [7]. Recently in 2022 Sonker et.

al.[8] estimated the parameter under simple stress-strength reliability and multi-component stress

strength. In 2018, Almarashi and Elgarhy [9] given a Muth generated (M-G) class of distribution

with the help of Muth distribution as a generator and T-X generated family [10]. Then Al-Babtain

et. al. introduced a Transmuted M-G class of distribution [11] and Almarashi et. al. introduced

a new truncated M-G family of distribution[12]. Some censoring schemes are also used by

some authors for different form of Muth distribution such as power Muth distribution under

progressive censoring scheme [13] and SMD under type-II censoring scheme [14].

Generally lifetime distributions are used under the life testing experiments, where we get the

data in ordered form by failure (or death) of testing units. Many of the times, it is very tough

task to record failure time of each event due to lack of time cost effectiveness and many more.

In all these cases we need a technique that helps in drawing inferences about population after

observing a part of testing units. For this, there are several censoring techniques are available
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for different cases and situations. There are many censoring methods available in statistics one

of them is type-I censoring scheme which is a simplest censoring technique and the form of

right censoring. Under the type-I censoring scheme, we select a time point To to terminate the

experiment and record the failure time of the event which fails before To, and after To it assumed

that all the remaining items are censored. A very impressive experimental example for real life

situation under type-I censoring was given in [15]. For the more details about type-I censoring

see [16] & [17].

In this article, classical as well as Bayesian method of estimation are used to estimate the parameter

of SMD under type-I censoring scheme. In classical method two most popular method MLE

and MPSE are used and Bayesian estimation is performed under squared error loss function

(SELF) and an approximation method is used to find the estimates because our posterior is not in

simplest form.

2. Classical methods of estimation

2.1. Maximum Likelihood Estimation

In the classical inference, one of the most popular estimation method was proposed by R. A.

Fisher in 1920 based on likelihood function called MLE. The main principle of this method is to

search for the value of parameter which maximizes the likelihood function. In this article we

have to estimate the parameter of SMD under type-I censoring scheme. In this case the likelihood

function was defined by Cohen(1965)[18] as:

L(θ|x) = C
n

∏
i=1

[ f (xi)]
δi [1 − F(To)]

(1−δi) (3)

where δi is an indicator function which indicates that an experimental unit is observed or

censored. If To is the pre-assigned time point to terminate the experiment then δi is defined for

the ith; i = 1, 2, 3, ..., n unit as:

δi =

{
1 i f xi < To

0 i f xi > To

Let us suppose that the failure time of m units are observed from n before time point To, then the

constant C will be defined as n!
(n−m)! , and the Likelihood function is:

L(θ|x) =
m

∏
i=1

[ f (xi)][1 − F(To)]
(n−m) (4)

Let x ∼ SMD(α, β) having pdf and cdf as:

F(x; α, β) = 1 − e

{
α
β x− 1

α

(
e

α
β

x
−1
)}

x > 0, α ∈ (0, 1] (5)

f (x; α, β) =


1
β (e

α
β x − α)e

{
α
β x− 1

α (e
α
β

x
−1)

}
x > 0, α ∈ (0, 1]

0 otherwise
(6)
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then the Likelihood function is expressed as:

L(α, β|x) = n!
(n − m)!

m

∏
i=1

 1
β
(e(

α
β xi) − α)e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}1 −

1 − e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}
n−m

L(α, β/x) = C
1

βm

m

∏
i=1

(e( α
β xi) − α)e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}e

{
α
β xi− 1

α (e
( α

β
xi)−1)

}n−m

(7)

where C = n!
(n−m)! . after taking the Log of both side of eq.[7] the log-likelihood defined as

log(L(α, β/x)) =log(C)− mlog(β) +
m

∑
i=1

log
(

e(
α
β xi) − α

)
+

m

∑
i=1

(
α

β
xi −

1
α
(e(

α
β xi) − 1)

)
(8)

+ (n − m)

(
α

β
To −

1
α
(e(

α
β To) − 1)

)
To obtain the MLE for α and β we have to search the value of α and β which maximizes the eq.[8].

now, differentiate the eq.[8] w.r.t. α and β and equating to 0 we get,

∂
∂α log(L(α, β/x)) = 0

m

∑
i=1

xie
α
β xi − β

β(e
α
β xi − α)

+
m

∑
i=1

{
xi
β
+

e
α
β xi − 1)

α2 − xi e
α
β xi

αβ

}
+ (n − m)

m

∑
i=1

{
To

β
+

e
α
β To − 1)

α2 − xi e
α
β To

αβ

}
= 0

(9)

and, ∂
∂β log(L(α, β/x)) = 0

−m
β
−

m

∑
i=1

(
αxie

α
β xi
)

(
e

α
β xi − α

) +
1
β2

m

∑
i=1

xi

(
e

α
β xi − α

)
+

To(n − m)

β2

m

∑
i=1

(
e

α
β To − α

)
= 0 (10)

now solve these two non-linear eq.[9] and eq.[10] to get the value of αand β with satisfying

the condition (
∂ log(L(α, β|x))

∂α∂β

)
αml , βml

< 0 (11)

As we can see that eq.[9] and eq.[10] are the complex function for α and β i.e. we can not solve

both the equations analytically. To obtain the value of α and β we used Newton Raphson iteration

method and get the the value of α and β as α̂ml and β̂ml which satisfying the condition eq.[11]

and maximize the eq.[8].

2.2. Maximum Product of Spacing Estimation

This (MPSE) method is an another method of estimation alternative to MLE which is originally

proposed by Cheng and Amin in 1983 [19] and Ranneby in 1984 [20]. It provides the consistent

and asymptotically unbiased estimate. This method cover the drawback of MLE where MLE fails

to estimate three or more parameter distribution like gamma, weibull and log-normal [21] and

also the major limitation of MLE is that it does not work satisfactorily for Heavy tailed continuous

distribution with unknown location and scale parameter [22]. The estimators obtained by MPSE
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method possess most of the large sample properties like sufficiency, consistency and asymptotic

efficiency, possessed by MLE under more general condition [[23] & [21]] and MPSE holds the

invariance property same as the MLE, shown by Coolen and Newby [24]. The consistency of

MPS estimator have been discussed in detailed in [25]. MPS method is mostly similar as MLE

where in case of MLE we use the likelihood function and search the value of parameter which

maximises the likelihood function but in the case of MPSE method we tried to find the estimated

value of parameter which maximises the product of spacing function based on cdf of the target

density function.

Let x1, x2, ..., xn, be an ordered random sample of size n from the univariate distribution. For the

MPSE, the general condition is that the density function is considered to be strictly positive in an

interval (a,b) and zero elsewhere (a = −∞ and b = ∞). In this article we have the cdf F(x) and

pdf f(x) defined in eq.[5] and [6] respectively with supporting value x > 0; 0 < α ≤ 1 and β > 0.

By this F(x) = 0 and f (x) = 0 for x < 0, and F(x) = 1 and f (x) = 0 for x > ∞. The ith spacing

function is defined as Di = F(xi)− F(xi−1) and the product of spacing function is S = ∏n+1
i=1 Di.

The average of this is measured by geometric mean of spacing denoted by ’G’ and defined as

G = S
1

n+1

If the sample is very likely or most probable, it is assumed that they gives the magnitude of

spacing more or less equal. Hence, MPSE will be that value of parameter which maximizes the S

or G. This study considered under type-I censoring so, the sample values belong in (0,∞) can

be divided in no. of parts of interval like [0, x1], (x1, x2], (x2, x3]...(xk−1, xk], (xk, To], (To, ∞).

MPSE method described in detail for the type-I censoring case in [14]. According to [14] we may

write the product of spacing function for chosen distribution as :

S (α, β|x) ∝

 f (To) · ∏m
i=1 Di ·

{
∏n+1

j=1 Dm+j

}
; i f |To − xm| < ϵ

Dξ · {∏m
i=1 Di} ·

{
∏n+1

j=1 Dm+j

}
; i f otherwise

(12)

where, Di = F(xi)− F(xi−1), Dm+j = (1 − F(To))/(n − m), Dξ = F(To)− F(xm) and F(x), f (x)

given in eq.(5), (6) respectively. Thus the MPSE can be obtained by maximizing S (α, β|x) =

log(S (α, β|x)). Now differentiating log of eq.(12) w.r.t. α and β we get,

∂

∂α
S(α, β|x) ∝


f ′(To)
f (To)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

i f |To − xm| < ϵ

F′(To)−F′(xm)
F(To)−F(xm)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

otherwise

(13)

where,
∂

∂α
f ′(x) =

A1

α2β

[
(α − e

α
β x
)
{

αx(e
α
β x − α)− βe

α
β x

+ β
}
+ α2(xe

α
β x − β)

]
∂

∂α
F′(x) =

A1

α2β

[{
αx(e

α
β x − α)− βe

α
β x

+ β
}]

and A1 = e(
α
β x− 1

α (e
α
β

x
−1))

And the partial derivative of log of eq.[12] w.r.t. β will be similar as eq.[13]

∂

∂β
S(α, β|x) ∝


f ′(To)
f (To)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

i f |To − xm| < ϵ

F′(To)−F′(xm)
F(To)−F(xm)

+ ∑m
i=1

F′(xi)−F′(xi−1)
F(xi)−F(xi−1)

− (n−m)F′(To)
1−F(To)

o.w.

(14)
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where,
∂

∂β
f ′(x) = − A1

β2

[
β(e

α
β x − α) + αxe

α
β x

+ x(e
α
β x − α)2

]
∂

∂β
F′(x) = − A1

β2

(
e

α
β x − α

)
Now equating eq.[13], [14] to zero and solve it for α and β, we get the estimated value of

α and β which maximizes the eq.[12]. But the analytical solution is not possible because those

equations are not in closed form. Hence we use Newton Raphson method to solve it numerically

and get estimated value as α̂mp and β̂mp.

3. Asymptotic Confidence Interval

In this section, we define the interval estimation for αand β . Since the exact distribution of

MLE and MPSE is not easy to find because of the maximum likelihood and product of spacing

function is not in the explicit form. Several authors show that the MPSE method is asymptotically

equivalent to the MLE see [[19], [26], [27], [28]]. So, by using the large sample theory we may

propose the Asymptotic Confidence Interval based on MLE and MPSE function and we may

write the asymptotic distribution of both kind of estimator is:(
θ̂ − θ

)
≡ N

(
0, I−1(θ̂)); (15)

where,

θ̂ is the estimate of parameter

θ is the true value of parameter

I−1(θ̂) is the inverse of Fisher information matrix

The 100(1 − α∗)%confidence interval is defined as:

θ̂ ± Zα∗/2

√
Var(θ̂); (16)

where Var(θ̂) = −E
(

∂2(L)
∂x2

)−1

θ=θ̂
is the digonal element of the inverse of Information matrix I−1(θ̂)

In our case the information matrix is defined as:

I(α̂; β̂) =

[
I1,1 I1,2

I2,1 I2,2

]

Here I1,1 = ∂2

∂α2 , I2,2 = ∂2

∂β2 and I1,2 = I2,1 = ∂2

∂α∂β are the second order derivative of log-likelihood

function eq.[8] and the log of the product spacing function eq.[12] . So, for α the 100(1 − α∗)%

confidence interval is defined as:

α̂ ± Zα∗/2

√
Var(α̂); where α̂ is α̂ml and α̂mp (17)

and for β

β̂ ± Zα∗/2

√
Var(β̂); where β̂ is β̂ml and β̂mp (18)
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4. Bayes estimates of α and β under squared error loss function

In this section we considered Bayesian approach to estimate the parameter α and β under type-I

censoring scheme. In the Bayesian method it is assumed that our parameter are random in nature

instead of a fixed quantity. As the random nature of the parameter, we can associate it with

distribution function such as called prior distribution. Let us consider that gamma prior for scale

parameter β and beta prior for shape parameter α, as informative prior, therefore

π(α) ∝ αa−1 · (1 − α)b−1 (19)

and

π(β) ∝ βc−1 · e−dβ (20)

where, a,b and c,d are hyper parameters for beta prior and gamma prior respectively. Thus the

joint prior of α and β is

π(α, β) ∝ αa−1 · (1 − α)b−1 · βc−1 · e−dβ (21)

Now, according to the Bayes rule the formula for joint posterior of α and β is

Π(α, β|x) = π(α, β)L(α, β|x)∫
π(α, β)L(α, β|x)dα dβ

(22)

where, L(α, β|x) is likelihood given in eq.[7]. So, combining the eq.[7] and [21] the posterior for α

and β can be written as:

Π(α, β|x) ∝ C−1
1 · β(c−m−1) · α(a−1) · (1− α)(b−1) · e(n−m)( α

β To− 1
α (e

α
β

To−1))−dβ · e∑( α
β xi− 1

α (e
α
β

xi−1)) (23)

where, C1 =
∫

β(c−m−1) · α(a−1) · (1 − α)(b−1) · e(n−m)( α
β To− 1

α (e
α
β

To−1))−dβ · e∑( α
β xi− 1

α (e
α
β

xi−1)) dα dβ

In the case of Bayesian techniques, loss function play very important role. In this article, to

evaluate the Bayes estimator of α and β we use a symmetric loss function, squared error loss

function (SELF) which gives the equal weight for under and over estimation problem. The general

form of SELF can be expressed as:

L(θ̂, θ) = λ(θ̂ − θ)2; λ > 0 (24)

where θ̂ is the estimate of parameter θ. the Bayes estimator of parameter under SELF is posterior

mean i.e. posterior expectation Eθ [θ|x]. In our case it is found that the posterior mean for both

parameter is the ratio of two mathematically non-tractable integrals; so we use the Markov Chain

Monte Carlo (MCMC) with Metropolis-Hasting (MH) algorithm to obtain Bayes estimate. MH

algorithm is generalization form of basic algorithm originated by Metropolis and Ulman(1949)

[29], then Metropolis et. al. (1953) used first time in statistics study the equation of a state of

a two-dimensional rigid sphere system. In 1970, W. K. Hasting gives the original method by

using arbitrary proposal distribution and it popularized by name MH algorithm. For more detail

see[[30], [31] & [32]]. By using this technique we can generate the sample from posterior eq.[23]

and evaluate the Bayes estimate. The following iterative steps are involved in MH algorithm:

1. Set an initial guess value θ0.
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2. By using previous point Generate the next value of θ as θ j from the proposal density p∗(θ j|θ j−1).

Here we take normal distribution as the proposal density for parameter.

3. Then we generate u U(0, 1)and calculate the ratio:

r =
p(θ j|x

�

) · p∗(θ j−1|θ j)

p(θ j−1|x
�

) · p∗(θ j|θ j−1)

4. Set

θ j =

 θ j i f u ≤ p(θ j |x
�

)·p∗(θ j−1|θ j)

p(θ j−1|x
�

)·p∗(θ j |θ j−1)

θ j−1 otherwise

5. Repeat step (2-4) for j=1,2,3,...,M and obtain θ1,θ2,...,θM

6. To find Bayes estimate under SELF, we take

Ep
(
θ|x
�

)
=

(
1

M − M0

M

∑
M0+1

θ

)

where M0 is burn-in period of Markove chain.

5. Highest Posterior density interval

Nowadays, in the field of Bayesian inference is considered that the parameter of interest behaves

like a random variable, then what is probability that the parameter (say θ) lies within a specified

interval. Edwards et al. (1963) [33] suggested a method to calculate this interval and named

it credible interval. By using this many of the statistician summarizes the marginal posterior

density by 100(1 − α∗)% posterior credible intervals for the parameters. These intervals can be

easily calculated by analytically or MCMC simulation technique. The shortest interval among all

of the Bayesian credible intervals is called highest posterior density (HPD) interval. The HPD

intervals for parameter can be obtained by using method explained by Chen and Shao (1999)[34]

on the basis of MCMC sample from posterior density in Eq.[23]. There are also mentioned that

when a marginal distribution is not symmetric, a HPD interval is more desirable. Box and Tiao

(1973)[35] was already discused that the HPD interval has two main properties as: (i) the density

for the points which are lie within the interval is more than that for the points outside the interval,

and (ii) for a given probability say, (1 -α∗), the interval is of the shortest length. If we have the

posterior as p(θ|x) then the credible interval for θ is defined as:

(θ[(α/2)M], θ[1−(α/2)M])

and the HPD interval is defined as:

(θj∗ , θj∗+[1−(α/2)])

where, j∗ is chosen by which length lj∗ = min(θj+[1−(α/2)] − θj) for 1 ≤ j ≤ M − [(1 − α)M]

6. Simulation Study

Under this section, we study about the behavior of the estimated value of parameters using the

simulation study and compare the performances of MLE, MPSE and Bayes estimator on the basis
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of their mean squared error (MSE) values. To compute the value of MSE, we use the formula

as; MSE(θ)= 1
N ∑N

1 (θ − θ̂i)
2, where N is the number of simulated random sample (we choose

N=10000), θ is the true value of parameter and θ̂i is the estimated value of the parameter for ith

simulated random sample. all the computation was done by R-software like sample generation

from the considered distribution and finding the estimated value. To generate the random sample,

we considered the following steps:

Step 1. Provide some selected values of the parameters, α and β, and sample size n.

Step 2. Then generate a random sample from a standard uniform distribution U(0, 1), which also

be size n denoted as ui; i = 1, 2, 3..., n

Step 3. Now by using the quantile function of SMD given in [4], obtain uth quantile (random

sample) from the SMD xi.

Step 4. Repeat steps 2 and 3, for each i = 1, 2, ... , n we get a random sample of size n from the

SMD.

In step 3 the Lambert-W function W−1(.) can be computed using R-command lambertWm1()

from ‘lamW ’ package, see Adler [2]. In the simulation study, we choose the different combi-

nation of parameter values as (α = 0.3, β = 0.5), (α = 0.5, β = 0.5), (α = 0.7, β = 0.5),

(α = 0.3, β = 2.5), (α = 0.5, β = 2.5), (α = 0.7, β = 2.5), and observed the behavior of MSE

by varying sample size. For this we choose the different sample sizes as n = (30, 50, 70). In

case of Bayesian estimate we need the value of hyper parameters for which we take prior means

equal to true value of parameter and the variances can be chosen as, for small value of parameter

(α=(0.3,0.5) & β=0.5) we take small variance for gamma and beta prior and for the large value of

parameter (α=0.7 & β=2.5) we take some large variance for the both prior. An another issue in

this simulation study is the choice of To. We take To = (0.5, 0.9) for β=0.5 with different value of

α, and To = (3, 5) for β=2.5 with different value of α. On observing the simulation table [1-6] we

found that:

In general, as sample size increases the MSE of all estimators decreases. This shows that the

estimators are consistent. And this decreasing nature of MSE is also found with increasing To.

The average length of asymptotic confidence interval as well as HPD interval decreases as sample

size increases.

MSE of Bayes estimates is least in comparison of MLE and MPSE both, and the MSE of MPSE is

less that MLE.

Width of the HPD interval is smaller in comparison of width of asymptotic confidence interval

and the width of asymptotic confidence interval for MPSE is less than the width for asymptotic

confidence interval MLE.
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Table 1: Estimates of the parameters, MSE, CI and HPD interval for α=0.3, β=0.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.3

30
0.5 0.34704 0.07774

0.72461, 0.06792
0.65669

0.33273 0.06535
0.72461, 0.06792

0.65669
0.49504 0.04156

0.73352, 0.25224
0.48128

0.9 0.32891 0.04485
0.76512, 0.09032

0.67480
0.31103 0.03862

0.75007, 0.08840
0.66167

0.46616 0.03210
0.68793, 0.24349

0.44444

50
0.5 0.32582 0.05735

0.72646, 0.08661
0.63985

0.31781 0.05174
0.71290, 0.09112

0.62179
0.47571 0.03562

0.69921, 0.24710
0.45211

0.9 0.31201 0.03038
0.72890, 0.10531

0.62359
0.30214 0.02796

0.71555, 0.10427
0.61129

0.43824 0.02370
0.64006, 0.23556

0.40450

70
0.5 0.31557 0.04712

0.71985, 0.09472
0.62513

0.31017 0.04380
0.70609, 0.09875

0.60734
0.46208 0.03090

0.67481, 0.24393
0.43088

0.9 0.29997 0.02274
0.68941, 0.11159

0.57782
0.29338 0.02154

0.67894, 0.11067
0.56827

0.41580 0.01768
0.60281, 0.22852

0.37429

β = 0.5

30
0.5 0.51621 0.01738

0.80992, 0.36543
0.44448

0.50410 0.01401
0.76774, 0.36775

0.39998
0.50820 0.01338

0.69941, 0.35175
0.34765

0.9 0.50952 0.00725
0.67859, 0.38679

0.29180
0.50958 0.00640

0.67060, 0.39217
0.27843

0.52538 0.00699
0.67103, 0.39446

0.27657

50
0.5 0.51008 0.01114

0.73543, 0.37591
0.35951

0.50452 0.00943
0.93305, 0.38101

0.55204
0.49198 0.00676

0.63733, 0.36875
0.26858

0.9 0.50562 0.00415
0.63644, 0.40359

0.23284
0.50584 0.00366

0.63370, 0.40661
0.22708

0.51580 0.00388
0.62735, 0.41243

0.21492

70
0.5 0.50932 0.00790

0.70286, 0.38420
0.31866

0.50536 0.00674
0.72334, 0.38939

0.33395
0.48843 0.00462

0.61332, 0.38087
0.23245

0.9 0.50449 0.00286
0.61525, 0.41471

0.20054
0.50428 0.00271

0.61537, 0.41601
0.19936

0.51197 0.00259
0.60662, 0.42325

0.18337

Table 2: Estimates of the parameters, MSE, CI and HPD interval for α=0.5, β=0.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.5

30
0.5 0.48074 0.07860

0.83626, 0.10341
0.73285

0.45601 0.06665
0.82580, 0.11771

0.70808
0.52302 0.00395

0.76440, 0.27504
0.48936

0.9 0.50786 0.04226
0.85294, 0.17571

0.67723
0.47783 0.03675

0.83123, 0.17776
0.65346

0.52332 0.00517
0.74687, 0.29615

0.45072

50
0.5 0.49154 0.05688

0.84875, 0.15769
0.69106

0.47462 0.05084
0.83208, 0.16627

0.66582
0.52207 0.00485

0.75113, 0.28546
0.46566

0.9 0.50121 0.02726
0.79694, 0.23084

0.56610
0.48342 0.02516

0.77794, 0.22849
0.54944

0.51618 0.00582
0.71989, 0.30895

0.41094

70
0.9 0.48544 0.04791

0.83548, 0.18795
0.64754

0.47320 0.04426
0.81647, 0.19507

0.62140
0.51835 0.00532

0.73660, 0.29214
0.44445

0.9 0.50248 0.01965
0.75472, 0.26570

0.48902
0.48975 0.01847

0.73761, 0.26445
0.47316

0.51345 0.00587
0.70190, 0.32155

0.38035

β = 0.5

30
0.5 0.53008 0.01885

0.87626, 0.36571
0.51055

0.51941 0.01454
0.88980, 0.36510

0.52470
0.53692 0.01431

0.74564, 0.36762
0.37801

0.9 0.50709 0.00447
0.65383, 0.39495

0.25888
0.50638 0.00415

0.65251, 0.39464
0.25787

0.51898 0.00463
0.65208, 0.39763

0.25445

50
0.5 0.52053 0.01047

0.75021, 0.38034
0.36987

0.51528 0.00892
0.73297, 0.38130

0.35167
0.52322 0.00794

0.67951, 0.39025
0.28926

0.9 0.50307 0.00248
0.61212, 0.41396

0.19816
0.50265 0.00238

0.71388, 0.41340
0.30048

0.51130 0.00250
0.61151, 0.41741

0.19410

70
0.5 0.51661 0.00723

0.70762, 0.39148
0.31614

0.51257 0.00643
1.18937, 0.39147

0.79790
0.51562 0.00486

0.64536, 0.40269
0.24267

0.9 0.50260 0.00179
0.59260, 0.42653

0.16608
0.50227 0.00173

0.59251, 0.42607
0.16643

0.50890 0.00179
0.59275, 0.42927

0.16348
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Table 3: Estimate of the parameters, MSE, CI and HPD interval for α=0.7, β=0.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE CI

Length Length Length

α = 0.7

30
0.5 0.63980 0.06248

0.92610, 0.14204
0.78406

0.59994 0.05700
0.91185, 0.17602

0.73583
0.55456 0.02370

0.79820, 0.30191
0.49629

0.9 0.50786 0.04226
0.91664, 0.26414

0.65250
0.64827 0.02526

0.89101, 0.28691
0.60410

0.58975 0.01594
0.80713, 0.36497

0.44216

50
0.5 0.68032 0.03730

0.92746, 0.24556
0.68190

0.65050 0.03410
0.90945, 0.27204

0.63741
0.57610 0.01872

0.80553, 0.33467
0.47086

0.9 0.70544 0.01720
0.89096, 0.37177

0.51919
0.67673 0.01564

0.87044, 0.38060
0.48984

0.61656 0.01144
0.80940, 0.41673

0.39268

70
0.9 0.69356 0.02819

0.91520, 0.31706
0.59813

0.67052 0.02584
0.89762, 0.33618

0.56143
0.59264 0.01592

0.80882, 0.36402
0.44481

0.9 0.70790 0.01276
0.87322, 0.43324

0.43999
0.68693 0.01162

0.85563, 0.43526
0.42037

0.63296 0.00900
0.80789, 0.45184

0.35605

β = 0.5

30
0.5 0.53196 0.01545

0.93145, 0.37106
0.56039

0.52256 0.01226
0.80758, 0.36741

0.44017
0.56326 0.01757

0.78578, 0.38201
0.40377

0.9 0.50076 0.00278
0.61889, 0.40570

0.21319
0.49952 0.00257

0.61928, 0.40339
0.21588

0.50111 0.00277
0.61721, 0.39407

0.22314

50
0.5 0.51477 0.00624

0.69256, 0.39453
0.29802

0.51045 0.00563
0.79455, 0.39222

0.40234
0.54068 0.00797

0.70099, 0.40394
0.29705

0.9 0.50108 0.00166
0.58866, 0.42670

0.16196
0.49997 0.00158

0.60593, 0.42482
0.18110

0.49808 0.00166
0.58369, 0.41675

0.16695

70
0.5 0.51100 0.00391

0.64484, 0.41075
0.23409

0.50826 0.00365
0.64154, 0.40867

0.23287
0.53239 0.00491

0.66268, 0.41861
0.24407

0.9 0.50143 0.00115
0.57417, 0.43798

0.13619
0.50052 0.00110

0.57392, 0.43666
0.13726

0.49782 0.00109
0.56874, 0.42956

0.13918

Table 4: Estimates of the parameters, MSE, CI and HPD interval for α=0.3, β=2.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.3

30
3 0.33908 0.06482

0.74655, 0.07368
0.67287

0.32510 0.05521
0.73790, 0.07829

0.65961
0.48950 0.04125

0.79820, 0.30191
0.49629

5 0.33122 0.04056
0.76794, 0.09554

0.67240
0.31172 0.03484

0.75338, 0.09133
0.66206

0.46244 0.03133
0.67978, 0.24478

0.43500

50
3 0.32277 0.04611

0.74687, 0.09224
0.65463

0.31534 0.04189
0.73531, 0.09535

0.63996
0.46766 0.03350

0.68422, 0.24752
0.43670

5 0.31184 0.02651
0.71418, 0.10936

0.60482
0.30053 0.02438

0.70142, 0.10662
0.59480

0.43199 0.02197
0.62896, 0.23485

0.39411

70
3 0.31052 0.03601

0.73439, 0.09710
0.63729

0.30563 0.03362
0.72240, 0.10037

0.62202
0.45009 0.02728

0.65550, 0.24180
0.41370

5 0.30539 0.01948
0.66915, 0.11946

0.54969
0.29735 0.01840

0.65943, 0.11694
0.54248

0.41117 0.01666
0.59270, 0.22909

0.36360

β = 2.5

30
3 2.56213 0.33418

3.79115, 1.82942
1.96174

2.53662 0.25619
3.64655, 1.85827

1.78828
2.48647 0.13565

3.18897, 1.86317
1.32580

5 2.52823 0.18019
3.34280, 1.92556

1.41723
2.53977 0.14785

3.33731, 1.94855
1.38876

2.58703 0.12178
3.19483, 2.02135

1.17349

50
3 2.53769 0.21201

3.47349, 1.90637
1.56711

2.52595 0.16525
4.80067, 1.93116

2.86951
2.47033 0.10858

3.04908, 1.94862
1.10045

5 2.52399 0.09420
3.15481, 2.02575

1.12907
2.52977 0.08328

3.15171, 2.03905
1.11266

2.57688 0.07407
3.07648, 2.10567

0.97081

70
3 2.54392 0.14758

3.34860, 1.96835
1.38025

2.53228 0.12293
3.41558, 1.98083

1.43475
2.47440 0.07359

2.98561, 2.01011
0.97550

5 2.51170 0.07450
3.04064, 2.07754

0.96310
2.51796 0.06407

3.04172, 2.08817
0.95355

2.55707 0.06053
2.99013, 2.14544

0.84470
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Table 5: Estimates of the parameters, MSE, CI and HPD interval for α=0.5, β=2.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.5

30
3 0.49063 0.06249

0.86146, 0.12443
0.73703

0.46567 0.05350
0.84526, 0.13707

0.70819
0.52890 0.00457

0.76369, 0.28798
0.47572

5 0.51364 0.03845
0.84534, 0.18898

0.65635
0.48145 0.03331

0.82155, 0.18757
0.63398

0.52551 0.00554
0.74427, 0.30314

0.44113

50
3 0.49569 0.04508

0.84606 , 0.18054
0.66552

0.47960 0.04058
0.82739, 0.18762

0.63978
0.52462 0.00526

0.74473, 0.29795
0.44678

5 0.50622 0.02396
0.78083, 0.24494

0.53589
0.48643 0.02201

0.75979, 0.24123
0.51856

0.51811 0.00584
0.71663, 0.31660

0.40003

70
3 0.49200 0.03487

0.82882, 0.21163
0.61719

0.48054 0.03235
0.81042, 0.21597

0.59444
0.51908 0.00542

0.72744, 0.30437
0.42307

5 0.50179 0.01767
0.73912, 0.27530

0.46382
0.48773 0.01671

0.72061, 0.27285
0.44775

0.51249 0.00587
0.69522, 0.32677

0.36845

β = 2.5

30
3 2.60200 0.27134

3.90702, 1.86206
2.04496

2.56793 0.22632
4.41924, 1.86555

2.55369
2.56169 0.11156

3.26219, 1.93257
1.32962

5 2.52288 0.10553
3.22612, 1.97815

1.24797
2.52547 0.09680

3.23023, 1.97960
1.25063

2.55712 0.07207
3.11970, 2.02915

1.09055

50
3 2.56577 0.14969

3.42124, 1.96766
1.45359

2.54752 0.13165
3.35205, 1.97103

1.38102
2.54999 0.07483

3.12237, 2.03016
1.09221

5 2.51464 0.05957
3.03958, 2.08200

0.95758
2.51666 0.05730

3.04707, 2.08138
0.96569

2.54589 0.04696
2.99657, 2.11663

0.87995

70
3 2.55300 0.09713

3.25062, 2.02987
1.22075

2.53941 0.08819
5.83190, 2.02799

3.80391
2.54610 0.05616

3.04397, 2.08901
0.95496

5 2.51102 0.04241
2.94791, 2.13973

0.80818
2.51263 0.04122

2.95148, 2.14001
0.81147

2.53840 0.03553
2.92507, 2.16716

0.75791

Table 6: Estimates of the parameters, MSE, CI and HPD interval for α=0.7, β=2.5

MLE MPS Bayes
n To Est. MSE CI Est. MSE CI Est. MSE HPDI

Length Length Length

α = 0.7

30
3 0.66784 0.04386

0.93602, 0.18502
0.75101

0.62763 0.04023
0.91603, 0.21852

0.69750
0.57242 0.01912

0.80563, 0.32935
0.47628

5 0.69938 0.02430
0.91249, 0.27819

0.63430
0.65117 0.02269

0.88475, 0.29866
0.58609

0.59734 0.01431
0.80928, 0.37808

0.43120

50
3 0.68838 0.02839

0.91716, 0.29125
0.62591

0.66076 0.02607
0.89869, 0.31178

0.58691
0.59256 0.01550

0.80859, 0.36665
0.44193

5 0.70956 0.01542
0.88856, 0.38549

0.50307
0.67790 0.01394

0.86624, 0.39026
0.47598

0.62341 0.01003
0.81088, 0.42952

0.38137

70
3 0.69760 0.01970

0.89736, 0.36228
0.53508

0.67665 0.01817
0.88071, 0.37265

0.50806
0.60782 0.01306

0.80874, 0.39669
0.41204

5 0.71161 0.01148
0.87161, 0.44849

0.42313
0.68855 0.01042

0.85369, 0.44483
0.40886

0.63988 0.00781
0.80919, 0.46494

0.34425

β = 2.5

30
3 2.55373 0.14866

3.46516, 1.92668
1.53848

2.52432 0.13224
3.39144, 1.90963

1.48181
2.57792 0.08864

3.25633, 1.96686
1.28947

5 2.49284 0.06864
3.06494, 2.02924

1.03570
2.49091 0.06396

3.07687, 2.01978
1.05709

2.47366 0.04880
2.97784, 1.99879

0.97905

50
3 2.53912 0.07923

3.14974, 2.06092
1.08882

2.52252 0.07473
3.13833, 2.04526

1.09306
2.57224 0.06356

3.11481, 2.07595
1.03886

5 2.50142 0.04142
2.92997, 2.13616

0.79381
2.49971 0.03929

2.93508, 2.12985
0.80523

2.47471 0.03182
2.86599, 2.09898

0.76701

70
3 2.52649 0.05159

3.00072, 2.13151
0.86921

2.51528 0.04996
2.99912, 2.11911

0.88001
2.56087 0.04968

3.02008, 2.13653
0.88355

5 2.50640 0.02923
2.86355, 2.19413

0.66942
2.50501 0.02801

2.86692, 2.18957
0.67735

2.48004 0.02321
2.81090, 2.15919

0.65172
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7. Real Data Analysis

In this section, we use a real data set to illustrate the applicability of the proposed work in real life

situation. The data-set recently considered in [4], which is taken from the website of the Bureau

of Meteorology of the Australian Government (www.bom.gove.au). It represent the monthely

rainfall (in mm) between the period of January 2000 to February 2007 in the rain guege station of

Carrol, located in the State of New South Wales on the east coast of Australia. The data are given

as:

Table 7: Carrol Data-set (n=83)

12 22.7 75.5 28.6 65.8 39.4 33.1 84 41.6 62.3 52.5 13.9 15.4 31.9
32.5 37.7 9.5 49.9 31.8 32.2 50.2 55.8 20.4 5.9 10.1 44.5 19.7 6.4
29.2 42.5 19.4 23.8 55.2 7.7 0.8 6.7 4.8 73.8 5.1 7.6 25.7 50.7
59.7 57.2 29.7 32 24.5 71.6 15 17.7 8.2 23.8 46.3 36.5 55.2 37.2
33.9 53.9 51.6 17.3 85.7 6.6 4.7 1.8 98.7 62.8 59 76.1 67.9 73.7
27.2 39.5 6.9 14 3 41.6 49.5 11.2 17.9 12.7 0.8 21.1 24.5

To ensure that this data-set is appropriate for the illustration of proposed work, first we draw

the Total Time on Test (TTT) plot Fig.[1(a)], which shows that the Hazard rate of considered

data-set same as the considered distribution (increasing Hazard rate). The Kolmogorov-Smirnov

(K-S) test has been used to verify that this data fitted or not on the considered distribution, and

found that the the value of K-S statistic is 0.057005 and p-value is 0.9502 which were shows that

the considered data fitted on SMD. Graphical representation of K-S test is shown in Fig[1(b)].

(a) TTT Plot Carrol Data-set (b) empirical cdf and fitted cdf plot

Figure 1: (a) plot shows the increasing hazard rate and (b) show fitted cdf of real data on SMD

In [4] it is already shows that SMD gives best fit for this data-set in comparison of some other

lifetime distribution (Weibull, Gamma, log-Normal and exponential distribution), on basis of

their AIC and BIC values shown in table[8]. The MLE, MPSE and Bayes estimate of the parameter

for this data-set in case of type-1 censoring given in table[9].
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Table 8: MLE, AIC and BIC values for the Carrol Data-set

Model MLE AIC BIC

SMD (α, β) α̂ = 0.4608, β̂ = 33.9049 740.3600 741.5220

Weibull (a, b) â = 1.3665, b̂ = 36.9120 744.4891 745.6511

Gamma(a, b) â = 1.5160, b̂ = 22.3838 747.3087 748.4706

Exponential (λ) λ̂ = 0.0295 753.0520 753.6330

Log-Normal (µ, σ) µ̂ = 3.1597, σ̂ = 1.0253 767.1983 768.3602

(a) traceplot and marginal density plot for α

(b) traceplot and marginal density plot for β

Figure 2: Shows that MCMC traceplot and marginal density plot with histogram
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Table 9: Estimate of parameter for Carrol Data-set

MLE MPSE Bayes
To m est CI est CI est HPD

25 36
α

β

0.4079

33.4852

0.8835, 0.0589
0.8246

51.7903, 21.6500
30.1403

0.3912

33.2816

0.8807, 0.0529
0.8278

51.4880, 21.5130
29.9749

0.4328

33.4929

0.7031, 0.1414
0.5617

37.3285, 29.2367
8.0918

50 60
α

β

0.3060

36.3427

0.7129, 0.0726
0.6403

45.1023, 29.2843
15.8180

0.2985

36.2114

0.7081, 0.0694
0.6387

44.9145, 29.1947
15.7197

0.3565

36.4217

0.6010, 0.1126
0.4884

40.0513, 32.6227
7.4286

75 78
α

β

0.4266

34.1870

0.6486 , 0.2307
0.4179

39.8435, 29.3336
10.5099

0.4152

34.2052

0.6382 , 0.2223
0.4160

39.8796, 29.3382
10.5415

0.4254

34.3796

0.6131, 0.2169
0.3962

37.6232, 31.0938
6.5295

8. Conclusion

In this article, the considered model SMD is another form of Muth distribution by adding a

scale parameter. To estimate the parameters of this distribution, we used classical and Bayesian

approach under type-1 censoring scheme. In classical approach MLE and MPSE are obtain

for time censored data. For the Bayes estimate of the parameters, beta and gamma prior are

considered for shape parameter α and scale parameter β respectively. The simulation study was

also done by using Monte Carlo method of simulation. From the simulation study it is found that

the Bayes estimate perform better than classical method (MLE and MPSE) on the basis of their

MSE and length of interval estimation.
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Abstract 

Handling of high-dimensional data is an important issue in robust literature. For analyzing data, 

location measure plays a vital role in almost all statistical methods. The location parameter of a 

distribution is used to find the central value. Many computational methods are used to find the measure 

of location for analyzing data. The data depth procedure is one approach to finding the true 

representative of the entire data and it is one of the key concepts in multivariate data analysis. Data 

depth is a term used to describe how deep a particular point is inside the broad multivariate data cloud. 

Instead of the typical smallest to biggest rank, the sample points can be ordered from the center outward. 

Mahalanobis depth is one of the popular depth procedures. The traditional approach used to find 

Mahalanobis depth is based on Mahalanobis distance, it is based on the classical sample mean vector 

and covariance matrix. So the conventional Mahalanobis depth is sensitive to outliers and may fail 

when the data is contaminated. To solve this problem, the Minimum Covariance Determinant (MCD) 

estimators are used instead of classical estimators. However, the MCD estimators cannot be calculated 

in high dimensional data sets, in which the variable number is higher than the subset size. To calculate 

Mahalanobis depth values in high dimensional data, propose a new depth function namely the Robust 

Regularized Mahalanobis Depth (RRMD), which can be calculated in high dimensional data sets. The 

proposed procedure is based on Minimum Regularized Covariance Determinants (MRCD) estimators, 

this study shows that the proposed depth function is successful in finding the deepest point in high 

dimensional data sets with real and simulation studies up to a certain level of contamination. 

 

Keywords: mahalanobis depth, outliers, robust distance, minimum covariance 

determinant estimator, minimum regularized covariance determinant estimators 

 

 

I. Introduction 
 

Data depth is a key concept in the nonparametric method of multidimensional analysis of data. The 

idea of data depth was proposed by Tukey [13] as a graphical tool for displaying two-dimensional 

data sets, and it has now been expanded to include multivariate data sets, Donoho and Gasko [3]. 

Data depth is a statistical technique that describes data distribution in accordance with center-

outward ordering instead of density or linear ordering, Liu [6], Modarres [10]. According to Liu et 

al. [8], the idea of data depth is being used for statistical analysis with multiple variables since it 

offers a nonparametric method. Several researchers have established various notions of depth 

preliminaries in the literature. 

Researchers are looking for solutions in robust depth procedures to address the sensitivity 

issue in high-dimensional data analysis. Also can build robust depth procedures to handle the 
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presence of outliers by replacing the classical estimators with robust estimators such as M-

estimators, Minimum Covariance Determinant (MCD) estimators, Mia Hubert and Michiel 

Debruyne [4], Minimum Volume Ellipsoid (MVE) estimators, Stefan Van Aelst and Peter Rousseeuw 

[12], and Minimum Regularized Covariance Determinants (MRCD), Kris Boudt, Peter Rousseeuw 

[1]. 

A very reliable estimator of multivariate location and scatter is the Minimum Covariance 

Determinant (MCD) approach. Given an 𝑛 ×  𝑝 data matrix 𝑌 = ( 𝑌2, … , 𝑌𝑝)′ with 𝑦𝑖 =

( 𝑦𝑖1 , 𝑦𝑖2, … , 𝑌𝑖𝑝)′, its objective is to find ℎ observations whose sample covariance matrix has the 

lowest possible determinant. Here ℎ < 𝑛 is fixed. The average of these h points serves as the MCD 

estimate of location, while the scatter estimate represents a multiple of the covariance matrix. The 

maximum possible breakdown value is found in the MCD, which also possesses a bounded 

influence function (i.e. 50%) when ℎ = [(𝑛 + 𝑝 + 1)/2]. This covariance matrix of any h-subset must 

be non-singular for the dimension p to meet 𝑝 <  ℎ, which is a significant restriction of the MCD 

technique. In fact, taking n > 5p is frequently advised for the estimator's accuracy. This restriction 

leaves a hole in the selection of high-breakdown techniques. In order to reduce this gap, Boudt et al. 

(2020) suggested modifying the MCD so that it can be used for high dimensions. A regularized 

covariance estimate, which is a weighted mean of the sample covariance of the h-subset and a preset 

positive definite target matrix, is intended to replace the subset-based covariance. The regularized 

covariance based on the h-subset that results in the least overall determinant is then the Minimum 

Regularized Covariance Determinant (MRCD) estimate. In addition to supporting high dimensions, 

the MRCD estimator's key characteristics include maintaining the MCD estimator's excellent 

breakdown qualities and being highly conditioned by construction. 

This study proposes a new depth procedure, namely Robust Regularized Mahalanobis 

Depth (RRMD), which can be used to find the location measure in high dimensional datasets by 

comparing the existing method. In the suggested algorithm, Mahalanobis depth is obtained based 

on MRCD estimators instead of classical mean and covariance matrix. Using various kinds of 

simulation tests and two real datasets, it is examined if the recommended algorithm for location 

estimation in high dimensional data produces accurate results even if the data is contaminated. 
The rest of this paper is structured as follows. Section 2 describes traditional Mahalanobis 

depth, the robust estimator used, and the proposed method. The results and discussions based on 

the real data and simulation study will be given in section 3. The conclusion will be provided in the 

last section. 
 

 

II. Methods 
 

Today, in numerous domains, huge amounts of data are produced and tainted by noise. It is 

important to establish training methods that are resilient to data instabilities and disruptions. In this 

section, the foundations of controlled learning are discussed, including the traditional Mahalanobis 

Depth, the estimator used in this study – Minimum Regularized Covariance Determinant Estimator, 

and the proposed depth procedure - Robust Regularized Mahalanobis Depth. 

 

I. Mahalanobis Depth 

Mahalanobis depth (MD) was first described by Liu et al. [7] from Mahalanobis distance. 

Mahalanobis [9] established the statistical idea of generalized distance which is calculated by using 

a classical mean vector and covariance matrix. For determining the Mahalanobis depth of an 

observation, the Mahalanobis distance is used. The positive inverse of Mahalanobis distance is 

termed as Mahalanobis depth. For an observation 𝑦 ∈  𝑆 ⊂ 𝑅𝑑 about a d- dimensional data, 

The squared Mahalanobis distance (𝐷) and Mahalanobis depth (𝑀𝐷) are given by  

𝐷(𝑌, �̅�, 𝑆) = (𝑌 − �̅�)′𝑆−1(𝑌 − �̅�) 
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𝑀𝐷(𝑌, �̅�, 𝑆) = [1 + 𝐷(𝑌, �̅�, 𝑆)]−1 

where �̅� and S are the mean vector and sample covariance matrix. Since it is reliant on non-

robust parameters like the mean and dispersion matrix, this algorithm lacks to be reliable.  

To get a reliable result MD is calculated using a robust location vector and covariance matrix 

using MCD estimator instead of classical mean vector and covariance matrix. Generally, the Minimum 

Covariance Determinants (MCD) estimators are used for this aim. Due to the failure of MCD 

estimators to be generated for high-dimensional datasets, this approach is not applicable in 

these cases. So, the Mahalanobis depth using MCD estimator can’t be applicable when want to 

analyze a high dimensional data set. 

 

II. Minimum Regularized Covariance Determinant Estimator (MRCD) 

 

The MRCD estimator is a modified version of NCD estimators for high-dimensional data 

and was proposed by Boudt et. al. [1]. To guarantee that the MRCD scatter estimator is scale 

equivariant and location unvarying, as is common in the literature, first, standardize the variables. 

The use of a trustworthy univariate location and scale estimate is required for standardization. For 

this, the median of each subset is calculated and placed in a location vector called 𝑚𝑥. Additionally, 

each variable's scale using the Qn estimator of Rousseeuw and Croux (1993) is calculated, then insert 

these scales into 𝑑𝑥, the diagonal matrix. 

Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛 )′ be an 𝑛 × 𝑝 matrix with 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝  )′; its goal is to identify 

the h observations with the sample covariance matrix with the lowest determinant. The term 𝐻 refers 

to a set of ℎ variables denoting the data contained in the subset, while the term ℋℎrefers to the 

compilation of all of these sets. The corresponding ℎ × 𝑝 submatrix of 𝑋 is denoted by 𝑋𝐻  for a 

particular 𝐻 in ℋℎ . The mean and sample scatter matrix of 𝑋𝐻 are given by 

 

𝑀𝑋(𝐻) = ℎ−1𝑋𝐻
′ 𝐼ℎ                                    (1) 

 

𝑆𝑋(𝐻) = (ℎ − 1)−1(𝑋𝐻 − 𝑀𝑋(𝐻))′(𝑋𝐻 − 𝑀𝑋(𝐻))                               (2) 

 

After that, the MCD method seeks to minimize the determinant of 𝑆𝑋(𝐻) for all 𝐻 ∈ ℋℎ. 

 

𝐻𝑀𝐶𝐷 =  (𝑑𝑒𝑡(𝑆𝑋(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛                     (3) 

 

For statistical considerations, eqn (3) takes the pth root of the determinant. The geometric average of 

its eigenvalues is the pth root of the determinant of the scatter matrix. It is referred to as the 

standardized generalized variance. 

 

The mean of the h-subset is used to define the MCD estimate of location 𝑀𝑀𝐶𝐷 , while the MCD scatter 

estimate is expressed as a multiple of the sample scatter matrix, and is given by 

𝑀𝑀𝐶𝐷 = 𝑀𝑋(𝐻𝑀𝐶𝐷)                      (4) 

 

𝑆𝑀𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝐶𝐷)                      (5) 

 

where 𝐶𝛼 is a consistency factor that is based on the trimming percentage = (𝑛 − ℎ)/𝑛 and is similar 

to the one provided by Rousseeuw and Croux [11]. 

 

The standardized observation is given by  

 

𝑍𝑖 = 𝑑𝑥
−1(𝑥𝑖 − 𝑚𝑥)                                   (6) 

 

The regularized scatter matrix of the standardized observation is 
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 𝒮(𝐻) =  𝜌𝑇 + (1 − 𝜌)𝐶𝛼𝑆𝑍(𝐻) 

where 𝑆𝑍(𝐻) is defined in (2), however, in the case of Z, c is the same consistency parameter as in 

(5). 

 

Let Α be the diagonal matrix containing eigenvalues of T, and the orthogonal matrix Q contains the 

relevant eigenvectors. Utilizing the spectral decomposition 𝑇 = 𝑄𝐴𝑄′ will be practical. 

 

Now,  

𝒮(𝐻) = 𝑄𝐴
1

2⁄ [𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻)]𝐴𝐴
1

2⁄ 𝑄′                  (7) 

 

where 𝑊 is the 𝑛 × 𝑝 matrix consisting of the transformed standardized observations  

𝑤𝑖 =  𝐴
−1

2⁄ 𝑄′𝑍𝑖, and 𝑆𝑊(𝐻) =  𝐴
−1

2⁄ 𝑄′𝑆𝑍𝑄𝐴
−1

2⁄  

 

The MRCD subset is given by 

 

𝐻𝑀𝑅𝐶𝐷 =  (𝑑𝑒𝑡(𝜌𝐼 + (1 − 𝜌)𝐶𝛼𝑆𝑊(𝐻))
1

𝑝⁄ ) 𝐻∈ℋℎ

𝑎𝑟𝑔𝑚𝑖𝑛                   (8) 

 

The MRCD location and scatter estimations of the initial data matrix X are defined as follows 

 
𝑀𝑀𝑅𝐶𝐷 = 𝑚𝑋 + 𝑑𝑥𝑀𝑍(𝐻𝑀𝑅𝐶𝐷)  

  

𝑆𝑀𝑅𝐶𝐷 = 𝐶𝛼𝑆𝑋(𝐻𝑀𝑅𝐶𝐷). 

 

III. Robust Regularized Mahalanobis Depth 

 

The proposed depth procedure namely Robust Regularized Mahalanobis Depth (RRMD), it 

is based on the Minimum Regularized Covariance Determinant estimator, which can be calculated 

in high dimensional data sets. ie., Mahalanobis depth can be calculated using robust location and 

covariance matrix calculated, the MRCD estimator instead of classical mean vector and covariance 

matrix. The robust MRCD estimator was proposed by Boudt et. al. [1] to locate the robust measure 

of location and scatter for high dimensional data. The computational depth procedure for RRMD is 

as follows. 

Let  𝑀𝑀𝑅𝐶𝐷 , and 𝑆𝑀𝑅𝐶𝐷  be the location and scatter matrix using the MRCD estimator,  𝐷𝑀𝑅𝐶𝐷 

diagonal matrix, which consists of the diagonal elements of  𝑆𝑀𝑅𝐶𝐷 matrix. The Robust Regularized 

Mahalanobis Depth obtained from the regularized squared mahalanobis distance, 

𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷) = (𝑌 − 𝑀𝑀𝑅𝐶𝐷)′ 𝐷𝑀𝑅𝐶𝐷
−1(𝑌 − 𝑀𝑀𝑅𝐶𝐷),, and is given by 

 
𝑀𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷)  = [1 + 𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷)]−1 

Let 𝑌 = ( 𝑌2, … , 𝑌𝑑) be a d dimensional multivariate data set and 𝑦 be a numerical vector whose 

depth is to be calculated. The following steps are carried out to find the proposed method. 

 

i. By using the dataset calculate robust MRCD location (𝑀𝑀𝑅𝐶𝐷) and scatter estimators 

(𝑆𝑀𝑅𝐶𝐷). Obtain 𝐷𝑀𝑅𝐶𝐷 diagonal matrix, which consists of the diagonal elements of 𝑆𝑀𝑅𝐶𝐷  

matrix. 

ii. The Regularized Squared Mahalanobis distance can be calculated from (i)  

ie., 𝐷(𝑌, 𝑀𝑀𝑅𝐶𝐷 , 𝑆𝑀𝑅𝐶𝐷  ) = (𝑌 −  𝜇𝑀𝑅𝐶𝐷)′ 𝐷𝑀𝑅𝐶𝐷
−1(𝑌 −  𝜇𝑀𝑅𝐶𝐷) 

iii. 𝑆𝐷 be the sorted distance given in (ii) 

iv. 𝑀𝑆𝐷 be the median from the distance from (iii), 
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𝑀𝑆𝐷
= 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝐷)  

v. 𝐷𝑦  be the difference between Regularized Squared Mahalanobis distance value from (ii) 

and median from (iv), ie., 𝐷𝑦 =  𝐷(𝑌,  𝜇𝑀𝑅𝐶𝐷 , Σ𝑀𝑅𝐶𝐷) − 𝑀𝑆𝐷
 

vi. 𝐴𝑏𝑠(𝐷𝑦) be the absolute value of the difference in (v) 

vii. Now, the proposed depth procedure, Robust Regularized Mahalanobis Depth can be 

calculated by 𝑅𝑅𝑀𝐷𝑦 = [1 + 𝐴𝑏𝑠(𝐷𝑦)]−1 

 

III. Experimental Results 

   
The performance of the proposed RRMD procedure over the classical MD procedure, the 

experiments were conducted under actual and simulation environments by computing location 

measure corresponding to the deepest point in high-dimensional data and thus the obtained results 

are demonstrated in this sections. 

 

I. Real data study  

 
The proposed depth function can be used to find the location parameter in high-dimensional 

datasets. Two real data set is used here to evaluate the performance of the suggested algorithm 

compared with the existing method. The First one is the brain data which is also from the “rda” 

package of R software. The brain data contains two objects, namely the microarray expression data 

for 42 brain cancer samples, and the class labels for these samples. An expression data matrix 

(42x5597) and a class label vector for 42 samples. The second one is the NCI60 data which is obtained 

from the “ISLR” package of R software. The data contains expression levels on 6830 genes from 64 

cancer cell lines. Due to the enormous dimensions of these datasets, this study only used the first p 

(𝑝 > 3 ∗ 𝑛) variables for convenience. The results obtained from the real data study are summarized 

in the form of Table 1. 

 

 

Tab le 1: Deepest point and observation number of brain data and NCI60 data 

 

 

 

 

 

 

 

 

   
 

 
The suggested algorithm, Robust Regularized Mahalanobis Depth (RRMD) is obtained 

based on MRCD estimators and then the location parameter is calculated using the depth values for 

the high dimensional data set. Table 1 shows that the proposed method gives a same location under 

with/without outlier conditions, but the conventional method differs from it. 

 

 

 

 

Methods MD RRMD 

Brain data Highest Depth 

Value 

0.148 (0.103) 0.148 (0.103) 

Deepest Point 42 (16) 4 (4) 

NCI60 data Highest Depth 

Value 

0.097 (0.086) 0.031 (0.029) 

Deepest Point 23 (5) 49 (49) 

(.) – Without outlier 
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II. Simulation Study 

 

Simulation study were carried out under two different dimensions along with various 

amounts of contamination are employed to compare the performance of the proposed methodology 

to the current approach. The experiments were carried out by computing the maximum depth values 

that correspond to location measure. 

 

First generated data with dimension, 100 × 300, with mean vector 𝜇 = (0,0, … ,0)1×300and 

covariance matrixΣ = 𝐼300. Here n=100, and p=300. Further same experiments were performed under 

various levels of contaminations, such as ε= 10%, 15%, 20%, 30% (For Location, 𝜇 =

(1.5, 1.5, … ,1.5)1×300 and Σ = 𝐼300, Scale, 𝜇 = (0,0, … ,0)1×300, and Σ = 1.5𝐼300, Location and Scale, 

 𝜇 = (1.5, 1.5, … ,1.5)1×300 𝑎𝑛𝑑 Σ = 1.5𝐼300) are taken into account.  Also, the same experiment is 

repeated for 200 × 400 dimensional data. The results obtained from the simulation study is given in 

table 2 and 3 respectively. 

 

From the simulation study it is concluded that the suggested depth procedure, RRMD can 

tolerate and gives the same deepest point up to a certain level of contamination. The MD method 

fails to provide identical location measurements even if the data contamination is very low. 
 

Table 2: Deepest point and observation number under various contamination models 

Simulation Study 1 

Dimension:𝟏𝟎𝟎 × 𝟑𝟎𝟎; n=100, p=300 

Highest Depth Values and the corresponding observation 

 
𝜺 

Location 

Contamination 

Scale Contamination Location-Scale 

Contamination 

𝑴𝑫 𝑹𝑹𝑴𝑫 𝑴𝑫 𝑹𝑹𝑴𝑫 𝑴𝑫 𝑹𝑹𝑴𝑫 

0.10 0.099 (96) 0.019 

(33) 

0.870 (41) 0.018 (33) 0.044 (93) 0.019 (33) 

0.15 0.034 (81) 0.019 

(33) 

0.056 (92) 0.018 (33) 0.086 (79) 0.019 (33) 

0.20 0.126 (10) 0.019 

(33) 

0.108 (77) 0.018 (33) 0.032 (88) 0.019 (33) 

0.30 0.014 (38) 0.019 

(28) 

0.082 (30) 0.018 (22) 0.046 (90) 0.019 (22) 

(.) –  Observation number 

 

Table 3: Deepest point and observation number under various contamination models 

Simulation Study 2 

Dimension:𝟐𝟎𝟎 × 𝟒𝟎𝟎; n=200, p=400 

Highest Depth Values and the corresponding observation 

 
𝜺 

Location 

Contamination 

Scale Contamination Location-Scale 

Contamination 

MD RRMD MD RRMD MD RRMD 

0.10 0.013 (5) 0.009 (17) 0.100 (20) 0.009 (17) 0.124 (86) 0.009 (17) 

0.15 0.151( 61) 0.009 (17) 0.162 (18) 0.009 (17) 0.073 (130) 0.010 (17) 

0.20 0.356 (33) 0.010 (17) 0.406 (155) 0.009 (17) 0.042 (128) 0.010 (124) 

0.30 0.126 (21) 0.010 (17) 0.035 (80) 0.009 (131) 0.112 (80) 0.010 (128) 

(.) – Observation number 
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IV. Conclusion 

 
Conventional methods should work reasonably well if certain assumptions are true, however, they 

may not be trustworthy if one or more of these assumptions are erroneous. Both sample mean vector 

and covariance matrix are extremely susceptible to anomalies. As a result, when the data contains 

anomalies, the traditional Mahalanobis depth fails to generate reliable results. For non-normal 

conditions, a robust alternative is required to improve accuracy even when the data somewhat 

depart from the model assumptions. When robust estimators such as MCD and MRCD are used the 

analysis performs well compared to traditional methods. To find the location measure in high 

dimensional data, this paper proposed a new robust depth procedure namely RRMD. The proposed 

method is compared with the existing procedure and gives reliable results up to certain levels of 

contamination. Robust methods perform well even when the model assumptions are not met. The 

study came to the conclusion that for robust and affine equivariant location, the proposed depth 

procedure gives better results followed by the existing method. By finding the deepest point in a 

dataset instead of relying on a more conventional method of determining location, the research 

groups can find the best location with greater precision when using these methods. 
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Abstract

In reliability engineering, the multi-component load-sharing models are being used to amplify
system’s reliability. This study consists of the k-component load-sharing parallel system
model considering each component’s failure time distribution as discrete inverse gamma. The
classical and Bayesian analysis for this model is performed. The maximum likelihood estimates
along with their standard errors for the parameters, system’s reliability function, hazard rate
function and reversed second rate of failure function are obtained. The asymptotic confidence
intervals as well as two bootstrap intervals like bootstrap-p and bootstrap-t confidence in-
tervals are constructed. Further, Bayes estimates along with their posterior standard errors
and highest posterior density credible intervals for the parameters and system’s reliability
characteristics are obtained by using Markov Chain Monte Carlo techniques. A detailed
simulation table is formed to demonstrate the effectiveness of the theory developed. Finally, a
real data set is used to illustrate the applicability of the model.

Keywords: Load-share system model, Discrete inverse gamma distribution, Bootstrap-
ping, Bayesian estimation, MCMC technique

1. Introduction

In today’s engineering world, the products with high reliability are in demand. It can
be accomplished with planned maintenance, improving components’ reliabilities, re-
assignment of components etc. In this regard, manufacturers usually use redundancy
techniques. While using redundancy techniques, it is assumed that the components
within the system are performing independently. However, in practice, many multi-
component systems work as load-sharing model which leads the independence assump-
tion to be not valid any more. In load-sharing model (or dynamic system model), on
a component’s failure, the workload will be redistributed to the other working compo-
nents, which imparts increased load on them. Originally, Daniels [1] developed the first
load-sharing design to study textile strength.

In last two decades, various authors have discussed load-share modeling and esti-
mated its parameters in different contextual aspects. Kim and Kvam [3] considered equal
load-share rule for estimating the load-share parameters of multi-component system
in parametric setup with failure time distribution as exponential. Singh et al. [12]
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performed the classical and Bayesian inference for multi-component load-share system
by assuming that the components have a combination of constant and linear failure rates.
Park [5, 6] performed the classical and Bayesian inference for such models by assuming
the underlying lifetime distribution as exponential or Weibull.

There are various real examples where load-share modeling can be used such as
in mechanical and civil engineering for welded joints (enhances the stress on other
joints), in textile engineering and materials science for crack growth induced by fatigue
or material degradation (bigger cracks will grow faster than smaller cracks), in a power
plant for electric generators (electrical load is shared), in a human body for two kidneys
(simultaneously work together) and so forth.

There are some basic continuous lifetime distributions such as exponential, Weibull,
Lindley and log-normal, which have been explored for analyzing load-share models.
Some distributions are recently been used for this purpose like Chen, modified Weibull,
and exponentiated Pareto distributions which are discussed by Pundir and Gupta [7],
Singh and Goel [11] and Zhang et al. [16], respectively. However, there are various
situations in which discrete distributions can perform well like number of shocks, number
of patients in a ward, etc. Singh et al. [13] have dealt with discrete load-share modeling
situation using geometric distribution.

Considering this, a load-share system model is developed and analyzed with discrete
inverse gamma distribution (DIGD) in the present work. Hussain and Ahmad [2]
obtained DIGD by discretizing the inverse gamma distribution (IGD). Its cumulative
distribution function (CDF), reliability function, probability mass function (PMF), hazard
rate function (HRF) and reversed second rate of failure (RSRF) are, respectively,

F(x) =
∞∫

1/x

1
Γ(α)βα

yα−1e−
y
β dy =

Γ(α, 1
βx )

Γ(α)
; x = 0, 1, . . . ; α > 0, β > 0

where Γ(α, 1
βx ) =

∞∫
1/x

1
βα yα−1e−

y
β dy and Γ represents the upper incomplete gamma func-

tion,

R(x) = 1 − F(x) =
1/x∫
0

1
Γ(α)βα

yα−1e−
y
β dy =

γ(α, 1
βx )

Γ(α)
; x = 0, 1, . . . ; α > 0, β > 0

where γ(α, 1
βx ) =

1/x∫
0

1
βα yα−1e−

y
β dy and γ represents the lower incomplete gamma func-

tion,

P[X = x] = p(x) = R(x)− R(x + 1) =
1

Γ(α)βα

1/x∫
1/(x+1)

yα−1e−y/βdy

=
γ(α, 1

βx , 1
β(x+1) )

Γ(α)
; x = 0, 1, . . . ; α > 0, β > 0 (1)

where γ
(

α, 1
βx , 1

β(x+1)

)
= γ

(
α, 1

βx

)
− γ

(
α, 1

β(x+1)

)
,

h(x) =
p(x)
R(x)

=
γ(α, 1

βx , 1
β(x+1) )

γ(α, 1
βx )

(2)
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and

h2(x) = log
[

F(x)
F(x − 1)

]
= log

[ Γ(α, 1
βx )

Γ(α, 1
β(x−1) )

]
where, α and β are shape and scale parameters.

Pundir et al. [8] obtained its reversed second rate of failure (RSRF) function and
discussed its usefulness. They also discussed the classical and Bayesian inference methods
for DIGD. DIGD can be applied to various applications where IGD is being used like in
radar detection by Shang and Song [10], Stinco et al. [14] and in fading modeling by Yoo
et al. [15], Ramirez-Epi‘nosa and Lopez-Martinez [9], etc.

The current study deals with constructing a load-share parallel system model where
the lifetime distribution of each component is considered as DIGD. In section 2, model
description is presented. The reliability characteristics of the system are derived under
section 3. In section 4, maximum likelihood (ML) estimation, bootstrapping and Bayesian
estimation techniques are applied to obtain the estimates along with standard errors
(SEs)/ posterior standard errors (PSEs) and confidence intervals (CIs)/ highest posterior
density (HPD) credible intervals of the parameters and reliability characteristics of the
load-share system model. Bayesian estimation is applied under informative as well
as non-informative priors by using Markov Chain Monte Carlo (MCMC) techniques
such as Gibbs sampler and Metropolis-Hastings (MH) algorithm. A simulation study
is performed to compare the discussed estimation techniques and the results are given
under section 5. Section 6 demonstrates the applicability of the proposed model to real
data set. Finally, the article is concluded exhibiting some concluding remarks in section
7.

2. Model Description

A load-sharing system is modeled and analyzed under the following assumptions:

• A load-sharing system containing k-components is bearing a constant load which is
equally shared by all its components.

• A test is prepared to record the failure times of n such i.i.d. parallel systems.

• Let Tij (i = 1, 2, . . . , n; j = 1, 2, . . . , k) be the failure time spacing between (j − 1)th

and jth components in the ith parallel system.

• On the successive failures of the components within the system, the load imposed
on other remaining surviving components increases.

• The hazard rate of a remaining surviving component varies when the sharing load
changes.

• The failure time distribution of each component in the system is independent.

• Initially, the hazard rate of each of the k-components is denoted by h(t; α, β1). When
the first component fails, the hazard rate of the remaining (k − 1) components
changes to h(t; α, β2) and so on. After the (k − 1)th component failure, the hazard
rate of the last surviving component changes to h(t; α, βk).
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• Each component is pertaining a failure time PMF and HRF given in equations (1)
and (2), respectively.

Taking these assumptions into consideration, the hazard rate of the jth component when
(j − 1) components have already failed is

h(tij) = (k − j + 1)h(tij; α, β j) ; i = 1, 2, . . . , n; j = 1, 2, . . . , k

= (k − j + 1)
γ
(
α, 1

β jtij
, 1

β j(tij+1)

)
γ
(
α, 1

β jtij

)
and the conditional failure time PMF for the jth component in the ith system is given by

p(tij) =
(k − j + 1)
Γ(α)(k−j+1)

γ

(
α,

1
β jtij

,
1

β j(tij + 1)

)(
γ
(

α,
1

β jtij

))k−j

(3)

Thus, the likelihood function for the ith system is

Li(ti1, . . . , tik|α, Λ) = k!
k

∏
j=1

[
1

Γ(α)(k−j+1)
γ

(
α,

1
β jtij

,
1

β j(tij + 1)

)(
γ
(

α,
1

β jtij

))k−j]
(4)

where, Λ = (β1, β2, . . . , βk).

3. System Reliability Characteristics Measures

The reliability function of the 1-out-of-k load-share system is obtained by considering
its mechanism i.e., the system works till its last component is functioning. Thus, the
reliability of the system is given as

Rs(t)=P[at least one of k components is in operation]

=P[all k components are in operable state]
+P[any one component fails and remaining (k − 1) components survive]+. . .

+P[any (k − 1) components fail and last component is in operation]

=

[
1

Γ(α)
γ

(
α,

1
β1t

)]k

+ k
[

1 − 1
Γ(α)

γ

(
α,

1
β1t

)][
1

Γ(α)
γ

(
α,

1
β2t

)]k−1

+ . . .

+k
[

1 − 1
Γ(α)

γ

(
α,

1
β1t

)][
1 − 1

Γ(α)
γ

(
α,

1
β2t

)]
. . .

[
1 − 1

Γ(α)
γ

(
α,

1
βk−1t

)][
1

Γ(α)
γ

(
α,

1
βkt

)]
The CDF, PMF, HRF and RSRF function of the system’s failure time T are respectively,
given by

Fs(t) = 1 − Rs(t)

ps(t) = Rs(t)− Rs(t − 1)

hs(t) =
ps(t)
Rs(t)

and

h2s(t) = log
Fs(t)

Fs(t − 1)
.
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4. Classical And Bayesian Inference

The likelihood function for n i.i.d. systems is obtained by using equation (4) as

L(T|α, Λ) = (k!)n
n

∏
i=1

k

∏
j=1

[
1

Γ(α)(k−j+1)
γ

(
α,

1
β jtij

,
1

β j(tij + 1)

)(
γ
(

α,
1

β jtij

))k−j]
(5)

and the corresponding log-likelihood function is

logL = nlog(k!) +
n

∑
i=1

k

∑
j=1

[
− (k − j + 1) log(Γ(α)) + log

(
γ
(

α,
1

β jtij
,

1
β j(tij + 1)

))

+(k − j) log
(

γ
(

α,
1

β jtij

))]
(6)

4.1. Maximum Likelihood Estimation

The ML estimates (α̂, Λ̂) of (α, Λ) can be obtained on solving the following (k+1) normal
equations:

∂logL
∂α

= −nk(k + 1)
2

ψ(α)+
n

∑
i=1

k

∑
j=1

1
γ
(
α, 1

β jtij
, 1

β j(tij+1)

)[ ∂

∂α

(
γ
(

α,
1

β jtij

))
− ∂

∂α

(
γ
(

α,
1

β j(tij + 1)

))]

+
n

∑
i=1

k

∑
j=1

(k − j)
1

γ(α, 1
β jtij

)
.

∂

∂α

(
γ
(

α,
1

β jtij

))
= 0 (7)

∂logL
∂β j

=
−nα(k − j + 1)

β j
+

1
β j

n

∑
i=1

γ(α + 1, 1
β jtij

, 1
β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

+
(k − j)

β j

n

∑
i=1

γ(α + 1, 1
β jtij

)

γ(α, 1
β jtij

)
= 0

(8)

where ψ(α) = ∂
∂α log(Γ(α)) is the digamma function and ∂

∂α γ
(

α, 1
β jtij

)
=

1
βj tij∫
0

v(α−1)e−vlog(v)dv.

Since closed form solutions cannot be obtained from the equations (7) and (8). Therefore,
any numerical iterative procedure such as Newton-Raphson method can be used here. By
considering the invariance property of ML estimation, one can obtain the ML estimates of
the reliability characteristics Rs(t), hs(t) and h2s(t). The asymptotic sampling distribution
of (α̂ − α, Λ̂ − Λ)′ is Nk+1(0, ξ−1) with ξ representing the Fisher’s information matrix
whose elements are given as

ξ11 = −∂2logL
∂α2

∣∣∣∣
α=α̂

ξij = 0; i ̸= j

ξ1j = −∂2logL
∂α∂β j

∣∣∣∣
α=α̂,β j=β̂ j

ξ jj = −∂2logL
∂β2

j

∣∣∣∣
β j=β̂ j
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Using equation (6), one can obtain the second-order derivatives of the log-likelihood
function as

∂2logL
∂α2 =

n

∑
i=1

k

∑
j=1

[ ∂2

∂α2 γ(α, 1
β jtij

)− ∂2

∂α2 γ(α, 1
β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

−
{ ∂

∂α γ(α, 1
β jtij

)− ∂
∂α γ(α, 1

β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

}2]

+
n

∑
i=1

k

∑
j=1

(k − j)
[ ∂2

∂α2 γ(α, 1
β jtij

)

γ(α, 1
β jtij

)
−

{ ∂
∂α γ(α, 1

β jtij
)

γ(α, 1
β jtij

)

}2]
− nk(k + 1)

2
ψ′(α)

∂2logL
∂α∂β j

=
n

∑
i=1

1
β j

[ ∂
∂α γ(α + 1, 1

β jtij
, 1

β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

−
γ(α + 1, 1

β jtij
, 1

β j(tij+1) )
∂

∂α γ(α, 1
β jtij

, 1
β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

2

]

+
n

∑
i=1

(k − j)
β j

[ ∂
∂α γ(α + 1, 1

β jtij
)

γ(α, 1
β jtij

)
−

γ(α + 1, 1
β jtij

) ∂
∂α γ(α, 1

β jtij
)

γ(α, 1
β jtij

)2

]
− n(k − j + 1)

β j

∂2logL
∂β2

j
=

n(k − j + 1)α
β2

j
−

n

∑
i=1

1
β j

2

γ(α + 1, 1
β jtij

, 1
β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

−
n

∑
i=1

(k − j)
β2

j

γ(α + 1, 1
β jtij

)

γ(α, 1
β jtij

)

+
n

∑
i=1

1
β2

j

[γ(α + 2, 1
β jtij

, 1
β j(tij+1) )− γ(α + 1, 1

β jtij
, 1

β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

−
{γ(α + 1, 1

β jtij
, 1

β j(tij+1) )

γ(α, 1
β jtij

, 1
β j(tij+1) )

}2]

+
n

∑
i=1

(k − j)
β2

j

[γ(α + 2, 1
β jtij

)− γ(α + 1, 1
β jtij

)

γ(α, 1
β jtij

)
−

{γ(α + 1, 1
β jtij

)

γ(α, 1
β jtij

)

}2]

where, ∂2

∂α2 γ
(

α, 1
β jtij

)
=

1
βj tij∫
0

v(α−1)e−v(log(v))2dv.

The asymptotic 100 × (1 − γ′)% joint confidence ellipsoid for (α, Λ) is (α̂ − α, Λ̂ −
Λ)ξ−1(α̂ − α, Λ̂ − Λ)′ ≤ χ2

(k+1),γ′ , where χ2
(k+1),γ′ is the 100 × γ′th percentile of χ2-

distribution with (k+1) degrees of freedom. Moreover, the asymptotic distributions
of the reliability characteristics Rs(t), hs(t) and h2s(t) are N(0, R′ξ−1R), N(0, h′ξ−1h) and
N(0, h′2ξ−1h2), respectively, where,

R′ =

(
∂Rs(t)

∂α
,

∂Rs(t)
∂Λ

)
, h′ =

(
∂hs(t)

∂α
;

∂hs(t)
∂Λ

)
and h′2 =

(
∂h2s(t)

∂α
;

∂h2s(t)
∂Λ

)
.

4.2. Bootstrap Method

The bootstrap method is a general resampling procedure for obtaining bootstrap CIs
which are an alternative to the asymptotic CIs. Two types of CIs are being used here, i.e.,
percentile bootstrap (boot-p) and bootstrap-t (boot-t). The procedure given in the two
algorithms for boot-p and boot-t methods will be employed for obtaining the bootstrap
estimates and confidence intervals for the parameters, reliability, hazard rate and RSRF
functions. The algorithms for both the methods are provided in appendix A.
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4.3. Bayesian Estimation Using MCMC Approach

Bayesian estimation setup usually involves generating samples from the posterior distri-
bution and using them to summarize the knowledge about the parameters. This makes
the use of prior knowledge and the available data. When the prior knowledge is not
available, one can make use of the non-informative prior. Here, both the informative and
non-informative priors are considered. The prior distributions regarding the load-share
parameters α and β j are taken as gamma priors as

g(α) ∝ αa−1e−α/b ; α, a, b > 0 (9)

and
h(β j) ∝ β

cj−1
j e−β j/dj ; β j, cj, dj > 0; j = 1, 2, . . . , k (10)

Using the priors given in equations (9) and (10) and the likelihood function given in
equation (5), the joint distribution of the parameters and the dataset is

K(T, α, Λ) = L(T|α, Λ).g(α).h(Λ)

= (k!)n
n

∏
i=1

k

∏
j=1

[
1

Γ(α)(k−j+1)
γ
(

α,
1

β jtij
,

1
β j(tij + 1)

)(
γ
(

α,
1

β jtij

))(k−j)]

×αa−1e−α/b ×
k

∏
j=1

β
cj−1
j e−β j/dj

Here, to obtain Bayes estimates of the parameters, the marginal posterior densities of
the parameters are required which are difficult to obtain. Therefore, the use of MCMC
techniques like MH algorithm and Gibbs sampler (given in appendix B) will be followed.
For that, the full conditional densities of the parameters are obtained as:

π1(α|T, Λ) ∝ αa−1e−α/b
n

∏
i=1

k

∏
j=1

1
Γ(α)(k−j+1)

γ
(

α,
1

β jtij
,

1
β j(tij + 1)

)[
γ

(
α,

1
β jtij

)](k−j)

(11)

π2(β j|T, α) ∝ β
cj−1
j e−β j/dj

n

∏
i=1

γ
(

α,
1

β jtij
,

1
β j(tij + 1)

)[
γ

(
α,

1
β jtij

)](k−j)

; j = 1, 2, . . . , k

(12)
Note that, sampling from equations (11) and (12) is not easy to be done directly

because of its complexity. Therefore, samples are generated by using the MH algorithm.

5. Simulation Study

In this section, a simulation study is conducted for analyzing the estimates of the param-
eters of the proposed model by using classical as well as Bayesian approach. Sample data
of size n = 30, 50, 100 and 200 are generated for k = 3, α = 10, β1 = 0.001, β2 = 0.005
and β3 = 0.01. In classical approach, the ML estimates of the parameters along with
their SEs and asymptotic CIs are obtained. Two bootstrapping techniques are applied
and bootstrap confidence intervals based on B = 2000 bootstrap replications are also
computed. Using Bayesian approach, Bayes estimates of the parameters and reliability
characteristics along with their PSEs and HPD intervals are obtained with informative as
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well as non-informative priors. For this, MCMC technique is employed using MH and
Gibbs algorithms and 10, 000 realizations are generated from each posterior density given
in (11) and (12). The burn-in period of 500 realizations are removed. From the generated
chains, every 5th value is taken for removing the autocorrelation among the values. The
trace plots for the parameters are plotted in Figs. (1) - (4) to ensure the fine mixing
of the chains. For informative prior, gamma prior is considered for all the parameters
α, β1, β2 and β3 setting the hyperparameters as α = a × b, β1 = c1 × d1, β2 = c2 × d2 and
β3 = c3 × d3. The values of all the hyperparameters are taken as approximately 0 under
non-informative or Jeffrey’s prior. All the discussed estimates along with their SEs/PSEs
and CIs/HPD intervals are summarized in Table (1).

After performing the simulation study, the following results are observed:

• All the obtained estimates of the parameters and reliability characteristics become
more precise (closer to true values) with an increase in the sample size.

• The SEs/PSEs magnitude of the estimates and the widths of all the intervals
decreases on increasing the sample size.

• Bayes estimation with gamma priors is more precise in terms of true values and
SEs than the Bayes estimation with Jeffrey’s prior as well as ML estimation and
bootstrapping methods for different sample sizes.

• Boot-p and boot-t confidence intervals are more precise than the asymptotic CIs as
they contain the parameters in smaller width for all the sample sizes.

• Boot-p CIs are providing slightly shorter widths than boot-t CIs for all the samples
sizes.

6. Real Data Application

In this section, the applicability of the model is discussed through a real dataset of plasma
display devices (PDPs) which is supposed to be a load-sharing model by Kvam and Pena
[4]. For PDPs, the degradation is measured in luminosity and a PDP is considered as
failed when the luminosity goes below a threshold. A test is conducted with 20 items
and 3 sensors spaced evenly across the test device. The dataset contains the failure times
for 3 sensors on each of 20 test items.

For fitting a discrete distribution , the integer parts of the data values are taken
into consideration. Now, to check whether these failure times can be modeled using
load-sharing models, we setup the following hypothesis:
H0: Load-sharing behavior exists in the dataset i.e., β1 = β2 = β3

H1: Load sharing behavior does not exist in the dataset i.e., β1 ̸= β2 ̸= β3.
The hypothesis can be tested using the following criteria:

• Akaike information criterion (AIC): −2logL + 2p

• Bayesian information criterion (BIC): −2logL + plogn

• Deviance test statistic: dn = −2[logLH0(T|α̂, β̂)− logLH1(T|α̂, β̂1, β̂2, β̂3)]
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Figure 1: Trace plot of α.

Figure 2: Trace plot of β1.

Figure 3: Trace plot of β2.

Figure 4: Trace plot of β3.
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The fitting summary of the dataset under both the models is provided in Table 2. The
observed value of deviance test statistic dn is 9.0385 with corresponding p-value 0.0108
(< 0.05) which suggests that H0 cannot be accepted at 5% level of significance. The same
is suggested by comparing AIC and BIC under H0 and H1. Hence, it is concluded that
load-sharing behavior exists in the considered dataset.

Table 2: Fitting summary of PDP dataset

Model -Log L AIC BIC dn

H0 472.8236 949.6473 951.6388 9.0385
H1 468.3044 944.6087 948.5917

7. Concluding Remarks

In this research, a multi-component load-share parallel system is analyzed by assuming
that the underlying failure time distribution of each component is DIGD. The classical as
well as Bayesian estimation techniques are applied for estimating the parameters of the
system. It is assumed that on a component’s failure, the total workload imposed on the
system will be redistributed to the other working components and this will affect their
performance. Such systems exist in many engineering applications like fiber composites,
power plants, manufacturing and many more. However, the study can be extended by
considering non-identical components where each component is having different loads.
Also, generalized IGD can be adopted instead of DIGD in future researches.
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Appendix A

Boot-p Method

1. Generate a sample Tij(i = 1, 2, . . . , n; j = 1, 2, . . . , k) of size n by using equation (3).

2. Now, regenerate B bootstrap samples T∗
ij(i = 1, 2, . . . , n; j = 1, 2, . . . , k) of size n

from the original sample Tij to compute B bootstrap estimates (α̂∗, Λ̂∗) ≡ Θ̂∗ of
(α, Λ) ≡ Θ.

3. Let Θ̂∗
(1), . . . , Θ̂∗

(B) be the ordered statistics of the estimates Θ̂∗
1 , . . . , Θ̂∗

B. Then, 100 ×
(1 − γ)% boot-p CI is: (Θ̂∗[γB/2], Θ̂∗[1 − γB/2])

4. Finally, the bootstrap estimates and their corresponding variances are obtained.
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Boot-t Method

1. On the basis of the genereted sample T∗
ij , compute the following pivots as:

κ∗1 =
α̂∗ − α̂√

V̂(α̂∗)
and κ∗2 =

Λ̂∗ − Λ̂√
V̂(Λ̂∗)

2. Now, repeat the step 1, B-times.

3. Consider S1(x) = P(κ∗1 ≤ x) and S2(x) = P(κ∗2 ≤ x) as the CDFs of κ∗1 and κ∗2 ,
respectively. Let for a given value x,

α̂boot−t(x) = α̂∗ +
√

V̂(α̂∗)S−1
1 (x) and Λ̂boot−t(x) = Λ̂ +

√
V̂(Λ̂)S−1

2 (x).

4. The 100 × (1 − γ)% boot-t CIs for α and Λ are
α̂boot−t(γ/2), α̂boot−t(1 − γ/2) and Λ̂boot−t(γ/2), Λ̂boot−t(1 − γ/2).

Appendix B

Gibbs Algorithm

1. Generate α and β j (j = 1, 2, . . . , k) from π1(α|T, Λ) and π2(β j|T, α) as given in
equations (11) and (12), respectively.

2. Repeat the above step, M times. To remove the effect of starting values, record the
generated sequence of the parameters after some N(< M) burn-in draws.

3. Bayes estimates and their corresponding posterior variances of the parameters as
well as system reliability function, hazard rate function and RSRF function are
computed by considering the means and variances of the generated values of the
parameters and these three reliability characteristics.

4. Now, considering the ordered sequence of the parameters and reliability character-
istics, the 100 × (1 − γ)% HPD intervals are constructed.

Metropolis-Hastings Algorithm

1. Start with an initial value x0 from the support of the prior distribution and consider
i = 1.

2. Now, generate a proposal xprop by using the proposal density q(xi|xi−1).

3. Calculate the acceptance probability as

Pα(xprop|xi−1) = min
[

1,
q(xi−1|xprop) f (xprop)

q(xprop|xi−1) f (xi−1)

]
4. Generate a random variable U from uniform distribution on (0, 1).

5. The proposal point will be accepted if u < Pα by considering xi = xprop, otherwise,
reject it and set xi = xi−1.

6. Set i = i + 1 and return to step 2.
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Abstract

The aim of the paper is to carry out survival analysis of a novel multi-state model on infectious disease
considering various levels of severity using semi-Markov processes. Various levels of severity of the disease
over time and transitions between these severity levels have been considered. Transition probabilities and
expected waiting times are derived. Expressions for mean survival time, expected total time in home
isolation, and expected total time in hospital are obtained. The analysis of the proposed model is carried
out through numerical computation and plotting several graphs. Important conclusions are drawn. The
modelling framework proposed here can be used to model any infectious disease irrespective of disease
states. The study will be helpful in designing effective measures to control the infectious disease and
selecting the appropriate intervention policies.

Keywords: Multi-state model, Markov property, Semi-Markov process, Transition probabilities

1. Introduction

Modelling infectious diseases has always been an area of interest for researchers in various fields
for the sake of prevention and control of these diseases. According to World Health Organization
2019 report [17], infectious diseases are still in the top ten leading causes of death. In low income
countries, six of the top ten causes of death are infectious diseases including neonatal conditions,
lower respiratory infections, diarrhoeal diseases, malaria, tuberculosis, HIV/AIDS [17]. As per
the above report, there was 50% drop in Disability Adjusted Life Years (DALYs) since 2000 due to
infectious, maternal, perinatal and nutritional conditions.

Multi-state Markov models have been frequently used to study the progression of diseases
such as cancer [7, 11, 15], HIV infection [4, 20], renal disease [9] and many more. For a Markov
model, it is assumed that the holding time in a state is exponentially distributed. For many real-
world situations, such as time to failure and time to discover a fault, the exponential distribution
may be acceptable. In fact, the exponential distributions have memoryless property. In some cases,
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the memoryless property could be seen as a problematic assumption. For example, patients who
respond well to a treatment are likely to respond well to the treatment in the future, violating the
Markov property [5]. To overcome this limitation, semi-Markov processes came into existence.

Semi-Markov processes are very important generalizations of Markov processes. While
Markov processes assume that holding time in a state is exponentially distributed, semi-Markov
processes relax the assumption allowing any arbitrary distributions for holding time in a state.
Semi-Markov processes were defined by Levy [12] and Smith [14]. Since then, semi-Markov
process concepts have been applied to solve various problems like electronics and missile related
problems, to improve reliability of various systems, for cost-benefit analysis of a system, for
economic decision making problem and so on. The field of biomedical science is not an exception
to this, for example, see [1, 2, 6, 8, 10, 13, 16]. Weiss and Zelen [16] applied the theory of
semi-Markov processes to the construction of a stochastic model for interpreting data obtained
from clinical trials on patients with acute leukemia. Kao [10] derived results for computing the
mean and variance of times in transient states and times to absorption in a transient semi-Markov
process. Davidov [6] developed expressions for the steady-state probabilities for regenerative
semi-Markov processes. Castelli et al. [2] performed cost-effective analysis to compare the
follow-up strategies in colorectal cancer study. Goshu and Dessie [8] analysed hospital data
obtained from a cohort of AIDS patients who have been under antiretroviral therapy follow-up
and estimated the conditional probability of transitions between two states for a finite time period.
Cao et al. [1] developed a semi-Markov model to analyse the long-term cost effectiveness of heart
failure management programmes. Ramezankhani et al. [13] applied a multi-state semi-Markov
model to estimate the number of years of life lost due to diabetes with and without cardiovascular
disease.

However, the majority of the literature studies were focused on the disease’s progressive
stages and omitted the transitions back to normal state. We tried to bridge this gap through our
article. There were some studies which included the transitions back to normal state however
their main focus was to understand the threshold dynamics of the disease, for example, see [18],
[19]. Further, since infectious diseases typically necessitate isolation, such as measles, cholera,
diphtheria, infectious tuberculosis, plague, smallpox, yellow fever, and viral hemorrhagic fevers
[3], home isolation is one of the possible states of our model. Moreover, through our model,
we estimated the expected length of stay in home isolated state which has not been reported
in previous studies. Besides, it is a well known fact that elderly patients, pregnant women and
patients with co-morbidities are at risk of developing severe and critical illness and transition rates
would be different in each category of severity illness. Thus, it becomes necessary to consider
separate states for each category of severity. Keeping this in mind, we have considered the four
states as mild disease state, moderate disease state, severe disease state and critical disease state.
This brings another novelty to this model.

Keeping these in mind, a novel multi-state model for infectious disease based on the theory
of semi-Markov processes is proposed. Various levels of severity of the disease over time have
been considered. Thus, our model included every transition that a patient who is infected might
experience. As in the model, the general scenario for an infectious disease have been considered,
the model can be used to study and gain insights about any infectious disease. The paper is
organized as follows. The newly developed multi-state semi-Markov model is described in Section
2. Transition probabilities and expected waiting times are derived and theoretical expressions
regarding mean survival time, expected total time in home isolation and expected total time in
hospital are obtained in Section 3. Numerical computations are performed in Section 4. Finally,
conclusions are presented in Section 5.

2. Model Formulation

A semi-Markov model is proposed considering a person having an infectious disease showing the
transition between various states. There are nine states in the model in which a healthy individual
has the possibility to transit (see Figure 1). Infected persons can experience a range of clinical

RT&A, No 4 (76) 
Volume 18, December 2023 

467



Sujata Sukhija, Rajeev Kumar
SURVIVAL ANALYSIS OF A SEMI-MARKOV MODEL ...

manifestations, from no symptoms to critical illness. Infected persons can generally be divided
into categories based on the severity of their illnesses: mild illness, moderate illness, severe illness,
and critical illness. In light of this, we have taken into account the corresponding four states in
increasing order of illness severity. Transitions from mild illness to moderate illness, moderate
illness to severe illness, and so forth are permitted since a patient is at risk of developing severe
and critical illness. Keeping this in mind, we have taken into consideration the deteriorating rates
from mild illness to moderate illness, moderate illness to severe illness and so on. More details
are described in the notations below.

Other assumptions made in the model are as under:
(i) All normal persons are exposed to the disease.
(ii) Testing of all infected persons is done.
(iii) Clinical testing is not perfect, i.e. there may be an error in testing.
(iv) Patient is home isolated if test results are false negative while patient is hospitalised if the
test results are positive.
(v) All random variables are independent of each other.

The following states are considered in the model:
S0 Normal state
S1 Asymptomatic state
S2 Symptomatic state
S3 Home isolated state
S4 Mild disease state
S5 Moderate disease state
S6 Severe disease state
S7 Critical disease state
S8 Death state

The following notation is used:

β incidence rate
α testing rate
λ1/λ2/λ3 deteriorating rate from mild illness to mod-

erate illness/moderate illness to severe ill-
ness/severe illness to critical illness

g1(t)/g2(t)/g3(t)/g4(t)/g5(t) probability density function of recovery
time in home isolated state/mild disease
state/moderate disease state/severe disease
state/critical disease state

G1(t)/G2(t)/G3(t)/G4(t)/G5(t) cumulative distribution function of recov-
ery time in home isolation/mild disease
state/moderate disease state/severe disease
state/critical disease state

h1(t)/h2(t)/h3(t)/h4(t)/h5(t) probability density function of time to death in
home isolation/mild disease state/moderate
disease state/severe disease state/critical dis-
ease state

H1(t)/H2(t)/H3(t)/H4(t)/H5(t) cumulative distribution function of time
to death in home isolation/mild disease
state/moderate disease state/severe disease
state/critical disease state

Wi(t) probability that the patient is in home isolation
at instant t without passing through any other
state
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p/q probability of an infected person to be asymp-
tomatic/ symptomatic (p + q = 1)

p1/q1 probability of an asymptomatically infected
person to be tested false negative/positive (p1 +
q1 = 1)

p2/q2 probability of an symptomatically infected
person to be tested false negative/positive
(p2 + q2 = 1)

r1/r2/r3/r4 probability that a patient is diagnosed with
mild illness/ moderate illness/severe ill-
ness/critical illness (r1 + r2 + r3 + r4 = 1)

a2/b2 probability that an home isolated person will
recover/ move to death state (a1 + b1 = 1)

a2/b2/c1 probability that a person with mild ill-
ness will recover to normal state/move to
death/deteriorate to moderate illness (a2 + b2 +
c1 = 1)

a3/b3/c2 probability that a person with moderate ill-
ness will recover to normal state/move to
death/deteriorate to severe illness(a3 + b3 +
c2 = 1)

a4/b4/c3 probability that a person with severe ill-
ness will recover to normal state/move to
death/deteriorate to critical illness (a4 + b4 +
c3 = 1)

a5/b5 probability that a person with critical illness
will recover to normal state/move to death
state (a5 + b5 = 1)

The following symbols/abbreviations are used:
SpO2 Pulse oximetry
R.R. Respiratory Rate
* Laplace Transform symbol
** Laplace Transform symbol
© Laplace Convolution symbol
s Laplace-Stieltjes Convolution symbol
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Normal State

Infected State

Death State

Figure 1: State Transition Diagram. Possible states which an individual may occupy are
depicted in the figure.
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3. Analysis

Let qij(t)/Qij(t) represents probability density function/cumulative distribution function of first
passage time from state Si to state Sj without visiting any other state in (0, t]. Thus, the time
dependent transition probabilities are given by

q01(t) = pβe−βt q02(t) = qβe−βt q13(t) = p1αe−αt

q14(t) = r1q1αe−αt q15(t) = r2q1αe−αt q16(t) = r3q1αe−αt

q17(t) = r4q1αe−αt q23(t) = p2αe−αt q24(t) = r1q2αe−αt

q25(t) = r2q2αe−αt q26(t) = r3q2αe−αt q27(t) = r4q2αe−αt

q30(t) = a1g1(t) q38(t) = b1h1(t) q40(t) = a2g2(t)
q45(t) = c1λ1e−λ1t q48(t) = b2h2(t) q50(t) = a3g3(t)
q56(t) = c2λ2e−λ2t q58(t) = b3h3(t) q60(t) = a4g4(t)
q67(t) = c3λ3e−λ3t q68(t) = b4h4(t) q70(t) = a5g5(t)
q78(t) = b5h5(t)

The steady state transition probabilities, pij = lim
t→∞

∫ t
0 qij(t) dt are obtained as

p01 = p p02 = q p13 = p1 p14 = r1q1 p15 = r2q1
p16 = r3q1 p17 = r4q1 p23 = p2 p24 = r1q2 p25 = r2q2
p26 = r3q2 p27 = r4q2 p30 = a1 p38 = b1 p40 = a2
p45 = c1 p48 = b2 p50 = a3 p56 = c2 p58 = b3
p60 = a4 p67 = c3 p68 = b4 p70 = a5 p78 = b5

Let Ti denote the waiting time in state Si then the expected waiting time in state Si is given by
µi =

∫ ∞
0 P(Ti > t) dt. Thus, the expected waiting times are obtained as

µ0 =
1
β

µ1 =
1
α

µ2 =
1
α

µ3 = −a1g∗
′

1 (0)− b1h∗
′

1 (0)

µ4 =
c1

λ1
− a2g∗

′
2 (0)− b2h∗

′
2 (0) µ5 =

c2

λ2
− a3g∗

′
3 (0)− b3h∗

′
3 (0)

µ6 =
c3

λ3
− a4g∗

′
4 (0)− b4h∗

′
4 (0) µ7 = −a5g∗

′
5 (0)− b5h∗

′
5 (0)

The expected waiting time in state Si given that the next state visited is Sj, is defined as
mij =

∫ ∞
0 tqij(t) dt = −q∗

′
ij (0). Thus, the following relations are satisfied:

m01 + m02 = µ0
m13 + m14 + m15 + m16 + m17 = µ1
m23 + m24 + m25 + m26 + m27 = µ2
m30 + m38 = µ3
m40 + m45 + m48 = µ4
m50 + m56 + m58 = µ5
m60 + m67 + m68 = µ6
m70 + m78 = µ7

Theorem 1. If T0 is the mean survival time for the patient starting in state S0 then

T0 =
N
D

,
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where

N = µ0 + p01µ1 + p02µ2 + p01 p13µ3 + p01 p14µ4 + p01 p15µ5 + p01 p16µ6 + p01 p17µ7

+ p02 p23µ3 + p02 p24µ4 + p02 p25µ5 + p02 p26µ6 + p02 p27µ7 + p01 p14 p45µ5

+ p01 p15 p56µ6 + p01 p16 p67µ7 + p02 p24 p45µ5 + p02 p25 p56µ6 + p02 p26 p67µ7

+ p01 p14 p45 p56µ6 + p02 p24 p45 p56µ6 + p01 p15 p56 p67µ7 + p02 p25 p56 p67µ7

+ p01 p14 p45 p56 p67µ7 + p02 p24 p45 p56 p67µ7

and

D = 1 − p01 p13 p30 − p01 p14 p40 − p01 p15 p50 − p01 p16 p60 − p01 p17 p70 − p02 p23 p30

− p02 p24 p40 − p02 p25 p50 − p02 p26 p60 − p02 p27 p70 − p01 p14 p45 p50 − p01 p15 p56 p60

− p01 p16 p67 p70 − p02 p24 p45 p50 − p02 p25 p56 p60 − p02 p26 p67 p70 − p01 p14 p45 p56 p60

− p01 p15 p56 p67 p70 − p02 p24 p45 p56 p60 − p02 p25 p56 p67 p70 − p01 p14 p45 p56 p67 p70

− p02 p24 p45 p56 p67 p70.

Proof. Let ϕi(t) denote the cumulative distribution function of passage time from state Si to
the absorbing state.

The individual in state S0 at t = 0 can reach the absorbing state at time t in two possible
ways:
(i) The individual transited from state S0 to state S1 in time τ (τ < t) and reached the absorbing
state in t − τ time.
(ii) The individual transited from state S0 to state S2 in time τ (τ < t) and reached the absorbing
state in t − τ time.

Thus, we obtain
ϕ0(t) = Q01(t) s ϕ1(t) + Q02(t) s ϕ2(t)

Similarly, the following equations are obtained:
ϕ1(t) = Q13(t) s ϕ3(t) + Q14(t) s ϕ4(t) + Q15(t) s ϕ5(t) + Q16(t) s ϕ6(t) + Q17(t) s ϕ7(t)
ϕ2(t) = Q23(t) s ϕ3(t) + Q24(t) s ϕ4(t) + Q25(t) s ϕ5(t) + Q26(t) s ϕ6(t) + Q27(t) s ϕ7(t)
ϕ3(t) = Q30(t) s ϕ0(t) + Q38(t)
ϕ4(t) = Q40(t) s ϕ0(t) + Q45(t) s ϕ5(t) + Q48(t)
ϕ5(t) = Q50(t) s ϕ0(t) + Q56(t) s ϕ6(t) + Q58(t)
ϕ6(t) = Q60(t) s ϕ0(t) + Q67(t) s ϕ7(t) + Q68(t)
ϕ7(t) = Q70(t) s ϕ0(t) + Q78(t)

Taking Laplace-Stieltjes transform of the above system of equations, rearranging the terms
and solving the above system of equations for ϕ∗∗

0 (s), we obtain

ϕ∗∗
0 (s) =

N1(s)
D1(s)

where

N1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −Q∗∗
01 (s) −Q∗∗

02 (s) 0 0 0 0 0
0 1 0 −Q∗∗

13 (s) −Q∗∗
14 (s) −Q∗∗

15 (s) −Q∗∗
16 (s) −Q∗∗

17 (s)
0 0 1 −Q∗∗

23 (s) −Q∗∗
24 (s) −Q∗∗

25 (s) −Q∗∗
26 (s) −Q∗∗

27 (s)
Q∗∗

38 (s) 0 0 1 0 0 0 0
Q∗∗

48 (s) 0 0 0 1 −Q∗∗
45 (s) 0 0

Q∗∗
58 (s) 0 0 0 0 1 −Q∗∗

56 (s) 0
Q∗∗

68 (s) 0 0 0 0 0 1 −Q∗∗
67 (s)

Q∗∗
78 (s) 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and

D1(s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −Q∗∗
01 (s) −Q∗∗

02 (s) 0 0 0 0 0
0 1 0 −Q∗∗

13 (s) −Q∗∗
14 (s) −Q∗∗

15 (s) −Q∗∗
16 (s) −Q∗∗

17 (s)
0 0 1 −Q∗∗

23 (s) −Q∗∗
24 (s) −Q∗∗

25 (s) −Q∗∗
26 (s) −Q∗∗

27 (s)
−Q∗∗

30 (s) 0 0 1 0 0 0 0
−Q∗∗

40 (s) 0 0 0 1 −Q∗∗
45 (s) 0 0

−Q∗∗
50 (s) 0 0 0 0 1 −Q∗∗

56 (s) 0
−Q∗∗

60 (s) 0 0 0 0 0 1 −Q∗∗
67 (s)

−Q∗∗
70 (s) 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Solving the above determinants, we get

N1(s) = Q∗∗
01 (s)Q

∗∗
13 (s)Q

∗∗
38 (s) + Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
48 (s) + Q∗∗

02 (s)Q
∗∗
23 (s)Q

∗∗
38 (s)

+ Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
48 (s) + Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
58 (s) + Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
68 (s)

+ Q∗∗
01 (s)Q

∗∗
17 (s)Q

∗∗
78 (s) + Q∗∗

02 (s)Q
∗∗
25 (s)Q

∗∗
58 (s) + Q∗∗

02 (s)Q
∗∗
26 (s)Q

∗∗
68 (s)

+ Q∗∗
02 (s)Q

∗∗
27 (s)Q

∗∗
78 (s) + Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
58 (s)

+ Q∗∗
01 (s)Q

∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
68 (s) + Q∗∗

02 (s)Q
∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
58 (s)

+ Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
68 (s) + Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
02 (s)Q

∗∗
26 (s)Q

∗∗
67 (s)Q

∗∗
78 (s) + Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
68 (s)

+ Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
68 (s) + Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
01 (s)Q

∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

+ Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
78 (s)

D1(s) = 1 − Q∗∗
01 (s)Q

∗∗
13 (s)Q

∗∗
30 (s)− Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
40 (s)− Q∗∗

02 (s)Q
∗∗
23 (s)Q

∗∗
30 (s)

− Q∗∗
01 (s)Q

∗∗
15 (s)Q

∗∗
50 (s)− Q∗∗

02 (s)Q
∗∗
24 (s)Q

∗∗
40 (s)− Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
50 (s)− Q∗∗

01 (s)Q
∗∗
17 (s)Q

∗∗
70 (s)− Q∗∗

02 (s)Q
∗∗
26 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
27 (s)Q

∗∗
70 (s)− Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
50 (s)

− Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
50 (s)− Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)− Q∗∗

01 (s)Q
∗∗
16 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
02 (s)Q

∗∗
26 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)− Q∗∗

01 (s)Q
∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)

− Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
60 (s)− Q∗∗

01 (s)Q
∗∗
15 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
02 (s)Q

∗∗
25 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
01 (s)Q

∗∗
14 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

− Q∗∗
02 (s)Q

∗∗
24 (s)Q

∗∗
45 (s)Q

∗∗
56 (s)Q

∗∗
67 (s)Q

∗∗
70 (s)

Mean survival time for the patient starting in state S0 is given by

T0 = lims→0
1 − ϕ∗∗

0 (s)
s

Using the above value of ϕ∗∗
0 (s), we obtain

T0 =
N
D

,
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where

N = µ0 + p01µ1 + p02µ2 + p01 p13µ3 + p01 p14µ4 + p01 p15µ5 + p01 p16µ6 + p01 p17µ7

+ p02 p23µ3 + p02 p24µ4 + p02 p25µ5 + p02 p26µ6 + p02 p27µ7 + p01 p14 p45µ5

+ p01 p15 p56µ6 + p01 p16 p67µ7 + p02 p24 p45µ5 + p02 p25 p56µ6 + p02 p26 p67µ7

+ p01 p14 p45 p56µ6 + p02 p24 p45 p56µ6 + p01 p15 p56 p67µ7 + p02 p25 p56 p67µ7

+ p01 p14 p45 p56 p67µ7 + p02 p24 p45 p56 p67µ7

and

D = 1 − p01 p13 p30 − p01 p14 p40 − p01 p15 p50 − p01 p16 p60 − p01 p17 p70 − p02 p23 p30

− p02 p24 p40 − p02 p25 p50 − p02 p26 p60 − p02 p27 p70 − p01 p14 p45 p50 − p01 p15 p56 p60

− p01 p16 p67 p70 − p02 p24 p45 p50 − p02 p25 p56 p60 − p02 p26 p67 p70 − p01 p14 p45 p56 p60

− p01 p15 p56 p67 p70 − p02 p24 p45 p56 p60 − p02 p25 p56 p67 p70 − p01 p14 p45 p56 p67 p70

− p02 p24 p45 p56 p67 p70.

■

Theorem 2. Expected total time in home isolation for the patient starting in state S0 is given by

µ3(p01 p13 + p02 p23)

D
,

where D has been already specified in Theorem 1.

Proof. Let ψi(t) denote the probability that the patient is in home isolation at instant t, given
that the patient entered state Si at t = 0. Proceeding on similar lines shown in Theorem 1, we
obtained the following recursive relations:
ψ0(t) = q01(t)©ψ1(t) + q02(t)©ψ2(t)
ψ1(t) = q13(t)©ψ3(t) + q14(t)©ψ4(t) + q15(t)©ψ5(t) + q16(t)©ψ6(t) + q17(t)©ψ7(t)
ψ2(t) = q23(t)©ψ3(t) + q24(t)©ψ4(t) + q25(t)©ψ5(t) + q26(t)©ψ6(t) + q27(t)©ψ7(t)
ψ3(t) = W3(t) + q30(t)©ψ0(t)
ψ4(t) = q40(t)©ψ0(t) + q45(t)©ψ5(t)
ψ5(t) = q50(t)©ψ0(t) + q56(t)©ψ6(t)
ψ6(t) = q60(t)©ψ0(t) + q67(t)©ψ7(t)
ψ7(t) = q70(t)©ψ0(t)
where
W3(t) = 1 − a1G1(t)− b1H1(t)

Taking Laplace transform of the above system of equations and solving for ψ∗
0 (s), we obtain

ψ∗
0 (s) =

N2(s)
D1(s)

,

where
N2(s) = W∗

3 (s)(q
∗
01(s)q

∗
13(s) + q∗02(s)q

∗
23(s))

and D1(s) has been already specified in Theorem 1.

Expected total time in home isolation for the patient starting in state S0 is given by∫ ∞

0
ψ0(t) dt = lims→0 ψ∗

0 (s)

=
µ3(p01 p13 + p02 p23)

D
,

where D has been already specified in Theorem 1. ■
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Theorem 3. Expected total time in hospital for the patient starting in state S0 is given by

1
D
(p01 p14µ4 + p01 p15µ5 + p01 p16µ6 + p01 p17µ7 + p02 p24µ4 + p02 p25µ5 + p02 p26µ6

+ p02 p27µ7 + p01 p14 p45µ5 + p01 p15 p56µ6 + p01 p16 p67µ7 + p02 p24 p45µ5 + p02 p25 p56µ6

+ p02 p26 p67µ7 + p01 p14 p45 p56µ6 + p02 p24 p45 p56µ6 + p01 p15 p56 p67µ7 + p02 p25 p56 p67µ7

+ p01 p14 p45 p56 p67µ7 + p02 p24 p45 p56 p67µ7),

where D has been already specified in Theorem 1.

Proof. Let χi(t) denote the probability that the patient is in hospital at instant t, given that the
patient entered state Si at t = 0. Proceeding on similar lines shown in Theorem 1, we obtained
the following recursive relations.
χ0(t) = q01(t)©χ1(t) + q02(t)©χ2(t)
χ1(t) = q13(t)©χ3(t) + q14(t)©χ4(t) + q15(t)©χ5(t) + q16(t)©χ6(t) + q17(t)©χ7(t)
χ2(t) = q23(t)©χ3(t) + q24(t)©χ4(t) + q25(t)©χ5(t) + q26(t)©χ6(t) + q27(t)©χ7(t)
χ3(t) = q30(t)©χ0(t)
χ4(t) = W4(t) + q40(t)©χ0(t) + q45(t)©χ5(t)
χ5(t) = W5(t) + q50(t)©χ0(t) + q56(t)©χ6(t)
χ6(t) = W6(t) + q60(t)©χ0(t) + q67(t)©χ7(t)
χ7(t) = W7(t) + q70(t)©χ0(t)
where
W4(t) = 1 − a2G2(t)− c1(1 − e−λ1t)− b2H2(t)
W5(t) = 1 − a3G3(t)− c2(1 − e−λ2t)− b3H3(t)
W6(t) = 1 − a4G4(t)− c3(1 − e−λ3t)− b4H4(t)
W7(t) = 1 − a5G5(t)− b5H5(t)

Taking Laplace transform of the above system of equations and solving for χ∗
0(s), we obtain

χ∗
0(s) =

N3(s)
D1(s)

,

where

N3(s) = W∗
4 (s)(q

∗
01(s)q

∗
14(s) + q∗02(s)q

∗
24(s)) + W∗

5 (s)(q
∗
01(s)q

∗
15(s) + q∗02(s)q

∗
25(s)

+ q∗01(s)q
∗
14(s)q

∗
45(s) + q∗02(s)q

∗
24(s)q

∗
45(s)) + W∗

6 (s)(q
∗
01(s)q

∗
16(s) + q∗02(s)q

∗
26(s)

+ q∗01(s)q
∗
15(s)q

∗
56(s) + q∗02(s)q

∗
25(s)q

∗
56(s) + q∗01(s)q

∗
14(s)q

∗
45(s)q

∗
56(s)

+ q∗02(s)q
∗
24(s)q

∗
45(s)q

∗
56(s)) + W∗

7 (s)(q
∗
01(s)q

∗
17(s) + q∗02(s)q

∗
27(s)

+ q∗01(s)q
∗
16(s)q

∗
67(s) + q∗02(s)q

∗
26(s)q

∗
67(s) + q∗01(s)q

∗
15(s)q

∗
56(s)q

∗
67(s)

+ q∗02(s)q
∗
25(s)q

∗
56(s)q

∗
67(s) + q∗01(s)q

∗
14(s)q

∗
45(s)q

∗
56(s)q

∗
67(s)

+ q∗02(s)q
∗
24(s)q

∗
45(s)q

∗
56(s)q

∗
67(s))

and D1(s) has been already specified in Theorem 1.

Expected total time in hospital for the patient starting in state S0 is given by∫ ∞

0
χ0(t) dt = lims→0χ∗

0(s)

= lims→0
N3(s)
D1(s)

Using the above value of N3(s) and simplifying we get the required result. ■
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4. Numerical Computations

Numerical computations for the mean survival time, expected total time in home isolation,
and expected total time in hospital have been performed. For illustrating our model results,
the waiting time distributions are assumed as exponentials, as follows: gi(t) ∼ exp(γi) and
hi(t) ∼ exp(δi) where i=1,2,...,5.

The severity levels of the disease are defined as under.
mild illness SpO2 ≥ 94% on room air and no shortness of breath
moderate illness 90% ≤ SpO2 < 94% on room air or 24 <R.R.≤ 30 breaths

per minute
severe illness SpO2 < 90% on room air or R.R.>30 breaths per minute
critical illness Respiratory failure or septic shock or multiple organ dys-

function or requires life sustaining treatment

In addition, the following values for parameters are assumed:
β=0.031/day, α=0.5/day, γ1=0.074/day, γ2=0.071/day, γ3=0.055/day,
γ4=0.034/day, γ5=0.023/day, λ1=0.12/day, λ2=0.15/day, λ3=0.20/day,
δ1=0.0011/day, δ2=0.0012/day, δ3=0.0015/day, δ4=0.0018/day, δ5=0.0020/day,
p=0.7, q=0.3, p1=0.74, q1=0.26, p2=0.18, q2=0.82, r1=0.83, r2=0.07, r3=0.06, r4=0.04, a1=0.98, b1=0.02,
a2=0.85, b2=0.05, c1=0.10, a3=0.75, b3=0.08, c2=0.17, a4=0.65, b4=0.15, c3=0.20, a5=0.1, b5=0.9.

For the above values of parameters, we obtained mean survival time, expected total time in
home isolation and expected total time in hospital and analysed how these parameters vary
corresponding to perturbations in transmission rates, deteriorating rates, and death rates. The
results obtained are depicted below. Figure 2-6 forecasts how variations in the transmission rate
and death rates will affect the mean survival time. Figure 7 illustrates how the expected total
time in home isolation changes as the recovery rate and death rate vary. Figure 8-11 predicts how
perturbations in the recovery rates and deteriorating rates will affect the expected total time in
hospital.
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Figure 2: A plot of T0 with varied β and δ1. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ1) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ1).
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Figure 3: A plot of T0 with varied β and δ2. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ2) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ2).
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Figure 4: A plot of T0 with varied β and δ3. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ3) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ3).
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Figure 5: A plot of T0 with varied β and δ4. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ4) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ4).
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Figure 6: A plot of T0 with varied β and δ5. The be-
haviour of the mean survival time (T0) with
respect to the transmission rate (β) for differ-
ent values of death rate (δ5) is demonstrated.
From the figure, it can be seen that the mean
survival time (T0) decreases as the transmis-
sion rate (β) increases and gives lower values
for higher values of death rate (δ5).
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Figure 7: A plot of expected total time in home isolation
with varied γ1 and δ1. The behaviour of the ex-
pected total time in home isolation with respect
to the recovery rate (γ1) for different values
of death rate (δ1) is demonstrated. From the
figure, it can be seen that the expected total
time in home isolation decreases as the recov-
ery rate (γ1) increases and gives lower values
for higher values of death rate (δ1).
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Figure 8: A plot of expected total time in hospital with
varied γ2 and λ1. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ2) for different values of
deteriorating rate (λ1) is demonstrated. From
the figure, it can be seen that the expected to-
tal time in hospital decreases as the recovery
rate (γ2) increases and gives lower values for
higher values of deteriorating rate (λ1).
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Figure 9: A plot of expected total time in hospital with
varied γ3 and λ2. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ3) for different values of
deteriorating rate (λ2) is demonstrated. From
the figure, it can be seen that the expected to-
tal time in hospital decreases as the recovery
rate (γ3) increases and gives lower values for
higher values of deteriorating rate (λ2).
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Figure 10: A plot of expected total time in hospital with
varied γ4 and λ3. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ4) for different values of
deteriorating rate (λ3) is demonstrated. From
the figure, it can be seen that the expected to-
tal time in hospital decreases as the recovery
rate (γ4) increases and gives lower values for
higher values of deteriorating rate (λ3).
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Figure 11: A plot of expected total time in hospital with
varied γ5 and δ5. The behaviour of the ex-
pected total time in hospital with respect to
the recovery rate (γ5) for different values of
death rate (δ5) is demonstrated. From the fig-
ure, it can be seen that the expected total time
in hospital decreases as the recovery rate (γ5)
increases and gives lower values for higher
values of death rate (δ5).

5. Conclusion

Designing prevention strategies and infection control policies can be benefitted using mathematical
models of infectious diseases. On the basis of the idea of semi-Markov process, a new framework
for modelling infectious diseases have been presented. The analysis of the model aids in examining
the effects of various parameters on various system measures. According to the analysis presented,
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it is concluded that the mean survival time declines as the disease’s transmission rate rises and
has lower values for greater values of death rate. The expected total time in home isolation
reduces with rising recovery rates and has lower values for higher death rates. The expected total
time in hospital decreases as the recovery rate increases and gives lower values for higher values
of deteriorating rate. Through this article, the use and significance of semi-Markov models in
understanding infectious diseases trends is demonstrated. This study may be helpful in selecting
the optimal intervention tactics and creating effective infection control measures.
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Abstract

This study presents a limited buffer secondary service queue with multiple vacations and server
breakdowns. The model under consideration includes two types of impatient policies: balking and
reneging. After the completion of the essential primary service, only few consumers choose to proceed
with secondary service with a certain probability. During the active period of the server, it is subject
to breakdown and the broken down server is immediately sent for repair. Further, the server will go
on vacation as soon as there are no waiting consumers in the queue. On returning from a vacation, if
the system is still empty the server leaves for another vacation and continues to do so until atleast one
consumer is found at a vacation termination epoch. The model is analyzed under steady-state conditions
and the explicit expressions of various performance indices are evaluated. A few numerical results
illustrate how the model parameters have an effect on the performance metrics.

Keywords: Balking, reneging, secondary service, multiple vacations, breakdown, repair.

1. Introduction

Vacation models address a very significant category of the real-world congestion scenarios that
are seen in both day-to-day living and in industrial settings. In the context of queueing, the
period of time during which the server is not available is referred to as a vacation. During
the active period, the server operates at maximum capacity, but while it is on vacation, it does
not carry out any tasks. The numerous adaptable implementations encourage us to investigate
queuing systems with server vacations that can be exploited in some beneficial method when
coping with congestion problems in various frameworks. These systems may be used in a variety
of contexts. Over the course of more than two decades, number of scholars and practitioners
have investigated vacation models of many sorts. Their goals have been either to find solutions
to specific queueing issues at hand or to acquire a knowledge of the stochastic processes that
evolve as a result of these models. Excellent studies on these vacation models have been done
by Doshi [8, 9], Takagi [21], Tian and Zhang [22], Jau-Chaun Ke et al. [15], Panta et al. [18], etc.

Consumers typically have less patience when waiting for service because they value their
time. In the research that has been done on queueing, impatience of consumers has been exam-
ined mostly in the context of consumers abandoning the queue because of either a prolonged
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wait that they had previously experienced or a lengthy wait that they predicted would occur
upon arrival. In many service or operational contexts, such impatience is frequently noticed
through the acts of consumers “balking" or “reneging" from waiting in a queue. Altman and
Yechiali [1] undertook an analysis of consumer dissatisfaction in server vacation queues. A study
on priority queues with impatient consumers has been presented by Foad and Baris [10]. Yue
et al. [27] conducted research on the effects of synchronised vacations and impatient consumers
in a multi-server queue. Jamol Pender [14] computed a novel approximation for single-server
queues with abandonment based on the truncated normal distribution. Ammar [3] came up
with the time dependent results of an M/M/1 vacation queue that included an anticipating
server and impatient consumers. Sampath and Liu [19] conducted the research to determine
how impatience of customers affected the performance of an M/M/1 queueing system subject
to waiting server and differential vacations. A Bernoulli feedback queueing system with K-
variant vacations, waiting server and impatient consumers has been considered by Amina and
Guendouzi [2]. Mathematical evaluation of the M/M/C vacation queuing model with a waiting
server and dissatisfied consumers has been carried out by Ganesh and Ghimire [11].

Numerous malfunctions in the service providing facility are a major source of service inter-
ruptions in various manufacturing processes. In such circumstances, service will not be provided
to the waiting consumers until the service providing facility is repaired. Such breakdowns in
service are typical in commercial settings like factories and phone booths, as well as in the use
of mechanical technologies like electronic computers. William et al. [26] examined a queueing
model with vacations where the service station may experience a breakdown while it is in op-
eration. Queuing system with fixed capacity and vacancies as well as server breakdowns has
been dealt by Ghimire and Ritu [12]. An MX/G/1 queue with server breakdowns and repairs
has been analyzed by Djamila et al. [7]. Hanumantha Rao et al. [13] has studied an impatient
consumer two-phase queuing system with server breakdowns and delayed repair. Under the
T-policy, the investigation of two phase queue with breakdowns and vacations has been carried
out by Khalid and Lotfi [17]. A bulk service queue with server breakdowns and repairs had
been investigated by Bharathidass et al. [4]. Srinivas et al. [20] researched a server breakdown
queueing system with repairs and vacations.

In the modelling of a wide variety of congestion issues that arise during real-life activities,
queueing systems that include the provision of a secondary service (SS) play an essential role. In
queueing models that include SS, the server offers the primary service (PS) to all of the arriving
consumers. However, after the PS has been completed, only few consumers choose to receive
SS, according to a predetermined probability. Take the banking sector as an illustration; among
the primary duties imposed upon any bank are the receipt and dispensing funds in the form of
deposits, withdrawals, loans, advances, etc. Printing of passbooks, issue of checks, lockers, etc.,
fall under the category of secondary services that banks conduct in addition to their primary
duties. Kalyanaraman and Pazhani [16] analyzed a single server queue with optional service
and server vacations. Uma and Punniyamoorthy [23] have investigated a single-server bulk
queue with vacations, balking and secondary service. A bulk arrival queue with SS and server
breakdowns has been researched by Charan and Sandeep [5]. Charan et al. [6] have studied
the effects of secondary services and service disruptions on bulk queues. The time dependent
behaviour of a bulk service queueing system with optional service and impatient consumers
has been studied by Vijaya Laxmi and Andwilile [24]. A Markovian secondary service queue
operating under triadic policy has been considered by Vijaya Laxmi et al. [25].

The current article deals with a finite capacity Markovian queue with secondary service,
multiple vacations, breakdowns and impatient consumers. The paradigm under consideration
has many real-world uses in places as diverse as communications networks, manufacturing
systems, cloud computing, customer service centres, etc. Consider the following example of a
call centre that provides services to customers. The call centre employs customer support agents
to handle inbound calls received at the call centre from customers seeking assistance. Customers
after receiving the required assistance and are prepared to pay an extra price can take advantage
of the premium service option that is available through the contact centre. During times of
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low call volume or off-peak hours, it is possible that the server can schedule for a vacation
during which they will be offline in order to conserve money and resources. Occasionally,
there may be brief disruptions in service as a result of server experiencing technical problems
or being required to undergo maintenance. It is always possible that customers contacting the
call centre may be impatient and reluctant to wait in the queue for lengthy periods of time. In
this practical application, the call centre aims to manage server breakdowns effectively, offers an
optional service to customers who value quicker support and allows server vacations during low
demand to optimize resource usage. By doing so, the call centre enhances the overall customer
experience and reduces the likelihood of impatient customers abandoning the queue.

Owing to the practical application as one mentioned above, we study an M/M/1/N multi-
ple vacation queue with secondary service, breakdowns and impatient consumers. The vacation
durations, secondary service durations and breakdown times are assumed to be follow expo-
nential distribution. Balking and reneging are the two forms of consumer impatience which
have been included in the current article. Both the forms of consumer impatience are considered
to be state dependent. Using iterative approach, the model’s steady-state results are achieved.
The expected system size, expected balking rate, expected reneging rate and other performance
parameters are reported. Through a limited number of numerical experiments, the parameter
influence on the performance indices is demonstrated.

The remaining sections of the paper are structured as follows. A detailed explanation of the
model has been provided in Section 2. In Section 3, we reported the results of the steady-state
model under discussion. Section 4 provides different metrics by which the model’s effectiveness
may be evaluated. In Section 5, some numerical findings illustrating the impact of the model
parameters on the performance metrics are shown and in Section 6, conclusions are drawn.

2. Model Overview

Consider an impatient consume M/M/1/N queue with multiple vacations, secondary service,
and server breakdowns.

• Consumers arrive one at a time according to Poisson process with rate λ. Arriving con-
sumers make a decision whether to be a part of the queue or not depending on the queue
size. Let bn be the probability of joining the queue and 1− bn be the probability of not join-
ing the queue, where n denotes the number of consumers in the system. We also, assume
that b0 = 1, bn+1 ≤ bn and bN = 0.

• Consumers who join the queue wait for certain period of time, T, which follows exponential
distribution with parameter α. If the service does not start before this time, he may leave
due to impatience. The average reneging rate of a consumer is taken as (n − 1)α (n ≥ 0),
where n represents the number of consumers in the system.

• Consumers who enter the system are served according to FCFS discipline by a single server.
All the consumers receive a primary service (PS) and exit from the system with probability
ω while only few consumers may opt for secondary service (SS) with probability ω̄ = 1 −
ω. The service durations during PS and SS follow exponential distribution with parameters
µ1 and µ2, respectively.

• Under the multiple vacation policy, the server will take a series of breaks in the form of
vacations in between two consecutive busy times, and it will continue to do so until it
locates a waiting consumer in the system. The vacation durations are also assumed to
follow exponential distribution with parameter σ.

• The server is subject to breakdown both during PS and SS with rate β. The broken down
server is immediately sent for repair. The repair times are exponentially distributed with
rate δ.
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3. Steady-state analysis

At steady-state, let

• πn,0 - Probability of n consumers in the system and the server in vacation,

• πn,1W - Probability of n consumers in the system and server in working state during PS,

• πn,1B - Probability of n consumers in the system and server in breakdown state during PS,

• πn,2W - Probability of n consumers in the system and server in working state during SS,

• πn,2B - Probability of n consumers in the system and server in breakdown state during SS.

Using the Markov theory, the set of steady-state equations may be obtained as

λπ0,0 = ωµ1π1,1W + µ2π1,2W , (1)

(λbn + σ + (n − 1)α)πn,0 = λbn−1πn−1,0 + nαπn+1,0, 1 ≤ n ≤ N − 1, (2)

(σ + (N − 1)α)πN,0 = λbN−1πN−1,0, (3)

(λb1 + β + µ1)π1,1W = (ωµ1 + α)π2,1W + σπ1,0 + µ2π2,2W + δπ1,1B, (4)

(λbn + β + µ1 + (n − 1)α)πn,1W = (ωµ1 + nα)πn+1,1W + µ2πn+1,2W + σπn,0 + δπn,1B,

+λbn−1πn−1,1W , 2 ≤ n ≤ N − 1, (5)

(β + µ1 + (N − 1)α)πN,1W = σπN,0 + δπN,1B + λbN−1πN−1,1W , (6)

(λb1 + β + µ2)π1,2W = απ2,2W + ω̄µ1π1,1W + δπ1,2B, (7)

(λbn + β + µ2 + (n − 1)α)πn,2W = nαπn+1,2W + ω̄µ1πn,1W + δπn,2B + λbn−1πn−1,2W ,

2 ≤ n ≤ N − 1, (8)

(β + µ2 + (N − 1)α)πN,2W = ω̄µ1πN,1W + δπN,2B + λbN−1πN−1,2W , (9)

(λb1 + δ)π1,1B = απ2,1B + βπ1,1W , (10)

(λbn + δ + (n − 1)α)πn,1B = nαπn+1,1B + βπn,1W + λbn−1πn−1,1B, 2 ≤ n ≤ N − 1,(11)

(δ + (N − 1)α)πN,1B = βπN,1W + λbN−1πN−1,1B, (12)

(λb1 + δ)π1,2B = απ2,2B + βπ1,2W , (13)

(λbn + δ + (n − 1)α)πn,2B = nαπn+1,2B + βπn,2W + λbn−1πn−1,2B, 2 ≤ n ≤ N − 1,(14)

(δ + (N − 1)α)πN,2B = βπN,2W + λbN−1πN−1,2B. (15)

The steady-state probabilities are obtained by solving the above system of equations recur-
sively as shown below.

πn,0 = rnπN,0, 1 ≤ n ≤ N,

πn,2B = (dn + snk13 + tnk14 + znk15 + γnk16)πN,0, 1 ≤ n ≤ N,

πn,2W = (ln + ynk13 + wnk14 + xnk15 + mnk16)πN,0, 1 ≤ n ≤ N,

πn,1W = (gn + pnk13 + onk14 + fnk15 + hnk16)πN,0, 1 ≤ n ≤ N,

πn,1B = (qn + χnk13 + cnk14 + vnk15 + unk16)πN,0, 1 ≤ n ≤ N,

where

rN = sN = wN = fN = uN = 1,

tN = zN = dN = γN = xN = yN = lN = mN = gN = hN = oN = pN = vN = qN = cN = 0,

zN−1 = dN−1 = γN−1 = mN−1 = lN−1 = oN−1 = pN=1 = qN−1 = cN−1 = χN = χN−1 = 0

dN−2 = γN−2 = pN−2 = cN−2 = χN−2 = χN−3 = 0,

rN−1 =
σ + (N − 1)α

λbN−1
, sN−1 =

δ + (N − 1)α
λbN−1

, tN−1 = − β

λbN−1
, wN−1 =

β + µ2 + (N − 1)α
λbN−1

,
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xN−1 = − ω̄µ1

λbN−1
, uN−1 =

δ + (N − 1)α
λbN−1

, vN−1 = − β

λbN−1
, fN−1 =

β + µ1 + (N − 1)α
λbN−1

,

gN−1 = − σ

λbN−1
, hN−1 = − δ

λbN−1
/

rn =

(
λbn+1 + σ + nα

λbn

)
rn+1 −

(
(n + 1)α

λbn

)
rn+2, n = N − 2, N − 3, . . . , 1,

sn =

(
λbn+1 + δ + nα

λbn

)
sn+1 −

(
β

λbn

)
yn+1 −

(
(n + 1)α

λbn

)
sn+2, n = N − 2, N − 3, . . . , 1,

tn =

(
λbn+1 + δ + nα

λbn

)
tn+1 −

(
β

λbn

)
wn+1 −

(
(n + 1)α

λbn

)
tn+2, n = N − 2, N − 3, . . . , 1,

zn =

(
λbn+1 + δ + nα

λbn

)
zn+1 −

(
β

λbn

)
xn+1 −

(
(n + 1)α

λbn

)
zn+2, n = N − 2, N − 3, . . . , 1,

dn =

(
λbn+1 + δ + nα

λbn

)
dn+1 −

(
β

λbn

)
ln+1 −

(
(n + 1)α

λbn

)
dn+2, n = N − 2, N − 3, . . . , 1,

γn =

(
λbn+1 + δ + nα

λbn

)
γn+1 −

(
β

λbn

)
mn+1 −

(
(n + 1)α

λbn

)
γn+2, n = N − 2, N − 3, . . . , 1,

wn =

(
λbn+1 + β + µ2 + nα

λbn

)
wn+1 −

(
δ

λbn

)
tn+1 −

(
ω̄µ1

λbn

)
on+1 −

(
(n + 1)α

λbn

)
wn+2,

n = N − 2, N − 3, . . . , 1,

xn =

(
λbn+1 + β + µ2 + nα

λbn

)
xn+1 −

(
δ

λbn

)
zn+1 −

(
ω̄µ1

λbn

)
fn+1 −

(
(n + 1)α

λbn

)
xn+2,

n = N − 2, N − 3, . . . , 1,

yn =

(
λbn+1 + β + µ2 + nα

λbn

)
yn+1 −

(
δ

λbn

)
sn+1 −

(
ω̄µ1

λbn

)
pn+1 −

(
(n + 1)α

λbn

)
yn+2,

n = N − 2, N − 3, . . . , 1,

ln =

(
λbn+1 + β + µ2 + nα

λbn

)
ln+1 −

(
δ

λbn

)
dn+1 −

(
ω̄µ1

λbn

)
gn+1 −

(
(n + 1)α

λbn

)
ln+2,

n = N − 2, N − 3, . . . , 1,

mn =

(
λbn+1 + β + µ2 + nα

λbn

)
mn+1 −

(
δ

λbn

)
γn+1 −

(
ω̄µ1

λbn

)
hn+1 −

(
(n + 1)α

λbn

)
mn+2,

n = N − 2, N − 3, . . . , 1,

fn =

(
λbn+1 + β + µ1 + nα

λbn

)
fn+1 −

(
ωµ1 + (n + 1)α

λbn

)
fn+2 −

(
µ2

λbn

)
xn+2 −

(
δ

λbn

)
vn+1,

n = N − 2, N − 3, . . . , 1,

gn =

(
λbn+1 + β + µ1 + nα

λbn

)
gn+1 −

(
ωµ1 + (n + 1)α

λbn

)
gn+2 −

(
µ2

λbn

)
ln+2 −

(
δ

λbn

)
qn+1,

−
(

σ

λbn

)
rn+1, n = N − 2, N − 3, . . . , 1,

hn =

(
λbn+1 + β + µ1 + nα

λbn

)
hn+1 −

(
ωµ1 + (n + 1)α

λbn

)
hn+2 −

(
µ2

λbn

)
mn+2 −

(
δ

λbn

)
un+1,

n = N − 2, N − 3, . . . , 1,

on =

(
λbn+1 + β + µ1 + nα

λbn

)
on+1 −

(
ωµ1 + (n + 1)α

λbn

)
on+2 −

(
µ2

λbn

)
wn+2 −

(
δ

λbn

)
cn+1,

n = N − 2, N − 3, . . . , 1,

pn =

(
λbn+1 + β + µ1 + nα

λbn

)
pn+1 −

(
ωµ1 + (n + 1)α

λbn

)
pn+2 −

(
µ2

λbn

)
yn+2 −

(
δ

λbn

)
χn+1,

n = N − 2, N − 3, . . . , 1,

un =

(
λbn+1 + δ + nα

λbn

)
un+1 −

(
(n + 1)α

λbn

)
un+2 −

(
β

λbn

)
hn+1, n = N − 2, N − 3, . . . , 1,
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vn =

(
λbn+1 + δ + nα

λbn

)
vn+1 −

(
(n + 1)α

λbn

)
vn+2 −

(
β

λbn

)
fn+1, n = N − 2, N − 3, . . . , 1,

qn =

(
λbn+1 + δ + nα

λbn

)
qn+1 −

(
(n + 1)α

λbn

)
qn+2 −

(
β

λbn

)
gn+1, n = N − 2, N − 3, . . . , 1,

cn =

(
λbn+1 + δ + nα

λbn

)
cn+1 −

(
(n + 1)α

λbn

)
cn+2 −

(
β

λbn

)
on+1, n = N − 2, N − 3, . . . , 1,

χn =

(
λbn+1 + δ + nα

λbn

)
χn+1 −

(
(n + 1)α

λbn

)
χn+2 −

(
β

λbn

)
pn+1, n = N − 2, N − 3, . . . , 1,

k1 =
αz2 + βx1 − (λb1 + δ)z1

(λb1 + δ)γ1 − αγ2 − βm1
, k2 =

αd2 + βl1 − (λb1 + δ)d1

(λb1 + δ)γ1 − αγ2 − βm1
,

k3 =
αt2 + βw1 − (λb1 + δ)t1

(λb1 + δ)γ1 − αγ2 − βm1
, k4 =

αs2 + βy1 − (λb1 + δ)s1

(λb1 + δ)γ1 − αγ2 − βm1
,

k5 = αu2 + βh1 − (λb1 + δ)u1, k6 =
k2k5 + αq2 + βg1 − (λb1 + δ)q1

(λb1 + δ)v1 − αv2 − β f1 − k1k5
,

k7 =
k3k5 + αc2 + βo1 − (λb1 + δ)c1

(λb1 + δ)v1 − αv2 − β f1 − k1k5
, k8 =

k4k5 + αχ2 + βp1 − (λb1 + δ)χ1

(λb1 + δ)v1 − αv2 − β f1 − k1k5
,

k9 = αx2 + ω̄µ1 f1 + δz1 − (λb1 + µ2 + β)x1, k10 = αm2 + ω̄µ1h1 + δγ1 − (λb1 + µ2 + β)m1,

k11 =
k9k6 + αl2 + ω̄µ1g1 + δd1 + k2k10 + k1k6k10 − (λb1 + µ2 + β)l1
(λb1 + µ2 + β)w1 − αw2 − ω̄µ1o1 − δt1 − k9k7 − k3k10 − k1k7k10

,

k12 =
k9k8 + αy2 + ω̄µ1 p1 + δs1 + k4k10 + k1k8k10 − (λb1 + µ2 + β)y1

(λb1 + µ2 + β)w1 − αw2 − ω̄µ1o1 − δt1 − k9k7 − k3k10 − k1k7k10
,

num = (k6 + k7k11) ((ωµ1 + α) f2 + µ2x2 + δv1 − (λb1 + β + µ1) f1)

+ (k2 + k3k11 + k1k6 + k1k7k11) ((ωµ1 + α)h2 + µ2m2 + δu1 − (λb1 + β + µ1)h1)

+(ωµ1 + α) (g2 + o2k11) + µ2 (l2 + w2k11) + δ (q1 + c1k11)

+σr1 − (λb1 + β + µ1) (g1 + o1k11) ,

den = (k8 + k7k12) ((λb1 + β + µ1) f1 − (ωµ1 + α) f2 − µ2x2 − δv1) + (k4 + k3k12

+k8k1 + k1k7k12) ((λb1 + β + µ1)h1 − (ωµ1 + α)h2 − µ2m2 − δu1) + (λb1 + β + µ1)

× (p1 + o1k12)− (ωµ1 + α) (p2 + o2k12)− µ2 (y2 + w2k12)− δ (χ1 + c1k12)

k13 =
num
den

,

k14 = k11 + k12k13, k15 = k6 + k7k14 + k8k13, k16 = k2 + k1k15 + k3k14 + k4k13

Finally, π0,N is computed from ∑N
n=0 πn,0 + ∑N

n=1 (πn,1W + πn,1B + πn,2W + πn,2B) = 1 as

π0,N = 1/(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn + on + cn) + k15(zn + xn + fn + vn) +

k16(γn + mn + hn + un) + dn + ln + gn + qn + rn]).

4. Performance Indices

Under this section various performance indices are presented. The expected system length (E[L])
is given by

E[L] =
N

∑
n=1

n (πn,0 + πn,1W + πn,1B + πn,2W + πn,2B)

=
N

∑
n=1

n
(
(rn + dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn + on + cn)

+k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn)
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+k14(tn + wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un)

+dn + ln + gn + qn + rn)

The probabilities that the server is in vacation (Pv), busy with PS (P1w), in breakdown state
during PS (P1b), busy with SS (P2w) and the probability that the server is in breakdown state
during SS (P2b) are, respectively, given by

Pv =
N

∑
n=0

πn,0,

=
N

∑
n=0

rn/(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn + on + cn) + k15(zn + xn + fn + vn)

+k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P1b =
N

∑
n=1

πn,1b

=
N

∑
n=1

(qn + χnk13 + cnk14 + vnk15 + unk16) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn +

on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P1w =
N

∑
n=1

πn,1w

=
N

∑
n=1

(gn + pnk13 + onk14 + fnk15 + hnk16) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn

+on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P2w =
N

∑
n=1

πn,2w

=
N

∑
n=1

(ln + ynk13 + wnk14 + xnk15 + mnk16) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn +

on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

P2b =
N

∑
n=1

πn,2b

=
N

∑
n=1

(dn + snk13 + tnk14 + znk15 + γnk16)) /(r0 +
N

∑
n=1

[k13(sn + yn + χn) + k14(tn + wn

+on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn).

The expected balking rate (Br), expected reneging rate (Rr) and the expected rate of losing a
consumer (Lr) are given by

Br =
N

∑
n=1

λ(1 − bn) (πn,0 + πn,1W + πn,1B + πn,2W + πn,2B)

=
N

∑
n=1

λ(1 − bn)
(
(dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn + on + cn)

+k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn) + k14(tn

+wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),
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Rr =
N

∑
n=1

(n − 1)α (πn,0 + πn,1W + πn,1B + πn,2W + πn,2B)

=
N

∑
n=1

(n − 1)α
(
(dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn + on + cn)

+k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn) + k14(tn

+wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un) + dn + ln + gn + qn + rn),

Lr = Br + Rr

=
N

∑
n=1

(λ(1 − bn) + (n − 1)α)
(
(dn + ln + gn + qn) + k13(sn + yn + pn + χn) + k14(tn + wn

+on + cn) + k15(zn + xn + fn + vn) + k16(γn + mn + hn + un)
)
/(r0 +

N

∑
n=1

[k13(sn + yn + χn)

+k14(tn + wn + on + cn) + k15(zn + xn + fn + vn + k16(γn + mn + hn + un) + dn + ln + gn

+qn + rn).

5. Numerical Results

The impact of the various model parameters on the performance indices is presented in this
section. The arbitrary choice of the model parameters for the purpose of numerical results is
N = 10, λ = 1.9, ω = 0.3, α = 0.5, µ1 = 2.9, µ2 = 2.5, σ = 2.0, β = 1.5, δ = 1.2. Table 1 displays
the steady-state probabilities for the above chosen set of parameters. The table also presents the
corresponding performance measures E[L], Pv, P1w, P1b, P2w, P2b, Br, Rr and Lr.

Table 1: Steady-state probability distributions

n πn,0 πn,1B πn,1W πn,2B πn,2W
0 0.043328 – – – –
1 0.022608 0.027649 0.038451 0.015641 0.019548
2 0.010840 0.055023 0.052865 0.037740 0.036276
3 0.004760 0.064685 0.050222 0.050595 0.041409
4 0.001911 0.055825 0.037802 0.048113 0.035437
5 0.000702 0.038317 0.023580 0.035631 0.024374
6 0.000236 0.021832 0.012510 0.021605 0.013991
7 0.000073 0.010615 0.005749 0.011075 0.006871
8 0.000021 0.004492 0.002317 0.004912 0.002940
9 0.000000 0.001682 0.000819 0.001923 0.001112
10 0.000000 0.000572 0.000236 0.00068 0.000379

E[L] = 3.145050, Pv = 0.084489, P1W = 0.224555,
P1b = 0.280694, P2w = 0.182339, P2b = 0.227923,

Br = 0.062196, Rr = 1.095870, Lr = 1.158070

The impact of arrival rate (λ) on Pv, P1w, P1b, P2w and P2b is depicted in Figure 1. From the
figure, it is evident that except Pv, all other values P1w, P1b, P2w and P2b increase with the increase
of λ. The reason behind this nature is that as λ increases the number of consumers in the system
increase due to which the server cannot leave for a vacation.

The changes in Pv, P1w, P1b, P2w and P2b with β is shown in Figure 2. The probability of the
server being in breakdown state both during PS and SS, P1b and P2b, respectively, increase with
the increase of β which is obvious. Due to this the remaining probabilities Pv, P1w and P2w
decrease with the growth of β as evident from the graph.
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Figure 1: Impact of λ on Pv, P1w, P1b, P2w, P2b
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Figure 2: Changes in Pv, P1w, P1b, P2w, P2b with β
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Figure 3: Influence of δ on Pv, P1w, P1b, P2w, P2b
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Figure 5: Effect of µ2 on E[L] with and without server breakdowns
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Figure 6: Effect of µ2 on Lr for different ω with and without server breakdowns
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The influence of δ on Pv, P1w, P1b, P2w and P2b is displayed in Figure 3. In contrary to Figure
2, P1b and P2b decrease with the increase of δ while Pv, P1w and P2w increase with δ.

The effect of the service rate during PS (µ1) on the expected system length (E[L])is depicted
in Figure 4 for different vacation rates σ. As evident from the figure, the expected system length
decline with the increment of µ1 for any choice of vacation rate (σ). Further, for a constant µ1
value, E[L] diminish with the growth in σ.

Figure 5 exhibits the effect of µ2 on the expected system length (E[L]) in models with (β = 1.5)
and without (β = 0.0) server breakdowns. In models without server breakdown, E[L] diminishes
with µ2 as intuitively expected. However, this trend is reversed in models with server breakdown
because there will no service during breakdown period leading to the increase in system length.

The impact of µ2 on the expected rate of losing a consumer (Lr) in models with (β = 1.5)
and without (β = 0.0) server breakdowns for different ω is revealed in Figure 6. It may be
perceived that, for any ω ( ̸= 1), Lr drops with the growth of µ2 in models without breakdown
(β = 0.0) while Lr grows with the growth of µ2 in models with breakdown (β = 1.5). Further,
ω = 1.0 implies that no client is opting for SS and hence, µ2 has no impact on Lr as a result
Lr remains the same for any µ2 in both the models. Furthermore, with the increase of ω, the
number of consumers leaving the system increase resulting in the decrease of Lr in models
without breakdown while this trend gets reversed in models with breakdown.

6. Conclusions

An impatient consumer queue with secondary service, vacations and server breakdowns has
been examined in this research. A wide range of real-time systems, including production
and manufacturing systems, computer and communication networks, inventory and distribu-
tion systems, and others, may employ the described approach. The state-dependent nature of
consumers’ impatience in a secondary service queue with server breakdowns and vacations are
the key contributions of this article. We used a recursive approach to obtain the steady-state
probabilities. To illustrate the effect of the system parameters, numerical data is presented as
table and graphs. This study might be expanded to include a renewal input impatient consumer
queue with SS and working vacations and is a topic for further research.
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Abstract 

In this paper, a new four-parameter distribution is developed and studied by combining the 

properties of the exponentiated generalized-G family of distributions and the features of the 

Inverse Lomax distribution. The newly developed distribution is called the exponentiated 

generalized inverse Lomax distribution that extends the classical inverse Lomax 

distribution. The shape of the hazard rate function is very flexible because it possesses 

increasing, decreasing, and inverted (upside-down) bathtub shapes. Some important 

characteristics of the exponentiated generalized inverse Lomax distribution are derived, 

including moments, moment generating function, survival function, hazard function and 

order statistics. The method of maximum likelihood estimation is used to obtain estimates 

of the unknown parameters of the new model. The application of the new model is based on 

two real-life data sets used to show the modeling potential of the proposed distribution. The 

exponentiated generalized inverse Lomax distribution turns out to be the best by capturing 

important details in the structure of the data sets considered. 

Keywords: MLE, carbon fibers, non-linear, inverse Lomax, cancer 

I. Introduction

Different distributions have been put out to extend existing distributions and act as models for 

numerous applications on data from various real-life scenarios. There are many ways to accomplish 

this, but the most popular one is to give the baseline distributions more flexibility by employing 

families of distributions. 

The Lomax (Lx) distribution, also known as the Pareto type II distribution, is a special case 

of the generalized beta distribution of the second kind [1]. The distribution can be observed in many 

application areas, including actuarial science, economics, biological sciences, engineering, lifetime 

and reliability modeling, and so on [2]. According to [3], this distribution can be used as a substitute 

for survival issues and life-testing in engineering and survival analysis. 

A significant lifetime distribution that can be used as a good substitute for well-known 

distributions like gamma, inverse Weibull, Weibull, and Lomax distributions is the Inverse Lomax 

(ILx) distribution. Because its hazard rate can be decreasing and upside-down bathtub shaped, it has 

a variety of uses in modeling diverse sorts of data, including economics and actuarial sciences data. 

The Inverse Lomax (ILx) distribution's unique characteristics and applications make it a valuable 

tool for statisticians, data analysts, and researchers dealing with a wide range of data sets. 
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A random variable X is said to have an ILx distribution if its cdf and pdf are given as 

( ) 1

d
c

G x
x



 
  
 

 (1) 

1

2( ) 1

d
c

g x cdx
x

 

  
  

 
 (2) 

It was demonstrated in [4] that the ILx distribution is a member of the inverted family of 

distributions. They also discovered that the ILx distribution is a very flexible model in analyzing 

situations with a realized non-monotonic failure rate. For more details on the extensions of ILx 

distribution, readers are referred to [5], [6], [7], [8], [9], [10], [11], [12], [13], among others. 

A new class of exponentiated generalized distribution that extends the exponentiated-G class was 

proposed by [14]. Given a continuous cdf ( )G x , the cdf and pdf of exponentiated generalized class 

of distributions are given as 

 ( ) 1 1 ( )
b

a
F x G x   

   (3) 

   
1

1
( ) ( ) 1 ( ) 1 1 ( )

b
a a

f x abg x G x G x


     
   (4) 

In real-world applications, it is often impractical to generate data with a high failure rate, 

which can limit the applicability of the inverse Lomax distribution. Consequently, it becomes 

necessary to introduce additional flexibility into the inverse Lomax distribution to accommodate 

various hazard function shapes. The primary objective of this extension is to leverage the advantages 

offered by the exponentiated generalized-G class of distributions, as introduced by [14]. This 

extension is designed to enhance the modeling capabilities of the baseline distribution, ultimately 

leading to improved goodness-of-fit. When compared to the baseline model, the newly extended 

model demonstrates a wider range of hazard function shapes and provides superior fits for diverse 

types of datasets. 

II. Methods

2.1 Exponentiated Generalized Inverse Lomax (EGILx) Distribution 

This section introduces a novel continuous probability distribution function known as the 

Exponentiated Generalized Inverse Lomax (EGILx) distribution. It includes plots of its probability 

density function (pdf) and cumulative distribution function (cdf) to evaluate the characteristics of 

this new distribution. By substituting (1) into (3) and (2) into (4), we obtain the cdf and pdf of the 

EGILx distribution, respectively, as follows: 

( ) 1 1 1

b
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x
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2( ) 1 1 1 1 1 1

b
a a

d d d
c c c

f x abcdx
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Where 0x  , 0c   is the scale parameter and , , 0a b d   are the shape parameters. 
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Figure 1: Plots of pdf and cdf of EGILx distribution 

2.2 Expansion of Density 

Using the generalized bionomial expansion 
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The pdf of EGILx distribution in (6) can be expressed in mixture form in terms of Lx densities as 
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where 
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On expanding the cdf, we have 
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2.3 Properties of EGILx Distribution 

This section derives some statistical properties of the EGILx distribution including moments, 

moment generating function, survival function, hazard function, quantile functions, and order 

statistics. 

2.3.1 Moments 

Using moments, some of the most important features and characteristics of a distribution such as 

tendency, dispersion, skewness and kurtosis can be studied. The rth ordinary moment of the EGILx 

distribution can be written from (8) as 
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the mean of the EGILx distribution can be obtained by setting r = 1 in (11) 

2.3.2 Moment generating function (mgf) 

Following the process of moments, the mgf is obtained as 
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2.3.3 Reliability function (rf) 
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2.3.4 Hazard Function (hf) 
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Figure 2: Plots of survival function and hazard function of EGILx distribution 

2.3.5 Quantile Function (qf) 

The quantile function (qf) of a probability distribution is the real solution of the equation ( )F x u

, for 0 1u  , and ( )F x  is the cumulative distribution function (CDF) of the random variable x  

For EGILx distribution the quantiles are given by 

  1
1

1

1 1 1

d
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x Q u
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On setting 0.5u  in (15), the median of the EGILx distribution can be obtained. 
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2.3.6 Order Statistics 

Let
1 2
, ,...

n
X X X be n  independent random variable from the EGILx distribution and let 

(1) (2) ( )
, ,...

n
X X X be their corresponding order statistic. Let 

:
( )

r n
F x and 

:
( )

r n
f x , 1,2,3,...,r n denote 

the cdf and pdf of the rth order statistics 
:r n

X  respectively. The pdf of the rth order statistics of 
:r n

X is

given as 
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The pdf of rth order statistic for distribution is obtained by replacing h with v+r-1 in cdf expansion. 

We have 
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The pdf of the minimum order statistic of the distribution is obtained by setting r=1 in (17) as 
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Also, the pdf of the maximum order statistic of the distribution is obtained by setting r = n in (17) 

as 
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2.4 Maximum Likelihood Estimation (MLE) 

In this section, the estimation of the unknown parameters for the EGILx distribtuion by MLE 

method. Let 
1 2
, ,...

n
X X X  be random variables of the EGILx distribution of size n. Then the sample 

log-likelihood function of the EGILx distribution is obtained as 
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Differentiating (20) with respect to each parameter and equationg them zero yields the MLE as 
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Equations (21) to (24) lack a straightforward analytical representation, rendering them intractable. 

Consequently, we must employ non-linear parameter estimation techniques through iterative 

methods. 

III. Results

3.1  Applications 

In this section, we provide two applications to real-life data sets to illustrate the importance and 

flexibility of the EGILx distribution compared to some classical distributions such as inverse Weibull 

(IW), inverse Lomax (ILx) and Lomax (Lx) distributions.  

The first data set represents the breaking stress of carbon fibers of 50 mm length (GPa) was 

reported by [15]. This data was used by [16]. The data are: 0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 

1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 

2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 

3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 

4.90. 

The second data set was given by [17] and it represents the remission times (in months) of a 

random sample of one hundred and twenty-eight (128) bladder cancer patients. The data set is as 

follows: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 

3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 

7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 
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Table 1: The models’ MLEs and performance requirements based on data set 1 

Models â b̂ ĉ d̂

EGILx 68.2326 1.2151 4.6461 4.2988 

IW - - 2.0356 1.6479 

Lx - - 0.2884 1.5594 

ILx - - 0.0139 164.8019 

Table 2: The models’ MLEs and performance requirements based on data set 2 

Models â b̂ ĉ d̂

EGILx 2.2598 63.3711 21.6622 0.0938 

IW - - 3.2589 0.7522 

Lx - - 0.0083 13.9032 

ILx - - 2.0033 2.4610 

Table 3: The Performance requirements based on data set 1 

Models ll AIC AICc BIC HQIC 

EGILx -89.2197 186.4394 187.951 195.1900 189.9003 

IW -121.1949 246.3898 246.5803 250.7697 248.1203 

Lx -149.8545 303.7089 303.8994 308.0882 305.43.94 

ILx -136.1274 276.2548 276.4453 280.6342 277.9853 

Table 4: The Performance requirements based on data set 2 

Models ll AIC AICc BIC HQIC 

EGILx -414.2379 836.4759 836.8017 847.8840 841.1111 

IW -444.0008 892.0015 892.0975 897.7056 894.3191 

Lx -416.8329 837.6658 837.7618 848.0126 842.0654 

ILx -424.6757 853.3514 853.4474 859.0555 855.6690 

IV. Discussion

In this paper, we introduce a novel four-parameter distribution called the Exponentiated 

Generalized Inverse Lomax distribution and conduct a comprehensive study of its properties. We 

delve into various mathematical and statistical aspects of this newly developed model, including 

moments, moment generating functions, reliability functions, quantile functions, and order 

statistics. Furthermore, we investigate and present the probability density functions of both the 

maximum and minimum order statistics. To estimate the unknown parameters of this distribution, 

we employ the maximum likelihood estimation method, which allows us to determine their values 

effectively. To demonstrate the practical utility of our proposed model, we provide insights into its 

performance by applying it to two real-life datasets. Our analysis reveals that the Exponentiated 

Generalized Inverse Lomax distribution outperforms other lifetime models considered in this study 

when applied to the provided datasets, underscoring its potential for improved modeling and 

prediction in real-world applications. 
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Abstract 

 

Shaft is the rotating component that transmits power from one place to another. The shafts are 

commonly subject to torsional and bending moments and combinations of these moments. In 

general, shafts are subjected to a combination of torsional and bending stresses. The design of a 

shaft is essential, subject to its strength and stress. This paper presents the reliability 

analysis of the shaft subjected to (a) twisting moment, (b) bending moment and (c) combined 

twisting and bending moment for which stress and strength follow the normal 

distribution. 

 

Keywords: Reliability, normal distribution, twisting moment, bending 

moment, round solid shaft, maximum shear stress theory, maximum normal 

stress theory. 

 

1. Introduction 
 

Shaft is the most vital component used in almost every mechanical system and machine. Out 

of all power transmission components, the shaft is the main component that must be designed 

carefully for the efficient working of the machine. The shafts are designed based on their 

strength and rigidity considerations. Based strength includes shafts subjected to bending 

moments, twisting moments, combined bending and twisting moments, and fluctuating loads. 

While considering rigidity, torsional and lateral rigidity are considered for design.  

Adekunle A. A. et al. [1] studied the development of CAD software for shafts under various 

loading conditions. Dr. Edward E. Osakue et al. [2] studied fatigue shaft design verification for 

bending and torsion. Dr. Edward E. Osakue et al. [3] studied the probabilistic fatigue design of 

shafts for bending and torsion. Frydrysek K. et al. [4] studied performance-based design 

applied to a shaft subjected to combined stress. Gowtham et al. [5] studied drive shaft design 

and analysis. Kamboh, M. S., et al. [7] discussed the design and analysis of the drive shaft with 

a critical review of advanced composite materials and the root causes of shaft failure. 

Kececioglu D. et al. [8] studied the reliability analysis of mechanical components and systems. 

Misra, A., et al. [9] studied the reliability analysis of drilled shaft behaviour using the finite 

difference method and Monte Carlo simulation. Munoz-Abella, B., et al. [10] discussed the 

determination of the critical speed of a cracked shaft from experimental data. Nayek et al. [11] 
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studied the reliability approximation for a solid shaft under a gamma setup. Patel, B., et al. [12] 

studied a critical review of the design of a shaft with multiple discontinuities and combined 

loadings. Villa-Covarrubias, B., et al. [14] discussed the probabilistic method to determine the 

shaft diameter and design reliability. 

 

2. Statistical model 

 
The normal distribution takes the well-known bell shape. This distribution is symmetrical 

about its mean value. The probability density function for a normally distributed stress 𝜒 and 

normally distributed strength ξ is given by [4] 

𝑓𝜒(𝜒) =
1

𝜎𝜒√2𝜋
exp [−

1

2
(

𝜒 − 𝜇𝜒

𝜎𝜒

)

2

]  for − ∞ < 𝜒 < ∞ 

𝑓𝜉(𝜉) =
1

𝜎𝜉√2𝜋
exp [−

1

2
(

𝜉 − 𝜇𝜉

𝜎𝜉

)

2

]  for − ∞ < 𝜉 < ∞ 

where 𝜇𝜒 = mean value of the stress 

𝜎𝜒 = standard deviation of the stress 

𝜇𝜉 = mean value for the strength 

𝜎𝜉 = standard deviation of the strength 

Let us define 𝑦 = 𝜉 − 𝜒. It is well known that the random variable 𝑦 is normally distributed 

with mean of 𝜇𝑦 = 𝜇𝜉 − 𝜇𝜒 and standard deviation of 𝜎𝑦 = √𝜎𝜉
2 + 𝜎𝜒

2. 

The reliability 𝑅 can be expressed in terms of 𝑦 as 

𝑅 = 𝑃(𝑦 > 0) =
1

𝜎𝑦√2𝜋
∫ exp [−

1

2
(

𝑦 − 𝜇𝑦

𝜎𝑦

)

2

]

∞

0

𝑑𝑦 

If we let 𝑧 = (𝑦 − 𝜇𝑦)/𝜎𝑦, then 𝜎𝑦 𝑑𝑧 = 𝑑𝑦. 

When 𝑦 = 0, the lower limit of 𝑧 is given by [4] 

𝑧 =
0 − 𝜇𝑦

𝜎𝑦

= −
(𝜇𝜉 − 𝜇𝜒)

√𝜎𝜉
2 + 𝜎𝜒

2

 

and 𝑦 → +∞, the upper limit of 𝑧 → +∞. 

