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Abstract 

This paper reviews several theoretical works on the computation of the Rate of Occurrence of Failure 
(ROCOF) for general multi-state random systems, focusing on recent generalizations. The discussion 
begins by defining the ROCOF for a Markov process and discussing the main results achieved in the 
literature, then moves towards the richer framework represented by semi-Markov systems. The paper 
discusses complications that arise when extending the ROCOF to higher orders so that a measure of 
the association of failures in time can be obtained. The work then analyzes possible modifications in 
terms of a conditional version of the ROCOF, which is of special interest in applications. The findings 
are illustrated by a numerical example from reliability, and the broad applicability is demonstrated 
by a discussion of different applications in other domains. 
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1. Introduction

Several studies deal with the proposal of new measures of performance for a random system and 
their computation in applied problems; see e.g. [1]. Among the available indicators, the Rate of 
Occurrence of Failure (ROCOF) is one of the most frequently used in understanding a system’s 
performance over time. Once a system’s failure is defined, the ROCOF is the derivative of the 
expected number of failures with respect to the time variable. Systems with an increasing path of the 
ROCOF are expected to deteriorate as time goes on. Contrarily, if the ROCOF shows a decreasing 
shape, then the system is expected to improve its quality of functioning over time. This seems to be 
a simple concept, at least in its intuition, but computation and analysis pose relevant questions that 
have been solved at different moments during the last half century. 

In the seventies, some research articles dealing with systems that have already reached the steady 
state appeared in the literature and showed how to compute the frequency of system failures and 
their durations [2,3,4].  
A few years later, Shi Ding-hua [5] developed a new method for calculating the ROCOF of a system 
described by a finite-state continuous time-homogeneous Markov chain. The author also discussed 
the case of a special high-dimensional Markov process equipped with supplementary variables. In 
the middle of the 1990s, further contributions were given in a couple of research articles by Yeh Lam 
[6,7]. In the first of his contributions, the author considers a system described by a continuous-time 
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Markov chain of higher dimension after having introduced additional variables. A formula for 
evaluating the ROCOF was derived, and an application for a two-component parallel system was 
presented. In his second contribution, the author enlarged the stage by considering Markovian 
systems with a denumerable state space.  
Markov processes are very frequently adopted for system reliability analysis. Unfortunately, in 
many circumstances, they are not suitable, either for practical or theoretical reasons. Hence, the need 
to use more general models, and the semi-Markov ones are a valuable alternative; see e.g. [8,9]. 
The question of how to compute the ROCOF for a semi-Markov process attracted the attention of 
Ouhbi, and Limnios [10]. In that work, the authors derived a formula for evaluating the ROCOF for 
semi-Markov systems and also proposed a statistical estimator of this indicator. A Similar analysis 
was executed by Georgiadis et al. [11] for the semi-Markov chain, i.e., for semi-Markov models in 
discrete time. 
A new idea was advanced by D’Amico [12] with the concept of ROCOF of order 𝑛 (shortly denoted 
by 𝑛 -ROCOF) for Markov processes. This new indicator coincides with the ROCOF when 𝑛 = 1 and 
expresses a measure of clustering in the time of failure events. For example, for 𝑛 = 2 it expresses a 
measure of association in time of a couple of failures at any couple of times (𝑡ଵ, 𝑡ଶ) with 𝑡ଵ < 𝑡ଶ. After 
having defined the 𝑛-ROCOF, the author derived an explicit formula in terms of the matrix generator 
and initial probability distribution. Next, a nonparametric estimator was advanced, and its 
asymptotic properties were determined. The 𝑛-ROCOF was applied to the modeling of financial 
credit ratings, where a conditional version of it was shown to be particularly useful. A few years 
later, Votsi [13] exploited a conditional version of the ROCOF for semi-Markov chains.  
Finally, in [14], the analysis of the 𝑛-ROCOF for semi-Markov processes with finite state space is 
executed in such a way that the previous quoted articles were generalized. The authors determined 
an explicit formula for the 𝑛-ROCOF under a general random starting mechanism, considering any 
possible state and duration of permanence in it. This was done using a mixed continuous-discrete 
initial probability distribution function. A set of hypotheses on the model parameters was advanced 
so that the derivation of an explicit formula expressing the 𝑛-ROCOF was obtained. The results were 
sufficiently general to be of interest not only in the reliability theory field but for every general 
system and could be applied every time that a partition of the state space can be introduced into 
working and not-working states.  
After giving a thorough analysis of the theoretical findings pertaining to the computation of the 
ROCOF, we show a numerical example from the dependability area and go on to describe some 
unusual applications in various fields, spanning from financial mathematics to wind energy 
generation. Considering that several of these applications have never been mentioned before, they 
also offer a suggestion for detailed future research. 
The paper proceeds as follows: Section 2 describes the basic reliability problem and some of the most 
important reliability indicators, ROCOF and 𝑛-ROCOF included. Section 3 considers a Markov 
process for the probabilistic description of the system and shows formulas for the ROCOF and 𝑛-
ROCOF. Section 4 provides a summary of the results related to the extension to the semi-Markov 
framework, showing the latest results in the literature. Section 5 discusses a numerical example for 
a Markov system and demonstrates the practical usefulness of the considered measures. Moreover, 
different possible applications from real life problems are detailed. The discussion concludes in 
Section 6, which reviews the content of the paper and provides general conclusions. 

