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Abstract 

Reliability characteristics of repairable systems have been studied in the past in great detail by 

numerous researchers.  Their findings are based mainly on the significant assumption that the 

repairs are carried out by one or more repair facilities, and the process of repair renews the 

functional behavior of the components or units in the system.  In other words, the statistical 

properties of the components or units can be restored by carrying out the repair upon failure.  This 

means that failed units may be treated “as good as new” after each repair.   In many practical 

situations we observe that in the process of making a unit as good-as-new, considerable damage will 

be done to the operational ability of the repair facility, which may reflect upon the repair rates of the 

units in subsequent repairs.  Intuitively, we expect that the average repair time of a unit to increase 

after each repair. This paper makes an attempt to incorporate these concepts in a two unit warm 

standby redundant system in which the efficiency, equivalently, repair capacity of the repair facility 

decreases upon each repair.   Subsequently, the process of repair may not contribute significantly in 

improving the system reliability.  In order to increase the system reliability and that the system 

might be available in the long run, an optimum replacement of the repair facility in terms of the 

mean time to system failure (MTSF) is suggested. 

Keywords: Reliability, repair facility, warm standby redundant system, optimum 

replacement, Mean time to system failure. 

I. Introduction

A great majority of real systems are repaired after they fail rather than replaced in toto.  Jensen and 

Petersen [8] identified Printed Circuit Board (PCB) as a good example for repairable systems.   This 

is not particularly so since failed PCB’s are often discarded and replaced by new ones. 

Nevertheless, it does emphasize the point that the systems such as sonar systems, radar systems or 

communication systems of which PCB’s form a small proportion are certainly repaired rather than 

discarded.  Repair maintenance is sought to increase the Mean Time To System Failure (MTSF) vis-

à-vis system reliability.  In addition to standby redundancy, repair maintenance is often resorted to 

improve the system reliability.  System components or units are repaired upon their failure. 

Operable standbys are switched over to online for efficient functioning of the system, during the 

repair of the online failed units. 

Late Dr. K. Shankar Bhat 

178



Miriam Kalpana Simon       RT&A, No 2 (78) 

STOCH. ANAL. OF COMPLEX SYSTEM Volume 19, June 2024 

One of the important objectives of a system engineer is to resort to repair maintenance that 

increases the mean time to system failure by removing the bottle necks or constrains hindering on 

the improvement of the system reliability.  System performance and reliability characteristics have 

been studied for such systems by great many researchers. Bhat, Gururajan and Nayak [1] provided 

the availability and reliability measures and the MTBF of a two-unit cold standby system 

supported by a single repair facility. Cao and Wu [3] obtained reliability quantities of the system 

and the repair facility of a two-dissimilar-unit cold standby system where the repair facility is 

subject to failure and can be replaced by a new one after it fails.  

Chaudhary, Sharma and Gupta [4] deals with a system composed of two-non identical units 

and a single repairman when the joint distribution of failure and repair times for each unit is 

bivariate exponential distribution. The stochastic analysis of a two-identical unit cold standby 

system wherein a single repair facility appears in and disappears from the system randomly is 

considered by Gupta and Bhardwaj [5].  

Gupta and Tyagi [6] discusses the stochastic analysis of a two identical unit cold standby 

system model with a single repairman depending upon the perfect and imperfect environment. 

Reliability, availability and interval reliability measures of a two-unit warm standby system with a 

single repair facility wherein the lifetime of the functioning unit has a general distribution, while 

the standby unit has a phase-type distribution is derived by Gururajan and Srinivasan [7]. 

Kumar, Malik and Nandal [9] described the stochastic analysis of a repairable system 

consisting of two non-identical units with a single repairman and the distribution for failure rates 

of the units has been considered as negative exponential while arbitrary distributions have been 

taken for repair and treatment rates. A warm standby repairable system including two dissimilar 

units, one repairman and imperfect switching mechanism is studied by Sadeghi and Roghanian 

[11]. 

