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Abstract

Time-dependent stress-strength reliability engages with the chance of survival for systems with dynamic
strength and/or dynamic stress. When a system is allowed to run continuously, each run will cause
a change in the strength of the system. The repeated occurrence of stress on the system over each
run will affect the survival capacity of the system. In this paper, we consider the distribution of time
taken for the completion of a run by the system follows gamma and the stress or strength of the system
follows a finite mixture of lifetime probability models. Here we consider two cases in which the first
case deals with stress and strength following a finite mixture of Weibull distribution and in the second
case the stress and strength is assumed to follow a finite mixture of the power-transformed half-logistic
distribution. Moreover, the strength of the system is assumed to decrease by a constant and the stress
acting on the system is assumed to increase by a constant over each run. We obtained the expression of
the stress-strength reliability function and explained the ML and Bayesian methods for the estimation of
the reliability at various time points.

Keywords: Time-dependent Stress-strength reliability, Gamma Renewal process, Finite mixture
distribution, Expectation Maximization algorithm, Markov Chain Monte Carlo method.

1. Introduction

In reliability theory, stress-strength reliability measures the chance of the strength of a system
to overcome the stress acting on it. Every object or individual has its own strength for survival.
When they are subject to any kind of stress, they will survive only if their strength surpasses the
stress. Stress-strength reliability model can be used to compare the effectiveness of two treatments,
to compare the life length of two equipment, etc. Let Y denotes the random strength of the system
under consideration and X is the stress acting on that system. Then the stress-strength reliability
of the system is denoted by R and is defined as R = P[X < Y].

The concept of stress-strength reliability theory was originated by Birnbaum [2]. Kotz et.al.
[11] discussed point and interval estimation of stress-strength models using different approaches.
Baklizi and Eidous [1] proposed an estimator of R based on kernel estimators of the densities of
X and Y. Zhou [20] illustrated the estimation of R using the bootstrap method. Recently many
authors discussed classical and Bayesian methods of estimating R for different probability models,
see Pakdaman et al. [12] Xavier and Jose [15,16], Xavier et al. [17, 18] and Jose et.al. [7,10].
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Nowadays, research on stress-strength reliability estimation focuses on the case where the
stress, strength or both changes with respect to time, and hence the term time-dependent stress-
strength reliability. Let Y(t) represent the strength of a system at time t and X(t) be the stress on
the system at t. Under the time-dependent stress-strength reliability model, we are interested in
the estimation of the stress-strength reliability function

R(t) = P[X(t) < Y(t)], (1)

which gives the chance of survival of the system at time t. For example, quite often we have to
download files to mobile phones. The downloaded files consume the memory space of the phone
corresponding to the size of that file. It will cause a reduction in the speed of functioning of the
phone. So each time we download a new file, the number of files piled up in the phone memory
which will reduce the functioning speed of the phone.Time dependent stress-strength reliability
models were studied in Yadav [19], Gopalan and Venkateswarlu [5, 6], Eryilmaz [4] and Siju and
Kumar [13, 14], Jose and Drisya [8, 9] and Drisya et al. [3].

Time-dependent stress-strength reliability engages with the chance of survival for systems
with dynamic strength and/or dynamic stress. When a system is allowed to run continuously,
each run will cause a change in the strength of the system. The repeated occurrence of stress on
the system over each run will affect the survival capacity of the system. In this paper, we consider
the distribution of time taken for the completion of a run by the system follows gamma and the
stress or strength of the system follows a finite mixture of lifetime probability models. Here we
consider two cases in which the first case deals with stress and strength following a finite mixture
of Weibull distribution and in the second case the stress and strength are assumed to follow a
finite mixture of the power-transformed half-logistic distribution. Moreover, the strength of the
system is assumed to decrease by a constant and the stress acting on the system is assumed to
increase by a constant over each run.

This paper is organized as follows. Estimation of stress-strength reliability function with
gamma cycle times under random fixed stress and strength is discussed in Section 2. The
expressions for stress-strength reliability function under a finite mixture of Weibull and a finite
mixture of power-transformed half-logistic distributions are also derived. A brief description of
the EM algorithm for estimating R(t) is given in Section 3 with numerical illustrations based on
simulated data. Computation of the Bayes estimate of R(t)using the Markov Chain Monte Carlo
method is illustrated in Section 4 with a numerical illustration based on simulated data.

2. Estimation of R(t) based on finite mixture distribution

Consider a system that is allowed to work continuously. The system executes several runs during
the time period of observation say (0, t). The time taken for completion of a run by the system
is a random variable and we call it cycle time. In this paper, we assume that the cycle times are
gamma-distributed. Hence the total number of runs within the entire time period will have a
renewal process. Let the cycle time Z follows gamma distribution with p.d.f.,

f (z) =
akzk−1e−az

(k − 1)!
; z ≥ 0. (2)

Then the number of runs during the time interval (0,t), say N(t)has the following distribution.

Pn(t) = p[N(t) = n]

= e−at
(n+1)k−1

∑
r=nk

(at)r

r!
; n = 0, 1, 2, .... (3)

Let Xj be the stress imposed on the system during jth cycle time and the corresponding
strength of the system be Yj. Also let the initial strength of the system, say Y0 be a continuous
random variable with density function h(y0) and the initial stress on the system X0 also be a
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continuous random variable with p.d.f g(x0). The system is allowed to run continuously and
when it runs, its strength decreases by a0 and the stress increases by b0 on completion of each
run. Hence, the probability that the system works after n runs is given by

Rn = P((X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn))

= P((x0 + b0 < y0 − a0) ∩ (x0 + 2b0 < y0 − 2a0) ∩ · · · ∩ (x0 + nb0 < y0 − na0))

= P(x0 + n(a0 + b0) < y0)

=
∫ ∞

0

∫ ∞

x0+n(a0+b0)
h(y0)g(x0)dy0dx0 (4)

Therefore the reliability of the system at time t is

R(t) =
∞

∑
n=0

Pn(t)Rn

=
∞

∑
n=0

Pn(t)
∫ ∞

0

∫ ∞

x0+n(a0+b0)
h(y0)g(x0)dy0dx0 (5)

