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Abstract 
 

Mechanical systems, the calculation of vibrations of which is the content of many practical 

problems, are mostly complex elastic systems. At the same time, many structural elements can be 

represented by a combination of different rods; therefore, in various fields of modern technology, 

it is necessary to solve the problems of oscillations of complex rod systems, including those in a 

collision with an obstacle. 

The relevance of the problem of calculating the vibrations of complex rod systems is due to the 

practical need to improve the technical characteristics of the designed machines and mechanisms 

and ensure their functioning under ever wider ranges of operational impacts, as well as to reduce 

the material consumption of machines and structures. To fully determine the strains and stresses 

that occur at any point in the system during vibrations, it is necessary to know the 

displacements at these points. This leads to the need to consider systems with an infinite number 

of degrees of freedom.  
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I. Introduction 
 

The practical needs of calculating the dynamic characteristics of various machine-building 

and other structures have led to the complication of design schemes. In many cases, the study of 

oscillations of complex rod systems with an infinite number of degrees of freedom is associated 

with great difficulties. In some cases, the possibility of a mathematical interpretation of the 

problem of vibrations becomes feasible only if certain simplifications are introduced into the 

calculation. The problem of non-uniform cores taking into account mutual influence of 

longitudinal and cross-section oscillations is investigated and solved. The decision is carried out in 

the assumption that the core is made of elastic continuously non-uniform material and the module 

of elasticity depends on the average module of elasticity, parameter of heterogeneity and length of 

a core. 

 

II. Methods 
 

The problem of dynamic stability of inhomogeneous rods is considered taking into account 

the mutual influence of longitudinal and transverse vibrations. 

Let us assume that the rod is made of an elastic continuously inhomogeneous material, and 

the modulus of elasticity changes according to the following law 
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where E0 - is the average modulus of elasticity,   - is the inhomogeneity parameter, l - is the rod 

length. 

 Let   - deflection, u - longitudinal displacement of the rod section. Then the total 

longitudinal displacement, up to second-order values, is determined by the formula: 
2

0

1

2

d
W u d

d


 

   
 

                                                                 (1) 

The longitudinal force in any section will be 
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On the other hand, there is: 
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where F - is the cross-sectional area of the rod. 

 

III. Results 
 

From relations (1)-(3) after some transformations we obtain  
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The bending equation of the considered rod is obtained in the following form 
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The boundary conditions for u (x, t) will have the form 
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The joint solution of system (4), (5) is associated with great difficulties. Let us consider the 

case when undamped transverse oscillations occur. In this case, the nonlinear terms on the right 

side of equation (4) can be neglected. Then equation (4) contains only u (x, t) and it is resolved 

independently of equation (5). The solution of equation (4) is represented as 
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IV. Discussion 
 

As can be seen from (8), at  cos 0l   the amplitude of the longitudinal oscillations goes to 

infinity. This corresponds to the resonance of longitudinal vibrations. In this case, resonance with 

respect to the lowest natural frequency occurs at 

0
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We represent the deflection in the following form 
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Taking into account (7), (10) from (5) using the Bubnov-Galerkin method, we find 
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The following notations are introduced in these formulas: 
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It should be noted that the solution of equation (11) is constructed similarly to [1]. The analysis 

shows that the boundary of the main region of instability in the first approximation is determined 

from the condition 
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Let us transform equation (14) to the form: 
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Taking into account (15), (16), an asymptotic analysis is carried out and the region of dynamic 

instability is constructed. 

 Note that for, the obtained solution coincides with the known classical solutions [1]. 

In this case, from (12), (13) we find: 
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