Then the reliability is given by [4] 

𝑅 =
1

2𝜋
∫ exp (

−𝑧2

2
)  𝑑𝑧

∞

−
(𝜇𝜉−𝜇𝜒)

√𝜎𝜉
2+𝜎𝜒

2

 
 

 

     (1) 

 

The random variable 𝑧 =
(𝑦−𝜇𝑦)

𝜎𝑦
 is the standard normal variable. 

a. Shaft subjected to twisting moment only  

If the shaft is subjected to a twisting moment only, then torsion equation is given by [6] 

𝑇

𝐽
=

𝜎𝑡

𝑟
 

where 𝑇 = Twisting moment acting upon the shaft 
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𝐽 = Polar moment of inertia of the shaft about the axis of rotation 

𝜎𝑡 = Torsional shear stress and 

𝑟 = Distance from neutral axis to the outer-most fibre 

=
𝑑

2
 where 𝑑 is the diameter of the shaft 

For round solid shaft, polar moment of inertia is given by [6] 

𝐽 =
𝜋

32
× 𝑑4 

From the torsion equation twisting moment is 

𝑇 =
𝜋

16
× 𝜎𝑡 × 𝑑3 and 

The shear stress due to twisting moment is the normally distributed stress 

𝜇𝜒 = 𝜎𝑡 =
16 × 𝑇

𝜋 × 𝑑3
 

Then the reliability of the shaft subjected to twisting moment for normally distributed 

strength and stress is 

𝑅𝑡 =
1

2𝜋
∫ exp (

−𝑧𝑡
2

2
)  𝑑𝑧

∞

−
(𝜇𝜉−

16×𝑇
𝜋×𝑑3)

√𝜎𝜉
2+𝜎𝜒

2

 
 

 

          (2) 

b. Shaft subjected to bending moment only  

If the shaft is subjected to a bending moment only, then bending equation is given by [6] 

𝑀

𝐼
=

𝜎𝑏

𝑦
 

where 𝑀 = Bending moment 

𝐼 = Moment of inertia of cross-sectional area of the shaft about the axis of rotation 

𝜎𝑏 = Bending stress and 

𝑦 = Distance from neutral axis to the outer-most fibre 

For solid shaft, moment of inertia is given by [6] 

𝐼 =
𝜋

64
× 𝑑4  and 𝑦 =

𝑑

2
 

From the bending equation bending moment is given by [8] 

𝑀 =
𝜋

32
× 𝜎𝑏 × 𝑑3 

The shear stress due to bending moment is the normally distributed stress 

𝜇𝜒 = σb =
32 × 𝑀

𝜋 × 𝑑3
 

Then the reliability of the shaft subjected to bending moment for normally distributed 

strength and stress is 

𝑅𝑏 =
1

2𝜋
∫ exp (

−𝑧𝑏
2

2
)  𝑑𝑧 

∞

−
(𝜇𝜉−

32×𝑀
𝜋×𝑑3 )

√𝜎𝜉
2+𝜎𝜒

2

 
 

 

          (3) 

 

c. Shaft subjected to combined twisting moment and bending moment  

When the shaft is subjected to combined twisting moment and bending moment, then the shaft 

must be designed on the basis of the two moments simultaneously. 
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According to maximum shear stress theory, the maximum shear stress in the shaft is 

𝜎𝑡𝑚𝑎𝑥
=

1

2
√(𝜎𝑏)2 + 4(𝜎𝑡)2 

where 𝜎𝑡 = shear stress induced due to twisting moment 

𝜎𝑏 = bending stress induced due to bending moment 

Therefore 

𝜎𝑡𝑚𝑎𝑥
=

16

𝜋 × 𝑑3
√𝑀2 + 𝑇2 

The expression √𝑀2 + 𝑇2 is known as equivalent twisting moment and is denoted by 𝑇𝑒 . 

The equivalent twisting moment may be defined as that twisting moment, which when acting 

alone, produces same shear stress (𝜎𝑡) as the actual twisting moment. 

By limiting the maximum shear stress  (𝜎𝑡𝑚𝑎𝑥
) equal to the allowable shear stress (𝜎𝑡𝑠) for the 

material is the normally distributed stress 

𝜇𝜒𝑠 = 𝜎𝑡𝑠 =
16 × 𝑇𝑒

𝜋 × 𝑑3
 

Then the reliability of the shaft subjected to combined twisting moment and bending moment 

for the normally distributed strength and stress is 

𝑅𝑡𝑠 =
1

2𝜋
∫ exp (

−𝑧𝑡𝑠
2

2
)  𝑑𝑧 

∞

−
(𝜇𝜉−

16×𝑇𝑒
𝜋×𝑑3 )

√𝜎𝜉
2+𝜎𝜒

2

 
 

 

     (4) 

According to maximum normal stress theory, the maximum normal stress in the shaft is 

𝜎𝑏𝑚𝑎𝑥
=

1

2
𝜎𝑏 +

1

2
√(𝜎𝑏)2 + 4(𝜎𝑡)2 

where 𝜎𝑡 = shear stress induced due to twisting moment 

𝜎𝑏 = bending stress induced due to bending moment 

Therefore 

𝜎𝑏𝑚𝑎𝑥
=

32

𝜋 × 𝑑3
[
1

2
(𝑀 + √𝑀2 + 𝑇2)] 

The expression 
1

2
(𝑀 + √𝑀2 + 𝑇2) is known as equivalent bending moment and is denoted by 

𝑀𝑒 . 

The equivalent bending moment may be defined as that moment which when acting alone 

produces the same tensile or compressive stress (𝜎𝑏) as the actual bending moment. 

By limiting the maximum normal stress  (𝜎𝑏𝑚𝑎𝑥
) equal to the allowable bending stress (𝜎𝑏𝑛) for 

the material is the normally distributed stress 

𝜇𝜒𝑛 = 𝜎𝑏𝑛 =  
32×𝑀𝑒

𝜋×𝑑3  

Then the reliability of the shaft subjected to combined twisting moment and bending moment 

for normally distributed strength and stress is 

𝑅𝑏𝑛 =
1

2𝜋
∫ exp (

−𝑧𝑏𝑛
2

2
)  𝑑𝑧 

∞

−
(𝜇𝜉−

32×𝑀𝑒
𝜋×𝑑3 )

√𝜎𝜉
2+𝜎𝜒

2

 
 

 

     (5) 
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3. Numerical results and discussion 

 

a. For twisting moment only 

Table-1: 𝑑 = 110 mm, 𝜇𝜉 = 119.6584 N/mm2. 

𝑇 𝑧𝑡 𝑅𝑡 

100000 -1.993596824 0.976901934 

2500000 -1.834327549 0.966697306 

5000000 -1.659291647 0.951471481 

7500000 -1.478628009 0.930380119 

10000000 -1.296096181 0.902528825 

13000000 -1.079424515 0.859800736 

18000000 -0.736112792 0.769168971 

20000000 -0.607809459 0.728343073 

25000000 -0.313849897 0.623182477 

30000000 -0.059258971 0.523627080 
 

 
Figure 1: Reliability and Twisting Moment 

 

Table-2: 𝑇 = 104 N-mm, 𝜇𝜉 = 119.6584 N/mm2. 

𝑑 𝑧𝑡 𝑅𝑡 

18 -0.437034097 0.668956690 

20 -0.826725375 0.795803632 

24 -1.323221625 0.907119157 

30 -1.664313463 0.951975098 

32 -1.725837528 0.957811677 

40 -1.862933958 0.968764221 

50 -1.930809365 0.973246684 

58 -1.955923837 0.974762937 

70 -1.975040282 0.975868212 
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82 -1.984508267 0.976400396 
 

 
Figure 2: Reliability and Diameter of the Shaft 

 

b. For bending moment only 

Table-3: 𝑑 = 110 mm, 𝜇𝜉 = 119.6584 N/mm2. 

𝑀 𝑧𝑏 𝑅𝑏 

100000 -1.98717341 0.976548408 

1200000 -1.841158255 0.967200815 

2000000 -1.730194966 0.958202276 

2400000 -1.673552215 0.952890682 

3800000 -1.471338225 0.929400165 

4800000 -1.325278842 0.907460658 

6500000 -1.079424515 0.859800736 

7800000 -0.897319098 0.815225666 

8600000 -0.789017221 0.784949029 

12000000 -0.369480494 0.644115195 
 

 
Figure 3: Reliability and Bending Moment 
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Table-4: 𝑀 = 104 N-mm, 𝜇𝜉 = 119.6584N/mm2. 

𝑑 𝑧𝑏 𝑅𝑏 

22 -0.313849897 0.623182477 

26 -0.928635716 0.823461047 

32 -1.433116930 0.924087788 

36 -1.608706553 0.946159739 

40 -1.718965160 0.957189642 

52 -1.875536297 0.969640510 

62 -1.927365578 0.973032957 

82 -1.968900245 0.975517726 

100 -1.982910074 0.976311262 

110 -1.987173410 0.976548408 
 

 
Figure 4: Reliability and Diameter of the Shaft 

 

c. For combined twisting moment and bending moment 

Table-5: 𝑀 = 104 N-mm, 𝑑 = 110 mm,  𝜇𝜉 = 119.6584 N/mm2. 

𝑇 𝑧𝑡𝑠 𝑧𝑏𝑛 𝑅𝑡𝑠 𝑅𝑏𝑛 

100000 -1.990938603 -1.984506864 0.976756181 0.976400318 

2500000 -1.834190835 -1.827344797 0.966687164 0.966176028 

5000000 -1.659220259 -1.652076253 0.951464292 0.950740496 

7500000 -1.478579423 -1.471289619 0.930373622 0.929393595 

10000000 -1.296059727 -1.288770095 0.902522546 0.901260987 

13000000 -1.079397107 -1.072274996 0.859794630 0.858201733 

18000000 -0.736094575 -0.729543208 0.769163428 0.767165276 

20000000 -0.607793789 -0.601533305 0.728337875 0.726257582 

25000000 -0.31383893 -0.308363433 0.623178312 0.621097098 

30000000 -0.059251123 -0.054549707 0.523623955 0.521751396 
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Figure 5: Reliability and Twisting Moment 

 

Table-6: 𝑇 = 104 N-mm, 𝑑 = 110 mm,  𝜇𝜉 = 119.6584 N/mm2. 

𝑀 𝑧𝑡𝑠 𝑧𝑏𝑛 𝑅𝑡𝑠 𝑅𝑏𝑛 

100000 -1.990938603 -1.984506864 0.976756181 0.976400318 

1200000 -1.921595252 -1.840874437 0.972671647 0.967180019 

2000000 -1.868157213 -1.730019145 0.969129920 0.958186573 

2400000 -1.841016165 -1.673403924 0.967190405 0.952876097 

3800000 -1.744153719 -1.471242305 0.959433855 0.929387200 

4800000 -1.673478046 -1.325202811 0.952883388 0.907448053 

6500000 -1.551268837 -1.079369702 0.939581364 0.859788524 

7800000 -1.456703987 -0.897275084 0.927400946 0.815213926 

8600000 -1.398287099 -0.788978462 0.918986565 0.784937703 

12000000 -1.151035866 -0.369456983 0.875141260 0.644106434 
 

 
Figure 6: Reliability and Bending Moment 
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Table-7: 𝑇 = 104 𝑁 − 𝑚𝑚, 𝑀 = 15 × 104 N-mm,  𝜇𝜉 = 119.6584 N/mm2. 

𝑑 𝑧𝑡𝑠 𝑧𝑏𝑛 𝑅𝑡𝑠 𝑅𝑏𝑛 

24 -0.778536422 -0.208090258 0.781873578 0.582420753 

28 -1.228383905 -0.802787694 0.890348557 0.788951272 

32 -1.491547172 -1.195487826 0.932091052 0.884051755 

36 -1.649076771 -1.442464991 0.950434046 0.925414380 

40 -1.747806723 -1.599826782 0.959751250 0.945181492 

52 -1.888095775 -1.823839541 0.970493453 0.965911833 

62 -1.934633552 -1.897558264 0.973482360 0.971122852 

82 -1.971987598 -1.956288280 0.975694489 0.974784398 

100 -1.984601679 -1.976010500 0.976405597 0.975923206 

110 -1.988441857 -1.982002340 0.976618578 0.976260511 
 

 
Figure 7: Reliability and Diameter of the Shaft 

 

Table-8: 𝑇 = 4 × 104  𝑁 − 𝑚𝑚, 𝑀 = 2 × 104 N-mm, 𝑑 = 110 mm. 

𝜇𝜉 𝑧𝑡𝑠 𝑧𝑏𝑛 𝑅𝑡𝑠 𝑅𝑏𝑛 

2.5 -0.521239161 -0.013920898 0.698899912 0.505553455 

3.5 -0.918703097 -0.477954094 0.820874555 0.683658561 

6.5 -1.425158981 -1.157220313 0.922944375 0.87640882 

10.5 -1.652400548 -1.487687204 0.950773538 0.931583298 

20.5 -1.826770123 -1.745803964 0.966132830 0.959577489 

40.5 -1.913822863 -1.874254579 0.972178603 0.969552328 

60.5 -1.942677032 -1.916561189 0.973972403 0.972353149 

120.5 -1.971410740 -1.958499434 0.975661543 0.974914281 

210.5 -1.983682381 -1.976343042 0.976354371 0.975942031 

350.5 -1.990215750 -1.985824871 0.976716413 0.976473613 
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Figure 8: Reliability and Diameter of the Shaft 

4. Conclusion 

The reliability of the shaft is derived from the twisting and bending moments and the 

combined twisting and bending moments. According to the computations, the reliability of the 

shaft decreases when the twisting and bending moments increase. Reliability increases when 

the diameter and strength of the shaft increase. 
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Abstract 

Profile monitoring is a critical tool for manufacturing industries to evaluate and maintain quality 
performance, as well as detect faults. The process of profile monitoring involves observing how 
variables interact with one another throughout a given period. This enables the understanding of 
any changes in their functional relationship over time. Generally, control charts are used for 
monitoring profiles. This paper proposes two new methods to enhance the monitoring of simple and 
multiple linear regression profiles in Phase II. The proposed methods are based on group runs (GR) 
and modified group runs (MGR) control charting schemes. The procedure to obtain optimal design 
parameters for the proposed methods is discussed in detail. The effectiveness of the suggested 
techniques is assessed through the ARL standard. The study found that the proposed GR and MGR 
monitoring methods displayed superior performance compared to other available monitoring 
methods in the literature. A real-life example is illustrated using proposed GR and MGR charting 
schemes. 

Keywords: Statistical process control, Control chart, Average run length, Linear 
regression models, profile monitoring. 

1. Introduction

Statistical process control (SPC) plays a crucial role in enhancing the quality and productivity of 
manufacturing processes by creating effective methods. The control chart serves as a valuable tool 
in SPC for monitoring the quality of manufactured products. In particular, Shewhart-type, 
exponentially weighted moving average (EWMA) charts and cumulative sum (CUSUM) control 
charts are frequently utilized to monitor the quality of single-variable characteristics. In various 
instances, the manufacturing product quality depends on multiple factors; thus, a multivariate 
control chart is employed for such scenarios. Some of the commonly used multivariate control 
charts include Hotelling's  chart, multivariate EWMA chart, and multivariate CUSUM chart. In 
many practical situations, there is a functional relationship between a variable being studied and 
other factors that can explain it. In these situations, the quality of the manufacturing product is 
effectively monitored by using a profile. Profile monitoring involves the surveillance of how the 
study variable relates to one or several explanatory variables. When the response variable has a 
linear relationship with only one explanatory variable, it is a simple linear regression profile. 
However, if the response variable has a linear relationship with more than one explanatory  
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variable, it is a multiple linear regression profile. The practice of profile monitoring utilizes control 
charts and is implemented to ascertain whether any alterations have occurred in the established 
functional relation, with respect to time. The use of profile monitoring in both Phase I and II have 
become increasingly important in various industries as it allows for the early detection of shifts in 
a process and contributes to the maintenance of quality control. During the initial stage, denoted as 
Phase I, there is a lack of knowledge regarding the parameters governing each profile. As such, 
these values are appraised through a reliable and consistent method. Moving on to Phase II, the 
profiles' parameters have been distinctly determined beforehand and serve as reference points for 
detecting any alterations in the process being analyzed. 

There are various charting techniques in academic literature to track simple and multiple 
linear regression data for Phase I and II scenarios.  Kang and Albin [1] used simple linear profiles 
to calibrate semiconductor manufacturing equipment. They monitored the relationship between 
gas flow and pressure in the chamber Kang and Albin [1] proposed common charting techniques 
to supervise linear profiles by employing the multivariate Hotelling's  and EWMA/R methods. 
Kim et al. [2] devised a Phase II monitoring strategy, known as the EWMA-3 chart, which employs 
three individual univariate EWMA regression control charts to monitor the intercept, slope, and 
variance of errors in linear profiles. Their findings indicate that the EWMA-3 method is more 
effective than the methods of Kang and Albin [1] in Phase II analysis. Woodall et al. [3] addressed 
the key concerns regarding using control charts for monitoring process and product quality 
profiles. They have also given a review of the literature on profile monitoring in SPC. Gupta et al. 
[4] presented a Shewhart-based simple linear profile method called the Shewhart-3 chart. Saghaei 
et al. [5] suggested CUSUM-3 method to monitor simple linear profile parameters. Woodall [6] 
presented a review of linear profile monitoring methods. Riaz et al. [7] developed the Assorted-3 
control charting strategy for monitoring parameters of simple linear profiles. To monitor multiple 
linear profiles, several methods have been developed by researchers, including Zou et al. [8], 
Zhang et al. [9], Zou et al. [10] and Amiri et al. [11]. Further, the  control chart method by Kang 
and Albin [1] can also be used for Phase II monitoring of multiple linear regression profiles. Maleki 
et al. [12] provided an overview of profile monitoring papers published from 2008 to 2018.

Various methods have been suggested to improve conventional control charts in the 
literature of SPC. The synthetic control chart is one such approach that seeks to enhance the 
effectiveness of traditional control charts. Wu and Spedding [13] first developed synthetic chart 
technique which combines the features of both Shewhart chart and CRL chart. Bourke [14] 
developed the CRL control chart for monitoring nonconforming fractions. Wu and Spedding [13] 
demonstrated that the synthetic  chart outperforms the Shewhart  chart. Synthetic control charts 
have proven to be effective in detecting shifts in both univariate and multivariate processes, which 
has led many researchers to focus on designing them to enhance their shift detection capabilities. 
Numerous research papers on synthetic control charts exist in the literature. Some of these are 
Chen and Huang [15], Huang and Chen [16], Ghute and Shirke [14], Ghute and Shirke [18], Ghute 
and Shirke [19], Aparisi and de Luna [20], Rajmanya and Ghute [21]. Rakitzis et al. [22] reviewed 
over 100 scholarly articles based on synthetic-type control charts. In literature, the Group Runs 
(GR) method is recommended in literature as an upgraded version of the synthetic method for 
identifying changes in process parameters. Gadre and Rattihalli [23] devised GR chart to enhance 
shift detection ability of Shewhart  chart and synthetic  chart. The GR control chart scheme 
combines Shewhart  chart and an extended version of the CRL chart and it shows more 
acceptable performance than the Shewhart  chart and synthetic  chart. More related work on GR 
charts can be seen in Gadre et al. [24], Gadre and Kakade [25], Gadre and Kakade [26], Chong et al. 
[27], Khilare and Shirke [28]. Gadre and Rattihalli [29] developed Modified Group Runs (MGR) 
scheme to detect the shift in process mean of the normally distributed process. The results of their 
study suggest that the MGR chart is more efficient than Shewhart, synthetic, and GR charts. Gadre 
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and Kakade [26] introduced multivariate GR and MGR control charts for monitoring process mean 
vector of normally distributed process. It was shown that, the proposed multivariate versions of 
GR and MGR charts detect changes in the process mean vector faster than the Hotelling’s  chart 
and synthetic  chart proposed by Ghute and Shirke [19].  

By getting motivation of improved performance from GR and MGR charts, we implement 
these charting schemes to the  method proposed by Kang and Albin [1] for monitoring simple 
and multiple linear regression profiles. The objective of this paper is to propose GR and MGR 
charting methods for improved monitoring of linear profiles and we expect that the proposed 
methods will provide a better option for the detection of a wide range of shifts in the model 
parameters of both simple and multiple linear regression models in Phase II monitoring. In this 
paper, we propose group runs based  method (denoted as GR- ) and modified group runs 
based  method (denoted as MGR- ) for monitoring simple and multiple linear profiles in Phase 
II. The performance of the proposed methods for monitoring simple linear profiles is compared
with the  method by Kang and Albin [1] and Shewhart-3 method of Gupta et al. [4]. There are
other methods in the literature based on EWMA and CUSUM control charts for monitoring
profiles. But for a fair comparison, we have selected only  and Shewhart-3 methods because our
proposed method GR-  method is Shewhart based method and Shewhart-3 approach is Shewhart
type also Hotelling’s  chart is multivariate extension of the univariate  chart. The performance
of the proposed methods for monitoring multiple linear profiles is also compared with the 
method. The performance of the proposed GR-  and MGR-  methods is evaluated using Monte
Carlo simulations in terms of average run length (ARL) criterion under sustained shifts of different
magnitudes in the regression parameters and error standard deviation of simple and multiple
linear profile monitoring.

The rest of this paper is organized as follows: The model for simple linear profiles under 
consideration is presented in Section 2. In Section 3, we discuss multiple linear regression model to 
be considered in this study for monitoring profiles in Phase II. Our proposed GR-  and MGR-
methods for monitoring simple and multiple linear profiles in Phase II are described in Sections 4 
and 5 respectively. Section 6 of this study evaluates the effectiveness of our suggested approach in 
comparing with traditional methods for monitoring simple linear and multiple linear profiles, 
using the average run length standard. A demonstrative example is provided in Section 7. The 
conclusions are given in Section 8. 

2. Simple linear regression profile model

This section will analyze a simple linear regression model that utilizes two parameters to 
demonstrate how the response variable   is a function of an explanatory variable . Let  is the  
observation of the response variable in the  profile and  is the corresponding explanatory 
variable, which is assumed to be known constant in each profile ( ). If the 
relationship between the response variable and explanatory variable can be accurately shown 
through a simple linear regression model, then the model should be created in the following way, 

 (1)
where,  represents intercept, slope and error terms respectively. It is assumed that  s 
are independent and identically distributed (i.i.d.) normal random variables with mean 0 and 
variance .The regression coefficients,  are assumed to be known. Furthermore, it is 
presupposed that the  values remain constant and invariant in every sample.  The ordinary least 
squares estimators of  for the sample are given by 

 and   (2)

where, . The least 
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square estimators  have a bivariate normal distribution with mean vector ’ 
and variance-covariance matrix, 

 (3) 

 and  are the variances of  respectively and 

 is the covariance between . 
Kang and Albin [1] proposed the Hotelling’s  chart for monitoring intercept and slope of simple 
linear regression model. The vector of sample estimators  for sample  is computed 
and then  statistic is computed as 

′                                                                   (4) 
where,  is vector of estimated values of intercept and slope for  sample, 

’ and  is defined by Eq. (3). When the process is under control,  follows a chi-square 
distribution with 2 degrees of freedom. Therefore, the upper control limit for the chart is 

, where  is the upper 100  percentage point of chi-square distribution with 2 degrees of 
freedom. When the process is not stable, the Hotelling’s statistic follows a non-central chi-square 
distribution with non-centrality parameter , where  and  are the 
shifts in the intercept and slope of the model given in Eq. (1). 

3. Multiple linear regression profile model

In this section, the profile is represented by a multiple linear regression model. We consider a 
multiple linear regression model in  parameters to model the response variable as a 
function of  explanatory variables . Let us assume that for the  random sample 
collected over time, we have  observations given as   and  , where  
is the number of explanatory variables. The relation between response variable and explanatory 
variables is characterized by a multiple linear regression model as 

 (5)
where  is  vector of response variables for the  sample,  is  matrix of 
explanatory variables,  is  vector of regression parameters and  is a  vector of 
error terms  which are assumed to be independently and identically distributed normal variables 
with mean zero and known variance . When , the model of multiple linear profiles reduces 
to a simple linear profile. In addition, the  values are assumed to be fixed and constants for each 
sample. The least squares estimator of  is given as 

  (6) 
and variance-covariance matrix of sample estimates of regression parameters is given as 

  (7)
The Hotelling’s  statistic for  sample is computed by Eq. (4), where  is the 
vector of estimated regression parameters and  is the vector of known regression 
parameters. The upper control limit of Hotelling’s  chart is given as . The theoretical ARL 
values of the chart calculated as follows, 

 (8) 

4. The GR control chart for monitoring linear regression profiles

In this section, we present the design structure of the proposed GR-  chart for monitoring simple 
and multiple linear regression profiles. Following the work of Gadre and Ratihalli [23], in order to 
increase the detection ability of the Hotelling’s  chart, GR-  chart combines the  chart with an 
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improved version of the CRL chart. The  chart has only upper control limit ( ) and CRL chart 
has only the lower control limit . Let  be the  group based CRL and  be the lower limit of the 
CRL chart. 
Operation of GR-  Chart 
Following Gadre and Rattihalli [23], the operation of the GR-  chart is outlined by the following 
steps 
1. Decide the upper control limit  for the  chart and lower control limit  of the CRL chart.
2. Take a group of   items (sample of size ) at each inspection point  and compute the chart

statistic say .
3. If , then the group is considered as a conforming group and control flow goes back to

step 2. Otherwise, the group is considered as nonconforming and control flow goes to the next
step.

4. To determine the CRL ( ), count the number of samples between nonconforming groups.
5. If  the process is thought to be under control, and control flow goes back to step 2. If

 or two successive  and , for  for the first time, the process is
thought to be out-of-control, and control flow proceeds to the next step.

6. Indicate the out-of-control signal.
7. An assignable cause should be searched and take corrective action should be taken to remove

it.
Let the expected number of groups (samples) required for a GR-  chart to detect a shift of 
magnitude  in process mean vector be denoted by . Following Gadre and Rattihalli [23], 
the ARL measure for the GR-  chart is as follows: 

 (9) 

where,  is probability of detecting nonconforming group (sample) when shift of magnitude  
is occurred. 

  (10)
where,  is the cumulative distribution function of chi-square distribution with  
degrees of freedom and non-centrality parameter . The value of  is given as 

 (11)

where,  is vector of shifted regression parameters and  is vector of in-control regression 
parameters. 
If , the in-control ARL of the GR-  chart is given as  

 (12) 

where,    (13)
The optimal design of GR- chart depends on the desired in-control ARL,  and out-of-
control ARL, . Here,  is the magnitude of shift considered large enough to seriously 
impair the quality of the products; the corresponding  should be as small as possible. 
The GR control chart is designed by solving an optimization problem. The objective function to be 
minimized is 

 (14) 

subject to the equality constraint in Eq. (12). 
Optimal Design Procedure of GR-  Chart 
We present the optimal design to obtain the optimal parameters  for the GR-  chart that 
result in minimum   value, subject to in-control ARL  which is at least equal to 
200. 
The optimal design procedure for the GR-  chart is described as follows: 
1. Specify   and  .
2. Obtain  by solving Eq. (12) numerically. From this value of  , obtain the value of 
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using Eq. (13). 
3. From the current values of  and  compute  using Eq. (10) and then compute

  using Eq. (14)
4. If   has been reduced then increase  by 1 and go back to Step 3. Otherwise, go to the

next step.
5. Take the current  and  as the final values for which    is minimum.

5. The MGR control chart for monitoring linear regression profiles

The MGR chart proposed by Gadre and Rattihalli [29] is an extension of the GR chart with the 
inclusion of warning limit in the extended CRL scheme. Following Gadre and Rattihalli [29], we 
develop the procedure related to our proposed MGR-  chart. The MGR-  chart is divided into 
two parts. The first part assesses group conformity using a -based technique, while the second 
analyzes process status through a group runs approach. This component has two levels of 
inspection. 
•   based procedure: If the value of   statistic for a group of  units falls outside the upper

control limit , declare the group as nonconforming; otherwise it is treated as a
conforming group. based procedure: If the value of   statistic for a group of  units falls
outside the upper control limit , declare the group as nonconforming; otherwise it is
treated as a conforming group.
• Group runs based procedure: Let  denote the  (r=1,2,…) group based CRL. In other

words, it is the number of groups inspected between  and  nonconforming
group.
• The group runs based procedure declares the process out-of-control if  or for some

,  and  for the first time. Here  is a warning limit and  is lower
limit of the CRL sub-chart chart.

Following Gadre and Rattihalli [29], the ARL expression for MGR-  chart to detect a shift
of magnitude  in the process mean vector is given as 

 (15) 

where,  and  is given in Eq. (10). 
If , the In-Control ARL of the MGR-  chart is given as 

 (16) 

The MGR-  chart is designed by solving an optimization problem. The objective function to be 
minimized is 

 (17)

subject to the equality constraint in Eq. (16). 
Optimal design procedure of MGR-  Chart 
We present the optimal design to obtain the optimal parameters  for the MGR-  chart 
that result in minimum  value, subject to In-Control  which is at least equal to 
200. 
The optimal design procedure for the MGR-  chart is described as follows 
1. Specify   and  .
2. Initialize  as 1.
3. Initialize  as 1.
4. Obtain  by solving Eq. (16) numerically. From this value of  obtain the value of 

using Eq. (13 ).
5. From the current values of  and  compute   using Eq. (10) and then compute

 using Eq. (17).
6. If  has been reduced then increase  by 1 and go back to Step 4. Otherwise, go to
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the next step. 
7. If  or the value of  has been reduced then increase   by 1 and go back to Step 3;

else go to the next step.
8. Take the values of  and  as the final values for which   is minimum.

6. Performance comparison

In this section, the proposed GR- and MGR- control chart methods for Phase II 
monitoring of linear regression profile processes were evaluated through simulation results, which 
demonstrate their effectiveness in detecting out-of-control conditions in simple linear and multiple 
linear regression profile processes. ARL is a performance measure used in this study for the 
evaluation of the proposed GR  and MGR  methods. 

6.1. Performance comparison of simple linear regression profiles 

In sub-section 6.1 of study, we aim to evaluate and compare the average run length performance of 
two proposed control chart methods for monitoring simple linear regression profiles, namely the 
GR  and MGR , with two existing methods. These existing methods include the control chart 
methods proposed by Kang and Albin [1], as well as the Shewhart-3 method suggested by Gupta 
et al. in [4], which are used as benchmarks for comparison. This study aims to provide valuable 
insights into the effectiveness of these control chart methods for monitoring simple linear 
regression profiles, which will aid practitioners in choosing an appropriate method for their 
specific needs. To compare the performance of proposed methods with above mentioned methods, 
the GR-  and MGR-  control charts are designed such that in-control ARL is approximately 200. 
For our study purpose, we have used in-control simple linear profile model which is given by 
Kang and Albin [1] as, 

 (18) 
with  follows i.i.d. normal random variables with mean zero and variance one and values of 
explanatory variable are fixed as , following Kang and Albin [1]. The optimal 
design parameters and control limits for the proposed GR  and MGR  methods under 

 and are given in Table 1 in order to achieve an overall ARL of 200. 

Table 1: Optimal design parameters for GR-T2 and MGR-T2control chart 
Control chart Optimal design parameters 

GR  , 
MGR   

The shifts in the  and  considered in the study are presented in Table 2. These are 
same as the example discussed by Kang and Albin [1]. For performance evaluation of proposed 
GR-  and MGR-  methods to monitor simple regression profiles, we used 50000 simulation runs 
to obtain out-of-control ARL under different shifts in the  and  of the model given in Eq. 
(18). The ARL performance of above mentioned methods for monitoring simple linear regression 
profiles is given by Riaz et al. [7]. The out-of-control ARL values of proposed GR  and MGR  
and other methods for detecting shifts in regression parameters of a simple linear regression model 
are presented in Table 3. 

From Table 3, we observe that under the intercept shift from 
 , the proposed GR-  and MGR-  methods produces smaller out-of-control ARL 

than the and Shewhart-3 methods for entire range of shifts in the  parameter. Similarly, under 
the slope shift from  , the proposed GR-  and MGR-  methods consistently produces 
smaller out-of-control ARL than the method and Shewhart-3 method for entire range of shifts in 
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the  parameter. Finally, for monitoring the error standard deviation shifts from 
, the proposed GR-  and MGR-  methods consistently produces shorter out-of-control 

average run lengths than the  and Shewhart-3 methods for entire range of shifts in the slope 
parameter. Therefore, we conclude that both the GR-  and MGR-  methods are suitable for 
monitoring different shifts in the  and  of the simple linear regression model. 

Table 2: Shifts considered for various methods 
Type of shift Notation Values of the shift 

Simple linear profiles 
Shift in  β
Shift in   
Shift in  

Multiple linear profiles 
Shift in    
Shift in    
Shift in  

Table 3: Performance comparison under the shifts in intercept, slope and error variance 

Method 
Shift in  

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
2T 137.7 63.5 28.0 13.2 6.9 4.0 2.6 1.8 1.5 1.2 

Shewhart-3 151.4 78.0 33.3 15.5 7.7 4.3 2.7 1.9 1.5 1.2 
GR- 106.8 30.4 10.0 4.8 2.9 2.0 1.6 1.3 1.1 1.1 

MGR-  89.7 17.9 6.5 3.8 2.5 1.8 1.5 1.2 1.1 1.1 

Method 
Shift in   

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 
2T 166.0 105.6 60.7 34.5 20.1 12.2 7.8 5.2 3.7 2.7 

Shewhart-3 178.3 125.0 79.2 46.7 27.9 17.1 10.9 7.1 5.0 3.6 
GR- 146.2 68.5 28.4 12.9 7.0 4.5 3.2 2.4 1.9 1.6 

MGR-  133.7 50.0 16.5 7.8 5.1 3.6 2.7 2.2 1.8 1.5 

Method 
Shift in  

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 
2T 39.6 14.9 7.9 5.1 3.8 3.0 2.5 2.2 2.0 1.8 

Shewhart-3 40.1 13.5 6.5 4.0 2.8 2.2 1.8 1.6 1.5 1.4 
GR- 18.2 6.5 3.9 2.9 2.4 2 1.8 1.7 1.6 1.5 

MGR-  10.8 4.9 3.4 2.6 2.2 1.9 1.7 1.6 1.5 1.4 

6.2. Performance comparison of multiple linear regression profiles 

In this section, we extend the  method of Kang and Albin [1] to monitor multiple linear 
regression profiles. Further to improve performance of  method, we apply the concept of GR and 
MGR charting schemes to the  method. We compare ARL performance of the proposed GR- , 
MGR-  and  to monitor multiple linear profiles in Phase II. 

To compare the performance of proposed GR-   and MGR-  methods with   method 
all the methods are designed such that in-control ARL is approximately 200. For our study 
purpose, we have used in-control multiple linear profile model used by Amiri et al. [11] as 

 (19)
where,  and . The error terms are independent normal random 
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variables with mean 0 and known variance of . Following Amiri et al. [11], the values of 
explanatory variables  and  are given in the following transpose matrix. 

The optimal design parameters of the proposed GR-  and MGR-  methods under 
 and  are provided in Table 4 in order to achieve an overall ARL of 200. 

Table 4: Optimal design parameters for GR-  and MGR-  control chart 
Control chart Optimal design parameters 

GR  
MGR  , 

The shifts in regression parameters  and  considered in the study for multiple linear 
regression profiles are also presented in Table 2. These are same as the example discussed by 
Amiri et al. [11].For performance evaluation of proposed GR-  and MGR-  methods to monitor 
multiple regression profiles, we used 50000 simulation runs to obtain out-of-control ARL under 
different shifts in the regression parameters and error standard deviation of the model given in Eq. 
(19). The out-of-control ARL values of , GR-  and MGR-  methods for detecting shifts in 
regression parameters and error standard deviation of a multiple linear regression model are 
presented in Table 5. 

Table 5: The simulated out-of-control ARL values under the shifts in regression parameters of 
multiple linear regression model when  

Method 
 (shift in ) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

 200.0 126.0 48.0 17.5 7.2 3.5 2.1 1.5 1.2 1.1 1.0 
GR- 200.0 89.2 19.8 6.4 3.2 2.0 1.4 1.2 1.1 1.0 1.0 

MGR-  200.0 64.8 11.5 5.2 2.8 1.8 1.3 1.1 1.0 1.0 1.0 

Method 
 (shift in ) 

0.0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 

 200.0 172.0 116.3 69.2 39.4 22.6 13.3 8.2 5.3 3.7 2.7 
GR- 200.0 153.2 77.8 33.6 15.3 8.1 5.1 3.5 2.6 2.0 1.6 

MGR-  200.0 138.4 53.5 18.6 9.5 6.2 4.3 3.1 2.4 1.9 1.5 

Method 
 (shift in  ) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

 200.0 64.6 27.1 14.2 8.4 5.3 3.6 2.6 2.0 1.6 1.3 
GR- 200.0 32.5 11.4 6.3 4.4 3.3 2.7 2.3 2.0 1.8 1.7 

MGR-  200.0 18.3 7.9 5.2 3.8 3.0 2.5 2.1 1.9 1.7 1.6 

From Table 5, we observe that the proposed GR-  and MGR-  methods are superior 
methods in detecting shifts in the parameters of multiple linear regression model. Under the error 
variance shifts, proposed methods are better than  method except in very large shifts in which 
performance of all methods is approximately same. 
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7. An example
In this section, an example is illustrated by using proposed GR-   and MGR-   methods. Dataset 
is taken from Gupta et al. [4]. The dataset contains measurements of line widths on ten photo mask 
reference standards. These measurements are used to keep track of the linear calibration profiles of 
optical imaging systems. Simple linear regression profile for monitoring data given in Table 6 is as 
follows: . Residual standard deviation is 0.06826 micrometers. The 
estimates of regression coefficients  and  are calculated using ordinal least square method. 

Table 6: Line-Width Measurements and  values 
Day Position  

1 L 0.76 1.12
0.3194 0.9862 4.73 1 M 3.29 3.49 

1 U 8.89 9.11
2 L 0.76 0.99

0.2891 0.9693 0.80 2 M 3.29 3.53 
2 U 8.89 8.89
3 L 0.76 1.05

0.2726 0.9824 0.40 3 M 3.29 3.46 
3 U 8.89 9.02
4 L 0.76 0.76

0.1149 1.0406 38.45 4 M 3.29 3.75 
4 U 8.89 9.3
5 L 0.76 0.96

0.2279 0.9935 2.36 5 M 3.29 3.53 
5 U 8.89 9.05
6 L 0.76 1.03

0.2847 0.9827 0.81 6 M 3.29 3.52 
6 U 8.89 9.02

GR-  and MGR-  control charts for data given in Table 6 are plotted in Figure 1. From 
Figure 1, it is noted that on the fourth day, the value of  statistic is 38.45 which is greater than  
of both the GR-  and MGR- control charts. First conforming run length ( ) does not satisfy the 
criteria of in-control for both the GR-  and MGR- control charts. Therefore, charts give an out-
of-control signal on fourth day. 

Figure 1: GR-   and MGR-  control chart for Line-Width Measurements 
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8. Conclusions

In this paper, we proposed two methods namely, GR-  and MGR-  to monitor simple and 
multiple linear regression profiles in Phase II. The performance of the proposed methods under 
simple linear profile monitoring is compared with the existing Shewhart-type methods namely  
method by Kang and Albin [1] and Shewhart-3 method by Gupta et al. [4] in terms of average run 
length criterion. From the numerical results, it is shown that the GR-  and MGR-  methods are 
very effective for detecting shifts in intercept, slope and error standard deviation. In addition, the 
performance of proposed methods in detecting shifts in the regression parameters and error 
standard deviation of multiple linear regression profiles is better than the  method except very 
large shifts in which performance of all the methods is approximately same. Furthermore, the 
MGR-  method has better performance than the GR-  method for monitoring simple and 
multiple linear regression profiles. Hence, due to the effectiveness of the MGR-  method, it can be 
more suitable for monitoring simple and multiple linear regression profiles. 
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Abstract

In this present paper, a class of Lorentzian almost paracontact metric manifolds known as the LP-
Kenmotsu (Lorentzian para-Kenmotsu) is considered that accepts a connection of quarter-symmetric. In
this work, it was found that an LP-Kenmotsu manifold is either φ-symmetric or concircular φ-symmetric
with respect to quarter-symmetric metric connection if and only if it is symmetric with respect to the
Riemannian connection, provided the scalar curvature of Riemannian connection is constant.

Keywords: Lorentzian para-Kenmotsu manifold, quarter- symmetric metric connection, concircu-
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I. Introduction

In 1989, Matsumoto [4] introduced the notion of Lorentzian paracontact and in particular,
Lorentzian para-Sasakian (LP-Sasakian) manifolds. Later, these manifolds have been widely
studied by many geometers such as Matsumoto and Mihai [5], Mihai and Rosca [6], Mihai, Shaikh
and De [7], Venkatesha and C. S. Baggewadi [13], Venkatesha, Pradeep Kumar and Bagewadi
[14, 15] and obtained several results on these manifolds.

In 1995, Sinha and Sai Prasad [11] defined a class of almost paracontact metric manifolds
namely para-Kenmotsu (briefly P-Kenmotsu) and special para-Kenmotsu (briefly SP- Kenmotsu)
manifolds in similar to P-Sasakian and SP- Sasakian manifolds. In 2018, Abdul Haseeb and
Rajendra Prasad [1] defined a class of Lorentzian almost paracontact metric manifolds namely
Lorentzian para-Kenmotsu (briefly LP- Kenmotsu) manifolds. As an extension, many geometers
have studied these Lorentzian para-Kenmotsu manifolds [8, 10, 12]. Sai Prasad, Sunitha Devi and
Deekshitulu have considered LP-Kenmotsu manifolds admitting the Weyl-projective curvature
tensor W2 and shown that these manifolds admitting a Weyl-flat projective curvature tensor, an
irrotational Weyl-projective curvature tensor and a conservative Weyl-projective curvature tensor
are an Einstein manifolds of constant scalar curvature [9].

A linear connection ∇̃ in an n-dimensional differentiable manifold is said to be a quarter-
symmetric connection [3] if its torsion tensor T is of the form

T(X, Y) = ∇̃XY− ∇̃YX− [X, Y]

= η(Y)φX− η(X)φY,
(1)

RT&A, No 4 (76) 
Volume 18, December 2023 

525

mailto:sunithamallakula@yahoo.com
mailto:klsprasad@yahoo.com


Sunitha and Sai Prasad
On a class of LP-Kenmotsu manifolds

where η is a 1-form and φ is a tensor field of type (1,1). In particular, if we replace φX by X and φY
by Y, then the quarter-symmetric connection reduces to the semi-symmetric connection [2]. Thus,
the notion of quarter-symmetric connection generalizes the idea of semi-symmetric connection,
and if quarter-symmetric linear connection ∇̃ satisfies the condition

(
∇̃X g

)
(Y, Z) = 0 for all

X, Y, Z ∈ χ (Mn), where χ (Mn) is the Lie algebra of vector fields on the manifold Mn, then ∇̃ is
said to be a quarter-symmetric metric connection.

Motivated by these studies, in the present paper, we study the geometry of Lorentzian
para-Kenmotsu (LP-Kenmotsu) manifolds with respect to quarter-symmetric metric connection.
The present paper is organized as follows. Section 2 is equipped with some prerequisites about
Lorentzian para-Kenmotsu manifolds.

Further on, in relation to the quarter-symmetric metric connection in an Lorentzian para-
Kenmotsu manifold, we derive the relations for the Ricci tensor S̃ and the Riemannian curvature
tensor R̃ in section 3.

Further in sections 4 and 5, we study the φ-symmetry and concircular φ-symmetry of
Lorentzian para-Kenmotsu manifolds with respect to quarter-symmetric metric connection re-
spectively.

II. Preliminaries

An n-dimensional differentiable manifold Mn admitting a (1,1) tensor field φ, contravariant
vector field ξ, a 1-form η and the Lorentzian metric g(X, Y) satisfying

η(ξ) = −1, (2)

φ2X = X + η(X)ξ, (3)

g(φX, φY) = g(X, Y) + η(X)η(Y), (4)

g(X, ξ) = η(X), (5)

φξ = 0, η(φX) = 0, rankφ = n− 1. (6)

is called Lorentzian almost paracontact manifold [4].

In a Lorentzian almost paracontact manifold, we have

Φ(X, Y) = Φ(Y, X) where Φ(X, Y) = g(φX, Y). (7)

A Lorentzian almost paracontact manifold Mn is called Lorentzian para-Kenmotsu manifold if [1]

(∇Xφ)Y = −g (φX, Y) ξ − η (Y) φX, (8)

for any vector fields X and Y on Mn, and ∇ is the operator of covariant differentiation with
respect to the Lorentzian metric g.

It can be easily seen that in a LP-Kenmotsu manifold Mn, the following relations hold [1]:

∇Xξ = −φ2X = −X− η (X) ξ, (9)

(∇Xη)Y = −g (X, Y) ξ − η (X) η (Y) , (10)

for any vector fields X and Y on Mn.

Also, in an LP-Kenmotsu manifold, the following relations hold [1]:

g(R(X, Y)Z, ξ) = η(R(X, Y)Z) = g(Y, Z)η(X)− g(X, Z)η(Y) (11)
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R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (12)

R(X, Y)ξ = η(Y)X− η(X)Y, (13)

S(X, ξ) = (n− 1)η(X), (14)

S(φX, φY) = S(X, Y) + (n− 1)η(X)η(Y) (15)

for any vector fields X, Y and Z, where R is the Riemannian curvature tensor and S is the Ricci
tensor of Mn.

Definition 1. An LP- Kenmotsu manifold Mn is said to be symmetric if

(∇W R) (X, Y) Z = 0, (16)

for all vector fields X, Y, Z and W.

Definition 2. An LP-Kenmotsu manifold Mn is said to be φ-symmetric if

φ2 (∇W R) (X, Y) Z = 0, (17)

for all vector fields X, Y, Z and W.

Definition 3. An LP-Kenmotsu manifold Mn is said to be concircular symmetric if(
∇W C̃

)
(X, Y) Z = 0, (18)

for all vector fields X, Y and Z. Here C̃ is the concircular curvature tensor and is given by [16]

C̃ (X, Y) Z = R (X, Y) Z− r
n (n− 1)

[g (Y, Z) X− g (X, Z)Y] , (19)

for all vector fields X, Y and Z, where R and r are the Riemannian curvature tensor and scalar
curvature respectively.

Definition 4. An LP-Kenmotsu manifold Mn is said to be concircular φ-symmetric if

φ2 (∇W C̃
)
(X, Y) Z = 0, (20)

for all vector fields X, Y, Z and W.

III. Expression of R̃ (X, Y) Z in terms of R (X, Y) Z

In this section we express R̃ (X, Y) Z, the curvature tensor with respect to quarter-symmetric
metric connection, in terms of R (X, Y) Z which is the curvature tensor with respect to Riemannian
connection.

Let ∇̃ be a linear connection and ∇ be a Riemannian connection of an almost contact met-
ric manifold Mn such that

∇̃XY = ∇XY + U (X, Y) , (21)

where U is a tensor of type (1, 1). For ∇̃ to be a quarter-symmetric metric connection in Mn, we
have

U (X, Y) =
1
2
[
T (X, Y) + T′ (X, Y) + T′ (Y, X)

]
(22)

and
g(T′(X, Y), Z) = g(T(Z, X), Y). (23)
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From (1) and (23), we get
T′(X, Y) = η(Y)φX− g(φX, Y)ξ. (24)

Using (1) and (24) in (22), we obtain

U (X, Y) = η (Y) φX− g (φX, Y) ξ.

Thus the quarter-symmetric metric connection ∇̃ in an LP-Kenmotsu manifold is given by

∇̃XY = ∇XY + η (Y) φX− g (φX, Y) ξ, (25)

which is the relation between Riemannian connection and the quarter-symmetric metric connec-
tion on Lorentzian para-Kenmotsu manifolds.

Similarly, on simplication, we obtain the relation between the curvature tensor R̃ (X, Y) Z
of Mn with respect to the quarter-symmetric metric connection ∇̃ and the curvature tensor
R (X, Y) Z of Riemannian connection ∇ as follows:

R̃(X, Y)Z = R(X, Y)Z + [g(φY, Z) + g(Y, Z)ξ]φX]

− [g(φX, Z) + g(X, Z)ξ]φY

+ Xg(φY, Z)−Yg(φX, Z).

(26)

Then from (26), it follows that
S̃ (Y, Z) = S (Y, Z) , (27)

where S̃ and S are the Ricci tensors of the connections ∇̃ and ∇ respectively.

Further contracting (27), we get
r̃ = r, (28)

where r̃ and r are the scalar curvatures of the connections ∇̃ and ∇ respectively.

IV. Symmetry of LP-Kenmotsu manifold with respect to

quarter-symmetric metric connection

By the definition of symmetric LP-Kenmotsu manifold with respect to Riemannian connec-
tion, we define a symmetric LP-Kenmotsu manifold with respect to quarter-symmetric metric
connection by (

∇̃W R̃
)
(X, Y) Z = 0, (29)

where (
∇̃W R̃

)
(X, Y) Z = ∇̃W

(
R̃ (X, Y) Z

)
− R̃

((
∇̃W X, Y

)
Z
)

− R̃
((

X, ∇̃WY
)

Z
)
− R̃

(
(X, Y) ∇̃W Z

)
,

(30)

for all vector fields X, Y, Z and W.

∇̃W
(

R̃ (X, Y) Z
)
= ∇W

(
R̃ (X, Y) Z

)
+ η

(
R̃ (X, Y) Z

)
φW

− g
(
φW,

(
R̃ (X, Y) Z

))
ξ,

(31)

R̃
((
∇̃W X, Y

)
Z
)
= R̃ (∇W X, Y) Z + η (X) R̃ (φW, Y) Z

− g (φW, X) R̃ (ξ, Y) Z,
(32)

R̃
((

X, ∇̃WY
)

Z
)
= R̃ (X, ∇WY) Z + η (Y) R̃ (X, φW) Z

− g (φW, Y) R̃ (X, ξ) Z,
(33)
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R̃
(
(X, Y) ∇̃W Z

)
=R̃ (X, Y)∇W Z + η (Z) R̃ (X, Y) φW

g (φW, Z) R̃ (X, Y) ξ,
(34)

R̃(ξ, Y)Z = g(Y, Z)ξ − η(Z)Y− η(Z)φYξ + g(φY, Z)ξ, (35)

R̃(X, ξ)Z = η(Z)X− g(X, Z)ξ − η(Z)φXξ + g(φX, Z)ξ, (36)

R̃(X, Y)ξ = η(Y)X− η(X)Y + η(Y)φXξ − η(X)φYξ. (37)

By using (25), (31) to (37) in (30), we get(
∇̃W R̃

)
(X, Y) Z =

(
∇W R̃

)
(X, Y) Z + η

(
R̃ (X, Y) Z

)
φW

− g
(
φW, R̃ (X, Y) Z

)
ξ − η (X) R̃ (φW, Y) Z

− η (Y) R̃ (X, φW) Z + g (W, φX) R̃ (ξ, Y) Z

+ g (W, φY) R̃ (X, ξ) Z + g (W, φZ) R̃ (X, Y) ξ

− η (Z) R̃ (X, Y) φW.

(38)

Then by differentiating (26) with respect to W and on using (6), (7) and (10), we get

(∇W R̃)(X, Y)Z = (∇W R)(X, Y)Z− [g(φW, Y)η(Z) + g(φW, Z)η(Y)

+ Wg(Y, Z) + η(W)g(Y, Z)ξ]φX

+ [g(φW, X)η(Z) + g(φW, Z)η(X)

+ Wg(X, Z) + η(W)g(X, Z)ξ]φY

+ g(φX, Z)[g(φW, Y)ξ + η(Y)φW]

− g(φY, Z)[g(φW, X)ξ + η(X)φW]

+ [η(Y)g(X, Z)ξ − η(X)g(Y, Z)ξ]φW

+ [Yg(φW, X)− Xg(φW, Y)]η(Z)

+ g(φW, Z)[η(X)Y− η(Y)X].

(39)

Therefore, by using (2), (8) and (39) in (38), we obtain(
∇̃W R̃

)
(X, Y) Z = (∇W R) (X, Y) Z. (40)

Thus we can state the following:

Theorem 1. An LP-Kenmotsu manifold is symmetric with quarter-symmetric metric connection
∇̃ if and only if it is symmetric with respect to Riemannian connection ∇.

Corollary 1. An LP-Kenmotsu manifold is φ-symmetric with respect to quarter-symmetric
metric connection ∇̃ if and only if it is symmetric with respect to Riemannian connection ∇.

V. Concircular symmetry of LP-Kenmotsu manifold with respect to

quarter-symmetric metric connection

An LP-Kenmotsu manifold Mn is said to be a concircular symmetric with respect to
quarter-symmetric metric connection if

(∇̃W
˜̃C)(X, Y)Z = 0, (41)

for all vector fields X, Y, Z and W. Here the concircular curvature tensor ˜̃C with respect to
quarter-symmetric metric connection is given by

˜̃C(X, Y)Z = R̃(X, Y)Z− r̃
n(n− 1)

[g(Y, Z)X− g(X, Z)Y], (42)
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where R̃ is the Riemannian curvature tensor and r̃ is the scalar curvature of the quarter-symmetric
metric connection ∇̃.

Using (25), we can write

(∇̃W
˜̃C)(X, Y)Z = (∇W

˜̃C)(X, Y)Z + η(˜̃C(X, Y)Z)φW

− g(φ(˜̃C(X, Y)Z, W))ξ − η(X)˜̃C(φW, Y)Z

− η(Y)˜̃C(X, φW)Z− η(Z)˜̃C(X, Y)φW

+ g(φW, X)˜̃C(ξ, Y)Z + g(φW, Y)˜̃C(X, ξ)Z

+ g(φW, Z)˜̃C(X, Y)ξ.

(43)

Now on differentiating (42) with respect to W, we obtain

(∇W
˜̃C)(X, Y)Z = (∇W R̃)(X, Y)Z− ∇W r̃

n(n− 1)
[g(Y, Z)X− g(X, Z)Y]. (44)

Therefore, by using of (28) and (39), we get from (44) that

(∇W
˜̃C)(X, Y)Z = (∇W R)(X, Y)Z− [g(φW, Y)η(Z) + g(φW, Z)η(Y)

+ Wg(Y, Z) + η(W)g(Y, Z)ξ]φX + [g(φW, X)η(Z)

+ g(φW, Z)η(X) + Wg(X, Z) + η(W)g(X, Z)ξ]φY

+ g(φX, Z)[g(φW, Y)ξ + η(Y)φW]

− g(φY, Z)[g(φW, X)ξ + η(X)φW]

+ [η(Y)g(X, Z)ξ − η(X)g(Y, Z)ξ]φW

+ [Yg(φW, X)− Xg(φW, Y)]η(Z)

+ g(φW, Z)[η(X)Y− η(Y)X]

− ∇Wr
n(n− 1)

[g(Y, Z)X− g(X, Z)Y].

(45)

Then by making use of (19), we rewrite the above equation (45) as

(∇W
˜̃C)(X, Y)Z = (∇W C̃)(X, Y)Z− [g(φW, Y)η(Z) + g(φW, Z)η(Y)

+ Wg(Y, Z) + η(W)g(Y, Z)ξ]φX + [g(φW, X)η(Z)

+ g(φW, Z)η(X) + Wg(X, Z) + η(W)g(X, Z)ξ]φY

+ g(φX, Z)[g(φW, Y)ξ + η(Y)φW]

− g(φY, Z)[g(φW, X)ξ + η(X)φW]

+ [η(Y)g(X, Z)ξ − η(X)g(Y, Z)ξ]φW

+ [Yg(φW, X)− Xg(φW, Y)]η(Z)

+ g(φW, Z)[η(X)Y− η(Y)X].

(46)

Using (2), (6) and (46) in (43), we get

(∇̃W
˜̃C)(X, Y)Z = (∇W C̃)(X, Y)Z. (47)

Hence we can state the following:

Theorem 2. An LP-Kenmotsu manifold is concircular symmetric with respect to ∇̃ if and
only if it is so with respect to Riemannian connection ∇.
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Corollary 2. An LP-Kenmotsu manifold is concircular φ-symmetric with respect to ∇̃ if and only
if it is so with respect to Riemannian connection ∇.

Now taking (2), (6) and (45) in (43), we get

(∇̃W
˜̃C)(X, Y)Z = (∇W R)(X, Y)Z− ∇Wr

n(n− 1)
[g(Y, Z)X− g(X, Z)Y]. (48)

If scalar curvature r is constant, the above equation (48) reduces to

(∇̃W
˜̃C)(X, Y)Z = (∇W R)(X, Y)Z. (49)

Thus we have the following assertion.

Theorem 3. An LP-Kenmotsu manifold is concircular symmetric with respect to quarter-
symmetric metric connection ∇̃ if and only if it is symmetric with respect to Riemannian
connection ∇, provided the scalar curvature r is constant.

Corollary 3. An LP-Kenmotsu manifold is concircular φ-symmetric with respect to quarter-
symmetric metric connection ∇̃ if and only if it is symmetric with respect to Riemannian
connection ∇, provided the scalar curvature r is constant.

VI. Conclusion

We explore a class of Lorentzian almost paracontact metric manifolds known as the Lorentzian
para-Kenmotsu that accepts a quarter-symmetric connection. In relation to the quarter-symmetric
metric connection, the relations for the Ricci tensor and the Riemannian curvature tensor in a
Lorentzian para-Kenmotsu manifold were derived. Further, it was found that an LP-Kenmotsu
manifold is either φ-symmetric or concircular φ-symmetric with respect to quarter-symmetric
metric connection if and only if it is symmetric with respect to the Riemannian connection,
provided the scalar curvature of Riemannian connection is constant. The paper ends with a
handful of bibliography.
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Abstract 

An essential stage in research is choosing an adequate sample size and sampling strategy. In order to 

obtain the most accurate estimates possible when surveying high density apple orchards, this paper 

provides the proper procedure for selecting the sample and an effective sampling strategy. For this study, 

primary information gathered during a two-year period from the SKUAST-Kashmir exotic apple block 

Plate I was employed. This investigation was conducted using the TCSA of exotic apple trees of the Gala 

and Fuji types. The sample was obtained using a variety of sampling techniques in order to find the 

parameters of population. Findings revealed that using proportional allocation of a stratified sample 

technique, in both the varieties, produces the most efficient population parameter estimates.  

Keywords: Sample size, Stratification, Proportional Allocation, Gain in Efficiency. 

1. Introduction

After data have been gathered, the most crucial goal of data analysis is to make generalizations about 

the population based on sample data. One of the most commonly requested questions by the 

investigators is "How big a sample is necessary." Inferences from the research cannot accurately reveal 

the reality of entire population when the sample size isn’t calculated properly. The accuracy and caliber 

of research are impacted by inappropriate, insufficient, or excessive sample numbers. Choosing a 

sample size and addressing non-response bias are crucial in a quantitative survey design. The ability 

of quantitative methods to draw conclusions about vast populations that would be too expensive to 

research using smaller populations is one of their significant advantages [1]. Sample size is one of the 

four associated characteristics of a survey design that can impact the recognition of important disparity, 

correlations, or relations  [2]. Precision, risk, and variability in the variables assessed are typically three 

criteria that need to be specified besides the research’s objective and size of population to allot the right 

size of sample. 
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The "degree of precision" is used to find out the size of sample. The permitted discrepancy between 

the estimated value and the population value is known as the "degree of precision." Particularly, it is a 

measurement of how closely an estimate resembles the population's real distribution of a property [3]. 

You may refer to the degree of precision as sampling error. Cochran asserts that the level of mistakes 

that one is ready to accept in the sample estimates can be used to achieve the required precision. The 

SE is the discrepancy between the statistic & the relevant parameter of population [4]. It depends on 

how much hazard a researcher is eager to take when the data is used to inform their choices. Frequently 

it is stated as a percentage. If the degree of uncertainty for sampling is ±5 (%), and 70 (%) of the sample 

members ascribe a certain criterion, it can be inferred that 65% to 75% of members of the population 

also attribute that criterion. Higher expense and greater sample sizes are necessary for high levels of 

precision [5]. 

For the level of confidence or risk level the Central Limit Theorem's provides the basis [6]. 

Approximately 95% of the sample values in a normal distribution are within two standard deviations 

of the mean, or the real value of the population. 

The degree of variability in the attributes being measured is referred to the distribution of the traits 

in the population. The sample size increases with population heterogeneity in order to achieve a 

particular degree of precision. Smaller sample sizes are ideal for populations that are less variable (more 

homogeneous). Remember that a proportion of 50% denotes a higher degree of variability than one of 

20% or 80%. In order to calculate more cautious sample size, a proportion of 0.5 is frequently employed 

because it represents the population's maximum variability. 

The choice of an appropriate survey plan, is a key component of the collection of information in 

any decision that is supported by science. A solid sampling strategy is essential to assure; the data are 

adequate to support the necessary inferences. It's critical to have reliable information while making 

science-based decisions. Creating a sample plan that appropriately reflects the issue under 

investigation is essential for obtaining valid and reliable data. Sampling is crucial in survey designs 

necessitating the human population and is receiving more and more heed from sociologists, 

pharmacologists, designers, accountants, physiologists, and medical professionals involved in business 

dealings, as well as from those in the fields of education, public administration, biostatistics, and even 

sociology, accounting, economics, anthropology, and political science [8]. Sampling plans are provided 

in order to end in fundamental investigation challenges, particularly in the social science disciplines 

and their uses [9]. In order to bring out interpretations about the population value from the sample 

value, the sampling plan also incorporates the assignments of estimate & selection [10]. With error-free 

measures, there are issues when extrapolating survey results from one group to another and often a 

larger population. The standard errors would differ depending on the sample designs. The main goal 

of sampling design is to choose the least error-prone option. An efficient sampling approach within a 

population display an adequate elicitation of relevant data, giving a significant understanding of the 

key elements of the population [7]. A sampling method that is cost-effective, effortless to use, bring in 

fair estimates, and lessens the consequences of sample-related volatility is therefore required. Multiple 

demographic parameters are frequently estimated in sample surveys; these parameters may be 

mutually exclusive. For the purpose of ensuring that samples represent all relevant points of view, 

stratified sampling has been established. The whole diversified population of interest is divided into 

homogenous classes, sometimes called as strata, each of which is similar within itself, using the 

stratification method of sample design. Depending on how important each stratum is to the population 

as a whole, the sample size changes for each stratum. Then, individual stratum sampling will be carried 

out [11]. There are several uses for stratified sample designs. These include obtaining more accurate 

estimates for fascinating domains. They also include increasing the true value of estimates for the entire 

population being gathered in the investigation [12]. The purpose of the experimentation is to establish 

sample size and choose the best sampling plan for surveys of apple orchards with a high population 
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density. For this investigation, the high-density apple block (HDP, plate-1) of SKUAST-primary 

Kashmir's data on a variety of tree/fruit properties were employed. Gala and Fuji were two types of 

high-density apple trees selected in the study based on trunk cross-sectional area. 

2. Methodology

According to Cochran (1977), the sample size n  can be estimated by mentioning the margins of error 

for the survey items that are thought to be most important. For each of these significant factors, an 

estimation of the required sample size is first made. The data can be used to determine the sampling 

strategy. The largest can be used as the sample size if the values for the variables of interest are close 

together, and one can be sure that the sample size will produce the desired findings. Keeping in mind 

that a sample size that is too small will result in more estimation errors for demographic parameters 

and a sample size that is too large will result in higher survey costs to calculate the necessary sample 

size, a compromise between estimation accuracy and cost has to be made. Cochran's formula for sample 

size is: 

𝑛0 =
𝑧2𝜎2

𝑒2
(1) 

Where no is the sample size (without fpc factor), z = value for selected alpha level (1.96),  = standard 

deviation = 0.17 and е= margin of error = 0.05.  

 Hence, for the population of 270, the calculated sample size is 47.704. But the sample size 

surpasses 5% of the population (270*0.05=13.5), Cochran’s [4]. Correction formula must be incorporated 

to evaluate the optimum sample size. Put in the fpc factor out-turn in optimum sample size n, 

enumerated as in formula: 

)1(0

0




Nn

Nn
n (2) 

41
)1270(704.47

270*704.47



n (3) 

Where population size =270, no = required return sample size = 47.704, no = optimum return sample size. 

Therefore, by using the Cochran’s 1977 formula, the optimum sample size selected for study is 41 

with the margin of error set up to 5% (0.05) and an alpha level of 1.96. In our study, sample selection 

methods included both stratified random sampling and plain random sampling. The TCA of each type 

of exotic apple plant was divided into three strata (TCA). The following guiding principles were 

followed in the stratification process: I The strata, or range of TCAs, do not overlap and make up the 

entire population as a whole. (ii) Within each stratum, or range of TCA, there is homogeneity [13]. 

The proportional allocation method was used to allocate the samples throughout the several TCA 

ranges. The sample fraction, n/N, in this approach is constant throughout all strata. With the help of 

this allocation, a sample that can estimate sample size more quickly and precisely was created. The 

allocation of a given sample of size n  to different stratum was done in proportion to their sizes i.e. in 

the 
thi stratum,

N

N
nn i

i  where n  represents sample size, iN refers to population size of the 
thi strata 

and N  is the size of population. In this investigation, population size ( N ) = 270; sample size ( n ) = 41 

The variance of estimate of population mean in StRS (proportional allocation) and SRS (wor) is 

given by 
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The sample size in every stratum proportionate allocation differs relying on the total quantity of plants 

in each classified TCA, for duo exotic varieties. The quantitative values are SHOWN in Tables 1 and 2. 

Table 1: Grouping of TCA for Gala and Fuji: an empirical study 

Variet

y 

Strat

a 
iN in iNY 2

iNY iNiYN 2
iNiYN iS 2

iS iiSN 2
iiSN

2)1( ii SN 

Gala 

1 77 1 6.03 36.36 464.31 2799.79 
0.8

6 
0.72 66.22 56.95 56.21 

2 150 3 8.88 78.85 1332 
11828.1

6 

1.3

2 

1.72

4 

198.0

0 

261.3

6 

259.6

2 

3 43 07 
12.7

8 

163.3

3 
549.54 7023.12 

1.4

8 
2.19 63.64 94.19 92.00 

Total 270 41 
27.6

9 

278.5

4 

2345.8

5 

21651.0

7 

3.6

6 
4.67 

327.8

6 

412.5

0 

407.8

2 

Fuji 

1 48 07 3.16 9.99 151.68 479.31 
0.9

8 
0.96 47.04 46.10 72.99 

2 153 23 6.45 41.60 986.85 6365.18 
1.8

1 
3.28 

276.9

3 

501.2

4 

488.1

4 

3 69 11 
10.6

9 

114.2

8 
737.61 7885.05 

2.2

7 
5.15 

156.6

3 

355.5

5 

216.4

2 

Total 
270.0

0 
41 

20.3

0 

165.8

6 

1876.1

4 

14729.5

4 

5.0

6 
9.39 

480.6

0 

902.8

9 

777.5

5 

Table 2: Calculation of variances 

Sampling Strategy 
HDP Variety 

Gala Fuji s 

Randn
yVar )( 0.128 0.189 

opst
yVar

Pr
)( 0.032 0.069 

Table 2 lists variations found in Gala and Fuji as a result of SRS &. StRS. Gala and Fuji hold variances 

of 0.118 and 0.189 under SRS, respectively, and .032 and .069 under StRS with proportionate allocation. 

It is essential to examine the gain in efficiency (GE) brought on by separate kinds of allocations in 

order to determine how they affect sample size [16]. The efficiency improvement attributed to 

proportional allocation over SRS (wor) is given in equation below 

 
opst

opstRandn

yVar

yVaryVar
E

Pr

Pr

)(

)()(
1


 (8) 

Table 3: Gain in Efficiency and Percentage gain in Efficiency Due to Stratification 

Variety Gain in Efficiency % Gain in Efficiency 

Gala 3.05 305 

Fuji 1.34 134 
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According to Table 3, the efficiency gain (GE) for Gala and Fuji is 3.05 (305%) and 1.34 (134%) 

correspondingly. 

3. Conclusion

The purpose of sample size formulas "is not merely to give a samples number," rather than to determine 

whether tens, hundreds, or thousands of plants are needed, but to scrutinize the study design, 

including a review of the validity and reliability of data collecting. Finally, it is concluded that 

proportional allocation in stratified sampling provides the best accurate estimates over simple random 

sampling for population parameters estimation in both of the HDP exotic apple types under 

investigation. This has been determined after using different sampling plans to obtain the sample 

statistic for population parameters.  

References 
[1] Singh, H., Caste and Premarket, (2022). Discrimination: Access to Civic Amenities and

Healthcare Facilities in Rural Punjab, Contemporary Voice of Dalit, p. 2455328X2211069, doi: 

10.1177/2455328X221106908. 

[2] Gupta, S., Haq, A., and Varshney, R., (2022). Problem of Compromise Allocation in

Multivariate Stratified Sampling Using Intuitionistic Fuzzy Programming, Annals of Data Science 2022, 

pp. 1–20, doi: 10.1007/S40745-022-00410-Y. 

[3] Li, C., Wang, J., Wang, L. Hu, L. and Gong, P., (2014). Comparison of Classification

Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper 

Imagery, Remote Sensing 2014, Vol. 6, Pages 964-983, vol. 6, no. 2, pp. 964–983, doi: 10.3390/RS6020964. 

[4] Varshney, R., Khan, M. G. M., Fatima, U., and Ahsan, M. J., (2015). Integer compromise

allocation in multivariate stratified surveys, Ann Oper Res, vol. 226, no. 1, pp. 659–668, doi: 

10.1007/S10479-014-1734-Z/TABLES/2. 

[5] Miranda, C., Santesteban, L. G., Urrestarazu, J., Loidi, M. and Royo, J. B., (2018). Sampling

Stratification Using Aerial Imagery to Estimate Fruit Load in Peach Tree Orchards, Agriculture 2018, 

Vol. 8, Page 78, vol. 8, no. 6, p. 78, doi: 10.3390/AGRICULTURE8060078. 

[6] McCravy, K. W., (2018). A Review of Sampling and Monitoring Methods for Beneficial

Arthropods in Agroecosystems, Insects 2018, Vol. 9, Page 170, vol. 9, no. 4, p. 170, doi: 

10.3390/INSECTS9040170. 

[7] Varshney, R., Najmussehar, Ahsan, M. J., Varshney, R. and Ahsan, M. J., (2011). An

optimum multivariate stratified double sampling design in presence of non-response, Optimization 

Letters 2011 6:5, vol. 6, no. 5, pp. 993–1008, doi: 10.1007/S11590-011-0329-8. 

[8] Peers, I., (2006). Statistical Analysis for Education and Psychology Researchers: Tools for

researchers in education and psychology, Statistical Analysis for Education and Psychology Researchers, 

doi: 10.4324/9780203985984. 

[9] Ranjan, R., Sinha, R., Khot, L. R., Hoheisel, G. A., Grieshop, M., and Ledebuhr, M., (2021).

Spatial Distribution of Spray from a Solid Set Canopy Delivery System in a High-Density Apple 

Orchard Retrofitted with Modified Emitters, Applied Sciences 2021, Vol. 11, Page 709, vol. 11, no. 2, p. 

709, doi: 10.3390/APP11020709. 

[10] Mukherjee, S., Baral, M. M., Pal, S. K., Chittipaka, V., Roy, R., and Alam, K., (2022).

Humanoid robot in healthcare: A Systematic Review and Future Research Directions,” 2022 

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), pp. 

822–826, doi: 10.1109/COM-IT-CON54601.2022.9850577. 

RT&A, No 4 (76) 
Volume 18, December 2023 

537



Tabasum Mushtaq, Mushtaq A. Lone, S. A. Mir, Sonali Kedar Powar, 

Aafaq A. Rather, Adil H. Khan, Faizan Danish 

EVALUATION OF SAMPLE SIZE AND EFFICIENT FIELD … 

[11] Roy, R., Baral, M. M., Pal, S. K., Kumar, S., Mukherjee S., and Jana, B., (2022). Discussing

the present, past, and future of Machine learning techniques in livestock farming: A systematic 

literature review, 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel 

Computing (COM-IT-CON), pp. 179–183, doi: 10.1109/COM-IT-CON54601.2022.9850749. 

[12] Vishwakarma, D. K., Kumar, R., Kumar, A., Kushwaha, N. L., Kushwaha, K. S., and

Elbeltagi, A., (2022). Evaluation and development of empirical models for wetted soil fronts under drip 

irrigation in high-density apple crop from a point source,” Irrig Sci, vol. 1, pp. 1–24, doi: 10.1007/S00271-

022-00826-7/FIGURES/17.

[13] Ranjan, R., Sinha, R., Khot, L. R., Hoheisel, G. A., Grieshop, M. J. and Ledebuhr, M., (2021).

Effect of Emitter Modifications on Spray Performance of a Solid Set Canopy Delivery System in a High-

Density Apple Orchard, Sustainability 2021, Vol. 13, Page 13248, vol. 13, no. 23, p. 13248, doi: 

10.3390/SU132313248. 

RT&A, No 4 (76) 
Volume 18, December 2023 

538



Kavya and Manoharan
Estimation of Stress-Strength Reliability Based on KME Model

Estimation of Stress-Strength Reliability Based on KME
Model

Kavya P. and Manoharan M.

•
University of Calicut

kavyapnair90@gmail.com, manumavila@gmail.com

Abstract

In reliability theory the estimation of stress-strength reliability is an important problem. It has many
applications in engineering and physics areas. In many practical situations, the assumption of identical
strength distributions may not be quite realistic because components of a system are of different structure.
Here we establish the estimation of stress-strength reliability of the KM-Exponential (KME) distribution.
In this article, we consider the case that the stress-strength variables are independent. KME distribution
is parsimonious in parameter and has decreasing failure rate. The stress-strength reliability based on
KME model is estabished and using maximum likelihood estimation method, the estimation of the stress-
strength reliability is derived and also the asymptotic distribution. Simulation method is used to show
the performance of the parameters and the 95% confidence interval is also calculated. With the help of
simulated data, we depicts the application of the stress-strength reliability of KME distribution.

Keywords: KM-Exponential Stress-Strength reliability Estimation Simulation study.

1. Introduction

The problem of estimation of stress-strength reliability has great attention in reliability theory.
The term stress is defined as a failure inducing variable. That means the stress (load) which tends
to produce a failure of a component or of a device of a material. For example, environment,
pressure, load, velocity, resistance, temperature, humidity, vibrations, and voltage etc. The term
strength is defined as it is failure resisting variable. The ability of component, device or a material
to accomplish its required function (mission) satisfactorily without failure when subjected to the
external loading and environment.

The stress-strength reliability model depicts the life of a component or item with a random
strength X and is subjected to a random stress Y. If the stress on the component surpasses
the strength, it fails instantaneously. Whenever Y < X the item functions satisfactorily. The
component reliability is defined as

R = P(Y < X) =
∫ ∞

−∞

∫ x

−∞
f (x, y) dy dx,

where f (x, y) is the joint pdf of X and Y. Suppose the random variable X and Y are independent,
then R can be written as

R =
∫ ∞

−∞

∫ x

−∞
f (x) g(y) dy dx,

where f (x) and g(y) are the marginal pdfs of X and Y. This is also can be written as

R =
∫ ∞

−∞
f (x) Gy(x) dx.
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where Gy(x) is the cdf of g(y).
The germ of this idea was proposed by Birnbaum [1] and was developed by Birnbaum and

McCarty [2]. The formal term stress-strength firstly appears in the title of Church and Harris [3].
Based on certain parametric assumptions regarding X and Y, the first attempt to study R was
undertaken by Owen et al. [4]. They also calculated the confidence interval for R when X and Y
are independent or dependent normally distributed random variables. The estimation of R for
major distributions like normal (Church and Harris [3], Downton [5];, Woodward and Kelley [6]),
exponential (Kelly et al [7], Tong [8]), Pareto (Beg and Singh [9]), and exponential families (Tong
[10]) was derived by the end of seventies. Enis and Geisser [11] contribute the Bayes estimation
of R for exponentially or normally distributed X and Y. The other major works of the seventies
include the introduction of a non-parametric empirical Bayes estimation of R by Ferguson [12]
and Hollander and Korwar [13], and the study of system reliability (Bhattacharya and Johnson
[14]).

Both stress and strength depend on some known covariates, Guttman et al. [15] and Weera-
handi and Johnson [16] discussed the estimation and associated confidence interval of R. Using
Bayesian approach Sun et al. [17] estimated the stress-strength reliability. Raqab and Kundu [18]
carried out the estimation of stress-strength reliability, when Y and X two independent scaled
Burr type X distribution. A comprehensive treatment of the different stress-strength models till
2001 can be found in the excellent monograph by Kotz et al. [19]. Some of the work on the
estimation of stress-strength reliability can be obtained in Kundu and Gupta ([20], [21]), Kundu
and Raqab [22], Krishnamoorthy et al. [23], Raqab et al. [24], Rezaei et al. [25], and Baklizi [26].
Baklizi and Eidous [27] introduced an estimator of stress-strength reliability based on kernel
estimators. Estimation of stress-strength reliability using empirical likelihood method was studied
by Jing et al. [28].

Basirat et al. [29] studied the estimation of stress-strength parameter using record values from
proportional hazard model. Estimation of stress-strength reliability based on the generalized
exponential distribution was developed by Asgharzadeh et al.[30]. Bai et al. [31] considered
reliability inference of stress-strength model under progressively Type-II censored samples when
stress and strength have truncated proportional hazard rate distributions. Bi and Gui [32] derived
Bayesian estimation of R using inverse Weibull distribution. Ghitany et al. [33] discussed inference
on stress-strength reliability based on power Lindley distribution. Sharma [34] proposed an
upside-down bathtub shape distribution and estimate of stress-strength reliability of inverse
Lindley distribution.

This paper is organized as follows. Preliminaries of the KME model are given in Section
2. In Section 3 the stress-strength reliability for the KME model is derived. The estimation of
stress-strength reliability R is explained in Section 4. In Section 5 the asymptotic distribution and
confidence interval are given. Simulation study and applications are discussed in Section 6 and
Section 7 respectively. Finally we concluded the present work in Section 8.

2. Preliminaries of KME model

We obtain the KME model using the cumulative distribution function (cdf) of exponential distri-
bution in KM transformation given in Kavya and Manoharan [36]. The probability distribution
function (pdf) and cdf of the KME distribution are

f (x) =
λe−λxee−λx

e − 1
, x > 0, λ > 0,

F(x) =
e

e − 1
[1 − e−(1−e−λx)], x > 0, λ > 0,
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3. Stress-strength reliability based on the model

The stress-strength reliability model depicts the life of a component or item with a random
strength X and is subjected to a random stress Y. If the stress on the component surpasses
the strength, it fails instantaneously. Whenever Y < X the item functions satisfactorily. The
component reliability is defined as R = P(Y < X). It has applications in engineering fields such
as failure of aircraft structures, deterioration of rocket motors, and the aging of concrete pressure
vessels.

Suppose X and Y are two independent random variables. If X ∼ KME(λ1) and Y ∼ KME(λ2),
then the stress-strength reliability is obtained as

R = P(Y < X) =
∫ ∞

0

λ1e−λ1xee−λ1x

e − 1

[
e

e − 1

(
1 − e−(1−e−λ2x)

)]
dx

=
λ1e

(e − 1)2

∞

∑
m=0

1
m!

[
I1 + I2

]
(1)

where I1 =
∫ ∞

0 e−λ1x(m+1)dx and I2 =
∫ ∞

0 e−λ1x(m+1)e−(1−e−λ2x)dx. After integration, we get the

values of I1 = 1
λ1(m+1) and I2 = ∑∞

n=0 ∑∞
i=0

(−1)n+i

n! (n
i )

1
λ1(m+1)+λ2i . Substituting these values in (1),

the stress-strength reliability based on the KME model is obtained as

R = P(Y < X)

=
λ1e

(e − 1)2

∞

∑
m=0

1
m!

[
1

λ1(m + 1)
−

∞

∑
n=0

∞

∑
i=0

(−1)n+i

n!

(
n
i

)
1

λ1(m + 1) + λ2i

]
. (2)

4. Estimation of R

Suppose we drawn a random sample x1, x2, ..., xn of size p from KME(λ1) and y1, y2, ..., yn of size
q from KME(λ2). The likelihood function is obtained as

L =

(
1

e − 1

)p

λ
p
1 e−λ1 ∑

p
i=1 xi e∑

p
i=1 e−λ1xi

(
1

e − 1

)q

λ
q
2e−λ2 ∑

q
j=1 yj e∑

q
j=1 e−λ2yj

(3)

The log likelihood function is

log L =p log(
1

e − 1
) + p log(λ1)− λ1

p

∑
i=1

xi +
p

∑
i=1

e−λ1xi

q log(
1

e − 1
) + q log(λ2)− λ2

q

∑
j=1

yj +
q

∑
j=1

e−λ2yj (4)

The partial derivatives of the log likelihood function with respect to λ1 and λ2 are

∂ log L
∂λ1

=
p

λ1
−

p

∑
i=1

xi

(
1 + e−λ1xi

)
and

∂ log L
∂λ2

=
q

λ2
−

q

∑
j=1

yj

(
1 + e−λ2yj

)
The maximum likelihood estimates of the parameters are obtained as the solution of the above
non-linear equations.

RT&A, No 4 (76) 
Volume 18, December 2023 

541



Kavya and Manoharan
Estimation of Stress-Strength Reliability Based on KME Model

The second partial derivatives of the log likelihood function with respect to λ1 and λ2 are

∂2 log L
∂λ2

1
=

−p
λ2

1
+

p

∑
i=1

x2
i e−λ1xi

and

∂2 log L
∂λ2

2
=

−q
λ2

2
+

q

∑
j=1

y2
j e−λ2yj

The maximum likelihood estimate of Stress-Strength reliability R is

R̂ML =
λ̂1e

(e − 1)2

∞

∑
m=0

1
m!

[
1

λ̂1(m + 1)
−

∞

∑
n=0

∞

∑
i=0

(−1)n+i

n!

(
n
i

)
1

λ̂1(m + 1) + λ̂2i

]
(5)

We obtain the expression of the maximum likelihood estimate of Stress-Strength reliability R by
substituting the estimated parameters in the Equation (2).

5. Asymptotic distribution and confidence interval

In this section we focused on the asymptotic distribution and confidence interval of the maximum
likelihood estimate of R. To obtain the asymptotic variance of the maximum likelihood estimate
of R, we consider the Fisher information matrix of λ and is denoted as I.

I = −

 E( ∂2 log L
∂λ2

1
) E( ∂2 log L

∂λ1∂λ2
)

E( ∂2 log L
∂λ2∂λ1

) E( ∂2 log L
∂λ2

2
)


Using the standard method of asymptotic properties of maximum likelihood estimate, we derive
the asymptotic normality of R as

d(λ) =
(

∂R
∂λ1

,
∂R
∂λ2

)′
= (d1, d2)

′

Here

∂R
∂λ1

= − e
e − 1

∞

∑
m=0

1
m!

∞

∑
n=0

∞

∑
i=0

(−1)n+i

n!

(
n
i

)
λ̂2i

(λ̂1(m + 1) + λ̂2i)2

and

∂R
∂λ2

= − λ̂1e
(e − 1)2

∞

∑
m=0

1
m!

∞

∑
n=0

∞

∑
i=0

(−1)n+i

n!

(
n
i

)
i

(λ̂1(m + 1) + λ̂2i)2

Now we obtain the asymptotic distribution of R̂ML as√
p + q(R̂ML − R) →d N(0, d′(λ)I−1d(λ)).

The asymptotic variance of the R̂ML is

AV(R̂ML) =
1

p + q
0, d′(λ)I−1d(λ)

=V(λ̂1)d2
1 + V(λ̂2)d2

2 + 2d1d2Cov(λ̂1, λ̂2).

Hence an asymptotic 100(1 − ξ)% confidence interval for R can be obtained as

R̂ML ± Z ξ
2

√
AV(R̂ML),

where Z ξ
2

is the upper ξ
2 quantile function of the standard normal distribution.
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6. Simulation study

In this section we check the performance of estimators in R using simulation technique. For
this purpose we generate 1000 pseudo random samples using Newton-Raphson method. The
random samples are generated for different population parameters of (λ1, λ2) as (0.5,1), (0.9,0.5),
and (1.0,0.9) and sample sizes (p, q) as (10,10),(15,25),(20,20),(30,30),(40,40), and (50,50). The
maximum likelihood estimates, their mean square error (MSE) and 95% confidence interval (CI)
are calculated and the results are given in the following tables.

Table 1: The ML estimates, MSEs and confidence interval of different estimators of R when λ1 = 0.5 and λ2 = 1.0

(p, q) ML estimates MSEs CI

(10,10)
λ1 =0.57077 0.24634 (0.08795, 1.05359)
λ2 =1.14347 0.06295 (0.80201, 1.26686)

(15,25)
λ1 =0.53939 0.20729 (0.13312, 0.94566)
λ2 =1.03657 0.12229 (0.80124, 1.06082)

(20,20)
λ1 =0.53241 0.32406 (-0.10276, 1.16757)
λ2 =1.05715 0.04907 (0.96097, 1.15333)

(30,30)
λ1 =0.52109 0.13712 (0.25233, 0.78985)
λ2 =1.04110 0.01237 (0.80140, 1.28079)

(40,40)
λ1 =0.51019 0.22229 (0.07450, 0.94588)
λ2 =1.02810 0.02570 (0.97773, 1.07847)

(50,50)
λ1 =0.51125 0.19753 (0.12409, 0.89841)
λ2 =1.02751 0.02640 (0.97577, 1.07925)

Table 2: The ML estimates, MSEs and confidence interval of different estimators of R when λ1 = 0.9 and λ2 = 0.5

(p, q) ML estimates MSEs CI

(10,10)
λ1 =1.00947 0.29601 (0.42928, 1.58966)
λ2 =0.55836 0.10123 (0.35994, 0.75677)

(15,25)
λ1 =0.96646 0.12012 (0.73102, 1.2019)
λ2 =0.52620 0.01846 (0.35258, 0.52656)

(20,20)
λ1 =0.95902 0.08818 (0.78620, 1.13185)
λ2 =0.53293 0.01209 (0.43045, 0.53541)

(30,30)
λ1 =0.94372 0.06563 (0.81508, 1.07237)
λ2 =0.51937 0.00126 (0.49567, 0.54307)

(40,40)
λ1 =0.92773 0.00185 (0.82411, 0.93135)
λ2 =0.51179 0.00033 (0.41115, 0.51243)

(50,50)
λ1 =0.91653 0.00167 (0.89133, 0.91980)
λ2 =0.51249 0.00017 (0.45121, 0.51283)

Results from the simulation study reveals that sample sizes p and q increase, the estimated
parameter values tends to population parameter values. Also the MSEs are decreasing with
increase in sample sizes (p, q).

7. Application

In this section we have generated two data sets (p = q = 20) using KME model with parameter
values λ1 = 1 and λ2 = 0.5. Therefore the value of R is obtained as 0.17633. The data points are
adjusted in two decimal points and the data sets are presented in the following tables.
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Table 3: The ML estimates, MSEs and confidence interval of different estimators of R when λ1 = 1.5 and λ2 = 0.9

(p, q) ML estimates MSEs CI

(10,10)
λ1 =1.70398 0.11763 (1.06944, 1.73853)
λ2 =1.01417 0.04031 (0.13567, 1.01478)

(15,25)
λ1 =1.62178 0.09751 (1.10266, 1.64089)
λ2 =0.93769 0.03302 (0.27297, 1.00240)

(20,20)
λ1 =1.59399 0.08241 (1.23654, 1.65144)
λ2 =0.95547 0.00594 (0.43819, 0.96712)

(30,30)
λ1 =1.56481 0.08071 (1.39415, 1.54773)
λ2 =0.93981 0.00556 (0.63479, 0.98262)

(40,40)
λ1 =1.55355 0.05150 (1.39382, 1.71329)
λ2 =0.92423 0.00625 (0.71198, 0.93647)

(50,50)
λ1 =1.53238 0.00228 (1.32790, 1.53686)
λ2 =0.92832 0.00279 (0.81279, 0.94385)

Table 4: Data set I

4.02 0.44 1.43 0.09 0.49 0.27 0.54 0.02 0.48 1.77
3.04 4.30 0.94 3.08 1.42 0.09 3.05 2.17 0.21 0.64

Table 5: Data set II

0.09 0.26 0.20 0.11 2.08 1.48 0.85 2.57 1.04 0.26
0.01 0.40 1.37 0.71 0.29 1.10 0.81 0.13 1.73 2.25

In this case the maximum likelihood estimates of λ1 and λ2 are obtained respectively as 0.854
and 0.542. Here the estimated value of R, R̂ML is obtained as 0.21336. The corresponding 95%
confidence interval based on asymptotic distribution is (0.19153, 0.23519).

8. Conclusion

In this paper we consider the estimation of the stress-strength reliability for the KME model
for independent stress and strength random variables when the parameters are unknown. The
maximum likelihood estimators of the unknown parameters are calculated. Then provide the
asymptotic distributions of the maximum likelihood estimators, which have been used to construct
the asymptotic confidence intervals. Simulation study is carried out to examine the performance
of the estimators. The study reveals that MSEs are decreasing with increase in sample sizes. Using
a simulated data set, we find the estimates of the parameters, R̂ML value and 95% confidence
interval.
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Abstract

In many industries and applications, downtime or failure can have serious consequences, such as financial
losses, safety hazards, or reputational damage. A hot standby unit can help minimize the impact of such
events by providing a backup that can quickly and seamlessly take over in the event of a failure. Further,
the question of as to how many hot standby units should be used also needs to be addressed. So, an
N+1-Unit-system is investigated wherein N units are on hot standby, whereas one unit is operational
and the system is such that the hot standby units can take over seamlessly if the single operative unit
fails. The system breaks down completely when all the units fail. It is assumed that the failure rates of all
the operational units and the redundant units will vary exponentially. To get different performability
measurements, the regenerative point technique has been applied to optimize the value of N.

Keywords: Redundancy, Optimization, N Hot Standby Units, One Operative Unit, Profit Analysis,
Regenerative Point Technique

1. Introduction

A crucial and difficult issue facing the manufacturing industry is reliability. Complexity makes it
more challenging to successfully manage and run a system. Various system analyzers have had
various issues as a result of expensive and unreliable components. Therefore, creating efficient
modeling, monitoring, and control techniques is crucial for increasing the reliability of systems.
To increase the dependability of a system, redundancy is necessary. In redundant systems, one
or more than one unit runs while backups step in to take over as needed. Active redundancy
and passive redundancy are the two types of redundancy. In the past, active redundancy has
generally got greater attention. However, in actuality, a specific system design may include
both active and cold-standby redundancies. Therefore, the challenge is to determine for each
subsystem the appropriate redundancy approach, component, and level to maximize system
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dependability within system-level restrictions. Other considerations in redundancy optimization
may include selecting the most appropriate type of standby units, such as identical or functionally
equivalent units, and designing a failover mechanism that can quickly and seamlessly switch
from one mode to the other. Reliability Models for different systems’ dependability that take
the idea into consideration of standby by taking some operative units have been developed
by various researchers. For a 2-unit cold standby system, Ritu and Malhotra [13] discussed a
stochastic analysis wherein both units might become operational depending on the demand.
Wang et al. [16] considered the optimization of cold-standby systems that are subject to periodic
inspection and maintenance, as well as the evaluation of system reliability and expected cost
using an approximation method. Behboudi et al. [21] suggested a periodic switching approach
for analyzing and evaluating the overall reliability of two-unit cold standby systems utilizing the
idea of the virtual age. Shenyang et al. [23] presented an optimization model that employs a novel
methodology using an imprecise and nonperiodic different types of switching strategy to improve
the performance and efficiency of warm standby systems and various reliability functions are
obtained using a recursive method. Zhang et al. [5] analyzed the performance of warm standby
systems in which k units out of M+N must be active to provide complete system functioning
with r repair facilities, and system availability and reliability are derived by considering a specific
example. M. N. Gopalan [1] is focused on the availability and reliability analysis of a system
with n units, single repair facility, and (n-1) warm standbys and discusses the cases n=2 and
3. Papageorgiou and Kokolakis [6], [10] studied n units parallel system in which 2 units are
operative simultaneously and n-2 are in standby mode. When either operative unit fails, the
other (n-2) warm/cold standbys immediately take over. By using recursive relations, the system’s
dependability is evaluated, unlike the majority of preceding findings, which offer boundaries for
joint pdfs with limited information.
The reliability models considering hot standby systems have also been developed by various
researchers. Goel et al. [1] analyzed three different sorts of failure mechanisms in a two-unit
hot standby system with a single repair facility. A number of dependability characteristics
that are important to system designers and operations managers have been assessed. Fujii and
Sandoh [4] focused on the evaluation of the reliability of a 2-unit hot standby redundancy system
using a Bayesian approach by taking both units identically. Rizwan, et al. [11] presented a
theoretical analysis or mathematical model for the reliability enhancement of the hot standby
industrial system and discussed various factors such as failure rates, repair times, availability, and
downtime in the context of the system’s reliability. Additionally, they provide simulation outcomes
or case studies to demonstrate the effectiveness of the suggested reliability analysis method.
Ebrahimipour et al. [9] addressed Optimizing Redundancy in Multi-State Series-Parallel k-out-of-
n Systems with Hot Standby and discussed mathematical models, optimization algorithms, or
simulation results to show that the suggested strategy is successful at maximizing redundancy
and improving system reliability. Manocha et al. [14] focused on the profit analysis of a 2-unit hot
standby database system to compare the costs associated with implementing and maintaining the
redundant system with the potential benefits in terms of improved reliability, reduced downtime,
and enhanced system availability. Venkatachalam and Parvatham [2] focused on the stochastic
behavior analysis of a 1-server 2-unit hot standby system that deals with the probabilistic aspects
of the system’s performance and reliability. Shuhang and Zhang [8] developed a Markov model
to analyze and evaluate the reliability of the hot standby repairable supply system and provide
simulation results or case studies to validate the Markov model’s effectiveness in assessing
reliability.
Cold or warm standby redundancy can still be suitable for certain applications where downtime
and response time are less critical or cost considerations are paramount, hot standby redundancy
offers the highest level of reliability, availability, and quick recovery. It ensures continuous
operation, minimizes disruptions, and provides a seamless user experience, making it essential
for systems that demand high performance, real-time response, and minimal downtime.
Batra and Taneja [17] developed reliability models and optimized the number of hot standby units
in a system having one or two operational units to ensure the desired level of system reliability
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while considering factors such as cost, availability, and other constraints by employing approaches
for regenerative point techniques and the Markov process. However, more than two hot standby
units may also be taken into consideration in a system after carrying out an optimum analysis as
to how many hot standby units should be used in order to have a more reliable/available and
economically viable system. So, this paper refers to a system design where there are N+1 units,
with one unit being actively used (the single operative unit) and the remaining N units serving as
hot standby backups. In an N+1 system, the extra unit provides an additional level of redundancy,
which can increase system availability and reduce the likelihood of downtime. To get different
performability measurements, the regenerating point technique has been applied to optimize
the value of N which is laid out as follows. The system’s assumptions and characterizations
are covered in Section 2. The nomenclature used in this analysis is described in Section 3. The
system’s description is covered in Section 4. The model of the system, transition densities, and
mean sojourn time are covered in Section 5. To increase the number of standby units that will be
deployed, the Generalised Results for the different Measures of System Effectiveness and Profit
Equation have been derived in Sections 6 and 7. For some specific circumstances, Section 8 gives
graphical interpretation and numerical results. The study’s conclusions are presented in Section
9.

2. Assumptions and System Characterizations

1. The system is designed so that only one operational unit is required at any given moment,
therefore N additional units are kept on hot standby.

2. Both the active and standby unit’s failure rates are modeled by an exponential distribution.
3. The item is as good as new after being repaired.
4. With the system, there is just one repairman.
5. Even with only one active unit, the system continues to function.
6. First come first serve service is followed.

3. Nomenclature

The terminology for various transition densities and probabilities is as follows:

λo/α1 Rate of failure/ repair of operative unit
λ1/α2 Rate of failure/ repair of standby unit
Hs Hot standby unit
Op Operative unit.
NFr N Operative units are failed .
NFrh N standby units are failed .
HSN N units are on hot standby .
Fr Operative unit under repair
Frh Standby unit under repair
Fwr A failed operational unit is awaiting repair.
Fwrh Failed hot standby unit waiting for the repair.
For the notation ϕi(t) , qij(t), Qij(t) , Ai(t) , Bi(t) , Vi(t) , Mi(t) one may refer [17].

4. System Description

Here we develop a reliability model consisting of one primary operating unit responsible for
handling the system’s operations. Hot standby units remain ready so that one of them takes
over in case the primary unit fails or becomes unavailable. The hot standby units are fully
functional and synchronized with the primary unit, ensuring a seamless transition in the event of
a failure. The model examined here may be used in a variety of actual scenarios, including power
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distribution systems, network router systems, emergency power supply systems, and navigator
components.

5. Transition Densities and Mean Sojourn Times

In this model, there are a total N2 + 3N + 1 Number of states in the model out of which N2 + N + 1
states are operative states and 2N number of states are failed states. Possible states of the system
along with transitions are represented in Figure 1 and Figure 2
Repersentatinos of the States of the System;

U1(s, k): Operative state in which 1 represents the Main operative unit failed before any hot
standby unit and then going for under repair and (s-2) the number of failed hot
standby unit waiting for repair and k denotes the number of failed operative unit
waiting for the repair and remaining [(N+1)-(s+k)] unit are on standby mode.

U2(s, k): Operative state in which 2 represent hot standby unit failed before Main operative
unit and then going for under repair and (s-2) a number of failed hot standby unit
waiting for repair and k denote the number of failed operative unit waiting for the
repair and remaining [(N+1)-(s+k)] unit is on standby mode.

F1(s, k): Failed state in which one failed operating unit is under repair and (s-2) number of
failed hot standby units awaiting repair and k+1 denotes the number of failed
operative unit waiting for the repair and remaining [N-(s+k)] unit are on standby mode.

F2(s, k): Failed state in which one failed hot standby unit is under repair and (s-2) a number of
failed hot standby units awaiting repair and k+1 denotes the number of failed
operative unit waiting for the repair and remaining [N-(s+k)] unit are on standby mode.

Here, it has been assumed that if the value [(N+1)-(s+k)] and [N-(s+k)] is negative it means there
is no hot standby unit available in the system.
The states where the main operative unit fails before any standby unit
State U1(2, 0): (Op, Fr, HSN−1); State U1(2, 1): (Op, Fr, Fwr, HSN−2);
State U1(2, 2): (Op, Fr, 2Fwr, HSN−3); . . . State U1(2, N − 3): (Op, Fr, (N − 3)Fwr, HS2);
State U1(2, N − 2): (Op, Fr, (N − 2)Fwr, WS1); State U1(2, N − 1): (Op, Fr, (N − 1)Fwr);
State U1(3, 0): (Op, Fr, Fwrh , HSN−2); State U1(3, 1): (Op, Fr, Fwr, Fwrh , HSN−3);
State U1(3, 2): (Op, Fr, 2Fwr, Fwrh , HSN−4); . . . State U1(3, N − 3): (Op, Fr, (N − 3)Fwr, Fwrh , HS1);
State U1(3, N − 2): (Op, Fr, (N − 2)Fwr, Fwrh );
State U1(4, 0): (Op, Fr, 2Fwrh , HSN−3); State U1(4, 1): (Op, Fwr, Fr, 2Fwrh , HSN−4);
State U1(4, 2): (Op, 2Fwr, Fr, 2Fwrh , HSN−5);. . . State U1(4, N − 3): (Op, Fr, (N − 3)Fwr, 2Fwrh );
.
.
.
State U2(N − 1, 0): (Op, Fr, (N − 3)Fwrh , HS2); State U2(N − 1, 1): (Op, Fr, Fwr, (N − 3)Fwrh , HS);
State U2(N − 1, 2): (Op, Fr, 2Fwr, (N − 3)Fwrh );
State U1(N, 0): (Op, Fr, (N − 2)Fwrh , HS); State U1(N, 1): (Op, Fr, Fwr, (N − 2)Fwrh );
State U1(N + 1, 0): (Op, Fr, (N − 1)Fwrh );
State F1(N + 1, 0): (Fr, (N − 1)Fwrh ); State F1(N, 1): (Fr, 2Fwr, (N − 2)Fwrh );
State F1(N − 1, 2): (Fr, 3Fwr, (N − 3)Fwrh );. . . State F1(4, N − 3): (Fr, (N − 2)Fwr, 2Fwrh );
State F1(3, N − 2): (Fr, (N − 1)Fwr, Fwrh ); State F1(2, N − 1): (Fr, NFwr);

The states where the first hot standby unit fails before the main operative unit
State U2(2, 0): (Op, Frh , HSN−1); State U2(2, 1): (Op, Frh , Fwr, HSN−2);
State U2(2, 2): (Op, Frh , 2Fwr, HSN−3); . . . State U2(2, N − 3): (Op, Frh , (N − 3)Fwr, HS2);
State U2(2, N − 2): (Op, Frh , (N − 2)Fwr, HS1); State U2(2, N − 1): (Op, Frh , (N − 1)Fwr);
State U2(3, 0): (Op, Frh , Fwrh , HSN−2); State U2(3, 1): (Op, Frh , Fwr, Fwrh , HSN−3);
State U2(3, 2): (Op, Frh , 2Fwr, Fwrh , HSN−4); . . . State U2(3, N − 3): (Op, Frh , (N − 3)Fwr, Fwrh , HS1);
State U2(3, N − 2): (Op, Frh , (N − 2)Fwr, Fwrh );
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State U2(4, 0): (Op, Frh , 2Fwrh , HSN−3); State U2(4, 1): (Op, Fwr, Frh , 2Fwrh , HSN−4);
State U2(4, 2): (Op, 2Fwr, Frh , 2Fwrh , HSN−5);... State U2(4, N − 3): (Op, Frh , (N − 3)Fwr, 2Fwrh );
.
.
.
State U2(N − 1, 0): (Op, Frh , (N − 3)Fwrh , HS2); State U2(N − 1, 1): (Op, Frh , Fwr, (N − 3)Fwrh , HS);
State U2(N − 1, 2): (Op, Frh , 2Fwr, (N − 3)Fwrh );
State U2(N, 0): (Op, Frh , (N − 2)Fwrh , HS); State U2(N, 1): (Op, Frh , Fwr, (N − 2)Fwrh );
State U1(N + 1, 0): (Op, Frh , (N − 1)Fwrh );
State F2(N + 1, 0): (Frh , (N − 1)Fwrh ); State F2(N, 1): (Frh , 2Fwr, (N − 2)Fwrh );
State F2(N − 1, 2): (Frh , 3Fwr, (N − 3)Fwrh );. . . State F2(4, N − 3): (Frh , (N − 2)Fwr, 2Fwrh );
State F2(3, N − 2): (Frh , (N − 1)Fwr, Fwrh ); State F2(2, N − 1): (Frh , NFwr);
Transition Diagram of the Model

Figure 1: State Transition Diagram (When main operative unit failed before any standby unit)
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Figure 2: State Transition Diagram (When first Standby unit failed before operational unit)

The densities qij(t) for transiting from state i to j are given by
qU(1),U1(2,0)(t) = λ0e−(λ0+Nλ1)t, qU(1),U2(2,0)(t) = Nλ1e−(λ0+Nλ1)t, (1)

qUi(s,0),Ui(s,1)(t) = λ0e−(λ0+αi+[(M+1)−s]λ1)t

qUi(s,0),Ui(s+1,0)(t) = (M + 1 − s)λ1e−(λ+αi+[(M+1)−s]λ1)t

qUi(s,0),U2(s−1,0)(t) = αie−(λ+αi+[(M+1)−s]λ1)t

where i = 1 or 2, 3 ≤ s ≤ N, 2 < M ≤ N and M is an integer

(2)


qUi(2,s),Ui(2,s+1)(t) = λ0e−(λ0+αi+[M−1−s]λ1)t

qUi(2,s),Ui(3,s+1)(t) = [M − 1 − s)]λ1e−(λ0+αi+[M−1−s]λ1)t

qUi(2,s),U1(2,s−1)(t) = αie−(λ0+αi+[M−1−s]λ1)t

where i = 1 or 2, 0 ≤ s ≤ N − 2, 1 < M ≤ N and M is an integer

(3)
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qUi(s,k),Ui(s,k+1)(t) = λ0e−(λ0+αi+[(M+1)−(s+k)]λ1)t

qUi(s,k),Ui(s+1,k)(t) = [(M + 1)− (s + k)]λ1e−(λ0+αi+[(M+1)−(s+k)]λ1)t

qU1(s,k),U1(s,k−1)(t) = α1e−(λ0+α1+[(M+1)−(s+k)]λ1)t

qU2(s,k),U2(s−1,k)(t) = α2e−(λ0+α2+[(M+1)−(s+k)]λ1)t

where i = 1 or 2, 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, 3 < M ≤ N and M is an integer

(4)

From operative states to failed states;
qUi(s,N+1−s),Fi(s,N+1−s)(t) = λ0e−(λ0+αi)t, where i = 1 or 2, 2 ≤ s ≤ N + 1
qU1(s,M+1−s),U1(s,M−s)(t) = α1e−(λ0+α1)t ; 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer
qU1(N+1,0),U2(N,0)(t) = α1e−(λ0+α1)t

(5)


qU2(s,M+1−s),U2(s−1,M+1−s)(t) = αie−(λ0+αi)t

qU2(2,N−1),U1(2,N−2)(t) = α2e−(λ0+α2)t

where 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer

(6)

From failed states to operative states;
qF1(s,M+1−s),U1(s,M+1−s)(t) = α1e−α1t, qF1(N+1,0),U2(N,1)(t) = α1e−α1t

where 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer
qF2(s,M+1−s),U2(s−1,M+2−s)(t) = α2e−α2t, qF2(2,N−1),U1(2,N−2)(t) = α2e−α2t

where 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer

(7)

Thus, pij = lims→o q∗ij(s) ase given as:

pU(1),U1(2,0) =
λ0

(λ0 + Nλ1)
, pU(1),U2(2,0) =

Nλ1

(λ0 + Nλ1)
, (8)


pUi(s,0),Ui(s,1) =

λ0
(λ0+αi+[(M+1)−s]λ1)

M, pUi(s,0),Ui(s+1,0) =
(M+1−s)λ1

(λ+αi+[(M+1)−s]λ1)

pUi(s,0),U2(s−1,0) =
αi

(λ+αi+[(M+1)−s]λ1)

where i = 1 or 2, 3 ≤ s ≤ N, 2 < M ≤ N and M is an integer

(9)


pUi(s,k),Ui(s,k+1) =

λ0
(λ0+αi+[(M+1)−(s+k)]λ1)

, pUi(s,k),Ui(s+1,k) =
[(M+1)−(s+k)]λ1

(λ0+αi+[(M+1)−(s+k)]λ1)

pU1(s,k),U1(s,k−1) =
α1

(λ0+α1+[(M+1)−(s+k)]λ1)
, pU2(s,k),U2(s−1,k) =

α2
(λ0+α2+[(M+1)−(s+k)]λ1)t

where i = 1 or 2, 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, 3 < M ≤ N and M is an integer

(10)


pUi(2,s),Ui(2,s+1) =

λ0
(λ0+αi+[M−1−s]λ1)

, pUi(2,s),Ui(3,s+1) =
(M−1−s)λ1

(λ0+αi+[M−1−s]λ1)

pUi(2,s),U1(2,s−1) =
αi

(λ0+αi+[M−1−s]λ1)

where i = 1 or 2, 0 ≤ s ≤ N − 2, 1 < M ≤ N and M is an integer

(11)

From operative states to failed states;
pUi(s,N+1−s),Fi(s,N+1−s) =

λ0
(λ0+αi)

, where i = 1 os 2, 2 ≤ s ≤ N + 1

pU1(s,M+1−s),U1(s,M−s) =
α1

(λ0+α1)
; 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer

pU1(N+1,0),U2(N,0)(t) =
α1

(λ0+α1)

(12)

{
pU2(s,M+1−s),U2(s−1,M+1−s) =

α2
(λ0+α2)

, pU2(2,N−1),U1(2,N−2) =
α2

(λ0+α2)

where i = 1 or 2, 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer
(13)

From failed states to operative states;
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pF1(s,M+1−s),U1(s,M+1−s) = 1, pF1(N+1,0),U2(N,1) = 1
where 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer
pF2(s,M+1−s),U2(s−1,M+2−s) = 1, pF2(2,N−1),U1(2,N−2) = 1
where 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer

(14)

We may, therefore, verify the following:
pU(1),U1(2,0) + pU(1),U2(2,0) = 1 (15){

pUi(s,0),Ui(s,1) + pUi(s,0),Ui(s+1,0) + pUi(s,0),U2(s−1,0) = 1, where i = 1 or 2, 3 ≤ s ≤ N (16)
pU1(s,k),Ui(s,k+1) + pU1(s,k),Ui(s+1,k) + pU1(s,k),U1(s,k−1) = 1

pU2(s,k),U2(s,k+1) + pU2(s,k),Ui(s+1,k) + pU2(s,k),U2(s−1,k) = 1
where 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

(17)

{
pUi(2,s),Ui(2,s+1) + pUi(2,s),Ui(3,s+1) + pUi(2,s),U1(2,s−1) = 1
where i = 1 or 2, 0 ≤ s ≤ N − 2, N > 1

(18)

{
pU1(s,M+1−s),F1(s,M+1−s) + pU1(s,M+1−s),U1(s,M−s) = 1
where 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer

(19)

{
pU2(s,M+1−s),F2(s,M+1−s) + pU2(s,M+1−s),U2(s−1,M+1−s) = 1
where 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer

(20)

{
pU1(N+1,0),F1(N+1,0) + pU1(N+1,0),U2(N,0) = 1
pU2(2,N−1),F2(2,N−1) + pU2(2,N−1),U1(2,N−2) = 1

(21)

Thus Mean Sojourn Time (µi) are:
µU(1) =

1
(λ0+Nλ1)

µUi(s,0) =
1

(λ0+αi+[(N+1)−s]λ1)
where i = 1 or 2, 3 ≤ s ≤ N, N > 2

µUi(s,k) =
1

(λ0+αi+[(N+1)−(s+k)]λ1)
where i = 1 or 2, 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

µUi(2,s) =
1

(λ0+αi+[N−1−s]λ1)
where i = 1 or 2, 0 ≤ s ≤ N − 2, N > 1

µUi(s,N+1−s) =
1

(λ0+αi)
where i = 1 or 2, 2 ≤ s ≤ N + 1

µFi(s,N+1−s) =
1
αi

where i = 1 or 2, 2 ≤ s ≤ N + 1

Using state i as the starting point, the unconditional mean times (mij) are computed as

mU(1),U1(2,0) =
λ0

(λ0 + Nλ1)2 , mU(1),U2(2,0) =
Nλ1

(λ0 + Nλ1)2 (22)


mUi(s,0),Ui(s,1) =

λ0
(λ0+αi+[(M+1)−s]λ1)2 , mUi(s,0),Ui(s+1,0) =

(M+1−s)λ1
(λ+αi+[(M+1)−s]λ1)2

mUi(s,0),U2(s−1,0) =
αi

(λ+αi+[(M+1)−s]λ1)2

where i = 1 or 2, 3 ≤ s ≤ N, 2 < M ≤ N and M is an integer

(23)


mUi(s,k),Ui(s,k+1) =

λ0
(λ0+αi+[(M+1)−(s+k)]λ1)2 , mUi(s,k),Ui(s+1,k) =

[(M+1)−(s+k)]λ1
(λ0+αi+[(M+1)−(s+k)]λ1)2

mU1(s,k),U1(s,k−1) =
α1

(λ0+α1+[(M+1)−(s+k)]λ1)2 , mU2(s,k),U2(s−1,k) =
α2

(λ0+α2+[(M+1)−(s+k)]λ1)2

where i = 1 or 2, 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, 3 < M ≤ N and M is an integer

(24)


mUi(2,s),Ui(2,s+1) =

λ0
(λ0+αi+[M−1−s]λ1)2 , mUi(2,s),Ui(3,s+1)(t) =

[M−1−s)]λ1
(λ0+αi+[M−1−s]λ1)2

mUi(2,s),U1(2,s−1) =
αi

(λ0+αi+[M−1−s]λ1)2

where i = 1 or 2, 0 ≤ s ≤ N − 2, 1 < M ≤ N and M is an integer

(25)
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From operative states to failed states
mUi(s,N+1−s),Fi(s,N+1−s) =

λ0
(λ0+αi)2 , where i = 1 or 2, 2 ≤ s ≤ N + 1

mU1(s,M+1−s),U1(s,M−s) =
α1

(λ0+α1)2 ; 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer

mU1(N+1,0),U2(N,0)(t) =
α1

(λ0+α1)2

(26)

{
mU2(s,M+1−s),U2(s−1,M+1−s) =

α2
(λ0+α2)2 , mU2(2,N−1),U1(2,N−2) =

α2
(λ0+α2)2

where 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer
(27)

From failed states to operative state;
mF1(s,M+1−s),U1(s,M+1−s) =

1
α1

, mF1(N+1,0),U2(N,1) =
1
α1

where i = 1 or 2, 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer
mF2(s,M+1−s),U2(s−1,M+2−s) =

1
α2

, mF2(2,N−1),U1(2,N−2) =
1
α2

where 3 ≤ s ≤ N + 1, 2 < M ≤ N and M is an integer

(28)

It may be verified that
mU(1),U1(2,0) + mU(1),U2(2,0) = µU(1) (29){

mUi(s,0),Ui(s,1) + mUi(s,0),Ui(s+1,0) + mUi(s,0),U2(s−1,0) = µUi(s,0)

where i = 1 or 2, 3 ≤ s ≤ N, N > 2
(30)


mU1(s,k),Ui(s,k+1) + mU1(s,k),Ui(s+1,k) + mU1(s,k),U1(s,k−1) = µU1(s,k)

mU2(s,k),U2(s,k+1) + mU2(s,k),Ui(s+1,k) + mU2(s,k),U2(s−1,k) = µU2(s,k)

where 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

(31)

{
mUi(2,s),Ui(2,s+1) + mUi(2,s),Ui(3,s+1) + mUi(2,s),U1(2,s−1) = µUi(2,s)

where i = 1 or 2, 0 ≤ s ≤ N − 2, N > 1
(32)

{
mU1(s,M+1−s),F1(s,M+1−s) + mU1(s,M+1−s),U1(s,N−s) = µU1(s,M+1−s)

where 2 ≤ s ≤ N, 1 < M ≤ N and M is an integer
(33)

{
mU2(s,M+1−s),F2(s,M+1−s) + mU2(s,M+1−s),U2(s−1,M+1−s) = µU2(s,M+1−s)

where 3 ≤ s ≤ N + 1, 1 < M ≤ N and M is an integer
(34)

{
mU1(N+1,0),F1(N+1,0) + mU1(N+1,0),U2(N,0) = µU1(N+1,0)

mU2(2,N−1),F2(2,N−1) + mU2(2,N−1),U1(2,N−2) = µU2(2,N−1)
(35)

6. Measures of System Effectiveness

6.1. Mean Time to System Failure (MTSF)

The following may result from viewing the failed state as an absorbing state:

ϕU(0)(t) = QU(1),U1(2,0)(t) s⃝ϕU1(2,0)(t) + QU(1),U2(2,0)(t) s⃝ϕU2(2,0)(t) (36)

ϕUi(s,0)(t) = QUi(s,0),Ui(s,1)(t) s⃝ϕUi(s,1)(t) + QUi(s,0),Ui(s+1,0)(t) s⃝ϕUi(s+1,0)(t)

+ QUi(s,0),U2(s−1,0)(t) s⃝ϕU2(s−1,0)(t)where i = 1 or 2, 3 ≤ s ≤ N, N > 2
(37)

ϕU1(s,k)(t) = QU1(s,k),U1(s,k+1)(t) s⃝ϕU1(s,k+1)(t) + QU1(s,k),U1(s+1,k)(t) s⃝ϕU1(s+1,k)(t)

+ QU1(s,k),U1(s,k−1)(t) s⃝ϕU1(s,k−1)(t)

where 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

(38)
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ϕU2(s,k)(t) = QU2(s,k),U2(s,k+1)(t) s⃝ϕU2(s,k+1)(t) + QU2(s,k),U2(s+1,k)(t) s⃝ϕU2(s+1,k)(t)

+ QU2(s,k),U2(s−1,k)(t) s⃝ϕU2(s−1,k)(t)

where 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

(39)

ϕUi(2,s)(t) = QUi(2,s),Ui(2,s+1)(t) s⃝ϕUi(2,s+1)(t) + QUi(2,s),Ui(3,s+1)(t) s⃝ϕUi(3,s+1)(t)

where i = 1 or 2, 0 ≤ s ≤ N − 2, N > 1
(40)

ϕU1(N+1,0)(t) = QUi(N+1,0),F1(N+1,0)(t) + QU1(N+1,0),U2(N,0)(t) s⃝ϕU2(N,0)(t) (41)

ϕU1(s,N+1−s)(t) = QU1(s,N+1−s),F1(s,N+1−s)(t)

+ QU1(s,N+1−s),U1(s,N−s)(t) s⃝ϕU1(s,N−s)(t)where 2 ≤ s ≤ N, N > 1
(42)

ϕU2(s,N+1−s)(t) = QU2(s,N+1−s),U2(s−1,N+1−s)(t) s⃝ϕU2(s−1,N+1−s)(t)

+ QU2(s,N+1−s),F2(s,N+1−s)(t)where 3 ≤ s ≤ N + 1, N > 1
(43)

ϕU2(2,N−1)(t) = QU2(2,N−1),F2(2,N−1)(t) + QU2(2,N−1),U1(2,N−2)(t) s⃝ϕU1(2,N−2)(t) (44)

Laplace transform can solve these equations, and the function ϕ
(N)
0 (t) can be obtained after

inversion. So the MTSF is determined by

ϕ
(N)
0 = lim

s→0

K(N)(s)− L(N)(s)
sK(N)(s)

=
L(N)

K(N)
(45)

where the value of L(N) and K(N) in determinant form can be evaluated using MATLAB or
MATHEMATICA software.

6.2. Availability of the System

By definition of ATm(t) and the transitions that occur, we have:

AU(0)(t) = MU(0)(t) + qU(1),U1(2,0)(t) c⃝AU1(2,0)(t) + qU(1),U2(2,0)(t) c⃝AU2(2,0)(t) (46)

AUi(s,0)(t) = MUi(s,0)(t) + qUi(s,0),Ui(s,1)(t) c⃝AUi(s,1)(t)

+ qUi(s,0),Ui(s+1,0)(t) c⃝AUi(s+1,0)(t) + qUi(s,0),U2(s−1,0)(t) c⃝AU2(s−1,0)(t)

where i = 1 or 2, 3 ≤ s ≤ N, N > 2

(47)

AU1(s,k)(t) = MU1(s,k)(t) + qU1(s,k),U1(s,k+1)(t) c⃝AU1(s,k+1)(t)

+ qU1(s,k),U1(s+1,k)(t) c⃝AU1(s+1,k)(t) + qU1(s,k),U1(s,k−1)(t) c⃝AU1(s,k−1)(t)

where 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

(48)

AU2(s,k)(t) = MU2(s,k)(t) + qU2(s,k),U2(s,k+1)(t) c⃝AU2(s,k+1)(t)

+ qU2(s,k),U2(s+1,k)(t) c⃝AU2(s+1,k)(t) + qU2(s,k),U2(s−1,k)(t) c⃝AU2(s−1,k)(t)

where 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s, N > 3

(49)

AUi(2,s)(t) = MUi(2,s)(t) + qUi(2,s),Ui(2,s+1)(t) c⃝AUi(2,s+1)(t)

+ qUi(2,s),Ui(3,s+1)(t) c⃝AUi(3,s+1)(t) where i = 1 or 2, 0 ≤ s ≤ N − 2, N > 1
(50)

AU1(s,N+1−s)(t) = MU1(s,N+1−s)(t) + qU1(s,N+1−s),F1(s,N+1−s)(t) c⃝AF1(s,N+1−s)(t)

+ qU1(s,N+1−s),U1(s,N−s)(t) c⃝AU1(s,N−s)(t) where 2 ≤ s ≤ N, N > 1
(51)

AU1(N+1,0)(t) = MU1(N+1,0)(t) + qUi(N+1,0),F1(N+1,0)(t) c⃝AF1(N+1,0)(t)

+ qU1(N+1,0),U2(N,0)(t) c⃝AU2(N,0)(t)
(52)
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AU2(2,N−1)(t) = MU2(2,N−1)(t) + qU2(2,N−1),F2(2,N−1)(t) c⃝AF2(2,N−1)(t)

+ qU2(2,N−1),U1(2,N−2)(t) c⃝AU1(2,N−2)(t)
(53)

AU2(s,N+1−s)(t) = MU2(s,N+1−s)(t) + qU2(s,N+1−s),F2(s,N+1−s)(t) c⃝AF2(s,N+1−s)(t)

+ qU2(s,N+1−s),U2(s−1,N+1−s)(t) c⃝AU2(s−1,N+1−s)(t)

where 3 ≤ s ≤ N + 1, N > 1

(54)

AF1(s,N+1−s)(t) = qF1(s,N+1−s),U1(s,N+1−s)(t) c⃝AU1(s,N+1−s)(t) where 2 ≤ s ≤ N, N > 1 (55)

AF2(s,N+1−s)(t) = qF2(s,N+1−s),U2(s−1,N+2−s)(t) c⃝AU2(s−1,N+2−s)(t)

where 3 ≤ s ≤ N + 1, N > 1
(56)

AF1(N+1,0)(t) = qF1(N+1,0),U2(N,1)(t) c⃝AU2(N,1)(t); 2 ≤ s ≤ N (57)

AF2(2,N−1)(t) = qF2(2,N−1),U1(2,N−2)(t) c⃝AU1(2,N−2)(t) (58)

where

MU(0)(t) = e−(λ0+Nλ1)t

MUi(s,0)(t) = e−(λ0+αi+[(N+1)−s]λ1)t where i = 1 or 21‘, 3 ≤ s ≤ N
MUi(s,k)(t) = e−(λ0+αi+[(N+1)−(s+k)]λ1)t where i = 1 or 2, 3 ≤ s ≤ N − 1, 1 ≤ k ≤ N − s
MUi(2,s)(t) = e−(λ0+αi+[N−1−s]λ1)t where i = 1 or 2, 0 ≤ s ≤ N − 2, N > 1
MU1(s,N+1−s)(t) = e−(λ0+αi)t; 2 ≤ s ≤ N, N > 1
MU2(s,N+1−s)(t) = e−(λ0+αi)t; 3 ≤ s ≤ N + 1, N > 1
MU1(N+1,0)(t) = e−(λ0+α1)t

MU2(2,N−1)(t) = e−(λ0+α2)t

(59)

Laplace transform can solve these equations, and the function A(N)
0 (t) can be obtained after

inversion. As a result, the availability of the system is determined by

A(N)
0 = lim

s→0
sAT∗

0 (s) = lim
s→0

sN(N)
1 (s)

D(N)
1 (s)

=
N(N)

1

D(N)
1

(60)

where the value of N(N)
1 and D(N)

1 in determinant form can be evaluated using MATLAB or
MATHEMATICA software.

6.3. Other Measures

Using the definitions of B0 and V0 (specified in section 3) and the same procedures described in
the section preceding it, The Expected Busy Period, the expected number of Visits for Repair, is
given as:

6.3.1 Expected Busy Period

B(N)
0 = lim

s→0

sN(N)
2 (s)

D(N)
1 (s)

=
N(N)

2

D(N)
1

(61)

6.3.2 Expected Number Visits for Repair

V(N)
0 = lim

s→0
sV∗∗

0 (s) = lim
s→0

sNN
3 (s)

D(N)
1 (s)

=
N(N)

3

D(N)
1

(62)

where the value of N(N)
2 , N(N)

3 and D(N)
1 in determinant form can be evaluated using MATLAB

or MATHEMATICA software.
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7. Profit Analysis

The profit equation, therefore, is

Pro f it(PN) = C0 A(N)
0 − C1B(N)

0 − C2V(N)
0 (63)

C0, C1, C2 are revenue, repair cost, and repairman visit cost respectively and all the costs are per
unit time.

8. Graphical Interpretation and Numerical Results

Here, reliability metrics are determined for a system of N+1 units using arbitrary parameter
values. For parameters with fixed values, the reliability measure’s trend has been graphically
displayed.

(i) For λ1 = 0.02, α1 = 0.35, α2 = 0.45 the numerical values and of MTSF for various values
of λ are provided in Table (1)

Table 1: MTSF w.r.t. Failure Rate (λ) for N=1,2 and 3

MTSF
λ N = 1 N = 2 N = 3

0.1 15.9994 38.298 81.9643
0.2 9.118 18.4515 32.6082
0.3 6.2559 11.6205 18.735
0.4 4.7245 8.3449 12.7916
0.5 3.7813 6.4651 9.609
0.6 3.1456 5.2588 7.6582
0.7 2.6897 4.4239 6.3505
0.8 2.3475 3.8139 5.4171
0.9 2.132 3.534 5.381

From Table (1) It can be noted that decreasing the MTSF by increasing the failure rate of oper-
ational units is in contrast to an almost linear trend observed when standby units are increasing.

(ii)For λ = 0.1, α1 = 0.35, α2 = 0.45 the numerical values of MTSF for various values of λ1
are provided in Table (2)

Table 2: MTSF w.r.t. Failure Rate of standby units(λ1) for N=1,2 and 3

MTSF
λ1 N = 1 N = 2 N = 3

0.1 33.5714 67.5989 98.7371
0.2 25.9677 40.602 48.1599
0.3 22.0732 30.3347 33.501
0.4 19.7059 25.0817 26.8425
0.5 18.1148 21.932 23.0889
0.6 16.9718 19.8471 20.6911
0.7 16.1111 18.3709 19.0302
0.8 15.4396 17.2734 17.813
0.9 14.901 16.4268 16.88
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From Table (2) It can be seen that as the failure rate of hot standby units increases, the MTSF
reduces as the trend for the number of standby units increases almost linearly.

(iii) For λ1 = 0.001, α1 = 0.2, α2 = 0.3 Availability when N=1,2 and 3 w.r.t λ

Table 3: Availability of the system (N=1,2,3) w.r.t. (λ)

Availability
λ N = 1 N = 2 N = 3

0.1 0.8268 0.8814 0.9151
0.2 0.6262 0.6826 0.7143
0.3 0.4871 0.5248 0.5505
0.4 0.3932 0.4173 0.4543
0.5 0.3276 0.3434 0.3606
0.6 0.2799 0.2906 0.3155
0.7 0.2438 0.2513 0.272
0.8 0.2157 0.2212 0.2361
0.9 0.1933 0.1974 0.2154

Table (3) shows that the availability is decreasing while the failure rate is increasing. However,
it increases as the number of standby units increases.

(iv) For λ1 = 0.001, α1 = 0.2, α2 = 0.3, C0 = 3000, C1 = 1000, C2 = 500 the graph below de-
picts the profit when N=1,2, and 3 w.r.t lambda. , as seen in Figure (3)

Figure 3: Impact of Numbers of Standby Units on Profit w. r. t. λ

From Figure (3), it is found that the Profit decreases with an increase in failure rate and the
increase in the number of standby units.

(v) For λ = 0.1, λ1 = 0.1, α1 = 0.2, α2 = 0.3, C0 = 4000, C1 = 1000, As indicated in Figure
(4), the following graph has been generated.
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Figure 4: Profit versus the repairman’s visit costs (C2) for N=1,2,3

One might suggest that based on the above graph
• It is suggested to bring one unit along for standby if C2 < 6623.
• Three or fewer units should be kept on standby if C2 > 6623 for this value of C2 since using

more than three standby units causes revenue to decrease.
• Further C2 should not exceed 32245.76 for N = 1, 35351.23 for N = 2, 44267.5 for N = 3 the

system to be profitable. However, the above two conditions may also be kept in view while
deciding about the number of standby units that will be needed.

(vi) Figure (5) and Figure (6) shows the change in profit for varied Revenue and N=1,2,3 and with
fixed values for λ = 0.02, λ1 = 0.01, α1 = 0.1, α2 = 0.1, C1 = 2000, C2 = 1000

Figure 5: Profit versus Revenue (C0) for N=1,2,3
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Figure 6: Profit versus Revenue (C0) for N=1,2,3

From the graphs, the following can be determined
• From Figure (5) We notice that when C0 is less than 20842.53, It would be profitable to keep

one standby unit, and if C0 is greater than 20842.53, keeping three standby units would be
profitable.

• From Figure (6) we come to the decision that the cost of the products that the system will
produce should be fixed in such a way that the value of C0 is not less than 674.22 for N=1,
896.87 for N=2, 1144.12 for N=3, so as to make the system always profitable.

9. Conclusion

This study evaluates a crucial repairable system with a operational unit and N hot standby units.
Arbitrary distributions have been used to get general findings for reliability metrics. However,
the model has been validated taking specific parametric values for N=1,2,3. It has been observed
taking a number of standby units is situational and may use 1 or 2 or 3 standby depending upon
the cut-off points obtained in different situations.
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Abstract 

A Control Chart is a fundamental approach in Statistical Process Control. When uncommon causes 

of variability are present, sample averages will plot beyond the control boundaries, making the 

control chart a particularly effective process monitoring approach. Uncertainties are caused by the 

measuring system, including the gauges operators and ambient circumstances. In this paper, the 

concept of fuzzy set theory is used for dealing with uncertainty. The control limits are to converted 

into fuzzy control limits using the membership function. The fuzzy  �̅�-R and �̅�-S control chart is 

developed by using the ranking of the pentagonal fuzzy number system. An illustrative example is 

done with the discussed technique to make fuzzy �̅�-R and �̅�-R control charts and increase the 

flexibility of the control limit. 

Keywords: Statistical Process Control, Rank Membership Function, Fuzzy 

Pentagonal Number 

I. Introduction

Quality has long been recognized as a significant influencing element in the performance and 

competitiveness of manufacturing and service organizations in both domestic and global markets. 

The return on capital is the consequence of well-executed strategies. Appropriate quality 

techniques provide productive outcomes. Fuzzy number ranking is a component of the quality 

control planning system. The fuzzy mathematical model for transportation of vegetable diet plan 

based on the ranking function of fuzzy pentagonal number (FPN) and solved by Vogel's 

approximation method to minimize the cost is discussed by Venkatesh and Manoj [1]. In 

constructing an FPN and related arithmetic operations, A. Panda and M. Pal [2] established the 

logical definition. The construction and fundamental features of pentagonal fuzzy matrices (PFMs) 

are investigated using FPN. The algebraic natures of several particular types of PFMs (trace of 

PFM, adjoint of PFM, determinant of PFM, etc.) are addressed. Pathinathan and Ponnivalavan [3] 

discussed FPN in continuation with the other defined fuzzy numbers and addressed some basic 

arithmetic operations. A. Chakraborty et al. [4] discuss different measures of interval-valued 

pentagonal fuzzy numbers (IVFPN) associated with assorted membership functions, and the 

ranking function is the main feature. The ranking functions of FPN develop real application and 

comprehend the uncertainty of the parameters more precisely in the evaluation process. A. 
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Chakraborty et al. [5] dealt with the idea of pentagonal neutrosophic number (PNN) from a 

different frame of reference and discussed some properties of PNN with real-life operational 

research applications, which is more reliable than the other method. A. Shafqat et al. [6] used the 

lower record values for developing the �̅� control chart for the Inverse Rayleigh Distribution (IRD) 

is designed under repetitive group sampling. The mean and standard deviation of the Inverse 

Rayleigh Distribution based on lower record values are used to determine the width and power of 

the �̅� control limits. Lim S. A. H. [7] evolved �̅�-R and �̅�-S chart for the food industry in the UK. The 

control charts developed using triangular and trapezoidal fuzzy control for balanced and 

unbalanced [8, 9, 10]. Ozdemir [11] developed the fuzzy control chart with a triangular fuzzy 

system into three phases for �̅�-S chart and process capability indices using unbalanced data, 

converted the data for each sample into the fuzzy form and then decided the fuzzy limits and 

illustrated it for uncertain data. Yeh [12] Shows an example of weighted triangular approximation 

of fuzzy numbers, which Zheng and Li propose. Senturk et al. [13] researched the most popular 

control chart for univariate data, the exponential weighted moving average control chart under 

fuzzy environment and applied this work into real case applications in Turkey. Senturk et al. [14] 

consider the control chart for fuzzy nonconformities per unit by using alpha cut and applied this 

technique in real case applications for truck engine manufacture. Alipour and Noorossana [15] 

created a control chart using a fuzzy multivariate exponentially weighted moving average (F-

MEWMA). The proposed technique is developed using a combination of multivariate statistical 

quality control and fuzzy set theory in this study. Erginel and Şentürk [16] derived the fuzzy 

exponential weighted moving average and cumulative sum control chart (CUSUM) with a suitable 

example. Erginel [17] developed a fuzzy P control chart by using the rules that introduces the 

fuzzy np chart based on the constant sample size and variable sample size. In addition, the 

decision is taken whether it is under control or out of control. In the uncertainty theory for 

modelling, fuzzy sets theory plays numerous important roles. An essential consideration is that if 

somebody wants to take an FPN, what should its graphical representations (uncertainty 

quantification area) look like? How should the membership functions be defined? From this 

perspective, we developed the phases of an FPN control chart that may be a good choice for a 

decision-maker in a real-world scenario. In this study we proposed a Fuzzy control chart by using 

rank membership function of Pentagonal fuzzy number and the example is done with this 

proposed technique. 

II. Development of Proposed Methodology

There are many articles published related to FPN. Venkatesh and Manoj [1] developed the 

pentagonal fuzzy model for transportation problems using the ranking membership function. 

Some definitions of FPN are as follows:  

Definition 1: (Zadeh [19]) Let X be a fixed set. A fuzzy set A  of X is an object having the form 

 ( , ( )) :
A

A x x x X=  where  0,1( )
A
x  represents the degree of membership of the element 

x X being in A , and  0,1:
A
X →  is called the membership function. 

Definition 2: The α -cut of the fuzzy set �̃� is defined as: 

�̅�𝛼= {𝑥 ∈ 𝑥/𝜇�̃�(𝑥) ≥ α, where α ∈ (0, 1). 

Definition 3: A set �̃� is defined on the real numbers   is said to be a fuzzy number if its 

membership function  0,1:
A
X → follows: 

(i) �̃� is continuous.

(ii) �̃� is normal such that ( ) 1
A
x =  there exists an x ∈ R 
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Definition 4: A fuzzy number �̃�𝑃 is an FPN denoted by �̃�𝑃 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5), where 

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are real numbers, and its membership function will be: 

µ�̅�𝑃(𝑥) =

{

0  ,    𝑥 < 𝑎1
(𝑥−𝑎1)

(𝑎2−𝑎1)
 ,   𝑎1 ≤ 𝑥 ≤ 𝑎2

1

2

(𝑥−𝑎2)

(𝑎3−𝑎2)
 ,   𝑎2 ≤ 𝑥 ≤ 𝑎3

1  ,  𝑥 = 𝑎3
(𝑎4−𝑥)

2(𝑎4−𝑎3)
 ,   𝑎3 ≤ 𝑥 ≤ 𝑎4

(𝑎5−𝑥)

(𝑎5−𝑎4)
 ,  𝑎4 ≤ 𝑥 ≤ 𝑎5

0  , 𝑥 > 𝑎5

(1) 

Ranking of FPN: Ranking a fuzzy number entails comparing up to two fuzzy numbers, and 

defuzzification is a technique for converting a fuzzy number to an estimated crisp number. Just as 

the decision-maker compares two ideas that are the same, we must convert the fuzzy number to a 

comparable crisp number and compare the numbers based on crisp values in this problem. 

Fuzzy numbers become the real line directly by using the ranking method [1]. Let �̃�𝑃 be a 

generalized FPN. The ranking of �̃�𝑃 is symbolised by 𝑅(�̃�𝑃) and it is calculated as follows: 

𝑅(�̃�𝑃) = [
𝑎1+2𝑎2+3𝑎3+2𝑎4+𝑎5

9
] (2) 

Statistical Process Control: Many quality attributes may be stated numerically. A bearing's 

diameter, for example, might be measured using a micrometre and represented in mm. A variable 

is a single quantifiable qualitative attribute, such as a dimension, weight, or volume. Control charts 

for variables are widely used. When dealing with a variable quality characteristic, it is frequently 

required to monitor both the mean value and the variability of the quality characteristic. The 

control chart for means, or the control chart, is typically used to regulate the process average or 

mean quality level. Process variability may be tracked using either a control chart for the standard 

deviation known as an S control chart or a control chart for the range, known as an R control chart. 

The 𝑋 ̅, R-chart and 𝑋 ̅, S-chart is the most widely used control chart for the production process [16, 

18]. 

�̅� and R control charts 

Table 1:  Formula for �̅�  and R Control Charts 

Chart Lower Control Limit 

(LCL) 

Central 

Line 

Upper Control Limit 

(UCL) 

𝑋 ̅ �̿� − 𝐴2�̅� �̿� �̿� + 𝐴2�̅� 

R �̅�𝐷3 �̅� �̅�𝐷4 

where, �̿� =
∑ �̅�

𝑚
, �̅� =

∑ 𝑅(𝐴𝑃(𝑥𝑖))
5
𝑖=1

𝑛
, 𝐴2 is constant tabulated value for n. 

where, �̅� =
∑𝑅𝑎𝑛𝑔𝑒(𝑅(𝐴𝑃(𝑥𝑖)))

𝑚
, and 𝐷3, 𝐷4 are constant tabulated values for n. 
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�̅� and S Control Charts 

Table 2: Formula for �̅� and S Control Charts 

Charts  LCL Central 

Line 

UCL 

X ̅ X̿ − A3S̅ X̿ X̿ + A3S̅
S B3S̅ S̅ B4S̅ 

where, �̿� =
∑ �̅�

𝑚
, �̅� =

∑ 𝑅(𝐴𝑃(𝑥𝑖))
5
𝑖=1

𝑛
, 𝑆 = √

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

(𝑛−1)
, 𝑆̅ =

∑ 𝑆𝑚
𝑖=1

𝑚
and 𝐴3, 𝐵3, 𝐵4 are constant tabulated 

values for n. 

The next step will be complete with three steps for the proposed fuzzy control chart by using the 

following procedure. 

Step 1: Normality Assumption- Check the normality assumption using Anderson Darling Test 

(Anderson and Darling, 1954). 

Step 2: Use of FPN Control Chart for �̅�-R and �̅�-S 

A summary of the work on the FPN Control Chart is as follows: 

(i) The development of FPN

(ii) The representation of the FPNs in parametric form.

(iii) Apply ranking and defuzzification of FPN for the data.

(iv) Put the calculated crisp value into the control chart formula and set up the FPN control

limit.

Step 3: Interpretation of FPN Control Chart for �̅�-R and �̅�-S. The fuzzy CLs of the recommended 

�̅�-R and �̅�-S control charts are used to assess the fuzzy sample mean and standard deviation. If the

fuzzy sample mean and standard deviation are inside the control bounds, the process is under 

control for the sample. Otherwise, the process will spiral out of control. 

III. Illustrative Example
In this article, we choose the simulation data shown in Table 3 are the deviations from milling a 

slot in an aircraft terminal block. A high rate of rejections for many of the components 

manufactured in an aviation company's machine shop highlighted the necessity for an 

investigation into the causes of the problems. Because the majority of the rejections were for failing 

to satisfy dimensional limits, it was decided to utilize �̅�-R and �̅�-S charts to try to pinpoint the 

source of the problem. These charts, which needed real dimension measurement, were to be 

utilized just for the dimensions that were creating a high number of rejections. Among many such 

dimensions, the ones chosen for control charts were those with significant spoilage costs and 

reworked for those where rejections caused delays in assembly processes. Although the primary 

objective of all of the �̅�-R and �̅�-S charts was to diagnose problems, it was expected that some of

the charts would be kept for routine process control and potentially for acceptance inspection. 

Table 3: Data for width of slot in an aircraft terminal block. 

Sample X1 X2 X3 X4 X5 

1 773 803 780 720 776 

2 757 786 734 740 735 

3 755 774 720 761 746 

4 745 779 755 775 772 

5 800 728 747 759 745 
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6 784 806 787 763 758 

7 745 765 754 759 768 

8 789 751 782 769 763 

9 757 747 741 746 747 

10 746 731 762 781 744 

11 742 731 754 736 750 

12 748 726 764 735 733 

13 748 763 779 786 770 

14 770 768 784 771 767 

15 772 759 770 772 772 

16 765 768 773 791 787 

17 780 777 742 761 761 

18 775 765 746 782 745 

19 759 748 781 764 756 

20 765 782 739 754 768 

21 770 784 730 759 781 

22 773 765 777 760 750 

23 758 780 761 746 757 

24 761 771 756 772 758 

25 752 785 764 758 773 

26 745 774 786 739 796 

27 759 766 790 730 781 

28 739 795 750 780 776 

29 747 781 763 768 756 

30 767 752 774 746 769 

The first step is to test the normality assumption. It is shown that Figure 1 holds the normality 

assumption for the above data. 

Figure 1: Normal Probability Plot 
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Now the data shows normal, and we convert the data into FPN form. Table [4-8] shows the FPN 

form for the variables X1, X2, X3, X4 and X5. 

Table 4: FPN for X1 

Xa1 Xb1 Xc1 Xd1 Xe1 𝑹(�̃�𝑷(𝒙𝟏)) 

768 770 773 777 785 774 

752 754 757 761 771 758.2222 

750 752 755 759 768 756.1111 

740 742 745 749 757 746 

795 797 800 804 812 801 

777 781 784 788 796 784.7778 

738 741 745 749 757 745.5556 

781 786 789 793 801 789.6667 

748 754 757 760 769 757.3333 

740 743 746 749 752 746 

721 727 730 733 741 730.2222 

739 745 748 751 758 748.1111 

740 744 748 751 759 748.1111 

764 767 770 773 780 770.4444 

766 769 772 775 778 772 

757 761 765 769 786 766.4444 

775 777 780 784 792 781 

770 772 775 779 788 776.1111 

749 756 759 763 771 759.4444 

758 763 765 769 778 766.1111 

763 767 770 774 783 770.8889 

768 770 773 777 785 774 

750 755 758 762 770 758.6667 

756 758 761 765 774 762.1111 

745 749 752 756 764 752.7778 

738 743 745 750 759 746.4444 

754 756 759 763 772 760.1111 

734 736 739 743 751 740 

740 745 747 751 760 748.1111 

760 764 767 771 779 767.7778 

Table 5: FPN for X2 

Xa2 Xb2 Xc2 Xd2 Xe2 𝑹(�̃�𝑷(𝒙𝟐)) 

796 799 803 808 816 803.8889 

778 781 786 790 798 786.2222 

768 771 774 779 785 775 

771 776 779 784 791 779.8889 

719 724 728 735 742 729.2222 

799 802 806 811 819 806.8889 

758 762 765 770 776 765.8889 

746 749 751 758 765 753.1111 
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741 745 747 752 759 748.3333 

725 729 731 736 744 732.4444 

724 728 731 735 745 732 

719 723 726 730 737 726.6667 

757 760 763 769 775 764.3333 

760 765 768 773 778 768.6667 

752 755 759 764 772 759.8889 

760 765 768 774 780 769.1111 

770 774 777 781 789 777.7778 

760 762 765 769 778 766.1111 

743 745 748 752 760 749 

774 779 782 786 794 782.6667 

777 782 784 788 797 785.1111 

758 762 765 769 777 765.7778 

772 777 780 784 792 780.6667 

764 769 771 775 780 771.6667 

780 782 785 789 796 785.8889 

768 771 774 779 789 775.4444 

759 761 766 771 782 767 

790 793 795 799 808 796.3333 

776 779 781 786 794 782.5556 

747 750 752 757 765 753.5556 

Table 6: FPN for X3 

Xa3 Xb3 Xc3 Xd3 Xe3 𝑹(�̃�𝑷(𝒙𝟑)) 

773 777 780 783 788 780.1111 

727 731 734 740 744 735 

715 717 720 725 728 720.7778 

750 753 755 760 764 756.1111 

741 745 747 753 755 748.1111 

782 785 787 793 796 788.3333 

749 752 754 760 763 755.3333 

777 779 782 788 791 783.1111 

737 740 741 747 750 742.6667 

756 759 762 765 769 762.1111 

748 751 754 760 763 755 

758 761 764 770 773 765 

772 775 779 785 787 779.5556 

778 781 784 791 793 785.2222 

764 767 770 776 779 771 

768 771 773 780 782 774.5556 

737 740 742 748 756 743.8889 

740 744 746 750 758 747.1111 

775 779 781 786 794 782.4444 

734 737 739 746 754 741.2222 

725 728 730 737 746 732.3333 

771 774 777 783 791 778.5556 
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Table 7: FPN for X4 

Xa4 Xb4 Xc4 Xd4 Xe4 𝑹(�̃�𝑷(𝒙𝟒)) 

715 717 720 727 729 721.3333 

736 738 740 749 751 742.3333 

756 759 761 768 771 762.6667 

770 773 775 781 784 776.3333 

753 756 759 766 768 760.2222 

758 761 763 769 771 764.2222 

753 756 759 766 768 760.2222 

764 767 769 775 778 770.3333 

740 743 746 753 756 747.3333 

776 779 781 787 789 782.2222 

728 733 736 742 743 736.5556 

729 732 735 741 743 735.8889 

781 783 786 793 795 787.3333 

766 769 771 778 781 772.6667 

768 770 772 778 782 773.5556 

787 789 791 797 799 792.3333 

755 758 761 768 775 762.7778 

777 780 782 787 794 783.4444 

757 760 764 769 778 765 

748 752 754 759 767 755.4444 

754 757 759 765 773 760.8889 

755 758 760 765 774 761.6667 

741 744 746 750 758 747.2222 

767 770 772 777 784 773.4444 

753 755 758 764 773 759.7778 

734 736 739 745 755 740.8889 

725 728 730 735 743 731.5556 

775 778 780 785 794 781.6667 

763 765 768 772 780 769 

741 744 746 751 760 747.6667 

757 759 761 768 776 763.3333 

751 754 756 760 768 757.2222 

759 762 764 769 777 765.5556 

781 784 786 790 798 787.2222 

785 788 790 795 805 791.7778 

745 747 750 758 768 752.5556 

758 760 763 768 775 764.2222 

768 771 774 779 787 775.2222 
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Table 8: FPN for X5 

Xa5 Xb5 Xc5 Xd5 Xe5 𝑹(�̃�𝑷(𝒙𝟓)) 

770 773 776 782 784 776.8889 

729 733 735 742 745 736.5556 

741 744 746 753 755 747.5556 

767 769 772 778 780 773 

739 743 745 751 753 746.1111 

752 754 758 764 767 758.7778 

762 766 768 774 776 769.1111 

758 760 763 769 772 764.1111 

741 745 747 754 758 748.6667 

738 741 744 750 752 744.8889 

744 747 750 756 758 750.8889 

727 730 733 739 743 734.1111 

764 768 770 776 779 771.2222 

761 765 767 774 778 768.6667 

767 770 772 778 781 773.3333 

782 785 787 793 795 788.2222 

756 758 761 766 772 762.1111 

740 743 745 750 759 746.6667 

751 754 756 760 768 757.2222 

763 766 768 771 779 768.8889 

776 779 781 785 793 782.2222 

745 748 750 755 762 751.4444 

752 754 757 761 769 758 

753 755 758 763 770 759.2222 

768 770 773 778 784 774.1111 

790 793 796 800 808 796.8889 

776 779 781 786 794 782.5556 

771 774 776 780 788 777.2222 

751 753 756 760 767 756.8889 

765 767 769 773 780 770.2222 

After the FPN form, we use the rank membership function (equation (1)) for the crisp value. 

Table 9: The crisp value for X1, X2, X3, X4, X5 

𝑹(�̃�𝑷(𝒙𝟏)) 𝑹(�̃�𝑷(𝒙𝟐)) 𝑹(�̃�𝑷(𝒙𝟑)) 𝑹(�̃�𝑷(𝒙𝟒)) 𝑹(�̃�𝑷(𝒙𝟓)) 

774 803.8889 780.1111 721.3333 776.8889 

758.2222 786.2222 735 742.3333 736.5556 

756.1111 775 720.7778 762.6667 747.5556 

746 779.8889 756.1111 776.3333 773 

801 729.2222 748.1111 760.2222 746.1111 

784.7778 806.8889 788.3333 764.2222 758.7778 

745.5556 765.8889 755.3333 760.2222 769.1111 

789.6667 753.1111 783.1111 770.3333 764.1111 

757.3333 748.3333 742.6667 747.3333 748.6667 

746 732.4444 762.1111 782.2222 744.8889 
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730.2222 732 755 736.5556 750.8889 

748.1111 726.6667 765 735.8889 734.1111 

748.1111 764.3333 779.5556 787.3333 771.2222 

770.4444 768.6667 785.2222 772.6667 768.6667 

772 759.8889 771 773.5556 773.3333 

766.4444 769.1111 774.5556 792.3333 788.2222 

781 777.7778 743.8889 762.7778 762.1111 

776.1111 766.1111 747.1111 783.4444 746.6667 

759.4444 749 782.4444 765 757.2222 

766.1111 782.6667 741.2222 755.4444 768.8889 

770.8889 785.1111 732.3333 760.8889 782.2222 

774 765.7778 778.5556 761.6667 751.4444 

758.6667 780.6667 763.3333 747.2222 758 

762.1111 771.6667 757.2222 773.4444 759.2222 

752.7778 785.8889 765.5556 759.7778 774.1111 

746.4444 775.4444 787.2222 740.8889 796.8889 

760.1111 767 791.7778 731.5556 782.5556 

740 796.3333 752.5556 781.6667 777.2222 

748.1111 782.5556 764.2222 769 756.8889 

767.7778 753.5556 775.2222 747.6667 770.2222 

All the crisp calculated value of the simulated data is in Table 9. Now we calculate the mean of 

crisps value and then put it into the formula of �̅�- R and �̅�-S, which is given in Table [1&2]. Now 

we found that the Control limits for the data are as follows: 

UCL=785.65, LCL=741.39 and CL=763.52 for �̅� chart, 

UCL=81.11, LCL=0 and CL=38.36 for R chart and 

UCL=32.38, LCL=0 and CL=15.50 for S chart. 

Figure 2: Pentagonal Fuzzy �̅� − 𝑅 Chart 
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Figure 3: Pentagonal Fuzzy �̅� − 𝑆 Chart 

It is shown that there is no point out of control after plotting the �̅�-R and �̅�-S control charts. 

IV. Conclusion
In this paper, it is shown that FPN is suitable for traditional variable control charts. If uncertainty 

is presented in the data, the FPN control chart theory should control the process. In this study, the 

population parameter (𝜇 𝑎𝑛𝑑 𝜎) is unknown, and we develop the theory for fuzzy �̅�-R and �̅�-S 

chart by using the rank membership function of FPN. More fuzzy control charts for variable and 

attribute data were done by 𝛼 − 𝑐𝑢𝑡, triangular and trapezoidal fuzzy numbers in several 

published articles. The result of the illustrative example is done with this proposed technique, and 

it is shown that the fuzzy process is under control and capable. The proposed FPN control chart 

effectively increases the process flexibility. For further studies, the process capability indices, p-np 

chart, fuzzy CUSUM and fuzzy EWMA chart can be used to detect the slight shifting in the FPN 

process control with fuzzy data. 
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Abstract

This research article introduces a novel family of distributions achieved through the methodol-
ogy of the π-power transformation technique. The study focuses on one specific member that is
inverse Weibull distribution within this family, which showcases a hazard function exhibiting
distinct J, reverse-J, bathtub, or monotonically increasing shapes. The article explores the
essential characteristics of this distribution and employs the maximum likelihood estimation
(MLE) method to estimate its associated parameters. To evaluate the accuracy of the estima-
tion procedure, a simulation experiment is conducted, revealing a decrease in biases and mean
square errors as sample sizes increase, even when working with small samples.

Furthermore, the practical application of the proposed distribution is demonstrated by an-
alyzing two real medical and traffic datasets. By employing model selection criteria and con-
ducting goodness-of-fit test statistics, the article establishes that the proposed model surpasses
existing models in performance. The application of this research work can be significant in
various fields where modeling and analyzing hazard functions or survival data are essential,
while also making contributions to probability theory and statistical inferences.

Keywords: π-Power transformation, Half logistic, Reliability, Pivotal quantity

1. Introduction

Statistical models play a crucial role in representing and analyzing datasets in practical applica-
tions. While traditional distributions such as Weibull, Lomax, gamma, log-normal, exponential,
beta, etc. have been widely used, they may not always provide a satisfactory fit for complex
datasets. To address this limitation, researchers have been actively working on developing new
models that offer greater adaptability and generality. These advancements often involve tech-
niques such as exponentiation and the T-X approach to generate more flexible distributions. In
this research article, we concentrate on an alternative approach called the π-power transformation
(PPT) family, which was introduced by Lone and Jan [14]. The PPT family provides a distinct
blend of high skewness and flexibility to the base distribution. The authors specifically examined
the Pie-exponentiated Weibull as a member of this family. Prior to its introduction, the alpha
power transformation (APT) approach had gained significant popularity among researchers in the
fields of probability theory and survival analysis. Using the APT technique, numerous authors
have put forward new generalized models and distribution families. For instance, Nassar et al. [20]
employed the APT technique to define the new family of distributions using log transformation.
Mead et al. [18] have further studied the APT family by providing some mathematical properties
which were not provided in Mahdavi and Kundu [15]. Further, Lomax distribution was trans-
formed using APT by Maruthan and Venkatachalam [17]. Ihtisham et al. [9] and Ihtisham et
al. [10] studied the Pareto and inverse Pareto distributions using the APT approach, with the
inverse Pareto distribution being applied to model real data related to extreme values. Similarly,
Hozaien et al. [8] and Klakattawi and Aljuhani [12] introduced new models using the APT family
of distributions. Alotaibi et al. [1] have introduced a new distribution as a weighted form of the

RT&A, No 4 (76) 
Volume 18, December 2023 

575



Pankaj Kumar, Laxmi Prasad Sapkota and Vijay Kumar
π-POWER HALF LOGISTIC-G FAMILY

APT method while Gomma et al. [6] introduced the Alpha power of the power Ailamujia distribu-
tion, which offers a flexible hazard function. They utilized this distribution to model COVID-19
datasets from Italy and the UK. Furthermore, Nassar et al. [22] defined a new family utilizing the
quantile function of the APT family whose cumulative distribution function (CDF) is

F (t) =
log [1 + (α− 1)G (t;ϕ)]

log (α)
; t > 0, α > 0, α ̸= 1,

where G (t;ϕ) is the CDF and ϕis the parameter space of base distribution. Similarly, Elbatal et
al. [5] introduced another new APT family whose CDF is

F (x) =
αG(x)G (x)

α
;α > 0, x ∈ ℜ.

Similarly, Kyurkchiev [13] has introduced a family of distribution based on the Verhulst logistic
function and its CDF is

F (x) =
2G (x)

1−G (x)
;x ∈ ℜ.

Another new method for transformation can be found in Kavya and Manoharan [11] and the CDF
of this transformation is

F (x) =
e

e− 1

{
1− e−G(x)

}
;x ∈ ℜ.

Also using the APT method Mandouch et al. [16] have reported a new two-parameter family of
distributions whose CDF is

F (x) =
αkW{G(x)} − 1

α− 1
;α > 0, α ̸= 1, x ∈ ℜ.

Lone and Jan [14] have introduced another new family using the concept of the APT family and
named it the Pie-Exponentiated transformed (PET) family whose CDF is

F (x) =
π{G(x)}α − 1

π − 1
;α > 0, x ∈ ℜ.

Hence, researchers are continuously developing and exploring new models and families of distri-
butions to better capture the characteristics of complex datasets. The PET family has emerged
as a popular approach, offering increased skewness and flexibility to the base distribution. These
advancements have led to the proposal of various generalized models and distributions, which have
been successfully applied to a range of datasets, including those related to COVID-19, reliability
engineering, and extreme values. Building upon the concept of the PET, we have introduced a
novel method to enhance existing distributions by incorporating a logistic form of CDF of any
continuous distribution, which we refer to as the π-power half logistic-G (π-PHL-G) family of dis-
tributions. This new family offers increased robustness compared to other compound probability
distributions and demonstrates great potential for modeling real-life datasets. The suggested family
possesses two parameters that enable it to capture a broader range of characteristics exhibited by
a dataset, including skewness, kurtosis, failure rate, and mathematically tractable. This enhanced
flexibility allows for a more accurate representation of complex data patterns and distributional
properties. By considering the π-PHL-G family, researchers, and practitioners can better account
for the intricate nature of real-world datasets, leading to improved modeling outcomes. Among
the members of the π-PHL-G family, one distribution stands out as particularly noteworthy-the
inverse Weibull distribution. The inverse Weibull distribution has long been employed in reliability
theory and life testing due to its ability to capture failure rates and survival probabilities effectively
see [19, 24, 25]. With the integration of the π-PHL-G framework, the Weibull distribution can
be further adapted and refined to better align with the unique characteristics observed in various
applications. We have organized the remaining sections of this paper as follows; π-PHL-G family is
introduced in Section 2, while its particular member, the π-PHL-Weibull distribution, is presented
in Section 3. Some statistical properties are discussed in Section 4, and in Section 5, we discuss
statistical inferences of the π-PHLIW distribution. The simulation experiment, application, and
conclusion of the suggested model are presented in Sections 6, 7, and 8 respectively.
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2. π-PHL-G Family and Some Important Functions

Let Y ∼ π-PHL-G family, then the CDF and PDF of π-PHL-G family U (y; Ψ) and u (y; Ψ) for
y ∈ ℜ, and Ψ > 0 is vector of parameters are defined as

U(y; Ψ) =
π(

2T (y;Ψ)
1+T (y;Ψ) ) − 1

π − 1
; y ∈ ℜ. (1)

u(y; Ψ) =
(log π)

π − 1
π(

2T (y;Ψ)
1+T (y;Ψ) ) 2t(y; Ψ)

[1 + T (y; Ψ)]
2 ; y ∈ ℜ. (2)

where T (y; Ψ) and t (y; Ψ) are the CDF and PDF of any continuous distribution and T̄ (y; Ψ) is the
reliability function. Further reliability and hazard functions of π-PHL-G family can be expressed
as

R(y; Ψ) = 1−

{
π(

2T (y;Ψ)
1+T (y;Ψ) ) − 1

π − 1

}
; y ∈ ℜ.

h(y; Ψ) =
(log π)

π − 1
π(

2T (y;Ψ)
1+T (y;Ψ) ) 2t(y; Ψ)

[1 + T (y; Ψ)]
2

[
1−

{
π(

2T (y;Ψ)
1+T (y;Ψ) ) − 1

π − 1

}]−1

.

2.1. Qunatile function and Random deviation

QY (p) = T−1

{
log ((π − 1) p+ 1)

(2 log π − log ((π − 1) p+ 1))

}
. (3)

and

y = T−1

{
log ((π − 1)u+ 1)

(2 log π − log ((π − 1)u+ 1))

}
.

2.2. Linear form of π-PHL-G distribution

The CDF defined in Equation 6 can be expressed in the linear form as

U(y; Ψ) =
1

π − 1

∞∑
i=0

∞∑
j=0

2i (log π)
i

i!

(
i
j

)
T i+j(y; Ψ)− 1

π − 1
. (4)

Now differentiating Equation 5 with respect to y we get the linear form of PDF as

u(y; Ψ) =
1

π − 1

∞∑
i=0

∞∑
j=0

2i (i+ j) (log π)
i

i!

(
i
j

)
T i+j−1(y; Ψ)t(y; Ψ).

u(y; Ψ) =
∞∑
i=0

∞∑
j=0

∆ijT
i+j−1(y; Ψ)t(y; Ψ), (5)

where ∆ij =
(

1
π−1

)
2i(i+j)(log π)i

i!

(
i
j

)
.

