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congestion, researchers must concentrate their efforts on developing models and processes to address the issue. 
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The distribution of unscheduled capacity corresponding to the difference between current and forecast values 
should be carried out according to the criterion of minimum costs for the units involved to cover this capacity. In 
operational management, the optimization of power distribution is the process of adjusting the regime for active 
power, obtained during its short-term planning and optimization. Some of the optimization parameters, such as 
the relative increase in energy consumption and a measure of the efficiency of the use of water resources, can be 
determined in the optimization of short-term regimes and used in the optimization of operational regimes. Other 
parameters included in the operational optimization equation are either calculated during operational control 
using telemetered parameters, or are set. During the operational optimization of the regime, unscheduled power 
between stations must be distributed in such a way as to ensure the same relative increases in energy consumption 
at power plant units, taking into account the relative increases in power losses in the network from the power of 
these stations. The article considers a comparison of two methods for the operational assessment of the relative 
increments of power losses for the tasks of operational optimization of the mode by active power.  
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Rani R and Indhira K 

The transient and metaheuristic cost analysis of a MX/G(a, b)/1 retrial queue with random failure during an 
extended Bernoulli vacation with impatient clients is covered in this study. Any batch that arrives and discovers 
the server is busy, down, or on vacation joins an orbit. In the alternative, only one new customer from the group 
joins the service right away, while the others join the orbit. After providing each service, the server either waits 
to serve the following customer with probability (1 − θ) or goes on vacation with probability θ. It has been found 
that these systems express steady-state solutions and are dependent on time probability generating functions in 
consideration of their Laplace transforms. We also discuss a few exceptional and particular instances. After that, 
the impact of different parameters on the system’s effectiveness is evaluated. We are also talking about ANFIS. 
Additional approaches employed in this study to swiftly determine the system’s optimum cost include genetic 
algorithms (GA), artificial bee colonies (ABC), and particle swarm optimization (PSO). We also examined the 
graph-based convergence of several optimization algorithms. 
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The main aspects of the use of automatic monitoring and control systems in order to increase the reliability of 
power lines are considered. The article highlights modern technologies and techniques that make it possible to 
quickly identify and prevent possible emergency situations on power transmission lines. The advantages of 
automated systems compared to traditional monitoring and control methods are discussed, and examples of 
research and practical applications of such systems are presented. The results obtained can be useful for energy 
specialists and engineers involved in the design, operation and maintenance of power transmission lines, as well 
as for developers and manufacturers of automated monitoring and control systems.  
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This paper pictures the importance and the generalization of a new family of distribution developed on Triangle 
distribution. The new family provides some useful expansions, properties and a suitable alternative to some of 
existing models with same and higher number of parameters. Exponential distribution (one parameter) and 
Inverse Weibull distribution (Two parameter) play the role of sub-models. This new family distribution is used 
as a statistical model to estimate the parameters using the maximum likelihood estimation method. A complete 
study of Percentage points has been tabled. Two real-world data sets are investigated, demonstrating the 
suggested model's capacity to fit a variety of data sets along with some other models.  

RESEARCH OF ELECTROMECHANICAL DEVICES WITH LEVITATION 

ELEMENTS IN CONTROL SYSTEMS  .......................................................................................................  85 

G.S. Kerimzade, G.V. Mamedova 

The work examines the main technical indicators of electromechanical converters callers with levitation elements, 
a generalized design method has been developed tions, as well as design diagrams and functional dependencies of 
the main varieties of electromechanical devices with elements of levitation. Analytical expressions for the 
levitation coefficient as a function of the dimensions of the magnetic core and coefficient factor of force 
multiplicity, technical characteristics of levitation material element, set superheat temperature. A mathematical 
model has been compiled for based on the parameters of the current mode and forces from the equations of 
electrical, magnetic, mechanical and thermal circuits of the magnetic system. As a result, the main dimensions 
of the magnetic system and dimensionless quantities. Analytic expressions for the main dimensions, the specified 
values of the winding overheating temperature are taken into account, input and output parameters, the condition 
of uniformity of the magnetic field in the working air nom gap. The optimal values of the dimensions of the 
magnetic circuit, active resistors have been determined winding voltages are minimal, resulting in minimization 
of losses active capacities.  
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INCORPORATING CHANGE POINTS BASED ON TESTING EFFORT ............................................  91 
Anup Kumar Behera, Priyanka Agarwal 

