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Abstract

When the probability distributions for the stress (X) and strength (Y) are different members of the
power series family, the expressions of the stress-strength reliability function, R = P(X <'Y), are
derived. Apart from stress-strength reliability, it has applications in statistical tolerancing, measurement
of demand-supply system performance, genetic trait hereditary measure, bio-equivalence study, etc. The
Bayes’ estimates of R under squared error and Precautionary losses are derived for various combinations
of distributions of X and Y like binomial, Poisson, negative binomial, and geometric. As in practice, the
availability of prior parameters is difficult; the empirical Bayes estimation procedure has been adopted to
get their estimates from observed data. Simulation results have been reported, and estimates of posterior
risks are compared. In the context of real Soccer games, the Bayes estimates are enumerated and compared
with their classical counterparts.

Keywords: Empirical Bayes” estimate, Estimated Posterior risk, Precautionary loss, Squared error
loss, Stress-strength reliability.

1. INTRODUCTION

It is a satisfactory fact that the strength of a manufactured product is a variable quantity. When
ascertaining the reliability of equipment or the viability of a material, it is also necessary to
consider the stress conditions of the operating environment. The uncertainty of the stressful
environment leads us to take stress as a random component. In the stress-strength model, X is
the stress applied on the unit by the operating system, and Y is the unit’s strength, which is the
in-built capacity of the unit to withstand the applied stress. No doubt, any unit can perform its
actual function if its strength is greater than the stress given to it. In this context, we consider the
reliability (R) as

R = P(X<Y),

which is the probability that the unit performs its task satisfactorily. Also, we can say this is the
probability of the unit overcoming the stress. In this paper, the estimation of R when X and Y are
independently distributed but not necessarily identical follows the power-series distribution. The
quantity R has many applications, for example, statistical tolerance, measurement of demand-
supply system performance, stress-strength reliability, genetic trait hereditary measure, a study
of bio-equivalence, etc.

Several authors explore different statistical properties concerning R for several members of
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the power series distributions. A study on the various estimation methods of R when X and Y
are independently distributed geometric random variables was made by [11]. [2] worked the
Bayes estimation of it. A study on different estimations of the negative binomial distribution
was considered by [8] and [15] in the context of a system reliability estimation. [5] and [4] used
Poisson distribution to explore different estimates of R. [13] studied the application of log series
distribution.

In most of the papers, the Bayes estimate for the stress-strength problems was found for the
continuous distributions, like [16] found the estimate of R for the Gompertz case. [14] found for
Weibull distribution, [1]] used type-II censoring for Rayleigh distribution for finding Bayes estimate.
[12] used exponential-Poisson distribution. [9] used generalized exponential distribution, and [7]
used inverted gamma distribution to estimate it using the Bayes method.

In the current work, we consider the Bayesian estimate of R for the stress and strength distri-
butions as general members of the power series family of distributions. Section 2 starts with the
exact expression of R for the generalized form of power series for both X and Y. The Bayesian
estimates of R for power series distributions under squared error loss and precautionary loss, as
well as some prerequisites, are discussed in section 3. The Bayesian estimates and their estimated
posterior risks for particular choices of distributions like binomial, Poisson, negative binomial,
and geometric of X and Y are discussed in section 4. Section 5 is devoted to searching estimates
of the hyper-parameters of the prior distributions and hence is engaged in finding the empirical
Bayes estimates of R. Simulation study results have been reported in section 6. An application of
R in real soccer games is discussed in section 7, where we find the R estimate with the estimated
posterior risk. Section 8 draws concluding remarks.

2. THE INITIAL SET-UP

Let X and Y be two random variables belonging to the power-series family of distributions, which
are defined as follows.