3. π-Power Half Logistic Inverse Weibull (π-PHLIW) Distribution

Let Y be a continuous random variable following the inverse Weibull distribution, then the CDF
and PDF are

T (y; Ψ) = e−βy−δ

.

t(y; Ψ) = βδy−(δ+1)e−βy−δ

.
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Now using Equation 3 as a base distribution, we introduce a new distribution π-PHLIW distribution
as a special member having CDF

U(y;β, δ) =
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

π − 1
;β, δ > 0, y > 0. (6)

The PDF of the π-PHLIW distribution can be expressed as

u(y;β, δ) =
2βδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2 ; y > 0. (7)

Now some key functions like reliability and hazard function of the π-PHLIW distribution can be
presented as

R(y;β, δ) = 1− 1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}
; y > 0.

h(y;β, δ) =
2βδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
1−

π

(
2e−βy−δ

1+e−βy−δ

)
− 1

π − 1



−1

.

3.1. Quantile function and Random deviation

The quantile function for the suggested distribution can be obtained by inverting the CDF defined
in Equation 6 as

QY (p) =

[
log

{
log ((π − 1) p+ 1)

(2 log π − log ((π − 1) p+ 1))

}−1/β
]−1/δ

. (8)

also, random number deviate can be expressed as

y =

[
log

{
log ((π − 1)u+ 1)

(2 log π − log ((π − 1)u+ 1))

}−1/β
]−1/δ

.

The π-PHLIW distribution has a density plot that can take on a diversity of shapes, including
symmetrical, left-skewed, right-skewed, or decreasing, and Figure 1 (left) shows some examples of
these shapes. The HRF, on the other hand, can take on the shapes of an increasing, a j, or a
reverse-j, and Figure 1 (right) shows some examples of these shapes.

4. Statistical properties of π-PHLIW distribution

4.1. Linear form of PDF of π-PHLIW distribution

After some mathematics using Equation 7, the PDF of π-PHLIW distribution can be obtained in
a linear form as

u(y;β, δ) =
∞∑
i=0

∞∑
j=0

∆∗
ijy

−(δ+1)e−(i+j)βy−δ

, (9)

where ∆∗
ij = βδ∆ij .
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Figure 1: Shapes of PDF and HRF of π-PHLIW distribution.

4.2. Moments

The rth moment of π-PHLIW distribution is

E [Y r] =
∞∑
i=0

∞∑
j=0

∆∗
ij

∞∫
0

yr−δ−1e−(i+j)βy−δ

dy

=
∞∑
i=0

∞∑
j=0

∆∗
ij

∞∫
0

t−
r
δ+1−1e−(i+j)βtdt

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
− r

δ + 1
)

{(i+ j)β}−
r
δ+1

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−r
δ

)
{(i+ j)β}

δ−r
δ

; δ > r.

(10)

Now mean and variance of π-PHLIW distribution can be expressed as

E [Y ] =
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−1
δ

)
{(i+ j)β}

δ−1
δ

; δ > 1.

and

E
[
Y 2
]
=

∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−2
δ

)
{(i+ j)β}

δ−2
δ

; δ > 2.

V [Y ] = E
[
Y 2
]
− [E (Y )]

2

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−2
δ

)
{(i+ j)β}

δ−2
δ

−

 ∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1Γ
(
δ−1
δ

)
{(i+ j)β}

δ−1
δ

2

; δ > 2.
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4.3. Moment Generating Function (MGF)

For any real number t, the MGF of π-PHLIW distribution can be defined as

MY (t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

∞∫
0

yr−(δ+1)e−(i+j)βy−δ

dy

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

∞∫
0

t−
r
δ+1−1e−(i+j)βtdt

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

δ−1Γ
(
− r

δ + 1
)

{(i+ j)β}−
r
δ+1

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

tk

k!

δ−1Γ
(
δ−r
δ

)
{(i+ j)β}

δ−r
δ

; δ > r.

4.4. Characteristic Function

For any real number t, the characteristic function of π-PHLIW distribution can be defined as

ΦY (t) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

∞∫
0

yr−(δ+1)e−(i+j)βy−δ

dy

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

∞∫
0

t−
r
δ+1−1e−(i+j)βtdt

=

∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

δ−1Γ
(
− r

δ + 1
)

{(i+ j)β}−
r
δ+1

=
∞∑
i=0

∞∑
j=0

∞∑
k=0

∆∗
ij

(vt)
k

k!

δ−1Γ
(
δ−r
δ

)
{(i+ j)β}

δ−r
δ

; δ > r.

where v =
√
−1.

4.5. Incomplete moment

The incomplete moment for π-PHLIW distribution is given by

Mr(z) =
∞∑
i=0

∞∑
j=0

∆∗
ij

z∫
0

yr−δ−1e−(i+j)βy−δ

dy

=
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1
[
γ
(
δ−r
δ , (i+ j)βz−δ

)]
{(i+ j)β}

δ−r
δ

; δ > r.

where γ(.) incomplete gamma function.

4.6. Mean Residual Life

The Mean residual life for π-PHLIW distribution is given by

M(z) =
1

F (z)

µ−
∞∑
i=0

∞∑
j=0

∆∗
ij

z∫
0

y−δe−(i+j)βy−δ

dy

− z

=
1

F (z)

µ−
∞∑
i=0

∞∑
j=0

∆∗
ij

δ−1
[
γ
(
δ+1
δ , (i+ j)βz−δ

)]
{(i+ j)β}

δ+1
δ

− z

where γ(.) incomplete gamma function.
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4.7. Order Statistics

Let yi(i = 1, 2, ..., n) ∼ π − PHLIW (y;β, δ) with CDF U(yi;β, δ) and PDF u(yi;β, δ). If ur(y)
denote the PDF of rth order statistic Y(r), then their CDF and PDF are given by Ur(y) =
IU(y)(r, n− r + 1)

ur(y) =
d

dy
[Ur(y)] =

d

dy

[
IU(y)(r, n− r + 1)

]
=

1

B(r, n− r + 1)
Ur−1(y)u(y) [1− U(y)]

n−r
.

ur(y) =
1

B(r, n− r + 1)

2βδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
[

1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}]r−1

[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n−r

.

The CDF and PDF of first order statistic Y(1) are given by

U1(y) = 1−

[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n
; y > 0.

u1(y) =
2nβδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n−1

; y > 0.

The CDF and PDF of first order statistic Y(n) are given by

Un(y) =

[
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}]n
; y > 0.

un(y) =
2nβδ(log π)

π − 1
π

(
2e−βy−δ

1+e−βy−δ

)
y−(δ+1)e−βy−δ[
1 + e−βy−δ

]2
[

1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}]n−1

; y > 0.

The Joint PDF of rth and sth order statistics is given by

urs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
Ur−1(x).u(x) [U(y)− U(x)]

s−r−1
u(y). [1− U(y)]

n−s

urs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
π

{(
2e−βx−δ

1+e−βx−δ

)
+

(
2e−βy−δ

1+e−βy−δ

)}
e−β(x−δ+y−δ) (xy)

−(δ+1)[
1 + e−βy−δ

]2 [
1 + e−βx−δ

]2
[
2βδ(log π)

π − 1

]2 [
1

π − 1

{
π

(
2e−βx−δ

1+e−βx−δ

)
− 1

}]r−1

[{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}
−

{
1

π − 1

{
π

(
2e−βx−δ

1+e−βx−δ

)
− 1

}}]s−r−1

[
1−

{
1

π − 1

{
π

(
2e−βy−δ

1+e−βy−δ

)
− 1

}}]n−s

;x > 0, y > 0.

The Joint PDF of the 1st and nth order statistics are given by

u1n(x, y) = n(n− 1) [U(y)− U(x)]
n−2

u(x).u(y)

u1n(x, y) = n(n− 1)

(
2βδ(log π)

π − 1

)2
 1

π − 1

π

(
2e−βy−δ

1+e−βy−δ

)
− 1


−

 1

π − 1

π

(
2e−βx−δ

1+e−βx−δ

)
− 1



n−2

π

{(
2e−βx−δ

1+e−βx−δ

)
+

(
2e−βy−δ

1+e−βy−δ

)}
e−β(x−δ+y−δ) (xy)−(δ+1)[

1 + e−βy−δ
]2 [

1 + e−βx−δ
]2 ;x > 0, y > 0
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4.8. System Reliability Function

4.8.1 Series System:

Consider a system with n independent components, each component follows π − PHLIW (y;β, δ)
distribution. Let’s assume Ti(i = 1, 2, ..., n) ∼ π−PHLIW (y;β, δ) with CDF U(ti;β, δ) and PDF
u(ti;β, δ), then the system reliability for linear consecutive (series system) is given by

RS(t) =
n∏

i=1

Ri (t) =

[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]n
;β, δ > 0, t > 0.

The CDF system reliability for linear consecutive (series system) is given by

FS(t) = 1−
n∏

i=1

Ri (t) = 1−

[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]n
;β, δ > 0, t > 0. (11)

Differentiating the Equation 11, the PDF system reliability for linear consecutive (series system)
is given by

fS(t) =
dFS(t)

dt
=

2nβδ(log π)

π − 1
π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ[
1 + e−βt−δ

]2
[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]n−1

The Hazard function system reliability for linear consecutive (series system) is obtained by the
ratio of PDF and Reliability function of linear consecutive (series system).

hS(t) =
fS(t)

RS(t)
=

2nβδ(log π)

π − 1
π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ[
1 + e−βt−δ

]2
[
1−

{
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}}]−1

.

4.8.2 Parallel System:

Consider a system with n independent components, each component follows π − PHLIW (y;β, δ)
distribution. Lets assume Ti(i = 1, 2, ..., n) ∼ π − PHLIW (y;β, δ) with CDF U(ti;β, δ) and PDF
u(ti;β, δ), then the reliability function for parallel system is given by

RP (t) = 1−
n∏

i=1

(1−Ri(t)) = 1−

[
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n
;β, δ > 0, t > 0.

The CDF for the parallel system is given by

FP (t) =

[
1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n
;β, δ > 0, t > 0.

Differentiating the above equation, the PDF formula for the parallel system is given by

fP (t) =
2nβδ(log π)

π − 1
π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ[
1 + e−βt−δ

]2
[

1

π − 1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n−1

The Hazard function for a parallel system is obtained by the ratio of PDF and the Reliability
function of a parallel system.

hP (t) =

2nβδ(log π)
π−1 π

(
2e−βt−δ

1+e−βt−δ

)
t−(δ+1)e−βt−δ

[1+e−βt−δ ]
2

[
1

π−1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n−1

1−

[
1

π−1

{
π

(
2e−βt−δ

1+e−βt−δ

)
− 1

}]n .
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5. Statistical Inference

5.1. Estimation

The parameters of the suggested model are estimated using the maximum likelihood method
(MLE). Let yi(i = 1, 2, ...,m) ∼ π − PHLIW (y;β, δ) with PDF u(yi;β, δ)then the log-likelihood
function can be calculated as

ℓ
(
y;β, δ

)
= n log (2βδ(log π))−n log (π − 1) + (log π)

n∑
i=1

(
2e−βy−δ

i

1 + e−βy−δ
i

)
− (δ + 1)

n∑
i=1

log yi

− β
n∑

i=1

y−δ
i − 2

n∑
i=1

log
(
1 + e−βy−δ

i

) .

(12)
Differentiating Equation 12 with respect to associated parameters, we get the first-order derivatives
as

∂ℓ

∂β
=

n

β
− (log π)

n∑
i=1

2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2 −
n∑

i=1

y−δ
i + 2

n∑
i=1

y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

} .
∂ℓ

∂δ
=

n

δ
+(log π)

n∑
i=1

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2 −
n∑

i=1

log yi+β
n∑

i=1

y−δ
i (log yi)−2

n∑
i=1

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}
By solving the above two non-linear equations using suitable software one can obtain the estimates
under the MLE method.

5.2. Cramer-Rao (CR) Inequality

If T (y1, ..., yn) is an unbiased estimator for k(ω), a function of parameter ω, then

V ar[T (y1, ..., yn)] ⩾

{
d
dωk(ω)

}2
E
(

∂
∂ω logL

) =
{k′(ω)}2

I(ω)
,

where I(ω) is the information on ω, supplied by the sample. To define CR lower bound (CRLB)
for β when δ is supposed to be known, then CRLB for an unbiased estimator T1(y1, ..., yn) of a
parameter β is given by 1

I(β) , where

I (β) = −E

[
∂2ℓ

∂β2

]
=

n

β2
+(log π)

n∑
i=1

E

 ∂

∂β

 2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2


−2

n∑
i=1

E

 ∂

∂β

 y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}



and

∂2ℓ

∂β2
= − n

β2
− (log π)

n∑
i=1

∂

∂β

 2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2

+ 2
n∑

i=1

∂

∂β

 y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}


Again CRLB for δ when β is supposed to be known, then CRLB for an unbiased estimator
T2(y1, ..., yn) of a parameter δ is given by 1

I(δ) , where

I (δ) = −E

[
∂2ℓ

∂δ2

]
=

n

δ2
− (log π)

n∑
i=1

E

 ∂

∂δ

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2


+ β

n∑
i=1

E
{
y−δ
i (log yi)

2
}

+ 2
n∑

i=1

E

 ∂

∂δ

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}
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And

∂2ℓ

∂δ2
= − n

δ2
+(log π)

n∑
i=1

∂

∂δ

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2

−β

n∑
i=1

y−δ
i (log yi)

2−2

n∑
i=1

∂

∂δ

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}
.

5.3. Asymptotical Properties

A consistent solution of the likelihood equation is asymptotically normally distributed about true

value θ0. Thus, θ̂ is asymptotically N
(
θ0,

1
I(θ0)

)
as n → ∞, Now β̂ is asymptotically N

(
β, 1

I(β)

)
as n → ∞ where

I (β) = −E

[
∂2ℓ

∂β2

]
=

n

β2
+(log π)

n∑
i=1

E

 ∂

∂β

 2y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}2


−2

n∑
i=1

E

 ∂

∂β

 y−δ
i e−βy−δ

i{
1 + e−βy−δ

i

}

.

δ̂ is asymptotically N
(
δ, 1

I(δ)

)
as n → ∞ where

I (δ) = −E

[
∂2ℓ

∂δ2

]
=

n

δ2
− (log π)

n∑
i=1

E

 ∂

∂δ

2βy−δ
i (log yi) e

−βy−δ
i{

1 + e−βy−δ
i

}2


+ β

n∑
i=1

E
{
y−δ
i (log yi)

2
}

+ 2

n∑
i=1

E

 ∂

∂δ

y−δ
i (log yi)βe

−βy−δ
i{

1 + e−βy−δ
i

}



Pivotal Quantity (PQ): Let yi(i = 1, ...,m) ∼ π − PHLIW (y;β, δ) with CDF U(yi;β, δ) then
pivotal quantity is defined as

−2
n∑

i=1

ln [U(yi;β, δ)] ∼ χ2
2n ⇒ −2

n∑
i=1

ln [1− U(yi;β, δ)] ∼ χ2
2n

PQ = −2

n∑
i=1

ln

 1

π − 1

π

(
2e

−βy
−δ
i

1+e
−βy

−δ
i

)
− 1


 ∼ χ2

2n

⇒ PQ = −2
n∑

i=1

ln

1−
 1

π − 1

π

(
2e

−βy
−δ
i

1+e
−βy

−δ
i

)
− 1



 ∼ χ2

2n.

Let xi(i = 1, ...,m) ∼ π − PHLIW (x;β, δ) and yi(i = 1, ...,m) ∼ π − PHLIW (y;β, δ) are
two independent random variable with CDF U(xi;β, δ) and U(yi;β, δ) respectively, then PQ1

PQ2
∼

Beta2 (m,n) and PQ1

PQ1+PQ2
∼ Beta1 (m,n) and n

m
PQ1

PQ2
∼ F (m,n) , where

PQ1 = −2
n∑

i=1

ln

 1

π − 1

π

(
2e

−βx
−δ
i

1+e
−βx

−δ
i

)
− 1


.

and

PQ2 = −2
n∑

i=1

ln

 1

π − 1

π

(
2e

−βy
−δ
i

1+e
−βy

−δ
i

)
− 1


.

5.4. Confidence interval for Large Sample

Under certain conditions, the first derivative of the logarithm of the likelihood function w. r. to
parameter θ viz., ∂ logL

∂θ , is asymptotically normal with mean zero and variance given by:

V ar

(
∂ logL

∂θ

)
= E

(
∂ logL

∂θ

)2

= −E

(
∂2 logL

∂θ2

)
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Hence for large n, Z =
∂
∂θ logL√

V ar( ∂
∂θ logL)

∼ N (0, 1) The result enables us to obtain a confidence

interval for the parameter θ in a large sample. Thus for a large sample, the confidence interval for θ
with confidence coefficient (1−c)% is obtained by converting the inequalities in P (|Z| ⩽ γc) = 1−c

where γc is given by 1
2π

γc∫
−γc

exp
(
−t2/2

)
dt = 1− c. Thus confidence interval for β and δ are given

by β̂ ± SE
(
β̂
)
and δ̂ ± SE

(
δ̂
)
at the confidence coefficient (1− c)%.

6. Simulation

In our research study, we employed the maxLik R package, developed by Henningsen and Toomet
[7], to generate samples from the quantile function described in Equation 8 for various combinations
of parameters of the π − PHLIW distribution. The MLEs were then computed for each sample
using the maxLik() function and the BFGS algorithm. This analysis allowed us to investigate
issues related to parameter estimation and determine the direction and magnitude of bias in the
MLEs, whether it be overestimation or underestimation.

In our simulation, we utilized sample sizes ranging from 100 to 400 with increments of 100. The
entire process was repeated 1000 times in order to obtain estimates of the mean square error (MSE).
The Biases and MSEs for the four different parameter combinations are presented in Tables 1 to
4. The results demonstrate that as the sample size increases, the corresponding Biases and MSEs
decrease toward zero. This finding suggests that the MLE method exhibits asymptotic efficiency,
and consistency, and follows the invariance property.

Table 1: Bias and MSE for (β = 1.25, δ = 0.5)

Sample size
Bias MSE

β δ β δ

100 0.008 0.0085 0.0153 0.0018
200 0.001 0.0042 0.0072 9.00E-04
300 0.0035 0.0015 0.005 5.00E-04
400 0.0016 0.0026 0.0041 4.00E-04

Table 2: Bias and MSE for (β = 0.75, δ = 0.75)

Sample size
Bias MSE

β δ β δ

100 0.0015 0.0102 0.0077 0.0036
200 -9.00E-04 0.0057 0.0035 0.0018
300 0.0032 0.0019 0.0025 0.0012
400 2.00E-04 0.0031 0.0018 9.00E-04

Table 3: Bias and MSE for (β = 0.5, δ = 1.25)

Sample size
Bias MSE

β δ β δ

100 0.0035 0.0164 0.0046 0.0109
200 -0.0011 0.0083 0.0022 0.0055
300 0.0005 0.0031 0.0015 0.0036
400 -0.0018 0.0051 0.0011 0.0024
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Table 4: Bias and MSE for (β = 0.25, δ = 2.5)

Sample size
Bias MSE

β δ β δ

100 -6.00E-04 0.0207 0.0019 0.0149
200 0.0012 0.0056 9.00E-04 0.0068
300 7.00E-04 0.005 7.00E-04 0.005
400 -8.00E-04 0.0055 5.00E-04 0.0038

7. Application

In this section, we demonstrate the application of the π-PHLIW distribution using two real
datasets. The datasets utilized for applying the suggested distribution are presented below.
Data set I:
A real data set of the relief time of 20 patients taking an analgesic is provided in this section and
can be found in Chaudhary et al. [3]. Data are as follows: 1.4, 1.1, 1.7, 1.3, 1.8, 1.9, 2.2, 1.6, 2.7,
1.7, 1.8, 4.1, 1.2, 1.5, 3, 1.4, 2.3, 1.7, 2.0, 1.6
Data set II:
We consider the TRAFFIC data set given by Bain and Engelhardt [2] which represents 128 ob-
servations on times, in seconds, between the arrival of vehicles at a particular location on a road:
”0.2, 0.5, 0.8, 0.8, 0.8, 1.0, 1.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.3, 1.4, 1.5, 1.5, 1.6, 1.6, 1.6, 1.7, 1.8, 1.8,
1.8, 1.8, 1.8, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.3, 2.4, 2.4, 2.5, 2.5, 2.5, 2.6, 2.6,
2.7, 2.8, 2.8, 2.9, 3.0, 3.0, 3.1, 3.2, 3.4, 3.7, 3.9, 3.9, 3.9, 4.6, 4.7, 5.0, 5.1, 5.6, 5.7, 6.0, 6.0, 6.1, 6.6,
6.9, 6.9, 7.3, 7.6, 7.9, 8.0, 8.3, 8.8, 8.8, 9.3, 9.4, 9.5, 10.1, 11.0, 11.3, 11.9, 11.9, 12.3, 12.9, 12.9,
13.0, 13.8, 14.5, 14.9, 15.3, 15.4, 15.9, 16.2, 17.6, 20.1, 20.3, 20.6, 21.4, 22.8, 23.7, 24.7, 29.7, 30.6,
31.0, 33.7, 34.1, 34.7, 36.8, 40.1, 40.2, 41.3, 42.0, 44.8, 49.8, 51.7, 55.7, 56.5, 58.1, 70.5, 72.6, 87.1,
88.6, 91.7, 119.8, 125.3”

7.1. Model Analysis

We computed several well-known goodness-of-fit statistics to analyze both data sets I and II.
The fitted models were evaluated using various metrics, including the log-likelihood value (-2logL),
Akaike information criterion (AIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling
(AD), Kolmogrov-Smirnov (KS), and Cramer-von Mises (CVM) with corresponding p-values. All
the essential computations and graphical plots were performed using the R software Wickham and
Grolemund [26] and the R Core Team [23]. To compare the fitting capability of the π − PHLIW
model, we have selected several models such as the Lindley Weibull (LW) Cordeiro et al. [4], alpha
power exponential (APE) Mahdavi and Kundu [15], Weibull, APT-Weibull (APTW) Nassar et al.
[21], and new APT-Weibull (NAPTW) Elbatal et al. [5]. We have presented the KS and PP
plots which provide an estimate of the CDF based on both data sets under study in Figures 2
and 3 (left for dataset-I, right for dataset-II). The estimated values of the parameters and their
associated standard errors (SE) for both datasets were presented in Tables 5 and 7, which were
obtained using the MLE method. Additionally, Tables 5 and 7 showcase model selection criteria
such as log-likelihood, HQIC, and AIC, and goodness of fit statistics such as KS along with p-value
for both datasets. Our observations show that the π-PHLIW model has the least statistics com-
pared to the LW, APE, Weibull, APTW, and NAPTW distributions, along with the corresponding
highest p-values. This indicates that the PiPHLIW model is more flexible and provides a good
fit. Furthermore, we have provided graphical illustrations of the fitted models in Figures 6 and 8,
which support our findings that the π-PHLIW model outperforms the other candidate models.

8. Conclusion

In this study, we have introduced an innovative distribution family called the π-power half logistic-G
family. Drawing inspiration from the PPT methodology, we selected the Inverse Weibull distribu-
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Figure 2: Graphs of KS plot of π − PHLIW distribution (left for dataset-I, right for dataset-II)

Table 5: Estimated parameters using the MLE method for the data set-I

Model parameter SE parameter SE parameter SE
π-PHLIW(β, δ) 6.0338 1.9673 3.8496 0.6916 – –
LW(α, β, λ) 9.2825 21.6417 2.0201 0.3020 0.0053 0.0241
APE(α, λ) 229.1815 16.7718 1.2110 0.1415 – –
Weibull(α, β) 0.1216 0.0563 2.7869 0.4274 – –
APTW(α, δ, λ) 93.1808 5.0649 1.6946 0.2693 0.6935 0.1681
NAPTW(α, β, λ) 105.5443 172.8892 1.5803 0.2237 0.8243 0.0895

tion as the foundation for this new family. The π-PHLIW distribution offers a wide range of hazard
function shapes, including increasing, bathtub, J-shaped, and reverse-J-shaped. By employing the
maximum likelihood estimation technique, we explored the statistical properties of this distribution
and estimated its parameters. To assess the accuracy of our estimation method, we conducted a
Monte Carlo simulation. The results revealed that the mean square errors decrease as the sample
size increases, even when dealing with small samples. To demonstrate the practical utility of the
π-PHLIW distribution, we applied it to two real engineering datasets. Through model selection
criteria and goodness-of-fit tests, we compared its performance against seven existing models. Our
findings strongly support the superiority of the π-PHLIW distribution over the alternative models,
suggesting its potential application in various fields, such as medical and life sciences, reliability
engineering, actuarial science, and survival analysis. Additionally, the π-power transformation
family of distributions holds promise as a foundation for developing novel models in the future.
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Abstract 

The statistical analysis and modeling of reliability data from engineering is really a challenge for statistician 

because the reliability data from engineering are stochastic in nature.  Recently one parameter Komal 

distribution was introduced in statistics literature for the analysis and modeling of failure time data from 

engineering. Komal distribution, being one parameter distribution, does not provide good fit to some 

engineering data due to its theoretical or applied point of view.  In this article we propose a two-parameter 

power Komal distribution, which includes Komal distribution as particular case, for the analysis and 

modeling of data from reliability engineering. Its statistical properties including behavior of probability 

density function and cumulative distribution function for varying values of parameters have been presented. 

The first four raw moments and the variance of the proposed distribution has been derived and given. The 

expressions for hazard rate function and mean residual life function have been obtained and their behaviors 

for varying values of parameters have been presented. The stochastic ordering which is very much useful 

comparing the stochastic nature has also been discussed. Method of maximum likelihood has been discussed 

for estimating the parameters. Application of the distribution has been investigated using a real lifetime 

dataset from engineering. The goodness of fit of power Komal distribution has been tested using Akaike 

Information criterion and Kolmogorov-Smirnov statistic. The goodness of fit of power Komal distribution 

shows that it gives much closure fit over two-parameter power Garima distribution, Power Shanker 

distribution and Weibull distribution and one parameter exponential distribution, Shanker distribution, 

Garima distribution and Komal distribution. As the power Komal distribution gives much better fit over 

Weibull distribution, which is very much useful for modeling and analysis of data from reliability 

engineering, the final recommendation is that the power Komal distribution should be preferred over the 

considered distributions including Weibull for modeling data from reliability engineering.  

Keywords: Komal distribution, Descriptive measures, Reliability properties, Maximum 

likelihood estimation, Application. 
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1. Introduction

Shanker [1] introduced one parameter lifetime distribution named Komal distribution defined by 

probability density function (pdf) and cumulative distribution function (cdf) as  
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Shanker [1] has discussed some of its statistical properties including shapes for varying values of 

parameter, moments, skewness, kurtosis, hazard rate function, mean residual life function and 

stochastic ordering. Estimation of parameter and applications of Komal distribution has also been 

discussed by Shanker [1].  

The pdf and the cdf of Power Shanker distribution (PSD) obtained by Shanker and Shukla [2] are   given 

by 
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It can be easily shown that at 1 = , PSD reduces to one parameter Shanker distribution, introduced by 

Shanker [3] having pdf and cdf  
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The pdf and the cdf of Power Garima distribution (PGD) obtained by Berhane et al [4] are   given by 
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It can be easily shown that at 1 = , PGD reduces to one parameter Garima distribution, introduced by 

Shanker [5] having pdf and cdf  
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Komal distribution, being one parameter lifetime distribution, has less flexibility to model data of 

various natures. The main motivation of considering power Komal distribution lies in the fact that as 

the Komal distribution found to be better than exponential distribution, Shanker distribution of 

Shanker [3] and Garima distribution of Shanker [5], it is expected that power Komal distribution would 

provide better fit than power Shanker distribution (PSD) by Shanker and Shukla [2], Power Garima 

distribution (PGD) by Berhane et al [4] and Weibull distribution of Weibull [6]. In the present paper an 

attempt has been made to obtain two-parameter power Komal distribution using power transformation 

of Komal distribution. The statistical properties of the distribution including shapes of density for 

varying values of parameters, the moments, survival function, hazard rate function and mean residual 

life function have been discussed. The maximum likelihood estimation has been discussed. The 

goodness of fit of the proposed distribution has been discussed with a real lifetime dataset from 

engineering and fit shows quite satisfactory over other one parameter and two-parameter lifetime 

distributions.   

2. Power Komal Distribution

Assuming the power transformation 
1X Y 

=
  in (1.1), the pdf of the random variable X  can be 

obtained as 
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We would call the density in (2.1) as power Komal distribution (PKD) with parameters   and  , and it 

is denoted by PKD ( ),  . Like Komal distribution, PKD is also a convex combination of Weibull ( ), 

distribution, a generalized gamma ( )2, ,   distribution.

The corresponding cdf of PKD can be obtained as 
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The nature of the pdf and the cdf of PKD has been studied with the help of the graphs for varying values 

of parameters and presented in figures 1 and 2 respectively.  

On careful examination of the graphs of pdf of PKD it is obvious that the shapes of PKD are decreasing, 

symmetric, negatively skewed, positively skewed, platykurtic and leptokurtic for varying values of 

parameters.  
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For example, for fixed 1 =  and 1  , pdf of PKD is decreasing ,for fixed value of  i.e. 0.01 = and 

0.05 = at 2   pdf of PKD becomes positively Skewed and symmetric. For 1  and 1   the pdf 

graph becomes platykurtic and leptokurtic. This means that PKD is applicable for modeling lifetime 

data of various natures. 

Figure 1: Graphs of pdf of PKD for varying values of parameters ( ), 
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Figure 2: Graphs of the cdf of PKD for varying values of the parameters ( ), 

3. Moments of Power Komal Distribution

Using the mixture representation in (2.2), the r th moment about the origin, '
r of PKD can be obtained 

as
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It should be noted that at 1 = , the above expression reduces to the r th moment about origin of Komal 

distribution given by 
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Thus, the first four moments about origin of the PKD are thus obtained as 
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Therefore, the variance of PKD can be obtained as 
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The higher order central moments are not being given here because their expressions are big. However, 

higher order central moments, if required, can be easily obtained using relationship between moments 

about mean and moments about origin.  Finally, coefficient of variation, skewness, kurtosis and index of 

dispersion, if needed, can be obtained using their formulae in terms of central moments. 

4. Reliability Properties of Power Komal Distribution

The survival function of PKD can be obtained as 
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The hazard rate function ( ); ,h x   and the mean residual function ( ); ,m x    of PKD are given 

respectively as: 
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It can be easily verified that at 0x =  it reduces to the expression for the mean of PKD. The nature of 

hazard rate function of PKD for varying values of parameters has been shown graphically in figure 3. 

Depending upon the values of the parameter the shapes of hazard rate function of PKD is increasing very 

quickly and slowly in nature, for example, for 1  and 1  , the hazard rate is increasing very quickly 

and for 2  and 1   it is increasing slowly. Again, the nature of mean residual life function of PKD 

for varying values of parameters has been shown in figure 4. The graphs of mean residual life function 

of PKD are monotonically decreasing for varying values of parameters. 
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Figure 3: Hazard rate function of PKD for varying values of the parameters ( ), 
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Figure 4: Mean residual life function of PKD for varying values of the parameters ( ), 
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5. Stochastic Ordering

The stochastic ordering of positive continuous random variables is an important tool for judging their 

comparative behavior. A random variable X is said to be smaller than a random variable Y in the  

(i) stochastic order ( )X Yst if ( ) ( )F x F xX Y for all x

(ii) hazard rate order ( )X Y
hr

 if ( ) ( )h x h xX Y  for all x

(iii) mean residual life order ( )X Y
mrl

 if ( ) ( )m x m xX Y for all x

(iv) likelihood ratio order ( )X Y
lr

 if 
( )

( )

f xX

f xY

 decreases in x . 

The following interrelationships due to Shaked and Shanthikumar [7] are well known for establishing 

stochastic ordering of distributions 

X Y X Y X Y
lr hr mrl

    

X Yst



It can be easily shown that PKD is ordered with respect to the strongest ‘likelihood ratio’ ordering. The 

stochastic ordering of PKD has been explained in the following theorem: 

Theorem: Suppose X   PKD ( ),
1 1
  and Y   PKD ( ),

2 2
  . If and

1 2 1 2
     (or 1 2

  and

1 2
  ), then X Y

lr
 and hence X Y
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 , X Y
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Proof: We have 
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Now, taking logarithm both sides, we get 
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and hence hrX Y , mrlX Y and stX Y . 
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6. Estimation of Parameters of Power Komal Distribution

Suppose ( )1 2, ,..., nx x x be a random sample of size n from PKD ( ),  The log-likelihood function of

PKD can be expressed as 

     ( )log log ; ,
1

n
L f x

i
 = 

=

      ( ) ( ) ( )2
2 log log 1 1 log log 1

1 1 1

n n n
n n x x xi i i

i i i

 
     = − + + + − + + + −  

= = =

The maximum likelihood estimates ( )ˆ ˆ,  of parameters ( ),  of PKD are the solution of the following

log-likelihood equations 
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= − + − = 

= = + ++ +
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= + −  

= = = + +

These two natural log-likelihood equations do not seem to be solved directly, because they cannot be 

expressed in closed forms. The (MLE’s) ( )ˆ ˆ,  of  ( ),   can be computed directly by solving the

natural log-likelihood equation using Newton-Raphson iteration available in R-software till sufficiently 

close values of ̂ and ̂  are obtained.  

For Fisher’s scoring method, we have 
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For finding the MLEs  ( )ˆ ˆ,    of parameters ( ),  of PKD, following equations can be solved

2 2
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where 0
 and 0

 are the initial values of   and  , as given by the method of moments. These equations 

are solved iteratively till close estimates of parameters are obtained. 
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7. Goodness of Fit

In this section, the goodness of fit of PKD using maximum likelihood estimates of parameters has been 

discussed with one real dataset. The goodness of fit has been compared with other one parameter and 

two-parameter lifetime distributions.  Following dataset from engineering has been considered.  

Dataset 1: The following symmetric dataset, discussed by Murthy et al [8], is the failure times of 

windshields and the values are: 

 0.04, 0.3, 0.31, 0.557, 0.943, 1.07, 1.124, 1.248, 1.281, 1.281, 1.303, 1.432, 1.48, 1.51, 1.51, 1.568, 1.615, 1.619, 

1.652, 1.652, 1.757, 1.795, 1.866, 1.876, 1.899, 1.911, 1.912, 1.9141, 0.981, 2.010, 2.038, 2.085, 2.089, 2.097, 

2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.23, 2.3, 2.324, 2.349, 2.385, 2.481, 2.610, 2.625, 2.632, 2.646, 2.661, 

2.688, 2.823, 2.89, 2.9, 2.934, 2.962, 2.964, 3, 3.1, 3.114, 3.117, 3.166, 3.344, 3.376, 3.385, 3.443, 3.467, 3.478, 

3.578, 3.595, 3.699, 3.779, 3.924, 4.035, 4.121, 4.167, 4.240, 4.255, 4.278, 4.305, 4.376, 4.449, 4.485, 4.570, 

4.602, 4.663, 4.694 

In order to compare the considered distributions, values of ( )ˆ ˆMLE ,   along with their standard

errors, 2 log L− , AIC (Akaike Information Criterion), K-S (Kolmogorov-Smirnov Statistics) and p-

values for the real lifetime dataset have been computed and presented in table1. The AIC and K-S 

Statistics are computed using the following formulae: 2 log 2AIC L k= − + and 

( ) ( )K-S Sup 0F x F xnx
= − , where k =  the number of parameters, n =  the sample size , ( )F xn is the 

empirical (sample) cumulative distribution function, and ( )0F x is the theoretical cumulative 

distribution function. The best distribution is the distribution corresponding to lower values of 2 log L−

, AIC, and K-S statistic. 

Table 1: MLE’s, 2 log L− , ( )ˆ ˆ. ,S E   , AIC, K-S and P-value of the fitted distributions of dataset 1.

Distributions 

ML estimates and Standard Error 

2 log L− AIC K-S P-Value
̂

( )ˆ.S E 

̂

( )ˆ.S E 

PKD 0.2572 

(0.0401) 

1.8786 

(0.1329) 

271.8212 275.8212 0.0540 0.9826 

PGD 0.1563 

(0.0373) 

2.1489 

(0.1823) 

272.7053 276.7053 0.1009 0.4340 

PSD 0.3422 

(0.0483) 

1.7015 

(0.1203) 

272.7581 276.7581 0.0912 0.5729 

WD 0.0829 

(0.0223) 

2.3563 

(0.2031) 

274.1806 278.1806 0.2990 0.0000 

KD 0.5826 

(0.0445) 

… 325.0655 327.0655 0.2189 0.0015 

GD 0.5572 

(0.0506) 

… 331.4615 333.4615 0.5131 0.0000 

SD 0.6430 

(0.0451) 

… 314.4891 316.4891 0.2075 0.0031 

ED 0.3893 

(0.0415) 

… 342.0450 344.045 0.5256 0.0000 
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In order to see the closeness of the fit given by one parameter exponential, Shanker and Garima 

distributions and two-parameter Weibull distribution, PGD and PSD, the fitted plot of pdfs of these 

distributions for the given dataset have been shown in figure 5. It is also obvious from the goodness of 

fit given in the table 1 and the fitted plots of the distributions in figure 5 that the PKD gives much closer 

fit as compared to other considered distributions. 

Figure 5: Fitted pdf plots of distributions for dataset 1 

8. Conclusions

A two-parameter Power Komal distribution (PKD) has been introduced which includes Komal 

distribution, introduced by Shanker (2023), as a particular case.  The statistical and reliability 

properties including shapes of density for varying values of parameters, the moments about the origin, 

the variance, survival function, hazard rate function, mean residual function of PKD have been 

discussed. The method of maximum likelihood for estimating the parameters has been discussed. 

Finally, the goodness of fit of PKD has been discussed with a real lifetime dataset and the fit has been 

found quite satisfactory as compared to one parameter exponential Shanker and Garima distributions 

and two-parameter Power Shanker distribution (PSD), power Garima distribution (PGD) exponential, 

and Weibull distribution. Therefore, PKD can be considered as an important lifetime distribution for 

modeling lifetime data from engineering. 
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Abstract 

In the generation of science and technology, every company wants to increase the reliability of their 
products. So, they used the concept of cold standby redundancy, timely repair of the failed unit and 
providing limited refreshments to the available technician when required. This paper aims to 
explore the system of two identical units where the primary unit is operative and the secondary 
unit is in cold standby mode. When the primary unit fails due to any fault then secondary unit 
starts working immediately. Here, times of failure of unit and technician refreshment request follow 
the general distribution whereas times of repair of unit and refreshment follow the exponential 
distributions. Such types of systems are used in industries and education systems to prevent losses. 
The system’s performance is calculated by using concepts of mean time to system failure, 
availability, busy period of the server, expected number of visits made by the server and profit 
function using the semi Markov process and regenerative point technique. Tables are used to 
explore the performance of the system.  

Keywords: Cold standby, refreshment, regenerative point, semi Markov process 

I. Introduction

Reliability and maintainability are the essential parameters of items and products that satisfy 
customers' requirements. In today’s era, several approaches for performance improvement of 
maintainable systems have been adopted by scientists and engineers during designing them. A 
large amount of research work has been done on repairable systems such that Subramanian [17] 
explored the idea of preventive maintenance in two distinct units system under repair.  Bao and 
Mays [3] analyzed the hydraulic reliability of water distribution systems under demand, pipe 
roughness and pressure head. Gnedenko and Igor [8] explored reliability and probability studies 
for engineering purposes. Diaz et al. [6] threw light on the warranty cost management system. Jack 
and Murthy [10] discovered the role of limited warranty and extended warranty for the product. 
Wang and Zhang [19] examined the repairable system of two non identical components under 
repair facility using geometric distributions. Mahmoud and Moshref [14] described the cold 
standby system under hardware failure and preventive maintenance using the semi Markov 
process. Deswal and Malik [5] evaluate the non identical units system under different working 
conditions by using the semi Markov process. Kumar et al. [11] examined the stochastic behavior 
of two unit system where one unit in cold standby mode and subject to maximum repair time 
using the regenerative point technique. Kumar and Goel [12] analyzed the preventive maintenance 
in two unit cold standby system under general distributions. Malik and Rathee [15] threw light on 
the two parallel units system under preventive maintenance and maximum operation time.  
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Temraz [18] analyzed the performance of two parallel components system under load sharing and 
degradation facility. Levitin et al. [13] explored the results of optimal preventive replacement of 
failed units in a cold standby system by using the poisson process. Barak et al. [2] threw light on 
the availability and profit values of milk plant under repair facility. Agarwal et al. [1] described the 
reliability and availability of water reservoir system under repair facility. Chaudhary and Sharma 
[4] explored the parallel non identical units system that gives priority to repair over preventive
maintenance. Garg and Garg [7] analyzed the reliability and profit values of briquette machine
under neglected faults like sound and overheating. Jia et al. [9] explored the two unit system under
demand and energy storage techniques. Sengar and Mangey [16] examined the performance of
complicated systems under inspection using copula methodology.

II. System Assumptions

There are following system assumptions: 

• Initially, the system has two units such that one is an operative (primary) unit and
the other is a cold standby (secondary) unit.

• When the operative unit fails then the cold standby unit starts working.
• An expert repairman is always available to repair the failed unit.
• The failed unit behaves like a new one after repair.
• Repair and refreshment times are exponentially distributed whereas

times for failure of unit and server refreshment request are general.

III. System Notations

There are following system notations: 

 R Collection of regenerative states )3,2,1,0(iSi  
CsO /  Operative unit / cold standby unit of the system 
ba /  The probability that the cold standby unit is working/ not working 
/  Failure rate of the unit/ rate by which the server needs refreshment 

)(/)( tGtg  PDF/ CDF of the repair time of the unit 

)(/)( tFtf  PDF/ CDF of refreshments time that restores freshness to the server 

)(/)( ,, tQtq srsr PDF/ CDF of first passage time from rth to sth regenerative state or sth failed 
state without halting in any other RSi in (0,1] 

)(tMr  Represents the probability of the system that it initially works RSr at a time
(t) without moving through another state RSi

)(tWr  Probability that up to time (t) the server is busy at the state rS  without transit
to another state RSi  or before return to the same state through one or more 
non regenerative states  

/ Laplace convolution / Laplace Stieltjes Convolution 
// Symbol for Laplace Transform/ Laplace Stieltjes Transform/ Function’s 

derivative  

 /     / Upstate/ regenerative state/ failed state 
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IV. State Descriptions

The individual state description is given by the table 1: 

Table 1: State Descriptions 

 States Descriptions 

 S0  It is a regenerative upstate with two units such that one is operative (O) and 
  other is cold standby (Cs). 

 S1 This regenerative upstate has two units such that one is failed under repair (Fur) and 
the other is in operative mode (O).  

 S2 It is a regenerative upstate under refreshment facility (sut) where one unit is failed &
waiting for repair (Fwr) and the other is in operative mode (O). 

 S3 It is a regenerative down state and the system has two units such that one is failed 
under repair (Fur) and the other is failed and waiting for repair (Fwr). 

 S4 It is a down state where one unit fails under repair (FUR) continuously from the 
prior state and the other unit is failed & waiting for repair (Fwr). 

 S5 It is a down state that has two units under refreshment facility (sut) such that one is 
failed and waiting for repair (FWR) continuously from the previous state and the 
other is failed and waiting for repair (Fwr). 

 S6 At this down state, the system has two units such that one is failed under repair 
(FUR) continuously from the previous state and the other unit is failed and waiting 
for repair (FWR) continually from the prior state. 

 S7 This down state has two units under continuous refreshment facility (SUT) such that 
one is failed and waiting for repair (Fwr) and the other is failed and waiting for 
repair (FWR) continuously from the previous state. 

 S8 This down state has two units under refreshment facility (sut) such that one is failed 
and waiting for repair (Fwr) and the other is failed and waiting for repair (FWR) 
continuously from the previous state. 

Figure 1: State Transition Diagram 
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V. Transition Probabilities

The transition probabilities are calculated using tetf )( , tetg )(  and get

ap01 , bp03 , 10p , 12p , 14p

21p , 27p , 31p , 38p , 41p , 45p

61p , 65p , 1867656 ppp   (1) 

It has been conclusively established that 
10301 pp , 1141210 ppp ,  12721 pp , 13831 pp  

14541 pp  ,  1867656 ppp , 1
)65(8.3131 npp  

1
)56(4.114.111210 npppp , 1

)65(7.2121 npp   (2)

VI. Mean Sojourn Time

In the cold standby redundant system, i  represents the mean sojourn time. Mathematically, time 

consumed by a system in a particular state is, dttTPm
j

jii
0

, )( .  Then 

1
03010 mm ,  1

1412101 mmm ,  1
27212 mm

1
38313 mm ,  1

45414 mm ,  1
65616 mm

1
875 , 

)(
)('

)56(4.114.1112101 nmmmm

)(
)('

)65(7.21212 nmm ,  )('
)65(8.31313 nmm  (3) 

VII. Reliability Measures Evaluations

I. Mean Time to System Failure (MTSF)

Let the cumulative distribution function of the first elapsed time be )(ti from the regenerative 
state iS to the failed state of the system. Treating the failed states as an absorbing state then the 
repetitive interface for )(ti being 

)()()()( 11,03,00 ttQtQt

)()()()()()( 00,122,14,11 ttQttQtQt

)()()()( 11,27,22 ttQtQt  (4) 

Taking LST of the relation (4) and solving for )(**0 s  then

 
s
sMTSF

s

)(1lim
**
0

0
 (5) 

System reliability can be obtained by using the inverse LT of equation (5). We have 
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aa

aaaMTSF 2

22
 (7) 

II. Availability of the system

From the transition diagram, the system is available at the regenerative up states 0S , 1S  and 2S . 
Let )(tAi  is the probability that the system is in upstate at time (t) specified that the system arrives 
at the regenerative state iS  at t = 0. Then the repetitive interface for )(tAi is 

)()()()()()( 30310100 tAtqtAtqtMtA  

)()()()(
)()()()()()(

1)56(4.1114.11

21201011
tAtqtAtq
tAtqtAtqtMtA

n
 

)()()()()()( 1)65(7.2112122 tAtqtAtqtMtA n  

)()()()()( 1)65(8.311313 tAtqtAtqtA n   (8)

where,  
tetM )(0 , )()( )2(

1 tGetM t
 , )()(2 tGetM t  (9) 

Using LT of the above relation (8), there exist 

 
][

][
lim

0,13,032,1210,10

2,1210,10

10
0 pppp

pp

D
N

A A
s

 (10) 

 

)()()())((
)()))((()(

]))(()([
20

bba
ba

baA  (11) 

III. Busy Period of the Server

From the transition diagram, it is clear that the technician is busy at states 1S , 2S and 3S . Let )(tBi  
is the probability that the repairman is busy due to the repair of the failed unit at time ‘t’ specified 
that the system arrives at the regenerative state iS  at t = 0. Then the repetitive interface for )(tBi is  

)()()()()( 3031010 tBtqtBtqtB  

)()()()(
)()()()()()(

1)56(4.1114.11

21201011
tBtqtBtq
tBtqtBtqtWtB

n
 

)()()()()( 1)65(7.2112123 tBtqtBtqWtB n

)()()()()()( 1)65(8.3113133 tBtqtBtqtWtB n  (12) 

where, .....)()()()( 1
)(

1
)(

11
ttt etGetGetGtW  

)()()()( 1112 tftFetGtW t

.....)()()()()( 11113
ttt etGtfetGetGtW  (13) 

Using LT on relations (12) then we get 

][
)0()0()0(

lim
0,13,032,1210,10

0,13,0
*
32,1

*
2

*
1

10
0 pppp

ppWpWW

D
NB B

s
(14)
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IV. Estimated number of visits made by the server

The transition diagram explores that the technician visits at states 1S  and 2S . Let )(tNi  is the 
estimated number of visits made by the repairman for repair in (0, t] specified that the system 
arrives at the regenerative state iS  at t = 0. Then the repetitive interface for )(tNi is 

)](1[)()](1[)()( 3031010 tNtQtNtQtN  

)()()()(
)()()()()(

1)56(4.1114.11

2120101
tNtQtNtQ

tNtQtNtQtN

n
 

)()()()()( 1)65(7.211212 tNtQtNtQtN n

)()()()()( 1)65(8.311313 tNtQtNtQtN n  (16) 

Using LST of the above relations (16) then we get 
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V. Profit Analysis

 It is an integral part of reliability measures that tell customers and system developers whether the 
system is beneficial or not. The profit values depend upon the MTSF, availability of the system, 
busy period of server and extended number of visits. Then the profit function of the system is 
defined by  

        020100 NTBTATP                                                                                                                  (19) 
where, 0T 1500 (Revenue per unit up-time)        

1T 500 (Charge per unit for server busy period)

2T 200 (Charge per visit made by the server)

4. Discussion

       The transition diagram is used to calculate the system reliability measures like MTSF, 
availability of the system, busy period of the server, expected number of visits made by the server 
and profit values. It can be seen from the table 2 that the tendency of MTSF increases smoothly 
with respect to increments in refreshment rate ( ); however, other parameters such as failure rate 
of unit ( =0.55), server refreshment request rate ( =0.4), repair rate of unit ( =0.5), cold stand by 
unit working probability (a=0.8) and not working probability (b=0.2) have fixed values. It is clear 
that when failure rate ( ) increases then MTSF declines. When technician refreshment rate ( ) 
enhances then MTSF also declines but when repair rate ( ) increases then MTSF enhances. Thus, 
the concept of refreshment is beneficial for the owner and technician. When MTSF enhances then 
system reliability also enhances.  
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Table 2: MTSF vs. Refreshment Rate 
=0.55, =0.4
=0.5, a=0.8

b=0.2 

=0.65, =0.6 =0.7 

0.1 3.8613371 3.218144 3.775294 4.0647311 
0.2 3.8894957 3.235483 3.806505 4.1010786 
0.3 3.9129156 3.250148 3.833119 4.1312067 
0.4 3.9327001 3.262713 3.856081 4.1565858 
0.5 3.9496349 3.273599 3.876094 4.1782569 
0.6 3.9642941 3.283122 3.893693 4.1969772 
0.7 3.9771076 3.291522 3.90929 4.2133109 
0.8 3.9884034 3.298987 3.923207 4.2276872 
0.9 3.998436 3.305664 3.935703 4.240438 
1 4.007406 3.311673 3.946984 4.2518242 

The availability of the redundant system is affected by the refreshment rate ( ), repair rate ( ), unit 
failure rate ( ) and server refreshment request rate ( ). Table 3 explores the availability of the 
system and its value increase corresponding to increments in refreshment rate ( ) when the 
system's other parameters =0.55, =0.4, =0.5, a=0.8, b=0.2 possess constant values. When the 
failure rate of unit changes ( =0.55 to 0.65) then the availability of system declines. Also, when the 
technician request rate changes ( =0.4 to 0.6) then the system’s availability declines but when the 
repair rate of unit changes ( =0.5 to 0.7) then the availability of the system enhances. 

Table 3: Availability vs. Refreshment Rate 

=0.55, =0.4
=0.5, a=0.8

b=0.2 

=0.65, =0.6 =0.7 

0.1 0.214076 0.185918 0.190417 0.25028 
0.2 0.319498 0.281347 0.293845 0.364639 
0.3 0.381465 0.338725 0.358019 0.427923 
0.4 0.421888 0.376681 0.401314 0.467056 
0.5 0.450148 0.403461 0.432266 0.493101 
0.6 0.470912 0.423258 0.455361 0.511375 
0.7 0.48675 0.438421 0.473168 0.524719 
0.8 0.499191 0.450366 0.487264 0.534774 
0.9 0.509198 0.45999 0.498663 0.542545 
0.1 0.517404 0.46789 0.508046 0.548679 

It is an important part of the system that tells the customers about the performance of the product 
that it is beneficial or not. So, the cold standby redundant system is used to enhance the system's 
profit. It is evident from table 4 that the system uses constant parameters such that =0.55, =0.4, 

=0.5, a=0.8, b=0.2 and the trend of profit values enhanced with respect to increments in 
refreshment rate ( ). When the failure rate of unit ( ) changes from 0.55 to 0.65 then the profit of 
system declines. Also, when the technician request rate ( ) changes from 0.4 to 0.6 then profit 
values decline but when the repair rate of unit ( ) changes from 0.5 to 0.7 then the profit of the 
system enhances.  

Ajay Kumar and Ashish Sharma 
PROFIT ANALYSIS OF REPAIRABLE COLD  
STANDBY SYSTEM UNDER REFRESHMENTS 

RT&A, No 4 (76) 
Volume 18, December 2023 

610



Table 4: Profit vs. Refreshment Rate 

=0.55, =0.4
=0.5, a=0.8

b=0.2 

=0.65, =0.6 =0.7 

0.1 2046.417 1588.805 1690.491 2692.9 
0.2 3640.771 3027.839 3256.171 4428.411 
0.3 4576.626 3891.418 4226.372 5389.1 
0.4 5186.276 4461.578 4880.064 5983.344 
0.5 5611.935 4863.085 5346.797 6378.977 
0.6 5924.286 5159.353 5694.6 6656.653 
0.7 6162.259 5385.877 5962.46 6859.482 
0.8 6348.978 5563.998 6174.235 7012.365 
0.9 6498.993 5707.276 6345.293 7130.568 
1 6621.895 5824.711 6485.948 7223.9 

7. Conclusion

The results of the study show that providing refreshments to the server during the job generally 
enhances his efficiency which is crucial for any repairable system. From the above discussion, the 
MTSF, availability and profit values of the system increase with respect to increments in 
refreshment rate as well as repair rate but the reliability values decline when server refreshment 
request rate and failure rate of unit are enhanced. It is clear from tables that the server has to 
override his emotions and try to satisfy the customers. The idea of refreshment is used by 
corporate sectors, industries, cybercafés, education, university systems, etc. 

8. Future Scope

Refreshment to the server plays an essential role in the water-boosting station system where one 
unit is operative and another is kept on cold standby.  
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Abstract

In this article, we propose a new class of distributions defined by a quantile function, which is the sum
of the quantile functions of the Power and Weibull distributions. Various distributional properties and
reliability characteristics of the class are discussed. To examine the usefulness of the model, the model is
applied to a real life datasets. Parameters are estimated using maximum likelihood estimation technique.

Keywords: Power distribution; Weibull distribution; L-moments; Hazard quantile function; Mean
residual quantile function; Residual variance quantile function; Reversed hazard quantile function.

1. Introduction

In modelling and analysis of statistical data, probability distribution can be specified either
in terms of distribution function or by the quantile function. Quantile functions have several
interesting properties that are not shared by distributions, which makes it more convenient for
analysis. For example, the sum of two quantile functions is again a quantile function. For a
nonnegative random variable X with distribution function F(x), the quantile function Q(u) is
defined by Nair and Sankaran [7]

Q(u) = F−1(u) = in f {x : F(x) ≥ u}, 0 ≤ u ≤ 1 (1)

For every -∞ < x < ∞ and 0 < u < 1, we have

F(x) ≥ u if and only if Q(u) ≤ x.

Thus, if there exists an x such that F(x) = u, then F(Q(u)) = u and Q(u) is the smallest value of
x satisfying F(x) = u. Further, if F(x) is continuous and strictly increasing, Q(u) is the unique
value x such that F(x) = u, and so by solving the equation F(x) = u, we can find x in terms of u
which is the quantile function of X.

If f (x) is the probability function of X, then f (Q(u)) is called the density quantile function.
The derivative of Q(u),

q(u) = Q
′
(u),

is known as the quantile density function of X. If F(x) is right continuous and strictly increasing,
we have

F(Q(u)) = u (2)
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so that F(x) = u implies x = Q(u). When f(x) is the probability density function (PDF) of X; we
have from ( 2)

q(u) f (Q(u)) = 1 (3)

Quantile function has several properties that are not shared by distribution function. See Nair
and Sankaran [7] for details. For example, the sum of two quantile functions is again a quantile
function. Further, the product of two positive quantile functions is again a quantile function in
the nonnegative setup. There are explicit general distribution forms for the quantile function
of order statistics. It is easier to generate random numbers from the quantile function. A major
development in portraying quantile functions to model statistical data is given by Hastings et al.
[5], who introduced a family of distributions by a quantile function. This was refined later by
Tukey [13] to form a symmetric distribution, called the Tukey lambda distribution.

This model was generalized in different ways, referred as lambda distributions. These include
various forms of quantile functions discussed in Ramberg and Schmeiser [10], Ramberg [8],
Ramberg et al. [9] and Freimer et al. [1]. Govindarajulu [3] introduced a new quantile function by
taking the weighted sum of quantile functions of two power distributions. Hankin and Lee [4]
presented a new power - Pareto distribution by taking the product of power and Pareto quantile
functions. Van Staden and Loots [14] developed a four-parameter distribution, using a weighted
sum of the generalized Pareto and its reflection quantile functions. Sankaran et al. [12] developed
a new quantile function based on the sum of quantile functions of generalized Pareto and Weibull
quantile functions. Sankaran and Dileep [11] developed a new quantile function based on the
sum of quantile functions of half logistic and exponential geometric distributions.

The aim of the present work is to introduce a new quantile function that is useful in reliability
analysis. The proposed quantile function is derived by taking the sum of quantile functions
of power and Weibull distributions. The survival function and quantile function of power
distribution are respectively given by

F̄(x) = 1 −
(

x
α

)β

0 ≤ x ≤ α; α, β > 0

and
Q1(u) = αu

1
β 0 ≤ u ≤ 1, α, β > 0. (4)

The survival function and quantile function of Weibull distribution are respectively given by

F̄(x) = exp
[
−

(
x
σ

)λ]
x > 0; λ, σ > 0

and
Q2(u) = σ(−log(1 − u))

1
λ 0 ≤ u ≤ 1, α, λ > 0 (5)

We now propose a new class of distributions defined by a quantile function, which is the sum of
quantile functions of power and Weibull distributions.

2. Power–Weibull (PW) quantile function

Let X and Y be two nonnegative random variables with distribution functions F(x) and G(x)
with quantile functions Q1(u) and Q2(u), respectively. Then

Q(u) = Q1(u) + Q2(u), (6)

is also a quantile function. We now introduce a class of distributions given by the quantile
function,

Q(u) = αu
1
β + σ(−log(1 − u))

1
λ 0 ≤ u ≤ 1, α, β, σ, λ > 0 (7)
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Thus Q(u) is the sum of (4) and (5). It is named as Power–Weibull (PW) quantile function. The
quantile density function is obtained as

q(u) =
αu

1
β −1

β
+

σ(−log(1 − u))
1
λ −1

λ(1 − u)
. (8)

For the proposed class of distribution, the density function f (x) can be written in terms of the
distribution function as

f (x) =
βλ(1 − F(x))

αλ(1 − F(x))F(x)
1
β −1

+ σβ(−log
1
λ −1(1 − F(x)))

. (9)

For all values of the parameters, the density is strictly decreasing in x and it tends to zero as x →
∞.
The quantile function (7) represents a family of distributions with a variety of shapes for its
probability density function. Plots of the density function for different combinations of parameters
are shown in figure 1, 2 and 3.

Figure 1: Plot of the density function for various values of λ , σ and β
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3. Members of the family

The proposed family of distributions (7) includes several well-known distributions for various
values of the parameters.

Case 1. α = 0, σ > 0.
Q(u) = σ(−log(1 − u))

1
λ (10)

is the quantile function of the Weibull distribution, which contains the exponential distribu-
tion with mean σ for λ = 1 and the Rayleigh distribution when λ = 2.

Case 2. σ = 0, α > 0, β > 0.

Q(u) = αu
1
β (11)

is the quantile function of the power distribution.

Case 3. α = 0, λ = 1, σ > 0.

Q(u) = αlog
(

1 − pu
1 − u

)
(12)

which is quantile function of exponential geometric distribution with p = 0 and α = −σ.

We can derive some well-known distributions from the proposed model by making use of various
transformations described in Gilchrist [2].

Case 4. Consider the power u-transformation T(u) = u
1
θ with α = 0. Then,

Q(u) = σ(−log(1 − u
1
θ ))

1
λ (13)

is the quantile function of exponentiated Weibull distribution. If λ = 1,

Q(u) = σ(−log(1 − u
1
θ )) (14)

is the quantile function of generalized exponential distribution.

Case 5. By reciprocal transformation with σ=0 then,

Q(u) =
1

Q(1 − u)
= σ(1 − u)−

1
α (15)

which is the quantile function of Pareto distribution with σ = 1
α and α = β.

4. Distributional characteristics

The quantile based measures of the distributional characteristics like location, dispersion,
skewness, and kurtosis are popular in statistical analysis. These measures are also useful for
estimating parameters of the model by matching population characteristics with corresponding
sample characteristics. For the model (7), we have,

Median = Q(
1
2
) = α(0.5)

1
β + σ(log(2))

1
λ . (16)

The inter-quartile-range, IQR is obtained as,

IQR = Q(
3
4
)− Q(

1
4
)

= α[0.75
1
β − 0.25

1
β ] + σ[(log(4))

1
λ − (−log(0.75))

1
λ ]. (17)
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The Galton’s coefficient of skewness, S is given by,

S =
Q( 3

4 ) + Q( 1
4 )− 2Median

IQR

=
α[0.75

1
β + 0.25

1
β − 2(0.5)

1
β ] + σ[(log4)

1
λ + (−log0.75)

1
λ − 2(log2)

1
λ ]

α[0.75
1
β − 0.25

1
β ] + σ[(log4)

1
λ − (−log0.75)

1
λ ]

(18)

and the Moor’s coefficient of kurtosis,

T =
Q( 7

8 )− Q( 5
8 ) + Q( 3

8 )− Q( 1
8 )

IQR

=
α(7

1
β − 5

1
β + 3

1
β − 1)8

−1
β + σ[log

1
λ 8 − log

1
λ (8/3) + log

1
λ (8/5)− log

1
λ (8/7)]

α[0.75
1
β − 0.25

1
β ] + σ[(log4)

1
λ − (−log0.75)

1
λ ]

. (19)

5. L-moments

The L-moments are often found to be more desirable than the conventional moments in
describing the characteristics of the distributions as well as for inference. A unified theory and
a systematic study on L-moments have been presented by Hosking [6]. The L-moments have
generally lower sampling variances and are robust against outliers.
The rth L moment is given by

Lr =
∫ 1

0

r−1

∑
k=0

(−1)r−1−k
(

r − 1
k

)(
r − 1 + k

k

)
ukQ(u)du (20)

For the model (7), the first L moment L1 is the mean of the distribution.

L1 =
∫ 1

0
Q(u)du =

αβ

1 + β
+ σΓ(

1
λ
+ 1) (21)

The second L-moment for the family is obtained as

L2 =
∫ 1

0
(2u − 1)Q(u)du =

αβ

1 + 3β + 2β2 + σΓ(
1
λ
+ 1)(1 − 2−

1
λ ) (22)

which is twice the mean differences of the population.
The third and fourth L-moments are obtained as

L3 =
∫ 1

0
(6u2 − 6u + 1)Q(u)du

=
αβ

β + 1
− 6αβ2

1 + 5β + 6β2 + σΓ(
1
λ
+ 1)(1 − 32−

1
λ + 23−

1
λ ) (23)

and

L4 =
∫ 1

0
(20u3 − 30u2 + 12u − 1)Q(u)du

=
20αβ

1 + 4β
− 30αβ

1 + 3β
+

12αβ

1 + 2β
− αβ

1 + β
+ σΓ(

1
λ
+ 1)(1 − 321− 1

λ + 103−
1
λ − 54−

1
λ ) (24)

The L-coefficient of variation (τ2), analogous to the coefficient of variation based on ordinary
moments is given by,

τ2 =
L2

L1
=

αβ
1+3β+2β2 + σΓ( 1

λ + 1)(1 − 2−
1
λ )

αβ
1+β + σΓ( 1

λ + 1)
. (25)
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L-coefficient of skewness (τ3) for the PW quantile function is obtained as

τ3 =
L3

L2

=

αβ
β+1 −

6αβ2

1+5β+6β2 + σΓ( 1
λ + 1)(1 − 32−

1
λ + 23−

1
λ )

αβ
1+3β+2β2 + σΓ( 1

λ + 1)(1 − 2−
1
λ )

. (26)

L-coefficient of kurtosis (τ4) for the PW quantile function is obtained as

τ4 =
L4

L3

=

20αβ
1+4β − 30αβ

1+3β + 12αβ
1+2β − αβ

1+β + σΓ( 1
λ + 1)(1 − 321− 1

λ + 103−
1
λ − 54−

1
λ )

αβ
β+1 −

6αβ2

1+5β+6β2 + σΓ( 1
λ + 1)(1 − 32−

1
λ + 23−

1
λ )

. (27)

6. Order statistics

If Xr:n is the rth order statistic in a random sample of size n, then the density function of Xr:n
can be written as

fr(x) =
1

B(r, n − r + 1)
f (x)Fr−1(x)(1 − F(x))n−r (28)

From (9), we have

fr(x) =
1

B(r, n − r + 1)
βλFr−1(x)(1 − F(x))n−r+1

αλ(1 − F(x))F(x)
1
β −1

+ σβ(−log
1
λ −1(1 − F(x)))

. (29)

Hence,

µr:n = E(Xr:n) =
∫

x fr(x)dx

=
1

B(r, n − r + 1)

∫ ∞

0
x

βλFr−1(x)(1 − F(x))n−r+1

αλ(1 − F(x))F(x)
1
β −1

+ σβ(−log
1
λ −1(1 − F(x)))

dx. (30)

In quantile terms, we have

E(Xr:n) =
1

B(r, n − r + 1)

∫ 1

0
Q(u)

βλur−1(1 − u)n−r+1

αλ(1 − u)u
1
β −1

+ σβ(−log
1
λ −1(1 − u))

du. (31)

For the class of distributions (7), the first-order statistic X1:n has the quantile function

Q1(u) = Q(1 − (1 − u)
1
n )

= α[1 − (1 − u)
1
n ]

1
β + σ[−log(1 − u)

1
n ]

1
λ , (32)

and the nth order statistic Xn:n has the quantile function

Qn(u) = Q(u
1
n )

= αu
1

nβ + σ(−log(1 − u
1
n ))

1
λ . (33)
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7. Hazard quantile function

One of the basic concepts employed for modeling and analysis of lifetime data is the hazard
rate. In a quantile setup, Nair and Sankaran [7] defined the hazard quantile function, which is
equivalent to the hazard rate. The hazard quantile function H(u) is defined as

H(u) = h(Q(u))) = (1 − u)−1 f Q(u) = [(1 − u)q(u)]−1. (34)

Thus H(u) can be interpreted as the conditional probability of failure of a unit in the next small
interval of time given the survival of the unit until 100(1 − u)% point of the distribution. Note
that H(u) uniquely determines the distribution using the identity,

Q(u) =
∫ u

0

dp
(1 − p)H(p)

. (35)

The hazard quantile functions of Power and Weibull distribution is given by

H1(u) = βα−1(1 − u)−1u1− 1
β (36)

and
H2(u) = λσ−1(−log(1 − u))1− 1

λ . (37)

Since the proposed class of distributions is the sum of quantile functions of power and Weibull
quantile functions, (34) and (35) give

1
H(u)

=
1

H1(u)
+

1
H2(u)

(38)

where H(u),H1(u) and H2(u) are the hazard quantile functions of the proposed class of distribu-
tions, power, and Weibull quantile functions, respectively.

For the PW quantile function (7), we have

H(u) =
1

β−1α(1 − u)u
1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1

(39)

with H(0) = ∞ and H(1) = 0. Plots of hazard quantile function for different values of parameters
are given in figure (2).
The shape of the hazard function is determined by the derivative of H(u), which is obtained as

H
′
(u) =

β−1αu
1
β −1

[1 + ( 1
u − 1)(1 − 1

β )] + λ−1σ(1 − 1
λ )(1 − u)−1(−log(1 − u))

1
λ −2

[β−1α(1 − u)u
1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1]2

. (40)

Since [β−1α(1− u)u
1
β −1

+ λ−1σ(−log(1− u))
1
λ −1]2 > 0. For all values of the parameters, the sign

of H
′
(u) depends only on

g(u) = β−1αu
1
β −1

[1 + (
1
u
− 1)(1 − 1

β
)] + λ−1σ(1 − 1

λ
)(1 − u)−1(−log(1 − u))

1
λ −2. (41)

The parameters α, σ being always > 0 do not affect the sign of the two terms in g(u). Now we
consider the following cases.

Case 1. o < β < 1 and o < λ < 1.
g(u) < 0 and distribution has an decreasing hazard rate (DHR).

Case 2. β = 1 and λ = 1.
g(u) = α and distribution has an increasing hazard rate (IHR).
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Figure 2: Plots of hazard quantile function
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Case 3. β = 1 and λ > 1.
g(u) > 0 and distribution has an increasing hazard rate (IHR).

Case 4. β > 1 and λ = 1.
The first term in g(u) is positive and second term is zero, so that g(u) > 0 and distribution
has an increasing hazard rate (IHR).

Case 5. β > 1 and λ > 1.
The first and second term in g(u) is positive, so that g(u) > 0 and distribution has an
increasing hazard rate (IHR).

Case 6. β = 1, 0 < λ < 1.
Distribution has an decreasing hazard rate (DHR).

Case 7. o < β < 1 and λ = 1.
H(u) attains a minimum at u0 = 1 − β and therefore H(u) is bathtub shaped.

For the remaining cases, ( o < β < 1, λ > 1) and (β > 1, 0 < λ < 1), one term in g(u) is positive
and the other is negative so that g(u) can be zero. From (40) and(41) we obtain the first derivative
of H(u),

H
′
(u) =

g(u)

[β−1α(1 − u)u
1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1]2

. (42)

For further analysis, we take the second derivative of H(u), the sign of H
′′
(u) depends on,

g
′
(u)

(
β−1α(1 − u)u

1
β −1

+ λ−1σ(−log(1 − u))
1
λ −1

)2

+ 2g(u)
(

β−1α(1 − u)u
1
β −1

+λ−1σ(−log(1 − u))
1
λ −1

)
g(u).

Let u0 be the solution of the equation g(u) = 0. Then the sign of H
′′
(u) at u0 depends on g

′
(u0).

Since u0 is a solution of g(u) = 0.

g
′
(u) = β−1α(

1
β
− 1)u

1
β −2

(
1 + (

1
u
− 1)(1 − 1

β
) + u−1

)
+ λ−1σ(

1
λ
− 1)(1 − u)−2

(−log(1 − u))
1
λ −2

(
1 − (

1
λ
− 2)(−log(1 − u))−1

)
.

Then,

g
′
(u0) = β−1α(

1
β
− 1)u

1
β −2
0

(
1 + (

1
u0

− 1)(1 − 1
β
) + u−1

0

)
+ λ−1σ(

1
λ
− 1)(1 − u0)

−2

(−log(1 − u0))
1
λ −2

(
1 − (

1
λ
− 2)(−log(1 − u0))

−1
)

. (43)

Case 8. 0 < β < 1 and λ > 1.
H(u) has an increasing hazard rate (IHR).

Case 9. β > 1 and 0 < λ < 1.
H(u) has an upside-down bathtub-shaped hazard quantile function.

The patterns of H(u) for various parameter values are summarized in table 1.
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Table 1: Behavior of the hazard quantile function for different regions of parameter space.

No. Parameter region Shape of hazard quantile function

1 o < β < 1 and o < λ < 1 DHR
2 β = 1 and λ = 1 IHR
3 β = 1 and λ > 1 IHR
4 β > 1 and λ = 1 IHR
5 β > 1 and λ > 1 IHR
6 β = 1, 0 < λ < 1 DHR
7 o < β < 1 and λ = 1 Bathtub
8 o < β < 1 and λ > 1 IHR
9 β > 1 and 0 < λ < 1 Upside-down Bathtub

8. Mean residual quantile function

Another concept used in reliability is that of residual life Xt = (X − t|X > t) with survival
function

F̄t(x) = F̄(t + x)/F̄(t), x ≥ 0, o < t < T.

The mean residual life function is then

m(t) = E(Xt) = [F̄(t)]−1
∫ ∞

t
F̄(x)dx.

Accordingly, the mean residual quantile function is defined by Nair and Sankaran [7] as

M(u) = mQ(u) = (1 − u)−1
∫ 1

u
(Q(t)− Q(u))dt (44)

which is the average remaining life beyond the 100(1 − u)% point of the distribution. For the
class of distributions (7), M(u) has the form

M(u) =
α(1 − u

1
β +1

)

(1 − u)( 1
β + 1)

− αu
1
β + σ(1 − u)−1Γ

( 1
λ
+ 1,−log(1 − u)

)
− σ(−log(1 − u))

1
λ . (45)

9. Residual variance quantile function

The quantile form of variance residual function, the residual variance quantile function is defined
as

V(u) = (1 − u)−1
∫ 1

u
Q2(p)dp − (M(u) + Q(u))2. (46)

In the above equation, the variance residual life function is obtained by letting Q(u) = x.
Nair and Sankaran [7] derived the relationship between M(u) and V(u) as

M2(u) = V(u)− (1 − u)V
′
(u) (47)

or

V(u) = (1 − u)−1
∫ 1

u
M2(p)dp. (48)

Since M(u) characterizes the distribution, from above equations it follows that V(u) also charac-
terizes the distribution.
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For the PW qantile function, residual variance quantile function is

V(u) =
1

1 − u

{
βα2(1 − u

2+β
β )

2 + β
+ σ2Γ(

2
λ
+ 1,−log(1 − u)) + 2ασ

∫ 1

u
p1/β

(−log(1 − p))1/λdp

}
−

{
α(1 − u

1
β +1

)

(1 − u)(1/β + 1)
+ σ(1 − u)−1Γ(

1
λ
+ 1,

− log(1 − u))

}2

(49)

10. Reversed hazard quantile function

The reversed hazard quantile function [8] is defined by

A(u) =
1

uq(u)
(50)

and it determines the distribution through the formula

Q(u) =
∫ u

0

1
pA(p)

dp. (51)

For power-Weibull distribution,

A(u) =
[αu

1
β

β
+

σu(−log(1 − u))
1
λ −1

λ(1 − u)

]−1
. (52)

11. Data Analysis

There are different methods for the estimation of parameters of the quantile function. The method
of percentiles, method of L-moments, method of minimum absolute deviation, method of least
squares, and method of maximum likelihood are commonly used techniques. To estimate the
parameters of (7), we use the method of maximum likelihood estimation procedure.

To illustrate the application of the proposed class of distributions we consider a real data
set reported in Zimmer et al. [15]. The data consist of times to first failure of 20 electric carts
used for internal transportation and delivery in a manufacturing company. The estimates of the
parameters are obtained using R software as,

α̂ = 0.421, β̂ = 2.088, σ̂ = 0.027 and λ̂ = 0.312.

To examine the adequacy of the model, we use chi-squared goodness of fit. The test gives the
p-value 0.082. This indicates the adequacy of proposed model for the given data set.

12. Summary and Conclusion

In this paper, we introduced a class of distributions (7), which is the sum of the quantile function
of the power and Weibull distributions known as Power-Weibull (PW) quantile function and its
graphical representation of density function is included. We have identified several well-known
distributions which are either the members of the proposed class of distributions and also through
suitable transformations such as Weibull distribution, power distribution, generalized exponential
distribution, etc. Various distributional characteristics and L-moments are discussed. The hazard
quantile function and its shape in various parameter region are analysed. Increasing, decreasing,
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bathtub and upside-down bathtub hazard quantile function are obtained. Mean residual quantile
function of PW quantile function was studied. Finally PW model is applied to a real life data set,
and parameters are estimated by using maximum likelihood estimation procedure and model
adequacy is checked by chi-squared goodness of fit test using the R software.

There are several properties and extensions for the PW quantile function not considered in this
article, such as parameter estimation using L-moments, stochastic orderings and generalization of
PW quantile function.
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Abstract 

 

This study presents a comprehensive investigation into the estimation of population variance for a 

study variable using Simple Random Sampling, with the incorporation of two auxiliary variables. To 

address the challenges of variance estimation in complex scenarios, a novel approach termed the 

"Proposed Generalized Exponential Ratio-cum-Product Estimator" is introduced. This innovative 

estimator belongs to a class of estimators that rely on exponential functions of the auxiliary variables, 

providing enhanced precision and efficiency in variance estimation. To thoroughly assess the 

performance of the proposed estimators, the research develops equations for both Mean Square Errors  

and Biases, unveiling their statistical properties. The study systematically explores the conditions 

under which these estimators demonstrate superior efficiency compared to traditional alternative 

estimators, thereby enabling researchers to identify contexts where their utilization is most beneficial. 

The empirical aspect of the research constitutes a significant contribution to the study's validity. 

Through empirical analysis, the proposed estimators are directly compared against the conventional 

Unbiased Sample Variance Estimator, showcasing their clear superiority in terms of efficiency. 

Furthermore, Mean Square Errors and Percent Relative Efficiency are calculated for all estimators 

and subjected to theoretical and empirical comparisons with existing estimation methods. These 

findings corroborate the advantageous attributes of the proposed estimator in real-world scenarios, 

reinforcing its practicality and reliability in various research domains.  Beyond methodological 

developments, this study also delves into the real-world implications and applications of the proposed 

estimators. It highlights the potential benefits of utilizing these estimators in situations where study 

variables exhibit intricate relationships with auxiliary variables, offering valuable insights into 

multifaceted data sets and multidimensional factors. Additionally, a comprehensive sensitivity 

analysis is undertaken to assess the robustness of the proposed estimators under varying assumptions 

and sampling schemes. The researchers' meticulous evaluation enhances the credibility of the 

proposed estimators and ensures their adaptability across diverse practical scenarios. Overall, this 

study's significance extends beyond statistical theory, presenting valuable practical implications for 

researchers and practitioners across different fields. Improved population variance estimation leads to 

enhanced decision-making, optimal resource allocation, and deeper insights into underlying 

phenomena. By introducing the proposed estimator and thoroughly examining its performance 

through rigorous theoretical and empirical analyses, this research lays a solid foundation for more 

robust and efficient variance estimation techniques. The insights gained from this study can reshape 

statistical practices, paving the way for advancements in diverse scientific disciplines and inspiring 

further knowledge exploration. 

 

Keywords: Exponential estimator, Auxiliary variable, Mean Square Error and 

Percent Relative Efficiency 
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I. Introduction 
 

In recent years, the use of sample surveys has gained popularity due to the practicality of 

overcoming logistical challenges associated with conducting comprehensive census surveys. This 

trend has led to the widespread adoption of estimators like the ratio, product, and regression 

estimators for efficiently estimating population parameters, particularly the mean of the variable of 

interest. These estimators capitalize on the inherent correlation between the study variable and 

auxiliary variables, either during the survey design or at the estimation stage, to yield accurate 

results while optimizing resources. The central focus of this research is to develop a novel 

modified exponential ratio estimator for the population mean. This estimator aims to address 

potential limitations of existing estimators and enhance the precision of estimates, as evaluated 

through mean squared error comparisons. By exploring alternative approaches and incorporating 

adjustments, the researchers anticipate achieving more reliable and efficient estimates of the 

population mean. 

Over the years, several scholars have made significant contributions to the field of survey 

estimation. Various authors have made numerous work for the estimation of population variance 

from time to time including  [14],[9] , [13], [8] [1],  [5], [11],[12],[15] and [10] have made important 

studies on this topic in the literature. Notably, [17] made pioneering strides by explicitly utilizing 

auxiliary information for estimation purposes, laying the foundation for the ratio estimator. 

Subsequently, [18] further advanced this concept by employing auxiliary information to refine 

estimations. 

When dealing with scenarios where the coefficient of correlation is negative between the study 

variable and auxiliary variables, [19] introduced the product-type estimator, which has proven to 

be valuable in specific contexts. Additionally, [20] proposed an innovative approach by combining 

multiple ratio estimators based on individual auxiliary variables positively correlated with the 

study variable. This technique allowed for greater accuracy in estimation. The product estimator 

was formalized by [21], providing a well-defined framework for its application. Furthermore, [22] 

delved into the complexities of ratio estimators involving two or more correlated variables, 

shedding light on new possibilities for refining estimation methods. The exponential type 

estimators of population mean were thoroughly investigated by [23] using auxiliary data, resulting 

in a comprehensive analysis of their performance and potential improvements. [24] took a unique 

approach by incorporating transformed auxiliary variables, which led to promising results in 

estimating the mean of the study character. The literature offers an array of other contributions in 

this area, including the works of [25], [26], [27], and [28], who introduced their respective 

estimators and demonstrated their efficacy in diverse sampling scenarios. Moreover, [29] and [30] 

took on the challenge of developing superior exponential type estimators by considering 

information from two altered auxiliary variables, further expanding the range of available 

estimation techniques. To gain a more comprehensive understanding of this topic, interested 

readers can refer to [31], which offers an in-depth exploration of various aspects of survey 

estimation. In recent times, [32], [33], and [34] have made notable contributions to this area of 

study, introducing novel ideas and methodologies that hold promise for advancing the field of 

survey estimation even further. 

In conclusion, this research endeavors to create a Generalized Ratio-cum-product estimator of 

population variance that builds upon the knowledge and advancements made by previous 

scholars. By harnessing the power of auxiliary information and exploring innovative avenues, the 

researchers aim to provide an enhanced and efficient approach to estimating the population mean 

and contributing to the growing body of knowledge in survey estimation techniques. 

.  

Consider a population of size N. Let y and x be the variable of interest and the Auxiliary variables 

respectively. 

The usual unbiased variance estimator is, 
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II. Proposed Estimator 

 
We propose the generalized exponential ratio-cum product estimator following [16], 
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where  is a suitable constant to minimize the ( )*tMSE . 
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Special cases: 

i. If 1= , we get exponential ratio type estimator. 

ii. If 1−= , we get exponential product type estimator. 

To get the bias and MSE 
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After solving we get the MSE given as 
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To get minimum ( )*tMSE  differentiating above equation with respect to  , 
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Which coincides with the MSE of the regression estimator. 

 

III. Efficiency Comparison 
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All the above conditions are always satisfied.  
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IV. Numerical Illustration 
 

For empirical study three data sets are given as: 

The Population I has been taken from [7] , Population II from [3] and Population III from [4]. 

 

Table 1: Descriptive Statistics of the populations 

Population I Population II Population III 

106=N  100=N  278=N  

20=n  10=n  30=n  

82.0=  6500.0=  7213.0=  

25.64=yS  6595.14=yS  4571.56=yS  

89.491=xS  5323.7=xS  6747.40=xS  

( ) 71.252 =x  ( ) 2387.22 =x  ( ) 8898.382 =x  

( ) 13.802 =y  ( ) 3523.22 =y  ( ) 8969.252 =y  

30.3322 =  5432.122 =  8142.2622 =  

 

Table 2: Results obtained for different estimators using above populations 

Population Estimators MSE PRE 

 

 

 

Population I 

0t  67,423,045.30 100 

1t  33,431,595.28 201.66 

2t  45164775.33 149.28 

*t  314489.80 214.28 

 

Population II 
0t              6245.40 100 

1t  6948.36 89.87 

2t  5166.55 120.88 

*t  5145.31 121 

 

Population III 
0t  8431372.53 100 

1t  82660.52 102 

2t  68547.74              123 

*t  35575.41                237 

 

IV. Conclusion 

 
In the realm of survey sampling, a novel approach called the Generalized Exponential Ratio-Cum-

Product Estimator (GERPE) for sampling variance in Simple Random Sampling (SRS) has been 

introduced. This method offers a more robust and efficient means of estimating sampling variance 

as compared to existing techniques discussed in the literature. The crux of GERPE lies in its ability 

to strike a balance between ratio and product estimators, leading to enhanced precision in variance 

estimation. Remarkably, when GERPE is operating at its optimal settings, its Mean Squared Error 

(MSE) attains the same value as that of the conventional regression estimator. This is a significant 

advantage because the usual regression estimator has been proven to exhibit lower MSE compared 

to other existing estimators. Consequently, the application of GERPE not only outperforms the 

methods previously documented but also aligns itself with the performance level of the superior 

regression estimator, thus promising more accurate and reliable variance estimates in SRS 
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scenarios. This innovative approach opens up new avenues for improving the precision and 

efficiency of sampling variance estimation in the field of survey sampling and can be a valuable 

addition to the statistical toolbox of researchers and practitioners alike. 
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manuscript. 
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Abstract

In this paper we introduce the Exponential-Pareto mixture distribution. This distribution is associated as
mixture of light and heavy-tailed data which arise in a wide class applications including risk analysis.
Characteristic function, failure rate function, mean excess, conditional excess distribution are derived.
It is proved that the limiting distribution of maxima among n values of rv’s with Exponential-Pareto
distribution has Frechet-type form. The maximal likelihood estimation of parameters is discussed. The
upper bound of uniform distance between Exponential-Pareto mixture and Pareto distributions is derived.

Keywords: finite mixture, Exponential-Pareto distribution

1. Introduction

Finite mixture models are often used in the modelling time to failure of the systems in the
competing risk situations. The exponential, Weibull, lognormal and Pareto distributions occupy
a central role because of their demonstrated usefulness in the analysis of lifetime data and in
problems related to the modelling of ageing or failure processes. Finite mixtures are also useful
in medical and biology research, in artificial neural networks and robustness studies, income
analysis [1].

In lifetime data analysis, the population of lifetimes usually can be decomposed into sub-
populations. Moreover, The data may be actually generated by quite different distributions, in
particular, distributions with the so-called light or heavy tails. For example, an insurance portfolio
may include both many small (light) claims and also a few large (heavy) claims. Hence the claims
distribution can be modeled as a finite mixture distributions with different tail behavior. [2] In this
paper we propose to consider a mixture of exponential distribution and the Pareto distribution to
model such situations since the Pareto distribution relates to the class of long-tailed distributions,
while the exponential distribution is light-tailed.

The exponential distribution appeared suitable for modelling the lifetimes of various types of
manufactured items. The Pareto model is applied in many fields, for example, in income analysis,
in signal processing for simulation of X-band maritime surveillance radar clutter [3].

The mixtures of light and heavy-tailed distribution can be useful in the simulation of IoT
traffic, because, as it is known, the smart-home and smart-city environments can generate both
short and large-sized packets. These environments involve several sensors dedicated to specific
tasks, such as monitoring systems or collecting cyber-physical values (temperature, humidity,
etc.). Smart cameras generate continuous data flows with large-sized packets, while smart plugs
generate small-sized packets at a slow pace [4].

Various issues of the Exponential-Pareto mixture were considered by authors in the papers
[5, 6, 7] in relation to queueing systems.
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The main contribution of the paper is to introduce the Exponential-Pareto mixture distribution.
It is the two-component mixture of exponential and Pareto distributions, which is used to
approximate mixed data with light and heavy tails.

The paper is organized as follows. The moments and characterization function are derived
in Section 2. The subexponentiality of the distribution is proved in Section 2. In Section 4 we
discuss the properties of the conditional excess distribution. In Section 5 the extreme behavior
of the Exponential-Pareto mixture distribution is discussed. In Section 6 We apply the known
upper bound for Kullback-Leibler divergence between exponential and Pareto distributions
[3, 8] to derive the convergence of uniform distance between Exponential-Pareto mixture and
exponential distributions to zero as shape parameter goes to infinity. The estimation of parameters
by log-likelihood maximization is discussed in Section 7..

2. Definition and moments of Exponential-Pareto mixture distribution

Definition 1. We say that r.v. Z has an Exponential-Pareto mixture distribution if its distribution
function (df) has the following form:

FZ(x) = 1 − pe−λx − (1 − p)
(

x0

x0 + x

)α

, λ > 0, α > 0, x0 > 0, x ≥ 0, (1)

where 0 < p < 1 is mixing proportion.

Equation (1) shows that r.v. Z coincides with exponential distribution with the probability p,
and with Pareto distribution with the probability 1 − p.The above can be reformulated as follows.
Suppose that the random variables X, Y with distribution functions FX, FY, respectively, are
independent, and let I be indicator function independent of X, Y, taking value 1 with probability
p (value 0 with probability 1 − p). Then it is said that the variable

Z = I X + (1 − I)Y (2)

has two-component mixture distribution. If X has exponential distribution Exp(λ) and Y has Pareto
distribution Pareto(α, x0), then df of Z is given by (1).

The density function of Exponential-Pareto mixture distribution has form

fZ(x) = pλe−λx + (1 − p)
αxα

o
(x0 + x)α+1 .

and has the following limits

lim
x→∞

fZ(x) = 0;

lim
x→0

fZ(x) = pλ +
(1 − p)α

x0
.

Figure 1 depicts cdf of Exponential-Pareto mixture distribution with parameters x0 = 0.5, λ =
2, p = 0.5 and varied α = 0.5; 1.5; 2.5.

Lemma 1. Let rv Z follow the Exponential-Pareto mixture distribution, then its characteristic
function is given by

ϕZ(t) =
λα

λ − ipt
e−i(1−p)tx0

∞

∑
k=0

(i(1 − p)tx0)
k

k!(α − k)
(3)

Proof. Substitute df (1) into the formula for characteristic function ϕX(t) of rv Z

ϕZ(t) = eit(pX + (1 − p)Y) = epitXe(1 − p)itY = ϕX(pt)ϕY((1 − p)t).
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Figure 1: Cumulative distribution function (cdf) of Exponential-Pareto distribution.

where the characteristic function of first component X is given by

ϕX(t) =
∞∫

0

eitxλe−λxdx =
λ

λ − it
.

The characteristic function of Pareto distribution can be calculated using the expansion of the
exponential function in a Taylor series in the vicinity of zero

ϕY(t) =

∞∫
0

eitxαxα
0(x0 + x)−α−1dx

= e−itx0

∞∫
x0

eitxxα
0 αx−α−1dx

= e−itx0 xα
0 α

∞∫
x0

∞

∑
k=0

(itx)k

k!
x−α−1dx

= e−itx0 xα
0 α

∞

∑
k=0

(it)k

k!

∞∫
x0

xk−α−1dx

= e−itx0 α
∞

∑
k=0

(itx0)
k

k!(α − k)
.

Hence, the characteristic function of Exponential-Pareto mixture distribution takes form
(3). ■

Lemma 2. Let rv Z follow the Exponential-Pareto mixture distribution, then its moments are
given by

EZk = Γ(1 + k)
( p

λ

)k
+

Γ(1 + k)xk
0(1 − p)k

Γ(α)

k−1

∑
j=0

(
p

x0λ(1 − p)

)j
Γ(α − k + j), α > k,

RT&A, No 4 (76) 
Volume 18, December 2023 

634



Irina Peshkova
EXPONENTIAL PARETO MIXTURE

where Γ(z) =
∞∫
0

tz−1e−tdt is Gamma function.

The proof obviously follows from the well-known relation between moments and characteri-
zation function

i−k dkϕZ(t)
dtk |t=0 = EZk,

In particular, the mean is

EZ =
p
λ
+

(1 − p)x0

α − 1
, α > 1,

the second moment is

EZ2 =
2p2

λ2 +
2p(1 − p)x0

λ(α − 1)
+

2(1 − p)2x2
0

(α − 1)(α − 2)
, α > 2,

and variance is

VarZ =
p2

λ2 +
(1 − p)2x2

0α

(α − 1)2(α − 2)
, α > 2.

Note that moments of order k exist only for α > k.

3. failure rate function and subexponentiality

Consider the equilibrium df Fe of rv Z with df (1)

Fe(x) =
1

EZ

x∫
0

FZ(t)dt = 1 − 1
EZ

(
pe−λx

λ
+

(1 − p)xα
0

(α − 1)(x0 + x)α−1

)
, (4)

where F(x) = 1 − F(x) is the tail of df F. We emphasize that expression (4) exists if parameter
α > 1.

We calculate the failure rate function of the Exponential-Pareto mixture distribution

r(x) :=
fZ(x)
FZ(x)

=
p λa(x) + (1 − p) α/(x0 + x)

p a(x) + (1 − p)
, (5)

where

a(x) = e−λx
(

1 +
x
x0

)α

. (6)

is an auxiliary function.
Note that

r(x) −→ 0 as x → ∞,

which is typical for long-tailed distributions. Recall that df FZ is long-tailed, if for each fixed x > 0
the following relation holds

lim
u→∞

P(X > u + x|X > u) = 1.

This asymptotic property means, that for each fixed x > 0, the random variable Z exceeds the
threshold x + u with probability approaching 1 as u increasing. Long-tailed distributions have
asymptotically decaying to zero failure rate functions (not necessary monotone) [9]. Below
we prove that Exponential-Pareto distribution belongs to a subclass of long-tailed distribution –
so-called subexponential distributions.

Note, that the failure rate function has the same limit as density function as x → 0,

rZ(x) −→ pλ + (1 − p)
α

x0
as x → 0.
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Provided that the following relation between the parameters of the mixture is satisfied
λ ≥ α/x0, failure rate function is bounded from above, rZ(x) ≤ λ.

To verify the monotonicity of the failure rate function we calculate its derivative

drZ(x)
dx

= −(1 − p)
pa(x)(rX(x)− rY(x))2 + r2

Y(x)/α(pa(x) + (1 − p))
(pa(x) + (1 − p))2 < 0,

Since drZ(x)
dx is negative for all x, then rZ(x) decreases monotonically and, therefore, the Exponential-

Pareto distribution belongs to the class of distributions with decreasing failure rate functions.
The following lemma states that the distribution (1) and the equilibrium distribution (4) are

both belong to the class of so-called subexponential distributions. Recall that df FZ is called
subexponential [9] if

lim
x→∞

F∗n
Z (x)

nFZ(x)
= 1 for all n ≥ 2,

where F∗n
Z (x) is the tail of n-convolution of the distribution FZ(x) with itself.

To verify that the Exponential-Pareto mixture distribution FZ and the corresponding equi-
librium distribution Fe (with parameter α > 1) both belong to the class of the subexponential
distributions, it is enough [9] to verify that FZ belongs to a special subclass S∗ of the subexponen-
tial distributions.

Lemma 3. The Exponential-Pareto mixture distribution with df defined by expression (1) (with
parameter α > 1) belongs to a special subclass S∗ of the subexponential distributions.

Proof. One of the following criteria for df to belong S∗ can be applied [9].

1. If
lim sup

x→∞
xr(x) < ∞, (7)

then FZ ∈ S∗.

2. Suppose that
lim

x→∞
r(x) = 0. (8)

Then

FZ ∈ S∗ ⇐⇒ lim
x→∞

x∫
0

eyr(x)FZ(y)dy = EZ. (9)

It is easy to check that for Exponential-Pareto mixture distribution

r(x) −→ 0 as x → ∞ and xr(x) −→ α as x → ∞.

Moreover,
x∫

0

eyr(x)B(y)dy = − pe−y(λ−r(x))

λ − r(x)

∣∣∣∣x

0
+ (1 − p)

(x0r(x))α

r(x)
e−x0r(x) ·

· [γ(−α + 1, x0r(x) + xr(x))− γ(−α + 1, x0r(x))] −→

−→ p
λ
+

(1 − p)x0

α − 1
= EZ as x → ∞

since
γ(−α + 1, x0r(x) + xr(x)) −→ γ(−α, α) as x → ∞

and

γ(−α + 1, x0r(x)) ∼ (xr(x))−α+1

−α + 1
as x → ∞,

where γ(α, x) =
∫ x

0 yα−1e−ydy is the lower incomplete gamma function.
Hence conditions (7)-(9) are satisfied and Exponential-Pareto distribution belongs to subclass

S∗. ■
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4. Conditional Excess Distribution

In this section we consider conditional excess distribution of Exponential-Pareto mixture distribu-
tion.

On the event {Z > u}, define the excess Zu := Z − u, which has the conditional excess
distribution over the threshold u [10]

P(Zu ≤ x) = P(Z − u ≤ x|Z > u), u ≥ 0, x ≥ 0. (10)

Let Xu, Yu be conditional excesses of rv’s X and Y with conditional excess distributions
defined by (10), relatively. In the case of Exponential-Pareto mixture distribution expression for
the tail of conditional excess distribution becomes

FZu(x) =
FZ(x + u)

FZ(u)
=

pe−λ(x + u) + (1 − p)
( x0

x0 + x + u
)α

pe−λu + (1 − p)
( x0

x0 + u
)α .

Note that rv Zu is not a mixture of rv’s Xu and Yu, namely Zu ̸= IXu + (1 − I)Yu.
The expected value of conditional excess is given by the mean excess function, defined as [10]

eZ(u) = EZu =

∞∫
0

FZ(x + u)
FZ(u)

dx =

∞∫
u

FZ(x)dx

FZ(u)

=

∞∫
u
(pe−λx + (1 − p)xα

0(x0 + x)−α)dx

pe−λx + (1 − p)xα
0(x0 + x)−α

=
pe−λu(α − 1)(x0 + u)α + λ(1 − p)xα

0(x0 + u)
λp(α − 1)(x0 + u)αe−λu + λ(1 − p)(α − 1)xα

0
. α > 1.

Note that the mean excess function is an increasing function, eZ(u) → ∞ as u → ∞. The
Failure rate function of Zu is given by

rZu(x) =
p rXu(x)a(x + u) + (1 − p) rYu(x + u)

p a(x + u) + (1 − p)
= rZ(x + u), (11)

where a(x) is defined by expression (6).
Now we derive the condition on the parameters of the Exponential-Pareto mixture distribution

that guarantees the mixture to be bounded by its components in terms of the failure rate ordering.
To prove it we need the following lemma.

Lemma 4. Let rX , rY be the failure rates of FX , FY, respectively. Then if

sup
x≥0

rX(x) < ∞ and inf
x≥0

rY(x) > 0 (12)

and
sup
x≥0

rX(x) ≤ inf
x≥0

rY(x), (13)

then
X ≥

r
Y,

where notation X ≥
r

Y means that X is more than Y in failure rate, i.e. rX(x) ≤ rY(x) for all x.

RT&A, No 4 (76) 
Volume 18, December 2023 

637



Irina Peshkova
EXPONENTIAL PARETO MIXTURE

Theorem 1. Let rv Z have Exponential-Pareto mixture distribution with df defined by (1). If the
following inequality holds

α

x0
≤ λ, (14)

then

X ≤
r

Z ≤
r

Y, (15)

Xu ≤
r

Zu ≤
r

Yu, (16)

eX(u) ≤ eZ(u) ≤ eY(u) (17)

Proof. To prove the theorem, it suffices to find conditions under which the relations

rY(x) ≤ rZ(x) ≤ rX(x), (18)

are satisfied. From lemma 4 for this it is sufficient that the following relation be satisfied:

rY(x) ≤ sup
x≥0

rY(x) = rY(0) =
α

x0
≤ rX(x) = λ. (19)

Inequality (19) can be rewrite in form (14) whence it follows (15).
From statement 2.1 in [11] it follows that if rv’s are ordered in failure rate, then their conditional

excesses are ordered in failure rate too, that proves the statement (16).
Now we calculate the mean excess functions for rv’s X and Y. Easy to check, that for

exponential distribution mean excess function is equal to mathematical expectation, eX(u) =
EX = 1/λ. For Pareto distribution we have

eY(u) =
x0 + u
α − 1

.

Obviously, if the condition of the theorem (14) is fulfilled, then inequality

λ ≥ α

x0
≥ α − 1

x0 + u

holds and
1
λ
≤

pe−λu(α − 1)(x0 + u)α + λ(1 − p)xα
0(x0 + u)

λp(α − 1)(x0 + u)αe−λu + λ(1 − p)(α − 1)xα
0
≤ x0 + u

α − 1
,

that proves the relation (17) of the theorem. ■
Figure 2 demonstrates the failure rate functions of rv’s X, Y, Z, where λ = 1, α = 0.5, x0 = 0.6.

It can be seen from the graph that, for the given parameters, the failure rate functions are ordered
in accordance with the relation (18), hence it follows from Theorem 1 that rv’s are ordered in
accordance with (17).

Figure 3 shows mean excess functions of rv’s X, Y, Z with λ = 5, α = 2.1, x0 = 0.5, p = 0.5. It
can be seen from the graph that, for the given parameters, these functions are ordered as in (17).

5. Extreme behavior of the Exponential-Pareto distribution

Let {Xn, n ≥ 1} be a family of the independent and identically distributed (iid) rv’s with a
distribution function F. Then the distribution of Mn = max(X1, . . . , Xn) satisfies P(Mn ≤ x) =
Fn(x).

Suppose there exists a sequence of real constants bn, an > 0, n ≥ 1 such that

lim
n→∞

P((Mn − bn)/an ≤ x) = G(x), n → ∞, (20)

for every continuity point x of G, and G a nondegenerate distribution function. Then G(x) is
one of the three types of extreme value distributions: Gumbel, Frechet or reversed Weibull [12].
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Figure 2: The failure rate function of distributions Exp(1), Pareto(0.5; 0.6) and mixture Exp − Pareto(1; 0.5; 0.6; p)
with different mixing proportions p.

Figure 3: Mean excess functions of distributions Exp(5), Pareto(2.1; 0.5) and mixture Exp− Pareto(5; 2.1; 0.5; 0.5).

The class of extreme value distributions (which combines all three types) is Gη(cx + d) with real
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c > 0, d, where

Gη(x) =


e−(1 + ηx)−1/η

, η ̸= 0, 1 + ηx > 0;

e−e−x
, η = 0.

It is easy to check that the first component of Exponential-Pareto mixture distribution is in the
maximum domain of attraction (MDA) of the Gumbel law, while the second is in MDA of the
Frechet law.

For given 0 ≤ τ ≤ ∞ and a sequence {un, n ≥ 1} of real numbers the following are equivalent
[10]

nF(un) → τ as n → ∞ (21)

and
P(Mn ≤ un) → e−τ as n → ∞. (22)

If condition (20) is satisfied, then convergence (22) is preserved for any linear normalizing
sequence un(x) = anx + bn, n ≥ 1 and expression (22) becomes

P(Mn ≤ un(x)) → τ(x),

where a concrete form of the function τ(x) depends on the type of the limiting distribution.

Theorem 2. Let the sequence of independent rv’s X1, . . . , Xn have Exponential-Pareto mixture
distribution with df defined by (1). Define Mn = max(X1, . . . , Xn) is maxima among n values of
sequence. Then (Mn − bn)/an ∈ MDA(Φα), where

an = x0n1/α, bn = −x0. (23)

Proof. First we find τ(x) substituting un(x) = x0n1/α x − x0 into the relation (21):

nF(un(x)) = n
[

pe−λun(x) +
(1 − p)xα

0
(x0 + un(x))α

]
= n

[
pe−λun(x) +

(1 − p)xα
0

(x0 n1/α x))α

]
=

n(1 − p)x−α

n

[
p n e−λun(x)xα

1 − p
+ 1

]
−→ (1 − p)x−α

since un(x) → ∞ and n e−λun(x) → 0 as n → ∞. In accordance with (22) we get the following
asymptotic distribution:

P(Mn ≤ un(x)) → e−(1−p)x−α
as n → ∞, (24)

that is Frechet distribution. ■

6. Uniform distance and Kullback-Leibler divergence

The uniform distance between two distributions FX and FY [13],

∆(FX , FY) = sup
x

|FX(x)− FY(x)|, (25)

is a widely used probability metric in sensitivity analysis [14].
It follows from the Pinsker-Csiszar Inequality [3] that uniform distance is bounded by Kullback-

Leibler divergence, namely
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∆(FX , FY) ≤
√

2DKL(X||Y), (26)

where

DKL(X||Y) =
∞∫

0

fX(x) log
(

fX(x)
fY(x)

)
dx (27)

is Kullback-Leibler divergence.
It is shown in [3] that the minimum divergence between Exponential and Pareto distribution

is reached at λ = α−1
x0

and

DKL(Y||X)min ≤ 1
α(α − 1).

(28)

Figure 4: Cumulative distribution functions of Exponential, Pareto and Exponential-Pareto distributions with different
α, λ, and x0 = 1, p = 0.5

Clearly if the Kullback-Leibler divergence is close to zero, the uniform distance inherits this
and thus implies that Exponential and Pareto distribution are close. We apply this to estimate the
uniform distance between the Exponential-Pareto mixture and the Pareto distributions (for case
α > 1).
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∆(FZ, FY) = sup
x

|pFX(x) + (1 − p)FY(x)− FY(x)| = sup
x

|pFX(x)− pFY(x)|

= p∆(FX , FY) ≤ p
√

2DKL(Y||X) ≤
√

2p√
α(α − 1)

. (29)

The last inequality demonstrates the convergence rate of ∆(FZ, FY) to zero as α → ∞. We will get
the same effect by approximating Pareto distribution via Exponential distribution as α → ∞ [3].
Let

λ =
α + oα(1)

x0
, (30)

where oα(1) → 0 as α → ∞, then

FY(x) = lim
α→∞

(
1 +

λx
α(1 + oα(1))

)−α

= e−λx = FX(x). (31)

The discussions above allow us to formulate the following lemma about approximation mixture
by Exponential distribution for large α.

Lemma 5. Let df FZ(x) has form (1), then

FZ(x) → FX(x) as α → ∞, for all x ≥ 0,

where FX(x) = 1 − e−λx, x ≥ 0.

Figure 4 demonstrates results of Exponential, Pareto and Exponential-Pareto mixture dis-
tributions with x0 = 1, p = 0.5, a) α = 1.5, λ = 2.5, b) α = 2.5, λ = 3.5, c) α = 10, λ = 11, d)
α = 30, λ = 31 for n = 1000 sample size. As expected, Kolmogorov-Smirnov test confirms that
data sets from Exponential-Pareto mixture and Pareto distributions are homogeneous only for the
case d) α = 30. The uniform distance ∆(FZ, FY) is 0.79, 0.34, 0.074, 0.012, for cases a)-d), relatively.

The upper bound for uniform distance
√

2p√
α(α−1)

defined by relation (29) is 0.81, 0.36, 0.074, 0.023,

relatively.

7. Parameters estimation

In this section we discuss the estimating the parameters of Exponential-Pareto mixture distribution
by the method of moments and via maximization of log-likelihood function.

The method of moments gives the following estimates of the parameters α and λ, expressed
in terms of the parameter x0:

α =
2(1 − p)2x2

0 − 2(1 − p)x0Z
S2

Z − (Z)2
+ 1;

λ =
2p(1 − p)x0 − 2pZ

2(1 − p)x0 − Z2
,

where Z – sample mean, Z2 – sample second moment, S2
Z – sample variance of random sample

x!, . . . , xn from Exponential-Pareto mixture distribution. As x0, it is possible to choose the first
order statistic of random sample x!, . . . , xn.

Let x = (x1, . . . , xk) be a realization of rv with Exponential-Pareto mixture distribution. Then
likelihood function can be written as

L(x, λ, x0, α) =
n

∏
k=1

(pλe−λxk + (1 − p)αxα
0(x0 + xk)

−α−1).
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The log likelihood function is given by

l(x, λ, x0, α) =
n

∑
k=1

log(pλe−λxk + (1 − p)αxα
0(x0 + xk)

−α−1),

hence, the derivatives satisfy the following equations

∂l
∂λ

= −pλ
n

∑
k=1

xk
yk

e−λxk ;

∂l
∂x0

= (1 − p)αxα−1
0

n

∑
k=1

x0 + αxk
yk(x0 + xk)α+2 ;

∂l
∂α

= (1 − p)xα
0(1 − α log(1 + 1/α))

n

∑
k=1

1
yk(x0 + xk)1+α

;

∂l
∂p

= λ
n

∑
k=1

e−λxk

yk
− αxα

0

n

∑
k=1

1
yk(x0 + xk)1+α

,

where yk = pλe−λxk + (1 − p)αxα
0(x0 + xk)

−α−1.
Setting the last equations equal to zero, the numerical maximum likelihood estimates of

α, x0, λ can be obtained by standard numerical methods like Newton Raphson method. The EM
algorithm can be applied for iterative calculation of maximum likelihood estimates. Denote

gk1 =
p1 fX(xk|λ)

p1 fX(xk|λ) + p2 fY(xk|x0, α)
, gk2 =

p2 fY(xk|x0, α)

p1 fX(xk|λ) + p2 fY(xk|x0, α)
,

where p1 = p, p2 = 1 − p. Then maximization by parameters of

n

∑
k=1

(gk1(log p1 + log fX(xk|λ)) + gk2(log p2 + log fY(xk|x0, α)) → max

leads to the following relations

pj =
n

∑
k=1

gkj/n, j = 1, 2,

λ =

n
∑

k=1
gk1

n
∑

k=1
gk1xk

,

α =

n
∑

k=1
gk2

n
∑

k=1
gk2 log(zk/x0)

,

where zk = xk + x0 and parameter x0 can be obtained from the equality

n
∑

k=1
gk2

n
∑

k=1
gk2/zk

=

n
∑

k=1
gk2

n
∑

k=1
gk2 log(zk/x0)

.

Table 1 demonstrates the results of identification of the distribution’s parameters of the request
processing time for web server ’dots.center’ for different sample size of data. The web server
processes industrial Internet data related to fuel consumption and operation of vessel equipment.
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Parameters of Exponential-Pareto distribution

sample size 102 103 104 105 106

p 0.500 0.450 0.425 0.245 0.207

α 3.37 2.43 2.62 2.48 2.28

x0 0.41 0.40 0.36 0.38 0.36

λ 6.45 6.71 6.67 6.70 6.47

MSE 0.070 0.037 0.017 0.240 0.370

Table 1: The parameters of Exponential-Pareto distribution for the of the request processing time.

8. Conclusion

In this paper we introduced the Exponential-Pareto mixture distribution. Characteristic function,
failure rate function, mean excess, conditional excess distribution are derived. It is proved that this
distribution belong to the subexponential distributions. Under condition on parameters λ ≥ α/x0
Exponential, Exponential-Pareto mixture and Pareto distributions are ordered in failure rate, as
well as conditional excesses and mean excesses. It is proved that the limiting distribution of
maxima among n values of rv’s with Exponential-Pareto distribution has Frechet-type form. The
upper bound of uniform distance between Exponential-Pareto mixture and Pareto distributions is
derived. The maximal likelihood estimates for parameters are given.
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Abstract 

The reliability study of such incredibly reliable items is inappropriate for the use of failure time data 

analysis and testing methodologies. More trustworthy information can be obtained from 

degradation data than from standard censored failure-time data, especially in cases where few or no 

failures are anticipated. The market for lighting has given a lot of attention to high-power white 

light emitting diodes (HPWLEDs). But as one of the more dependable electronic goods, it may not 

be expected to fail in either a traditional or even an accelerated life test. DDDM, or data-driven 

degradation methodology, is used in this research. Using data on lumen maintenance gathered from 

the IES LM-80-08 lumen maintenance test standard and based on the general degradation path 

model, the dependability of HPWLED was predicted. Testing such devices in typical working 

situations, and occasionally even under worse conditions, is difficult enough without trying to 

collect an adequate amount of time-to-failure data. Modern items are made with superb quality and 

high reliability in mind. Some safety-critical parts and systems are even made to last for an 

incredibly long time in order to prevent the disastrous effects of probable breakdowns. A cumulative 

damage model based on stochastic degradation processes has been developed in this paper. A 

suitable numerical representation is used to support the analytical findings. As a result, the 

degradation analysis approach has been developed to address dependability modeling issues using 

data on product degradation gleaned from historical records or degradation testing. 

Keywords: Reliability, Lumen Maintenance Data, Degradation Data, High-Power 

White Light, Failure-Time, Highly Reliable Products 

I. Introduction

The present makers face solid strain to foster new, higher innovation items in record time, 

while further developing efficiency, item field unwavering quality what's more, by and large 

quality. This has spurred the advancement of techniques like simultaneous designing and 

energized more extensive utilization of planned tests for item and interaction improvement. The 
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necessities for higher unwavering quality have expanded the requirement for more forthright 

testing of materials, parts and frameworks. Engineers in the assembling enterprises have utilized 

accelerated test (AT) tests for a long time. The reason for AT tests is to secure dependability data 

rapidly. Test unit of a material part of subsystem or whole frameworks are exposed to higher than 

normal degrees of one or then again additional speeding up factors like temperature or stress. 

Then, at that point, the AT results are utilized to foresee life of the units at use conditions. The 

extrapolation is normally legitimate (accurately or erroneously) based on genuinely roused models 

or a blend of experimental model fitting with an adequate measure of past involvement with 

testing comparative units. The need to extrapolate in both time and the speeding up factors by and 

large requires the utilization of completely parametric models [16]. Analysts have made significant 

commitments in the improvement of suitable stochastic models for AT information [typically a 

dispersion for the reaction and relapse connections between the boundaries of this appropriation 

and the speeding up variable(s)], measurable strategies for AT arranging (decision of speeding up 

factor levels and allotment of accessible test units to those levels) and strategies for assessment of 

reasonable dependability measurements. This paper gives a survey of a considerable lot of the AT 

models that have been utilized effectively around here. 

Sped up life tests are usually utilized in item configuration processes. Since there is restricted 

opportunity to send off new items, engineers utilize sped up tests to acquire required data on the 

unwavering quality by raising the levels of specific speed increase factors like temperature, 

voltage, dampness, stress, and strain. For exceptionally solid present day items, it frequently 

requires substantially more investment to acquire lifetime and debasement information under 

common use conditions, and this expects one to utilize sped up tests [4]. Sped up tests open the 

items to more noteworthy ecological feelings of anxiety so we can get lifetime and corruption 

estimations in an additional convenient Procedures for playing out an Accelerated Life Testing 

Plans(ALT) incorporate steady pressure, step pressure, and slope pressure, among others. 

Assessment of the fluctuation of an assessor of a log area scale dispersion quantile with shifting 

pressure has numerous pragmatic applications [20]. It is important to foster helpful, precise 

likelihood models for derivations on the lifetime of the gadgets or frameworks under study. Such 

models ought to sensibly consolidate the speed increase factors and estimations of debasement as 

well as any real disappointments noticed. In this manner, in many designing dependability tests, 

proportions of debasement or wear toward disappointment can frequently be seen throughout 

some stretch of time before disappointment happens. Since the debasement values give extra data 

past that given by the disappointment perceptions, the two arrangements of perceptions should be 

thought about while doing derivation on the factual boundaries of the item or framework lifetime 

circulations as examined [24]. The target of the current paper is to expand existing outcomes by 

creating general disappointment models in view of Stochastic cycles for corruption which 

consolidate a few speeding up factors, and utilize both debasement estimations, and various 

decisions of test-feelings of anxiety and test length can bring about various accuracy of the gauge 

of the dependability of the item at typical use conditions. We want to find a test plan that gives 

least fluctuation of the most extreme probability gauges (MLEs) of the obscure area and scale 

boundaries of the log-area scale group of disseminations at indicated feelings of anxiety by 

reasonably deciding the test length [8]. 
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II. Methods

I. Degradation Models in Reliability Analysis
The major idea under the overall debasement way models is to restrict the example space 

of the corruption interaction and accept all example capabilities concede a similar practical 

structure yet with various boundaries allude to Lio (2004). The overall corruption way model fits 

the debasement perceptions by a relapse model with irregular coefficients [16]. It declares that both 

basic straight relapse and nonlinear relapse models are by and large utilized in debasement way 

displaying [24]. Straight corruption is used in some basic wear cycles, for example, auto tire wear. 

Nonetheless, corruption ways are in many cases nonlinear elements of time and now and again 

linearization is infeasible. It presents an overall nonlinear blended impacts model and a two-stage 

way to deal with gauge model boundaries, that are multivariate regularly dispersed [18]. What's 

more, fosters a Monte Carlo reproduction strategy to work out a gauge of the dissemination 

capability of the opportunity to-disappointment [18]. They propose a parametric bootstrap strategy 

to set certainty stretches as recommended [18] with the accompanying presumption. 

Sample assets are randomly selected from a population or production process and random 

measurement errors are independent across time and assets 

• Sample assets are tested in a particular homogenous environment such as the

same constant temperature 

• Measurement (or inspection) times are pre-specified, the same across all the test

assets, and may or may not be equally spaced in time. This assumption is used for constructing 

confidence intervals for time to failure distribution via the bootstrap simulation technique 

A general degradation path model can be expressed as:   

 (1) 

 (2) 

Where 

 is time of the measurement or inspection. 

 is the measurement error with constant variance 

 is the actual path of the  asset at time  with unknown parameters as listed later. 

 is the vector of fixed-effect parameters, common for all assets. 

 is the vector of the 
thi asset random-effect parameters, representing resenting individual asset

characteristics. 

 and  are independent of each other  (  ) and 

 is the total number of possible inspections in the experiment. 

 is the total number of inspections on the asset, a function of

It is assumed that  follows a multivariate distribution function (.) which 

may depend on some unknown parameters that must be estimated from the data. The distribution 

function of , the failure time, can be written as: 

(3)
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II. Stochastic Models for Degradation Process

The aleatory vulnerabilities of a corruption cycle can be portrayed utilizing different sorts 

of probabilistic models. Customarily, the existence time appropriation models are utilized, in 

which the vulnerability of the corruption is portrayed according to the point of view of the unsure 

disappointment season of the part. The existence time dissemination model is generally applied in 

age based upkeep methodologies, where a part is supplanted when its activity time arrives at 

specific edge [16]. At the point when the review and substitution cost is restrictively high, for 

example, on account of a thermal energy station, age-based support techniques are normally 

wasteful as investigation and substitution of part are regardless of its genuine state of corruption. 

In such cases, condition based support procedures are frequently utilized, which require direct 

displaying of debasement progress. 

Stochastic models are overall more adaptable in demonstrating these mind boggling 

designs of corruption process. Consequently, the utilization of stochastic models in corruption 

appraisal and forecast has become progressively famous as of late. Unwavering quality creation in 

light of corruption demonstrating can be a proficient technique for assess dependability of 

frameworks when perception s of disappointment rate [29]. Flow research shows that there has 

been a rising interest in use of stochastic debasement models in dependability expectation and 

endurance examination. 

Models that depict the course of weakening or debasement in units or frameworks are of 

interest by their own doing, and are likewise key fixings in processes that decide ''disappointment'' 

occasions. Comparative with disappointment based dependability, debasement based unwavering 

quality has gotten a humble measure of consideration in the open writing. Corruption is an action 

to survey part life time was tended to in the early work [2]. All the more as of late give Valuable 

synopsis of corruption models, accentuating the utilization of straight models with accepted log-

ordinary paces of debasement [19]. In such case, the full life time conveyance can be processed 

scientifically [14]. Other late models experienced in the writing manage corruption of materials, for 

example, those because of Celina (2001). If examined general ways to deal with assessing life time 

disseminations in sped up life test for exceptionally factor conditions. The models introduced there 

in center the particular of the corruption way as it relies unequivocally upon the working climate 

[10]. For profoundly dependable gadgets or costly gadgets, nonetheless, lifetime information might 

be challenging to acquire because of the timeframe required, or the expense of perception. Sped up 

life testing can frequently be utilized to speed up the disappointment for exceptionally dependable 

gadgets and subsequently it is proposed to broaden existing outcomes by creating general 

disappointment models in light of stochastic cycles for debasement which consolidate a few 

speeding up factors, and utilize both corruption estimations, and genuine disappointments in 

derivation strategies [22]. Corruption models and sped up test models for induction on 

dependability have been concentrated on by a few creators. 

Sped-up tests decline the strength or time to disappointment and the expense of testing by 

uncovering the test examples to more significant levels of pressure conditions (expanded sizes or 

levels of ecological factors) which cause prior breakdowns and more limited lifetimes than the 

typical use condition [24]. These ecological factors and levels of pressure conditions are alluded to 

as the "speeding up factors" in the measurements and unwavering quality writing. Sped up life 

testing (ALT) is a speedy method for getting data about the existence dissemination of a material, 

part or item. In Sped up life testing (ALT) things are exposed to conditions that are more serious 

than the typical ones, which yield more limited life yet, ideally, don't change the disappointment 

systems [24]. A few suppositions are required to relate the life at high feelings of anxiety to life at 

typical feelings of anxiety being used. In view of these presumptions, the existence conveyance 
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under typical feelings of anxiety can be assessed. Such approach to testing lessens both time and 

cost. 

Three kinds of pressure loadings are typically applied in sped up life tests: steady pressure, 

step pressure and Moderate pressure. Consistent pressure is the most widely recognized kind of 

pressure stacking. Each thing is tried under a consistent level of the pressure, which is higher than 

typical level. In this sort of testing, we might have a few feelings of anxiety, which are applied for 

various gatherings of the tried things. This implies that each thing is exposed to just a single 

feeling of anxiety until the thing falls flat or the test is halted for different reasons. In Sync pressure 

stacking, the test things are exposed to progressively more significant levels of pressure at pre 

allotted test times. All things are first exposed to a predetermined consistent pressure for a 

predefined timeframe [7]. Things that don't bomb will be exposed to a more significant level of 

pressure for one more indicated time. The degree of stress is expanded bit by bit until all things 

have fizzled or the test stops for different reasons. Moderate pressure stacking is very similar to the 

step pressure testing with the distinction that the feeling of anxiety increments ceaselessly. Step-

stress testing is an extremely normal kind of sped up testing in view of speeding up factors. It is an 

effective method for getting disappointments in a moderately short measure of time. There are 

numerous varieties of step-stress testing. A typical sort is one in which the units are tried at a given 

anxiety for a specific measure of time. Toward the finish of that time, assuming there are units 

making due, the anxiety is expanded and held for one more measure of time [21]. The information 

that outcome from such tests can be dissected utilizing the total harm model. For a nitty gritty 

concentrate on combined harm model [3o]. 

For exceptionally dependable items, it's anything but a simple assignment to evaluate the 

lifetime dispersion of the items by utilizing the conventional life-testing methods which record just 

opportunity to disappointment information. In any event, utilizing the systems consolidating 

editing and speeding up strategies, the data about the lifetime appropriation is still exceptionally 

restricted. Under this present circumstance, an elective methodology is to gather the "debasement" 

information at more elevated levels of pressure for foreseeing an item's lifetime at a specific use-

feeling of anxiety. Such an investigation is called an ADT [3]. 

For fruitful use of ADT, many ways to deal with model debasement of items are given. 

Especially, Markov cycles, for example, the Brownian movement with float, the compound Poisson 

process, and the gamma interaction are generally utilized inferable from their autonomous 

augmentations property. For the stochastic displaying of monotonic and progressive corruption 

over the long run in a grouping of minuscule augmentations, the gamma cycle has found 

application as a debasement model in many examinations [17]. The fundamental goal of paper is to 

expand existing outcomes and creating general disappointments models based a stochastic cycle 

for debasement which consolidate a few speeding up factors, and utilize both corruption 

estimations, and genuine disappointments in inferential methodology. 

III. Model Description
At stress level  the lifetime Y of a test unit is assumed to follow a log-location scale 

distribution with a cumulative distribution function (CDF) 

(4)
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Where is the standard log-location-scale CDF, and the location parameter is 

 and  is the unknown scale parameter. Here, the regression parameters 

 and  are unknown and need to be estimated, and the scale parameter  is assumed to be 

free of stress levels. The CDF of the lifetime of a test unit under the k-level step-stress ALT is given 

by 

 (5) 

Where =0 and is the solution of the equation 

     (6) 

and the corresponding probability 
density function (PDF) of the lifetime of a test unit is given by 

 (7) 

IV. Maximum Likelihood Estimation

From Equations (6) and (7), the joint PDF of observed data 

is  is given by 

 (8) 

Note that the MLEs of , and  exists only if  in Equation (8). By using the 

following expressions 

The MLE is , and  can be obtained by solving the following likelihood equations: 
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 (9) 

The second derivative of the log-likelihood function 

 (10) 

 (11) 

Since these situations can't be addressed scientifically, mathematical techniques, for example, 

reenacted strengthening calculation or some other iterative system should be utilized for this 

assessment issue. A benefit of utilizing the reenacted strengthening calculation is that it permits us 

to find a worldwide ideal without relying upon the decision of the underlying qualities, which is 

one of the primary downsides of the regularly utilized mathematical techniques like Newton-

Raphson. 

IV. Discussion

I. Numerical Illustration

The ideal arrangements were acquired by the reproduced tempering calculation as proposed 

by Corona et al., (1987). It very well may be effectively seen that the assessed asymptotic changes 

in light of complete information are the littlest, trailed by those given blue-penciled information 

inside the looking-through range (0, 50], and afterward the ones with examination spans being 

picked by specific proportions. To determine the optimal unequal time points 

that minimize the large-sample approximate variance of the MLE of the 200pth quantile 

 of the log-lifetime distribution at the normal-use stress . The MLE of the 200p 

quantile at the normal-use stress  can be expressed as , where  is the 

100pth percentile of the standard log-location-scale distribution. Thus, If   = 0, the asymptotic 

variance of the estimator  at the normal-use stress is given by  

 (12) 

 Where  It is verified under the C- optimality Criterion based 2-level step-stress ALT 

plan is preferable, whenever we optimize the general 2-level step-stress ALT plan the second K-

level step–ALT plan under a censoring scheme under the considered and the results are shown in 

Table -1. The inspection interval for the first stage is twice as long as that for the second 

stage 
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Table 1: Censoring scheme 

𝐶0 𝑃0 𝛾0 𝜃0 Parameter MLE RAB MSE 

1.0 1.0 1.25 0.7 

𝐶 1.10902 0.10902 0.01189 

𝑃 0.98314 0.01686 0.00028 

𝛾 1.22511 0.01991 0.00062 

𝜃 0.88398 0.11602 0.01346 

𝛼1 1.38040 0.10486 0.01717 

𝛼2 0.69831 0.11785 0.00542 

𝛼3 0.46874 0.12552 0.00273 

1.0 1.0 1.3 1.0 

𝐶 1.15695 0.15695 0.02463 

𝑃 0.9846 0.0154 0.00024 

𝛾 1.23098 0.05309 0.00476 

𝜃 0.87707 0.12293 0.12446 

𝛼1 1.44053 0.15299 0.03654 

𝛼2 0.72799 0.16536 0.01067 

𝛼3 0.48837 0.17266 0.00517 

1.0 1.0 1.5 1.0 

𝐶 1.35169 0.35169 0.12369 

𝑃 0.99012 0.00988 0.00010 

𝛾 1.25504 0.16331 0.06001 

𝜃 0.84992 0.15008 0.02252 

𝛼1 1.68507 0.34872 0.18982 

𝛼2 0.84832 0.35799 0.05001 

𝛼3 0.56782 0.36344 0.02291 

1.0 1.1 1.4 1.0 

𝐶 1.26473 0.26473 0.07008 

𝑃 0.97595 0.11277 0.01539 

𝛾 1.37052 0.02106 0.00087 

𝜃 0.8474 0.1526 0.02329 

𝛼1 1.5717 0.23028 0.08654 

𝛼2 0.79906 0.34074 0.04124 

𝛼3 0.53793 0.4099 0.02446 

1.25 1.1 1.25 1.0 

𝐶 1.14000 0.08800 0.01210 

𝑃 0.95459 0.13219 0.02114 

𝛾 1.37506 0.10005 0.01564 

𝜃 1.01030 0.01030 0.00011 

𝛼1 1.40997 0.11705 0.03494 

𝛼2 0.72753 0.02342 0.00030 

𝛼3 0.49403 0.03589 0.00029 

1.4 1.0 1.0 0.7 𝐶 0.91213 0.34848 0.23802 
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𝑃 0.68352 0.31648 0.10016 

𝛾 1.25991 0.25991 0.06755 

𝜃 1.10442 0.57774 0.16356 

𝛼1 1.06206 0.39281 0.47207 

𝛼2 0.66129 0.24387 0.04549 

𝛼3 0.50122 0.14034 0.00670 

1.4 1.2 1.0 0.9 

𝐶 0.91672 0.3452 0.23356 

𝑃 0.84089 0.29926 0.12896 

𝛾 1.49253 0.49253 0.24259 

𝜃 1.10045 0.22272 0.04018 

𝛼1 1.10547 0.39552 0.52319 

𝛼2 0.61718 0.22467 0.03198 

𝛼3 0.43888 0.10314 0.00255 

Table 2: The variance optimality under the step stress setting based 

Complete data Censored data 

p X1 X2

0.5 

0.95 

0.2 

0.4 

0.2 

0.4 

0.5 

1.0 

0.5 

1.0 

0.5 

1.0 
0.5 

1.0 

10.2895 

11.0011 

6.8724 

7.3327 

13.6090 

14.9424 
8.1548 

9.0548 

10.0470, 20.0000 

10.7887, 20,0000 

6.8408, 20,0000 

7.3107,  20.0000 

12.6071, 20,0000 

14.0111, 20,0000 
8.0935,  20,0000 

9.0018, 20,0000 

10.0312(3.48) 

10.8267(2.45) 

6.5817(15.81) 

7.1133(8.71) 

13.3333(7.48) 

13.3333(5.87) 
7.8435(26.76) 

8.8341(14.17) 

10.0000(3.35) 

10.8267(2.50) 

6.5817(16.02) 

7.1133(8.32) 

10.0000(7.87) 

10.0000(6.56) 
8.0765(25.03) 

9.0146(14.08) 

6.6667(3.99) 

6.6667(3.10) 

6.6667(15.83) 

0.6667(8.38) 

6.6667(11.03) 

6.6667(9.42) 
6.6667(25.91) 

6.6667(16.19) 

The stress levels  when  to identify the optimal 

change points leading to variance–optimality, the optimal change points, and associated 

asymptotic variance based on the censored data when the lengths of the inspection intervals were 

chosen according to a certain ratio . 

V. Conclusion

Numerous stochastic models of equipment deterioration have been put forth based on the 

physics of failure and the operational environment. The essential idea of these models is that they 

are created by modeling the underlying mechanisms that lead to failure, like degradation and 

wear, using the appropriate stochastic processes. A unified theory of predictive maintenance must 

be developed through the creation and analysis of these stochastic deterioration models.  

These models produce residual life distributions and time to failure that are highly 

theoretically challenging. Our study's goal is to determine whether conventional time to failure 

distributions, like the Weibull, can be used to approximate the time to first failure distributions 
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that come from stochastic deterioration models. We initially built a discrete-event simulation 

model that simulates the stochastic deterioration and failure of the target system, which is a single-

unit system subject to a random operating environment with a variable instantaneous rate of 

degradation. The typical time to failure distribution is then fitted to the simulated data using a 

predetermined methodology. The quality of this fit is assessed using a large-scale numerical 

experiment with a variety of system characteristics. According to the findings of the goodness-of-

fit tests, a truncated, three-parameter Weibull distribution is a fair approximation for the scenario 

discussed in the study. 

In ALTA, the analysis is carried out in conditions of high stress, and the extrapolation from 

the heightened stress levels to the usage stress level is based on the association between life stress 

and stress at work. Any level at which the life-stress relationship holds true can be used to forecast 

product performance, including the usage stress level. 
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Abstract 

Software Quality Analysis refers to the process of evaluating and assessing the quality of software 

products or applications. It involves analyzing various aspects of the software to determine its level of 

quality, identify potential issues or defects, and make informed decisions to expand the software's 

overall quality. There are investigated different software quality models based on machine learning 

algorithms. Nevertheless, the explored approaches have an inconsistent understanding of the software 

product quality and high complexity. This research presents an enhanced ensemble model (EEM) that 

involves Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Extreme Learning 

Machine (ELM) to assess the optimal outcomes. This model performance is computed based on 

multiple selective parameters namely functional suitability and maintainability of the software and 

compared along with several algorithms namely Decision Tree, Random Forest, AdaBoost, and Naive 

Bayes. The outcome of this ensemble model demonstrates that it offers highly accurate results for 

software validation, verification, and overall product development process to analyze the functional 

suitability as well as software maintainability. The measured accuracy on Decision Tree, Random 

Forest, Naive Bayes, AdaBoost, and EEM is found 92.08%, 93.35%, 94.50%, 95.60%, and 99.14%, 

respectively 

Keywords: Software Quality Analysis, Enhanced Ensemble Model (EEM), Decision Tree, Random 

Forest, Naive Bayes, AdaBoost.      

1. Introduction

The process of evaluating the quality and efficiency of software systems is known as Software 

Quality Analysis (SQA), commonly referred to as Software Quality Assurance or Software Testing 

[1]. To find flaws, errors, or variations from expected behavior in software products, systematic 

activities, and procedures are used. Software quality analysis' main goal is to make sure that the 
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entire software product works properly, complies with specifications, and offers a desired user 

experience. Activities like test planning, tracking of defects, test designing, execution of tests, 

reporting of tests, and other testing kinds including performance testing, security testing, and 

usability testing are all a part of this process. Organizations may reduce the chance of problems in 

production and produce high-quality software to satisfy user expectations by undertaking 

software quality analysis [2]. This allows organizations to discover and fix errors early in the 

development lifecycle. There are available different software quality analysis techniques such as 

static analysis and many others. To estimate and promise the quality of software systems, a variety 

of approaches and techniques are used in software quality analysis. Following are some examples 

of frequently used software quality analysis techniques [3]: 

1.1. Static Analysis: 

In this technique, the program is not run; instead, the source code, design documentation, and 

other artifacts are examined. Code concerns such as coding mistakes, coding standards violations, 

security flaws, and performance inefficiencies are all examined using static analysis tools. 

1.2. Dynamic Analysis: 

Dynamic analysis aids in the discovery of runtime problems such as memory leaks, performance 

bottlenecks, and functional flaws. 

1.3. Regression Testing: 

Regression testing is done to make sure that changes to the program do not result in the 

introduction of new flaws or affect current functioning.  

1.4. Performance Testing: 

It helps in the detection of performance bottlenecks, resource use problems, and response time 

lags. Techniques for performance testing include load, stress, and endurance testing [4]. 

1.5. Security Testing: 

This method is utilized to find weaknesses and possible attack entry points. It also utilizes the 

strategies including penetration testing, vulnerability scanning, and security code reviews. 

1.6. Usability Testing: 

Usability testing looks at the user interface (UI) and user experience (UX) of the program to make 

sure that it is simple, effective, as well as satisfies user expectations. 

1.7. Code Reviews: 

Code reviews entail systematically going over source code to look for coding flaws, performance 

problems, maintainability difficulties, and adherence to coding standards. 

1.8. Test Automation: 

Test automation is the process of automating time-consuming and repetitive testing operations 

using specialized tools and frameworks.  

There have been investigated multiple ways which introduce how can improve software quality 

analysis and according to that the study of software quality may be greatly enhanced by 

combining useful methods and strategies. The use of thorough testing methods at every stage of 

the software development lifecycle is a critical task [5]. By integrating unit tests, integration tests, 

regression tests, system tests, as well as acceptance testing, software developers may ensure a  
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thorough assessment of the quality of their product. Each testing level has a distinct function and is 

capable of spotting many kinds of flaws, enabling a more thorough assessment. Additionally, the 

use of test automation is crucial for improving software quality analysis. The formulation and 

execution of automated tests are made possible by automated testing tools and frameworks, which 

enhance test coverage, lowers human error rates, and boost the general effectiveness of testing 

procedures [6]. Software problems may be swiftly found and fixed by developers with the capacity 

to run automated tests frequently, speeding up the resolution process. The examination of 

software quality is also improved by code reviews and inspections. Regular code reviews enable 

engineers to see possible problems before they become serious. Developers can find coding errors, 

confirm that coding standards are being followed, and pinpoint opportunities for development by 

carefully studying the source code. By taking proactive measures, the software's overall quality is 

improved and risks are reduced [7]–[9]. 

J. Mona et al. in [10] explored the increasing need for software applications due to recent

technological advancements. The demand for software products has significantly grown across

various industries. To ensure the increase of the software industry, it is decisive to create high-

quality software and maintain its reputation among users. However, implementing quality

assurance standards to instill trust in consumers can be challenging. The software development

team often views quality assurance as a time-consuming and documentation-intensive process that

adds little value to the client. It is also stated that determining the quality of software can be

difficult as it depends on individual perspectives and interests. The study also mentions the use of

soft computing-rooted machine learning techniques to address quality as well as assurance in

software engineering, intending to build an effective framework to predict software faults. The

drawback of this method is that it does not provide specific examples of recent technological

breakthroughs or discuss any particular challenges faced in quality assurance or software

development. It presents a general overview of the importance of software quality but lacks

specific details and concrete examples.

E. Rashid et al. [11] discussed the use of case-based reasoning (CBR), a kind of machine learning, as

an expert system to forecast software quality. The major goal of this study is to reduce software

expenses. The paper introduces a novel idea of building a knowledge base (KBS) for CBR, which

includes new problems and their solutions. The research also aims to reduce maintenance costs by

removing duplicate records from the KBS. Four similarity functions are used for error prediction.

Case-based models, such as the developed case-based reasoning model, are considered effective

when defining rules for a problem domain is challenging. On the other side, one of the drawbacks

of using machine learning for software quality analysis is the requirement for large amounts of

labeled data. Machine learning algorithms typically perform better when trained on a large and

diverse dataset. However, obtaining labeled data for software quality prediction can be

challenging and time-consuming.

Research Questions: 

•How to improve the software quality analysis with selective parameters and an ensemble model?

•To evaluate the performance metrics using diverse datasets.

2. LITERATURE REVIEW

T. Sharma et al. in [12] discussed the importance of predicting software faults before the testing

phase to improve source provision and ensure high-quality software development. Different

algorithms are used to address this issue, and various analytical frameworks have been built to

classify software modules as defective or non-defective. However, despite the advancements in
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software development, poor prediction performance is still observed in many studies. This is 

attributed to challenges such as redundancy, correlation, irrelevant features, missing data, and an 

unbalanced distribution between classes with faults and classes without faults in the software data. 

To tackle these challenges, researchers globally have turned to ensemble different techniques, 

which have shown certain enhancements in fault estimation performance. This research critically 

analyzes ensemble-rooted machine-learning methods explored for software fault forecasting from 

2018 to 2021. The paper aims to gain a deeper understanding of why hybrid frameworks still 

exhibit poor performance on accessible datasets. The drawback investigation is that it relies on 

meta-learning and classifiers for software defect prediction. While meta-learning can be effective in 

adapting to different datasets and improving generalization, it may face limitations when applied 

to software defect prediction.  

K. Bashir et al. [13] explored that software quality analysis aims to develop forecasting models

utilizing the fault data as well as software metrics to identify potentially faulty program modules.

This helps in optimizing resource allocation as well as utilization. Nevertheless, the strength of the

classifiers and the quality of the data both have an impact on how accurate these prediction models

are. The effectiveness of classification models might be jeopardized by problems with data quality

such as an excessive number of dimensional imbalances in classes, and the inclusion of diverse

noise in software fault data. To improve software development procedure (SDP) models. This

study presents a novel and unified framework. The system uses Data Sampling (DS), Iterative-

Partition Filter (IPF), and Ranker Feature Selection (FS) approaches to handle the issues of high

dimensionality, and imbalances in classes, respectively. The outcome validates the effectiveness of

this suggested framework for SDP, indicating that it helps improve the accuracy as well as

performance of fault prediction models. The drawback of the proposed technique is that

supervised learning requires labeled training data, which may be expensive and time-consuming.

Collecting and labeling a comprehensive dataset of software defects can be challenging, especially

for large-scale software systems. Limited or incomplete training data can lead to biased or

inaccurate predictions, reducing the reliability of the defect prediction framework.

M. Rawat et al. [14] stated that despite thorough planning, extensive documentation, and proper

process control throughout software development, it is unavoidable to encounter certain defects.

These defects can negatively impact the quality of the software and potentially lead to failure. In

today's highly competitive environment, it is crucial to actively work towards controlling and

minimizing software engineering flaws. However, these initiatives need time, money, and

resources. This paper aims to identify the root causes of these defects and provide suggestions for

improving software quality and productivity. Additionally, the paper demonstrates the

implementation of various defect prediction models that have resulted in a decrease in the number

and severity of defects. The main drawback of this is the potential for inaccurate predictions. While

these models aim to identify and predict software defects, there is still a degree of uncertainty

involved. The models rely on historical data and patterns to make predictions, which means they

may not account for unique or unforeseen circumstances that could lead to defects. Additionally,

the accuracy of these models heavily relies upon the quality as well as the relevance of the utilized

datasets for training. If the dataset is incomplete, biased, or outdated, then software quality

prediction may not be reliable.

S. Yamada [15] investigated that the assessment of software reliability holds significant importance

in efficiently developing high-quality software products. This paper focuses on quantitative

measurement as well as the evaluation of software product reliability. The methods discussed in

this work are centered on nonhomogeneous Poisson processes used in the software product

consistency advancement models built in Japan. These models aim to provide a more realistic

depiction of the software error-detection and failure-occurrence processes in the test phase of

software product expansion by refining the underlying assumptions. The paper provides an
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outline of the existing software reliability growth models (SRGMs) as well as explores the 

application of maximum-likelihood estimations for analyzing software reliability data and 

assessing software reliability. Furthermore, the paper presents instances of software reliability 

assessment using a tool that integrates various prominent SRGMs. These examples are based on 

observed test data derived from actual software projects. The drawback is the complexity of 

measuring software quality and reliability. Software systems are intricate and involve numerous 

interconnected components, making it challenging to develop comprehensive measurement 

techniques that capture all aspects of quality and reliability accurately. It is difficult to account for 

all potential failure scenarios and accurately predict the behavior of software in all possible 

circumstances. 

V. Srivastava et al. [16] discovered a more robust software product source code for effective

software product quality analysis. Software product quality analysis is challenging in the case of

huge software applications. The profiles of resources are necessary for appropriate staffing,

finance, and the advancement of an achievable project plan throughout the lifespan of a project,

even while the needs for the framework may be functional but only stated at an extreme level. The

size of the program may be calculated using past data and trends for the same project, opening up

the possibility of an assessment approach. Software quality is now a key component in the

intended attainment of overall human and commercial safety in the modern world, where

processors are used in every conceivable area. Finding the software's quality attributes and turning

them into calculable measurements will be crucial to the success of the final product. The mapping

of program elements to these metric values illustrates details about the behavior and complexity of

the framework. Here are some of the drawbacks associated with this technique are that it has

limited scope, lack of context, overemphasis on quantitative metrics, sensitivity to programming

languages and paradigms, the complexity of metric selection and interpretation, and inability to

capture dynamic aspects.

E. Belachew [17] discussed the significance of software metrics in software engineering and

emphasizes the importance of accurate measurement in this field. As software becomes more

complex, manually inspecting it becomes challenging. Software engineers are concerned about

software quality and seek ways to measure and improve it. The objective of the proposed research

is to assess as well as analyze software metrics used for measuring software products and

processes. The researcher collected literature from electronic databases since 2008 to gain a

comprehensive understanding of software metrics. The study concludes that software quality can

be measured by assessing how well the software aligns with its design, considering variables such

as exactness, quality of product, scalability, fullness, and absence of bugs. Since quality standards

vary across organizations, using software metrics and common tools can reduce subjectivity when

evaluating software quality. The study's main contributions include providing an overview of

software metrics and conducting a critical study of the key metrics found in the literature. On the

other side, there are some potential limitations and drawbacks associated with this approach

which are interpretation ambiguity, incomplete representation, metric selection, and validity, time

and effort requirements, lack of causality, etc.

I. Khan et al. in [18], discussed that the field of Software Quality Analysis (SQA) is promptly

mounting in the field of software product engineering, as it is aimed to offer more robust solutions

for real-world applications. SQA involves a formal process utilized to assess, document, as well as

ensure software application quality at all stages of the Software Development Life Cycle (SDLC).

This research focuses on identifying and understanding various factors that can impact the quality

of software product development. The study investigates the relationships between these factors

and the different phases of the SDLC. Additionally, the research introduces a new quality factor

called testability to the existing set of quality factors in system design and analysis. The anticipated

outcomes of this suggested solution emphasize the significance of testability, especially during the
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systems analysis and design stage of software development. One drawback of this process is its 

narrow focus, which may limit the understanding of software quality improvement. While 

testability is undeniably crucial in software development, it represents only a single facet of the 

broader concept of software quality. By primarily emphasizing testability, other vital factors that 

contribute to software quality, such as maintainability, scalability, performance, security, and 

usability may be overlooked. 

R. Jamwal et al. [19] explored the increasing importance of software quality in today's marketplace

and how it differs for producers and users of software. Software users view software as a tool to

support their specific business sector, while quality is seen as a combination of various

characteristics. These characteristics are often represented in models that depict their relationships,

helping to highlight what people consider important in terms of quality. Different organizations

adopt different quality models based on their requirements. This study examines various concepts

of software quality appearances and provides a relative analysis of different software quality

models used by different organizations.

3. METHODOLOGY
3.1.  Dataset:   

The researcher utilized the PROMISE Repository dataset in this study. Specifically, the NASA 

Metrics Data Program (MDP) provided the NASA PROMISE datasets, which include software 

metrics. Before training the ensemble model, multiple preprocessing tasks such as data 

normalization and transformation were conducted. These preprocessing operations involved 

addressing missing values and outliers, as well as selecting suitable feature variables for the input 

model. Subsequently, the proposed model was trained to forecast software flaws.  Table 1 

illustrates the datasets used for the experiment.    

Table 1: Illustrated the Datasets Used for Experiment. 

Sr. No. Dataset Name Total Attributes Total Instances Fault Percentage 

1. CM1 24 500 8.98 

2. MC1 37 9464 1.1 

3. MW1 36 400 6.95 

4. PC1 24 1111 7.1 

5. MC2 43 163 30.90 

3.2.  Design: 

In this study, a new design architecture is proposed which is mentioned in Figure 1. The 

developed EEM model aims to empirically assess and confirm the effectiveness of the suggested 

methods. The performance of this EEM model is evaluated on five NASA PROMISE repository 

datasets. The PROMISE repository dataset is a collection of software engineering datasets that are 

publicly available and widely used for research purposes. PROMISE stands for "Project Repository 

for Object-Oriented Software Engineering," and it aims to provide a comprehensive and diverse set 

of datasets related to software engineering tasks.  

This entire dataset is initially preprocessed for training and testing purposes. Preprocessing refers 

to the techniques applied to raw data before it is used for analysis tasks. It involves transforming 

the data into a suitable format and preparing it for further analysis or modeling. Data  
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preprocessing is crucial as it helps to improve the quality of the data like handling missing values 

outlier detection and treatment feature scaling or normalization, feature selection or extraction, 

handling categorical variables, addressing issues or inconsistencies, and enhancing the 

performance of downstream tasks. In the next stage, preprocessed data are gone under hierarchical 

clustering which is a data analysis technique that groups similar data points into clusters in a 

hierarchical manner, forming a dendrogram a kind of tree-like structure. Each data point begins as 

its cluster and is eventually combined with others using a bottom-up technique based on their 

similarities, creating a hierarchy of clusters. Furthermore, the K-Fold Cross Validation is opted for 

datasets splitting into separate train as well as test groups.  

The K-Fold Cross Validation method divides the dataset into two groups i.e., 80% data are train 

data, and the rest 20% data are test data. The train data in an ensemble model pertains to the 

dataset utilized for training the individual base models in the ensemble. It encompasses input 

samples along with their associated target values or labels. Each base model is trained separately 

using a subset of the training data, and their predictions are amalgamated to generate a final 

prediction. The testing data in an ensemble model refers to a separate dataset that is used to 

appraise the performance and generalization of the ensemble model. It consists of input samples, 

similar to the training data, but without the corresponding target values or labels. The testing data 

is used to determine how effectively the ensemble model can categorize or forecast brand-new 

data. The predictions of the individual base models are combined in the ensemble model to make 

predictions on the testing data and evaluate its accuracy and effectiveness. Furthermore, multiple 

algorithms which consist of Decision Tree (DT), AdaBoost, Random Forest (RF), and Naive Bayes 

(NB) are used with the help of a test model and pre-trained model to compute the performance. In 

the other direction, the Enhanced Ensemble Model which is the combination of the Extreme 

Learning Machine (ELM), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM), is 

performed to compute the performance with the help of the test model and pre-trained model. 

Figure 1: Design Architecture of Proposed Model. 
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3.3. System Configuration:   

This section introduces the system configuration which is used in this research. For performing 

this research, there is utilized the latest system configuration. Table 2 represents the computer 

configuration and software details. 

Table 2: Represents the System Configuration. 

Sr. No. System Configuration Details 

1. System RAM 8 GB 

2. Operating System Windows 11 

3. Processor 13th Generation intel core i5 

4. Optimizer Adam v1.3 

5. Programming Language Python v3.11.0 

3.4. Performance Matrix: 

The four distinct performance measurement metrics, accuracy, recall, precision, and F1-score, 

are described in this section. These matrices are utilized to evaluate the effectiveness of this 

suggested EEM along with other algorithms on multiple NASA repository datasets.  

3.4.1. Precision: 

Precision is a metric used in ensemble learning machines to evaluate the accuracy of the 

ensemble model’s successful predictions. It determines the proportion of true positives cases 

that were properly identified as positive to the total of true positives as well as false positives 

cases that were identified as positive. Precision aids in assessing the ensemble model’s accuracy 

in locating positive examples. To fully comprehend the performance of the ensemble model in 

classification tasks must be taken into account in addition to other performance indicators. 

         Precision=TP/(FP+TP) (1) 

3.4.2. Recall: 

The performance of an ensemble model to identify every positive case is measured by the recall 

metric. It aims to reduce false negatives cases in which a positive event is arbitrarily labeled as 

negative. The ratio of true positives (positive cases that were properly identified) to the total of 

true positives as well as false negatives is used to determine recall. 

       Recall=TP/(FN+TP)  (2) 

3.4.3. F1-Score: 

The harmonic mean of precision as well as recall that measures the proportion of positively 

predicted instances out of all positively predicted instances and measures the proportion of 

positively predicted instances out of all positively actualized instances, which is used to 

compute the F1-score. The F1-score is appropriate for unbalanced datasets where the 

distribution of classes is skewed since it takes the harmonic mean, which equalizes accuracy 

and recall. 

     F1-Score=(2×Recall×Precision)/(Recall+Precision)  (3) 

3.4.4. Accuracy: 

Accuracy matrix refers to the measurement utilized for determining which model is better to 
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identify the relationships as well as patterns amongst the variables in a dataset rooted on the 

input, or training datasets.  

 Accuracy=(TN+TP)/(TN+TP+FN+FP)   (4) 

4.RESULT AND DISCUSSION.

In this research, a novel EEM model is developed that is robust and performs the verification as 

well as validation in the software product development process. This model analyzes and 

improves selective parameters i.e., functional suitability along with software maintainability. The 

EEM model obtains maximum accuracy on diverse datasets of the NASA repository and performs 

better in comparison to other algorithms such as Decision Trees and many others for validation 

and verification of the software products. In addition to this, the proposed enhanced ensemble 

model analyzes the different selective parameter that is maintainability and functional suitability 

in a more effective manner. The analysis of software quality is done using an improved ensemble 

model based on selective these parameters. The EEM model precisely assesses the software 

system's quality and function suitability to improve the effectiveness of SDLC factors related to 

software quality, such as code complexity, maintainability, and performance. The EEM integrates 

ELM, SVM, and KNN to offer a thorough assessment of software quality. According to the 

analysis, this method provides pragmatic outcomes to identify possible problems or opportunities 

for software product improvement as well as improve software development processes.   

Figure 2: Graphical Representation of Accuracy Rate. 

The graphical representation of different algorithms accuracy is shown in Figure 2. The accuracy 

rate has been computed and compared with the EEM approach. In this research, a performance 

comparison is demonstrated by implementing Decision Tree, Random Forest, Naive Bayes, and 

AdaBoost and compared with EEM. It is shown that the accuracy rate of Decision Tree is 92.8%, 

the accuracy measured on Random Forest is 93.35%, the accuracy on Naive Bayes is 94.50% and 

AdaBoost obtains an accuracy of 95.60%. However, the EEM obtains a maximum accuracy rate 

which is 99.13%. Hence, EEM is more efficient as compared to all the algorithms and offers more 

accurate outcomes on diverse datasets. 
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Figure 3: Illustrates graphical representation of algorithms and their time of execution. 

Figure 3 illustrates a graphical representation of algorithms and their time of execution. While 

implementing the time taken by the Decision Tree, Random Forest, Navie Baye, and AdaBoost 

algorithm was computed at 3.50s, 2.50s, 2.00s, 1.50s, and 0.70s, respectively. The proposed EEM 

approach is executed with the lowest time i.e., 0.70s only. This demonstrates that this EEM is less 

complex in terms of time complexity and handles large data effectively in training and testing of 

the software product or applications. 

Figure 4: Shows training as well as testing loss comparison. 

Figure 4 shows training as well as testing loss comparison of the proposed EEM approach. The 

computed training loss on epochs 2, 6, 12, 20, 27, 30, 35, 40, 45, and 50 is 6%, 4%, 3%, 2.9%, 2.5%, 

2.3%, 2%, 1.9%, 1.5%, and 1.4%. The computed testing loss on epochs 2, 6, 12, 20, 27, 30, 35, 40, 45, 

and 50 is 5%, 3%, 2.5%, 2.4%, 2.3%, 2%, 1.8%, 1.7%, 1.2%, and 1.2%. Nevertheless, the proposed 

EEM approach performs well, and minimal train and test loss are seen.   
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Figure 5: Shows training as well as testing accuracy comparison.  

The training and testing accuracy of all algorithms along with the EEM approach are displayed in 

Figure 5. The training accuracy on epochs 2, 6, 12, 20, and 27 are 18.5%, 35.6%, 48.12%, 68.34%, and 

97.01%. However, the test accuracy is found 19.98%, 40.22%, 50.25%, 70.91%, and 98.95%, 

respectively. It is shown that EEM achieves optimal accuracy level and is more suitable for 

software product quality analysis for diverse selective parameters such as functional suitability of 

the software product and maintainability. In addition to this, the EEM archives good accuracy for 

the software products and applications validation and verification.    

Table 3: Illustrates the Average Computed Accuracy of Different Algorithms. 

S. 

No. 

Dataset 

Name 
DT AdaBoost NB RF EEM 

1. CM1 0.89 0.88 0.90 0.91 0.98 

2. KC1 0.90 0.87 0.89 0.93 0.97 

3. MW1 0.91 0.92 0.91 0.94 0.99 

4. PC1 0.86 0.91 0.93 0.92 0.98 

5. MC2 0.88 0.89 0.89 0.95 0.99 

Average 0.88 0.89 0.90 0.93 0.99 

Table 3 illustrates the average computed accuracy of different algorithms along with EEM. The 

EEM and diverse algorithms are validated utilizing the NASA repository's five datasets namely, 

CM1, KC1, MW1, PC1, and MC2, respectively. The obtain accuracy using the decision tree 

algorithm on CM1, KC1, MW1, PC1, and MC2 are 0.89%, 0.90%, 0.91%, 0.86%, and 0.88%, 

respectively. The obtain accuracy using the AdaBoost algorithm on CM1, KC1, MW1, PC1, and 

MC2 are 0.88%, 0.87%, 0.92%, 0.91%, and 0.89%, respectively. The accuracy received using the NB 

algorithm on CM1, KC1, MW1, PC1, and MC2 are 0.90%, 0.89%, 0.91%, 0.93%, and 0.89%, 
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respectively. The accuracy received using the RF algorithm on CM1, KC1, MW1, PC1, and MC2 are 

0.91%, 0.93%, 0.94%, 0.92%, and 0.95% respectively. The obtained accuracy using the EEM 

algorithm on CM1, KC1, MW1, PC1, and MC2 are 0.98%, 0.97%, 0.99%, 0.98%, and 0.99% 

respectively. The average accuracy on DT, AdaBoost, NB, RF, and EEM is found 0.88%%, 0.89%, 

0.90%, 0.93%, and 0.99%, respectively.   

5.CONCLUSION

Software quality analysis is becoming a very challenging and time-consuming process in modern 

software product and application development. There are developed multiple software testing 

approaches for effective analysis of the prediction of the faults in applications. However, these 

testing methods are inconsistent to determine the software product quality, especially in the 

developing phase, and consume a huge time for the developer in the unit testing process to 

determine the functional suitability and validation and verification of the product effectively. 

Therefore, this work presents an EEM approach that is based on the SVM, ELM, and KNN for 

software product and application quality analysis in less time. The obtained results are recorded 

and compared with the other algorithms i.e., DT, AdaBoost, NB, and RF for validation of the EEM. 

To validate the proposed EEM approach, there has been used the five diverse datasets of the 

PROMISE repository of NASA which includes the CM1, KC1, MW1, PC1, and MC2, respectively. 

It is found that the average accuracy on Decision Tree, Random Forest, Naive Bayes, AdaBoost, 

and EEM is 92.08%, 93.35%, 94.50%, 95.60%, and 99.14%, respectively.    
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Abstract 

In this paper, Optimization of System Parameters of 2:3 Good Serial System controlled with the help of 

a controlling unit Using Deep Learning Optimization with packing unit in series with priority in 

repair and single server which never fails is carried out. There are three units of different capacities 

working in parallel in which if three/two units are working then the system is working at full/reduced 

capacity. Working of these online parallel and offline units is managed by the controlling unit, which 

also manages the preventive maintenance of all type of units, together with a 24/7 repair facility is 

modeled for reliability performance measurements. Taking exponential failure and repair rates of units 

and facilities a steady state transition diagram (depicting transition rates and states) is drawn using 

Markov process. The system parameters are modelled using Regenerative Point graphical Technique 

(RPGT) and optimized using Deep learning methods such as Adam, SGD, RMS prop. The results of 

the optimization may be used to validate and challenge existing models and assumptions about the 

systems.  

 

               Keywords: Optimization, RPGT, Deep learning, Adam, SGD, RMS prop 

 

I. Introduction 

In this paper, Optimization of System Parameters of 2:3 Good Serial System Using Deep Learning 

Optimization with packing unit in series, with priority in repair managed by a controlling unit and 

single server  who never fails is carried out. There are three main dissimilar units of different 

capacities performing different jobs working in parallel, together with the terminal unit (usually 

packing unit) controlled by a controller unit for allocation and preventive maintenance of all units in 

the system, together with single server who never fails is carried out.  Out of three parallel units if 

two units are working then the system is working at reduced capacity and failed unit is maintained 

by the controller, with priority in repair to controlling unit performing preventive maintenance and 
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single server is conducted using Markov process, RPGT and Deep Learning optimization methods. 

Preventive maintenance is feasible only in the initial state when controlling facility is almost free. The 

system measures can be optimized with proper utilization of maintenance activities of any system, in 

most of the studies under taken so far by most of the earlier authors, it is assumed that system once 

installed for operation will continue to do so, but practically it is not so, sometimes, it is necessary to 

manage the operation of working unit and maintenance facilities with the help of some controlling 

unit or external supporting system which may also fail (or non-available), on failure of one or more 

units or controlling unit, there is need of repair facility. 

              In this paper two out of three units in which if three/two units are working then the system is 

working at full/reduced capacity. Working of these online units is managed by controlling which also 

manages for the preventive maintenance of all type of units, together with a repair facility modeled 

for reliability performance measurements. Taking exponential failure and repair rates of units, a 

steady state transition diagram (depicting transition rates and states) is drawn using Markov process. 

Various directed paths, primary, secondary, tertiary circuits, base state, simple paths w. r. t. initial 

and base states enumerated. Various path probabilities transition probabilities mean sojourn times 

and expressions for four reliability measures are modeled using RPGT, optimization of system 

parameters using deep learning methods such as Adam, SGD, RMS prop is provided, which gives 

valuable insights into the factors that affect system performance by drawing corresponding tables and 

graphs followed by discussion.  

 

II. Assumptions and Notations 

 
• The repair procedure arises soon after a unit flops. 

• Repaired unit is as if a new one. 

• Failure/repair rates of units are exponential 

• Server facility is 24x7 hours. 

