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Abstract

The retrial queueing inventory system with working vacation, flush out, balking, breakdown, and repair,
as well as a constant retrial rate and orbital client collision are all examined in this study. We made
the assumption that customers arrive through a Markovian arrival process and that they would get
phase-type services from the server. The inventory is replenished using a (s, S) and (s, Q) strategy, and it
is expected that the replenishment time will follow an exponential distribution. If there are zero inventory
items, no customers in the orbit, or both, the server will go into working vacation mode. When a customer
retries an orbit while the server is serving arriving customers, the orbital customer may collide with the
arriving customer during that retry, in which case both of them will be shifted back into orbit; otherwise,
the orbital customer may avoid colliding with the arriving customer and may rejoin the orbit for another
retry. The number of customers in the orbit and the inventory level may be found in the steady state.
A cost analysis is produced along with the establishment of various important performance measures.
Moreover, some numerical examples are provided to clarify our mathematical notion.

Keywords: Marko vian arrival process, PH-distribution, working vacation, collision of orbital
customers, flus out.
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1. INTRODUCTION

Retrial queues occur when initial consumers identify all servers and/or waiting space full. They
may choose to try again after a random length of time or abandon the system per manently . RQ
models have been thoroughly resear ched in a significan number of papers. Artalejo et al. [3]
introduced the concept of retrial requests for inventory. They assumed that demand points are
Poisson processes, wher eas lead and retrial time points are exponential. They thought that the
orbit’s size is limitless. Manuel et al.[[8] proposed a retrial inventory system that includes a service
facility . They assumed clients come according to a Marko vian arrival process (MAP), that service
time for each client follows a phase-type distribution (PH), that lead time, lifetime of each item,
and retrial times follow an exponential distribution.

Customers arrive at the single server retrial queueing-inv entory system under consideration
in this study using a Marko vian Arriv al Process, also known as the flexibl point process. The
MAP tries to accomplish significan generalisation of the Poisson process while keeping it
tractable. Many real-w orld applications do not requir e a renewal procedur e befor e arriving. As
a result, the most useful tool for simulating renewal and non-renewal appearance situations is
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the MAP. We can have realistic arrival patter ns in this model because of the MAP, which also
accounts for correlations and dependencies betw een arrivals. Further more, the continuous-time
case is necessar y, even though the MAP is define for both discrete and continuous periods.
See Chakra varthy [5] and Neuts [10] for further details on the MAP and its properties.

The notion of server vacation was firs presented in the retry inventory system by Sivakumar[ [17].
For lead, inter-trial, inter-demand, and server vacation durati ons, he made the assumption that
the distributions would be exponential. He also belie ved that these incidents are unrelated to one
another . He instituted a programme of repeated vacations. A two-commodity substitutable retrial
inventory system with a shared ordering strategy was examined by Sivakumar [15]. Sivakumar
[16] examined a system of perishable inventory that had requests for retrials. The exponentially
distributed lead periods for orders, the finit source of requests, the exponentially distributed life
durations for stored objects, and the exponentially distributed inter-retrial intervals have all been
assumed by the author. A two-commodity stochastic inventory technique with a complement
item was proposed by Jeganathan et al. [11] in the context of a traditional retrial facility. When
the primar y item is out of supply, each new client will immediately enter an orbit of infinit
capacity .

A M/ M/ 1 retrial queue under (s,S) policy with a storage system was examined by Shajin
and Krishnamoorthy [14]. The authors use the assumption that when the server is inactiv e, the
exter nal arrivals immediately enter an orbit and that the time betw een two successiv e retrials
has an exponential distribution. Only the client at the head of the orbit is allowed to reach
the server. In contrast to the traditional method of emplo ying just one vendor, Chakra varthy
and Hayat [6]] established the idea of multiple vendors responsible for replacing inventories.
This way, replenishment happens via two vendors. The authors used the MAM to analyse the
model in steady-state under the assumptions of a two-vendor system, wher e the lead times
are exponentially distributed with a parameter that depends on the vendor, the demands occur
according to a MAP, and the service times are PH. There are also interesting numerical examples
given, such as a comparison of the systems with one and two vendors.

A queueing inventory model in which a new customer comes and waits for service when
the server is unavailable due to vacation was examined by Y Zhang et al. [19]. The model
included the server’s multiple vacations and dissatisfie  clients. They were able to extract
some significan perfor mance metrics and fin the matrix geometric solution of the steady-state
probability by using the truncated appr oximation approach. Using numerical analysis, the impact
of the probability and impatience rate on a few perfor mance metrics was examined. Using the
genetic algorithm, the authors calculated the best possible policy and cost and arrived at the ideal
service rate. Ayyappan et al. [4]] studied the notions of working breakdo wn, collision, vacation,
and reneging in a non-preemptiv e priority retrial queueing system with immediate feedback.
They applied the supplementar y variable technique to their model and also provided particular
cases.