P(X =x) = aj(:ao;x ,x=0,1,... a>0 and f(a)= i a(x)a®. (1)
x=0

P(Y:y):M,y:O,l,... B>0 and g(B) = ib(y)ﬁy. ()
g(ﬁ) x=0

The stress-strength reliability R is given by

LY Y e o) ®
f@g® =\ 5 s

Let x1,xp,...,xy, be a sample of size n; from the distribution of X and y1,y2,...,yn, be a
sample of size n; from that of Y. Then, the likelihood function is

R=P(X<Y)=

L Blxy) = [[P(X=x)[]P(Y =y
i=1 =1
B aZ,& xp M ' /32;21%‘ 11 '
= e L) gy LTo0)

= {fw)) ﬁa<xi>ﬁf»v{g<ﬁ>}”zﬁb<yj>
1= ]:

= L(ax)L(Bly),
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where t, = Y1, x;, by = 2}21 Yj.
The joint posterior density function of «, 8 corresponding to prior distributions h(«), k(f) is

L(, Bltx, ty)h(a)k(B) ( |tx) () L(Blty)k(B)
fooo foooL(“/,B“x/ty)h( )k(B)dadp fo (aftx)h(o)da fo ,3|t/) (B )

H (o, Bltx, ty) =

3. BAYES ESTIMATION OF R FOR POWER-SERIES DISTRIBUTIONS

The main objective of this section is to find Bayes’ estimates of R, the stress-strength reliability.
We have considered two different loss functions, and the Bayes estimates corresponding to each
loss function are given for the general cases. The joint distributions, the prior distributions of
the parameters, and some preliminaries, which are required to find the Bayes estimates of the
different combinations of the power-series model, are discussed.

3.1. The Bayes Estimates under different loss functions

The squared error loss (SEL) and Pre-cautionary loss (PL) functions have been considered. If d is
the estimate of the parameter 6, the SEL is given by

L(d,0) = (d—6)~ 4)
Under the SEL, the posterior mean is the Bayes estimate of the parameter 6 and is denoted by
d=0=E®).
The Posterior risk, in this case, is
PRser = E(6%) — E*(6).
The PL is defined as

(d—0)°

L(0,d) = ~*—

The Bayes estimate under the PL is defined as

d=0=/E(62).
The Posterior risk, in this case, is

PRpy, = 2[{/E(6?) —

So, the Bayes estimate of R under the SEL is given by

RSEL = E(thx/ty
WW) o bly)p
ek f(—@L( ©h(w)da i (ﬁ) (8)ap
= Ll Lk T LEKA ©
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and the same under the PL is Rp, = /E(R2|ty, t;), where
y xX)b(y)a*p 1o
E(R*|ty, ty) = // a()bly &, Bty, ty)dad
(R2|t 1) W e P T Bl ty)dadp
a? (x)a®* b (y) B
= o, Blty, t,)dadB +
/ / Y= Ox ("‘) gz(.B) H( ﬁ| g y) IB
AR ST (x xf“kb(y) (yp)pir
/ / L Z L Z k ] 2(B) [ I(w, Bltx, ty)dudp.
J0 S0y =0 5;=0 ;=0 x,=0 g
(6)

The estimated posterior risks of Bayes estimate of R under SEL and PL are PRgpr =

E2(R|ty, ty) and PRpy, = 2[/E(R?|ty, t,) — E

E(R|ty, ty)], respectively.

E(R?|tx, t,) —

3.2. Some particular distributions and joint distributions

Four different distributions have been considered; all belong to the power-series family. These
are binomial (m,p), Poisson (A), negative binomial (r,%), and geometric (i) distributions. Let
21,22,. - ,Zn be a sample from the distribution of Z. Then, t,=} ", z; be the complete sufficient
statistic for estimating the distribution parameter. The probability mass function (pmf) of different
distributions and their joint distributions for a sample of size n are shown in Table

Table 1: The pmfs of the different distributions and their joint distributions

Distribution (Z) pmf, P(Z=z) Joint distribution
Bin(m,p) P(Z=2)=(p))p* (L —p)" = | p=(1—p)™ "
Poisson(\) P(Z=7)=t2~ f{&ti
Negative binomial (r,77) | P(Z=2)=("""")y*(1 — )" ntz(1—n)""
Geometric (i) P(Z=z)=p*(1 — u) plz(1— )"

3.3. Prior distributions and their probability distribution functions

Each distribution characteristic depends on the value of the single parameter it evolves. The
parameter itself follows a distribution. The probability distribution function (pdf) of the prior
parameters and some forms related to the posterior distribution of the parameters have been
found, and presented in Table

Table 2: The pdfs of the prior parameters and some forms related to the posterior distribution