• 𝐵 = controlling unit 

• Ai, B, D/ ai, b, d – Working state / failed state of individual units. (1≤i≤3) 

• m1/ h1 – represent failure /repair rates of units Ai (1≤i≤3), m2/ h2 = those of controlling unit, m3/ 

h3 =  those of packing unit D,  

• α, β- transition rates of controlling unit performing preventive maintenance𝜇𝑖
´  waiting time 

for repair facility to arrive 

• 𝜇𝑖
´  waiting time for repair facility to arrive 

• (𝑖 → j → k → i) cycle 

• 𝐷 = Packing unit 

• 𝑅𝑒𝑝𝑎𝑖𝑟 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝐷 > 𝐵 > Ai  

•   : Full Capacity Working State 

•  : Reduced Capacity Working State 

•        : Failed State 

 

 

III. Transition Diagram Description 

 

Taking the transition failure and repair rates, the system may be stable in the states  𝑆𝑖  (0 ≤  𝑖 ≤  10) . 
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Figure 1: Transition Diagram 

 

S0 = A1A2(A3) BD, S1 = a1A2A3BD, S2 = A1A2(A3) Bd,       S3 = a1A2A3Bd, 

S4(under preventive maintenance) = A1A2(A3) BD, 

S5 =a1a2A3BD, S6 = a1A2A3bD, S7 = A1A2A3bD, S8 = A1A2A3 bd, S9 = a1A2A3bd, S10 = a1a2A3Bd 

 

I. State Transition Probabilities 

qi→j(t) 

𝑞0→1(𝑡) = 𝑚1𝑒−(𝑚1+𝑚2+𝑚3+𝛼)𝑡  
𝑞0→2(𝑡) = 𝑚2𝑒−(𝑚1+𝑚2+𝑚3+𝛼)𝑡 
𝑞0→4(𝑡) = 𝛼𝑒−(𝑚1+𝑚2+𝑚3+𝛼)𝑡 
𝑞0→7(𝑡) = 𝑚3𝑒−(𝑚1+𝑚2+𝑚3+𝛼)𝑡 
𝑞1→0(𝑡) = ℎ1𝑒−(𝑚1+𝑚2+𝑚3+ℎ1)𝑡  
𝑞1→3(𝑡) = 𝑚2𝑒−(𝑚1+𝑚2+𝑚3+ℎ1)𝑡 
𝑞1→5(𝑡) = 𝑚1𝑒−(𝑚1+𝑚2+𝑚3+ℎ1)𝑡 
𝑞1→6(𝑡) = 𝑚3𝑒−(𝑚1+𝑚2+𝑚3+ℎ1)𝑡 
𝑞3→1(𝑡)  =  𝑞2→0(𝑡) = ℎ2𝑒−(𝑚1+𝑚3+ℎ2)𝑡  
𝑞2→3(𝑡) = 𝑚1𝑒−(𝑚1+𝑚3+ℎ2)𝑡 
𝑞2→8(𝑡) =𝑞3→9(𝑡) = 𝑚3𝑒−(𝑚1+𝑚3+ℎ2)𝑡 
𝑞3→10(𝑡) = 𝑚1𝑒−(𝑚1+𝑚3+ℎ2)𝑡  
𝑞4→0(𝑡) = 𝛽𝑒−𝛽𝑡  
𝑞5→1(𝑡) = ℎ1𝑒−(𝑚2+ℎ1)𝑡  
𝑞5→10(𝑡) = 𝑚2𝑒−(𝑚2+ℎ1)𝑡  
𝑞6→1=𝑞7→0=𝑞8→2=  ℎ3𝑒−ℎ3𝑡  
𝑞10→3= 0 
𝑞10→5= ℎ2𝑒−ℎ2𝑡  
pi →j = q*i→j(0) 
𝑝0→1= m1/ (m1+m2+m3+α) 
𝑝0→2= m2/ (m1+m2+m3+α) 
𝑝0→4= α/ (m1+m2+m3+α) 
𝑝0→7= m3/ (m1+m2+m3+α) 
𝑝1→0= h1/ (m1+m2+m3+h1) 
p1→3= m2/ (m1+m2+m3+h1) 
p1→5= m1/ (m1+m2+m3+h1) 
p1→6= m3/ (m1+m2+m3+h1) 
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p2→0= h2/ (m1+m3+h2) 
p3→10 =  p2→3= m1/ (m1+m3+h2) 
p3→9 =  p2→8= m3/ (m1+m3+h2) 
p3→1= h2/ (m1+m3+h2) 
p2→0= h2/ (m3+h2) 
p5→10= m2/ (m2+h1) 
p4→0 =  p6→1= p7→0= p8→2=p9→3= p10→8= 1 
p0→1+p0→2+p0→4+p0→7=p1→0+p1→3 +p1→5  +p1→6 = p2→0+p2→3  +p2→8=p3→1+p3→9  +p3→10  = 1 

 

II. Mean Sojourn Times µi=Ri*(0) 
 
Ri(t) 
𝑅0(t)= 𝑒−(𝑚1+𝑚2+𝑚3+𝛼)𝑡 
𝑅1(t)= 𝑒−(𝑚1+𝑚2+𝑚3+ℎ1)𝑡 
𝑅2(t)= 𝑒−(𝑚3+ℎ2)𝑡  
𝑅3(t)= 𝑒−(𝑚1+𝑚3+ℎ2)𝑡  
𝑅4(𝑡)= 𝑒−𝛽𝑡  
𝑅5(t)= 𝑒−(𝑚2+ℎ1)𝑡  
𝑅6(𝑡)=𝑅7(𝑡)=𝑅8(𝑡)=𝑅9(𝑡)=   𝑒−ℎ3𝑡 
𝑅10(𝑡)= 𝑒−ℎ2𝑡 
µ0 = 1/ (m1+m2+m3+α) 
µ1= 1/ (m1+m2+m3+h1) 
µ2= 1/ (m3+h2) 
µ3= 1/ (m1+m3+h2) 
µ4= 1/β 
µ5= 1/ (m2+h1) 
µ6= µ7= µ8= µ9= 1/h3 
µ10= 1/h2 

 

III. Evaluation of Transition Path Probabilities:  

 
Applying RPGT and ‘0’ as the initial state of the system as under:  The transition likelihood factors of 

altogether the reachable states after the initial state ‘ξ’ = ‘0’ are: 
𝑉0→0 = 1 
𝑉0→1 , = 𝑝0→1/ {(1-𝑝1→3𝑝3→1)/ (1-𝑝3→9𝑝9→3)} {(1-𝑝3→10𝑝5→10𝑝5→1)/(1-𝑝10→5  𝑝5→10)}(1-𝑝1→6𝑝6→1) 

(1-𝑝1→5𝑝5→1) 
𝑉𝑜→2  = 𝑝2→0= / (1-𝑝2→8𝑝8→2) 
𝑉0→3 = ……., Continue 
The transition likelihood factors of completely the reachable states since the base state ‘ξ’ = ‘1’ are 

Probabilities since state ‘1’ to dissimilar vertices stand given as 
𝑉1→0  = 𝑝1→0/ {(1-𝑝0→2𝑝2→0)/ (1-𝑝2→8𝑝8→2)} (1-𝑝0→4𝑝4→0)(1-𝑝0→7𝑝7→0) 
𝑉1→1= 1  
𝑉1→2= 𝑝0→2 / {(1-𝑝0→2𝑝2→0)/ (1-𝑝2→8𝑝8→2)} (1-𝑝0→4𝑝4→0)(1-𝑝0→7𝑝7→0)(1-𝑝2→8𝑝8→2) 
𝑉1→3= ………, Continu 
 
 

IV. Modeling system parameters 

I.MTSF (F0):  
The states to which the arrangement can transit from original state ‘0’, before joining down state are: 

‘i’ = 0 to 4 
F0 = (𝑉0→0 μ0+𝑉0→3 μ3+𝑉0→2 μ2+𝑉0→1 μ1+𝑉0→4 μ4)/ [{1-(0→1→0) -(0→2→0)-(0→4→0)}] 
     = 𝑚1

2ℎ1𝛼/𝑚1 + 𝑚2 + 𝑚3 + 𝛼2)(3h1+2𝛼+m2+m3) 
 

II. Availability (Y0):  
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The reformative states at which the organization is accessible are ‘j’ = 0 to 4 and the reformative states 

are ‘i’ = 0 to 8 

Y0 = [∑ 𝑉𝜉→𝑗𝑗 , 𝑓𝑗 , 𝜇𝑗] ÷ [∑ 𝑉𝜉→𝑖𝑖 , 𝑓𝑗, 𝜇𝑖
1] 

= (𝑉1→1 μ1+𝑉1→2 μ2+𝑉1→3 μ3+𝑉1→4 μ4)/D1 
Where D1 = 𝑉1→0 μ0+𝑉1→1 μ1+𝑉1→4 μ4+𝑉1→3 μ3+𝑉1→2 μ2+𝑉1→5 μ5+𝑉1→8 μ8+𝑉1→7 μ7 

                                     +𝑉1→6 μ6+𝑉1→9 μ9+𝑉1→10 μ10 

  
Y0   = m1m2/ (m1+3m2+𝛼+ℎ1)(3m1+m2+𝑚2

2+𝛼h1+3m2) 
 

III. Busy Period of the Server (H0) :  
The states where the attendant is busy for doing some jobs are ‘i’ = 1 to 8, taking ‘ξ’ = ‘0’, using RPGT 

busy period is given as    

H0 = [∑ 𝑉𝜉→𝑗𝑗 , 𝑛𝑗] ÷ [∑ 𝑉𝜉→𝑖𝑖 , 𝜇𝑖
1] 

 

Where D = 𝑉0→0 μ0+𝑉0→4 μ4+𝑉0→2 μ2+𝑉0→6 μ6+𝑉0→1 μ1+𝑉0→8 μ8+𝑉0→3 μ3+𝑉0→7 μ7+𝑉0→5 μ5+𝑉0→9 μ9 

+𝑉0→10  μ10 

H0 = [m1/( m1+m2+m3+𝛼)2+m2( m3+ℎ2)+1/( m1+m2+m3+𝛼)+(3m1+𝑚2
2)(m1+m3+3h1) 

+ h2/(m1+m3+h1). h1/ (h1+m2) +3h1/(𝑚1
2+h3) +m2h2(h2+3m1+h1+𝛼) 

 

IV. Expected Number of Examinations by the repair man T0 : 
 The reformative states where the repair person appointments afresh are j = 1, 2, 4, 7 the reformative 

states are i = 0 to 8, Taking ‘ξ’ = ‘0’,  

T0 = [∑ 𝑉𝜉→𝑗𝑗 ] ÷ [∑ 𝑉𝜉→𝑖𝑖 , 𝜇𝑖
1]    

 = (𝑉0→4 +𝑉0→2 +𝑉0→1 +𝑉0→0)/ D 
T0=[(m1+m2)/(m1+m2+m3+𝛼)+𝛼m3(m1+m2+m3+𝛼)(m1+m2)+m1m3(m1+m2+m3+𝛼)( 
m1+m2+m3+ℎ1)(m1+m3+h2)+m1h2/(m1+m3+𝛼). (𝛼 + h1+m2) +3𝛼2/(m1+𝛼)(m3+h1) 
  

V. Optimization Using Deep Learning methods 
 

Performing a optimization of a repairable using deep learning requires several steps in equation 1, 2, 

3 and 4 to include for model to find different parameter [1, 2, 10]. Here is an example experiment that 

you could perform: 

• Collection of data: Gather a dataset that contains information on the input parameters and the 

system's output. The input parameters could include factors such as the system's design, 

operating conditions, and maintenance schedule. The output could include metrics such as 

system availability, downtime, and failure rate in table 1 and table 2. 

• Preprocess data: Clean and preprocess the dataset, splitting it into training, validation, and test 

sets. 

• Train the model: Use a deep learning algorithm, such as a neural network, to model the 

connection among the input parameters and the output. Train the model using the training set 

and validate it using the set of values in table 1. You could use techniques such as early stopping 

and regularization to prevent over fitting. 

• Appraise the model: After the model is proficient, appraise its performance by means of test set. 

Estimate metrics such as busy period. 

• Perform sensitivity analysis: Using the trained model, vary the values of one parameter at a time 

while keeping the others constant. Record the effect on the system's output. Repeat this process 

for each input parameter, recording the impact of each parameter on the system's output. 

• Interpret results: Analyze the consequences of the optimization examination to determine which 

input parameters need the most considerable influence on the system's output. You could use 

systems such as nose importance and fractional dependence plots to increase understandings into 

the mockup's behavior. Overall, performing a optimization of a repairable undertaken system 

using deep learning requires a combination of data collection, preprocessing, model training, and 
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analysis [3, 10]. It can be a powerful tool (Google Colab, Colab Notebook, Colab Python) for 

understanding the factors that contribute to the reliability of the system [4, 10] 

. 

VI. Dataset 

Optimization is a way used to study how variations in the input parameters of an organization move 

the output. In the background of a repairable two out of three good system, optimization can help 

determine which parameters have the most significant impact on the system's reliability. To perform 

optimization using deep learning, you would need a dataset that contains information on the input 

parameters and the system's output [5, 6]. The input parameters could include factors such as the 

system's design, operating conditions, and maintenance schedule. The output could include metrics 

such as system availability, MTSF, and busy period 

Table 1: Table of parameter 
W (w1, w2, ---, wn) ƛ(ƛ1, ƛ2, . . . , ƛ𝑛) S (s1, s2,---sn)       P 

(0-20,21-100) (0-30,31-100) (0-100) (0-80) 

 

Once you have a dataset, you could use a deep learning algorithm to model the relationship among 

the input parameters and the production. One approach could be to use a neural network, which can 

learn complex relationships between inputs and outputs. To perform optimization using a neural 

network, you could first train the network on the dataset, using a portion of the data for training and 

another portion for validation. Once the network trained, you could use it to make predictions on 

new input data, varying the values of one parameter at a time while keeping the others constant [7, 

10]. By observing how changes in each parameter affect the system's output, you can determine which 

parameters have the most significant impact on the system's reliability to included dataset Table.1. 

Overall, optimization using deep learning can be an influential tool for understanding the issues that 

pay to the reliability of a repairable undertaken system. However, it requires a large and well-curated 

dataset, as well as expertise in deep learning techniques.  

VII. Method 

Optimization of a repairable system undertaken for analysis using deep learning typically involves 

the following steps: 

• Data collection: Collect data on the input parameters and output metrics of the system. The input 

parameters could include factors such as the system's design, operating conditions, and 

maintenance schedule. The output metrics could include measures such as system availability, 

MTSF, and busy period in show table 2 included. 

• Data preprocessing: Clean and preprocess the data, splitting it into training, validation, and test 

sets. Normalize the input variables to ensure that they are on the same scale. 

• Model selection: Choose appropriate deep learning optimization techniques (Adam, SGD, RMS 

prop) for the sensitivity analysis. Some options contain feed forward neural systems, 

convolutional neural systems, and regular neural networks. Consider influences such as the size 

of the dataset, the difficulty of the input-output connection, and the computational capitals 

existing. 

• Model training: Train the selected model on the training data. Use techniques such as stochastic 

gradient descent and back propagation to minimize the bust time. Monitor the performance of the 

model on the validation data, and adjust the hyper parameters as needed. 

• Model evaluation: Evaluate the trained model on the test data. Calculate metrics such as mean 

absolute bust time and mean squared error to assess the model's performance of deep learning 

optimization in show table 1 and table 2. 
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• Optimization: Use the trained model to perform optimization on the input parameters. Vary the 

value of one input parameter at a time while holding the others constant. Record the effect on the 

output metric of interest. Repeat this process for each participation parameter to determine the of 

the output metric to changes in each parameter. 

• Interpretation of results: Analyze the fallouts of the optimization examination to identify which 

input limits must the utmost impact on the output metric of interest. Use practices such as article 

importance and incomplete dependence plots to advance insights into the association amid the 

input limits and output metric [9, 10, 11]. 

• Several other methodologies were adopted by different scholars in the literature, some include 

optimization and estimations for the system parameters in reliability allocation and selective 

maintenance problems [12-15]. Others considered system availability under preventive 

maintenance [16] While others concentrated on the analysis of multiple hardware-software with 

Failure Interaction [17]. 

Overall, performing optimization of Repairable system under discussion using deep learning 

involves a combination of data collection, preprocessing, model selection, training, evaluation, and 

analysis.  

 
Table 2: Performance of model 

     

Model 

 

 

 MTSF  Expected 

Number of 

Inspections 

by the repair 

man 

 Busy Period Availa

bility 

Adam 0.923 .9067 0.8012 0.9345 

SGD 0.9123 0.9000 0.8123 0.9123 

RMS prop 0.9012 0.8912 0.8103 0.9245 

 
It can be a commanding tool for understanding the influences that underwrite to the reliability of the 

system. 

 

VIII. Results and discussion 

The results and discussion of a Optimization of undertaken repairable system parameters using deep 

learning will depend on the specific system and dataset analyzed. However, here are general insights 

that could be gained from such an analysis: 

• Identification of critical system parameters: The optimization could reveal which input 

parameters require the greatest effect on the output metric of interest. For example, it could show 

that system availability is most optimization to the frequency of care or the quality of the 

components used in the organization. 

• Understanding of the non-linear relationship amongst input strictures and output metrics: The 

deep learning model used in the analysis can capture non-linear relationships amongst input 

restrictions and output metrics, which could not detect using traditional statistical methods. The 

optimization can provide insights into the shape and magnitude of these relationships. 

• Validation of existing models and assumptions: The results of the optimization applied to 

validate or challenge existing models and assumptions about the system. For example, the 

analysis could show that a certain parameter has a much greater impact on system performance 

than previously thought. 

• Prediction of system behavior under different scenarios: The deep learning model applied to 

predict system performance under different setups, such as vagaries in operating conditions or 
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maintenance schedules. This can support decision-makers assess the impact of changed strategies 

and style informed verdicts. 

Overall, Optimization of System Parameters of 2: 3 Good Serial System Using Deep Learning 

Methods can provide valuable insights into the factors that affect system performance, (MTSF), 

Expected Number of Inspections by the repair man, Busy Period and Availability of the System are 

shown in figure 2, 3, 4 and 5.  
 

 
 

  Figure 2: comparing between models according to MTSF 

 

 
 

Figure 3: comparing between models according to Availability 
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Figure 4: comparing between models according to busy period 

 

 
Figure 5: comparing between models according to Expected Number of Inspections by the repair man 

 

MTSF between the different model is Adam is best performance among them. And busy time of 

Adam is better among them of model.   

IX. Conclusion 

In early research on the repair-replacement problem, the study of the model for a straightforward 

repairable system was the main focus of the repair-replacement models. However, it appears more 

logical to predict that the system's subsequent working times after repairs will get shorter and shorter 

while the system's subsequent repair durations after failure go longer and longer for a simple system 

that is deteriorating. In this paper, Optimization of System Parameters of 2: 3 Good Serial System 

Using Deep Learning Methods is carried out, along with external supporting systems for preventive 

maintenance and a single server that may also fail. The system consists of three similar units, out of 

which two units are working, at which point the system is operating at full capacity, and the third 

unit is kept in cold standby, which is switched in with the help of a perfect switch over system. The 

results of the optimization applied to validate or challenge existing models and assumptions about 

the system. For example, the analysis could show that a certain parameter has a much greater impact 
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on system performance than previously thought. It can help optimize maintenance strategies, 

improve system design, and reduce downtime and maintenance costs. 
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Abstract 

 
In today’s scenario manufacturing industries are highly complex and prone to failure. That’s why 

redundancy allocation problem (RAP) and time dependent availability analysis plays a major role for 

the successful life cycle of a manufacturing industry. RAP is a Np-hard problem which is very 

difficult to solve by traditional methods. Therefore in this paper, RAP for the Manufacturing system 

is solved by Spider monkey optimization. SMO is recent meta-heuristic technique. Till now it is not 

used to solve RAP. Further results are compared with the Particle swarm optimization algorithm and 

comparison validates the better performance of SMO in this problem. As mentioned above, for 

avoiding the complete breakdown of the manufacturing system time- dependent availability is 

analyzed in this study. Firstly failure and repair data is collected from the manufacturing system 

then with the help of this information transition diagram is developed. Further equations are 

developed from transition diagram by using Markov birth death process then equations are solved 

with the use of Runge-Kutta method. This methodology is implemented in MATLAB. 

 

Keywords: Availability, Reliability, RAP, Markov modelling, SMO, PSO, 

Manufacturing System. 

 

1. Introduction 

 
The demand for high-quality products and system reliability is increasing day by day in the current 

world business competitive market. It is observed that only those products will stand in the market, 

which is up to the desired market level and consumer’s satisfaction level. Along with the increasing 

demand of quality products/systems in practical engineering the importance of reliability 

optimization is also increased. With the limitation of constraints (costs/ weight), important 

measurements can be used to increase system reliability. There are several measurements which can 

be used for increasing the system reliability but redundancy allocation is the important strategy for 

improving the reliability of the system with constraints. Redundancy allocation problem is a 

reliability optimization problem. It involves selection of components with appropriate levels of 

redundancy or reliability to maximize the system reliability under the defined constraints. The 

redundancy allocation problem was solved by heuristic algorithm(HA) and constraint optimization 

algorithm (COGA) [1]. 

In this study, RAP of the manufacturing system is solved by PSO and SMO techniques. A few 

years back, PSO technique which was a peculiarity has now become the zest of researchers in the 

world. PSO is a nature-inspired and population-based stochastic technique. It was first introduced 

in the year 1995 [2]. PSO was applied for solving RAP due to its robustness and its simplicity [3]. 

Hybrid PSO with local search algorithm was applied for solving RAP [4]. Comparative analysis is 

also done with Tabu search and Multi weighted objectives solutions. A hybrid PSO algorithm with 
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local search was proposed for solving RAP in series-parallel system [5]. The reformulate of a crisp 

optimization problem from FMOOP has been done and then applied PSO for solving fuzzified 

MOOP under a number of constraints [6]. A hybrid particle swarm optimization with constraint 

optimization genetic algorithm was proposed for solving a RAP [7]. A bare bones PSO and 

sensitivity based clustering was proposed for solving multi-objective RAP [8]. Multi-objective PSO 

(MOPSO) was applied for solving RAP in an interval environment [9]. The effectiveness of the 

algorithm is demonstrated by two numerical examples in their study.  

An improved PSO was applied for solving RAP [10]. Inertia and acceleration coefficients of the 

classical PSO are improved by considering normal distribution for the coefficients which improved 

the results. The formulation of RAP with global reliability (g-reliability) has been done and applied 

improved PSO algorithm with a specific particles under RAP [11]. The optimization of the reliability 

of the system was done with the allocation of the redundancy of the manufacturing systems using 

hybrid genetic and particle swarm algorithm [12]. The redundancy allocation problem was solved 

by using hybrid genetic simulating annealing algorithm and a comparative study is presented in 

this research [13]. The reliability of the pharmaceutical plant was optimized by using heuristic 

algorithm [14]. 

SMO algorithm is introduced by J.C. Bansal in the year 2014 [15]. SMO is stimulated by social 

behavior of a special kind of monkeys called as spider monkeys. Spider monkeys have been 

classified as animals with fission-fusion social structure. These monkeys follow fission-fusion social 

systems as they initially work in a large group and but as their needs change over time, they split 

into smaller forage groups, each led by an adult female. Consequently, the suggested approach can 

be roughly categorized as drawing inspiration from the intelligent foraging behavior of spider 

monkeys with fission-fusion social structures. The initialize phase, the global leader phase (GLP), 

the local leader phase (LLP), and the decision phase are the main four phases of the SMO algorithm. 

SMO was used as an optimization technique for the community of electromagnetic [16]. SMO 

was enforced to figure out the optimal PIDA controller parameters to control the induction motor 

[17]. This was the initial strategy to attain such a goal using SMO. The outcomes were compared to 

the Dorf and PSO technique, and it was noticed that SMO outperformed both of other methods. 

An effort was made to solve confined consistent optimization problem by employing the SMO 

algorithm for restricted optimization problems [18]. A new search feature was developed in SMO 

called Power Law-based Local Search (PLLS) [19]. The SMO technique was applied to classify 

diabetes and developed SMO that may be used to design the SM-Rule-Miner, an effective rule miner 

for diabetes diagnosis [20]. Comparing SM-Rule-Miner to other meta-heuristic based rule mining 

techniques, it was found that it had the second-best average classification performance rating and 

the highest accuracy sensitivity rating. 

A survey was conducted on SMO, its applications, and variants, and compared the findings to 

other algorithms [21]. Recently, a modern Discrete Spider Monkey Optimization (DSMO) technique 

was applied to solve the problem of travelling salesmen [22]. SMO and deep neural networks were 

applied for the future forecasting of brands for marketing purposes by using Twitter data [23]. 

Further investigation showed that SMO was more reliable and computationally efficient than other 

techniques.  

Most of the products are manufactured in manufacturing plants, which consist of several 

subsystems performing different operations. These subsystems are made up of mechanical parts that 

may fail due to wear and tear and also due to usage with the passage of time. The failure is a random 

aspect that is always related to the operative condition of any physical system. Its causes are either 

deterioration in the components of the system and human errors. 

 As a result, the primary priority is to maintain system performance measures such as reliability 

and availability and redundancy in order to achieve high-profit targets and productivity in terms of 

system failures. Reliability optimization and availability are closely related concepts. Reliability 
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optimization involves improving the system’s ability to operate without failure, while availability is 

a measure of the system’s ability to be operational when it is required. 

The behavior analysis of time-dependent availability of the manufacturing system is measured 

using the Runge-Kutta fourth-order method in MATLAB. The area synthesis procedure’s 

availability was considered for the compost industry [24]. The reliability and quality attributes for 

two stochastic models of a framework were discussed which have two non-indistinguishable 

components, arranged in series, each unit having cold standby of same/equal capacity [25]. The time-

dependent availability of repairable m-out of –n and cold standby systems were investigated using 

arbitrary distributions and repair facilities [26]. An instructional study on reasonable strategies for 

Markov modeling was considered [27]. The analysis of availability formulations of standby 

frameworks of parallel units was done [28].  

The study of a two-unit warm reserve framework was discussed that expects a bivariate 

exponential thickness for the joint circulation of sub-units failure/repair rates [29]. The number of 

operational stages of a repairable Markov framework during interim finite time was studied [30]. 

Finite Markov processes were utilized to model a repairable framework with time-independent 

transition rates concerning individual conditions in reliability analysis. The complex system with 

the imperfect switching using various techniques such as the Markov-method and supplementary 

variable method was considered [31]. Failure/repair rates are considered as constant. Further, the N 

sub-unit framework was analyzed in which M sub-unit are warm standby and R sub units are used 

to repair the failed sub-units [32]. A closed equation is developed to discover reliability parameters 

under certain constraints and conclusion is made on the basis of this study that without a repairman, 

framework reliability diminishes. The shortest path study in stochastic systems; acquainted another 

methodology and getting the reliability capacity of time-subordinate frameworks with standby 

mode was discussed [33]. The application of pod propulsion that the number of vessel types has 

been increased consistently over the last two decades was highlighted [34]. A model was developed 

using Markov process [35]. Regression analysis was utilized in that study to gauge the different 

transition rates of the model. A cattle feed plant consisting of seven subsystems arrange in series 

was analyzed by using matrix method [36]. The mathematical model has been developed using the 

Markov birth-death process and made a transition diagram. The system's behavior was analyzed 

over an implanted Markov chain method [37]. The discrete-time and continuous-time measures 

were provided for each of the explicit Markov and two semi-Markov models for thermal availability 

plant using simulation modeling [38]. The performance of the steam-generating system was 

evaluated and analyzed for the availability of a thermal plant [39]. In their study, the system consists 

three subunits with a high-pressure heater, boiler drum, and economizer associated in series, 

parallel, and combination of these. Further, Markov model was used for analyzing the reliability of 

coal crushing unit of Badarpur thermal power plant [40]. Transition diagram and differential 

equations are developed and solved by a recursive approach. Markov modeling was used for the 

fertilizer plant and analyzed the reliability of the system [41]. Their study deals with Markov birth-

death procedure, and the failure rates and repair rates of every system. The RPGT technique was 

used for the behavioral study of two units [42].  

A stochastic model was analyzed that was to be considered two-unit redundant framework 

[43]. In this framework, the operational unit's software and hardware elements on failure are 

substituted by the cold standby unit, and replacement may be possible on fractional failure also. 

Markov model was used to analyze the reliability of the phased-mission system (PMS) [44]. 

Mathematical modeling is done by utilizing the state merging method. The analyze the reliability of 

the manufacturing system is done by Fault tree analysis [45]. 

 

2. Problem Description and Formulation 
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The following assumptions and notations are taken for solving RAP and to draw a transition 

diagram depicting the various possible working, reduced, and failed states, together with the 

transitional failure and repair rates of subsystems to analyze and discuss the behavior of time-

dependent availability of the manufacturing system. 

 

2.1. Assumptions 
The assumptions are follows: 

• Failure and repair rates are considered constant and statistically independent of 

each other. Not more than one unit can fail at a time. 

• The repaired units work as if a new one.  

• There is only one subsystem which has units in parallel; hence it can work in a 

reduced capacity, on the failure of all units of this subsystem, there is the complete 

failure of the system.  

• All other subsystems (except one given above) have subunits in series, so if a single 

unit of these subsystems fail, then the whole of the system fails completely. 

• No unit fails further when the system is reached in failed state. 

 

2.2. Notations 
The notations used in this research work are as follows: 

Rs(n):    System reliability 

g(.): A function that yields the system reliability, based on unique 

subsystems, and which depends on the configuration of the 

subsystems 

ni:    number of ith subsystems 

h(𝑛𝑖):    Cost of ith subsystem  

n:    number of subsystems 

Rs:     Rupees 

y*:    (n1,n2, n3,…, n7) is optimal solution 

A, B, C, D, E, F, G:   Indicate that the subsystems are working in full capacity. 

�̅�:    Indicate the reduced state of the subsystem B. 

𝜆𝑖 (i=1, 2, 3, …, 7, 8):  Failure rates of the subsystems A, B, C, D, …, G, �̅�respectively. 

𝜇𝑖(i=1, 2, 3, …, 7, 8):  Repair rates of the subsystems a, �̅�, c, d, …, g, brespectively. 

a, b, c, d, e, f, g Indicate the failure state of the subsystems A, B, C, D, E, F,  G 

𝑃𝑖(𝑡) (i=0, 1, 2, 3, …, 14)  probability that system is in the ith state. 

   Failed state                                

    Full working state             

  Reduced state                                

S0    ABCDEFG       

S2    A�̅�CDEFG  

S1    aBCDEFG 

S3    ABcDEFG 

S4    ABCdEFG 

S5    ABCDeFG 

S6    ABCDEfG 

S7    ABCDEFg 

S8    a�̅�CDEFG 

S9    AbCDEFG 

S10    A�̅�cDEFG 
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S11    A�̅�CdEFG 

S12    A�̅�CDeFG 

S13    A�̅�CDEfG 

S14    A�̅�CDEFg 

 

2.3. System Description  
The system is described as:  

• Data is collected from the manufacturing system. 

• Data related to subsystems (machines) and the number of units connected in that 

subsystem, regarding subsystems, their configuring, and working. 

• The system consists of seven subsystems: Overhead Crane, Roller, Blanking 

Machine, Stacker machine, Press machine, Molding, and Packing. These subsystems 

are connected in series for the proper functioning of the system at full capacity 

initially.  

• Overhead Crane Subsystem (A): There is only one overhead crane having subunits 

in series.  

• Roller Subsystem (B): The roller consists of one unit having subunits in parallel. It 

rolls the steel roll connected to the blanking machine. 

• Blanking Machine (C): The blanking machine cuts the blanks having subunits in 

series. 

• Stacker Subsystem (D): Blanks are stacked with the help of a stacker having subunits 

in series. 

• Press Subsystem (E): Blanks are pressed for the desired shape by the Press 

subsystem having subunits in series. 

• Molding Machine (F): The molding machine molds the pressed blanks for the 

desired shape having subunits in series. 

• Packing Subsystem (G): Packing machine packs the final product having subunits 

in series. 

  

 Structural Representation of the system 

 

                                                                                                
                                                                                                         
           

 

  

                                                                                                

 

 
Figure 1: System Structure 

         
Problem Statement 

In this study, the data related to the subsystem’s reliability and cost are presented in Table 1 of the 

manufacturing system. The given cost constraint is C= Rs 30490000. The objective function for the 

manufacturing system is to maximize the reliability and subject to cost constraint. The problem is 

represented by Equation (2), and the cost constraint presented by Equation (3). 

The problem is to maximize : 

  

Rs(n) = g (R1(n1), …., Rn(nn)) = ∏ 𝑅𝑖
7
𝑖=1 (𝑛)     (1) 

𝑅𝑖(𝑛𝑖) = ∏ [1 − [𝑄𝑖(𝑛𝑖)]𝑛𝑖]7
𝑖=1       (2) 

Overhead Crane 

Subsystem 

Roller 

Subsystem 

Blanking 

Subsystem 

Stacker 

Subsystem 

Press 

Subsystemubsyst

em 

Packing Subsystem 
Molding 

Subsystem 
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∑ ℎ(𝑛𝑖)
7
𝑖=1 ∗ 𝑛𝑖 ≤ 30490000     (3) 

 
Table 1: Reliability and Cost 

Subsystem n1 n2 n3 n4 n5 n6 n7 

Reliability of 

subsystem  Ri(ni) 
0.99 0.9762 0.9188 0.8155 0.8655 0.9287 0.9453 

Cost of 

subsystem(Rs)  h(ni) 
1280000 960000 2500000 1050000 10500000 950000 250000 

 

Optimization using PSO and SMO Algorithms 

Inspired by swarm intelligence in nature, PSO was developed by Kennedy and Eberhart in 1995 

[2].  

PSO is motivated by the social behavior of bird flocking and applies this behavior to guide the 

particles for searching the global optimal solutions. Mostly, in PSO, the particle population are 

randomly spread throughout the search space. The particles are considered to be flying in the search 

space. PSO searches for optima by updating generations after being initialized with a collection of 

random particles (solutions).  

Each particle is modified by the following the two best values in every iteration. The first one 

is the best solution (fitness) it has obtained so far. This value is known as pbest. Another "best" value 

that is obtained by the particle swarm optimizer is the best value obtained so far by any particle in 

the population. This global best value is known as gbest. When a particle takes part of the population 

as its topological neighbors, the best value is a local best and is called lbest. The position and velocity 

updated with the help of two equations: 

 

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑖 − 𝑦𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦𝑖)   (4) 

𝑦𝑖 = 𝑦𝑖 + 𝑣𝑖       (5) 

 
Results of PSO 

The results of the redundancy allocation solved by PSO are represented in tabular form. Table 

2 shows different redundant units for various subsystems obtained by using PSO.  

 
Table 2: Results of PSO for the Manufacturing System 

Subsystems n1 n2 n3 n4 n5 n6 n7 

Redundancy 

of the 

subsystems 

2 1 2 3 1 3 3 

 
SMO is stimulated by social behavior of a special kind of monkeys called as spider monkeys. 

Spider monkeys have been classified as animals with fission-fusion social structure. These monkeys 

follow fission-fusion social systems as they initially work in a large group and but as their needs 

change over time, they split into smaller forage groups, each led by an adult female. Consequently, 

the suggested approach can be roughly categorized as drawing inspiration from the intelligent 

foraging behavior of spider monkeys with fission-fusion social structures. The initialize phase, the 

global leader phase (GLP), the local leader phase (LLP), and the decision phase are the main four 

phases of the SMO algorithm. 

 

Results of SMO 
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The results of RAP of the manufacturing system obtained by SMO are also represented in 

tabular form. Optimum redundant  units of each subsystems redundant of each subsystem are 

represented in Table 3. 

 
Table 3: Results of SMO for the Manufacturing System 

Subsystems n1 n2 n3 n4 n5 n6 n7 

Redundancy of 

the subsystems 

3 2 3 3 1 2 5 

 
Comparative analysis of the results of RAP by PSO and SMO 

The comparative analysis of the results obtained by two algorithms PSO and SMO for the 

Manufacturing system in this research. 

The comparative analysis of the results of RAP using PSO and SMO are represented in Table 3. 

Obtained results demonstrate the increase in the reliability of the manufacturing system. 

 
Table 4: Comparison of the best optimal solution by PSO and SMO 

Subsystems n1 n2 n3 n4 n5 n6 n7 Increase 

in the 

reliability 

Redundancy         

PSO 2 3 2 5 1 3 5  

SMO 3 2 3 5 2 2 5  

 
The comparative analysis of the results obtained by these algorithms are described as follows: 

 

The reliability value of the system before applying these two algorithms is 0.5236.  

The values of the redundant units of each subsystem before using these algorithms are 

n*=(1,1,1,1,1,1,1).  

The optimal solution of RAP using PSO is Rs(n*) = 0.8332 and the redundancy units n* = (2, 1, 2, 3, 1, 

3, 3).  

The increment in the value of reliability can be 51%.  

The final solution of RAP using SMO is Rs(n*) = 0.8504 and redundant units of each subsystem n*= 

(3, 2, 3, 3, 1, 2, 4).  

The reliability value of the system can be increased by 55% using SMO. 

The reliability value of the system is increased by using both the algorithms.  

The redundancy units of the subsystems n* are distinct for every subsystem by both the algorithms 

used in this research.  

The larger increment in the reliability value of the system using SMO which is 55%. 

The results shows that the batter results obtained by SMO and reliability is also improved by SMO 

than PSO. 

 

Time dependent availability 

The state transition diagram of the manufacturing system is drawn as follows: 

2.4. State Transition Diagram 
The first order Markov-process is used to develop the state transition diagram.  A state 

transition diagram, together with transition rates, is drawn to describe the various states of the 

system, is given below in Figure 1. 
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Figure 2: State Transition Diagram of Manufacturing System 

       

2.5. Methodology- Runge-Kutta Fourth Order  
Differential equations associated with the system are written using the Markov birth-death 

method, which is further solved using Runge-Kutta fourth-order method by ODE- 45 in MATLAB. 

Table and graph are drawn to represent the results of the time-dependent availability of the 

manufacturing system.  

 

Mathematical Modelling: 

The differential equations governing the system using the Markov birth-death process are as 

follows: 

 

𝑃0
′(𝑡) + (𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7)𝑃0(𝑡) = 𝜇1𝑃1(𝑡) + 𝜇2𝑃2(𝑡) + 𝜇3𝑃3(𝑡) + 𝜇4𝑃4(𝑡) + 𝜇5𝑃5(𝑡) +

𝜇6𝑃6(𝑡) + +𝜇7𝑃7(𝑡)   (6) 

𝜇1𝑃1(𝑡) = 𝜆1𝑃0(𝑡)      (7) 

𝑃2
′(𝑡) + (𝜆1 + 𝜇2 + 𝜆3 + 𝜆4 + 𝜆5 + 𝜆6 + 𝜆7 + 𝜆8)𝑃2(𝑡) = 𝜆2𝑃0(𝑡) + 𝜇1𝑃8(𝑡) + 𝜇8𝑃9(𝑡) + 𝜇3𝑃10(𝑡) +

                                                                                                 𝜇4𝑃11(𝑡) + 𝜇5𝑃12(𝑡) + 𝜇6𝑃13(𝑡) + 𝜇7𝑃14(𝑡) (8) 

𝜇3𝑃3(𝑡) = 𝜆3𝑃0(𝑡)      (9) 

𝜇4𝑃4(𝑡) = 𝜆4𝑃0(𝑡)      (10) 

𝜇5𝑃5(𝑡) = 𝜆5𝑃0(𝑡)      (11) 

𝜇6𝑃6(𝑡) = 𝜆6𝑃0(𝑡)      (12) 

𝜇7𝑃7(𝑡) = 𝜆7𝑃0(𝑡)      (13) 

𝜇1𝑃8(𝑡) = 𝜆1𝑃2(𝑡)      (14) 

𝜇8𝑃9(𝑡) = 𝜆8𝑃2(𝑡)      (15) 

𝜇3𝑃10(𝑡) = 𝜆3𝑃2(𝑡)      (16) 

𝜇4𝑃11(𝑡) = 𝜆4𝑃2(𝑡)      (17) 

𝜇5𝑃12(𝑡) = 𝜆5𝑃2(𝑡)      (18) 

𝜇6𝑃13(𝑡) = 𝜆6𝑃2(𝑡)      (19) 
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𝜇7𝑃14(𝑡) = 𝜆7𝑃2(𝑡)      (20) 

 

3. Results 

 
The results of time-dependent availability obtained using the Runge-Kutta fourth-order 

method by ODE 45 in MATLAB are represented below in Table 5 and Figure 2. 

 
Table 5: Time-dependent availability 

Time Availability 

0 1 

20 0.827 

40 0.8203 

60 0.7932 

80 0.7757 

100 0.7644 

120 0.7561 

140 0.7515 

160 0.7451 

180 0.7328 

200 0.7215 

 
The availability of the system is also determined after the reliability of the system is improved by 

the technique SMO.   

 

 
 

Figure 3: Time-Dependent Availability 

 

4. Conclusion 

 
In this study, redundancy is used as a key strategy for reliability optimization to improve 

system performance, minimize failures, and enhance the overall reliability and availability of a 

system or process. RAP is a mathematical optimization problem that involves determining the 
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optimal allocation of redundancy to subsystems in order to improve the system reliability and 

availability. RAP is solved by SMO and results are compared with PSO.  

RAP of the manufacturing system is solved by two optimization techniques PSO and SMO. The 

reliability of the manufacturing system is improved by both the techniques. But the increment of 

55% in reliability of the manufacturing system by SMO which is greater than 51% by PSO.  

The availability of the manufacturing system is also analyzed using Markov modelling. The 

calculations are done using Runge-Kutta method of forth order in MATLAB using the tool ode 45. 

It is concluded that system availability is a decreasing function of time. As time increases, the 

availability value of the system decreases. 
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Abstract 

Software reliability growth models (SRGMs) are essential for forecasting and controlling the 

reliability of software systems. In present article, we propose an enhanced SRGM that incorporates 

three important factors: testing coverage, testing effort, and change point detection. We introduce a 

novel testing coverage function that captures the delayed S-shaped behaviour commonly observed in 

software reliability growth. Weibull distribution is utilized to model the testing effort. Finally, we 

address the impact of change points in software reliability. To assess how well our suggested model 

works, we conducted experiments using real-world software failure data provide by Tandem 

computers. The results demonstrate that our model outperforms existing SRGMs by providing 

more accurate predictions and a better understanding of the interplay between testing coverage, 

testing effort, and change points. 

Keywords: software reliability growth model, testing coverage, change point detection, reliability 

modelling, testing effort. 

I. Introduction

Software reliability is a critical aspect of software systems, as it directly impacts their quality, user 

satisfaction, and overall success. To ensure reliable software, it is essential to accurately manage 

and predict its reliability throughout the development lifecycle. SRGMs have been widely 

employed for this purpose, aiming to estimate the number of remaining defects and predict the 

software's reliability over time. Yamada et al. [1] offer two software reliability evaluation models 

with imperfect debugging. Poonam and Ravneet [2] suggest a method for estimating software's 

remaining faults using both imperfect and perfect software reliability growth models. Aggarwal et 
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al. [3] propose a non-homogeneous Poisson process (NHPP) based SRGM by combining imperfect 

debugging.  

Traditional SRGMs often assume simplistic reliability growth patterns, such as the popular J-

shaped or S-shaped curves. However, these models fail to capture the complex dynamics of 

software reliability growth, particularly the delayed S-shaped behaviour commonly observed in 

practice. In reality, the effectiveness of testing activities varies over time, with initial testing efforts 

being more efficient in detecting defects, followed by a period of diminishing returns as the 

software matures. Therefore, there is a need to incorporate a delayed S-shaped testing coverage 

function into SRGMs to better reflect the actual reliability growth process. With the variability of 

operational conditions, Chang et al. [4] create a new testing-coverage based SRGM. In the work, 

Chatterjee and Shukla [5] introduced and integrated a temporal variant fault detection probability 

into the s-shaped coverage SRGM. Using two distinct testing-time functions, Minamino et al. [6] 

offered to expand the current univariate SRGMs. Based on testing efforts that consider different 

testing coverage functions, Bibyan et al. [7] and Kumar et al. [8] developed three SRGMs. 

Furthermore, testing effort plays a crucial role in improving reliability of the software. The 

allocation and distribution of testing effort throughout the development lifecycle significantly 

impact the detection and removal of defects. The Weibull distribution has proven to be a versatile 

tool for modeling testing effort, as it can accommodate various shapes of effort curves, such as 

increasing, decreasing, or constant effort over time. By integrating the Weibull distribution into an 

SRGM, we can capture the diverse characteristics of testing effort and enhance the accuracy of 

reliability predictions. Yamada [9] and Kapur et al. [10] suggested a NHPP based SRGM that is 

adaptable enough to characterise different software failure/reliability curves. For software 

reliability modeling, both time-dependent fault detection rate (FDR) and testing efforts are taken 

into account. Kapur et al. [11] and Khatri et al. [12] and Jin and Jin [13] proposed an SRGM that 

includes a testing-effort function. Pradhan et al. [14] offer SRGMs that incorporate the key notion 

of testing-effort function. 

Additionally, change points pose a significant challenge in software reliability modeling. 

Change points occur when there are substantial modifications in the software or testing 

environment, leading to shifts in the software reliability growth pattern. Failure to identify and 

account for these change points can result in inaccurate reliability estimates and poor decision-

making regarding software reliability management. Therefore, it is crucial to incorporate change 

point detection techniques into SRGMs to effectively handle these shifts and enhance the reliability 

estimation process. Zhao et al. [15], Inoue et al. [16] Arora et al. [17], Dhaka and Nijhawan [18] and 

Huang et al. [19] explored an SRGM that was based on the Non-Homogeneous Poisson Process 

while taking into account the phenomenon of change point. 

This research article is to develop an enhanced SRGM by incorporating a delayed S-shaped 

testing coverage function, utilizing the Weibull distribution for modeling testing effort, and 

integrating change point detection techniques, the aim to provide a comprehensive approach to 

software reliability modeling. The proposed model will contribute to more accurate reliability 

predictions, better understanding of the interplay between testing coverage, testing effort, and 

change points, and ultimately improve software reliability management practices. 

This article is organized into several sections. Section 2 presents the formulation of the 

proposed model. In this section, the model is described in detail, outlining its key components and 

mathematical formulation. In Section 3, the results of the experiments are presented, and their 

implications are discussed. This section highlights the findings and outcomes of the study, 

examining how well the proposed model performed in predicting software reliability. The 

implications of these results for software development and management are also explored. Lastly, 

Section 4 concludes the article and provides directions for future research.  
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II. Model Description and Development

Maecenas Software reliability estimation plays a critical role in ensuring the dependability of 

software systems. It is essential to accurately predict the growth of software reliability and 

effectively manage testing efforts for successful software development and deployment. However, 

many existing software reliability growth models have limitations that hinder their accuracy and 

effectiveness. Furthermore, change points, which represent significant shifts in the reliability 

growth pattern, are often disregarded in existing models. Change points can occur due to various 

factors, such as changes in development methodologies, software updates, or modifications in the 

system environment. Failing to account for change points can lead to inaccurate reliability 

predictions and ineffective management of testing efforts. 

To address these limitations, research is focused on developing more advanced software 

reliability growth models. These models aim to incorporate the delayed S-shaped nature of testing 

coverage, variations in testing effort over time, and the impact of change points. By considering 

these factors, these models can provide more accurate and reliable predictions of software 

reliability growth. 

I. Notations

a: initial number of faults 

b: fault detection rate 

ϕ: constant 

m,m(t),m(W): mean value function (MVF) 

W/ W(t): testing effort function 

γ, ζ : Weibull distribution scale, shape parameter  

c/ c(W): testing coverage function 

𝜏  change point 

β scale parameter of logistic distribution function (constant) 

α fault generation rate 

W̅: total testing effort available (constant) 

b1/b2: fault detection rate before/after change point 

II. Model Assumptions

• During the testing phase, the rate at which faults are detected and removed may vary at

any given point.

• The number of faults detected is directly proportional to the number of faults that remain

undiscovered in the system.

• The level of testing coverage is influenced by the amount of effort invested in testing.

• Delayed S-shaped testing coverage function is incorporating.

• Fault detection rate for removal is logistically distributed (
𝑏

1+𝛽e−bW(𝑡)). 
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• The testing coverage can be quantified in terms of the rate of fault detection, represented

as 
c′(W(𝑡))

1− c(W(𝑡))
, where c(W(𝑡)) = [

1 − (1+bW)e−bW(𝑡)

1+𝛽e−bW(𝑡) ] represents the proportion of code covered

during testing. 

• The extent of code coverage during testing directly impacts the number of faults that can

be detected.

III. Model Development

In accordance with the previously mentioned assumptions, we have formulated an NHPP

based SRGM. The Mean Value Function (MVF) of our proposed model is expressed as follows: 

dm(t)

dt
= 

dm

dc

dc

dW

dW

dt
    (1) 

The first component represents the relationship between the level of testing coverage and 

number of detected faults. This component can be represented using a model that incorporates the 

delayed S-shaped testing coverage function, capturing the changing effectiveness of testing 

activities over time. The second component represents the rate at which the amount of testing 

coverage changes over time. This component can be modeled using the Weibull distribution for 

testing effort, which allows for varying patterns of testing effort, such as increasing, decreasing, or 

constant effort over time.  

𝑑𝑚

𝑑𝑐
 =  

𝑐′(𝑊)

1− 𝑐(𝑊)
(𝑎 −  𝑚)           (2) 

𝑑𝑐

𝑑𝑊
 =  𝜙(constant)  (3) 

with the initial condition 

    𝑚(0) = 0               (4) 

By combining these two components, the MVF of our proposed SRGM can be accurately 

represented and used to predict and manage software reliability growth. 

𝑚(𝑊)  =  𝑎 [1 −  (1 −  𝑐(𝑊))
𝜙
]         (5) 

The testing effort is represented by Weibull function in this paper can be expressed as: 

𝑊(𝑡)  =  �̅� (1 − 𝑒−𝛾𝑡
𝜁
)   (6) 

SRGM 1: Proposed model with perfect debugging  

Let us consider the concept of perfect debugging without change point in proposed SRGM, 

we get the following mean value function: 

      𝑚(𝑡) = 𝑎 [1 − (
(1+𝑏𝑤(𝑡)+𝛽)𝑒−𝑏𝑤(𝑡)

1+𝛽𝑒−𝑏𝑤(𝑡)
)
𝜙

]   (7) 

SRGM 2: Proposed model with imperfect debugging 

Let us consider the concept of imperfect debugging without change point in proposed SRGM. 

The fault content of the software undergoes a constant rate of change over time. The rate of 
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removal of faults is directly proportional to this changing fault content. It can be expressed 

mathematically as: 

a(t) =  a + αm(t) 

and the corresponding mean value function is: 

 𝑚(𝑡) =
𝑎

(1−𝛼)
[1 − (

(1+𝑏𝑤(𝑡)+𝛽)𝑒−𝑏𝑤(𝑡)

1+𝛽𝑒−𝑏𝑤(𝑡)
)
(1−𝛼)𝜙

]            (8) 

SRGM 3: Proposed model with perfect debugging and change point 

Let us consider the concept of perfect debugging without change point in suggested SRGM. 

With the change-point at time (𝜏) as the detection point, the detection rate of faults is as follows: 

 b(t) = {
b1; 0 ≤ t ≤ τ
b2; t >  τ 

   (9) 

while satisfying the condition W(t = τ) = W(τ). 

where 

W(t − τ) = W(t) − W(τ) 

The resulting mean value function is: 

m(𝑡) =

{

𝑎 [1 − (
(1+𝑏1𝑤(𝑡)+𝛽)𝑒

−𝑏1𝑤(𝑡)

1+𝛽𝑒−𝑏1𝑤(𝑡)
)
𝜙

] ;  0 ≤ t ≤ τ 

a [1 −  (1 − (1 − (
(1+𝑏1𝑤(τ)+𝛽)𝑒

−𝑏1𝑤(τ)

1+𝛽𝑒−𝑏1𝑤(τ)
)
𝜙

))(((
1+𝛽𝑒−𝑏2𝑤(τ)

1+𝛽𝑒−𝑏2𝑤(t)
) (

(1+𝑏2𝑤(t)+𝛽)

(1+𝑏2𝑤(τ)+𝛽)
) 𝑒−𝑏2𝑤(t−τ))

𝜙

)] ;  𝑡 > τ 

 (10) 

III. Model Validation and Comparison Criteria

To exemplify the estimation process of both the existing and new SRGMs, the analysis used a 

dataset of software failures provided by tandem computer [20] that was tested over a 20-week 

period and contained a total of 100 faults that were found. 10,000 units of effort were used in the 

first release. SRGM parameters were computed using SPSS, a statistical programme. The proposed 

model's estimations are evaluated using four goodness-of-fit metrics, which are shown in Table 3. 

A change-point analyser is used to identify the change-point in the dataset. According to the 

analysis, the transition point happened in the eighth week of testing, and the corresponding efforts 

are 4.606 For k observations in the data, the actual number of detected faults, and their predicted 

values are represented by  xj  and m(tj) respectively. The explanation of the criteria and 

mathematical formulae in Table 1. 

On the basis of the software failure data, the estimated parameter values for the testing effort 

function that follows the Weibull distribution are shown in Table 2. To determine the optimal 

values for the Weibull function shape and scale parameters, a non-linear regression technique was 

used in the estimate procedure. The estimated parameter values and fitting of the proposed 

SRGM’s 1, 2 and 3 are shown in Table 3 and Figure 1. 

Figure 1 provides an illustration of how the proposed software reliability growth models 

(SRGMs) are fitted to Tandem Computers' software testing data. The figure visually represents the 

alignment between the predicted values generated by the SRGMs and the actual observed data 

RT&A, No 4 (76) 
Volume 18, December 2023 

696



Sudeep Kumar and Anu G Aggarwal 
INTEGRATING TESTING COVERAGE, EFFORT AND CHANGE 
POINT IN A SRGM 

points. 

Table 1: Goodness of fit criteria for model 

Performance 

Criteria 

R2 MSE PRR PP 

Interpretation larger the 

value of 

R2, indicates 

model fitting 

is better to the 

data 

smaller the value of 

MSE indicates a better 

fit of the model to the 

data, indicates model 

fitting is better to the 

data 

smaller the value 

of  

PRR, indicates 

model fitting is 

better to the data 

Smaller the value 

of  

PP, model fitting 

is better to the 

data 

Expression 1

−
residual SS

actual SS
SS: - sum of 

squares 

1

k
∑(m(tj)  − xj)

2
k

j= 1

∑(
m(tj)  −  xj

m(tj)
)

2k

j= 1

∑(
m(tj)  −  xj

xj
)

2k

j= 1

Table 2: Weibull testing effort function parameter estimation

Effort function Estimated Parameters Estimated values 

Weibull 

W′ 11740.754 

γ 0.024 

ζ 1.460 

Table 3: Estimation results of parameter of proposed SRGM’s

Proposed SRGM a b/b1 b2 ϕ α β 

SRGM 1 125 .022 - .008 - .179

SRGM 2 101 .040 - .005 .220 .099

SRGM 3 136 .133 .131 .001 - .900

(i)         (ii)                                               (iii) 

Figure 1: Goodness of fit curves for SRGM 1, 2 and 3 respectively 

Table 4, on the other hand, presents a comprehensive comparison of the proposed SRGMs in 

terms of goodness-of-fit curves and metrics, considering various coverage functions. The table 

provides a quantitative evaluation of the models' performance by comparing different metrics such 

as mean square error (MSE), predictive power (PP), prediction ratio risk (PRR), and other relevant 

measures. 

By examining the goodness-of-fit curves and metrics in Table 4, we can assess the 
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effectiveness of each SRGM and identify the most suitable model based on their specific 

requirements and evaluation criteria. This table serves as a concise summary of the performance 

evaluation results and facilitates a comparative analysis of the proposed SRGMs across different 

coverage functions. 

Both Figure 1 and Table 4 contribute to the comprehensive assessment of the proposed 

SRGMs, offering visual and quantitative insights into their fitting accuracy, predictive capabilities, 

and overall goodness of fit to Tandem Computers' software testing data. These visual and tabular 

representations aid in understanding and interpreting the results obtained from the comparison of 

the SRGMs, assisting researchers and practitioners in making informed decisions regarding model 

selection and further analysis. 

Table 4: Goodness of fit criteria for proposed SRGM’s 

The inclusion of a change point in SRGM 3 contributes to its improved performance. The 

lower PP, MSE, and PRR values indicate that the predictions made by SRGM 3 align more closely 

with the actual observed data. This suggests that the model's estimates of software reliability are 

more accurate and precise when compared to SRGM 1 and SRGM 2. Additionally, the greater 

coefficient of determination (R2) in SRGM 3 indicates that a larger proportion of the variability in 

the software reliability data can be explained by the model. This signifies a stronger relationship 

between the predicted values and the actual values, further supporting the superior accuracy of 

SRGM 3. Based on the results, it can be concluded that the proposed model, which incorporates a 

change point, offers a higher level of precision and accuracy compared to the model without a 

change point. These findings have implications for software development and management, as 

they highlight the potential benefits of considering change points in software reliability growth 

models for more reliable predictions and decision-making. 

IV. Conclusion

In this research article, we have suggested an enhanced SRGM that integrates a delayed S-shaped 

testing coverage function, the Weibull distribution for testing effort, and change point detection 

techniques. To test the models, the researchers have utilized software failure data from a literature 

source, and the goodness of fit curves demonstrate the level of similarity between the actual and 

estimated values of the proposed model. The results of our research demonstrate the effectiveness 

and accuracy of the suggested SRGM. By integrating the delayed S-shaped testing coverage 

function, the Weibull distribution for testing effort, and change point detection techniques, our 

model provides valuable insights for the estimation and management of reliability of the software 

system. This research article presents a significant advancement in software reliability modeling by 

incorporating a delayed S-shaped testing coverage function, the Weibull distribution for testing 

effort, and change point detection techniques. The proposed model offers a comprehensive and 

accurate framework for software reliability estimation and management, contributing to the 

development of more reliable software systems and improving overall software quality. 

Proposed SRGM MSE PP PRR R2

SRGM 1 23.58422 0.848339775 9.489643 0.987 

SRGM 2 19.40284 0.813731 8.381536 0.988 

SRGM 3 17.79812 0.3138299 0.71271163 0.991 
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Abstract

In the agriculture field industry, farming tools play an important role. Any type of machinery’s
performance is influenced by factors including dependability, accessibility, and operating conditions.
Different types of modern machinery are being used in today’s modern world, so the farming system has
become very easy. Thresher plants are essential equipment in the agriculture field industry, and these
plants have many uses. A transition diagram for the system is used to develop a mathematical model
of the thresher plant. Partial differential equations are created associated with the help of a transition
diagram and solved using Laplace transforms and the supplementary variables approach to assessing the
system’s reliability. The copula approach was used to design the experiment, and the same methodology
was used to assess the outcomes. The main aim of the present article is to evaluate the reliability factors,
Profit, and sensitive analysis of a threshers plant. It is also possible to compute the dependability factor
with the aid of general distributions and compare it to that copula distribution.

Keywords: Reliability, MTTF, sensitivity analysis, copula and general distribution, availability,
profit.

1. Introduction

Especially for emerging nations, agriculture is a crucial component of the global economy. India
is an agricultural field country. Here many people do farming and use different tools of farming
machinery. In this field, the thresher farmer tool plays a very important role in farming. Different
kinds of threshers have been used in today’s machinery and the modern technological world.
That’s why now farming has become very easy for the farmer. It is necessary for good farming
that the farming tools should work well. Basically, there are several uses for a thresher plant; it is
used for cutting grass and threshing grain. This plant is mainly used for threshing grain. It is
necessary for good farming results that all its equipment or its subsystem should work well. For
this plant subsystem to properly, without fail, they have to be more reliable. Reliability theory’s
primary goal is to evaluate measurement mistakes and offer suggestions on improving the tests
so that errors are reduced, maximizing profit, availability, and reliability. System reliability plays
a very important role in working with any system or its component. When the system is failed,
then repair with a repair facility, after repair system how is available. Analysis of a system’s or
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component’s ability to function under particular conditions is known as reliability. In essence, it
is a probability that a system will function correctly or not at a given moment.
Our civilization is becoming more complicated, and with that complexity come more pressing
reliability issues that need to be resolved, and reliability issues are one of them. The area of
reliability engineering is now receiving significant attention from many researchers and experts.
Here is a brief description of these researchers and their research.
Singh, P.c and Pande [1] their model is based on the Chapman-Kolmogorov equation and uses
five subsystems of the crystallizing system in the series form to analyze the availability and
dependability of the system in sugar factories. Dhillon and B. S. [2] the essay examines the de-
pendability and availability of a two-unit parallel system with warm standby and common-cause
failures. Veera Raghavan, Trivedi, and K. S [3] Combinatorial models have been used to simulate
the availability and dependability of complex systems without incurring the cost associated with
massive Markov models. Perman and other [4] analyses using the power plant that When the
transition probabilities are compared, it can be shown that the likelihood of the system refitting
converges to its limiting value more rapidly than it does in the Markov model. Marquez and
other authors [5] to calculate the reliability and availability of a complicated cogeneration plant
employ the Monte Carlo and continuous time Monte Carlo simulation technique; in that paper,
a case study for cogeneration plants is also presented. Bansal S [6] compares two independent
repairable subsystems based on their availability to assess the complex system using the sup-
plemental variable technique. Shikha Bansal and Sohan tyagi [7] calculated the reliability of a
screw plant using the Boolean algebra approach and the orthogonal matrix method. Kumar,
Modgil and others [8] use particle swarm optimization and genetic algorithm for availability
analysis of ethanol manufacturing system; they analyze the result that PSO gives more accu-
rate availability compared to genetic algorithm. Vinod, Amit, and others [9] introduce a new
hybrid bacterial foraging algorithm and compare BFO and PSO optimization algorithms for
optimizing the performance and availability of paint manufacturing systems. Yusuf, I., Ismai
[10] analyze the reliability characteristic of the multi-computer systems using Laplace transforms
and supplementary variable techniques. Saini, M., Raghav [11] using genetic and particle swarm
optimization increase the urea decomposition system’s dependability and availability. Tyagi and
other researchers [12], using the Markov birth-death process, create a mathematical model of a
leaf spring production facility and optimize the availability of a plant with regard to time utilizing
C programming techniques. Sarwar and other researchers [13] determined sugar-producing
plants’ maintainability, availability, and dependability. Dionysiou, Bolbo, and other researchers
[14] identify the best-fit distribution for a plant’s failure and repair rates using various statistical
features like skewness, kurtosis, and others. On a cruise ship, the lubricating oil system was
examined in order to determine how to increase its dependability, availability, and safety. Bansal,
Tyagi, and Verma [15] analyse the deviation of availability for screw plants with the help of the
Markov birth-death Process and Matlab tool. Godara and Bansal [16] evaluate the reliability and
availability of steam turbine generator plants using the boolean function technique and neural
network approach. Tyagi and Bansal [17] optimize the performance of the Wastewater Treatment
Process plant using the Runge-Kutta method. Chaudhary and Bansal [18] evaluate the reliability
charismatic of the Hydro-Electric Power Station plant using Hydro-Electric Power Station.
There has not been a thorough analysis and sensitivity analysis of the availability of thresher
plant subsystems. However, a few articles are accessible on the economics of production and
maintenance management in the thresher plant.
Our primary goal is to study the system’s availability and reliability utilizing alternative distribu-
tions; utilizing them maximises the thresher plant system availability. In this research, we analyze
three possible states of the system: good, reduce, and failed. In this article, we also discuss the
profit and sensitivity analysis of the system; however, we maximise the plant’s profit and how to
vary the sensitivity analysis of the thresher plant.
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2. Notation

t Time frame with a time variable
s Expression of a Laplace transformation
τi Subsystem i failure frequency.
ξi Subsystem repair with copula repair facility.
ωi(x) Subsystem repair with general repair facility
Pi(x, t) The system state probability in ith state.
Pi(x, t) Laplace transform of ith state probability.
Sω(x) Standard general distribution.
Cθ(ξ(x)) Standard Copula distribution.
Ep(t) Predicted profit throughout the time period [0,t].
M1, M2 Per unit of time, revenue and service costs.

3. Assumption

The following assumption is taken through the model description.

• Initially, the whole system is completely operable or working state.
• Good, reduced, and failed states are the three possible system states.
• System is repairable after complete failed and partial failed state, i.e. repair facility available

in the system.
• After repair system works properly in a good state, and there are two types of repair

facilities in the system: general repair and copula repair facility.
• When systems partially fail, follow the general standard distribution.
• When systems are completely failed, then follow Copula standard distribution.

4. Description of The System

Figure 1: Block diagram for Thresher Plant

The machine’s availability affects how well it performs in agricultural applications, the
equipment’s environment, its procedure, and how effectively it is maintained. The block diagram
of the thresher plant is shown in Figure 1. There are four subsystems in the plant. In this part,
we give a brief description of the thresher plant. It involves removing grain from the plant by
rupturing, trampling, and striking. It is the most crucial element of agricultural automation.

1. FeedingHopper : − It is placed on the top of the threshing cylinder. Grain is first entered
through the hopper. To deliver uniform (equally) sized grains to the drum, this machine
uses a revolving star wheel mechanism between the hopper and the threshing drum.
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Figure 2: Transition diagram for Thresher Plant

2. Cylinder : −There are different types of cylinders used in the thresher plant, e.g., wire loop
type, spike tooth type, and rasp bar type cylinder. These primarily used cylinders in the
threshing plant. Grain enters in the moving direction of the cylinder.

3. Concave : −It is a curved piece of iron and steel situated next to the threshing cylinder.
It removes grain from the straw and separates grain from the harvest. Only grain and a
limited quantity of chaff are allowed to pass through it, holding the feed crop inside the
threshing chamber. According to the crop size, the distance between the concave and the
cylinder can be adjusted.

4. CleaningUnit : − With the use of blowers and aspirators, the grain is separated from the
chalk.

5. State Description

• S0 : −In the initial state, Units E1, F1, G1, and H1 are operational. Units E2, E3, and G2 are
currently in standby mode.

• S1 : − In this state , the unit E1 failed and under repair. And the elapsed repair time is (x,t).
While the unit E2, F1, G1 and H1, are on operation and the units E3 and G2 are on standby.

• S2 : − Units E1 and E2 failed and were being repaired in this state. The repair time that has
already passed is (x,t). While the units E2,F1,G1,H1, and E3 are in operation and on standby,
respectively.

• S3 : − In both the units E1 and G1, there has been a failure. The units E2 and E3 are on
standby while E2, F1, G2, and H1 are in operation.

• S4 : −In this instance, the subsystem 1 units E1 and E2 are involved. Additionally, G1 from
subsystem three has failed and is being repaired. When performing operations, the unit E3,
from subsystem 1, F1, from subsystem 2, G2, from subsystem 3, and H1 from subsystem 4.
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• S5 : − Due to subsystem 2’s failure, state S5 is a fully failed state.
• S6 : − Due to subsystem 1’s failure, state S6 is a fully failed state.
• S7 : − Due to subsystem 3 failure, state S5 is a fully failed state.
• S8 : − Due to subsystem 4 failure, state S5 is a fully failed state.

6. Formulation and Solution of The Mathematical Model

The mathematical model solves the following collection of distinct differential equations. These
differential equations are derived with the help of a transition diagram. Hence the mathematical
model is as follows.

[
∂

∂t
+ τ1 + τ2 + τ3 + τ4]P0 =

∫ ∞

0
κ1P1(y, t) +

∫ ∞

0
ξ(x)P4(x, t) +

∫ ∞

0
κ3P5(z, t)

+
∫ ∞

0
ξ(k)P9(y, t) +

∫ ∞

0
ξ(x)P3(x, t) +

∫ ∞

0
ξ(z)P5(z, t)

(1)

(
∂

∂t
+

∂

∂x
+ τ1 + τ3 + κ1)P1(x, t) = 0 (2)

(
∂

∂t
+

∂

∂x
+ τ1 + τ3 + κ1)P2(x, t) = 0 (3)

(
∂

∂t
+

∂

∂y
+ ξ(x))P3(x, t) = 0 (4)

(
∂

∂t
+

∂

∂y
+ ξ(y))P4(y, t) = 0 (5)

(
∂

∂t
+

∂

∂z
+ τ1 + τ3 + κ3)P5(x, t) = 0 (6)

(
∂

∂t
+

∂

∂z
+ ξ(z))P6(z, t) = 0 (7)

(
∂

∂t
+

∂

∂x
+ τ3 + 2κ1)P7(x, t) = 0 (8)

(
∂

∂t
+

∂

∂x
+ τ1 + κ3)P8(x, t) = 0 (9)

(
∂

∂t
+

∂

∂k
+ ξ(k))P9(y, t) = 0 (10)

BoundaryCondition
P1(0, t) = τ1P0(t) (11)

P2(0, t) = τ2
2 P0(t) (12)

P3(0, t) = (τ2
1 + τ3

1 τ3)P0(t) (13)

P4(0, t) = τ2P0(t) (14)

P5(0, t) = τ3P0(t) (15)

P6(0, t) = (τ2
3 + 2τ2

3 τ1)P0(t) (16)

P7(0, t) = 2τ1τ3P0(t) (17)

P8(0, t) = τ2
1 τ3P0(t) (18)

P9(0, t) = τ4P0(t) (19)

InitialConditions

P0(t) =
{

1 initial
0 Otherwise

(20)
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We use the Laplace technique to solve the (1)-(10) equation. Now taking Laplace transfer of
equation (1)-(19) with the help of equation (20), we get the following equation.[

s + τ1 + τ2 + τ3 + τ4
]
P̄0(t) =

∫ ∞

0
κ1P̄1(x, s)dx +

∫ ∞

0
ξ(y)P̄4(y, s)dy+∫ ∞

0
κ3P̄5(z, s)dz +

∫ ∞

0
ξ(k)P̄9(k, s)dk +

∫ ∞

0
ξ(x)P̄3(x, s)dx +

∫ ∞

0
ξ(z)P̄6(z, s)dz

(21)

(s +
∂

∂x
+ τ1 + τ3 + κ1)P̄1(x, s) = 0 (22)

(s +
∂

∂x
+ τ1 + τ3 + κ1)P̄2(x, s) = 0 (23)

(s +
∂

∂x
+ ξ(x))P̄3(x, s) = 0 (24)

(s +
∂

∂y
+ ξ(y))P̄4(y, s) = 0 (25)

(s +
∂

∂z
+ τ1 + τ3 + κ3)P̄5(z, s) = 0 (26)

(s +
∂

∂z
+ ξ(z))P̄6(z, s) = 0 (27)

(s +
∂

∂x
+ τ3 + 2κ1)P̄7(x, s) = 0 (28)

(s +
∂

∂x
+ τ1 + κ3)P̄8(x, s) = 0 (29)

(s +
∂

∂k
+ ξ(k))P̄9(k, s) = 0 (30)

Now taking Laplace’s transfer of boundary conditions

P̄1(0, s) = τ1P̄0(s) (31)

P̄2(0, s) = τ2
1 P̄0(s) (32)

P̄3(0, s) =
(
τ3

1 + τ3
1 τ3

)
P̄0(s) (33)

P̄4(0, s) = τ2P̄0(s) (34)

P̄5(0, s) = τ3P̄0(s) (35)

P̄6(0, s) = (τ2
3 + 2τ2

3 τ1)P̄0(s) (36)

P̄7(0, s) = 2τ1 + τ3P̄0(s) (37)

P̄8(0, s) = τ2
1 τ3P̄0(s) (38)

P̄9(0, s) = τ4P̄0(s) (39)

Through the use of boundary conditions (31) to (39) and solving equations (22) to (30) using
Laplace shifting properties. For calculating Pup and Pdown with the help of a transition diagram.
As we know that Pup is the probability for a good and partially failed state because the repair
facility is available in our model, so the repair rate repairs a partially failed state, and it converts
to an operable state. Below also used the total sum of probability theorem.

P̄up(s) = P̄0(s) + P̄1(s) + P̄2(s) + P̄5(s) + P̄7(s) + P̄9(s) (40)

P̄up(s) = [1 + τ1{
1 − ¯Sκ1(s + τ1 + τ3)

s + τ1 + τ3
}+ τ2

1 {
1 − ¯Sκ1(s + τ1 + τ3)

s + τ1 + τ3
}+

τ3{
1 − ¯Sκ3(s + τ1 + τ3)

s + τ1 + τ3
}+ 2τ3τ1

1 − S2κ1(s + τ3)

S + τ3
}+ τ2

1 τ3{
1 − Sκ3(s + τ1)

S + τ1
}]P0(t)

(41)

P̄down(s) = 1 − P̄up(s) (42)
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7. Reliability Characteristic Analysis

7.1. Availability analysis of the system with general distribution

For calculating the availability of the system, we use general repair distribution. General repair
distribution is defined as

P̄ξ(s) =
ξ

s + ξ
(43)

Taking failure and repair rate as follows: τ1 = 0.0001, τ2 = 0.0002, τ1 = 0.0001, τ3 = 0.0003, τ4 =
0.0004, ξ(x) = ξ(y) = ξ(z) = ξ(k) = κ1(x) = κ2(y) = κ3(z) = κ4(k) = 1 Using the failure and
repair rates mentioned above, use the inverse Laplace transfer of equation (41).

Pup(t) = 0.00012009e−1.00020005t − 0.000000030029e−2.0001t+

0.0004793028e−1.00119998t + 0.9994007089e−0.00000006985t
(44)

Table 1: Availability analysis corresponding to time

Time(t)In days Availability

0 1
20 0.999399
40 0.999397
60 0.999396
80 0.999395
100 0.999393
120 0.999392
140 0.999390
160 0.999389
180 0.999388
200 0.999386

Time t=0,20,40,60,80,100,120,140,160,180 is considered to determine the system’s availability,
and Table 1 is provided.

7.2. Availability analysis of the system with Copula distribution

We use general repair and Copula repair distribution to calculate the system’s availability. Copula
repair distribution is defined as

Sα(s) =
exp[xδ + {logξ(x)}δ]

1
δ

s + exp[xδ + {logξ(x)}δ]
1
δ

(45)

General repair distribution is expressed as,

P̄ξ(s) =
ξ

s + ξ
(46)

Taking failure and repair rate as follows: τ1 = 0.0001, τ2 = 0.0002, τ1 = 0.0001, τ3 = 0.0003, τ4 =
0.0004, ξ(x) = ξ(y) = ξ(z) = ξ(k) = κ1(x) = κ2(y) = κ3(z) = κ4(k) = 1 Using the failure and
repair rates mentioned above, use the inverse Laplace transfer of equation (41)

P̄up(t) = 0.99977958e−0.0000000699t − 0.00000030918e−1.0008t

−0.00000002999e−2.0001t + 0.0000000330e−2.718581739t + 0.000220730e−2.71888215t
(47)
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Figure 3: Availability with general distribution

Table 2: Availability analysis with Copula repair corresponding to time

Time(t)In days Availability

0 1
20 0.999778
40 0.999776
60 0.999775
80 0.999773
100 0.999772
120 0.999771
140 0.999769
160 0.999768
180 0.999766
200 0.999765

Time t=0,20,40,60,80,100,120,140,160,180 is taken into consideration to determine the system’s
availability, and Table 2 is provided.

7.3. Reliability Analysis

When doing an analysis or evaluating the system’s reliability, we’ll assume there isn’t a repair
facility. In this instance, we assume that there is no repair facility. i.e., all repair rates are
zero ξ(x) = ξ(y) = ξ(z) = ξ(k) = κ1(x) = κ2(y) = κ3(z) = κ4(k) = 0 and failure rate are
τ1 = 0.0001, τ2 = 0.0002, τ3 = 0.0003, τ4 = 0.0004 Using equation (45) and (46), taking the Laplace
transfer of equation (41). One can evaluate the reliability expression in (12) to the computed
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Figure 4: Availability with Copula distribution

values that are shown in Table 3.

R(t) = 0.000007e−0.00001t + 0.66667e−0.00004t + 0.3333250e−0.0001t (48)

Table 3: Reliability analysis corresponding to Time

Time(t)In days Reliability

0 1.000
20 0.988
40 0.976
60 0.964
80 0.953
100 0.942
120 0.931
140 0.920
160 0.909
180 0.898
200 0.888

7.4. MEAN TIME TO FAILURE (MTTF) OF THE SYSTEM

The mean time to failure is the predicted time elapsed between the system’s normal functioning
and its first failure. Simply put, the average amount of time between system failures is known as
the mean time to failure MTTF. In this, we considered that there is no repair facility. There we
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Figure 5: Reliability Corresponding To Time

assign all repair rate is zero, and in equation (45) limit tend to be zero; the MTTF of the system is
obtained in equation (49).

MTTF = (
τ1 + τ2

1 + τ3

τ1 + τ3
+

2τ1τ3

τ3
+

τ2
1 τ3

τ1
)

1
τ1τ2τ3τ4

(49)

Table 4: System MTTF corresponding to failure rate

Failure rate MTTFτ1 MTTFτ2 MTTFτ3 MTTFτ4

0.0001 2000.2 2222.5 2500.3 2857.5
0.0002 1818.6 2000.2 2222.5 2500.3
0.0003 1667.3 1818.4 2000.2 2222.5
0.0004 1539.3 1666.9 1818.4 2000.2
0.0005 1429.5 1538.6 1666.8 1818.4
0.0006 1334.4 1428.7 1538.6 1666.9
0.0007 1251.2 1333.5 1428.7 1538.6
0.0008 1177.8 1250.1 1333.5 1428.7
0.0009 1112.5 1176.6 1250.1 1333.5

Fix the failure rate τ1 = 0.001, τ2 = 0.002, τ3 = 0.003, τ4 = 0.004 and fluctuate the failure rate.
τ1, τ2, τ3, τ4 one after the other respectively as τ = 0.001, 0.002, 0.003, 0.004,
0.005, 0.006, 0.007, 0.008, 0.009 is taken into consideration to determine the system’s MTTF, and
Table 4 is provided.
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Figure 6: MTTF Corresponding To Failure rate

7.5. Analysis of sensitivity for the MTTF

Sensitivity analysis is the partial derivative of MTTF with respect to the failure rate. Now taking
the partial derivative of the equation (49) with respect to the failure rate. The sensitivity analysis
of the system is given below in Table 5

Table 5: Sensitivity analysis corresponding to failure rate

Failure rate ∂(MTTF)
τ1

∂(MTTF)
τ2

∂(MTTF)
τ3

∂(MTTF)
τ4

0.0001 −19978 ∗ 102 −24694 ∗ 102 −31257 ∗ 102 −40821 ∗ 102

0.0002 −16509 ∗ 102 −20002 ∗ 102 −24695 ∗ 102 −31254 ∗ 102

0.0003 −13871 ∗ 102 −16531 ∗ 102 −20003 ∗ 102 −24694 ∗ 102

0.0004 −11819 ∗ 102 −1389 ∗ 102 −16531 ∗ 102 −20002 ∗ 102

0.0005 −1019 ∗ 103 −11836 ∗ 102 −13891 ∗ 102 −16531 ∗ 102

0.0006 −88767 ∗ 101 −10205 ∗ 102 −11836 ∗ 102 −1389 ∗ 103

0.0007 −78017 ∗ 101 −88899 ∗ 101 −10205 ∗ 102 −11836 ∗ 102

0.0008 −69108 ∗ 101 −78134 ∗ 101 −88899 ∗ 101 −1.0205e + 06
0.0009 −61642 ∗ 101 −69212 ∗ 101 −78134 ∗ 101 −88899 ∗ 101

7.6. COST AND PROFIT ANALYSIS FOR THE MODEL

Case1 : Profit Analysis For The Model with General Distribution
when the capacity for the service is available; after that, the equation provides the predicted profit
in the interval [0, t].
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Figure 7: Sensitivity Analysis Corresponding To Failure rate

Ep(t) = C1

∫ t

0
Pup(t)dt − C2t. (50)

Then using equation (44), equation (50) can be written as

Ep(t) = C1(2.5385 ∗ 10−25e−0.004t − 5.3288 ∗ 10−20e−2252250286237519t − 1.8937 ∗ 10−16

e5277504776533377t + 1.5014 ∗ 10−8e−2.0001t − 4.7873 ∗ 10−4e−1.0012t + 1.4308 ∗ 107)− C2t
(51)

Assuming C1 = 1 and C2 = 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 respectively and t= 0,20,40,60,80,100,120,140
unit of time than expected profit is given in the Table 6 with the help of equation

Table 6: Profit estimation with general distribution

Time Ep(t), C2 = 0.9 Ep(t), C2 = 0.8 Ep(t), C2 = 0.7 Ep(t), C2 = 0.6 Ep(t), C2 = 0.5

0 0 0 0 0 0
20 1.9886 3.9886 5.9886 7.9886 9.9886
40 3.9766 7.9766 11.9766 15.9766 19.9766
60 5.9645 11.9645 17.9645 23.9645 29.9645
80 7.9524 15.9524 23.9524 31.9524 39.9524
100 9.94032 19.94032 29.94032 39.94032 49.94032
120 11.92818 23.92818 35.92818 47.92818 59.92818
140 13.9160 27.9160 41.9160 55.9160 69.9160
160 15.9038 31.9038 47.9038 63.9038 79.9038
180 17.8916 35.8916 53.8916 71.8916 89.8916

Case2 : Profit Analysis For The Model with Copula Distribution
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Figure 8: Profit Corresponding to time with general distribution

when the capacity for the service is available, thereafter, the equation provides the predicted
profit in the interval [0, t].

Ep(t) = C1

∫ t

0
Pup(t)dt − C2t. (52)

Then using equation (47), equation (52) can be written as

Ep(t) = C1(1.4992 ∗ 10−18e−2.0001t − 1.2148 ∗ 10−8e−2.7186t − 3.6164 ∗ 10−5

e6.1035t − 1.4306 ∗ 107e−6.9884∗10−8t + 3.0894 ∗ 10−7e−1.0008t + 1.4306 ∗ 107)− C2 ∗ t
(53)

Assuming C1 = 1 and C2 = 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 respectively and t= 0,20,40,
60,80,100,120,140 unit of time than expected profit is given in Table 7 with the help of equation

Table 7: Profit estimation with Copula distribution

Time Ep(t), C2 = 0.9 Ep(t), C2 = 0.8 Ep(t), C2 = 0.7 Ep(t), C2 = 0.6 Ep(t), C2 = 0.5

0 0 0 0 0 0
20 1.9957 3.9957 5.9957 7.9957 9.9957
40 3.9912 7.9912 11.991 15.991 19.991
60 5.9867 11.987 17.987 23.987 29.987
80 7.9822 15.982 23.982 31.982 39.982
100 9.9777 19.978 29.978 39.978 49.978
120 11.973 23.973 35.973 47.973 59.973
140 13.969 27.969 41.969 55.969 69.969
160 15.964 31.964 47.964 63.964 79.964
180 17.959 35.959 53.959 71.959 89.959
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Figure 9: Profit Corresponding to time with copula distribution

8. Conclusion

When failures follow a general distribution, information on the system’s availability is provided
in Figure 3 and Table 1 for each time period. On the basis of it, we draw the conclusion that as
time increases, system availability slowly decreases. When failures follow a copula distribution,
information on the system’s availability is provided in Figure 4 and Table 2 for each time period.
On the basis of it, we draw the conclusion that as time increases, system availability slowly
decreases. Tables 1 and 2 allow us to conclude that the copula distribution scheme provides more
availability than the general distribution. We can predict system availability with respect to time
using Tables 1 and 2. For a long time, system availability tends to be zero.
In the absence of a repair facility, information on the system’s reliability is provided in Figure 5
and Tables 3 for each time period. On the basis of it, we draw the conclusion that as time increases,
system reliability rapidly decreases. Figures 3,4 and 5 show that the system’s performance is
improved greatly when repair facilities are available.
Table 4 and Figure 6 provide information about the system’s mean time to failure(MTTF); for the
different failure rate parameters, MTTF gives different values. we draw the conclusion that as the
failure rate increases, system MTTF rapidly decreases.
Sensitivity analysis for the MTTF corresponding to failure rate is shown in Table 5 and Figure 6.
Tables 6 and 7 and Figures 8 and 9 show the system’s profit and cost analysis corresponding to
time; here, revenue cost C1=1 is fixed, and service cost(c2) is variable between 0.5 and 0.9. That
leads us to the conclusion that the system’s profit increases quickly whenever time increases
while service costs remain low. The yield is larger when the service cost (c2) is 0.5, and the profit
is lowest when the service cost is high (c2=0.9). Conclusion: To maximize profit, service costs
must be kept to a minimum.
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Abstract 

 
In order to increase the regime reliability of energy systems, the experience of applying machine 

learning algorithms and models for various issues of operative-dispatching and counter-accident 

management was reviewed.  It is indicated that an effective solution to this problem is the use of 

machine learning algorithms and models that are able to learn to predict and control the operating 

modes of the power system, taking into account many changing influencing factors. The experience 

of using machine learning technology in the tasks of operational dispatch and emergency control of 

EPS is presented, which clearly shows the prospects of such studies for subsequent practical 

implementation in the work of various automated control systems for electric power networks of 

power systems. Until recently, models based on neural network structures have remained the most 

popular among machine approaches in predictive problems. The advantages of using this structure 

are shown, first of all, by the fact that the neural network structure makes it possible to obtain 

models with good approximating abilities. A comparative analysis of the effectiveness of various 

models in predicting electricity consumption is given. The issues of voltage and reactive power 

regulation in the electrical network of power systems using an artificial neural network are 

considered and the effectiveness of this approach is shown. A model and algorithm for estimating 

voltage stability in power system nodes under various influencing factors is proposed, as well as 

results are presented that confirm the reliability of the results obtained. 

 
Keywords: power system, electric power system, artificial intelligence, machine 

learning, operational control of power system modes, mode prediction, artificial 

neural network, voltage and reactive power regulation 
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1. Introduction 

 
A characteristic feature of the trend in the development of modern energy systems is the  

 

increase in the share of non-traditional energy sources - these are alternative energy sources, such 

as wind turbines, solar PV installations, geothermal, converters, fuel cells and other types of 

renewable sources. The generation of power from non-traditional sources such as wind and solar 

power plants is stochastically variable, and for this reason the system operator cannot control their 

generation. 

The development of artificial intelligence (AI) methods made it possible to significantly speed 

up and automate the solution of this and a whole range of tasks for managing the modes of electric 

power systems (EPS) in the context of integrating renewable energy sources (RES) [1]. In recent 

decades, one of the actively developed areas within the Smart Grid technology platform is the use 

and implementation of machine learning (ML) technology, which includes methods for 

constructing algorithms that can learn. The use of various types of learning ML models: with a 

teacher (Supervisedlearning), without a teacher (Unsupervisedlearning), with reinforcement 

(Reinforcementlearning), deep learning (Deeplearning), etc., made it possible to create original 

adaptive, trainable software modules regulation and control of both individual devices and 

subsystems of the EPS, and its mode as a whole. Their main advantages are speed, high 

adaptability, the ability to approximate nonlinear functions and the presence of a certain kind of 

machine intelligence, which allows developing the most autonomous systems capable of 

independent decision-making based on experience and original generalization properties. 

The article reflects the experience of using the authors of algorithms and models of ML for 

various tasks of operational dispatch and emergency control of EPS, concomitant with an increase 

in the regime reliability of power systems. 

 

II. Review of the application of ml in problems of operational control of power system  

modes 

 
A necessary condition for the effective management of modern EPS is the availability of a 

short-term forecasting tool. The relevance of this task is predetermined by the fact that when 

analyzing and forming control actions only according to past data, a delayed reaction to the 

behavior of the EPS is obtained, which causes overestimated requirements for static and dynamic 

stability reserves, and also reduces the efficiency of control systems.  

Traditionally, the task of short-term forecasting of parameters in the EPS was carried out 

mainly using statistical methods based, for example, on the autoregression of the integrated 

moving average (ARMA), the Kalman filter [2]. An analysis of modern scientific works indicates 

that for the problem of short-term forecasting of EPS parameters, ML methods, primarily artificial 

neural networks (ANN) [5-7], support vector machine (SVM) [5], decision trees (DT) are widely 

used [ 6]. 

Until recently, ANN-based models remained the most popular among machine approaches in 

predictive problems. The success of ANN application is due, first of all, to the fact that the neural 

network structure makes it possible to obtain models with good approximating abilities. Various 

ways of combining neurons with each other and organizing their interaction led to the creation of 

different types of ANNs, among which the most widely used for short-term forecasting of EES 

parameters was found: a multilayer perceptron (MP), an ANN based on radial basis functions, an 

Elman network and a generalized regression network. 

Along with ANNs, predictive models based on SW demonstrate high efficiency [7]. 

Methodologically, SVM, like ANN, is based on the well-known Cover theorem [8] on increasing 

the probability of linear separability of images when transforming a nonlinear problem of 

classifying images into a space of higher dimension. In [9], a comparative analysis of the 

effectiveness of various models in predicting electricity consumption in one of the energy Hong 
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Kong. The measurements were carried out daily throughout the year. After processing the data, 

three models for predicting energy consumption were built: linear regression, ANN, DT. As can be 

seen from Table 1, the best results are given by the DT and ANN models with a deviation from the  

 

true value of 5-6%. 

 
                                  Table 1: Electricity consumption forecast results in one of the power districts of  

                                  Hong Kong based on various models of ML 

Forecasting model Average relative error, % 

Linear regression 7.6-8.2 

Artificial neural network 5.5-6.7 

Decision Trees 4.8-5.6 

 
DT|-based models are a promising technology for predicting complex non-stationary 

implementations that cannot always be processed based on neural network models. The structure 

of DT is "leaves" and "branches". The edges (“branches”) of the decision tree contain the attributes 

on which the objective function depends, the “leaves” contain the values of the objective function, 

and the remaining nodes contain the attributes by which the cases are distinguished. The DT 

model makes it possible to obtain stable solutions comparable to SVM and ANN without using the 

large computing power required by previous models. 

At the same time, the most popular modification of the AR algorithm used for forecasting 

problems is the "random forest" (from the English RandomForest) models, which allow you to 

build many trees on different subsets of the training sample and, due to the law of large numbers, 

get the best results by choosing the average of all prediction trees. In [10], a large-scale study of DT 

committee (ensemble) models is presented - random forest and gradient boosting for intra-day 

wind speed forecasts for wind power stations (WPPs) of Sotavento (Spain) and wind generation 

throughout Spain. The performance of DT-based models was compared with MOW and MT as the 

most popular MT models for wind generation forecasting. However, the results obtained did not 

reveal a clear “winner” (Table 2).  

At the forecast level for a single WPP, the models based on the DR committee outperform the 

MOU model. At the same time, forecasts for the entire EPS of Spain showed that the results of the 

DT are close to the accuracy indicators of the SRM. And finally, the lowest forecast accuracy for 

these cases was recorded when using MP models. 
 

Table 2: Forecast errors, MAE for WPP Sotavento and EPS of Spain 

Models WPP "Sotavento" Wind power for 

Spain's EPS 

Training Test Training Теst 

Support Vector Machine 5.62 7.80 1.01 3.13 

Random forest 2.68 7.68 1.29 3.68 

Gradient boosting 3.69 7.84 1.06 3.41 

Extreme gradient boosting 2.43 7.72 0.90 3.22 

Multilayer perceptron 5.61 7.78 1.22 3.69 

 

The development and application of ML methods made it possible to significantly speed up 

and automate the solution of a whole range of tasks of regime and emergency control of EPS. At 

the same time, most of the solutions in this direction are associated with the transformation of the 

classical optimization problem into a regression/classification problem, which can significantly 

reduce the calculation time while maintaining acceptable accuracy. The most successful 

developments have been obtained in the field of application of various DT algorithms for 

monitoring and controlling the operational reliability of EPS: online DT models for voltage/reactive 
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power regulation [11], random forest models for monitoring the dynamic operational reliability of 

EPS (separate developments of the Hydro-Québec energy companies), Canada [12] and  

 

 

Energinet.dk, Denmark [13]). 

Significant progress in the control of EPS modes was obtained on the basis of a group of ML 

methods with reinforcement, such as Monte Carlo methods, dynamic programming, learning 

based on time differences (SARSA, Q-learning), etc. [14]. These methods involve learning what to 

do, how to map situations into actions in order to maximize some reward (reward) signal that 

takes numerical values. The model being trained (the agent) is not told what action to take, as is the 

case in most ML approaches. Instead, they must try different actions and find out for themselves 

which ones will bring him the greatest reward. 

As a result, this approach allows the agent to choose an EPS control strategy not randomly, 

but to take into account the experience of previous interaction with the system based on the 

assessment of the utility function Q. Agents trained offline based on the Q-algorithm successfully 

control individual components of the power system within the ODE and / or PAHs such as 

dynamic brake, thyristor-controlled series capacitor, synchronous generators, individual or 

aggregated loads, etc. for optimal control strategies. Applications of the reinforcement learning 

method have shown good results in a whole range of ODE and PAC tasks: wind turbine generation 

control, load control, power system restoration, micro-EPS modes control, voltage regulation, 

cascade accident prevention, power consumption forecasting, etc. [15,16]. 

Despite the undoubted advantages of the noted ML models, the question of the high efficiency 

of these methods is still open and requires further research. One of the most promising areas is the 

use of hybrid approaches. In [17], ANN and SW models are considered in combination with the 

Hilbert-Huang transform (HCT). In [18], the Box-Jenkins methodology was supplemented with 

ANN. Neural network models together with fuzzy logic methods were proposed in [19]. Models 

combining ANN and burst theory are presented in [20]. The success of hybrid approaches is 

explained by dividing the task of constructing a predictive model into two basic stages: the stage of 

data preprocessing in order to identify features that are most significant for the prediction, and the 

stage of identifying a dynamic predictive model itself. 

 

III. Short-term forecasting of power system parameters using ml models 

  
The scientific groups of ISEM SB RAS (Irkutsk, Russia), "Azerenergy" and AzNIiPIIE (Baku, 

Azerbaijan) conducted a study of autoregression models and neural networks in predicting the 

power generation of offshore wind turbines in various sectors of the Caspian Sea [21]. To build and 

train models, we used data from measurements of wind speeds and a number of other additional 

parameters (Fig. 1a). To predict the power of wind turbines in intraday cycles "for 1 hour ahead"', 

the prehistory of data for one week was used. (averaging 5 minutes). According to the test results, 

the Artificial Neural Network for Extreme Learning (ANN EL) gave a significantly higher 

prediction accuracy (MAE = 2.538, RMSE = 2.686) than the autoregressive ARNSS model (MAE = 

6.649, RMSE = 7.178). 

The staff of ISEM SB RAS, together with the research team of the Irish National University in 

Cork, developed a hybrid approach (Fig. 1b) to short-term forecasting of EPS parameters (load, 

generation, power flows, electricity prices) based on an effective apparatus for analyzing non-

stationary time series UGH and ML algorithms [17,22]. 

UGH can be divided into two parts: empirical mode decomposition (SEM) and the application 

of the Hilbert transform to them. This makes it possible to obtain a set of frequencies and 

amplitudes localized in time. There are various SEM-based hybrid approaches that include 

modifications of ML algorithms for dependency recovery. Various types of ANN (MP, ANN EL), 

MOV and others are used as such algorithms. 
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                                       а)                                                                                                  б)  

 Figure 1: Results of wind speed forecast based on the ARPSS and ANN EL models (a) 

 and the general diagram of the hybrid approach for creating forecast models (b)    

 

     
a)                                                                              b) 

                  
с)                                                                               d) 

Figure 2: Application of the hybrid approach: a, b -  the results of forecasting the flow of active power "for 1 hour ahead"; 

c - the results of the SEM of electricity prices for the South Wales area; d - forecast schedule for electricity prices in the 

Australian market "1 hour ahead" 
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The effectiveness of this hybrid approach has been demonstrated on real data in various test 

tasks: in ultra-short-term forecasting of active power flows in the section of the traction substation 

"Gidrostroitel-Korshunikha", Russia, Irkutsk region (Fig. 2, a, b) [23] and in forecasting electricity 

prices “1 hour ahead” according to the Australian National Energy Exchange (Fig. 2, c, d) [17]. 

Additionally, the hybrid approach was tested on real data when predicting wind speed “for 

24 hours ahead” for the tasks of controlling the modes of wind power plants in the region of 

Valentia, Ireland (Fig. 3) [22]. In addition to retrospective data on wind speed and direction, such 

characteristics as atmospheric pressure, wave height and period, maximum gust speed, relative 

humidity, and water temperature were used. All parameters were measured hourly from 

12/15/2020 to 05/15/2022. 

 

    
a)                                                                      b) 

Figure 3: Location of the M3 weather station in the Valentia region (a) and a fragment  

of the decomposition of the implementation of the wind speed into empirical modes (b) 

 
Models were built to make forecasts 4, 6 and 24 hours ahead. The results of model testing 

were compared for various methods, such as random forest, SVM, DT based on gradient boosting, 

ANN EL. As can be seen from fig. 6, the use of the hybrid approach makes it possible to improve 

the accuracy of the wind generation forecast compared to the use of simple neural network 

forecasting.  

Studies have shown that for short-term and ultra-short-term forecasts of wind generation, the 

most suitable of the considered methods are ANN EL and gradient boosting tree. Forecasting for a 

longer period requires the use of more complex and robust methods such as gradient boosting tree 

and random forest. 
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a)                                                                                               b) 

Figure 4: Forecasting wind speed “for 24 hours ahead”(a), Valentia, Ireland for hybrid models  

UGH-ANN, UGH-MOV and MP (b) 

 
Table 3: Comparison of errors of various ML models 

Model Period, hour RMSE MAE 

Naive forecast 

ANN EL 

gradient boosting 

MoU 

random forest  

 

 

4 

1.834 

1.359 

1.416 

1.848 

1.429 

1.392 

1.076 

1.112 

1.463 

1.127 

Naive forecast 

ANN EL 

gradient boosting 

MoU 

random forest  

 

 

6 

2.208 

1.669 

1.676 

2.597 

1.677 

1.708 

1.322 

1.312 

2.206 

1.344 

Naive forecast 

ANN EL 

gradient boosting 

MoU 

random forest  

 

 

24 

2.757 

2.259 

2.157 

3.480 

2.235 

2.081 

1.844 

1.708 

2.620 

1.835 

 
Detailed information about the quality of models obtained by different ML algorithms for 

different prediction periods is presented in Table 3. As a result, for ultra-short-term (up to 4 hours 

ahead) and short-term forecasts for wind energy (up to 6 hours ahead), the most suitable of the 

considered methods are ANNs of extreme learning and gradient boosting tree. Forecasting for a 

longer period (up to 24 hours ahead) requires the use of more complex and robust methods such as 

gradient boosting tree and random forest. 

 

         IV. Voltage and reactive power regulation in Eps with integrated res using ml models 

 
 On fig. Figure 5 shows the schedule of daily power generation on one of the typical days 

during the month [24-26]. As can be seen from this figure, the power generation by wind farms 

differs significantly by day - the difference is for calm and windy days (0 - 5) % and (70 - 90) %, 

respectively. Differences can also be significant in power generation in the morning and afternoon. 

The variability of production can be so significant that the difference from the average monthly  
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day or the average annual day is not consistent with stochasticity. The output varies throughout 

the day from zero to maximum. In this case, the modeling of the development characteristic in the 

form of a normal distribution seems to be unsuccessful, and therefore the consideration of the 

development process as stochastic is incorrect. In similar situations, controlling voltage and 

reactive power and ensuring reliability, as well as voltage stability of the EPS by traditional means, 

turns out to be difficult and inefficient. Therefore, the problem of applying ML to solve this 

problem is considered. 

In [27-29], a method for estimating the EPS stability limit by the variability of the voltage 

profile described by the ANN (Fig. 6), developed by the scientific groups of "Azerenergy" and 

AzSRDSIE (Baku, Azerbaijan), is given. 

In this case, the place and volume of the additionally included reactive power injection is 

determined by analyzing the sensitivity of the voltage stability limit value relative to the voltage 

variability in each network node: 
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Where 𝐻 −  number of hidden neurons in the ANN model;ℎ − number of nodes in the electrical 

network diagram; 𝑊1(𝑖, 𝑗)– weight coefficient of connection of the j-th neuron of the input layer 

with the i-th neuron of the hidden layer; 𝑊2(𝑖) – weight coefficient of the connection of the output 

neuron with the i-th neuron of the hidden layer; 𝑟𝑖 , 𝜑𝑖 – input and output of i-th hidden neuron, 

respectively; 𝐸, 𝜓 – input and output of the output neuron, respectively; 𝑟𝑖
0 − initial output value of 

the i-neuron of the hidden layer; 𝐸0 – the initial value of the output of the output neuron; 𝑢 −  

number of unsupervised nodes (bus PQ);𝑇(𝑗, 𝑢) – transformation matrix element. 

 

                        
                           Figure 5: Uncertainty of daily power generation wind farms on one of the typical days of the month 
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           Figure 6: Schematic diagram of monitoring the current value of the  voltage stability limit  

           using the ANN model 

 
Using the reduced Jacobi matrix, one can determine the sensitivity of the voltage stability limit 

with respect to the reactive power injection on the busbars: 
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where, −uN  total number of non-steered or  PQ  tires; 

−knjQ ,1
 injection of reactive power introduced into node "k"; 

− ),( kijR  element of the reduced Jacobi matrix. 

In order to increase
UП  to the desired value lim

UП , it is necessary to introduce reactive power 

njQ1  in the node with high sensitivity, established by the estimate from equation (3). 

It should be noted that the process of improving the 
UП  value by introducing additional 

injection reactive power must be performed for each node. In other words, equation (2) determines 

the final change in the value of 
UП , which is achieved by summing the reactive power injections at 

different nodes. At each mode point, the desired value of lim

UП  is determined as a fraction of the 

current load value in p.u. or in %: 

 
 

No 

Yes 

Real power system (physical 

scheme or calculation model) 

ANN for voltage stability 

prediction 

 

Comparison of current stress 

stability limit estimates with a given 

value 𝑈𝑘𝑝(𝑖) > 𝑈𝑘𝑝
зад 

 

Modes of operation of the system 

with voltages in the nodes that 

guarantee its stable operation 

 

Improving stability 

(optimization of reactive power 

control) 

 

Estimation of sensitivity (stability 

limit) 𝑈𝑘𝑝(𝑖) on additional input 𝑄 

in the node  
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0

lim PПU =                                                                           (4)    

where, −0P  current mode load power; 

−lim

UП voltage stability limit in the current mode; 

−  reserv factor 

In order to improve voltage stability, it is necessary to ensure effective control of the reactive 

power source in the nodes identified as sensitive from the analysis of the regimes of the ML 

stability model. The studies were carried out on a test 14-node IEEE scheme, as well as on a real 

scheme of the energy system of Azerbaijan. 

For a 14-node scheme, training samples were obtained by calculating the flow distribution at 

different loads, which varied in steps of 5% from 0P  to the limiting limP in terms of load capacity. 

As for the samples corresponding to certain load increments, each of them is characterized by a 

profile and limiting stress values in terms of stability. 

Table 4 shows the number of training samples, validation, and experimental use to predict the 

stress stability limit. 

 
Table 4: Parameters of the ML model for estimating the stress stability limit 

Number of 

training 

samples 

Number of 

Validation 

Samples 

Number of testing 

samples 

Number of 

hidden neurons 

Studying time 

sec. 

1600 400 2000 15 29, 17 

 
As can be seen from Table 5, by reactive power compensation in the network (nodes 3,6,9), it 

is possible to increase the system load from 290.04 MW to 613.83 MW. In this case, the total power 

of the compensating devices will be 248.91 MVAr. 

The scientific group of ISEM SB RAS has developed a hybrid system for voltage/reactive 

power control in normal modes and prevention of voltage avalanche in EPS using online 

algorithms of ML and multi-agent system (MAS) [11]. The main idea of the development is to train 

and tune intelligent algorithms to recognize in a timely manner the characteristic indicators of EPS 

stability (coefficients of the Jacobian matrix of the steady state, L-index) in order to implement joint 

measures to prevent serious accidents. 
 

        Table 5: Values of the maximum load of the system when the limit voltage is reached under the conditions of  

        reactive power compensation 

Load 

power in 

the initial 

normal 

mode, 

MW 

Before compensation 

MW 

After compensation 

MW 

Compens

ation 

nodes П𝑈 

most 

sensitive 

to change 

Optional 

reactive 

power 

injection, 

MVAr 

Accordin

g to the 

INS 

model 

traditional 

calculations

oft ETAP 

method 

According 

to the INS 

model 

traditional 

calculations

oft ETAP 

method 

 

310,8 

 

290,0 

 

277,2 

 

613,8  

 

491 

3 

6 

9 

92,04 

51,37 

105,5 

 
Together with the MAS, which implements decentralized voltage regulation by changing the 

settings of AVR generators, to regulate reactive power sources in load nodes, a model was 

proposed based on online DT - an online random forest algorithm, which was trained to determine 

additional reactive power injections for various EPS operating modes. The basis for training the 

model is the results of solving a system of  
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equations with respect to partial derivatives of the function of the sum of local L-indices, by 

reactive power injections 
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where 𝐿𝑠𝑢𝑚 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑚 – sum of local indices, 𝐿 = max
𝑗∈𝛼𝐿

(𝐿𝑗) = ( 
𝑆𝑗

+

𝑌𝑗𝑗
+∙𝑈𝑗

2) – global L-index 

proposed in [25] as an indicator of impending voltage collapse. 

The proposed online random forest algorithm, PDSRF, has the ability to independently and 

adaptively rebuild in real time in the event of serious changes in incoming information without 

reducing the accuracy of identifying EPS modes. The developed intelligent system was tested both 

on standard IEEE circuits (IEEE 6, IEEE 118) and on a real circuit of the Bodaibo power district of 

the Irkutsk power system, which has problems with voltage stability. 

Figure 7 clearly shows that the additional use of intelligent models based on MAC and ML, 

along with traditional voltage regulation by local automatics, makes it possible to maintain system 

stability in heavy modes and prevent voltage collapse. As a result, such a hybrid control system 

based on intelligent tools provides an automatic solution to the problems of secondary regulation 

and emergency control, thereby eliminating the human factor and ensuring the continuity of the 

processes of operational and automatic emergency control. 

          
а)                                                                      б) 

           Figure 7: Changes 𝐿𝑠𝑢𝑚under different control scenarios: a) IEEE 118 test pattern; b) real scheme of the  

          Bodaibo energy district, Irkutsk region, Russia 

 

Conclusion 

 
The ever-increasing saturation of modern PS with new stochastic components (high-power 

wind turbines, solar panels, demand management systems, etc.), the introduction of new 

technologies (distributed generation, flexible power transmission equipment, energy storage 

systems, micro-EPS, hybrid AC/DC networks, digital substations, etc.), as well as the formation of 

market principles of regulation, significantly complicate the tasks of forecasting and controlling the 

modes of modern EPS. An effective solution to this problem is the use of algorithms and ML 

models that are able to learn to predict and control the operating modes of the EPS, taking into 

account many changing factors. The results of the application of the ML technology in the tasks of 

operational dispatch and emergency control of EPS clearly show the prospects of such studies for 

subsequent practical implementation in the work of various automated control systems for 

electrical networks. 
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Abstract

In this paper, we establish a single server retrial queueing system with two types of customers,
admission control, balking, emergency vacation, differentiate breakdown, and restoration. There are
two distinct factors which must be considered when classifying priority and ordinary customers. The
non-preemptive priority discipline proposed by this concept. Ordinary and priority customers arrive in
accordance with Poisson processes. For both priority and ordinary customers, the server continuously
offers a single service that is distributed arbitrarily. In this study, we compute the Laplace transforms
of the time-dependent probabilities of system states using a probability generating function and the
supplementary variable technique. The sensitivity analysis of system descriptions is assisted by study of
numerical findings.

Keywords: Batch Arrivals; Priority Queues; Admission Control; Emergency Vacation; Balking;
Differentiate Breakdown; Restoration.
AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

When a customer arrives and discovers the server is busy, they are asked to leave the service
area and join a trial queue known as orbit, which separates queues with repeated efforts. Once
a certain period has gone, the orbiting the customer may resubmit their service request. Any
customer in the orbit can repeatedly request services without affecting the other customers in the
orbit. In computer and communication systems, such queues have a unique function. Numerous
researchers explored two various customer types in retrial queues Wang ([26]; Dimitriou [12]; Wu
and Lian [27]; Rajadurai et al.[23]).

Several aspects of daily life involve priority queues, especially when specific groups of
individuals are given special attention, e.g. telecommunications field. Priority systems are a
inestimable scheduling tool that allows messages of several types to receive a wide range of
service. Due to this, the priority queue has earned a lot of attention in the literature Ayyappan
and Thilagavathy [5], Kim et al. [19], Bhagat and Madhu Jain [8], Rismawati et al. [24], Pandey
and Pal [22].

The service channel will temporarily fail if the regularly busy server breaks down, which
could happen at any time. In other words, the server is temporarily unavailable. Fiems et al. [13]
focused at the single-server queueing system with two different kinds of server disruption. Jain
and Agarwal [16] considered an unreliable server M[X]/M/1 queueing system with multiple
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types of server breakdowns. Zhang and Zhu [29] investigated retrial queueing model with
vacations and two types of breakdowns. Jayakumar and Senthilnathan [17] described the server
breakdown without interruption in a batch arrival queueing system with multiple vacations and
closedown. Yi-chih Hsieh and Andersland [28] explored steady-state queue length distribution
and mean queue length of Markov queueing systems subject to random breakdowns. Ayyappan
and Sankeetha [7] discussed single server that provides both regular and optional service with
vacation, breakdown and repair.

In 1957, Haight conducted the first study on the phenomenon of balking, in which customers
decide not to wait in queue if the server is not present. Customers may become frustrated in
several types of scenarios, including call centres, computer systems, websites, and telephone
switchboards. Artalejo and Lopez-Herrero [3] introduced an M/G/1 retrial queue with balking.
A M[X]/G/1 queue with variable vacations and balking was researched by Ke [18]. An M/G/1
retrial queue with non-persistent customers was mentioned by Gao and Wang [14] where the
server was susceptible to failure because of the negative arrivals.

The following admission control policy was examined in this study. An arriving batch of low
priority customers may be allowed to join the orbit with probability a or may not be allowed with
probability (1 − a). For instance, the company may not be able to select one candidate from all
the applicants during an interview. Some selection criteria could be used, such as a screening
process, a group discussion, etc. A single server batch arrival queueing system with two service
phases, an admission control system, and Bernoulli vacation was examined by Choudhury [9].
Artalejo et al. [4] generalised this queue to discrete-time. A M/Ek/1 queuing system’s control
approach was created by Madhu and Indhu [20]. A single server batch arrival retrial queueing
system with two service phases and a Bernoulli admission algorithm was obtained by Choudhury
and Deka [10].

Recent research regarding various vacation policies adopted by service providers has produced
a considerable impact on queueing systems. This is a result of its widespread application in many
kinds of real-life situations, particularly in flexible production systems, communication systems,
and computer systems. Shekar et al. [25] introduced a single server queueing system’s emergency
vacation. This vacation policy states that the working server may take a vacation in an emergency
without finishing the service to customers who are waiting in service interruption. A priority
retrial queueing system that involves working vacations and vacation interruptions, emergency
vacations, negative arrivals, and delayed repairs was studied by Ayyappan and Thamizhselvi [6].
With two different vacation possibilities, Anna Bagyam and Udhaya Chandrika [2] investigated a
single server retrial queueing system. [1] has highlighted the transient behaviour of a multiple
vacations queue with frustrated clients. [11] investigated a M[X]/G/1 queueing system with a
single vacation policy. Ayyappan and Meena developed the phase type queueing model with
degrading service, breakdown and Vacation.

In this study, we investigate a single server retrial priority queueing system with admission
control, balking, emergency vacation, differentiate breakdown and restoration. Incoming ordinary
customers have the option of entering the orbit or exiting the system if the server is down. If the
server is busy suddenly they go for vacation and the interrupted customer wait in the queue and
get fresh service after return from vacation. The regular busy period server may breakdown at
any instance. Hard and soft failure are the two kind of system failures. Hard failure is defined
as an equipment failure that requires a repairman with specialized knowledge to be physically
present, which is a time-consuming process. While soft failure is defined as failure brought on
by circumstances rather than a physical problem and usually resolved by restarting the system.
After breakdown that the system will take some time for its refunctioning. This recovering period
is called the restoration.

The rest of the paper is organized as follows: Mathematical model is described in Section 2 and
queue size distribution is analyzed in Section 3. An explicit expression for governing equation is
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enlisted in Section 4. Steady state analysis is discussed in Section 5. Stability condition discussed
in Section 6. Particular cases are obtained in Section 7. The effect of system performance measures
is illustrated in Section 8. Numerical and graphical results are derived and conclusion is obtained
in Section 9 and 10.

Figure 1: Schematic representation

2. Description of the Model

• Arrival Process : Two different types of units arrive in batches with independent Poisson
compound process. Let λp, λo > 0 represent the corresponding arrival rates for priority
and ordinary customers. Assume that the first order probabilities for priority and ordinary
customers λpcidt (i = 1, 2, 3, ...) and λocjdt (j = 1, 2, 3, ...) respectively. The system has i
and j batch size customers enters within a short period of time (t, t + dt). Here, 0 ≤ ci ≤ 1,
∑∞

i=1 ci = 1 , 0 ≤ cj ≤ 1, ∑∞
j=1 cj = 1.

• Retrial Service Process : Ordinary customers are known as retrial customers. These
customers will go back to the orbit and will request repeatedly for their service after some
time if the server is busy or unavailable. Retrial customers service time has rate β(ν) that
follows the general distribution.

• Regular Service Process : Ordinary and priority customers ordinate in batches with
distinct queues. Service rate follows general distribution and server renders single service
for priority customers and ordinary customers with service rate µi(ν), i = 1, 2 respectively.
When the priority queue is empty, the service for ordinary customers begins.

• Admission Control: The server will follow the admission control policy for ordinary
customers if it is overloaded in priority or ordinary customers. The server may grant
ordinary customers admission with probability a or restricted entry with probability (1 − a).

• Differentiate Breakdown and restoration : The rates of hard and soft failure are expo-
nentially distributed with rate α1 and α2 respectively. For soft failure, the restoration time
follows exponential distribution with rate η1 and for hard failure restoration time follows

RT&A, No 4 (76) 
Volume 18, December 2023 

731



G. Ayyappan, S. Nithya
OPTIMIZATION OF PRIORITY SERVICE WITH EFFICIENT COORDINATION
OF ADMISSION CONTROL, EMERGENCY VACATION.....

general distribution with rate η2(ν).
• Balking: Incoming ordinary customers have the option of entering the orbit with probability

b or exiting the system with probability 1 − b, if the server is down.
• Emergency Vacation: During the service term, the server has the opportunity to take an

unexpected vacation at the exponentially distributed rate θ. The emergency vacation time
for interruptions of priority and ordinary customers follows general distributions with rate
γ(ν).

3. Analysis of queue size distribution

This section deals with the derivation of governing equations. On account of non-Markovian
queueing system, probability generating function and supplementary variable have been used to
solve this model.
Let
N1(t) = Number of priority customers in the queue at time t,
N2(t) = Number of ordinary customers in the orbit at time t,
Y(t) = State of the server at time t.
Here M0(t), B0

i (t) for i = 1, 2., (R(2))0(t) and E0(t) indicates elapsed retrial time, elapsed service
time for priority and ordinary customers, elapsed restoration period, elapsed emergency vacation
at time t.

To obtain a bivariate Markov process {N1(t), N2(t), Y(t), t > 0}, Y(t) denotes the server state.
Here Y(t) = (0,1,2,3,4,5), which mean as follows: 0, the server is idle; 1, server is in retrial state; 2,
busy with priority customers; 3, busy with ordinary customers; 4, restoration; 5, on Emergency
vacation.

Let us assume that, M0(0) = 0, M0(∞) = 1, B0
i (0) = 0, B0

i (∞) = 1, (R(2))0(0) = 0,
(R(2))0(∞) = 1 and E0(0) = 0, E0(∞) = 1 be continuous at ν = 0 for i = 1, 2.

If the elapsed time is ν, let function β(ν), µ1(ν), µ2(ν), η2(ν) and γ(ν) represent the con-
ditional probability of completion rates for the retrial period, high priority and low priority
customer’s service period, restoration period, and emergency vacation period.

β(ν) =
dM(ν)

1 − M(ν)
; µi(ν) =

dBi(ν)

1 − Bi(ν)
, i = 1, 2 η2(ν) =

dR(2)(ν)

1 − R(2)(ν)

γ(ν) =
dE(ν)

1 − E(ν)
; are the hazard rate functions of M(.), Bi(.), R(2)(.) and E(.) respectively.

The probability I0,n(ν, t) = PrN1(t) = 0, N2(t) = 0, Y(t) = 0 and probability densities are as
follows:

I0,n(ν, t)dν = Pr{N1(t) = 0, N2(t) = n, Y(t) = 1; ν ≤ I0(t) ≤ ν + dν}, n ≥ 1

P(1)
m,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 2; ν ≤ B0

1(t) ≤ ν + dν},

P(2)
m,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 3; ν ≤ B0

2(t) ≤ ν + dν},

R(2)
m,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 4; ν ≤ R0(t) ≤ ν + dν},

Em,n(ν, t)dν = Pr{N1(t) = m, N2(t) = n, Y(t) = 5; ν ≤ E0(t) ≤ ν + dν}

for ν ≥ 0, t ≥ 0, m ≥ 0 and n ≥ 0.
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4. Equation Governing the System

∂

∂t
P(1)

m,n(ν, t) +
∂

∂ν
P(1)

m,n(ν, t) =− (λp + aλo + α1 + α2 + µ1(ν) + θ)P(1)
m,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciP
(1)
m−i,n(ν, t)

+ aλo(1 − δ0n)
n

∑
j=1

cjP
(1)
m,n−j(ν, t) for m, n ≥ 1.

(1)

∂

∂t
P(2)

m,n(ν, t) +
∂

∂ν
P(2)

m,n(ν, t) =− (λp + aλo + α1 + α2 + µ1(ν) + θ)P(2)
m,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciP
(2)
m−i,n(ν, t)

+ aλo(1 − δ0n)
n

∑
j=1

cjP
(2)
m,n−j(ν, t) for m, n ≥ 1.

(2)

∂

∂t
I0,n(ν, t) +

∂

∂ν
I0,n(ν, t) =− (λp + λo + β(ν))I0,n(ν, t) for n ≥ 1. (3)

∂

∂t
Em,n(ν, t) +

∂

∂ν
Em,n(ν, t) =− (λp + bλo + γ(ν))Em,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciEm−i,n(ν, t)

+ bλo(1 − δ0n)
n

∑
j=1

cjEm,n−i(ν, t) for m, n ≥ 1.

(4)

d
dt

R(1)
m,n(ν, t) +

d
dν

R(1)
m,n(ν, t) =− (λp + bλo + η1)R(1)

m,n(t) + λp(1 − δ0m)
m

∑
i=1

ciR
(1)
m−i,n(t)

+ α1

∫ ∞

0
(P(1)

m,n(ν, t) + P(2)
m,n(ν, t))dν

+ bλo(1 − δ0n)
n

∑
j=1

cjR
(1)
m,n−i(t) for m, n ≥ 1.

(5)

∂

∂t
R(2)

m,n(ν, t) +
∂

∂ν
R(2)

m,n(ν, t) =− (λp + bλo + η2(ν))R(2)
m,n(ν, t)

+ λp(1 − δ0m)
m

∑
i=1

ciR
(2)
m−i,n(ν, t)

+ bλo(1 − δ0n)
n

∑
j=1

cjR
(2)
m,n−i(ν, t) for m, n ≥ 1.

(6)

d
dt

I0,0(t) = −(λp + λo)I0,0(t) +
∫ ∞

0
P(1)

0,0 (ν, t)µ1(ν)dν + R(1)
0,0 (t)η1

+
∫ ∞

0
P(2)

0,0 (ν, t)µ2(ν)dν +
∫ ∞

0
R(2)

0,0 (ν, t)η2(ν)dν

+
∫ ∞

0
E0,0(ν, t)γ(ν)dν.

(7)
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Define, the boundary conditions at ν = 0

I0,n(0, t) =
∫ ∞

0
E0,n(ν, t)γ(ν)dν +

∫ ∞

0
P(1)

0,n (ν, t)µ1(ν)dν + R(1)
0,n(t)η1

+
∫ ∞

0
P(2)

0,n (ν, t)µ2(ν)dν +
∫ ∞

0
R(2)

0,n(ν, t)η2(ν)dν, for n ≥ 0.
(8)

P(1)
m,n(0, t) =

∫ ∞

0
P(1)

m+1,n(ν, t)µ1(ν)dν + R(1)
m+1,n(t)η1 +

∫ ∞

0
P(2)

m+1,n(ν, t)µ2(ν)dν

+
∫ ∞

0
Em+1,n(ν, t)γ(ν)dν +

∫ ∞

0
R(2)

m+1,n(ν, t)η(ν)dν + λpcm+1 I0,n(t),
(9)

P(2)
0,0 (0, t) = λoc1 I0,0(t) +

∫ ∞

0
I0,1(ν, t)β(ν)dν (10)

P(2)
0,n (0, t) = λocn+1 I0,0(t) +

∫ ∞

0
I0,n+1(ν, t)β(ν)dν +

n

∑
i=1

λoCi(ν, t)

+
∫ ∞

0
I0,n+1−i(ν, t)dν for n ≥ 1.

(11)

P(2)
0,n (0, t) = λocn+1 I0,0(t) +

∫ ∞

0
I0,n+1(ν, t)β(ν)dν +

n

∑
i=1

λoCi(ν, t)

+
∫ ∞

0
I0,n+1−i(ν, t)dν for n ≥ 1.

(12)

R(2)
m,n(0, t) = α2

∫ ∞

0
P(1)

m,n(ν, t)µ1(ν)dν + α2

∫ ∞

0
P(2)

m,n(ν, t)dν for m, n ≥ 0. (13)

P(1)
m,n(0) = P(2)

m,n(0) = Em,n(0) = R(1)
m,n(0) = R(2)

m,n(0) = 0, for m, n ≥ 0 and I0,0 = 1,

I0,n(0) = 0, for n ≥ 1 are the initial conditions.
(14)

Now, we define the Probability Generating Function (PGF),

I(ν, t, zo) =
∞

∑
n=1

zn
o I0,n(ν, t); A(ν, t, zp, zo) =

∞

∑
m=0

∞

∑
n=0

zm
o zn

p Am,n(ν, t);

A(ν, t, zp) =
∞

∑
m=0

zm
p Am(ν, t); A(ν, t, zo) =

∞

∑
n=0

zn
o An(ν, t); (15)

here A = P(1), P(2), E, R(1), R(2).
By applying Laplace transforms to equations (1) to (13) and by using (14) and (15) , we obtain the
following equations:

I0(ν, s, zo) = I0(0, s, zo)e−(s+λp+λo)ν−
∫ ν

0 β(t)dt, (16)

P(1)
(ν, s, zp, zo) = P(1)(0, s, zp, zo)e−ϕ1(s,z)ν−

∫ ν
0 µ1(t)dt, (17)

P(2)
(ν, s, zp, zo) = P(2)(0, s, zp, zo)e−ϕ1(s,z)ν−

∫ ν
0 µ2(t)dt, (18)

E(ν, s, zp, zo) = E(0, s, zp, zo)e−ϕ2(s,z)ν−
∫ ν

0 γ(t)dt, (19)

R(2)
(ν, s, zp, zo) = R(2)

(0, s, zp, zo)e−ϕ2(s,z)ν−
∫ ν

0 η2(t)dt. (20)

where,

ϕ1(s, z) = s + λp(1 − C(zp)) + aλo(1 − C(zo)) + α1 + α2 + θ, (21)

ϕ2(s, z) = s + λp(1 − C(zp)) + bλo(1 − C(zo)), (22)

ϕ3(s, z) = s + λp(1 − C(zp)) + bλo(1 − C(zo)) + η1, (23)
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P(2)
(0, s, zo) =



λoC(zo)I0,0(s)[1 − λpC(g(zo))[1 − M(s + λp + λo)

s + λp + λo

]
]− [I0,0(s)(s + λp + λo)− 1]

[M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]



z2[1 − λpC(g(zo))
[1 − M(s + λp + λo)

s + λp + λo

]
]

− [M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]

[B2(σ1(z, s)) + θzoE(σ2(z, s))
[1 − B2(σ1(z, s))

σ1(z, s)

]
+[1 − B2(σ1(z, s))

σ1(z, s)

][ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]



, (24)

I(0, s, zo) =



λoC(zo)I0,0(s)[B2(σ1(z, s) + θzoE(σ2(z, s))[1 − B2(σ1(z, s))
σ1(z, s)

]
+

[1 − B2(σ1(z, s))
σ1(z, s)

]
[ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]

− [I0,0(s)(s + λp + λo)− 1]zo



z2[1 − λpC(g(zo))
[1 − M(s + λp + λo)

s + λp + λo

]
]

− [M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]

[B2(σ1(z, s)) + θzoE(σ2(z, s))
[1 − B2(σ1(z, s))

σ1(z, s)

]
+[1 − B2(σ1(z, s))

σ1(z, s)

][ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]



, (25)

P(1)
(0, s, zp, zo) =



λp[C(zp)− C(g(zo))]
[1 − M(s + λp + λo)

s + λp + λo

]
I0(0, s, zo)

+ [B2(ϕ1(z, s))− B2(σ1(z, s)) + θzoE(ϕ2(z, s))[1 − B2(ϕ1(z, s))
ϕ1(z, s)

]
− θzoE(σ2(z, s))

[1 − B2(σ1(z, s))
σ1(z, s)

]
+

[ α1

ϕ3(z, s)
+ α2R(2)

(ϕ2(z, s))
][1 − B2(ϕ1(z, s))

ϕ1(z, s)

]
−

[1 − B2(σ1(z, s))
σ1(z, s)

][ α1

σ3(z, s)
+ α2R(2)

(σ2(z, s))
]
]


zp − [B1(ϕ1(z, s)) + θzoE(ϕ2(z, s))

[1 − B1(ϕ1(z, s))
ϕ1(z, s)

]
+

[ α1

ϕ3(z, s)
+ α2R(2)

(ϕ2(z, s))
][1 − B1(ϕ1(z, s))

ϕ1(z, s)

]
]


, (26)

E(0, s, zp, zo) = θzpP(1)
(0, s, zp, zo)

[1 − B1(ϕ1(z, s))
ϕ1(z, s)

]
+ θzoP(2)

(0, s, zo)
[1 − B2(ϕ1(z, s))

ϕ1(z, s)

]
,

(27)
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R(2)
(0, s, zp, zo) = α2P(1)

(0, s, z1, z2)
[1 − B1(ϕ1(z, s))

ϕ1(z, s)

]
+ α2P(2)

(0, s, z2)
[1 − B2(ϕ1(z, s))

ϕ1(z, s)

]
,

(28)

σ1(s, z) = s + λp(1 − C(g(zo))) + aλo(1 − C(zo)) + α1 + α2 + θ,

σ2(s, z) = s + λp(1 − C(g(zo))) + bλo(1 − C(zo)),

σ3(s, z) = s + λp(1 − C(g(zo))) + bλo(1 − C(zo)) + η1.

Theorem.1 When the system is in regular service, breakdown, emergency vacation and repair
by using the Laplace transforms the probability generating function of the number of customers
in the respective queue is given by.

I0(s, zo) = I0(0, s, zo)
[1 − M(s + λp + λo)

s + λp + λo

]
, (29)

P(1)
(s, zp, zo) = P(1)

(0, s, zp, zo)
[1 − B1(ϕ1(s, z))

ϕ1(s, z)

]
, (30)

P(2)
(s, zp, zo) = P(2)

(0, s, zo)
[1 − B2(ϕ1(s, z))

ϕ1(s, z)

]
, (31)

E(s, zp, zo) = E(0, s, zp, zo)
[1 − E(ϕ2(s, z))

ϕ2(s, z)

]
, (32)

R(2)
(s, zp, zo) = R(2)

(0, s, zp, zo)
[1 − R(2)

(ϕ2(s, z))
ϕ2(s, z)

]
. (33)

Proof: Integrating the preceding equations (29) to (33) with respect to ν and applying the solution
of renewal theory we obtain the following

∫ ∞

0

[
1 − H(ν)

]
e−sνdν =

1 − h(s)
s

. (34)

Here, the LST of the distribution function of a random variable H(ν) is denoted as h(s) . The overall

results of the probability generating functions for the following states, I0(s, zo), P(1)
(s, zp, zo),

P(2)
(s, zp, zo), E(s, zp, zo), and R(2)

(s, zp, zo) are obtained by using equation (29) to (33).

5. Steady State Analysis

According to Tauberian property,

lim
s→0

s f (s) = lim
t→∞

f (t).

Despite of the state of the system, the probability generating function of the queue size is as

follows:

Wq(z1, z2) =
Nr(z1, z2)

Dr(z1, z2)
, (35)
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where

Nr(zp, zo) = N3(z)D1(z)ϕ1(z)ϕ2(z)ϕ3(z)
[1 − M(s + λp + λo)

s + λp + λo

]
+ N1(z)D2(z)(1 − B1(ϕ1(z, s)))F1(z) + N2(z)D1(z)(1 − B2(ϕ1(z, s)))F2(z)

Dr(zp, zo) = D1(z)D2(z)ϕ1(z)ϕ2(z)ϕ3(z),

N1(z) = λp[C(zp)− C(g(zo))]
[1 − M(λp + λo)

λp + λo

]
I0(0, zo) + [B2(ϕ1(z))− B2(σ1(z))

+ θzoE(ϕ2(z)) +
[ α1

ϕ3(z)

[1 − B2(ϕ1(z))
ϕ1(z)

]
− θzoE(σ2(z))

[1 − B2(σ1(z))
σ1(z)

]
+ α2R(2)

(ϕ2(z))
][1 − B2(ϕ1(z))

ϕ1(z)

]
−

[1 − B2(σ1(z))
σ1(z)

][ α1η1

σ3(z)
+ α2R(2)

(σ2(z))
]
],

N2(z) = −[λp(1 − C(g(zo))) + bλo(1 − C(zo))][1 − λpC(g(zo))
[1 − M(λp + λo)

λp + λo

]
]

[M(λp + λo) + C(zo)λo

[1 − M(λp + λo)

s + λp + λo

]
,

N3(z) = −[λp(1 − C(g(zo))) + bλo(1 − C(zo))][B2(σ1(z)) + θzoE(σ2(z))[1 − B2(σ1(z))
σ1(z)

]
+

[1 − B2(σ1(z))
σ1(z)

][ α1η1

σ3(z)
+ α2R(2)

(σ2(z))
]
],

D1(z) = (zp − [B1(ϕ1(z)) + θzoE(ϕ2(z))
[1 − B1(ϕ1(z))

ϕ1(z)

]
+

[ α1η1

ϕ3(z)
+ α2R(2)

(ϕ2(z))
][1 − B1(ϕ1(z))

ϕ1(z)

]
],

D2(z) = zo[1 − λpC(g(zo))
[1 − M(λp + λo)

s + λp + λo

]
]− [M(λp + λo)

+ C(zo)λo

[1 − M(λp + λo)

λp + λo

]
][B2(σ1(z)) + θzoE(σ2(z))[1 − B2(σ1(z))

σ1(z)

]
+

[1 − B2(σ1(z))
σ1(z)

][ α1η1

σ3(z)
+ α2R(2)

(σ2(z))
]
].

6. Stability Condition

We apply the normalising condition to determine I0,0.

I0,0 + I0(1) + P(1)(1, 1) + P(2)(1, 1) + E(1, 1) + R(1)(1, 1) + R(2)(1, 1) = 1 (36)

I0,0 =
D

′
2ϕ1ϕ

′
2ϕ3 − N

′
2F

′
(1 − B2(ϕ1(z)))

D′
2ϕ1ϕ

′
2ϕ3

(37)

and the utilization factor is given by

ρ =
N

′
2F

′
(1 − B2(ϕ1(z)))
D′

2ϕ1ϕ
′
2ϕ3

(38)

The stability condition for the model under which steady state exists is ρ < 1
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7. Performance Measures

The expected queue size for priority customer is as follows:

Lq1 =
d

dzp
Wq(zp, 1)|zp=1 (39)

The expected orbit size for ordinary customer is as follows:

Lq2 =
d

dzo
Wq(1, zo)|zo=1 (40)

then

Lq1 =
Dr′′(1)Nr(

′′′)(1)− Dr
′′′)(1)Nr′′(1)

3(Dr′′(1))2 , (41)

Lq2 =
Dr′′′(1)Nr(iv)(1)− Dr(iv)(1)Nr′′′(1)

4(Dr′′′(1))2 . (42)

The expected waiting time for priority queue is as follows:

Wq1 =
Lq1

λp
(43)

The expected waiting time for orbit is as follows:

Wq2 =
Lq2

λo
. (44)

8. Particular Cases

Case 1:
Without a priority queue, all arriving customers are accepted into the system; customers do not
balk to orbit, take vacations and no failures, the above model becomes

I0(z) =
I0,0[C(zo)B(ϕ(z))− zo][1 − M(λo)]

B(ϕ(z))[C(zo) + M(λo)(1 − C(zo))]− zo
,

P(2)(z) =
I0,0(1 − B(ϕ(z)))M(λo)

B(ϕ(z))[(1 − C(zo))M(λo)− zo]
.

This result is associated with Gomez-Corral [15].

Case 2:
In the absence of priority queue, when there is no breakdown, no retrial, no balking, no repair
and no vacation then the above model becomes

P(2)(z) =
I0,0(1 − B2(ϕ(z)))

B2(ϕ(z))− zo

This result is associated with Medhi [21].

9. Numerical Results

The numerical and graphical analyses of this model are covered in this section. We assumed that
the distribution of service time, breakdown, repair, and vacation time are all exponential.

RT&A, No 4 (76) 
Volume 18, December 2023 

738



G. Ayyappan, S. Nithya
OPTIMIZATION OF PRIORITY SERVICE WITH EFFICIENT COORDINATION
OF ADMISSION CONTROL, EMERGENCY VACATION.....

Table 1: Effect of priority arrival rate (λp)

λp I0,0 ρ Lq1 Wq1 Lq2 Wq2

0.5 0.9971 0.0029 1.3928 2.7856 0.2013 0.1006
0.6 0.9963 0.0037 1.8271 3.0452 0.2497 0.1248
0.7 0.9955 0.0045 2.4404 3.4863 0.3016 0.1508
0.8 0.9945 0.0055 3.3321 4.1651 0.3574 0.1787
0.9 0.9934 0.0066 4.6809 5.2010 0.4174 0.2087
1.0 0.9922 0.0078 6.8391 6.8391 0.4819 0.2410

Table 1 demonstrates that the probability of the server being idle reduces as the arrival rate
(λp) of priority customers for the priority queue rises. However, average queue lengths, busy
period and customers average waiting times all rises: we assume the values as λo = 2, α1 = 0.3,
α2 = 0.5 µ = 5, η1 = 3,η2 = 5,θ = 0.5, β = 15,γ = 10, a = 0.5,b = 0.6 and λp = 0.5 to 1.0.

Table 2: Effect of service rate (µ)

µ I0,0 ρ Lq1 Wq1 Lq2 Wq2

2 0.6611 0.3389 3.7025 1.9418 7.0960 4.3513
3 0.9627 0.0373 2.2242 1.8339 6.3020 3.1121
4 0.9906 0.0094 1.7731 1.5863 5.7105 2.3861
5 0.9966 0.0034 0.3434 1.3856 5.2686 1.1717
6 0.9985 0.0015 0.1792 1.2542 4.9155 0.0896

Table 2 indicates that when the service rate (µ) increases, the probability of the server being
busy reduces. However, average queue lengths, idle time, and customers’ average waiting times
all reduces: we assume the values as λ1 = 0.5, λ2 = 2, α1 = 0.3, α2 = 0.5, η1 = 1, η2 = 6 β = 10,
θ = 0.5,γ = 10, β = 15,a = 0.5,b = 0.6and µ = 2 to 6.

Table 3: Effect of retrial rate (β)

β I0,0 ρ Lq1 Wq1 Lq2 Wq2

10 0.9725 0.0275 2.6038 5.2076 0.7172 0.3586
11 0.9724 0.0276 2.3409 4.6817 0.6998 0.3499
12 0.9722 0.0278 2.1251 4.2503 0.6856 0.3428
13 0.9721 0.0279 1.9449 3.8899 0.6737 0.3369
14 0.9720 0.0280 1.7922 3.5843 0.6636 0.3318
15 0.9719 0.0281 1.6610 3.3220 0.6549 0.3275

Table 3 indicates the probability of the server being busy period rises as the retrial rate rises.
However, average queue lengths, idle time, and customers’ average waiting times all reduces: we
assume the values as λp = 0.5,λo = 2, α1 = 0.3,α2 = 0.6, η1 = 3,µ = 3,θ = 0.5,η2 = 5,a = 0.5,b =
0.6 and β = 10to15.

We assumed to be follow the Erlang-2 distribution for service time, breakdown, repair, and
vacation time in graphical representations. The two-dimensional graphs are shown in Figure 2 -
4. Figure 2 exhibits that the expected length of the queue (Lq1 , Lq2) rises, the expected length of
the queue extends together with the priority arrival rate (λp). The behaviour of the queue sizes
(Lq1 , Lq2 ), which depends on the service rate (µ), is shown in Figure 3, the length of the queue as
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the service rate decreases. Figure 4 shows the expected queue length (Lq1 , Lq2), which depends
on the retrial rate (β), the length of the queue as the service rate decreases.
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Figure 2: Expected queue length vs priority arrival rate λp
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Figure 3: Expected queue length vs service rate µ
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Figure 4: Expected queue length vs Retrial rate β
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Figure 5: Lq1 Vs µ and η2

Figure 6: Lq2 Vs λp and α2

Figure 7: Idle Vs λp and α2

Graphs in three dimensions can be found in Figures 5 - 7. Figure 5 in the reference indicate
that the service rate (µ) and hard failure repair rate (α2) increase, the expected queue size
(Lq2) decease. Figure 6 in the reference indicate that as the priority arrival rate (λ1) and
breakdown(hard failure) rate (α2) increase, the expected queue size (Lq2) rises. Figure 6 in the
reference indicate that as the priority arrival rate (λp) and breakdown (hard failure) rate (α2)
increase, the idle is (I0, 0) rises.

10. Conclusion

In this inquiry, we investigated a single server retrial queueing system with admission control,
balking, non-preemptive priority service, and emergency vacation where the server is susceptible
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to various breakdown and restoration periods. The analytical findings that are supported by
numerical examples can be applied to design outputs in a variety of real-world scenarios. The
supplementary variable technique is used to determine the PGFs for the number of customers
in the system when it is free, busy and restoration period.The average queue length of the orbit
and system contains explicit expressions. The mean busy period and other significant system
performance measures are obtained. Finally, it is demonstrated that this retrial queueing method
works well with the conditional decomposition law. Our technique is more adaptable in dealing
with real-time systems of numerous sectors in many real-life queueing scenarios. This work can
be expanded in various directions by considering the concept of:

• Multi server batch arrival priority queueing model with production inventory system.

• Batch arrival bulk service double orbit retrial queueing system with priority service.
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Abstract

This paper analyzes the steady state behavior of batch arrival non-Markovian service queue with feedback,
balking, reneging, and second optional service (SOS). The steady-state probabilities are computed using
the probability generating function. After completing the first essential service (FES), if a customer is
unsatisfied with it, he may choose to rejoin the system (feedback), opt for the SOS, or depart from the
system with specific probabilities. Once a customer arrives, he decides immediately to join the queue
or refuses to join (balking). Furthermore, after joining the queue if a customer does not get service
within a specific time, may become impatient, and decide to leave the line without getting any service
(reneging). Reneging time follows exponential distribution while service time (FES and SOS) follow
general distribution. Also, the cost model was presented to determine the optimal service rates to minimize
the expected cost. Finally, various performance measures and numerical illustrations are provided.

Keywords: Batch arrival; Steady State; Non Markovian; Feedback; Balking; Reneging; First
essential service, Second optional service; Queue

I. Introduction

In queueing theory, items may arrive in batches. Known as batch arrival queueing models. A
perfect example of such models is a digital communication system as [1] studied batch arrival
queue systems with breakdown and repairs in which the services are performed in two different
stages. At the end of each second phase of service, the server takes a compulsory vacation. The
service times of the two stages follow general distributions. The expected number of units in
the system has been obtained using the probability generating function. In [2] the probability
generating functions have been used to study the transient and the steady state behavior of a
batch arrival system and batch service with SOS. The service time distribution of both FES and
SOS are exponential. [3] analyzed the steady state of MX/G/1 queue with a retrial and two
stages of heterogeneous services with admission, feedback, and general retrial time. The arrivals
join with dependent admission due to the server state. The supplementary variable approach
has been used to derive the stationary equations, the generating functions of the number of
customers in the system and the orbit, and the mean queue size in the system and the orbit.
Prominent research papers on the batch arrival queues can be found in [4], [5], [6], [7], [8], [9]
and the references therein.

Many authors have studied customer behavior in the queueing system whereby some cus-
tomers, upon arrival, decide to join the queue or refuse to join the queue. This situation is referred
to as balking. The other situation is reneging where a customer upon joining the queue and
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waiting a specific period of time without getting service, may get impatient and may leave the
queue. These two terminologies of balking and reneging are referred to as impatience behavior.
[10] analyzed a single server queue model with impatience where the customers lose patience
if the wait is more than the threshold they fixed. Later in [11] a study on batch arrival queue
system with vacation and breakdown is done. The server provides two stages of service one by
one in succession, and the customer may renege during breakdown or vacation period. Recently
[12] studied batch arrival queueing system with balking, three types of heterogeneous service,
and vacation. The impatient customers are assumed to balk during the period when the server is
activated on the system or when the server is on vacation. Many related studies on balking are
found in [13], [14], [15], [16], [17], [18], etc.

Several researchers have studied queueing systems with feedback, such as [19] investigated a
batch arrival system with two-phase heterogeneous service, breakdown, and compulsory server
vacation. After a customer completes two stages of services and if feels unsatisfied with the
service, then he may join the tail of the queue as a feedback customer for receiving another service
with a certain probability otherwise he leave the system. Later, [20] studied an M/G/1 with
feedback and vacation. They consider the service times as independent and identically distributed
with different rates when the customer is served with feedback or without feedback. Recently,
in [21] the authors have investigated an M/Mb/1 with SOS and feedback. The customers are
served in batches with batch size of maximum capacity b. After customers complete FES, if they
are unsatisfied, they will rejoin the queue and retake the service; otherwise, they opt for SOS or
leave the system. Other studies on feedback are found in [22], [23], [24], [25], [26], etc.

In queueing literature, we found studies on batch arrival non-Markovian queue systems,
which include some assumptions such as feedback, balking, and reneging. The queue systems
with balking, reneging, and feedback have many applications in our lives. For example, inventory
and production, call centers, computer networks, etc.Therefore, adding SOS to the model which
includes feedback, balking, and reneging will make the model more adaptable, and motivates
us to explore its behavior under a steady state environment. We use the probability generating
function to obtain the steady-state probabilities. Some important performance measures are
obtained. Also, some interesting special cases were discussed. The cost analysis is derived by
using the method of Quasi-Newton method. Finally, some numerical results are presented in the
form of tables and graphs to show the effect of parameters on the performance measures.

This paper is structured as follows: description of the model and governing equations are
presented in Section 2. In Section 3, we study the steady-state solution. Some performance
measures are obtained in Section 4. In Section 5, we discuss some particular cases. Cost analysis
and numerical illustrations are presented in Section 6. Finally, Section 7 concludes our paper.

II. Model Description and Mathematical Formulation

In this paper, we study an MX/G/1 queue with SOS, balking, reneging and feedback. A brief
description of the model is presented in the following lines:

• Customers arrive in bathes of the random size, say X , say X, in a compound Poisson
process with probability P(X = j) = cj, so that λcjdt is the probability of first order that j
(j = 1, 2, ...) customers (units) arrives at the system during a short interval of time (t, t + dt].
Further, ∑∞

j=1 cj = 1, 0 ≤ cj ≤ 1 for all j, where λ > 0 is the mean arrival rate of batches.

• The first-come, first-served (FCFS) discipline of service is followed.

• The service time for FES and SOS are assumed to follow general arbitrary distribution
with distribution functions F(x) and H(x) and the density functions are f (x) and h(x),
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respectively. Let µ(x)dx, β(x)dx be the conditional probabilities of the completion of FES
and SOS, respectively during the interval (x, x + dx] with elapsed service time x, so that

µ(x) =
f (x)

1 − F(x)
and f (s) = µ(s)e−

∫ s
0 µ(x)dx,

β(x) =
h(x)

1 − H(x)
and h(v) = β(v)e−

∫ v
0 β(x)dx.

• When a customer arrives, he/she joins the line with probability b or refuses to join the line
(balking) with probability 1 − b.

• We assume that customers may leave the system after joining the queue without getting any
service (renege) during FES and SOS and the reneging times is assume to follow exponential
distribution with parameter α.

• After completion of FES, a customer may join the SOS with probability r0 or depart from
the system with probability r1 or rejoin the system (feedback) if not satisfied with FES with
probability r2 where r0 + r1 + r2 = 1.

• All various stochastic processes included in the system are mutually independent .

Formulation of Mathematical Model

The state of the system at time t is defined by the Markov process as

{(Lq(t), M(t), εi(t)); i = 1, 2, t ≥ 0},

where Lq(t) is the queue length at time t, M(t) be the state of the server at time t which is given
by

M(t) =


0, the server is idle and the queue is empty at time t,
1, the server is operating FES at time t,
2, the server is operating SOS at time t.

and εi(t) is the elapsed service time of a batch in service (i = 1 for FES and i = 2 for SOS) at time
t. The state space of the Markov process is given as follows:

Ω = {{0, 0}U{n, i, ε1}U{n, i, ε2}; n ≥ 0, i = 1, 2.}

The probabilities involved in this model are defined as

• Q(t) is the probability that the system is empty and the server is in idle.

• Pn,i(x, t) is the probability of n (n ≥ 0) units in the queue, with one unit in the service,
elapses service time is x and the server is providing FES for i = 1 and SOS for i = 2.

According to the description that is given in the previous section, the differential-difference
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equations are formulated as follows:

d
dt

Q(t) + λQ(t) =r1

∫ ∞

0
P0,1(x, t)µ(x)dx +

∫ ∞

0
P0,2(x, t)β(x)dx, (1)

∂

∂x
P0,1(x, t) +

∂

∂t
P0,1(x, t) = −(λb + µ(x))P0,1(x, t) + αP1,1(x, t), (2)

∂

∂x
Pn,1(x, t) +

∂

∂t
Pn,1(x, t) = −(λb + µ(x) + α)Pn,1(x, t)

+ λb
n

∑
i=1

ciPn−i,1(x, t) + αPn+1,1(x, t), n ≥ 1, (3)

∂

∂x
P0,2(x, t) +

∂

∂t
P0,2(x, t) = −(λb + β(x))P0,2(x, t) + αP1,2(x, t), (4)

∂

∂x
Pn,2(x, t) +

∂

∂t
Pn,2(x, t) = −(λb + β(x) + α)Pn,2(x, t)

+ λb
n

∑
i=1

ciPn−i,2(x, t) + αPn+1,2(x, t), n ≥ 1. (5)

Equations (1)-(5) must be solved at x = 0 with the following boundary conditions

Pn,1(0, t) = λcn+1Q(t) + r1

∫ ∞

0
Pn+1,1(x, t)µ(x)dx + r2

∫ ∞

0
Pn,1(x, t)µ(x)dx

+
∫ ∞

0
Pn+1,2(x, t)β(x)dx, n ≥ 0, (6)

Pn,2(0, t) = r0

∫ ∞

0
Pn,1(x, t)µ(x)dx, n ≥ 0. (7)

. At steady state, i.e, as t → ∞, the above probabilities are denoted by Q, Pn,i(x) and their
derivatives with respect to time t vanish.

III. Steady State Solution of the Model

Considering the model in steady state, the state equations (1) - (7) are given as follows:

λQ = r1

∫ ∞

0
P0,1(x)µ(x)dx +

∫ ∞

0
P0,2(x)β(x)dx, (8)

∂

∂x
P0,1(x) + (λb + µ(x))P0,1(x) = αP1,1(x), (9)

∂

∂x
Pn,1(x) + (λb + µ(x) + α)Pn,1(x) = λb

n

∑
i=1

ciPn−i,1(x) + αPn+1,1(x), n ≥ 1, (10)

∂

∂x
P0,2(x) + (λb + β(x))P0,2(x) = αP1,2(x), (11)

∂

∂x
Pn,2(x) + (λb + β(x) + α)Pn,2(x) = λb

n

∑
i=1

ciPn−i,2(x) + αPn+1,2(x) n ≥ 1. (12)

The boundary conditions are given by

Pn,1(0) = λcn+1Q + r1

∫ ∞

0
Pn+1,1(x)µ(x)dx + r2

∫ ∞

0
Pn,1(x)µ(x)dx

+
∫ ∞

0
Pn+1,2(x)β(x)dx, n ≥ 0, (13)

Pn,2(0) = r0

∫ ∞

0
Pn,1(x)µ(x)dx, n ≥ 0. (14)
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Generating Functions of the Queue Length

The main purpose of this subsection is to solve the equations (8) - (14) using bi-variate probability
generating functions (PGFs). The PGFs are defined as follows:

Pi(x, z) =
∞

∑
n=0

Pn,i(x)zn, |z| ≤ 1, x > 0, i = 1, 2. (15)

Pi(0, z) =
∞

∑
n=0

Pn,i(0)zn, |z| ≤ 1, i = 1, 2. (16)

C(z) =
∞

∑
j=1

cjzj, |z| ≤ 1. (17)

lemma 1. For x > 0 we have

(I)
∂

∂x
P1(x, z) +

(
λb(1 − C(z)) + µ(x) + α − α

z
)

P1(x, z) = 0, (18)

(I I)
∂

∂x
P2(x, z) +

(
λb(1 − C(z)) + β(x) + α − α

z
)

P2(x, z) = 0. (19)

Proof. (I) Multiplying equations (9) and (10) by appropriate power zn, summing them from n = 0
to n = ∞, and using the definition of PGFs, we get the result.
(II) Similarly, from equations (11) and (12), we get the desired result.

lemma 2. For x > 0, we have

(I) P1(x, z) = P1(0, z)e−[η(z)]x−
∫ x

0 µ(t)dt, (20)

(I I) P2(x, z) = P2(0, z)e−[η(z)]x−
∫ x

0 β(t)dt, (21)

where η(z) = λb(1 − C(z)) + α − α
z .

Proof. Integrating equations (18) and (19) in the interval [0, x], we get the desired result.

lemma 3. For x > 0, we have

(I)
∫ ∞

0
P1(x, z)µ(x)dx = P1(0, z)F∗(η(z)). (22)

(I I)
∫ ∞

0
P2(x, z)β(x)dx = P2(0, z)H∗(η(z)). (23)

where F∗[η(z)], H∗[η(z)] are the Laplace-Steiltjes transform (LST) of the service times F(x) and H(x),
respectively.

F∗[η(z)] =
∫ ∞

0
e−(η(z))xdF(x),

H∗[η(z)] =
∫ ∞

0
e−(η(z))xdH(x).

Proof.
Multiplying equations (20) and (21) by µ(x) and β(x), respectively and integrating with respect
to x, we get the result.

lemma 4. The PGFs Pi(z), i = 1, 2 are given by

(I) P1(z) =
λ(C(z)− 1)

[
1 − F∗(η)

]
Q[

z − r1F∗(η)− r2zF∗(η)− r0F∗(η)H∗(η)
]
η(z)

, (24)

(I I) P2(z) =
r0λ(C(z)− 1)F(η(z))

[
1 − H∗(η(z))

]
Q[

z − r1F∗(η(z))− r2zF∗(η(z))− r0F∗(η(z))H∗(η(z))
]
η(z)

. (25)

where Pi(z) =
∫ ∞

0
Pi(x, z)dx, i = 1, 2.
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Integrating equations (20) and (21) by parts, we get

P1(z) = P1(0, z)
(

1 − F∗(η(z))
η(z)

)
, (26)

P2(z) = P2(0, z)
(

1 − H∗(η(z))
η(z)

)
. (27)

Now, we have to find P1(0, z), P2(0, z).
Multiplying equation (13) by appropriate powers of zn, summing them from n = 0 to ∞, and
using the definition of PGFs, we get

zP1(0, z) = λC(z)Q + r1

∫ ∞

0
P1(x, z)µ(x)dx + zr2

∫ ∞

0
P1(x, z)µ(x)dx

+
∫ ∞

0
P2(x, z)β(x)dx −

[
r1

∫ ∞

0
P0,1(x)µ(x)dx +

∫ ∞

0
P0,2(x)β(x)dx

]
(28)

Substituting equation (8) into equation (28), we get

zP1(0, z) = λC(z)Q + r1

∫ ∞

0
P1(x, z)µ(x)dx + r2z

∫ ∞

0
P1(x, z)µ(x)dx

+
∫ ∞

0
P2(x, z)β(x)dx − λQ. (29)

Substituting equations (22) and (23) in equation (29), we get

zP1(0, z) = λ(C(z)− 1)Q + r1F∗(η(z))P1(0, z) + r2zF∗(η(z))P1(0, z)

+ P2(0, z)H∗(η(z)), (30)

Similarly, multiplying equation (14) by appropriate powers of zn, summing them from n = 0 to
∞, and using the definition of PGFs, we get

P2(0, z) = r0

∫ ∞

0
P1(x, z)µ(x)dx. (31)

Substituting equation (22) in equation (31), we obtain

P2(0, z) = r0F∗(η(z))P1(0, z). (32)

Substituting equation (32) in equation (30), we get

zP1(0, z) = λ(C(z)− 1)Q + r1F∗(η(z))P1(0, z) + r2zF∗(η(z))P1(0, z)

+ r0F∗(η(z))H∗(η(z))P1(0, z). (33)

After algebraic calculations, we get

P1(0, z) =
λ(C(z)− 1)Q

z − r1F(η(z))− r2zF(η(z))− r0F(η(z))H(η(z))
. (34)

Substituting equation (34) in equation (32), we get

P2(0, z) =
r0λ(C(z)− 1)F(η(z))Q

z − r1F(η(z))− r2zF(η(z))− r0F(η(z))H(η(z))
. (35)

After substituting equations (34) and (35) in equations (26) and (27) respectively, and some
algebraic calculations, the equations (24) and (25) are obtained.

lemma 5. The PGF of the queue size is given by

Pq(z) =

[
λ(C(z)− 1)Q

][
1 − F∗(η(z)) + r0F∗(η(z))− r0F∗(η(z))H∗(η(z))

][
λb(1 − C(z)) + α − α

z
][

z − r1F∗(η(z))− r2zF∗(η(z))− r0F∗(η(z))H∗(η(z))
] (36)
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Proof. Let us suppose the PGF of the queue size irrespective of the state of the system be given by

Pq(z) = P1(z) + P2(z) (37)

Substituting equations (24) and (25) in equation (37), we get the result.

lemma 6. Based on the previous results, we have

Q =
(−λbE(X) + α)

[
1 − r2 + (−λbE(X) + α)[E(S) + r0E(V)]

]
−[−λE(X)(1 − b)− α](−λbE(X) + α)[E(S) + r0E(V)] + (−λbE(X) + α)

[
1 − r2

] , (38)

Proof.
To obtain Q, we have to use the normalizing condition

Pq(1) + Q = 1. (39)

Now, clearly z = 1 brings Pq in equation (39) to indeterminate ( 0
0 ) form. Therefore using

L’Hospital’s rule, we obtain

Pq(1) = lim
z→1

Pq(z) =
λC′(1)(−λbC′(1) + α)

[
F∗′(0) + r0H∗′(0)

]
Q

(−λbC′(1) + α)
[
1 − r2 + (−λbC′(1) + α)F∗′(0) + r0[(−λbC′(1) + α)H∗′(0)

] .

(40)

Substituting C(1) = 1, C′(1) = E(X), F∗(0) = 1, F∗′(0) = −E(S), H∗(0) = 1, H∗′(0) = −E(V)
in (39), we get

Pq(1) =
−λE(X)(−λbE(x) + α)

[
E(S) + r0E(V)

]
Q

(−λbE(X) + α)
[
1 − r2 − (−λbE(X) + α)[E(S) + r0E(V)]

] . (41)

where E(S) and E(V) are the mean service times for FES and SOS, respectively. E(X) is the mean
batch size of the arriving units.
Substituting the equation (41) in (39), the equation (38) is derived.

IV. Performance Measures

In this section, using the PGF of the queue size distribution that we obtained in previous section,
we get the mean queue size and the waiting time of a customer in the queue. Let Lq be the mean
queue size which is define as following

Lq = lim
z→1

d
dz

Pq(z), (42)

where Pq(z) denote the PGF of the queue size. Taking the limit of derivative of Pq(z) at z = 1
brings equation (41) to indeterminate ( 0

0 ) form. Then using L’Hospital’s rule and carrying out
the derivatives at z = 1, we obtain

Lq =
M′′(1)N′′′(1)− N′′(1)M′′′(1)

3(M′′(1))2 . (43)
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Let us derive the second the third derivatives at z=1 with some algebra calculations, we get

N(z) =
[
λ(C(z)− 1)Q

][
1 − F∗(η(z)) + r0F∗(η(z))− r0F∗(η(z))H∗(η(z))

]
,

N′(1) = 0

N′′(1) = −2λE(X)(−λbE(X) + α)[E(S) + r0E(V)]Q,

N′′′(1) = −3λE(X(X − 1))(−λbE(X) + α)
[
E(S) + r0E(V)

]
Q

− 3λE(X)

[
(−λbE(X(X − 1)) + 2α)E(S) + 2(−λbE(X) + α)2E(S2)

+ 2r0(−λbE(X) + α)2(E(S))(E(V))

+ r0
[
− (λbE(X(X − 1)) + 2α)E(V) + 2(−λbE(X) + α)2E(V2)

]]
Q,

M(z) =
[
λb(1 − C(z)) + α − α

z
][

z − r1F∗(η(z))− r2zF∗(η(z))− r0F∗(η(z))H∗(η(z))
]
,

M′(1) = 0,

M′′(1) = 2[−λbE(X) + α][1 − r2 − (−λbE(X) + α)(E(S) + r0E(V))],

M′′′(1) = −3[λbE(X(X − 1)) + 2α][1 − r2 − (−λbE(X) + α)[E(S) + r0E(V)]]

− 3
(
− λbE(X) + α

)[
− (λbE(X(X − 1)) + 2α)E(S) + 2(−λbE(X) + α)2E(S2)]

+ 2r2(−λbE(X) + α)(E(S)) + 2r0(−λbE(X) + α)2(E(S)E(V))

+ r0
[
− (λbE(X(X − 1)) + 2α)E(V) + 2(−λbE(X) + α)2E(V2)

]]
.

where K′′(1) = E(X(X − 1)) is the second factorial moment of the batch size of the arriving units,
E(S2) and E(V2) are the second moment of the service time for FES and SOS, respectively.
Now substituting N′′, N′′′, M′′, M′′′ in (43) we obtain Lq in closed form
Let Wq is the mean of waiting time of a customer in the queue. Using Little’s formula we have

Wq =
Lq

λbE(X)
. (44)

V. Particular Cases

In this Section, we derive some particular cases from the main results obtained in this paper.
Case 1:

(1) We assume that the service time (FES and SOS) are following exponential distribution. Here,
we take

E(S) =
1
µ

, E(S2) =
2

(µ)2

E(V) =
1
β

, E(V2) =
2

(β)2

(2) We assume that the service time (FES and SOS) are following hyper-exponential distribution.
Here, we take

E(S) =
p

µ1
+

1 − p
µ2

, E(S2) = 2
(

p
(µ1)2 +

1 − p
(µ2)2

)
E(V) =

p
β1

+
1 − p

β2
, E(V2) = 2

(
p

(β1)2 +
1 − p
(β2)2

)
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(3) We assume that the service time ( FES and SOS) are following Erlang-k distribution. Here,
we take

E(S) =
1
µ

, E(S2) =
k + 1
k(µ)2

E(V) =
1
β

, E(V2) =
k + 1
k(β)2

Case 2: we assume the costumer may not renege during FES or SOS i.e ( α = 0), the model
reduces to MX/G/1 queueing system with balking, feedback and SOS.
Using this assumption in the main result of the paper, we get

Pq(z) =
(−Q)

[
1 − F∗(η(z)) + r0F∗(η(z))− r0F∗(η(z))H∗(η(z))

]
b
[
z − r1F∗(η(z))− r2zF∗(η(z))− r0F∗(η(z))H∗(η(z))

] .