Service interruptions were originally implemented in an inventory model by Krishnamoorthy
et al. [7]. They also belie ved that orders are processed instantly and that there is no limit to the
amount of disruptions that can happen during a single service. Ushakumari [18] examined a (s, S)
inventory system with recurrent demands for unfulfille requests from the orbit and a random
lead time. In their paper [l], Amirthakodi and Sivakumar spoke about retrial inventory queueing
with a single server and customer feedback, wher e the orbit size is finite. Th retrial queueing
model with exponential service time, Poisson arrival, and delayed feedback was examined by
Meliko v et al. [9]. They used both (s,S) and (s, Q) replenishment policies for their study. In their
analysis of an M/ M/ 1/ N queuing system with reverse balking, Kumar et al. [13] incor porate
the idea of reverse reneging. Customers’ input is used by Kumar and Som [?] in an M/ M/ 1/ N
queuing system with reverse balking, reverse reneging, and retention of reneged customers. They
calculate the system size stationar y probability .
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2. MODEL DESCRIPTION

o We examine a single-ser ver retrial queueing inventory model in which customers arrive
at the system as represented by MAP, with Dy and D; matrices as its dimension m. The
service times, denoted as (v, U) of order 7, are assumed to follow the PH-distribution with
U + Ue = 0.

o If the server is available, he serves the customer right away upon their arrival. If not,
the customer must enter the orbit of infinit . Every customer retries from the orbit at a
constant rate, despite the size of the orbit. The inter-retrial times follow an exponential
distribution with parameter J.

o If the orbit is empty, the inventory is zero, or both, then the server goes on vacation
after serving the customer . Additionally , the vacation periods are expected to follow a
n-parameter exponential distribution. In the event that a customer arrives during vacation
time, the server will start charging the customer less for services than usual. Additionally , it
is expected that the service times throughout the vacation period follow the PH distribution,
denoted as (1, 0U), with 0 < 0 < 1. If the server examines the customer who is waiting in
the system after completing this vacation, he will begin a normal busy period. Other wise,
he is dor mant.

o The incoming customer may enter the orbit for a retry with probability g; or balk the system
with probability p, during the service deliv ery, repair, and no inventory items, ensuring
that p; +q, = 1.

o When a customer retries an orbit while the server is servicing incoming customers, there is
a chance that the orbital customer and the incoming customer will collide and be shifted to
the orbit with a probability of g,; if not, the orbital customer may not collide and will rejoin
the orbit for a subsequent retry with a probability of p,, such that p, + 4, = L.

o During regular busy periods, the server may get breakdo wn. As a result, the customer
getting service at the moment must enter the orbit of limitless capacity . The server goes into
idle mode when the repair operation is complete d. The breakdo wn times are exponentially
distributed with parameter 1, wher eas the repair times are PH-distributed with rate (a,T).

o All the customers in the orbit are flushe out periodicall y and the flus out times follow
exponential distribution with parameter . The schematic pictur e of this model is provided
in Figur e

o ® - Kronecker product of two matrices of different dimensions. @ - Kronecker sum of two
matrices of different dimensions. e - Column vector has an suitable size with each of its
entries as 1. 0 - It denotes zero matrices in the suitable order.

3. ANALYSIS
In the following section, we establish the queueing-inv entory system’s transition rate matrix.
Assume that N(f),J(t),I(t),R(t),S(t), A(t) describe the total customers in the orbit, status of

server, stock level, repair phases, service phases, arrival phases, respectiv ely.

server is idle in normal service mode,

server is busy in normal service mode,

0
1
2, server is idle in WV mode,

J(t) =

, server is busy in WV mode,

3
4, server is repair mode.

Consider X(t) = {N(t),J(t),I(t),R(t),S(t), A(t)} is a CTMC with state space

@ =¢(0) J o). 1

wher e
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Figure 1: Schematic representation

{(0,0,up,ug) : 0<uy <8, 1 <uy <m}

U{(0, Lupus,ug): 1<u; <SS, 1<uz<n, 1<u <m}
U{(0,2,up,uy): 0<u; <S5, 1 <uy <m}

U{(0,3, up,us3,uy): 1<u; <S, 1<u;<n, 1<uy <m}
U{(0,4,up,up,ug): 1<u; <S,1<uy<I,1<uy <m}

{(i,0,up,ug) : 0<u; <S5, 1 <uy <m}

U{( Lupus,ug): 1<u; <S,1<uz<mn, 1<u <m}
U{(,2up,uy): 0<u; <S5, 1<uy <m}
U{(,3upusuy): 1<u; <S, 1<u;<n, 1<uy <m}
U{(, 4 upupuy): 1<u; <S5, 1<u, <, 1<uy <m}

Construction of the QBD process for Model 1

The generator matrix of the Marko v chain under (s, S) policy is given by:

_A()() AO 1 0 0 0 0 T
Ay B E 0 0 0
A E F F 0 0
|A o B F F 0
Q=14 0o o E B K
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The entries in the block matrices of Q are define as follows,