A well accounted bibliography in this direction is  also found in Osaki and Nakagawa [10], 

Srinivasan and Subramanian [12] and Bhat and Gururajan [2].  Their findings are based mainly on 

the noteworthy assumption that the repairs are carried out by one or more repair facilities, and the 

process of repair renews the functional behavior of the components or units in the system.  In other 

words, the statistical properties of the components or units can be restored by carrying out the 

repair upon failure.  This means that failed units may be treated “as-good-as-new” after each 

repair.  In many practical situations we observe that in the process of making a unit as-good-as-

new, considerable damage may be done to the operational ability of the repair facility, which may 

reflect upon the repair rates of the units in subsequent repairs.  Instinctively, we expect that the 

average repair time of a unit to increase after each repair.  At one stage the repair facility will have 

little contribution to our desire of increasing the system reliability.  At this stage it is worthwhile to 

replace the repair facility by a new one.  This paper incorporates the above mentioned ideas in a 

two unit warm standby repairable system and arrives at an optimum replacement policy, clearly 

indicating the stage of replacement as a function of MTSF. 

II. System Description

Let us characterize the complex two unit standby redundant repairable system under study. 

[01] The system consists of two dissimilar units having same statistical properties.  The

units are labeled as 𝑈1 and 𝑈2.  Initially, 𝑈1 is put online and 𝑈2 is kept as a warm standby.

Whenever a unit fails while functioning online the standby unit is switched over to online

for functioning, and the online failed unit is sent for repair.
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[02] The unit that is kept in standby is vulnerable to failure.  This unit is sent to repair upon

failure in the standby state, and is restored immediately after the completion of its repair.

[03] There are two repair facilities RF1 and RF2.  Online failed units are repaired using RF1

and standby failed units are repaired using RF2.

[04] The repair time distribution of online failed unit (in RF1) is different on each failure.

Furthermore, it is assumed that the repair rate of each unit increases as the number of

repair increases.  In other words, the efficiency of the repair facility decreases after each

repair completion.  On the other hand, a unit that is failed in the standby state is as-good-

as-new after repair

[05] The operational ability of the repair facility is considered not satisfactory once it

completes 2𝑘 number of repairs.

[06] A unit that has completed 2𝑘𝑡ℎ repair may not help us in our objective of improvement

of the system reliability.  At this stage, a replacement policy for the repair facility may be

considered feasible.

[07] All switchover times involved in the system operation are negligible and the switch

that performs the switchover operation is immune to failure.

III. Notation

𝑓𝑖(. ), 𝐹𝑖(. ), 𝐹̅𝑖(. )  𝑝. 𝑑. 𝑓, 𝑐. 𝑑. 𝑓, 𝑠. 𝑓 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖,   𝑖 =  1, 2 
𝑔𝑖𝑗(. ), 𝐺𝑖𝑗(. )  𝑝. 𝑑. 𝑓, 𝑐. 𝑑. 𝑓 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑤ℎ𝑖𝑙𝑒 𝑢𝑛𝑑𝑒𝑟𝑡𝑎𝑘𝑖𝑛𝑔 𝑟𝑒𝑝𝑎𝑖𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑡𝑖𝑚𝑒,  𝑗 =  1, 2, …   

𝑖 =  1, 2 

IV. Stochastic Behaviour of the Standby Unit

During the failure free operation of the one unit online, the behavior of the standby unit can be 

completely described by a stochastic process {𝑄𝑖𝑗(𝑡), 𝑡 >  0}. 

𝑄𝑖𝑗(𝑡) 𝑡 = 𝑃𝑟 {𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑢𝑛𝑖𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑎𝑡 𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑡ℎ𝑎𝑡 𝑖𝑡 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑖𝑛 (−𝑡, 0)} 

𝑖, 𝑗 =  𝑂, 𝐹;  𝑂 =  𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒, 𝐹 =  𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟 (1) 

We observe that the time spent in the state 𝑂 and 𝐹 by the standby unit forms an alternating 

renewal process whose transition probabilities may be described through the functions 𝑄𝑖𝑗(𝑡).   

Thus, the transition probabilities represented through 𝑄𝑖𝑗(. ) are evaluated as 

𝑄𝑂𝑂(𝑡) = [ + 𝑒−(+)𝑡][ +  ]−1; 𝑄𝑂𝐹(𝑡)  = 1– 𝑄𝑂𝑂(𝑡)     (2) 

𝑄𝑂𝐹(𝑡) = [ − 𝑒−(+)𝑡][ +  ]−1; 𝑄𝐹𝐹(𝑡) = 1– 𝑄𝐹𝑂(𝑡)       (3) 

We observe that the function 𝑄𝑂𝑂(𝑡) is the p-function of the Kingman’s regenerative 

phenomenon.  Since these functions find repeated usage in our discussion, we provide their 

Laplace Stieltjes Transforms. 