Q =
b
[
1 − r2 − λbE(X)E(S)− r0λbE(X)E(V)

]
(1 − b)(λbE(X))

[
E(S) + r0E(V)

]
+ b(1 − r2)

,

Lq = lim
z→1

d
dz

Pq(z) =
M′(1)N′′(1)− N′(1)M′′(1)

2(M′(1))2 ,

where N′, N′′, M′, M′′ are given in the flowing equations:

N′(1) = (Q)(−λbE(X) + α)
[
E(S) + r0E(V)

]
,

N′′(1) = (Q)

[
(−λbE(X(X − 1)) + 2α)E(S) + 2(−λbE(X) + α)2E(S2)

+ 2r0(−λbE(X) + α)2(E(S))(E(V))

+ r0
[
− (λbE(X(X − 1)) + 2α)E(V) + 2(−λbE(X) + α)2E(V2)

]]
,

M′(1) = b[1 − r2 − (−λbE(X) + α)E(S)− r0(−λbE(X) + α)E(V)],

M′′(1) = −b
[

2r2(−λbE(X) + α)E(S)(−λbE(X(X − 1)) + 2α)E(S) + 2(−λbE(X) + α)2E(S2)

+ 2r0(−λbE(X) + α)2(E(S))(E(V))

+ r0
[
− (λbE(X(X − 1)) + 2α)E(V) + 2(−λbE(X) + α)2E(V2)

]]
.

Case 3: Consider r0 = 0 (no SOS), b = 1 (no balking), α = 1 (no reneging) a feedback model in
MX/G/1 queue is obtained.

Q =
1 − r2 − λE(X)E(S)

1 − r2
,

Lq = lim
z→1

d
dz

Pq(z) =
M′(1)N′′(1)− N′(1)M′′(1)

2(M′′(1))2 ,

where N′, N′′, M′, M′′ is given in the flowing equations:

N′(1) = −[(−λE(X) + α)E(S)]Q

N′′′(1) = −[(λE(X(X − 1)) + 2α)E(S) + 2(−λE(X) + α)2E(S2)]Q

M′(1) = [1 − r2 − (−λE(X) + α)E(S)],

M′′(1) =
[
− ((λE(X(X − 1)) + 2α)E(S) + 2(−λE(X) + α)2E(S2))− 2r2(−λE(X) + α)E(S)

]
.

We note that this result agrees as special case with the result of MX/G/1 queue with feedback
and optional server vacations (see [4])
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VI. Numerical Results and Discussion

In this section, Some numerical illustrations with discussion based on Q, Lq and Wq are provided
with the purpose to illustrate the effect of the parameters (λ, µ, β, b, r0, r1, r2) on Q, Lq and Wq.

In Table 1, we show the impact of the probability of feedback (r2) and the probability of join
SOS (r0) on the Lq. For the fixed probability of the departure (r1), as r2 increases and (r0) decreases,
the situation leads to an increase in Lq. This indicating that more customers feel unsatisfied and
decide to rejoin the queue. We take; the service time (FES and SOS) follow Exponential distribution
and λ = 2, µ = 5, β = 4, α = 1, r0 = 0.1, r2 = 0.5, b = 0.10, E(X) = 1, E(X(X − 1)) = 0.
Also, we show in (Table 2) the impact of the mean arrival rate of batches λ and mean of reneging
α on the ( Lq). We observe that Lq decreases as mean reneging α increases .Thus more customers
leave the the queue. For the fixed mean reneging (α), as λ increases Lq increases. We take; the
service times (FES and SOS) to follow exponential distribution and r0 = 0.6, r2 = 0.2, µ = 4, β =
3, b = 0.20, E(X) = 1, E(X(X − 1)) = 0.
We show in (Table 3) the effect of batch arrival rate λ on Q and Lq when the service times (FES and
SOS) are following general distribution (exponential , Erlang-κ , hyper -exponential). We observe
that server’s idle time Q decreases and the Lq increases as batch arrival rate λ increases. Here,
when the service times (FES and SOS ) to follow exponential distribution we take; µ = 5, β =
3, r0 = 0.5, r2 = 0.3, α = 1, b = 0.25, E(X) = 1, E(X(X − 1)) = 0 and when they follow Erlang-κ
we take κ = 5, µ = 5, β = 3, r0 = 0.5, r2 = 0.3, α = 1, b = 0.25, E(X) = 1, E(X(X − 1)) = 0,
and when they follow hyper-exponential p = 0.5, µ1 = 5, µ2 = 4, β1 = 3, β2 = 2, , r0 = 0.5, r2 =
0.3, α = 1, b = 0.10, E(X) = 1, E(X(X − 1)) = 0.
In Figure 1, we show the effect of batch arrival rate λ on Lq in different joining probability b. We
observe that Lq increases as λ or b increases. We take; the service times (FES and SOS) to follow
exponential distribution and r0 = 0.5, r2 = 0.3, µ = 5, β = 4, α = 1, E(X) = 1, E(X(X − 1) = 0.
Also in figures 2, and 3, we show the effect of the service rate (FES and SOS ) on Lq in different
joining probability b. We observe that Lq decreases when the FES rate and SOS rate increase as
we expected. Further, we notice that as b increases, the Lq increases i.e. additional customers
joining the queue.
We take; the service times (FES and SOS) to follow exponential distribution and β = 4, α =
1, r0 = 0.5, r2 = 0.3, b = 0.10, E(X) = 1, E(X(X − 1) = 0, in Figure 2 and µ = 5, α = 1, r0 =
0.5, r2 = 0.3, b = 0.10, E(X) = 1, E(X(X − 1) = 0, in Figure 3

Table 1: The impact of r0 and r2 on Q, Lq and Wq.

r2 r0 Q ρ Lq Wq
0.1 0.5 0.640884 0.359116 0.0296485 0.148243
0.2 0.4 0.634146 0.365854 0.0304878 0.152439
0.3 0.3 0.625850 0.374150 0.0312408 0.156204
0.4 0.2 0.615385 0.384615 0.0317308 0.158654
0.5 0.1 0.601770 0.398230 0.0315591 0.157795
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Table 2: Impact of λ and α on Q, Lq and Wq.

λ α Q ρ Lq Wq

α = 1 0.720497 0.279503 0.0373921 0.186960
λ = 1.0 α = 2 0.781553 0.218447 0.0321112 0.160556

α = 3 0.820717 0.179283 0.0276886 0.138443
α = 1 0.543147 0.456853 0.0977276 0.244319

λ = 1.5 α = 2 0.628099 0.371901 0.0759388 0.189847
α = 3 0.686411 0.313589 0.0623758 0.155940
α = 1 0.420601 0.579399 0.1789000 0.298166

λ = 2.0 α = 2 0.514388 0.485612 0.1304270 0.217379
α = 3 0.582043 0.417957 0.1035010 0.172502

Table 3: The impact of batch arrival rate λ on Q and Lq in General distribution service time and repair time.

exponential Erlang − κ hyper − exponential
λ Q Lq Q Lq Q Lq

1.0 0.726708 0.0384350 0.726708 0.0537750 0.702857 0.0447747
1.5 0.628169 0.0701825 0.628169 0.0884330 0.598972 0.0830000
2.0 0.546392 0.1097060 0.546392 0.128442 0.514019 0.1311680
2.5 0.477435 0.1571710 0.477435 0.174245 0.443255 0.1897080
3.0 0.418502 0.2131230 0.418502 0.226523 0.383399 0.2596380

Figure 1: The effect of batch arrival rate (λ) on ( Lq) in different joining probability b
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Figure 2: The effect of the FES rate (µ) on ( Lq) in different joining probability b
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Figure 3: The effect of SOS rate (β) on ( Lq) in different joining probability b
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The Cost Model

To achieve the optimal service rate in FES and SOS with a minimum expected cost function, we
have developed the expected cost function per unit time as :

f (µ, β) = CL + C1µ + C2β + Crα, (45)
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where :

• C = cost per unite time per customer present in the queue.

• C1 = cost per unite time during FES.

• C2 = cost per unite time during SOS.

• Cr = cost per unite time when the customer renege.

The cost minimization problem f (µ, β) can be presented mathematically as

f (µ∗, β∗) = Minimize
s.tµ,β>0

f (µ, β). (46)

We use the Quasi- Newton method to search for (µ, β) until the minimum of f (µ, β) is obtained.
For details of Quasi- Newton method, one may refer Lewis and Overton [27].

Table 4: Impact of r0 and r2 on the expected cost

r0 r2 µ∗ β∗ f (µ∗, β∗)

r2 = 0.20 1.41917 0.917929 51.2880
r0= 0.2 r2 = 0.40 1.74319 1.05108 60.1129

r2 = 0.60 2.34484 1.29993 76.0659
r2 = 0.20 1.44822 1.07991 54.1650

r0= 0.2 r2 = 0.40 1.78370 1.24700 63.5951
r2 = 0.60 2.40812 1.56344 80.7229
r2 = 0.20 1.47416 1.21697 56.5886

r0= 0.3 r2 = 0.40 1.81941 1.41499 66.5526
r2 = 0.60 2.46299 1.79318 84.7184

From Table 4, we notice that for fixed r0, (µ∗, β∗) and f (µ∗, β∗) increase with the increase
of r2. This is because many customers have not satisfied with the service and repeat the service,
leading to high-cost implications.
Similarly, for fixed r2, as r0 increases, we observe that both (µ∗, β∗) and f (µ∗, β∗) increase . This
is due to the fact that as r0 increases, customers tend to enter SOS service, thereby increasing
the service rate, which in turn results in an increase of cost. We take the service times (FES and
SOS) to follow exponential distribution and λ = 2, µ = 2, β = 1, α = 0.1, b = 0.2, E(X) =
1, E(X(X − 1)) = 0.

Table 5: Impact of α and b on the expected cost

α b µ∗ β∗ f (µ∗, β∗)

b = 0.20 1.47416 1.21697 56.5886
α= 0.10 b = 0.25 1.76159 1.45299 64.9474

b = 0.30 2.03931 1.67967 72.8668
b = 0.20 1.39146 1.14110 56.955

α= 0.15 b = 0.25 1.67757 1.37735 65.2815
b = 0.30 1.95431 1.60419 73.1769
b = 0.20 1.30875 1.06509 57.3181

α= 0.20 b = 0.25 1.59351 1.30166 65.6134
b = 0.30 1.86928 1.52869 73.4854
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Table 5 shows the impact of reneging rate α on the minimum expected cost function
f (µ∗, β∗)for different values of joining probability b. In this table, we observe that the opti-
mal service rates (µ∗, β∗) and expected cost f (µ∗, β∗) increase as both α and b increase.
Particularly, For fixed b as α increases, customers departure from the queue which leads to
decrease the service rates µ∗ , β∗ and increase cost, so that to balance the system profitability.We
take; the service times (FES and SOS) to follow exponential distribution and ( λ = 2, µ = 2, β =
1, r0 = 0.4, r2 = 02, E(X) = 1, E(X(X − 1)) = 0.)

VII. Conclusion

In this paper, we analyzed the steady state behavior of a single server batch arrival non -Markovian
batch service queue with a second optional service, balking, reneging and feedback using the
supplementary variable technique to get the probability generating function of the number of
customers in the system. The mean of the queue size and waiting time of a customer in the queue
were obtained. Some interesting special cases were discussed. We assumed general distribution
for the service time. The cost model was presented to determine the optimal service rates to
minimize the expected cost. Finally, the numerical results through graphical illustrations and
tables were presented.
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Abstract 

 

This paper deals with the reliability modelling of a parallel cold standby system of four units. The 

units operate in two phases; phase-I and phase-II. In phase-I, two identical units (called main units) 

work in parallel and the other two identical units (called duplicate units) have been taken as spare 

in cold standby. The units of phase-I and of the phase-II are not identical.  The priority to repair the 

units of phase-I has been given over the repair of the units of the phase-II. However, no priority is 

given for operation of the units of both phases. There is a single repair facility which tackles all types 

of faults whenever occurred in the system. After repair each unit works as new and the switches 

devices are considered as perfect. The repair time of the units follows arbitrary probability 

distribution while the failure time of the units is assumed as constant. The behaviour of mean 

sojourn time (MST), transition probabilities, mean time to system failures (MTSF), availability, 

expected number of repairs for both phase-I and phase-II units, expected number of visits of the 

server, busy period of the server and finally the profit function are obtained in steady state by 

making use of well-known semi-Markov process (SMP) and Regenerative Point Technique (RPT) 

for arbitrary values of the parameters in steady state. Novelty and Application:  A four-unit system 

is configured in two phases namely; phase-I and phase-II under some novel assumptions with a 

practical visualization in metallic bush manufacturing industries.  

 

Keywords: Parallel-Cold Standby System, Phase wise Non-identical Units, 

Reliability Measures, Priority and Profit Analysis 

 

1. Introduction 
 

The advancement in technology played a great role in economic development and thus in the 

overall growth of a country. This plays a fundamental role in wealth creation, improvement of the 

quality of life, and real economic growth and transformation in any society. Technology has a great 

impact on everyone’s life, including industries, which are dependent on machines for their chores. 

The great challenge for researchers and engineers is to produce highly reliable products at 

minimum cost. Thus, a basic need in the fast-growing industries is to select highly reliable systems 

subject to the cost. Many attempts from the researchers, engineers and industrialists have been 

made to improve the performance and designing of existing machines. Moreover, it is challenging 

for researchers and engineers to produce high quality products at minimum cost. Thus, reliability 

and profit analysis play a key role in defining quality of systems. Various techniques for 

improving performance and reliability of maintainable systems operating under different 

environmental conditions have been suggested by the researchers from time to time. 

Barak and Malik [1] performed the cost benefit analysis of computer system with priority to 
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preventive maintenance using the concepts of maximum operation and repair times. Pundir et al. 

[2], [3] performed a Bayesian analysis by using some prior information for two non-identical cold 

standby system and stochastic analysis of two non-identical unit parallel system with priority in 

repair. Kadyan et al. [4,5] discussed a non-identical repairable system of three units with priority 

for operation and priority to main unit for operation and repair with the simultaneous working of 

cold-standby units. Using the concept of periodic switching approach, reliability modelling of two-

unit cold standby system is performed by Behboudi et al. [6]. Fryilmaz and Finkelsteil [7] 

discussed the reliability of two-unit system with the revisit of standby system. Stochastic analysis 

of a computer system with redundant and priority to hardware and repair subject to failure of 

service facility have been discussed by Yadav and Malik [8]. Anuradha and Malik [10] have 

obgtained the reliability measures of a 2-out-3 systems under the conditioner service facility. A 

cold standby system subject to refreshment was studied by kumar at el. [11]. The models discussed 

by different researchers focus either on the identical units in parallel or one non- identical unit in 

spare. But there can be situations where one non-identical unit is not capable enough to work at 

place of failed unit and two or more units are required to work simultaneously in order to meet the 

system expectations. Therefore, the reliability analysis of a system model of four unit operating in 

two phases with simultaneous working of parallel and cold standby units has been analysed to 

add significant insight into reliability literature. 

 

2. System description and Notations 

 

I. Notations  
Table 1: Symbol Description 

 

MST Mean sojourn time 

MTSF Mean time to system failure 

O System is operative 

Dc Cold-standby unit 

•  Regenerative point 

M/D Phase-I unit (main units)/ Phase-II unit (duplicate units) 

MFur/MFwr Phase-I unit is failed and under repair/waiting for repair 

MFUR/ MFWR Phase-I unit is failed and under repair/waiting for repair continuously from the previous state 

DFur/DFwr Phase-II unit is failed and under repair//waiting for repair 

DFUR/ DFWR Phase-II unit is failed and under repair/waiting for repair continuously from the previous state 

λ/𝜆1 Failure rate of phase-I unit/ phase-II unit 

g(t)/G(t) pdf/cdf of the repair rate of the phase-I unit 

f(t)/F(t) pdf/cdf of the repair rate of the phase-II unit 

G(t)̅̅ ̅̅ ̅/F(t)̅̅ ̅̅ ̅ cdf of repair rate of Phase I /phase II units that repair will not be completed in (0,t] 

*/** Symbol for Laplace transformation/Laplace-Stieltjes 

q
ij
(t)/𝑄𝑖𝑗(𝑡) pdf/cdf of passage time from regenerative state ‘i’ to a regenerative state ‘j’ or to a failed state ‘j’ 

without visiting any other regenerative state in (0,t] 

q
ij.k,r

(t)/Qij.k,r(t) pdf/cdf of direct transition time from regenerative state ‘i’ to a regenerative state ‘j’ or to a failed state ‘j’ 

visiting state k, r once in (0,t] 

q_{ij.{k(r,s)}^n}/
Qij.k(r,s)n 

pdf/cdf of direct transition time from regenerative state ‘i’ to a regenerative state ‘j’ or to a failed state ‘j’ 

visiting state k once and n-times states r and s 

ⓢ/© Symbol for Stieltjes convolution / Laplace Convolution. 

LIT/ LT/LST Laplace Inverse Transform/ Laplace Transform/Laplace Stieltjes Transform 

Ai(t) Probability that the system is in up-state at instant time ‘t’ 

Vi
S(t) Expected number of visits of server 

Ri
M(t)/Ri

D(t) Expected number of repairs of phase-I /phase-II Units 

Bi
R(t) Busy period of server due to repair 

Wi(t) Probability that the server is busy in the state Si up to time ‘t’ without making any transition to any 

other regenerative state or returning to the same state via one or more non-regenerative states 
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 II. The state transition diagram of the system model 

 

          

Figure 1: State Transition Diagram 

3. State Transition Probabilities and Mean Sojourn Time 
 

Table 2: Transition State Description 
 

𝑆0 O 

O 

2Dcs 

The initial state in which the phase-I units are in operation and phase-II units are in cold standby 

𝑆1 MFur 

O 

2Dcs 

The second state in which one of the phase-I units is in operation and other unit is failed under repair 

and phase-II units are in cold-standby 

𝑆2 MFUR 

MFwr 

2DO 

The third state in which one of the phase-I units is continuously failed under repair and other is failed 

waiting for repair and the phase-II units are in operation mode 

𝑆3 MFUR 

MFWR 

DFwr 

Dcs 

The fourth state in which system is completely failed. One phase-I units are failed under repair and 

waiting for repair continuously from the previously state and phase-II unit is failed waiting for repair, 

other is in cold standby mode.  

𝑆4 Mcs 

MFur 

2DO 

The fifth state in which one of the phase-I unit is in spare and other unit failed under repair and the 

phase-II units are in operation 

𝑆5 
 

O 

MFUR 

DFwr 

Dcs 

The sixth state in which one phase-I unit is in operation, other is failed under repair continuously and 

in phase-II one unit is failed waiting for repair, other unit is cold standby mode 

𝑆6 
 

O 

MFur 

DFWR 

Dcs 

The seventh state in which system is in operation. One of phase-I unit is operative, other is failed under 

repair and one of the phase-II unit is failed waiting for repair continuously, other unit is in cold 

standby mode 

𝑆7 MFwr 

MFUR 

DFWR 

Dcs 

The eighth state in which system is completely failed. One unit of phase-I is failed under repair 

continuously, other unit is failed waiting for repair and one of the phase-II unit is continuously failed 

under repair, other is in cold standby mode 

𝑆8 O 

O 

DFur 

Dcs 

The ninth state in which phase-I units are in operation and in phase-II, one unit is failed under repair 

and other is in cold-standby mode 
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𝑆9 O 

MFur 

DFwr 

Dcs 

The tenth state in which one phase-I unit is in operation, other is failed under repair and one of phase-II 

unit is failed waiting for repair, other is in cold standby. 

𝑆10 2Mcs 

2DO 

The eleventh state in which phase-I units are in spare and phase-II units are in operation 

 

4. Reliability Measures 

 

I. Transition Probabilities 

 
The expressions for transition probabilities from state i to j as follow: 

p
ij
=Q

ij
(∞)=∫ q

ij

∞

0
(t)dt  p

ij
= lim

n→∞
Q

ij
(t)dt 

dQ
01

(t)=2λe-2λtdt        dQ
10

(t)=e-λtg(t) dt  dQ
12

(t)=λe-λtG(t)̅̅ ̅̅ ̅dt  

dQ
23

(t)=2λ1e-2λ1tG(t)̅̅ ̅̅ ̅dt    dQ
24

(t)=e-2λ1tg(t)dt  dQ
36

(t)=g(t)dt 

dQ
45

(t)=2λ1e-2λ1tG(t)̅̅ ̅̅ ̅dt    dQ
4'10

(t)=e-2λ1tg(t)dt  dQ
58

(t)=e-λtg(t) dt 

dQ
57

(t)=λe-λtG(t)̅̅ ̅̅ ̅dt   dQ
68

(t)=λe-λtG(t)̅̅ ̅̅ ̅dt  dQ
67

(t)=e-λtg(t) dt 

dQ
76

(t)=g(t)dt    dQ
80

(t)=e-2λtf(t) dt  dQ
89

(t)=2λe-2λtF(t)̅̅ ̅̅ ̅dt 

dQ
97

(t)=λe-λtG(t)̅̅ ̅̅ ̅dt   dQ
98

(t)=e-λtg(t) dt        dQ
10,8

(t)=2λ1e-2λ1tdt  

dQ
14.2

(t)=dQ
12

(t)ⓢdQ
24

              dQ
18.2,3,6

(t)=dQ
12

(t)ⓢdQ
23
ⓢdQ

36
ⓢdQ

68
 

dQ
18.2,3(6,7)n

(t)=
dQ12(t)ⓢdQ23ⓢdQ36ⓢdQ67ⓢdQ76ⓢdQ68

1-dQ67(t)dQ76(t)
  

dQ
48.5

(t)=dQ
45

(t)ⓢdQ
58

            dQ
48.5,7,6

(t)=dQ
45

(t)ⓢdQ
57
ⓢdQ

76
ⓢdQ

68
  

dQ
48.5(6,7)n

(t)=
dQ45(t)ⓢdQ57ⓢdQ76ⓢdQ67ⓢdQ76ⓢdQ68

1-dQ67(t)dQ76(t)
  

dQ
98.7,6

(t)=dQ
97

(t)ⓢdQ
76
ⓢdQ

68
         

dQ
98.(6,7)n

(t)=
dQ97(t)ⓢdQ76ⓢdQ67ⓢdQ76ⓢdQ68

1-dQ67(t)dQ76(t)
  

p
ij
= lim

t→∞
Q

ij
(t)dt= lim

s→0
Q

ij
** (s)  

p
01

=p
36

=p
76

=p
76

=1  

p
10

=p
58

=p
68

=p
98

=g*(λ)   p
12

=p
57

=p
67

=p
97

=1-g*(λ) 

p
24

=p
4,10

=g*(2λ1)    p
23

=p
45

=1-g*(2λ1) 

p
80

=f*(2λ)     p
89

=1-f*(2λ) 

p
36

=p
76

=g*(0)=1     p
14.2

=p
12

p
24

   

p
18.2,3,6

=p
12

p
23

p
36

p
68

 

P18.2,3(6,7)n=
p12p23p36p67p76p68

1-p67p76

=p
12

p
23

p
67

 p
48.5

=p
45

p
58

   

p
48.5,7,6

=p
45

p
57

p
68

 

p
48.5(7,6)n

=
p45p57p76p67p76p68

1-p67p76

=p
45

p
57

p
67

  

p
98.7,6

=p
97

p
68

  

p
98.(7,6)n

=
p97p76p67p76p68

1-p67p76

=p
97

p
67

  

Also, it is verified that 
p

01
=p

10
+p

12
=p

23
+p

24
=p

36
=p

45
+p

4,10
=p

57
+p

58
=p

67
+p

68
=p

76
=p

80
+p

89
 

=p
97

+p
98

=p
10,8

=p
10

+p
14.2

+p
18.2,3,6

+p
18.2,3(6,7)n

=p
4,10

+p
48.5

+p
48.5,7,6

+p
48.5,7,6

p
71.10

=p
98

+p
98.76

+p
98.(7,6)n

=1  

Mean Sojourn Times 

µ
0
=m01=

1

2λ
  µ

1
=m10+m12=

1

λ
[1-g*(λ)]  

µ
2
=m23+m24=

1

2λ1
[1-g*(2λ1)]  µ

3
=m36=-g*'

(0) 

µ
4
=m45+m4,10=

1

2λ1
[1-g*(2λ1)]  µ

5
=m57+m58=

1

λ
[1-g*(λ)] 

µ
6
=m67+m68=

1

λ
[1-g*(λ)]   µ

7
=m76=-g*'

(0) 

763



 
Puran Rathi, Anuradha, S.C. Malik 
RELIABILITY MODELLING OF A PARALLEL-COLD STANDBY SYSTEM  

RT&A, No 4 (76) 
Volume 18, December 2023  

 

µ
8
=m80+m89=

1

2λ
[1-f*(λ)]   µ

9
=m97+m98=

1

λ
[1-g*(λ)] 

µ
10

=
1

2λ1
  

µ
1
' =µ

1
+µ

2
p

12
+p

12
p

23
(µ

3
+µ

6
)+

p
12

p
23

p
67

(µ
6
+µ

7
)

p
68

 

µ
4
' =µ

4
+µ

5
p

45
+

p
45

p
57

(µ
6
+µ

7
)

p
68

 

µ
9
' =µ

9
+p

97
(µ

6
+µ

7
)+

p
97

p
67

(µ
6
+µ

7
)

p
68

 

 

II. Mean Time to System Failure and Reliability 
      
Let ϕi(t) be the cdf of the first passage time from regenerative state ‘i’ to a failed state, regarding 

failed state as absorbing state, we have 

ϕ
0
(t)=Q

01
(t)ⓢϕ

1
(t)                     (1) 

ϕ
1
(t)=Q

10
(t)ⓢϕ

0
(t)+Q

14.2
(t)ⓢϕ

4
(t)+Q

13.2
(t)                  (2) 

ϕ
4 
(t)=Q

4,10
(t)ⓢϕ

10
(t)+Q

48.5
(t)ⓢϕ

8
(t)+Q

47.5
(t)                   (3) 

ϕ
8 
(t)=Q

80
(t)ⓢϕ

0
(t)+Q

97
(t)                            (4) 

ϕ
9
(t)=Q

98
(t)ⓢϕ

8
(t)+Q

71.10
(t)ⓢϕ

1
(t)+Q

79.10
(t)                  (5) 

ϕ
10
(t)=Q

10,8
(t)ⓢϕ

8
(t)                                  (6) 

By taking LST of the above expressions the reliability of the system model can be obtained 

as: 

ϕ
0

**(s)=
∆1

∆
=
(1-Q89

** (s)Q98
** (s))[(Q13.2

** (s)Q01
** (s)-Q01

** (s)Q
14.2

**
(s)Q47.5

** ]+(Q01
** (s)Q

14.2

**
(s)Q89

** Q
97

**
)[Q48.5

** (s)+Q4,10
** (s)Q10,8

** (s)]

(1-Q89
** (s)Q98

** (s))(1- Q01
** (s)Q10

** (s))-(Q14.2
** (s)Q01

** (s))[(Q48.5
** (s)Q80

** (s)+Q4,10
** (s)Q4,8

** (s)Q80
** (s)]

  

MTSF= lim
s→0

1-ϕ
0

**(s)

s
=

N1

D1
 

N
1
= (µ

0
+µ

1
' +µ

10
p

14.2
p

4,10
) (1-p

89
p

98
)+(µ

4
' p

14.2
)(p

80
+p

97
p

89
)+ (µ

8
+µ

9
p

89
-µ

0
p

80
) (p

4,10
+p

48.5
)p

14.2
  

D
1
=(1-p

10
)(1-p

89
p

98
)-p

14.2
p

80
(p

48.5
+p

4,10
); where,  

µ
1
' =µ

1
+p

12
µ

2
 

µ
4
' =µ

4
+p

45
µ

5
  

The reliability of the system is determined as:  

R*(s)= 
1-ϕ

0
**(s)

s
  and R(t)=L-1 (R*(s)) 

 

III. Long Run Availability of the System    
                                                                                                                      

Let Ai(t)be the probability that the system is in up-state at instant ‘t’ given that the system entered 

regenerative state ‘i’ at time instant t=0. We have 

A0(t)=M0(t)+q
01
(t)©A1(t)                    (7) 

A1(t)=M1(t)+q
10
(t)©A0(t)+q

14.2
(t)©A4(t)+[q

18.2,3,6
(t)+q

18.2,3(6,7)n
(t)]©A8(t)                                         (8) 

A4(t)=M4(t)+q
4,10

(t)©A10(t)+[q
48.5

(t)+q
48.5,7,6

(t)+q
48.5(7,6)n]©A8(t)                             (9) 

A8(t)=M8(t)+q
80
(t)©A0(t)+q

89
(t)©A9(t)                              (10) 

A9(t)=M9(t)+q
98

©A8(t)+[q
98.7,6

+q
98.(7,6)n]©A8(t)                             (11) 

A10(t)=M10(t)+q
10,8

©A8(t)                               (12) 

Where Mi(t) is the probability that the system is up initially in state i is up at time t without visiting 

to any other regenerative state. 

M0(t)=e-2λtdt  𝑀1(𝑡) = 𝑒−𝜆𝑡𝐺(𝑡)̅̅ ̅̅ ̅̅ 𝑑𝑡  M4(t)=e-2λ1tG(t)̅̅ ̅̅ ̅dt 

M8(t)=e-2λtdt   M9(t)=e-λtG(t)̅̅ ̅̅ ̅̅ dt  M10(t)=e-2λ1tdt 
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Taking LT of above equations and solving for A0
* (s), the steady state availability is given by: 

A0(∞)= lim
s→0

s A0
* (s)=

N2

D2
 ; where 

N2=(µ
0
+µ

1
)p

80
+p

80
p

14.2
µ

4
+µ

8
p

12
+µ

9
p

12
p

89
+µ

10
p

14.2
p

4,10
p

80
  

D2=(µ
0
+µ'

1
)p

80
+µ'

4
p

14.2
p

80
+µ

8
p

12
+µ'

9
p

12
p

89
+µ

10
p

14.2
p

4,10
p

80
  

µ
1
' =µ

1
+µ

2
p

12
+p

12
p

23
(µ

3
+µ

6
)+

p
12

p
23

p
67

(µ
6
+µ

7
)

p
68

 

µ
4
' =µ

4
+µ

5
p

45
+

p
45

p
57

(µ
6
+µ

7
)

p
68

 

µ
9
' =µ

9
+p

97
(µ

6
+µ

7
)+

p97p67(µ
6
+µ

7
)

p68

  

 

IV. Expected Number of Repairs of Phase-I Units  

        
Let Ri

M(t)be the expected number of repairs of phase-I units given to the server in (0,t] such that the 

system entered regenerative state ‘i’ at t=0. We have 

R0
M(t)=Q

01
(t)ⓢR1

M(t)                   (13) 

R1
M(t)=Q

10
(t)ⓢ[1+R0

M(t)]+Q
14.2

(t)ⓢ[1+R4
M(t)]+[Q

18.2,3,6
(t)+Q

18.2,3(6,7)n(t)]ⓢ[1+R8
M(t)]           (14) 

R4
M(t)=Q

4,10
(t)ⓢ[1+R10

M(t)]+[Q
48.5

(t)+Q
48.5,7,6

(t)+Q
48.5(7,6)n(t)]ⓢ[1+R8

M(t)]             (15) 

R8
M(t)=Q

80
(t)ⓢR0

M(t)+Q
89
(t)ⓢR9

M(t)                 (16) 

R9
M(t)=[Q

98
(t)+Q

98.7,6
(t)+Q

98.(7,6)n(t)]ⓢ[1+R8
M(t)]                (17) 

R10
M(t)=Q

10,8
ⓢR8

M(t)                    (18) 

Taking LST of above equations and solving forR0
M**(s), by using Cramer’s Rule we get the expected 

number of repairs of phase-I unit as: 

R0
M( ∞)= lim

s→0
s R0

M**(t)=
∆1

∆'1
=

N3

D2
  ; where 

N3=P80+p
12

p
24

+P12P23P89 and 

D2=(µ
0
+µ'

1
)p

80
+µ'

4
p

14.2
p

80
+µ

8
p

12
+µ'

9
p

12
p

89
+µ

10
p

14.2
p

4,10
p

80
 

 

V. Expected Numbers of Repairs of Phase-II Units 

 
Let Ri

D(t)be the expected number of repairs of phase-II unit given to the server in (0,t] such that the 

system entered regenerative state ‘i’ at t=0. We have 

R0
D(t)=Q

01
(t)ⓢR1

D(t)                   (19) 

R1
D(t)=Q

10
(t)ⓢR0

D(t)+Q
14.2

(t)ⓢR4
D(t)+[Q

18.2,3,6
(t)+Q

18.2,3(6,7)n(t)]ⓢR8
D(t)             (20) 

R4
D(t)=Q

4,10
(t)ⓢR10

D (t)+[Q
48.5

(t)+Q
48.5,7,6

(t)+Q
48.5(7,6)n(t)]ⓢR8

D(t)              (21) 

R8
D(t)=Q

80
(t)ⓢ[1+R0

D(t)]+Q
89
(t)ⓢR9

D(t)                 (22) 

R9
D(t)=[Q

98
(t)+Q

98.7,6
(t)+Q

98.(7,6)n(t)]ⓢR8
D(t)                (23) 

R10
D (t)=Q

10,8
ⓢR8

D(t)                    (24) 

Taking LST of above equations and solving for R0
D**(s), by using this we get expected number of 

repairs of phase-II units as: 

R0
D(∞)= lim

s→0
s R0

D**(s)=
N4

D2
 

Where N4=p
12

p
80

 and 

D2=(µ
0
+µ'

1
)p

80
+µ'

4
p

14.2
p

80
+µ

8
p

12
+µ'

9
p

12
p

89
+µ

10
p

14.2
p

4,10
p

80
  

 

VI. Expected Number of Visits by the Server 

 
LetV0

S be the expected number of repairs of duplicate unit by the repairman in (0,t] such that the 
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system entered regenerative state ‘i’ at t=0.We have 

V0
S(t)=Q

01
(t)ⓢ[1+V1

S(t)]                   (25) 

V1
S(t)=Q

10
(t)ⓢV0

S(t)+Q
14.2

(t)ⓢV4
S(t)+[Q

18.2,3,6
(t)+Q

18.2,3(6,7)n(t)]ⓢV8
S(t)             (26) 

V4
S(t)=Q

4,10
(t)ⓢV10

S (t)+[Q
48.5

(t)+Q
48.5,7,6

(t)+Q
48.5(7,6)n(t)]ⓢV8

S(t)              (27) 

V8
S(t)=Q

80
(t)ⓢ[1+V0

S(t)]+Q
89
(t)ⓢV9

S(t)                 (28) 

V9
S(t)=[Q

98
(t)+Q

98.7,6
(t)+Q

98.(7,6)n(t)]ⓢV8
S(t)                (29) 

V10
S (t)=Q

10,8
ⓢ[1+V8

S(t)]                    (30) 

Taking LST of above equations and solving for V0
s**(s), by using this we get expected number of 

visits of the server: 

V0
s(∞)= lim

s→0
s V0

s**(s)=
N5

D2
 

Where N5=p
80

[1+P12P24P4,10]  

And D2=(µ
0
+µ'

1
)p

80
+µ'

4
p

14.2
p

80
+µ

8
p

12
+µ'

9
p

12
p

89
+µ

10
p

14.2
p

4,10
p

80
 

 

VII. Busy Period Analysis for the Server due to Repair 

 
Let Bi

R(t) be the probability that a server is busy at the time point given that the system entered in 

the regenerative state ‘i’ at t=0. We have 

B0
R(t)=q

01
(t)©B1

R(t)                   (31) 

B1
R(t)=W1

R(t)+q
10
(t)©B0

R(t)+q
14.2

(t)©B4
R(t)+[q

18.2,3,6
(t)+q

18.2,3(6,7)n
(t)]©B8

R(t)             (32) 

B4
R(t)=W4

R(t)+q
4,10

(t)©B10
R (t)+[q

48.5
(t)+q

48.5,7,6
(t)+q

48.5(7,6)n]©B8
R(t)              (33) 

B8
R(t)=W8

R(t)+q
80
(t)©B0

R(t)(t)+q
89
(t)©B9

R(t)                (34) 

B9
R(t)=W9

R(t)+q
98

©A8(t)+[q
98.7,6

+q
98.(7,6)n]©B8

R(t)                (35) 

B10
R (t)(t)=q

10,8
©B8

R(t) ; where                  (36) 

W1
R(t)=e-λtG(t)̅̅ ̅̅ ̅̅ dt  W4

R(t)=e-2λ1tG(t)̅̅ ̅̅ ̅dt 

W8
R(t)=e-2λtdt    W9

R(t)=e-λtG(t)̅̅ ̅̅ ̅̅ dt 

Taking LT of the above expressions and solving for B0
R*
(s) we have 

B0
R(∞)= lim

s→0
s B0

R*
(s)=

N6

D2
  

N6=W2
R*
(0)p

80
+W4

R*
(0)p

12
p

24
p

80
+W8

R*
(0)P12+p

12
p

24
p

4,10
(1+p

80
)+W9

R*
(0)p

12
p

89
(p

23
+p

24
p

45
) 

D2=(µ
0
+µ'

1
)p

80
+µ'

4
p

14.2
p

80
+µ

8
p

12
+µ'

9
p

12
p

89
+µ

10
p

14.2
p

4,10
p

80
 

 

5. Profit Analysis 
 

The profit (P) incurred to the system model in steady state can be obtained as: 

P=K0A0-K1B0
R-K2R0

D-K3R0
M-K4V0

S                  (37) 

Where, 

K0 = Revenue per unit up time of the system 

K1=Cost per unit time for which server is busy to repair 

K3 = Cost per unit time repairs of phase-I unit 

K2 = Cost per unit time repairs of phase-II unit 

K4= Cost per unit time visit of the server 

For graphical presentation of profit, these constants need some values and for this purpose K0, K1, 

K2, K3 and K4 have been taken to be 15000, 3000, 800, 2000 and 1000 respectively. 

 

6. Results and Graphical Representation of Reliability Measures 
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The reliability characteristics of the system model have been obtained by assuming arbitrary 

distributions for repairs rates of the units. The results for these measures have also been obtained 

for the particular situations where the repair rates of the units follow negative exponential 

distribution. The behavior of MTSF, Availability and Profit function have been shown numerically 

and graphically respectively in the tables 1, 2, 3 and in the figures 2, 3 and 4. Here, we take the 

repair time distribution as negative exponential: g(t)=ξe-ξt and f(t)=Ψe-Ψt. 
 

Table 3: MTSF Vs Failure Rate of Phase-I Unit 
 

λ λ1=0.001,Ψ=2,ξ=1.5 λ1=0.002,Ψ=2.0,ξ=1.5 λ1=0.001,Ψ=2,ξ=2.5 λ1=0.001,Ψ=2.5,ξ=1.5 

0.1 76879.65 37210.85 136435.40 91728.39 

0.11 64441.61 31295.15 112598.00 77338.17 

0.12 54852.02 26717.79 94594.12 66138.10 

0.13 47300.84 23100.57 80660.17 57248.89 

0.14 41247.20 20190.9 69651.85 50075.23 

0.15 36318.62 17814.55 60800.75 44202.02 

0.16 32251.73 15848.03 53575.41 39332.56 

0.17 28856.03 14201.76 47598.75 35250.15 

0.18 25990.91 12809.45 42597.23 31793.53 

0.19 23550.81 11621.14 38368.47 28840.73 

 
 

 
 

Figure 2: MTSF Vs Failure Rate of Phase-I Unit 

 

Table 4: Availability Vs Failure Rate of Phase-I Unit 

 

λ λ1=0.001,Ψ=2,ξ=1.5 λ1=0.002,Ψ=2.0,ξ=1.5 λ1=0.001,Ψ=2,ξ=2.5  λ1=0.001,Ψ=2.5,ξ=1.5 

0.1 0.99885337 0.99800616 0.999369592  0.998856064 

0.11 0.99882166 0.997912792 0.999344996  0.998825033 

0.12 0.99879522 0.997833532 0.999324552  0.998799332 

0.13 0.99877269 0.997765415 0.999307327  0.998777608 

0.14 0.99875309 0.997706120 0.999292617  0.998758883 

0.15 0.99873570 0.997653834 0.999279881  0.998742441 

0.16 0.99872001 0.997607137 0.999268708  0.998727751 

0.17 0.99870561 0.997564913 0.999258778  0.998714414 

0.18 0.99869219 0.997526279 0.999249842  0.998702124 

0.19 0.99867952 0.997490532 0.999241707  0.998690646 
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Figure 3: Availability Vs Failure Rate of Phase-I Unit 

 

 

Table 5: Profit Vs Failure Rate of Phase-I Unit 

 

 

λ λ1=0.001,Ψ=2,ξ=1.5 λ1=0.002,Ψ=2.0,ξ=1.5 λ1=0.001,Ψ=2,ξ=2.5 λ1=0.001,Ψ=2.5,ξ=1.5 

0.1 14955.29 14922.42 14961.05 14958.79 

0.11 14953.85 14918.44 14959.35 14957.51 

0.12 14952.63 14915.00 14957.91 14956.42 

0.13 14951.55 14911.99 14956.66 14955.48 

0.14 14950.60 14909.32 14955.56 14954.64 

0.15 14949.73 14906.92 14954.59 14953.88 

0.16 14948.94 14904.76 14953.72 14953.20 

0.17 14948.2 14902.77 14952.93 14952.56 

0.18 14947.50 14900.93 14952.2 14951.97 

0.19 14946.85 14899.22 14951.52 14951.41 

 

 

 
 

Figure 4: Profit Vs Failure Rate of Phase-I Unit 
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7. Application 
 

The present study has the application in the system of turning and boring operation for making 

gun metal bushes to be required in production line. To make India as a developed country many 

industries have been established in last two decades. In industries there is huge requirement of 

machinery, one of them is CNC (for automatic programmed operation) and Lathe machine (for 

manual operation) which are used to produce a metallic bush. To meet up the heavy requirement 

of metallic bush two CNC machine (Phase-I units) and Lathe machine (Phase-II units) are installed. 

The single CNC machine can fulfil the requirement of production line in case of failure another 

CNC machine. In case of electric/mechanical failure of CNC machine (Phase-I units), additional 

arrangement of two lathe machines (Phase-II units) are installed to achieve the same. The system 

can be shown in the following figure 5: 

 

            

 

 
 

Fig. 5: Manufacturing of Metallic Components 

 

8. Conclusion 
 

A Parallel-Cold Standby system of four units has been analyzed stochastically with the idea of 

priority for repair to the phase-I units. There are four units in system comprising two units as 

phase-I units which work initially in parallel mode and the other two units (called phase-II 

units) which remain as spare in cold standby mode. The phase-II units can be installed to work 

simultaneously at the failure of the phase-I units. The important reliability characteristics have 

been obtained and analyzed for arbitrary values of the parameters. Graphical and tabulated 

presentations have been studied by taking exponential distributions for the repair time 

i.e.,g(t)=ξe-ξt and f(t)=Ψe-Ψt. The results are shown graphically in the figures 2,3, and 4 

respectively. The following conclusions can be made from the graphical study: 

1. From Fig. 2 it is quite evident that MTSF has downward trend with the increase of 

failure rate of the phase-I unit and phase-II unit while it increases with the increase in 

repair rate of phase-I. There is little change in the (almost negligible) in the values of 

availability with the increase of repair rate of Phase-II units. We conclude that a 

repairable parallel-cold standby system of four units can be made to use in a batter way 

in terms of reliability by increasing repair rate (from 1.5 to 2.5) of phase-I units. 

2. Fig.3 depicts that availability of the system keeps on decreasing with increase of failure 

rates (0.1 to 0.19) of phase -I units. However, the system availability is more when repair 

of phase -I units is kept as priority as compare to phase-II units. Availability is increased 

slightly from 0.998 to 0.999 in case of increased repair rate of phase-I unit. Hence, 

keeping the repair priority policy for phase-I units is beneficial in case of availability. 
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3. Fig.4 of profit analysis represents the same trend as that of availability. Repair of phase-I 

units gives more profit as compare to phase-II units. Therefore, spending money on 

increasing repair rate of phase-II units will not be fruitful and thus, one should avoid 

the use of low-quality units in standby. 

References 

 
[1] Barak, A.K. and Malik S.C. (2013). Cost-Benefit Analysis of a Computer System with 

Priority to Preventive Maintenance over Hardware Repair Subject to Maximum Operation 

and Repair Times, Indian Journal of Science and Technology, Vol. 6(3), pp. 1-9. 

[2] Pundir, Pramendra Singh; Patawa, Rohit; & Gupta Puneet Kumar. (2018).  Stochastic 

outlook of two non-identical unit parallel system with priority in repair, Cogent 

Mathematics & Statistics. Vol. 5(1), pp. 1-18 

[3] Pundir, Pramendra Singh; Patawa, Rohit; & Gupta Puneet Kumar (2020). Analysis of Two 

Non-Identical Unit Cold Standby System in Presence of Prior Information, American 

Journal of Mathematical and Management Science. Vol. 40(4), pp. 320-335. 

[4] Kadyan, S. & Malik, S.C. & Gitanjali (2020) Stochastic analysis of a three-unit non-identical 

repairable system with priority for operation and repair. International Journal of Reliability 

and Safety. Vol. 14(2/3), pp.182 – 198. 

[5] Kadyan, S. & Malik, S. C. & Gitanjali (2021) Stochastic Analysis of a Three-Unit Non-

Identical Repairable System with Simultaneous Working of Cold Standby Units. Journal of 

Reliability and Statistical Studies. Vol. 13(2), pp. 385-400.  

[6] Behboudi Z., G.R. Mohtashami Borzadaran, M. Asadi, (2021). Reliability modeling of two-

unit cold standby systems: A periodic switching approach, Applied Mathematical Modelling, 

Vol. 92, pp. 176-195. 

[7] Eryilmaz S, Finkelstein M. (2022). Reliability of the two-unit priority standby system 

revisited. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and 

Reliability. Vol. 236(6): pp. 1096-1103.  

[8] S. C. Malik, R. K. Yadav: Stochastic Analysis of a Computer System with Unit Wise Cold 

Standby Redundancy and Priority to Hardware Repair Subject to Failure of Service 

Facility. International Journal of Reliability, Quality and Safety Engineering. Vol.  28(2), 2150013 

[9] Anuradha and S.C. Malik (2023).  Reliability Measures of 2-Out-3G System with Priority 

and Faulure of Service Facility during Repair, Reliability: Theory & Applications, March 

1(72): 214-223. 

[10] Kumar, A., Garg, R. & Barak, M.S. (2023). Reliability measures of a cold standby system 

subject to refreshment. Int J Syst Assur Eng Manag Vol. 14, pp. 147–155. 
 

 

 

 

 

 

 

 

 

 

770



G. Ayyappan, N. Arulmozhi
Analysis of M, MAP/PH1, PH2/1 Non-preemptive Priority Queueing model,...

Analysis of M, MAP/PH1, PH2/1 non-preemptive priority
Queueing model with Delayed working vacations,

immediate feedback,impatient customer, differentiate
breakdown and phase type repair

G. Ayyappan, N. Arulmozhi

•
Department of Mathematics,

Puducherry Technological University,
Puducherry, India.

Chennai 600005, India.
ayyappan@ptuniv.edu.in, arulmozhi.n@pec.edu,

Abstract

The arrival of high priority customers is governed by the Poisson process while that of low priority
customers is governed by the Markovian Arrival Process, and the service times are determined by a
distinct Phase-type distribution. When the service is finished and the system is empty, the server stays
idle for a random period (delay time). If a customer arrives within the delayed period, the server resumes
normal service to the customer immediately. Otherwise, at the end of the delayed period, the server will
take a working vacation and will instantly provide slow service to customers (high priority customers
only). The Matrix analytic method is used to investigate the system. We also discussed the steady-state
vector and busy period for our concept. The estimated and visually displayed performance measures of
the system

Keywords: Non-preemptive Priority, Working vacation policy, Phase-type repair, Immediate
feedback, Differentiate breakdown, Delay time.

AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

For the past two decades, the priority queue hypothesis has been used in communication
strategies. Because priority does not come under FCFO, it distinguishes it from a normal queue.
It is a special type of queue in which each customer is dealt with priority and served according
to its priority. There are two different types of priority service available in a queueing system:
preemptive and non-preemptive. Priority customers that arrive early will wait until the service is
finished while regular customers are serviced. This belongs under the non-preemptive priority
rule. In the event of a preemptive rule, high-priority consumers would frequently interrupt
low-priority service.

Ayyappan et al. [21] looked at M/M/1 for retrials, with negative arrival while using non-
preemptive priority service. Bhagat and Jain [5] described a multi-server, non-preemptive priority
service that is susceptible to failure and maintenance. According to Jeganathan et al. [9], the
inventory system and non-preemptive priority service for retrials have been discussed. Addition-
ally, discretionary priority service is utilized, taking into account both disciplines. Ayyappan and
Somasundaram [3] analyzed discretionary priority service for retrials used MX1, MX2/G1, G2/1.
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Krishnamoorthy and Divya [13] examined queueing models with MAP and PH distributions, as
well as working vacations under N-policy.

In many real-world queueing situations, the server can be seen working during its rest period
if necessary. Working vacation means that the server offers service at a lower rate throughout the
vacation period rather than entirely shutting down. In the past few decades have seen, queueing
systems with server working vacation, owing to similarities between telecommunication system,
manufacturing system, and computer system. Yang et al. [22] applied the spectral expansion
method to deal with a single server queueing model with delayed working vacations and working
breakdown: The author showed the steady-state probability vector, LST of sojourn time, and
expected sojourn time. After service completion, the server is idle when there are no customers in
the system for a certain amount of time (changeover time) (Pikkala et al. [19], Krishna Reddy and
Anitha [11]). The server begins offering service if customers access the system during changeover
time; if not, the server goes on vacation at the end of the changeover time.

After obtaining service from the server, customers may be satisfied or unsatisfied. Customers
who are satisfied with the system will leave, while those who are not satisfied will get feedback
right away. A single server model with starting failures, standby server, single vacation, delayed
repair, breakdown, immediate feedback, and impatient customers was extensively analyzed by
Ayyappan and Thilagavathy [1], who found the expected results for both the system size and
orbit size. In their 2008 study, Badamchi Zadeh and Shahkar [4] examined queuing systems that
included two phases of heterogeneous service, optional second service, and feedback for each
service. In contrast to the current study, when services are parallel, they had sequential services
during their studies. Afterward, performance measures for the Poisson arrival queuing system
and probability-generating functions are obtained under the assumption of exponential service
times. Ayyappan and Thilagavathy [2] explored closedown, breakdown and multiple vacation
used MAP/PH/1.

When the system is inactive or when a customer is being served, random failures can happen.
The terms "hard failure" and "soft failure" refer to two different kinds of system failure. Hard
failure’s typically takes a long period and needs the repairman’s actual presence. On the other
side, soft failure’s takes less time because the system may be recovered with a simple reboot.
Markovian queueing models with two different forms of server breakdown have already been
studied by Jain and Jain (2010) [7], Kalyanaraman (2019) [10], Krishna Kumar(2008)[12], Li (2013)
[16], and many others. Using the matrix geometric technique, stability conditions for a single
server infinite capacity Markovian queue were obtained. According to Janani [8], the final value
theorem of the Laplace transform is used to convert the transient state probabilities of the model
into steady-state probabilities.

When customers abandon the line because they have waited too long for service, they are
considered impatient customers. Kumar [14] investigated a non-Markovian queue with an
unreliable server that first provides an essential service and then one of the m optional services.
He has described the balking techniques as well as cost analysis for the objective of model
optimization. A single server queueing system with associated reneging, feedback, and balking
was investigated by Rakesh Kumar and Soodan [20]. We explored the time-dependent behavior of
the model using the Runge-Kutta method. Additionally, they discovered the average waiting
time and system size. In modeling, the arrival using a Markovian Arrival Process, a particular
type of Versatile Markovian Point Process was proposed by Neuts [18]. Lucantoni et al. [17], with
considerable VMPP as BMAP notational simplifications since it started in 1990. Due to its ability
to simulate a broad spectrum of real-world events, MAP is an effective point process in stochastic
modeling. Chakravarthy [6], describes two parameter matrices of m dimensions, let’s say D0 and
D1. Transitions in the MAP are determined by the generator matrix D = D0 + D1.
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2. Model Formulation

Within this part, our focus is on a system for queueing with a single server, utilizing non-
preemptive priority. Customers categorized as high priority (HP) arrive through a Poisson process
with rate denoted by λ2, while low priority (LP) customers arrive via a Markovian Arrival Process
represented by (D0, D1) of order m. The matrix D0 means no arrival LP customer, while the
matrix D1 depicts LP customer arrival. HP customers have a limited capacity of K size, while LP
customers have unlimited capacity. The fundamental arrival rate, denoted as λ1, is equivalent to
π1D1e, where π1 represents the stationary probability vector. A customer categorized as HP is
assumed to have a service time that follows a phase-type distribution with the notation (γ, U) of
order n, while an LP customer’s service time is assumed to follow a phase-type distribution with
the notation (γ′, U′) of order n′.

Upon completion of the service, if no customer is in the system, then the server will remain
inactive for a random duration. That time is referred to as the delayed period. The delayed
period follows an exponential distribution with parameter ω. when a customer arrives during
the delayed period, prompt resumption of regular service is initiated by the server. However, if
the delayed period ends and any customer does not arrive, the server will proceed on a working
vacation. The vacation period is generated by an exponentially distributed parameter η. HP
customers who arrive during this period will be served at a lower service rate and it is followed
by phase-type distribution with representation (γ, θU), where 0 < θ < 1. As such, the mean
service rate in normal mode is µ1 = [γ(−U)−1e]−1, and the vacation mode of service rate is θµ1.

After completion of service for HP customer during working vacation, if there exists no HP
customer awaiting service, then the server will doemant in vacation mode, irrespective of the
presence of LP customers in the system. After the expiration of the vacation clock during a WV,
the server shall revert to its normal working mode. At the end of vacation period, LP customers
shall be considered for service during no HP customer present in the system. The expected
service rate of an LP customer is denoted by µ2 = [γ′(−U′)−1e]−1.

The server is affected by soft failure(short time) during idle period and hard failure (long time)
during normal busy period (both HP and LP customers). The rates of soft and hard failure are
exponentially distributed with parameters ψ1 and ψ2. When a soft and hard failure happens, the
server repair process starts immediately. The customer who is receiving service at that point must
join the front of the waiting queue. If there are any customers in line when the repair is finished,
the server will start servicing them. Or else, the server remains idle and repair times follows a
phase-type distribution (α, T) of order l for soft failure, where T0 + Te = 0 and (α′, T′) of order
l′ for hard failure, where T

′0 + T′e = 0. The repair rate is indicated as τ1 = [α(−T)−1e]−1 and
τ2 = [α′(−T′)−1e]−1 respectively.

The arriving LP Customers may balk the system with probability b during working vacation
or join the system with probability (1 − b). After receiving normal service (both HP and Lp
customers), the satisfied customer leave the system with probability p1 and if the customer is not
satisfied with probability q1 then they will get feedback immediately.

3. The QBD process infinitesimal generation matrix

Notations

We will need the following notations:

• ⊗ -Kronecker product of two matrices of various dimensions resulting in a block matrix.
• ⊕ - Kronecker sum of two matrices of various dimensions resulting in a block matrix.
• Im stand for identity matrix of m x m order.
• e - a column vector of the suitable order. Each of its entries is one.
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• e0=e3m+2Knm+Kl′m+(K+1)lm.
• e1=eKmn+(K+1)n′m+(K+1)l′m+(K+1)lm+Kmn+m.
• N1(t): the total number of LP customers in the system at epoch t.
• N2(t): the total number of HP customers in the system at epoch t.
• J(t) represents the server’s status at epoch t.

As a result, the server is in one of the following states at any given time t:

J(t) =



0, idle during normal mode,
1, if the server is offering service to HP customers during normal mode,
2, if the server is offering service to LP customers during normal mode,
3, hard failure (during normal busy mode),
4, delay time,
5, soft failure (during idle),
6, busy(HP) in working vacation mode,
7, idle in working vacation mode.

• R(t) stands for the repair process considered by phases.
• K(t) stands for phases of the service.
• A(t)- The Markovian arrival process is considered in phases.
• Let Y={Y(t) : t ≥ 0}, where Y(t) = {N1(t), N2(t), J(t), R(t), K(t), A(t)} is a CTMC with state
space

Φ = ϕ(0)
∞⋃

i=1

ϕ(i). (1)

where

ϕ(0) ={(0, 0, 0, a) : 1 ≤ a ≤ m} ∪ {(0, r, 1, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m}
∪ {(0, r, 3, k4, a) : 1 ≤ r ≤ K, 1 ≤ k4 ≤ l′, 1 ≤ a ≤ m} ∪ {(0, 0, 4, a) : 1 ≤ a ≤ m}
∪ {(0, 0, 5, k3, a) : 0 ≤ r ≤ K, 1 ≤ k3 ≤ l, 1 ≤ a ≤ m}
∪ {(0, 1, 6, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m} ∪ {(0, 0, 7, a) : 1 ≤ a ≤ m},

and for i ≥ 1,

ϕ(i) ={(i, r, 1, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m}
∪ {(i, r, 2, k2, a) : 0 ≤ r ≤ K, 1 ≤ k2 ≤ n′, 1 ≤ a ≤ m}
∪ {(i, r, 3, k4, a) : 0 ≤ r ≤ K, 1 ≤ k4 ≤ l′, 1 ≤ a ≤ m}
∪ {(i, r, 5, k3, a) : 0 ≤ r ≤ K, 1 ≤ k3 ≤ l, 1 ≤ a ≤ m}
∪ {(i, r, 6, k1, a) : 1 ≤ r ≤ K, 1 ≤ k1 ≤ n, 1 ≤ a ≤ m} ∪ {(i, 0, 7, a) : 1 ≤ a ≤ m}.

3.1. The Infinitesimal Generator Matrix

The quasi-birth–death process has the generator matrix Q given by

Q =


B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
...

. . . . . . . . . . . .

 (2)
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B00 =



B11
00 B12

00 0 0 B15
00 0 0

0 B22
00 B23

00 B24
00 0 0 0

0 B32
00 B33

00 0 0 0 0
0 B42

00 0 B44
00 0 0 B47

00
B51

00 B52
00 0 0 B55

00 0 0
0 B62

00 0 0 0 B66
00 B67

00
B71

00 0 0 0 0 B76
00 B77

00


,

where
B11

00 = D0 − (λ2 + ψ1)Im, B12
00 = e′1 ⊗ α ⊗ λ2 Im, B15

00 = e′1(K + 1)⊗ α ⊗ ψ1 Im,

B22
00 =



L1 L2 0 . . . 0 0
L3 L1 L2 . . . 0 0
0 L3 L1 . . . 0 0

. . . . . .
0 0 0 . . . L1 L2
0 0 0 . . . L3 L1 + L2


, B23

00 = IK ⊗ en ⊗ α′ ⊗ ψ2 Im, B24
00 = e1K ⊗ qU0 ⊗ Im,

where L1 = (U + pU0γ)⊕ D0 − (λ2 + ψ2)Inm, L2 = λ2 Inm, L3 = qU0γ ⊗ Im.

B32
00 = IK ⊗ T′0γ ⊗ Im, B33

00 =



L4 L5 0 . . . 0 0
0 L4 L5 . . . 0 0
0 0 L4 . . . 0 0

. . . . . .
0 0 0 . . . L4 L5
0 0 0 . . . 0 L4 + L5


,

where L4 = T′ ⊕ D0 − λ2 Il′m, L5 = λ2 Il′m.
B42

00 = e′1K ⊗ α ⊗ λ2 Im, B44
00 = D0 − (λ2 + ω)Im, B47

00 = ωIm, B51
00 = e1(K + 1)⊗ T0 ⊗ Im,

B52
00 =



0 0 0 . . . 0 0
T0γ ⊗ Im 0 0 . . . 0 0

0 T0γ ⊗ Im 0 . . . 0 0
0 0 T0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . T0γ ⊗ Im 0
0 0 0 . . . 0 T0γ ⊗ Im


,

B55
00 =



L6 L7 0 . . . 0 0
0 L6 L7 . . . 0 0
0 0 L6 . . . 0 0

. . . . . .
0 0 0 . . . L6 L7
0 0 0 . . . 0 L6 + L7


, B66

00 =



L8 L9 0 . . . 0 0
L10 L8 L9 . . . 0 0
0 L10 L8 . . . 0 0

. . . . . .
0 0 0 . . . L8 L9
0 0 0 . . . L10 L8 + L9


,

where L6 = T ⊕ D0 − λ2 Ilm, L7 = λ2 Ilm, L8 = θU ⊕ (D0 + bD1) − (η + λ2)Inm, L9 = λ2 Inm,
L10 = θU′ ⊗ Im.
B62

00 = IK ⊗ en ⊗ ηγ ⊗ Im, B67
00 = e1K ⊗ θU0 ⊗ Im, B71

00 = η Im, B76
00 = e′1K ⊗ γ ⊗ λ2 Im,

B77
00 = (D0 + bD1)− (η + λ2)Im.
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B01 =



0 B12
01 0 0 0 0

B21
01 0 0 0 0 0
0 0 B33

01 0 0 0
0 B42

01 0 0 0 0
0 0 0 B54

01 0 0
0 0 0 0 B65

01 0
0 0 0 0 00 B76

01


,

where
B12

01 = e′1(K + 1)⊗ γ′ ⊗ D1, B21
01 = IK ⊗ In ⊗ D1,

B33
01 =



0 Il′ ⊗ D1 0 0 . . . 0 0
0 0 Il′ ⊗ D1 0 . . . 0 0
0 0 0 Il′ ⊗ D1 . . . 0 0

. . . . . .
0 0 0 0 . . . Il′ ⊗ D1 0
0 0 0 0 . . . 0 Il′ ⊗ D1


, B42

01 = e′1(K + 1) ⊗ γ′ ⊗ D1,

B54
01 = IK+1 ⊗ Il ⊗ D1, B65

01 = IK ⊗ In ⊗ (1 − b)D1, B76
01 = (1 − b)D1.

B10 =



0 0 0 0 0 0 0
0 B22

10 0 B24
10 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ,

where

B22
10 =



0 0 0 . . . 0 0
qU′0γ ⊗ Im 0 0 . . . 0 0

0 qU′0γ ⊗ Im 0 . . . 0 0
0 0 qU′0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . qU′0γ ⊗ Im 0
0 0 0 . . . 0 qU′0γ ⊗ Im


,

B24
10 = e1(K + 1)⊗ qU′0 ⊗ Im.

B11 =



B11
11 B12

11 B13
11 0 0 0

0 B22
11 B23

11 0 0 0
B31

11 B32
11 B33

11 0 0 0
B41

11 B42
11 0 B44

11 0 0
B51

11 0 0 0 B55
11 B56

11
0 B62

11 0 0 B65
11 B66

11

 ,

where

B11
11 =



L1 L2 0 . . . 0 0
L3 L1 L2 . . . 0 0
0 L3 L1 . . . 0 0

. . . . . .
0 0 0 . . . L1 L2
0 0 0 . . . L3 L1 + L2


, B12

11 =



qU0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


,
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B13
11 =



0 en ⊗ ψ2α′ ⊗ Im 0 0 . . . 0 0
0 0 en ⊗ ψ2α′ ⊗ Im 0 . . . 0 0
0 0 0 en ⊗ ψ2α′ ⊗ Im . . . 0 0

. . . . . .
0 0 0 0 . . . en ⊗ ψ2α′ ⊗ Im 0
0 0 0 0 . . . 0 en ⊗ ψ2α′ ⊗ Im


,

B22
11 =



L11 L12 0 . . . 0 0
0 L11 L12 . . . 0 0
0 0 L11 . . . 0 0

. . . . . .
0 0 0 . . . L11 L12
0 0 0 . . . 0 L11 + L12


, B23

11 = IK+1 ⊗ e′n ⊗ ψ2α′ ⊗ Im,

where L11 = (U′ + pU′0γ1)⊕ D0 − (λ2 + ψ2)In′m, L12 = λ2 In′m.

B31
11 =



0 0 0 . . . 0 0
T′0γ ⊗ Im 0 0 . . . 0 0

0 T′0γ ⊗ Im 0 . . . 0 0
0 0 T′0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . T′0γ ⊗ Im 0
0 0 0 . . . 0 T′0γ ⊗ Im


,

B32
11 =



T′0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


, B33

11 =



L4 L5 0 . . . 0 0
0 L4 L5 . . . 0 0
0 0 L4 . . . 0 0

. . . . . .
0 0 0 . . . L4 L5
0 0 0 . . . 0 L4 + L5


,

B41
11 =



0 0 0 . . . 0 0
T0γ ⊗ Im 0 0 . . . 0 0

0 T0γ ⊗ Im 0 . . . 0 0
0 0 T0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . T0γ ⊗ Im 0
0 0 0 . . . 0 T0γ ⊗ Im


,

B42
11 =



T0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


, B44

11 =



L6 L7 0 . . . 0 0
0 L6 L7 . . . 0 0
0 0 L6 . . . 0 0

. . . . . .
0 0 0 . . . L6 L7
0 0 0 . . . 0 L6 + L7


,

B51
11 = IK ⊗ en ⊗ ηγ ⊗ Im,
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B55
11 =



L8 L9 0 . . . 0 0
L10 L8 L9 . . . 0 0
0 L10 L8 . . . 0 0

. . . . . .
0 0 0 . . . L8 L9
0 0 0 . . . L10 L8 + L9


, B56

11 = e1K ⊗ θU0 ⊗ Im,

B62
11 = e′1(K + 1)⊗ ηγ′ ⊗ Im, B65

11 = e′1(K)⊗ α ⊗ λ2 Im, B66
11 = (D0 + bD1)− (η + λ2)Im.

B12 =



B11
12 0 0 0 0 0
0 B22

12 0 0 0 0
0 0 B33

12 0 0 0
0 0 0 B44

12 0 0
0 0 0 0 B55

12 0
0 0 0 0 0 B66

12

 ,

where
B11

12 = IK ⊗ In ⊗ D1, B22
12 = IK+1 ⊗ In′ ⊗ D1, B33

12 = IK+1 ⊗ Il′ ⊗ D1,
B44

12 = IK+1 ⊗ Il ⊗ D1, B55
12 = IK ⊗ In ⊗ (1 − b)D1, B66

12 = (1 − b)D1,

B21 =



0 0 0 0 0 0
B21

21 0 B23
21 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

where

B21
21 =



0 0 0 . . . 0 0
qU′0γ ⊗ Im 0 0 . . . 0 0

0 qU′0γ ⊗ Im 0 . . . 0 0
0 0 qU′0γ ⊗ Im . . . 0 0

. . . . . .
0 0 0 . . . qU′0γ ⊗ Im 0
0 0 0 . . . 0 qU′0γ ⊗ Im


,

B23
21 =



qU′0γ′ ⊗ Im 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . .
0 0 0 . . . 0 0


.

4. Analysis of Stability Condition

We examined our model under the assumption that the system is stable.

4.1. Condition for Stability

Let A = A0 + A1 + A2 be the square matrix of order Kmn + (K + 1)n′m + (K + 1)l′m +
(K + 1)lm + Kmn + m and it is an infinitesimal generator matrix is an irreducible. Let χ indicate
the steady-state probability vector of A satisfying χA = 0 and χe = 1. The vector χ is partitioned
by
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χ = (χ0, χ1, χ2, χ3, χ4, χ5)=(χ00, χ01, . . . , χ0K−1, χ0K, χ11, χ12, . . . , χ1K−1, χ1K, χ20, χ21, . . . , χ2K−1, χ2K,
χ30, χ31, . . . , χ3K−1, χ3K, χ40, χ41, . . . , χ4K−1, χ4K, χ50, χ51, . . . , χ5K−1, χ5K), where χ0 is of dimen-
sion Kmn, χ1 is of dimension (K + 1)n′m, χ2 is of dimension (K + 1)l′m, χ3 is of dimension
(K + 1)lm, χ4 is of dimension Kmn and χ5 is of dimension m. The probability vector χ is calcu-
lated by solving the following equations:

χ00[(U + pU0γ)⊗ Im − (λ2 + η)Inm] + χ01(qU0γ ⊗ Im) + χ11(qU′0γ ⊗ Im)

+ χ21(T′0γ ⊗ Im) + χ31(T0γ ⊗ Im) + χ40(en ⊗ ηγ ⊗ Im) = 0.

χ0j−1(λ2 Inm) + χ0j[(U + pU0γ)⊗ Im − (λ2 + η)Inm] + χ0j+1(qU0γ ⊗ Im) + χ1j+1(qU′0γ ⊗ Im)

+ χ2j+1(T′0γ ⊗ Im) + χ3j+1(T0γ ⊗ Im) + χ4j(en ⊗ ηγ ⊗ Im) = 0, f or 1 ≤ j ≤ K − 1.

χ0K−1(λ2 Inm) + χ0K[(U + pU0γ)⊗ Im − η Inm] + χ4K(en ⊗ ηγ ⊗ Im) = 0.

χ00(qU0γ′ ⊗ Im) + χ10[(U′ + pU′0γ′)⊗ Im − (λ2 + ψ2)In′m] + χ20(T′0γ′ ⊗ Im) + χ30(T0γ′ ⊗ Im)

+ χ50(ηγ′ ⊗ Im) = 0.

χ1j−1(λ2 In′m) + χ1j[(U′ + pU′0γ′)⊗ Im − (λ2 + ψ2)In′m] + χ5j(ηγ′ ⊗ Im) = 0, f or 1 ≤ j ≤ K − 1.

χ1L−1(λ2 In′m) + χ1L[(U′ + pU′0γ′)⊗ Im] = 0.

χ10[((e′n ⊗ ψ2α′) + qU′0γ′)⊗ Im] + χ20(T′ ⊗ Im − λ2 Il′m) = 0.

χ0j−1[en ⊗ ψ2α′ ⊗ Im] + χ1j[e′n ⊗ ψ2α′ ⊗ Im] + χ2j−1(λ2 Il′m) + χ2j(T′ ⊗ Im − λ2 Il′m) = 0,

f or 1 ≤ j ≤ K − 1.

χ0K[en ⊗ ψ2α′ ⊗ Im] + χ1K[e′n ⊗ ψ2α′ ⊗ Im] + χ2K−1(λ2 Il′m) + χ2K(T′ ⊗ Im) = 0.

χ30(T ⊗ Im − λ2 Ilm) = 0,

χ3j−1(λ2 Ilm) + χ3j(T ⊗ Im − λ2 Ilm) = 0, f or 1 ≤ j ≤ K − 1.

χ3K−1(λ2 Ilm) + χ3K(T ⊗ Im) = 0.

χ40[θU ⊗ Im − (η + λ2)Inm] + χ41(θU′ ⊗ Im) + χ50(α ⊗ λ2 Im) = 0.

χ4j−1(λ2 Inm) + χ4j[θU ⊗ Im − (η + λ2)Inm] + χ4j+1(θU′ ⊗ Im) + χ5j(α ⊗ λ2 Im) = 0,

f or 1 ≤ j ≤ K − 1.

χ4K−1(λ2 Inm) + χ4K[θU ⊗ Im − η Inm] + χ5K(α ⊗ λ2 Im) = 0.

χ4K−1(e1K ⊗ θU0 ⊗ Im)− χ5K(η + λ2)Im = 0.

Subject to normalizing condition

K

∑
r=1

χ0renm +
K

∑
r=0

χ1ren′m +
K

∑
r=0

χ2rel′m +
K

∑
r=0

χ3relm +
K

∑
r=1

χ4renm + χ50em = 1.

The stability condition χA0e < χA2e is obtained after some algebraic simplification, which turns
out to be

K

∑
r=1

χ0r(en ⊗ D1em) +
K

∑
r=0

χ1r(en′ ⊗ D1em) +
K

∑
r=0

χ2r(el′ ⊗ D1em) +
K

∑
r=0

χ3r(el ⊗ D1em)

+
K

∑
r=1

χ4r(en ⊗ (1 − b)D1em) + χ50(1 − b)D1em <
K

∑
r=0

χ1r(qU′0 ⊗ em).

4.2. The Stationary Probability Vector

Let y be the stationary probability vector of the infinitesimal generator Q of the process {Y(t):
t ≥ 0}. The subdivision of y by level as, y = (y0, y1, y2, ...), where y0 is of dimension (3m+ 2Knm+
Kl′m + (K + 1)lm) for i = 0 and y1, y2, ... are of dimension Kmn + (K + 1)n′m + (K + 1)l′m + (K +
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1)lm + Kmn + m for i ≥ 1. As y is a stationary probability vector satisfies the relation yQ = 0 and
ye = 1. Furthermore, while the stability criterion is satisfied, the equation gives the various levels.

yj = y1Rj−1, j ≥ 2 (3)

where R is the smallest non-negative solution of the quadratic equation

R2 A2 + RA1 + A0 = 0

and satisfies the relation RA2e = A0e and the vector y0, y1 are obtained with the help of succeeding
equations:

y0B00 + y1B10 = 0, (4)

y0B01 + y1[A1 + RA2] = 0, (5)

subject to normalizing condition

y0e0 + y1[I − R]−1e1 = 1. (6)

As a result, we can compute matrix R using Logarithmic reduction algorithm in Latouche and
Ramaswami[15] and the vector y by using the special structure of something like the coefficient
matrices.

5. Busy Period Analysis

• In a single-server queueing demonstration, the word busy period is characterized as the length
of time between the entry of a customer into the void system and the first time from that point
that the system size reaches zero. As, the first passage epoch to level zero, starting from level one.
It is the first return time of level zero, taken after by a least one visit to a few other levels, which
is the analog of the busy cycle.

• We have to present an outline of the fundamental period to analyze the busy period. when the
QBD process is taken into thought the first passage time from level i to i − 1, where i ≥ 2.

• It is worth pointing out that for each level i, i ≥ 2, there are (3m + 3nm + lm) states. The state
(i, j) of level i signifies the jth state of level i when the states are sorted alphabetically.

• Let Gjj′(u, y) represent the conditional probability that the QBD process, starting at time
t = 0 in the state (i, j) and keep track of the time until the first visit to the level (i − 1) but not
later than time y. We can modify after exactly u transitions to the left and enter the state (i, j′),
t = 0.

Let the joint transform matrix

Gjj′(z, s) =
∞

∑
u=1

zu
∫ ∞

0
e−sydGjj′(u, y) ; |z| ≤ 1, Re(s) ≥ 0, (7)

and put the matrix G(z, s) = Gjj′(z, s). Specifically, computed the matrix G(z, s) satisfy the
equation,

G(z, s) = z(SI − A1)
−1 A2 + (SI − A1)

−1 A0G
2
(z, s). (8)

The matrix G = Gjj′ = G(1, 0) is concerned with negating the boundary states during the first
passage times. knowing the rate matrix R allows us to use the below result to find the matrix G

G = −(A1 + RA2)
−1 A2. (9)
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The matrix G can be found with the assistance of the Logarithmic reduction algorithm [15]. We
find the matrix with the succeeding equation

G
(1,0)

(z, s) = z(sI − A1)
−1B10 + (sI − A1)

−1 A0G(z, s)G(1,0)
(z, s) (10)

G
(0,0)

(z, s) = (sI − B00)
−1B01G

(1,0)
(z, s). (11)

Thus, the moments that obey are calculated using the matrices G, G
(0,0)

(1, 0) and G
(1,0)

(1, 0) are
stochastic at z = 1 and s = 0. We can find the moments as follows:

F⃗1 = − ∂

∂s
G(z, s)e = −[A1 + A0(I + G)]−1e, (12)

F⃗2 =
∂

∂z
G(z, s)e = −[A1 + A0(I + G)]−1 A2e, (13)

F⃗ (1,0)
1 = − ∂

∂s
G
(1,0)

(z, s)e = −[A1 + A0G]
−1(A0F⃗1 + e), (14)

F⃗ (1,0)
2 =

∂

∂z
G
(1,0)

(z, s)e = −[A1 + A0G]
−1(A0F⃗2 + B10e), (15)

F⃗ (0,0)
1 = − ∂

∂s
G

0,0
(z, s)e = −B−1

00 [B01F⃗
(1,0)
1 + e], (16)

F⃗ (0,0)
2 =

∂

∂z
G
(0,0)

(z, s)e = −B−1
00 [B01F⃗

(1,0)
2 ]. (17)

6. System Performance Measures

• Expected number of LP customers in the system
ELP = ∑∞

i=1 iyie.
• Probability that the server is idle

Pidle = ∑m
a=1 y000a.

• Probability that the server busy with HP customers
PHbusy = ∑∞

i=0 ∑K
r=1 ∑n

k1=1 ∑m
a=1 yir1k1a

• Probability that the server is on hard failure
PHF = ∑K

r=1 ∑l′
k4=1 ∑m

a=1 y0r3k4a + ∑∞
i=1 ∑K

r=0 ∑l′
k4=1 ∑m

a=1 yir3k4a
• Probability that the server is Delay time to go for vacation

PDT = ∑m
a=1 y004a

• Probability that the server is busy during working vacation
PBWV = ∑∞

i=0 ∑K
r=0 ∑n

k1=1 ∑m
a=1 yir6k1a

7. Numerical Implementation

To compute numerical outcomes, we have employed distinct MAP representations for the arrival
process in a manner that ensures their mean values are 1, as recommended by Chakravarthy [6].

Erlang of order 2 (ERL-A):

D0 =

[
−2 2
0 −2

]
, D1 =

[
0 0
2 0

]
.

Exponential (EXP-A):
D0 = [−1], D1 = [1].

Hyper exponential (HYP-A):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
.
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MAP-Negative Correlation (MAP-NC-A):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 , D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258

 .

MAP-Positive Correlation (MAP-PC-A):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 , D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539

 .

Let us consider PH-distributions for the service and repair process as follows:

Erlang of order 2 (ERL-S):

γ = γ′ = [1, 0], U = U′ =

[
−2 2
0 −2

]
.

Erlang of order 2 (ERL-R):

α = α′ = [1, 0], T = T′ =

[
−2 2
0 −2

]
.

Exponential (EXP-S):
γ = γ′ = [1], U = U′ = [−1].

Exponential (EXP-R):
α = α′ = [1], T = T′ = [−1].

Hyper exponential (HYP-S):

γ = γ′ = [0.8, 0.2], U = U′ =

[
−2.8 0

0 −0.28

]
.

Hyper exponential (HYP-R):

α = α′ = [0.8, 0.2], T = T′ =

[
−2.8 0

0 −0.28

]
.

7.1. Illustration 1

We have examined the consequence of the hard failure rate ψ2 against the Expected number of LP
customers in the system(ELP) in the following tables 1 - 3. Fix µ1 = 20, µ2 = 15, K = 5, λ1 = 1,
λ2 = 1.5, η = 8, ω = 0.5, ψ1 = 0.5, τ1 = 2, τ2 = 6, θ = 0.6, b = 0.7, p1 = 0.3, q1 = 0.7 such that
the system is stable.

• As the hard failure rate (ψ2) increases, the variety of arrangements of arrival and service
times than the corresponding ELP also increases.

• Observe the arrival times, ELP increases highly in MAP − PC − A and increases much
slower in ERL − A than all other arrival times.

7.2. Illustration 2

We investigated the impact of the vacation rate (η) against the probability of the server being
idle (Pidle) in the following tables 4 - 6. Fix µ1 = 20, µ2 = 15, K = 5, λ1 = 1, λ2 = 1.5, ω = 0.5,
ψ1 = 0.5, ψ2 = 1, τ1 = 2, τ2 = 6, θ = 0.6, b = 0.7, p1 = 0.3, q1 = 0.7 such that the system is stable.

• As the vacation rate (η) increases, the variety of arrangements of arrival and service times
than the corresponding Pidle also increases.

• While comparing to EXP − S and HYP − S, Pidle increases more rapidly for ERL − S.
Similarly, Pidle increases slowly for HYP − S.
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7.3. Illustration 3

We analyze the effect of the repair rate (τ2) on the probability of the server being busy for HP
customer (PHbusy) in the following tables 7 - 9. Fix µ1 = 16, µ2 = 15, K = 5, λ1 = 1, λ2 = 1.5,
η = 8, ω = 0.5, ψ1 = 0.5, ψ2 = 1, τ1 = 2, θ = 0.6, b = 0.7, p = 0.3, q = 0.7 such that the system is
stable.

• While maximizing the repair rate (τ2), PHbusy minimizes for various possible arrangements
of arrival and service times.

• When correlating the distinct arrival times, PHbusy decreases more quickly in the case of
MAP − PC − A whereas slowly in ERL − A. Similarly, considering the service times, PHbusy
decreases gradually in ERL − S and highly in HYP − S.

7.4. Illustration 4

To determine the existence of the service rate of HP customer (µ2) versus the expected system
size for LP customer (ELP) in Figures 1 - 5. Fix µ2 = 15, K = 5, λ1 = 1, λ2 = 1.5, η = 8, ω = 0.5,
ψ1 = 0.5, ψ2 = 1, τ1 = 2, τ2 = 6, θ = 0.6, b = 0.7, p1 = 0.3, q1 = 0.7 such that the system remains
stable.

A quick observation from Figures 1 - 5, ELP decreases while increasing the service rate of
HP customers for all combinations of arrival and service time groupings. Due to the availability
of the HP service rate in the system, the customers will get service successfully which leads to
ELP decreases. However, ELP decreases slowly for ERL − A with the combination of ERL − S
whereas slowly in HYP − S. Likewise, ELP decreases highly for HYP − A in HYP − S whereas
slowly in ERL − S.

7.5. Illustration 5

To see the features of both the HP service rate (µ1) and repair rate of hard failure (τ2) on the
expected number of LP customers in the system (ELP) in the Figures 6 - 10. Fix µ2 = 15, K = 5,
λ1 = 1, λ2 = 1.5, η = 8, ω = 0.5, ψ1 = 0.5, ψ2 = 1, τ1 = 2, θ = 0.6, b = 0.7, p = 0.3, q = 0.7 such
that stability condition is satisfied.

Observation in Figures 6 - 10, we increase the values of both the HP service rate and repair
rate of hard failure, then ELP decreases with various arrival groupings. Due to the HP customer
increase in the service rate, ELP decreases likewise increase the repair rate of hard failure decrease
in the ELP. Let’s look at the arrival times, ELP decreases slowly for ERL − A and decreases fastly
for MAP − PC − A.
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Table 1: Hard Failure rate (ψ2) vs ELP - ERL-S

ψ2 ERL − A EXP − A HYP − A NC − A PC − A

1 0.163936 0.206320 0.293281 0.330092 20.674732

1.2 0.172609 0.217533 0.312405 0.342647 21.257457

1.4 0.181624 0.229181 0.332498 0.355637 21.857954

1.6 0.190997 0.241285 0.353617 0.369083 22.477042

1.8 0.200747 0.253867 0.375822 0.383009 23.115590

2 0.210893 0.266951 0.399180 0.397438 23.774519

2.2 0.221454 0.280563 0.423761 0.412394 24.454807

2.4 0.232454 0.294730 0.449638 0.427907 25.157494

2.6 0.243915 0.309480 0.476893 0.444003 25.883685

Table 2: Hard Failure rate (ψ2) vs ELP - EXP-S

ψ2 ERL − A EXP − A HYP − A NC − A PC − A

1 0.174277 0.217929 0.311487 0.340494 20.533617

1.2 0.182994 0.229005 0.330339 0.352724 21.059251

1.4 0.191976 0.240406 0.349917 0.365273 21.596139

1.6 0.201232 0.252143 0.370253 0.378153 22.144696

1.8 0.210771 0.264230 0.391379 0.391377 22.705353

2 0.220605 0.276679 0.413329 0.404958 23.278556

2.2 0.230744 0.289502 0.436138 0.418908 23.864775

2.4 0.241200 0.302715 0.459844 0.433243 24.464498

2.6 0.251986 0.316331 0.484485 0.447976 25.078233

Table 3: Hard Failure rate (ψ2) vs ELP - HYP-S

ψ2 ERL − A EXP − A HYP − A NC − A PC − A

1 0.233555 0.282009 0.402324 0.416602 19.623165

1.2 0.240760 0.290404 0.415758 0.425489 19.866887

1.4 0.247923 0.298753 0.429141 0.434323 20.109536

1.6 0.255059 0.307070 0.442498 0.443121 20.351499

1.8 0.262179 0.315369 0.455850 0.451895 20.593109

2 0.269292 0.323660 0.469217 0.460658 20.834659

2.2 0.276407 0.331955 0.482615 0.469419 21.076406

2.4 0.283532 0.340261 0.496061 0.478189 21.318580

2.6 0.290674 0.348587 0.509566 0.486975 21.561381
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Table 4: Vacation rate (η) vs Pidle - ERL-S

η ERL − A EXP − A HYP − A NC − A PC − A

5 0.082706 0.088338 0.098335 0.092979 0.094606

6 0.084704 0.090362 0.100285 0.094971 0.096400

7 0.086239 0.091918 0.101790 0.096500 0.097789

8 0.087467 0.093162 0.102999 0.097723 0.098910

9 0.088478 0.094188 0.103999 0.098732 0.099840

10 0.089331 0.095053 0.104845 0.099583 0.100629

11 0.090063 0.095797 0.105573 0.100315 0.101311

12 0.090700 0.096444 0.106210 0.100952 0.101907

13 0.091261 0.097015 0.106772 0.101514 0.102435

Table 5: Vacation rate (η) vs Pidle - EXP-S

η ERL − A EXP − A HYP − A NC − A PC − A

5 0.084405 0.090174 0.100258 0.095251 0.096557

6 0.086462 0.092258 0.102267 0.097311 0.098407

7 0.088037 0.093853 0.103811 0.098887 0.099835

8 0.089292 0.095124 0.105045 0.100142 0.100980

9 0.090321 0.096167 0.106061 0.101172 0.101925

10 0.091185 0.097042 0.106916 0.102036 0.102722

11 0.091922 0.097789 0.107648 0.102775 0.103407

12 0.092561 0.098437 0.108283 0.103415 0.104002

13 0.093121 0.099006 0.108842 0.103977 0.104527

Table 6: Vacation rate (η) vs Pidle - HYP-S

η ERL − A EXP − A HYP − A NC − A PC − A

5 0.090101 0.096426 0.106953 0.102570 0.103410

6 0.092254 0.098602 0.109047 0.104734 0.105339

7 0.093876 0.100237 0.110625 0.106360 0.106796

8 0.095147 0.101518 0.111863 0.107631 0.107942

9 0.096173 0.102552 0.112863 0.108656 0.108870

10 0.097022 0.103406 0.113691 0.109503 0.109639

11 0.097737 0.104125 0.114389 0.110217 0.110290

12 0.098349 0.104741 0.114987 0.110827 0.110848

13 0.098880 0.105275 0.115507 0.111356 0.111333
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Table 7: Repair rate (τ2) vs PHbusy - ERL-S

τ2 ERL − A EXP − A HYP − A NC − A PC − A

5 0.105099 0.105226 0.105427 0.105573 0.105653

6 0.105061 0.105172 0.105341 0.105479 0.105548

7 0.105034 0.105135 0.105284 0.105412 0.105472

8 0.105014 0.105107 0.105243 0.105362 0.105416

9 0.104998 0.105086 0.105213 0.105323 0.105373

10 0.104986 0.105070 0.105190 0.105292 0.105339

11 0.104976 0.105056 0.105171 0.105267 0.105311

12 0.104968 0.105045 0.105156 0.105246 0.105288

13 0.104961 0.105036 0.105143 0.105228 0.105268

Table 8: Repair rate (τ2) vs PHbusy - EXP-S

τ2 ERL − A EXP − A HYP − A NC − A PC − A

5 0.103623 0.103745 0.103941 0.104090 0.104179

6 0.103590 0.103698 0.103864 0.104004 0.104081

7 0.103565 0.103663 0.103811 0.103941 0.104009

8 0.103545 0.103637 0.103772 0.103892 0.103954

9 0.103530 0.103616 0.103742 0.103854 0.103911

10 0.103518 0.103600 0.103719 0.103824 0.103876

11 0.103509 0.103587 0.103701 0.103798 0.103848

12 0.103500 0.103576 0.103685 0.103778 0.103824

13 0.103493 0.103567 0.103673 0.103760 0.103805

Table 9: Repair rate (τ2) vs PHbusy - HYP-S

τ2 ERL − A EXP − A HYP − A NC − A PC − A

5 0.095098 0.095149 0.095235 0.095317 0.095365

6 0.095158 0.095216 0.095310 0.095423 0.095481

7 0.095182 0.095241 0.095332 0.095455 0.095514

8 0.095191 0.095247 0.095335 0.095458 0.095515

9 0.095192 0.095247 0.095329 0.095449 0.095503

10 0.095190 0.095243 0.095321 0.095436 0.095487

11 0.095187 0.095238 0.095313 0.095422 0.095470

12 0.095183 0.095232 0.095304 0.095408 0.095453

13 0.095180 0.095227 0.095296 0.095394 0.095438
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Figure 3: High priority service rate vs. ELP
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Figure 4: High priority service rate vs. ELP
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Figure 7: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S

Figure 8: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S

Figure 9: HP service (µ1) and Repair(HF) (τ2) rates
vs. ELP - ERL-S

Figure 10: HP service (µ1) and Repair(HF) (τ2)
rates vs. ELP - ERL-S

8. Conclusion

This paper contributes by employing the Matrix analytic method to compute the stationary
distribution of the number of customers in the M, MAP/PH1, PH2/1 queueing system with de-
layed working vacations under non-preemptive priority. We discussed some system performance
measures using steady-state probabilities and also calculated busy period analysis. We used
numerical examples to show how different system parameters affect performance measures.
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Abstract

In this work, a single server implements a two-commodity inventory queueing system. We assume that
both commodities have a finite capacity. Customers arrive by a Markovian Arrival Process, there is a need
for a single item, and either or both types of commodities are required, and this requirement is modeled
using certain probabilities. The lead times are exponentially distributed, and the service times have a PH
distribution. We use matrix analytical techniques to investigate the queueing inventory system and adopt
an (s, S)-type replenishment policy that is dependent on the type of commodity. In the steady state, the
joint and individual probability distribution of the Esystem, inventory level, and server status is obtained.
A few significant performance measures are attained. Our mathematical concept is then illustrated with a
few numerical examples.

Keywords: Queueing-inventory; Markovian Arrival Process; Phase-type distribution; (s, S)-type
policy; Two-Commodity.

AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

Many researchers have been interested in the study of queueing inventory systems, and proposals
involving two commodities have been made. Sigman and Levi [18] presented the M/G/1
queueing-inventory model with exponentially distributed lead time under light traffic in 1992.
Several models with various ordering criteria have been developed to operate such systems.
Balintfy [5] and Silver, E.A., [19] both contributed to the development of the joint ordering policy.
A two-commodity inventory system with zero lead time and an equal demand process was
examined, according to Krishnamoorthy et al. [12] and Anbazhagan and Arivarignan [2].

Neuts [15] developed, studied, and instructed MAP in 1984. Chakravarthy [8] derived the
Markovian arrival process by depicting matrix (D0, D1) as the guideline for the MAP at the
dimension m, where D0 governs for no arrival, where D1 governs for arrival. The generator of the
matrix Q defined by D = D0 + D1 is an irreducible stochastic matrix. A single-server inventory
system using Markovian Arrival Process (MAP)-based arrivals were studied by Paul Manuel et al.
[16].

Yadavalli et al. [22] considered a two-commodity stochastic inventory system with joint and
individual ordering policies, Poisson arrivals and lost sales. Anbazhagan et al. [3] for their
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consideration of a two-commodity continuous review inventory system with substitutable items
and Markovian demands. When the sum of the two commodities’ on-hand inventory levels
reaches a certain level s, reordering for supply is initiated. A two-commodity inventory problem
was studied by Krishnamoorthy and Varghese [13] with no lead time and Markovian shifts in
demand for the first, second, and both commodities.

Binitha Benny et al. [6] considered a total cost inventory system with a single server and the
buffer capacity will be limited. Customers arrive through a Poisson process, and the probabilities
used to determine the demand for each commodity or both commodities depend on which
commodity is being purchased. Sivakumar et al. [20] investigated a total cost continuous review
inventory system with a demand renewal and ordering policy, a policy combination known as
ordering individual commodities and ordering both commodities jointly.

A two-commodity model with a compliment and regular working vacations is examined by
Lakshmanan et al. in their study [14]. Each customer orders service at a convenient moment, and
both commodities are independent of their ordering procedures. Each customer is given a finite
retry orbit when the requested item is out of stock or the server is overloaded. Schwarz et al.
[17] looked into a brand-new type of stochastic network that shows a product from steady-state
distribution. There, integrated models for networks of service stations and inventories were
constructed using stochastic networks. They assume that even though a server with associated
inventory stops accepting new customers when the stock is out, lost sales are still recorded in the
system.

According to Yadavalli et al. [23], the three types of demand for the two goods are comparable.
They looked at a system with a phase-type distributed lead time and perishable items. A
Markovian arrival process governs the occurrence of all three different kinds of demands. Each
commodity’s lifetime has an exponential distribution with unique properties. A continuous-
time Markov chain that identified the system was used to give a stability analysis and identify
individual ordering strategies. Amirthakodi [1] thought of an inventory system with one server
service facility and a limited number of trial feedback customers. An inventory system with a
single server, two commodities, queue-dependent services for a finite queue, and an optional
retrial facility was examined by Jeganathan et al. [10].

Federgruen et al. [9] investigated a continuous review multi-item inventory system with
demands generated by independent compound Poisson processes using the (S, c, s) ordering
strategy. One consequence of implementing this approach is the requirement to find three optimal
variables for each item. Kalpakam and Arivarignan [11] proposed a policy with fewer variables
for making decisions and for an (s, S) policy generated by [11] that is appropriate for related
but non-substitutable items, a single reorder level s is determined. The total cost is determined
by the average inventory, a customer in queue, and reorder rates, according to Berman [7], who
provided a deterministic approximation for their inventory system with a service facility.

The demand for each commodity occurs in independent Poisson processes with a variety of
parameters in two-commodity retrial inventory systems with varied ordering strategies has been
studied by Sivakumar [21] and Jeganathan and Anbazhagan [4]. The constant retrial policy was
taken into consideration in both experiments. In other words, a signal is sent out when there are
i demands in the orbit according to an exponential distribution that is independent of the orbit’s
number.

1.1. Motivation for the proposed model

The main motivating factor for our model is the Textile scenario. Buyers usually go to a Textile
shop to purchase one or more (like churidar, sarees, shirts, kurtas, and so on) items or goods.
Let’s say there are n various items and people are shopping for the product i with probability,
pi, 1 ≤ i ≤ n. Customers shop for objects i1, ..., ik, for 2 ≤ k ≤ n with probability pi1,...,ik , where
i1, ..., ik is an element of the set of integers 1, 2, ..., n. Customers will be served only those products
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that are in stock of the ones requested if all of the requested different goods are not in stock.
If a Buyer is unable to obtain any product, they will be disappointed. A customer has a 2n − 1
different possibility to shop for the products and we will concentrate on the case where n = 2.

1.2. Research Gap

Benny et al. [6] worked with two-commodity in the single server queueing inventory system
and arrival follows the Poisson process and service follows an exponential distribution. This
article examines two-commodity in the inventory with arrival following MAP and service times
following Phase-type distributions. The authors handle (s, S) policy, and both individual and
joint orders are obtained. In this article, we develop (s, S) policy, both individual and joint orders,
and numerical implementation of 2D using Matlab software.

1.3. Viewpoint for This Work

The manuscript for this work is synchronized as follows: A brief explanation of our model is
provided in Section 2. Our model’s notations and matrix generation are described in Section 3.
Section 4 contains our model’s steady-state probability. Section 5 provides performance measures.
Numerical illustrated in Section 6. The conclusion is given in Section 7.

2. Model Description

Consider a single server queueing model subject to a two-commodity. Customers arrive according
to a MAP and each commodity has a single item demand. The MAP is specified by two m x m
matrices (D0, D1), D = D0 + D1, which is an irreducible infinitesimal generator. The matrix D0
means no arrival similarly, the matrix D1 means arrival.

There is a need for a single unit, and either or both types of commodities are required, and this
requirement is modeled using certain probabilities. The lead times are exponentially distributed,
and the service times have a PH distribution. Customers may want both commodities or only
one, depending on some predetermined probability. Only when services are being offered are
the customers’ needs disclosed. If the requested item is not available, the customer permanently
exits the system. When only one of the requested items is available and both are demanded, the
customer is given the one that is in stock. In the case where both commodity inventory levels are
0, customers are not allowed to join the system. However, customers join the system even when
the server is operating and no more inventory is available. For the customer’s needed item to be
provided at the time the item is taken for service, it is planned that the items will be replenished
during the current service. When a customer cannot get the commodity they need at the time of
service, the customer is also lost.

When taken for service, the customer requests item Ii with probability ci, for i = 1, 2 or both
I1 and I2 with probability c3 such that c1 + c2 + c3 = 1. After a random period of service, the
requested item is delivered to the customer. The service times for processing orders for I1, I2 or
both I1andI2 are PH- distribution with represented by (αv, Tv), 1 ≤ v ≤ 3. Whose matrix is order
nv with T0

v + Tve = 0 implies that T0
v = −Tve . Here λ is the arrival rate, which is signified as

λ = π1D1e, where π1 is the steady-state probability vector. The mean service rate is denoted by
µv = [αv(−Tv)−1env ]

−1.

For both commodities, the system has a maximum capacity of Si items. We utilize a (si, Si)
replenishment strategy for the commodity Ii, where i = 1, 2. That is, an order is placed for
just that item to raise the inventory level of commodity Ii back to Si, i = 1, 2 at the time of
replenishment, anytime it drops to si. For parameters, βi, for i = 1, 2, the lead time has an
exponential distribution.
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3. The QBD process’s infinitesimal generation matrix

The following notations and assumptions are used to explain our model of producing QBD
processes in this section.

Notations

We will define the following notations:

• ⊗ -Kronecker product of two matrices of various dimensions resulting in a block matrix.
• ⊕ - Kronecker sum of two matrices of various dimensions resulting in a block matrix.
• Im stand for identity matrix of m rows and m columns.
• e - A column vector of the suitable order. Each of its entries is one.
• N(t) represents the total number of customers in the queue.
• V(t) represents the server’s status at epoch t.

V(t) =


0, if server is idle
1, if server is busy with I1

2, if server is busy with I2

3, if server is busy with I1 and I2

• Li(t) stands for the excess inventory level of commodity Ii, i = 1, 2.
• S(t) stands for phases of the service.
• M(t)- The Markovian arrival process is considered in phases.
• Let Y={Y(t) : t ≥ 0}, where Y(t) = {N(t), V(t), I1(t), I1(t), S(t), M(t)} is a CTMC with

state space

Φ = ϕ(0)
∞⋃

i=1

ϕ(i). (1)

where
ϕ(0) = {(0, 0, a1, a2, k) : 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ S2, 1 ≤ k ≤ m}

∪{(0, v, a1, a2, jv, k) : 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m}
and for p ≥ 1,

ϕ(p) = {(p, v, a1, a2, jv, k) : 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m}.

3.1. The Infinitesimal Generator Matrix

The infinitesimal generator matrix of the Markov chain is given by:

Q =



B00 B01 0 0 0 0 0 . . .
B10 A1 A0 0 0 0 0 . . .
B20 A2 A1 A0 0 0 0 . . .
B30 A3 A2 A1 A0 0 0 . . .
B40 A4 A3 A2 A1 A0 0 . . .

...
...

...
. . . . . . . . . . . . . . .


(2)

The following describes Markov chain transitions and the corresponding rates:
The matrix B00 governs,

• (0, v, a1, a2, jv, k) → (0, 0, a1, a2, k) with rate Tv
0 ⊗ Im for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ S2,

1 ≤ jv ≤ nv, 1 ≤ k ≤ m,
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• (0, 0, a1, a2, k) → (0, 0, S1, a2, k) with rate β1 Im for 0 ≤ v ≤ 3, 0 ≤ a1 ≤ s1, 0 ≤ a2 ≤ S2,
1 ≤ k ≤ m,

• (0, v, a1, a2, jv, k) → (0, v, S1, a2, jv, k) with rate β1 Invm for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ s1, 0 ≤ a2 ≤
S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (0, 0, a1, a2, k) → (0, 0, a1, S2, k) with rate β2 Im for 0 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ s2,
1 ≤ k ≤ m,

• (0, v, a1, a2, jv, k) → (0, v, a1, S2, jv, k) with rate β2 Invm for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤
s2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (0, 0, 0, a2, k) → (0, 2, 0, a2 − 1, j2, k) with rate α2 ⊗ (c2 + c3)D1 for 1 ≤ a2 ≤ S2,1 ≤ j2 ≤ n2,
1 ≤ k ≤ m,

• (0, 0, a1, 0, k) → (0, 1, a1 − 1, 0, j1, k) with rate α1 ⊗ (c1 + c3)D1 for 1 ≤ a1 ≤ S1, 1 ≤ j1 ≤ n1,
1 ≤ k ≤ m,

• (0, 0, a1, a2, k) → (0, 1, a1 − 1, a2, j1, k) with rate α1 ⊗ c1D1 for 1 ≤ a1 ≤ S1, 1 ≤ a2 ≤ S2,
1 ≤ j1 ≤ n1, 1 ≤ k ≤ m,

• (0, 0, a1, a2, k) → (0, 2, a1, a2 − 1, j2, k) with rate α2 ⊗ c2D1 for 1 ≤ a1 ≤ S1, 1 ≤ a2 ≤ S2,
1 ≤ j2 ≤ n2, 1 ≤ k ≤ m,

• (0, 0, a1, a2, k) → (0, 3, a1 − 1, a2 − 1, j3, k) with rate α3 ⊗ c3D1 for 1 ≤ a1 ≤ S1, 1 ≤ a2 ≤ S2,
1 ≤ j3 ≤ n3, 1 ≤ k ≤ m.

The matrix B(p+1)0, p ≥ 1, governs

• (p, v, 0, 0, jv, k) → (0, 0, 0, 0, k) with rate Tv
0 ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, 0, a2, jv, k) → (0, 0, 0, a2, k) with rate Tv
0c1

p ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a2 ≤ S2, 1 ≤ jv ≤
nv, 1 ≤ k ≤ m,

• (p, v, 0, a2, jv, k) → (0, 2, 0, a2 − 1, j2, k) with rate Tv
0c1

p−1(c2 + c3)α2 ⊗ Im for 1 ≤ v ≤ 3,
1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, a1, 0, jv, k) → (0, 0, a1, 0, k) with rate Tv
0c2

p ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a1 ≤ S1, 1 ≤ jv ≤
nv, 1 ≤ k ≤ m,

• (p, v, a1, 0, jv, k) → (0, 2, a1 − 1, 0, j1, k) with rate Tv
0c2

p−1(c1 + c3)α1 ⊗ Im for 1 ≤ v ≤ 3,
1 ≤ a1 ≤ S1, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (1, v, a1, a2, jv, k) → (0, 1, a1 − 1, a2, j1, k) with rate Tv
0c1α1 ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a1 ≤ S1,

1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (1, v, a1, a2, jv, k) → (0, 2, a1, a2 − 1, j2, k) with rate Tv
0c2α2 ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a1 ≤ S1,

1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (1, v, a1, a2, jv, k) → (0, 3, a1 − 1, a2 − 1, j3, k) with rate Tv
0c3α3 ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a1 ≤

S1, 1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m.

The matrix A1, p ≥ 1, governs

• (p, v, a1, a2, jv, k) → (p, v, S1, a2, jv, k) with rate β1 Invm for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ s1, 0 ≤ a2 ≤
S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, a1, a2, jv, k) → (p, v, a1, S2, jv, k) with rate β2 Invm for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤
s2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m.

The matrix Al+1, 1 ≤ l ≤ p − 1, p ≥ 3, governs
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• (p, v, 0, a2, jv, k) → (p − l, 2, 0, a2 − 1, j2, k) with rate Tv
0c1

l−1(c2 + c3)α2 ⊗ Im for 1 ≤ v ≤ 3,
1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, a1, 0, jv, k) → (p − l, 1, a1 − 1, 0, j1, k) with rate Tv
0c2

l−1(c1 + c3)α1 ⊗ Im for 1 ≤ v ≤ 3,
1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, a1, a2, jv, k) → (p − 1, 1, a1 − 1, a2, j1, k) with rate Tv
0c1α1 ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a1 ≤

S1, 1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, a1, a2, jv, k) → (p − 1, 2, a1, a2 − 1, j2, k) with rate Tv
0c2α2 ⊗ Im for 1 ≤ v ≤ 3, 1 ≤ a1 ≤

S1, 1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m,

• (p, v, a1, a2, jv, k) → (p − 1, 3, a1 − 1, a2 − 1, j3, k) with rate Tv
0c3α3 ⊗ Im for 1 ≤ v ≤ 3,

1 ≤ a1 ≤ S1, 1 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m.

The matrix B01, governs

• (0, v, a1, a2, jv, k) → (1, v, a1, a2, jv, k) with rate Inv ⊗ D1 for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1,
0 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m.

The matrix A0, p ≥ 1, governs

• (p, v, a1, a2, jv, k) → (p + 1, v, a1, a2, jv, k) with rate Inv ⊗ D1 for 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1,
0 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m.

4. Analysis of Steady-State

The nonsingularity of B00 and A1 is need for Q to be irreducible. Consider the matrix A = ∑∞
l=0 Al .

Let the unique stationary distribution of A be ψ. Under the condition (Neuts [15]),

ψA0e <
∞

∑
l=2

(l − 1)ψAle,

an irreducible Markov chain with generator Q possesses a unique stationary solution vector
Y = (y0, y1, y2, . . . ) satisfying

YQ = 0, Ye = 1.

Partitioning Y as Y = (y0, y1, y2, . . . ) where
y0 = (y0(v, a1, a2, jv, k) : 0 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m),

yp = (yp(v, a1, a2, jv, k) : 1 ≤ v ≤ 3, 0 ≤ a1 ≤ S1, 0 ≤ a2 ≤ S2, 1 ≤ jv ≤ nv, 1 ≤ k ≤ m), f or p ≥ 1,

where y0 is of dimension 1 × (S1 + 1)(S2 + 1)m + (S1 + 1)(S2 + 1)n1m + (S1 + 1)(S2 + 1)n2m +
(S1 + 1)(S2 + 1)n3m and yp for p ≥ 1, is of dimension 1 × (S1 + 1)(S2 + 1)n1m + (S1 + 1)(S2 +
1)n2m + (S1 + 1)(S2 + 1)n3m. Then Y is obtained from

yp = y1Rp−1, p ≥ 2

where R is the minimal nonnegative solution of the matrix equation ∑∞
j=0 Y j Aj = 0.

The boundary equations are given by
∞

∑
p=0

ypBp0 = 0

y0B00 +
∞

∑
p=1

yp Ap = 0

The normalizing condition Ye = 1 gives

y0e + y1[I − R]−1e = 1

R matrix is obtained using the algorithm:

R(0) = 0

R(p + 1) = −A0 A1
−1 − R2(p)A2 A1

−1 − R3(p)A3 A1
−1 − . . . , p ≥ 0
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5. Performance Measure

• Expected number of customers in the system, EN = ∑∞
p=1 pyp

• Expected number of customers demanding I1 alone, EI1 = c1EN

• Expected number of customers demanding I2 alone, EI2 = c2EN

• Expected number of customers demanding both I1 and I2, EI12 = c3EN

• Expected rate of replenishment for item I1,

ERI1 = β1{
s1

∑
a1=0

S2

∑
a2=0

m

∑
k=1

y0(0, a1, a2, k) +
∞

∑
p=0

3

∑
v=1

s1

∑
a1=0

S2

∑
a2=0

nv

∑
jv=1

m

∑
k=1

yp(v, a1, a2, nv, k)}

• Expected rate of replenishment for item I2,

ERI2 = β2{
S1

∑
a1=0

s2

∑
a2=0

m

∑
k=1

y0(0, a1, a2, k) +
∞

∑
p=0

3

∑
v=1

S1

∑
a1=0

s2

∑
a2=0

nv

∑
jv=1

m

∑
k=1

yp(v, a1, a2, nv, k)}

• Expected reorder rate of commodity I1,

ER1 = µ1

∞

∑
p=0

S2

∑
a2=0

n1

∑
j1=1

m

∑
k=1

yp(1, s1 + 1, a2, n1, k)

• Expected reorder rate of commodity I2,

ER2 = µ2

∞

∑
p=0

S1

∑
a1=0

n2

∑
j2=1

m

∑
k=1

yp(2, a1, s2 + 1, n2, k)

• Expected reorder rate of commodity I1 and I2,

ER12 = µ3

∞

∑
p=0

n3

∑
j3=1

m

∑
k=1

yp(3, s1 + 1, s2 + 1, n3, k)

6. Numerical Implementation

In this section, we examine the outcome of our system using numerical and graphical represen-
tations. The three different MAP representations are distinct with the following variance and
correlation structures and their mean values are 1.

Arrival in Erlang of order 2(ERL-A):

D0 =

[
−2 2
0 −2

]
D1 =

[
0 0
2 0

]
Arrival in Exponential(EXP-A):

D0 = [−1]D1 = [1]

Arrival in Hyper exponential(HYP-EXP-A):

D0 =

[
−1.90 0

0 −0.19

]
D1 =

[
1.710 0.190
0.171 0.019

]
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Let us consider PH-distributions for the service process as follows:
ERL-S (Service in Erlang of order 2):

α1 = α2 = α3 = [1, 0] T1 = T2 = T3 =

[
−2 2
0 −2

]
EXP-S(Service in Exponential):

α1 = α2 = α3 = [1] T1 = T2 = T3 = [−1]

HYP-EXP-S(Service in Hyper exponential):

α1 = α2 = α3 = [0.8, 0.2] T1 = T2 = T3 =

[
−2.8 0

0 −0.28

]

6.1. Illustration

In the following tables 1, 2 and 3, we have examined the impact of the arrival rate λ on the
expected system size. Fix S1 = 8, S2 = 10, s1 = 2, s2 = 3, µ1 = 2, µ2 = 3, µ3 = 4, β1 = 2, β2 = 3,
c1 = 0.1, c2 = 0.1, c3 = 0.8.

Table 1: Arrival rate(λ) vs EN

ERL-S
λ ERL-A EXP-A HYP-EXP-A
1 0.038353086 0.090270325 0.197559861

1.1 0.050688987 0.113781945 0.256893077
1.2 0.065624277 0.141308387 0.329498505
1.3 0.083549669 0.173400817 0.417940725
1.4 0.104926605 0.210715786 0.525249133
1.5 0.130305758 0.254041436 0.654975645
1.6 0.160351157 0.304331913 0.81126147
1.7 0.195872159 0.36275318 0.998927098
1.8 0.23786654 0.430744844 1.223609249
1.9 0.287579538 0.51010493 1.491978161
2.0 0.346586293 0.603108157 1.812077611

Table 2: Arrival rate(λ) vs EN

EXP-S
λ ERL-A EXP-A HYP-EXP-A
1 0.062592538 0.120376635 0.254416346

1.1 0.08207371 0.151739687 0.328650275
1.2 0.105500217 0.188464919 0.418427098
1.3 0.133449138 0.231291358 0.526393629
1.4 0.166604203 0.281099839 0.655616534
1.5 0.205783572 0.338948174 0.809643341
1.6 0.251976048 0.406117251 0.992584752
1.7 0.306389033 0.484172226 1.20923196
1.8 0.370513054 0.575044848 1.465227137
1.9 0.446210016 0.681145853 1.767309959
2 0.535836027 0.80552094 2.123668949
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Table 3: Arrival rate(λ) vs EN

HYP-EXP-S
λ ERL-A EXP-A HYP-EXP-A
1 0.249031469 0.32018599 0.571239637

1.1 0.319730773 0.403892787 0.721444007
1.2 0.403462978 0.502016937 0.897044873
1.3 0.502065778 0.616543171 1.10107116
1.4 0.617713186 0.749810152 1.336958686
1.5 0.752987938 0.904583472 1.608618699
1.6 0.910971089 1.084145482 1.920517083
1.7 1.095353193 1.292405822 2.27776399
1.8 1.310572349 1.534037132 2.686212657
1.9 1.561985236 1.814640848 3.152564574
2 1.856077719 2.140947812 3.684475578

We observe that from the above tables 1, 2 and 3:

• As arrival rate (λ) increases, the variety of arrangements of arrival and service times then
the corresponding EN also increases.

• Observe the arrival times, EN rises more quickly in the case of HYP − EXP − A and more
slowly in the case of ERL − A. Similarly, it rises gradually in the case of ERL − S and
rapidly in the case of HYP − EXP − A.

6.2. Illustration

We have investigated the consequence of the arrival rate λ against the Expected to reorder rate of
commodity I1 (ER1)in the obeying table 4, 5 and 6. Fix S1 = 8, S2 = 10, s1 = 2, s2 = 3, µ1 = 2,
µ2 = 3, µ3 = 4, β1 = 2, β2 = 3, c1 = 0.1, c2 = 0.1, c3 = 0.8.

Table 4: Arrival rate(λ) vs ER1

ERL-S
λ ERL-A EXP-A HYP-EXP-A

1.0 0.000025 0.003443 0.000174
1.1 0.000036 0.003781 0.000228
1.2 0.000050 0.004121 0.000290
1.3 0.000069 0.004461 0.000360
1.4 0.000092 0.004804 0.000437
1.5 0.000121 0.005148 0.000522
1.6 0.000155 0.005495 0.000612
1.7 0.000196 0.005846 0.000707
1.8 0.000245 0.006199 0.000806
1.9 0.000302 0.006557 0.000908
2.0 0.000367 0.006918 0.001013
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Table 5: Arrival rate(λ) vs ER1

EXP-S
λ ERL-A EXP-A HYP-EXP-A

1.0 0.003780 0.015642 0.004010
1.1 0.004109 0.017110 0.004381
1.2 0.004435 0.018566 0.004750
1.3 0.004758 0.020010 0.005117
1.4 0.005080 0.021444 0.005481
1.5 0.005402 0.022870 0.005844
1.6 0.005723 0.024289 0.006203
1.7 0.006047 0.025702 0.006560
1.8 0.006372 0.027112 0.006914
1.9 0.006701 0.028519 0.007264
2.0 0.007034 0.029924 0.007610

Table 6: Arrival rate(λ) vs ER1

HYP-EXP-S
λ ERL-A EXP-A HYP-EXP-A
1 0.000059 0.002861 0.000272

1.1 0.000087 0.003140 0.000356
1.2 0.000124 0.003421 0.000453
1.3 0.000170 0.003705 0.000561
1.4 0.000228 0.003993 0.000679
1.5 0.000297 0.004286 0.000808
1.6 0.000378 0.004585 0.000947
1.7 0.000473 0.004888 0.001093
1.8 0.000583 0.005197 0.001247
1.9 0.000707 0.005512 0.001408
2 0.000845 0.005832 0.001573

We observe that from the above table 4, 5 and 6:

• As arrival rate (λ) increases, the variety of arrangements of arrival and service times then
the corresponding ER1 also increases.

• Observe the arrival times, ER1 rises faster in the case of EXP − A and more gradually in the
case of HYP − EXP − A. Comparably, it rises gradually in the case of HYP − EXP − S and
significantly in the case of EXP-S.

6.3. Illustration

In the 2D image, the influence of arrival rate(λ) on the expected number of customers demanding
both I1 and I12 has been examined. Fix S1 = 8, S2 = 10, s1 = 2, s2 = 3, µ1 = 2, µ2 = 3, µ3 = 4,
β1 = 2, β2 = 3, c1 = 0.1, c2 = 0.1, c3 = 0.8 so that the stability condition is satisfied.

From Figures 1 to 9,

• we can visualize that as the arrival rate (λ) maximizes, both the value of EI1 and EI12

maximizes.

• Furthermore, the rate of an increase of EI1 and EI12 for HYP − EXP − A is rapid and slow
for ERL − A. It is also faster for HYP − EXP − S and shorter for ERL − S.
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Figure 1: Arrival rate(λ) vs both EI1 and EI12 - Ek/Ek/1
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Figure 2: Arrival rate(λ) vs both EI1 and EI12 - M/Ek/1
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Figure 3: Arrival rate(λ) vs both EI1 and EI12 - Hk/Ek/1
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Figure 4: Arrival rate(λ) vs both EI1 and EI12 - Ek/M/1
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Figure 5: Arrival rate(λ) vs both EI1 and EI12 - M/M/1
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Figure 6: Arrival rate(λ) vs both EI1 and EI12 - Hk/M/1

RT&A, No 4 (76) 
Volume 18, December 2023 

802



S. Meena, N. Arulmozhi, G. Ayyappan, K. Jeganathan,
Analysis of MAP/PH1, PH2, PH3/1 Queueing-Inventory System...

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

λ

Ex
pe

ct
ed

de
m

an
di

ng
si

ze EI1
EI12

Figure 7: Arrival rate(λ) vs both EI1 and EI12 - Ek/Hk/1
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Figure 8: Arrival rate(λ) vs both EI1 and EI12 - M/Hk/1

1 1.2 1.4 1.6 1.8 2
0

1

2

3

λ

Ex
pe

ct
ed

de
m

an
di

ng
si

ze EI1
EI12

Figure 9: Arrival rate(λ) vs both EI1 and EI12 - Hk/Hk/1
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7. Conclusion

We looked at an inventory problem with two commodities and MAP demand arrival. When being
taken for service, customers express their needs. If the requested item is unavailable, the customer
is permanently removed from the system. When taken for service, if both goods are demanded,
and when there is only one thing left, it is served to the customer. Depending on the type of
demand, service times are distributed using a phase-type parameter. With parameter βi for Ii,
i = 1, 2, the lead times for each commodity are exponentially distributed. It is determined that
the continuous-time Markov chain is of type GI/M/1. The stability of the system is demonstrated.
Many system performance indices are developed, along with numerical examples and numerical
studies.
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Abstract

This paper derives a new lifetime distribution called the unit inverse Weibull distribution(UIWD) from
inverse weibull distribution. Various statistical properties such as the survival function, hazard rate
function, revised hazard rate function, cumulative hazard rate function, moments, and quartiles have
been discussed. Additionally, we have explored other properties like skewness, kurtosis, order statistics,
and the quantile function. Various methods of estimation, including maximum likelihood, moments,
percentiles, and the Cramer-Von Mises, have been discussed. Simulation studies were conducted to assess
the accuracy and precision of the parameters. Comparative analyses were performed to highlight the
effectiveness and utility of the proposed model in comparison to other existing models, using two real-life
applications. Finally, real life data analysis reveals that derived distribution can provide a better fit than
several well-known distributions.

Keywords: Unit inverse Weibull distribution, statistical properties, estimation, simulation study

1. Introduction

Over the last couple of decades, multiple authors have introduced a range of fresh methodologies
for creating novel sets of distributions. This has significantly expanded the potential for accurately
modeling real-world data across a variety of fields. This concept of devising new models and
families has garnered notable attention recently, often termed as "parameter addition" and
"parameter induction." The core objective of these efforts is to formulate models capable of
effectively capturing real-life phenomena by utilizing available data sets from diverse domains.

In applied statistics, a prevalent hurdle involves addressing uncertain occurrences that exist
within the confined range of (0,1). Consider instances from the real world, where measurements
frequently involve proportions, fractions representing certain attributes, scores obtained from
aptitude assessments, assorted indices, rates, and various other data points that inherently lie
within the interval (0,1). In such scenarios, continuous distributions characterized within the
domain of (0,1) prove indispensable for the probabilistic representation of these phenomena. The
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distribution that holds sway over the unit interval finds application across numerous sectors,
encompassing economics and biology.

Distributions that find definition over the (0,1) range are conventionally harnessed to model
random variables that are inherently limited within the confines of (0,1), such as percentages and
proportions. The Beta distribution, renowned for its convenience and utility across a plethora
of statistical domains, is a standard choice for tackling such scenarios. Nevertheless, there are
situations where the Beta distribution might fall short in adequately elucidating the data, thus
prompting the quest for alternative distributions defined within the unit interval.

Various distributions defined on the unit interval have been proposed in the literature,
including Topp-Leone [1], Johnson SB [2], unit Gamma [3], Kumaraswamy [4], Arcsine [5], unit
Logistic [6], generalized Beta type I [7], Simplex [8], standard two-sided Power[9], Mc Arcsine
[10], Log-Lindley [11], two-sided generalized Kumaraswamy [12], and Log-Xgamma [13].

More recently, researchers have proposed new families of transformed distributions on the
unit interval. Examples include the unit Birnbaum-Saunders [14], unit Lindley [15], unit inverse
Gaussian [16], unit Gompertz [17], unit improved second-degree Lindley [18], Log-weighted
exponential [19] , Logit Slash [20], and unit generalized Half Normal [21] distributions.

In this study, we propose a probability distribution called the Unit Inverse Weibull Distribution
(UIWD) specifically designed for modeling data on the interval (0,1). The UIWD is derived from a
type transformation of the Inverse Weibull Distribution (IWD), and we provide various methods
of estimation approach for estimating its parameters.

The motivation behind the development of the UIWD arises from several factors. Firstly, the
UIWD exhibits simple and closed-form expressions for its distribution function and quantile
function. Moreover, it demonstrates superior fitting performance compared to other commonly
used distributions on the unit interval. The UIWD allows for the derivation of various statistical
properties, and we utilize the various estimators method to estimate its parameters. Through
simulation studies, we assess the accuracy and precision of different estimators and compare the
UIWD model with existing models to showcase its utility and effectiveness. Overall, this study
aims to contribute to the understanding and application of the UIWD as a flexible probability
distribution for modeling data on the unit interval (0,1).

2. The Unit Inverse Weibull Distribution: Derivation of Pdf and Cdf

The two-parameter Weibull distribution defines the probability density function (PDF) of a
random variable U as

f (u; α, β) = αβuβ−1e−αuβ
, u > 0; α, β > 0. (1)

To explore a related distribution, we introduce a transformation by defining V = 1/U.
Consequently, V follows the two-parameter Inverse Weibull Distribution (IWD), and its PDF is
given by

f (v; α, β) = αβv−β−1e−αv−β
, v > 0; α, β > 0. (2)

Now, we propose the Unit Inverse Weibull Distribution (UIWD) by introducing a further transfor-
mation, X = 1/1 + V. As a result, X follows the UIWD, and its PDF is expressed as

f (x; α, β) = αβ

(
1
x2

)(
1
x
− 1
)−β−1

e−α( 1
x −1)

−β

, 0 < x < 1; α, β > 0. (3)

Here, α and β serve as shape parameters in the UIWD, with the constraint that α > 0 and
β > 0.

The cumulative distribution function (CDF) of the Unit Inverse Weibull Distribution (UIWD)
is defined as follows:

F(x|α, β) = P(X ≤ x) = 1 − e−α(1/x−1)−β
, 0 < x < 1, α, β > 0. (4)
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Figure 1: Pdf of UIWD with different values of alpha and beta

3. Reliability Properties

3.1. Survival Function

The survival function of the Unit Inverse Weibull Distribution (UIWD) is given by:

S(x|α, β) = 1 − F(x) = e−α(1/x−1)−β
, 0 < x < 1, α, β > 0. (5)

Here the parameters α and β of the UIWD control the shape and scale of the survival function.
The survival function of the Unit Inverse Weibull Distribution (UIWD) exhibits the following

characteristics:
1.Monotonic Decrease: The survival function is a monotonically decreasing function. As the

value of x increases within the (0, 1) interval, the probability of the random variable exceeding x
decreases. This is evident from Figure 3.

2.Asymptotic Behavior: As x approaches 0, the survival function approaches 1. This indicates
that the probability of the random variable being greater than a value close to 0 tends to 1. In
other words, the UIWD has a high probability of taking on values very close to 0.

3. As x approaches 1, the survival function approaches 0. This implies that the probability of
the random variable exceeding a value close to 1 tends to 0. Consequently, the UIWD has a low
probability of taking on values very close to 1.
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Figure 2: Distribution function of UIWD with different values of alpha and beta

3.2. Hazard Rate,Reversed Hazard Rate, Cumulative Hazard Rate Functions

The hazard rate function of the Unit Inverse Weibull Distribution (UIWD) is given by:

h(x|α, β) =
f (x)

1 − F(x)

= αβ

(
1
x2

)(
1
x
− 1
)−β−1

, 0 < x < 1; α, β > 0. (6)

Hazard Rate function has the following characteristics:
1. Monotonic Increase: The hazard function is a monotonically increasing function. As the

value of x increases within the (0, 1) interval, the hazard rate, which measures the instantaneous
rate of occurrence of an event, increases. This is evident from Figure 4.

2. Asymptotic Behavior: As x approaches 1, the hazard rate approaches infinity. This indicates
that the event becomes more likely to occur as time approaches the maximum value of 1.

The reversed hazard rate function of the Unit Inverse Weibull Distribution (UIWD) is given
by:

hrev(x|α, β) =
f (x)
F(x)

=
αβ
(

1
x2

) (
1
x − 1

)−β−1
e
(
−α( 1

x −1)
−β
)

1 − e
(
−α( 1

x −1)
−β
) , 0 < x < 1, α, β > 0. (7)

RT&A, No 4 (76)
 Volume 18, December 2023

809



Shameera T and Bindu P.P
UNIT INVERSE WEIBULL DISTRIBUTION

Figure 3: Survival function of UIWD with different values of alpha and beta

The cumulative hazard rate function of the Unit Inverse Weibull Distribution (UIWD) is given
by:

C(x; α, β) = −lns(x)

= α

(
1
x
− 1
)−β

, 0 < x < 1, α, β > 0. (8)

4. Moments and Related Properties

4.1. Raw Moments and central moments

The rth raw moment about the origin of the random variable X is:

µ′
r =

∫ 1

0
xrαβ

(
1
x2

)(
1
x
− 1
)−β−1

e−α( 1
x −1)

−β

dx

Substituting u =
(

1
x − 1

)−β
, we get

µ′
r =

∫ ∞

0
α

1

(1 + u
−1
β )

e−αu du
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Figure 4: Hazard Rate function of UIWD with different values of alpha and beta

= 1 +
∞

∑
k=1

(−1)kr(r + 1)......(r + k − 1)
Γ1− k

β

α
−k
β

, β > k. (9)

The first four raw moments are obtained by putting r = 1, 2, 3,4 in (9) .
The central moments are obtained from the raw moments with the help of the recurrence

relationship between raw moments and central moments.
µ1 = 0
µ2 = µ′

2 − µ′
1

2

µ3 = µ′
3 − 3µ′

2µ′
1 + 2(µ′

1)
3

µ4 = µ′
4 − 4µ′

3µ′
1 + 6µ′

2(µ
′
1)

2 − 3(µ′
1)

4

4.2. Quartiles

Consider the function f (x) of UIWD. The first quartile (Q1) is given by:∫ Q1

0
f (x) dx =

1
4

which implies

Q1 =
1

1 + (0.7213α)−β
. (10)

The median (m, Q2) is given by:
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∫ m

0
f (x) dx =

1
2

which implies

m =
1

1 + (1.4423α)−β
. (11)

The third quartile (Q3) is given by: ∫ Q3

0
f (x) dx =

3
4

which implies

Q3 =
1

1 + (3.4761α)−β
. (12)

4.3. Bowley’s Coefficient of Skewness

The Bowley’s coefficient of skewness (Skp) of UIWD is given by:

Skp =
Q3 + Q1 − 2Q2

Q3 − Q1
.

Figure 5: skewness of UIWD
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4.4. Percentile Coefficient of Kurtosis

The percentile coefficient of kurtosis of UIWD is given by:

K =
Q.D

P90 − P10

where
Q.D =

Q3 − Q1

2

10th percentile, P10 is given by ∫ P10

0
f (x) dx =

1
10

implies

P10 =
1

1 + (0.4343α)−β
. (13)

90th percentile, P90 is given by ∫ P90

0
f (x) dx =

9
10

implies

P90 =
1

1 + (9.4912α)−β
. (14)

Table 1: Skewness, Kurtosis, Mean, and Variance for Different α and β

α β Skewness Kurtosis Mean Variance
0.5 0.2 0.1208 0.2563 0.5975 0.0712
0.5 1 0.1673 0.2855 0.5385 0.0164
0.5 2.6 0.3706 0.3848 0.5127 0.0028
0.5 7.8 0.8538 0.4932 0.5038 0.0004
1 0.2 0.1154 0.2571 0.3687 0.0880
1 1 0.0407 0.2970 0.4037 0.0122
1 2.6 -0.2735 0.3704 0.4496 0.0022
1 7.8 -0.8829 0.4644 0.4817 0.0003
2 0.2 0.1101 0.2579 0.1511 0.0448
2 1 -0.0716 0.2924 0.2773 0.0063
2 2.6 -0.6071 0.2304 0.3879 0.0015
2 7.8 -0.9905 0.0362 0.4597 0.0003
10 0.2 0.0981 0.2596 0.0010 0.0000
10 1 -0.2137 0.2654 0.0844 0.0003
10 2.6 -0.6969 0.1336 0.2592 0.0005
10 7.8 -0.9910 0.0096 0.4094 0.0002

4.5. Order Statistics

Let’s consider a random sample of size n from the UIWD, denoted as X1, X2, . . . , Xn. The order
statistics of the UIWD are defined as X(1), X(2), . . . , X(n), where X(1) represents the smallest
observed value, X(2) represents the second smallest value, and so on, up to X(n), which represents
the largest observed value.
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Figure 6: Kurtosis of UIWD

The rth order statistics is given by:

fr:n(x|α, β) = Cr:nF(x|α, β)r−1(1 − F(x|α, β))n−r f (x|α, β)

= Cr:n[1 − e−α(1/x−1)−β
]r−1αβ

(
1
x2

)(
1
x
− 1
)−β−1

e−α( 1
x −1)

−β(n−r+1)

, (15)

where,

Cr:n =
n!

(r − 1)!(n − r)!
; 0 < x < 1, α, β > 0.

4.6. Quantile Function

The quantile function of a distribution gives the inverse mapping of the cumulative distribu-
tion function (CDF), allowing you to find the value corresponding to a given probability.Let’s
denote the quantile function as Q(p), where p is the probability for which we want to find the
corresponding value. Then quantile function of UIWD is given by:

p = F(x)

Then,

Q(p) =
1

1 +
(
− ln(1−p)

α

)−1
β

. (16)

RT&A, No 4 (76)
 Volume 18, December 2023

814



Shameera T and Bindu P.P
UNIT INVERSE WEIBULL DISTRIBUTION

5. Simulation study

In this section, we present a Monte Carlo simulation study conducted for the purpose of evaluation
of the finite-sample behavior of the maximum likelihood estimates of the UIWD. Generate
n = 50, 100, 200, 400 and 800 as sample size and considered 1000 replications for each sample
size. To simulate n observations from the proposed distribution, we implemented the following
algorithm:

1. Generate n random numbers from the uniform distribution U(0, 1), denoted as Ui, where
i = 1, 2, . . . , n.

2. For each i, solve the equation G(yi) by finding the inverse of the cumulative distribution
function:

yi = G−1(Ui) =
1

1 −
(
− ln(1−Ui)

α

) 1
β

.

Where G−1(.) is the quantile function of UIWD.

This algorithm allows us to generate a sample of n observations that follow the desired
distribution.

Table 2: Estimates, Bias, and MSE for Different n

n Estimates Bias MSE

50 α̂ : 3.0766 -0.3234 0.1046
β̂ : 1.1433 -0.0567 0.0092

100 α̂ : 3.5584 0.1584 0.0551
β̂ : 1.2334 0.0334 0.0071

250 α̂ : 3.6005 0.2005 0.0402
β̂ : 1.2855 0.0855 0.0053

500 α̂ : 3.6432 0.2432 0.0292
β̂ : 1.2977 0.0977 0.0036

1000 α̂ : 3.4555 0.0555 0.0031
β̂ : 1.2490 0.0490 0.0024

6. Estimation

6.1. Maximum Likelihood Estimator

Let’s denote the sample as {x1, x2, . . . , xn} taken from the population which follows UIWD and
the parameters are α and β.

The likelihood function,

L(α, β) =
n

∏
i=1

αβ

(
1
x2

i

)(
1
xi

− 1
)−β−1

e−α
(

1
xi
−1
)−β

.

Taking the natural logarithm of both sides, we get:

ln L(α, β) =
n

∑
i=1

ln(αβ)− 2 ln(xi)− (β + 1) ln
(

1
xi

− 1
)
− α

(
1
xi

− 1
)−β

.
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Now, let’s differentiate ln(L(α, β)) with respect to α and β and set the derivatives to zero:

∂

∂α
ln(L(α, β)) = 0

and
∂

∂β
ln(L(α, β)) = 0

Taking the derivative with respect to α:

∂

∂α
ln(L(α, β)) =

n

∑
i=1

[
1
α
− (xi − 1)−β

]
.

Setting it to zero:

n

∑
i=1

[
1
α
− (xi − 1)−β

]
= 0.

Rearranging, we get:

1
α
=

n

∑
i=1

(xi − 1)−β.

Solving for α:

α̂ =
1

∑n
i=1(xi − 1)−β

. (17)

Now, taking the derivative with respect to β:

∂

∂β
ln(L(α, β)) =

n

∑
i=1

[
ln(xi − 1) + α(xi − 1)−β ln(xi − 1)− α(xi − 1)−β−1(xi − 1)

]
.

Setting it to zero:

n

∑
i=1

[
ln(xi − 1) + α(xi − 1)−β ln(xi − 1)− α(xi − 1)−β−1(xi − 1)

]
= 0. (18)

It is non linear function and it can be found numerically.
These estimates of α and β obtained through maximizing the log-likelihood function are the

maximum likelihood estimators for the given model.

6.2. Method of moments

Let mr
′ and µr

′ represent the sample and population raw moments, respectively, for a given data
set. These moments are defined for different orders of r, where r ranges from 1 to n.

The rth raw moment about the origin of the random variable X is given by:

µ′
r = 1 +

∞

∑
k=1

(−1)kr(r + 1) . . . (r + k − 1)
Γ1− k

β

α
−k
β

, β > k.

The rth sample raw moment, denoted as m
′
r, is calculated as:

m
′
r =

1
n

n

∑
i=1

xr
i , r = 1, 2, 3, . . . , n.

where xi represents the individual data points in the data set.
By equating mr

′ to µr
′, we can establish the following set of equations:

m
′
1 = µ

′
1, m

′
2 = µ

′
2, m

′
3 = µ

′
3, . . . , m

′
n = µ

′
n.

Solving these equations will allow us to determine the values of α and β.
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6.3. Percentile estimation method

consider 25th percentile (P25) and 75th percentile (P75) of UIWD.
Then,

P25 =
1

1 + (0.7213α)−β

and

P75 =
1

1 + (3.4761α)−β

solving these two equations, we get,

α̂ = −0.1419 + e

log( 1
p25

−1)
−1.4641 log

(
(1−p25)p75
(1−p75)p25

)
(19)

and

β̂ = 1.4641 log
(
(1 − p25)p75

(1 − p75)p25

)
. (20)

6.4. Cramer-von mises method

The Cramer-von Mises estimation equation is used to estimate the parameters of a distribution by
minimizing the Cramer-von Mises objective function. For the Unit Inverse Weibull Distribution
(UIWD), the Cramer-von Mises estimation equation can be defined as follows:

C(α, β) =
1

12n
+ ∑

[
F(ti|α, β)− 2i − 1

2n

]2
.

In this equation, C(α, β) represents the Cramer-von Mises objective function, α and β are the
parameters of the UIWD that need to be estimated, n is the number of data points, ti represents
the observed data points, and F(ti|α, β) is the cumulative distribution function (CDF) of the
UIWD for each data point.

To estimate the parameters α and β, the Cramer-von Mises objective function is minimized by
finding the values of α and β that result in the smallest value of C(α, β). This can be done using
partial differentiation of α and β. Equating these to zero, we get normal equations. since these
equations are non-linear, we can use iterative method to find the estimates.

7. Applications

Data set 1: Here, we apply real data to show how adaptable and applicable the suggested
distribution is in comparison to a variety of other well-known distributions on the unit interval.
The data set is used for fitting is COVID-19 of Britain: This data set covered a period of 47 days,
from 1 May 2021 to 17 June 2021 [22]. The following information is created using daily new
deaths (DNDs), daily cumulative cases (DCCs), and daily cumulative deaths (DCDs): 0.0023,
0.0023, 0.0023, 0.0046, 0.0065, 0.0067, 0.0069, 0.0069, 0.0091, 0.0093, 0.0093, 0.0093, 0.0111, 0.0115,
0.0116, 0.0116, 0.0119, 0.0133, 0.0136, 0.0138, 0.0138, 0.0159, 0.0161, 0.0162, 0.0162, 0.0162, 0.0163,
0.0180, 0.0187, 0.0202, 0.0207, 0.0208, 0.0225, 0.0230, 0.0230, 0.0239, 0.0245, 0.0251, 0.0255, 0.0255,
0.0271, 0.0275, 0.0295, 0.0297, 0.0300, 0.0302, 0.0312, 0.0314, 0.0326

Data set 2:It is the recovery rates of COVID-19 patients in Spain from 3 March to 7 May 2020
[23] .The data set are: 0.6670, 0.5000, 0.5000, 0.4286, 0.7500, 0.6531, 0.5161, 0.7895, 0.7689, 0.6873,
0.5200, 0.7251, 0.6375, 0.6078, 0.6289, 0.5712, 0.5923, 0.6061, 0.5924, 0.5921, 0.5592, 0.5954, 0.6164,
0.6455, 0.6725, 0.6838, 0.6850, 0.6947, 0.7210, 0.7315, 0.7412, 0.7508, 0.7519, 0.7547, 0.7645, 0.7715,
0.7759, 0.7807, 0.7838, 0.7847, 0.7871, 0.7902, 0.7934, 0.7913, 0.7962, 0.7971, 0.7977, 0.8007, 0.8038,
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0.8289, 0.8322, 0.8354, 0.8371, 0.8387, 0.8456, 0.8490,0.8535, 0.8547, 0.8564, 0.8580, 0.8604, 0.8628,
0.6586, 0.7070, 0.7963, 0.8516.

To compare adaptability of unit inverse weibull distribution, we use the following two
parameter distributions on the unit interval.

1.Beta distribution of first kind (BD):
The probability density function (PDF) of the beta distribution is given by,

f (x) =
xα−1(1 − x)β−1

B(α, β)

where 0 ≤ x ≤ 1, α > 0, β > 0, and B(α, β) is the beta function.
2.Unit Weibull distribution(UWD):
The probability density function (PDF) UWD is given by,

f (x; α, β) =
1
x

αβ (− log x)(β−1) exp
[
−α (− log x)β

]
where 0 < x < 1, α > 0, and β > 0.
3. Kumaraswamy Distribution(KD):
The probability density function (PDF) of the Kumaraswamy distribution is given by:

f (x; α, β) = αβxα−1(1 − xα)β−1

where 0 < x < 1, α > 0, and β > 0.
4. Unit Birnbaum-Saunders distribution (UBSD):
The probability density function (PDF) of the UBSD is given by:

f (x; α, β) =
1

2xαβ
√

2π

[(
−β

log x

) 1
2
+

(
−β

log x

) 3
2
]

exp
{

1
2α2

(
log x

β
+

β

log x
+ 2
)}

where 0 < x < 1, β > 0, and α > 0.
5. Unit Gompertz distribution(UGD):
The probability density function (PDF) of the UGD is given by:

f (x; α, β) = αβx−(β+1) exp
(
−α
(

x−β − 1
))

where 0 < x < 1, α > 0, and β > 0.
6. Kumaraswamy distribution(KD):
The pdf of KD is given by,

f (x) = abxa−1(1 − xa)b−1, 0 < x < 1, a > 0, b > 0.

7. Unit inverse weibull distribution (UIWD):
The pdf of UIWD is given by,

f (x|α, β) = αβ

(
1
x2

)(
1
x
− 1
)−β−1

e−α( 1
x −1)

−β

where 0 < x < 1 and α, β > 0.
From the table 2, we can conclude that the unit inverse weibull model has the lowest AIC,

AICC, and BIC values among the listed models, indicating that it provides the best trade-off
between goodness of fit and model complexity based on all three criteria. Lower values of AIC,
AICC, and BIC indicate better fitting models with lower complexity.

From table 3 , we can conclude that , if the unit inverse weibull distribution model has the
least values for AIC, AICC, and BIC, it indicates that the unit inverse weibull distribution model
is the best-fitting model among the listed models. The lower values of these criteria suggest
that the unit inverse weibull distribution model provides a better trade-off between goodness
of fit and model complexity compared to the other models. Therefore, based on the provided
information, the unit inverse weibull distribution model is the most favorable choice.
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Table 3: Description of Models with AIC, AICC, and BIC Values

Model Log Likelihood AIC AICC BIC
UIWD 164.4482 -324.8965 -324.6356 -321.1128
UIGD 161.1174 -318.2347 -317.9739 -314.4511

BD 162.1896 -320.3791 -320.1182 -316.5955
UBSD 161.1062 -318.2125 -317.9516 -314.4288
UWD 152.3815 -300.763 -300.5021 -296.9793
UGD 146.5113 -289.0226 -288.7617 -285.239
KD 164.3392 -324.6785 -324.4176 -320.8948

Table 4: Model Comparison with AIC,AICC and BIC values

Model Log Likelihood AIC AICC BIC
UIWD 60.5479 -117.0958 -116.9053 -112.7165
UIGD 60.0268 -116.0535 -115.8631 -111.6742

BD 57.57423 -111.1486 -110.9581 -106.7692
UBSD 59.9357 -115.8715 -115.681 -111.4921
UWD 53.9658 -103.9316 -103.7411 -99.5523
UGD 46.02843 -116.0535 -115.8631 -111.6742
KD 58.8343 -113.6686 -113.4782 -109.2893

8. Conclusion

In this study, we introduced a probability distribution called the Unit Inverse Weibull Distribution
(UIWD) for modeling data on the interval (0, 1). The UIWD was derived through a type
transformation involving the Inverse Weibull Distribution (IWD). We provided the probability
density function (PDF) and cumulative distribution function (CDF) of the UIWD, along with their
respective mathematical expressions.We highlighted the key features and properties of the UIWD,
including its simple and closed-form expressions for the distribution and quantile functions,
superior fitting performance compared to other unit interval distributions, and its ability to derive
various statistical properties such as the survival function, hazard rate function, revised hazard
rate function, cumulative hazard rate function, moments, mode, and order statistics.

For parameter estimation, we employed different estimation methods and conducted simula-
tion studies to assess the accuracy and precision of different estimators. The results demonstrated
the effectiveness and utility of the UIWD model in capturing and analyzing data on the unit
interval (0, 1). Comparative analyses were performed to highlight the advantages of the UIWD
model over other existing models. The UIWD showed superior performance in terms of fitting
data and providing a flexible framework for statistical modeling.

Overall, this research contributes to the understanding and application of the UIWD as a
flexible probability distribution for modeling data on the unit interval (0, 1). The UIWD offers
a reliable alternative to existing models and can be effectively used in various fields requiring
modeling and analysis of data on the unit interval.
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Abstract

The Burr XII and Nakagami distributions hold significant importance in both lifetime distribution and
wealth distribution analyses. The Burr XII distribution serves as a valuable tool for understanding
the distribution of wealth and wages within specific societies, while the Nakagami distribution finds its
application in the realm of communication engineering. The incorporation of finite mixture distributions,
aimed at accounting for unobserved variations, has gained substantial traction, particularly in the
estimation of dynamic discrete choice models. This research delves into the fundamental characteristics of
the mixture Burr XII and Nakagami distributions. The study introduces parameter estimation techniques
and explores various aspects, including the cumulative distribution function, hazard rate, failure rate,
inverse hazard function, odd function, cumulative hazard function, rth moment, moment generating
function, characteristic function, moments, mean and variance, Renyi and Beta entropies, mean deviation
from mean, and mean time between failures (MTBF). The paper also addresses the estimation of the
mixing parameter through a Bayesian approach. To illustrate the effectiveness of the proposed model, two
real-life datasets are examined.

Keywords: Nakagami distribution, Burr XII, mixture distribution, Renyi and beta entropy, MTBF

1. Introduction

Mixture distributions play a pivotal role in modeling complex phenomena where a single
underlying distribution cannot fully capture the observed data. These distributions offer a flexible
framework by combining multiple component distributions, each representing a distinct pattern
or source of variation. In various fields, ranging from statistics and economics to engineering
and biology, mixture distributions have gained prominence due to their ability to accommodate
diverse data characteristics. By utilizing mixture distributions, researchers can uncover latent
subpopulations, account for unobserved factors, and enhance the accuracy of modeling real-world
phenomena. The exploration of mixture distributions was instigated by Pearson [14], who initially
investigated the blending of two normal distributions. Following Pearson’s pioneering work
[14], there emerged a significant hiatus in the advancement of mixture distributions. However,
this period of inactivity was later reinvigorated by subsequent scholars. Decay [7] built upon
Pearson’s foundation, while Hasselblad [8] delved extensively into the intricate realm of finite
mixture distributions. Numerous practical scenarios involve interpreting observed data as a
blend originating from two or more distinct distributions. By leveraging this notion, we have
the capability to merge different statistical distributions, thereby forging a novel distribution
that inherits the traits of its individual components. This approach holds true particularly when
dealing with continuous underlying random variables. An essential characteristic of a mixture
distribution is that its cumulative distribution function (CDF) is formed by skillfully combining
the CDFs of its constituent distributions through a convex amalgamation. Similarly, the probability
density function (PDF) of the mixture can be elegantly expressed as a convex blend, seamlessly
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incorporating the individual PDFs of its constituent parts. This versatile mathematical framework
not only allows us to effectively handle intricate data but also enables the extraction of meaningful
insights by synergistically harnessing the statistical attributes of diverse distributions. Assume T
is a continuous random variable with the following probability density function:

f (ti) =
k

∑
i=1

pj f j(t); t > 0, k > 0 (1)

where ≤ pj ≤ 1, j=1,2,3...,k and∑k
i=1 pi = 1. The corresponding c.d.f. is given by

F(ti) =
k

∑
i=1

pjFj(t); t > 0, k > 0 (2)

where k is the number of components, the parameters p1, p2, ..., pnare called mixing parameters,
where pi, represent the probability that a given observation comes from population ”i” with
density fi(.), and f1(.), f2(.), ..., f3(.), are the component densities of the mixture. When the
number of components k=2, a two component mixture and can be written as:

f (t) = p1 f1(t) + p2 f2(t) (3)

Different research studies have explored various mixture distribution models and their applica-
tions. For example, Zaman and colleagues [19] introduced a mixture of chi-square distributions
using Poisson elements. Chen and co-authors [4] discussed likelihood inference in finite mixture
models, explaining different scenarios for these models. Martin and collaborators [11] utilized
a mixture of chi-square distributions to describe the distribution of light in imaging, and they
also introduced this distribution to model unstructured light distribution. Daniyel et al. [6]
proposed a mixture of Burr II and Weibull distributions and examined their properties. Jaspers
and co-workers [10] used a Bayesian approach to estimate mixing weights for multivariate mixture
models. Nasiri and Azarian [13] explored estimating mixing proportions for a mixture of two
chi-square distributions using various methods and compared their performance. Singh and
colleagues [16] introduced a generalized distribution for modeling lifetime data and discussed its
statistical properties with real-world applications. Daghestani and team [5] proposed a mixture
of Lindley and Weibull distributions, investigated their statistical properties, and estimated
their unknown parameters. In this context, this study focuses on the utilization of mixture
distributions, specifically exploring the properties and applications of the mixture Burr XII and
Nakagami distributions. By delving into their mathematical foundations, parameter estimation
methods, and various statistical measures, we aim to provide a comprehensive understanding
of how mixture distributions can enhance our ability to capture the intricate nuances present in
real-world datasets.

The three-parameter Burr XII distribution was introduced by Titterington et al. [17]. For values of
x greater than zero, its cumulative distribution function and probability density function are as
follows:

F(x; q, d, b) = 1 −
[
1 +

( x
q
)b]−d; d, b, q > 0 (4)

And
f (x; q, d, b) = bdq−bxb−1[1 + ( x

q
)b]−d−1; d, b, q > 0 (5)

respectively, where d and b are the shape parameters and q is the scale parameter. It is frequently
employed to model income data.

Nakagami [12] introduced the Nakagami distribution, also referred to as the Nakagami-m
distribution, to describe radio signal fading. It involves a shape parameter denoted as ’m.’ If a
random variable ’X’ conforms to the Nakagami distribution with a shape parameter α > 0.5 and
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a scale parameter λ > 0, its probability density function (p.d.f) can be expressed in the following
manner:

f (x; α, λ) =
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)

; x > 0, α ≥ 0.5, λ > 0 (6)

The corresponding commulative distribution function is given by

F(x) =
1

Γ(α)
Γ
( α

λ
x2, α

)
; x > 0, α ≥ 0.5, λ > 0 (7)

where Γ(x, a) =
∫ x

0 ta−1e−tdt is the lower incomplete gamma function.

This particular distribution has found applications spanning a diverse range of fields, encompass-
ing hydrology, the transmission of multimedia data across networks, investigations into medical
imaging, and the modeling of high-frequency seismogram envelopes.

The primary objective of this research paper is to introduce and explore a novel distribution,
which emerges as a fusion of the Burr XII and Nakagami distributions, termed as the Mixture
of Burr II and Nakagami Distribution (MBND). The study delves into the statistical properties
inherent to this mixture distribution, in addition to the techniques for parameter estimation
through Maximum Likelihood Estimation. Furthermore, the paper extends its investigation to
include the estimation of the mixing parameter using a Bayesian approach. To validate the efficacy
of the proposed model, real-world data is employed, allowing for a comparative assessment
against other optimally fitting models.

2. Probability Density Function of MBND

The PDF of the mixture of Burr XII Nakagami distribution (MBND) has the following form

f (x; q, d, b, α, λ) = p1 f1(x; q, d, b) + p2 f2(x; α, λ) (8)

Here, with p1 and p2 representing the mixing proportions where their sum equals one (p1 + p2 =
1), f1(x; q, d, b) signifies the PDF of the Burr XII distribution, and f2(x; α, λ) denotes the PDF
of the Nakagami distribution. Combining these individual probability densities results in the
mixture density as follows:

f (x; q, d, b, α, λ) = p1bdq−bxb−1[1 + ( x
q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)

(9)

where x > 0 and d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.

3. Cumulative Probability distribution of MBND

The cumulative distribution function is given by

F(x; q, d, b, α, λ) = p1F1(x; q, d, b) + p2F2(x; α, λ) (10)

Here, with p1 and p2 representing the mixing proportions where their sum equals one (p1 + p2 =
1), f1(x; q, d, b) signifies CDF of the Burr XII distribution, and f2(x; α, λ) denotes the CDF of the
Nakagami distribution. Combining these individual probability densities results in the mixture
density as follows:

F(x; q, d, b, α, λ) = p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)
Γ
( α

λ
x2, α

))
(11)

where x > 0, d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.
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Figure 1: Plot of the PDF for the MBND

Figure 2: Plot of the CDF for the MBND

4. Properties of Bunami distribution

4.1. Area under the curve

Both the Burr XII and Nakagami distributions constitute complete probability density functions
individually, their amalgamation as a mixture will similarly result in a comprehensive probability
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density function.

4.2. Reliability function

The reliability function, also called the survival function, describes a feature of a random variable
related to how a system might stop working within a certain period.It is defined as the probability
that the system will keep working beyond a particular point in time. Mathematically,

R(x) = 1 − F(x) (12)

By inserting equation (11) into equation (12), the reliability or survival function for the MBND
can be expressed in the following manner

R(x) = 1 −
(

p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)
Γ
( α

λ
x2, α

)))
(13)

where x > 0, d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.

Figure 3: Plot of the Reliability function for the MBND

4.3. Hazard Function

The hazard function is mathematically defined as the quotient of the probability density function
divided by the reliability function, and its expression takes the following form:

h(x) =
f (x)
R(x)

(14)
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By substituting equations (9) and (13) into equation (14), the hazard rate for the MBND can be
derived, leading to the subsequent definition.

h(x) =
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α
λ

)α

x2α−1 exp
(

−α
λ x2

)
1 −

(
p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)Γ
(

α
λ x2, α

))) (15)

where x > 0, d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.

Figure 4: Plot of the Hazard function of the MBND

4.4. Cumulative Hazard Function

The cumulative hazard function can be defined as

Λ(x) = − log R(x) (16)

By substituting equation (13) into equation (16), the cumulative hazard function for the MBND
can be derived, yielding the subsequent expression.

Λ(x) = − log
[

1 −
(

p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)
Γ
( α

λ
x2, α

)))]
(17)

where x > 0, d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.
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Figure 5: Plot of Cumulative Hazard function for the MBND

4.5. Reversed Hazard Rate

The reversed hazard rate can be conceptually understood as the result of dividing the probability
density function by the cumulative distribution function, as demonstrated by the following
formulation:

r(x) =
f (x)
F(x)

(18)

The reversed hazard rate corresponding to the MBND can be derived by substituting equations
(9) and (11) into equation (18), resulting in the following expression.

r(x) =
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α
λ

)α

x2α−1 exp
(

−α
λ x2

)
p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)Γ
(

α
λ x2, α

)) (19)

where x > 0, d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.
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Figure 6: Plot of the Reversed Hazard function for the MBND

4.6. Odds Function

The odds function, represented as O(x), is characterized as the proportion of the cumulative
distribution function to the reliability function, and it is expressed through the following equation:

O(x) =
F(x)
R(x)

(20)

The odds function corresponding to the MBND can be derived by substituting equations (11) and
(13) into equation (20), resulting in the following expression.

O(x) =
p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)Γ
(

α
λ x2, α

))
1 −

(
p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)Γ
(

α
λ x2, α

))) (21)

where x > 0, d, b, q >, λ > 0, α ≥ 0.5, p1 + p2 = 1.
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Figure 7: Plot of the Odd Function for the MBND

4.7. rth Moment about Origin

The rth moment of the real-valued function can be acquired by applying

µ
′
r =

∫
xr f (x)dx (22)

µ
′
r =

∫ ∞

0
xr
(

p1bdq−bxb−1[1 + ( x
q
)c]−k−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
))

dx (23)

µ
′
r = p1

∫ ∞

0
xrbdq−cxc−1[1 + ( x

q
)b]−d−1dx + p2

∫ ∞

0
xr 2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)

dx (24)

µ
′
r = p1qr Γ( r

b + 1)Γ(k − r
b )

Γ(d)
+ p2

Γ(α + r
2 )

Γα

(
λ

α

) r
2

(25)

4.8. Raw moments about Origin

Putting r=1, 2, 3 and 4 in (25),first four raw moments are

µ
′
1 = p1q1 Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2

= Mean (26)

µ
′
2 = p1q2 Γ( 2

b + 1)Γ(k − 2
b )

Γ(d)
+ p2

Γ(α + 1)
Γα

(
λ

α

)
(27)

µ
′
3 = p1q3 Γ( 3

b + 1)Γ(k − 3
b )

Γ(d)
p2

Γ(α + 3
2 )

Γα

(
λ

α

) 3
2

(28)

µ
′
4 = p1q4 Γ( 4

b + 1)Γ(k − 4
b )

Γ(d)
+ p2

Γ(α + 2)
Γα

(
λ

α

)2

(29)
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4.9. Moments about Mean

µ1 = 0 (30)

µ2 = µ
′
2 − (µ

′
1)

2 = Variance (31)

µ2 = p1q2 Γ( 2
b + 1)Γ(k − 2

b )

Γ(d)
+ p2

Γ(α + 1)
Γα

(
λ

α

)
−
(

p1q1 Γ( 1
b + 1)Γ(k − 1

b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
)2

(32)
µ3 = µ

′
3 − 3µ

′
2µ

′
1 + (µ

′
1)

3

µ3 = p1q3 Γ( 3
b + 1)Γ(k − 3

b )

Γ(d)
p2

Γ(α + 3
2 )

Γα

(
λ

α

) 3
2

− 3

[
p1q2 Γ( 2

b + 1)Γ(k − 2
b )

Γ(d)
+ p2

Γ(α + 1)
Γα

(
λ

α

)]
[

p1q1 Γ( 1
b + 1)Γ(k − 1

b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
]
+

[
p1q1 Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
]3

(33)

µ4 = µ
′
3 − 4µ

′
1µ

′
3 + 6(µ

′
1)

2(µ
′
2)− 3(µ

′
1)

4

µ4 = p1q3 Γ( 3
b + 1)Γ(k − 3

b )

Γ(d)
p2

Γ(α + 3
2 )

Γα

(
λ

α

) 3
2

− 4

(
p1q1 Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
)

p1q3 Γ( 3
b + 1)Γ(k − 3

b )

Γ(d)
p2

Γ(α + 3
2 )

Γα

(
λ

α

) 3
2

+ 6

(
p1q1 Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
)2

p1q2 Γ( 2
b + 1)Γ(k − 2

b )

Γ(d)
+ p2

Γ(α + 1)
Γα

(
λ

α

)
− 3

(
p1q1 Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
)4

(34)

4.10. Measure of Skewness and Kurtosis

Skewness refers to the measure of asymmetry exhibited by a probability distribution. It indicates
the extent to which the distribution leans or deviates from being symmetric around its mean.
Kurtosis helps characterize the peakedness or flatness of the distribution’s curve. Skewness and
kurtosis are symbolized as β1 and β2 respectively, and their mathematical representation is given
as:

β1 =
(µ3)

2

(µ2)3 (35)

Using eq.(32) and (33) in the above equation, we can get the value of skewness.