This paper proposes a procedure for formulating the software reliability growth model using the non-homogeneous poisson 
process. We consider the software reliability growth model, which includes imperfect debugging, change points, and testing effort. 
Nevertheless, when formulating their software reliability models, the majority of scientists make the assumption of a constant 
detection rate per fault. When software is tested, they all suppose that each fault has an equal chance of being detected and that the 
rate is equal between generations. In practice, the fault detection rate varies depending on the test teams’ abilities, program size, 
and software properties. Troubleshooting, even in the most realistic situations relevant to the error reintroduction rate due to 
incomplete debugging phenomena. In this case, changes in error detection and error introduction rates during software 
development program. Therefore, here we incorporate the generalized logic test workload function and change points. Parameters 
in software reliability modeling. Estimated using the least squares estimation method unknown parameters of the new model. 
Therefore, in our newly proposed model, we collect software testing data. use data from a practical application to illustrate the 
proposed model. Experimental results show that the proposed SRGM framework for imperfect debugging of integrated test jobs 
and change points has fairly accurate prediction capabilities. 
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Rashid A. Ganaie, R. Shenbagaraja, T. Vivekananda3 and Aafaq A. Rather, Manzoor A. Khanday, 
Asgar Ali  

This article introduces an innovative extension of the Juchez distribution, referred to as the length-biased Juchez 
distribution. This distribution, a specific instance of the broader weighted distribution, is thoroughly explored in 
terms of mathematical and statistical properties. Parameter estimation is accomplished through the application 
of maximum likelihood estimation techniques. To highlight the practical significance of this new distribution, a 
comprehensive analysis is conducted using two real-life lifetime datasets. The findings underscore the relevance 
and applicability of the proposed distribution in modeling and analyzing diverse datasets.  
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This paper introduces an optimization approach to impute missing data within the 𝐾-means cluster analysis 
framework. The proposed method has been applied to Philippine climate data over the previous 18 years (2006-
2023) with the goal of classifying the regions according to average annual temperature including the maximum 
and minimum. This dataset contains missing values which is the result of the weather stations’ measurement 
failure for some time and there is no chance of recovery. As an effect, the regional groupings are greatly affected. 
This paper adapts a modified method of missing value imputation suitable for climate data clustering, inspired 
by the work of Bertsimas et al. (2017). The proposed methodology focuses on imputing missing values within 
observations by finding the value that minimizes the distance between the observation and a cluster centroid in 
which the Mahalanobis distance is used as the similarity measure. Consequently, the outcomes of clustering 
obtained through this optimization approach were compared with certain imputation techniques namely Mean 
Imputation, Expectation-Maximization algorithm, and MICE. The assessment of the derived clusters was 
conducted using the silhouette coefficient as the performance metric. Results revealed that the proposed 
imputation gave the highest silhouette scores which means that most of the observations were being clustered 
appropriately as compared to the results using other imputation algorithms. Moreover, it was found out that 
most of the areas showing the features of extreme condition are located in the middle part of the country.  
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WITH STATISTICAL PROPERTIES  ..........................................................................................................  124 

Danish Qayoom, Aafaq A. Rather 

In this study, we employ a weighted transformation approach to introduce a novel model that generalises the 
Transmuted Mukherjee-Islam distribution. The resulting generalized distribution is referred to as the Weighted 
Transmuted Mukherjee-Islam (WTMI) distribution The paper thoroughly explores the probability density 
function (PDF) and the corresponding cumulative distribution function (CDF) associated with the WTMI 
distribution. A thorough investigation of the distinctive structural properties of the proposed model is conducted, 
including survival function, conditional survival function, hazard function, cumulative hazard function, mean 
residual life, moments, moment generating function (MGF), characteristics function (CF), cumulant generating 
function (CGF), likelihood ratio test, ordered statistics, entropy measures, and Bonferroni and Lorenz curves. 
The maximum likelihood estimation method is employed for the precise estimation of model parameters.  
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Soumik Halder, Sudhansu S. Maiti and Mriganka Mouli Chowdhury 

When the probability distributions for the stress (X) and strength (Y) are different members of the power series 
family, the expressions of the stress-strength reliability function, R = P(X ≤ Y), are derived. Apart from stress-
strength reliability, it has applications in statistical tolerancing, measurement of demand-supply system 
performance, genetic trait hereditary measure, bio-equivalence study, etc. The Bayes’ estimates of R under 
squared error and Precautionary losses are derived for various combinations of distributions of X and Y like 
binomial, Poisson, negative binomial, and geometric. As in practice, the availability of prior parameters is 
difficult; the empirical Bayes estimation procedure has been adopted to get their estimates from observed data. 
Simulation results have been reported, and estimates of posterior risks are compared. In the context of real Soccer 
games, the Bayes estimates are enumerated and compared with their classical counterparts. 
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OF ECONOMIC LOSSES DUE TO NATURAL DISASTERS ................................................................  156 