𝑄𝑂𝑂
∗ (𝑠) =

 

 [(+)𝑠]
+



 [(+)(𝑠++)]
 (4) 

𝑄𝐹𝑂
∗ (𝑠) =



 [(+)𝑠]
−



 [(+)(𝑠++)]
 (5) 

𝑄𝑂𝐹
∗ (𝑠) =



 [(+)𝑠]
−



[(+)(𝑠++)]
 (6) 

𝑄𝑂𝑂
∗ (𝑠) =



[(+)𝑠]
+



[(+)(𝑠++)]
(7)
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V. Reliability Analysis

In our effort to characterize the system we define the following events: 

𝑖,0: 𝑒𝑣𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑢𝑛𝑖𝑡 𝑖, 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑛𝑜𝑡 𝑔𝑜𝑛𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑛𝑦 𝑟𝑒𝑝𝑎𝑖𝑟 𝑡𝑖𝑙𝑙 𝑡ℎ𝑒𝑛, 𝑗𝑢𝑠𝑡 𝑏𝑒𝑔𝑖𝑛𝑠 𝑡𝑜 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝑜𝑛𝑙𝑖𝑛𝑒 

     𝑖 = 1,2 
 𝑖,1: 𝑒𝑣𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑗𝑡ℎ 𝑟𝑒𝑝𝑎𝑖𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑗𝑢𝑠𝑡 𝑏𝑒𝑔𝑖𝑛𝑠;  𝑎𝑡 𝑡ℎ𝑖𝑠 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑢𝑛𝑖𝑡 𝑖𝑠 𝑝𝑢𝑡 𝑜𝑛𝑙𝑖𝑛𝑒 

 𝑖 = 1, 2;  𝑗 =  1, 2, … , 𝑘. 

These events, constituting themselves into a regenerative process, facilitate us to trace the 

behavior of the system completely on a time horizon.  For the system to be continuously operable 

in (0, 𝑡], it is necessary that at the instant of failure of unit 𝑖, unit (3 − 𝑖) should be in operable 

condition.  To facilitate this, the following auxiliary, system down forbidding functions are defined. 

𝑃𝑟(𝑗, 𝑡)𝑡 = Pr {1,𝑗+1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛 (0, 𝑡] / 2,𝑗 𝑎𝑡 𝑡

= 0} 

 𝑗 =  1, 2, …  𝑘 − 1          (8) 

We observe that the function Pr(j, t) t represents the pdf of the time interval between 

2 , j and 1 , j+1 events.  Further 

𝑄𝑟(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗+1𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛(0, 𝑡]/1,𝑗+1𝑎𝑡 𝑡 = 0} 

𝑗 =  1, 2, …  𝑘 − 1          (9) 

𝐻𝑟(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛(0, 𝑡] /2,𝑗−1 𝑎𝑡 𝑡 = 0} 

 𝑗 =  1, 2, …  𝑘      (10) 

We notice that 𝐻𝑟(𝑗, 𝑡) 𝑡 represents the pdf of the time interval between two successive 2 

events.  Similarly, 


𝑟
(𝑗, 𝑡)𝑡 =  𝑃𝑟{2,𝑗  𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛 (0, 𝑡]/2,0 𝑎𝑡 𝑡 = 0}

𝑗 =  1, 2, …  𝑘     (11) 

We observe that the functions (9) and (10) are system down forbidding functions in the sense 

that a system down is not acceptable between the occurrences of two events.  These functions are 

evaluated with the help of regenerative events 𝑖𝑗 observing that, at the instant of failure of 𝑈1 at 

which epoch 𝑈2 has completed its 𝑗𝑡ℎ repair and is found in operable condition in its standby state.   