2. Basic description of the reliability problem and main indicators

The basic reliability problem can be described assuming that the performance of the system can be 
identified with one element of a finite set 𝐸 = {1,2, … , 𝑚} called state space. Frequently, an ordering 
relation on the set E is considered in such a way that higher ranks 𝑗 ∈ 𝐸 correspond to a higher 
system’s performance. The state space E is partitioned into two disjoint subsets 𝑊 and 𝐹 such that: 
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𝐸 = 𝑊 ∪ 𝐹, 𝑊 ∩ 𝐹 = ∅,   𝑊 ≠ ∅,   𝐹 ≠ ∅.

The subset 𝑊 contains all the elements of 𝐸 denoting acceptable working levels of the systems; 
instead the subset 𝐹 contains all the states of 𝐸 in which the system is not performing in a satisfactory 
way or has a fault. Sometimes the state space is divided into three subsets, denoting the working 
states, the changeable states, and the failure states.  The changeable states denote a working system 
if and only if, before entering the changeable subset, the system was working and will continue to 
work after leaving it; see [15]. 

The system evolves in time and changes its state migrating from one state 𝑖 to another state 𝑗. The 
most natural way to study this evolution is by using a stochastic process 𝑍 = {𝑍(𝑡), 𝑡 ≥ 0}. Hence, 
𝑍(𝑡) denotes the state occupied by the system at time 𝑡 and if  𝑍(𝑡) ∈ 𝑊 the system is working while 
if 𝑍(𝑡) ∈ 𝐹 the system is not working.  
Specific indicators are used to measure the overall quality of the system; among them, we remember: 

- the availability function, which is defined by

𝐴௜(𝑡) ≔ 𝑃[𝑍(𝑡) ∈ 𝑊|𝑍(0) = 𝑖]. 

It expresses the probability that the system ranked i at time 0 will be operational at time 𝑡 
independently of the possible behavior before this time.   

- The reliability function which is defined by

𝑅௜(𝑡) ≔ 𝑃[𝑍(𝑛) ∈ 𝑊, ∀𝑛 ∈ [0, 𝑡]|𝑍(0) = 𝑖]. 

This indicator consists of the probability that a system ranked i at time 0 will not experience a fault 
(a visit to the subset 𝐹) from time 0 up to time t. A generalization of the reliability function considers 
interval reliability indicators [16], recent results are available in [17,18], and the sequential reliability 
function [19]. 

Denote by 𝑁௙(𝑡) the number of failures of the system until time t, i.e. the number of passages from a 
state of 𝑊 to one of 𝐹. Then, 

- the ROCOF at time 𝑡 for a random system, denoted by 𝑟𝑜(𝑡), is defined by

 𝑟𝑜(𝑡) = lim
∆௧→଴

𝐸ൣ𝑁௙(𝑡 + ∆𝑡) − 𝑁௙(𝑡)൧

∆𝑡
.  (1)

The ROCOF gives information on whether there are a lot of failures or only a few within a time, 
and it has a simple probabilistic interpretation that for deteriorating systems shows an increasing 
behavior and for improving systems, it is decreasing in time.  

When studying the reliability of a reparable system, it is of great interest to also measure the 
relative positioning of tuples of failures. For this reason, the 𝑛-ROCOF was defined D’Amico [12]: 

- the 𝑛-ROCOF at times 𝒕ଵ
௡ = (𝑡ଵ, 𝑡ଶ, … , 𝑡௡) with 𝑡௜ < 𝑡௜ାଵ for a random system is defined by

𝑟𝑜(𝒕ଵ
௡) = lim

(∆௧೔→଴)೔సభ
೙

𝐸ൣ𝑑𝑁௙(𝑡ଵ) ∙ 𝑑𝑁௙(𝑡ଶ) ∙ … ∙ 𝑑𝑁௙(𝑡௡)൧

∆𝑡ଵ∆𝑡ଶ ∙ … ∙ ∆𝑡௡

. (2)
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Clearly, for 𝑛 = 1 the 𝑛-ROCOF coincides with the ROCOF of the system. For 𝑛 = 2 we obtain an 
interesting particular case called the 2-ROCOF which is given by  

𝑟𝑜(𝒕ଵ
ଶ) = lim

(∆௧೔→଴)೔సభ
మ

𝐸ൣ𝑑𝑁௙(𝑡ଵ)𝑑𝑁௙(𝑡ଶ)൧

∆𝑡ଵ∆𝑡ଶ

,  (3)

and expresses a measure of association of failure events in correspondence of a 2-dimensional 
vector of times 𝒕ଵ

ଶ = (𝑡ଵ, 𝑡ଶ). 