=
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

∫ ∞

0

∫ ∞

x0+n(a0+b0)
h(y0)g(x0)dy0dx0 (6)

In particular, consider the case that stress acting on the system do not vary throughout the
observation period as well as the strength of the system decreases by a constant say, a0. Then the
probability of functioning of the system after n runs is given by

Rn = P[(X1 < Y1) ∩ (X2 < Y2) ∩ · · · ∩ (Xn < Yn)]

= P[(x0 < Y0 − a0) ∩ (x0 < Y0 − 2a0) ∩ · · · ∩ (x0 < Y0 − na0)]

= P[(x0 + na0 < Y0)]

=
∫ ∞

x0+na0

h(y0)dy0 (7)

Therefore, the value of R(t) can be obtained as

R(t) =
∞

∑
n=0

Pn(t)Rn

=
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

∫ ∞

x0+na0

h(y0)dy0.

2.1. R(t) based on finite mixture Weibull distribution

Let the initial strength of the system follow a mixture of Weibull distributions with p.d.f.

h(y0) =
m1

∑
i=1

πi
α

βi
yα−1

0 e−yα
0 /βi , y0 ≥ 0, α > 0, 0 < πi < 1, βi > 0; i = 1, 2, ..., m1. (8)

and initial stress on the system follows a mixture of Weibull distribution with p.d.f.

g(x0) =
m2

∑
j=1

pj
α

θj
xα−1

0 e−xα
0 /θj , x0 ≥ 0, α > 0, 0 < pj < 1, θj > 0; j = 1, 2, ..., m2. (9)

When the system runs, its strength decreases by a0 and the stress increases by b0 on completion
of each run. The time taken for completion of a run is assumed to be a gamma variate. Then the
chance for survival of the system after n runs is

Rn =
m1

∑
i=1

πi

m2

∑
j=1

pje−(n(a0+b0))
α/βi ; n = 1, 2, ... (10)
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with

R0 =
m1

∑
i=1

πi

m2

∑
j=1

pj
βi

βi + θj
(11)

Then the corresponding stress-strength reliability function is obtained as

R(t) = e−at
k−1

∑
r=0

(at)r

r!

m1

∑
i=1

πi

m2

∑
j=1

pj
βi

βi + θj

+
∞

∑
n=1

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

πi

m2

∑
j=1

pje−(n(a0+b0))
α/βi (12)

Change in R(t) corresponding to change in different parameters stress and strength distribu-
tions are given in Figure 1. From the figure, it is clear that the value of R(t) increases with an

Figure 1: Variation in R(t) corresponding to change in parameters

increase in shape parameter values and decreases with an increase in scale parameter values of
strength when the initial strength of the the system is Weibull-distributed. Also R(t) increases
with an increase in shape parameter values of stress distribution.

As a particular case assume that the strength of the system has a mixture Weibull distribution
with parameters (α, βi); i = 1, 2, ...m1, and the stress is fixed. Then the chance of the system
working after the completion of n runs is,

Rn = e−(x0+na0)
α/β (13)
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and the corresponding stress strength reliability is obtained as

R(t) =
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

πie−(x0+na0)
α/βi (14)

=
m1

∑
i=1

πi

∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!
e−(x0+na0)

α/βi (15)

2.2. R(t) based on finite a mixture of power transformed half logistic distribution

The p.d.f of the power transformed half-logistic distribution (Xavier and Jose (2020)) is given by

f (y) =

{
2δγyγ−1e−δyγ

(
1 + e−δyγ

)−2
, 0 ≤ y < ∞; δ > 0; γ > 0.

0 otherwise.
(16)

Now, let us assume that initial strength ( Y0 ) of the system follows a mixture of power
transformed half logistic distribution with p.d.f

h(y0) =
m1

∑
i=1

πi2δ1iγ1iy
γ1i−1
0 e−δ1y

γ1i
0 (1 + e−δ1iy

γ1i
0 )−2, (17)

0 ≤ y0 < ∞, δ1i > 0, 0 < πi < 1, γ1i > 0, ; i = 1, 2, ..., m1. It is also assumed that initial stress on
the system ( X0 ) follows the mixture of power transformed half logistic distribution with p.d.f

g(x0) =
m2

∑
j=1

pj2δ2jγ2jx
γ2j−1
0 e−δ2jx

γ2j
0 (1 + e−δ2jx

γ2j
0 )−2, (18)

0 ≤ x0 < ∞, δ2j > 0, 0 < pj < 1, γ2j > 0, ; j = 1, 2, ..., m2.
Hence, Rn is given by

Rn = 4
m1

∑
i=1

πi

m2

∑
j=1

pjδ2jγ2j

×
∫ ∞

0
[1 − (1 + e−δ1i(x0+n(a0+b0))

γ1i )−1]x
γ2j−1
0 e−δ2jx

γ2j
0 (1 + e−δ2jx

γ2j
0 )−2dx0. (19)

Then, the stress-strength reliability is given by

R(t) = 4
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

πi

m2

∑
j=1

pjδ2jγ2j

×
∫ ∞

0
[1 − (1 + e−δ1i(x0+n(a0+b0))

γ1i )−1]x
γ2j−1
0 e−δ2jx

γ2j
0 (1 + e−δ2jx

γ2j
0 )−2dx0 (20)

Change in R(t) corresponding to change in different parameters stress and strength distributions
are given in Figure 2. From the graph, when the stress and strength parameters follow a mixture
of power transformed half logistic distribution, the increase in the parameters results in a decrease
in the R(t) and after a point, they converge. Particularly when stress is fixed and strength
of the system has a mixture of power transformed half logistic distribution with parameters
(δi, γi) : i = 1, 2, ..., m1, the chance of the system working after the completion of n runs is,

Rn =
m1

∑
i=1

2πi[1 − (1 + e−δi(x0+na0)
γi )−1]. (21)

Then, corresponding R(t) is given by

R(t) =
∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!

m1

∑
i=1

2πi[1 − (1 + e−δi(x0+na0)γi )−1].