Thus, the pdf’s between two successive events are 

𝑃𝑟(𝑗, 𝑡) = 𝑓1(𝑡){𝐺2,𝑗(𝑡)© [ +  𝑒−(+)𝑡][ + ]−1}      𝑗 =  1, 2, …  𝑘  (12)    

𝑄𝑟(𝑗, 𝑡) = 𝑓2(𝑡){𝐺1,𝑗+1(𝑡)© [ +  𝑒−(+)𝑡][ + ]−1}   𝑗 = 1, 2, …  𝑘 − 1    (13)  

The pdf between successive regenerative events are obtained using the forward recurrence 

relation between the P and Q functions and also between H and  functions Thus 

 𝐻𝑟(𝑗, 𝑡) = 𝑃𝑟(𝑗 − 1 , 𝑡) © 𝑄𝑟(𝑗 − 1 , 𝑡)  𝑗 =  2, 3, …  𝑘     (14) 

 
𝑟
(𝑗, 𝑡) = 

𝑟
(𝑗 − 1 , 𝑡) © 𝐻𝑟(𝑗 , 𝑡)  𝑗 =  2, 3, …  𝑘    (15) 

 
𝑟
(1, 𝑡) = 𝐻𝑟(1 , 𝑡)  (16) 

where 𝐻𝑟(1, 𝑡) = 𝑓2(𝑡) {𝐺1,1(𝑡) © [ +  𝑒−(+)𝑡][ + ]−1}.
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Observing that a unit switched online after repair at which epoch the repair of the other unit 

commences, is a point of regeneration, we are in a position to write an expression for the reliability 

function of the system.  The reliability function 𝑅(𝑡, 𝑘) of the system is given by 

𝑅(𝑡, 𝑘)  =  𝐹̅1(𝑡) + 𝑓1(𝑡) 𝑄𝑂𝑂(𝑡)© 𝐹̅2(𝑡) + 𝑓1(𝑡)𝑄𝑂𝑂(𝑡)© 
𝑟
(𝑗, 𝑡)© {𝐹̅1(𝑡) + 𝑃𝑟(𝑗, 𝑡) © 𝐹̅2(𝑡)}

 𝑗 =  1, 2, …  𝑘      (17) 

The expression (17) is obtained by considering the following mutually exclusive and 

exhaustive cases: 

(a) 𝑈1, which is fresh and has not gone through any repairs, does not fail before 𝑡.

(b) 𝑈2, that is instantaneously switched over from standby and has not gone through any repair till

then, does not fail before 𝑡.

(c) 𝑈𝑖 while operating online after 𝑗𝑡ℎ repair (𝑗 =  1, 2, …  𝑘) does not fail before t.

VI. Availability Analysis

The following auxiliary system-down allowing functions are defined to obtain p.d.f. of time 

intervals between 𝑖,𝑗 events. 

 𝑃𝑎(𝑗, 𝑡)𝑡 = 𝑃𝑟{1,𝑗+1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/2,𝑗  𝑎𝑡 𝑡 =  0}    𝑗 = 1, 2, …  𝑘 − 1   (18) 

 𝑄𝑎(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗+1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/1,𝑗+1 𝑎𝑡 𝑡 =  0}   𝑗 = 1, 2, …  𝑘 − 1   (19) 

𝐻𝑎(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗  𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/2,𝑗−1 𝑎𝑡 𝑡 =  0}           𝑗 = 1, 2, …  𝑘    (20) 

 
𝑎

(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/2,0𝑎𝑡 𝑡 =  0}    𝑗 = 1, 2, …  𝑘          (21) 

Schematic representation of system behavior between 𝜔2,𝑗 and 𝜔1,𝑗+1 events is shown in Figure 1. 

 

Figure 1: A Schematic Representation of Evaluation of Pa(j,t) 

𝜔2𝑗 𝑎𝑡 𝑡 = 0 

Online unit 1 fails at u 

The jth repair of unit 2 is 

is not over before u 

and will be over at v 
over before u 

The standby unit is 

Operable 
under repair 

The repair is 

over at v

𝜔1,𝑗+1𝑎𝑡(𝑡, 𝑡 + 𝛿𝑡) 
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We observe that the functions [18] and [19] are system down allowing functions. We scrutinize 

the first possibility that, at the instant of failure of 𝑈1, 𝑈2 has complete its 𝑗𝑡ℎ repair and is found in 

operable condition in its standby state.  The term that corresponds to this possibility is: 

𝑓1(𝑡)[𝐺2,𝑗(𝑡) © {[ + 𝑒−(+)𝑡][ + ]−1}]     𝑗 = 1, 2, …  𝑘 

The second possibility corresponds to the situation when the online 𝑈1 fails at 𝑢, at this time 

point 𝑈2 is found ‘not in operable condition’ and is undergoing repair.  The unit is switched over to 

online for its operation at the epoch of the repair completion.  Thus, the term that corresponds to 

this possibility is: 