3. 𝑛-ROCOF for Markov processes

A class of models frequently used in the reliability field is that represented by Markov processes; see 
e.g.  [20,21,22,23]. Here we briefly introduce them and show the formula for the 𝑛-ROCOF.

Let consider a continuous time Markov process (𝑍(𝑡),   𝑡 ∈ ℝ) with a finite state space 𝐸 = {1,2, … , 𝑚} 
and generator matrix 𝑸 = ൫𝑞௜௝൯, 𝑖, 𝑗 ∈ 𝐸 where 𝑞௜௝ ≥ 0, ∀𝑖 ≠ 𝑗 and 𝑞௜௜ = − ∑ 𝑞௜௝௝ஷ௜ . Consider also an 
initial probability distribution over the states of the process at time zero denoted by the vector 𝜶 =

(𝛼ଵ, 𝛼ଶ, … , 𝛼௡) where 

𝛼௜ = 𝑃(𝑍(0) = 𝑖). 

Let  𝑝௜(𝑡) = 𝑃(𝑍(𝑡) = 𝑖), ∀𝑖 ∈ 𝐸 be the state probability at time 𝑡, then it results that 

𝑝௝(𝑡) = ෍ 𝛼௜

௜∈ா

𝑝௜௝(𝑡), 

where 𝑝௜௝(𝑡) =  𝑃(𝑍(𝑡) = 𝑗|𝑍(0) = 𝑖) = (𝑒𝑸௧)௜௝ . 

Theorem [12] The 𝑛-ROCOF at times 𝒕ଵ
௡ = (𝑡ଵ, 𝑡ଶ, … , 𝑡௡) with 𝑡௜ < 𝑡௜ାଵ for a Markov jump process 

(𝑍(𝑡),   𝑡 ∈ ℝ) over a finite state space 𝐸 = {1,2, … , 𝑚} and generator matrix 𝑸 = ൫𝑞௜௝൯, 𝑖, 𝑗 ∈ 𝐸 is given 
by 

𝑟𝑜(𝒕ଵ
௡) = ෍ ෑ 𝛼௙బ

∙ ൫𝑒𝑸(௧೔ି௧೔షభ)൯
௙೔షభ௪೔

∙

௡

௜ୀଵ

𝑞௪೔௙೔

௡

௪,௙

 ,  (4)

where 𝑡଴ = 0 and the symbol  ∑௡
௪,௙  is an abbreviate notation for ∑ ∑ ∑௙೔∈ி,∀௜ୀଵ,…,௡௪೔∈ௐ,∀௜ୀଵ,…,௡ .௙బ∈ா  

Formula (4) contains interesting particular cases of which we give representation. The ROCOF is 
simply obtained by setting 𝑛 = 1 in formula (4) with 𝑡଴ = 0. The result is:   

𝑟𝑜(𝑡ଵ) = ෍ ෍ ෍ 𝛼௙బ
∙

௙భ∈ி

(𝑒𝑸 ௧భ)௙బ௪భ
∙

௪భ∈ௐ

𝑞௪భ௙భ

௙బ∈ா

= ෍ ෍ 𝑝௪భ
(𝑡ଵ)

௙భ∈ி

∙

௪భ∈ௐ

𝑞௪భ௙భ
,  (5)

which expresses exactly the formula established by Yeh [7]. 

 Another interesting case is represented by the 2-ROCOF which is simply obtained by setting 𝑛 = 2 
in formula (4) with 𝑡଴ = 0. The result is:   
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𝑟𝑜(𝒕ଵ
ଶ) = ෍ ෑ 𝛼௙బ

∙ ൫𝑒𝑸(௧೔ି௧೔షభ)൯
௙೔షభ௪೔   

∙

ଶ

௜ୀଵ

𝑞௪೔௙೔

ଶ

௪,௙

= ෍ ෍ ෍ ෍ ෍ 𝛼௙బ
∙ (𝑒𝑸 ௧భ)௙బ௪భ

∙ 𝑞௪೔௙೔

௙మ∈ி௪మ∈ௐ௙భ∈ி௪భ∈ௐ௙బ∈ா

∙ ൫𝑒𝑸(௧మି௧భ)൯
௙భ௪మ   

∙ 𝑞௪మ௙మ
 .  (6)

4. 𝑛-ROCOF for semi-Markov processes

Semi-Markov processes are a generalization of Markov processes, allowing for any kind of 
probability distribution function for the sojourn time in the state of the system. Contrarily, Markov 
processes require exponentially distributed sojourn times; this assumption can be inadequate in 
several application fields, reliability theory included; see e.g. [24,25].  

