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Abstract 

Over-dispersed models are commonly utilized when the variation is more than what the model 
actually predicts. Since one of the reasons for over-dispersion is the large number of zeros, we 
employ zero-inflated models instead of more traditional ones to handle this observed occurrence. We 
present a zero-inflated version of a discrete distribution that was developed in 2021 in our research. 
Significant statistical characteristics of the suggested model have been identified, such as moments, 
the over-dispersion feature, generating functions, and related measures, among others. We have 
carried the parametric estimation using the maximum likelihood estimate. Maximum likelihood 
estimates are checked for usefulness in a simulation exercise. We evaluated the applicability of our 
developed model using three real-world data sets,  

Keywords: Over-dispersion, Zero-inflation, Discrete distribution, Simulation, 
Goodness-of-fit, Testing of hypothesis. 

I. Introduction

To perform statistical analysis, statisticians use one of several methods, and these methods are the 
building blocks of statistical models. Mathematical representations of observable data are provided 
by statistical models. We choose statistical modeling of data for the purpose of understanding a 
wide range of random events across disciplines. Its applications are not limited to mathematical 
and statistical studies; rather, they permeate a wide variety of fields of study. Count data plays an 
important role in almost every scientific study, no matter how big or small. This data is used to 
draw inferences in relation to the population from which it is collected but, typically this data 
exhibits more variation than what is predicted by our hypothesized model. More precisely, this 
observable fact is called as over-dispersion (variance goes beyond mean). One cause of over-
dispersion in count data is the presence of many more zeros than predicted by a statistical model. 
This phenomenon of finding excessive number of zeros is referred to as zero-inflation, and in order 
to model such dilemma, we use zero-inflated models rather than the more often used standard 
models. 

Over-dispersion in count data due to zero-inflation is common, thus researchers are always 
developing new ideas and methods to shed light on this phenomenon. In order to deal with an 
excessive amount of zeros in count data, Lambert developed a new model called as zero-inflated 
Poisson (ZIP) regression model [7]. She used this model to investigate manufacturing flaws and 
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found that ZIP regression model is both simple and effective. Böhning argued that ZIP distribution 
is usually capable of easily dealing with the situation where there is an excessive quantity of zero 
counts [3]. To deal with count data containing an excessive number of zeros and ones, Melkersson 
& Olsson offered an improved version of the ZIP distribution, which he named as the zero-one 
inflated Poisson (ZOIP) distribution [9]. Yau et al. presented a mixed regression model of zero-
inflated Negative Binomial (ZINB) to examine pancreatic disorder Length of Stay (LOS) times that 
account for same-day discharges [17]. Gilthrope et al. took into account biological count data with 
an excessive quantity of zeros, and he sought to address variety of factors [5]. An overview of the 
field of statistical modeling of over-dispersed data was provided by discussing its antecedents, 
motivations, pioneering contributions, major milestones, and practical uses [16]. Zhang et al. made 
an effort to investigate the characteristics and patterns of ZOIP distribution [19]. In order to 
evaluate the capacity to incorporate zero-inflation and over-dispersion in count data, Pittman et al. 
evaluated a number of methods, including ZIP, ZINB, and Hurdle Poisson (HUP) regression 
model [10]. Tüzen et al. analyzed the implementation of count data models using simulated data, 
which allowed for a wide range of outliers and zero-inflation scenarios [14]. They considered 
Poisson, Negative-Binomial, ZIP, ZINB, HUP and Negative-Binomial Hurdle models to check the 
compatibility of these models in presence of outliers and excess zeros. Bodhisuwan & Kehler 
proposed a new distribution called the zero-inflated Negative-Binomial-Exponential (ZINB-E) 
distribution [2]. To address the issue of too many zeros in count data, Rivas & Campos introduced 
the zero-inflated Waring (ZIW) distribution [11]. If the Waring distribution can’t sufficiently 
characterize the behavior of the data, as is often the case when there is a large frequency of 
observed zeros, then the ZIW distribution is thought to be a better bit. Young, Roemmele & Shi 
evaluated a study that provided a snapshot of the current level of knowledge in the field of zero-
inflation [18]. Ahmad & Wani introduced a compound model for handling over-dispersed count 
data. They used four different data sets and compared the fit with several potential models of 
interest. The fitting results showed the flexibility of the devised model in handling over-dispersed 
count data [1]. One of the recent works in zero-inflation aspect of the count data is by Wani & 
Ahmad [15]. They put forward the zero-inflated version of Poisson-Akash distribution. Much 
advancement has been made in this field of statistical modeling, yet there is still a consistent need 
for new models to be created. These new models are driven by the regular emergence of 
unexpected patterns in count data. We intend to extend this contribution by a devising a new zero-
inflated model with a very clear-cut Probability function. 