Distribution | Prior distribution | pdf of prior dist | Terms required for posterior dist
Bin(m,p) Beta(a, B) P a-p)P Lyin(m, p)= prra T 1—p)m A
P ' B(wp) bin {11, P )
. —YA -1 tz+0) p—(n+7)A ytz+5—-1
Poisson(A) Gamma(7, 0) Fe A Lpois(A)= (n+7) T(etz+§)
. c—1 1— d—1 tz4c—1 1— nr+d—1
Neg bin (r, 1) Beta(c,d) 1 115(6,;))b ) Ineg ()= W
: =1 (1—u)"~ tz+a—1(1_, \n+b—
Geometric (u) Beta(a,b) £ Eg(u,h};) Tgeo ()= %

3.4. Some preliminaries

The expression of R is given in [3] The expression for Bayes estimates under SEL and PL are
shown in [5|and [6} respectively. To find the explicit forms, we require some terms defined in this
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section and presented in Tables |3|and @ These are to be used for finding E(R) and E(R?).

Table 3: Prerequisite for finding E(R) and E(R?)

Negative binomial (r, 77) (

2T (t+0)  (n4q+1) =z +2+9)
r+2-1) Bltztzdonririd)

Distribution Terms related to E(R) (Ry;s) | Terms for R? (z; = z;) (Rsqgjst)

i my B(tz+z+a,m(n+1)—t:—z+p) m\2 B(2z+t,+a,2m—2z+nym—t,+p)
Bin(m,p) ( z ) B(t,+a,mn—t,+p) ( z ) Bt +a,mmy —tzl+ )
Poisson(A) ()=t T(t42+0) (np+7)tz+)T2z4t,+6

(2+ny+0) 22tz 40T, 45
(r+z—1)2 B(2z+t;+¢,2r+nyr+d)

z B(t,+c,nr+d) B(tz+c,npr+d)
. B(t;+z+an+1+b) B(tz+2z+4a,n+b+2)
Geometric (j) " B(tan+b) " B(tam+h)

Table 4: Prerequisite for finding E(R) and E(R?)

Distribution Terms for R2 (z]- £ 2;) (Reovzsy)
Bin(em.p) () T e et
oty |
2+ny+ T+
Negative binomial (r,7) (HZ 71) (Hijgl) B(zi+;zziz;,zz:1;2r+d)
Geometric(u) B(fzJ;Z(i;rerj;:;T;;bJrz)

4. THEORETICAL EXPRESSION OF R FOR DIFFERENT STRESS-STRENGTH MODELS

The theoretical expressions of R for general power series stress-strength models have been derived
earlier. Such expressions are of theoretical interest because specific members of the power series
family are used for modeling stress and/or strength. Being restricted to the family of power series
distributions, we provide simplified expressions of such quantities for several stress and strength
distribution choices. This section found the posterior distributions for different combinations of
the parameters attached to the different distributions. In each subsection, we have mentioned
the pmfs of the random variables used for stress and strength, the prior distributions of the
parameters involved in the pmfs, the joint posterior distribution of the parameters, the E(R|ty, t,)
and E(R?|ty, t,) that are required for the Bayes estimates R.

4.1. X and Y both follow binomial distributions

Let X~binomial(m,, p1) and Y~binomial(m,, py), where p; ~beta(a1, B1) and p, ~beta(xy, B2).
The joint prior distribution of p; and p; is

7(p1, p2) = 8(p1)-h(p2).
The posterior distribution of p; and py is given by
[ 1(p1 p2lte ty) = Lyin(ma, pr) Ipin (m2, p2). ()

The Bayes estimate under SEL is given by

E(Rpa|tx, ty)

1 1 mp min(y,my) " m\
/ / Y X < >Pi‘(1 — Pl)"“"( >P2(1 — p2)"> Y T1(p1, palts ty)dprdps
070 y=o x=0 \X y

x=

Rser

my min(y,my)

Y. Y. Rpin(m, p1)Ryin(ma, p2).
y=0 x=0

®)
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The Bayes estimate under PL is Rpy = 1/E(R2), where E(R?) is given by

) mz min yml) my m\
E@sltt) = [ [ Lox (e e () e -]

x [ T(p1, P2|tx, ty)dpldpz
my min(y,my)

Z Z Rsqpin(m1, p1)Rqpin (m2, p2)
y=

my Min(ymi) my, min(y;m)

+ Z Z Z Z Rcovyy, (ml' Pl)Rcovbm (m2/ PZ)

x,»O : XkO

2

The estimated posterior risks are as follows.
PRsgr = E(Rgp) — E*(Rpp).
PRpp =2(1/E(R3;) — E(Rgs)).