=
m1

∑
i=1

πi

∞

∑
n=0

e−at
(n+1)k−1

∑
r=nk

(at)r

r!
2[1 − (1 + e−δi(x0+na0)

γi )−1]. (22)
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Figure 2: Variation in R(t) corresponding to change in stress and strength parameters

3. ML Estimation of R(t) using EM Algorithm

In this section, we describe the ML estimation of the reliability function. Assume that the strength
and the stress follow a finite mixture distribution with densities h(y) and g(x) respectively. where

h(y) =
m1

∑
i=1

πihi(y), 0 < πi < 1,
m1

∑
i=1

πi = 1. (23)

and

g(x) =
m2

∑
j=1

pjgj(x), 0 < pj < 1,
m2

∑
i=1

pj = 1. (24)

The cycle time follows a gamma distribution with p.d.f.

f (z) =
akzk−1e−az

(k − 1)!
, z ≥ 0. (25)

Let (x1, x2, ..., xn) and (y1, y2, ..., ym) and (z1, z2, ..., zr) be random samples on stress, strength and
cycle time respectively. Then the joint likelihood function is

L =
n

∏
i=1

g(xi)
m

∏
j=1

h(yj)
r

∏
t=1

f (zt) (26)

and the corresponding log-likelihood function

l =
n

∑
i=1

log g(xi) +
m

∑
j=1

log h(yj) +
r

∑
t=1

log f (zt)

= l1 + l2 + l3 (27)

As the log-likelihood function is the sum of log-likelihoods corresponding to the random samples
of stress, strength as well as cycle time respectively and since the parameters are independent
the stress, strength, and cycle time parameters can be obtained by maximizing corresponding
log-likelihood function. The ML estimates of stress and strength parameters can be computed by
by using Expectation - Maximization algorithm.
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3.1. ML Estimation of R(t) based on a finite mixture of Weibull distribution

Assuming that the cycle time distribution follows gamma distribution and the initial stress
follows a finite mixture of Weibull distribution with parameters (α, βi), i = 1, 2, ..., m1 and strength
follows finite mixture of Weibull distribution with parameters (α, θj), j = 1, 2, ..., m2 expression
for the stress strength reliability function is derived in the previous section. We can estimate the
stress, strength and cycle time parameters separately. The ML estimates of stress and strength
parameters can be computed by by using EM algorithm. Here we summarize the EM algorithm
for computing the parameters of a finite mixture of Weibull distribution. Consider the strength
data consists of n independent and identically distributed observations (y1, y2, ..., yn) from a finite
a mixture of Weibull distribution with p.d.f.

h(y, α, β) =
m1

∑
i=1

πihi(y, α, βi), β = (βi; i = 1, 2, ..., m1)

Where

hi(y, α, βi) =
α

βi
yα−1e−

yα

βi ; y > 0, α > 0, βi > 0; i = 1, 2, ..., m1

The associated log-likelihood function is

L(y, α, β)) =
n

∑
j=1

log h(y, α, β). (28)

The MLE of α̂, β̂ is determined such that

L(y, α̂, β̂) = supα,βL(y, α, β). (29)

Define a variable zij such that zij = 1 if jth unit of the sample comes from the ith component
and zij = 0 otherwise. Since each component comes from exactly one component, we have

∑k
i=1 zij = 1, πi = P[zij = 1].

Yi|zij=1 ∼ Weibull(α, βi), i = 1, 2, ..., m1.

In missing data setup y can be considered as incomplete data and x = (x1, x2, ..., xn) where xj =
(yj, zj) and zj = (zij, i = 1, 2, ..., m1) as a complete data set. The density function corresponding to
the observations in the complete data set is

hc(xj, α, β) = hc(yj, zj, α, β) =
m1

∑
i=1

πi Izij hi(yj, α, βi). (30)

and the likelihood function is

Lc(x, α, βi) =
n

∑
j=1

log hc(xj, α, β). (31)

The EM algorithm iteratively maximizes Q(α, β|α, β(t)) = E(Lc(x, α, β|y, α, β(t))) instead of maxi-
mizing L(y, α, β), where α, β(t) is the current value at t and then compute the expectation

Eα,β(t)(Lc(x, α, β)|y) =
n

∑
j=1

m1

∑
i=1

E
α,β(t)i

(zij|y)(log πi + log hi(yj, α, βi)) (32)

E
α,β(t)i

(zij|y) = P
α,β(t)i

(zij = 1|y)

=
π
(t)
i hi(yj, α, βi)

∑m1
i=1 π

(t)
i hi(yj, α, βi)

, j = 1, 2, ..., n; i = 1, 2, ..., m1 (33)

= τij(yj, α, βi) (34)
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It is the posterior probability that jth observation belongs to the ith component in the tth iteration.
Thus we have

Q(α, βi|α, β(t)) =
n

∑
j=1

m1

∑
i=1

τij(α, β
(t)
i )(log πi + log hi(yi, α, βi)). (35)

Hence the EM algorithm consists of the following two steps.

Step1.E-step: Compute Q(α, β|α, β(t))
Step2.M-step:Compute the value of α, β(t+1) that maximizes Q(α, β|α, β(t)).

If τij where observable posterior probabilities, then MLE of π is simply given by

π̂i =
n

∑
j=1

τij

n
, i = 1, 2, ..., m1,

which is the proportion of the sample having arisen from the ith component of the mixture.
For the (t + 1)th update other parameters α and (β1, β2, ..., βm1), we have to obtain the solution

of
n

∑
j=1

m1

∑
i=1

τij(π
(t))

∂

∂α, βi
log hi(yj, α, βi)) = 0 (36)

We repeat the procedure until the desired accuracy is obtained. Hence we get the estimates of the
strength parameters as:

β̂i(t + 1) =


n

∑
j=1

τijy
α(t+1)
j

n

∑
j=1

τij

 (37)

α̂(t + 1) = n

[
m1

∑
i=1

1
βi(t)

n

∑
j=1

τijy
α̂(t)
j log(yj)−

m1

∑
i=1

n

∑
j=1

τijlog(yj)

]−1

(38)

Similarly, we can estimate the stress parameters. The ML estimates of gamma cycle time
parameters can be obtained by standard procedures. Using the ML estimates of the stress,
strength, and cycle time parameters and applying the invariance property of the ML estimators
we can find the value of R(t).