11 2
Ay A 0 0
0 AR 4y o
Aw = A% 0 Ay Ay
42 43 44
051 AOO AOO AOO 955
A0 0 0 A%

o o o

wher e ~ _
CC 0 0 ... 0 0 ... 0 G
0 GG 0 ... 0 0 ... 0 G
0 0 C3 ... 0 0 ... 0 G
Ay=10 0 0 ... G 0 ... 0 G,
0 0 0 0 C4 0 0
0 0 0 0 0 C, 0
(0 0 o0 0 0 0 Cy
[Cs 0 o 0 0 0 G
0 Cs 0 0 0 0 Cs
0 0 Cs 0 0 0 Cs
AR = 6 6 6 . C 0 0 c
00 — e 5 61 >
0 0 0 0 C; 0 0
0 0 0 0 0 C, 0
(0 0 o0 0 0 0 G

wher e C1 = (DO + PlDl) — ,Blm, C2 = ‘Blm, C3 = D() - ,BIm, C4 = DQ,
CS =Uo (DO + plDl) — (lp+ﬁ)1nm> C6 = ,Blnms C7 =U® (DO +P1D1) - l/JInm-

0
AIZ — ,
00 |:IS®’)/®D1:|

([Cs 0 0 ... 0 0 ... 0 G

0 Co O ... 0 0 ... 0 G

0 0 Cp ... 0 0 ... 0 G
A=10 0 0 ... Co 0 ... 0 GCof,

0 0 0 ... 0 Cy ... 0 0

0 0 0 ... 0 0 .. C; 0O

0o 0 0o ... 0 0 ... 0 Cy]

wher e Cg = (Do + p1D1) — (7 + B) Lm, Co = Blm, Cro = Do — (17 + B) L, C11 = Do — L.
AR = Ig @l AL = I 20U @ Ly,
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(C, 0 0 ... 0 0 ... 0 Cy]
0 C, 0 ... 0 0 ... 0 Cj
0 0 Cyp ... 0 0 ... 0 Cy
0 . . . . . . . . .
Aggz[ },Agg: 0 0 0 ... Cp 0 ... 0 C;f,
Is@y@D 0 0 0 ... 0 Cy4 ... 0 0
0 0 0 ... 0 0 .. Cu4u O
I 0 0 ... 0 0 .. 0 Cy
wher (S CIZ = 9LI @ (DO + PlDl) - (7’] + ,B_)Inm, C13 = lBInm; C14 = 9u @ (D() + PIDI) — 1’]Ir£m
Cs 0 0 ... 0 0 ... 0 Cy
0 Cs 0 ... 0 0 ... 0 Cp
0 0 Cs ... 0 0 ... 0 Cp
Al =00 LoT®IL,),A3=0 0 0 ... Cs 0 ... 0 Cigl
0 0 0 0 Cy 0 o0
0 0 0 ... 0 0 ... C7; O
|0 0 o0 ... 0 0 ... 0 Cy]
wher e C;s = T ® (Do + p1D1) — B> Ci6 = Blim» Co7 = T @ (Do + p1Dy).
Al 0 0 0 0
0 A2 0 0 A»

D; 0 D, 0
A(l)% = |:q10 1 0:|, A%% = IS ® In ®¢11D1, A(Z)i’ — IS ®en“®lp1m, A(3):;> — |:q10 1 O:|’

A=l @ L ®@qDy, Af} = Is® [ ®q,Dy,

Al AZ 9 0 0
A% 0 0 0 0
Ap=10 0 A} Aj; 0|,
0 0 AP o0 o0
0 0 0 0 A
wher e
0
AL = g1 ® 0l AZ = LS@W@LJ, A= [0 Is®en®0hy] A = Isy © 0T,

0
A — Lsmmlm},,qg S [0 Is®en®oly]s AS = Ig © 0Ty

F'' F2 0 0 0
F' F2 FE 0 0
F=|F'" o F?* F* o],
0 F? FP F* o0
F' 0 o0 o0 F®
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0

0 b
Cos
Cy
Cy

Cas
0

0

Caq |

Cs 0 0 0 o0 0 Cp]
0 Cyp O 0 0 0 Cyp
0 0 GCy 0 o0 0 Cp
wher e =10 o0 0 Cp O 0 Cyp
0 0 0 0 Cy 0 0
0 0 0 0 0 C,y O
L0 0 0 0 0 0 Cyj
wher e Clg = (DO + plDl) — (U'+ ,B)Im: C19 = ,Blm) Czo = DO — (5 + 0'+‘B)Im,
0 0 0
_ _ 12 _ 21
Co1 = Do = (0+0) - Fy 15®7®D1]’ 1 0 I, 0U'®I,
[C,, 0 0 ... 0 0 0
0 Cp O 0 0 0
0 0 Cyp 0 0 0
0 : : : : : :
. {u ?Im g},aﬂ: 0o 0 o Cp 0 0
0 0 0 0 Cyu 0
0 0 0 0 0 Cy
0 0 0 0 0 0
where C;p = U ® (Dg + p1D1) + [(920 — ) — (¥ + 0 + B)] Lnm> Caz = BLum»
Cys = U@ (Do + p1D1) + [(920 — 9) - (¢ + ) Ium, F' = Isyy @ Ly,
Cys O 0 0 0
0 Cy 0 0 0
0 0 Cy 0 0
AT P - I S
§ETE M 0 0 o0 0 Cy
0 0 0 0 0
0 0 0 0 0