4.2. X and Y both follow Poisson distributions

Let X~Poisson(A;) and Y~Poisson(A;,), where Ay ~Gamma(yq,d1) and Ay ~Gamma(7yy, d7).
The joint prior distribution of A1 and A; is

7'[()\1,/\2) = g(/h)h(/\z)

The posterior distribution of A; and A, is given by

H(Al/ A2|tx/ ty) = Ipois (/\l)lpois (AZ)

Hence, under the SEL
1 1 M2 Y e /\1)\ic €7A2/\g
E(Rpplts, ty) = / / Z Z — ' H()\ll)\2|tx/ ty)d)tld)\z
Jo Jo =iz X y!
= Z Z Rpozs /\1 pois()‘Z);
y=0x=
and under the PL
) mz e~ MAT p—M2A) 72
E(Rpp|tx’ ty / / |: x! | H(/\ll )\2|tx/ ty)d)lld/\Z
y=0x=0 : Y

my Yi o omy Y

= 2 2 qupozs Al)qupois()‘Z) + 2 2 2 2 Rcovpois(/\l)Rcovpois(/\Z)'

y=0x=0 ¥j=0x;=0y,;=0 x,=0

4.3. Xand Y both follow negative binomial distributions

Let X~negative binomial(r1,771) and Y~negative binomial(ry,12), where 77 ~beta(cq,d;) and
112 ~beta(cz, d2).
The joint prior distribution of #; and 7, is

(1, 1m2) = g(n1)-h(12).

The posterior distribution of #; and 7, is given by

H(’?lr 12t ty) = In6g(771)1n6g(772)‘
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Therefore, under SEL
tite &on+x-1 rn+y—1
ERaltt) = [ [ LY ( i =mi (YT -

0 70 y=0x=0 x Yy

< [ 10n, ma|ts, ty)dmdna

o Y

= Z Z Rneg(ﬂl)Rneg(ﬂz)/
y=0x=0

and under PL

eRutton) = [ (£ 5 (" - wn (2 ot ]

y=0x=0 y
X H(’?lr772|tx/ ty)dﬂld’h

o0 o Y o Wy

Y
= Z Z RS%@g(’?l)RSqneg(WZ) + Z Z Z Z Rcovneg(ﬂl)Rcovneg(UZ)-

y=0x=0 ¥j=0x;=0y,=0 x, =0

4.4. Xand Y both follow geometric distributions

Let X~geometric(y1) and Y~geometric(y,), where y1 ~beta(ay, by) and pp ~beta(cy, da).
The joint prior distribution of y; and py is

7Ty, p2) = g(p1)-h(p2).

The posterior distribution of 31 and y» is given by,

H(V1,V2|fx,fy) = Igeo (1) Igeo (H2)-
Therefore, under SEL

1 1 o© VY
E(Rgglte ty) = /0 ; YN (= ) (1= ) [ T, p2lta, ) dpndpao

y=0x=0
o Y
= Z ZRgEO(Fl)Rgeo(FZ)/
y=0x=0
and under PL
2 1 r1 o Y y 2
EREcltt) = [ [ XX w0 ppdlt )| TTms el e

y=0x=0

o Y o Yi o Yy

= Z ZRngeo(Vl)RSQgeo(VZ)‘f‘ Z Z Z Z RCOUgeo(Vl)RCOUgEO(yz).
y=0x=0 ¥;=0x;=0y;=0 x;=0

4.5. X follows binomial distribution and Y follows Poisson distribution

Let X~binomial(m,p) and Y~Poisson(A), where p~beta(x, f) and A ~gamma(y, ).
The joint prior distribution of p and A is

ni(p,A) = g(p).h(M).