We use the Monte Carlo simulation technique to estimate R(t) for systems with initial strength
and initial stress following Weibull mixture and cycle times following gamma distribution. We
have done the entire numerical analysis using R. The numerical illustration of ML of R(t) with
gamma cycle time with Weibull mixture initial stress and strength for different time values is
given in Table 1. In which y0 represent initial strength and x0 represent initial stress of the system.
For a fixed time interval, we draw samples for cycle time and the number of cycles based on the
distributional assumption of cycle times. The maximum number of cycles up to which the total
cycle time does not exceed the length of the time interval under consideration is taken as the
number of runs during the time interval. The cycle time observed during each run constitutes the
simulated sample of cycle times. The command rweibull helps in simulating samples from the
Weibull distribution. Samples to represent initial stress and initial strength distributions, when
both are mixtures of Weibull distributions are generated using this command. We repeat the
entire simulation experiment 1,000 times.

From the table, it is clear that R(t) decreases as the time increases, when the initial stress and
strength of the system is distributed as a mixture of Weibull distribution with gamma cycle time.
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Table 1: ML Estimation of R(t) with Weibull mixture initial stress and strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,2) a = 0.4881 Y0 :0.8W(0.3,0.6)+ α = 0.2890 1 0.02 10 0.2230
k = 2.0840 0.2W(0.3,2) θ = (0.5892, 1.9454) 25 0.1539

X0 :0.3W(0.3,1)+ α = 0.2954 50 0.1175
0.7W(0.3,0.3) β = (1.1603, 0.2957) 75 0.0989

100 0.0869
G(0.5,4) a = 0.5231 Y0 :0.6W(5,0.3)+ α = 5.0982 0.001 0.08 10 0.9155

k = 3.1780 0.4W(5,2) θ = (0.2992, 2.1114) 25 0.9154
X0 :0.3W(5,0.1)+ α = 5.1089 50 0.6168

0.7W(5,0.2) β = (0.1008, 0.2292) 75 0.2228
100 0.0498

G(1,2) a = 0.5231 Y0 :0.4W(2,1.2)+ α = 2.0008 0.02 0.05 10 0.8699
k = 3.1780 0.6W(2,4) θ = (1.3100, 4.1216) 25 0.8938

X0 :0.7W(2,4)+ α = 1.9279 50 0.7896
0.3W(2,2.5) β = (4.3704, 2.6518) 75 0.6559

100 0.5188
G(1,4) a = 0.9910 Y0 :0.2W(1.2,0.8)+ α = 1.2056 0.1 0.05 10 0.5913

k = 3.9622 0.8W(1.2,2.4) θ = (0.7759, 2.3253) 25 0.4231
X0 :0.3W(1.2,4)+ α = 1.1128 50 0.2357

0.7W(1.2,3.2) β = (3.9000, 3.9901) 75 0.1292
100 0.0693

3.2. ML Estimation of R(t) based on a finite mixture of power-transformed
half-logistic distribution

By assuming that the cycle time follows gamma distribution and the initial stress and strength
follow the mixture of power transformed half logistic distribution with parameters (δ1i, γ1i), i =
1, 2, ..., m1 and (δ2j, γ2j), j = 1, 2, ..., m2 respectively, the corresponding stress-strength reliability is
given in the previous section. Now, consider independent and identically distributed strength
observations y = (y1, y2, ..., yn) from a finite a mixture of power transformed half logistic mixture
with p.d.f.

h(y, δ1, γ1) =
m1

∑
i=1

πihi(y, δ1i, γ1i).

Where

hi(y) =

{
2δ1iγ1iyγ1i−1e−δ1iyγ1i

(
1 + e−δ1iyγ1i

)−2
, 0 ≤ y < ∞; δ1i > 0; γ1i > 0

0, otherwise
(39)

i = 1, 2, ..., m1. Using the EM algorithm explained earlier, we get the ML estimates of the strength
parameters as

πi =

n

∑
j=1

τij

n
, i = 1, 2, ..., m1. (40)

δ̂1i =
∑n

j=1 τi(yj; δ1i, γ1i)

∑n
j=1(τi(yj; δ1i, γ1i)y

γ1i
j [1 − 2e

−δ1iy
γ1i
j

1+e
−δ1iy

γ1i
j

])

; i = 1, 2, ..., m1. (41)

γ̂1i =
∑n

j=1 τi(yj; δ1i, γ1i)

∑n
j=1(τi(yj; δ1i, γ1i)log(yj)[δ1iy

γ1i
j (1 − 2e

−δ1iy
γ1i
j

1+e
−δ1iy

γ1i
j

)− 1])

; i = 1, 2, ..., m1. (42)
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Similarly, we can find the stress estimates and hence we can find R(t) by the estimated parameters.
We use the Monte Carlo simulation technique to estimate R(t) for systems with initial strength

and initial stress following a finite mixture of power-transformed half logistic distribution and
cycle times following Gamma distribution. Table 2 gives the estimated value of R(t) with gamma
cycle time with power transformed half logistic mixture initial stress and strength for different
time values. The package bayesmeta available in R software allows sampling from half-logistic
distribution. Then sample from power transformed half logistic distribution is simulated using
simple conversion techniques.