0 Cy

0 Cy

0 Gyl

0 0
Cos 0

0 Cy

wher e C25 = (D() +P1D1) — (0'+7’]+,B)Im, C26 = ,BIm, C27 = D() — (0""5"‘77 +‘B)Im,

ng = DO — (0'+§+71)Im, F{tz = IS+1 ®771nm> FIB = [Is®9ll0®1m 0],

C29 0

0 C29
0 0
F4=10 0
0 0
0 0
0 0

0 0 0 0 Cy

0 0 0 0 Cs
Cyo 0 0 0 Cso

0 Cpo 0 0 GCal

0 0 Cy 0 0

0 0 0 Cy 0

0 0 0 0 Cy|

wher e C29 =60U® (Do :F plDl) + [(%5 - 5) — (0'+ n + ﬁ)]lnm, C30 = ‘BInm,
C31 =0U @ (Do + p1Dy) + [(920 — 6) — (0 + )] L.
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C, 0 0 0 o0 0 Cs]
0 Cx 0 0 0 0 Cs
0 0 C32 0 0 0 C33
F'=[0 i@T°QLu,F°=|10 0 0 ... Cp 0 ... 0 GCsul,
0 0 0 0 Cy 0 0
0 0 0 ... 0 0 .. Cy O
|0 0 0 ... 0 0 ... 0 Cs]

wher e C32 = TEB (DO + PIDI) — (0+,B)IZM) C33 = ,Bllm’ C34 = T@ (DQ + PlDl) —U'Ilm.

' 0o 0 0 o0
' B> 0o o0 FP
FE=|0 0 FE* 0 0
0 0 F° F* 0
0 0 0 o0 FE°

>

D; 0
FOU = [17101 O}’ Fgl = [0 Is®en®p2(5lm], ng = Is® I, ®q,Dy, ng = Is ®ena @ Py,

D, 0
Fg3:{ql : 0}3;*3:[0 Is ® en @ p2dln], Fy* = Is® Iy @ 1 Dy, Fg® = Is @ [ @ q1 Dy

0
0 £ 0 0 0
0 0 0 0 O
E=|0 0 0 FE* of,
0 0 0 0 O
0 0 0 0 O
0 0
12 _ 34 __
wher e £ —[15®57®1m}’5 —Lsmy@zm]’
A0 0 0 0
A 0 0 0 O
A=|10 0 A*® 0o o |,
0 0 A® 0 0
0 0 0 0 A%

where AM = I, @0ly, A = [0 Is®ey @0y, AP =Isp @ 0ly,
AP = [0 Ig ®€n®0'1m], A?g = [0 Is ®€]®01m]. A = Is ® oy,

Stability condition for Model I

To discuss the stability condition, we firs consider the generator matrix F = Fy+ F, + F,. If

X = (X0s X15 X25 X3> X4)= (X005 X015 - - - » X0s> X0s+15 - - > X085 X115 X125 - - - » X165 X1s415 - - - > X155 X205
X215+ 5 X255 X25+15 -+ > X285 X315 X325+« + 5 X35> X3s+15 - +> X35> X41> X425 -+ +> Xds> Xds41>++ 5+ -+ >X45)-

The vector ) represents the invariant vector of matrix F. Consequently , we have the relations
xF = 0and xe = 1. For the Marko v process with a QBD structur e to exhibit stability , our model
must satisfy the condition xFye < xFe. This condition is both necessar y and sufficien for the
stability of the queueing model under study and reduces to the inequality A < p.
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3.2. QBD process for Model II

In accordance with the assumptions outlined in the "Model Description” section, we will now
examine Model II, while solely modifying the ordering policy from (s,S) to (s, Q). The generator
matrix of the process for the (s, Q) policy takes on the following form:

A Ay 0 0
Ao Fl F 0

oS o o

A 0 F B F
5}

Jdoooo

©
|
S
=)
<)
g

The entries in the block matrices of Q are define as follows,

- I
b 00 00
A= |43 0 Ay AR o

0 Ay Ag Ay 0

0 0 o0 A}
0

C

AG 0
C, 0 0 0 0 G, 0 0]
0 C 0 0 0 0 G 0 0
0 0 G 0 0 0 0 0 0
0 0 0 C; 0 0 0 0 G
) 0 0 0 0 G 0 0 0 0
Al = . ,
0 0 0 0 0 C, 0 0 0
0 0 0 0 0 0 G 0 0
0 0 0 0 0 0 0 C, 0
(0 0 o 0 0 0 0 0 G
0 ~ )
2 23 __ 0 31
AR Ls oye DJ, AB =I5 @U@ Iy, A3} =I5y @1l
Cs 0 0 ... 0 0 ... C¢ 0 ... 0 0]
0 C 0 ... 0 0 ... 0 Cs ... 0 0
0 0 C ... 0 0 ... 0 O ... 0 O
0 0 0 Cs 0 0 0 0 G
) 0 0 0 0 G 0 0 0 0
A% = : ’
0 0 0 0 0 C, 0 0 0
0 0 0 0 0 0 G 0 0
0 0 0 0 0 0 0 C, 0
(0 0 o 0 0 0 0 0 G
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Cs 0 0 0 0 Co 0 0 0]
0 Cy 0 0 0 0 Co 0 0
0 0 Cyp 0 0 0 0 0 0
0 0 0 Cpo 0 0 0 0 G
) 0 0 0 0 Cp 0 0 0 o0
A33 —
00 : : ’
0 0 0 0 0 C, 0 0 0
0 0 o0 0 o 0 Cy 0 o0
0o 0 0 .. 0 0 ... 0 O0 .. Cy 0
o o o ... 0 O .. 0O O .. 0 Cy]
. 0 _ . .
A% = Ls ®7® DJ’ A = Ist1 @l Ag) = Is @ OU° @ L, Ay = [0 Is @ T @ L],
C, 0 0 ... 0 0 ... Cs 0 ... 0 0]
0 C, 0 ... 0 0 .. 0 Cp 0 o
0 0 Cp, ... 0 0 ... 0 0 ... 0 0O
0 0 0 Coy 0 0 0 0 Cis
) 0 0 0 ... 0 Cy4 ... 0 0 ... 0 0
A44 —
00 : : : - : : : : : : : I
0 0 0 0 0 Cay O 0 0
0 0 o0 0 o 0 Cu 0 o0
0 0 0 0 o 0 o0 Cay O
0o 0 o 0 o 0 o 0 Cyu
[Cis 0 0 0 o 0 Ci]
Cis 0 0 0 0 Cu
0 0 C15 0 0 0 C16
Ag=10 0 o0 Cis 0 0 Cil,
0 0 0 0 Cyp 0 o0
0 0 0 0 o0 Cy, O
0 0 o0 0 0 0 Cp
F'F2 0 o0 o0
Flzl plzz F123 0 0
F = 15131 0 F133 15134 0|,
0 p{u F{B Ff“ 0
' 0o o o0 F°

wher e
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lf12

F31

42
Fl

0
L |:IS®7®D1:|
1 = Isi1 @ nly, F134

Cis 0 0 0 0
0 Cyp O 0 0
0 0 Cy 0 0
0 0 0 Cxp O
) 0 0 0 0 Cy
' = . .
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
(0 o0 o 0 0

21

> 71

_[o 0 0
T L, oU'®L, 0

0
o Ls®'7®D1]’

Chn 0 0 0 0

0 Cpn 0 0 0

0 0 Cxn 0 0

0 0 0 Cp 0

o 0 0 ? 0 C'24
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

L0 o0 o 0 0

[Cys 0 0 0 0

0 Cy 0 0 0

0 0 Cy 0 0

0 0 0 Cy 0

o 0 0 0 0 Cux
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(0 o0 o 0 0

= Isy1 @ lym, F;B = [Is ®oU° ® I,
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Ul ® Iy,

0 0
0 0
0 0
0 Cyp
0 0
0 0
0 0
Cy O
0 0 ]
0 0
0 0
0 0
0 0
0 0
Coy 0
0 0]
0 0
0 0
0 0
0 0
0 0
Cog 0
0 Cy
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[Cye 0 0 0 0 Cyp O 0 0]
0 Cy O 0 0 0 Gy 0 0
0 0 Cy 0 0 0 0 0 0
0 0 0 Cyo 0 0 0 0 Gy
3 0 0 0 0 Gy 0 0 0 0
F;M == . . 5
0 0 0 0 0 Cy O 0 0
0 0 0 0 0 0 G5 0 0
0 0 0 0 0 0 0 Cy O
| 0 0 0 0 0 0 0 0 Cy

F'=10 LT ® Iy,

Cy, 0 0 0 0 Ci; 0 0 0
0 C;u O 0 0 0 Cs3 0 0
0 0 GCsip 0 o 0 0 0 0
0 0 0 C32 0 0 0 0 C33
. 0 0 0 0 Cy 0 0 0 0
FSS —
1 . . >
0 0 0 0 0 Cy 0 0 0
0 0 0 0 o 0 Ci 0 0
0 0 0o ... 0 0o ... 0 0 Cy O
0 0 0o ... 0 0o ... 0 0o ... 0 Ciq]

Stability condition for Model II

To discuss the stability condition, we firs consider the generator matrix F = Fy + F, + F,. If

X = (X0>X1>X2>X3:X4):(X00’X01’-~-’XOS)XOS+1’--->X0Q’-~-)XOS:X11)X12>-~-’X15’X15+1)~-->X1Q---7
X185 X205 X215+« > X255 X25+1> - - -5 X2Q> + + +> X255 X315 X325+ - - > X35> X35+41>- - -5 X3Q>+++> X35> X41> X425+ - - >
Xass Xas+1s---» X4Q» - - -» Xas). Considering the QBD structur e of the Markov process, stability
exists in our model if it satisfie the condition xFye < xFe. This condition is both necessar y and
sufficien for the stability of this queueing model under study, and it reduces to A < p.