𝑓1(𝑡)[𝐺2,𝑗(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1}© 𝑒−𝑡]     𝑗 = 1, 2, …  𝑘 

Thirdly, when online 𝑈1 fails at 𝑢, the  𝑗𝑡ℎ repair of 𝑈2 is not over before 𝑢 and the same will be 

over at 𝑣, 𝑣 >  𝑢.  This probability is given by 

𝐹1(𝑡)𝑔2,𝑗(𝑡)                                                                                            𝑗 = 1, 2, …  𝑘 

Thus, in its totality, the pdf of the time interval between a 2,𝑗 event and 1,𝑗+1 event is given 

by 

𝑃𝑎(𝑗, 𝑡) = 𝑓1(𝑡)[𝐺2,𝑗(𝑡)© {[ + 𝑒−(+)𝑡][ + ]−1}] + 𝑓1(𝑡){𝐺2,𝑗(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1}© 𝑒−𝑡]

+𝐹1(𝑡)[𝑔2,𝑗(𝑡)]                                                                         𝑗 = 1, 2, …  𝑘                (22) 

Similarly, 

𝑄𝑎(𝑗, 𝑡) = 𝑓2(𝑡){𝐺1,𝑗+1(𝑡)©{[ + 𝑒−(+)𝑡][ + ]−1}] + 𝑓2(𝑡){𝐺1,𝑗+1(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1}

     © 𝑒−𝑡] + 𝐹2(𝑡)[𝑔1,𝑗+1(𝑡)]                                                                     𝑗 = 1, 2, …  𝑘 − 1        (23) 

By means of (22) and (23) we obtain, 

𝐻𝑎(𝑗, 𝑡) = 𝑃𝑎(𝑗 − 1, 𝑡)©𝑄𝑎(𝑗 − 1, 𝑡)   𝑗 = 2,3, …  𝑘          (24) 


𝑎

(𝑗, 𝑡) = 
𝑎

(𝑗 − 1, 𝑡)©𝐻𝑎(𝑗, 𝑡)  𝑗 = 2,3, …  𝑘          (25) 


𝑎

(1, 𝑡) = 𝐻𝑎(1, 𝑡)   (26) 

where 

𝐻𝑎(1, 𝑡) = 𝑓2(𝑡)[𝐺1,1(𝑡)©{[ + 𝑒−(+)𝑡][ + ]−1}] + 𝑓2(𝑡)[𝐺1,1(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1 }©𝑒−𝑡]

+𝐹2(𝑡)[𝑔1,1(𝑡)]

The availability function 𝐴(𝑡, 𝑘) of the system is derived by taking into consideration the 

following mutually exclusive and exhaustive cases: 

(a) 𝑈1, which is fresh and has not gone through any repairs, does not fail before 𝑡.

(b) 𝑈2, that is instantaneously switched over from standby and has not gone through any repair till

then, does not fail before 𝑡.

(c) 𝑈𝑖 while operating online after  𝑗𝑡ℎ repair (𝑗 =  1, 2, …  𝑘) does not fail before 𝑡.

𝐴(𝑡, 𝑘) = 𝐹̅1(𝑡) + 𝑓1(𝑡)[𝑄𝑂𝑂(𝑡) + 𝑄𝑂𝐹(𝑡)©𝑒−𝑡}© 𝐹̅2(𝑡) + 𝑓1(𝑡)[𝑄𝑂𝑂(𝑡) + 𝑄𝑂𝐹(𝑡)©𝑒−𝑡]©
𝑎

(𝑗, 𝑡)

   © {𝐹̅1(𝑡) + 𝑃𝑎(𝑗, 𝑡)©𝐹̅2(𝑡) }                                                        𝑗 = 1, 2, …  𝑘 (27)
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VII. Mean Time To System Failure

In the analysis of the system we have assumed arbitrary failure time and repair time distributions 

for the units while working online.  For the purpose of illustration we consider a model in which 

both the units are identical by virtue of their statistical properties and their failure time 

distributions are exponential.  In addition to the assumptions made for the standby unit, we 

formalize the failure time and repair time distributions of the online units. 