The definition of a semi-Markov process needs some preliminary concepts to be introduced. We start 
by considering a bivariate random sequence (𝐽௡, 𝑇௡), 𝑛 ∈ ℕ.  The random variable 𝐽௡ denotes the state 
of the system at its n-th transition; this variable assumes values in the state space 𝐸. The random 
variable 𝑇௡ denotes the time in which the system enters state 𝐽௡; this variable assumes any values in 
the set of positive real numbers. The time the system remains in the state 𝐽௡ିଵ before entering state 
𝐽௡ is called sojourn time. It is denoted by 𝑋௡ = 𝑇௡ − 𝑇௡ିଵ having set 𝑋଴ = 0. The process (𝐽௡, 𝑇௡) is 
called Markov Renewal Process (MRP) whenever it satisfies the next assumption: 

𝑃(𝐽௡ାଵ = 𝑗, 𝑋௡ ≤ 𝑡| 𝐽௡, 𝑋௡ିଵ, 𝐽௡ିଵ, 𝑋௡ିଶ, … ) = 𝑃(𝐽௡ାଵ = 𝑗, 𝑋௡ ≤ 𝑡| 𝐽௡). 

The conditional joint probabilities of the MRP are denoted by 

𝑄௜,௝(𝑡) = 𝑃(𝐽௡ାଵ = 𝑗, 𝑋௡ ≤ 𝑡| 𝐽௡ = 𝑖) 

and the matrix  𝑸(𝑡) = ൫𝑄௜,௝(𝑡)൯ is called the semi-Markov kernel. 

Let 𝑁(𝑡) = 𝑠𝑢𝑝{𝑛: 𝑇௡ ≤ 𝑡} be the counting process of the number of transition up to the time 𝑡. Then 
the semi-Markov process can be defined by 𝑍(𝑡) ≔ 𝐽ே(௧).  

Let assume that 𝑸 is absolutely continuous with respect to the Lebesgue measure on the set of 
positive real numbers and denote by 𝑞௜,௝(𝑡) =

ொ೔,ೕ(ௗ௧)

ௗ௧
 the corresponding Radon-Nikodym derivatives. 

Hence, we can consider the hazard rate functions according to the relation 

𝜆௜௝(𝑡) = ቐ

𝑞௜,௝(𝑡)

1 − 𝐻௜(𝑡)
if  𝑝௜,௝ > 0  and  𝐻௜(𝑡) < 1

0 otherwise

 

where  𝐻௜(𝑡): =  𝑃(𝑋௡ ≤ 𝑡| 𝐽௡ = 𝑖) = ∑ 𝑄௜,௝(𝑡)௝∈ா  and 𝑝௜,௝: = 𝑃(𝐽௡ାଵ = 𝑗| 𝐽௡ = 𝑖) = lim
௧→ାஶ

𝑄௜,௝(𝑡). 

Let us introduce the backward recurrence time process 𝐵(𝑡) ≔ 𝑡 − 𝑇ே(௧). Now we can describe the 
set of three assumptions used in [14] to derive the formula for the 𝑛-ROCOF of a semi-Markov 
process.  

Assumption A1: This first assumption explains a general random starting mechanism for semi-
Markov processes. We first consider the vector 𝒑 = (𝑝ଵ, 𝑝ଶ, … , 𝑝௡) where 

𝑝௜ = 𝑃( 𝐽଴ = 𝑖) 

with  ∑ 𝑝௜௜∈ா = 1. Moreover we specify a set of cumulative distribution function for the duration in 
the initial state 𝑖; i.e. 𝐹௜(𝑣଴) = 𝑃(𝐵(0) ≤ 𝑣଴|𝐽଴ = 𝑖). Then we assume that 

𝐹௜(𝑣଴) = ቐ

0 if   𝑣଴ < 0
𝑎௜ if   𝑣଴ = 0,   0 ≤ 𝑎௜ ≤ 1

𝐺௜(𝑣଴) ∙ (1 − 𝑎௜) + 𝑎௜ if   𝑣଴ > 0
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being 𝐺௜(∙) an absolutely continuous cumulative distribution function with support in (0, ∞) and 
corresponding density function 𝑔௜(∙) having finite expectation.  