Table 2: ML Estimation of R(t) with PTHL mixture initial stress and strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,1) a = 0.4885 Y0 :0.6PTHL(5,0.3) δ2 = (5.0927, 4.9764) 0.001 0.008 10 0.00756
k = 0.9687 +0.4PTHL(0.4,2) γ2 = (0.1067, 0.2025) 50 0.00755

X0 : 0.3PTHL(5,0.1) δ1 = (9.2026, 2.0041) 100 0.00755
+0.7PTHL(5,0.2) γ1 = (1.1615, 6.0581) 150 0.00753

200 0.00367
G(0.5,2) a = 0.9522 Y0 :0.7PTHL(8,0.5) δ2 = (7.3349, 1.1391) 0.001 0.08 10 0.0629

k = 1.9138 +0.3PTHL(0.5,2.5) γ2 = (0.5245, 1.8925) 50 0.0629
X0 :0.2PTHL(4,0.5) δ1 = (3.8315, 5.0771) 125 0.0626

+0.8PTHL(5,0.2) γ1 = (0.1008, 0.2292) 140 0.0525
150 0.0313

G(1,1) a = 1.0097 Y0 :0.2PTHL(2,0.2) δ2 = (1.9903, 3.9043) 0.002 0.005 10 0.1067
k = 1.0029 +0.8PTHL(4,2.4) γ2 = (0.1961, 2.4533) 50 0.1067

X0 :0.6PTHL(4,2) δ1 = (3.9133, 5.1319) 75 0.1063
+0.4PTHL(4.6,2) γ1 = (2.1198, 1.9368) 100 0.0490

125 0.0008
G(1,2) a = 1.0099 Y0 :0.1PTHL(3,2.4) δ2 = (2.6875, 3.0715) 0.002 0.005 10 0.1038

k = 1.9968 +0.9PTHL(3,1.2) γ2 = (2.2066, 1.1926) 50 0.1038
X0 :0.8PTHL(2.5,1.1) δ1 = (2.4427, 5.3425) 75 0.1034

+0.2PTHL(5,2) γ1 = (1.1208, 2.0481) 100 0.0477
125 0.0008

From this table, we can see that, R(t) decreases as time increases, when the initial stress and
strength of the system is distributed as a mixture of power transformed half logistic distribution
with gamma cycle time.

4. Bayesian Estimation of R(t) using MCMC method

In this section, we describe the Bayesian estimation of the reliability function. The stress and
strength follow a finite mixture distribution with densities g(x) and h(y) respectively and the cycle
time follows a gamma distribution. Let (x1, x2, ..., xn), (y1, y2, ..., ym) and (z1, z2, ..., zr) be random
samples on stress, strength, and cycle time respectively. Then, the joint likelihood function is

L =
n

∏
i=1

g(xi)
m

∏
j=1

h(yj)
r

∏
t=1

f (zt) (43)

where

g(x) =
m2

∑
j=1

pjgj(x), 0 < pj < 1,
m2

∑
j=1

pj = 1. (44)

and

h(y) =
m1

∑
i=1

πihi(y), 0 < πi < 1,
m1

∑
i=1

πi = 1. (45)
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The cycle time follows a gamma distribution with p.d.f.

f (z) =
akzk−1e−az

(k − 1)!
, z ≥ 0. (46)

We assume prior probabilities corresponding to each parameter to get a Bayesian estimate of the
reliability function.

4.1. Bayesian Estimation of R(t) based on a finite mixture of Weibull distribution

Let the cycle time follow a gamma distribution with parameters (a, k) and stress and strength
of the system follow a mixture of Weibull distribution with parameters (α, β j), j = 1, 2, .., m2 and
(δ, γi), i = 1, 2, .., m1 respectively. The expression for stress-strength reliability is given in section 2.
Here we discuss the estimation of the parameters by the Bayesian estimation method. Treating Zi
as the auxiliary variable, such that

Xj|Zj = i ∼ gi(x, α, βi) and p(Zj = i) = pi, j = 1, 2, .., n, i = 1, 2, .., m2.

Yj|Zj = i ∼ hi(y, δ, γi) and p(Zj = i) = πi, j = 1, 2, .., m, i = 1, 2, .., m1.

Where
gi(x) =

α

βi
xα−1e−xα/βi , x ≥ 0, α > 0, βi > 0; i = 1, 2, ..., m1. (47)

and
hi(y) =

α

θj
yα−1eyα/θj , y ≥ 0, α > 0, θj > 0; j = 1, 2, ..., m2. (48)

We can simplify the likelihood function into the form,

L =
r

∏
t=1

akzk−1
t e−azt

(k − 1)!

m2

∏
i=1

π
n1i
i (

α

βi
)n1i

(
n

∏
j=1

x
zij
j

)α−1

e
1
βi

∑n
j=1(zijxα

j )


m1

∏
k=1

pn2k
k (

δ

γk
)n2k

(
n

∏
l=1

yzkl
l

)δ−1

e
1

γk
∑n

j=1(zklyδ
l )

 (49)

We fix the Dirichlet prior distribution for π = (π1, π2, ..., πm1) and p = (p1, p2, ..., pm2), gamma
prior for βi, γk; i = 1, 2, .., m2, k = 1, 2, .., m1 non-informative prior for α, δ, a and k.The variable zij

is such that zij = 1 if jth unit of the sample comes from the ith component and zij = 0 otherwise.
Also n1i = ∑m2

j=1 zij and n2k = ∑m1
j=1 zkj.

Hence

π ∼ Dirichlet(µ11, µ12, ..., µ1m2)

p ∼ Dirichlet(µ21, µ22, ..., µ2m1)

π3i(βi) ∝ β
a1i−1
i e−b1i βi ; i = 1, 2, .., m2

π4k(γk) ∝ γa2k−1
k e−b2kγk ; k = 1, 2, .., m1

π5(α), π6(δ), π7(a), π8(k) ∝ 1

where µ1 = (µ11, µ12, ..., µ1m1), µ2 = (µ21, µ22, ..., µ2m2), (a1i, a2i); i = 1, 2, .., m2 and (b1j, b2j); j =
1, 2, .., m1 are the hyper-parameters. Since the cycle time parameters have a non-informative prior,
their estimates coincide with the ML estimates. The joint prior distribution of π, p, β, γ, α, and δ
can be written as,

g(π, p, β, γ, α, δ) ∝
m2

∏
i=1

pµ1i−1
i β

(a1i−1)
i eb1i βi

m1

∏
j=1

π
µ2i−1
j γ

(a2j−1)
j eb2jγj (50)

RT&A, No 1 (77)
 Volume 19, March 2024

278



Krishnendu, K., Annie Sabitha Paul , Drisya M., and Joby K. Jose.
INFERENCE ON TIME-DEPENDENT SSR MODELS