And,
β2 =

µ4

(µ2)2 (36)

Using eq.(32) and (34) in the equation (36), the expression for the β2 can be obtained.

4.11. Moment Generating Function

The moment generating function is a mathematical function that can be defined as follows:
Mx(t) = E(etx), provided it exists.
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where E(etx) =
∫

etx f (x)dx and is given by

E(etx) =
∫ ∞

0
etx

(
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
))

dx

E(etx) = p1

∫ ∞

0
etxbdq−bxb−1[1 + ( x

q
)b]−d−1dx + p2

∫ ∞

0
etx 2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)

dx

(37)

E(etx) = p1

∞

∑
j=0

(qt)j

j!
Γ( j

b + 1)Γ(k − j
b )

Γ(d)
+ p2

[
1 − t

√
λ

α

]−α

(38)

4.12. Characteristic Function

The characteristic function is derived from the moment generating function by substituting ’t’
with ’it’, and its expression is given as follows:

ϕx(t) = E(eitx) (39)

E(eitx) = p1

∞

∑
j=0

(qit)j

j!
Γ( j

b + 1)Γ(k − j
b )

Γ(d)
+ p2

[
1 − it

√
λ

α

]−α

(40)

4.13. Mean deviation about Mean

The mean deviation represents the average of the absolute differences between data points and
the mean of a dataset. It offers a way to estimate the level of variability in a population. The
mean deviation about mean can be obtained as follows:

δ1(x) =
∫ ∞

0

∣∣x − µ
∣∣ f (x)dx (41)

where µ = E(x). It can be calculated by the following relationship

δ1(x) =
∫ µ

0

(
µ − x

)
f (x)dx + 2

∫ ∞

µ

(
µ − x

)
f (x)dx

δ1(x) = 2
∫ µ

0

(
µ − x

)
f (x)dx

δ1(x) = 2

[
µF(µ) +

∫ µ

0
x f (x)dx

]
(42)

δ1(x) = 2

[(
p1q1 Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2
)(

p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)
Γ
( α

λ
µ2, α

)))

−
(

p1bd
∞

∑
j=0

(−1)j
(

d + 1
j

)( µ
q

) j+1
b +1

j + 1
b + 1

+ p2
1

Γ(α)

√
λ

α

∞

∑
i=0

(−i)
i!

(
α
λ µ2)i+α− 1

2

i + α + 1
2

)]
(43)
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4.14. Renyi Entropy

The quantification of uncertainty inherent in random variable X can be computed using Renyi
entropy [15]. This can be articulated using the subsequent equation:

δr(x) =
1

1 − r
log
( ∫

f r(x)dx
)

(44)

where

f r(x) =

[
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)]r

(45)

By using binomial expansion

(a + b)n =
∞

∑
k=0

(
n
k

)
an−kbk

The integral will take the form

=
∞

∑
k=0

(
r
n

) ∫ ∞

0

[
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

]r−n[
p2

2
Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)]n

dx

Due to their independence, the integral can be treated as the multiplication of the two integrals,
leading to the resulting expression for the Renyi entropy as:

δr(x) =
1

1 − r
log

[
(p1bdq−b)r−nq(b−1)(r−n)+1

b

Γ
(

(r−n)(b−1)+1
b

)
Γ
(

brd−bnd+r−n−1
b

)
Γ
(

(r−n)(b−1)+1
b + brd−bnd+r−n−1

b

)

+p2
2n−1

(Γ(α))n

(
α

λ

)1− n
2
(

1
n

)(αn− n
2 +1
)

Γ
(
αn − n

2
+

1
2
)]

(46)

4.15. β-Entropy

The β-entropy is formulated as an extension of the Shannon entropy with a single parameter.
This concept was initially introduced by Havrda and Charvat [9], and subsequently adapted for
use in physical contexts by Tsallis [18]. The β-entropy can be defined as:

Hβ =
1

β − 1

[
1 −

∫ ∞

0
f β(x)

]
dx, f orβ ̸= 1. (47)

β-entropy for the MBND is given by

Hβ =
1

β − 1

∫ ∞

0

[
p1bdq−bxb−1[1+ ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)]β

dx, f orβ ̸= 1.

(48)
By using binomial expansion

(a + b)n =
∞

∑
k=0

(
n
k

)
an−kbk

The integral will take the form

=
β

∑
n=0

βn
∫ ∞

0

[
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

]β−n[
p2

2
Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)]n

dx
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Due to their independence, the integral can be treated as the multiplication of the two integrals,
leading to the resulting expression for the β-entropy as:

Hβ =
1

1 − β

[
(p1bdq−b)β−nq(b−1)(β−n)+1

b

Γ
(

(β−n)(b−1)+1
b

)
Γ
(

bβd−bnd+β−n−1
b

)
Γ
(

(β−n)(b−1)+1
b + bβd−bnd+β−n−1

b

)

+p2
2n−1

(Γ(α))n

(
α

λ

)1− n
2
(

1
n

)(αn− n
2 +1
)

Γ
(
αn − n

2
+

1
2
)]

(49)

4.16. Mean Time between failures

The Mean Time Between Failures, often abbreviated as MTBF, serves as an indicator of a product’s
or component’s reliability. This metric represents the average interval between successive failures
in a process. Its calculation involves determining:

MTBF =
∫ ∞

0
t f (t)dt (50)

It can be calculated as

MTBF =
∫ ∞

0
t
(

p1bdq−btb−1[1 + ( t
q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

t2α−1 exp
(
−α

λ
t2
))

dt (51)

= p1

∫ ∞

0
tbdq−btb−1[1 + ( t

q
)b]−d−1dx + p2

∫ ∞

0
xr 2

Γ(α)

(
α

λ

)α

t2α−1 exp
(
−α

λ
t2
)

dt (52)

MTSF = p1q
Γ( 1

b + 1)Γ(k − 1
b )

Γ(d)
+ p2

Γ(α + 1
2 )

Γα

(
λ

α

) 1
2

(53)

4.17. Bonferoni and Lorenz curve

The Bonferroni Curve, introduced by Bonferroni [3], serves as a method for analyzing income
inequality. It finds utility across various domains, including the examination of economic factors
like income and poverty, as well as applications in reliability, demographics, insurance, and
medicine.
On the other hand, the Lorenz curve provides a visual representation of the distribution of income
or wealth. Though commonly associated with depicting economic inequality, it holds the ability
to illustrate uneven distributions in diverse systems. The curvature of the Lorenz curve relative
to a baseline, often represented as a straight line, signifies the extent of inequality – the greater
the inequality, the farther the curve deviates from this baseline. The following expression is used
to calculate the Bonferroni curve:

BF[F(x)] =
1

µF(x)

∫ x

0
u f (u)du (54)

where∫ x

0
u f (u)du =

∫ x

0
u
(

p1bdq−bub−1[1 + (u
q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

u2α−1 exp
(
−α

λ
u2
))

du (55)

=
∫ x

0
p1ubdq−bub−1[1 + (u

q
)b]−d−1dx +

∫ x

0
p2u

2
Γ(α)

(
α

λ

)α

u2α−1 exp
(
−α

λ
u2
)

du (56)
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∫ x

0
u f (u)du = p1dq

∞

∑
j=0

(−1)j
(

d + 1
j

)( x
q

) j+1
b +1

j + 1
b + 1

+ p2
1

Γ(α)

√
λ

α

∞

∑
i=0

(−i)
i!

(
α
λ x2)i+α− 1

2

i + α + 1
2

(57)

BF[F(x)] =
p1dq ∑∞

j=0(−1)j(d+1
j )

(
x
q

) j+1
b +1

j+ 1
b +1

+ p2
1

Γ(α)

√
λ
α ∑∞

i=0
(−i)

i!

(
α
λ x2
)i+α− 1

2

i+α+ 1
2(

p1q1 Γ( 1
b +1)Γ(k− 1

b )

Γ(d) + p2
Γ(α+ 1

2 )
Γα

(
λ
α

) 1
2
)(

p1

(
1 −

[
1 +

( x
q
)b]−d

)
+ p2

(
1

Γ(α)Γ
(

α
λ µ2, α

)))
(58)

Now, Lorenz curve is given as

L(z) =

∫ z
0 x f (x)dx

µ
(59)

where∫ z

0
x f (x)du =

∫ z

0
x
[

p1bdq−bxb−1[1 + ( x
q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
)]

dx (60)

The final expression for Lorenz curve is

L(z) =
p1dq ∑∞

j=0(−1)j(d+1
j )

(
z
q

) j+1
b +1

j+ 1
b +1

+ p2
1

Γ(α)

√
λ
α ∑∞

i=0
(−i)

i!

(
α
λ z2
)i+α− 1

2

i+α+ 1
2

p1q1 Γ( 1
b +1)Γ(k− 1

b )

Γ(d) + p2
Γ(α+ 1

2 )
Γα

(
λ
α

) 1
2

(61)

5. Maximum Likelihood Estimation

Suppose x1, x2, ...xn be the random sample derived from the MBND having the probability density
function defined in (9). Therefore, for n observations , the logarithm of the likelihood function is
expressed as below

L(x) =
n

∏
i=1

(
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
))

(62)

The log likelihood function is given as

logL(x) =
n

∑
i=0

log
(

p1bdq−bxb−1[1 + ( x
q
)b]−d−1

+ (1 − p1)
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
))

= nlog(p1) + nlog(b) + nlog(d) +−nblog(q) + (b − 1)log
n

∑
i=1

xi + (−d − 1)log
n

∑
i=1

[
1 +

( xi
q
)b]

+ nlog(1 − p1)

+nlog
(

2
Γ(α)

)
+ αnlog

(
α

λ

)
+ (2α − 1)log

n

∑
i=1

xi + log
n

∑
i=1

(
−α

λ
x2

i

)
(63)

The equation are in implicit form, so it can be solved using numerical iteration method, such as
the Newton–Raphson method via R to obtain the estimates of b, d, q, α, λ and p.
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6. Bayesian estimation for mixing parameter

To estimate the mixing parameter p1 within the context of MBND, we can adopt the Beta
distribution as a suitable prior due to the range constraint p1 ∈ (θ, 1). Let’s assume that the prior
distribution for p1 is represented by β(θ, 1).

π(p) = θpθ−1
1 (64)

The likelihood function is given by

L(x) =
n

∏
i=1

(
p1bdq−bxb−1[1 + ( x

q
)b]−d−1

+ p2
2

Γ(α)

(
α

λ

)α

x2α−1 exp
(
−α

λ
x2
))

(65)

And, the posterior distribution of p1 is obtained by

π(p|x) = L(x)π(p)∫ 1
0 L(x)π(p)dp

(66)

The marginal distribution is given as

m(x) =
∫ 1

0
L(x)π(p)dp (67)

m(x) =
∫ 1

0
pθ−1

1

[
(p1bdq−b)n

n

∑
i=1

xc−1
i

n

∏
i=1

(
1 +

(
xi
b

)c)−k−1

+ (1 − p1)
n
(

2
Γ(α)

)n(
α

λ

)αn n

∑
i=1

x2α−1
i

n

∏
i=1

exp
(
−α

λ
x2

i

))]
dp

m(x) = f n
1 (x; b, d, q)

(
θ

θ + n

)
+ θ f n

2 (x; α, λ)β(θ, n + 1) (68)

Eq.(66) becomes

π(p|x) =
θpθ−1

1
(

pn
1 f n

1 (x; b, d, q) + (1 − p1)
n f n

2 (x; α, λ)
)

f n
1 (x; b, d, q)

(
θ

θ+n

)
+ θ f n

2 (x; α, λ)β(θ, n + 1)
(69)

=
θpn+θ−1

1 f n
1 (x; b, d, q)

f n
1 (x; b, d, q)

(
θ

θ+n

)
+ θ f n

2 (x; α, λ)β(θ, n + 1)
+

(1 − p1)
nθpθ−1

1 f n
2 (x; α, λ)

f n
1 (x; b, d, q)

(
θ

θ+n

)
+ θ f n

2 (x; α, λ)β(θ, n + 1)

The Bayesian estimate of p1 under Squared Error Loss Function (SELF) is the mean of the
posterior distribution denoted as ˆpB1.

7. Simulation Study

In this part, a Monte Carlo simulation is performed using R for estimating the parameters of
mixture of Burr XII and Nakagami distribution (MBND) . The values of n and the parameters are
fixed as n = (20, 40, 70, 100) , (b, d, q, α, λ) = (1.5, 1, 1.5, 1.5, 1) respectively, the mixing parameter
p1 is fixed at 0.8 which is estimated using the classical and bayesian approach. The performance
of the estimates was evaluated using the Mean Squared Error (MSE). The procedure is replicated
1000 times and obtained results are shown in table 1.

MSE =
1
N

n

∑
i=1

(α̂ − α)2
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Table 1: Average values of estimates and their MSE in parentheses

n b̂ d̂ q̂ α̂ λ̂ p̂1 p̂B1

20 1.9703 1.2695 0.8140 2.4148 0.6744 0.3404 0.4231
(0.8963) (0.5409) (0.7580) (0.7568) (0.7631) (0.4065) (0.3932)

40 1.7349 0.8504 0.9948 2.3071 0.7112 0.5763 0.5892
(0.7130) (0.5140) (0.4177) (0.7200) (0.6878) (0.3896) (0.3624)

70 1.6313 0.9631 1.4108 2.1647 0.8132 0.6296 0.6742
(0.5990) (0.3167) (0.3139) (0.4988) (0.6157) (0.2329) (0.2004)

100 1.3119 0.9726 1.4372 1.9322 0.9542 0.7608 0.7814
(0.2175) (0.1400) (0.1880) (0.2604) (0.2332) (0.1498) (0.1413)

From the table 1, it is noted that

• As the sample size increases, the MSE of the estimates comes down.

• With increase of n, the estimates comes closer to their true values, shows the consistency of the
estimates.

• The mixing parameter performs better under the bayesian approach.

8. Real Data Analysis

In this section, we will use two real-world datasets to demonstrate the significance and versatility
of the Mixture of Burr XII and Nakagami Distribution (MBND). We will compare the suitability
of our proposed model (MBND) with other competing models, namely the Burr XII Lomax
Distribution (BLD), Burr II Distribution (BD), and the Length Based Nakagami Distribution
(LBND).
To conduct this comparison, we will employ various goodness-of-fit metrics, including the −2l̂
statistic, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion
(AICc), and the Bayesian Information Criterion (BIC). These criteria aid in selecting the most
suitable distribution by identifying the one with the lowest values of AIC, AICc, and BIC.
Additionally, we will calculate the Kolmogorov-Smirnov (KS) distance and its associated p-value,
providing a further assessment of the goodness of fit.

AIC = 2k − 2l̂ (70)

BIC = kln(n)− 2l̂ (71)

and

AICc = AIC +
2k(k + 1)
n − k − 1

(72)

where l̂ is the maximized log-likelihood, k is the number of parameters, and n is the sample size.
Through this comprehensive analysis, we aim to establish the effectiveness of the MBND model
in capturing the characteristics of the given datasets and to ascertain its superiority over the
alternative distribution models.

Data Set I: The dataset pertains to the COVID-19 vaccination rate across 46 distinct countries
situated in southern Africa. This dataset has been previously subjected to analysis by [2]. The
data is as follows: 0.042, 0.205, 0.285, 0.319, 0.464, 0.550, 0.889, 0.895, 0.939, 0.986, 1.000, 1.088,
1.212, 1.244, 1.450, 1.593, 1.844, 2.039, 2.157, 2.167, 2.334, 2.440, 2.657, 3.685, 3.879, 4.493, 4.800,
4.944, 5.155, 5.674, 7.602, 10.004, 12.238, 12.520, 12.553, 13.063, 15.105, 15.229, 15.629, 15.848, 18.641,
18.940, 29.885, 58.162, 61.838, 72.286
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Figure 8: (a) Ecdf plot for the dataset I (b) q-q plot for the dataset I
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Figure 9: Plot of the fitted densities for dataset I

Table 2: Maximum Likelihood Estimates of the parameters of the different models.

Model b̂ q̂ d̂ α̂ λ̂

MBND 1.7543 0.8746 3.4638 1.0266 6.3816

BLD 1.8732 4.1136 19.3219 0.03191 13.995

BD 1.0461 32.1767 28.9722 - -

LBND - - - 0.4712 1.6594
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Table 3: Goodness of fit measures for the different models.

Model −2l̂ AIC AICC BIC K-S p-value

MBND 110.3650 120.3650 121.9034 129.3983 0.0773 0.9313

MBLD 114.4867 124.4867 126.0251 133.5200 0.0835 0.8864

BD 178.6642 184.6642 185.2496 190.0842 0.5233 5.279e−12

LBND 155.8333 159.8333 160.1190 163.4466 0.1757 0.1096

Data Set II: Almongy et al. [1] analyzed this dataset to showcase the utility of an innovative
extended Rayleigh distribution. This distribution was employed to model COVID-19 mortality
rate data from Mexico spanning a period of 108 days, starting from March 4th and concluding on
July 20th, 2020. The dataset pertains to a raw mortality rate and is characterized by its relatively
unrefined nature. The data are as follows: 8.826, 6.105, 10.383, 7.267, 13.220, 6.015, 10.855, 6.122,
10.685, 10.035, 5.242, 7.630, 14.604, 7.903, 6.327, 9.391, 14.962, 4.730, 3.215, 16.498, 11.665, 9.284,
12.878, 6.656, 3.440, 5.854, 8.813, 10.043, 7.260, 5.985, 4.424, 4.344, 5.143, 9.935, 7.840, 9.550, 6.968,
6.370, 3.537, 3.286, 10.158, 8.108, 6.697, 7.151, 6.560, 2.988, 3.336, 6.814, 8.325, 7.854, 8.551, 3.228,
3.499, 3.751, 7.486, 6.625, 6.140, 4.909, 4.661, 1.867, 2.838, 5.392, 12.042, 8.696, 6.412, 3.395, 1.815,
3.327, 5.406, 6.182, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442, 4.557, 4.292, 2.500, 6.535, 4.648,
4.697, 5.459, 4.120, 3.922, 3.219, 1.402, 2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 2.077, 3.778,
3.218, 2.926, 2.601, 2.065, 1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923.
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Figure 10: (a) Ecdf plot for the dataset II (b) q-q plot for the dataset II
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Figure 11: Plot of the fitted densities for dataset II

Table 4: Maximum Likelihood Estimates of the parameters of the different models.

Model b̂ q̂ d̂ α̂ λ̂

MBND 5.2318 7.4680 0.9442 2.0159 12.4548

MBLD 3.7382 4.8573 0.9421 0.0090 18.9176

BD 2.3266 8.7808 2.6983 - -

LBND - - - 0.4719 21.1924

Table 5: Goodness of fit measures for the different models.

Model −2l̂ AIC AICC BIC K-S p-value

MBND 530.8075 540.8075 541.3957 554.2181 0.0486 0.9602

MBLD 558.2015 568.2015 568.7097 581.6121 0.1151 0.1144

BD 685.1428 691.1428 691.3735 699.1892 0.5054 2.20e−16

LBND 538.4605 542.4605 542.5748 547.8247 0.3049 3.676e−09

Table 2 and Table 3 provide the Maximum Likelihood Estimates (MLEs) and offer a comparison
of the performance between the Mixture of Burr XII and Nakagami Distribution (MBND) and the
alternative distributions for the first dataset. Similarly, Table 4 and Table 5 present the MLEs and
compare the performance of MBND with other distributions for the second dataset. The findings
displayed in Table 3 and 5 demonstrate that MBND achieves the lowest values for AIC, AICc,
and BIC, indicating its superiority over several well-established competing models. The claim is
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further supported by Figures 8 and 10. Additionally, the results presented in Table 3 and 5 are
corroborated by examining the Empirical Cumulative Distribution Function (ECDF) plots and
Quantile-Quantile (Q-Q) plots for the MBND model in the context of both datasets, showcased in
Figure 7 and 9. These visual representations lend support to the outcomes highlighted in Table 3
and 5.

9. Conclusion

In this paper, we presented a mixture of the Burr XII and Nakagami distribution (MBND).
We investigate its statistical properties and demonstrate that this new mixture distribution can
serve as an alternative model to some existing distributions. For MLEs, simulation schemes are
developed that yield less Mean Squared Error (MSE) as sample size increases. Additionally,
Bayesian estimates of the mixing parameter are computed, demonstrating their superiority over
classical estimates. We utilize real-world datasets to illustrate the efficacy of the MBND model
and compare it with other competing distributions. The results of this comparison reveal that the
MBND model offers a better fit than the considered distributions. Through this comprehensive
analysis, we establish the viability of MBND as a valuable tool for modeling and analyzing
various data scenarios.
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Abstract 

It is known that in synchronous machines with massive rotors, it is required to take into account the 

change in the equivalent rotor of active resistance depending on the frequency of the current in the 

rotor at starting of these machines. A three-phase mathematical model of these machines has been 

compiled, the equations of which are written in axes rotating at the speed of the machine rotor. Study 

of the start-up modes of these machines and operation in synchronous mode with a load surge 

(dynamic mode) has been carried out on this model. The studies have allowed for making the following 

conclusions. When starting synchronous machines with massive rotors, it is most preferable to take 

into account the change in the equivalent resistance in the form of a linear sliding function. It was 

found out that in the synchronous mode of operation of these machines, including in stable dynamic 

modes, there is no need to take into account changes in the rotor resistance-sliding, since the sliding 

in these modes oscillatory damps around zero, thereby not affecting changes in the value of the 

equivalent resistance. Therefore, in these modes it is recommended to consider the value of this 

resistance constant and definite at slip equal to zero. 

Keywords: synchronous machines with massive rotor, start mode, dynamic mode, 

three-coordinate system 

I. Introduction

Synchronous machines with massive rotors are widely used both as generators (turbo 

generators) and as motors [1,2,3]. For the studying of static and, especially, dynamic modes of their 

operation, the well-known Park equations are widely used [4,5]. 

However, the presence of a massive rotor in them requires to take into account the change in 

the active resistance of the rotor depending on the frequency of the current in the rotor. This question 

was most completely solved analytically in [6]. Although there we are talking about synchronous 

motors with massive rotor, but this can, of course, be extended to low-power synchronous 

generators, since their asynchronous start is identical. 

II. Methods

In [6], it is proposed to change the active resistance of a massive rotor according to the following 

expression: 

srrrr
sss rrrr )(

010 
 (1) 
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where rrs=0 – active resistance of the rotor at sliding s=0 and short-circuited excitation winding; rrs=1 – 

active resistance of the rotor at s=1, also at short-circuited excitation winding. Further, in [6], as in 

other works [7], the static characteristic of the asynchronous moment is determined, i.e. on the basis 

of this characteristic, the start of the electric machine is defined. 

For a more accurate idea of the starting modes of synchronous machines with massive rotor, it 

is necessary to take into account the effect of transient processes during start-up. 

On this basis, the purpose of this paper is the issue of mathematical modeling of synchronous 

machines with massive rotor and the study of the dynamic modes of their operation during direct 

asynchronous start. 

As the basis of the mathematical model, it is proposed to take the equations of synchronous 

machines written in a three-phase coordinate system, in the axes αr, βr, γr, rotating with the speed of 

the rotor ωr of the synchronous machine. It should be noted that it is relatively easy to obtain these 

equations from the equation of a three-phase model of a double-fed machine, also written in the axes 

αr, βr, γr, rotating at the speed of the machine rotor [8,9] and this can be done since a synchronous 

machine with a massive rotor is magnetically symmetrical electric machine, the rotor of which is 

non-salient pole, i.e. the air gap remains practically unchanged along the entire perimeter of the 

machine rotor. 

On this basis, equations of synchronous machines with massive rotor in a three-coordinate 

(three-phase) system in extensive form will appear as follows: 
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The system of equations (2) describes the balance of voltages in the stator and rotor circuits of 

the machine. At that, it is meant that the stator has three symmetrical windings shifted in space by 

120 electric degrees, and four windings are placed on the rotor – one excitation winding and three 

damper (starting) windings equivalent to the massive rotor of the machine, moreover, we agree to 

assume that the axis of excitation winding coincides with the axis of the damper winding located 

along the α axis. 

Then the equations of connection between flux linkages and currents will appear in the form: 
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(3) 

In equations (2), (3): Ψsα, Ψsβ, Ψsγ, isα, isβ, isγ are flux linkages and currents of stator windings, Ψf, 

Ψrα, Ψrβ, Ψrγ, if, irα, irβ, irγ  are flux linkages and currents of rotor circuits, and Ψf and Ψrα are located 

along the rotor axis αr; rr is active resistance equivalent to the rotor circuits; хs, хr, хf  are inductive 

resistances (in relative units they are equal to inductances) of the stator windings, damper and rotor 
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excitation windings, хm is mutual induction resistance between the stator and rotor circuits (i.e. in 

relative units mutual inductance). 

The relationship between currents and flux linkages is determined using the inverse matrix 

according to the relations:  
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 (4) 

Equations (2), (3) and (4) are supplemented with the equations of electromagnetic torque [10], 

motion and sliding: 
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here – рm – number of pole pairs; s=рθ – sliding; J – moment of inertia of moving parts. 

Equations (4) in extensive form will appear in the form: 
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The coefficient ksα1 ÷ k rγ2 is determined from the inverse matrix of machine parameters (4). 

Thus, comparing these equations with the equations of double-fed machine given in [8,9,10], it 

can be noted that their structure remains practically unchanged, but the action of the excitation 

winding, which is proposed to be placed on the same axis as the damper (starting) winding located 

on the axis, is additionally taken into account. Naturally, it is also taken into account in the equations 

of flux linkages of rotor and electromagnetic torque. 

Once again it is necessary to emphasize, as it was noted in [6], it is necessary to use the three-

phase model only in extreme cases, when it is necessary to bring additional clarity to issues that are 

impossible (or difficult to implement) to study in two-coordinate models. For example, such as the 

study of asymmetric modes in rotary circuits, etc. 

III. Results
In this case, the proposed model is used for studying the starting modes and modes of 

involvement into synchronism of synchronous machines with massive rotor – this is the formation 

of asynchronous starting torques with the equivalent massive rotors of these machines, as well as 

load surge in synchronous mode. 

On Fig. 1 (a, b, c) are shown, respectively, the fluctograms of the change in the rotational speed 

ωr of the rotor, the electromagnetic torque mem and the excitation current if of the model synchronous 
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generator, the parameters of which are given in Appendix 1. In Fig. 1 (d) the extensive fluctogram of 

the starting torque mem is shown. These fluctograms were obtained at rotor resistance equivalent to 

massive rotor according to the expression [6]: 

s)r(rrr
sss rrrr 
 010

(7) 

For the generator under study rrs=0=0.01 – the active resistance of the rotor at s=0; rrs=1=0.05 – 

active resistance of the rotor at s=1; s=(1‒ωr) – sliding, i.e.  

rr ω..r  1040010 . 

On fluctograms after asynchronous start at 2·103 rad. the voltage is applied to the excitation 

winding, the machine is involved into synchronism, and at 3000 rad. the moment of resistance equal 

to the rated moment of the machine is applied abruptly (mn=1.596). 
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Figure 1: Fluctograms of change in the mode parameters of the equivalent massive rotor by the expression 

rr ω..r  1040010

On Fig. 2 (a, b, c, d) the fluctograms of these mode parameters are presented in the same 

sequence when the massive rotor is equivalent to active resistance, which varies depending on the 

sliding according to the linear law: 

 rr ..r  1040010 (8) 
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Figure 2: Fluctograms of change in mode parameters when massive rotor is equivalent to active resistance, which varies

depending on sliding according to linear law 

And finally, in Fig. 3 (a, b, c, d) and Fig. 4 (a, b, c, d) the fluctograms are shown at constant values 

of rr, equal to rrs=1=0.05  and rrs=0=0.01 respectively. 
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Figure 3: Fluctograms of change in mode parameters, when the massive rotor is equivalent to active resistance equal to 

rrs=1=0.05 
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Figure 4:  Fluctograms of change in mode parameters, when the massive rotor is equivalent to active resistance equal to 

rrs=0=0.01 

Before proceeding to the analysis of fluctograms, it is necessary to note the following. The 

implementation of expression (7) on the computer will introduce a significant error, since due to the 

presence of even a small sliding after the completion of the asynchronous start (in the example given, 

sst-st=0.005, the radicand from it will be equal to 0710.s  , i.e. expression (7) after the start will be 

equal not to rrs=0=0.01, but to rrs=0=0.0128 (i.e. the error will be 28%). When using expression (8), there 

will also be an error, but it will not exceed 2%, which is quite acceptable. On this basis, it is proposed 

to simulate expression (7) by a piecewise linear approximation, i.e. in the range of change of ωr from 

0 to 0.8 – to represent rr with linear dependence of the form rr1=0.05 – 0.0275·ωr, and in the range of 

change of ωr from 0.8 to 1 – rr1 = 0.1 – 0.09·ωr. At that, the maximum error will not exceed 12%. Thus, 

the fluctograms in Fig. 1 (a, b, c, d) are obtained just on the basis of the piecewise linear approximation 

of expression (7). 

Comparative analysis of fluctograms shows the following. The start-up process is a dynamic 

process, i.e. the acceleration time cannot be determined only by the static characteristic of the 

asynchronous moment of the synchronous machine, since during the start-up the kinetic energy of 

the rotating masses of the unit together with the rotor of the synchronous machine takes an active 

part. However, this characteristic is necessary, since with its help two important parameters of the 

starting characteristic are specified – the equivalent active resistances of the rotor during s=0 and s=1 

slidings. 

The extensive fluctograms of the electromagnetic moment mem, presented in Fig. 1 and Fig. 2, 

according to the average values of starting moment ms1 and maximum moment mmax practically 

coincide ms1=ms2≈1.1 (~0.7·mn)·mmax1=mmax2=2.7(~1.7·mn), the start time at change of rr according to 

expressions (7) and (8) is also the same and equal to τp~600 rad. On the fluctograms in Fig. 3 and 4 

at constant values rr=rrs=1=0.05 and rr=rrs=0=0.01, the average values of the starting torque are 

respectively equal to ms3≈1.25 and ms4≈0.4, and the maximum moments mmax3=3 and mmax4=2.3, the 

start time, respectively, is equal to τs3=400 rad. and τs4=1250 rad. That is, the options of Fig. 3 and 4 

cannot reflect the real dynamics of the starting mode of a synchronous machine. 

Thus, a comparative analysis of the fluctograms shows that since the options in Fig. 1 and 2 in 

terms of the dynamic starting torque practically coincide with each other, then, based on the 

simplicity of implementation, it is necessary to stop at the 2nd option, when the resistance rr changes 

linearly as a function of sliding (8). 

Analysis of the synchronous mode of fluctograms (we remind that at the 2000th rad. the 

excitation winding opens and connects to the power source – the machine enters synchronism ωr=1, 

and at the 3000th rad. the moment of resistance equal to the rated moment of the machine mr=1.596 

is supplied abruptly) shows, that during the rated load surge on the synchronous motor in Fig. 1, 2, 

and 4, the process of steadiness of the moment after the transient mode is almost the same on all the 

above fluctograms (i.e. the maximum radius and the number of oscillations are the same). This, of 

course, also confirms the adequacy of the model, since in this mode the synchronous machine 

“operates” with a steady value of the equivalent rotor active resistance equal to rr=rrs=0 (for the 

simulative motor under study rrs=0=0.01). 

In Fig. 3, the load surge process is almost aperiodic. This mode does not exist in reality, since the 

equivalent rotor resistance rr is assumed to be equal to rr=rrs=1 (which leads to incorrect results in the 

calculations both in the asynchronous mode and in the synchronous mode of operation of the 

synchronous machine). 

IV. Discussion

I. Subsection One

A three-coordinate (three-phase) digital model of synchronous machines with massive rotors is 
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proposed, which makes it possible to study in one structure asynchronous and synchronous modes 

of operation of these machines. 

II. Subsection Two

In the starting mode and synchronous mode of operation, it is possible to represent practically 

without error the formula for the equivalent active resistance of the rotor, which varies as a function 

of sliding by a linear expression (8). 

III. Subsection Three

When studying only synchronous modes of operation of these machines, it is sufficient to equivalent 

the active resistance of the massive rotor with a constant value equal to rr=rrs=0, i.e. oscillations in 

sliding in this mode does not affect the average value of this resistance 
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Appendices 

Appendix 1. Model generator parameters 
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Appendix 2. Equations of three-phase model of simulative synchronous generator 
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where rrn – equivalent resistance of rotor circuits taking the value rr1, (Figure 1), rr2 (Figure 2), rr3 

(Figure 3) и rr4 (Figure 4). 
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Abstract 

In this paper, we consider a two-sided Phase II S2-chart with probability limits because the 

surveillance of both an increase and decrease in the process variance plays a decisive role in a 

continuous quality improvement program. We propose a two-sided average run length unbiased S2-

chart under the repetitive sampling with probability limits for a fixed in-control average run length 

and average sample size to eliminate the average run length biasedness. It is well established that the 

Shewhart-type charts are less sensitive to detect small to moderate changes in the process parameters. 

Therefore, a repetitive sampling scheme is taken into consideration to improve the S2-chart’s ability 

to detect changes in the process variance. Under the repetitive sampling methodology, the detection 

ability of the chart is improved by using more than one samples if the first sample does not provide 

sufficient evidence to decide whether the process is in-control or out-of-control. The proposed chart is 

compared with the existing charts, such as the equal tailed standard Shewhart S2-chart and unequal 

tailed S2-chart under repetitive sampling. Results show that the proposed chart is more efficient than 

the existing chart. Finally, an illustration has been provided in the favor of the proposed chart with 

the help of a published dataset. 

Keywords: Average run length, average sample number, average run length-

unbiased, Control chart, in-control and out-of-control performances, Process 

variability. 

1. Introduction

Recently, the 𝑆2-chart has gained popularity to monitor a decrease and increase in the process 

variability when the quality characteristic is normally distributed. On the other hand, the traditional 

control charts, such as 𝑅- and 𝑆-charts with symmetric control limits, have some shortcomings. For 

example, the negative lower control limits are found for small sample sizes 𝑛 (𝑛 ≤ 5 for the 𝑅-chart 

and 𝑛 ≤ 6 for the 𝑆-chart), and their in-control (IC) performance significantly differs from the IC 

* Corresponding author. Nirpeksh Kumar. Email: nirpeksh@gmail.com
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performance expected one. See Knoth and Morais [13] and references therein for a detailed 

discussion on the limitations of the 𝑅- and 𝑆-charts with symmetric limits. In fact, the 𝑅 and 𝑆-charts 

with symmetric control limits are less sensitive to detect a decrease in the process variance which 

refers to an improvement case whereas perform satisfactorily to detect an increase in the process 

variance. Nevertheless, in many situations, it is of interest to know the factors which are responsible 

for a low process variability so that a new standard can be set for the forthcoming production. 

Sarmiento, Chakraborti and Epprecht [17] have discussed, however, in the context of statistical 

tolerance limits to assess the product quality, that lowering the process variability is one of the most 

important objectives in the quality control studies.  

For the 𝑆2-chart, several efforts have been made to increase the efficacy of detecting the upward 

and downward changes in the process variance. For example, using memory-type charts such as 

exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) charts (see Chang 

and Gan [8, 9], Castagliola, Celano and Fichera [7], Lawson [14], and references therein). Besides 

these, the ability of the charts to detect changes can also be improved by using more than one sample 

if the first sample does not provide sufficient evidence to decide whether the process is IC or out-of-

control (OOC). The idea is derived from the acceptance sampling plan, where the following sample 

is considered when the decision of rejecting or accepting a lot cannot be made based on the first 

sample. The different strategies are considered to use the information from the next sample. For 

example, in a double sampling plan, a second sample is used if the decision is not made on the first 

sample, and combined information of both samples is used to take a decision (see  

Montgomery [15]). Various attempts to design the charts based on double sampling are made to 

improve the chart’s ability to detect OOC signals. See, for example, S-chart for agile manufacturing 

(He and Grigoryan [11]), 𝑆2-chart (Khoo [12]). 

In recent years, the repetitive sampling (RS) has been used to design charts by several authors, 

to name a few; see Ahmad, Aslam and Jun [1], Aslam, Azam, and Jun [4], Aslam, Khan, Azam et al. 

[6]. The idea of the RS was firstly used by Sherman [18] to develop an attribute acceptance sampling 

plan. In order to implement the RS to the control chart, the region of the control chart is divided into 

three sub-regions: the acceptance region (IC region), the indecision region (repetitive region), and 

the rejection region (OOC region). The quality control personnel use the next sample when the first 

plotted sample falls in the indecision region and repeats the process until the sample lies either in 

the acceptance or rejection region. Please note here that in the RS scheme, we do not keep track of 

how many times we have repeated our sample. Thus, under the RS scheme, on average, more than 

one charting point is required to make a final decision on IC or OOC status of the process. This is 

usually measured by the average sample size (ASS) (the expected number of sample size needed 

until the final decision is made) that can be fixed in advance. In addition, this scheme uses fewer 

number of parameters to design a control chart based on double sampling (Aslam, Azam and Jun 

[4], Aslam, Khan, Azam et al. [6]). Moreover, in comparison to other sampling schemes, the RS 

scheme throws information away by discarding the samples lying in the indecision region. Still, on 

the other hand, we gain in the simplicity of design and execution. Ahamd, Aslam, and Jun [1] 

implemented the RS in constructing the �̅� control limits based on the capability index. Aslam, Azam 

and Jun [4] developed the attribute chart and 𝑛𝑝 chart under the RS. Aslam, Khan, Azam et al. [6] 

used RS to design the 𝑇-chart based on the transformed exponential variables. Aslam [3] used the 

RS to design the 𝑆2-chart for the neutrosophic statistic. Recently, Alevizakos, Chatterjee, 

Koukouvinos et al. [2] examined the effect of parameter estimation on the performance of the 

variable control charts under the RS and Singh and Kumar [19] designed the average run length 

(ARL)-unbiased exponential chart under the RS to monitor the inter-arrival times in high-yield 

processes. Performance of different chart under RS shows better detection ability in the OOC case 

than the standard one’s. 

Note that Aslam, Khan and Jun [5] considered the RS to propose a new 𝑆2-chart with equal 
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distance (3-sigma) limits (thereafter AKJ chart) and showed superior to the existing standard 𝑆2-

chart. Note that they constructed the two-sided chart, but discussed only the case of process 

deterioration (increased variance). But to have an idea about their chart’s performance in the 

improvement case, we calculated the ARL values using their control limits for shifts representing 

the improvement case (decreased variance). It is worth to mention here that the chart with equal-

tailed limits and using a skewed charting statistic possesses an undesirable property which is known 

as ARL-biased in the SPC literature. For such (ARL-biased) charts, the ARL function does not achieve 

its maximum at the IC state. As a result, the chart gives a delayed OOC signal than the false alarm. 

For more details, please refer to Knoth and Morais [13], Zhang, Bebbington, Lai et al. [20]. To 

overcome this property, the ARL-unbiased charts are proposed to ensure the detection of shifts in 

the process parameter more quickly than a false alarm. Note that Aslam, Khan and Jun [5] designed 

chart is ARL-biased and triggers an OOC signal lately for a decrease in the process variance than it 

raises a false alarm. However, Knoth and Morais [13] point out that a decrease in the process variance 

should be followed seriously as it is a synonym for a quality improvement. Thus, the adoption of 

ARL-unbiased charts can play an absolutely deciding role in achieving the final goal of producing 

better-quality items (Pignatiello et al. [16]), while using charts to signal to both decreases and 

increases in a parameter. 

The objective of this study is to improve the ability of the Phase II two-sided ARL-biased and 

ARL-unbiased 𝑆2-chart to detect an increase and decrease in the process variance by implementing 

the RS scheme and to compare their performances with the existing the AKJ chart and the standard 

ARL-biased and -unbiased 𝑆2- charts. 

The rest of the article is organized as follows. Section 2 discusses a general charting procedure 

to construct the equal-tailed 𝑆2-chart under the RS. In section 3, the performances of the proposed 

𝑆2-chart under the RS are examined and compared with the AKJ and standard 𝑆2-charts. In section 

4, we design the ARL-unbiased 𝑆2-chart under the RS and its performance is evaluated in Section 5. 

An example is provided in Section 6. Finally, the concluding remarks are offered in Section 7. 

2. Phase II 𝑆2-chart with equal-tailed probability limits under repetitive sampling

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independently and identically distributed 𝑁(𝜇, 𝜎0
2) random variables where 𝜇

and 𝜎0
2 are the IC process mean and variance, respectively. The charting statistic for the 𝑆2-chart is

the sample variance given by 𝑆2 =
1

𝑛−1
∑ (𝑋𝑗 − �̅�)

2𝑛
𝑗=1 , �̅� =

1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1 . Let LCL and UCL be the lower 

and upper control limits, respectively, of the standard 𝑆2-chart (with the single sampling (SS) 

scheme). Thus, the equal-tailed limits can be obtained from 𝑃[𝑆2 < LCL|𝜎0
2] = 𝑃[𝑆2 > UCL|𝜎0

2] =
𝛼

2
,

where 𝛼 is the nominal false alarm rate (FAR). It is known that (𝑛 − 1)𝑆2/𝜎0
2 follows a 𝜒2-distribution

with (𝑛 − 1) degrees of freedom (df). Thus, the control limits LCL and UCL can be expressed as 

follows. 
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2
,𝑛−1

2 =
𝜎0

2

𝑛−1
𝐴1      and     UCL =

𝜎0
2

𝑛−1
𝜒

1−
𝛼

2
,𝑛−1

2 =
𝜎0

2

𝑛−1
𝐴2    (1) 

where 𝐴1 = 𝜒𝛼

2
,𝑛−1

2 , 𝐴2 = 𝜒
1−

𝛼

2
,𝑛−1

2 . The  𝜒𝜁,𝑛−1
2  denotes the 100𝜁-percentile of the 𝜒2-distribution with 

(𝑛 − 1) df. The center line (CL) of the 𝑆2-chart is given by 

CL =
𝜎0

2

𝑛−1
𝜒0.5,𝑛−1

2 =
𝜎0

2

𝑛−1
𝐴3       (2) 

where A3 = 𝜒0.5,𝑛−1
2 . Define 𝛿 =

𝜎1
2

𝜎0
2 > 0, which quantifies the magnitude of the process variance shift

from IC variance 𝜎0
2 to the shifted variance 𝜎1

2 = 𝛿𝜎0
2. Clearly, for 𝛿 = 1, the process is IC, otherwise

it is OOC. Further note that 𝛿 > 1 (𝛿 < 1) represents the upward (downward) shift in the process 

variance reflecting the increased (decreased) process variability which refers to the deterioration 

(improvement) case.  Let us define a signalling event 𝐸 that the charting statistic lies outside the 

control limits. Thus, the probability of signal (PS), when the process variance is 𝜎1
2, is given by
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𝛽(δ) = P(𝐸|σ1
2) = 𝑃[𝑆2 < LCL or 𝑆2 > UCL|𝜎1

2 = 𝛿𝜎0
2]

= 1 + 𝐹𝜒𝑛−1
2 (

𝐴1

𝛿
) − 𝐹𝜒𝑛−1

2 (
𝐴2

𝛿
) 

where 𝐹𝜒𝑛−1
2 (∙) denotes the cumulative distribution function (CDF) of the 𝜒2-distribution with (𝑛 −

1) df. Thus, the ARL, the reciprocal of the PS, for a Shewhart chart, is given by

ARL(δ) =
1

𝛽((δ)
 (3) 

To implement the RS, in addition to the outer control limits, say, UCLRS, LCLRS, two additional 

inner (repetitive) control limits URLRS and LRLRS are introduced. Consequently, the whole area of 

the control chart is divided into six regions which are as follows- (i) one extending above the UCLRS 

(region 𝑎), (ii) one extending between UCLRS and URLRS (region 𝑏), (iii) one extending between URLRS 

and CL (region 𝑐), (iv) one extending between the CL and LRLRS (region 𝑑), (v) one extending between 

LRLRS and LCLRS (region 𝑒), (vi) one extending below LCLRS (region 𝑓). These six regions can further 

be broadly classified as OOC region (regions (𝑎) and (𝑓)), indecision region (regions (𝑏) and (𝑒)) 

and the IC region (regions (𝑐) and (𝑑)), respectively. The control limits are such that UCLRS ≥

 URL RS >  CL >  LRLRS ≥  LCLRS.  Under the RS, the process is declared to be OOC (IC), when the 

charting point lies in the OOC region (IC region). Otherwise, the process is repeated for the 

resampling when the charting point lies in the indecision region. Let 𝛼1 and 𝛼2 be the probabilities 

of a charting point lying beyond the UCLRS and LCLRS, and URLRS and LRLRS, respectively. Thus, the 

equal-tailed outer and inner control limits can be obtained from 𝑃[𝑆2 < LCLRS|𝜎0
2] = 𝑃[𝑆2 >

UCLRS|𝜎0
2] = 𝛼1/2 and 𝑃[𝑆2 < LRLRS|𝜎0

2] = 𝑃[𝑆2 > URLRS|𝜎0
2] = 𝛼2/2, which can be obtained as

follows. 

LCLRS =
𝜎0

2

𝑛−1
𝜒𝛼1/2,𝑛−1

2 =
𝜎0

2

𝑛−1
𝐵1       and     UCLRS =

𝜎0
2

𝑛−1
𝜒1−𝛼1/2,𝑛−1

2 =
𝜎0

2

𝑛−1
𝐵2     (4a) 

LRLRS =
𝜎0

2

𝑛−1
𝜒𝛼2/2,𝑛−1

2 =
𝜎0

2

𝑛−1
𝑅1        and     URLRS =

𝜎0
2

𝑛−1
𝜒1−𝛼2/2,𝑛−1

2 =
𝜎0

2

𝑛−1
𝑅2        (4b) 

The constants 𝛼1 and 𝛼2  (0 < α1 ≤ α2 < 1) are known as design constants for the 𝑆2-chart

under the RS. Note that for the RS scheme, we must have α1 < α2, otherwise, the α1 = α2 will result 

in UCLRS = URLRS and LCLRS = LRLRS. As a result, the control chart under the RS reduces to the 

standard 𝑆2-chart in Equation (1). Let 𝑝𝑎 , 𝑝𝑏 , 𝑝𝑐 , 𝑝𝑑 , 𝑝𝑒 and 𝑝𝑓 denote the probabilities of a charting

point lying in regions 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓, respectively. Then, for a shift 𝛿 > 0, and using Equations (2) 

and (4), these probabilities can be calculated as follows. 

𝑝𝑎(𝛿) = 𝑃[𝑆2 ∈ 𝑎|𝜎1
2] = 𝑃[𝑆2 > UCLRS|𝜎1

2] = 1 − 𝐹𝜒𝑛−1
2 (

𝐵1

𝛿
),  (5a) 

𝑝𝑏(𝛿) = 𝑃[𝑆2 ∈ 𝑏|𝜎1
2] = 𝑃[URLRS < 𝑆2 ≤ UCLRS|𝜎1

2] = 𝐹𝜒𝑛−1
2 (

𝐵1

𝛿
) − 𝐹𝜒𝑛−1

2 (
𝑅1

𝛿
),             (5b) 

𝑝𝑐(𝛿) = 𝑃[𝑆2 ∈ 𝑐|𝜎1
2] = 𝑃[CL < 𝑆2 ≤ URLRS|𝜎1

2] = 𝐹𝜒𝑛−1
2 (

𝑅1

𝛿
) − 𝐹𝜒𝑛−1

2 (
𝐴3

𝛿
),             (5c) 

𝑝𝑑(𝛿) = 𝑃[𝑆2 ∈ 𝑑|𝜎1
2] = 𝑃[LRLRS < 𝑆2 ≤ CL|𝜎1

2] = 𝐹𝜒𝑛−1
2 (

𝐴3

𝛿
) − 𝐹𝜒𝑛−1

2 (
𝑅2

𝛿
),            (5d) 

𝑝𝑒(𝛿) = 𝑃[𝑆2 ∈ 𝑒|𝜎1
2] = 𝑃[LCLRS < 𝑆2 ≤ LRLRS|𝜎1

2] = 𝐹𝜒𝑛−1
2 (

𝑅2

𝛿
) − 𝐹𝜒𝑛−1

2 (
𝐵2

𝛿
),       (5e) 

𝑝𝑓(𝛿) = 𝑃[𝑆2 ∈ 𝑓|𝜎1
2] = 𝑃[𝑆2 < LCLRS|𝜎1

2] = 𝐹𝜒𝑛−1
2 (

𝐵2

𝛿
).  (5f) 

The probability of declaring the process OOC on a single sample is given by 

βout(δ) = 𝑝𝑎(𝛿) + 𝑝𝑓(𝛿), 

and the probability of repetition (resampling) until the decision made is 

𝛽𝑟𝑒𝑝(𝛿) = 𝑝𝑏(𝛿) + 𝑝𝑒(𝛿) 

Thus, under the RS, the PS is given by (Aslam et al. (2015)) 

βRS(δ) =
βout(δ)

1−βrep(δ)
=

𝑝𝑎(𝛿)+𝑝𝑓(𝛿)

1−𝑝𝑏(𝛿)−𝑝𝑒(𝛿)
 (6) 

Clearly, under the RS, the RL will also follow a geometric distribution with parameter, βRS(δ). Thus, 

the ARL function of the 𝑆2-chart under the RS is given by 

ARLRS(δ) =
1

βRS(δ)
=

1−𝑝𝑏(𝛿)−𝑝𝑒(𝛿)

𝑝𝑎(𝛿)+𝑝𝑓(𝛿)
    (7) 

and the ASS for a given shift (δ) is given by (Aslam, Khan and Jun [5]) 
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ASSRS(δ) =
𝑛

1−βrep(δ)
=

𝑛

1−𝑝𝑏(𝛿)−𝑝𝑒(𝛿)
 (8) 

It follows from Equation (8) that the ASS = 𝑛 for the chart using the SS whereas ASSRS(1) > 𝑛, 

for the chart using the RS. Most of the existing works design the control charts under the RS for a 

fixed nominal IC ARL value, but a possible minimum value of the ASSRS(1) under some variations. 

This provides a subjective selection of the control limits, and each practitioner will have his own 

control limits. To avoid ambiguity, we fix IC ASS i.e., ASSRS(1) in advance and then construct the 

control limits. The choice of the  ASSRS(1) depends on the user’s own choice that how much he is 

willing to wait for a decision (large ASSRS(1)) for a better OOC performance.  See Singh and Kumar 

[35]. Thus, to obtain the design constants  α1 and α2 for a fixed IC ARL i.e.,  ARLRS(1) value, say, 

ARL0 and IC ASS value, ASSRS(1) value, say, ASS0, we need to solve the following pair of Equations 

ARLRS(1) =
1

βRS(1)
= ARL0          (9a) 

ASSRS(1)  =
𝑛

1−βrep(1)
= ASS0               (9b) 

Using the design constants (𝛼1, 𝛼2), we can obtain the control limits for the 𝑆2-chart under the

RS. Once we obtain the design constants, we can calculate the control limits of the proposed 𝑆2-chart 

using Equation (4). 

3. Comparative Study
In this section, we compare the performance of the proposed control chart with the existing standard 

𝑆2 and the AKJ chart. The performance of the charts are evaluated in terms of the ARL, and lower 

OOC ARL values are desirable for an efficient chart. 

3.1 Proposed equal-tailed 𝑆2-chart versus Aslam et al. (2015) chart 

In order to compare the performances, the ARL values of the AKJ chart (Aslam et al. [5] chart) for 

𝑛 =  4, ARL0 = 370, 𝐴𝑆𝑆0 = 4.11 and 𝑛 =  7, ARL0 = 370, 𝐴𝑆𝑆0 = 7.36 are used. Further, we obtained 

the ARL values for the proposed chart with keeping similar IC metrics for 𝑛 =  4, 7 i.e., ARL0  =  370 

and ASS0  =  4.11, 7.36, respectively. These values are presented in Table 1. It can be observed that 

the AKJ chart outperforms the proposed chart in the deterioration case, however, it is very less 

sensitive to detect a decrease in the process variance. It is expected that with an increase in the shift 

size in any direction, the chart’s ability to detect the changes must increase. However, the AKJ chart’s 

sensitivity decreases to detect the larger downward shifts which contradicts the philosophy of using 

the control chart. The AKJ chart is insensitive to detect the improvement in the process and hence 

the decision of using two-sided chart becomes questionable. Thus, we do not recommend the AKJ 

chart when the interest lies in both improvement and deterioration cases and the direction of shifts 

is not known. On the other hand, for the proposed chart, the OOC ARL values decreases as 𝛿 goes 

far away from 𝛿 = 1, except for some 𝛿 < 1 values close to one. As we have discussed earlier, it is 

undesirable and in the following section, we eliminate it. 

Table 1: Comparison of proposed chart with the chart by Aslam et al. (2015) 

𝒏 = 𝟒 𝒏 = 𝟕 

AKJ chart Proposed 

chart 

𝑆2 chart AKJ chart Proposed 

chart 

𝑆2 chart 

𝜹 ARL AS

S 

ARL AS

S 

ARL AS

S 

ARL AS

S 

ARL AS

S 

ARL AS

S 

0.

1 

4.25E+

17 

4.0

0 

18.77 5.5

4 

25.34 4.0

0 

9.82E+1

7 

7.0

0 

1.15 17.

65 

2.82 7.0

0 

0.

3 

3.46E+

09 

4.0

0 

118.22 4.3

1 

124.14 4.0

0 

6.76E+1

1 

7.0

0 

20.59 10.

19 

28.69 7.0

0 
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0.

5 

338135

.52 

4.0

0 

261.32 4.1

5 

263.92 4.0

0 

2589301

.43 

7.0

0 

99.43 7.9

8 

108.14 7.0

0 

0.

7 

6778.5

4 

4.0

2 

425.98 4.1

0 

424.74 4.0

0 

15179.8

8 

7.0

5 

266.07 7.4

5 

269.64 7.0

0 

0.

9 

785.32 4.0

7 

461.51 4.1

0 

459.62 4.0

0 

956.87 7.2

2 

434.79 7.3

3 

432.65 7.0

0 

1 370.00 4.1

1 

370.00 4.1

1 

370.00 4.0

0 

370.00 7.3

6 

370.00 7.3

6 

370.00 7.0

0 

1.

1 

199.90 4.1

6 

260.76 4.1

3 

262.60 4.0

0 

171.14 7.5

5 

241.47 7.4

3 

244.83 7.0

0 

1.

3 

77.45 4.2

7 

118.48 4.1

9 

121.62 4.0

0 

52.86 8.0

1 

85.92 7.6

8 

90.87 7.0

0 

1.

5 

38.59 4.3

9 

59.34 4.2

7 

62.27 4.0

0 

22.59 8.5

2 

35.93 8.0

3 

39.95 7.0

0 

1.

7 

22.65 4.5

1 

33.95 4.3

6 

36.44 4.0

0 

11.94 9.0

3 

18.24 8.4

1 

21.34 7.0

0 

3 4.16 5.0

1 

5.34 4.8

0 

6.36 4.0

0 

2.00 10.

11 

2.45 9.6

8 

3.35 7.0

0 

4 2.52 5.0

7 

3.02 4.9

0 

3.68 4.0

0 

1.38 9.4

0 

1.55 9.2

9 

2.04 7.0

0 

𝒌𝟏 4.5776

90 

4.09419

0 

𝒌𝟐 2.4320

20 

1.87370

0 

𝜶𝟏 0.0026

30 

0.0013

51 

0.0025

70 

0.0013

51 

𝜶𝟐 0.0294

00 

0.0013

51 

0.0514

90 

0.0013

51 

3.2 Proposed equal tails 𝑆2-chart versus equal-tailed (standard) 𝑆2-chart 

Now, the ARL comparison of the proposed chart and the standard 𝑆2-chart is presented. The OOC 

ARL values for the standard 𝑆2-chart are also presented in Table 1. It can be observed that the use of 

the RS improves the performance of the chart. For example, when 𝛿 = 1.3, the ARL values for the 

proposed chart are 118.48 for 𝑛 =  4 and 85.92 for 𝑛 =  7, respectively whereas these values for the 

standard 𝑆2-chart are 121.62 and 90.87, respectively. In the improvement case (𝛿 < 1), except small  

shifts sizes, for example, for 0.7 < 𝛿 < 1 when 𝑛 =  4 and for 0.9 ≤ 𝛿 < 1 when 𝑛 =  7, the proposed 

chart also performs better than the standard chart. Table 1 points out that the larger n results in a 

better performance of the chart in both improvement and deterioration cases. Moreover, with an 

increase in 𝑛, the range of the downward shifts becomes shorter in which the proposed chart is 

inferior to the standard chart. The study clearly indicates that the performance of the chart using the 

RS can be improved with choosing larger ASS0 value which supports the existing research’s findings. 

4. Design of the Phase II ARL-unbiased 𝑆2-chart under repetitive sampling

In this section, we modify the control limits of the proposed ARL-biased 𝑆2-chart under the RS so 

that the chart is ARL-unbiased and attains the desired IC performance. To construct the ARL- 
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unbiased 𝑆2-chart under the RS, we introduce the design constants 𝛾, 𝛼1
′  and 𝛼2

′ , so that the modified 

outer and inner control limits under the RS are obtained as follows. 

LCLRS
′ =

𝜎0
2

𝑛−1
𝜒𝛾𝛼1

′ ,𝑛−1
2 =

𝜎0
2

𝑛−1
𝐵1

′        and  UCLRS
′ =

𝜎0
2

𝑛−1
𝜒1−𝛼1

′ ,𝑛−1
2 =

𝜎0
2

𝑛−1
𝐵2

′          (10a) 

LRLRS
′ =

𝜎0
2

𝑛−1
𝜒𝛾𝛼2

′ ,𝑛−1
2 =

𝜎0
2

𝑛−1
𝑅1

′        and  URLRS
′ =

𝜎0
2

𝑛−1
𝜒1−𝛼2

′ ,𝑛−1
2 =

𝜎0
2

𝑛−1
𝑅2

′      (10b) 

where the constants 𝛼1
′ , 𝛼2

′   (0 < 𝛼1
′ ≤ 𝛼2

′ < 1) are determined to keep the IC performance at a desired 

level and 𝛾 is obtained to eliminate the bias in the ARL function.  For 𝛾 = 1, the chart reduces to the 

ARL-biased 𝑆2-chart under the RS. Also, 𝐵1
′ = 𝜒𝛾𝛼1

′ ,𝑛−1
2 , 𝐵2

′ = 𝜒1−𝛼1
′ ,𝑛−1

2 , 𝑅1
′ = 𝜒𝛾𝛼2

′ ,𝑛−1
2 and  𝑅2

′ =

𝜒1−𝛼2
′ ,𝑛−1

2 , respectively. To obtain the ARL from Equation (7) and ASS from Equation (8) for  the ARL-

unbiased 𝑆2-chart under the RS, the probabilities 𝑝𝑎 , 𝑝𝑏 , 𝑝𝑐 , 𝑝𝑑 ,  𝑝𝑒 and 𝑝𝑓 can be obtained from the

set of Equations (5), respectively by replacing 𝐵1 , 𝐵2, 𝑅1, 𝑅2 with 𝐵1
′ , 𝐵2

′ , 𝑅1
′ , 𝑅2

′ , respectively.  

To construct the control limits for an ARL-unbiased 𝑆2-chart under RS, we set (i) IC ARL equals 

to the nominal ARL0, (Equation 11a) (ii) IC ASS equals to desired  ASS0 (Equation 11b), and (iii) the 

first derivative of the ARL function with respect to 𝛿 at 𝛿 = 1 equal to zero so that the ARL function 

is maximized at the IC state of the process, i.e., 𝛿=1, (Equation 11c). Thus, the design constants 𝛾, 𝛼1
′  

and 𝛼2
′  can be obtained by solving the following set of Equations. 

ARLRS(1) = ARL0               (11a) 

ASSRS(1) = ASS0               (11b) 
d

dδ
ARLRS(δ)|δ=1 = 0            (11c) 

where, ARLRS(δ)|δ=1 =
(𝑝𝑎(𝛿)+𝑝𝑓(𝛿))[−𝑝𝑏

′ (𝛿)−𝑝𝑒
′ (𝛿)]−(1−𝑝𝑏(𝛿)−𝑝𝑒(𝛿))[𝑝𝑎

′ (𝛿)−𝑝𝑓
′ (𝛿)]

(𝑝𝑎(𝛿)+𝑝𝑓(𝛿))2 with 𝑝𝑎
′ (𝛿)|δ=1 =

− (−
𝐵1

𝛿2) 𝑓𝜒𝑛−1
2 (

𝐵1

𝛿
), 𝑝𝑏

′ (𝛿)|δ=1 = (−
𝐵1

𝛿2) 𝑓𝜒𝑛−1
2 (

𝐵1

𝛿
) − (−

𝑅1

𝛿2) 𝑓𝜒𝑛−1
2 (

𝑅1

𝛿
), 𝑝𝑒

′ (𝛿)|δ=1 = (−
𝑅2

𝛿2) 𝑓𝜒𝑛−1
2 (

𝑅2

𝛿
) −

(−
𝐵2

𝛿2) 𝑓𝜒𝑛−1
2 (

𝐵2

𝛿
) and 𝑝𝑓

′ (𝛿)|δ=1 = (−
𝐵2

𝛿2) 𝑓𝜒𝑛−1
2 (

𝐵2

𝛿
). Since the values of the design constants cannot

be obtained analytically, we used the numerical iterative procedure in ‘R’ software to solve them. 

Note that for 𝛼1
′ = 𝛼2

′ , the ARL-unbiased 𝑆2-chart under the RS reduces to the ARL-unbiased 

𝑆2-chart under the SS and consequently, UCLRS
′ = URLRS

′  and LCLRS
′ = LRLRS

′ . Therefore, the control

limits of the ARL-unbiased 𝑆2-chart under SS can be obtained as follows. 

LCLRS
′ =

𝜎0
2

𝑛−1
𝐵1

′ = LCL′    and   UCLRS
′ =

𝜎0
2

𝑛−1
𝐵2

′ = UCL’                           (12) 

where the constants 𝛼1
′   (0 < 𝛼1

′ < 1) and 𝛾 ≥ 1 can be obtained to solve the following conditions. 

Please see also, Knoth and Morais (2015). 

ARL(1) = ARL0          (13a) 
d

dδ
ARL(δ)|δ=1 = 0          (13b) 

where 
d

dδ
ARL(δ)|δ=1 = [(−

𝐵2
′

𝛿2) 𝑓𝜒𝑛−1
2 (

𝐵2
′

𝛿
) − (−

𝐵1
′

𝛿2) 𝑓𝜒𝑛−1
2 (

𝐵1
′

𝛿
)] [1 + 𝐹𝜒𝑛−1

2 (
𝐵1

′

𝛿
) − 𝐹𝜒𝑛−1

2 (
𝐵2

′

𝛿
)]

2

⁄ . Once 

we obtain the design constants, we can calculate the control limits of the ARL-unbiased 𝑆2-chart 

using Equation (12).  

5. Performance comparison of the proposed ARL-unbiased 𝑆2-chart under

repetitive sampling and standard ARL-unbiased 𝑆2-chart 

To evaluate the proposed ARL-unbiased 𝑆2-chart under the RS and compare with the standard ARL 

unbiased 𝑆2-chart, we obtain the control limits for 𝐴𝑅𝐿0 = 370 and 𝐴𝑆𝑆0 = 4.4, 4.8 (for 𝑛 = 4) and 
7.7, 8.4 (for 𝑛 = 7). The corresponding ARL and ASS values for both charts are reported in Table 2 

for different 𝛿 values. It can be observed that the OOC ARL values are smaller than the IC ARL for 

all shift sizes which guarantees a higher chance of detecting shifts in the process variance than giving 

a false alarm. The charts under the RS outperform the standard ARL-unbiased 𝑆2-chart in terms of 

smaller OOC ARL values. For example, when 𝑛 = 4, 𝛿 = 0.7, the standard ARL-unbiased 𝑆2-chart 

has ARL value 254.70 whereas it is 245.72 for the proposed chart with 𝐴𝑆𝑆0 = 4.4 and 238.35 with  
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𝐴𝑆𝑆0  =  4.8. It is worth to note that unlike the ARL-biased chart, the ARL-unbiased chart with the 

RS performs better than the corresponding ARL unbiased 𝑆2-chart for all shifts. Moreover, the larger 

𝑛 and ASS0 result in an improved performance. The design of the proposed chart is flexible, and a 

user can design at his/her own choice how much he/she is willing to pay the price in terms of large 

ASS0 to get the OOC signal quickly. It is worth mentioning that the chart becomes inferior to the 

ARL-biased 𝑆2-chart in the deterioration case. It may seem unreasonable because one wish to have 

a chart which is able to detect the situations that are responsible for bad quality items. Final choice, 

however, is with the management. The present study provides choices to the user/management that 

he/she can choose an appropriate chart in his/her favorable conditions. 

Table 2: Un-biased performance of the equal-tailed 𝑆2-chart under SS and RS using the metric ARL and ASS for 

nominal 𝐴𝑅𝐿0 = 370, 𝐴𝑆𝑆0 = 4.4, 4.8 at 𝑛 = 4 and 𝐴𝑆𝑆0 = 7.7, 8.4 at n=7, respectively. 

𝒏 = 𝟒 𝒏 = 𝟕 

ARL-

unbiased 𝑆2 

Proposed ARL-unbiased 

chart 

ARL-

unbiased 𝑆2 

Proposed ARL-unbiased 

chart 

ASS = 4.4 ASS = 4.8 ASS = 7.7 ASS = 8.4 

𝜹 ARL ASS ARL ASS ARL ASS ARL ASS ARL ASS ARL ASS 

0.

1 

15.36 4.0

0 

3.99 16.

87 

1.96 37.

27 

2.22 7.0

0 

1.01 16.

19 

1.00 17.

12 

0.

3 

73.38 4.0

0 

53.57 6.0

4 

41.87 8.4

3 

19.51 7.0

0 

9.11 16.

32 

5.96 26.

96 

0.

5 

155.25 4.0

0 

138.8

2 

4.9

3 

126.7

9 

5.9

0 

71.11 7.0

0 

55.60 9.8

2 

47.33 12.

57 

0.

7 

254.70 4.0

0 

245.7

2 

4.5

7 

238.3

5 

5.1

5 

175.64 7.0

0 

163.4

2 

8.2

9 

155.5

6 

9.5

1 

0.

9 

351.05 4.0

0 

349.5

2 

4.4

3 

347.9

1 

4.8

6 

330.21 7.0

0 

327.6

0 

7.7

8 

325.7

4 

8.5

6 

1 370.00 4.0

0 

369.8

5 

4.4

0 

369.9

2 

4.8

0 

370.00 7.0

0 

369.9

8 

7.7

0 

369.9

1 

8.4

0 

1.

1 

348.38 4.0

0 

346.9

0 

4.3

9 

346.7

9 

4.7

7 

325.17 7.0

0 

322.8

0 

7.6

9 

321.1

5 

8.3

7 

1.

3 

224.97 4.0

0 

218.7

4 

4.4

1 

216.0

2 

4.7

9 

149.61 7.0

0 

142.7

2 

7.8

4 

138.7

9 

8.5

5 

1.

5 

122.57 4.0

0 

115.6

9 

4.4

8 

112.5

5 

4.8

7 

64.36 7.0

0 

58.41 8.1

3 

55.59 8.9

5 

1.

7 

69.44 4.0

0 

63.64 4.5

7 

61.12 4.9

9 

32.50 7.0

0 

27.97 8.5

0 

26.13 9.4

6 

3 9.21 4.0

0 

7.29 5.1

7 

6.71 5.7

5 

4.07 7.0

0 

2.87 10.

15 

2.58 11.

46 

4 4.81 4.0

0 

3.65 5.3

7 

3.35 5.9

5 

2.32 7.0

0 

1.67 9.8

4 

1.55 10.

75 

𝒌 5.8210

54 

5.674

593 

5.614

001 

3.5563

30 

3.495

460 

3.435

879 

𝜶𝟏 0.0003

96 

0.000

368 

0.000

341 

0.0005

93 

0.000

547 

0.000

508 

𝜶𝟐 0.013

988 

0.025

540 

0.020

769 

0.038

080 
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6. Example

To illustrate an application of the proposed ARL-biased and -unbiased 𝑆2-chart using the RS, we use 

data considered in a case study of syringes with a self-contained, single dose of an injectable drug 

produced by a pharmaceutical company. The conclusions of the case study and associated data have 

published in Franklin and Mukherjee [10]. The critical quality characteristic was the length at which 

the cap of the syringe was tacked. For further details, we refer the interested readers to follow 

Franklin and Mukherjee [10]. Based on the capability analysis with 𝐶𝑝𝑘 = 1.04, the management 

determined that the process was minimally capable and susceptible to producing the length desired. 

Therefore, it was decided to monitor the process via control charts to find any reasonable cause(s).  

To monitor the process under consideration, the case study considered total 47 samples each of 

size 5 which are reported in Table 2 of Frankline and Mukherjee [10]. In their study, the 𝑅-chart was 

used to monitor the process variability. The quality practitioner used the first 15 points to construct 

the control limits of the �̅�- and 𝑅- charts and plotted these 15 points on the charts. The charts show 

that the process is OOC in both centre and variation as well. However, these OOC signals were not 

noticed. We use the 𝑆2- chart instead of 𝑅-chart and find that the 𝑆2-chart does not give any OOC 

signal implying that the variability is IC. The next 15 samples were collected for phase II monitoring, 

and it was noticed that the caps were not perfectly tacked. Thus, the technician was called for the 

adjustments. Taking the first attempt of the machine adjustment into consideration, 31st sample was 

collected and observed that still the machine was not at its targeted position and to the next, second 

attempt were made to adjust the machine. Sample number 32nd were collected and plotted on the 

R chart to observe the adjustment effect. Quality practitioner observed that the second adjustment 

was also no better and the technician called for the third time. The third try was successful in the 

sense that the next 15 samples collected and plotted, and no point was beyond the control limits, and 

no action was taken.  

However, a careful examination of both charts indicates that the process is not IC. To examine 

the sensitivity of variation, here, 𝑆2-chart under RS (proposed chart) has been used instead of R-

chart. For this purpose, we implement the ARL-biased and -unbiased charts design under the RS 

with nominal (ARL0, ASS0)  =  (370.4, 5.5) for 𝑛 =  5. The estimates from the first 15 samples were 

used to construct the control limits of the proposed 𝑆2-chart under the RS. We get variance estimate 

𝜎2 = 0.000134. The set of control limits (LCL𝑅𝑆, UCL𝑅𝑆) and the repetitive limit (LRL𝑅𝑆, URL𝑅𝑆)  of the

ARL-biased and -unbiased 𝑆2-charts under the RS are found to be 3.37 × 10−6, 6.03 × 10−4 and 

(2.29 × 10−5, 3.23 × 10−4) and (4.34 × 10−6, 6.79 × 10−4) and (3.04 × 10−5, 4.04 × 10−4), 

respectively, which are depicted in Figure 1 with the CL = 1.34 × 10−4. For the better visualization, 

we have taken the y-axis on log scale. Red and dashed lines represent the control limits of the ARL-

unbiased 𝑆2-chart under RS, whereas black and dashed lines represent the control limits of the ARL-

biased 𝑆2-chart under the RS. It can be seen from Figure 1 (Panels 2 and 3) that unlike the 𝑅-chart, 

both ARL-biased and -unbiased 𝑆2-charts under the RS produce OOC signals. Thus, the process for 

the first 15 samples may be considered IC. The next 17 sample points clearly indicate the signal at 

the points 23 and 28. After the adjustment, the proposed chart also gives a signal at the 41st point. 

In the case study, the quality practitioner observed that the process was OOC signal based on the 

supplementary runs rules. However, a less qualified operator overlooked these non-random 

patterns. The proposed chart gives more objective assessment to decide the OOC signal because the 

points are lying below the control limits. 

RT&A, No 4 (76) 
Volume 18, December 2023 

858



S. Jaiswal, N. Kumar
ARL UNBIASED 𝑆2-CHART UNDER REPETITIVE SAMPLING

Figure 1: The ARL-unbiased 𝑆2-chart under the RS (red dashed lines) and ARL-biased 

 𝑆2-chart under the RS (black dashed lines). 

7. Conclusion

 In this paper, we consider the ARL-biased (equal-tailed) and -unbiased 𝑆2-charts to monitor the 

changes (both upward and downward) in the process variance. The study shows that the ability of 

both charts to early detect changes can be enhanced by using the RS with maintaining simplicity of 

design and operation and features of the Shewhart’s type charts. The ARL-biased and -unbiased 𝑆2- 

charts using the RS perform better than their counterparts ARL-biased and -unbiased 𝑆2-charts 

under the SS. The ARL-biased chart using the RS outperforms the ARL-unbiased chart using the RS 

in detecting an increase in the variance, though the latter ensures an early detection of both 

downward and upward shifts than it raises the false alarm. The study provides alternatives of 

choosing their designs according to their need. Indeed, if the management is aspiring for a continual 

improvement of the process, he may opt the ARL-unbiased 𝑆2-chart under the RS.  

Further, many research topics maybe of interest as a follow-up. The present study considers the 

case when the process variance is known, which may not be suitable in some real applications. It is 

well accepted that the parameter estimation affects the chart’s performance in a negative way which 

also needs to be investigated. Following the recent literature, the conditional and unconditional 

performance of the proposed charts can be investigated given a Phase I sample. Finally, all the 

calculations are performed using the R statistical software and the programs are available from the 

authors on request. 
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Abstract 

Phishing is an illegal act and security breach which acquires a user's confidential information 

without consent. Anti-phishing techniques used to detect and prevent such malicious acts to 

provide data safety to the end user. Researchers proposed an anti-phishing solution with the help of 

techniques like the blacklist record, heuristic function, visual similarity, and machine learning 

algorithm. In recent times many researchers proposed machine learning techniques for phishing 

detection and achieve more than 90% accuracy. However, there is reliability issue in the accuracy 

measures used by the researchers. In real life, the phishing dataset is unbalanced. Most of the 

researchers ignore this data quality during their research work design. In the case of unbalanced 

data, traditional accuracy measure does not give proper performance evaluation. It shows biased 

performance evaluations. In this paper, we experimented with an unbalanced dataset of phishing 

detection and did detailed result analysis to highlight the reliability issue of traditional performance 

evaluation measures for unbalanced data classification. We experiment with four classification 

algorithms and found that more than 90% of accuracy does not entitle any classifier as secure and 

safe if the dataset is unbalanced. Our work highlights the data factors and algorithmic limitations 

that compromise the system security and data safety. 

 

 Keywords: Reliable phishing detection, Cyber security, Unbalanced data, Performance evaluation, 

Cyber safety. 

1. Introduction 

 
The use of internet-based services increases day by day. However, the internet brings some hidden 

security threats to users. One of the threats is Phishing. Phishing is a cybercrime that acquires the 

user's confidential information without the consents of the user. Phishing websites looks like its 

legitimate counterpart and spoof user activity to obtain user’s personal information [1]. Other 

phishing techniques which compromise the data safety are email phishing, SMS phishing, voice 

phishing, and website phishing [2].  

The Anti-Phishing working group (APWG) [3] is a non-profit organization. APWG examines 

and publishes reports of phishing attacks. According to the APWG report, in the 1st quarter, 0f 

2018 total 2,63,538 phishing attempts gets detected, and in the 2nd quarter of 2018, total 2,33,040 

phishing attempts gets detected. The online banking and payment sector experiences the most 

number of phishing attacks. 

Many researchers performed studies to proposed reliable and secure phishing detection tools 

[4–6]. However, the unbalanced nature of the phishing dataset does not much explored by 

researchers. The phishing dataset is unbalanced dataset with two class labels: Legitimate and 

Phishing. It has more phishing instances as compared to legitimate instances. In most of the 
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existing research work, the legitimate class label is in a minority. Unbalanced data classification 

needs more focus when the misclassification cost of one class is higher than another class [7]. In the 

phishing dataset, the misclassification cost of phishing URLs is much higher than legitimate URLs. 

It makes phishing data classification more complex. Further the unbalanced data makes the 

traditional evaluation parameters to present misleading performance evaluation [8]. 

In this paper, we performed a detailed study and in-depth result analysis to highlight the 

shortcomings of performance measurement in existing phishing detection researches. To propose 

an accurate phishing detection system, identification and validation of the performance evaluation 

parameter is primary requirement. The biased performance measures present biased evaluation of 

the security system. Especially, for the unbalanced data, we need a balanced and unbiased 

performance evaluation technique [7]. 

This paper starts with the introduction section. The second section discuss the related work of 

phishing detection system. Third section gives dataset information, and fourth section give detail 

of implementation methodology for our experiment. Fifth section present the unbiased and reliable 

performance measures, and compares the results with traditional performance measures to 

highlight the shortcoming of widely used metrics for reliable evaluation of machine learning based 

security systems. 

 

2. Related Work 

 
Machine learning is widely use in designing of cyber security system. It is increasingly used for 

system and data safety through effective fault detection and bug management [9]. Various anti-

phishing techniques have been use for the cyber security. Researchers uses techniques such as user 

training, black-list approach, heuristic-based approach, visual similarity-based approach, and 

machine learning approach for the anti-phishing. The subsequent section summarises the widely 

used anti-phishing techniques. 

 

a) User education or simulated training 

Many researchers worked on the development of mobile games which helps to educate 

people and to raise awareness about phishing among the uses [4]. The approach is limited to users 

who love gaming and due to this; this approach alone is not sufficient for phishing detection [10]. 

b) Blacklist approach 

In this approach, a dataset is created and maintained for a list of phishing URLs. Target URL 

is checked in this dataset. If found in a phishing dataset then it is detected as phishing otherwise it 

is called legitimate [5,11]. 

c) Heuristic-based approach 

In this approach, the heuristic function is applied to extracted features or to extract features 

for phishing detection. However this approach is not able to detect all new attacks and it is easier 

to bypass once the attacker knows the heuristic algorithm or features used [12]. 

d) Visual similarity-based approach  

The limitation of this is approach is more time is needed for image comparison and more 

space is needed to store all images [6].  

e) Machine learning-based approach 

Machine Learning is the most promising technique approach than other anti-phishing 

solutions [13]. Machine Learning-based classifiers are efficient classifiers and achieved an accuracy 

of more than 90% [14,15]. The machine learning-based anti-phishing technique is robust and more 

accurate as compared to other techniques [13,14]. Classification is one of the machine learning 

techniques for label prediction. Classification algorithms like support vector machine (SVM), 

Naïve Bayesian, KNN, decision tree, and ensemble classification algorithm like random forest are 
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widely used. Random forest is a collection of more than one decision tree algorithm and used an 

ensemble technique for final prediction. Many authors claim that the random forest gives better 

accuracy in phishing website detection [2,15–19]. 

Jain et al. [1] proposed a URL based machine learning technique for phishing detection. The 

authors use SVM and achieved 91.28% accuracy. However, in the case of redundant or irrelevant 

features performance gets decreased. Authors use accuracy for performance evaluation which 

present majority biased performance evaluation [20]. 

Alejandro et al. [18] proposed a neural network algorithm for the detection of phishing URLs. 

They proposed a recurrent neural network (RNN) based technique. RNN requires more time to 

train the model. Sudhanshu et al. [21] proposed a rule-based classification technique for phishing 

website detection. They found that the association classification algorithm performs well as 

compared to other algorithms. Bayu et al. [17] presented a comparison of ensemble approaches like 

random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against 

decision tree. The result shows the superior performance of random forest as compared to other 

classifiers. 

Anand Desai et al. [22] uses SVM, KNN, and random forest classifier for malicious web 

content detection from balance data. Jain et al. [2] proposed an anti-phishing approach that extracts 

features from the client-side. The proposed approach is fast but it extracts features only from URL 

and source code. This approach has a limitation as it can detect webpages written in HTML only. 

Ahmad et al. [23] proposed three new features to improve the accuracy rate for phishing website 

detection. Liu et al. [19] proposed an approach that focuses on character frequency features. In this, 

they have combined statistical analysis of URL with a machine learning technique. However, the 

authors use majority class centric performance evaluation parameters in their experiments. In 2016, 

Tahir et al. [24] proposed a hybrid model for the classification of the phishing website. 

In 2015, Bhagyashree et al. [25] proposed a feature-based approach. Features like WHOIS, 

Page Rank, Alexa rank, and Phish Tank-based features are used for disguising phishing and non-

phishing website.  

Most of the researchers claim more than 90% accuracy in phishing detection. However, the 

phishing dataset is unbalanced. An unbalanced dataset has unequal class distribution. Accurate 

detection of both the class is important in the case of an unbalanced phishing dataset. As per Barot 

et al. [20], traditional accuracy measure gives biased result for unbalanced data. So validation and 

verification of performance evaluation for the phishing detection technique is an important task. In 

existing researches the 90% accuracy is mostly due to the accurate classification of majority class. 

Traditional classification algorithms are designed for balanced data and thus do not perform 

well for unbalanced data [8]. Unbalanced data has skewed class distribution. In binary-class 

unbalanced data, one class is in majority and another class is in the minority [26]. Imbalance ratio 

(IR) is used to measure the level of imbalance and it is derived as the ratio of majority class 

instances and minority class instances [26]. Unbalanced data need special care to improve 

classification accuracy [27].  

As per Barot et al. [20], an accurate and unbiased evaluation of unbalanced data classification 

is an important task. Traditional metrics are not suitable for performance evaluation of unbalanced 

data classification. Especially, when the misclassification cost of minority class is huge as 

compared to the misclassification of the majority class, we need unbiased metrics for performance 

evaluation. In the case of the phishing dataset, data is unbalanced and misclassification cost is 

different for both the minority and majority class. So we need unbiased performance evaluation 

measures. Barot et al. [20] proposed a balanced and unbiased performance evaluation for 

unbalanced data classification. 
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Table 1: The original Data source of phishing and legitimate URL. 

 

Dataset  No of instances Category  

PhishTank [28] 30251 Phishing 

DMOZ [29] 3494 Legitimate 

 

3. Dataset 
In a real-time scenario, legitimate URLs are more than the phishing URLs. It requires a robust 

phishing detection system that accurately identifies phishing URLs among the large numbers of 

legitimate URLs. This empirical study is designe to verify the performance evaluation of phishing 

detection from unbalanced phishing data. We use PhishTank [28] for phishing and DMOZ [29] as a 

non-phishing dataset. There are a total of 30251 instances of phishing and 3494 instances of 

legitimate class. We combine these two datasets into one dataset. The resultant dataset is 

unbalanced in which the phishing class is in majority, and the legitimate is in minority.   

Table 1 shows detail of the original data source of phishing and legitimate URLs. For our 

experiment, we create a pre-labelled unbalanced dataset that comprises extracted features of URLs 

(label 1 for phishing and 0 for legitimate). Total 11 features namely,  "IP Address", "presence of 

subdomain", "'@' Present in URL or not", "Presence of dash(-) in URL or not", "Length of URL", 

"Suspicious words in URL", "Embedded Domain", "presence of HTTPS Protocol", "HTTP_Count", 

"DNS lookup", and "Inconsistent URL" are extracted from the URLs. URL is treated as inconsistent 

if the domain name does not match in the WHOIS database. 

We created a dataset by taking 23000 phishing URLs from PhishTank [28] and 2000 legitimate 

URLs from DMOZ [29]. The final dataset contains a total of 25000 URL instances. The phishing 

dataset is unbalanced and legitimate instances are in minority. 

 

4. Implementation Methodology 
For our experiment, we have used the Naïve Bayesian, Sequential minimal optimization (SMO), 

decision tree, and random forest algorithms. The main aim of this experiment is to check 

algorithms reliability by analyzing the impact of uneven distributions of classes on classification 

accuracy. We used the WEKA library for the implementation. We had kept the phishing dataset 

unbalanced to highlight the main reasons of the high accuracy value even if minority class is 

totally misclassified. The poor performance of minority class detection hidden under the accurate 

detection of the majority instance makes the security system unreliable. 

Initially, phishing and legitimate URLs given to the features extractor that extracts the 

features. The extracted features then used for the detection of phishing URLs. The extracted 

features used to train the naïve Bayesian, SMO, random forest, and decision tree classifiers. 

 

4.1. Main Steps of Proposed Approach 
 

The major steps of our experimental study are: 

Step 1) Dataset preparation: Dataset is prepared by collecting phishing URLs from PhishTank and 

legitimate URLs from the DMOZ directory.  

Step 2) Data pre-processing: the dataset is pre-processed to remove noise and to fill missing 

values. The missing value is handled by taking attribute mean.  

Step 3) Feature extraction: extraction of features from the website URL by using a feature 

extraction algorithm.  

Step 4) Train model: Traditional algorithms are implemented in JAVA using the WEKA library. 
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Using training dataset classifiers are trained. 

Step 5) Test Model: Trained model is tested with test split and performance is evaluated. 

Step 6) Result and evaluation: analysis of result and checking reliability of performance matrices.  

We have used 10-fold cross-validation for training and testing. Figure 1 shows the flow of our 

empirical work.   

As shown in Figure 1, first we collect legitimate and phishing URLs. We applied feature 

extraction and feature selection methods to create dataset for classification algorithms. Then we 

train the traditional classification model from the training set and test the model using the test set. 

Finally, we present the results and discuss the importance of the unbiased performance measure 

for unbalanced dataset classification. 

 

 

Figure 1: Implementation flow 

 

Naïve
Bayes

SMO
Random
Forest

Decision
Tree

Accuracy 91.99 91.89 91.99 91.98

91.75

91.8

91.85

91.9

91.95

92

92.05

A
cc

u
ra

cy

Algorithm Result

Accuracy Comparison

 
Figure 2: Performance (Accuracy) Comparison of Classifiers 
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5. Result and Discussion 
 

Most of the existing researches show high accuracy of phishing detection. Our experiment also get 

similar performance in terms of high accuracy. Figure 2 shows the results comparison of naïve 

Bayesian, SMO, decision tree, and random forest classifiers. 

Despite the high accuracy, detailed result analysis reveals that the algorithms are not an 

optimal choice for phishing detection because of unbalanced nature of the phishing dataset. The 

detailed results (TP_rate, precision, and F-measure) of naïve Bayesian, random forest and decision 

tree given in Table 2. The naïve Bayesian, random forest and decision tree shows identical results 

for phishing detection. 

In Table 2, the accuracy, TP rate, precision and f-measure value for the individual class is 

shown to highlight the shortcoming of the traditional measures. As shown in Table 2, the accuracy, 

TP rate, precision, and f-measure for the minority class is 0, and for majority class, it is more than 

90%, that produce the weighted average close to 90%. If classifiers are selected just by looking into 

the weighted average value, then it increase misclassification cost due to the misclassification of all 

legitimate instances. Legitimate instances are small in number (minority class) and thus ignored by 

all three classifiers. 

The confusion matrix in Table 3 shows that one instance of the majority class gets 

misclassified as minority class, and all legitimate (minority) class instances gets misclassified as 

phishing class (majority) instances. Algorithms that show a similar pattern of the results should 

not considered reliable algorithm for phishing detection due to their inability of correct predictions 

of minority class.    

From the result, we observed that the high accuracy of classification algorithms is due to the 

high predictive performance of the majority class. Classification accuracy of minority class is close 

to zero due to the high imbalance ratio of the phishing dataset and the biasing of traditional 

classifiers towards the majority class. Many researchers consider overall accuracy as a performance 

measure and show more than 90% accuracy to claim good performance of their algorithms. 

However, the result analysis suggest that majority class biased accuracy is not an appropriate 

performance measure for the unbalanced data classification  [8]. The security system designed 

using such machine learning algorithms are unreliable and do not gives proper safe environment. 

 

Table 2: Detailed Result 

 Accuracy TP Rate Precision F-measure 

Phishing 0.999 0.999 0.920 0.958 

Legitimate 0.000 0.000 0.000 0.000 

Weighted Avg. 0.919 0.920 0.846 0.882 

 

 

Table 3: Confusion Matrix of Naïve Bayesian. 

 Phishing Legitimate 

Phishing 22999 1 

Legitimate 2000 0 

 

In our experiment, all the traditional classification algorithms claims around 90% for the 

accuracy, TP rate, precision, and f-measure. However, none of the classifier is optimal because of 

the tendency of the classifiers to consider all the instances as phishing instances. As the phishing 
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class is in majority and covers 92% of the dataset, if the classifier considers all instances as 

phishing, then it automatically achieves almost 90% accuracy. However, it hides the poor 

prediction of legitimate URL. 

In the case of class imbalance, such high value of performance measures is misleading. The 

actual low accuracy of minority class detection outnumbered by the high accuracy of the majority 

class detection. Such classifiers are unreliable and not provide optimal solution for secure system 

design. Such machine learning algorithms should not employ even though they gives more than 

90% accuracy. Selection of classifier just because it shows more than 90% accuracy ends up by 

blocking of all the URLs – both legitimate and phishing URLs get blocked as each URL detected as 

a phishing URL. Such a bias algorithm presents bias results and shows high accuracy because of 

the dominance of majority class instances. 

Barot et al. [20] proposed a new unbiased evaluation parameters for unbalanced data. They 

proposed two measures called B-mean and IR based weighted mean named IRWMean. The B-

mean gives a more balance performance evaluation while IRWMean gives minority class-biased 

performance evaluation. The mathematical equations for the B-mean and IRWMean are given in 

Eq. (1) & Eq. (2).   

 

IRWMean = (IR × TN_rate) + (1/IR × TP_rate) ÷ (IR + 1/IR)   (1) 

B-mean = ((IR×TN_rate) + (1/IR×TP_rate)) ÷  (((IR+1/IR) + Acc) ÷ 2))  (2) 
 

Table 4, shows performance evaluation of the naïve Bayesian algorithm in terms of the B-

mean and IRWMean for the phishing dataset. As shown in the table, B-mean is 0.46. The value of 

B-mean is very low as compared to the accuracy, precision and f-measure values given in Table 2. 

This is because of poor prediction of the minority class. The B-mean consider the imbalanced ratio 

to determine the misclassification cost of the minority class and majority class. Although the all 

majority class instances are correctly classified, the B-mean is 0.46 to indicate the misclassification 

of costly minority class. The B-mean show more balanced performance evaluation while the 

accuracy, f-measure and precision are majority class biased measures.  

The value of IRWMean is 0.016 which indicate total misclassification of costly minority class. 

The IRWMean considers negligible benefit of correct prediction of majority class. Proper tuning of 

the weight according the domain specific misclassification cost gives more balanced performance 

evaluation. 

Figure 3 shows a comparison of traditional performance parameters with IRWMean and B-

mean. As none of the minority instances is correctly classified the TN_rate (for the legitimate class) 

is zero. But still, the precision, f-measure, and accuracy are too high and they give biased and 

misleading results. From the accuracy, precision, or f-measure, we are not able to discover that the 

TN_rate is zero and none of the minority instances is correctly predicted.  

 

Table 4: IRWMean and B-mean Calculation for Phishing Detection 

Imbalance Ratio 

(IR) 

1/IR IRWMean Acc B-mean 

7.33 0.136 0.016 0.91 0.46 
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Figure 3: Comparison of Performance Measures 

IRWMean is 0.016 which is close to the poor accuracy of minority class. IRWMean is an 

important parameter for performance evaluation when the misclassification cost of minority class 

is huge as compared to the majority class. The IRWMean gives true performance evaluation when 

there is a huge difference between the misclassification cost of minority and majority class. The B-

mean gives more balanced performance evaluation based on the predictive accuracy of minority 

and majority classes and their misclassification cost. Considering the unbalanced nature and 

importance of both the classes of phishing datasets, the B-mean is more appropriate measure for 

performance evaluation. 

Similar pattern of class unbalance is observed in medical datasets. In the dataset of cancer 

patients, if the classifier categorizes all patients as free from cancer, it automatically claims more 

than 90% of accuracy because in the cancer dataset cancer-free patients are in majority and cover 

more than 90% of the dataset. However, such classifiers cost life loss due to the misleading 

performance measures. In this type of applications of unbalanced data, IRWMean can give a more 

valid performance evaluation. In the medical domain, reliable, accurate and unbiased performance 

evaluation is important as misclassification of minority samples cost a loss of life. 

 

6. Conclusion 
Many researchers proposed works for the phishing detection. Most of the study claims secure and 

safe environment with more than 90% accuracy. However, in the case of class imbalance, high 

accuracy is misleading. The actual accuracy of minority class detection gets outnumbered by the 

high accuracy of the majority class that makes the security system unreliable. The accurate 

detection of the majority class, which covers large portion of the target dataset, influence the 

accuracy measure. In the case of the unbalanced dataset, where the misclassification cost of 

minority class is huge, the majority-biased misleading accuracy result into increased 

misclassification cost. Our experiment suggests that the performance measures should be carefully 

selected when the misclassification cost is uneven in unbalanced data classification. More than 90% 

of accuracy donot entitle any system to be reliable and secure. Comprehensive and generalized 

performance evaluation with unbiased measures is necessary for the reliable cyber security system. 

The B-mean and IRWMean performance measure consider the misclassification cost and gives un-

biased and reliable performance evaluation. In the future, we will experiment with a medical 

dataset that generally observe large variations in the misclassification cost of minority and majority 

classes. In the medical domain reliability of machine learning based system is very important to 

save human lives. 
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Abstract 

 

The aim of the paper is to develop a new Huntsberger type shrinkage estimator for the entropy                

function of the exponential distribution. The present paper proposes a Huntsberger type shrinkage 

estimator for the entropy function of the  exponential distribution. This Huntsberger type shrinkage 

entropy estimator is based on test statistic, which eliminates arbitrariness of choice of shrinkage 

factor. For the developed estimator risk expressions under LINEX loss function and squared error 

loss function have been calculated. To assess the efficacy of the proposed estimator, numerical 

computations are performed, and graphical analysis is carried out for risk and relative risks for the 

proposed estimator. It is also compared with the existing best estimator for distinct degrees of 

asymmetry and different levels of significance. Based on the criteria of relative risk, it is found that 

the proposed Huntsberger type shrinkage estimator is better than the existing estimator for the 

entropy function of the exponential distribution for smaller values of level of significance and 

degrees of freedom. 

 

 

Keywords: Exponential distribution, entropy function, shrinkage estimation, 

progressive censoring type sample, LINEX loss function, squared error loss 

function. 

 

 

I. Introduction 
The Exponential distribution is widely used models in reliability and life-testing research. It has 

been extensively examined by researchers in terms of inferential issues and its application in these 

fields. Many academics have studied how to estimate exponential distribution’s parameters using 

both classical and Bayesian techniques. For example Bain [5], Chandrasekar et al. [8], Jaheen [12] 

and Ahmadi et al. [3], along with other references, have contributed to this body of knowledge. 

If f and F be the probability density function and the distribution function of the random variable 

X respectively, then by Shannon [18], entropy function is given as 

H(f) E[ log(f(X))]= −                                                                                                                                       (1) 

For sharply peaked distribution entropy is very low and is much higher when the probability 

is spread out. Many authors worked on the estimation entropy for different life distributions. 

Noteworthy work in this direction may be refereed from Lazo and Rathee [15], Misra et al. [16], 

Jeevanand and Abdul- Sathar [13] and Kayal and Kumar [14] etc. 
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Suppose the random variable X has the probability distribution f(x, ) where interest is to estimate 

entropy function as a function of  . According to Thomson [20], shrinkage estimation can be 

accomplished by altering the usual estimator of the unknown parameter  by bringing it closer to 

0
 . Researchers have addressed several shrinkage estimators for various parameters or parametric 

functions under various sorts of distributions in statistical literature. Huntsberger [11] introduced 

weighted shrinkage estimator of the form 

0
ˆ ˆ ˆ( ) (1 ( )) =   + −    , 

where (.), 0 (.) 1,     represents a weighted function specifying the degree of belief in 
0 .  

In this paper, we shall concentrate on obtaining a new Huntsberger type shrinkage estimation 

of entropy function under symmetric/asymmetric loss functions for progressive type-II censored 

sample, when the underlying distribution is assumed to follow an exponential distribution.  

The form of density we consider is 
x

1
f(x, ) e , x 0, 0

−
 =   


                                                                                                                      (2) 

Progressive censoring is indeed a useful scheme in the area of reliability and life time research.  

The number of authors including Cohen [9], Gibbons and Vance [10], Viveros and Balakrishan [22], 

Balakrishan and Aggarwala [6], Aggarwala [4], Adubisi and Adubisi [2], have contributed to the 

literature on inference problems related to progressive censoring for various probability 

distributions. 

 

I. Shrinkage Estimators of H (f) 
 

For exponential distribution with mean  , the entropy function can be calculated as 

H(f) 1 ln( )= +                                                                                                                                                  (3) 

Since H(f)  is linear function of ln( ) , estimating H(f)  is correspondent to estimating ln( )  . We 

shall write I( ) ln( ) =   so that H(f) 1 I( )= +  . We will now talk about estimation of I( ) .   

From the exponential distribution given in (2), Let 1:m:n 2:m:n m:m:nX ,X ,.......,X  be Type II progressive 

censored sample. The progressive censored sample’s joint density is then calculated (see 

balakrishan and Aggarwala [6])  

i

m
R

1:m:n 2:m:n m:m:n i:m:n i:m:n 1:m:n 2:m:n m:m:n

i 1

f(x , x ,......., x ) C f(x )(1 F(x )) , 0 x x ..... x ,
=

= −                 (4) 

where  

1 1 2 1 2 m 1C n(n R 1)(n R R 2).....(n R R ... R m 1)−= − − − − − − − − − − +  

Now substituting f and F in (4), we get 

m

i i:m:n
m i 1

1:m:n 2:m:n m:m:n 1:m:n 2:m:n m:m:n

(R 1)x
1

f(x , x ,......., x ) C( ) exp , 0 x x ..... x=

 
 +
 

= −     
  

 
 


       (5) 

Then MLE of    can easily be obtained as 
m

i i:m:n
i 1

(R 1)x

ˆ
m

=

+

 =


                                                                                                                                       (6) 

Since I( )  is continous function of  , the MLE of I( )  is obtained by replacing   by its MLE ̂  in 

I( ) .  The MLE of entropy function for the exponential distribution is then  
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ˆ ˆH(f) 1 ln( )= +                                                                                                                                                  (7) 

We can demonstrate that the distribution of ̂  has  

m 1m
ˆmˆ exp( )

mˆ ˆf( ; ) , 0
(m)

− 
 −

    =   
  

                                                                                                         (8) 

 

A symmetric loss function treats underestimation and overestimation equally, penalizing both 

types of errors in the same manner. However, in certain situations, the consequences of 

underestimation and overestimation may not be the same. To address this issue, many authors 

have used and promoted the usage of ‘asymmetric’ loss functions, particularly when discussing 

claim settlements and other related topics. Prominent researchers such as Varian [19], Zellner [23], 

Basu and Ebrahimi [7], Adegoke et al. [1] have highlighted the convenience and superiority of 

using asymmetric loss functions in various scenarios.  

The loss function proposed by Varian [21] is defined as: 
aL( ) b(e a 1) = −  −                                                                                                                                       (9) 

where ˆ , = − b denotes scale parameter and a denotes shape parameter. When overestimation is 

more critical than underestimation then the positive value of a is used and for other cases, its 

negative value is used. 

In section 2, the shrinkage estimator is defined. The expressions for the risk(s) are provided in 

section 3. In Section 4, the Relative Risk(s) are determined. Finally, in section 5, the proposed 

estimator is compared with the best estimator available.  

 

II. Proposed Estimator 
 

Srivastava and Shah [19] have proposed a shrinkage estimator of scale parameter in exponential 

distribution. The key contribution of their estimator is the removal of arbitrariness in the choice of 

shrinkage factor ‘k’ by making it dependent on the test statistics. Sahni and Kumar [17] proposed a 

Huntsberger type shrinkage estimator for the entropy of the exponential distribution by taking ‘k’ 

dependent on the test statistic. There could be several other choice of ‘k’. Thus taking idea of the 

various choices of shrinkage factors and also with the help of sample and prior guess information a 

new Huntsberger type shrinkage entropy estimator for mean of exponential distribution can be 

proposed as follows:    

2 2

2 2
0 1 22 2 2

1 0 0 0

ˆ ˆ ˆ2m 2m 2mˆln( ) 1 ln( ) ; if
I ( )

ˆln( ) ; Otherwise

             + −           =            
 

                                                      (10) 

where k depends on the test statistic and is given as 

2

2
0

ˆ2m
k

 
 =
   

  and 2 2 2
2 1( ) =  − . 

 

III. Derivation of Risk(s) 

1. Risk of MLE, Î( )  

Risk of the estimator Î( )  with respect to LLF is defined as follows: 

LLF
ˆ ˆR (I( )) E(I( ) / LLF) =   
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                  ( )( ) ( )( )
0

ˆ ˆ ˆ ˆexp a ln( ) ln( ) a ln( ) ln( ) 1 f( ; )d( )



=  −  −  −  −     

                  

0

ˆ ˆ
ˆ ˆexp a ln( ) a ln( ) 1 f( ; )d( )

      
 = − −                  
  

Now, by using the transformation
ˆm

x


=


  and substituting in the integral above, we get 

LLF a

(m a)ˆR (I( )) a( (m) ln(m) 1)
m (m)

 +
 = −  − −


                                                                                              (11)                                                    

where            

d
(n)

dn(n)
(n)



 =


 

Also, under SELF, the risk of estimator €( )I   is obtained as 

 ( )
2

SELF
ˆ ˆR (I( )) E ln( ) ln( ) =  −   

                                   

( )
2

0

ˆ ˆ ˆln( ) ln( ) f( ; )d( )



=  −    
2

0

ˆ
ˆ ˆln( ) f( ; )d( )


 

=      
  

                                   
2 2G(0, , (log(x)) ) 2 ln(m) (m) (ln(m)) ,=  −  +

                                                      (12) 

where 

 

2

1

t

n 1 x

t

1 2

Wx e dx

G(t , t ,W)
(n)

− −

=



 and W is a function of x. 

 

2. Risk of Shrinkage Estimator 1I ( )  

Risk of the estimator 1I ( )  with respect to LLF is defined as follows: 

         LLF 1 1R (I ( )) E(I ( ) / LLF) =   

                             
2

1

2 2
r 02 2

0 0

2 2r
02 2

0 0

ˆ ˆ2m 2mˆexp(a(( ) ln( ) (1 ( ) ) ln( ) ln( )))

ˆ ˆf( ; )d
ˆ ˆ2m 2mˆa(( ) ln( ) (1 ( ) ) ln( ) ln( )) 1

  
 + −  −  

    
=    

  −  + −  −  −
     

  

                             

( )

( )
1

2

0

r

r

ˆ ˆ ˆ ˆexp(a(ln( ) ln( ))) a(ln( ) ln( )) 1 f( ; )d

ˆ ˆ ˆ ˆexp(a(ln( ) ln( ))) a(ln( ) ln( )) 1 f( ; )d



+  −  −  −  −   

−  −  −  −  −   





 

where 1r  and 2r  are the boundaries of the acceptance region of a test of the hypothesis 0 0H :  =   

against the alternative 1 0H :   . Define
2 2

0 1 0 2
1 2r ,r ,

2m 2m

   
= =   where 2 2

1 2and   are respectively 

lower and upper th percentile values of the chi-square distribution with 2m degrees of freedom. 

Again, letting 
ˆm

x


=


  and solving the integrals in the expression for LLF we get                                        
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LLF 1 1 2 3 2 12 2

2 1 2 1a a

4am(m 1)log(m )ˆR (I ( )) I I I I(r ',m 2) I(r ',m 2) aG(0, ,ln(x))
( )

(a m) (a m)
I(r ',a m) I(r ',a m) a ln(m ) I(r ',m) I(r ',m) a ln m 1,

(m) m (m) m

 
+ 

  = + + + + − + −  


 +  +
   − + − + + −  − + −   

 
            (13)                                                                                                                                            

 

where 
2

2 22

1

4at
r ' ( ) t m 1

a
1

r '

t e t
I dt,

m (m)

 − − 
=   

  


2

1

r '
t m 1

2 2 2
r '

4am(m 1) e t
I (log t) dt

(m 2)( )

− +− +
=

 +
  and 

2

1

r '
t m 1

3

r '

e t
I a(log t) dt

(m)

− −

=


 

where 
2 2

01 2
1 2

2 2
r ' , r ' ,

 
= =  =

  
 and I(x, n) is the cumulative distribution function of gamma 

distribution given as 

n 1 t

0

t e dt

I(x,n)
(n)



− −

=




 Under SELF, risk of the estimator 1I ( )  is defined as follows:

 ( )
2

SELF 1 1R (I ( )) E I ( ) ln( ) =  −   

                      =
2

1

2r

2 2
02 2

0 0r

ˆ ˆ2m 2mˆ ˆ ˆ( ) ln( ) (1 ( ) ) ln( ) ln( ) f( ; )d
  
  + −  −    
     
  

                      + ( ) ( )
2

1

r
2 2

0 r

ˆ ˆ ˆ ˆ ˆ ˆln( ) ln( ) f( ; )d ln( ) ln( ) f( ; )d



 −    −  −       

Again by using the transformation 
ˆm

x


=


 and substituting in the integrals above, we get 

( )2 2
SELF 1 4 5 6 2 1 1 2R (I ( )) I I I (ln ) (ln m) I(r ',m) I(r ',m) 2(ln m)G(r ',r ,(ln x))  = + + +  − − + 

( ) ( )( )2

1 2 2 12 4

8m(m 1)(ln m )(ln )
2ln m G(0, ,(ln x)) G r ', r ', ln x I(r ',(m 2)) I(r ',(m 2))

+  
 −  − − + − + 

 
 

2
2 2

2 14 8

16m(m 1)(m 2)(m 3)(lnm )
I(r ',(m 4)) I(r ',(m 4)) G(0, ,(lnx) ) (lnm) ,

+ + + 
 + + − + +  + 

 
           (14)       

where

 

2

1

r '
t m 3

2
4 4 8

r '

16 (m 4) e t
I (ln t) dt,

(m 4)(m)

− + +
=

 +  


2

1

r '
t m 3

5 4 8
r '

32ln(m ) (m 4) e t
I (ln t) dt

(m 4)(m)

− +  +
= −

 +  
  and 

2

1

r '
t m 1

6 2 4
r '

8ln( ) (m 2) e t
I (ln t) dt

(m 2)(m)

− +  +
=

 +  
  

IV. Relative Risk(s) 

 
To investigate the properties of the proposed estimator under LLF and SELF, we can compare the 

relative risks of the estimator with the MLE Î( )  . 

The relative risk of 1I ( )  under LLF compared to Î( ) is 

LLF
LLF 1

LLF 1

ˆR (I( ))
RR (I ( ))

R (I ( ))


 =
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Additionally, under SELF, the relative risk of 1I ( )  w.r.t. Î( )    

SELF
SELF 1

SELF 1

ˆR (I( ))
RR (I ( ))

R (I ( ))


 =


 

 

V. Numerical Computations And Graphical Analysis 

We observe that the expressions LLF 1RR (I ( )) , SELF 1RR (I ( ))  depend on m, a,  and  . To show 

the performance of this considered estimator under LLF and SELF, we have taken some values of 

these constants as given in Sahni and Kumar [17], i.e. a= -1,-2,-3, 1, 2, 3, m= 5, 8,   = 0.01, 0.05,   = 

0.2(0.2)1.6. 

Tables I and Table II and Figures 1 to 9 present the behaviour of relative risks of the estimators 

w.r.t   for varing values of m and a. 

i. For m 5, 1%=  =  and for all values of ‘a’ (+ve as well as -ve), 1I ( ) yield better results than the 

conventional estimator for the whole scale of  .  

ii. Further if we switch  to 5%, the same type of behaviour comes under notice for RR. However, 

the magnitude of relative risk values was smaller as compared to 1% =  values. 

iii. We have also taken 10% =  in order to explore the pattern at a higher level of significance and 

it is found that 1I ( )  still gives the better results as compared to the conventional estimator but the 

magnitude of RR values become lower but even then it remains mostly above unity. 

iv. After comparing these relative risk values, a lower value i.e. 1% =  is preferred. Similarly, 

when varing the value of ‘m’, higher relative risk values were obtained for m 5=  compared to 

other values of m as 8, 10 and 12. Thus, a smaller ‘m’ is advised. Higher RR shows better control 

over risk. Therefore, we can conclude that selecting appropriate values of ‘a’ and ‘  ’ will result in 

a higher gain in terms of performance of 1I ( ).  

Table 1: Relative risk of estimator 1I ( )  under LLF 
 

 

0.01 =                                                                                           

    m     a    0.2   0.4   0.6    0.8    1   1.2   1.4   1.6 

 

 

 

    5 

   -1 0.8691 0.8752 1.4756 3.3650 5.0900 3.1115 1.7132 1.0904 

   -2 0.8377 0.9944 1.8405 3.6257 4.0222 2.6767 1.7404 1.2428 

   -3 0.8736 1.2787 2.1754 2.7952 2.4724 1.9211 1.5151 1.2499 

    1 0.9372 0.8379 1.1346 2.2949 4.3252 2.9016 1.3766 0.7639 

    2  0.9577 0.8565 1.0623 1.9232 3.5375 2.6712 1.2620 0.6679 

    3 0.9719 0.8839 1.0193 1.6401 2.8481 2.4762 1.2146 0.6180 

 

 

 

    8 

   -1 1.0069 0.8980 1.0572 2.1134 3.9030 2.4284 1.2104 0.7311 

   -2 0.9973 0.9040 1.2027 2.5358 4.0023 2.4178 1.3193 0.8545 

   -3 0.9767 0.9473 1.4398 2.9114 3.5163 2.2076 1.3708 0.9713 

    1 1.0087 0.9249 0.9117 1.5052 2.9003 2.1365 0.9868 0.5372 

    2  1.0071 0.9420 0.8762 1.2987 2.3910 1.9649 0.9106 0.4742 

    3 1.0054 0.9573 0.8546 1.1334 1.9524 1.8058 0.8639 0.4319 

 

 

 

   11 

   -1 1.0187 1.0611 0.9111 1.4573 2.8868 2.0297 0.9805 0.5833 

   -2 1.0267 1.0523 0.9918 1.7352 3.2296 2.0971 1.0709 0.6729 

   -3 1.0372 1.0475 1.1122 2.0790 3.3339 2.0673 1.1487 0.7707 

    1 1.0093 1.0687 0.8137 1.0657 2.0586 1.7619 0.8195 0.4447 

    2  1.0066 1.0655 0.7829 0.9228 1.6948 1.6147 0.7613 0.3962 

    3 1.0048 1.0588 0.76 0.8022 1.3789 1.4688 0.7199 0.36 
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0.05 =  

 

 

 

    5 

   -1 1.0199 1.1053 1.4350 2.0083 2.1672 1.6757 1.1896 0.8884 

   -2 1.0424 1.2268 1.6473 2.0502 1.9381 1.5303 1.1891 0.9676 

   -3 1.1248 1.4121 1.6966 1.7260 1.5322 1.3070 1.1320 1.0110 

    1 1.0110 1.0230 1.1380 1.5109 1.8990 1.6317 1.0834 0.7190 

    2  1.0084 1.0128 1.0600 1.2972 1.6186 1.5025 1.0252 0.6601 

    3 1.0060 1.0084 1.0108 1.1343 1.3559 1.3457 0.9790 0.6262 

 

 

 

    8 

   -1 1.0342 1.1634 1.1458 1.4046 1.7189 1.4285 0.9832 0.7179 

   -2 1.0519 1.1999 1.2771 1.6149 1.7994 1.4232 1.0246 0.7930 

   -3 1.0808 1.2642 1.4479 1.7602 1.7307 1.3597 1.0488 0.8670 

    1 1.0158 1.1184 0.9860 1.0348 1.3173 1.2794 0.8806 0.5906 

    2  1.0111 1.0987 0.9389 0.8979 1.0998 1.1502 0.8300 0.5442 

    3 1.0078 1.0794 0.9064 0.7884 0.9040 1.0001 0.7804 0.5101 

 

 

 

   11 

   -1 1.0134 1.2545 1.0347 1.0059 1.3095 1.2578 0.8958 0.6649 

   -2 1.0219 1.2928 1.1210 1.1756 1.4639 1.2951 0.9356 0.7257 

   -3 1.0371 1.3347 1.2319 1.36 1.5541 1.2935 0.9693 0.7898 

    1 1.0056 1.1827 0.9107 0.7387 0.9443 1.0796 0.8089 0.5627 

    2  1.0039 1.1499 0.8650 0.6358 0.7728 0.9503 0.7631 0.5232 

    3 1.0028 1.12 0.8277 0.5483 0.6191 0.8031 0.7127 0.4911 

Table 2: Relative risk of estimator 1I ( )  under SELF 

α=0.01 
                                                                        

   m     0.2    0.4    0.6    0.8    1    1.2    1.4    1.6 

   5 0.9076 0.8377 1.2584 2.7861 5.0209 3.1094 1.5457 0.9090 

   8 1.0094 0.9085 0.9679 1.7697 3.4465 2.3068 1.0904 0.6229 

  11 1.0131 1.0673 0.8548 1.2395 2.4663 1.9064 0.8938 0.5068 

α=0.05  

   5 1.0140 1.0478 1.2579 1.7682 2.1238 1.7027 1.1452 0.7987 

   8 1.0231 1.1390 1.0523 1.2039 1.5375 1.3767 0.9329 0.6491 

  11 1.0085 1.2178 0.9664 0.8608 1.1278 1.1841 0,8531 0.6102 

α=0.1  

   5 1.0384 1.1420 1.2480 1.4216 1.4917 1.2946 1.0070 0.7862 

   8 1.0206 1.2009 1.0874 1.0031 1.0871 1.0675 0.8857 0.7147 

  11 1.0059 1.2144 1.0072 0.7265 0.7954 0.9163 0.8559 0.7344 

 

5.1. Graphs of Relative Risk for 1I ( )  under LLF 

 

Figure 1: For α=0.01 
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Figure 2: For α=0.05 

 

 

 
Figure 3: For α=0.1 

 

 

 
Figure 4: For m=5 
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Figure 5: For m=8 

 

 
 

Figure 6: For α=0.01 

 

5.2. Graphs of Relative Risk for 1I ( )  under SELF 

 
Figure 7: For α=0.01 
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Figure 8: For m=5 

 

 
Figure 9: For m=11 

 

VI. Conclusion 

 
In this paper, a new Huntsberger type shrinkage entropy estimator for Exponential distribution 

have been proposed and its properties have been examined under different loss functions. On the 

basis of relative risk, it is found that the proposed estimator gives better results for smaller values 

of degrees of freedom and level of significance. And it is also concluded that the proposed 

estimator gives better results than the estimator proposed by Sahni and Kumar [17], when the 

estimated value is close to the actual value. 
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Abstract 

 

This paper introduces a novel probability distribution called the Sabur distribution (SD), 

characterized by two parameters. It offers a comprehensive analysis of this distribution, 

encompassing various properties such as moments, moment-generating functions, deviations from 

the mean and median, mode and median, Bonferroni and Lorenz curves, Renyi entropy, order 

statistics, hazard rate functions, and mean residual functions. Furthermore, the paper delves into 

the graphical representation of the probability density function, cumulative distribution function 

and hazard rate function to provide a visual understanding of their behavior. The distribution's 

parameters are estimated using the well-known method of maximum likelihood estimation. The 

paper also showcases the practical applicability of the Sabur distribution through real-world 

examples, underscoring its performance and relevance in various scenarios. 

 

Keywords: Moments, moment generating function, reliability measures, mean deviations, 

maximum likelihood function. 

 

Subject classification: 60E05, 62E15. 

 

1. Introduction 
 

Statistical distributions hold great importance in fields such as biomedicine, engineering, economics, 

and various scientific domains. Two widely recognized distributions, namely the exponential 

distribution and the gamma distribution, are often used as lifetime distributions for analyzing 

statistical data. Among these, the exponential distribution stands out due to its singular parameter 

and several intriguing statistical properties, notably its memory less property and constant hazard 

rate characteristic. In the realm of statistics, numerous extensions of these distributions have been 

developed to enhance their flexibility and applicability. One notable contribution to this literature is 

attributed to Lindley in [10]. He introduced a one-parameter lifetime distribution characterized by 

the following probability density function: 

𝑓(𝑦, 𝛽) =
𝛽2

(1 + 𝛽)
(1 + 𝑦)𝑒−𝛽𝑦    ; 𝑦 > 0 , 𝛽 > 0 

In recent years, researchers have made significant advancements in the study of the Lindley 

distribution and have proposed various one- and two-parameter distributions to model complex 

datasets effectively. A notable contribution was made by Ghitney et al. [8], who conducted an 

extensive study on the Lindley distribution. They demonstrated that the Lindley distribution 
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outperforms the exponential distribution when applied to modelling waiting times before bank 

customer service. Additionally, they highlighted that the contours of the hazard rate function for the 

Lindley distribution show an increasing trend, while the mean residual life function is a decreasing 

function of the random variable. Zakerzadeh and Dolati [16] and Nadarajah et al. [12] extended the 

Lindley distribution by introducing new parameters and evaluating the performance of these 

extended distributions using various datasets. Over the years, several authors have made 

contributions to modify the Lindley distribution. For instance, Merovci [11] introduced the 

transmuted Lindley distribution and discussed its various properties. Sharma et al. [14, 15] 

introduced the inverse of the Lindley distribution and examined its unique characteristics. Shanker 

et al. [13] developed a novel lifetime distribution called the Akash distribution, which demonstrated 

superior performance compared to both the exponential and Lindley distributions. Ahmad et al. [1] 

introduced the transmuted inverse Lindley distributions and conducted analyses of their properties, 

Ahmad et al [2, 3], Bhaumik, D. K. et al. [5], Flaih, A  et al. [6]. Each of these distributions comes with 

its own set of advantages and limitations when applied to analyzing complex data. 

In this paper, the authors aim to introduce a new two-parameter distribution that offers greater 

flexibility and improved results compared to existing distributions. The probability density function 

of this newly established two-parameter distribution is as follows 

𝑓(𝑦, 𝛼, 𝛽) =
𝛽2

𝛼𝛽+𝛽2+1
 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦   ; 𝑦 > 0, 𝛼, 𝛽 > 0                               (2.1) 

The proposed distribution is named as Sabur distribution which is a combination of two 

distributions, Exponential distribution having scale parameter 𝛽 and gamma distribution having 

shape parameter 3 with scale parameter 𝛽.With combining proportion as 
𝛽(𝛼+𝛽)

𝛼𝛽+𝛽2+1
 

                   𝑓(𝑦, 𝛼, 𝛽) = 𝜋𝜙1(𝑦, 𝛽) + (1 − 𝜋)𝜙2(𝑦, 𝛽)  

Where                         𝜋 =
𝛽(𝛼+𝛽)

𝛼𝛽+𝛽2+1
            

 𝜙1(𝑦, 𝛽) = 𝛽𝑒−𝛽𝑦 ,           𝜙2(𝑦, 3, 𝛽) =
𝛽3

2
𝑦2𝑒−𝛽𝑦                  

The cumulative distribution function of (1.1) is given as 

       𝐹(𝑦, 𝛼, 𝛽) = 1 − [1 +
𝛽2𝑦2+2𝛽𝑦

2(𝛼𝛽+𝛽2+1)
] 𝑒−𝛽𝑦 ; 𝑦 > 0, 𝛼, 𝛽 > 0                        (2.1) 

    

 
Fig 1: The graph of p.d.f of SD for different values of parameters. 
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Fig 2: The graph of c.d.f of SD for different values of parameters. 

 

2.  Statistical Properties 
 

In this section different properties of the Sabur distribution has been discussed such as moments, 

moment generating function, mode and median. 

 

2.1 Moments of Sabur Distribution 
 

Let us consider 𝑌 be a random variable follows the Sabur distribution then the 𝑟𝑡ℎ moment of the 

distribution denoted by 𝜇𝑟
′  is given as 

𝜇𝑟
′ = 𝐸(𝑌𝑟) = ∫ 𝑦𝑟𝑓(𝑦, 𝛼, 𝛽)𝑑𝑦                                                                                    

∞

0

 

= ∫ 𝑦𝑟
𝛽2

𝛼𝛽 + 𝛽2 + 1
 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦  𝑑𝑦

∞

0

          

             =
𝛽2

𝛼𝛽 + 𝛽2 + 1
∫ {(𝛼 + 𝛽)𝑦𝑟 +

𝛽

2
 𝑦𝑟+2} 𝑒−𝛽𝑦  𝑑𝑦                

∞

0

 

   =
𝛽2

𝛼𝛽 + 𝛽2 + 1
 [
(𝛼 + 𝛽)Γ(𝑟 + 1)

𝛽𝑟+1
+
Γ(𝑟 + 3)

2𝛽𝑟+2
]             

Substituting  𝑟 = 1,2,3,4 , we obtain first four moments of the distribution about origin.  

𝜇1
′ =

𝛼𝛽 + 𝛽2 + 3

𝛽(𝛼𝛽 + 𝛽2 + 1)
   , 𝜇2

′ =
2(𝛼𝛽 + 𝛽2 + 6)

𝛽2(𝛼𝛽 + 𝛽2 + 1)
                      

   𝜇3
′ =

6(𝛼𝛽 + 𝛽2 + 10)

𝛽3(𝛼𝛽 + 𝛽2 + 1)
  , 𝜇4

′ =
24(𝛼𝛽 + 𝛽2 + 15)

𝛽4(𝛼𝛽 + 𝛽2 + 1)
                    

Therefore, the mean and variance of Sabur distribution is given as   

𝜇 = 𝐸(𝑌) =
𝛼𝛽 + 𝛽2 + 3

𝛽(𝛼𝛽 + 𝛽2 + 1)
                                                     

The central moments of Sabur distribution can be obtained by using above raw moments 

𝜇2 = 𝜎
2 = 𝜇2

′ − (𝜇1
′ )2 =

𝛼2𝛽2 + 2𝛼𝛽3 + 8𝛼𝛽 + 𝛽4 + 8𝛽2 + 3

𝛽2(𝛼𝛽 + 𝛽2 + 1)2
    

𝜇3 =
2𝛽6 + 60𝛽4 + 6𝛼𝛽5 + 4𝛼2𝛽4 + 2𝛼(𝛼2 + 𝛼 + 59)𝛽3 + 2(30𝛼2 + 39)𝛽2 + 78𝛼𝛽 + 36

𝛽3(𝛼𝛽 + 𝛽2 + 1)3
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𝜇4  =
{
 

 
 9𝛽8 + 222𝛽6 − 24𝛼𝛽8 − 12𝛼𝛽7(4𝛼 + 3) − 6𝛼2𝛽6(4𝛼 − 13)

−6𝛼𝛽5(2𝛼2 − 33𝛼 − 95) + 𝛼2𝛽4(2𝛼2 + 24𝛼 + 894) + 𝛼𝛽3(534𝛼2 − 144𝛼 + 852)
       

+𝛽2(702𝛼 + 690) + 812𝛼𝛽 + 495 }
 

 

𝛽4(𝛼𝛽 + 𝛽2 + 1)4
   

Coefficient of variation (C.V)=
𝜎

𝜇1
′ =

√𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3

𝛽(𝛼𝛽+𝛽2+1)(𝛼𝛽+𝛽2+3)
 

Coefficient of skewness (√𝛽1)=
𝜇3

(𝜇2)
3
2⁄
=

2𝛽6+60𝛽4+6𝛼𝛽5+4𝛼2𝛽4+2𝛼(𝛼2+𝛼+59)𝛽3+2(30𝛼2+39)𝛽2+78𝛼𝛽+36

(𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3)
3
2⁄

 

Coefficient of kurtosis (𝛽2) =
𝜇4

(𝜇2)
2 
=

{

 9𝛽8+222𝛽6−24𝛼𝛽8−12𝛼𝛽7(4𝛼+3)−6𝛼2𝛽6(4𝛼−13)

−6𝛼𝛽5(2𝛼2−33𝛼−95)+𝛼2𝛽4(2𝛼2+24𝛼+894)+𝛼𝛽3(534𝛼2−144𝛼+852)
       

+𝛽2(702𝛼+690)+812𝛼𝛽+495

}

(𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3)
 

Index of dispersion(𝛾) =
𝜎2

𝜇1
′ =

𝛼2𝛽2+2𝛼𝛽3+8𝛼𝛽+𝛽4+8𝛽2+3

𝛽(𝛼𝛽+𝛽2+1)(𝛼𝛽+𝛽2+3)
 

 

2.2. Moment Generating Function of Sabur Distribution 
 

Let us consider 𝑌 be a random variable follows the Sabur distribution then moment generating 

function of the distribution denoted by 𝑀𝑌(𝑡) is given as 

𝑀𝑌(𝑡) = 𝐸(𝑒
𝑡𝑦) = ∫ 𝑒𝑡𝑦𝑓(𝑦, 𝛼, 𝛽)𝑑𝑦                                                                                                

∞

0

 

=
𝛽2

𝛼𝛽 + 𝛽2 + 1
∫ (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−(𝛽−𝑡)𝑦𝑑𝑦               

∞

0

 

=
𝛽2

𝛼𝛽 + 𝛽2 + 1
{
(𝛼 + 𝛽)

(𝛽 − 𝑡)
+

𝛽

(𝛽 − 𝑡)3
}                                  

    =
1

𝛼𝛽 + 𝛽2 + 1
{(𝛼𝛽 + 𝛽2)∑(

𝑡

𝛽
)
𝑘

+∑(
𝑘 + 2
𝑘

) (
𝑡

𝛽
)
𝑘

∞

𝑘=0

∞

𝑘=0

} 

=∑
2(𝛼𝛽 + 𝛽2) + (𝑘 + 1)(𝑘 + 2)

2(𝛼𝛽 + 𝛽2 + 1)

∞

𝑘=0

 (
𝑡

𝛽
)
𝑘

                         

 

2.3. Mode and Median of Sabur Distribution 
 

The value or number in a data set, which are occurring repeatedly may be termed as mode while 

median is the middle value or number in a data set arranged in ascending order. 

Taking logarithm to the pdf of Sabur distribution,we get 

           log 𝑓(𝑦, 𝛼, 𝛽) = 2 log 𝛽 − log(𝛼𝛽 + 𝛽2 + 1) + log (𝛼 + 𝛽 +
𝛽

2
𝑦2) − 𝛽𝑦 

Differentiate w.r.t 𝑦 ,we get 
𝜕 log 𝑓(𝑦, 𝛼, 𝛽)

𝜕𝑦
=

𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
− 𝛽                                                                         

Equating  
𝜕 log𝑓(𝑦,𝛼,𝛽)

𝜕𝑦
= 0 , we get 

𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
− 𝛽 = 0 ⇒  𝑦 =

1 ± √1 − 2𝛽(𝛼 + 𝛽)

𝛽
                                           

𝑀0 = 𝑦0 =
1 ± √1 − 2𝛽(𝛼 + 𝛽)

𝛽
                                         

Using the empirical formula, we obtain median as 

𝑀𝑒𝑑𝑖𝑎𝑛 =
1

3
 𝑀0 +

2

3
 𝜇                                                                           

=
1 ± √1 − 2𝛽(𝛼 + 𝛽)

3𝛽
+
2(𝛼𝛽 + 𝛽2 + 3)

3𝛽(𝛼𝛽 + 𝛽2 + 1)
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3. Reliability Measures 

 
Suppose Y be a continuous random variable with cdf (𝑦) , 𝑦 ≥ 0 .then its reliability function which 

is also called survival function is defined as 

𝑆(𝑦) = 𝑝𝑟(𝑌 > 𝑦) = ∫ 𝑓(𝑦)
∞

0

𝑑𝑦 = 1 − 𝐹(𝑦)        

Therefore, the survival function is given  

                     S(y, α, β) = 1 − F(y, α, β) =  [1 +
β2y2+2βy

2(αβ+β2+1)
] e−βy     (3.1) 

The hazard function of a random variable 𝑦 is given as  

 𝐻(𝑦, 𝛼, 𝛽) =
𝑓(𝑦, 𝛼, 𝛽)

𝑆(𝑦, 𝛼, 𝛽)
                                                                                     (3.2) 

Using equation (1.1) and equation (3.1) in (3.2), we get 

H(y, α, β) =
2β2 (α + β +

β
2
y2)

[β2y2 + 2βy + 2(αβ + β2 + 1)]
                                                      

Also, the reverse hazard function denoted as ℎ𝑟(𝑦, 𝛼, 𝛽) can be obtained as 

   hr(y, α, β) =
f(y, α, β)

F(y, α, β)
                                                                                                 (3.3) 

Using (1.1) and (1.2) in equation (3.3), we get 

           hr(y, α) =
2β2 (α + β +

β
2
y2) e−βy

2(αβ + β2 + 1) − [β2y2 + 2βy + 2(αβ + β2 + 1)]e−βy 
                        

    

 

  
Fig 3: The graph of hazard rate function of SD for different values of parameters. 

 

The mean residual function denoted by𝑚(𝑦), and is defined as 

𝑚(𝑦) =
1

1 − 𝐹(𝑦)
 ∫ 1 − 𝐹(𝑧)

∞

𝑦

𝑑𝑧                                                                      

Therefore, the mean residual function of Sabur distribution is given by 

𝑚(𝑦) =
𝛽2𝑦2 + 4𝑦𝛽 + 2(𝛼𝛽 + 𝛽2 + 3)

𝛽[𝛽2𝑦2 + 2𝑦𝛽 + 2(𝛼𝛽 + 𝛽2 + 1)]
                                                 

We observe that        𝐻(0) = 𝑓(0) =
𝛼𝛽2

𝛼𝛽+𝛽2+1
  and 𝑚(0) = 𝜇 =

𝛼𝛽+𝛽2+3

𝛽(𝛼𝛽+𝛽2+1)
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4. Order Statistics of Sabur Distribution 
 

Let us consider 𝑌1, 𝑌2…𝑌𝑛 be random sample of sample size n from sabur distribution with pdf (1.1) 

and cdf (1.2).Then the pdf of 𝑘𝑡ℎ order statistics is given by 

𝑓𝑌(𝑘)(𝑦) =
𝑛!

(𝑘 − 1)! (𝑛 − 𝑘)!
 [𝐹(𝑦)]𝑘−1 [1 − 𝐹(𝑦)]𝑛−𝑘 𝑓(𝑦)      , 𝑘 = 1,2,3, … . , 𝑛    (4.1) 

Now substituting the equation (1.1) and (1.2) in equation (4.1), we obtain the 𝑘𝑡ℎ order statistics as 

𝑓𝑌(𝑘)(𝑦) =
𝑛! 𝛽2 (𝛼 + 𝛽 +

𝛽
2
𝑦2) 𝑒−𝛽𝑦          

(𝑘 − 1)! (𝑛 − 𝑘)! (𝛼𝛽 + 𝛽2 + 1)
 {1 − [1 +

𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑘−1

 

                                              {[1 +
𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑛−𝑘

                                           (4.2) 

 

The pdf of first order statistics 𝑌1 is given as 

𝑓𝑌(1)(𝑦) =
𝑛𝛽2 (𝛼 + 𝛽 +

𝛽
2
𝑦2) 𝑒−𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
{[1 +

𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑛−1

                      

And the pdf of 𝑛𝑡ℎ order statistics 𝑌𝑛 is given as 

𝑓𝑌(𝑛)(𝑦) =
𝑛𝛽2 (𝛼 + 𝛽 +

𝛽
2
𝑦2) 𝑒−𝛽𝑦

(𝛼𝛽 + 𝛽2 + 1)
 {1 − [1 +

𝛽2𝑦2 + 2𝛽𝑦

2(𝛼𝛽 + 𝛽2 + 1)
] 𝑒−𝛽𝑦}

𝑛−1

              

 

5. Renyi Entropy 
 

If 𝑌 is a continuous random variable having probability density function 𝑓(𝑦, 𝛼, 𝛽), then Renyi 

entropy is defined as 

                                          𝑇𝑅(𝛿) =
1

1−𝛿
 𝑙𝑜𝑔{∫ 𝑓𝛿(𝑦)𝑑𝑦

∞

0
}     

         where 𝛿 > 0 and δ ≠ 1 

Thus, the Renyi entropy for Sabur distribution (1.1) , is given as 

 𝑇𝑅(𝛿) =
1

1 − 𝛿
 𝑙𝑜𝑔 {∫ [

𝛽2

𝛼𝛽 + 𝛽2 + 1
(𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦]

𝛿

𝑑𝑦
∞

0

}                            

=
1

1 − 𝛿
 𝑙𝑜𝑔 {

𝛽2𝛿(𝛼 + 𝛽)𝛿

(𝛼𝛽 + 𝛽2 + 1)𝛿
∫ (1 +

𝛽

2(𝛼 + 𝛽)
𝑦2)

𝛿

𝑒−𝛽𝛿𝑦𝑑𝑦
∞

0

}    

=
1

1 − 𝛿
 𝑙𝑜𝑔 {

𝛽2𝛿(𝛼 + 𝛽)𝛿

(𝛼𝛽 + 𝛽2 + 1)𝛿
∫ ∑(

𝛿
𝑟
) (

𝛽

2(𝛼 + 𝛽)
𝑦2)

𝑟

𝑒−𝛽𝛿𝑦𝑑𝑦

∞

𝑟=0

∞

0

} 

 =
1

1 − 𝛿
 𝑙𝑜𝑔 {∑(

𝛿
𝑟
)
𝛽2𝛿+𝑟(𝛼 + 𝛽)𝛿−𝑟

2𝑟(𝛼𝛽 + 𝛽2 + 1)𝛿
∫ 𝑦2𝑟𝑒−𝛽𝛿𝑦𝑑𝑦
∞

0

∞

𝑟=0

}                     

=
1

1 − 𝛿
 𝑙𝑜𝑔 {∑(

𝛿
𝑟
)
𝛽2𝛿+𝑟 (𝛼 + 𝛽)𝛿−𝑟

2𝑟(𝛼𝛽 + 𝛽2 + 1)𝛿
 
Γ(2𝑟 + 1)

(𝛽𝛿)2𝑟+1

∞

𝑟=0

}                              

=
1

1 − 𝛿
 𝑙𝑜𝑔 {∑(

𝛿
𝑟
)
𝛽2𝛿−(𝑟+1) (𝛼 + 𝛽)𝛿−𝑟

2𝑟−1(𝛼𝛽 + 𝛽2 + 1)𝛿
 
r Γ(2𝑟)

𝛿2𝑟+1

∞

𝑟=0

}                             

 

6. Mean Deviation from Mean of Sabur Distribution 
 

The quantity of scattering in a population is evidently measured to some extent by the totality of the 

deviations. Let 𝑌 be a random variable from Sabur distribution with mean 𝜇 then the mean deviation 

from mean is defined as. 

𝐷(𝜇) = 𝐸(|𝑌 − 𝜇|) = ∫ |𝑌 − 𝜇| 𝑓(𝑦) 𝑑𝑦                                                                            
∞

0
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               = ∫ (𝜇 − 𝑦) 𝑓(𝑦)
𝜇

0

𝑑𝑦 + ∫ (𝑦 − 𝜇)
∞

𝜇

𝑓(𝑦)𝑑𝑦                                                                    

             =  𝜇 ∫ 𝑓(𝑦)
𝜇

0

𝑑𝑦 − ∫ 𝑦 𝑓(𝑦)
𝜇

0

𝑑𝑦 + ∫ 𝑦𝑓(𝑦)
∞

𝜇

𝑑𝑦 − ∫ 𝜇𝑓(𝑦)
∞

𝜇

𝑑𝑦                               

 = 𝜇𝐹(𝜇) − ∫ 𝑦 𝑓(𝑦)
𝜇

0

𝑑𝑦 − 𝜇[1 − 𝐹(𝜇)] + ∫ 𝑦𝑓(𝑦)
∞

𝜇

𝑑𝑥                                   

= 2𝜇𝐹(𝜇) − 2∫ 𝑦𝑓(𝑦)
𝜇

0
𝑑𝑦                                                                                                        (6.1) 

Now  

∫ 𝑦𝑓(𝑦)
𝜇

0

𝑑𝑦 =  
𝛽2

𝛼𝛽 + 𝛽2 + 1
 ∫ 𝑦 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦 𝑑𝑦

𝜇

0

                                           

After solving the integral, we get 

∫ 𝑦𝑓(𝑦)
𝜇

0

𝑑𝑦 = 𝜇 − {
𝜇3𝛽3 + 3𝜇2𝛽2 + 6𝜇𝛽 + 𝛽(𝛼 + 𝛽)(𝜇𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝜇       (6.2) 

Now substituting equation (6.2) in equation (6.1), we get 

𝐷(𝜇) =
{𝜇2𝛽2 + 6𝜇𝛽 + 𝛽2(1 − 𝜇𝛼 − 𝜇𝛽) + 𝛽(𝛼 − 2𝜇) + 6}

𝛽(𝛼𝛽 + 𝛽2 + 1)
 𝑒−𝛽𝜇     

 

7. Mean Deviation from Median of Sabur Distribution 
  

Let 𝑌 be a random variable from Sabur distribution with median 𝑀 then the mean deviation from 

median is defined as. 

𝐷(𝑀) = 𝐸(|𝑌 −𝑀|) = ∫ (𝑀 − 𝑦)
𝑀

0

𝑑𝑦 + ∫ (𝑦 − 𝑀)
∞

𝑀

𝑑𝑦                                                                          

        = 𝑀𝐹(𝑀) − ∫ 𝑦𝑓(𝑥)
𝑀

0

𝑑𝑦 − 𝑀[1 − 𝐹(𝑀)] + ∫ 𝑦𝑓(𝑦)𝑑𝑦            
∞

𝑀

 

                               = 𝜇 − 2∫ 𝑦𝑓(𝑦)
𝑀

0

𝑑𝑦                                                                                            (7.1) 

Now  

 ∫ 𝑦𝑓(𝑦)
𝑀

0

𝑑𝑦 =   
𝛽2

𝛼𝛽 + 𝛽2 + 1
 ∫ 𝑦 (𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦 𝑑𝑦

𝑀

0

                                                  

After solving the integral, we get 

∫ 𝑦𝑓(𝑦)
𝑀

0

𝑑𝑦 = 𝜇 − {
𝑀3𝛽3 + 3𝑀2𝛽2 + 6𝑀𝛽 + 𝛽(𝑀 + 𝛽)(𝑀𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝑀   (7.2)   

Now substituting equation (7.2) in equation (7.1), we get 

𝐷(𝑀) = {
𝑀3𝛽3 + 3𝑀2𝛽2 + 6𝑀𝛽 + 𝛽(𝑀 + 𝛽)(𝑀𝛽 + 1) + 6

𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝑀 − 𝜇   

 

8. Bonferroni and Lorenz Curves 
 

In economics the relation between poverty and economy is well studied by using Bonferroni and 

Lorenz curves. Besides that these curves have been used in different fields such as reliability, 

insurance and biomedicine.  

The Bonferroni curve, 𝐵(𝑠)is given as. 

                  𝐵(𝑠) =
1

𝑠𝜇
∫ 𝑦 𝑓(𝑦)
𝑡

0

𝑑𝑦                                                                                              (8.1)  

Or 

                      𝐵(𝑠) =
1

𝑠𝜇
∫ 𝐹−1(𝑦)𝑑𝑦                                                                                                             
𝑠

0

 

And Lorenz curve, 𝐿(𝑠) is given as. 
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      𝐿(𝑠) =
1

𝜇
∫ 𝑦𝑓(𝑦)
𝑡

0

𝑑𝑦                                                                                     (8.2) 

Or  

𝐿(𝑠) =
1

𝜇
∫ 𝐹−1(𝑦)
𝑠

0

𝑑𝑦                                                                                    

Where 𝐸(𝑋) = 𝜇 and 𝑡 = 𝐹−1(𝑠). 

Now  

∫ 𝑦𝑓(𝑦)
𝑡

0

𝑑𝑦 = 𝜇 − {
𝑡3𝛽3 + 3𝑡2𝛽2 + 6𝑡𝛽 + 𝛽(𝛼 + 𝛽)(𝑡𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)
} 𝑒−𝛽𝑡      (8.3) 

Substituting equation (8.3) in equations (8.1) and (8.2), we get 

     𝐵(𝑠) =
1

𝑠
[1 − {

𝑡3𝛽3 + 3𝑡2𝛽2 + 6𝑡𝛽 + 𝛽(𝛼 + 𝛽)(𝑡𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)𝜇
} 𝑒−𝛽𝑡] 

And  

    𝐿(𝑠) =  [1 − {
𝑡3𝛽3 + 3𝑡2𝛽2 + 6𝑡𝛽 + 𝛽(𝛼 + 𝛽)(𝑡𝛽 + 1) + 6

2𝛽(𝛼𝛽 + 𝛽2 + 1)𝜇
} 𝑒−𝛽𝑡] 

 

9. Estimation of Parameters of Sabur Distribution 
 

Suppose 𝑌1, 𝑌2, 𝑌3, … 𝑌𝑛be random samples of size n from Sabur distribution. Then the likelihood 

function of Sabur distribution is given as. 

 𝑙 =∏𝑓(𝑦𝑖 , 𝛼. 𝛽)

𝑛

𝑖=1

                                                                                   

             =∏{
𝛽2

𝛼𝛽 + 𝛽2 + 1
(𝛼 + 𝛽 +

𝛽

2
𝑦2) 𝑒−𝛽𝑦 }                                       

𝑛

𝑖=1

 

        = (
𝛽2

𝛼𝛽 + 𝛽2 + 1
)

𝑛

∏(𝛼 + 𝛽 +
𝛽

2
𝑦𝑖
2) 𝑒−𝛽∑ 𝑦𝑖

𝑛
𝑖=1                       

𝑛

𝑖=1

 

The log likelihood function is given by 

log 𝑙 = 2𝑛 log 𝛽 − 𝑛 log(𝛼𝛽 + 𝛽2 + 1) +∑log (𝛼 + 𝛽 +
𝛽

2
𝑦𝑖
2) − 𝛽∑𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

Now, differentiating partially w. r. t parameters 𝛼 and 𝛽 respectively we get 

𝜕 log 𝑙

𝜕𝛼
=

−𝑛𝛽

𝛼𝛽 + 𝛽2 + 1
+∑

1

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

                                                   

𝜕 log 𝑙

𝜕𝛽
=
2𝑛

𝛽
−

𝑛(𝛼 + 2𝛽)

𝛼𝛽 + 𝛽2 + 1
+∑

(1 +
𝑦𝑖
2

2
)

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

−∑𝑦𝑖

𝑛

𝑖=1

                        

Now solving  
𝜕 log 𝑙

𝜕𝛼
= 0 ,

𝜕 log 𝑙

𝜕𝛽
= 0, we get 

−𝑛𝛽

𝛼𝛽 + 𝛽2 + 1
+∑

1

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

= 0                                                                  (9.1) 

Also  

2𝑛

𝛽
−

𝑛(𝛼 + 2𝛽)

𝛼𝛽 + 𝛽2 + 1
+∑

(1 +
𝑦𝑖
2

2
)

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

− 𝑛�̅� = 0                        (9.2) 

It is obvious that equations (9.1) and (9.2), are not in closed form, hence cannot be solved analytically 

for 𝛼 and   . In order to find the value of 𝛼 and 𝛽 it is imperative to apply iterative methods. The MLE 

of the parameters denoted as �̂�(𝛼,̂ �̂�) of 𝜃(𝛼, 𝛽) can be obtained by using Newton-Raphson method, 

bisection method, secant method etc. 

Since the MLE of �̂� follows asymptotically normal distribution which is given as 
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                                    √𝑛(�̂� − 𝜃) → 𝑁(0, 𝐼−1(𝜃))                                                       (9.3) 

Where 𝐼−1(𝜃) is the limiting variance – covariance matrix of �̂� and 𝐼(𝜃) is a 2 × 2 Fisher information 

matrix I,e 

𝐼(𝜃) = −
1

𝑛

[
 
 
 
 𝐸 (

𝜕2 log 𝑙

𝜕2𝛼
) 𝐸 (

𝜕2 log 𝑙

𝜕𝛼 𝜕𝛽
)

𝐸 (
𝜕2 log 𝑙

𝜕𝛽 𝜕𝛼
) 𝐸 (

𝜕2 log 𝑙

𝜕2𝛽
)
]
 
 
 
 

                                                   

Where  

𝜕2 log 𝑙

𝜕2𝛼
=

𝑛𝛽2

(𝛼𝛽 + 𝛽2 + 1)2
−∑

1

(𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2)
2

𝑛

𝑖=1

                                          

𝜕2 log 𝑙

𝜕2𝛽
=
−2𝑛

𝛽2
+
𝑛(𝛼2 + 2𝛽2 + 2𝛼𝛽)

𝛼𝛽 + 𝛽2 + 1
 −∑

(1 +
𝑦𝑖
2

2
)
2

(𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2)
2

𝑛

𝑖=1

                 

𝜕2 log 𝑙

𝜕𝛼𝜕𝛽
=
𝜕2 log 𝑙

𝜕𝛽𝜕𝛼
=

𝑛(𝛽2 − 1)

𝛼𝛽 + 𝛽2 + 1
−∑

(1 +
𝑦𝑖
2

2
)

𝛼 + 𝛽 +
𝛽
2
𝑦𝑖
2

𝑛

𝑖=1

                                

Hence the approximate 100(1 − 𝜓)% confidence interval for 𝛼 and 𝛽 are respectively given by  

�̂� ± 𝑧𝜓
2

√𝐼𝛼𝛼
−1(�̂�)   , �̂� ± 𝑧𝜓

2
√𝐼𝛽𝛽

−1(�̂�)                        

Where 𝑧𝜓
2

 is the 𝜓𝑡ℎ denotes percentile the standard distribution 

 

10.  Application 
 

In this section, the importance and flexibility of the formulated distribution is illustrated by using 

a real life data set.  And the distribution is compared with Lindley distribution (LD), Shanker 

Distribution (SHD), Exponential distribution (ED), inverse Lindley distribution (ILD) and 

Nadarajah-Haghighi distribution (HD). In order to compare the two distribution models, we 

consider the criteria like AIC (Akaike information criterion), CAIC (corrected Akaike information 

criterion) and BIC (Bayesian information criterion. The better distribution corresponds to lesser 

AIC, CAIC and BIC values. 

 

Data: The data set is the strength data of glass of the aircraft window reported by Fuller et al [7]. The 

data are  

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 

29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 

45.381. 

 

From above Table 1, it has been observed that the Sabur distribution have the lesser AIC, CAIC, 

-logL and BIC values. Hence we can conclude that Sabur distribution leads to a better fit as 

compared to Lindley distribution (LD), Shanker Distribution (SHD), Exponential distribution 

(ED), inverse Lindley distribution (ILD) and Nadarajah-Haghighi distribution (HD) 
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Table 1:  MLE’s, - ln L, AIC, CAIC and BIC of the fitted distributions of data sets 

Model Parameter 

Estimates 

S.E -log L AIC CAIC BIC 

Sabur  

Distribution 

𝜶 = 𝟎. 𝟑𝟓𝟎𝟏 

 
𝜷 = 𝟎. 𝟎𝟗𝟔𝟕 

𝜶 = 𝟎. 𝟎𝟏𝟐𝟒 
 
𝜷 = 𝟎. 𝟎𝟎𝟖𝟎 

120.44 244.89 245.32 247.76 

LD 𝛼 = 0.0630 

 

𝛼 = 0.0412 

 
127.0 256.0 256.1 257.4 

SD 𝛼 = 0.0647 

 

𝛼 = 0.0475 

 
126.15 254.3 254.5 255.8 

ED 𝛼 = 0.0355 

 

𝛼 = 0.1507 

 
137.25 276.7 276.8 277.9 

ILD 𝛼 = 30.153 𝛼 = 5.2523 

 
137.24 276.49 276.63 277.92 

NHD  𝛼 = 0.0026 

 
𝛽 = 0.0008 

𝛼 = 9.8991 

 
𝛽 = 3.2255 

128.59 261.19 264.06 261.62 

 

. 

11. Concluding Remarks 
 

In this paper, we introduce a new two-parameter lifetime distribution called the "Sabur distribution. 

We explore various mathematical properties of this distribution, including its shape, moments, 

hazard rate, mean residual life functions, mean deviations, and order statistics. Additionally, we 

derive expressions for the Bonferroni and Lorenz curves as well as the Renyi entropy measure for 

the proposed distribution. Furthermore, we discuss the method of maximum likelihood estimation 

for estimating the distribution's parameter. To demonstrate the practical utility and superiority of 

the Sabur distribution over existing alternatives such as the Shanker, Nadarajah-Haghighi, 

exponential, Lindley, and inverse Lindley distributions, we perform goodness-of-fit tests using 

criteria like the Akaike Information Criterion (AIC), Consistent Akaike Information Criterion 

(CAIC), and Bayesian Information Criterion (BIC) on real lifetime datasets. 
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Abstract 

The present study obtains the time-dependent solution of a two-dimensional state Markovian queuing 

model with infinite capacity, correlated servers, multiple vacation, balking and catastrophes. Inter 

arrival times follow an exponential distribution with parameters λ and service times follow Bivariate 

exponential distribution BVE (μ, μ, ν) where μ is the service time parameter and ν is the correlation 

parameter. Both the servers go on vacation with probability one when there are no units in the system 

and the servers keeps on taking a sequence of vacations of random length each time the system becomes 

empty, till it finds at least one unit in the system to start each busy period referred as multiple vacation. 

The unit finds a long queue and decides not to join it; may be considered as balking. All the units are 

ejected from the system when catastrophes occur and the system becomes temporarily unavailable. The 

system reactivates when new units arrive. Occurrence of catastrophes follow Poisson distribution with 

rate ξ. Laplace transform approach has been used to find the time-dependent solution. By using 

differential-difference equations, the recursive expressions for probabilities of exactly i arrivals and j 

departures by time t are obtained. The probabilities of this model are consistent to the results of 

“Pegden & Rosenshine”. The model estimates the total expected cost, total expected profit and obtained 

the optimal values by varying time t for cost and profit. These important key measures give a greater 

understanding of the model behaviour. Numerical analysis and graphical representations have been 

done by using Maple software. 

Keywords: Correlated servers, Multiple vacation, Balking, Catastrophes 

1. Introduction

A two-dimensional state model has been used to deal with complicated transient analysis of some 

queuing problem. This model is used to examine the queuing system for exact number of arrivals and 

departures by given time t. In case of a one-dimensional state model, it is difficult to determine how 

many units have entered, left or waiting units in the system, while the two-dimensional state model 

exactly identifies the numbers of units that have entered, left, or waiting in the system. The idea of 

two-dimensional state model for the M/M/1 queue was first given by Pegden & Rosenshine [4]. After 

that, the two-dimensional state model has attracted the attention of a lot of researchers. 
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A system of queues in series or in parallel should ordinarily be studied taking into account 

the interdependence of servers, but this leads to very complicated mathematics even in very simple 

case of systems. So to reduce such complications of analysis the servers are considered to be 

independent. But this independence of servers cause impact in time bound operations such as vehicle 

inspection counters, toll booths, large bars and cafeterias etc. where for efficient system functioning 

the correlation between the servers contributes significantly. Nishida et al. [3] investigated a two-

server Markovian queue assuming the correlation between the servers and obtained steady-state 

results for a limited waiting space capacity of two units. Sharma [6] investigated the transient solution 

to this problem again using only two units waiting spaces capacity. Sharma and Maheswar [8] 

developed a computable matrix approach to study a correlated two-server Markovian queue with 

finite waiting space. They also derived waiting time distribution for steady-state and obtained the 

transient probabilities through steady-state by using a matrix approach and Laplace transform 

approach.  

Various studies have been conducted to evaluate different performance measures to verify the 

robustness of the system in which a server takes a break for a random period of time i.e. vacation. 

When the server returns from a vacation and finds the empty queue, it immediately goes on another 

vacation i.e. multiple vacation and if it finds at least one waiting unit, then it will commence service 

according to the prevailing service policy. Different queuing systems with multiple vacation have 

been extensively investigated and effectively used in several fields including industries, computer & 

communication systems, telecommunication systems etc. Different types of vacation policies are 

available in literature such as single vacation, multiple vacation and working vacations. Researches on 

multiple vacation systems have grown tremendously in the last several years. Cooper [2] was the first 

to study the vacation model and determined the mean waiting time for a unit arrive at a queue served 

in cyclic order. Doshi [5] and Wu & Zhang [15] have done outstanding researches on queuing system 

with vacations and released some excellent surveys. Xu and Zhang [12] considered the Markovian 

multi-server queue with a single vacation (e, d)-policy. They also formulated the system as a quasi-

birth-and-death process and computed the various stationary performance measures. Altman and 

Yechiali [13] studied the customer’s impatience in queues with server vacations. Kalidaas et al. [18] 

obtained the time-dependent solution of a single server queue with multiple vacation. Ammar [19] 

analysed M/M/1 queue with impatient units and multiple vacation. Sharma and Indra [24] 

investigated the dynamic aspects of a two-dimensional state single server Markovian queuing system 

with multiple vacation and reneging. Gahlawat et al. [25] studied the time-dependent first in first out 

queuing model with a single intermittently available server and variable-sized bulk arrivals and bulk 

departures by using the Laplace transform and inverse transform approaches. 

Queues with balking have numerous applications in everyday life. Balking occurs if units 

avoid joining the queue, when they perceive the queue to be too long. Long queues at cash counters, 

ticket booths, banks, barber shops, grocery stores, toll plaza etc. Kumar et al. [7] obtained the time-

dependent solution of an M/M/1 queue with balking. Chauhan and Sharma [10] derived an expression 

of the probability distribution for the number of customers in the service station for the M/M/r 

queuing model with balking and reneging. Zhang and Yue [11] analysed the M/M/1/N queuing 

system with balking, reneging and server vacation. Sharma and Kumar [17] studied a single-server 

Markovian feedback queuing system with balking. Bouchentouf and Medjahari [23] presented a 

single-server feedback queuing system under two differentiated multiple vacation with balking and 

obtained steady-state probabilities for the model. They also derived some important performance 

measures, including the average number of customers in the system, the average number of 

customers in the queue, the average balking rate etc.  

Queuing systems with catastrophes are also getting a lot of attention nowadays and may be 

used to solve a wide range of real-world problems. Catastrophes may occur at any time, resulting in 

the loss of units and the deactivation of the service centre, because they are totally unpredictable in 
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nature. Such type of queues with catastrophes plays an important role in computer programs, 

telecommunication and ticket counters etc. For example, virus or hacker attacking a computer system 

or program causing the system fail or become idle. Chao [9] obtained steady-state probability of the 

queue size and a product form solution of a queuing network system with catastrophes. Kumar et al. 

[14] obtained time-dependent solution for M/M/1 queuing system with catastrophes. Kalidass et al.

[16] derived explicit closed form analytical expressions for the time-dependent probabilities of the

system size. Dharamraja and Kumar [20] studied Markovian queuing system with heterogeneous

servers and catastrophes. Chakravarthy [21] studied delayed catastrophic model in steady state using

the matrix analytic method. Sampath and Liu [22] studied an M/M/1 queue with reneging,

catastrophes, server failures and repairs using modified Bessel function, Laplace transform and

probability generating function approach. Souza and Rodriguez [26] worked on fractional M/M/1

queue model with catastrophes.

With above concepts in mind, we analyse a two-dimensional state M/M/2 queuing model 

with correlated servers, multiple vacation, balking and catastrophes. 

Consider a situation in a company, where two colleagues work independently on the same 

project i.e. they are not able to share the information of project with each other and not helping each 

other. Then it will take a long time to complete the project, some information will be lost due to 

communication gap and the results obtained are not much reliable. But if both of them work together 

(interdependent servers) i.e. they will share all information of project and help each other, then there 

are more chances that it will take less time and results obtained will be more reliable. Hence 

interdependent servers are more reliable than the independent servers. When servers work 

interdependently then they termed as correlated servers. After project completion, the colleagues may 

take a break, when they find there is no further work, considered as vacation. During the project, if 

someone wants to work with these colleagues on different project but due to their busy schedule 

decides not to join them; it may be considered as balking. If due to disease or any other reason the 

colleagues are not working this may be considered as catastrophes. 

The present paper has been structured as follows. In section 1 introduction and in section 2 

the model assumptions, notations and description are given. In section 3 the differential-difference 

equations to find out the time-dependent solution are given and section 4 describes important 

performance measures. Section 5 investigates the total expected cost function and total expected profit 

function for the given queuing system. In section 6, we present the numerical results in the form of 

tables and section 7 contains the tables and graphs to illustrate the impact of various factors on 

performance measures. The last section contains discussion on the findings and suggestions for 

further work. 

2. Model Assumptions, Notations and Description

 Arrivals follow Poisson distribution with parameter λ.

 There are two servers and the service times follow Bivariate exponential distribution

BVE* (μ, μ, ν) where μ is the service time parameter and ν is the correlation parameter.

 The vacation time of the server follows an exponential distribution with parameter

w.

 On arrival a unit either decides to join the queue with probability β or not to join the

queue with probability 1-β.

 Occurrence of catastrophes follows Poisson distribution with parameter ξ.

 Various stochastic processes involved in the system are statistically independent of

each other.

*introduced by Marshall and Olkin [1]
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Initially, the system starts with zero units and the server is on vacation, i.e. 

  10,0,0 VP    ;   00,0,0 BP
 
(1) 
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jifor
ji
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,  ;     ijfor
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 0 (2) 

The Two-Dimensional State Model 

  tP Vji ,, The probability that there are exactly i arrivals and j departures by time t and the server

is on vacation. 

  tP Bji ,, The probability that there are exactly i arrivals and j departures by time t and the server

is busy in relation to the queue. 

  tP ji, The probability that there are exactly i arrivals and j departures by time t.

3. The Differential-Difference Equations for the Queuing Model under Study

            tPtPtPtPtP
dt

d
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The preceding equations (3) to (6) are solved by taking the Laplace transforms 

together with initial condition 
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 It is seen that 
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and hence 
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a verification. 

4. Performance Measures

(i) The Laplace transform of 	  tPi. of the probability that exactly i units arrive by time t; when

initially there are no unit in the system is given by 
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0
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And its inverse Laplace transform is:  ��.(�) =
�����(���)�

�!
 (16) 

The arrivals follow a Poisson distribution as the probability of the total number of arrivals is not 

affected by vacation time of the server. 

(ii)  tP j.  is the probability that exactly j units have been served by time t. In terms of  tP ji,  we

have 

   tPtP
ji

jij 




 ,. (17)
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(iii) The Laplace transform of mean number of arrival is:  
)( 2.

0 s
sPi i

i








  (18) 

And its inverse Laplace transform is:   ttiP
i

i 


0
.  (19) 

(iv)The mean number of units in the queue is calculated as follows

     tPNtPNtQ B
N

V
N

L 









10

)1-(    (20) 

  Where N = i–j. 

5. Cost Function and Profit Function

For the given queuing system, the following notations have been used to represent various costs to 

find out the total expected cost and total expected profit per unit time: 

Let 

CH: Cost per unit time for unit in the queue. 

CB: Cost per unit time for a busy server. 

Cμ: Cost of service per unit time. 

CV: Cost per unit time when the server is on vacation. 