Assumption A2: The semi-Markov process has uniformly bounded transition intensities, in formula: 

∃𝑐 ∈ ℝା such that max
௜,௝∈ா

sup
௬∈ℝశ

𝜆௜௝(𝑦) ≤ 𝑐  . 

Assumption A3: For each state 𝑖 ∈ 𝐸 there exist a state 𝑗 ∈ 𝐸 (depending on 𝑖) and a non-null subset 
𝑆௜௝(𝑦) of the real numbers such that 𝜆௜௝(𝑦) < 𝑐 for all 𝑦 ∈ 𝑆௜௝ .  

The following main result gives the formula for the  𝑛-ROCOF of a semi-Markov process. 

Theorem [14] The 𝑛-ROCOF at times 𝒕ଵ
௡ = (𝑡ଵ, 𝑡ଶ, … , 𝑡௡) with 𝑡௜ < 𝑡௜ାଵ of a semi-Markov process 

(𝑍(𝑡),   𝑡 ≥ 0) over a finite state space 𝐸 = {1,2, … , 𝑚} and semi-Markov kernel 𝑸 = ൫𝑄௜௝(𝑡)൯, 𝑖, 𝑗 ∈ 𝐸 
is given by 

𝑟𝑜(𝒕ଵ
௡) = ෍ ෍ 𝑎௝బ

𝑝௝బ
ෑ න 𝜓௙ೝషభ௪ೝ

ᇱ (0; 𝑢௥)𝑞௪ೝ௙ೝ
(𝑠௥ − 𝑢௥)𝑑𝑢௥

௦ೝ

଴

௡

௥ୀଵ𝒘∈𝑾೙,𝒇∈𝑭೙

௠

௝బୀଵ

 

+ ෍ ෍ ൫1 − 𝑎௝బ
൯𝑝௝బ

ቆන ቆන 𝜓௝బ௪భ

ᇱ (𝑣଴; 𝑢ଵ)𝑞௪భ௙భ
(𝑠ଵ − 𝑢ଵ)𝑑𝑢ଵ

௦భ

ି௩బ

ቇ
ஶ

଴

𝑔௝బ
(𝑣଴)𝑑𝑣଴ቇ

𝒘∈𝑾೙ ,𝒇∈𝑭೙

௠

௝బୀଵ

∙ ෑ න 𝜓௙ೝషభ௪ೝ

ᇱ (0; 𝑢௥)𝑞௪ೝ௙ೝ
(𝑠௥ − 𝑢௥)𝑑𝑢௥

௦ೝ

଴

௡

௥ୀଶ

 ,

 (7)

where 𝑠௥ = 𝑡௥ − 𝑡௥ିଵ , 𝑠ଵ = 𝑡ଵ and 𝜓௜௝ (𝑦; 𝑡) ≔ 𝐸(௜,௬)ൣ𝑁௝(𝑡)൧ = ∑ 𝑄௜௝
(௡)(𝑦; 𝑡)ஶ

௡ୀ଴ .

The quantity 𝑄௜௝
(௡)(𝑦; 𝑡) = 𝑃(𝐽௡ = 𝑗, 𝑇௡ ≤  𝑡|𝐽଴ = 𝑖, 𝐵(0) = 𝑦). 

We observe that if we consider for all 𝑗଴ ∈ 𝐸, 𝑎௝బ
= 1 and 𝑛 = 1, we have a null duration in the initial 

state and we obtain exactly the formula for the ROCOF as it was established by [10], i.e. 

𝑟𝑜൫𝑡ଵ ൯ = ෍ ෍ ෍ 𝑝௝బ
න 𝜓௝బ௪

ᇱ (0; 𝑢ଵ)𝑞௪௙(𝑡ଵ − 𝑢ଵ)𝑑𝑢ଵ

௧భ

଴

.

௙∈ி

  (8)

௪∈ௐ

௠

௝బୀଵ

5. Applied problems

Applications of the 𝑛-ROCOF measures to the reliability field are clearly of great interest. Here we 
show a few results related to a numerical example based on Markov processes in subsection 5.1. 
Anyway, there are many other fields of application in which the same concepts are worth 
discussing. An example is the financial modeling of credit rating dynamics, which was extensively 
discussed in [12,26]. A new application to wind power production is discussed later in subsection 
5.2 taking inspiration from the problem discussed in [27] and [28]. 

5.1 A numerical example 

Let us consider a random system whose state space is given by the set 𝐸 = {1,2,3,4,5,6,7,8}. Each 
number represents different levels of performance of the system, going from perfect functioning 
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(state 1) to the worst one (state 8). The state space E is partitioned into two disjoint subsets 𝑊 =

{1,2,3} and 𝐹 = {4,5,6,7,8}.  