Where β = (β1, β2, ..., βm2) and γ = (γ1, γ2, ..., γm1). The posterior probability is given by,

h(π, p, β, γ, α, δ|x, y, zij) ∝
m2

∏
i=1

pµ1i−1
i β

(a1i−1)
i eb1i βi

m1

∏
j=1

π
µ2i−1
j γ

(a2j−1)
j eb2jγj

r

∏
t=1

akzk−1
t e−azt

(k − 1)!

m2

∏
i=1

π
n1i
i (

α

βi
)n1i

(
n

∏
j=1

x
zij
j

)α−1

e
1
βi

∑n
j=1(zijxα

j )


m1

∏
k=1

pn2k
k (

δ

γk
)n2k

(
n

∏
l=1

yzkl
l

)δ−1

e
1

γk
∑n

j=1(zklyδ
l )

 (51)

Then, the conditional posterior distributions of π, p, β, γ, α, and δ are:

π ∼ Dirichlet(µ11 + n11, µ12 + n12, ..., µ1m2 + n1m2) (52)

p ∼ Dirichlet(µ21 + n21, µ22 + n22, ..., µ2m1 + n2m1) (53)

π1(α|β, x, z) ∝
m2

∏
i=1

αn1i

(
n

∏
j=1

x
zij
j

)α−1

e−
1
βi

∑n
j=1 xα

j

 (54)

π2(δ|γ, y, z) ∝
m1

∏
i=1

δn2i

(
n

∏
j=1

y
zij
j

)δ−1

e−
1
γi

∑n
j=1 yδ

j

 (55)

π3i(βi|α, β∗
i , x, z) ∝ β

−n1i+a1i−1
i e−

1
βi

∑n
j=1 xα

j e−b1βi ; i = 1, 2, .., m2 (56)

π4i(γi|δ, γ∗
i , y, z) ∝ γ

−n2i+a2i−1
i e−

1
γi

∑n
j=1 yδ

j e−b2γi ; i = 1, 2, .., m1. (57)

Where β∗
i = {βi, i = 1, 2, i − 1, i + 1.., m2} and γ∗

i = {γi, i = 1, 2, i − 1, i + 1.., m1}.

The posterior distributions of α, βi, δ, and γi cannot be reduced analytically to a well-known
distribution. So we use the Markov chain Monte Carlo method with Gibbs sampling under
Metropolis-Hastings algorithm for computing Bayes estimate using the statistical software, R. The
Metropolis-Hastings algorithm with chi-square proposal density is used for generating samples
from (π, p, α, β, δ, γ), where π = (π1, π2, ..., πm1), p = (p1, p2, ..., pm2) β = {βi, i = 1, 2, .., m2}, and
γ = {γi, i = 1, 2, .., m1}is given as follows.

ALGORITHM − 1 :

Step1. Set the initial values (π0, p0, αo, β0, δ0, γ0)
Step2.Generate zij values using sample x
Step3.Generate πt

Step4. Using the proposal density g(α) ∼ χ2
(x) where x is the d.f and choose x = αt−1 Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π1(y)g(x)

π1(x)g(y) accept y and set αt = y; otherwise set αt = x

Step5. Using the proposal density g(βi) ∼ χ2
(x) where x is the d.f and choose x = βt−1

i Generate
another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π3i(y)g(x)

π3i(x)g(y) accept y and set βt
i = y; otherwise set βt

i = x. Repeat the procedure and generate

βt
i , i = 1, 2, .., m2

Step6.Generate zij values using sample y
Step7.Generate pt

Step8. Using the proposal density g(δ) ∼ χ2
(x) where x is the d.f and choose x = δt−1 Generate

random variable y from the chi-square density g. Generate u from Uniform(0,1). If u < π2(y)g(x)
π2(x)g(y)

accept y and set δt = y; otherwise set δt = x
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Step9. Using the proposal density g(γi) ∼ χ2
(x) where x is the d.f and choose x = γt−1

i Generate

random variable y from the chi-square density g. Generate u from Uniform(0,1). If u < π4i(y)g(x)
π4i(x)g(y)

accept y and set βt
i = y; otherwise set βt

i = x. Repeate the procedure and generate γt
i , i = 1, 2, .., m1

Step10 Compute R(t).
Step11 Increment t.

Table 3 provides the estimated values of R(t) by the Bayesian estimation method when the
stress and strength of the system follow a mixture of two Weibull distributions with gamma cycle
time. We assume that the mixture proportions π and p are known and the component parameters
(α, β, δ, γ) are unknown and are following gamma prior distributions. Also, we assume that
cycle time parameters a and k follow non-informative prior. Since the cycle time parameters
have a non-informative prior, their estimates coincide with the ML estimates. The table shows
Bayes estimates of the parameters (α, β, δ, γ) and Bayes estimate of the reliability function R(t) for
different time values corresponding to various sets of hyperparameter values. The table shows
that R(t) decreases as time increases.

Table 3: Bayesian Estimation of R(t) with Weibull mixture initial stress strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,2) a = 0.4881 Y0:0.8W(0.3,0.6)+ δ = 0.2890 1 0.02 10 0.2230
k = 2.0840 0.8W(0.3,2) γ = (0.5892, 1.9454) 25 0.1539

X0:0.3W(0.3,1)+ α = 0.2954 50 0.1175
0.7W(0.3,0.3) β = (1.1603, 0.2957) 75 0.0989

100 0.0869
G(0.5,4) a = 0.5231 Y0:0.6W(5,0.3)+ δ = 5.0982 0.001 0.08 10 0.9155

k = 3.1780 0.4W(5,2) γ = (0.2992, 2.1114) 25 0.9154
X0:0.3W(5,0.1)+ α = 5.1089 50 0.6168

0.7W(5,0.2) β = (0.1008, 0.2292) 75 0.2228
100 0.0498

G(1,2) a = 0.9975 Y0:0.3W(0.2,2)+ δ = 0.2005 0.01 0.02 10 0.7598
k = 1.9738 0.7W(0.2,5) γ = (0.8536, 8.6029) 25 0.7208