2. Zero-Inflated Discrete Distribution

A discrete distribution (DD) was proposed by Jain et al. in 2021 by discretization of a continuous 
distribution [6]. If Z follows the DD, then the probability mass function (PMF) of the Discrete 
Distribution is given as follows 
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The Discrete distribution (1) is itself an over-dispersed model but it also suffers at times to handle 
the excessive number of zeros in count data. We have thus made an effort to put forward the zero-
inflated version of Discrete distribution. If X is a random variable following the Discrete 
distribution with parameter θ >1 and α (0< α <1) is the extra amount added to the proportion  of 
point zero (zero-inflated distribution), then the probability mass function (PMF) of zero-inflated 
Discrete distribution (ZIDD) can be written as follows 
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The Cumulative distribution function (CDF) of ZIDD can be expressed as 
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It can be seen from the plots of PMF given in Fig. 1 that the model has mode at point zero. 
Furthermore, it is positively skewed and the tail shows a rapid decrease as parameters take higher 
values. 

Fig. 1: Plots of Probability mass function of ZIDD for different choices of parameter values 

3. Statistical Properties

In this section, we have derived some vital statistical characteristics of the newly developed model. 

3.1 Generating Functions 

When dealing with discrete random variables, the Probability Generating Function (PGF) is 
important tool. Its major benefit is that it makes it straightforward for us to explain the distribution 
of X+Y when they are independent. The PGF of ZIDD can be obtained as 
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In equation (4), take t= et, that will yield the Moment Generating Function of ZIDD as 

follows 
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3.2 Moments and Related Characteristics 

The r th moment about origin (Raw Moment) of ZIDD is obtained by employing its PMF (2). It 
follows that  
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With PDD (X=x) and EDD (Xr) representing the PMF and the r th Raw Moment of the baseline model 
respectively. 
As a result, the mean and variance of ZIDD comes out to be as follows 
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Some of the statistical properties of our proposed model can be expressed by means of Raw and 
Central moments. These properties include Index of Dispersion (IOD), Coefficient of Variation 
(C.V), Coefficient of Skewness and Coefficient of Kurtosis.  
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From the plots of Coefficient of Skewness and Kurtosis given in Fig. 3, it can be noted that both of 
these increase monotonically for greater values of the parameter. Moreover, our proposed model 
possesses positive skewness and a leptokurtic shape. 
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Fig. 2: Plots of Coefficient of Variation, Skewness and Kurtosis for some values of parameters 

A significant characteristic enjoyed by our proposed model lies in the fact that it is always over-
dispersed i.e., variance is always going to surpass the mean. We have 
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The second term is obviously positive as θ >1 and α (0< α <1). This proves the over-dispersion 
property of ZIDD. The Index of Dispersion has also been plotted (see Fig. 3) for a choice of 
parameter values, which graphically demonstrates the over-dispersion of the model. 

Fig. 3: Index of Dispersion plots for various values of parameters 

4. Parametric Inference

The foundation for estimation is in actual fact clear-cut. Knowing the parameter put forwards 
information concerning the entire population when sampling is done from a population that is 
represented by a specific distribution. So, it makes sense to carry out the estimation of parameters. 
The maximum likelihood estimation (MLE) is more often used for the reason that it enjoys greater 
efficiency and improved numerical stability. MLE is a statistical technique for estimating the 
parameters of a probability distribution that is assumed given some observed data.  
The likelihood function of ZIDD can be defined as follows if x1, x2, . . . xn is the random sample of 
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In this study we have used firdistrplus in R-software to obtain the ML estimates [4]. 
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5. Simulation Study

A simulation study has been undertaken in this part to evaluate the finite sample performance of 
the ML estimates of ZIDD. We attempt the Monte Carlo Simulation study by employing the 
discrete inverse transform method. In order to calculate Average Values (AVs), Average Biases (ABs), 
Mean Square Errors (MSEs), Mean Relative Estimates (MRESs), Mean Relative Errors (MRERs), 
and Average Dispersion Indices (AVDIs), we considered four different values for parameter  and 
repeated the course of action N=1000 times starting from a small sample to large sample (n=25, 75, 
100, 300, 600). The results are provided in Table 1. As it can be seen from Table 1, the ML estimates 
are asymptotically unbiased and consistent. 