We assume that the system evolves dynamically according to the generator matrix 

𝑸 =

⎝

⎜
⎜
⎜
⎜
⎛

−0.10 0.08 0.00 0.02 0.00 0.00 0.00 0.00
0.80 −1.30 0.35 0.15 0.00 0.00 0.00 0.00
0.00 0.12 −1.33 0.90 0.31 0.00 0.00 0.00
0.00 0.10 0.30 −0.90 0.50 0.10 0.00 0.00
0.00 0.00 0.30 0.15 −0.95 0.35 0.15 0.00
0.00 0.00 0.05 0.20 0.10 −0.50 0.10 0.05
0.00 0.05 0.08 0.09 0.15 0.33 −0.90 0.20
0.00 0.00 0.10 0.10 0.20 0.30 0.30 −1.00⎠

⎟
⎟
⎟
⎟
⎞

. 

Using equation (5), we compute the ROCOF of order 1 for the three working states. The results are 
shown in Figure 1. The continuous line refers to the ROCOF computed starting from state 1, i.e., 
using the initial probability distribution 𝜶 = (1,0, … ,0); the dashed line refers to the ROCOF 
computed starting from state 2, i.e., using the initial probability distribution 𝜶 = (0,1,0, … ,0); the 
dotted line refers to the ROCOF computed starting from state 3, i.e., using the initial probability 
distribution 𝜶 = (0,0,1,0 … ,0). The figure shows that independently of the initial state, the system 
is going to deteriorate as the ROCOF shows increasing paths. Nonetheless, the differences 
according to the initial state are remarkable and demonstrate a higher risk for state 3 and a lower 
risk for state 1.   

Figure 1. 1-ROCOF for a Markov process 

Figure 2. 2-ROCOF for a Markov process starting from state 1 

Using equation (6), we compute the 2 −ROCOF starting from state 1. The result is graphically 
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displayed in figure 2. On the X-axis, we report the time 𝑡ଵ, while on the Y-axis, we report the time 
𝑡ଶ − 𝑡ଵ. Hence, the point (10, 5) on the XY-plane corresponds to the choice of 𝑡ଵ = 10 and 𝑡ଶ = 15. 
Any point on the surface represents the corresponding value of the  2 −ROCOF. High values of the 
surface show evidence for the association of failures at the corresponding times on the X and Y axes. 
The maximum values (for the times considered in the figure) are concentrated on large values of 𝑡ଵ 
and 𝑡ଶ − 𝑡ଵ.    

We repeat the computations of the  2 −ROCOF changing the initial state. The case with state 2 as 
initial state and that for state 3 are considered in figures 3 and 4, respectively. 

Figure 3. 2-ROCOF for a Markov process starting from state 2 

Figure 4. 2-ROCOF for a Markov process starting from state 3  

As it is possible to see from these figures, their shapes are completely different from those of figure 
2. In figures 3 and 4, the maximum values of association between couples of failures are for
combinations of short times 𝑡ଶ − 𝑡ଵ independently from time  𝑡ଵ (which shows a contained
variability). This aspect is important because at short values of 𝑡ଶ − 𝑡ଵ, the system may show
trajectories of alternation between subsets 𝑊 → 𝐹 → 𝑊 → 𝐹, i.e., the presence of two close-in-time
failures.

5.2 Wind power example 

Wind power is one of the most important renewable energy sources. Because wind speed changes 
very sharply over time, the wind engineer must use mathematical models to predict the power 
output. Particular care should be given to abrupt interruptions of power production that may be 
caused by extreme wind speeds. Indeed, on the one hand, low wind is unable to move wind 
turbine’s blades, which determines no energy production. On the other hand, extremely high wind 
speeds may cause damage to the turbine; hence, the wind engineer must switch it off to avoid 
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structural breaking. The minimal wind speed necessary to activate the turbine is called the cut-in 
speed 𝑣௖௜ . The maximal wind speed that the turbine can handle is called the cut-out speed 𝑣௖௢ . 
Finally, it is also important to consider the rated wind speed 𝑣௥ , which represents the minimum 
wind speed value at which the turbine achieves its maximum power production, the so-called 
rated power. Using the power curve for the wind turbine under consideration, we may calculate 
the power output as a function of the wind speed. The relationship between wind speed 𝑣(𝑡) and 
wind power 𝑃𝑜𝑤(𝑡) at any time 𝑡 is 

𝑃𝑜𝑤(𝑡) =

⎩
⎪
⎨

⎪
⎧

0     if 𝑣(𝑡) ≤ 𝑣௖௜

𝑃௥ ∙ (𝑣ଷ(𝑡) − 𝑣௖௜
ଷ )

𝑣௥
ଷ − 𝑣௖௜

ଷ if 𝑣௖௜ < 𝑣(𝑡) < 𝑣௥

 𝑃௥   if 𝑣௥ < 𝑣(𝑡) < 𝑣௖௢

0  if 𝑣(𝑡) > 𝑣௖௢

where 𝑃௥  is the rated power. Essentially, for wind speed lower than the wind cut-in speed, there is 
no power production. For wind speed between the cut-in speed and the rated speed the output 
power is a cubic function of the wind speed. For values between the rated speed and the cut-off 
speed the turbine produces its rated power. Finally, for speed greater than the wind speed cut-off 
the turbine does not produce power.  