𝑓𝑖(𝑡) = 𝑒−𝑡     >  0, i =  1,2

𝑔𝑖𝑗(𝑡) = 
𝑗
𝑒−𝜇𝑗𝑡 

𝑗
> 0, 𝑖 =  1, 2 ;  𝑗 = 1, 2, …  𝑘

The integral equations given in (17) are solved using Laplace transform technique and 

𝑅∗(𝑠, 𝑘 ), the Laplace transform of 𝑅(𝑡, 𝑘) is: 

𝑅∗(𝑠, 𝑘 ) =
1

𝑠+𝜆
+

𝜆ℎ(𝑠)

𝑠+𝜆
+ 𝜆ℎ(𝑠) ∑ 𝐿1

𝑅(𝑠) ∏ 𝐿𝑛
𝑅 (𝑠)

𝑗
𝑛=2

𝑘
𝑗=1 [

1

𝑠+𝜆
+

𝜆𝜇𝑗ℎ(𝑠)

(𝑠+𝜆)3(𝑠+𝜆+𝜇𝑗)
]     (28) 

where  𝐿1
𝑅(𝑠) =  

𝜆𝜇1ℎ(𝑠)

(𝑠+𝜆)(𝑠+𝜆+𝜇𝑗)
, 𝐿𝑛

𝑅 (𝑠) =
𝜆2𝜇𝑛𝜇𝑛−1[ℎ(𝑠)]2

(𝑠+𝜆)2(𝑠+𝜆+𝜇𝑛)(𝑠+𝜆+𝜇𝑛−1)
 and  ℎ(𝑠) =

1

(𝛼+𝛽)
[

𝛽

(𝑠+𝜆)
+

𝛼

(𝑠+𝜆+𝛼+𝛽)
] 

We observe that 𝑅∗(𝑠, 𝑘) is a rational function of its arguments and can be easily inverted for 

small values of 𝑘.   Thus, the reliability can be explicitly computed for small values of k. 

The Mean Time To System Failure (MTSF) is given by 

𝑅∗(0, 𝑘 ) =
1

𝜆
+ ℎ(0) + ℎ(0) ∑ 𝐿1

𝑅(0) ∏ 𝐿𝑛
𝑅 (0)

𝑗
𝑛=2

𝑘
𝑗=1 [1 +

ℎ(0)

1+𝜂𝑗)
]    (29) 

where  𝐿1
𝑅(0) =  

ℎ(0)

1+𝜂1
. 𝐿𝑛

𝑅 (0) =
[ℎ(0)]2

(1+𝜂𝑛)(1+𝜂𝑛−1)
,    ℎ(𝑠) =

1

(𝛼+𝛽)
[

𝛽

𝜆
+

𝛼

𝜆+𝛼+𝛽
] and  𝜂𝑗 =

𝜆

𝜇𝑗

A coding is written for the precise evaluation of R*(0, k).  The program evaluates the MTSF for 

specified values of the parameters.  As a function of t and k, MTSF is evaluated for specific values 

of the parameters and are tabulated in Table 1.   

Table 1: MTSF of the system for the parameters(, , , ) = (0.95, 50, 10, 40) 

k MTSF = R*(0) k MTSF = R*(0) 

1 3.1756 21 6.2046 

2 4.0626 22 6.2056 

3 4.6862 24 6.2028 

4 5.1269 26 6.2075 

6 5.6607 27 6.2077 

8 5.9303 28 6.2078 

10 6.0669 30 6.2079 

12 6.1362 32 6.2080 

13 6.1568 33 6.2081 

15 6.1820 34 6.2081 

16 6.1895 35 6.2081 

18 6.1986 36 6.2081 

19 6.2013 37 6.2081 

20 6.2033 38 6.2081 

184



Miriam Kalpana Simon       RT&A, No 2 (78) 

STOCH. ANAL. OF COMPLEX SYSTEM Volume 19, June 2024 

The graphical representation of 𝑅∗(0, 𝑘 ) for specific values of parameters is depicted in Figure 2. 

Figure 2: Graphical Representation of the MTSF for (λ, μ, α, β) = (0.95, 50, 10, 40) 

The graph clearly indicates that there is no improvement in MTSF once it completes 2k = 34 

repairs.  Intuitively one would conclude that it is not worthwhile to retain the repair facility once it 

completes 2k = 34 repairs.  Consequently, we suggest at this stage that the repair facility should be 

replaced by a new one in order to increase the system performance and to make the system to be 

available in the long run. 