If I is the total expected amount of income generated by delivering a service per unit time then 

(i) Total expected cost per unit at time t is given by

       CtPCtPCtQCtTC VVBBLH ****)(   (21) 

(ii) Total expected income per unit at time t is given by

      tPItPItTE BVI **-1**         (22) 

(iii) Total expected profit per unit at time t is given by

    )(- tTCtTEtTE IP      (23) 

6. Numerical Results

6.1. Numerical Validity Check 

(i) For the state when the server is on vacation
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(ii) For the state when the server is busy in relation to the queue
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(iii) The probability  tPi.  that exactly i units arrive by time t is 
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(iv) A numerical validity check of inversion of )(, sP ji  is based on the relationship

  Pr {i arrivals in (0, t)}  
     tPtP
i

te
i

j
ji

it

.
0

,

-

!
 







 (27) 

The probabilities of this model shown in last column of table 1 given below are consistent to the last column of 

“Pegden & Rosenshine” [4] by keeping constant values of w=1, ξ=0, β=1 and ν=0.25 shown in table 

Table-1: Numerical validity check of inversion of )(, sP ji  

7. Sensitivity Analysis

This part focuses on the impact of the arrival rate (λ), service rate (μ), vacation rate (w), correlation 

parameter (ν),  balking probability (1-β) and catastrophes rate (ξ) on the probability when the server is 

on vacation (PV(t)), probability when the server is busy (PB(t)), expected queue length (QL(t)), total 

expected cost (TC(t)), total expected income (TEI(t)) and total expected profit (TEP(t)) at time t. To 

determine the numerical results for the sensitivity of the queuing system one parameter varied while 

keeping all the other parameters fixed and taking cost per unit time for unit in the queue=10, cost per 

unit time for a busy server=8, cost per unit time when the server is on vacation=5, cost of service per 

unit time=4, total expected amount of income=100 and number of units in the system=8. 

λ μ t i  
!

*-

i

te
it 

���,�,�(�)

�

���

 ���,�,�(�)

���

���

 ���,�(�)
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1 2 3 1 0.149361 0.129196 0.020165 0.149361 

1 2 3 3 0.224041 0.158076 0.065965 0.224041 

1 2 3 5 0.100818 0.057803 0.043016 0.100818 

2 2 3 1 0.014873 0.012865 0.002008 0.014873 

2 2 3 3 0.089235 0.062961 0.026274 0.089235 

2 2 3 5 0.160623 0.092090 0.068533 0.160623 

1 2 4 1 0.073263 0.065390 0.007873 0.073263 

1 2 4 3 0.195367 0.148001 0.047366 0.195367 

1 2 4 5 0.156294 0.100998 0.055296 0.156294 

2 2 4 1 0.002683 0.002395 0.000288 0.002683 

2 2 4 3 0.028626 0.021686 0.006940 0.028626 

2 2 4 5 0.091604 0.059195 0.032409 0.091604 

2 4 4 5 0.091604 0.073396 0.018208 0.091604 

1 2 4 4 0.195367 0.136810 0.058557 0.195367 

1 2 3 6 0.050409 0.025824 0.024585 0.050409 
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7.1. Impact of Arrival Rate (λ) 

We examine the behaviour of the queuing system using measures of effectiveness along with cost and 

profit analysis by varying arrival parameter with time, while keeping all other parameters fixed; μ=5, 

w=3, ν=0.25, ξ=0.0001 and β=1. In table 2, we observe that as the value of λ increases with time t, PB(t), 

QL(t), TC(t), TEI(t) and TEP(t) increases but PV(t) decreases. 

Table-2: Measures of Effectiveness versus λ 

t λ PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 1.00 0.8550827 0.1449161 0.4618549 30.0532913 72.45805 42.4047587 

2 0.8451239 0.1546386 0.4824289 30.2870173 77.31930 47.0322827 

3 0.8427343 0.1534636 0.4779723 30.2211033 76.73180 46.5106967 

4 0.8414541 0.1511897 0.4597185 30.0139731 75.59485 45.5808769 

5 0.8403975 0.1485374 0.4210111 29.6003977 74.26870 44.6683023 

1 1.10 0.8427120 0.1572855 0.5062882 30.5347260 78.64275 48.1080240 

2 0.8321542 0.1673763 0.5277639 30.7774204 83.68815 52.9107296 

3 0.8279867 0.1661032 0.5192708 30.6614671 83.05160 52.3901329 

4 0.8278007 0.1634085 0.4891622 30.3378935 81.70425 51.3663565 

5 0.8264318 0.1599687 0.4312130 29.7240386 79.98435 50.2603114 

1 1.20 0.8306335 0.1693615 0.5505522 31.0135815 84.68075 53.6671685 

2 0.8194239 0.1797142 0.5725572 31.2604051 89.85710 58.5966949 

3 0.8165607 0.1777708 0.5579035 31.0840049 88.88540 57.8013951 

4 0.8147421 0.1744598 0.5117878 30.5872669 87.22990 56.6426331 

5 0.8130834 0.1702170 0.4412499 29.8396520 85.10850 55.2688480 

Figure 1 shows the variation of cost with time by varying arrival rate while keeping the other 

parameters fixed. 

Figure 2 shows the variation of profit with time by varying arrival rate while keeping the other 

parameters fixed. 
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7.2. Impact of Service Rate (μ) 

The behaviour of the queuing system measures of effectiveness along with cost and profit analysis by 

varying μ with time t, while keeping all other parameters fixed; λ=1, w=3, ν=0.25, ξ=0.0001 and  β=1. In 

table 3, we observe that as the value of μ increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP(t) 

increases but PV(t) decreases. 

Table-3: Measures of Effectiveness versus μ 

t μ PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 2.00 0.7369325 0.2630663 0.6177736 19.9669289 52.613260 32.6463311 

2 0.6762899 0.3234726 0.7090209 21.0594393 64.694520 43.6350807 

3 0.6699756 0.3262223 0.7084844 21.0445004 65.244460 44.1999596 

4 0.6667285 0.3239153 0.6797388 20.7273529 64.783060 44.0557071 

5 0.6649823 0.3189526 0.6203355 20.0798873 63.790520 43.7106327 

1 2.50 0.7655438 0.2344550 0.5762758 21.4661170 58.613750 37.1476330 

2 0.7243328 0.2754297 0.6356142 22.1812436 68.857425 46.6761814 

3 0.7211500 0.2750479 0.6303259 22.1093922 68.761975 46.6525828 

4 0.7177601 0.2728837 0.6050702 21.8275721 68.220925 46.3933529 

5 0.7134529 0.2684820 0.5531662 21.2567825 67.120500 45.8637175 

1 3.00 0.7897314 0.2102673 0.5431578 23.0623734 63.080190 40.0178166 

2 0.7609462 0.2388163 0.5847948 23.5632094 71.644890 48.0816806 

3 0.7587053 0.2374926 0.5788371 23.4818383 71.247780 47.7659417 

4 0.7561697 0.2354741 0.5561210 23.2258513 70.642230 47.4163787 

5 0.7501976 0.2317373 0.5088841 22.6937274 69.521190 46.8274626 

Figure 3 shows the variation of cost with time by varying service rate while keeping the other 

parameters fixed. 

Figure 4 shows the variation of profit with time by varying service rate while keeping the other 

parameters fixed. 
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7.3. Impact of Vacation Rate (w) 

We observe that the behaviour of the queuing system measures of  effectiveness along with cost and 

profit by varying w with time t, while keeping all other parameters fixed; λ=1, μ=5, ν=0.25, ξ=0.0001 

and β=1. In table 4, we observe that as the value of w increases with time t, PB(t), QL(t), TC(t), TEI(t) 

and TEP(t) increases but PV(t) decreases. 

Table-4: Measures of Effectiveness versus w 

t w PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 3.00 0.8550827 0.1449161 0.4618549 30.0532913 72.45805 42.4047587 

2 0.8451239 0.1546386 0.4824289 30.2870173 77.31930 47.0322827 

3 0.8427343 0.1534636 0.4779723 30.2211033 76.73180 46.5106967 

4 0.8414541 0.1511897 0.4597185 30.0139731 75.59485 45.5808769 

5 0.8403975 0.1495374 0.4210111 29.6083977 74.76870 45.1603023 

1 4.00 0.8462857 0.1537131 0.4015245 29.4763783 76.85655 47.3801717 

2 0.8411568 0.1586057 0.4083021 29.5576506 79.30285 49.7451994 

3 0.8389988 0.1571991 0.4040524 29.4931108 78.59955 49.1064392 

4 0.8378927 0.1547511 0.3886032 29.3135043 77.37555 48.0620457 

5 0.8321931 0.1517418 0.3558749 28.9336489 75.87090 46.9372511 

1 5.00 0.8415912 0.1584076 0.3613974 29.0891908 79.20380 50.1146092 

2 0.8386494 0.1611131 0.3640154 29.1223058 80.55655 51.4342442 

3 0.8365297 0.1596682 0.3602046 29.0620401 79.83410 50.7720599 

4 0.8345421 0.1575017 0.3464072 28.8967961 78.75085 49.8540539 

5 0.8300883 0.1548467 0.3171915 28.5611301 77.42335 48.8622199 

Figure 5 shows the variation of cost with time by varying vacation rate while keeping the other 

parameters fixed. 

Figure 6 shows the variation of profit with time by varying vacation rate while keeping the other 

parameters fixed. 
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7.4. Impact of Correlation Parameter (ν) 

We see that the behaviour of the queuing system using measures of  effectiveness along with cost and 

profit analysis by varying ν with time t, while keeping all other parameters fixed; λ=1, μ=5, w=3, 

ξ=0.0001 and β=1. In table 5, we observe that as the value of ν increases with time t, PB(t), QL(t), TC(t), 

TEI(t) and TEP(t) increases but PV(t) decreases. 

Table-5: Measures of Effectiveness versus ν 

t ν PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 0.25 0.8550827 0.1449161 0.4618549 30.0532913 72.45805 42.4047587 

2 0.8451239 0.1546386 0.4824289 30.2870173 77.31930 47.0322827 

3 0.8427343 0.1534636 0.4779723 30.2211033 76.73180 46.5106967 

4 0.8414541 0.1511897 0.4597185 30.0139731 75.59485 45.5808769 

5 0.8403975 0.1475374 0.4210111 29.5923977 73.76870 44.1763023 

1 0.50 0.8612902 0.1387085 0.4555353 29.9714720 69.35425 39.3827780 

2 0.8522410 0.1475215 0.4756205 30.1975820 73.76075 43.5631680 

3 0.8497855 0.1464124 0.4712878 30.1331047 73.20620 43.0730953 

4 0.8472639 0.1433799 0.4532707 29.9160657 71.68995 41.7738843 

5 0.8456738 0.1392611 0.4150683 29.4931408 69.63055 40.1374092 

1 0.75 0.8670184 0.1329803 0.4497140 29.8960744 66.49015 36.5940756 

2 0.8587324 0.1410301 0.4694068 30.1159708 70.51505 40.3990792 

3 0.8562189 0.1399790 0.4651801 30.0527275 69.98950 39.9367725 

4 0.8544773 0.1361665 0.4473789 29.8355075 68.08325 38.2477425 

5 0.8524003 0.1315346 0.4096382 29.4106603 65.76730 36.3566397 

Figure 7 shows the variation of cost with time by varying correlation parameter while keeping the 

other parameters fixed. 

Figure 8 shows the variation of profit with time by varying correlation parameter while keeping the 

other parameters fixed. 

RT&A, No 4 (76) 
Volume 18, December 2023 

903



 

  

Sharvan Kumar, Indra 

COST & PROFIT ANALYSIS OF TWO-DIMENSIONAL STATE 

7.5. Impact of Joining Probability (β) 

We see that the behaviour of the queuing system measures of effectiveness along with cost and profit 

analysis by varying β with time t. While keeping all other parameters fixed; λ=1, μ=5, w=3, ν=0.25 and 

ξ=0.0001. In table 6, we observe that as the value of β increases with time t, PB(t), QL(t), TC(t), TEI(t) 

and TEP(t) increases but PV(t) decreases. 

Table-6: Measures of Effectiveness versus β 

t β PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 0.65 0.8876633 0.0990264 0.2868039 28.0985667 49.51320 21.4146333 

2 0.8840590 0.1068084 0.3068008 28.3427702 53.40420 25.0614298 

3 0.8880948 0.1069225 0.3132331 28.4281850 53.46125 25.0330650 

4 0.8895493 0.1065419 0.3154762 28.4548437 53.27095 24.8161063 

5 0.8871414 0.1053500 0.3133391 28.4118980 52.67500 24.2631020 

1 0.75 0.8767085 0.1125818 0.3349279 28.6334759 56.29090 27.6574241 

2 0.8720983 0.1210185 0.3563601 28.8922405 60.50925 31.6170095 

3 0.8751685 0.1210047 0.3615710 28.9595901 60.50235 31.5427599 

4 0.8746624 0.1200356 0.3610913 28.9445098 60.01780 31.0732902 

5 0.8732121 0.1183004 0.3533446 28.8459097 59.15020 30.3042903 

1 0.85 0.8671069 0.1257705 0.3844829 29.1865275 62.88525 33.6987225 

2 0.8608738 0.1347799 0.4064078 29.4466862 67.38995 37.9432638 

3 0.8623335 0.1344946 0.4090881 29.4785053 67.24730 37.7687947 

4 0.8615314 0.1334039 0.4037567 29.4124552 66.70195 37.2894948 

5 0.8598611 0.1310590 0.3868133 29.2159105 65.52950 36.3135895 

Figure 9 shows the variation of cost with time by varying joining probability while keeping the other 

parameters fixed. 

Figure 10 shows the variation of profit with time by varying joining probability while keeping the 

other parameters fixed. 
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7.6. Impact of Catastrophes Rate (ξ) 

We see that the behaviour of the queuing system measures of  effectiveness along with cost and profit 

analysis by varying ξ with time t, while keeping all other parameters fixed; λ=1, μ=5, w=3, ν=0.25 and 

β=1. In table 7, we observe that as the value of ξ increases with time t, PB(t), QL(t), TC(t), TEI(t) and 

TEP(t) increases but PV(t) decreases. 

Table-7: Measures of Effectiveness versus ξ 

t ξ PV(t) PB(t) QL(t) TC(t) TEI(t) TEP(t) 

1 0.0001 0.8550827 0.1449161 0.4618549 30.0532913 72.45805 42.4047587 

2 0.8451239 0.1546386 0.4824289 30.2870173 77.31930 47.0322827 

3 0.8427343 0.1534636 0.4779723 30.2211033 76.73180 46.5106967 

4 0.8414541 0.1491897 0.4597185 29.9979731 74.59485 44.5968769 

5 0.8403975 0.1445374 0.4210111 29.5683977 72.26870 42.7003023 

1 0.0002 0.8550885 0.1449103 0.4618404 30.0531289 72.45515 42.4020211 

2 0.8451309 0.1546316 0.4824119 30.2868263 77.31580 47.0289737 

3 0.8427420 0.1534569 0.4779565 30.2209302 76.72845 46.5075198 

4 0.8414661 0.1491850 0.4597091 29.9979015 74.59250 44.5945985 

5 0.8404256 0.1445380 0.4210193 29.5686250 72.26900 42.7003750 

1 0.0003 0.8550943 0.1449045 0.4618259 30.0529665 72.45225 42.3992835 

2 0.8451380 0.1546246 0.4823948 30.2866348 77.31230 47.0256652 

3 0.8427496 0.1534503 0.4779406 30.2207564 76.72515 46.5043936 

4 0.8414782 0.1491802 0.4596998 29.9978306 74.59010 44.5922694 

5 0.8404537 0.1445385 0.4210276 29.5688525 72.26925 42.7003975 

Figure 11 shows the variation of cost with time by varying catastrophes rate while keeping the other 

parameters fixed. 

Figure 12 shows the variation of profit with time by varying catastrophes rate while keeping the other 

parameters fixed. 
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8. Discussion

Figure 1 & figure 2 show the variation of cost & profit respectively with time t by varying λ(=1.00, 

1.10, 1.20). The value of both cost & profit increases with increase in t upto t(=2.00) then decreases 

slightly. Hence we get the optimal value at t=5 when λ=1.00 and t=2 when λ=1.20 for minimum cost 

and maximum profit respectively. 

        Figure 3 show the variation of cost with time t by varying μ(=2.00, 2.50, 3.00). The value of 

cost increases with increase in t upto t(=2.00) then decreases slightly. The variation in profit with time 

t represented in figure 4 by varying μ(=2.00, 2.50, 3.00). The profit increases with increase in time up to 

(i) t=3 when μ=2.00 (ii) t=2 when μ=2.50, 3.00 respectively then decreases slightly. Hence we get the

optimal value at t=1 when μ=2.00 and t=2 when μ=3.00 for minimum cost and maximum profit

respectively.

   Figure 5 & figure 6 show the variation of cost & profit respectively with time t by varying 

w(=3.00, 4.00, 5.00). The value of both cost & profit increases with increase in t upto t(=2.00) then 

decreases slightly. Hence we get the optimal value at t=5 when w=5.00 and t=2 when w=5.00 for 

minimum cost and maximum profit respectively. 

   Figure 7 & figure 8 show the variation of cost & profit respectively with time t by varying 

ν(=0.25, 0.50, 0.75). The value of both cost & profit increases with increase in t upto t(=2.00) then 

decreases slightly. Hence we get the optimal value at t=5 when v=0.75 and t=2 when ν=0.25 for 

minimum cost and maximum profit respectively. 

   Figure 9 show the variation of cost with time t by varying β(=0.65, 0.75, 0.85). The value of 

cost increases with increase in t upto (i) t=4 when β=0.65 (ii) t=3.00 when β=0.75, 0.85 respectively then 

decreases slightly. The variation in profit with time t represented in figure 10 by varying β(=0.65, 0.75, 

0.85). The profit increases with increase in time up to t(=2.00) then decreases slightly. Hence we get 

the optimal value at t=1 when β=0.65 and t=2 when β=0.85 for minimum cost and maximum profit 

respectively. 

   Figure 11 & figure 12 show the variation of cost & profit respectively with time t by varying 

ξ(=0.0001, 0.0002, 0.0003). The value of both cost & profit increases with increase in t upto t(=2.00) then 

decreases slightly. Hence we get the optimal value at t=5 when ξ=0.0001 and t=2 when ξ=0.0001 for 

minimum cost and maximum profit respectively. Finally, the variation in rate of catastrophes shows 

the minor effect on cost and profit. 

9. Conclusions and Future Work

The time-dependent solution, for the two-dimensional state M/M/2 queuing model with correlated 

servers, multiple vacation, balking and catastrophes, has been obtained. The model estimates the total 

expected cost and total expected profit, the best optimal value is at t=1 when service rate(=2.00) and 

t=2 when arrival rate(=1.20) for minimum cost and maximum profit respectively. These key measures 

give a greater understanding of model behaviour. Finally, the numerical analysis clearly demonstrates 

the meaningful impact of the correlated servers and multiple vacation on the system performances. 

This model finds its applications in communication networks, computer networks, supermarkets, 

hospital administrations, financial sector and many others.  

As part of future study, this model may be examined further for Non-Markovian queues, bulk 

queues, tandem queues etc. 
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Abstract 

 

The paper examines the specificity of the modern intelligent control systems. The Big Data technology 

and Data Science algorithms open up great potential in train traffic management based on hazard 

prevention. An example is given of high reliability and acceptable accuracy of hazardous railway 

infrastructure failure prediction using methods based on artificial intelligence. A great deal of 

attention is given to economical methods of ensuring the required levels of functional safety of train 

control systems. For that purpose, the efficiency of the digital twin-based method was evaluated. It is 

shown that, under certain conditions, this method allows significantly reducing the cost of a control 

system while achieving an acceptably high level of functional safety. The method of virtual second 

channels is based on the same principle of using information redundancy rather than hardware 

redundancy. The paper presents and analyses the method of virtual second channels in respect to an 

axle counter-based train control system. It is established that it is possible to ensure a safety integrity 

level of an entire control system with a virtual second channel at least as high as SIL3. The above 

methods ensure, on the one hand, a reduction of the amount of equipment and significantly lower 

cost of the systems and, on the other hand, requires the creation of additional software and 

substantiation of the acceptability of the achieved level of functional safety. This matter is within the 

competence of the developer of the control system. 

 

Keywords: Control system, functional safety, artificial intelligence, safety case, wrong-side failure 

prediction, digital twin, virtual channels.  

 

1. Introduction 
 

Amid the ongoing digital transformation, the development of modern computer-based control and 

management systems in railway transportation involves an accelerated deployment of a whole 

number of innovative solutions and a wide use of off-the-shelf products, which eventually makes 

systems more complex and opens up a number of opportunities in terms of automation, including 

automatic train operation, and can affect the functional safety indicators. In order to maintain these 

parameters at a specified level and to minimize the impact of human factor, the railway community 

is increasingly using formal methods and automated means of engineering, diagnostics and 

monitoring at all stages of a system’s life cycle. A major factor of safety and dependability is the 

standardisation of a system’s architecture, interfaces, open-source design and testing software, 

including the standardisation of approaches to remote lab testing of products by different 

manufacturers to prove the reliability of operation at the boundaries of systems of various 

909

mailto:Igor-shubinsky@yandex.ru


 
I.B. Shubinsky, E.N. Rozenberg, H. Schäbe 
INNOVATIVE METHODS OF ENSURING THE FUNCTIONAL 
SAFETY OF TRAIN CONTROL SYSTEMS 

RT&A, No 4 (76) 
Volume 18, December 2023  

 

manufacturers [1]. In the railway industry, all of the above caused the development of an intelligent 

system for adaptive automated train traffic management (IMS). Figure 1 shows the basic structure 

diagram of the IMS that is designed for the purpose of managing train traffic. 

 

 

Fig. 1. Structure diagram of the intelligent automated management system 

 

The generic part of the intelligent automated management system (IMS) (in Fig. 1, shown with a 

dashed line) contains knowledge and data bases, a planner, application software and a dialogue 

interface. The structure of this part of the system is static, is practically not exposed to external 

disturbances, operates with algorithms with time-invariant parameters, etc. Automatic train 

operation is implemented using the IMS that, along with the generic part, contains elaborate 

machine vision, adaptive measurement, control and cognitive graphics facilities. The machine vision 

and cognitive graphics are implemented partially through machine learning of neural networks. 

Artificial intelligence methods play an important role in recognising complex objects or under 

difficult circumstances. All of that as a whole defines the following specific features of the IMS [2]: 

1. Branching system architecture. 

2. Availability of machine vision and effect of weather conditions. 

3. Close information interaction between the system and the environment via the information 

communication channels. 

4. Presence of a large and not always definite number of vulnerabilities within a system closely 

connected to the environment. 

5. A high probability of evolving environmental effects and resulting changed system 

behaviour. 

6. The random nature of the control algorithm parameters as the result of neural network 

training using the incoming information flows and accumulated databases. 

7. Branching software of both the generic part of the system, and, especially, rolling stock 

detection and control facilities. 

It should be noted that one of the key features of IMS is that, along the branching architecture, the 

connections within the system change significantly. The latter noticeably reduces the capability to 

prove the safety of the intelligent system. 

The use of accumulated knowledge and generation on new knowledge originated as far back as in 
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the 1980’s. The main goal was to generate expert evaluations for the purpose of solving a number of 

applied problems, primarily those associated with control/management. The development of 

computer technology allowed using Big Data in railway transportation for the purpose of collecting 

and processing massive amounts of raw data [3-5], etc. For the purpose of working with such data, 

mathematical statistics and Data Science-based machine learning methods are used, which allows 

generating prediction models and eventually optimally solving the tasks at hand.   

Activities aimed at increasing the intellectual level of railway transportation facilities condition 

analytics using Big Data-based methods [6 – 9, 11 – 16], etc. cover a number of tasks, such as 

predictive maintenance of the Lastochka EMUs, route optimisation, passenger flow management, 

locomotive operation and repair, prediction of infrastructure facility condition. The accumulated 

experience of automation of data collection and management, application of Data Science algorithms 

allows not only predicting objective events, but defining the development strategies of data 

collection systems. It is the initial data that ultimately define the correctness of the prediction results. 

Moreover, as of late more often than not the nature, scope and discreteness of initial data define the 

exact problem that can be solved. For such objects as the Lastochka EMUs and Sapsan high-speed 

trains that feature a large number of condition monitoring sensors, the uncertainty of an object’s 

condition between the data acquisition periods is minimised. That allows employing a number of 

data analysis methods, solving various problems from the evaluation of the probability of an event 

to a train’s up time. 

The above capabilities allow solving totally new problems as part of functional safety analysis and 

preparation of safety cases of such innovative systems. This paper provides a number of examples 

of successful application of modern methods. 

 

2. Predicting wrong-side failures using artificial intelligence 
 

Information on infrastructure facilities of the Russian Railways lacks temporal continuity as the 

majority of data collection processes is not automated and is performed manually. As regards track 

facilities, automated systems for diagnostics and remote monitoring of track condition are widely 

used, which enables predictive analysis with large volumes of initial data. For each of the three 

Russian railways selected for the research, predictive analysis models were constructed based on the 

following classification algorithms: XGboost, RForest, SVM, kNN, AdaBoost and  Logit. Those 

algorithms differ in terms of their conceptual approach and mathematical content, which allows 

matching an optimal algorithm to each data sample. For each model, target hyperparameters were 

selected for subsequent optimization as part of cross-validation. 

Accuracy analysis of each of the above machine learning algorithms, as well as comparison of the 

accuracy of various binary classification algorithms were conducted based on the following 

measure:  

TP, number of correctly predicted category objects with mark “1”. 

Note: Mark “1” denotes the onset of a wrong-side failure. 

FN, number of objects with true category “1”, yet predicted “0”. 

Note: Mark “0” denotes the operable state (absence of hazardous failure). 

FP, number of objects with true category “0”, yet predicted “1”. 

TN, number of correctly predicted categories with mark “0”. 

The primary quality measures of the binary classification models are:  
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− Overall accuracy of the algorithm that defines the classifier’s general efficiency in terms of its 

ability to provide correct answers: 

FNTNFPTP

TNTP
AC

+++

+
=                                                                (1) 

− False alarm that shows the efficiency of a classifier for the purpose of predicting deviations 

from the normal state:  

TNFP

FP
FPR

+
=

                                                                      (2) 

− Accuracy of the algorithm that shows the correctly predicted proportion of objects recognized 

as objects with mark “1”:  

FPTP

TP
PR

+
=

                                                                      (3) 

− Completeness of the algorithm that shows the correctly predicted proportion of objects that 

are effectively marked “1”: 

FNTP

TP
RE

+
=

                                                                    (4) 

− The F measure of the algorithm is the harmonic mean of accuracy and completeness:  

REPR

REPR
F

+


=
2

                                                                      (5) 

− Area under the ROC curve (AUC) is a global quality characteristic whose values lays between 

0 and 1. Value 0.5 corresponds to random guessing, while value 1 corresponds to faultless 

recognition. AUC is the area under the ROC curve. The ROC curve characterises the ratio between 

the proportion of false positive classifications (FPR) and the proportion of correct positive classifications 

(RE). The ROC curve is a sufficiently complex measure of an algorithm’s accuracy.  

Table 1 shows the results of the comparison of classification methods per key accuracy indicators PR 

(the more the better) and FPR (the less the better). For the purpose of objective model comparison, 

the probability threshold for all methods was set to 0.1. The comparison was done for all the railways 

over the test sample.  

 

Table 1. Precision indicators for various models of predictive analysis on the test sample for all 

railways 

Parameter   XGBoost RForest SVM kNN AdaBoost Logit 

PR 0.7790 0.7772 0.6510 0.7112 0.7511 0.7037 

FPR 0.0800 0.0802 0.0839 0.0909 0.0799 0.0853 

 

As it can be seen from Table 1, the XGBoost, RandomForest and AdaBoost methods are superior to 

SVM, kNN and Logit in terms of accuracy. The XGBoost decision tree-based gradient boosting 

model can be considered the most superior in terms of quality. This method ensures the highest 

probability of correct answer with the lowest probability of false alarm. 

In [3] and [14] show the results of a numerical experiment of railway line categorization based on 

failure prediction. 
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Table 2. Results of the experiments using the XGBoost model for the selected three Russian railways 

with the threshold 2 (equal probabilities of error with mark “0” and mark “1”) for the control period  

Description Gorky Railway  Northern Railway Kuybyshev Railway 

Prediction-to-fact 

comparison matrix 

 `1` `0` 

`1` TP FN 

`0`  FP TN 

TN, number of correctly 

predicted `0` 

FN, number of incorrectly 

predicted `0` 

FP, number of incorrectly 

predicted `1` 

TP, number of correctly 

predicted `1` 

 

 `1` `0` 

`1` 413 1031 

`0` 116 3498 

1`, failure 

`0`, operable state 

 

       

 `1` `0` 

`1

` 

76 1808 

`0

` 

23 6174 

`1`, failure 

`0`, operable state 

 

       

 `1` `0` 

`1

` 

168 1154 

`0

` 

57 3321 

`1`, failure 

`0`, operable state 

 

AС 0.7732 0.7734 0.7423 

TPR 0.2860 0.0403 0.1271 

PR 0.7807 0.7677 0.7467 

FPR 0.0321 0.0037 0.0169 

F measure 0.4187 0.0767 0.2172 

 

The developed models of predictive analysis of wrong-side failures of track facilities were tested 

over 8 months of 2020 and showed good results. The accuracy of prediction was evaluated over the 

control period. The June prediction used the May data from the test period, while the July prediction 

used the June data. 

The classification problem was solved using a number of machine learning algorithms. Learning 

samples were generated. The quality of the models was analysed in the context of the conducted 

research.  

Table 2 shows an example of the quality of evaluation of wrong-side failure prediction with threshold 

2 for the track services of the three railways over the control period. The control period consists of 

two months of 2020: June and July. 

An analysis of Table 2 shows that, for instance, in the Gorky Railway, the number of correctly 

predicted category objects with mark “1” is TP = 413, while the number of correctly predicted 

category objects with mark “0” is TN = 3498. The same table quotes actual data for incorrectly 

predicted marks “0” and “1”. Calculations using formulas (1) – (5) have established that the 

classifier’s efficiency in terms of its ability to give correct answers is AС = 0.77. The probability of 

false alarm is FPR = 0.03. Similar results were obtained for the other two railways. 

Similar research of feasibility of predictive analysis was conducted as regards signalling and power 

supply assets. 
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Further improvement of the accuracy of hazardous event prediction is done using data sampling 

(retrieval of a subset of observations of interest in terms of analysis out of the massive set of initial 

data). The use of Big Data technology and Data Science algorithms, including data sampling 

methods, allowed raising the accuracy of prediction of hazardous states within a 

control/management system to 93.4% [10]. 

3. Functional safety of systems with digital twins 
 

In railway transportation, economically-efficient innovative methods of ensuring functional safety 

are actively developing alongside predictive analytics. That is due to the fact that the key solutions 

for ensuring functional safety of railway systems consist in the application of multi-channel 

hardware and multi-version software, which significantly increases the system’s cost and often 

limits its mass deployment.  We must note certain difficulties in terms of upgrading and modifying 

such systems due to the requirement to redesign their redundant components subject to new needs. 

Those are due to the systems’ adaptation to another type of rolling stock, variation of track tonnage, 

change of line class, etc. 

The current problem consists in designing affordable mass-producible train control and protection 

systems that comply with the stricter requirements for functional safety. In order to achieve the 

price/safety balance, a number of methods are used, including virtual information processing 

channels, digital twins, and other methods and their combinations. 

This section considers the feasibility of a train control and/or protection system consisting of a SIL1 

or SIL2 initial object and an external circuit of digital twins intended for enabling the desired level 

of functional safety. 

A digital twin is understood as an entity containing: 

− a mathematical model of the initial object; 

− a software implementation of the model that performs all the operating functions of the initial 

object; 

− the results of model verification and proof of its adequacy to the initial system, as well as a list 

of hazardous and potentially hazardous states defining the allowed duration of wrong-side 

failures of the initial object; 

− operational documentation. 

A digital twin is generated as a computer model consisting of three interconnected levels:    

• objective containing the computer model of the control/management system hardware 

components involved in the implementation of the system’s operation algorithm, with 

associated models of executive and measurement devices;  

• logical containing the simulation model of the operating algorithm of the train control and/or 

protection system;  

• visual, where data is visualized, user control commands are generated. 

Ensuring the adequacy of the virtual model to the real railway facility is the key element of the 

design of a train protection system [20]. 

As an object, let us examine a railway signalling system. An automatic block and power (computer-

based) interlocking system in a station contains sensors that acquire information on the performance 

of track circuits (voltage level at the inputs of the receivers). Describing the operation of such sensors 

is in itself a complicated task, as the aim is to select an optimum out of track occupancy observation 

modes, broken rail detection, cab signalling strength. 

However, such processes are well-studied and reduced to standard requirements that ensure traffic 
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safety. Accordingly, for the purpose of virtual modelling, their mathematical description may be 

used as part of predictive diagnostics of the events that constitute the continuous process of their 

operation. For the next level of the virtual model that represents the discrete-event operation of the 

simulated object, it suffices to only have the value of the process parameters exceeding the norms of 

operability and safety. 

The discrete-event operation in the virtual model is well-represented with a discrete automaton, for 

which safety criteria have also been developed that are based on the monotonicity of the control 

functions. Similarly, the virtual model of the operation of individual rolling stock systems can be 

constructed. Thus, the operation of the brake line of a train in the braking mode comes down to valve 

opening, which causes the loss of pressure in the line and brake operation. The process itself is 

described by complex differential equations of airflow propagation throughout the length of the 

train. Estimating the consequences in terms of safety only requires to have the criteria of pressure 

drop in the tail car within the specified time. Given that the braking mode itself may be classified as 

service, full service and emergency, in the virtual model, the respective variants must be generated. 

It should be noted that the mechanical action of brake blocks against the wheels due to the 

discharging of the brake line can be described by limiting temporal characteristics that affect the 

length of braking.  

For the next level of the virtual model, i.e., the level of train protection system description, it suffices 

to have the time marks of the beginning of brake valve opening and end of the train deceleration or 

its stopping. Thus, the virtual model of a digital twin combines simplified continuous mathematical 

models of continuous processes in transformation of information and the associated discrete-event 

models. The external circuit of the train control and/or protection system under consideration is 

formed by two same-type digital twins in a dual-channel configuration with independent channel 

inputs and outputs and a secure comparator [19]. The methods of designing the dual-channel 

configuration for the purpose of ensuring functional safety are described in the above standards. 

The external circuit is connected to the initial single-channel object of the interference-immune and 

intrusion-protected communication channel (Fig. 2). The system whose diagram is shown in Fig. 2 

falls into the category of vital technical systems (e.g., train control and/or protection system) that are 

to meet stricter requirements in terms of functional safety. This diagram applies to trackside systems. 

In mobile systems, digital twins can be connected via a radio channel.   

 

Fig. 2. Summarized structure diagram of a technical system with a digital twin 
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The introduction of digital twins into a vital technical system raises concerns and requires a more 

substantial safety case of such a system. The same is true in case of artificial intelligence elements 

[18, 20].  

Criteria of right-side failure of a system with digital twins: 

1. Non-matching performance of the initial object and digital twins caused by an undetected failure 

of the initial object or one of the digital twins. System restoration 

2. Failure of one of the digital twins. System restoration 

Criteria of wrong-side failure of a system with digital twins: 

object failure and error in the delivery of the control command to involve the digital twins or failure 

of the initial object and digital twins 

The adopted assumptions, safety model of the system with digital twins, and findings of the 

analytical research are reported in [19]. This paper established that, with an error not exceeding the 

first order of smallness, the wrong-side failure rate of a system with digital twins is defined by the 

following expression: 

  λF=1/TWF=2λ2  

where λ2 is the failure rate of the digital twin,   is the probability of erroneous transmission of a 

control command by digital twins. 

It must be taken into account that in order to ensure an important assumption, i.e., “the failure rate 

of a digital twin is 2 or 3 orders of magnitude lower than that of the initial object”, it is important 

that the software was designed using methods that comply with higher safety integrity levels, for 

instance, 2 of 3 safety integrity levels higher. Alternatively, the failure rate is to be proven statistically 

(see, for instance, Braband et al. [20]). 

Ensuring the compliance with the EN 50159 requirements for the communication channel safety, 

implies that the probability of timely and faultless communication of the command to involve the 

digital twins tends to one. Therefore, a probability   of incorrect delivery of digital twin control 

command close to 0 can be achieved. Subsequently, by using digital twins, the safety of the initial 

object in terms of wrong-side failure rate may be improved by several orders of magnitude. Indeed, 

let us examine the relation of the wrong-side failure rates of the initial object ( 1 =О ) to the 

wrong-side failure rate of the system: Э=λF / λWF =  λ1 / 2λ2   . As 21    and 0→ , our 

assertion is correct.  

Thus, the transformation of the initial object into a system with digital twins allows significantly 

reducing the wrong-side failure rate. The introduction of digital twins into the system is a new, not 

yet tested way of ensuring system safety. Naturally, it requires a substantial safety case. That is 

associated with significant additional expenditures. The decision on the benefits of additional costs 

is taken by the customer and system developer together. At the same time, it must be taken into 

consideration that in case of mass production of technical systems, the effect of additional costs is 

reduced and the effect of significantly improved safety is maintained.  
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4. Ensuring the functional safety of locomotive control system using a virtual 

information processing channel 
 

The structure of the computer-based train separation system is based on the principle of multi-

channel information processing. Subsequently, if we examine information communication from the 

source to the receiver, the device that generates the information and the one that receives it must 

have at least two channels. 

The experience in the design of such systems accumulated in the railway industry is sufficient for 

confirming the requirement for a train protection system with a dual-channel architecture. By way 

of example let us point out the experience of operation of a dual-channel train protection system in 

Russia’s railways. They operate over 30 000 onboard train protection systems (KLUB-U), more than 

300 stations with computer-based interlocking systems, more than 1000 km of computer-based 

automatic block systems. All of those systems follow the dual-channel principle. Over more than 30 

years of those systems’ operation not a single case of wrong-side failure has occurred. 

Meanwhile, the matter of information redundancy is as obvious as that of the hardware redundancy. 

[21] examines the principle of software duality in the context of vital information processing, 

whereas a specific task involves the development of at least two different algorithms and design of 

different software codes. The best-known examples of the technology’s application include onboard 

and trackside devices by Bombardier, while, in case of more vital systems, the company uses a 

combination of dual-channel hardware and and dual-version programming. The implementation of 

this safety principle causes additional expenditures that grow exponentially along with the number 

of computer-based interlocking systems. 

Let us examine the applicability of the new approach to ensuring safe train control using single-

channel axle counters that involves comparing current axle counter data with the information 

embedded in the receiver. The information comparison procedures perform the function of the 

second axle counter channel thus enabling the creation of a system with dual-version programming 

rather than one with a dual-channel onboard train control system, but, to an extent, with dual-

channel axle counters. 

Let us imagine that within an onboard system that complies with all functional safety requirements 

there is certain unique information. Such information, for instance, may represent the number of 

axles in the train that travels along a line. The safety condition consists in the fact that, ahead of the 

train, there are k axle-counting stations that, having counted the number of axles that crossed the 

station, transmit this information to the locomotive for comparison with the information recorded 

in the vital onboard device. In case the measured number of the train’s axles matches the predefined 

information with respect to the coordinate of the i-th (i = 1,2,…,k) axle-counting station, a decision 

with a given level of safety regarding the vacancy of the line behind the train’s tail is taken. Each i-

th axle-counting station out of a series of vacant line sections has its own geographical coordinate 

and, consecutively, the summation of the distances between such coordinates defines the distance 

between the head of the next train and the last axle-counting station behind the tail of the preceding 

train. If the information does not match, then the section occupied by the first train is extended to 

the next axle-counting station. 

Hereinafter the common matter of information communication between trains over a digital channel 

for vital information communication is not considered, as compliance with the safety level is 

assumed (coding, encryption etc.). 

That poses the question of the necessity of the conventional solution that is the redundant source of 

information in the form of an axle counter. Indeed, out of the variety of axle counter failures there is 

only one hazardous situation when an error in the count of a train’s axles is concealed by such an 
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axle counter failure that will eventually cause matching information onboard the train. Obviously, 

a whole number of conditions are at play, including the different number of axles in trains, the 

complete variety of axle counter failures, out of which the one concealing event is to manifest itself. 

While calculating the failure probabilities it may additionally be taken into consideration that the 

time interval, within which an axle counter is to fail, is defined only by the moment in time when a 

train crosses it, while the rest of the time the axle counter may be disconnected from the power 

source and, accordingly, not susceptible to internal failures. 

Therefore, a legitimate question is whether single-channel sources of information (in this case, axle 

counters) can be used instead of dual-channel ones, thus significantly reducing the cost of hardware, 

while having a dual-channel receiver (in this case, an information receiver onboard the train) as the 

reference device. In order to answer that question, [22] examines two safety models. The first model 

considers a SIL4 onboard control system, a dual-channel, dual-version system. All k axle counters 

have a dual-channel architecture, which enables SIL 3 safety. The second model involves the onboard 

control system also being SIL4, a dual-channel, dual-version system. However, all k axle counters 

have a single-channel architecture, which allows significantly reducing their cost. At the same time, 

there are concerns regarding the sufficiency of the safety integrity of the axle counters and the entire 

system. In order to ensure the safety integrity level of the axle counters of at least SIL 3, as it is the 

case with the dual-channel architecture, it is required to ensure the corresponding high level of 

correct detection of axle counter failure. This problem is solved by comparing the current railway 

coordinates of a locomotive and axle counter, the moment in time when the train crosses the 

respective axle counter, by calculating the current axle counter number and the number of axles of 

the passing train. The results are constantly compared. This action aims to enable coordinate 

identification by a device with an appropriate safety integrity level. Such devices are part of today’s 

train equipment. 

The above actions allow endowing axle counters with virtual second information processing 

channels.  

Mathematical descriptions of the models, the adopted assumptions and obtained analytic 

expressions for the functional safety indicators of the locomotive control system represented by the 

first and the second models are given in [22]. The second model is different from the first one in that 

the axle counters have a second, virtual channel. Therefore, for a comparative evaluation of the safety 

of a control system with an actual or a virtual second channel in the axle counters it suffices 

evaluating the dependence of the system safety indicator on the failure detection parameters in the 

first and second cases. An obvious safety indicator could be mean time to wrong-side system failure 

(Тws ). In [22], it is shown that the probability of correct axle counter failure detection α is the most 

significant parameter of failure detection in a system with an actual second channel in the axle 

counter. In a control system with a virtual second channel in the axle counters, the probability of the 

absence of faulse coinsidence of calculation results of the locomotive onboard system and the axle 

counters ν. Fig. 3 and 4 show the dependences of the safety indicator on the parameters of detection 

of axle counter failures α and ν respectively. 
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Fig. 3. Graph of the system’s mean time to wrong-

side failure ТWS against the probability of correct 

detection of axle counter failures α if the axle 

counter failure rate λac= 10-6 1/h 

Fig. 4. Graph of the system’s mean time to wrong-

side failure ТWS against the probability of absence of 

false coincidence between the locomotive’s onboard 

system data and axle counter data ν if the axle 

counter failure rate λac= 10-6 1/h 

The comparison of the graphs in Fig. 3 and 4 shows that the maximum value of mean time to wrong-

side system failure Тws (model 1) equal to 1.7*108 hours is also achievable for a system represented 

by model 2 if ν = 0.9999. Such probability of the absence of false coincidence between the locomotive’s 

onboard system data and axle counter data can be made possible [22] by increasing the depth of 

background testing, improving the algorithms for calculating dynamic data for a better efficiency of 

comparison of the output data of the locomotive onboard system and the axle counters, as well as 

through extended safety codes. 

5. Conclusion 
 

A high level of functional safety of railway systems can be achieved even as part of a single-channel 

architecture as long as such economically efficient innovative methods as digital twins or virtual 

information processing channels are used. The above methods ensure, on the one hand, a reduction 

of the amount of equipment and significantly lower cost of the systems and, on the other hand, 

requires the creation of additional software and substantiation of the acceptability of the achieved 

level of functional safety. There is still a concern that the cost of additional activities is comparable 

to the obtained economic effect of migration towards single-channel architectures. This matter 

requires further research. 

The innovative methods of ensuring functional safety are efficient both at the design stage, and in 

the course of system operation. Artificial intelligence-based methods might well allow achieving 

high accuracy and reliability of hazard prediction, thus enabling their anticipation and prevention. 

A combination of innovative methods will cause an accumulated effect in ensuring functional safety 

of railway facilities. 
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Abstract

The considerations in this paper are, the demand is consistent with time deterioration, the holding cost
is dependent based on the quantity of stock available in the system, and the ordering cost is linear and
time-dependent. This system should be considered in terms of fuzziness. It is assumed that the shortages
are permitted partially, the order is inspected, defective items are identified, by using penalty cost, the
defective items should be minimized. Under the classical model and fuzzy environment, the mathematical
equation is arrived at to find the optimal solution of total relevant cost with optimal order quantity and
time using triangular fuzzy numbers. Defuzzification has been accomplished through the use of the signed
distance method of integration. The solutions have been arrived and the model numerical problem of three
levels of values (lower, medium and upper) in parametric changes has been verified. Using Sensitivity
analysis, the solution is used to validate the changes in different parameter values of the system. To
demonstrate the convexity of the TRC function over time, it has used a three-dimensional mesh graph.

Keywords: Ordering plan, Triangular Fuzzy Numbers, Stock depending holding cost, Varying
order Cost.

1. Introduction

In any type of business, maintenance of the stock plays crucial role. The stock should be with
effective quality (with freshness); it means deterioration should be very less. In this paper, the
demand is estimated so that the deterioration is reliable with time period. If the demand increases
automatically the deterioration is to be minimized with time. The order placement depends on
the demand of the system. Suppose the quantity supplied as part of order quantity is less than
the demand, it will lead to shortage. The ordered stock should be in good condition if there is
any defective product or service supplied, the firm will incur loss and also the goodwill of the
customer. In order to meet the shortages, the lost sale cost is added, the items should be inspected.
Sometimes when items are supplied by delay, then the penalty cost will also be added in the
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process. Here the ordering cost is not fixed as it is linearly time-dependent. Also, the holding cost
is not fixed for the entire time period, whenever the stock reduces, the holding cost also reduces.

Abhishek et al., [1] developed a paper in a fuzzy economic production quantity model
deteriorating production depends proportional to population, selling price and advertisement,
in this paper he explain clearly how demand is work with population and selling price with
advertisement. Dutta .D. et al., [2] presented a article in Optimal Inventory Shortages Fuzziness
in Demand,. the model is developed in crisp environment. After that it is convert in to fuzzy
environment. All the functions convert in to (TFN) and the fuzzy trapezoidal number. In order to
Defuzzification, the SDM used. The EOQ, optimal total cost derived and in both environment.
Magfura Pervin et al., [10] explained the combined vendor buyer of quadratic demand inspection
,preservation technology applied the vendor applied the (PT) to reduce deterioration cost using
this technique to reduce the total cost and fount the optimal total cost. Pavan Kumar [3] deals with
Optimal inventory model with shortages applied fuzzy environment. The shortages were allowed
partially backlogged method were applied for manage the stock for genuine customer is was very
useful for manufacturer. Sankar Kumar Roy et al., [4] established a model of Imperfection and
inspection and varying demand in trade credit using inspection policy easily found the defect of
the items and supply to the customer and get the goodwill of the customer. This model is very
useful for improve the relationship of customer and supplier. Sivan.V et al., [5] formulated a model
of retailer supplier of price dependent demand; To demand will improve automatically when
we reduce the cost of the item. Srabani Shee et al.,[6] proposed a model in Fuzzy Supply Chain
Varying Holding Cost of supplier and retailer , supplier will more benefit then the retailer since
retailer will spend more amount for holding the items so the holding cost of retailer is more than
the supplier all the calculation doing by fuzzy and crisp environment. Thirugnanasambandam. et
al.,[7] developed model of estimation of EOQ Model negative exponential Demand of linear term.
The drugs are maintained stock and problem formed using negative exponential demand so day
by day the demand is diminishing. Two types of demand functions formulated and calculated
the optimal total cost and more quantity. Tripathi [8] investigated the innovative stock sensitive
demand of EOQ for deterioration by means of inconsistent here the newly found stock dependent
holding cost using the model holding cost to minimized and linear and nonlinear holding cost
considered and verified with parametric changes. Sudip Adak et al., [9] established inventory
model reliability dependent partial backordering in fuzziness. Here the deterioration is minimized
using the demand if demand is increases automatically the deterioration is reduced and partial
shortages are balanced with backlogging here also the results were found and compared with
crisp and fuzzy environment.

The present paper has eleven sections. Basic definitions and fuzzy preliminaries are followed
by introduction provided. In Section 3, notations and assumptions are introduced. The problems
are described and formulated in the fourth section. In Section 5, comes out with numerical
solutions and sample problems. The Sensitivity Analysis, Graphical representation and the
impact of parametric changes are portrayed in the sixth section. In the section seven represents
detailed observation. In Section 8, the Inventory model in fuzzy environment is formulated. Some
numerical problems are using Triangular Fuzzy Numbers with different data sets are solved.
Illustrative examples are given in the Section nine. In Section 10, comparative studies of crisp and
fuzzy optimal values are explored. Conclusions and further developments are distinguished in
the final section.

2. Definitions and Fuzzy Preliminaries

Definition 1. Membership value : A fuzzy set f̃ is a universe of discourse. The following set of
pairs is defined as X. f̃ = {(x, µf̃(x))/x ∈ R}, where µf̃(x) : X −→ [0, 1] is a mapping called
membership value or degree of membership of x ∈ R in the fuzzy set f̃.

Definition 2. Convex : A fuzzy set f̃ of the universe if and only if the discourse X is Convex,
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∀x1, x2,∈ R The following set of pairs is defined as X.

µf̃(ρx1 + (1 − ρ)x2)) ≥ min [µf̃(x1), µf̃(x2)], when 0 ≤ ρ ≤ 1.

Definition 3. Normal Fuzzy Set : A fuzzy set f̃ of the universe X is referred to as a Normal Fuzzy Set,
meaning that at least one exists x ∈ R such that µf̃(x) = 1.

Definition 4. Triangular Fuzzy Number (TFN) : The Triangular Fuzzy Number f̃ = [aF1, aF2, aF3]
and is formed its continuous membership function µf̃(x) : X −→ [0, 1] is,

µf̃(x) = f (x) =


x − aF1

aF2 − aF1
, for aF1 ≤ x ≤ aF2;

aF3 − x
aF3 − aF2

, for aF2 ≤ x ≤ aF3;

0, Otherwise;

Figure 1: Triangular Fuzzy Number Figure 2: Fuzzy number with cuts

Definition 5. Signed Distance Method : Signed Distance Method: Defuzzification of f̃ can be
discovered using the Signed Distance Method. If f̃ is a TFN then Sign distance from f̃ to 0 is
described as:

d(f̃, 0) =
1
2

∫ 1

0
[f̃L(k), f̃R(k), 0] dk.

3. Notations and Assumption

3.1. Notations

1. I1(t) The inventory level in the time period 0 ≤ t ≤ t1

2. I2(t) The inventory level in the time period t1 ≤ t ≤ T

3. t1 The time stock reached to zero

4. T The total cycle time

5. cFO Ordering cost depend of time dependent

6.
∼

cFO Fuzzy Ordering cost depends of time dependent

7. θ(t) = t
aλ Deterioration period a, λ ≥ 1

8. cF2 : Deterioration cost per unit time

RT&A, No 4 (76) 
Volume 18, December 2023 

923



Sivan V, Thirugnanasambandam K, Sivasankar N and Sanidari.
A Fuzzy Innovative Ordering Plan

9.
∼

cF2 : Fuzzy deterioration cost per unit time

10. cF3 : Holding cost per unit time

11.
∼

cF3 : Fuzzy holding cost per unit time

12. cF4 : Shortage cost per unit time

13.
∼

cF4 : Fuzzy shortage cost per unit time

14. cF5 : Inspection cost per unit time

15.
∼

cF5 : Fuzzy inspection cost per unit time

16. cF6 : Penalty cost per unit time

17.
∼

cF6 : Fuzzy penalty cost per unit time

18. QF : The maximum order level in the time period (0 ≤ t ≤ t1)

19. TRC(t1, T) : The total relevant cost per cycle

20.
∼

TRC(t1, T) : The Fuzzified total relevant cost per cycle

21. βF : Unit of shortage cost (0 ≤ βF ≤ 1)

22. µF : Unit of lost sale cost (µF ≥ 0)

23. δF : Unit of penalty cost δF ≥ 0

24. λ : Shape parameter λ ≥ 0

25. DI : The total items deteriorated

3.2. Assumption

1. The demand function is written D (t) = p1ta + p2 for 0 ≤ t ≤ t1, t1 ≤ t ≤ T for p1, p2 ≥ 0

2. Deterioration per cycle DCF = t
aλ , a ≥ 1 , λ ≥ 1

3. Ordering cost cFO = r1t1 + r2, r1 ≥ 0, r2 > 0

4. T is the complete cycle periods time horizon

5. t1 is the period of time when inventory level reduces to finish

6. Lead time is negligible.

7. Shortages partially allowed is βF, 0 ≤ βF < 1 is backordered.

8. In some situation the demand may be considered high, in that period to maintain good
relationship with customer and in to consider the inspection policy.

9. In the given cycle time, in the beginning of the process full inventory level is considered.

10. During the shortage period same demand is to be considered.

3.3. Decision Variables

∙ t1 : The time Period first level 0 ≤ t ≤ t1

∙ T : The time Period second level t1 ≤ t ≤ T
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3.4. Objective Functions

1. TRC(t1, T) : Total relevant cost per cycle

2. βF : Cost of preservation technology investment per unit time

3. QF : The maximum order in the time period 0 ≤ t ≤ T

4. t1, T : Optimal time periods in 0 ≤ t ≤ t1, t1 ≤ t ≤ T

4. Problem Description and Mathematical Equation

Figure 3: Inventory level Vs Time.

4.1. Problem description.

Initially the inventory level is QF, because of demand and deterioration the level of inventory is
gradually reduced in time period t = t1, so the shortages in this inventory is taken partially.

4.2. Mathematical Equation.

The following formula were used to create the Mathematical model for this paper using
differential equations. In shortage period also, the same demand function is maintained.

dI1(t)
dt

+
t

aλ
I1(t) = − (p1ta + p2) , f or 0 ≤ t ≤ t1, (1)

dI1(t)
dt

= − β (p1ta + p2) , f or t1 ≤ t ≤ T, (2)

Using the initial and the boundary conditions, let us find I1(t), and I2(t). In I1(t) and I2(t) put
t = t1, t = T and I1(t1) = 0, I2(T) = 0 and get the solution. In I1(t) put t = 0 get order quantity
QF therefore I1(0) = QF.
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Solution of 1 and 2

I1(t) = {p2(t1 − t)}+ p2

6aλ
(t3

1 − t3) +
p1

a + 1
(ta+1

1 − ta+1) +
p1

2aλ+1 + 6aλ

×(ta+3
1 − ta+3) +

p2

2aλ
(t3 − t1t2) +

p2

12a2λ
(t5 − t2t3

1)

+
p1

(a + 1)2aλ
(ta+3 − ta+1

1 t2) +
p1

(2aλ+1 + 6aλ)(2aλ)

×(ta+5 − ta+3
1 t2) (3)

I1(0) = QF

= {p2(t1)}+
p2

6aλ
(t3

1) +
p1

a + 1
(ta+1

1 ) +
p1

2aλ+1 + 6aλ
(ta+3

1 ) (4)

I2(t) = β

{
p1

a + 1
[(Ta+1 − ta+1) + p2(T − t)]

}
(5)

The ordering cost is given by,

DC = cFO = r1t1 + r2, r1, r2 > 0 (6)

The total number of pieces that becomes deteriorated throughout that period of interval 0 ≤ t ≤ t1
is formed by,

DI = Q −
∫ t1

0
D(t) dt

= p2(t1) +
p2

6aλ
(t3

1) +
p1

a + 1
(ta+1

1 ) +
p1

2aλ+1 + 6aλ
(ta+3

1 )−
∫ t1

0
(p1ta + p2) dt

=
p2

6aλ
(t3

1) +
p1

2aλ+1 + 6aλ
ta+3
1

Therefore the deteriorating cost is formed by,

cF2

{
p2

6aλ
(t3

1) +
p1

2aλ+1 + 6aλ
ta+3
1

}
(7)

The Holding cost (HC) during the interval [0, t1] is formed by,

HC = c3

∫ t1

0
e + f [I1(t)]dt

= cF3

(
et1 + f

[( p2

2

)
t2
1 +

( p2

8aλ

) t4
1
2
+

p1

a + 2
ta+2
1 +

(
p1

2aλ+1 + 6aλ

)

×
(

a + 3
a + 4

)
ta+4
1 −

( p2

72a2λ

)
t6
1 −

(
p1

3(2aλ+1 + 2aλ

)(
a + 1
a + 4

)
ta+4
1

−
(

p1

6aλ(2aλ+1 + 6aλ

)(
a + 3
a + 6

)
ta+6
1

])
(8)

Shortage Cost is formed by,

Sh.C = cF4βF

∫ T

t1

(p1ta + p2)dt

= cF4βF

{
p1

(a + 1)
[Ta+1 − t1

a+1] + p2(T − t1)

}
(9)
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The lost sale cost is formed by,

Lo.SC = µF(1 − βF)
∫ T

t1

(p1ta + p2)dt

= µF(1 − βF)

{
p1

(a + 1)
[Ta+1 − t1

a+1] + p2(T − t1)

}
(10)

The Inspection cost in the interval [0, t1] is given by,

In.C = cF5QF

= cF5

{
p2t1 +

p2

6aλ
t3
1 +

p1

(a + 1)
ta+1
1 +

p1

2aλ+1 + 6aλ
ta+3
1

}
(11)

The penalty cost (PC) during the interval [0, t1] is formed by,

Pn.C = cF6δF

∫ t1

0
(p1ta + p2)dt

= cF6δF

(
p1

(a + 1)
ta+1
1 + p2t1

)
(12)

The Total Average Relevant Cost,

TRC(t1, T) =
1
T

{
Ordering Cost + Deteriorating Cost + Holding Cost +

Shortage Cost + Lost Cost + Inspection cost + Penalty cost
}

=
1
T

[
r1t1 + r2 + cF2

{
p2

6aλ
(t3

1) +
p1

2aλ+1 + 6aλ
ta+3
1

}

+cF3

(
et1 + f

[( p2

2

)
t2
1 +

( p2

8aλ

) t4
1
2
+

p1

a + 2
ta+2
1

])

+

(
p1

2aλ+1 + 6aλ

)(
a + 3
a + 4

)
ta+4
1 −

( p2

72a2λ

)
t6
1

−
(

p1

3(2aλ+1 + 2aλ)

)(
a + 1
a + 4

)
ta+4
1

−
(

p1

6aλ(2aλ+1 + 6aλ)

)(
a + 3
a + 6

)
ta+6
1

+cF4βF

{
p1

(a + 1)
[Ta+1 − t1

a+1] + p2(T − t1)

}

+µF(1 − βF)

{
p1

(a + 1)
[Ta+1 − t1

a+1] + p2(T − t1)

}

+cF5

{
p2t1 +

p2

6aλ
t3
1 +

p1

(a + 1)
ta+1
1 +

p1

2aλ+1 + 6aλ
ta+3
1

}

+cF6δF

(
p1

(a + 1)
ta+1
1 + p2t1

)]
(13)

For the convenience let us do this substitution,
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ϕ1 =
p2

6aλ
ϕ2 =

p1

2aλ+1 + 6aλ
ϕ3 =

p2
2

ϕ4 =
p2

8aλ
ϕ5 =

p1
a + 2

ϕ6 =
p1

2aλ+1 + 6aλ

(
a + 3
a + 4

)

ϕ7 =
p2

24aλ
ϕ8 =

p2

72a2λ
ϕ9 =

p1

3
(
2aλ+1 + 6aλ

) ( a + 1
a + 4

)

ϕ10 =
p1

6aλ
(
2aλ+1 + 6aλ

) ( a + 3
a + 6

)
ϕ11 =

p1
(a + 1)

Substitute the above ϕ1, ϕ2,ϕ4,ϕ5,ϕ6,ϕ7,ϕ8,ϕ9,ϕ10,ϕ11 in equation (13)
The Total Relevant Cost will become

TRC(t1, T) =
1
T

[
r1t1 + r2 + cF2(ϕ1t3

1 + ϕ2ta+3
1 )

+cF3

(
et1 + f

[
ϕ3t2

1 + ϕ1
t4
1
2
+ ϕ5ta+2

1 + ϕ6ta+4
1 − ϕ8t6

1 − ϕ9ta+4
1

−ϕ10ta+6
1

])
+ cF4βF

{
ϕ11[Ta+1 − t1

a+1] + p2(T − t1)
}

+µF(1 − βF)[ϕ11[Ta+1 − t1
a+1] + p2(T − t1)

+cF5

{
p2t1 + ϕ1t3

1 + ϕ11ta+1
1 + ϕ2ta+3

1

}
+cF6δF

(
ϕ11ta+1

1 + p2t1

)]
(14)

TRC(t1, T) =
1
T

[
r1t1 + r2 + cF2(ϕ1t3

1 + ϕ2ta+3
1 )

+cF3

(
et1 + f

[
ϕ3t2

1 + ϕ1
t4
1
2
+ ϕ5ta+2

1 + ϕ6ta+4
1 − ϕ8t6

1 − ϕ9ta+4
1

−ϕ10ta+6
1

])
+ [cF4βF + µ(1 − β)]

{
ϕ11[Ta+1 − t1

a+1]

+p2(T − t1)} +cF5

{
p2t1 + ϕ1t3

1 + ϕ11ta+1
1 + ϕ2ta+3

1

}
+cF6δF

(
ϕ11ta+1

1 + p2t1

)]
(15)

5. Numerical Solutions and Sample Problems

5.1. Numerical Solutions of Fuzzy Innovative Ordering Plan

For the solution purpose, MATLAB R2018b and Excel solver are used to find all the optimal
solutions, all the graphs and convex mesh using MATLAB R2018b software.

To find the solution of the equation (15) using the below necessary and sufficient condition.
The necessary condition for the least value of TRC (t1, T) are,

∂ (TRC (t1, T))
∂ t1

= 0
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and

∂ (TRC (t1, T))
∂ T

= 0

The Sufficient condition for optimal TRC (t1, T), t1 > 0, T > 0.

∂2(TRC)

∂t2
1

> 0

and

∂2(TRC)

∂T2 > 0

∣∣∣∣∣∣∣∣
∂2(TRC)

∂t2
1

∂2(TRC)

∂t1∂T
∂2(TRC)

∂T∂t1

∂2(TRC)

∂T2

∣∣∣∣∣∣∣∣ > 0

Therefore the optimal solutions of t*1 , T*, Q*
F and TRC* are found and given in the ta-

ble.

Table 1: The optimal solution using crisp

t*1 T* Q*
F TRC*(t1, T)(Rs.)

0.83244 0.86903 10.1671 148.603

5.2. Sample Problems

Example 1. Let’s take the input: p1= 4.2, p2 = 9.5 , a =1.2, e = 1.8,f= 0.2, βF= 0.004, δF= 3.85,
µF=11, λ = 3.99, cF2 =Rs.15, cF3 = Rs.10, cF4 =Rs.5 , cF5 =Rs.0.5, cF6 =Rs.1.03, rF1 = Rs.9.8,
rF2 = Rs.40.

The Optimal Solutions are Q*
F = 9.58728, t*1 = 0.82247,T* =0.90941 & TRC* = Rs.145.406.

Example 2. Let’s take the input: p1= 4.2, p2 = 9.99, a =1.2 , e = 1.8, f = 0.2, βF= 0.004, δF= 3.85,
µF=11,λ = 3.99, cF2 =Rs.15, cF3 = Rs.10, cF4 =Rs.5, cF5 =Rs.0.5, cF6 =Rs.1.03, rF1 =Rs. 9.8, rF2 =
Rs.40.

The Optimal Solutions are Q*
F = 10.1671, t*1 = 0.83244, T* = 0.86903 & TRC* = Rs.148.603

Example 3. Let’s take the input: p1 = 4.2, p2 = 10.25, a = 1.2, e = 1.8, f = 0.2, βF = 0.004, δF = 3.85,
µF = 11, λ = 3.99, cF2 =Rs.15, cF3 = Rs.10, cF4 =Rs.5, cF5 =Rs. 0.5, cF6 =Rs.1.03, rF1 = Rs.9.8,
rF2 = Rs.40.

The Optimal Solutions are Q*
F = 10.4737, t*1 = 0.83734, T* = 0.84657 & TRC* = Rs.150.252.

5.3. Convexity of the optimal function

Convexity of Optimal total cost TRC(t1, T) versus t1 and T using Matlab R2018b are shown
graphically Figure (4) and Figure (6).
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Figure 4: Convexity Graph of t1, T with TRC(t1, T) Figure 5: Convexity Graph of t1, T with TRC(t1, T)

6. Sensitivity Analysis and Graphical representation

6.1. Sensitivity analysis of Fuzzy Innovative Economic Order Quantity

Table 2: Sensitivity analysis of time reliability demand (Parameters P1, P2, a, e and f )

Parameter Changed values t*1 T* Q*
F TRC* (Rs.)

4.1580 0.8318 0.8698 10.1431 148.2532
P1 4.2000 0.8324 0.8647 10.1671 148.3721

4.2420 0.8331 0.8598 10.1912 148.4893
4.2840 0.8337 0.8548 10.2152 148.6049

10.0879 0.8343 0.8563 10.2826 148.9947
P2 10.1898 0.8362 0.8474 10.4028 149.6376

10.2917 0.8381 0.8384 10.5228 150.2749
10.4975 0.8418 0.8199 10.765 151.5447
1.2120 0.8459 0.8566 10.3447 147.8646

a 1.2240 0.8595 0.8485 10.5236 147.3534
1.2362 0.8733 0.8403 10.7076 146.8281
1.2485 0.8872 0.8321 10.893 146.2988
1.6940 0.8422 0.8454 10.32 147.3337

e 1.7464 0.8324 0.8647 10.1671 148.3721
1.7820 0.8324 0.8647 10.1671 147.8557
1.8000 0.8341 0.8615 10.1932 148.1983

0.18822 0.846 0.8532 10.3799 147.7543
f 0.19404 0.8393 0.859 10.2739 148.0635

0.19800 0.8347 0.8628 10.2028 148.2694
0.20000 0.8324 0.8647 10.1671 148.3721
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Table 3: Sensitivity analysis of time reliability demand (Parameters βF, δF, µF, λ and cF2)

Parameter Changed values t*1 T* Q*
F TRC* (Rs.)

0.00202 0.8339 0.8619 10.1902 148.3776
βF 0.00288 0.8333 0.8631 10.1801 148.3753

0.00360 0.8327 0.8642 10.1718 148.3732
0.00400 0.8324 0.8647 10.1671 148.3721
3.7357 0.8469 0.8397 10.3946 147.0331

βF 3.7734 0.8422 0.8481 10.3197 147.4823
3.8115 0.8373 0.8565 10.2438 147.9286
3.8500 0.8324 0.8647 10.1671 148.3721

11.1100 0.8459 0.8377 10.3787 148.3928
µF 11.3322 0.8592 0.8098 10.5892 148.3414

11.3333 0.8724 0.7807 10.7987 148.2116
11.4433 0.8853 0.7504 11.0072 147.9958
4.02990 0.8349 0.8633 10.2017 148.2932

λ 4.07020 0.8374 0.8618 10.2368 148.2132
4.11090 0.84 0.8603 10.2723 148.1320
4.15201 0.8426 0.8587 10.3082 148.0497
14.5545 0.8419 0.8591 10.3146 148.0689

cF2 14.7015 0.8387 0.861 10.2652 148.1704
14.8500 0.8356 0.8629 10.2161 148.2714
15.0000 0.8324 0.8647 10.1671 148.3721

Table 4: Sensitivity analysis of time reliability demand (Parameters cF3, cF4 cF5, cF6, rF1 and rF2)

Parameter Changed values t*1 T* Q*
F TRC* (Rs.)

9.7030 0.8442 0.8492 10.3512 147.5376
9.8010 0.8403 0.8544 10.2902 147.8166

cF3 9.9000 0.8364 0.8596 10.2289 148.0947
10.0000 0.8324 0.8647 10.1671 148.3721
5.0500 0.8325 0.8647 10.1675 148.3722
5.1005 0.8325 0.8646 10.1679 148.3723

cF4 5.1515 0.8325 0.8646 10.1683 148.3724
5.2030 0.8325 0.8645 10.1687 148.3725
0.4851 0.8346 0.8615 10.2007 148.1968

cF5 0.4901 0.8339 0.8626 10.1896 148.2548
0.4950 0.8332 0.8636 10.1784 148.3132
0.5000 0.8324 0.8647 10.1671 148.3721
0.9994 0.8498 0.8352 10.4391 146.7880

cF6 1.0095 0.845 0.8436 10.3642 147.2414
1.0197 0.8373 0.8565 10.2438 147.9286
1.0300 0.8353 0.8604 10.2117 148.1393
9.5089 0.8351 0.8595 10.2093 148.0905
9.6050 0.8342 0.8612 10.1954 148.1837

rF1 9.7020 0.8333 0.863 10.1813 148.2776
9.8000 0.8324 0.8647 10.1671 148.3721

39.4020 0.8324 0.8561 10.1671 147.9095
rF2 39.8000 0.8324 0.8647 10.1671 148.3721

40.1980 0.8324 0.8733 10.1671 148.8301
40.6000 0.8324 0.8818 10.1671 149.2881
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6.2. The graphical representation using Matlab 2018b

Figure 6: The impact of a is compared with
TRC(t1, T)

Figure 7: The impact of λ is compared with
TRC(t1, T)

Figure 8: The impact of µF (LSC) is compared with
TRC(t1, T)

Figure 9: The impact of Deteriorating cost is compared
with TRC(t1, T)
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Figure 10: The impact of Holding cost is compared
with TRC(t1, T)

Figure 11: The impact of Shortage cost is compared
with TRC(t1, T)

Figure 12: The impact of Inspection cost is compared
with TRC(t1, T)

Figure 13: The impact of Panelty cost is compared with
TRC(t1, T)
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7. Observations using table values

Here the investigations are done by using tabular values, let us observe the following progress.

1. While p2 is raising, the following values t1, T, QF and TRC are oscillating.

2. While the values of a, µF & λ are raising, the value of t1 is raising, T is reducing, QF is
mounting and TRC is gradually turning down.

3. During the augmentation of the following values, e, f, δF, cF2, cF3, cF5, cF6 and rF1, t1
is diminishing, T is growing, QF is turning down and TRC is gradually raising.

4. During the mounting of the cF4, the following value of t1is raising , T is growing, QF turns
up and TRC is gradually leading.

5. While the value of p1is raising, the following values t1 is raising, T is reducing, QF is
mounting and TRC is gradually raising

6. While the value of βF is raising, t1 is reducing, T is raising, QF and TRC are turning down

7. While the value of p1is raising, t1 is raising, T is reducing, QF is mounting and TRC is
gradually raising

8. While the value of rF2 is raising, the same values of t1 are repeated, T is raising, the same
values of QF are repeated and TRC is gradually raising.

8. The Proposed Inventory Model Produced in a Fuzzy Environment

Due to the decision making problem, sometimes the output will be uncertaint and vague, and
so some new ideas can be applied to meet the difficulties in characterizing the vagueness and
uncertainty. Let us apply the fuzzy environment using Triangular Fuzzy Numbers,

TRC(t1, T) =
1
T

[
r1t1 + r2 + cF2(ϕ1 t3

1 + ϕ2 ta+3
1 )

+ cF3

{
e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2
+ ϕ5 ta+2

1 + ϕ6 ta+4
1 − ϕ8 t6

1

− ϕ9 ta+4
1 − ϕ10 ta+6

1

]}
+ cF4βF

{
ϕ11 [Ta+1 − t1

a+1] + p2 (T − t1)
}

+ µF(1 − βF) ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1) + cF5

{
p2 t1 + ϕ1t3

1

+ ϕ11 ta+1
1 + ϕ2 ta+3

1

}
+ cF6δF(ϕ11 ta+1

1 + p2t1

]
(16)

For the convenience, let us do the following suitable substitution.

A1 = ϕ1 t3
1 + ϕ2 ta+3

1

A2 = e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2
+ ϕ5 ta+2

1 + ϕ6 ta+4
1 − ϕ8 t6

1 − ϕ9 ta+4
1 − ϕ10 ta+6

1

]

A3 = βF
{

ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1)

}
A4 = µ(1 − βF) [ϕ11 [Ta+1 − t1

a+1] + p2 (T − t1)]

A5 = p2 t1 + ϕ1t3
1 + ϕ11 ta+1

1 + ϕ2 ta+3
1

A6 = δF(ϕ11 ta+1
1 + p2t1)
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In equation (16), substitute the above A1, A2, A3, A4, A5, A6

TRC (t1, T) =
1
T

[
r1t1 + r2 + cF2 A1

+cF3 A2 + cF4 A3 + A4 + cF5 A5 + cF6 A6

]
(17)

The parameters and costs should be fuzzified using Triangular Fuzzy Number (TFN).

∼
rF1 = (r11, r12, r13) ,

∼
rF2 = (r21, r22, r23),

∼
cF2 = (cF21, cF22, cF23, )

∼
cF3 = (cF31, cF32, cF33 ),

∼
cF4 = (cF41, cF42, cF43 ),

∼
cF5 = (cF51, cF52, cF53 ),

∼
cF6 = (cF61, cF62, cF63 )

∼
TRC(t1, T) =

1
T

[
(
∼
r F1 t1 +

∼
r F2 ) +

{
c̃F2 (ϕ1 t3

1 + ϕ2 ta+3
1 )

}
+ c̃F3 ( e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2
+ ϕ5 ta+2

1 + ϕ6 ta+4
1 − ϕ8 t6

1

− ϕ9 ta+4
1 − ϕ10 ta+6

1

]}
+ c̃F4 βF

{
ϕ11 [Ta+1 − t1

a+1] + p2 (T − t1)
}

+ µF(1 − βF) ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1) + c̃F5

{
p2 t1 + ϕ1t3

1

+ ϕ11 ta+1
1 + ϕ2 ta+3

1

}
+ c̃F6δF(ϕ11 ta+1

1 + p2t1

]
(18)

∼
TRC(t1, T) =

1
T

[
((r11, r12, r13)t1 + (r21, r22, r23)) +

{
(cF21, cF22, cF23 )

×(ϕ1 t3
1 + ϕ2 ta+3

1 )

}
+ (cF31, cF32, cF33 )( e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2

+ϕ5 ta+2
1 + ϕ6 ta+4

1 − ϕ8 t6
1 − ϕ9 ta+4

1 − ϕ10 ta+6
1

]}
+(cF41, cF42, cF43 )βF

{
ϕ11 [Ta+1 − t1

a+1] + p2 (T − t1)
}

+µ(1 − β) ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1) + (cF51, cF52, cF53 )

×
{

p2 t1 + ϕ1t3
1 + ϕ11 ta+1

1 + ϕ2 ta+3
1

}
+ (cF61, cF62, cF63 ) δF

×(ϕ11 ta+1
1 + p2t1

]
= (UF, VF, WF) (19)

where,

UF =
1
T

[
(r11)t1 + r21 + cF21

{
ϕ1 t3

1 + ϕ2 ta+3
1

}
+ cF31 e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2

+ϕ5 ta+2
1 + ϕ6 ta+4

1 − ϕ8 t6
1 − ϕ9 ta+4

1 − ϕ10 ta+6
1

]
+

[
cF41 βF + µF(1 − βF)

]
×
{

ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1)

}
+ cF51

{
p2 t1 + ϕ1t3

1 + ϕ11 ta+1
1
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+ϕ2 ta+3
1

}
+ cF61 δF(ϕ11 ta+1

1 + p2t1)

]
(20)

VF =
1
T

[
(r12)t1 + r22 + cF22

{
ϕ1 t3

1 + ϕ2 ta+3
1

}
+ cF32 e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2

+ϕ5ta+2
1 + ϕ6 ta+4

1 − ϕ8 t6
1 − ϕ9 ta+4

1 − ϕ10 ta+6
1

]
+

[
cF42 βF + µF(1 − βF)

]
×
{

ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1)

}
+ cF52

{
p2 t1 + ϕ1t3

1 + ϕ11 ta+1
1

+ϕ2 ta+3
1

}
+ cF62δF(ϕ11 ta+1

1 + p2t1)

]
(21)

WF =
1
T

[
(r13)t1 + r23 +

{
cF23(ϕ1 t3

1 + ϕ2 ta+3
1 )

}
+ cF33 e t1 + f

[
ϕ3 t2

1 + ϕ1
t4
1
2

+ϕ5 ta+2
1 + ϕ6 ta+4

1 − ϕ8 t6
1 − ϕ9 ta+4

1 − ϕ10 ta+6
1

]
+

[
cF43 βF + µF(1 − βF)

]
×
{

ϕ11 [Ta+1 − t1
a+1] + p2 (T − t1)

}
+ cF53

{
p2 t1 + ϕ1t3

1 + ϕ11 ta+1
1

+ϕ2 ta+3
1

}
+ cF63 δF(ϕ11 ta+1

1 + p2t1)

]
(22)

The κ-cuts fL(κ)&fR(κ) of Triangular Fuzzy Numbers.
∼

TRC(t1, T) are given by

fL(κ) = UF + (VF − UF)κ

=
1
T

[
(r11)t1 + r21 + cF21 A1 + cF31 A2 + cF41 A3 + A4

+cF51 A5 + cF61 A6 +

{
(r21 − r11)t1 + (r22 − r21) + (cF22 − cF21 )A1

+(cF32 − cF31)A2 + (cF42 − cF41 )A3 + A4 + (cF52 − cF51 )A5

+(cF62 − cF61 )A6

}
κ

]
(23)

fR(κ) = WF − (WF − VF)κ

=
1
T

[
(r13)t1 + r23 + cF23 A1 + cF33 A2 + cF43 A3 + A4

+cF53 A5 + cF63 A6 +

{
(r13 − r12)t1 + (r23 − r23) + (cF23 − cF23 )A1

+(cF33 − cF33)A2 + (cF43 − cF43 )A3 + A4 + (cF53 − cF53 )A5

+(cF63 − cF62 )A6

}
κ

]
(24)

RT&A, No 4 (76) 
Volume 18, December 2023 

936



Sivan V, Thirugnanasambandam K, Sivasankar N and Sanidari.
A Fuzzy Innovative Ordering Plan

By apply the Signed Distance Method, the defuzzified value of average TRC, using the fuzzy
number

TRC(t1, T) =
1
2

[∫ 1

0
{fLκ +fRκ} dκ

]

=
1

4T

[
(r11 + 2r12 + r13)t1 + (r21 + 2r22 + r23) + (cF21 + 2cF22

+cF23)A1 + (cF31 + 2cF32 + cF33)A2 + [cF41 + 2cF42 + cF43] A3

+4A4 + (cF51 + 2cF52 + cF53)A5 + (cF61 + 2cF62

+cF63 )A6

]
(25)

9. Solutions and numerical problems using triangular fuzzy numbers of

different data

9.1. Solutions using triangular fuzzy numbers

For the solution purpose of equation (19), MATLAB R2018b and Excel 2010 solver are used to
find all the optimal solutions.
For optimization let us do the following:

The necessary condition for the least value of TRC (t1, T) are,

∼
∂(TRC (t1, T)

∂t1
= 0 and

∼
∂(TRC (t1, T)

∂T
= 0

The sufficient condition for optimal TRC (t1, T), t1 > 0, T > 0.∣∣∣∣∣∣∣∣∣∣∣∣

∼
∂2(TRC)

∂t2
1

∼
∂2(TRC)

∂t1 ∂T

∼
∂2(TRC)

∂T ∂t1

∼
∂2(TRC)

∂T2

∣∣∣∣∣∣∣∣∣∣∣∣
> 0

Therefore the optimal fuzzy solutions of t*1 , T*, Q*
F and TRC* are found and given in the table.

Table 5: Optimal solution using fuzzy Numbers

t1
* T* Q*

F TRC(t1, T)*(Rs.)
0.54526521 0.6455852 20.4035902 135.998429

9.2. Sample problems using triangular fuzzy numbers

Example 4. Let’s take the input: p1 = 8.25, p2 = 31.75, a = 1.25, e = 1.825, f = 0.385, βF =
0.0044, δF = 4.2, µF = 13.75, λ = 4.25,

∼
cF2 = (8, 11.5, 15),

∼
cF3 = (2, 2.5, 3),

∼
cF4 = (1.25, 2.125, 3),

∼
cF5 = (0.2, 0.3, 0.4),

∼
cF6 = (0.22, 0.33, 0.44),

∼
rF1 = (8.55,10.525,12.5),

∼
rF2 = (20.5, 21.5, 22.5).

The optimal solutions are Q*
F = 19.6661, t*1 =0.57313, T* =0.70023, & TRC* = Rs.127.092.

Example 5. Let’s take the input: p1 = 8.25, p2 = 34.75, a = 1.2, e = 1.825, f = 0.385, βF =
0.0044, δF = 4.2, µF = 13.75, λ = 4.25,

∼
cF2 = (8, 11.5, 15),

∼
cF3 = (2, 2.5, 3),

∼
cF4 = (1.25, 2.125, 3),
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∼
cF5 = (0.2, 0.3, 0.4),

∼
cF6 = (0.22, 0.33, 0.44),

∼
rF1 =(8.55,10.525,12.5 ),

∼
rF2 = (20.5, 21.5, 22.5 ).

The optimal solutions are Q*
F = 20.4035902, t*1 =0.54526521, T* = 0.6455852, & TRC* =

Rs.135.998429.

Example 6. Let’s take the input: p1 = 8.25, p2 = 36, a = 1.2, e = 1.825 , f = 0.385, βF = 0.0044, δF = 4.2,
µF = 13.75, λ = 4.25,

∼
cF2 = (8, 11.5, 15),

∼
cF3 = (2, 2.5, 3),

∼
cF4 = (1.25, 2.125, 3),

∼
cF5 = (0.2, 0.3, 0.4),

∼
cF6 = (0.22, 0.33, 0.44),

∼
rF1 = (8.55,10.525,12.5),

∼
rF2 = (20.5, 21.5, 22.5).

The optimal solutions are Q*
F = 21.2316, t*1 =0.54833, T* =0.60289, & TRC*= Rs.138.968.

10. Comparison of Crisp and Fuzzy Optimal Solutions

Table 6: Comparison of crisp and fuzzy solutions

t1
* T* Q*

F TRC(t1, T)*(Rs.)
Crisp 0.83244 0.86903 10.1671 148.603
Fuzzy 0.54526521 0.6455852 20.4035902 135.998429

11. Conclusion & Extending investigation scope

In this study, an attempt is made to formulate an inventory model of innovative economic
order with the quantity of items. The considerations in this paper are (i) the demand is consistent
with time deterioration,(ii) the holding cost has been used as dependent on the amount of stock
available in the system, and (iii) the ordering cost is linear and time-dependent. This system
should be considered in terms of crisp and fuzziness. It is assumed that the shortages are
permitted partially and the quantity ordered is inspected to reduce defective items. To use the
penalty cost delay of supplying items should be minimized. Under the classical model and fuzzy
environment, a mathematical equation is arrived. The optimal solution of total relevant cost with
optimal order quantity and time using triangular fuzzy numbers has been found. Defuzzification
has been accomplished through the use of the signed distance method of integration. The
solutions have been arrived at and verified by using model with a few numerical problems of
three levels of values (lower, medium, and upper) in parametric changes. Sensitivity analysis
is used to validate the changes in different values of the system’s parameters. To demonstrate
the convexity of the total relevant cost function over time, a three-dimensional mesh graph has
been used. This model can be modified and developed further by changing the demand into
probabilistic, price, advertisement dependent etc.
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Abstract 

The performance of a juice plant is analyzed by using the base state and the regenerative point graphical 
technique. The juice plant under consideration consists of three distinct units. It is considered that units A and 
B may be in a complete failed state through partial failure mode but unit C is in only partially failed state.  If 
one of the units A or B or C partially fails then the system works in a reduced state. When any unit is 
completely failed then the system is in failed state and no unit can fail further when the system is in a failed 
state. A technician is always available to repair the failed unit. In this paper, the failure time and repair time 
follow general distributions. Tables are used to describe the reliability measures such as mean time to system 
failure, availability and profit values of juice plant. 

Keywords: Reliability, juice plant, repair time, mean sojourn time and profit. 

I. Introduction

Nowadays, manufacturers have to produce their products continuously to meet the increasing 
demands of their products which are possible by making their productions as efficient as possible. 
This paper discusses the MTSF, availability and profit of a juice plant with priority in repair using 
the regenerative point graphical technique under specified conditions. A large amount of research 
work has been done on repairable systems such that Bao and Mays [2] analyzed the hydraulic 
reliability of water distribution systems under demand, pipe roughness and pressure head. 
Gnedenko and Igor [7] explored reliability and probability studies for engineering purposes. Jack 
and Murthy [9] discovered the role of limited warranty and extended warranty for the product. 
Wang and Zhang [19] examined the repairable system of two non identical components under 
repair facility using geometric distributions. Diaz et al. [5] threw light on the warranty cost 
management system. Kumar and Goel [15] explored the idea of an imperfect switch on redundant 
systems in banking industry.  Goyal [8] described the availability and behavior of single unit 
system under preventive maintenance and degradation after complete failure using RPGT. Kumar 
and Goel [14] analyzed the preventive maintenance in two unit cold standby system under general 
distributions. Malik and Rathee [17] threw light on the two parallel units system under preventive 
maintenance and maximum operation time. Kashid and Kumar [11] examined the availability of 
two unit system under degradation and subject to the repair facility. Kumar et al. [12] evaluate the 
effects of washing unit in the paper industry by using the regenerative point graphical technique. 
Levitin et al. [16] explored the results of optimal preventive replacement of failed units in a cold 
standby system by using the poisson process. Agarwal et al. [1] analyzed the performance and 
reliability of water treatment plant under repair facility. Barak et al. [3] threw light on the 
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availability and profit values of milk plant under repair facility. Kumar et al. [13] described the 
cold standby redundant system under repair and refreshment facilities subject to inspection. 
Chaudhary and Sharma [4] explored the parallel non identical units system that gives priority to 
repair over preventive maintenance. Garg and Garg [6] analyzed the reliability and profit values of 
briquette machine under neglected faults like sound and overheating. Jia et al. [10] explored the 
two unit system under demand and energy storage techniques. Sengar and Mangey [18] examined 
the performance of complicated systems under inspection using copula methodology. 

II. System Assumptions

There are following system assumptions: 

• The juice plant consists of three distinct units.
• Unit A consists of a washing and storage tank.
• Unit B has grinding, blending, evaporation and pasteurization.
• Unit C has bottling, labeling and packing units.
• It is considered that units A and B may be in a complete failed state through

partial failure mode but unit C is in only partially failed state.
• Failure and repair times follow general distributions.
• The failed unit works like a new unit after repair.

III. System Notations

There are following system notations: 

ji rS rth directed simple path from state ‘i’ to state ‘j’ where ‘r’ takes the positive integral 
values for different directions from state ‘i’ to state ‘j’.  

iffs A directed simple failure free path from state ξ to state ‘i’. 

cyclem A circuit (may be formed through regenerative or non regenerative / failed state) whose 
terminals are at the regenerative state ‘m’.  

cyclem A circuit (may be formed through the unfailed regenerative or non regenerative state) 
whose terminals are at the regenerative ‘m’ state.  

kkU , Probability factor of the state ‘k’ reachable from the terminal state ‘k’ of  ‘k’ cycle. 

kkU , The probability factor of state ‘k’ reachable from the terminal state ‘k’ of cyclek .

i
Mean sojourn time spent in the state ‘i’ before visiting any other states. 

i
Total unconditional time spent before transiting to any other regenerative state while 
the system entered regenerative state ‘i’ at t=0. 

i
Expected waiting time spent while doing a job given that the system entered to the 
regenerative state ‘i’ at t=0. 

aAA // System’s first unit is in the operative state/reduced state/failed state. 

bBB // System’s second unit is in the operative state/reduced state/failed state. 

cCC // System’s third unit is in the operative state/reduced state/failed state. 

321 ,, The constant partial failure rate of the unit A/B/C respectively. 

54 , The constant complete failure rate of the unit A/B respectively. 

321 ,, www Fixed repair rate of the unit A/B/C after partial failure respectively. 

54 ,ww Fixed repair rate of unit A/B after the complete failure respectively. 

 /     / Upstate/ reduced state/ failed state 
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IV. Circuits Descriptions

The individual circuit description is given by the table 1: 

Table 1: Circuit Descriptions 
Primary, Secondary and Tertiary Circuit at the vertex (i) 

i (C1) (C2) (C3)

0 (0,1,0), (0,2,0), (0,3,0) 

(0,1,4,0), (0,2,5,0) 

Nil Nil

1 (1,0,1) (0,2,0), (0,3,0) Nil

2 (2,0,2) (0,1,0), (0,3,0) Nil

3 (3,0,3) (0,1,0), (0,2,0) Nil

4 (4,0,1,4) (0,1,0), (0,2,0) 

(0,3,0), (1,0,1) 

(2,0,2), (3,0,3) 

5 (5,0,2,5) (0,1,0), (0,2,0) 

(0,3,0), (2,0,2) 

(1,0,1), (3,0,3) 

Figure 1: State Transition Diagram 

where,  ABCS0 ,  BCAS1 ,  CBAS2 ,  CABS3 ,  aBCS4 ,  CbAS5

V. Transition Probabilities

The transition probabilities are following 
)/( 32111,0p , )/( 32122,0p , )/( 32133,0p  

)/( 4110,1 wwp , )/( 4144,1 wp , )/( 5220,2 wwp       
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)/( 5255,2 wp , 10,50,40,3 ppp   (1) 
It has been conclusively established that 

10301 pp , 1141210 ppp ,  12721 pp , 13831 pp  

14541 pp  ,  1867656 ppp , 1
)65(8.3131 npp  

1
)56(4.114.111210 npppp , 1

)65(7.2121 npp   (2)

VI. Mean Sojourn Time

Let i represents the mean sojourn time. Mathematically, the time taken by a system in a 
particular state becomes 

 dttTPm
j

jii
0

, )( . 

and  )/(1 3210 , )/(1 411 w  , )/(1 522 w
)/(1)( 33 wt , )/(1 44 w , )/(1 55 w  (3) 

VII. Evaluation of Parameters

All reliability parameters (such as mean time to system failure, availability, busy period of the 
server and expected number of visits) are determined by using the regenerative point graphical 
technique. The probability factors of all the reachable states from the base state ‘0’ are given below 

1)0,3,0()0,2,0()0,1,0(0,0U , 
321

1
1,0U , 

321

2
2,0U

)( 321

3
3,0U , 

))(( 41321

41
4,0 w

U , 
))(( 52321

52
5,0 w

U

I. Mean Time to System Failure (MTSF)

The regenerative un-failed states (i=0, 1, 2, 3) to which the system can transit (with initial state 0) 
before entering to any failed state (using base state ξ=0) then MTSF becomes 

 Sr

kkVk

sffSrpr

i
kkVk

iisffSrpr
SrT

22
102

)00(
1

3

0
11

101

.)0(

0

 
)]()())()([(

)]()([))()((

4122521152413213

4125213335241
0 wwwwwww

wwwwwwT  (4) 

II. Availability of the system

The system is available for use at regenerative states j=0, 1, 2, 3 with ξ=0 then the availability of 
system is defined as  
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5

0
22

102

'.)0(3

0
11

101

..)0(

0
i

kkVk

iiSrpr
Sr

j
kkVk

jjfjSrpr
SrA

))((
))(())()((
)}]()({))()([(

5541432

445253133524154

412521333524154
0

wwww
wwwwwwwww

wwwwwwww
A  (5) 

III. Busy Period of the Server

The server is busy due to repair of the failed unit at regenerative states j= 1, 2, 3, 4, 5 with ξ = 0 then 
the fraction of time for which the server remains busy is defined as 

5

0
22

102

'.)0(
5

1
11

101

.)0(

0
i

kkVk

iiSrpr
Sr

j
kkVk

jjSrpr
SrB

))((
))(())()((

))((
))(())((

5541432

445253133524154

5541432

44525315241354

0

wwww
wwwwwwwww

wwww
wwwwwwww

B  (6) 

IV. Estimated number of visits made by the server

The repairman visits at regenerative states j= 1, 2, 3 with ξ=0 then the number of visits by the 
repairman is defined as  

 
5

0
22

102

'.)0(3

1
11

101

)0(

0
i

kkVk

iiSrpr
Sr

j
kkVk

jSrpr
SrV

 

))((
))(())()((

)(
)()))((

5541432

445253133524154

415432

5254315241354

0

wwww
wwwwwwwww

wwww
wwwwwwww

V  (7) 

V. Profit Analysis

The profit function may be used to do a profit analysis of the system and it is given by 

020100 VEBEAEP  (8) 

where, 0E 5000 (Pay per unit uptime of the system)
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1E 1000 (Charge per unit time for which server is busy due to repair)

2E 500 (Charge per visit of the server) 

VIII. Discussion

 Table 2 describes the nature of mean time to system failure of the juice plant having an increasing 
trend corresponding to increment in repair rate (w2). In this table, the values of parameters 1=0.2, 

2=0.3, 3=0.15, 4=0.25, 5=0.4, w1=0.35, w3=0.4, w4=0.45, w5=0.5 respectively taking as constant for
the simplicity. When 1=0.2 changing into 1=0.25; 2=0.3 changing into 2=0.35 and 3=0.15
changing into 3=0.2 then MTSF values have decreasing trends.

Table 2: MTSF vs. Repair Rate 

Table 3 explores the increasing trends of availability corresponding to increments in repair rate 
(w2) where the system's other parameters possess constant values. When the failure rate of unit 
changes ( 1=0.2 to 0.25), ( 2=0.3 to 0.35) and ( 3=0.15 to 0.2) then the availability of system declines. 

Table 3: Availability vs. Repair Rate 

2w 1=0.2, 2=0.3
3=0.15, 4=0.25
5=0.4, w1=0.35

w3=0.4, w4=0.45
w5=0.5 

1=0.25 2=0.35 3=0.2

0.1 0.25028 0.214076 0.185918 0.190417 
0.2 0.364639 0.319498 0.281347 0.293845 
0.3 0.427923 0.381465 0.338725 0.358019 
0.4 0.467056 0.421888 0.376681 0.401314 
0.5 0.493101 0.450148 0.403461 0.432266 
0.6 0.511375 0.470912 0.423258 0.455361 
0.7 0.524719 0.48675 0.438421 0.473168 
0.8 0.534774 0.499191 0.450366 0.487264 
0.9 0.542545 0.509198 0.45999 0.498663 
1 0.548679 0.517404 0.46789 0.508046 

2w 1=0.2, 2=0.3
3=0.15, 4=0.25
5=0.4, w1=0.35

w3=0.4, w4=0.45
w5=0.5 

1=0.25 2=0.35 3=0.2

0.1 4.0647311 3.8613371 3.218144 3.775294 
0.2 4.1010786 3.8894957 3.235483 3.806505 
0.3 4.1312067 3.9129156 3.250148 3.833119 
0.4 4.1565858 3.9327001 3.262713 3.856081 
0.5 4.1782569 3.9496349 3.273599 3.876094 
0.6 4.1969772 3.9642941 3.283122 3.893693 
0.7 4.2133109 3.9771076 3.291522 3.90929 
0.8 4.2276872 3.9884034 3.298987 3.923207 
0.9 4.240438 3.998436 3.305664 3.935703 
1 4.2518242 4.007406 3.311673 3.946984 
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Table 4 explores the trend of profit values with respect to repair rate (w2) and its value increase 
corresponding to increments in repair rate (w2) where the system's other parameters possess 
constant values. When the failure rate of unit changes ( 1=0.2 to 0.25), ( 2=0.3 to 0.35) and ( 3=0.15 
to 0.2) then the profit of system declines. 

Table 4: Profit vs. Repair Rate 

2w 1=0.2, 2=0.3
3=0.15, 4=0.25
5=0.4, w1=0.35

w3=0.4, w4=0.45
w5=0.5 

1=0.25 2=0.35 3=0.2

0.1 2692.9 2046.417 1588.805 1690.491 
0.2 4428.411 3640.771 3027.839 3256.171 
0.3 5389.1 4576.626 3891.418 4226.372 
0.4 5983.344 5186.276 4461.578 4880.064 
0.5 6378.977 5611.935 4863.085 5346.797 
0.6 6656.653 5924.286 5159.353 5694.6 
0.7 6859.482 6162.259 5385.877 5962.46 
0.8 7012.365 6348.978 5563.998 6174.235 
0.9 7130.568 6498.993 5707.276 6345.293 
1 7223.9 6621.895 5824.711 6485.948 

IX. Conclusion

The performance of the juice plant is discussed using the regenerative point graphical technique 
(RPGT). The above tables explore that when the repair rate increases then the MTSF, system's 
availability and profit values also increase but when the failure rate increases then the MTSF, 
availability and profit values decrease. It is clear that RPGT is helpful for industries to analyze the 
behaviour of the products and components of system.  
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Abstract 

The aim of the paper is to study effectiveness of the different treatments of early-stage breast cancer 

through analysis of a stochastic model. The early-stage breast cancer is a term used to describe 

breast cancer that is detected at an early stage of development, typically before it has spread to other 

parts of the body. Early detection of breast cancer is critical as it greatly increases the chances of 

successful treatment and saves lives. At early-stage breast cancer of the patient, two types of 

treatment namely, tamoxifen and tamoxifen combined with radiation therapy are commonly used. 

As it is essential to consider innovative and cost-effective strategies for early detection and 

treatment. Investigations through analysis of the stochastic model on early-stage breast cancer with 

these two types of treatments may help the stakeholders. Keeping this in view, in the present paper, 

a stochastic model is developed for the early-stage breast cancer considering two treatment types, 

namely tamoxifen and tamoxifen combined with radiation therapy. The model is analyzed by 

Markov process and regenerative point technique. Mean sojourn time refers to the average amount 

of time spent by a patient in a particular state before transitioning to another state and mean 

survival time refers to the average time a patient survives after diagnosis of breast cancer. Mean 

sojourn time and mean survival time have been calculated. Sensitivity analysis is a technique to 

understand how changes in input variables or parameters affect the output or outcome of a model 

and it helps assess the robustness, reliability, and stability of a model by quantifying the impact of 

variations in input factors. The paper also includes sensitivity and relative sensitivity analyses of 

the model which explore the impact of different parameters on the survivability of the patient. The 

MATLAB software has been used for numerical computing and plotting various graphs. The 

investigation through our analysis of the stochastic model shows that the mean survival time 

lessens with the rise in the rates of transition and mean survival time from the treatment, tamoxifen 

plus radiation is higher than the treatment, tamoxifen only. It is concluded that tamoxifen plus 

radiation is more effective and useful than only tamoxifen for treatment of early-stage breast cancer. 

Keywords: Breast cancer, stochastic model, Markov process, regenerative point 

technique, mean sojourn time, mean survival time and sensitivity analysis 

1. Introduction

Cancer is a leading global cause of adult deaths. According to IARC (International Agency for 

Research on Cancer), India reported approximately 635,000 cancer-related deaths in 2008. Breast 

cancer ranks as the most frequently diagnosed malignancy among women globally, with 2.3 

million cases and 685,000 deaths in 2020. As of the end of 2020, 7.8 million women who had battled  

were still alive, making it the most common cancer globally.  
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A lot of work has been done on Markov modelling on breast cancer. Duffy et al. [6] 

proposed a Markov model indicating that progression to an advanced state is notably faster 

among individuals aged 40-49. Johnstone et al. [9] analyzed the historical data of untreated breast 

cancer patients Subsequently, Anthony et al. [1] and Cong et al. [4] found that the combined 

treatment of tamoxifen and radiation proves more effective in preventing breast cancer recurrence 

compared to tamoxifen alone. According to Schairer et al. [13], the probability of death, whether 

from breast cancer or other causes, was frequently higher in black patients compared to white 

patients. Understanding the parameters of cancer progression is crucial for evaluating screening 

policies' effectiveness, as highlighted by Harvey et al. [14]. These parameters include transition 

rates, preclinical sojourn time, sensitivity and the influence of various risk factors on the 

progression of cancer. Several studies have previously examined breast cancer and its facets. In 

2014, Ventura et al. [15] demonstrated the use of a multi-state Markov model to analyze the 

progression of breast cancer, employing various methods for parametric estimation. Anthony et al. 

[3] evaluated that radiotherapy reduces the risk of breast and axillary recurrence in early-stage

breast cancer when combined with breast-conserving surgery (BCS) and Tamoxifen, but it does not

appear to significantly impact distant recurrence or overall survival. Dey et al. [5] provided

insights into breast cancer history, risk factors, symptoms, and global and Indian mortality rates,

along with available treatments. Grover et al. [7] developed a three-state Markov model based on

CA15-3 marker ranges to track disease progression in breast cancer patients. Furthermore, Huang

et al. [8] established a breast cancer transition model based on the Chinese population's natural

history validating its applicability. Ruiz-Castro et al. [13] developed a discrete-time piecewise

Markov model to study the behavior of a multi-state illness. Bayer et al. [2] developed and

conducted an analysis of a Markov model designed to simulate and evaluate the treatment

strategies for cancer. In 2022, Mubarik et al. [10] made estimations regarding the future trends of

breast cancer-related mortality in East and South Asian countries. Moreover Newman et al. [11]

discussed the breast cancer burden in low and middle-income countries.

The aim of the paper is to study effectiveness of the different treatments of early-stage 

breast cancer through analysis of a stochastic model. The early-stage breast cancer is a term used to 

describe breast cancer that is detected at an early stage of development, typically before it has 

spread to other parts of the body. Early detection of breast cancer is critical as it greatly increases 

the chances of successful treatment and saves lives. At early-stage breast cancer of the patient, two 

types of treatment namely, tamoxifen and tamoxifen combined with radiation therapy are 

commonly used. As it is essential to consider innovative and cost-effective strategies for early 

detection and treatment. Investigations through analysis of the stochastic model on early-stage 

breast cancer with these two types of treatments may help the stakeholders. 

In the present paper, we develop a stochastic model for the early-stage breast cancer 

considering two treatment types, namely tamoxifen and tamoxifen combined with radiation 

therapy. Mean sojourn time and mean survival time have been calculated. In section 2, we 

described the stochastic model and its assumptions. In section 3, we define the states of the model 

and various notations used in the model. In section 4 and section 5, we find the steady-state 

probabilities and mean sojourn times. Section 6 and section 7 deal with computation of 

unconditional mean time and mean survival time (MST). A particular case has been considered in 

section 8. Numerical calculation and graphical analysis are done in section 9. Section 10 includes 

sensitivity analysis and relative sensitivity analysis. Finally, conclusion is presented in section 11. 
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2. Model Description and Assumptions

The present paper introduces a comprehensive six-state markov model for breast cancer. Any 

normal person may be infected with breast cancer symptoms. Whenever an early-stage breast 

cancer is diagnosed in a person then without taking the possibility of breast surgery, two types of 

treatments, namely tamoxifen (say, treatment-1) and tamoxifen plus radiation (say, treatment-2) 

have been considered. Here only these two treatments are assumed to be available to the patient 

that may perfectly cure the cancer. When the patient recovers using any of the treatments, then 

he/she will go to normal state, otherwise he/she will be in death state as the facility to carry out 

breast surgery of the patient is not available. Various assumptions for the model are as under: 

• Initially the person is normal.

• Transition rates follow exponential distribution and other rates follow general

distribution.

• All random variables are independent.

3. Model Development

Various states of the model and notations of different parameters are described in table 1 and table 

2 respectively. 

Table 1: States specification 

Table 2: Notations 

Notations  Description 

1
 Transition rate from normal to diagnosed state

2
 Transition rate from normal to death state

3
 Transition rate from treatment-1 to death state

4
 Transition rate from treatment-2 to death state

5
 Transition rate from no treatment to death state

 
1 1

h (t) / H (t) p.d.f. /c.d.f. of time of recovery from treatment-1.

 
2 2

h (t) / H (t) p.d.f. /c.d.f. of time of recovery from treatment-2.

       p / q  Probability that treatment is given/not given to the patient. 

      
1 1

p / q  Probability that treatment-1/treatment-2 is given to the patient. 

States Description 

0
S Normal State  

 1
S The state when breast cancer is diagnosed. 

 2
S The state in which treatment-1 is given to breast cancer patient.  

3
S The state in which treatment-2 is given to the breast cancer patient 

4
S The state in which no treatment is given to the breast cancer patient 

 5
S  Death state 
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 : Normal State  : Diagnosed State  : Death State 

Figure 1. State -Transition Diagram 

4. Transition Probabilities

The transition probabilities are 
1 2( ) t

01 1
q (t) e−  +

=  ; 1 2( )t

05 2
q (t) e−  +

=  ; 1t

12 1 1
q (t) p p e−

= 

1t

13 1 1
q (t) q p e−

=  ; 1t

14 1
q (t) q e−

=  ;  3t

20 1
q (t) h (t) e−

=

3t

25 3 1
q (t) e H (t)−

=  ; 4t

30 2
q (t) h (t)e−

= ; 4t

35 4 2
q (t) e H (t)−

= 

5t

45 5
q (t) e−

=  . 

The steady-state probabilities   i j i js 0
p lim L q (t)

→
=   are obtained as 

1
01

1 2

p


=
 + 

; 2
05

1 2

p


=
 + 

; 
12 1

p pp= ; 
13 1

p pq=

 
14

p q= ; *

20 1 3
p h ( )=   ; *

30 2 4
p h ( )=  ; *

25 1 3
p 1 h ( )= − 

*

35 2 4
p 1 h ( )= −  ;  

45
p 1= . 

Clearly, 

0 1 0 5
p p 1+ = ; 12 13 14

p p p 1+ + = ; 2 0 2 5
p p 1+ =

30 3 5
p p 1+ = ; 4 5

p 1=

5. Mean Sojourn Time

Expected time taken by the patient in state i before transiting to any other state is called mean 

sojourn time in that state.  

𝑆2 𝑆3 𝑆4 

𝑆5 

 𝑞1𝑝𝜆1 

 𝑆1 

ℎ2(𝑡) ℎ1(𝑡) 

𝑝𝑝1𝜆1 𝑞𝜆1 

𝜆4 𝜆5 
𝜆2 

𝑆0 

𝜆1 

𝜆3 
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It is denoted by 
i

 and is given by 

i i

0 0

P(T > t)dt R(t)dt
 

 = = 

Then, we have 

0

1 2

1
 =

 +
; 

1

1

1
 =


; 

*

1 3
2

3

1 h ( )− 
 =



*

2 4
3

4

1 h ( )− 
 =


; 

4

5

1
 =



6. Unconditional Mean Time

Unconditional mean time 
ij

m is mathematically stated as    
'*

ij ij ij

0

m t q (t)dt q (0)


= = −  . 

Then, we have 

1
01 2

1 2

m
( )


=

 + 
  ; 2

05 2

1 2

m
( )


=

 + 
; 1

12

1

pp
m =



1
13

1

pq
m =


   ; 

14

1

q
m =


;  

'*

20 1 3
m h ( )= −   

'
*

* 1 3
25 1 3

3 3

h ( )1
m h ( )


=  + −

 
; 

'*

30 2 4
m h ( )= −  ;         

'
*

* 2 4
35 2 4

4 4

h ( )1
m h ( )


=  + −

 

45

5

1
m =



Thus, 

01 0 5 0
m m+ =  ; 

12 13 14 1
m m m+ + =  ; 

20 25 2
m m+ = 

30 35 3
m m+ =  ; 

45 4
m = 

7. Mean Survival Time

Let 
i
(t) denotes the cumulative distribution function of first passage time from 

i
S to death state. 

The following recursive relations are obtained for 
i
(t) : 

0 01 1 05

1 12 2 13 3 14 4

2 20 0 25

3 30 0 35

4 45

(t) = Q (t) (t) Q (t)

(t) Q (t) (t) Q (t) (t) Q (t) (t)

(t) Q (t) (t) Q (t)

(t) Q (t) (t) Q (t)

(t) Q (t)

  +

 =  +  + 

 =  +

 =  +

 =

Taking Laplace Stielje’s Transform (L.S.T.) on both sides of above equations and solve for  **

0
(s) ,

we have 

**

0

N(s)
(s)

D(s)
 =  (1) 

 where **

0
(s) 𝑖𝑠 Laplace Stielje’s Transform of 

0
(t) ,

** ** ** ** ** ** ** **

05 01 12 25 13 35 14 45
N(s) Q (s) Q (s)( Q (s)Q (s) Q (s)Q (s) Q (s)Q (s))= + + +

 and ** ** ** ** ** **

01 20 12 01 30 13
D(s) 1 Q (s)Q (s)Q (s) Q (s)Q (s)Q (s).= − −
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Now, the mean survival time is given by 
**

0
0 s 0

1 (s)
T lim

s→

−
=

Using L’Hospital’s rule and putting the value of  **

0
(s) from equation (1), we get

0

N
T

D
= , 

where 

0 1 01 2 01 12 3 01 13 4 01 14
N p p p p p p p=  + + + +

and 
01 12 20 01 13 30

D 1 p p p p p p= − − .

8. Particular Case

The following particular case is considered for analysis purpose: 
1 (t)

1 1
h (t) e−

=  and 2 ( t)

2 2
h (t) e−

=  , where 1
 and 2

 are recovery rate from treatment-1 and

treatment-2, respectively. The transition probabilities are given by 

1
01

1 2

p


=
 + 

; 2
05

1 2

p


=
 + 

; 12 1
p pp= ; 13 1

p pq=

 14
p q= ;  *

20 1 3
p h ( )=    ; *

30 2 4
p h ( )=  . 

Mean sojourn time is given by 

0

1 2

1
 =

 +
     ; 

1

1

1
 =


      ;  

*
201 3

2

3 3

1 p1 h ( ) −− 
 = =

 

*
302 4

3

4 4

1 p1 h ( ) −− 
 = =

 
        ; 

4

5

1
 =


, 

where  * 1
1 3 20

3 1

h ( ) p


 = =
 +

       and  * 2
2 4 30

4 2

h ( ) p


 = =
 +

. 

9. Numerical Computation and Graphical Analysis

For the numerical computation and graphical analysis, the above particular case is considered. The 

transition rates 1 2
( , )  are taken as given in Harvey et al. (2013) whereas other parameters 

3 4 5 1 1
( , , ,p ,q ,p,q)   are assumed here. Various graphs have been plotted for mean survival time 

taking varying values to the parameters involved in its expression. 

In the figures 2, 4, 6, 8 and 10, graphs exhibit the nature of mean survival time 0
(T )  versus 

transition rates 1 2 3 4
, , ,    and 5

 for varying recovery rate 1
  𝑤ℎ𝑒𝑟𝑒𝑎𝑠 in the figures 3, 5, 7, 9 and 

11, graphs exhibit the nature of mean survival time 0
(T )  versus transition rates 1 2 3 4

, , ,    and

5
 for varying recovery rate 2

 . In figure 12, graph presents the nature of mean survival time 

versus transition rate 1
 for varying values of 1

 and 2
 . 
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Figure 2. Mean Survival Time 0
( )T  versus transition rate 1

( ) for varying recovery rate 1
( )  

Figure 3. Mean Survival Time 0
( )T versus transition rate 1

( ) for varying recovery rate 2
( )
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Figure 4. Mean Survival Time 0
( )T  versus transition rate 2

( ) for varying recovery rate 1
( )  

Figure 5. Mean Survival Time 0
( )T versus transition rate 2

( ) for varying recovery rate 2
( )
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Figure 6. Mean Survival Time 0
( )T  versus transition rate 3

( ) for varying recovery rate 1
( )

Figure 7. Mean Survival Time 0
( )T versus transition rate 3

( ) for varying recovery rate 2
( )
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Figure 8. Mean Survival Time 0
( )T  versus transition rate 4

( ) for varying recovery rate 1
( )  

Figure 9. Mean Survival Time 0
( )T versus transition rate 4

( ) for varying recovery rate 2
( )
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Figure 10. Mean Survival Time 0
( )T  versus transition rate 5

( ) for varying recovery rate 1
( )  

Figure 11. Mean Survival Time 0
( )T versus transition rate 5

( ) for varying recovery rate 2
( )
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Figure 12. Mean Survival Time 0
( )T  versus transition rate 1

( ) for varying recovery rates  1
  and 2



The following interpretations have been drawn from the plotted graphs from the figure 2 

to figure12. It can be observed that mean survival time decreases as transition rates 1 2 3 4
, , ,     

and 5
 increases and gives higher values with higher value of recovery rates 1

 and 2
 . Further, the

mean survival time 0
( )T  in case of the treatment-2 is higher than that in case of treatment-1. 

10. Sensitivity and Relative Sensitivity Analysis

Sensitivity analysis is performed to find out how the variation in involved parameters affect the 

specific mean survival time under certain specific conditions. Since, there is significance difference 

between the values of parameters, therefore to compare their effects on mean survival time (MST), 

relative sensitivity function is used. The sensitivity and relative sensitivity functions for mean 

survival time (MST) are formulated as under: 

k

(MST)
and

k


 =


k k

k

MST

 
 =   

  , 

where  1 2 3 4 5 1 2
k , , , , , ,=       
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Table1: Sensitivity and relative sensitivity analysis of MST (𝑇0) with transition rate  (𝜆1) for 𝜆2 = 0.00092,  
 𝜆3 = 0.0025, 𝜆4 = 0.0015, 𝜆5 = 0.0035, 𝛽1 = 0.7, 𝛽2 = 0.9, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

Table 2: Sensitivity and relative sensitivity analysis of MST (𝑇0) with transition rate (𝜆2) for 𝜆1 = 0.00184,  
 𝜆3 = 0.0025, 𝜆4 = 0.0015, 𝜆5 = 0.0035, 𝛽1 = 0.7, 𝛽2 = 0.9, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

Table 3: Sensitivity and relative sensitivity analysis of MST (𝑇0)  with transition rate (𝜆3) for 𝜆1 = 0.00184,  
  𝜆2 = 0.00092, 𝜆4 = 0.0015, 𝜆5 = 0.0035, 𝛽1 = 0.7, 𝛽2 = 0.9, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

πλ1
=

∂(MST)

∂λ1

δλ1
= πλ1

(
λ1

MST
)

0.00176 - 2.4884 - 0.2953

0.00178 - 2.4678 - 0.2972

0.00180 - 2.4475 - 0.2991

0.00182 - 2.4274 - 0.3009

0.00184 - 2.4076 - 0.3027

0.00186 - 2.3880 - 0.3045

0.00188 - 2.3686 - 0.3063

0.00190 - 2.3495 - 0.3081

0.00192 - 2.3306 - 0.3098

πλ2
=

∂(MST)

∂λ2

δλ2
= πλ2

(
λ2

MST
) 

0.00084 - 1.1087 - 0.6019

0.00086 - 1.0776 - 0.6075

0.00088 - 1.0478 - 0.6130

0.00090 - 1.0192 - 0.6183

0.00092 - 9.9172 - 0.6235

0.00094 - 9.6537 - 0.6285

0.00096 - 9.4006 - 0.6334

0.00098 - 9.1574 - 0.6382

0.00100 - 8.9234 - 0.6428

λ3 
πλ3

=
∂(MST)

∂λ3

δλ3
= πλ3

(
λ3

MST
) 

0.0017 - 1.0919 - 0.0013

0.0019 - 1.0910 - 0.0014

0.0021 - 1.090 - 0.0016

0.0023 - 1.0891 - 0.0017

0.0025 - 1.0881 - 0.0019

0.0027 - 1.0872 - 0.0020

0.0029 - 1.0863 - 0.0022

0.0031 - 1.0853 - 0.0023

0.0033 - 1.0844 - 0.0024
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Table 4: Sensitivity and relative sensitivity analysis of MST(𝑇0) with transition rate (𝜆4) for  𝜆1 = 0.00184,  
  𝜆2 = 0.00092, 𝜆3 = 0.0025, 𝜆5 = 0.0035, 𝛽1 = 0.7, 𝛽2 = 0.9, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

Table 5: Sensitivity and relative sensitivity analysis of MST(𝑇0) with transition rate (𝜆5) for 𝜆1 = 0.00184,  
  𝜆2 = 0.00092, 𝜆3 = 0.0025, 𝜆4 = 0.0015, 𝛽1 = 0.7, 𝛽2 = 0.9, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

Table 6: Sensitivity and relative sensitivity analysis of MST(𝑇0) with recovery rate (𝛽1)  𝜆1 = 0.0018, 
  𝜆2 = 0.00092, 𝜆3 = 0.0025, 𝜆4 = 0.0015, 𝜆5 = 0.0035, 𝛽2 = 0.9, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

λ4 
πλ4

=
∂(MST)

∂λ4

δλ4
= πλ4

(
λ4

MST
) 

0.0007 - 567.6037 - 2.7142

0.0009 - 567.2638 - 3.4879

0.0011 - 566.9242 - 4.2608

0.0013 - 566.5849 - 5.0329

0.0015 - 566.246 - 5.8041

0.0017 - 565.9073 - 6.5746

0.0019 - 565.5689 - 7.3442

0.0021 - 565.2309 - 8.1131

0.0023 - 564.8931 - 8.0011

𝜆5 
𝜋𝜆5

=
𝜕(𝑀𝑆𝑇)

𝜕𝜆5

𝛿𝜆5
= 𝜋𝜆5

(
𝜆5

𝑀𝑆𝑇
) 

0.0027 - 5.1318 - 0.0927

0.0029 - 4.4481 - 0.0868

0.0031 - 3.8926 - 0.0817

0.0033 - 3.4351 - 0.0771

0.0035 - 3.0537 - 0.0730

0.0037 - 2.7325 - 0.0694

0.0039 - 2.4595 - 0.0660

0.0041 - 2.2254 - 0.0630

0.0043 - 2.0232 - 0.0603

𝜋(β1) =
𝜕(𝑀𝑆𝑇)

𝜕𝛽1

𝛿𝛽1
= 𝜋𝛽1

(
𝛽1

𝑀𝑆𝑇
) 

0.4 8.5702 0.0023 

0.6 3.8331 0.0016 

0.8 2.1629 0.0012 

1.0 1.3869 9.4735 

1.2 0.9643 7.9033 

1.4 0.7091 6.7796 

1.6 0.5433 5.9357 

1.8 0.4295 5.2786 
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Table 7: Sensitivity and relative sensitivity analysis of MST (𝑇0) with recovery rate (𝛽2) for   𝜆1 = 0.0018, 
  𝜆2 = 0.00092, 𝜆3 = 0.0025, 𝜆4 = 0.0015, 𝜆5 = 0.0035, 𝛽1 = 0.7, 𝑝 = 0.7, 𝑞 = 0.3,  𝑝1 = 0.6, 𝑞1 = 0.4 

 The sensitivity and relative sensitivity analyses of mean survival time are carried out with 

involved parameters 1 2 3 4 5 1 2
( , , , , , , )       . The sensitivity and relative sensitivity analyses of 

mean survival time with these parameters are tabulated in table 1 to table 7. Tables 1-5 show that 

signs of the sensitivity of mean survival time with parameters 1 2 3 4
, , ,    and 5

 are negative

which implies that increase in these parameters decline the value of MST. Tables 6-7 show that 

signs of the sensitivity of mean survival time with parameters 1
 and 2

 are positive which lead to 

the conclusion that increase in these parameters improve the value of mean survival time. As 

transition rates 1 2 3 4
, , ,    and 5

 increase, sensitivity function increases whereas relative 

sensitivity function decreases and whenever recovery rates 1
 and 2

 increase, sensitivity function

decreases. 

11. Conclusion

Breast cancer is indeed one of the most common cancers diagnosed in women globally. It is a major 

public health concern and significant impact on women’s health. In the paper, the evaluated 

expressions for mean sojourn time in the different states of the model gives estimates of the times 

for patient remains in a particular stage. The investigation through the stochastic analysis of the 

model on breast cancer considering two types of treatments in various progression stages 

concludes that the mean survival time lessens with the rise in the rates of transition. It has been 

observed that mean survival time from tamoxifen plus radiation is higher than tamoxifen only. It is 

concluded that tamoxifen plus radiation is more effective and useful than only tamoxifen for 

treatment of early-stage breast cancer. 
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Abstract 

This paper presents a comprehensive study of a series-parallel system comprising four interconnected 

subsystems: subsystem-1, subsystem-2, subsystem-3, and subsystem-4. Subsystem-1 stands as a single 

unit, subsystem-2 consists of three identical units in active parallel, subsystem-3 involves two identical 

units in series, while subsystem-4 incorporates two identical units in parallel. The system operates 

under good conditions, considering various failure rates and repair rates. The investigation employs 

Laplace transforms and Supplementary variable techniques to analyze the system's performance. Key 

reliability parameters, including Availability, Reliability, Mean Time to Failure (MTTF), Sensitivity, 

and Cost, are evaluated for specific values of failure and repair rates. The paper delves into the intricate 

analysis of a multi-unit series system, focusing on its reliability and performance evaluation. The study 

employs the Gumbel-Hougard Family Copula approach, a sophisticated and robust methodology to 

capture the interdependencies among system units. By utilizing this advanced technique, the paper 

provides a comprehensive understanding of the system's behavior under varying operating conditions. 

Various reliability and performance metrics, including Availability, Mean Time to Failure (MTTF), 

and Component Importance Measures, are thoroughly examined, offering valuable insights for 

optimizing the system's reliability and performance. The results are presented in a clear and visually 

appealing manner, utilizing tables and figures to aid in the comprehension of the findings. 

Keywords: Availability; Reliability; Sensitivity; Mean time to system failure 

(MTTF); Cost Analysis; 

 

I. Introduction 
 

System reliability refers to the extent to which it can be relied upon to function correctly. 

Additionally, it encompasses critical aspects such as system usage, maintenance, and strategies for 

enhancing effectiveness by reducing failure occurrences and minimizing maintenance costs. By 

improving reliability, the risk of harm to maintenance personnel is reduced, as machine failures can 

result in significant injuries, revenue losses, reduced production output, and increased maintenance 

expenses. A key objective of system reliability analysis is to identify vulnerable components and 

assess the potential impacts of their failures. 

The components of a serial or redundant system play a vital role in shaping its reliability and 

performance. The occurrence and nature of component failures within these systems significantly 

impact various key metrics, such as overall reliability, mean time to failure, dependability, 
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availability, and revenue generation. Consequently, it becomes crucial to identify and assess the 

most critical components with the highest reliability in terms of the aforementioned factors. In 

today's manufacturing industries, traditional production systems are no longer enough to ensure 

the continued existence and success of an organization. The focus on steady-state operations is 

insufficient; constant improvement in the reliability and performance of systems is now essential to 

meet the demands of enhanced productivity, adaptability, and the ever-changing competitive 

landscape. Systems engineering, improvement, and setup are increasingly driven by the 

consideration of performance as a crucial factor. Merely assuming that systems function properly is 

inadequate; their effectiveness is equally important. Numerous instances in domains like 

telecommunication systems, industrial, and manufacturing systems have shown that enhancing 

system reliability and performance can lead to significant savings in disaster mitigation, time, costs, 

labor, risks, and even human lives. Therefore, reliability and performance analysis surveys are 

conducted to evaluate existing or planned systems, explore different configurations, and strive for 

an optimum design setup. The ongoing pursuit of improved reliability and performance is vital for 

organizations seeking to thrive in today's dynamic industrial landscape. 

Numerous researchers have employed diverse methodologies to explore the performance and 

reliability of various systems, and their findings have demonstrated notable enhancements in 

operational efficiency. For instance, Teslyuk et al. (2021) proposed models for reliably assessing 

metrics related to testing the performance of local area networks. Additionally, Rotar et al. (2021) 

introduced a mathematical approach to determine the reliability of solar tracking systems by 

considering fault coverage aware metrics.  In the realm of reliability analysis for various network 

systems, several researchers have made significant contributions using diverse methodologies. Bisht 

et al. (2021) devised an algorithm to compute reliability metrics, component measures, and critical 

measures for communication networks. Arora et al. (2020) developed models specifically for 

determining reliability metrics in parallel systems with fault coverage. On the other hand, Bisht and 

Singh (2019a) focused on analyzing reliability metrics of complex networks using universal 

generating functions. In the context of distributed networks, Huang et al. (2020) introduced their 

models for reliability analysis. Furthermore, Bisht and Singh (2019b) employed Markov processes to 

analyze the reliability measures for enhancing transmission network systems. In a separate study, 

Bisht and Singh (2020) delved into the analysis of profit and reliability in transmission networks 

using artificial neural networks and Markov processes.These diverse approaches and methodologies 

have contributed to advancing the understanding of reliability and performance evaluation in 

various network systems, paving the way for more robust and efficient designs. 

 

The research landscape on reliability assessment for various systems has witnessed several 

significant studies employing different methodologies. Ye et al. (2020) conducted an investigation 

on the reliability of a repairable machine, exploring its behavior under shocks and degradation 

caused by low-quality feedstocks. Sharifi et al. (2019) tackled a redundancy allocation problem, 

aiming to optimize the reliability and cost of weighted-k-of-n parallel systems. They employed a 

combination of a universal generating function, a non-dominated sorting genetic algorithm, and a 

non-dominated ranked genetic algorithm to determine the reliability and cost of each subsystem. In 

the field of power systems, Jia et al. (2020) introduced a multi-state decision diagram method for 

evaluating system reliability. Their approach incorporated a multi-state performance sharing 

mechanism and warm standby units. Lin et al. (2021) contributed to the reliability modeling domain 

by establishing a copula-based Bayesian model. This model effectively captures the interdependence 

between components in parallel systems and allows for the estimation of system failure rates. 

Additionally, Jia et al. (2021) presented a model for power systems that integrate warm standby and 

energy storage components. Their reliability assessment was calculated using the multi-valued 

decision diagram technique. These diverse research endeavors have enriched the understanding of 

965



 
Ismail Muhammad Musa, Ibrahim Yusuf 
SYNTHETIC RELIABILITY MODELING AND PERFORMANCE 
ENHANCEMENT 

RT&A, No 4 (76) 
Volume 18, December, 2023  

 

reliability assessment and paved the way for more robust and efficient designs across different 

systems and industries. 

The realm of reliability analysis has seen diverse studies that explore different methodologies and 

applications. Pundir et al. (2021) conducted an analysis of reliability metrics for a system comprising 

two non-identical cold standby units, considering different types of priors for unknown parameters. 

Kumar et al. (2019a) introduced a novel approach inspired by the hierarchical and fishing behavior 

of gray wolves (Canis lupus) to enhance the technical specifications of a Nuclear Power Plant's safety 

system's residual heat removal system (RHRS). In another study, Kumar et al. (2019b) utilized a 

multi-objective gray wolf optimizer algorithm to optimize the reliability-cost trade-off for a space 

capsule's life support system. Fuzzy reliability evaluation was the focus of Kumar et al.'s (2020) 

investigation, specifically for series, parallel, and linear consecutive k-out-of-n: F systems. Hesitant 

fuzzy sets, triangular fuzzy numbers, and the Weibull distribution were employed to obtain fuzzy 

reliability measures for different types of systems. Mellal and Zio (2020) proposed a new cuckoo 

optimization algorithm to address reliability redundancy allocation problems, specifically with a 

cold-standby strategy. This innovative approach holds promise for optimizing the reliability and 

performance of redundant systems. 

 

Numerous studies in the field of reliability engineering have shown that effective performance 

analysis can help to enhanced the reliability, avoid disasters and save time, money, or both. Xie et 

al. (2021) investigated and examined the performance of a safety system that is vulnerable to 

cascading failures that cause the appearance of further failures. In the paper, a unique technique for 

mitigating and preventing cascading failure is provided. Xie et al. (2019) suggested performance and 

an approximation approach for medium-frequency hazardous failures in safety instrumental 

systems prone to cascade failures. Yemane and Colledani (2019) offer a method for evaluating the 

performance of unstable manufacturing systems that takes into account unknown machine 

reliability predictions. Zhao et al. (2021) investigate and optimize the economic performance of a 

cold standby system susceptible to -shocks and imperfect repairs, proposing geometric process 

models to quantify the lifetime and repair time.  

Numerous researchers have previously presented copula methods in the field of reliability and 

performance analysis of systems by examining system performance under various conditions. To 

name a few, Rawal et al. (2022) have concentrated on the reliability assessment of multi-computer 

systems consisting of n clients and k-out-of-n: G operational scheme with copula repair policy in the 

ongoing reliability investigations. Sha (2021) conducted research on a copula approach to reliability 

analysis for hybrid systems. Through the copula repair approach, Sanusi et al. (2022) estimate the 

dependability metrics of automated teller machine using Gumbel Hougaaard family copula.Yusuf 

et al. (2022) focus on reliability assessment and estimation of multi-unit of serial system. Maihulla et 

al. (2021) used the Gumbel-Hougaard family Copula to model and assess the dependability and 

performance of solar photovoltaic systems. Yusuf and Sanusi (2023) present copula technique in 

assessing and estimating the reliability characteristics of automated teller machine system. Maihulla 

and Yusuf (2022) analyzed the reliability of solar PV system through copula techniques. Yusuf et al. 

(2021) carried out a study on reliability analysis of distributed systems utilizing copula technique. 

Singh et al. (2021) examine the performance of a multi-unit k-out-of-n: G system through copula 

linguistic scheme. Singh et al. (2022) suggest a copula linguistic technique for analyzing the 

performance and effectiveness of a redundant k-out-of-n: G system with multiple successive state 

degradation. Abubakar and Singh (2019) analyses the Performance assessment of an industrial 

system (African Textile Manufactures Ltd.) through copula linguistic approach. Maihulla et al. 

(2021) used the Gumbel-Hougaard family Copula to model and assess the dependability and 

performance of solar photovoltaic systems. 
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The researchers mentioned above have made remarkable contributions in enhancing the reliability 

and performance of complex repairable systems using various techniques. However, there is a need 

for a new model that offers substantiated and comprehensive evaluations. With this in mind, this 

present paper focuses on the reliability and performance analysis of a serial system comprising five 

components. The paper introduces a novel technique called the copula repair technique to analyze 

the optimization of reliability and performance in this serial system. The main objective is to predict 

the system's performance optimization by employing two repair strategies. When the system 

experiences partial failure, the general repair technique is applied to fix it. On the other hand, if the 

system encounters complete failure, the copula repair technique is employed to fully recover from 

the failure.In pursuit of these objectives, the paper develops expressions for availability, reliability, 

mean time to failure (MTTF), sensitivity, and cost function. Through numerical analysis, the 

behavior of availability, reliability, and cost function over time is determined. This comprehensive 

approach aims to shed light on the dynamics of the serial system's performance and reliability, 

providing valuable insights for its optimization. 

II. State Description, Notation, and assumptions 

State descriptions  

S0 At the outset, the system is in an optimal operational state, where units B2, B3, and D2 are 

in hot standby mode, while units A1, B1, C1, C2, and D1 are actively functioning. 

S1 At this point, the system experiences a complete failure as subsystem 1 malfunctions. 

S2 At this moment, the system encounters a partial failure with units B3 and D2 in hot 

standby mode, units A1, B2, C1, C2, and D1 in working mode, and unit B1 undergoing repair. 

S3 At this point, the system experiences a complete failure as unit C1 malfunctions. 

S4 At this moment, the system faces a complete failure as unit C2 malfunctions. 

S5 At this point, the system encounters a partial failure with units B2 and B3 in hot standby 

mode, units A1, B1, C1, C2, and D2 in working mode, and unit D1 undergoing repair. 

S6 At this moment, the system experiences a partial failure with unit D2 in hot standby mode, 

units A1, B3, C1, C2, and D1 in working mode, and units B1 and B2 undergoing repair. 

S7 At this point, the system encounters a partial failure with unit B3 in hot standby mode, 

units A1, B2, C1, C2, and D2 in working mode, and units B1 and D1 undergoing repair.. 

S8 At this moment, the system experiences a complete failure as all the units in subsystem 2 

malfunction. 

S9 At this point, the system encounters a complete failure as all the units in subsystem 4 

malfunction. 

3.2 Notations 

• t  Stands for Time variable on a time scale. 

• s  Stands for Laplace transform variable for all expressions. 

• 𝜆1 Stands for Failure rate of the unit in the subsystem 1. 

• 𝜆2 Stands for Failure rate of any unit in subsystem 2. 

• 𝜆3 Stands for Failure rate of the unit 𝐶1 in subsystem 3. 
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• 𝜆4 Stands for Failure rate of the unit 𝐶2 in subsystem 3. 

• 𝜆5 Stands for Failure rate of any unit in subsystem 4. 

• 𝜙(𝑥)   Stands for Repair rates of the unit of subsystem 1. 

• 𝜙(𝑦) Stands for Repair rate of units in the subsystem 2. 

• 𝜙(𝑧)  Stands for Repair rate of the unit 𝐶1 in the subsystem 3. 

• 𝜙(𝑚)  Stands for Repair rate of the unit 𝐶2 in the subsystem 3. 

• 𝜙(𝑛)  Stands for Repair rate of units in the subsystem 4. 

• 𝑃𝑖(𝑡) Stands for the probability that the system is in 𝑆𝑖 state at instants for i = 0 to 9. 

• �̅�(𝑠) Stands for Laplace transformation of the state transition probability P(t). 

• 𝑃1(𝑥, 𝑡) Stands for the probability that a system is in state 𝑆1 the system is running under 

repair and elapse repair time is (x, t) with repair variable x and time variable t. 

• 𝐸𝑝(𝑡)  Stands for Expected profit during the time interval [0, t). 

• 𝐾1, 𝐾2  Stands for Revenue and service cost per unit time respectively. 

• 𝑃𝑖(𝑦, 𝑡) Stands for Probability that the system is in state 𝑆𝑖 for i=2, 6, 8, and the system is 

running under repair and elapse repair time is (y, t), with repair variable y and time 

variable t. 

• 𝑃3(𝑧, 𝑡) Stands for the probability that a system is in state 𝑆3 the system is running under 

repair and elapse repair time is (z, t) with repair variable z and time variable t. 

• 𝑃4(𝑚, 𝑡) Stands for the probability that a system is in state 𝑆4 the system is running under 

repair and elapse repair time is (m, t) with repair variable m and time variable t. 

• 𝑃𝑖(𝑛, 𝑡) Stands for Probability that the system is in state 𝑆𝑖 for i=5, 7, 9, and the system is 

running under repair and elapse repair time is (n, t), with repair variable n and time 

variable t. 

 

1.3 Assumptions 

• At the beginning, all the subsystems are in an ideal working mode 

• One unit in subsystem 1, 2, 4 and all units in subsystem 3 are necessary for the system to 

be in operative mode 

• All failure rates are unvarying and considered to undergo exponential distribution 

• The repairs undergo a general distribution. 

• It is considered that a repaired system performs like a new system and no damage seen 

during repair. 

• Immediately the failed unit gets repaired, it is ready to undergo the task. 

 

 

 

 

 

 

 

Figure 1 Reliability Block Diagram of the System 
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Figure 2 State Transition diagram of Model 

III. Formulation of the Mathematical Model 

With regards to the probability and continuity arguments, the train set of difference differential 

equations are lump together with the present mathematical model. 

(
𝜕

𝜕𝑡
+ 𝜆1 + 3𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5) 𝑝0(𝑡) = ∫ 𝜙(𝑦)𝑝2(𝑦, 𝑡)𝑑𝑦

∞

0
+ ∫ 𝜇0(𝑧)𝑝3(𝑧, 𝑡)𝑑𝑧

∞

0
+

∫ 𝜇0(𝑚)𝑝4(𝑚, 𝑡)𝑑𝑚
∞

0
+ ∫ 𝜙(𝑛)𝑝5(𝑛, 𝑡)𝑑𝑛

∞

0
+ ∫ 𝜇0(𝑥)𝑝1(𝑥, 𝑡)𝑑𝑥

∞

0
+ ∫ 𝜇0(𝑦)𝑝8(𝑦, 𝑡)𝑑𝑦

∞

0
+

∫ 𝜇0(𝑛)𝑝9(𝑛, 𝑡)𝑑𝑛
∞

0
                                                                         (1) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
+ 𝜇0(𝑥)) 𝑝1(𝑥, 𝑡) = 0                                                                                                     (2) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜆1 + 2𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5 + 𝜙(𝑦)) 𝑝2(𝑦, 𝑡) = 0            (3) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
+ 𝜇0(𝑧)) 𝑝3(𝑧, 𝑡) = 0                            (4) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑚
+ 𝜇0(𝑚)) 𝑝4(𝑚, 𝑡) = 0                         (5) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝5(𝑛, 𝑡) = 0           (6) 

2𝜆5 

𝜆1 𝜇0(𝑥) 
𝜆5 

𝜆1 

𝜙(𝑦) 

𝜙(𝑦) 

2𝜆2 

S8 
P8(y,t) S9 

P9(n,t
) 

S1 
P1(x,t) 

S0 
P0(t) 

S3 
P3(z,t) 

S4 
P4(m,t) 

     S5 
P5(n,t
) 

     S2 
P2(y,t) 

     S6 
P6(y,t) 

     S7 
P7(n,t
) 

3𝜆2 

𝜆4 

𝜙(𝑛) 

𝜆2 

𝜆4 

𝜆3 

2𝜆5 

𝜆5 

𝜆3 

𝜇0(𝑦) 

𝜇0(𝑚) 

𝜇0(𝑛) 

𝜙(𝑛) 

𝜙(𝑧) 
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Partial 
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(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜆2 + 𝜙(𝑦)) 𝑝6(𝑦, 𝑡) = 0                                                                                            (7) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝7(𝑛, 𝑡) = 0                                                                                            (8) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑝8(𝑦, 𝑡) = 0                                                                                                   (9) 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑛
+ 𝜇0(𝑛)) 𝑝9(𝑛, 𝑡) = 0                                                                                                  (10) 

Boundary Conditions 

𝑝1(0, 𝑡) = 𝜆1𝑝0(𝑡) + 𝜆1𝑝2(0, 𝑡)                                                                                                 (11) 

𝑝2(0, 𝑡) = 3𝜆2𝑝0(𝑡)                                                                                                                    (12) 

𝑝3(0, 𝑡) = 𝜆3𝑝0(𝑡) + 𝜆3𝑝2(0, 𝑡)                                                                                                 (13) 

𝑝4(0, 𝑡) = 𝜆4𝑝0(𝑡) + 𝜆4𝑝2(0, 𝑡)                                                                                                (14) 

𝑝5(0, 𝑡) = 2𝜆5𝑝0(𝑡)                                                                                                                   (15) 

𝑝6(0, 𝑡) = 2𝜆2𝑝2(0, 𝑡)                                                                                                               (16) 

𝑝7(0, 𝑡) = 2𝜆5𝑝2(0, 𝑡)                                                                                                               (17) 

𝑝8(0, 𝑡) = 𝜆2𝑝6(0, 𝑡)                                                                                                                 (18) 

𝑝9(0, 𝑡) = 𝜆5𝑝5(0, 𝑡) + 𝜆5𝑝7(0, 𝑡)                                                                                            (19) 

Solution of the Model:  

Using Laplace transformation of equations on (1) to (10) together with the initial condition, P0 (0) 

=1, one can attain.  

(𝑠 + 𝜆1 + 3𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5)𝑝0̅̅ ̅(𝑠) = 1 + ∫ 𝜇0(𝑥)𝑝1̅̅̅(𝑥, 𝑠)𝑑𝑥
∞

0
+ ∫ 𝜙(𝑦)𝑝2̅̅ ̅(𝑦, 𝑠)𝑑𝑦

∞

0
+

∫ 𝜇0(𝑧)𝑝3̅̅ ̅(𝑧, 𝑠)𝑑𝑧
∞

0
+ ∫ 𝜇0(𝑚)𝑝4̅̅ ̅(𝑚, 𝑠)𝑑𝑚

∞

0
+ ∫ 𝜙(𝑛)𝑝5̅̅ ̅(𝑛, 𝑠)𝑑𝑛

∞

0
+ ∫ 𝜇0(𝑦)𝑝8̅̅ ̅(𝑦, 𝑠)𝑑𝑦

∞

0
+

∫ 𝜇0(𝑛)𝑝9̅̅ ̅(𝑛, 𝑠)𝑑𝑛
∞

0
                                                                                                                (20) 

(𝑠 +
𝜕

𝜕𝑥
+ 𝜇0(𝑥)) 𝑝1̅̅̅(𝑥, 𝑠) = 0                                                                                                (21) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜆1 + 2𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5 + 𝜙(𝑦)) 𝑝2̅̅ ̅(𝑦, 𝑠) = 0                                                 (22) 

(𝑠 +
𝜕

𝜕𝑧
+ 𝜇0(𝑧)) 𝑝3̅̅ ̅(𝑧, 𝑠) = 0                                                                                                 (23) 

(𝑠 +
𝜕

𝜕𝑚
+ 𝜇0(𝑚)) 𝑝4̅̅ ̅(𝑚, 𝑠) = 0                                                                                             (24) 

(𝑠 +
𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝5̅̅ ̅(𝑛, 𝑠) = 0                                                                                         (25) 

970



 
Ismail Muhammad Musa, Ibrahim Yusuf 
SYNTHETIC RELIABILITY MODELING AND PERFORMANCE 
ENHANCEMENT 

RT&A, No 4 (76) 
Volume 18, December, 2023  

 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜆2 + 𝜙(𝑦)) 𝑝6̅̅ ̅(𝑦, 𝑠) = 0                                                                                         (26) 

(𝑠 +
𝜕

𝜕𝑛
+ 𝜆5 + 𝜙(𝑛)) 𝑝7̅̅ ̅(𝑛, 𝑠) = 0                                                                                         (27) 

(𝑠 +
𝜕

𝜕𝑦
+ 𝜇0(𝑦)) 𝑝8̅̅ ̅(𝑦, 𝑠) = 0                                                                                                (28) 

(𝑠 +
𝜕

𝜕𝑛
+ 𝜇0(𝑛)) 𝑝9̅̅ ̅(𝑛, 𝑠) = 0                                                                                                (29) 

Laplace transform of boundary conditions 

𝑝1̅̅̅(0, 𝑠) = 𝜆1𝑝0̅̅ ̅(𝑠) + 𝜆1𝑝2̅̅ ̅(0, 𝑠)                                                                                             (30) 

𝑝2̅̅ ̅(0, 𝑠) = 3𝜆2𝑝0̅̅ ̅(𝑠)                                                                                                                (31) 

𝑝3̅̅ ̅(0, 𝑠) = 𝜆3𝑝0̅̅ ̅(𝑠) + 𝜆3𝑝2̅̅ ̅(0, 𝑠)                                                                                             (32) 

𝑝4̅̅ ̅(0, 𝑠) = 𝜆4𝑝0̅̅ ̅(𝑠) + 𝜆4𝑝2̅̅ ̅(0, 𝑠)                                                                                             (33) 

𝑝5̅̅ ̅(0, 𝑠) = 2𝜆5𝑝0̅̅ ̅(𝑠)                                                                                                                (34) 

𝑝6̅̅ ̅(0, 𝑠) = 2𝜆2𝑝2̅̅ ̅(0, 𝑠)                                                                                                            (35) 

𝑝7̅̅ ̅(0, 𝑠) = 2𝜆5𝑝2̅̅ ̅(0, 𝑠)                                                                                                            (36) 

𝑝8̅̅ ̅(0, 𝑠) = 𝜆2𝑝6̅̅ ̅(0, 𝑠)                                                                                                              (37) 

𝑝9̅̅ ̅(0, 𝑠) = 𝜆5𝑝5̅̅ ̅(0, 𝑠) + 𝜆5𝑝7̅̅ ̅(0, 𝑠)                                                                                         (38) 

Solving (20) to (29), together with equations (30) to (38) one may attain;          

𝑃0
̅̅ ̅(𝑠) =

1

𝐷(𝑠)
          (39) 

𝑃1̅(𝑠) =
(𝜆1+3𝜆1𝜆2)

𝐷(𝑠)
 {

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                   (40) 

𝑃2
̅̅ ̅(𝑠) =

3𝜆2

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5)

𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5
}                                                                                 (41) 

𝑃3
̅̅ ̅(𝑠)

=(𝜆3+3𝜆2𝜆3)

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                       (42) 

𝑃4̅(𝑠) =
(𝜆4+3𝜆2𝜆4)

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                     (43) 

𝑃5
̅̅ ̅(𝑠) =

2𝜆5

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
}                                                                                                          (44) 

𝑃6
̅̅ ̅(𝑠) =

6𝜆2
2

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆2)

𝑠+𝜆2
}                                                                                                          (45) 

𝑃7
̅̅ ̅(𝑠) =

2𝜆2𝜆5

𝐷(𝑠)
{

1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
}                                                                                                        (46) 
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𝑃8
̅̅ ̅(𝑠) =

6𝜆2
3

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                               (47) 

𝑃9̅(𝑠) =
(2𝜆5

2+2𝜆2𝜆5
2)

𝐷(𝑠)
{

1−�̅�𝜇0(𝑠)

𝑠
}                                                                                                 (48) 

Where 𝐷(𝑠) =  𝑠 + 𝜆1 + 3𝜆2 + 𝜆3 + 𝜆4 + 2𝜆5 − {(𝜆1 + 3𝜆1𝜆2){𝑆�̅�0
(𝑠)} + 3𝜆2{𝑆�̅�(𝑠 + 𝜆1 + 2𝜆2 + 𝜆3 +

𝜆4 + 2𝜆5)} + (𝜆3 + 3𝜆2𝜆3){𝑆�̅�0
(𝑠)} + (𝜆4 + 3𝜆2𝜆4){𝑆�̅�0

(𝑠)} + 2𝜆5{𝑆�̅�(𝑠 + 𝜆5)} + 6𝜆2
3{𝑆�̅�0

(𝑠)} + (2𝜆5
2 +

2𝜆2𝜆5
2){𝑆�̅�0

(𝑠)}} 

The Laplace transformations of the state transition probabilities that the system is in operative 

condition and failed condition at any time is as follows: 

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠) = 𝑃0

̅̅ ̅(𝑠) + 𝑃2
̅̅ ̅(𝑠) + 𝑃5

̅̅ ̅(𝑠) + 𝑃6
̅̅ ̅(𝑠) + 𝑃7

̅̅ ̅(𝑠)  

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠) = 𝑃0

̅̅ ̅(𝑠) (1 + 3𝜆2 {
1−�̅�𝜙(𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5)

𝑠+𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5
} + 2𝜆5 {

1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
} + 6𝜆2

2 {
1−�̅�𝜙(𝑠+𝜆2)

𝑠+𝜆2
} +

2𝜆2𝜆5 {
1−�̅�𝜙(𝑠+𝜆5)

𝑠+𝜆5
} )          (49) 

�̅�𝑑𝑜𝑤𝑛(𝑠) = 1 − �̅�𝑢𝑝(𝑠)  

 

IV. Analytical Computations 

Availability Analysis 

Applying 𝑆�̅�(𝑠) =
𝜙

𝑠+𝜙
, 𝑆�̅�0

(𝑠) =
𝜇0

𝑠+𝜇0
, 

1−�̅�𝜙(𝑠)

𝑠
=

1

𝑠+𝜙
, 

1−�̅�𝜇0
(𝑠)

𝑠
=

1

𝑠+𝜇0
 and considering the values of 

different parameters as  𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05, 𝜙 = 𝜇0 = 1  in (49), 

then with the inverse Laplace transform, the availability may be, obtained as: 

�̅�𝑢𝑝(𝑡) = 0.03439655083𝑒−2.816787262𝑡 − 0.01746442940𝑒−1.293636565𝑡 −

0.002630732952𝑒−1.113039421𝑡 + 0.9862252387𝑒−0.004836752497𝑡 − 0.0005266271282𝑒−1.020000000𝑡  

          (50) 

For different values of time variable t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, units of time, different values of 

Pup(t) with the help of (50) may be attained as shown in Table 1 and Figure 3. 

 
Table1. Variation of Availability with respect to time 

Time 0 1 2 3 4 5 6 7 8 9 

Availability 1.0000 0.9772 0.9752 0.9715 0.9672 0.9626 0.9580 0.9534 0.9488 0.9442 
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Figure 3 Availability as function of time 

 

 Reliability Analysis 

Using all repair rates, 𝜙, 𝜇0, in equation (49) to zero and for same values of failure rates as 

𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 And then computing inverse Laplace transform, 

the reliability for the system may be expressed as; 

𝑅(𝑡) = 3. 𝑒−0.2200000000𝑡 + 0.5368421053𝑒−0.05000000000𝑡 − 2.547751196𝑒−0.2400000000𝑡 +

0.01090909091𝑒−0.02000000000𝑡             (51) 

For, different values of time t= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.., units of time, different values of Reliability 

may be attained as seen in Table 2 and graphical display in Figure 4. 
Table 2.  Computation of reliability for different values of time 

Time 0 1 2 3 4 5 6 7 8 9 

Reliability 1.0000 0.9248 0.8518 0.7828 0.7184 0.6592 0.6052 0.5561 0.5118 0.4718 

 

 

 
Figure 4 Reliability as function of Time 

 

Mean Time to Failure (MTTF) Analysis 

Mean time to failure (MTTF) analysis is an important tool in system reliability theory. It provides a 

measure of the expected time between failures of a system or component, and is often used to assess 

the reliability and performance of various systems, including mechanical, electrical, and software 
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systems. MTTF analysis plays a crucial role in system reliability theory. It provides a quantitative 

measure of a system's expected performance, which can be used to guide design improvements, 

maintenance activities, and safety procedures. 

There are several reasons why MTTF analysis is important and necessary in system reliability theory: 

1. Predictive Maintenance: MTTF analysis allows us to predict when a system or component is likely 

to fail. This information can be used to schedule maintenance activities and prevent costly and 

unexpected downtime. 

2. Design Improvement: MTTF analysis can be used to identify weaknesses in a system's design or 

components, and guide design improvements to increase reliability. 

3. Cost-Effective: MTTF analysis can help companies identify the most cost-effective approach to 

maintaining and repairing their systems. By prioritizing maintenance activities based on the 

expected MTTF, companies can optimize their maintenance budget and reduce overall costs. 

4. Safety: MTTF analysis is crucial for ensuring the safety of critical systems, such as those used in 

aviation, healthcare, and nuclear power. By understanding the expected failure rate of these systems, 

we can design appropriate safety protocols and procedures. 

 

Making all repairs to zero in equation (49), and then considering limit as s tends to zero, the MTTF 

may be expressed as: 

𝑀𝑇𝑇𝐹 = lim
𝑠→0

𝑃𝑢𝑝
̅̅ ̅̅ (𝑠) =

1

𝜆1+3𝜆2+𝜆3+𝜆4+2𝜆5
(3 + 6𝜆2 +

3𝜆2

𝜆1+2𝜆2+𝜆3+𝜆4+2𝜆5
)        (52) 

Setting 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 and varying 𝜆1 one by one respectively as 

0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, 𝜆1 = 0.01, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 and varying 

𝜆2 one by one respectively as 0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, 𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆4 =

0.04, 𝜆5 = 0.05 and varying 𝜆3 one by one respectively as 

0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, 𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆5 = 0.05 and varying 

𝜆4 one by one respectively as 0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09, and 𝜆1 = 0.01, 𝜆2 =

0.02, 𝜆3 = 0.03, 𝜆4 = 0.04 and varying 𝜆5 one by one respectively as 

0.01, 0.02, 0.03, 0.04, 005, 0.06, 0.07, 0.08, 0.09 in (52), the variation of MTTF with respect to failure 

rates may be attained as seen in Table 3 and corresponding Figure 5 

 

 
                 Table 3. Computation of MTTF corresponding to the various values of failure rates 

Failure 

rate 

MTTF 𝝀𝟏 MTTF 𝝀𝟐 MTTF 𝝀𝟑 MTTF 𝝀𝟒 MTTF 𝝀𝟓 

0.01 13.7576 15.0476 15.0909 15.8596 21.2857 

0.02 13.1757 13.7576 14.3934 15.0909 18.7222 

0.03 12.641 12.7037 13.7578 14.3934 16.7111 

0.04 12.1481 11.8256 13.1757 13.7576 15.0909 

0.05 11.6923 11.0823 12.641 13.1757 13.7576 

0.06 11.2695 10.4444 12.1481 12.641 12.641 

0.07 10.8762 9.891 11.6923 12.1481 11.6923 

0.08 10.5095 9.4062 11.2695 11.6923 10.8762 

0.09 10.1667 8.9778 10.8762 11.2695 10.1667 
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Figure 5 MTTF as function of Failure rate 

 

Sensitivity Analysis corresponding to (MTTF) 

Sensitivity analysis is an important tool in system reliability theory, as it can help identify critical 

components, optimize maintenance schedules, quantify uncertainty, and assess risk. Sensitivity 

analysis is an essential tool in system reliability theory for evaluating the impact of uncertainty and 

variability in the inputs of a system on the outputs. It involves varying the values of the inputs within 

a range and analyzing the corresponding changes in the outputs to determine how sensitive the 

outputs are to the inputs. Sensitivity analysis can help in several ways: 

1. Identifying critical components: Sensitivity analysis can help identify the most critical components 

in a system, those whose failure has the most significant impact on the system's overall reliability. 

By varying the parameters associated with each component, sensitivity analysis can help determine 

which components are most sensitive to changes in their input values. 

2. Optimal maintenance: Sensitivity analysis can also be used to determine the optimal maintenance 

schedule for a system. By varying the maintenance parameters and observing the corresponding 

changes in the system's reliability, it is possible to determine the maintenance schedule that 

maximizes the system's reliability while minimizing maintenance costs. 

3. Uncertainty quantification: Sensitivity analysis can help quantify the uncertainty associated with a 

system's reliability estimates. By varying the input parameters and observing the corresponding 

changes in the output, it is possible to determine the range of variability in the system's reliability 

estimates. 

4. Risk assessment: Sensitivity analysis can be used for risk assessment by identifying the most critical 

inputs in a system and quantifying their impact on the system's reliability. This information can be 

used to assess the risk associated with different scenarios and identify strategies to mitigate the risk. 

 

Sensitivity in MTTF of the system may be calculated through the partial differentiation of MTTF 

with respect to the failure rates of the system. By executing the set of parameters as 𝜆1 = 0.01, 𝜆2 =

0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05 in the partial differentiation of MTTF, one may obtain the MTTF 

sensitivity as seen in Table 4 and corresponding graphs seen in Figure 6 

 
                Table 4 MTTF sensitivity as function of time 

Failure 

rate 

( )

1

MTTF


 

( )

2

MTTF


 

( )

3

MTTF


 

( )

4

MTTF


 

( )

5

MTTF


 

0.01 -60.7668 -143.537 -73.1405 -80.7985 -291.581 

0.02 -55.7272 -115.978 -66.5235 -73.1405 -225.386 

0.03 -51.2903 -95.7819 -60.7668 -66.5235 -179.457 
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0.04 -47.3635 -80.5049 -55.7272 -60.7668 -146.281 

0.05 -43.8715 -68.6513 -51.2902 -55.7272 -121.534 

0.06 -40.7523 -59.2593 -47.365 -51.2903 -102.581 

0.07 -37.9546 -51.6858 -43.8715 -47.3635 -87.7430 

0.08 -35.4357 -45.4864 -40.7523 -43.8715 -75.9093 

0.09 -33.1598 -40.3457 -37.9546 -40.7523 -66.3194 

 

 
Figure 6 MTTF Sensitivity with respect to time 

 Cost Analysis 

Conceding that the service facility be all the time available, then expected profit during the interval 

[0, t) of the system may be attained by the formula. 

𝐸𝑃(𝑡) = 𝐾1 ∫ 𝑃𝑢𝑝(𝑡)𝑑𝑡
𝑡

0
− 𝐾2𝑡        (53) 

For the same set of a parameter of (49), one may attain (53). Therefore 

𝐸𝑃(𝑡) = 𝐾1(−0.01221127037𝑒−2.816787262𝑡 + 0.01350025956𝑒−1.293636565𝑡 +
0.002363557752𝑒−1.113039421𝑡 − 203.9023579𝑒−0.004836752497𝑡 + 0.0005163011061𝑒−1.020000000𝑡 +

203.898) − 𝐾2𝑡      (54) 

Setting 𝐾1 = 1and 𝐾2 =  0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 respectively and varying t =0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10. Units of time, the results for expected profit may be attained as seen in Figure 7. 

 

 
Table 5. Expected profit as function of time 

Time(t) K2=0.6 K2=0.5 K2=0.4 K2=0.3 K2=0.2 K2=0.1 

0 0 0 0 0 0 0 

1 0.3834 0.4834 0.5835 0.6834 0.7834 0.8834 

2 0.7599 0.9599 1.1599 1.3599 1.5599 1.7599 

3 1.1333 1.4333 1.7333 2.0333 2.3333 2.6333 

4 1.5027 1.9027 2.3027 2.7027 3.1027 3.5027 

5 1.8677 2.3677 2.8677 3.3677 3.8677 4.3677 

6 2.2280 2.8280 3.4280 4.0280 4.6280 5.2280 

7 2.5837 3.2835 3.9837 4.6837 5.3837 6.0837 

8 2.9348 3.7348 4.5348 5.3348 6.1348 6.9348 
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9 3.2813 4.1813 5.0813 5.9813 6.8813 7.7813 

 

 
Figure 7 Expected profit as function of time 

 

V. Discussion and Concluding Remark 

The study aims to investigate and understand the behavior of the complex repairable system under 

different values of failure and repair rates. Figures 3 and 4 illustrate how the availability of the 

system changes over time with fixed failure rates at different values. When the failure rates are 

relatively low (e.g., 𝜆1 = 0.01, 𝜆2 = 0.02, 𝜆3 = 0.03, 𝜆4 = 0.04, 𝜆5 = 0.05,), both the availability and 

reliability of the system decrease gradually, while the probability of failure increases with time until 

it eventually stabilizes at zero after a sufficiently long period. By analyzing the graphical 

representation of the model, it becomes evident that the future behavior of the complex system can 

be reliably predicted for any given set of parametric values. Furthermore, from the observations in 

Table 3 and Table 4, it is evident that providing repair is more desirable for the system's performance 

compared to replacement, given the other parameters are held constant. Figure 5 presents the mean-

time-to-failure (MTTF) of the system concerning variations in failure rates (. The reciprocal 

relationship between MTTF and failure rates indicates that these rates significantly influence the 

system's performance. The sensitivity analysis, as depicted in Figure 4, highlights how the system's 

sensitivity varies with changes in parameter values. In terms of profit analysis, the study considers 

a fixed revenue cost per unit (K1=1) and varying service costs (K2= 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1). 

Figure 7 shows that as the service cost increases, the expected profit decreases. 