The posterior distribution of p and A is given by

H(p' Mtx/ ty) = Ihin(p)lpois()‘)‘
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Under SEL

1 1 0 Y m\ € Y
E(Rppltx, ty) = /0/0 Y, )ra-p TH(P,AItx,ty)dpd?t
y=0x=0 ’

© Y

= Z Z Ryin(p Rpois (A),

y=0x=0

and under PL

E(Rplts, ty)

/01 /01 [i i (’:) P"(l—p)’”*"ﬂ—w 2H(p,)\|tx,ty)dpd/\

|

© Y o Y o Y
2 Z qubin(p)Rquois(A) + Z Z Z Z Rcovbin(p)RCOUpois(/\)'
y=0

=0x=0 yj:O x1:0y,:0 kuO
4.6. X follows binomial distribution and Y follows negative binomial

distribution

Let X~binomial(m,p) and Y~negative binomial(r,57), where p~beta(x, f) and # ~beta(c,d).
The joint prior distribution of p and 7 is

e(p, ) = g(p)-h(i)-
The posterior distribution of p and 7 is

H(P:’ﬂtxf ty) = Ibin(P)Ineg(W)-
So, under SEL

ERmltot) = [ "5 2 (5)ra=pr (7T ) Tl anay
L

= Z 2 Rbm Rneg 77)

y=0x=0

and under PL

E(Rinltx ty) = /01 /O1 L P3 O( >P"(1—P)’""(r“;_l)ny(l—n)’]ZH(P,UItx,fy)dev

co Y () o)
Z ZRS%m(P)RSQneg + Z Z Z Z Rcovyy (p)Rcovpeq (17).
y=0

=0x=0 =0x;=0y;=0 x)=

4.7. X follows binomial distribution and Y follows geometric distribution

Let X~binomial(m,p) and Y~geometric (), where p~beta(a, ) and u ~beta(a,b).
The joint prior distribution of p and y is

nn(p, u) = g(p)-h(p).

The posterior distribution of p and y is given by

H(Pf Hltx, ty) = Ibin(P)Igm(V)-
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Under SEL,

E(Rpg|tx, ty)

1
/0 0 y=0x= 0( ) (1= p)" W (= ) [ 1(p, plts ty)dpdp

o Y

Z Z Rbm Rgeo )

y=0x=0

and under PL,

E(Rjglte ty) = /01 /01 {i i (T) prL—p)" W (1 —p) 2]—[(;9/#\% ty)dpdu

y=0x=0

o Y o Y o Y
= ZOZRS%m(p)Rngeo(#H Yo Y Y Y Reovyin(p)Reovge ().
Y

=0 x=0 ijO xi:Oyle kaO

4.8. X follows Poisson distribution and Y follows binomial distribution

Let X~Poisson(A) and Y~binomial (n,p), where A ~gamma(J,y) and p ~beta(x, B).
The joint prior distribution of A and p is

(A, p) = g(A)-h(p)-
The posterior distribution of A and p is given by

H()\/ p‘tx/ ty) = Ipois(}\)lbin(p)'

Therefore, under SEL
1 1 m Y e*/\)tx
EReltty) = [ 3 1 5 () g TTO pl ) dadp
0 Jo y=0x=0 ! Yy
o Y
Z 2 Rpozs Rbm P)
y=0x=0

and under PL

/ / [ A/\x<y>py(1_P)myrn(/\,ﬂtx,ty)d)tdp

y=0x=0

2 2 qupozs quhm )+ 2 Z Z Z Rcovpozs RCUUhin(P)'

y=0x=0 ¥j=0x;=0y;=0 x;, =0

E(Rpp|tx, ty)

4.9. X follows Poisson distribution and Y follows negative binomial distribution

Let X~Poisson(A) and Y~negative binomial (r,7), where A ~gamma(Jd, v) and # ~beta(c,d).
The joint prior distribution of A and 7 is

(A1) = g(A).h(n).