3.3. The stationar y probability vector

Let X be the stationar y probability vector of the infintesima generator Q of the process {X(t):
t > 0}. The subdivision of X = (xg, X1, X2,...), wher e xq is of dimension 2(S+ 1)m + 2Snm and
X1, X3, ... are of dimension 2(S 4 1)m + 2Snm + Slm. As X is a vector satisfie the relation XQ =0
and Xe = 1. The probability vector X follows a matrix geometric structur e under the steady state
is

xj=x R j>2 (2)
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wher e R is the quadratic equation’s lowest non-negativ e solution R2*F, + RF, + F, = 0 and the
vector Xxp,x; are obtained with the help of succeeding equations:

XgAoo + X1 A1 + ) XA =0, (3)
i—2

xoAo1 + x1[Fi + RE] =0, (4)

subject to a condition normalization

X0€2(S+1)m+28nm T X1 [I— R]_lez(5+1)m+zsnm+51m =L (5)

The rate matrix R can be computed with the help of the following iteration formula which has
been suggested by Neuts [10] R(n+ 1) = —FF, ' — R*(n)B,F;' for n > 0 where R(0) = 0.
Since F° Yand (Fy + R,F,) are positiv e, the rate matrix R will converge and so the entries of R
will increase monotonically in the successiv e iterations. Iteration may be terminated when the
condition max; j[R;j(n+ 1) — R;j(n)] < e is attained. Here, e denotes the degr ee of accuracy and
R(n) indicates the value of the rate matrix at the n-th iteration.

4. SYSTEM CHARACTERISTICS

« Probability that the server is idle in regular process

S
PINM - Z:io Eul:O 2214:1 xi0ulu4~
« Probability that the server is idle in working vacation process

S
Prwy = Zfio Zulzo 2214:1 Xiduquy-
o Probability that the server is busy in regular process

__ yoo S n m
PBNM - 21:0 Zul:l uz3=1 Zu4:1 xi1u1u3u4-
o Probability that the server is busy in working vacation

_ S
PBWV - Z?io Eul:1 233:1 221:1 xi3u11¢3u4~
o Probability that the server is breakdo wn

__ ™ S 1 m .
Ppp = Zi:1 Zulzl Zuzzl Zu4:1 Xiduquyuy-
o Expected number of customers in the orbit
Eorpit = L2y ixie.
o Probability that the server is busy

Ppusy = Ppnm + Pewv-
o Expected number of customers in the system

Esystem = Eorpit + PBusy-
o Expected number of items in the inventory level

S S
EIL = E;}io Z[,{l:l 2214:1 ulxi0u1u4 + Z?io Eulzl 223:1 2214:1 ulxi1u1u3u4
oo S m o S n m
+ 21:0 Zul:l Zu4:1 ulxi2u1u4 + Zi:() Zulzl Zu3:1 Zu4:1 ulxi3lu1u2u3u4

) S 1 m .
+ 21:1 2111:1 Zuzzl Zu4:1 Ut Xigu uyuy-
o Expected reorder rate

ER = Y520 Litsm1 Laym1 Xit (s 1)usug (U0 @ Im)e + 020 Yot 1 T 1 Xia(s-1 gy (OU° @ I e
o The effectiv e retrial rate

S S
A= 52;11 Zulzl Zum4:1 XiOuyu, + 521911 Zu1:1 2214:1 Xiduquy

5. CoOST ANALYSIS

The total cost for our model is given below, with the cost elements (per unit time) related
to various system measur es.
TC = CwEsystem +cpEqL +csER

wher e
o TC: Total cost (per unit time)
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 cj: The inventory holding cost (per unit time)
o Cyp: Waiting cost of a customer in the system (per unit time)
e Cs: Setup cost (per order)

6. NUMERICAL IMPLEMENTATION

To compute numerical outcomes, we have emplo yed diverse MAP demonstrations for the incom-
ing arrival in a manner that ensur es their mean values are 1, as recommended by [5].

+ Erlang arrival (ERA):
-2 2 0 0
o] el 2

Dy = [-1]D; = [1]

» Exponential arrival (EXA):

« Hyper exponential arrival (HEXA):

—1.90 0 1.710  0.190
| || |

0 —0.19 0.171 0.019

Consider the following PH-distributions for the service and repair progression:
« Erlang service (ERS):

v=1[10] U={ _02 _22]

« Erlang repair (ERR):
a=[,0 T= { 2 2]

« Exponential service (EXS):
« Exponential repair (EXR):
« Hyper exponential service (HEXS):
v=1[0802] U= [ -8 0 }
« Hyper exponential repair (HEXR):

x = [0.8,0.2] T:[ —28 0 }

0 —0.28

Mlustration 1

For this both policies, it was assumed that values of all parameters of the QIS were fixe except
the service rate i: A =1, 1 =3,0=06,7T=2,=2,p=1,0=3,0=05,p; =p, =06,
g1 =4, =04,5=55=15

Here, we compar e and analyse the two policy (s,S) and (s, Q) as follows in tables

« First, we obser ve that both Esyster; and E,p;; in Table under varying service rate y , it is
gradually decreases as y increase for both (s,S) and (s, Q) but the notable is (s,S) policy
give the minimum for both Esysters and Egppjy.