VIII. A Provision for Replacement of Repair Facility

A wise strategy suggests that when a repair facility is unable to perform its operation it should be 

scrapped.  If one follows this strategy the system becomes unavailable in the long run.  However, a 

prudent policy is to replace the repair facility by a new one so that the system might be available in 

the long run.  When a repair facility completes 2k repairs, it is replaced by a similar new repair 

facility.  The variable k realizes into a number at which MTSF stabilizes in the sense that  

𝑅∗(0, 𝑘) = 𝑅∗(0, 𝑘 + 𝑟),   𝑟 =  1, 2, 3 …  (30) 

The policy of replacement is as follows: 

“After nk-th repair completion of unit 1, the old repair facility is scrapped and a new repair facility 

is introduced.  Here n denotes the number of such replacements, 

n  1.  We suggest replacement of repair facility only and not operable units.  When a unit, while 

operating online after nk-th repair, fails, it is switched over to the new repair facility; at this epoch 

an operable standby is instantaneously switched online.” 

I. Reliability Analysis of the Modified System

Let us define 
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
𝑟
(0, 𝑡)𝑡 = 𝑃𝑟{1,1𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛(0, 𝑡]/1,1𝑎𝑡 𝑡 = 0} (31)

The function 
𝑟
(0, 𝑡) is the pdf of time interval between two successive 1,1 events, during

which the system being operable between these two events. Thus 


𝑟
(0, 𝑡) = 

𝑟
(𝑘, 𝑡)©[𝑔2,𝑘(𝑡)©{[ + 𝑒−(+)𝑡 ][ + ]−1}]𝑓1(𝑡)  (32) 

The reliability function of the modified system is given by 

𝑅1(𝑡, 𝑘) =1 𝑅1(𝑡, 𝑘) + [∑{
𝑟
(0, 𝑡)}

𝑛
∞

𝑛=1

]©{𝐹̅2(𝑡) + ∑ 
𝑟
(𝑗, 𝑡)

𝑘

𝑗=1

{𝐹̅1(𝑡) + {𝑔2,𝑘(𝑡)©𝑄𝑂𝑂(𝑡)}𝑓1(𝑡)©𝐹̅2(𝑡)}} 

(33) 

where 1R1(t, k) is the expression given in the right hand side of (17).  The equation (33) is derived by 

considering the following mutually exclusive and exhaustive possibilities 

(a) the interval (0, t] is not intercepted by an 1, 1 event.

(b) the interval (0, t] is intercepted by at least one 1, 1 event.

II. Availability Analysis of the Modified System

The pdf of time interval between system-down allowing regenerative events is evaluated through 


𝑎

(0, 𝑡)𝑡 = 𝑃𝑟{1,1𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑡, 𝑡 + 𝑡)/1,1 𝑎𝑡 𝑡 = 0}  (34) 

and is given by 


𝑎

(0, 𝑡) = 
𝑎

(𝑘, 𝑡)© [{𝑔2,𝑘(𝑡)©𝑄𝑂𝑂(𝑡)}𝑓1(𝑡) + {𝑔2,𝑘(𝑡)© 𝑄𝑂𝐹(𝑡)©𝑒−𝑡}𝐹1(𝑡)]   (35) 

Arguments that lead to the derivation of (19) will give us the availability function of the 

system with a provision for a replacement of repair facility.  Thus, 

𝐴1(𝑡, 𝑘) =1 𝐴1(𝑡. 𝑘) + ∑[{
𝑎

(0, 𝑡)}
𝑛

]

∞

𝑛=1

©{𝐹̅2(𝑡) + ∑ 
𝑎

(𝑗, 𝑡)

𝑘

𝑗=1

{𝐹̅1(𝑡) + [{𝑔2,𝑘(𝑡)© 𝑄𝑂𝑂(𝑡)}𝑓1(𝑡) 

      +{𝑔2,𝑘(𝑡)© 𝑄𝑂𝐹(𝑡)©𝑒−𝑡}𝐹1(𝑡)]© 𝐹̅2(𝑡)}}           (36) 

where 1A1(t, k) is the expression given on the right hand side of (27). 

The steady state availability of the system is given by 

𝐴∞ = lim
𝑡→∞

𝐴(𝑡) = lim
𝑠→0

𝐴∗(𝑠) 
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