Table 1: Simulation results for maximum likelihood estimates of parameters of proposed model 

θ෠ αෝ

AVs ABs MSEs MRESs MRERs AVs ABs MSEs MRESs MRERs 
n Parameter Set 1: θ=1.5   α =0.4 
25 1.614 0.114 0.175 1.076 0.163 0.387 0.012 0.035 0.968 0.3903 
75 1.508 0.008 0.011 1.005 0.055 0.401 0.001 0.010 1.004 0.2049 
100 1.529 0.029 0.012 1.019 0.056 0.385 0.014 0.007 0.984 0.1713 
300 1.503 0.003 0.002 1.002 0.024 0.398 0.001 0.002 0.996 0.0876 
600 1.504 0.004 0.001 1.002 0.021 0.395 0.004 0.000 0.998 0.0213 
n Parameter Set 2: θ=1.8  α =0.4 
25 1.959 0.159 0.527 1.088 0.214 0.380 0.019 0.049 0.950 0.462 
75 1.856 0.056 0.046 1.031 0.094 0.396 0.003 0.018 0.992 0.263 
100 1.793 0.006 0.036 0.996 0.087 0.387 0.012 0.011 0.967 0.221 
300 1.809 0.009 0.009 1.005 0.039 0.396 0.003 0.003 0.991 0.114 
600 1.809 0.009 0.007 1.005 0.039 0.403 0.003 0.001 1.007 0.089 
n Parameter Set 3: θ=2.0  α =0.2 
25 2.238 0.238 0.574 1.110 0.235 0.172 0.027 0.034 0.862 0.819 
75 2.028 0.028 0.066 1.014 0.089 0.186 0.013 0.017 0.933 0.532 
100 2.022 0.022 0.064 1.011 0.090 0.205 0.005 0.015 1.027 0.528 
300 2.017 0.017 0.024 1.008 0.0621 0.188 0.011 0.007 0.943 0.329 
600 1.994 0.005 0.006 0.997 0.0333 0.209 0.009 0.002 1.049 0.186 
n Parameter Set 4: θ=2.5  α =0.3 
25 2.674 0.174 1.501 1.069 0.260 0.288 0.011 0.054 0.960 0.667 
75 2.495 0.044 0.204 0.998 0.157 0.306 0.006 0.038 1.023 0.565 
100 2.542 0.042 0.171 1.016 0.130 0.306 0.006 0.017 1.021 0.354 
300 2.565 0.035 0.083 1.026 0.095 0.296 0.003 0.012 0.988 0.317 
600 2.511 0.011 0.027 1.004 0.055 0.299 0.001 0.005 0.997 0.190 

6. Data Fitting

Real life datasets from different fields have been employed to test the compatibility of our 
proposed model in presence of over-dispersion caused by zero-inflation. In addition to this, we 
compared the fitting results from our proposed model with other statistical models of competing 
interest. The models with which we have compared our devised models include Poisson 
distribution (PD), zero-inflated Poisson distribution (ZIPD), zero-inflated Negative-Binomial 
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distribution (ZINBD), Discrete Weibull distribution (DWD) and Discrete distribution (DD). In 
order to estimate the parameters of each distribution, we used maximum likelihood estimation 
method. 

6.1 Data set 1 

This dataset stands for the observed number of households according to total number of migrants 
[13]. The data is expressed in Table 2 and the performance of fitting this data is summarized in 
Table 3. From the fitting results, it is obvious that our model performs better than other competing 
models of interest. The plots for observed an expected frequencies under different models given in 
Fig. 4 provides a clearer view of the fitting results.  

Table 2: Data set 1 
Number of Households 0 1 2 3 4 5 6 7 8 
Observed Frequency 242 82 38 17 11 7 3 2 0 

Table 3: Fitting results of Data set 1 

Model 2 d.f p-value L AIC BIC 

PD 118.64 3 0.0001 -555.060 1112.121 1116.117 
ZIPD 16.80 2 0.0002 -501.796 1007.592 1015.585 

ZINBD 3.29 2 0.1930 -492.597 991.195 1003.185 
DWD 1.57 4 0.8141 -492.362 988.724 996.717 
DD 9.41 4 0.0516 -495.785 993.571 997.567 

ZIDD 1.51 4 0.8248 -492.030 988.060 996.053 

Fig. 4: Observed and expected frequencies plots for PD, ZIPD, ZINBD, DWD, DD, and ZIDD for Data set 1 
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6.2 Data set 2 

This dataset presents the number of spots in southern beetle [8]. The data is presented in Table 4 
and the fitting results are given in Table 5. The performance measures indicate that our model 
suffers minimum loss compared to other models and the value of Chi-square is comparatively 
smaller. Moreover, the plots for observed and expected PMFs are given in Fig. 5. 