In conclusion, this comprehensive investigation sheds light on the behavior of the complex 

repairable system under different conditions and parameter values. It provides valuable insights 

into the system's reliability, availability, MTTF, sensitivity, and profit optimization, offering practical 

guidance for decision-making and system performance enhancement. 
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Abstract

In this article, a simple methodology to predict the total fertility rate of Afghanistan via a Bayesian
statistical analysis method has been applied. R- statistical analysis tool is used for data analysis. To
forecast, the ”bayesforecast” package is needed. It is a substitute package in R for the ”forecast” package
in the traditional (frequentest) statistical method. The Bayesian data analysis using the specific case of the
general auto-regressive integrated moving average model (ARIMA) is processed as follows; As the first
step, the stationarity of the given data-set is assessed, the time series has been made stationary by taking
differences. After fitting several models, as the most appropriate fitted model, the ARIMA (1, 2, 1) model
has been fitted to the data. The accuracy of the fitted model is examined, and thereafter, the developed
model is analyzed. The posterior computation is done, using the Markov Chain Monte Carlo (MCMC)
simulation method. The method ultimately focuses on drawing relevant inferences including the 16 years
prediction, and the results are; in general, found to be satisfactory.

Keywords: Fertility, Total Fertility Rate, Age -Specific Fertility Rate, Auto-regressive Integrated
Moving Average Model, Stationarity, Hamiltonian Monte Carlo Algorithm, Prediction.

1. Introduction

Demography is the ”study of the human population” [1]. The size of families and children’s
numbers had a substantially decreased trend over the 20th century. Especially after 1960, the
family size and the number of children (fertility) have been showing a broadly favorable pattern
for sustainable development. These changes in the population resulted from a declining fertility
rate. The economic development level of a nation could be related to its fertility. The developed
countries have been showing a lower level of fertility trend, along with a better education
system, a revolutionary change in urbanization, greater wealth, and other factors. On the other
hand, undeveloped countries have been showing a higher fertility trend, the increased level of
fertility associated with a desire for family, labor, and caregivers in old age, lack of education,
unawareness of contraceptives, strict adherence to traditional religious beliefs, and lower rates
of female employees. Population growth and dependency ratios are directly affected by fertility
changes. Over the past century, fertility has been one of the most determinants, of the population
growth rate. Infant and child survival will be increased to provide greater access to education
and health services, especially for women. By improving the participation of women in the labor
force and empowering and reducing the number of children, women have over a lifetime. Low
levels of fertility also contributed by improving maternal health, reducing the mortality rate of
children, poverty alleviation, and economic development. Our objective; in this article includes
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the future prediction of the fertility of a population. Clearly, for this purpose, we must use some
summary index of fertility. The Total Fertility Rate is a composite measure of the fertility of a
population, it is the most significant component for Fertility projections.

1.1. Total Fertility Rate

The total fertility rate calculates how many children a cohort woman will have. so it represents
the average Family Size of the population. The total fertility rate is the sum of the Age-Specific
Fertility Rate (ASFR) over all ages of the childbearing period and is expressed as "per woman"
i.e., the sum divided by 1000. The average number of children a woman would have over her
lifetime of reproductive potential, which is between the ages of 15 and 49, is the population’s
total fertility rate.

Forecasting the fertility rate has a long history of being the interest of demographers. The total
number of live births in Australia, which is significant for population growth has been forecasted
by using an auto-regressive moving average model [2]. Another most important demo-graphical
forecasted characteristic could be the mortality forecast of the U.S. through the application of a
time series method [3].

Fitted a bi-variate auto-regressive model which acted as a transform function model for
forecasting the total fertility rate and mean ages of childbearing in the U.S annual data [4]. Age-
specific mortality in the United States is predicted for the long term, with confidence intervals,
using time series methods from 1990 to 2065. [5]. In a different publication, a parameterized
model used the age profiles of fertility to quickly and simply describe age-specific rates. Future
vital rate profiles are projected using time series models of the parameters, which reflect the
temporal patterns of the age profiles [6].

A mixed two methods; statistical time series and mathematical demography and applied to
predict stochastic models of fertility rates and the mortality rates of the U.S. dataset then by
using the random-matrix product theory forecasted various measures of demography [7]. In a
well-done study, a range of non-stationary dynamic factor models were used to jointly estimate
the total fertility rate changes within the rather homogeneous clusters of Southern European
countries in order to investigate the viability of the forecast. [8]. In this research, three methods
for forecasting demographic processes are used. The population forecasting for the demographic
data from 1980 to 2005 is particularly intriguing. Exogenous variable structural modelling based
on theory and expectation [9]. A recent work applied ARIMA model for the total fertility rate of
Pakistan is similar work of the paper from a classical perspective [10]. One another work lately
has been conducted by using the two-time series models (ARIMA and ARIMAX) for live birth
forecasting in Nigeria, which is a measure of population changes [11]. Numerous methods for
predicting fertility have been mentioned; the ones that have been discussed thus far were mostly
developed for wealthy nations that have already passed the fertility transition stage and currently
exhibit low fertility patterns. Another important consideration is that the developed methods
are used from traditional viewpoints. Pre-transition (high fertility), the fertility transition, and
post-transition are the three phases of the changes in total fertility rate in a Bayesian projection
model for the total fertility rate of country-specific forecasts of all countries (low fertility). The
model is based on the most recent data from the United Nations Population Division [12].

In the same way, we aim to model the TFR of Afghanistan via the ARIMA model and achieve
it is 10 years forecast by harnessing the attributes of the Bayesian paradigm. The procedures of
this article are as follows:

• A real dataset of the total fertility rate (TFR) of Afghanistan has been provided.

• By taking two time differences the non-stationary time series came into the form of stationary
series.

• The given data set has been analyzed from the Bayesian perspective using the "Bayesforecast"
package, in R statistical language and software.

RT&A, No 4 (76) 
Volume 18, December 2023 

981



Sayed Rahmi Khuda Haqbin and Athar Ali Khan
A Bayesian Prediction for the Total Fertility Rate OF Afghanistan Using...

• "bayesforecast" package in R is a package provides many functions for data analysis in the
Bayesian prospective.

• "bayesforecast" package is a Stan-endded pack.

• Stan is probabilistic programming language, which is made easy the data analysis, when
there is complex probabilistic model.

• Stan work by taking sample of the equivalent to the posterior distribution fo the model, by
different algorithms.

• NUTS(MCMC) algorithm, which is Stan sampling algorithm is applied in this article for the
sampling purpose of the posterior distributions.

• The model fitting procedure is done by the help of Bayesian model fitting criteria "WAIC"
and "LOOIC".

• The ACF and PACF plot of the original data and differenced data has been given, it could
be a proper judge property for model fitting.

• After all the fitted and proper model which is decided for the given data is; ARIMA (1,2,1)
model.

2. Methods

In this section, very briefly the method which is applied for this study are expressed. The Total
Fertility Rate data-set in Afghanistan has been given. The assigned object is Bayesian prediction
of Total Fertility rate in Afghanistan at least for 16 future years. For further analysis, we have
been applied Bayesian method of forecasting. The Bayesian substitute R forecast package (in
classical statistics), is bayesforecast R package.The stationarity of the data tested, in a Bayesian
standpoint, about the model decided. ARIMA(1,2,1) model selected for further analysis. After all
analysis series, we reach to a satisfactory result.

2.1. ARIMA(p,d,q) Model

A time series Yt is said to follows an auto-regressive integrated moving average (ARIMA) model
if the dth difference Zt = ∇dYt is stationary and follows (ARMA) process. If Zt ∼ ARMA(p, q)
model, we say that Yt is an ARIMA (p, d, q) process. Where the three parameters; "p" in the
Auto-regressive terms represents the current values depending on it’s p − previous values (lag
values), while "q" in the moving average terms represents the current deviation from the mean
depending on q’s previous deviations and "d" is the number of differences, by taking, it makes a
non-stationary time series in the format of stationary. When stationary is not an issue, then we
can define an auto-regressive moving average (ARMA) model as follows;

Zt = et + ϕ1Z1 + ϕ2Z2 + ...... + ϕpZt − θ1e1 − θ2e2 − ...... − θqet (1)

Zt = et +
p

∑
i=1

ϕiZt−i −
q

∑
j=1

θjet−j (2)

Where; et is a white noise process, and ϕi parameter which is the coefficient of the authoritative
terms Zt−i, and θj the parameter, which is the coefficient of the moving average et−j terms. Using
the backshift operator, we can write this more succinctly, and ϕ1, ..., ϕp are the auto-regressive
parameters to be estimated, θ1, ., θq are the moving average parameters to be estimated and e1, ., et
a series of unknown random errors (residuals) that are assumed to follow a normal distribution.
The (ARMA) model can be simplifies when Box-Jenkins back-shift operator applied, simplified
(ARMA) model as follows:
The auto-regressive AR(p) model;
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Zt − ϕ1Zt−1 − ϕ2Zt−2 − ...... − ϕpZt−p = et

Where;
ϕ(B) = 1 − ϕ1B − ......... − ϕpBp and θ(B) = 1 − θ1B − θ2B2 − ..... − θqBq are polynomials in B

of degrees of p and q respectively. For the process to be stationary the root of ϕ(B) = 0 must
lie outside the unit circle, if the root of θ(B) = 0 is also outside the unit circle, it is called the
invertible, there is a unique model corresponding to the likelihood in that case.

we can write Equation 1 in the form of;

ϕ(B)Zt = θ(B)et (3)

The Equation 3 is the Backshift form of the ARMA (p, q) and the experience suggests in data
analysis models with AR and MA components often fit better data than the AR and MA pure. at
the same method from Equation 2 we can write;

(1 −
p
∑

i=1
ϕiBi)Zt = (1 −

q
∑

i=1
θjBj)et ⇒ (

p
∑

i=1
ϕiBi)Zt = (

q
∑

i=1
θjBj)et

ϕp(B)Zt = θq(B)et (4)

The above (ARMA) model can be extended and written using differences;

BZt = Zt−1

The difference operator ∇ = 1 − B is;

BZt = (1 − B)Zt = Zt − Zt−1.

Power in the Backshift operator is equal to the possible difference that a time series can take;

B2Zt = B(BZt) = B(Zt−1) = Zt−2

for the second difference we can write;

∇2Zt = (1 − B)(1 − B)Zt = (1 − 2B + B2)Zt = Zt − 2Zt−1 + Zt−2

eventually the "d" difference can be write;

Yt −
d

∑
k=1

Yt = (1 − B)dZt (5)

"d"is the order of differencing, in that case. The formal ARIMA (p, d, q) model in the Backshif
form is produced by replacing ”Zt” in the ARMA model with the differences described above
[15].

ϕp(B)(1 − B)dZt = θq(B)et (6)

The Equation 6 is the Backshift format of the ARIMA(p,d,q) model, with "d" difference.

3. Data and Model Specification

There is a yearly data-set, the total fertility rate of Afghanistan, from the year of 1983-2022
reported by the; (World bank open data, free and open access to global development data), the
data-set is taken from the; https://www.macrotrends.net/countries/AFG/afghan/fertility-rate.
For a better accuracy the total fertility rate data-set in Afghanistan for the year of 1983-2022 are
presented as bellow;
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Table 1: Afghanistan - Historical Total Fertility Rate form 1982 to 2022.

1982-1992 7.450 7.454 7.458 7.461 7.465 7.469 7.472 7.474 7.477 7.479 7.482
1993-2003 7.516 7.551 7.585 7.620 7.654 7.560 7.465 7.371 7.276 7.182 7.041
2004-2014 6.900 6.760 6.619 6.478 6.272 6.066 5.859 5.653 5.447 5.269 5.090
2015-2022 4.912 4.733 4.555 4.414 4.273 4.133 3.992

The allocated projection of Afghanistan’s total fertility rate for the next 16 years is the objective
of this article. Graphical illustration is the first step in characterising a data-set for the analysis
technique; thus, as a time series data-set has been provided, the most appropriate plot for the
given data-set is time plot, as shown in Figure 1. From a plotted data, the below tips could be
found;

• Patterns

• Unusual observations

• Change over time

• Relationship between variables

Figure 1: Displays the time series plot of the Total Fertility Rate of Afghanistan.

As we mentioned above, Figure 1 shows a constant pattern, from 1982 to 1998, a very short
increase, afterwards, then the total fertility rate of the country has been showing a decreasing
trend till 2022. Over all Figure 1 is visualized a decreasing trend, therefore, for fitting ARIMA
model, testing the stationarity is the versatile condition. In a stationary time series, the statistical
properties (mean, variance...) are independent of time, it does not depend on the time at which
the series is observed. Time series with seasonality and trend patterns are not stationary, the trend
and seasonality affect the value of the time series at different point of time. A series with the
same pattern in any point of time is a stationary time series, (e.g: white noise series). Stationary
time series will have not predictable pattern in the long- term [14].

3.1. Differencing to eliminate a trend

Differencing is the way to remove trends (non-stationarity) in a time series data. A difference
operator is defined as;

∇yt = yt − yt−1, (7)
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as well as, more broadly, for order d

∇dyt = (1 − B)dyt, (8)

Where B denotes the backshift operator (i.e., Bky − t = ytk f ork ≥ 1) A random walk, for example,
is one of the most basic and extensively used time series models, although it is not stationary. We
may create a random walk model like follows:

yt = yt−1 + wt, wt ∼ N(0, q). (9)

When the difference operator is applied to Equation 9, it produces a time series of Gaussian white
noise errors wt:

∇(yt = yt−1 + wt)
yt − yt−1 = yt−1 − yt−1 + wt
yt − yt−1 = wt
[16].

3.1.1 Making use of the ‘diff()‘ function

There are many methods for making a non-stationary (time series with trend, seasonality, cyclic,...)
data-set in the form of stationary. For the total fertility rate data-set, we applied two times
differencing to making the time series stationary. Let’s use R’s diff() function to remove the trend
from the total fertility rate time series. We will give some factors for identifying the stationarity
of time series data; the correlation between a variable and itself at various time lags is known
as the auto-correlation function (ACF). With the linear dependency of other yt−1, yt−2, ..., yt−k
eliminated, the partial autocorrelation function (PACF) assesses the linear correlation between a
series yt and a lagged version of itself yt + k. In this part, for the very important point, we will

Figure 2: Displays the observed and differenced Total Fertility Rate of Afghanistan.

consider the Figure 2, and assesses it for further understanding of the process. In Figure 2 in the
first row and first column is the time plot of the observed data, and the rest two other plots are
the correlogram of the observed total fertility rate of Afghanistan, ACF and PACF respectively.
The things we are going to learn from the correlogram are listed in bellow;
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• The ACF at lag 0 is plotted as a

• reference point because it defaults to 1 (i.e., the correlation of a time series with itself).

• The blue horizontal lines represent the CIs for approximately 95%; and

• The auto-correlation is really high.

Figure 2 shows that although the partial autocorrelation at lag-1 is quite strong (equaling the ACF
at lag − 1), the other values at lags > 1 are comparatively low, in contrast to what we observed
for the ACF. Indicies for the time lag are again real-valued in the PACF plot, but there is no
value for lag-0 since it is impossible to eliminate any intermediate autocorrelation between t and
t − k when k = 0, and as a result, the PACF does not exist at lag-0. Now the second row of the
Figure 2 shows a differenced and stationary of the total fertility rate of Afghanistan, for model
identifying as per ACF and PACF which are given the second row of the Figure 2 second and
third columns, the ACF show auto-correlation at lag-1 and PACF shows also correlation to lag-1
and decreasing correlation toward zero. Therefore, we will go to the other model fitting criteria
of Bayesian approaches.

3.2. Model Specification

In a next step, after visualizing the time series data, checking stationarity, and removing trend
of the data, we will approximate a model for the given data for further statistical analysis. The
model used ought to call for the fewest parameters, whose values may be calculated from the
observable series. Everything should be made as standardized but not simpler, according to a
quotation from Albert Einstein in Parzen (1982, p. 68). For fitting a model to the data, few more
steps are very important.

3.2.1 Bayesian Model Fitting Criteria

There are various methods for assessing and contrasting Bayesian models. The posterior predictive
checks can be used to evaluate the model’s fit to the data. It can be instructive to assess the
prediction accuracy of each model under consideration, compare them, and decide what to do
next if all of the models under consideration have discrepancies with the data [17].

As the total fertility rate data set is in use,we can do a WAIC and LOOIC criteria test for
model selection.

Watanable-Akaike Infromation Criteria (WAIC): It has also been suggested to utilise the log
pointwise posterior predictive density, with the posterior variance of the likelihood being used to
derive the effective number of parameters.

lppd =
n

∑
i=1

log
∫

p(yi|θ)p(θ|y)dθ. (10)

For more details; [18].
ˆelppdwaic =

ˆlppd − p̂waic (11)

WAIC =
n

∑
i=1

logE[p(yi|θ, y)]) + 2
n

∑
i=1

varpost(logp(yi|θ)). (12)

For more details;[19].
Where the posterior mean of the likelihood of the ith observation is E[p(yi|theta, y)]) and

∑n
i=1 varpost(logp(yi|θ)) the variance of each variable in the log predictive density summed over

n data points. Prior knowledge is taken into account by the WAIC, and the posterior distribution
is used in a non-normalway[16].

Leave-One-Out Cross Validation: When using the leave-one-out information criterion (LOO-
IC), N-1 observations are used as the validation sample, the process is repeated N times, resulting
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in a different observation being predicted each time, and the prediction results are added up to
produce an estimate of expected log predictive density (elpd) that closely resembles the outcomes
that would be obtained by gathering new data and performing the validation. We put the
calculations into a R package named "loo".

Table 2: Displays the WAIC and LOOIC.

ARIMA Models LOOIC WAIC
ARIMA(2,2,2) -153.5 -155.5
ARIMA(0,2,2) -155.8 -156.0
ARIMA(2,2,1) -155.0 -156.8
ARIMA(2,2,0) -156.0 -156.3
ARIMA(1,2,0) -156.0 -155.5
ARIMA(0,2,1) -156.6 -156.9
ARIMA(1,2,1) -157.0 -156.9
ARIMA(1,2,2) -154.8 -156.1

The WAIC and LOOIC are given for several ARIMA models, as per Table 2 ; ARIMA (1,2,1)
Model has been showing the proper and best model among all other models, with lesser WAIC
and LOOIC.

4. Bayesian Formulation

A Bayesian model is a parametric model as classical(or frequentest) model, but in Bayesian an
addition prior probability distribution for the parameters of the model have to be defined. And
the parameters of the model treat as a random variable rather to unknown constants. For a
Bayesian model, the components are listed as bellow:

• the data, denoted by Z.

• the parameters, denoted by the Greek letters.

• the distributions of the model, given by a specification f (Z|θ) or F(Z|θ)

• the prior distribution, specification of f (θ) or F(θ) or the distribution of the θ .

f is the probability distribution (cdf), F is a symbol which denotes the cumulative distribution
density(cdf), θ is the prior.

4.1. Bayes’ theorem

As a starting point for the Bayesian analysis, we would like to bring the Bayes’ Theorem which
is the important formula for Bayesian. Bayes’ theorem is based on the conditional probability
distribution:

f (θ | Z) =
f (Z | θ) f (θ)

f (Z)
(13)

f(x) is the unconditional (or prior) pdf of x. The proportionality format of the Equation 13 is;

f (θ | Z) ∝ f (Z | θ) f (θ) (14)

In the Equation 14 the f (θ | Z) is the posterior; the posterior is proportional to the likelihood
times to the prior. The model is emphasized that the proportionality of the posterior is specifically
related to the θ. As the demonstrator is independent of θ we easily ignore it.
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4.2. Choosing the Prior Distribution of the Parameters

For the four parameters the location, scale, auto-regressive, and moving average parameters, ,
we must describe a four-dimensional joint prior distribution in the general case. However, it
is common practise to assume the parameters’ prior independence, which means that before
examining the data, we are unaware of whether the parameters are positively or negatively
connected. We can just define four distinct priors for the four parameters with independence. We
investigate weakly informative prior distributions.

TFR ∼ ARIMA(1, 2, 1)
mu0 = ϵ0 ∼ t(0, 2.5, 7)

σ0 ∼ t(0, 1, 7)
ar1 ∼ N(0, 0.5)
ma1 ∼ N(0, 0.5)

we can write the proportional prior density of the defined parameters;

π1(ϵ0) ∝ (1 + ϵ2
0

7 )
−4

π2(ϕ1) ∝ exp−
ϕ2

1
0.5

π3(θ1) ∝ exp−
θ1

2

0.5

π4(σ0) ∝ (1 + σ2
0
7 )−4

4.3. Likelihood Function for the Model

Z : Z1, Z2, ..., ZT−d are the observations, from Equation 2, the conditional density of Zt over
Zt−1, Zt−2,
..., Zt−p is given by;

f (Zt | Zt−1, Zt−2, ...., Zt−p; ϵ0, ϕi, θj, σ2) ∝ (
1
σ2 )exp

−1
2σ2 (Zt−ϵ0−∑

p
i=1 ϕiZt−i−∑

q
j=1 θjϵt−j)

2
(15)

From Equation 15 the likelihood function of the given density, can be approximated by its
conditional forms;

L(Z | ϵ0, ϕi, θj, σ2) ∝
T−d

∏
t=p+1

f (Zt | Zt−1, Zt−2, ...., Zt−p; ϵ0, ϕi, θj), (16)

For more details; [17].
For simplification we can write;

L(Z | ϵ0, ϕi, θj, σ2) ∝ (
1
σ2 )

(T−d−p)
2 exp−

1
2σ2 ∑T−d

t=p+1(Zt−ϵ0−∑
p
i=1 ϕiZt−i−∑

q
j=1 θjϵt−j)

2
(17)

where; ϕi = ϕ1, ϕ2, ..., ϕp, θj = θ1, θ2, ..., θq. If one has a sample size of T, and would like to estimate
a ARMA(p,q), there are many ways to estimate the parameters of the model: For the two times
differenced Total Fertility Rate series in Afghanistan, the Likelihood can be defined from Equation
17 as;

f (Z | ϵ0, ϕ1, θ1, σ2) ∝ (
1
σ2 )

(T−2−1)
2 exp(−

1
2σ2 )∑T−2

t=2 (Zt−ϵ0−ϕ1Zt−1−θ1ϵt−1)
2

(18)

where Zt obviously ∇yt [18].

4.4. Posterior Distribution Function of the Model

As, it has been discussed in Section 4.1, Bayesian approach is the implication of the Bayes’theorem
for further details Section 4.1. The prior and likelihood for the given data-set (total fertility rate)
have been defined, now by applying the Bayes’ theorem we can reach to the posterior distribution

RT&A, No 4 (76) 
Volume 18, December 2023 

988



Sayed Rahmi Khuda Haqbin and Athar Ali Khan
A Bayesian Prediction for the Total Fertility Rate OF Afghanistan Using...

of the Bayesian distribution of the data-set, once the posterior defined, it will be easy to apply
any probabilistic programming language for fitting the posterior in a model and estimate the
parameters. From Section 4.1, the posterior;

posterior ∝ likelihood × prior
log(posterior) = log(prior) + log(likelihood)

p(ϵ0, ϕ1, θ1, σ2 | Z) ∝ (1 +
ϵ2

0
7
)−4exp−

ϕ2
1

0.5 exp−
θ2
1

0.5 (1 +
σ2

7
)−4×

(
1
σ2 )

(T−3)
2 exp(−

1
2σ2 )∑T−2

t=2 (Zt−ϵ0−ϕ1Zt−1−θ1ϵt−1)
2

(19)

From Equation 19, it is obvious which eventually we reach to a joint joint posterior distribution of
all parameters, we can find the marginal density function of each parameter and then generate
sample. As we obtained a joint posterior distribution of all parameters, we can find the marginal
density function of each parameter and then generate sample. In this article, which is the total
fertility rate data-set, in a Bayesian approach, we are going to analyse the data-set and estimate
the parameters. As we know the most important step for a Bayesian data analysis is; to create
a joint posterior function of all the parameters, now we have the joint posterior function of the
parameters. There are many computational tools for the Bayesian data analysis, as we will discuss
in Section 5, we only run the Code in R, in "bayesforecast" package’ fucntion stansarima()
fucntion, which is a Bayesian forecast’package in R, based of Stan, and using the MCMC
simulation method, the sampling algorithm in this function is NUTS(MCMC).

4.5. Markov Chain Monte Carlo (MCMC)

The modern method for approximating complex forms of the posterior distribution is the Markov
Chain Monte Carlo (MCMC) simulation method. The concept is akin to treating the posterior
distribution as a population and then drawing samples from it repeatedly. When you draw a large
enough sample (say 1,000), the sample distribution should be extremely close to the population
distribution, as you learnt in basic statistics. The samples drawn in the above comparison are
correlated, thus if the first sample is high, the second one is more likely to be high as well. This
is necessary since there is no direct way to take samples from the posterior distribution, which
typically has a very complex structure; instead, we have various procedures that can lead us
to the posterior indirectly. Correlation between samples is usually not a big deal, except that
we need to draw extra samples to compensate. In Sections 5.1 and 5.2 are given the values of
the parameters and in Section 5.2 plots are showing the trance plot and the sample distribution
of 4,000 samples using MCMC. The shape of the MCMC sample distribution approximates the
shape of the posterior distribution [19].

5. Bayesian Inference Using NUTS(MCMC)

NUTS is an extension of Hamiltonian Monte Carlo (HMC) which is a type of MCMC. NUTS can
even sample from the model with a greater number of parameters, it is a strength of NUTS sampler
algorithm. Stan is a very good probabilistic programming language, the only disadvantage is
that, Stan cannot sample for discrete parameters. NUTS uses a recursive algorithm to build
a set of likely candidate points that spans a wide swath of the target distribution, stopping
automatically when it starts to double back and retrace its steps. Hamiltonian Monte Carlo is
a Markov Chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior and
sensitivity to correlated parameters that plague many MCMC methods by taking a series of steps
informed by first order gradient information [20].

We will describe how to give the data to the model created by the R package "bayesforecast"
in this part. For forecasting, the "bayesforecast" package in R is a Stan end-packed package. We
must use R to give the data as a certain type to the "bayesforecast" package’s function for ARMA
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model fitting in order to accomplish this and obtain the outcome. In "bayesforecast" package, the
model can be estimated using the guidelines below:

stan_sarima(

ts,

order = c(1, 0, 0),

seasonal = c(0, 0, 0),

xreg = NULL,

period = 0,

chains = 4,

iter = 2000,

warmup = floor(iter/2),

adapt.delta = 0.9,

tree.depth = 10,

stepwise = TRUE,

prior_mu0 = NULL,

prior_sigma0 = NULL,

prior_ar = NULL,

prior_ma = NULL,

prior_sar = NULL,

prior_sma = NULL,

prior_breg = NULL,

series.name = NULL,

...)

Using the function stan_sarima()’s from "bayesforecast" package in R the default setting are;
ts =, The ARIMA(p,d,q) order, chains is equaling 4, iterations per chain equaling 1000, and 1000
warmups. used as a warmup to eliminate dependencies in the initial settings. We fit the selected
model to the total fertility rate; by the function above.

5.1. The Estimated Results

The given Table 3: shows the numerical estimated values for the parameters of the fitted model
ARIMA (1,2,1) on the total fertility rate of Afghanistan.

Table 3: Displays the estimated posterior distribution of the parameters

Mean Se %5 % 95 Ness Rhat
Intercept -0.0103 0.0001 -0.0215 -0.0007 4282.407 1.0000

σ0 0.0270 0.0001 0.0221 0.0329 3940.089 1.0015
ϕ1 0.9209 0.0008 0.8339 0.9872 4034.682 1.0000
θ1 0.0658 0.0024 -0.1909 0.3134 4109.169 1.0005

loglik 77.7385 0.0323 73.8071 80.3939 3808.628 1.0034

Table 3 provides a summary of the statistics for the marginalized posterior distribution as
well as the MCMC convergence diagnostics. In line 3, for instance, the marginalized posterior
distribution for parameter ϕ1 is presented. Now, let’s examine each column. The name of the
parameter is displayed in the first column. The posterior mean, also known as the mean of the
marginalized posterior distribution, is the value in the second column. The arithmetic mean of all
the draws in this case, a total of 4000 is used to calculate this. For instance, the posterior mean
of θ1 is 0.0658 , and this finding shows that, on average, the baseline annual income grows by
0.0658with each extra year of work experience. The Monte Carlo standard errors of the Mean
are shown in the third column as Se. By dividing the SD by the square root of N − e f f , it is
calculated. The quantiles of the posterior marginalized distributions are displayed in columns
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four and five. These are calculated using the draw’s quantiles. Stan determines the effective
number of drawings as Ne f f in column 6 using the autocorrelation of the draws. We believe
this value should be at least 100 in order to estimate distributions and perform other statistical
calculations. Additionally, a small value for this parameter suggests that it has probably not
yet converged; this information could be used to improve the model. An indication of MCMC
convergence, R − hat, is computed for each parameter and is shown in column seven. Typically,
it compares the sample variance of each chain using findings from many chains. According to
Section 11.4 [21].

The MCMC is said to have converged if it meets the condition Rhat < 1.1 for all the parameters.
We must confirm that the MCMC is converged before evaluating the results. Beginners frequently
skip over this stage in favour of moving on to the analysis’ next step, when they could use the
posterior mean, plot the histogram of draws, or quickly interpret the findings using an MCMC
that hasn’t even begun to converge. Without a doubt, avoid this. The try − and − error procedure
must be repeated numerous times before the MCMC converges. Eventually the ARIMA (1,2,1)
model for the time series data as per Equation 1 can be written:

Yt = −0.0103 + 0.92yt−1 + 0.66et−1 (20)

From Table 3, the simulation estimate for E(ϕ1|y) is 0.92009, according the 90% credible interval
which is (0.8339 , 0.9872) of the Table 3 statistically significant. in the same way, the simulation
estimate for E(θ1|y) is 0.06258, it is not statistically significant 90% probability interval for the
variable(parameter) θ1 is ( -0.1909 , 0.3134) . Intercept and the posterior standard deviation values
are given respectively. In Bayesian statistics, the credible interval is analogous to the confidence
interval, but with radically distinct implications. A 90% credible interval, for example, is an
interval that has a 90% chance of containing the true value of the parameter, an interpretation
that is frequently and incorrectly connected with the confidence interval. Because the population
parameter is fixed, frequentists cannot use probability for the parameter; instead, only the sample
is probabilistic, and a 90% confidence interval must be interpreted in the sense that 90% of the
intervals constructed with repeated sampling will contain the true parameter. As we can see in
the Table 3 a 90% credible interval is given for each parameter of the model.

5.2. The estimated results figure

The sported plot of the estimated values are given as Figure 3;

Figure 3: Displays the supported of the estimated parameters.

The probability density functions of the marginalised posterior distributions, which are
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calculated from the draws after warm-up in each chain, are shown on the left column side. The
right column, which additionally displays the trace plots following warm-up. These plots show
that all of the chains are oscillating around a set of values after the warm-up, which indicates that
the MCMC has converged.

6. Model Checking

A common procedure in Bayesian statistics for validating your model is the posterior predective
check [22]. We must first talk about the posterior predictive distribution in order to comprehend
the posterior predictive check. The posterior predictive distribution in a mathematical notation.

p(ŷ|y) =
∫

θ
p(ŷ|θ, y)p(θ|y)dθ (21)

From the Equation 21, θ is the parameter, in our posterior distribution which is discussed in the
Section 4.4, θ is the set of all parameters θ=(ϵ, σ, ϕ1, θ1). The formula is merely provided for your
convenience because we won’t be using it to make posterior predictions. As an alternative, we
will employ simulations to roughly approximate the posterior predictive distribution of ŷ, which
is really an extension of the posterior distribution of θ’s approximation. The posterior predictive
check simply makes a comparison between the observed data and the model’s prediction ẇe
proceed to review the the graphical posterior predictive distribution of the total fertility rate.

Figure 4: Displays the posterior predicted.

From Figure 4, we can see that; the fitted model on the generated draws y − hat is very good
fit. Therefore, we can results, the fitted model is a proper model for the given data-set.

6.1. Check Residuals

We may examine the residuals’ autocorrelation using ”checkresiduals()” in the forecast package
will automatically run a test and display a few common diagnosis charts. Figure 5 is the common
diagnostics charts of the total fertility rate.
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Figure 5: expected values of the posterior predictive errors.

The residuals series (upper part) shows that the given series is white noise. The dash blue
lines are indicated the correlations are significantly not zero. In a white noise series, we expect
each correlation to be zero. For a white noise series, we expect 95% of the spikes to lie within the

2√
T

, where T is the length of the series. If more than 5% of the spikes are not in the blue bounds,
then the series is not white noise probably. The histogram and quantile graph (middle part) show
that the model is around normally distributed. Finally, the residual auto-correlation presents
have showed that there is no correlation between the series segments. A summary result from
the above interpretation is; we can step ahead and do our prediction based, as all the evidences
present a good and fair series.

7. Prediction

Forecasting can be used in many situations: for making a schedule to the staff of a call center
for some times in the future, we need to do a forecast as per call going to be received. For an
inventory or stocking there is need for forecast of stock requirement. Forecast can be for few
minutes beforehand till several years in advance. For making an efficient and effective plan, need
to do forecasting. Forecasting can be done very easy and sometimes very tough. predictability
for an event or quantity related to several factors;

• Understanding the factors to contribute on the event.

• How much data are accessible.

• Is there any effect of forecasting to the things are going to be forecasted [23].

Forecasting fertility; as the demographic characteristics (fertility, mortality, migration) of the
human population is significant for socio-economics planning. There are mentioned lots of fertility
forecasting methods, the methods discussed on the Section 1.1. Mostly, they have developed
for the countries which are rich today and already passed their fertility transition, and at the
current time they have low fertility patterns. Another point, is the developed methods are
applied from the classical perspectives. A Bayesian projection model for the total fertility rate
of country-specified projections of all countries have been done, the developed model consisted
of three phases for the changes in total fertility rate, pre-transition (high fertility), the fertility
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transition, and post-transition (low fertility). The model has been built on the United Nations
Population Division’s current [24].

In the same way, we aim to model the Total Fertility Rate of Afghanistan via the ARIMA
model and achieve it is 16 years forecast, by harnessing the attributes of the Bayesian paradigm.

7.1. Forecasted Results

In the Table 4, which is numerical forecasted years, from 2022-2037 the 16 years of the total
fertility rate of Afghanistan.

Table 4: Future forecasting

Point Forecast Lo.0.9 Hi.0.9 Lo.0.95 Hi.0.95
2023 3.853670 3.802970 3.903317 3.794032 3.915283
2024 3.718556 3.668241 3.768550 3.656223 3.776726
2025 3.586596 3.533241 3.639957 3.520394 3.650888
2026 3.455740 3.396801 3.510490 3.386231 3.520109
2027 3.332134 3.261010 3.388971 3.242005 3.400166
2028 3.207198 3.120882 3.278480 3.100771 3.290015
2029 3.085855 2.983132 3.162357 2.957278 3.173630
2030 2.967033 2.836914 3.055491 2.812259 3.068283
2031 2.851968 2.693900 2.959655 2.657657 2.972596
2032 2.739253 2.551682 2.859017 2.500849 2.878114
2033 2.626087 2.400823 2.762809 2.352485 2.776872
2034 2.519611 2.262385 2.677497 2.209586 2.693992
2035 2.411963 2.088992 2.588108 2.044437 2.604896
2036 2.311417 1.955690 2.510772 1.883435 2.533944
2037 2.210127 1.821591 2.432696 1.725132 2.452562
2038 2.114983 1.655969 2.371578 1.576980 2.388008

The variable’s values we are are interested to forecast is unknown, therefore, it is a random
variable. The random variable can take a range of random values. In Table 4, the first column is
the years of forecast, the second column is the forecasted point or mean of the future values of
the total fertility rate (which is the random variable). From columns 3-6 are the credible interval
of 90% to 95%. For more details about the credible interval Section 5.1. The value for the total
fertility rate of Afghanistan which is under consideration is given in Table 1, form 1982-2022.
Afterwards, the value of the fertility of the country is random variable, because it is unknown
and we are going to do forecast. In a Bayesian prediction we reach to the forecasting point which
is the Table 4 is the numerical values of the forecasted amount.

7.2. Forecasted Results Figure

From Table 4, which is a 16 years Bayesian prediction of the total fertility rate of Afghanistan.
Year of 2038 is showing a very good results. 2.1 is the Replacement fertility level: Total fertility
of approximately 2.1 children per woman. This value shows the average number of children a
woman would need to have in order to reproduce herself by having a daughter who reaches
reproductive age. Now it is time to go to the graphical representation of the results. Figure 6,
is going ot support the numerical values of Table 4, which is the forecasted values of the total
fertility rate of Afghanistan from 2023-2038.
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Figure 6: Future prediction

Figure 6 are consisted of two parts, from 1982-2022 the observed data, and 2023-2038 is the
forecasted values of the total fertility rate of Afghanistan. The blue line in the Figure 6 shows
the forecasted part of the value of the total fertility rate, which is the averages possible future
value, and numerically was shown in the Table 4. In the Figure 6 it is obvious, there is two types
of shadowed area, the 90% and the 95% credible intervals of the forecasted values. Forecast
accuracy also can be analyzed form the shadowed areas, as much as, our forecasted time increase
the credible interval or probability interval increase. And on the same way as much as years
of forecast is near to the observed value the credible interval is more narrow and it shows the
certainty or accuracy of the forecast.

8. Conclusion

In this article, we were started the work for doing Bayesian data analysis, using the total fertility
rate of Afghanistan data-set. We discussed selecting a statistical model that is assumed to have
generated the observed data, defining the prior and likelihood for the data, summarizing the
posterior distribution, and using the posterior predictive check to assess the model’s fit to the
observed data. The model For the model ARIMA (1,2,1) has been chosen to the data-set. Model
checking conducted, and 16 years forecasting has been done to the data. The total fertility rate
of the country is projected to decline, and specifically it has been expected that approximately
2.1 (average number of children per woman) for the year 2038, this results is a very fundamental
results that is the normal and standard measure of the fertility rate which is called replacement
level of fertility. The importance of the demographic changes, obviously is a concern for the
countries, for the effects on all affairs of human activity, economically, culturally, socially, and
politically, therefore; the predicted value of the total fertility could be a good source for the
government of the country for taken effective steps to control and decrease the fertility rate.

Need of the study: Afghanistan is a deve1oping country. The country has been suffering for a
long time, for a long-term war perspective, awareness of this type of issue could be significant for
the government and policymakers, and non-government organizations to plan in order to monitor
the fertility rate of the country. There was no such study, so there is a great need for the study, it
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can be a good hint for those, who are going to work on the demographic area of Afghanistan.
One important tip is needed to mention is that we have done a prediction for the total fertility

rate of the country for a specific period of future time, based on the series period of past time, no
prediction can be a real future, but it is a motivation work for those, who are concern in such
study.
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Abstract

Generalizations of standard probability distributions is a thought-provoking concept in statistical literature
and was inspired by many researchers in recent days. This is because the addition of parameters may
increase the flexibility of the new models. Now a days various generalization techniques are available
in literature. In this work, we proposed a generalization of discrete hypo exponential distribution and
studied its various properties. A real data analysis is carried out and check the flexibility of the new model
by comparing it with other standard distributions. Two generalizations of the proposed distribution are
introduced.

Keywords: Discrete hypo exponential distribution, Estimation, Generalization, Moments, Stress-
strength analysis.

1. Introduction

Over the last few decades, there has been growing interest in adding supplementary parameters
to the baseline distributions to broaden generalized families of distributions. The addition of
parameters may increase the flexibility of the new models. So generalization of the standard dis-
tributions are attracted by many researchers and are prominent in recent days. In literature there
exists various generalization techniques and for a detailed review, see Tahir and Nadarajah[32].
These techniques resulted in the generalizations of various standard distributions. For details
see, Gupta and Kundu [14], Eugene et.al [11], Zografos and Balakrishnan [33], Gomez-Deniz
[13], Mahmoudi and Zakerzadeh [19], Cordeiro and Castro [4], Nadarajah [24], Nadarajah et.al
[26], Cordeiro et al. [5], Ristic and Balakrishnan [30], Lemonte et.al [17], Liyanage and Pararai
[18], Merovci and Elbatal [22], Merovci and Sharma [23], Nadarajah and Bakar [25], Ahmad and
Ghazal [1], Sulami [2] etc. Recently exponentiated family of distributions due to Lehman [16] has
got special attention and various standard distributions were generalized. The most prominent
distribution introduced in the 20th century is the exponentiated exponential distribution and
inspired by this many existing distributions were generalized and for details see, Pal et al. [28],
Nekoukhou and Bidram [27], Morshedy et al. [8], El-Bassiouny et al. [7], Morshedy et al.[10],
Morshedy et al. [9], Mashhadzadeh and Mirmostafaee [21] and Baharith and Alamoudi [3].
The layout of this article is in this way. In Section 2, we introduced exponentiated discrete hypo
exponential distribution and studied its various properties. In Section 3 the parameters of the
distribution is done through non linear maximization method. To evaluate the performance of the
nlm estimator a simulation study is done in Section 4. A real data analysis is done in Section 5.
In Section 6 some generalizations of the proposed distribution are introduced. Some concluding
remarks are recorded in Section 7.
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2. Exponentiated Discrete Hypo Exponential Distribution

Consider the discrete hypo exponential (DHE) distribution having model parameters ϕ1, ϕ2 > 0,
ϕ1 ̸= ϕ2 with the distribution function

F(x; ϕ1, ϕ2) =
ϕ2

ϕ2 − ϕ1
(1 − e−ϕ1x)− ϕ1

ϕ2 − ϕ1
(1 − e−ϕ2x) (1)

By inserting (1) into the resilience parameter family of distributions, the distribution function of
the resulting distribution is given by

G(x; ϕ1, ϕ2, α) = [F(x; ϕ1, ϕ2)]
α

=
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α
(2)

where
V(x; ϕ1, ϕ2, α) = [ϕ2(1 − e−ϕ1x)− ϕ1(1 − e−ϕ2x)]α (3)

We call such a random variable X, having distribution function (2), is an exponentiated DHE
distribution with parameters ϕ1, ϕ2 > 0, ϕ1 ̸= ϕ2, α > 0 and denote it as EDHE (ϕ1, ϕ2, α).
The probability mass function(pmf) of EDHE distribution is given by

P(X = x) = v(x; ϕ1, ϕ2, α)

=
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α
; x = 0, 1, 2, .... (4)

The plots of pmf of EDHE distribution is given in Figure 1.

Figure 1: Plots of pmf of EDHE distribution

From Figure 1 it is understood that the EDHE distribution is unimodel. Since every log-
concave density is unimodel, it is also inferred that EDHE distribution is log-concave.
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2.1. Reliability characteristics

Survival function, S(x) = 1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α
; x = 0, 1, 2..., and

hazard rate, r(x) =
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α − V(x; ϕ1, ϕ2, α)

The plots of hazard rate of EDHE distribution is given in Figure 2.

Figure 2: Plots of hazard rate of EDHE distribution.

From Figure 2, it is evident that for various model parameters, the hazard rate functions can
be decreasing, increasing and increasing-decreasing, which makes the EDHE distribution more
flexible and can model different types of data sets such as count data, failure time data etc.

2.2. Moments

Let X ∼ EDHE(ϕ1, ϕ2, α), then for n ≥ 1,

E(Xn) =
∞

∑
x=0

xn
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

In particular

E(X) =
∞

∑
x=0

x
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

and

E(X2) =
∞

∑
x=0

x2
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

The expression for V(X) can be obtained using he relation

V(X) = E(X2)− [E(X)]2

2.3. Infinite Divisibility

According to Steutel and Van Harn [31], a necessary condition for infinite divisibility of a discrete
distribution Py is that P0 > 0. For EDHE distribution this condition is satisfied for all values of
the parameters. Hence it is infinitely divisible.

2.4. Theorem

If X follows an exponentiated hypo exponential distribution with parameters ϕ1 , ϕ2 and α then
the random variable W=[X] follows a exponentiated discrete hypo exponential distribution with
parameters ϕ1, ϕ2 and α .
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Proof:
Consider w=0, 1, 2,... then using Lemma1 of Krishna and Pundir (2009), we have

P(W ≥ w) = P([X] ≥ w)

= P(X ≥ w)

= 1 −
[

ϕ2(1 − e−ϕ1x)− ϕ1(1 − e−ϕ2x)

ϕ2 − ϕ1

]α

which is the survival function of EDHE distribution and hence the theorem.

2.5. Order Statistics

Order statistics are sample values placed in ascending order. It is a very useful concept in
statistical sciences. It has a far reaching applications especially in modeling auctions, car races,
insurance policies and estimating parameters of distributions etc.
Let X(1:n) ≤ X(2:n) ≤ X(3:n) ≤ ... ≤ X(n:n) represents the order statistics obtained from the i.i.d.
EDHE(ϕ1, ϕ2, α) distribution of size n. Then probability mass function of first order statistics is
given by

fX(1:n)
(x) =

[
1 − V(x − 1; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n
−

[
1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n

and the distribution function is

FX(1:n)
(x) = 1 −

[
1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n
.

The probability mass function of nth order statistics is given by

fX(n:n)
(x) =

[
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n
−

[
V(x − 1; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n

and the distribution function is

FX(n:n)
(x) =

[
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]n

where V(x; ϕ1, ϕ2, α) is given by (3).

2.6. Entropy

The Shannon’s entropy of random variable X having probability mass function P(x) is given by

H(X) = E(−logP(x)).

For EDHE distribution, H(X) is obtained as

H(X) = −
∞

∑
x=0

[
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
log

[
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
.

Renyi’s entropy of order β > 0 (β ̸= 1) is

Hβ(p) =
1

1 − β
log

∞

∑
x=0

[
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]β

.
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2.7. Stress-strength Analysis

Stress-strength analysis is a mechanism and a topic used in reliability engineering. When the
probability of stress exceeding the strength of an item, that item fails. Hence the expected
reliability (R) is calculated as

R = P(stress ≤ strength) =
∞

∑
x=0

fstress(x)Rstrength(x)

where the strength and stress are in the positive domain. When stress ∼ EDHE(ϕ1, ϕ2, α1) and
strength∼ EDHE(ϕ3, ϕ4, α2), the expected reliability is

R =
∞

∑
x=0

V(x + 1; ϕ1, ϕ2, α1)− V(x; ϕ1, ϕ2, α2)

(ϕ2 − ϕ1)α1

[
1 − V(x; ϕ3, ϕ4, α2)

(ϕ4 − ϕ3)α2

]
.

Tables 1-4 show the numerical values of R for different values of stress-strength parameters.

Table 1: Values of R for ϕ1 = 0.1, ϕ2 = 0.3, ϕ3 = 0.3, ϕ4 = 0.6 and different values of α1 and α2
α2

α1 0.2 0.6 1 1.5 2 2.5
0.2 0.5185 0.6342 0.6962 0.7409 0.7685 0.7874
0.6 0.1707 0.2952 0.3708 0.4319 0.4735 0.5040
1 0.0735 0.1588 0.2166 0.2676 0.3050 0.3338

1.5 0.0336 0.0834 0.1207 0.1564 0.1843 0.2068
2 0.0181 0.0479 0.0718 0.0960 0.1157 0.1321

Table 2: Values of R for ϕ1 = 0.3, ϕ2 = 0.5, ϕ3 = 0.6, ϕ4 = 0.8 and different values of α1 and α2
α2

α1 0.2 0.6 1 1.5 2 2.5
0.2 0.6338 0.7240 0.7777 0.8185 0.8441 0.8617
0.6 0.2799 0.4162 0.5027 0.5733 0.6210 0.6557
1 0.1430 0.2657 0.3487 0.4210 0.4730 0.5127

1.5 0.0753 0.1690 0.2373 0.3011 0.3499 0.3890
2 0.0469 0.1169 0.1712 0.2249 0.2680 0.3037

Table 3: Values of R for ϕ1 = 0.5, ϕ2 = 0.8, ϕ3 = 0.5, ϕ4 = 0.8 and different values of α1 and α2
α2

α1 0.2 0.6 1 1.5 2 2.5
0.2 0.7372 0.8258 0.8748 0.9092 0.9293 0.9421
0.6 0.4272 0.5967 0.6952 0.7686 0.8138 0.8442
1 0.2720 0.4598 0.5747 0.6649 0.7235 0.7646

1.5 0.1759 0.3550 0.4713 0.5685 0.6352 0.6838
2 0.1277 0.2886 0.3991 0.4962 0..5658 0.6183
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Table 4: Values of R for α1=α2 = 0.6, and different values of ϕ1, ϕ2, ϕ3, ϕ4
ϕ2 = ϕ4

ϕ1 = ϕ3 0.6 0.7 0.8 1 1.5
0.1 0.4940 0.4974 0.50000 0.5037 0.5091
0.2 0.5437 0.5470 0.54972 0.5540 0.5611
0.3 0.5627 0.5668 0.5704 0.5761 0.5863
0.4 0.5751 0.5803 0.5848 0.5923 0.6058
0.5 0.5850 0.5912 0.5967 0.6059 0.6226

From tables 1-3 it is clear that for fixed values of ϕ1, ϕ2, ϕ3, ϕ4 and α1 reliability increases as
α2 tends to infinity. But the reliability decreases with α1 tends to infinity for fixed values of ϕ1, ϕ2,
ϕ3, ϕ4 and α2 . Table 4 shows that reliability increases with increasing values of ϕ1, ϕ3 for fixed
values of ϕ2, ϕ4, α1 and α2. Also for fixed values of ϕ1, ϕ3, α1 and α2, reliability increases with
increasing values of ϕ2 , ϕ4.

2.8. Estimation

In this section we estimate the parameters ϕ1, ϕ2 and α of EDHE distribution using the method of
maximum likelihood. Let us take a random sampleX1, X2...Xn of size n from EDHE distribution.
Then the logarithm of likelihood function is

logL =
∞

∑
x=0

log
[

V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

]
The maximum likelihood estimators of ϕ1, ϕ2 and α are obtained by solving the equations

∂logL
∂ϕ1

= 0,
∂logL
∂ϕ2

= 0,
∂logL

∂α
= 0.

But these equations cannot be solved analytically. So we use Non Linear Maximization (nlm)
method for estimating the parameters ϕ1, ϕ2 and α.

3. Simulation Study

In this section, we use Monte-Carlo simulation method to illustrate the performance of the nlm
estimator of the parameters ϕ1 and ϕ2 and α. We generate 5000 random samples of sizes n=20, 30,
75 and 100 from the HE(ϕ1, ϕ2) distribution for some true values of the parameter set (ϕ1, ϕ2) =
(15,18), (15,21), (16,18) and (16,21). We discretize the generated data and find out 5000 estimates
of ϕ1 and ϕ2 and α using (4)for each sample sizes. The estimate of the parameter, average bias
and mean square error of the estimate (MSE) are computed and it is given in Table 5 to Table 12.

Table 5: Values of estimates, average bias and average MSE for ϕ1=15 and different values of, ϕ2, α and n=20.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.5668 -0.4331 0.1876 17.8307 -0.1693 0.0287 0.3775 -0.0224 0.00005

0.8 14.4120 -0.5879 0.3457 17.7375 -0.2624 0.0689 0.7133 -0.0866 0.0075
15 21 0.4 14.8996 -0.1003 0.0101 20.3668 -0.6331 0.4009 0.3370 -0.0629 0.004

0.8 14.3655 -0.6344 0.4025 20.6269 -0.3730 0.1392 0.6763 -0.1236 0.0153

Table 6: Values of estimates, average bias and average MSE for ϕ1=15 and different values of ϕ2, α and n=30.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.5689 -0.4310 0.1858 17.8316 -0.1683 0.0283 0.3807 -0.0192 0.00004

0.8 14.5509 -0.4490 0.2016 17.5699 -0.4300 0.185 0.7356 -0.0643 0.0041
15 21 0.4 14.9042 -0.0957 0.0092 20.6514 -0.3485 0.1215 0.3487 -0.0512 0.0026

0.8 14.5340 -0.4659 0.2171 20.6291 -0.3708 0.1375 0.6883 -0.1116 0.0125
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Table 7: Values of estimates, average bias and average MSE for ϕ1=15 and different values of ϕ2, α and n=75.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.6128 -0.3871 0.1499 17.8372 -0.1627 0.0265 0.4090 0.0099 0.00001

0.8 14.4120 -0.5879 0.3457 17.7375 -0.2624 0.0689 0.7133 -0.0866 0.0075
15 21 0.4 14.9614 -0.0380 0.0014 20.8440 -0.1550 0.0241 0.3502 -0.0497 0.0024

0.8 14.6453 -0.3546 0.1258 20.6317 -0.3683 0.1356 0.6979 -0.1020 0.0104

Table 8: Values of estimates, average bias and average MSE for ϕ1=15 and different values of ϕ2, α and n=100.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
15 18 0.4 14.6154 -0.3845 0.1478 17.8376 -0.1623 0.0263 0.4089 0.0089 0.00001

0.8 14.7504 -0.2494 0.0622 17.8349 -0.2494 0.0273 0.7988 -0.0011 0.0000
15 21 0.4 15.0249 0.0249 0.00006 20.8483 -0.1516 0.0230 0.37770 -0.0226 0.00005

0.8 15.0320 0.0320 0.0010 20.65213 -0.3478 0.1210 0.7445 -0.0554 0.0031

Table 9: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=20.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4568 -0.5431 0.2950 17.8664 -0.1335 0.0178 0.3409 -0.0590 0.0035

0.8 15.6653 -0.3346 0.1120 17.4611 -0.5388 0.2903 0.6452 -0.1547 0.0240
16 21 0.4 15.1495 -0.8504 0.7233 20.4267 -0.5732 0.3286 0.3003 -0.0996 0.0099

0.8 15.7852 -0.2147 0.0461 20.4893 -0.5101 0.2603 0.6690 -0.1309 0.0172

Table 10: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=30.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4593 -0.5406 0.2923 17.8662 -0.1337 0.0179 0.3452 -0.0547 0.0030

0.8 15.8042 -0.1957 0.0383 17.4674 -0.5325 0.2836 0.6708 -0.1291 0.0167
16 21 0.4 15.1507 -0.8492 0.7212 20.4282 -0.5717 0.3269 0.3008 -0.0991 0.0098

0.8 15.8184 -0.1815 0.0330 20.4918 -0.5081 0.2583 0.7341 -0.0658 0.0043

Table 11: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=75.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4822 -0.5177 0.2681 17.8708 -0.1291 0.0167 0.3791 -0.0208 0.00004

0.8 15.8212 -0.1787 0.0319 17.5036 -0.4963 0.2463 0.7450 -0.0549 0.0030
16 21 0.4 15.1631 -0.8368 0.7002 20.4289 -0.5710 0.3261 0.3171 -0.08281 0.0069

0.8 15.9054 -0.0945 0.0089 20.5039 -0.4961 0.2461 0.7946 0.0053 0.0012

Table 12: Values of estimates, average bias and average MSE for ϕ1=16 and different values of ϕ2, α and n=100.

ϕ1 ϕ2 α ϕ̂1 Bias(ϕ1) MSE(ϕ1) ϕ̂2 Bias(ϕ2) MSE(ϕ2) α̂ Bias(α) MSE(α)
16 18 0.4 15.4951 -0.5048 0.2548 17.8731 -0.1268 0.0161 0.3989 -0.0010 0.0000

0.8 15.9119 -0.0880 0.0078 17.9695 -0.0304 0.00009 0.7942 -0.0057 0.0000
16 21 0.4 15.1645 -0.8354 0.6979 20.4290 -0.5710 0.3261 0.3183 -0.0816 0.0067

0.8 15.9066 -0.0933 0.0087 20.5044 -0.4956 0.2456 0.8010 0.0010 0.0000

From tables 5-12, it is clear that as sample size increases, the average bias and average MSE
becomes very small for different choices of the values of the parameters. This indicates the
consistency of the estimators.

4. Real Data Analysis

For studying the efficiency of EDHE distribution we consider the data set used by Krishna and
Pundir [15] and it represents the total number of carious teeth among the four deciduous molars
in a sample of 100 children 10 and 11 years of old. The data are given in Table 13.

Table 13: Observed data

X 0 1 2 3 4
f 64 17 10 6 3

Figure 3 shows the observed data.
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Figure 3: Observed data.

We fit the EDHE distribution using the empirical data set and the embeded figure is given in
Figure 4.

Figure 4: Embeded figure.

In order to assess the suitability of the proposed model, we use chi-square test of goodness
of fit. Also, we compare the EDHE distribution with discrete Lindley (DL) distribution discrete
Pareto (DP) distribution and the values of Log-likelihood, AIC, BIC are computed and is shown
in Table 14.

Table 14: MLE’s, Chi-square value, -Log-likelihood value, AIC values, BIC values and P values for the observed data.

Distribution estimators Chi-square -LL AIC BIC p
fitted value value value value
DLD θ̂ = 0.275 6.637 113.68 229.36 229.36 0.036
DPD β̂ = 0.1837 3.226 116.83 235.66 235.66 0.199

EDHED ϕ̂1 = 0.9824779 1.2611 111.54 229.08 229.08 0.8679
ϕ̂2 = 0.9824794

α̂ = 0.3346

From Table 14, it is inferred that the EDHE distribution is a better fit than discrete Lindley

Krishnakumari.K and Dais George
Exponentiated Discrete Hypo Exponential Distribution and its Generalizations

RT&A, No 4 (76) 
Volume 18, December 2023 

1005



and discrete Pareto distributions.

5. Generalizations

5.1. Transmuted exponentiated discrete hypo exponential (TEDHE) distribution

Many transmuted distributions are proposed and studied in literature. For details see Rahman et
al. [29] and Dey et al. [6]. In this section we present a generalization of (4) called the transmuted
exponentiated discrete hypo exponential distribution. A random variable X is said to have
transmuted distribution if its distribution function and probability mass functions are respectively
given by

F(x) = G(x)[1 + β − βG(x)]; ∥β| ≤ 1 (5)

and
P(X = x) = g(x)[1 + β − 2βG(x)] (6)

where G(x), g(x) are the distribution function and probability mass function of the baseline
distribution. Also if β = 0, we will get the baseline distribution. By using equations (5) and (6),
the distribution function and probability mass function of the TEDHE distribution is obtained as

F(x; ϕ1, ϕ2, α, β) =
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

[
1 + β − β

(
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

)]
(7)

and

f (x; ϕ1, ϕ2, α, β) =
V(x + 1; ϕ1, ϕ2, α)− V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

[
1 + β − 2β

(
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

)]
(8)

The plot of pmf of TEDHE distribution is given in Figure 5.

Figure 5: Plot of pmf of TEDHE distribution.

The survival function and hazard rate functions are given by the expressions

S(x) = 1 − V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

[
1 + β − β

(
V(x; ϕ1, ϕ2, α)

(ϕ2 − ϕ1)α

)]
and

h(x) =

V(x+1;ϕ1,ϕ2,α)−V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

[
1 + β − 2β

(
V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

)]
1 − V(x;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α

[
1 + β − β

(
V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

)]
The hazard plots of TEDHE distribution is given in Figure 6.
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Figure 6: Plot of hazard function of TEDHE distribution.

From Figure 6, it is understood that for different model parameters, the hazard rate function
can be decreasing, increasing and increasing-decreasing, which makes the TEDHE distribution
more flexible and can model different types of data sets.

5.2. Marshall-Olkin exponentiated discrete hypo exponential (MOEDHE)
distribution

Marshall and Olkin [20] introduced a new method for adding a parameter θ(> 0) to the baseline
distribution in order to generalize it. Using this method many generalized distributions are
proposed and for a detailed review see Gillariose et al. [12]. If F(x) is the survival function of a
distribution, then, by Marshall-Olkin method, another survival function G(x) is obtained as

G(x, θ) =
θF(x)

1 − (1 − θ)F(x)
;−∞ < X < ∞, θ > 0.

The corresponding distribution function, probability mass function and hazard rate is obtained as

G(x, θ) =
F(x)

1 − (1 − θ)F(x)
g(x, θ) = G(x, θ)− G(x − 1, θ)

=
θ f (x)

[1 − (1 − θ)F(x)][1 − (1 − θ)F(x − 1)]

h(x) =
g(x)
G(x)

.

where f(x) is the probability mass function corresponding to the distribution function F(x).
Using Marshall-Olkin method the survival function of MOEDHE distribution is

G(x, θ) =
θ(1 − V(x;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α )

1 − [(1 − θ)(1 − V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )]

.

The corresponding distribution function, probability mass function and hazard rate are respec-
tively given by

G(x, θ) =

V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

1 − [(1 − θ)(1 − V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )]

g(x, θ) =
θ

V(x+1;ϕ1,ϕ2,α)−V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

(1 − [(1 − θ)(1 − V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )])(1 − [(1 − θ)(1 − V(x−1;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α )])

and

h(x) =

V(x+1;ϕ1,ϕ2,α)−V(x;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α

(1 − [(1 − θ)(1 − V(x−1;ϕ1,ϕ2,α)
(ϕ2−ϕ1)α )])(1 − V(x;ϕ1,ϕ2,α)

(ϕ2−ϕ1)α )
.
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The plot of probability mass function of MOEDHE distribution is given in Figure 7.

Figure 7: Plot of pmf of MOEDHE distribution.

The hazard plots are given in Figure 8.

Figure 8: Hazard plots of MOEDHE distribution.

Figure 8 shows different shapes of hazard rate functions and so we can conclude that the
MOEDHE distribution is a flexible model in modeling different types of data sets.

6. Summary

Recently, there has been thriving interest in developing new families of distributions by adding one
or more additional parameters to the baseline distributions. The existence of various generalization
techniques were attracted by many researchers and using one among them we proposed and
studied a new distribution called exponentiated discrete hypo exponential distribution. Various
distributional and structural properties of this distribution are studied. Also stress-strength
analysis is carried out. To evaluate the performance of the nlm estimator, we conducted a
simulation study and found that the nlm estimator is consistent. A real data application is
carried out and inferred that our proposed distribution is better model than discrete Lindley and
discrete Pareto distribution. Two generalizations of the proposed distribution namely transmuted
exponentiated discrete hypo exponential distribution and Marshall-Olkin exponentiated discrete
hypo exponential distribution are introduced.
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Abstract 

 

Assessment of reliability indices is important when availability and unavailability of the system or 

systems or components or group of components are to be assessed. There are various reliability 

indexes which are very important for overall performance of any complex engineering system. 

Reliability block diagram modeling is required to be formulated for evaluating different essential 

and important reliability parameters of any complex engineering system. In view of above, in this 

paper, reliability block diagram modeling of HVDC converter station is represented and formulated. 

The schematic diagram of the HVDC converter station is available in literature and based on that 

schematic diagram the modeling of HVDC converter station is formulated in this paper. After the 

reliability block diagram modeling of HVDC converter station, the mean time to failure (MTTF) of 

each and every components of HVDC converter station are also evaluated and represented in the 

result and discussion section.  The reliability of each and every component of the HVDC converter 

station is evaluated and expressed in result section. Assessment of unavailability is also obtained 

and shown in result section. 

 

Keywords: Reliability, Mean time to failure, HVDC converter station, 

availability, Reliability indices. 

 

 

I. Introduction 
 

Reliability evaluation of a system or component or element is very important in order to predict its 

availability and other relevant indices. Reliability is the parameter which tells about the availability 

of the system under proper working conditions for a given period of time. A Markov cut-set 

composite approach to the reliability evaluation of transmission and distribution systems 

involving dependent failures was proposed by Singh et al. [1]. The reliability indices have been 

determined at any point of composite system by conditional probability approach by Billinton et 

al. [2]. Wojczynski et al. [3] discussed distribution system simulation studies which investigate the 

effect of interruption duration distributions and cost curve shapes on interruption cost estimates. 

New indices to reflect the integration of probabilistic models and fuzzy concepts was proposed by 

Verma et al.  [4]. Zheng et al. [5] developed a model for a single unit and derived expression for 
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availability of a component accounting tolerable repair time. Distributions of reliability indices 

resulting from two sampling techniques are presented and analyzed along with those from MCS 

by Jirutitijaroen and Singh [6]. Dzobe et al. [7] investigated the use of probability distribution 

function in reliability worth analysis of electric power system. Bae and Kim [8] presented an 

analytical technique to evaluate the reliability of customers in a micro grid including distribution 

generations. Reliability network equivalent approach to distribution system reliability assessment 

is proposed by Billinton and Wang [9]. 

Customer and energy based indices consideration for reliability enhancement of distribution 

system using Improved Teaching Learning based optimization is discussed [10]. An Innovative 

Self-Adaptive Multi-Population Jaya Algorithm based Technique for Evaluation and Improvement 

of Reliability Indices of Electrical Power Distribution System, Tiwary et al. [11]. Determination of 

reliability indices for distribution system using a state transition sampling technique accounting 

random down time omission, Tiwary et al. [12]. Tiwary et al. [13] proposed a methodology based 

on Inspection-Repair-Based Availability Optimization of Distribution System Using Bare Bones 

Particle Swarm Optimization. Bootstrapping based technique for evaluating reliability indices of 

RBTS distribution system neglecting random down time was evaluated [14]. 

Volkanavski et al. [15] proposed application of fault tree analysis for assessment of the power 

system reliability. Li et al. [16] studies the impact of covered overhead conductors on distribution 

reliability and safety. Self-Adaptive Multi-Population Jaya Algorithm based Reactive Power 

Reserve Optimization Considering Voltage Stability Margin Constraints was obtained in Tiwary et 

al. [17]. A smooth bootstrapping based technique for evaluating distribution system reliability 

indices neglecting random interruption duration is developed [18]. Tiwary et al. [19] have 

developed an inspection maintenance based availability optimization methodology for feeder 

section using particle swarm optimization. The impact of covered overhead conductors on 

distribution reliability and safety is discussed [20].  Tiwary et al. [21] has discussed a methodology 

for reliability evaluation of an electrical power distribution system, which is radial in nature. 

Sarantakos et al. [22] introduced a method to include component condition and substation 

reliability into distribution system reconfiguration. Tiwary et al. [23] has discussed a methodology 

for evaluation of customer orientated indices and reliability of a meshed power distribution 

system. Reliability evaluation of engineering system is discussed [24]. Battu et al. [25] discussed a 

method for reliability compliant distribution system planning using Monte Carlo simulation. 

Application of non-parametric bootstrap technique for evaluating MTTF and reliability of a 

complex network with non-identical component failure laws is discussed [26]. Tiwary and Tiwary 

[27] have developed an innovative methodology for evaluation of customer orientated indices and 

reliability study of electrical feeder system. Tiwary and Tiwary [28] proposed the evaluation of 

reliability indices of Roy Billinton Test System (RBTS) Bus-2 Distribution System. 

Tiwary and Tiwary [29] have proposed a methodology for reliability block diagram 

representation of electric traction system and identification of various reliability indices. In view of 

the above, in this paper reliability block diagram modeling of HVDC converter station is 

represented and formulated. The reliability of each and every component of the HVDC converter 

station is obtained. Mean time to failure (MTTF) of the components are also evaluated. Assessment 

of overall reliability of the system and overall mean time to failure is calculated and presented. 

 

II. Reliability block diagram representation of HVDC converter station 
 

Reliability block diagram which is a diagrammatic method for showing how different 

components are connected in a system is obtained for the HVDC converter station. The schematic 

diagram of the typical HVDC converter station is given by [30]. The HVDC converter station 
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consists of 12 pulse converter, transformer, smoothing reactors, DC filters, tuned AC filters, HP AC 

filters. The reliability block diagram of HVDC converter station is shown in Fig. 1. From Fig. 1, it is 

clear that HP AC filter and tuned AC filters are connected in a parallel manner. While the 12 pulse 

converter, smoothing reactors and DC filters are connected in series configuration as shown. 

 

 
Figure 1: Reliability block diagram of HVDC converter station 

 

 

III. Evaluation of reliability and its various indices of HVDC converter station 

 
The system is having a constant failure rate and therefore the reliability of the system having 

constant failure rate is evaluated by using the following relation. 

                                                                           𝑅(𝑡) = 𝑒^(−𝜆𝑡)                                                                    (1) 

Where 𝑅(𝑡) represents the reliability of each and every component. 𝜆 represents the failure 

rate per year and t represents time period which is taken as one year. 

 The mean time to failure (MTTF) can be obtained as follows: 

                                                                            𝑀𝑇𝑇𝐹 = 1/𝜆                                                                        (2) 

A series system is that system in which one component fails, the complete system will fail 

and for working of the whole system it is mandatory that all the component are in working 

condition. If one assumes time independent reliability r1, r2…rn, then reliability of series system is 

given as: 

 

                                                                             𝑅𝑠 = ∏ 𝑟𝑖
𝑛
𝑖=1                                                                          (3) 

In series configuration combined failure rate is calculated as follows. 

𝜆𝑇𝑜𝑡𝑎𝑙 = ∑ 𝜆                                                                           (4) 

Unavailability of series configuration is calculated by using following relation. 

𝑈𝑇𝑜𝑡𝑎𝑙 = ∑ 𝜆𝑟                                                                           (5) 

Total repair rate of the components connected in series manner is obtained as follows. 

𝑟𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑈 𝜆⁄                                                                            (6) 

The system or network fails, if all components fail and the system will perform its function 

even if a single component is working, such a system or network is known as parallel reliability 

system or network. 

The reliability of parallel system (Rp) is given as [23] 

                                                          𝑅𝑝 = 1 − ∏ (1 − 𝑟𝑖)𝑛
𝑖=1                                                             (7) 

Where ri represents the reliability of components from i=1….n. 

Following relation are used to evaluate indices if two components are connected in 

parallel. 

𝜆𝑝𝑎𝑟𝑎 =
𝜆1𝜆2(𝑟1+𝑟2)

8760
                                                                            (8) 
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𝑟𝑝𝑎𝑟𝑎 =
𝑟1.𝑟2

𝑟1+𝑟2
                                                                           (9) 

𝑈𝑝𝑎𝑟𝑎 = 𝜆𝑝𝑎𝑟𝑎 . 𝑟𝑝𝑎𝑟𝑎                                                                            (10) 

 

 

IV. Result and Discussion 
 

Initial data for different components of the HVDC converter station is shown in Table 1 [30]. There 

are six components in the HVDC converter station 12 pulse converter, transformer, smoothing 

reactors, DC filters, tuned AC filters, HP AC filters having mean time to failure (MTTF) as 13.7, 

16.1, 76.8, 19.7, 12.6 and 12.6 respectively [30]. The values of mean time to repair (MTTR) for the six 

components in hours are 6.1, 1700.0, 1700.0, 7.9, 9.3, 9.3 respectively. 

 

                          Table 1: Initial data for different components of the HVDC converter station [30]. 

Components MTTF (years) MTTR (hours) 

12 pulse converter (c1) 13.7 6.1 

Transformer (c2) 16.1 1700.0 

smoothing reactors (c3) 76.8 1700.0 

DC filters (c4) 19.7 7.9 

tuned AC filters (c5) 12.6 9.3 

HP AC filters (c6) 12.6 9.3 

 

 

        Table 2 provides the evaluated values of the failure rate as obtained from equation (2), of the 

six components of the HVDC converter station, which are obtained as 0.0730, 0.0621, 0.0130, 0.0508, 

0.0794 and 0.0794 respectively. 

 

Table 2: Evaluated failure rate of different components of the HVDC converter station. 

Component failure rate 

c1 0.0730 

c2 0.0621 

c3 0.0130 

c4 0.0508 

c5 0.0794 

c6 0.0794 

 

 The evaluated values of the reliability as obtained from equation (1) for the HVDC converter 

station components are obtained as 0.9296, 0.9398, 0.9871, 0.9505, 0.9237 and 0.9237 respectively, 

are shown in Table 3. 

 

Table 3: Evaluated Reliability of each component of the HVDC converter station. 

Component Reliability 

c1 0.9296 

c2 0.9398 

c3 0.9871 

c4 0.9505 

c5 0.9237 

c6 0.9237 
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Table 4 shows the values of evaluated unavailability which can be obtained from equation (5) for 

each and every individual component only is obtained as 0.4453, 105.57, 22.1, 0.4013, 0.7384 and 

0.7384 respectively. 

 

Table 4: Evaluated unavailability for each and every component of the HVDC converter station. 

 

component c1 c2 c3 c4 c5 c6 

Unavailability 0.4453 105.57 22.1 0.4013 0.7384 0.7384 

 

Fig. 2 shows the magnitude of failure rate of each component of the HVDC converter station. 

Magnitude of evaluated reliability of each component of the HVDC converter station is shown in 

Fig. 3. Fig. 4 and Fig. 5 shows the magnitude of evaluated Unavailability of all components of the 

HVDC converter station. 

 

 
Figure 2: Magnitude of failure rate of each component of the HVDC converter station. 

 

 
Figure 3: Magnitude of evaluated reliability of each component of the HVDC converter station. 
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Figure 4: Magnitude of evaluated Unavailability of components c1, c4, c5, c6 of the HVDC converter station. 

 

 
Figure 5: Magnitude of evaluated Unavailability of components c2, c3 of the HVDC converter station. 

 

 

 

V Conclusion 
 

Evaluation of reliability of engineering system is important and necessary for the overall 

impact of the system. The reliability of the system depends on its different components and the 

manner of their existence. This paper proposes the reliability block diagram representation of 

HVDC converter station. The HVDC converter station whose modeling has been done consists of 

six components, namely 12 pulse converter, transformer, smoothing reactors, DC filters, tuned AC 

filters and HP AC filters, which are connected in a manner which is shown in the block diagram. 

Reliability parameters such as failure rate and reliability are obtained for each component and are 

discussed in the result section. Unavailability for each and every component of the HVDC 

converter station is also obtained and discussed in result section. Result section also shows the 

magnitude of the parameters which are evaluated. 
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Abstract

This study investigates the time dependent behaviour of the single server queue with differentiated
working vacations. The model also takes into account the possibility of a disaster happening during
busy periods and working vacations, with the repair procedure starting right away. The time-dependent
probabilities of system size are described in terms of modified Bessel functions in the paper using explicit
equations that were generated using generating functions. Numeric instances have been added to support
the theoretical findings even more.

Keywords: Transient Analysis, Differentiated Vacations, Quasi birth death process, Disaster,
Repair

1. Introduction

Many queueing systems allow servers to go offline when the system is empty for any period of
time. This random period of server absence, known as a server vacation, could indicate the server
can take a break or perform an additional task during this period. In 1975, Levy and Yechiali
first presented the vacation queuing model. Numerous researchers have worked on queues with
vacationing servers during the past few decades. Doshi [5], Takagi [19], Upadhyaya [23], Tian and
Zhang [20] and Ke et al. [9] have conducted comprehensive surveys on vacation queueing models,
considering various contexts. The queueing model can be applied to a variety of real-world
stochastic service systems since server vacations are especially advantageous for systems where
the server can use idle time for other activities. Recent research on vacation queueing models has
also been done by Sapkota [13] and Tian et al. [21]. The working vacation queue is the queue in
which the server serves customers at a rate that is lower than the busy time service rate. This kind
of technology has a wide range of practical applications, including the rate at which employees
perform their official work both in the office and at home. Servi and Finn [14] introduced the
M/M/1 queueing model with working vacations, where a customer isserved at a lower service
rate instead of stopping the service completely. M/M/1 queueing model with working vacation
and two types of server failure was discussed by Agrawal et al. [1]. Recently, Tian et al. (2021)
conducted an analysis of Markovian queues with Bernoulli interruptions and single working
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vacations. Recently, Kumar et al. [11] presented a transient analysis of working vacation queueing
system.

Differentiated vacations are one of the various types of queueing vacation types. In this case,
whenever the system becomes empty, the server initiates a type I vacation, which has a random
length. When a server returns from vacation and discovers there is no queue, a new type II
random vacation is started. When the server returns from either type I or type II vacations and
there are customers in the system, the server starts providing services to them right away and
continues doing so until there are no more users in it. The queueing model with differentiated
queueing vacations were initially proposed by Ibe and Isijola [6]. Since then, a number of scholars
have examined differentiated vacation queueing systems, including Suranga Sampath et al. [17],
Suranga Sampath and Jicheng [18], and Jain and Sigman [7]. Vijayashree and Janani [24] analyse
a single server differentiated working vacation queueing model’s transient behaviour. Recently, a
transient analysis of a single server differentiated queuing system is given by Azhagappan and
Deepa [3].

In computer systems, telecommunication networks, and other queueing systems, congestion
and blocking are frequently predicted using queuing theory and network analysis. Disasters
can happen as a result of unforeseen situations, and these systems are frequently prone to
unreliability. All jobs sitting in the buffer, including the one being processed by the server, are
lost when a calamity happens since the system is rendered inoperable. Towsley and Tripathi
[22] were the first to analyse queueing systems that were subject to disasters. This phenomenon
was examined by Chen et al. [4], who called it a "mass exodus". As part of their "stochastic
clearing" research, Artaljo and Gomez-Coral [2] examined queueing systems with catastrophes.
Single-server queueing systems with disasters have been the subject of transient analysis by
Kumar et al. [10], Sudhesh and Vairthiyanathan (2019), and Jain and Singh [8]. Recently, Sudhesh
et al. [15] gave the transient analysis of single server queue with disaster. We take into account an
M/M/1 queue with differentiated working vacations subject to system disaster and server repair.
In this sense, we have seen that the service rate is different, but arrival rate is same for all the
states.

The proposed queueing model is motivated real-time application with power-saving features
in a smart home automation system.The smart home automation system monitors various
sensors and devices within a home, controlling tasks such as lighting, temperature, security, and
appliances. It continuously processes sensor data and user commands to maintain an optimal and
comfortable environment. When no user commands are received and there are no sensor-triggered
events for a certain period, the system switches to an type I power save mode to conserve power.
In this state, non-essential components are turned off or put into low-power mode.After the type
I power save mode duration expires, the system periodically wakes up to check for any new user
commands or sensor-triggered events. If there are pending actions or events, it resumes normal
operation and executes the necessary tasks. If there are no pending commands or events, the
system enters a deeper power-saving state known as type II power saving mode. In this mode,
only essential components remain active to maintain basic system functionality and listen for
any incoming commands or events.The smart home automation system may be susceptible to
security attacks, such as unauthorized access, data breaches, or control manipulation. These
attacks can compromise the integrity and privacy of the system and disrupt its normal operation.
The repair process starts immediately.The power-saving features in this smart home automation
system help reduce energy consumption during periods of inactivity, contributing to energy
efficiency and cost savings. The security considerations highlight the importance of safeguarding
the system against potential attacks to protect the privacy, safety, and functionality of the smart
home environment.

2. Model description

In this research, a M/M/1 queuing model with differentiated working vacations and the
possibility of disastrous breakdown and repair is taken into account. These are the main
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presumptions that underlie this model:

1. Customer Arrivals: Customers arrive according to a Poisson process with a rate of λ.
Customers join a single waiting queue based on the sequence in which they arrive. The
capacity of the system is similarly predicated on an endless number of potential clients.

2. Service Process: A single server offers the service, and service times during a normal busy
period follow an exponential distribution with parameter µ.

3. Vacation Policy : The servers take a type I vacation after fully serving every customer in the
system. Once the servers have attended to at least a single customer, this vacation starts. If
the system is empty when the servers return after a vacation, a new random vacation of
type II is started. If there are still customers in the system when the server returns from
either a Type I or type II vacation, it begins serving them right away until the system is
completely empty once more.

4. The servers type I and type II vacation times follow exponential distributions, and their
vacation rates are indicated by the symbols θ and γ respectively.

5. Arriving customers are served at rates of µv1(µv2) during type-I (II) vacations.

6. Disastrous Breakdown and Repair: There is a chance that a disastrous breakdown will occur
when the servers are either away on working vacation or busy serving customers. The
breakdowns occurrence follows exponential distribution with a rate of α . When a server
fails, the repair procedure begins right away at a rate of β, enabling the servers to function
again as quickly as possible.

2.1. The Quasi-Birth-and-Death (QBD) process

At the time t the number of customers in the systems is consider as H(t) and let I(t) be the
servers state, where

I(t) =


0, the server is in busy
1, the server is in type-I vacation
2, the server is in type-II vacation
3, the server in disaster

Then X(t) = {H(t), I(t)}, is a Continuous time Markov chain with a state space denoted by Ω as
follows:
Ω = {{(i, j), i ≥ 0, j = 0, 1, 2, 3}.

3. Transient Analysis

Let Pn,j(t) be the time-dependent probability for the system to be in state j with n customers at
time t.

P
′
0,0(t) = −(λ + α)P0,0(t) + βP0,3(t) (1)

P
′
n,0(t) = −(λ + α + µ)Pn,0(t) + µPn+1,0(t) + γ1Pn,1(t) + γ2Pn,2(t) + βPn,3(t)

+ λPn−1,0 for n ≥ 1 (2)

P
′
0,1(t) = −(λ + α + γ1)P0,1(t) + µv1P1,1(t) + µP1,0(t) (3)

P
′
n,1(t) = −(λ + α + γ1 + µv1)Pn+1,1(t) + λPn−1,1(t) for n ≥ 1 (4)

P
′
0,2(t) = −(λ + α)P0,2(t) + γ1P0,1(t) + µv2P1,2(t) (5)

P
′
n,2(t) = −(λ + α + µv2 + γ2)Pn,2(t) + λPn−1,2(t) + µv2Pn+1,2(t) for n ≥ 1 (6)
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P
′
0,3(t) = −(λ + β)P0,3(t) + α

(
1 −

∞

∑
n=0

Pn,3(t)
)

(7)

P
′
n,3(t) = −(λ + β)Pn,3(t) + λPn−1,3(t) for n ≥ 1 (8)

We assume the initial condition as,
P0,1(0) = 1, P0,i(0) = 0 for i = 0, 2, 3,, Pn,i(0) = 0 for n ≥ 1, i = 0, 1, 2, 3,
Taking laplace on equations (1), (3), (5), (7), (8).

P̂0,0(s) =
β

(s + λ + α)
P̂0,3(s) (9)

P̂0,1(s) =
1

s + λ + α + γ1
+

µv1

s + λ + α + γ1
P̂1,1(s) +

µ

(s + λ + α + γ1)
P̂1,0(s) (10)

P̂0,2(s) =
γ1

s + λ + α
P̂0,1(s) +

µv2

(s + λ + α)
P̂1,2(s) (11)

P̂0,3(s) =
α

s(s + λ + β)
− α

(s + λ + β)

∞

∑
n=0

P̂n,3(s) (12)

P̂n,3(s) =
λ

(s + λ + β)
P̂n−1,3(s) (13)

The above equation (13) recursively yields

P̂n,3(s) =
λn

(s + λ + β)n P̂0,3(s) for n ≥ 1 (14)

Define

Q1(z, t) =
∞
∑

n=0
Pn,1(t)zn then

∂Q1(z, t)
∂t

=
∞
∑

n=0
P

′
n,1(t)z

n

Multiplying the equations (3) and (4) by the appropriate powers of z and summing over n ≥ 1 we
obtain,

∂Q1(z, t)
∂t

+

(
(λ + α + γ1 + µv1)−

(
µv1

z
+ λz

))
Q1(z, t) = µv1P0,1(t)−

µv1

z
P0,1(t)

+ µP1,0(t)

Upon integrating the above linear differential equation with respect to t, we get

Q1(z, t) =
∫ t

0

(
µv1P0,1(t) +

µv2

z
P0,1(t) + µP0,1(t)

)
(e−(λ+α+γ1+µv1)(t−y)

× e((µv1/z)+λz)(t−y))dy (15)

If ai = 2
√

λµvi and bi =
√

λ/µvi then e(µvi/z+λz)t =
∞
∑
−∞

(biz)n In(ait) for i = 1, 2 where In(ait) is a

bessel funtion of order n. Using that fact in equation (15) and comparing the terms coeffients of
zn for n = 1, 2, 3, ...

Pn,1(t) =
∫ t

0

((
µv1P0,1(t) + µP1,0(t)

)
bn

1 In(.)e−k1(t−y)
)

dy

+
∫ t

0

(
µv1P1,0(t)bn+1

1 In+1(.)e−k1(t−y)
)

dy (16)

Equating the coeffients of z−n for n = 1, 2, ... and applying I−n(.) = In(.) we get

0 =
∫ t

0

((
µv1P0,1(t) + µP1,0(t)

)
b−n

1 In(.)e−k1(t−y)
)

dy

+
∫ t

0

(
µv1P1,0(t)b−n+1

1 I−n+1(.)e−k1(t−y)
)

dy (17)
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where k1 = λ + α + γ1 + µv1 and In(.) = In(a(t − y))

Multiply equation (17) by b2n
1 and subtract from equation (16)

Pn,1(t) =
∫ t

0

(
µv1P0,1(t)bn+1

1
[
In−1(.)− In+1(.)

]
e−k1(t−y)

)
dy

Taking laplace transform on both sides

P̂n,1(s) = 2µv1
bn+1

1
a1

ˆψ(s)
n

P̂0,1(s) for n ≥ 0 (18)

In similar way using the equations (5), (6) we get

P̂n,2(s) = 2µv2
bn+1

2
a2

ˆψ(s)
n

P̂0,2(s) for n ≥ 0 (19)

Define

Q3(z, t) =
∞
∑

n=0
Pn,0(t)zn then

∂Q3(z, t)
∂t

=
∞
∑

n=0
P

′
n,0(t)z

n

Multiplying the equations (1) and (2) by the appropriate powers of z and summing over n ≥ 0 we
obtain,

∂Q3(z, t)
∂t

+

(
(λ + α + µ)−

(
µ

z
+ λz

))
Q3(z, t) = µP0,0(t)−

µ

z
P0,0(t) + µP1,0(t)

+ γ1

∞

∑
n=1

Pn,1(t)zn + γ2

∞

∑
n=1

Pn,2(t) + β
∞

∑
n=0

Pn,3(t)zn (20)

If a3 = 2
√

λµ and bi =
√

λ/µ then e(µ/z+λz)t =
∞
∑
−∞

(b3z)n In(a3t) where In(a3t) is a bessel

funtion of order n. Using that fact in equation (20) and comparing the terms coeffients of zn for
n = 1, 2, 3, ...

Pn,0(t) =
∫ t

0

((
µP0,1(t)− µP1,0(t)

)
bn

3 In(.)e−k3(t−y)
)

dy −
∫ t

0

(
µP0,0(t)bn+1

3 In+1(.)

× e−k3(t−y)
)

dy +
∫ t

0

(
γ1

∞

∑
m=1

(
γ1Pm,1(t)zm + γ2Pn,2(t)zm

+ βPm,3(s)
)
bn−m

3 In−m(.)e−k3(t−y)
)

dy (21)

Equating the coeffients of z−n for n = 1, 2, ... and applying

0 =
∫ t

0

((
µP0,1(t)− µP1,0(t)

)
b−n

3 In(.)e−k3(t−y)
)

dy −
∫ t

0

(
µP0,0(t)b−n+1

3 I−n+1(.)

× e−k3(t−y)
)

dy +
∫ t

0

(
γ1

∞

∑
m=1

(
γ1Pm,1(t)zm + γ2Pn,2(t)zm

+ βPm,3(s)
)
b−(n+m)

3 In+m(.)e−k3(t−y)
)

dy (22)

Multiply equation (22) by b2n
1 and subtract from equation (21)

Pn,0(t) =
∫ t

0

(
µP0,0(t)bn+1

3
[
In−1(.)− In+1(.)

]
e−k3(t−y)

)
dy +

∫ t

0

(
γ1

∞

∑
m=1

(
γ1Pm,1(t)zm

+ γ2Pn,2(t)zm + βPm,3(s)
)
bn−m

3
[
In−m(.)− In+m(.)

]
e−k3(t−y)

)
dy
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Taking laplace transform on both sides

P̂n,0(s) =
1√

ω2
3 − a2

3

[ ∞

∑
m=1

(
γ1P̂m,1(s) + γ2P̂m,2(s)

)
+

∞

∑
m=0

βP̂m,3(s)
]

+ 2µ
bn+1

3
a3

ˆψ(s)
n

P̂0,0(s) for n ≥ 0 (23)

substitute n = 1 in (18) and (19)

P̂1,1(s) = 2µv1b2
1

ˆψ(s)
s

a1
P̂0,1(s) (24)

P̂1,2(s) = 2µv2b2
2

ˆψ(s)
s

a2
P̂0,2(s) (25)

Substitute (24) and (25) in P̂0,1(s)

P̂0,1(s) =
1

(s + λ + α + γ1)

[
1 + 2µ2

v1b2
1

ˆψ(s)
a2

P̂0,1(s) + µP̂1,0(s)
]

P̂0,1(s) =
[ ∞

∑
j=0

(
2µ2

v1b2
1

ˆψ(s)
(s + λ + α + γ1)a1

)j] 1
(s + λ + α + γ1)

+

[ ∞

∑
j=0

(
2µ2

v1b2
1

ˆψ(s)
(s + λ + α + γ1)a1

)j]
µ

(s + λ + α + γ1)
P̂1,0(s)

P̂0,1(s) = Â1(s) + Â1(s)µP̂1,0(s) (26)

Substitue (25) and (26) in P̂0,2(s)

P̂0,2(s) =
γ1

(s + λ + α)
Â1(s) +

γ2

(s + λ + α)
Â2(s)P̂1,0(s) +

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)P̂0,2(s)

P̂0,2(t) =
[ ∞

∑
j=0

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)
]j

γ1

(s + λ + α)
Â1(s)

+

[ ∞

∑
j=0

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)
]j

γ2

(s + λ + α)
Â2(s)P̂1,0(s)

P̂0,2(s) = γ1 Â2(s) + γ2 Â2(s)P̂1,0(s) (27)

Substitue (26) and (27) in (18) and (19)

P̂n,1(s) = 2µv1bn+1
1

ψ̂(s)n

a1

(
Â1(s) + µÂ1(s)P̂1,0(s)

)
(28)

P̂n,2(s) = 2µv2bn+1
2

ψ̂(s)n

a2

(
γ1 Â2(s) + γ2 Â2(s)P̂1,0(s)

)
(29)

Substitute (14), (28), (29) in (23)

P̂n,0(s) =
1√

ω2
3 − a2

3

[ ∞

∑
m=1

(
2γ1µv1bm+1

1
ψ̂(s)

a1

(
Â1(s) + µÂ1(s)P̂1,0(s)

)
+ 2γ2µv2bm+1

2
ψ̂(s)

a2

(
γ1 Â2(s) + γ2 Â2(s)P̂1,0(s)

))
+

∞

∑
m=0

βλm

(s + λ + β)m P̂0,3(s)

]

×X̂3(s) + 2
µbn+1

3
a3

ψ̂(s)n β

(s + λ + α)
P̂0,3(s) (30)
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Substitute n = 1 in the above equation

P̂1,0(s) =
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â1(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ1 Â2(s)

]
X̂3(s)

+
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â2(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ2 Â2(s)

]

× X̂3(s)P̂1,0(s) +
∞

∑
m=0

βλm

(s + λ + β)m P̂0,3(s)

]
X̂3(s)

+ 2
µb2

3
a3

ψ̂(s)
β

(s + λ + α)
P̂0,3(s)

P̂1,0(s) =
[ ∞

∑
j=0

(
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
µÂ1(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ2

× Â2(s)
]

X̂3(s)
)j][ 1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â1(s) + 2γ2µv2bm+1

2

× ψ̂m(s)
a2

γ1 Â2(s)
]

X̂3(s) +
( ∞

∑
m=0

βλm

(s + λ + β)m X̂3(s) + 2
µb2

3
a3

ψ̂(s)

× β

(s + λ + α)

)
P̂0,3(s)

]
P̂1,0(s) = Â3(s)P̂0,3(s) + Â4(s) (31)

where,

A1(s) =
[ ∞

∑
j=0

(
2µ2

v1b2
1

ˆψ(s)
(s + λ + α + γ1)a1

)j] 1
(s + λ + α + γ1)

A2(s) =
[ ∞

∑
j=0

2µ2
v2b2

2
(s + λ + α)a2

ψ̂(s)
]j 1
(s + λ + α)

A3(s) =
[ ∞

∑
j=0

(
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
µÂ1(s) + 2γ2µv2bm+1

2

× ψ̂m(s)
a2

γ2 Â2(s)
]

X̂3(s)
)j][ 1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
Â1(s)

+ 2γ2µv2bm+1
2

ψ̂m(s)
a2

γ1 Â2(s)
]

X̂3(s)

A4(s) =
[ ∞

∑
j=0

(
1√

ω2
3 − a2

3

∞

∑
m=1

[
2γ1µv1bm+1

1
ψ̂m(s)

a1
µÂ1(s) + 2γ2µv2bm+1

2
ψ̂m(s)

a2
γ2

× Â2(s)
]

X̂3(s)
)j]( ∞

∑
m=0

βλm

(s + λ + β)m X̂3(s) + 2
µb2

3
a3

ψ̂(s)
β

(s + λ + α)

)
X̂3(s) = bn−m

3
[
In−m(.)− In+m(.)

]
e−k3(t−y)
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Substitute (31) in (30)

P̂n,0(s) =
[

1√
ω2

3 − a2
3

[ ∞

∑
m=1

(
2γ1µv1bm+1

1
ψ̂(s)m

a1

)
µÂ1(s)Â3(s)

+

(
2γ2µv2bm+1

2
ψ̂(s)m

a2

)
γ2 Â2(s)Â3(s)

]
X̂3(s)

+
∞

∑
m=0

βλm

(s + λ + β)m + 2µ
bn+1

3
a3

ψ̂n(t)
β

(s + λ + α)

]
P̂0,3(s)

+

[
1√

ω2
3 − a2

3

∞

∑
m=1

(
2γ1µv1bm+1

1
ψ̂(s)m

a1

(
Â1(s) + µÂ1(s)Â4(s)

)
+ 2γ2µv2bm+1

2
ψ̂(s)m

a2

(
γ1 Â2(s) + γ2 Â2 Â4(s)

))]
X̂3(s) (32)

Substitute (31) in (28) and (29)

P̂n,1(s) = 2µv1bn+1
1

ψ̂(s)
a1

[
Â1(s) + µÂ1(s)Â4(s) + µÂ1(s)Â3(s)P̂0,3(s)

]
(33)

P̂n,2(s) = 2µv2bn+1
2

ψ̂(s)
a2

[
γ1 Â2(s) + γ2 Â2(s)Â4(s) + γ2 Â2(s)Â6(s)P̂0,3(s)

]
(34)

Inverting (14), (32)-(34)

Pn,5(t) =
λntn−1

(n − 1)!
e−(λ+β)t ∗ P0,3(t) for n ≥ 1 (35)

Pn,0(t) =
[

I0(t)
( ∞

∑
m=1

2γ1µv1
bm+1

1
a1

ψ(t)m ∗ µA1(t) ∗ A3(t) + 2γ2µv2
bm+1

2
a2

ψ(t)m

∗ γ2 A2(t) ∗ A3(t)
)
∗ X3(t) +

∞

∑
m=0

λmtm−1

(m − 1)!
e−(λ+β)t + 2µ

bn+1
3
a3

ψ(t) ∗ βe−(λ+β)t
]

∗ P0,3(t) +
[

I0(t)
( ∞

∑
m=1

2γ1µv1
bm+1

1
a1

ψ(t)m ∗
(
µA1(t) + µA1(t) ∗ A4(t)

)
+ 2γ2µv2

bm+1
2
a2

ψ(t)m ∗
(
γ1 A2 + γ2 A2(t) ∗ A4(t)

))
∗ X3(t)

]
for n ≥ 0 (36)

Pn,1(t) = 2µv1
bn+1

1
a1

ψ(t)
[
A1(t) + µA1(t) ∗ A4(t) + µA1(t) ∗ A3(t)P0,3(t)

]
for n ≥ 0 (37)

Pn,2(t) = 2µv2
bn+1

2
a2

ψ(t)
[
γ1 A2(t) + γ2 A2(t) ∗ A4(t) + γ2 A2(t) ∗ A4(t)P0,3(t)

]
for n ≥ 0 (38)

Here all the probabilities are purely expressed in terms of P0,3(t). Using (12) we can find P0,3(t)
in the following manner

P̂0,3(s) =
[ ∞

∑
j=0

−
(

α

(s + λ + α + β)

∞

∑
n=1

λn

(s + λ + β)n

)j][
α

s(s + λ + α + β)

]
(39)
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Inverting the above

P0,3(t) =
[ ∞

∑
j=0

αe−(λ+α+β)t ∗
∞

∑
n=1

λntn−1e−(λ+β)t

(n − 1)!

]
∗
[

δ(t) ∗ αe−(λ+α+β)t
]

(40)

4. Numerical Analysis

In this section, graphs show the system’s transient probabilities in various states, including busy
state, type-I and type-II vacation states, as well as disaster state. Additionally, the system’s mean
is recorded over time. The following parameter values were used to generate the graphs: λ = 2,
µ = 3, µv1 = 0.8, µv2 = 0.7, α = 0.6 and β = 0.5. Figure 2 dipicts the behaviour of the transient
probability of busy period against time t for different values of n. The probability curves start at 0
and converge to a steady state over time, as shown by this graph. Figure 3 displays the behaviour
of transient probabilities during the type-I vacation period, demonstrating that all probability
curves begin at 0 and progressively rise to a certain extent as t rises before stabilising.

Figure 4 exhibits the graph of type-II vacation period transient probability over time t. The
probability curves in that graph start at 0 and move towards a steady state over time. Furthermore,
it is clear that a type-I vacation has a higher probability of having more customers than a type-II
vacation does at any given time instance t. This discrepancy results from the servers in type-II
vacation mode quickly switching to busy mode after the vacation is over, whereas type-I vacation
takes a longer period of time. As a result, during type-II vacation, customers do not need to wait
for additional processing time.

The behaviour of Pn,3(t) appears in Figure 5, where all probability curves initially start at
0 and gradually grow to some extent as t increases, finally reaching a steady state. The mean
behaviour for various disaster and repair rate values is shown in Figures 6 and 7. According to
these data, an increase in repair rate results in an increase in the mean size. Similar to this, a rise
in the disaster rate causes a fall in the mean size.
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Figure 1: Probabilities Pn,0(t) Vs Time
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5. Conclusion and Future work

In this study, a single server queueing system with multiple differentiated vacation, disaster,
and repair periods was investigated. The modified Bessel function of the first kind was used
to derive the time-dependent probability of the system size. The proposed model’s numerical
results indicate that the time-dependent probabilities eventually reach their respective steady-state
probabilities.

By taking into account multi-server differentiated vacation queueing systems with disaster and
repair, future research can build on this study. Analysing such systems would provide us with a
more complete understanding of their performance and behaviour. It would also be advantageous
to investigate stochastic decomposition for this model since it can provide insightful information
about the dynamics of the system and aid in improving performance. These avenues of inquiry
will advance queueing theory as a whole and improve our comprehension of intricate queueing
systems in real-world situations.

References

[1] Agarwal, P. K., Jain, A. and Jain, M. (2021). M/M/1 queueing model with working vacation
and two type of server breakdown, Journal of Physics: Conference series, 1849:012021.

[2] Artalejo, J. T. and Gomez-Corral, A. (1998). Analysis of a stochastic clearing system with
repeated attempts, Stochatic Models, 14:623-645.

[3] Azhagappan, A. and Deepa, T. (2023). Transient analysis of various vacation interruption
policies in a Markovian queue with differentiated multiple vacations, International journal of
operational research, 45:492-510.

[4] Chen, J. J., Wu, S. L. and Wang, S. W. (2009). Power saving class management for energy
saving in IEEE 802.16e wireless networks, Tenth International Conference on Mobile Data
Management: Systems, Services and Middleware, 490-495.

[5] Doshi, B. T. (1986). Queueing systems with vacations-a survey, Queueing systems, 1:22-66.
[6] Ibe, O. C. and Isijola, O. A. (2014). M/M/1 Multiple vacation queueing systems with

differentiated vacations, Modelling and Simulation in Engineering, DOI: 10.1155/2014/158247.
[7] Jain, G. and Sigman, K. (1996). A Pollaczek-Khintchine formula for M/G/1 queues with

disasters, Journal of Applied Probability, 33:1191-1200.
[8] Jain, M. and Singh, M. (2020). Transient analysis of a Markov queueing model with feedback,

discouragement and disaster, International Journal of Applied and Computational Mathematics,
6:1-14.

[9] Ke, J. C., Wu, C. H. and Zhang, Z. G. (2010). Recent developments in vacation queueing
models: A short survey, Operation Research, 7:3-8.

[10] Kumar, B. K., Anantha Lakshmi, S. R., Anbarasu, S. and Pavai Madheswari, S. (2014).
Transient and steady-state analysis of queueing systems with catastrophes and impatient
customers, International Journal of Mathematics in Operational Research, 6:523-549.

[11] Kumar, P., Jain, M. and Meena, R. K. (2023). Transient analysis and reliability modeling of
fault-tolerant system operating under admission control policy with double retrial features
and working vacation, ISA transactions, 134:183-199.

[12] Levy, Y. and Yechiali, U. (1975). Utilization of idle time in an M/G/1 queueing system,
Management Science, 22:202-211.

[13] Sapkota, G. and Ghimire, R. P. (2022). Mathematical analysis of M/M/C vacation queueing
model with a waiting server and impatient customers, Journal of Mathematics and Statistics,
18:36-48.

[14] Servi, L. D. and Finn, S. G. (2002). M/M/1 queues with working vacations (M/M/1/WV),
Performance Evaluation, 50:41-52.

[15] Sudhesh, R., Mohammed Shapique, A. and Dharmaraja, S. (2022). Analysis of a multiple
dual-stage vacation queueing system with disaster and repairable server, Methodology and
Computing in Applied Probability 24:2485-2508.

V KARTHICK, V SUVITHA
TIME DEPENDENT BEHAVIOUR OF A SINGLE SERVER QUEUEING SYSTEM

RT&A, No 4 (76) 
Volume 18, December 2023 

1030



[16] Sudhesh, R. and Vaithiyanathan, A. (2019). Analysis of state-dependent discrete-time queue
with system disaster, RAIRO-Operations Research, 53:1915-1927.

[17] Suranga Sampath, M. I. G., Khalidass, K. and Jicheng, L. (2020). Transient analysis of an
M/M/1 queueing system subjected to multiple differentiated vacations, impatient customers
and a waiting server with application IEEE 802.16e power saving mechanism, Indian Journal
of Pure and Applied Mathematics, 51:297-320.

[18] Suranga Sampath, M. I. G. and Jicheng, L. (2018). Impact of customers impatience on an
M/M/1 queueing system subject to differentiated vacations with a waiting server, Quality
Technology and Quantative Management, 17:125-148.

[19] Takagi, H. Queueing Analysis: A Foundation of Performance Analysis, Vacation and Priority
Systems, Volume 1, Part 1, North-Holland, New York, USA, 1991.

[20] Tian, N. and Zhang, Z. G. Vacation queueing models: theory and Applications, Springer
Science and Business Media, US, 2006.

[21] Tian, R. and Zhang, Z. G. and Su, S. (2022). On Markovian queues with single working
vacation and bernoulli interruptions, Probability in the Engineering and Informational Sciences,
36:616-643.

[22] Towsley, D. and Tripathi, S.K. (1991) A single server priority queue with server failures and
queue flushing, Operation Research Letters , 10:353-362.

[23] Upadhyaya, S. (2016). Queueing systems with vacations: An overview, International Journal of
Mathematics in Operational Research, 9:167-213.

[24] Vijayashree, K. V. and Janani, B. (2017). Transient analysis of an M/M/1 queueing system
subject to differentiated vacations, Quality Technology and Quantitavtive Management, 15:730-
748.

V KARTHICK, V SUVITHA
TIME DEPENDENT BEHAVIOUR OF A SINGLE SERVER QUEUEING SYSTEM

RT&A, No 4 (76) 
Volume 18, December 2023 

1031



Sule Omeiza Bashiru and O.Y. Halid 
Topp-Leone Gompertz Inverse Rayleigh Distribution 

ON THE PROPERTIES AND APPLICATIONS OF TOPP-

LEONE GOMPERTZ INVERSE RAYLEIGH 

DISTRIBUTION 

Sule Omeiza Bashiru1 & O.Y. Halid2 

• 
1Department of Mathematical Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, 

Nigeria 
2Department of Statistics, Ekiti State University, Ado-Ekiti, Nigeria 

Email: 1bash0140@gmail.com, 2omobolaji.halid@eksu.edu.ng 

Abstract 

In this study, we introduce a new four-parameter continuous probability distribution known as the 

Topp-Loene Gompertz Inverse Rayleigh (TLGoIRa) distribution. This novel model extends the 

Gompertz Inverse Rayleigh distribution. We present various mathematical properties of the 

distribution, including moments, moment generating functions, quantile functions, survival functions, 

hazard functions, reversed hazard functions, and odd functions. We also derive the distribution of order 

statistics, yielding both the maximum and minimum order statistics. This process of parameter 

estimation using the maximum likelihood estimation method is discussed. Furthermore, we present two 

real-life applications that illustrate the effectiveness and robustness of the TLGoIRa distribution when 

compared to several considered lifetime models. Our analysis reveals that the TLGoIRa distribution 

demonstrates superior robustness in comparison to the competing lifetime models. Additionally, the 

study highlights the distribution’s efficacy in fitting biomedical datasets. 

Keywords: Bladder cancer patients, goodness of fit, continuous probability, 

Gompertz Inverse Rayleigh, adequacy model. 

I. Introduction

The Inverse Rayleigh distribution, originally introduced by [1], stands as a continuous 

probability distribution with significant utility in modeling the time until failure of a system. It 

emerges as a specialized variant within the broader framework of the inverse Weibull (IW) 

distribution, a potent tool for modeling lifetime data. The realm of statistical research has 

witnessed a fervent exploration of the inverse Rayleigh distribution, with scholars such as [2], [3], 

[4], [5], [6], [7], [8], and [9] delving into its intricacies, unraveling its nuances, and 

investigating its various generalizations and extensions. This study is inherently driven by a 

paramount objective: to fortify the existing model by incorporating additional shape parameters 

into the GoIRa distribution, as initially proposed by [9]. This augmentation is sought to yield a 

heightened degree of robustness, amplifying its aptness in fitting real-world datasets that 

abound within the realm of medical science. The proposed enhancement is envisaged to 

concomitantly bolster the goodness-of-fit of the model to such complex and diverse datasets, 

rendering it a more potent tool in the hands of researchers, clinicians, and decision-makers 

tasked with extracting meaningful insights and informed decisions from the intricate fabric 

of medical data. By infusing the GoIRa distribution with further shape parameters, the study 

seeks to attain a higher degree of flexibility, enabling the model to more accurately capture the 

multifaceted variability present in medical datasets. This endeavor is underscored by a firm 

statistical foundation, harnessing robust quantitative techniques to ensure the viability and 

efficacy of the proposed enhancement. The profound implications of such an augmented model 

resonate across medical research, aiding in predictive modeling, risk assessment, and optimal 

resource  

RT&A, No 4 (76) 
Volume 18, December 2023 

1032

mailto:bash0140@gmail.com


Sule Omeiza Bashiru and O.Y. Halid 
Topp-Leone Gompertz Inverse Rayleigh Distribution 

allocation, ultimately advancing the frontiers of knowledge and facilitating improved healthcare 

outcomes. The GoIRa distribution will be combined with the Toppleone family of distributions, 

introducing additional skewness to the GoIRa distribution. This augmentation aims to enhance the 

baseline distribution's capacity to accurately model datasets that demonstrate a significant degree of 

skewness. 

II. Methods

2.1 Topp-Leone Gompertz Inverse Rayleigh (TLGoIRa) distribution 

In this section a new continuous probability distribution function (pdf) known as TLGoIRa 

distribution is derived. Also, some plots of its pdf and hazard rate function (hrf) were plotted in 

order to assess the shape of the new distribution.  

The  cdf and pdf of the family of distribution proposed by [10] are given as: 
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where  is the vector of parameters of the baseline distribution. 

where ( ; )G x   is the cumulative distribution function (cdf) of the baseline distribution with vector 

of parameter  . 

for 0, , 0x    ,  

where equations (1) and (2) are the cdf and pdf of the family of distributions proposed by [10]. 
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To obtain the cdf of the new model, equation (3) is inserted into equation (1) as 
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On differentiating equation (5), the pdf of TLGoIRa distribution is obtained which is given as 
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Figure 1: Plots of cdf of TLGoIRa distribution for different parameter value

Figure 2: Plots of pdf of TLGoIRa distribution for different parameter values 

Where 0x  , 0  is the scale parameter and , , 0    are the shape parameters respectively

2.1.1 Expansion of density 

In this section the pdf in equation (6) is expanded using binomial expansion. Expanding the last term 

in equation (6), we have 
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On substituting all the expansions into equation (6), we have 
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Equation (7) is the expansion of equation (6) which will be used to derive some of the properties of 

the distribution. 

Also, equation (5) is expanded as 

 

2
2

1 1

; , , , 1

x

h

e

h

F x e











   



 
  
 

  
  
   
  
     

  
  
  
          
  
     

RT&A, No 4 (76) 
Volume 18, December 2023 

1035



Sule Omeiza Bashiru and O.Y. Halid 
Topp-Leone Gompertz Inverse Rayleigh Distribution 

 

2 2
2 2

1 1 1 1

0

1 1

x x

h
z

e e

h z

z

h

ze e

 

 



 

 


 

   
       
   

      
      
         
      
               



    
     
      
        
      

               



2

2

2

1 1

0

2

1 1
!

x

z
t

t
e

x

t

z

e e
t








 







 
  
 

  
  
    
    
          



 
                         

  

  

 

2 2

0

1 1 1 1

t
d

dx x

d

t

de e

 
 

 
   

    
   



                             



 

2 2

0

1 1

d p

px x

p

d

pe e


 


   

    
   



 
    
       
    

    
 



Substituting all the expansions into equation (5), we have 

   

2

, , 0 0

2

; , , , 1
!

t

p

hh z d p x

z d p t

z t d h

d p zF x e
t



  


   

 
   

 

 

     
      
          

      
    
   

   (9) 

Now 

 

2

0

; , , ,

p

hh
x

c
t

F x e


    

 
 
 



 
   

   
 

  (10) 

where 

 
, , 0

2

1
!

t

z d p

c
z d p

z t d h

d p z
t

  





 



     
     
 

     
   
   
   



Equation (9) is the expansion of equation (5) which will be used to derive some of the properties of 

the distribution. 

2.1.2 Properties of the TLGoIRa distribution 

In this section, some of the mathematical and statistical properties of TLGoIRa distribution such as 

the quantile function, moments, moment generating function, reliability measure, odds function, 

reversed hazard function and order statistics are derived. 

2.1.2.1 Moments 
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Equation (12) is the moments of TLGoIRa distribution. To obtain mean, we set r = 1 in equation (12). 

2.1.2.2 Moment generating function (mgf) 
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2.1.2.3 Quantile function 

Quantile function has a significant position in probability theory and it is the inverse of the cdf. The 

quantile function is obtained using  
1( ) ( )Q u F u  (16) 

Using the inverse of equation (5), we have the quantile function of TLGoIRa distribution given as 
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The median is obtained by setting u = 0.5 in equation (17) given as 
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2.1.2.4 Hazard function 

Hazard function is given as 
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The hazard function of the TLGoIRa distribution is given as 
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Figure 3: Plots of hazard function of the TLGoIRa distribution for different parameter values 

2.1.2.5 Survival function 

The reliability function is also known as survival function, which is the probability of an item not 

failing prior to some time. It can be defined as 

( ; , , , ) 1 ( ; , , , )R x F x        
 (21) 

The survival function of the TLGoIRa distribution is given as 
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Figure 4: Plots of survival function of the TLGoIRa distribution for different parameter values 

2.1.2.6 Reversed hazard function 

Reversed hazard function of a random variable x is given as 
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The reverse hazard rate function of the TLGoIRa distribution is given as 
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2.1.2.7 Odds function 

The odds function of the TLGoIRa distribution is given as 
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2.2 Order Statistics 

Let 
1 2, ,..., nX X X be n  independent random variable from the TLGoIRa distributions and let 

(1) (2) ( )... nX X X   be their corresponding order statistic. Let 
: ( )r nF x and 

: ( )r nf x , 

1,2,3,...r n  denote the cdf and pdf of the rth order statistics 
:r nX  respectively. The pdf of the rth 

order statistics of 
:r nX is given as 
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The pdf of rth order statistic for distribution is obtained also by replacing h with v+r-1 in cdf 

expansion. We have 
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where 
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The pdf of minimum order statistic of the distribution is obtained by setting r=1 in equation (27). 
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Also, the pdf of maximum order statistic of the distribution is obtained by setting r = n in equation 

(27) 
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2.3 Estimation method 

The method of maximum likelihood estimation (MLE) is used in this section to estimate the 

parameters of the TLGoIRa distribution. For a random sample, 
1 2
, ,...,

n
X X X of size n from the

TLGoIRa( , , , )    , the log-likelihood function L ( , , , )     of (6) is given as 
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 (30) 

Differentiating the log-likelihood with respect to , , ,    and equating the result to zero, we have 

2
2

1 1

1

log
log 1 0

xie

n

i

l n
e









 



 
 
 
 

  
             
   



  
  
  

        
  
  
   

     (31) 

 

2 2

2

1
1 1 1 1

1

1 1

log 2
1 1 2 1

1

x xi i

i

x

e e

n
x

i

e

l n e e
e

e

 

 





 







  

 

   
    
   
   

 

 

      
                                                  

 
 


 

  
 

  
                




2

1

0
n

i




     
  
  
     


 
 
 
 
 
 
  

  (32) 

 

 

2
2 2

2

2

2

1
2

1 1 1

2

1 1

log 2 1
2 1 4 1

1

2 1

i i

i

xi

i

xn n n
x x

i i ii
x

e

x

l n e
e e

x

x e

e e e




 










  

 

 

 
 
 
 

  
     

     
   
   

    
 
 

 
  
   
     
         

 
                   

 
  

 

  

2

2

1

2
1

1 1

1

0

1

i

xi

x

n

i

e

e

e


















 
 
 
 

 
 
 

  
       

   

   
            
   

 
 
 
  


  
  
  
    
  
  
   


(33)

RT&A, No 4 (76) 
Volume 18, December 2023 

1041



Sule Omeiza Bashiru and O.Y. Halid 
Topp-Leone Gompertz Inverse Rayleigh Distribution 

 

2 2 2

2 2

2

2
1 1

1 1 1 1

log 2
log 1 1 log 1

2 1

i i i

x xi i

n n
x x x

i i

e e

l
e e e

e e



 


  

 

 



 





   
    
   
   


     
       
     
     

   
                      
   

     
           

     
          

 

 
2

2

2

1

1

1 1

log 1

0

1

x

x

e

x

n

i

e

e e

e






















 
  
 



 
  
 

  
    
                               

                   

 
 
 
 


 
 
 
 

 
 
  


 (34) 

Now, equations (31), (32), (33) and (34) do not have a simple analytical form and are therefore not 

tractable. As a result, we have to resort to non-linear estimation of the parameters using iterative 

method. 

III. Results

3.1  Applications 

In this section, we present two applications of the TLGoIRa distribution using different datasets from 

the biomedical field. These applications are intended to demonstrate the flexibility of the distribution 

in modeling real-life datasets. The data are fitted to the TLGoIRa distribution, as well as four other 

comparator distributions: Gompertz Inverse Rayleigh (GoIRa) distribution, Generalized Gompertz 

(GGo) distribution, Exponentiated Exponential (EtEx) distribution, and Inverse Rayleigh (IRa) 

distribution. This fitting process is carried out to test the new distribution's flexibility against these 

comparators. We utilized the Adequacy Model package within the R software to perform the 

analysis and produce the results. To evaluate the performance of the distribution, we employed the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). These criteria 

were used to compare the performance of the TLGoIRa distribution with other existing distributions 

that align with the baseline distribution in terms of providing a good parametric fit to the dataset. 

2 2AIC ll k    (30) 

2 log( )BIC ll k n    (31) 

The model selection is carried out using the AIC and the BIC. Where ll denotes the log-

likelihood function evaluated at the maximum likelihood estimates, k  is the number of parameters, 

and n is the sample size from the data. The model with minimum value of AIC and BIC is chosen as 

the best model to fit the data set. 

 Data set 1 has been used by [11] and represents the sum of skin folds in 202 athletes collected at the 

Australian Institute of Sports as. 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 

131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 

80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2,101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 

34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6,52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 

56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 

62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 

76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 

30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 

42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 

49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 

Data set 2 has been used by [12] and it represents the remission times (in months) of a random sample 

RT&A, No 4 (76) 
Volume 18, December 2023 

1042



Sule Omeiza Bashiru and O.Y. Halid 
Topp-Leone Gompertz Inverse Rayleigh Distribution 

of one hundred and twenty-eight (128) bladder cancer patients. 

0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 

7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 

14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 

2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 

5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 

1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 

12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 

22.69. 

Table 1: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

TLGoIR 0.8992 0.2125 121.0713 1.2501 -949.7464 1907.4930 1920.7260 

GoIR 0.0031 - 0.0000 0.8601 -987.5204 1981.0410 1990.9660 

GGo -0.0052 15.4031 - 0.0597 -956.0865 1918.1730 1928.9200 

EtEx 0.0406 8.5786 - - -958.0065 1920.0130 1926.6300 

IR 52.6054 - - - -966.4625 1934.9250 1938.2330 

Figure 5: Density plots for data set 1 

Table 2: The models' MLEs and performance requirements based on data set 2 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

TLGoIR 0.0002 2.6653 0.0001 0.3345 -410.6935 829.3871 834.7952 

GoIR 0.0839  - 0.0041 0.5129 -413.5753 833.1505 836.1377 

GGo -0.0224 1.5034  - 0.1678 -413.1834 832.3668 835.3539 

EtEx 0.1213 1.2180  - - -413.0776 830.1552 834.8592 

IR 2.2612  - -  - -774.3416 1550.6830 1553.5350 
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Figure 6: Density plots for data set 2 

IV. Discussion

In this study, we have introduced and thoroughly examined a novel probability distribution, coined 

the Topp Leone Gompertz Inverse Rayleigh distribution. Drawing from the framework of 

distributions proposed by [10], we have both theoretically established its foundations and conducted 

practical investigations. A comprehensive exploration of the distribution's mathematical properties 

has been undertaken, encompassing crucial characteristics such as moments, moment generating 

function, quantile function, odd function, reverse hazard function, order statistics, and reliability 

analysis. These analyses have contributed to a robust comprehension of the distribution's behaviors 

and traits. The method of maximum likelihood estimation has been employed to effectively 

determine the distribution's parameters, lending statistical rigor to our subsequent analyses. In a bid 

to assess the distribution's practical utility, it has been subjected to rigorous testing using two distinct 

datasets from the realm of medical sciences. This assessment has entailed a comparative study 

against several competing distributions, including the GoIRa, Generalized Gompertz, 

Exponentiated Exponential, and Inverse Rayleigh distributions, all sharing common baseline 

distributions. The outcomes of our meticulous analyses indicate that the Topp-Leone Gompertz 

Inverse Rayleigh distribution stands out as the most adept candidate for fitting both datasets. The 

distribution's apparent superior performance among the alternatives highlights its potential to 

adeptly capture the underlying data-generation mechanisms. This research introduces not only a 

novel distribution but also offers practical insights into its capacity to effectively represent intricate 

real-world phenomena.  
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Abstract

As a generalization of the Log Uniform distribution, Transmuted Log - Uniform distribution is
introduced and its properties are studied.We obtained graphical representations of its pdf, cdf, hazard
rate function and survival function. We have derived statistical properties such as moments, mean
deviations, and the quantile function for the Transmuted Log-Uniform distribution. We also obtained
the order statistics of the new distribution. Method of maximum likelihood is used for estimating
the parameters. Estimation of stress strength parameters is also done. We applied the Transmuted
Log-Uniform distribution to a real data set and compared it with Transmuted Weibull distribution and
Transmuted Quasi-Akash distribution. It was found that the Transmuted Log-Uniform distribution
was a better fit than the Transmuted Weibull distribution and Transmuted Quasi-Akash distribution
distributions based on the values of the AIC, CAIC, BIC, HQIC, the Kolmogorov-Smirnov (K-S) goodness-
of-fit statistic and the p-values.

Keywords: Transmuted distribution, Transmuted Log- Uniform distribution,Stress- strength
parameters

1. Introduction

The Transmuted family of distributions was first introduced by Shaw and Buckley (2007) and
has since been widely used in various fields including finance, engineering, and environmental
sciences. According to quadratic rank transmutation map (QRTM) technique approach, a random
variable X is said to have a Transmuted distribution, if its cdf is given by,

D(x) = (1 + λ)G(x)− λ(G(x))2; −1 ≤ λ ≤ 1 (1)

where G(x) is the c.d.f of the base distribution.
The corresponding probability density function (p.d.f) with parameter λ is given by:

d(x) = g(x)(1 + λ − 2λG(x)); −1 ≤ λ ≤ 1 (2)

where λ is a scale parameter.
There are different families of distributions which are useful for developing flexible compound

distributions for solving real life problems. Transmuted distributions have emerged as the
superior option, surpassing their standard counterparts in terms of flexibility and performance.
Some of the models studied were Transmuted Exponential Lomax distribution by Abdullahi and
Ieren [1], Transmuted complementary Weibull Geometric distribution by Afify [2], the Transmuted
Weibull Lomax distribution by Afify [3], the Transmuted Weibull distribution by Aryaland Tsokos
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[5], Transmuted Additive Weibull distribution by Elbatal and Aryal [6], Transmuted Quasi Akash
distribution by Hassan [8], Transmuted Exponentiated Gamma distribution by Hussian [9],
Transmuted modified Weibull distribution by Khanand King [11], Transmuted Inverse Weibull
distribution by Khan [10], Transmuted Gompertz distribution by Khan [12], Transmuted Lindley
distribution by Mansour [13], Transmuted Rayleigh distribution by Merovci [15], Transmuted
Pareto distribution by Merovci and Puka [14], Transmuted Inverse Exponential distribution by
Oguntunde and Adejumo [16] and Transmuted generalized Uniform distribution by subramanian
[18] etc.

In this article we present a new generalization of Log-Uniform distribution called the Trans-
muted Log-Uniform distribution.

2. Transmuted Log-Uniform Distribution

A Log-Uniform distribution is a probability distribution where the logarithm of the random
variable is uniformly distributed.

A random variable X is said to have the Log-Uniform distribution with parameter λ if its
probability density function is defined as,

g(x) =


1

x

[
ln(b)−ln(a)

] ; if , a ≤ x ≤ b, 0 < a < b, a, b ∈ R

0; otherwise

(3)

where a and b are the parameters of the distribution and they are location parameters that define
the minimum and maximum values of the distribution on the original scale and ln is the natural
Log function (the logarithm to base e).

The corresponding Cumulative distribution function (c.d.f.) is,

G(x) =

{ ln(x)−ln(a)
ln(b)−ln(a) ; if , a ≤ x ≤ b, 0 < a < b, a, b ∈ R

0, otherwise
(4)

The cdf of a Transmuted Log-Uniform distribution,

F(x) =


(1 + λ)

ln( x
a )

ln( b
a )

− (λ)

[
ln( x

a )

ln( b
a )

]2

; if |λ| ≤ 1, a ≤ x ≤ b,

0 < a < b, a, b ∈ R
0; otherwise.

(5)

The pdf of Transmuted Log-Uniform distribution is

f (x) =


(1+λ)

(x)ln( b
a )

− (2λ)ln( x
a )

(x)(ln( b
a ))

2 ; if |λ| ≤ 1, a ≤ x ≤ b,

0 < a < b, a, b ∈ R
0; otherwise

(6)

The survival function of Transmuted Log-Uniform distribution is given by:

S(x) =
(ln( b

a ))
2 − (1 + λ)ln( x

a )ln(
b
a )− (λ)(ln( x

a ))
2

(ln( b
a ))

2
(7)
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Figure 1: Plot of cdf of the Transmuted Log-Uniform distribution

Figure 2: Plot of pdf of the Transmuted Log-Uniform distribution

Figure 3: Plot of survival function of the Transmuted Log-Uniform distribution
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The failure rate function or hazard function of Transmuted Log-Uniform distribution is:

h(x) =
(1 + λ)ln( b

a )− (2λ)ln( x
a )

x[(ln( b
a ))

2 − (1 + λ)ln( x
a )ln(

b
a )− (λ)(ln( x

a ))
2]

(8)

Figure 4: Plot of hazard rate function of the Transmuted Log-Uniform distribution

• Special Case:
If we putλ = 0, then Transmuted Log-Uniform distribution reduces to Log-Uniform
distribution.

3. Statistical properties

3.1. Moments

Let X is a random variable following Transmuted Log-Uniform distribution with parameters a,b,λ
and then the rth moment for a given probability distribution is given by:

µ
′
r =

∫ b

a
xr
[
(1 + λ)

x ln b
a

−
2λ ln x

a

x(ln b
a )

2

]
dx

E(Xr) = µ
′
r =

(1 + λ)(br − ar)

r ln( b
a )

− 2λar

(ln( b
a ))

2

[
(

b
a
) ln(

b
a
)− (

b
ar
) + (

1
r2 )

]
(9)

Mean of the Transmuted Log-Uniform distribution is obtained as:

µ
′
1 = (1+λ)(b−a)

ln( b
a )

− 2λa
(ln( b

a ))
2

[
( b

a )ln(
b
a )− ( b

a ) + 1
]

.

3.2. Quantile function

The Quantile function of Transmuted Log-Uniform distribution is obtained by inverting distribu-
tion function.

p = (1 + λ)
ln( x

a )

ln( b
a )

− λ

[
ln( x

a )

ln( b
a )

]2
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x = a exp

([
(1 + λ) +

√
λ2 + 2λ + 1 − 4λp

]
ln b

a

2λ

)
(10)

The median, 2nd quartile is obtained by putting p = 1
2 in (10)

x = a exp

([
(1 + λ) +

√
λ2 + 1

]
ln b

a

2λ

)
(11)

3.3. Mean deviation

Let X follows Transmuted Log-Uniform distribution with mean µ and median M.

• Mean Deviation from the Mean is given by:

δ1(x) =
∫ b

a
|x − µ| f (x)dx = 2µ(F(µ)− 1) + 2T(µ) (12)

where µ is the mean of the distribution and

T(µ) =
∫ b

µ
x f (x)dx

T(µ) =
∫ b

µ
x
[
(1 + λ)

(x)ln( b
a )

−
(2λ)ln( x

a )

(x)(ln( b
a ))

2

]
dx

T(µ) =
(1 + λ)(b − µ)

ln( b
a )

− (2λ)

(ln( b
a ))

2

[
b
(

ln
b
a
− 1
)
− µ

(
ln

µ

a
− 1
)]

(13)

• Similarly, the Mean Deviation about Median is:

δ2(x) =
∫ b

a
|x − M| f (x)dx = 2T(M)− µ (14)

where M is the median of the distribution and µ is the mean of the distribution and

T(M) =
∫ b

M
x f (x)dx

T(M) =
(1 + λ)(b − M)

ln( b
a )

− (2λ)

(ln( b
a ))

2

[
b
(

ln
b
a
− 1
)
− M

(
ln

M
a

− 1
)]

(15)

The mean deviations about mean is obtained by substituting the mean, cdf and T(µ) in (12). The
mean deviations about median is obtained by substituting the mean, cdf and T(M) in (14).

3.4. Order Statistics

Let X(1),X(2),X(3),...,X(n) denote the order statistics of a random sample X1,X2,X3,...,Xn drawn
from the continuous distribution with pdf fX(x) and cdf FX(x), then the pdf of rth order statistics
X(r) is given by:

fX(r)
(x) =

n!
(r − 1)!(n − r)!

f (x)[F(x)](r−1)[1 − F(x)](n−r) (16)
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Using the equations (5) and (6) the probability density function of rth order statistics X(r) of
Transmuted Log-Uniform distribution is given by:

fx(r)(x, a, b, λ) =
n!

(r − 1)!(n − r)!

[
(1 + λ)

x ln( b
a )

−
(2λ) ln( x

a )

x(ln( b
a ))

2

][
(1 + λ)

ln( x
a )

ln( b
a )

− λ

[
ln( x

a )

ln( b
a )

]2](r−1)

[
1 − ((1 + λ)

ln( x
a )

ln( b
a )

− (λ)

[
ln( x

a )

ln( b
a )

]2

)

](n−r)
(17)

4. Parameter estimation

In this section, we discuss the method of maximum likelihood(ML) for the estimation of the
unknown parameters a, b, λ of Transmuted Log-Uniform distribution. Let X1,X2,X3,...,Xn be the
random sample of size n drawn from Transmuted Log-Uniform distribution, then the likelihood
function is given by:

L(xi; a, b, λ) =
n

∏
i=1

1
xi

n

∏
i=1

[
1 + λ

ln( b
a )

−
2λln( xi

a )

(ln( b
a ))

2

]
(18)

The log-likelihood function is given by:

lnL(xi; a, b, λ) = ln

[
n

∏
i=1

1
xi

]
+ ln

n

∏
i=1

[
1 + λ

ln( b
a )

−
2λln( xi

a )

(ln( b
a ))

2

]
(19)

Therefore, the maximum likelihood estimator of a, b and λ which maximize equation (19), must
satisfy the following normal equations given by

∂lnL
∂a

=
n

∑
i=1

ln( b
a )(1 + λ)− 4λ ln( xi

a ) + 2λ ln( b
a )

[(1 + λ) ln( b
a )− 2λ ln( xi

a )] ln( b
a )

= 0 (20)

∂lnL
∂b

=
n

∑
i=1

4λ ln( xi
a )− ln( b

a )(1 + λ)

[(1 + λ) ln( b
a )− 2λ ln( xi

a )]b ln( b
a )

= 0 (21)

∂lnL
∂λ

=
n

∑
i=1

ln( b
a )− 2 ln( xi

a )

(1 + λ) ln( b
a )− 2λ(ln xi

a )
= 0 (22)

Solving this system of equations, in a, b, β gives the MLEs of a, b, λ as â,b̂,λ̂.

5. Estimation of Stress-Strength parameter

In this section, the procedure of estimating reliability of R = P(X2 < X1) model is considered. The
expression R = P(X2 < X1) measures the reliability of a component in terms of probability and
the random variables X1 representing the stress experienced by the component does not exceed
X2 which represents the strength of the component. If stress exceeds strength, the component
would fail and vice-versa.
In order to estimate the stress-strength parameter, considering two random variables X and Y
with Transmuted Log-Uniform (λ1, a, b) and Transmuted Log-Uniform (λ2, a, b) distributions
respectively. We assume that X and Y are independent random variables and the stress-strength
parameter is obtained in the form:

R = P(Y < X) =
∫

X<Y
f (x, y)dxdy =

∫ ∞

0
f (x; λ1, a, b)F(x; λ2, a, b)dx
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where f (x, y) is the joint probability density function of random variables X and Y, having
Transmuted Log-Uniform distribution so that:

R =
∫ b

a

[
(1 + λ1)

(
ln(x/a)
ln(b/a)

)
− λ1

(
ln(x/a)
ln(b/a)

)2] [ (1 + λ2)

x ln(b/a)
− 2λ2 ln(x/a)

x(ln(b/a))2

]
dx

On simplification we get:

R =
(λ1 − λ2 + 3)

6
(23)

To compute the maximum likelihood estimate of R, we need to compute the maximum likelihood
estimate of λ1 and λ2.Suppose X1, X2, ..., Xn is random sample of size n from the Transmuted Log-
Uniform (λ1, a, b) and Y1, Y2, ..., Ym is an independent random sample of size m from Transmuted
Log-Uniform (λ2, a, b). Then the likelihood function of the combined random sample can be
obtained as follows:

L =
n

∏
i=1

f (xi; λ1, a, b)
m

∏
i=1

f (yi; λ2, a, b)

L =
n

∏
i=1

1
xi

n

∏
i=1

[
1 + λ1

ln( b
a )

−
2λ1ln( xi

a )

(ln( b
a ))

2

]
m

∏
i=1

1
xi

n

∏
i=1

[
1 + λ2

ln( b
a )

−
2λ2ln( xi

a )

(ln( b
a ))

2

]
(24)

The log-likelihood function is given by:

lnL = ln

[
n

∏
i=1

1
xi

]
+ ln

n

∏
i=1

[
1 + λ1

ln( b
a )

−
2λ1ln( xi

a )

(ln( b
a ))

2

]
+ ln

[
m

∏
i=1

1
xi

]
+ ln

m

∏
i=1

[
1 + λ2

ln( b
a )

−
2λ2ln( xi

a )

(ln( b
a ))

2

]
(25)

The maximum likelihood estimate (MLE) of λ1 and λ2 can be obtained by solving the following
equations:

∂lnL
∂λ1

=
n

∑
i=1

ln( b
a )− 2 ln( xi

a )

(1 + λ1) ln( b
a )− 2λ1(ln

xi
a )

= 0 (26)

∂lnL
∂λ2

=
m

∑
i=1

ln( b
a )− 2 ln( xi

a )

(1 + λ2) ln( b
a )− 2λ2(ln

xi
a )

= 0 (27)

From the equations (26) and (27), we can obtain the ML estimates λ̂1 and λ̂1. The corresponding
ML estimate of R is computed from (23) by replacing λ1 and λ2 by their ML estimates

R̂ =
(λ̂1 − λ̂2 + 3)

6
(28)

This can be used in estimation of stress-strength for the given data.

6. Simulation study and Data analysis

6.1. Simulation study

Simulation studies are an important tool for statistical research. These help researchers assess the
performance of a model, understand the different properties of statistical methods and compare
them. Here we take distinct combinations of parameters a, b, λ with sample size as bias and the
mean square error(MSE) of the parameter estimates.

The simulation is done by using different true parameter values. The chosen true parameter
values are as follows:

• a = 7.5,b = 16,λ = −0.25
As the n increases, MSE decreases for the selected parameter values given in table 1.
Moreover, the bias is close to zero as the sample size increases. Thus, as the sample size
increases the estimates tend to be closer to the true parameter values.

RT&A, No 4 (76) 
Volume 18, December 2023 

1052



Ashin K Shaji, Rani Sebastian
SOME APPLICATIONS OF TRANSMUTED LOG-UNIFORM DISTRIBUTION

Table 1: Simulation study at a = 7.5, b = 16,λ = −0.25

n Parameter Estimate Bias MSE

a 8.5628 1.0628 1.1296
250 b 14.8466 1.1533 1.3302

λ 0.3504 0.6004 0.3604
a 8.5470 1.0470 1.0962

350 b 15.8661 0.9338 0.1790
λ 0.1411 0.3912 0.1530
a 8.3061 0.8061 0.6499

500 b 16.2075 0.2075 0.0430
λ 0.0465 0.2965 0.0879
a 7.4086 0.0913 0.0083

600 b 16.2010 0.2010 0.0404
λ -0.2993 0.0493 0.0024
a 7.4955 0.0044 0.0000193

750 b 16.0647 0.0647 0.004182
λ -0.2533 0.00331 0.0000109

6.2. Data analysis

The data set given in Table 2 represents the relief times (in minutes) of twenty patients receiving
an analgesic Gross and Clark (1975). We fit the Transmuted Log-Uniform distribution to a real life
data set and compare the results with the Transmuted Quasi Akash distribution and Transmuted
Weibull distribution.

Table 2: Relief times of 20 patients receiving an analgesic

0

1.1 1.4 1.3 1.7 1.9
1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4
3.0 1.7 2.3 1.6 2.0

Table 3: AIC, CAIC, BIC,and HQIC statistics of the fitted model in data set

Distribution AIC CAIC BIC HQIC

Transmuted Log-Uniform Distribution 6.0016 8.1258 5.9790 8.1834
Transmuted Quasi Akash Distribution 49.79 51.78 50.18 50.50
Transmuted Weibull Distribution 63.3218 65.446 63.299 65.503

From the table 3, it has been observed that the Transmuted Log-Uniform Distribution possesses
the lesser AIC, CAIC, BIC,and HQIC values as compared to Transmuted Quasi Akash distribution
and Transmuted Weibull distribution. To check the model goodness of fit we had considered the
Kolmogorov-Smirnov (K-S) test (goodness-of-fit) statistics for the relief times of patients receiving
an anelgesic data.
To determine the Goodness of fit of the models, the magnitude of K-S Statistic is obtained. Since
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the p-value of fitted model is highest than the other distributions we have considered.Therefore
the results indicate, that the proposed model performed better than other models.

7. Conclusion

In this study, we introduced a new distribution called the Transmuted Log-Uniform distribution.
The distribution was generated using the Transmuted technique and the Log-Uniform distribution
as the base distribution with two parameters. We obtained graphical representations of its pdf,
cdf, hazard rate function and survival function. We have derived statistical properties such
as moments, mean deviations, and the quantile function for the Transmuted Log-Uniform
distribution. We also obtained the order statistics of the new distribution.

We used the maximum likelihood method to estimate the parameters of the distribution and
the stress strength parameters. We performed a simulation study to validate the estimates of
the model parameters, and it was observed that the distribution showed the least bias, with the
values of mean square error decreasing as the sample size increased. Finally, we applied the
Transmuted Log-Uniform distribution to a real data set and compared it with Transmuted Weibull
distribution and Transmuted Quasi-Akash distribution. It was found that the new distribution
was a better fit than these distributions based on the values obtained for the AIC, CAIC, BIC,
HQIC, the Kolmogorov-Smirnov (K-S) goodness-of-fit statistic, and the p-values obtained for the
models.
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Abstract 

 
As bridge structures become older and older, they are subject to wear and tear due to ageing, 

weather conditions or environmental effects, as well as due to surprise structural modifications 

substantially affecting the condition of the structures. Therefore, the condition assessment of 

bridge structures is a must for the safety and absence of risk. The condition assessment of bridge 

structures is also necessary for the maintenance and repair of existing structures having been in 

service for more than 30 years, in order to avoid breakdowns and save human lives. This paper 

states the condition assessment performed with the use of various nondestructive test methods. 

 

Keywords: bridge structures, nondestructive, test, methods, risk.  

 

 

I. Introduction 
 

Assessment of structures has been a top subject of studies in recent years. The studies in this field 

encompass signal processing, data management, and measurements. Topical issues of bridge 

structures assessment are currently defined as distributed and integrated data control and storage, 

data analysis and knowledge discovery, diagnostic techniques and provision of useful and reliable 

information to bridge owners/managers for making service and control decisions. 

 

II. Methods 
 

The structure condition is assessed with the use of nondestructive test methods to obtain 

information on the condition of the structures. This paper contains some exemplary bridge 

structure studies with the use of the following methods: 

1) Visual inspection;  

2) Ultrasonic testing;  

3) Radio-wave inspection (structure penetrating radar survey);  

4) Radio-wave inspection (ground penetrating radar survey); 

5) Vibroacoustic inspection (dynamic testing).  

Visual inspection is a nondestructive test method. Visual monitoring and field tests are used to 

determine the numerical indicator of damage between 0.5 and 10, as shown in Table 1. 
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Table 1: Degree of damage during measuring control 

Range of measured value, mm  Measurement error, mm 

Up to 0,5 inclusive 0,1 

Above 0,5 to 1,0 inclusive 0,2 

Above 1,0 tо 1,5 inclusive 0,3 

Above 1,5 tо 2,5 inclusive  0,4 

Above 2,5 tо 4,0 inclusive 0,5 

Above 4,0 tо 6,0 inclusive  0,6 

Above 6,0 tо 10,0 inclusive 0,8 

Above 10,0 1,0 

 

The visual inspection is conducted with the use of measuring tools such as: tape measure, photo 

camera, calipers. 

1) Visual inspection of a bridge (Pictures 1-6).  

 
Picture 1: View of the bridge from the right bank of the 

river   

 
Picture 2: View of the roadway and pedestrian part of the 

bridge 

 
Picture 3: Roadway fence construction 

 
Picture 4: Internal structures of the bridge 

 
Picture 5: Transition bays between bridge sections at the 

piers 

 
Picture 6: Internal construction of bridge span adjacency 

to piers 
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2) Ultrasonic testing 

The structures are measured by means of UK-1401 instrument designed for measuring the time 

and velocity of propagation of longitudinal ultrasonic oscillations in solid materials at the surface 

sounding on a fixed base, in order to determine the strength and integrity of materials and 

structures. The test results of metalwork (mw) of a bridge crossing a river are given in Table 2. 

 

Table 2: The results of strength calculation 

Segment 
Value Arithmetic 

mean 
Sigma 0,95 

Strength, 

MPa 1 2 3 

Strength of metal structures between 9 and 10 supports right side  

1 

5700 5700 5700 5700,00 0,00 5700 39,75 

5680 5700 5680 5686,67 11,55 5667 39,52 

5700 5660 5680 5680,00 20,00 5646 39,37 

5680 5680 5700 5686,67 11,55 5667 39,52 

5700 5700 5730 5710,00 17,32 5681 39,61 

5700 5680 5700 5693,33 11,55 5674 39,57 

5700 5680 5700 5693,33 11,55 5674 39,57 

Mean value 39,56 

Strength of metal structures between 9 and 10 centerpiece 

2 

6050 6170 6050 6090,00 69,28 5973 41,66 

6070 6100 6170 6113,33 51,32 6027 42,04 

6120 6000 6070 6063,33 60,28 5962 41,58 

5910 5930 5980 5940,00 36,06 5879 41,00 

5950 5860 6000 5936,67 70,95 5817 40,57 

5910 6000 5930 5946,67 47,26 5867 40,92 

Mean value 35,39 

Strength of metal structures between 9 and 10 support left side 

3 

5700 5750 5810 5753,33 55,08 5660 39,47 

5840 5810 5810 5820,00 17,32 5791 40,38 

5810 5880 5840 5843,33 35,12 5784 40,34 

5770 5840 5840 5816,67 40,41 5749 40,09 

5860 5860 5860 5860,00 0,00 5860 40,87 

5840 5910 5880 5876,67 35,12 5817 40,57 

Mean value 34,53 

 
3) Structure penetrating radar survey  

Structures are scanned by means of the OKO-M1 penetrating radar (Picture 7) with AB-1700 

antenna unit, as designed for detecting various objects (metal and non-metal articles, e.g., 

reinforcement bars) in concrete structures, cavities and for studying homogeneity of structures. 
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Picture 7: GPR with antenna unit АB-1700 

 

The penetrating radar operates based on the property of radio waves to reflect from the interface of 

media with different dielectric permeability. The radar with central frequency of 1700 MHz, 

sounding pulse duration of 1 to 5 ns and scanning resolution of 5 to 10 cm has a maximum 

sounding depth of 0.8 to 1.0 m. The penetrating radar sounding was made on the columns in axes 

X, Y, and Z. The radar survey diagram is shown in Figure 1. The scanning radargrams are shown 

in Figure 2. The radargrams have been obtained by computer-aided processing with the GeoScan-

32 software. 

 

 
 

Figure1: Study diagram of supports No. 9 
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Radargrams of support 4000х3000 mm 

RG -1 PROFILE Z RG-2 PROFILE Z 1 

 
 

Horizontal reinforcement in the support is located: at the bottom of the support with a spacing of 250 mm, 

then with a spacing of 400 mm 

RG -3 PROFILE Y RG -4 PROFILE X 

  

Vertical reinforcement is spaced at 200 mm 

 

Figure 2: Radargrams of support No. 9 

Horizontal fitting tie 

Vertical 

reinforcement 

Vertical 

reinforcement 

Horizontal fitting tie 
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Finding: The scanning of the supports located on the right bank of the Volga River has yielded the 

following results: 

 

Supports No. 9 – the column section is 4,000x3,000 mm, the horizontal in-column reinforcement is 

arranged as follows: with 200-250 mm spacing at the bottom of the column, with subsequent 400 

mm spacing and the vertical reinforcement to have been arranged with 200 mm spacing. No 

cavities or discontinuities have been found in the concrete. Generally, the structural members of 

the supports are consistent with the project design. 

 

4) Ground penetrating radar survey 

The OKO-M1 penetrating radar (Picture 8) with AB-400 antenna unit is designed for detecting 

various objects (metal and nonmetal articles underground, underwater and in cavities) and for 

studying the homogeneity of soils. The penetrating radar operates based on the property of radio 

waves to reflect from the interface of media with different dielectric permeability. The radar with 

central frequency of 400 MHz, sounding pulse duration of 1 to 5 ns and scanning resolution of 5 to 

10 cm has a maximum sounding depth of 4.0 to 5.0 m for dry soils. 

 

 

Picture 8: GPR «ОКО-М1» with antenna unit АB-400 

 

The scanning was performed all round the supports and in the coastal area near the supports to 

determine the homogeneity of soils, the ground water level, and the presence of cavities. The 

survey diagram is shown in Figure 3. The scanning profiles (radargrams) of the survey area are 

shown in Figure 4. The radargrams have been obtained by computer-aided processing with the 

GeoScan-32 software. 
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Bridge across the River Volga N

River Volga

Support 9 Support 9(2)

RG-1 RG-2

RG-3RG-4RG-5

RG-6

RG-7

RG-8

 
 

Figure 3: Ground penetrating radar survey near supports No. 9 

 

RG-1 Surface scanning profile 

 

 
There is a uniform occurrence of soils without sharp differences in depth. The bulk soil consists of three 

layers. The thickness of the bulk soil is 6.2-6.3 m, then the bedrock lies. 

 

RG-2 Surface scanning profile  

1 

2 

3 

Bulk soil 

4 
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There is a uniform occurrence of soils without sharp differences in depth. The bulk soil consists of three 

layers. The thickness of the bulk soil is 5.2-5.8 m, then the bedrock lies. 

Figure 4: Radargrams of soil on profile 1 и 2 

 

5) Dynamic testing of structures 

The identification of the bridge dynamic parameters and the bridge structure hidden defects 

required to use loading devices; three-component seismic detectors; connecting cables; multi-

channel analog-to-digital converters; computers with a software package for seismic vibration 

signal analysis [2]. 

The dynamic tests are conducted to determine dynamic and stiffness properties, load-bearing 

capacity of structural members of buildings and structures, and to detect any hidden defect 

(Figures 5, 6). 

 

Figure 5: The natural vibrations of the bridge along the X axis 

Bulk soil  

1 

2 

3 

4 
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Figure 6: Natural vibrations of building block 1 along the Y axis 

Measurements during wind gusts have been conducted (Figures 7). 

 

 

Figure 7: Accelerations along the X-axis in the middle part of the bridge in small wind gusts 
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Instruments have been used for the dynamic testing of the ground-to-structure system with the 

dynamic parameters of the structures obtained. The natural period of structural system oscillations 

as the basic dynamic parameter is known to relate to EJ stiffness thereof. Therefore, the dynamic 

test results to increase the natural period of oscillations T1 of a structure are going to yield the 

value of reduction in the structure integral stiffness. Mathematically, the dependency of the natural 

period on the stiffness can be expressed as: 

EJ

m
кТ =1  

where 

к is a factor accounting for the type and dimensions of the structural layout, 

m is mass of the structure, 

E is modulus of elasticity, 

J is moment of inertia. 

Generally, the natural period of oscillations T1 features the structural system’s stiffness. 

Afterwards, the integral reduction in the inertia moment will show the potential defects in the 

sections of the structural members of the structure. A reduction in the modulus of elasticity shows 

that an integral reduction in the strength of the structural members occurs. 

From the design data: T1 norm. = 2.4 sec. 

The survey and acceptance test results of the structure have shown that the natural periods of 

oscillations of the structure for spans 8-9 and 7-8, respectively, are equal to: 

T = 0.37 sec; 

T1y = 1.67 sec; 

T2 = 0.4 sec. 

For city bridges, the natural period of oscillations of the first 2 modes should not fall within the 

range of 0.45 to 0.6 sec. 

The test results have shown the natural periods of oscillations of the structure to be, respectively, 

equal to: 

T1x = 0.3-0.5-0.625 sec;  

T1y = 0.3-0.5-0.625 sec; 

 

I.e., the dynamic test results show the oscillation periods of the bridge to fall within the range of 

0.45 to 0.6 sec with reference to car traffic movement and light wind gusts, and this proves that the 

bridge is subject to dynamic impacts. 

In addition, the wind gusts were found to lead to a “play” phenomenon on the bridge, with 3-4 sec 

period. With the same period, but greater amplitudes, critical “play” oscillations were occurring, 

which led to the stopping of the movement [4]. 

 

III. Results 
 

No visually identifiable defects have been found in the load-bearing structures of the bridgework. 

The ultrasonic testing yielded the following results: 

- the strength (of mw between supports 9 and 10) is varying between 39.37 and 42.04 MPa (up to 

6 % of the maximum), the average values being between 34.53 and 39.56 MPa. The ground 

scanning suggests the following conclusions: 

- the backfill soil thickness in this geological area is 6.2 to 6.3 m, as followed by deeply formed 

alluvial soils; 

- no substantial changes have been found in the soil mass. 
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Generally, the soils have been found to lay evenly, with no abrupt depth changes. In general, the 

geologic conditions of the area are considered favorable upon the ground penetrating radar 

scanning. The visual, strength, and geodetic surveys yielded no changes in the technical condition 

of the bridge. The wind gusts turned out to lead to a “play” phenomenon on the bridge with 3-4 

sec period [2, 3]. With the same period, but greater amplitudes, critical “play” oscillations were 

occurring, which led to the stopping of the movement. During storm winds the bridge will be 

periodically subject to the “play” or critical “play” phenomena. This paper provides the measured 

data of the bridge, which have been obtained with the use of the methods applied. The application 

of such methods improves the specialist knowledge. 

 

IV. Conclusions 
 

The analysis shows that the monitoring of bridge structures from the point of view of the users of 

bridge structures aims at the following important tasks: ensuring the preservation of bridge 

structures; increasing durability bridges structures by timely detecting damage and repairing it in 

a timely manner; maintaining the load capacity of bridge structures by managing their behavior 

during operation; improving the efficiency of expenditure on repair increase efficiency of expenses 

for repair works by means of correct determination of time and types of necessary increase cost 

efficiency of repair works by correct timing and type of necessary repairs [2, 3, 4, 5]. 
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Abstract 

 

The article considers predictive-analytical solutions for natural hazards for urbanized areas, the 

mathematical basis of which is Bayesian classifiers. The result of the work is a formalized 

description of models for predicting forest fires, the consequences of earthquakes and floods 

resulting from floods. 
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I. Introduction 
 

The subject of the study is natural hazards for urban areas with the aim of their formalized 

description using Bayesian classifiers. The main part of the work contains three sections: a model 

for predicting forest fires; model for predicting the consequences of earthquakes; model for 

forecasting floods due to floods. 

 

II. Methods 
 

Statistical Model for Forest Fire Prediction. As part of the creation of the hardware-software 

complex "Safe City", an approach to modeling forest fires (hereinafter referred to as LP) is 

proposed, which is based on Bayesian methods [1]. In the statistical model for predicting the LP, 

the following parameters are subject to probabilistic assessment using a Bayesian classifier: speed 

of the riding LP; area and speed of the downstream LP [2]. The calculation of the average speed of 

the front of the upper LP for various gradations of wind speed is calculated by the equation: 

 

 

 

𝜈𝑓𝑟𝑠𝑟
𝑗

=
∑ 𝜈𝑓𝑟𝑖

𝑁𝑗

𝑖=1

𝑁𝑗

, (1) 

 

 

Where: 

j is the range of wind speed values corresponding to the j-th gradation (according to Table 1);  
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Nj is the number of upper LPs recorded at wind speeds that are in the detected values, 

detection of the j-th gradation, units; 

νfri is the front speed of the i-th riding LP, m/min. 

 

Table 1: Directory of gradations of wind speed values 

 

№ Range of values, m/s 

1. Less than 0,3 

2. [0,3; 1,6) 

3. [1,6; 3,4) 

4. [3,4; 5,5) 

5. [5,5; 8) 

6. [8; 10,8) 

7. [10,8; 13,9) 

8. [13,9; 17,2) 

9. [17,2; 20,8) 

10. [20,8; 24,5) 

11. [24,5; 28,5) 

12. [28,5; 32,7) 

13. from 32,7 and more  

 

The main indicators of the propagation of low-level LPs are calculated according to the 

Rothermel model, which is based on the position that the flame propagation speed is proportional 

to the ratio of the heat of combustion of the material to the heat of heating new portions of 

combustible material to the ignition temperature [3]. 

Determining the speed of the propagation front of the grassroots LP in this model is carried 

out as follows. 

According to the data obtained from the results of collecting the characteristics of the forest 

area, the composition of the forest combustible material (FCM) for this area is determined, after 

which the surface area per 1 m2 of the territory is determined for each layer of the FCM according 

to the formula: 

 

𝐴𝑖 =
𝜎𝑖𝜔0𝑖

𝜌𝑖 

, (1) 

Where: 

ω0 is the average reserve of the layer of forest materials, kg/m2; 

σ is the specific surface area of the FCM layer, m–1; 

ρ is the density of the LCM layer, kg/m3. 

The values of the parameters of formula (2) are determined according to table 2. 

 

Table 2: Average characteristics of the ground cover 

Compound Designation Lichen 
Moss 

schreber 

Nee

dles 
Leaves 

Dry 

cereal

s 

Bush Logging waste 

Average stock of 

a layer of LCM, 

kg/m2 

𝜔0 1,7 1,0 0,3 0,15 0,225 0,9 

Specific surface 

area of the LCM 

layer, m-1 

𝜎 2000 2500 6000 11560 18170 6560 4920 
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Heat of 

combustion, 

kcal/kg 

h 4300 4700 4500 4880 4200 4400 

Density 

LGM layer, kg/m3 
𝜌 300 512 460 420 512 

Layer height, m 𝛿 0,12 0,1 0,075 0,5 0,6 0,7 

Critical moisture 

content, kg/kg Мх 0,3 0,5 0,3 0,4 0,2 

 

The total surface area (AT) of all LCM layers is calculated by the formula: 

𝐴𝑇 = ∑ 𝐴𝑖.

𝑛

𝑖=1

 (3) 

Next, the wind speed is calculated at a level of 6 meters above the crowns of the forest stand 

(WZ6) according to the formula: 

 

𝑊𝑍6 = 𝑊𝑍10 [
𝑍𝑑 + 6

10
]

0,28

, (4) 

Where: 

𝑊𝑍10 - wind speed according to the nearest weather station; 

𝑍𝑑is the average stand height. 

Then the speed of propagation of the fire front in the absence of wind and slope (𝑣𝑓𝑟
0 ) can be 

calculated by the formula: 

𝑣𝑓𝑟
0 =

0,048h𝑠𝑟𝜂𝑆𝜔0𝑠𝑟𝜂𝑚𝑟𝜉

(𝜌𝑠𝑟 + 𝜌𝑠𝑟𝑆𝑇)𝑄𝛾𝜀𝜎𝑠𝑟
−0,8189

, (5) 

 

Where: 

𝜂𝑆 is a coefficient that takes into account the mineral composition of forest fuels 

(assumed 

to be 0.42); 

SR - mineral content. 

Based on the assumption that the lower LP in a homogeneous medium propagates in an 

ellipse, 

the area of the LP can be determined as follows. 

First, the ratio of the length of the LP to its width (LB) is determined by the formula: 

 

𝐿𝐵 = 0,936 exp(0,2566𝑊) + 0,461 exp(−0,1548𝑊) − 0,397.        (6) 

Next, the ratio of the leading edge of the LA to its trailing edge (HB) is determined by the 

formula: 

𝐻𝐵 =
𝐿𝐵 + √𝐿𝐵2 − 1

𝐿𝐵 − √𝐿𝐵2 − 1
 .        (7) 

The values a, b and c are calculated by the formulas: 

𝑏 =
𝑣𝑓𝑟(1 + 𝐻𝐵)

2𝐻𝐵
,   (8) 
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а =
𝑏

𝐿𝐵
 ,   (9) 

𝑐 = 𝑏 −
𝑣𝑓𝑟

𝐻𝐵
 . (10) 

 

The final value of a, b and c is determined by multiplying each of the given values by the 

forecast period in minutes. 

Then the LP area (𝑆𝑙𝑝) is calculated by the formula: 

 

𝑆𝑙𝑝 = 𝜋𝑎𝑏. (11) 

 

Statistical model for predicting the consequences of earthquakes 

The model for predicting the consequences of earthquakes is based on calculation methods for 

assessing the parameters of seismic impact, determining the degree of destruction of buildings and 

structures, elements of urban infrastructure, including theoretical approaches in the field of 

statistical data analysis based on the Bayesian method of interpreting probability. 

The main initial data for the formation of the basic training set of the model for predicting the 

consequences of earthquakes are the following groups of parameters: characteristics of 

earthquakes; characteristics of damage to buildings and structures during earthquakes; 

characteristics of buildings and structures; characteristics of territories; parameters of the 

meteorological situation [4]. 

At the stage of training the model, the parameters of the hypotheses are determined based on 

the values of the parameter "Degree of damage to the building (structure)". 

After training, the process of predicting events corresponding to hypotheses begins on new 

values of the observed parameters. 

The order of collecting new values of the observed input data and processing them 

corresponds to similar processes when training the model, except that the parameters of the 

hypotheses (estimating the posterior probabilities of the hypotheses) are determined by the 

Bayesian classifier. 

When forecasting using this model, each building or structure is considered separately. For 

these purposes, the characteristics of all buildings and structures in the controlled area are 

prepared in advance [5]. 

Statistical model for flood forecasting 

The main input data for the formation of the base training set of the model for flood 

forecasting due to floods are flood data due to heavy rainfall floods; data characterizing sections of 

rivers with sections of their watersheds; data characterizing the watersheds of the observed 

sections of the rivers; data characterizing water management systems in the observed sections of 

rivers; data characterizing controlled settlements (hereinafter referred to as CPs) located in areas of 

probable flooding of the area; data characterizing the hydrological situation in river sections; data 

characterizing the meteorological situation in the observed areas of the terrain; data characterizing 

the prevailing landscape of the area, the types and composition of soils within the boundaries of 

the NP and the catchment areas of the observed rivers [6]. 

In this model, the most significant indicators are the calculated hydromorphological 

parameters during the flood period. 

When determining the calculated hydromorphological characteristics of river points, the 
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following calculation methods are used [7]: 

in the presence of data from hydrometric observations - directly from these data; 

in case of insufficiency of hydrometric observation data, by reducing them to a multi-year 

period according to the data of analogue rivers with longer observation series; 

in the absence of hydrometric observation data and the impossibility of comparison with the 

given analogous rivers, according to calculation formulas using maps based on the totality of 

observational data from the entire network of monitoring points for the hydrological situation in 

the corresponding area or a larger territory. 

 

III. Results 

 
Thus, this article considers predictive and analytical solutions for natural hazards for urban 

areas, the mathematical basis of which is Bayesian classifiers. The result of the work is a formalized 

description of models for predicting forest fires, the consequences of earthquakes and floods 

resulting from floods. 

 

IV. Discussion 

 
The discussion of the verbal and mathematical foundations of predictive modeling of natural 

emergencies is quite active in the scientific literature [8 - 10]. 

The scientific novelty of the developed models lies in a single scientific approach to their 

creation, namely, the use of a statistical processing method based on Bayes' theorem. 

Bayesian probability is currently developing as the main method of forecasting in terms of 

building and training neural networks, in contrast to frequency probability - when the probability 

is determined by the relative frequency of occurrence of a random event with sufficiently long 

observations. 

For scientific forecasting of crisis situations and incidents using the Bayesian method and 

Bayesian networks, a large amount of up-to-date data is required for modeling natural disasters, 

which is typical for often recurring negative events. 

Due to the lack of statistical data, Bayesian methods are not applicable for predicting 

catastrophic natural disasters that occur rarely, but with significant damage. 
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