The ROCOF and its generalization could be fruitfully used in this applied field as we are going to 
show. First, we consider the first-order discrete-time Markov chain model proposed in [28] which 
was applied to a sample of hourly wind speed data collected by Malaysian Meteorological Station 
located at Mersing. The wind speed data range from 0 to 12𝑚/𝑠; hence the authors adopted a 
twelve state Markov chain model with 𝐸 = {1,2, … ,12} where the i-th state collects all wind speed 
measurements ranging between (𝑖 − 1) 𝑚/𝑠  and 𝑖 𝑚/𝑠. The estimated transition probability matrix 
is taken from [28]:  

𝑷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.371 0.407 0.174    0.036 0.009 0.002    0.001 0.000 0.000   0.000 0.000 0.000
0.166 0.446 0.312    0.059 0.012 0.004    0.000 0.001 0.000   0.000 0.000 0.000
0.051 0.243 0.504    0.163 0.028 0.008    0.002 0.001 0.000   0.000 0.000 0.000
0.017 0.083 0.303    0.391 0.160 0.035    0.008 0.002 0.001   0.000 0.000 0.000
0.010 0.035 0.099    0.277 0.382 0.157    0.031 0.007 0.001   0.001 0.000 0.000
0.006 0.021 0.043    0.108 0.295 0.343    0.146 0.031 0.004   0.003 0.000 0.000
0.005 0.016 0.027    0.047 0.110 0.302    0.324 0.142 0.021   0.004 0.002 0.000
0.006 0.016 0.030    0.033 0.055 0.127    0.365 0.239 0.105   0.022 0.002 0.000
0.009 0.019 0.014    0.018 0.042 0.065    0.140 0.326 0.269   0.079 0.014 0.005
0.014 0.054 0.055    0.014 0.027 0.028    0.041 0.205 0.288   0.164 0.083 0.027
0000 0.000 0.000    0.040 0.000 0.000    0.080 0.120 0.160    0.240 0.280 0.080
0.000 0.000 0.000    0.000 0.000 0.000    0.000 0.200 0.000   0.200 0.600 0.000⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Now consider a commercial wind turbine with a cut-in speed of 4 𝑚/𝑠 . This means that when the 
wind speed process is in one of the first four states of the Markov chain, there is no power 
production. The state space E is partitioned into two disjoint subsets 𝑊 and 𝐹 according to the 
following: 

𝑊 = {5,6, … ,12}    𝐹 = {1,2,3,4}.

In order to apply the measures discussed in the previous sections, we need to transform the 
discrete dynamic expressed by the transition matrix estimated by [28] into a continuous-time one 
by finding a generator matrix that satisfactorily matches, in some sense, the discrete process. This 
is a well-known and still open problem in the theory of Markov chains that is called the 
embedding problem. A detailed discussion is provided in [29], and further results and applications 
are provided in [30]. We consider here a simple strategy to get a generator matrix rendering results 
“close” to the observed hourly transition probability matrix 𝑷. We observe that the transition 
probability function for a continuous-time Markov process satisfy the relation 
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𝑷(𝑡) = 𝑒𝑸௧ = ෍
(𝑸𝑡)௡

𝑛!

ஶ

௡ୀ଴

 .

Therefore, given a probability matrix 𝑷, we can try to find a generator matrix 𝑸 such that 

𝑷 ≈
(𝑸𝑡)଴

0!
+

(𝑸𝑡)ଵ

1!
= 𝑰 + 𝑸𝑡.