X0:0.4W(0.2,0.9)+ α = 5.1089 50 0.6868
0.6W(0.2,8) β = (0.1008, 0.2292) 75 0.6652

100 0.6492
G(1,4) a = 0.9652 Y0:0.5W(2,0.2)+ δ = 2.0344 0.001 0.05 10 0.7455

k = 3.7469 0.5W(2,6) γ = (0.2093, 5.9099) 25 0.6070
X0:0.5W(2,1)+ α = 1.9980 50 0.4140

0.5W(2,10) β = (1.0200, 9.8969) 75 0.3370
100 0.2908

4.2. Bayesian Estimation of R(t) based on a finite mixture of power-transformed
half-logistic distribution

Let the cycle time follows a gamma distribution with parameters (a, k) and stress and strength
of the system follow a mixture of power transformed half logistic distribution with parameters
(δj, γj), j = 1, 2, .., m2 and (αi, θi), i = 1, 2, .., m1 respectively. The expression for stress-strength
reliability is given in section 2. Here we discuss the estimation of the parameters by the Bayesian
estimation method. Consider the auxiliary variable Zj, such that

Xj|Zj = i ∼ gi(x, δi, γi) and p(Zj = i) = pi, j = 1, 2, .., n, i = 1, 2, .., m2

.
Yj|Zj = i ∼ hi(y, αi, θi) and p(Zj = i) = πi, j = 1, 2, .., m, i = 1, 2, .., m1
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.
Where

gi(x) =

{
2δiγixγi−1e−δixγi

(
1 + e−δixγi

)−2
, 0 ≤ x < ∞; δi > 0; γi > 0.

0 otherwise.
(58)

f (y) =

{
2αiθiyθi−1e−αiyθi

(
1 + e−αiyθi

)−2
, 0 ≤ y < ∞; αi > 0; γi > 0.

0 otherwise.
(59)

Then likelihood function L is

L =
n

∏
i=1

akyk−1
i e−ayi

(k − 1)!

m2

∏
i=1

π
n1i
i 2n1i γ

n1i
i δ

n1i
i

(
n

∏
j=1

x
zij
j

)γi−1

e−δi ∑n
j=1(zijx

γi
j )

n

∏
j=1

[(
1 + e−δix

γi
j

)−2zij
]

m1

∏
k=1

pn2k
k 2n2k θ

n2k
k α

n2k
k

(
m

∏
j=1

y
zkj
j

)θk−1

e−αk ∑m
j=1(zkjy

θk
j )

m

∏
j=1

(
1 + e−αky

θk
j

)−2zkj


(60)

We fix the Dirichlet prior distribution for π = (π1, π2, ..., πm1) and p = (p1, p2, ..., pm2), gamma
prior for δi, αk; i = 1, 2, .., m2, k = 1, 2, .., m1 non-informative prior for γ, θ, a and k. Since the cycle
time parameters have a non-informative prior, their estimates coincide with the ML estimates.
The variable zij is such that zij = 1 if jth unit of the sample comes from the ith component and
zij = 0 otherwise. Also n1i = ∑m2

j=1 zij and n2k = ∑m1
j=1 zkj. Hence

π ∼ Dirichlet(µ11, µ12, ..., µ1m2)

p ∼ Dirichlet(µ21, µ22, ..., µ2m1)

π3i(δi) ∝ δ
a1i−1
i e−b1iδi ;

π4k(αk) ∝ α
a2k−1
k e−b2kαk ; k = 1, 2, .., m1

π5(γi), π6(θk), π7(a), π8(k) ∝ 1; i = 1, 2, .., m2, ; k = 1, 2, .., m1

where µ1 = (µ11, µ12, ..., µ1m1),µ2 = (µ21, µ22, ..., µ2m2), (a1i, a2i); i = 1, 2, .., m2 and (b1j, b2j); j =
1, 2, .., m1 are the hyper-parameters. Since the cycle time parameters have a non-informative prior,
their estimates coincide with the ML estimates.

Now proceeding as in the case of Bayesian estimation of R(t) based on the finite mixture
of Weibull distribution discussed in the previous section we can easily obtain the conditional
marginal distributions π, p, δ, α, γ, and θ. The conditional posterior distributions of π, p, δ, α, γ,
and θ are:

π ∼ Dirichlet(µ11 + n11, µ12 + n12, ..., µ1m2 + n1m2) (61)

p ∼ Dirichlet(µ21 + n21, µ22 + n22, ..., µ2m1 + n2m1) (62)

π3i(δi|γ, δ∗i , x, zij) ∝ δ
a1i+n1i−1
i e−

(
δi ∑n

j=1

(
zijx

γi
j

)
+b1iδi

) n

∏
j=1

[
1 + e−δix

γi
j

]−2zij

i = 1, 2, .., m2. (63)

π4k(αk|θ, α∗k , y, zkj) ∝ α
a2k+n2k−1
k e−

(
αk ∑m

j=1

(
zijy

θk
j

)
+b2kαk

) m

∏
j=1

[
1 + e−αky

θk
j

]−2zkj

k = 1, 2, .., m1. (64)
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π5i(γi|δ, γ∗
i , x, zij) ∝ γ

n1i
i

(
n

∏
j=1

x
zij
j

)γi−1

e−
(

δi ∑n
j=1

(
zijx

γi
j

)) n

∏
j=1

[
1 + e−δix

γi
j

]−2zij

:

i = 1, 2, .., m2. (65)

π6k(θk|α, θ∗k , y, zkj) ∝ θ
n2k
k

(
m

∏
j=1

y
zkj
k

)θk−1

e−
(

αk ∑m
j=1

(
zkjy

θk
k

)) m

∏
j=1

[
1 + e−αky

θk
k

]−2zij

:

k = 1, 2, .., m1. (66)

Where δ∗i = {δj, j = 1, 2, ..., i − 1, i + 1.., m2}, γ∗
i = {γj, j = 1, 2, ..., i − 1, i + 1.., m2}, α∗k = {αi, i =

1, 2, ..., k − 1, k + 1.., m1} and θ∗k = {θi, i = 1, 2, ..., k − 1, k + 1.., m1}.