The posterior distribution of A and 7 is

H(/\ﬂﬂtx/ty) = Ipois()‘)InEg(U)-

So, under SEL
1 e d e‘)‘ r+y—1
ERevltot) = [ 08 L (YT -y Tl taady
0 Jo ;=h= X! y
o Y
= 2 2 RpOlS Rneg 7’])
y=0x=0
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and under PL
1 1 [ X y e MY /7 +y— 2
E(Rpylte ty) = / / [ ( )ny(l - 17)1 [T nltx, ty)dAdy
0 J0 y=0x=0 x! Y

oo Y o) (]
= ) Zqupo,s )RSGneq (1) + Y Z ) 2 Rcov,4is (A)Rcovpeq (17).
y=0

x=0 ¥j=0x;=0y;=0x;,=0

4.10. X follows Poisson distribution and Y follows geometric distribution

Let X~Poisson(A) and Y~geometric (i), where A ~gamma(d,y) and y ~beta(a,b).
The joint prior distribution of A and y is

(A, u) = g(A).h(p).

The posterior distribution of A and y is

H(A/ U |tx, ty) = Ipois()\ﬂgeo (P‘)

Under SEL

1 p1 o0 Y ,=A)x
ERecltty) = [ [0 ¥ w1 = ) TTG ults, ty)drdy

y=0x=0 x!
© Y
= ZZRpois(/\)Rgeo(,”),
y=0x=0
and under PL
5 1 41 _/\)\x 2
ERbcltet) = [ [ L X w0 -] T st t)inds
y=0x=

o Y o) o)
= ) ZquPD,S JRsqGgeo (1) + Y Z ) Z Rcovpois (A)Rcovgeo ().
y=0

x=0 ¥j=0x;=0y,;=0 x;=

4.11. X follows negative binomial distribution and Y follows binomial
distribution

Let X~negative binomial(r,%7) and Y~binomial (n,p), where  ~beta(c,d) and p ~beta(x, §).
The joint prior distribution of 77 and p is

(1, p) = g(n)-h(p).

The posterior distribution of 77 and p is given by

H(ﬂ/ plts, ty) = Ineg(’?)lbin (p)-

So, under SEL
tpam drrx—1 m -
E(Rngltx, ty) = / / Y Z( )W*(l—n)r< )Py(l—p)’” Y11 pltx ty)dndp
JO 0 yfoxfo X y
= Z Z ng )Rpin(p),

y=0x=0
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and under PL

ERultety) = [ /Ol[é0 )y (”ﬁ‘l)nxa—m’(j)py(l—p)’"y]z

X H(’?rp|tx/ty)d’7dp

[e9)

y o o
3 R RS () + 3 5 3 Reovueg 1) Reotin ).

y=0x=0 ¥;=0x;=0y;=0 x;=0

412. X follows negative binomial distribution and Y follows Poisson
distribution

Let X~negative binomial(r,%7) and Y~Poisson (1), where # ~beta(c,d) and A ~gamma(J, 7).
The joint prior distribution of 77 and A is

mw(n,A) = g(n).h(M).

The posterior distribution of 7 and A is given by

H(’?r Alty, ty) = InEg(U)Ipois (A).

Under SEL
Lo Vo rpx—1 e MY
E(R|ty, ty) = / Yo ) ( )ﬂx(l—ﬂ)r ' [ 101, Alte, ty)dydA
Uy y=0x=0 ¥
o Y
= Z Z Rneg pozs )\)
y=0x=0
and under PL
Laare Yo rgpx—1 e A2
E®ltot) = [ [ E % (7T - | T Al i
0o Jo L, =550 X y!

o VY o Yi o y
= E Zqungg(iy)qupois(A)—i— Z Z E E Rcovmg(iy)Rcovpois(A).
y=0

=0x=0 ¥;=02x;=0y;=0 x;=0

4.13. X follows negative binomial distribution and Y follows geometric
distribution

Let X~negative binomial(r,%7) and Y~geometric (1), where 1 ~beta(c,d) and u ~beta(a,b).
The joint prior distribution of 77 and y is

mw(n, u) = g(n)h(p).