From this relation we recover 𝑸 =
ଵ

௧
∙ (𝑷 − 𝑰).  and we obtain the initial guess 𝑸∗ = (𝑷 − 𝑰)  by

setting 𝑡 = 1 to denote one hour. Hence, we solve the following optimization problem: 

min
𝑸∈𝚽

‖𝑷 − 𝑒𝑸‖, 

which consists of finding, within the set of generator matrices 𝚽 , the one that minimizes the 
previous matrix norm. In our application, we consider the minimization of the Frobenius matrix 
norm, and we use the software Matlab to solve this optimization problem with an initial guess 𝑸∗. 
The result is the following generator matrix:     

𝑸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−3.295 0.035 0.006     0.002 0.000 0.001    0.001 0.000 0.309    1.999 0.942 0.000
0.020 −2.891 0.000    0.004 0.000 0.000    0.000 0.000 0.277    1.633 0.939 0.018
0.033 0.028 −2.362    0.001 0.000 0.000    0.000 0.000 0.085    0.776 1.239 0.200
0.268 0.059 0.014   −1.975 0.014 0.000    0.000 0.000 0.028    0.137 0.504 0.951
0.936 0.261 0.051    0.011 −1.965 0.001    0.000 0.000 0.017    0.060 0.166 0.462
0.492 0.572 0.243    0.052 0.007 −1.663    0.000 0.000 0.010    0.035 0.072 0.180
0.183 0.503 0.540    0.237 0.035 0.007   − 1.746 0.080 0.009    0.027 0.046 0.079
0.091 0.212 0.608    0.398 0.175 0.037    0.004 −1.758 0.100    0.027 0.051 0.055
0.070 0.108 0.535    1.091 0.728 0.002    0.003 0.003 −2.542    0.001 0.000 0.001
0.045 0.047 0.068    0.341 0.480 0.273    0.138 0.045 0.024    −1.877 0.392 0.024
0000 0.000 0.133    0.200 0.266 0.455    0.522 0.133 0.000    0.001 −1.777 0.067
0.001 0.000 0.000    0.532 0.000 0.740    1.550 0.000 0.001    0.006 0.002 −2.832⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Now, we can compute the ROCOF using the formula presented in the previous section. To 
highlight the potentiality of the continuous-time framework, we compute the indicators on a 5-
minute time scale. This can be done simply by considering the hourly-based generator matrix 𝑸 
and dividing it by a factor of 1/12.  

In figure 5, we report the 1-ROCOF corresponding to three choices of the initial distribution over the 
states of the system. Specifically, the continuous blue line represents the indicator computed starting 
from state 5, which denotes a wind speed of  5𝑚/𝑠. The dotted red line denotes the 1-ROCOF 
behavior starting with a wind speed of  9𝑚/𝑠. Finally, the dashed yellow line stands for the 1-
ROCOF  with an initial wind speed of  1𝑚/𝑠. It is possible to note that for short times, the 1-ROCOF 
is monotone with respect to the initial speed. Thus, being in a state with strong wind implies a higher 
chance of moving into one of the failure states where no power production occurs. The overall 
behavior becomes irrelevant to the initial state around time 20, which corresponds to 20 ∙ 5min =

100min where the system shows the achievement of a stationary value of the 1 − 𝑅𝑂𝐶𝑂𝐹 equal to 
0.0536.  
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Figure 5. 1-ROCOF for the Markov process of wind speed 

For completeness, we proceed by computing the 2-ROCOF for the wind speed Markov process. In 
figure 6, we display the indicator when the initial state is equal to 5𝑚/𝑠 (left panel) and when the 
initial state is equal to 9𝑚/𝑠 (right panel). The panels have similar surfaces. Both indicate a maximum 
value of the 2-ROCOF for high values of the time 𝑡ଵ and low values of the time 𝑡ଶ − 𝑡ଵ. Hence, the 
maximum chance for a couple of transitions from working to failure states is for combinations of 
times as (𝑡ଵ = 20, 𝑡ଶ = 21). The indicator is increasing with respect to time 𝑡ଵ and decreasing with 
respect to time 𝑡ଶ − 𝑡ଵ. The 2-ROCOF assumes higher values for the initial wind speed of 9𝑚/𝑠 as 
compared to the initial wind speed of 5𝑚/𝑠 case. In this way, the reliability engineer has a clear idea 
of when the association between two failure events is high or low. This information can also be used 
to measure the riskiness of a wind park investment in terms of the intermittency of power 
production. 

Figure 6. 2-ROCOF for the Markov process of wind speed for two initial wind speed values 

IV. Discussion

Understanding the rate of occurrence of failures in a random system is of great relevance, both 
theoretically and practically. This paper offers some general information after commenting on a 
selection of recent major studies in the field. 

- The definition of a recent measure called the 𝑛 -ROCOF is reported, and a broad
interpretation as a measure of clustering in time of failures is given.

- The computation of the 𝑛 -ROCOF under the hypothesis of a continuous-time finite state
space Markov chain is explained in detail. The results are also presented in the more
general framework represented by semi-Markov processes.
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- A numerical example clarifies the results and shows different shapes of the indicators that

are flexible enough to represent a great variety of real system behavior. A new application
of these concepts is provided in the field of wind engineering and reveals interesting aspects
that need an accurate investigation in a specific research article.
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