+ Obser ve the service times, Esystem and E,.j; are decreases highly in HEXS and slowly
decrease in ERS than all other service times. Like wise, from the view point of arrival times,
Esystem and Eg,p;; are decreases highly for HEXA compar ed to other arrival times.
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Table 1: Service rate (1) vs Esystem and Eoypie - ERA

ERS EXS HEXS

B Esystem Eorbit Esystem Eorpit Esystem Eorpit

15 0.081396697  0.047355675  0.116583261  0.046932851  0.060209747  0.031898478
16 0.075864324  0.043882684  0.109224350  0.043648505  0.057304727  0.030565025
17 0.071064407  0.040901610  0.102739862  0.04079181  0.054674483  0.029325579
18 0.066854402  0.038311241  0.096982359  0.038284564  0.052279029  0.028171817
19 0.063128015 0.036037241  0.091835886  0.036066509  0.050086560  0.027096253
20 0.059803954  0.034023538  0.087207964  0.034090466  0.048071247  0.02609211
21 0.056818744  0.032226894  0.083023918  0.032318974  0.046211764  0.025153247
22 0.054121959 0.030613354  0.079222779  0.030721913  0.044490267  0.024274106
23 0.051672939  0.029155827  0.075754267  0.029274789  0.042891663  0.023449656
24 0.049438484  0.027832404  0.072576547  0.027957481  0.041403065  0.022675351

Table 2: Service rate (1) vs Esystem and Egypie - EXA
ERS EXS HEXS

B Esystem Eorpit Esystem Eorpit Esystem Eorpit

15 0.093658859 0.057831180  0.125620027  0.057370051  0.077226462  0.047628434
16 0.087616380  0.053656465  0.117884279  0.053393412  0.073004243  0.044783511
17 0.082319352  0.050040468 0.111041640  0.049917853  0.069231262  0.042257589
18 0.077636049  0.046878488  0.104946594  0.046856002  0.065837924  0.039999559
19 0.073464370  0.044090388  0.099483485  0.044139417  0.062768568  0.037968788
20 0.069723889  0.041613800  0.094559255  0.041713775  0.059978093  0.036132537
21  0.066350351  0.039399467  0.090098203  0.039535447  0.057429527  0.034464111
22 0.063291771  0.037407970  0.086038129  0.037569008  0.055092251  0.032941515
23 0.060505619  0.035607397  0.082327459  0.035785419  0.052940673  0.031546455
24 0.057956750  0.033971637  0.078923079  0.034160655  0.050953225  0.030263586
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Table 3: Service rate (1) vs Esystem and Eqypir - HEXA

ERS EXS HEXS

B Esystem Eorbit Esystem Eorpit Esystem Eorpit

15 0.130072755  0.085272901  0.140741030  0.072324015 0.085907558  0.047067013
16 0.118644770  0.076620377  0.131673874  0.066854199  0.080218556  0.043713552
17 0.109278270  0.069644502  0.123722961  0.062135811  0.075394726  0.040903528
18 0.101432497 0.063889862  0.116692238  0.058026255  0.071233209  0.03850289
19 0.094745436  0.059054418  0.110429349  0.054416549  0.06759258  0.036419856
20 0.088964620  0.054929433  0.104814044  0.051222021  0.064370838  0.034589272
21 0.083908013 0.051365737  0.099750091  0.048375934  0.061492291  0.032963458
22 0.079440679  0.048253720  0.095159543  0.045824997  0.058899399  0.031506611
23 0.075460231  0.045510930  0.090978563  0.043526164  0.056547500  0.030191241
24 0.071887408 0.043074081  0.087154360  0.041444300  0.054401305  0.02899583

Table 4: Service rate (1) vs Esystem and Eoppjr - ERA
ERS EXS HEXS

B Esystem Eorpit Esystem Eorvit Esystem Eorpit

15 0.082004602  0.047355519  0.116584109  0.046933442  0.060824563  0.031913956
16 0.076429926  0.043882824  0.109225231  0.043649085  0.057874696  0.030578216
17 0.071593705  0.040901916  0.102740765  0.040792375  0.055206267  0.029336964
18 0.067352119 0.038311641  0.096983274  0.038285111  0.052777843  0.028181749
19 0.063597952  0.036037694  0.091836807  0.036067038  0.050556568  0.027104999
20 0.060249224  0.034024019  0.087208889  0.034090977  0.048515832  0.026099873
21 0.057241938  0.032227388  0.083024844  0.032319470  0.046633719  0.025160188
22 0.054525258 0.030613851  0.079223704  0.030722393  0.044891928  0.024280350
23 0.052058203  0.029156322  0.075755191  0.029275254  0.043275004  0.023455306
24 0.049807313  0.027832894  0.072577470  0.027957933  0.041769774  0.022680491

759



G. AYYAPPAN, N. ARULMOZHI

NUMERICAL INVESTIGA TION OF RETRIAL QUEUEING INVENT ORY...