The posterior distribution of 77 and y is given by

H(’?r#“x/ ty) = Ineg(’?)lgw(ﬂ)-
Under SEL

Lol °° y r+x—1\ , e
ERncltty) = [ [ 7 (= ) W= ) TT0 pt )
yOx 0

o Y

2 Y Rueg(11)Rgeo (1),

y=0x=0
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and under PL
2 e r+x—1\ oy 2
Bl = [ [[E 1 7 =)W= | TT0n plts ty)dndy
y=0x=0
o Y (o] (o]
= Y ) RSqueg(17)Rsqgeo(pt) + ) Z ) Z Rc0Veq (17) Reovgeo (1)
y=0x=0 ¥j=0x;=0y;=0 x;=0

4.14. X follows geometric distribution and Y follows binomial distribution

X~geometric(y) and Y~binomial (n,p), where u ~beta(a,b) and p ~beta(x, ).
The joint prior distribution of u and p is given by

(p,p) = &(p)-h(p)-
The posterior distribution of # and p is given by

H(Vr plte, ty) = IgEO(#)Ihin(P)-

Under SEL
E(RGB’tx/ty) = / / Z ZV (1-mu (y)py(l—p)myH(y,pHx,ty)d‘udp
y=0x=
= Z ZRgeo han )
y=0x=
and under PL
) 1 1 y 2
E(Rgplts ty) = /0/0 {Z Y w(1-p ( )py(l—p)m‘y} [ I(w plte, ty)dudp
y=0x=0

co Y (e (o)
5 Y Rl (p) + 3 3 3 Reonge1)Reovt 1),
y=0

=0x=0 ¥j=0x;=0y,;=0 x;=

4.15. X follows geometric distribution and Y follows negative binomial
distribution

Let X~geometric() and Y~negative binomial (1,%), where u ~beta(a,b) and 1 ~beta(c,d).
The joint prior distribution of u and 7 is

() = g(u)-h(n)-
The posterior distribution of # and # is given by

H(l‘/ 17|tx, ty) = Igeo (.“)IMg(W)~

Under SEL
_ 1ne g X1 _ r 7’—}—]/—1 Y1 _ r dud
E(Ronlt, ty) = Y ) w(-w) 7 (1 —=m)" T [(w nlte, ty)dpdy
0 Jo y=0x=0 y
o Y
= Z Z Rgeo Rneg 77)
y=0x=0
and under PL
1 1 y rdy—1 2
E(Rgnltuty) = / / {Z You( ( Y )Wy(l—n)’] [ TGyt ty)dudy
0 Jo Ly=ox=0 y

= 2 2 Rs(geo (1) Rsqneg(17) + ) E ) 2 Rc0Vgeo (1) Re0Veq (17).

y=0x=0 yj=0x;=0y,=0 x;=
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4.16. X follows geometric distribution and Y follows Poisson distribution

X~geometric (1) and Y~Poisson (A), where p ~beta(a,b) and A ~gamma(d, v).
The joint prior distribution of y and A is

mt(u,A) = g(p)-h(A).

The posterior distribution of # and A is given by

[T Altx, ty) = Lgeo (1) Ipois (A)-

Under SEL
1 1 % Y B ef)\/\y
ERItt) = [ 8 % w50 = w5 T Mt ty)dpdA
0 JO y=0x=0 y:
o Y
= ZZRgeo(V)Rpois()Q/
y=0x=0
and under PL
) 1 1] © ¥ . e M2
ERpltty) = [ [ |5 Lt -m | TI0n Al t)uds
0 Jo y=0x=0 Y-
o Y co Yi oo Wi
= 2 Zqugeo(y)qupois(/\)+ Z Z Z Z Rcovgeo (1) RCovpis (A).
y=0x=0 ¥j=0x;=0y;=0x,=0

5. ESTIMATION OF THE HYPER-PARAMETERS

Though the prior distributions are assumed to be known, most of the time, in practice, those need
to be estimated based on observed data. In this section, the estimates of the hyper-parameters of
the prior distributions have been found. These parameters could be estimated using the empirical
Bayes procedure [see [10] and [3]]. Given the observations, the joint likelihood distributions
have been compared with the joint prior distributions. The joint likelihood distributions are just
the multiplication of the likelihood distribution of X and Y, and joint prior distributions are the
multiplication of the prior distributions of the parameters. We can estimate the prior parameters
by comparing them individually with their corresponding likelihood functions. The estimates of
the hyper-parameters are shown in Table

Table 5: Estimate of the hyper-parameters

Distribution Joint distribution | Prior distribution | Estimate of hyper-parameters
Binomial(m,p) piz(1—p)mn—tz % d=ty+1, =mn—t,+1
Poisson(A) H;;)g IZ, % S=t,+1, 9=n
Neg. binomial (r, ) nt=(1—n)"™ %}W))H E=ty+1,d=nr+1
Geometric (i) ph(1—p)" %}?H a=ty+1,b=n+1