Since the posterior distributions of αk, θk, δi, and γi cannot be reduced analytically to a well-known
distribution, as done in the previous section, we use the Markov chain Monte Carlo method
with Gibbs sampling under Metropolis-Hastings algorithm for computing Bayes estimates. We
fix the proposal density as the chi-square distribution. The Metropolis-Hastings algorithm
with chi-square proposal density is used for generating samples from (π, p, α, θ, δ, γ), where
π = (πi, i = 1, 2, .., m1), p = (pk, k = 1, 2, .., m1) α = {αk, k = 1, 2, .., m1}, θ = {θk, k = 1, 2, .., m1},
δ = {δi, i = 1, 2, .., m2} and γ = {γi, i = 1, 2, .., m1} is given as follows.

ALGORITHM − 2 :

Step1. Set the initial values (π0, p0, αo, θ0, δ0, γ0).
Step2.Generate zij values using sample x
Step3.Generate πt.
Step4. Using the proposal density g(δi) ∼ χ2

(x), where x is the d.f and choose x = δt−1
i . Generate

another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π3i(y)g(x)

π3i(x)g(y) accept y and set δt
i = y; otherwise set δt

i = x. Repeate the procedure and generate

δt
i , i = 1, 2, .., m2.

Step5. Using the proposal density g(γi) ∼ χ2
(x), where x is the d.f and choose x = γt−1

i Generate
another random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π5i(y)g(x)

π5i(x)g(y) accept y and set γt
i = y; otherwise set γt

i = x. Repeate the procedure and generate

βt
i , i = 1, 2, .., m2.

Step6.Generate zij values using sample y.
Step7.Generate pt.
Step8. Using the proposal density g(αk) ∼ χ2

(x), where x is the d.f and choose x = αt−1
k

Generate random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π4k(y)g(x)

π4k(x)g(y) accept y and set αt
k = y; otherwise set αt

k = x. Repeate the procedure and generate

αt
k, k = 1, 2, .., m1.

Step9. Using the proposal density g(θk) ∼ χ2
(x), where x is the d.f and choose x = θt−1

k
Generate random variable y from the chi-square density g. Generate u from Uniform(0,1). If
u < π6k(y)g(x)

π6k(x)g(y) accept y and set θt
k = y; otherwise set θt

k = x. Repeate the procedure and generate

θt
k, k = 1, 2, .., m1.

Step10 Compute R(t).
Step11 Increment t.

Table 4 provides the estimated values of R(t) by the Bayesian estimation method when the
stress and strength of the system follow a mixture of two power-transformed half-logistic distri-
butions with gamma cycle time. We assume that the mixture proportions π and p are known and
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the component parameters (α, θ, δ, γ) are unknown and are following gamma prior distributions.
Also, we assume that cycle time parameters a and k follow non-informative prior. Since the cycle
time parameters have a non-informative prior, their estimates coincide with the ML estimates.
The table shows Bayes estimates of the parameters (α, θ, δ, γ) and Bayes estimate of the reliability
function R(t) for different time values corresponding to various sets of hyperparameter values.
The table shows that R(t) decreases as time increases, as we expected.

Table 4: Bayesian Estimation of R(t) with PTHL mixture initial stress and strength

Cycle time Stress and Strength a0 x0 t R(t)
Parameters Estimated Parameters Estimated

G(0.5,1) a = 0.5110 Y0:0.3PTHL(0.2,5) α = (0.2942, 1.7069) 0.001 0.005 10 0.0184
k = 0.9955 +0.7PTHL(2,6) θ = (4.5235, 5.4221) 75 0.0185

X0: 0.3PTHL(1,3) δ = (1.8201, 2.2808) 150 0.0184
+0.7PTHL(2.2,4.5) γ = (6.1306, 4.6754) 200 0.0166

225 0.0090
G(0.5,1) a = 0.4759 Y0:0.6PTHL(2,6) α = (1.8055, 6.7181) 0.002 0.005 10 0.1851

k = 0.9559 +0.4PTHL(4,2) θ = (5.9235, 2.1754) 75 0.1864
X0:0.4PTHL(1,3) δ = (1.1301, 1.0738) 150 0.1858
+0.6PTHL(0.5,2) γ = (2.4231, 0.6529) 200 0.0907

225 0.0202
G(1,4) a = 0.9694 Y0:0.7PTHL(8,0.5) α = (0.6985, 3.4123) 0.001 0.005 10 0.2369

k = 3.9365 +0.3PTHL(0.5,2.5) θ = (1.8173, 4.9566) 75 0.2394
X0:0.2PTHL(4,0.5) δ = (0.5839, 0.2675) 125 0.2335
+0.8PTHL(5,0.2) γ = (2.2849, 1.6391) 140 0.1487

150 0.0589
G(1,4) a = 0.9674 Strength:0.6PTHL(1.5,5) α = (1.1917, 6.8528) 0.002 0.08 10 0.0400

k = 3.8930 +0.4PTHL(5,4) θ = (6.2016, 3.7667) 75 0.0404
Stress:0.5PTHL(2.4,6) δ = (1.92620.2490) 125 0.0394

+0.5PTHL(0.3,4) γ = (5.5248, 3.8446) 140 0.0251
150 0.0099

5. Conclusion

In this paper, we investigated the stress-strength reliability of a system. Here we considered
a scenario where the stress and strength of the system follow a finite mixture distribution with
gamma cycle time. Specifically, we examined the performance of the system under two types
of finite mixture models: a finite mixture of Weibull distribution and a finite mixture of power-
transformed half-logistic distribution. To estimate the reliability function R(t), we employed
two methods: maximum likelihood (ML) estimation using the expectation-maximization (EM)
algorithm and Bayesian estimation using the Markov Chain Monte Carlo (MCMC) method. We
computed the estimates of R(t) for different time points corresponding to various sets of parameter
values. Based on the graphs and tables presented in the paper, it can be observed that as time
increases, the reliability function R(t) decreases when the stress and strength of the system follow
a finite mixture of Weibull or power-transformed half-logistic distribution with gamma cycle time.
This suggests that the system becomes less reliable or more prone to failure as time progresses.
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