Table 4: Data set 2
Number of 

Spots 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Observed 

Frequency 
1169 144 92 54 29 18 10 12 6 9 3 2 0 0 1 0 0 0 0 1 

Table 5: Fitting results of Data set 2

Model 2 d.f p-value L AIC BIC 

PD 1361.80 4 0.0001 -2291.139 4584.277 4589.623 

ZIPD 184.65 5 0.0001 -1648.989 3301.978 3312.670 

ZINBD 9.94 6 0.1272 -1554.612 3115.223 3131.261 

DWD 14.30 7 0.0460 -1560.532 3125.064 3135.756 

DD 432.62 5 0.0001 -1757.427 3516.855 3522.201 

ZIDD 7.96 7 0.3361 -1554.001 3112.002 3122.694 

Fig. 5: Plots of observed and expected PMFs under PD, ZIPD, ZINBD, DWD, DD, and ZIDD for Data set 2 
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This dataset represents the number of units of Brand K of Chatfield bought by numbers of 
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the fitting results of this data set. The results from the fitting table prove that the devised model 
shows better fitting compared to other competing models. In addition to this, the expected 
frequencies are closer to observed frequencies in case of our model (see Fig. 6). 

Table 6: Data set 3

Brand K 0 1 2 3 4 5 6 7 8 9 
Number of Consumers 1671 43 19 9 2 3 1 0 0 2 

Table 7: Fitting results of data set 3

Model 2 d.f p-value L AIC BIC 

PD 221.99 1 0.0001 -612.908 1227.8171 1233.2840 
ZIPD 6.28 2 0.0433 -439.794 883.5894 894.5241 

ZINBD 1.40 1 0.0942 -429.660 865.3218 881.7239 
DWD 2.48 2 0.2893 -429.407 862.8156 873.7504 

DD 118.40 1 0.0001 -537.381 1076.763 1082.230 
ZIDD 0.48 2 0.7866 -429.334 862.6682 873.6030 

Fig. 6: Observed and expected frequency plots for Data set 3 under PD, ZIPD, ZINBD, DWD, DD, and ZIDD 

7. Testing of Hypothesis

In order to test the significance of the zero-inflation parameter of our proposed model, we take on 
different test statistics to test the null hypothesis given as follows 

H0 : α =0 vs. the alternative hypothesis H1 : α >0 

7.1 Likelihood Ratio test 

The Likelihood ratio test (LRT) evaluates the ratio of two log-likelihood functions in order to test 
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the null hypothesis H0 against an alternative hypothesis H1. In case of LRT, the test statistic is 

,)]ˆ,ˆ()ˆ([2  LLLRT 

where )ˆ(L and )ˆ,ˆ( L  are the maximum log-likelihood under DD and ZIDD respectively. The 

LRT test statistic is asymptotically distributed as Chi-square with one degree of freedom. The LRT 
for all the three datasets is respectively given as 

LRT1=7.51, LRT2=406.852,  LRT3=216.094. 

7.2 Wald test 

This test is used to determine the presence or absence of an effect. In this section, we will construct 
a Wald test for the effect of zero-inflation parameter in our proposed model. The test statistic 
under Wald test is given by 

,
)ˆ(

ˆ 2




 Var
Wald 

where )ˆ(Var represents the pertinent diagonal component of the Fisher information matrix 

calculated at  ˆ  and  ˆ . The Wald test statistic is asymptotically distributed as Chi-square 
with one degree of freedom. The Wald test statistic value for all the three datasets can be 
correspondingly given as 

Wald1=9.53,  Wald2=1014.12,  Wald3=517.44. 

On comparing the LRT and Wald test values from all data sets with the critical value (3.84), we 
reject the null hypothesis in case of all the three tests and draw the conclusion that the zero-
inflation parameter in our proposed model is of significant importance. 

8. Conclusion

In this research we have made an effort to present a new zero-inflated count data model. It was 
investigated how the probability mass function behaves for varied values of parameters. We 
discussed some important statistical properties of our proposed model. Simulation study was 
carried out to test the performance of maximum likelihood estimates and the results were pretty 
much significant. For the testing the compatibility of our proposed model, we tested the proposed 
distribution on real datasets using different performance metrics like Chi-square Goodness-of-fit, 
AIC, BIC etc. Moreover, we compared the fitting results of our devised model with other 
competing models. The results verified that our proposed model is adaptable and can be 
considered for handling over-dispersion in count data caused by zero-inflation. Finally, we carried 
out the Likelihood Ratio test and the Wald test on all datasets to see the significance of zero-
inflation parameter and the results were significant. 
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