6. SIMULATION STUDY
The properties of the Bayesian estimations of R for the different combinations of stress-strength

models within the power series family have been explored empirically. The estimated posterior
risks for those different combinations have been found.
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For computation, we draw 71 (1) independent observations from the prior distribution(s)
of the parameters of the stress (strength) distribution(s). For different combinations of those
hyper-parameters of the stress (strength) distributions considered, the hyper-parameters are so
chosen that the expected value of the parameters is equal to the values of the parameters selected
combinations in [6]. We draw a random sample from the distribution(s) of the stress (strength)
distribution(s). Then we compute R ser, Rpr and their estimated posterior risk, where R spr and
Rpy are the Bayesian estimates under squared error and precautionary loss functions. All these
calculations are done using R-Software, and two representative tables are reported in Tables [6|—{7]
for space limitation. Some more tables are prepared and may be available from the corresponding
author on request. The figures of the tables compared to [6]. We can say that the estimates under
the Bayesian method are closer than those under MLE and UMVUE. Also, the estimated posterior
risks under the empirical Bayesian method are smaller than the variance of UMVUE and the MSE
of the MLE. So, we can infer that the Bayesian estimation gives better estimates than the MLE
and UMVUE.

7. REeAL LirE DATA ANALYSIS

We have provided a real dataset as an application of the stress-strength reliability model, which is
related to soccer matches where the defenders and the goalkeeper are responsible for not allowing
the opposition to score goals. They protect the team from continuous attacks from the opponent
team. The number of goals conceded by the team can be treated as the stress put on the system’s
defence, whereas the number of goals saved by the defence acts as the strength of the team’s
defence. We want to estimate the reliability of the team’s defence, i.e.,, R = P(X < Y), where X is
the stress on the system, and Y is the system’s strength. We have considered the same dataset
used in [6], where Manchester United played 38 matches against various teams of the EPL in the
season 2017-2018. The data is presented in the Table

Among those 38 matches, in 33 matches, they have saved more goals than they conceded. So,

Table 8: EPL data for Manchester United during 2017-2018

Match Goals conceded Goals saved | Match  Goals conceded Goals saved
1 0 1 20 2 0
2 0 0 21 0 3
3 0 4 22 0 0
4 2 3 23 0 5
5 0 3 24 0 3
6 0 4 25 2 4
7 0 1 26 0 0
8 0 5 27 1 2
9 2 1 28 1 6
10 0 4 29 2 6
11 1 7 30 1 1
12 1 4 31 0 2
13 0 2 32 2 4
14 2 1 33 1 3
15 1 0 34 0 2
16 2 5 35 1 2
17 0 7 36 1 3
18 1 4 37 0 2
19 2 1 38 0 3

in about 86% cases, the defence system has worked above the stress given by the opposition.
The reliability of the system is estimated using the theory defined above. The data are discrete.
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The authors have shown that the "number of goals conceded" follows a geometric distribution,
whereas the "number of goals saved" follows the Poisson distribution. We have found the
estimates of R under SEL and PL as Rgg;= 0.84683 and Rpy = 0.84737 with estimated posterior
risks 5.91 x 10~% and 6.98 * 10~*, respectively.

8. CONCLUDING REMARKS

In this article, the Bayesian estimation of R = P(X < Y) has been considered when X and Y
belong to a power-series family of distributions under two loss functions: (i) squared error loss, a
symmetric and (ii) precautionary loss, an asymmetric one. The conjugate prior distribution(s) of
the parameter(s) are chosen for deriving the Bayes estimates of R. Though the prior distributions
are assumed to be known, the practice is not such. Generally, the prior distribution(s) parameters
are estimated based on observations. The empirical Bayes method has been used to estimate the
prior parameters and hence get the estimate of R. Simulation study results slightly favour the
Bayes estimate of R under SEL than that under PL concerning estimated posterior risk sense.
Data analysis result also affirms this. Scientists and practitioners are recommended to use the
proposed Bayes estimate of R.
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