RT&A, No 1 (77)
Volume 19, March 2024

Table 5: Service rate (1) vs Esystem and Egypie - EXA

ERS EXS HEXS

B Esystem Eorbit Esystem Eorpit Esystem Eorpit

15 0.094342828 0.057831783  0.125622511  0.057371230 0.077912574  0.047638686
16 0.088262387  0.053657353  0.117886912  0.053394652  0.073653585  0.044793161
17 0.082931496  0.050041572  0.111044412  0.049919149  0.069847634  0.042266700
18 0.078217783  0.046879757  0.104949496  0.046857350  0.066424553  0.040008185
19 0.074018636  0.044091787  0.099486509  0.044140813  0.063328223  0.037976979
20 0.070253213  0.041615303  0.094562394  0.041715216  0.060513165  0.036140334
21  0.066856921  0.039401053  0.090101450  0.039536929  0.057942099  0.034471552
22 0.063777495  0.037409625  0.086041476  0.037570530  0.055584149  0.032948633
23 0.060972173  0.035609109  0.082330902  0.035786976  0.053413507  0.031553280
24 0.058405612  0.033973398  0.078926612  0.034162246  0.051408424  0.030270142

Table 6: Service rate (1) vs Esystem and Eqypiy - HEXA
ERS EXS HEXS

B Esystem Eorpit Esystem Eorvit Esystem Eorpit

15 0.131245994  0.085194321 0.14075261  0.072332391  0.087390312  0.047182656
16 0.119735103  0.076569695  0.131688802  0.066864727  0.081577421  0.043823642
17 0.110296386  0.069612267  0.123740628  0.062148038  0.076649406  0.041007718
18 0.102387591  0.063870343  0.116712188  0.058039850  0.072399139  0.03860134
19  0.09564524 0.059043966  0.110451236  0.054431263  0.068682030  0.036512935
20 0.089815602  0.054925634  0.104837597  0.051237669  0.065393700  0.034677418
21 0.084715599  0.051366937  0.099775098  0.048392369  0.062456649  0.033047113
22 0.080209444 0.048258756  0.095185831  0.045842105  0.059811936  0.031586194
23 0.07619406 0.045518963  0.091005993  0.043543856  0.057413806  0.030267136
24 0.072589624  0.043084494 0.087182817  0.041462502  0.055226098  0.029068385

Ilustration 2

We picturise the consequences of the breakdo wn rate ¢ against the Py, Fix A = 1, y = 15,
0 =0617n=3T1T=5p=2,06=30=05p =p,=06 49 =g, =04 5 =055 =15
these values satisfy the condition for stability . From the figu es [2| - |4 we can explor e that
while increasing the server’s breakdo wn rate (¢), Py,s, decreases for all feasible provisions of
incoming arrival and service patter ns. As increase in breakdo wn rate indicates that customers
will frequently be unable to access the server, which is decreases of Py, is higher for HEXA and
lower for ERA. Like wise, it is higher for ERS and lower for HEXS.
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Illustration 3

To investigate the impact of the TC on both the service (y) and repair (7) rates in the Figur es
Fix A =1,0=02,0=06=30=3p =p, =064 =g, =04,5 =55 =15
Cg =70, C; = 110, Cgr = 120, such that the system leftovers stable.

From the vie wpoint of Figur es we maximize both the service and repair rates for all possible
groups of arrival and service times, we notice that the TC decr eases. Consider the service times,
TC decreases exceedingly for ERS and decr eases moderately for EXS. Therefore, TC decr eases
slowly for ERA and rapidly for HEXA.

(a) ERA (a) EXA
1072 1072
T T T T T T T T
.+H+._H_._. FkkkHﬂﬂﬂﬂ
6l | |
z —o— EJEJ1 z —— M/EJ1
fany —m— E/ M/1 fany —a— M/M/1
4+ —#%— Ex/ Hi/ 1 | —#%— M/ Hi/ 1 B
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****W**f*——*——*——*7*7*,,* *777*77*”’*******77*—*77*77*
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Figure 2: Breakdown rate vs. Pys, Figure 3: Breakdown rate vs. Pys,
(a) HEXA
102
7 - .
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6 —+— HJEJ1 | |
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Figure 5: Service and repair rates vs. TC
E /H N

Figure 4: Breakdown rate vs. Ppys,
E, /M1

Figure 6: Service and repair rates vs. TC Figure 7: Service and repair rates vs. TC
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Figure 10: Service and repair rates vs. TC Figure 11: Service and repair rates vs. TC
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Figure 12: Service and repair rates vs. TC Figure 13: Service and repair rates vs. TC

7. CONCLUSION

A retrial inventory model with MAP arrivals, PH-distributed service, working vacations, collision
of orbital customers, flus out, balking, breakdo wn and repair has been investigated. The
peculiarity of this model is that the server can offer service even in the vacation period and the
system is alw ays stable because of the flus out of the system. We have consider ed MAP for
arrivals and would like to extend our models by considering BMAP for arrivals which is best
suited for modelling arrivals which come in batches.
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