Ashish Jha, Vikas Kumar Sharma, Abhimanyu Singh Yadav 

Natural catastrophes have a tremendous influence on the environment and our economy, which has raised 
significant concerns and spurred scientific research. Several studies have been done to model the economic losses 
brought on by natural disasters. In this article, we primarily concentrate on examining the distributions of 
economic losses resulting from big catastrophes including wildfires, earthquakes, droughts, volcanic eruptions, 
and harsh weather. We recommend utilizing five well-known statistical distributions, including the Weibull, 
Log-logistics, Gamma, Generalized Pareto, and Lognormal distributions since we observe the skewed forms of the 
empirical distributions. We employ the maximum likelihood technique for each distribution for the available data 
sets in order to estimate the distributions. The parameter estimations are numerically computed using the PSO 
method. We select the distribution that best fits the economic losses using the Akaike Information Criterion and 
Kolmogorov-Smirnov statistics. We discovered that the Log-logistic distribution is the distribution that fits the 
total economic losses caused by all-natural disasters the best. 

STOCHASTIC ANALYSIS OF THE UTENSIL INDUSTRY SUBJECT 
TO REPAIR FACILITY ....................................................................................................................................  170 

Hanumanolla Indrasena Reddy, Mohit Yadav and Hemant Kumar 

The availability and profit values of the utensil industry are analyzed using the regenerative point graphical 
technique. The utensil industry contains three different units where two units can work with reduced capacity. 
It is considered that units C and D may be in a complete failed state through partial failure but unit B is in only 
complete failed state. When a unit is completely failed then the system is in failed state. An expert technician is 
available to repair the failed unit. Failure and repair times are independent of each other. The distribution of the 
failure time is general and repair time is exponential. Various parameters such as mean time to system failure, 
availability, busy period of the server, expected number of server visits and profit values are calculated with the 
help of tables. 
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Late Dr. K. Shankar Bhat, Miriam Kalpana Simon 

Reliability characteristics of repairable systems have been studied in the past in great detail by numerous 
researchers. Their findings are based mainly on the significant assumption that the repairs are carried out by one 
or more repair facilities, and the process of repair renews the functional behavior of the components or units in 
the system. In other words, the statistical properties of the components or units can be restored by carrying out 
the repair upon failure. This means that failed units may be treated “as good as new” after each repair. In many 
practical situations we observe that in the process of making a unit as good-as-new, considerable damage will be 
done to the operational ability of the repair facility, which may reflect upon the repair rates of the units in 
subsequent repairs. Intuitively, we expect that the average repair time of a unit to increase after each repair. This 
paper makes an attempt to incorporate these concepts in a two unit warm standby redundant system in which 
the efficiency, equivalently, repair capacity of the repair facility decreases upon each repair. Subsequently, the 
process of repair may not contribute significantly in improving the system reliability. In order to increase the 
system reliability and that the system might be available in the long run, an optimum replacement of the repair 
facility in terms of the mean time to system failure (MTSF) is suggested.  

BAYESIAN ANALYSIS OF EXTENDED MAXWELL-BOLTZMANN 
DISTRIBUTION USING SIMULATED AND REAL-LIFE DATA SETS .............................................  188 

Nuzhat Ahad, S.P. Ahmad, J.A. Reshi 

The objective of the study is to use Bayesian techniques to estimate the scale parameter of the 2Kth order weighted 
Maxwell-Boltzmann distribution (KWMBD). This involved using various prior assumptions such as extended 
Jeffrey’s, Hartigan’s , Inverse-gamma and Inverse-exponential, as well as different loss functions including 
squared error loss function (SELF), precautionary loss function (PLF), Al Bayyati’s loss function (ALBF), and 
Stein’s Loss Function (SLF).The maximum likelihood estimation (MLE) is also obtained. We compared the 
performances of MLE and bayesian estimation under each prior and its associated loss functions. And 
demonstrated the effectiveness of Bayesian estimation through simulation studies and analyzing real-life datasets. 
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S Jayalakshmi, Aleesha A 

An acceptance sampling plan is a sampling procedure with a set of rules for making decisions about a lot of 
products. The decision is based on the number of defectives in a sample. The sampling inspection plans which are 
developed for taking decision about a lot based on lifetime of the product are called reliability sampling plans. In 
this paper, we have developed Acceptance sampling plan (ASP) based on truncated life tests when the lifetime of 
a product follows the exponentiated generalized inverse Rayleigh distribution (EGIR). The minimum sample 
sizes needed to ensure the specified life percentile are obtained for a fixed value of the consumer`s confidence level. 
The operating characteristic values according to the different quality levels are obtained and the minimum ratios 
of the mean life to the specified life are calculated. The important tables based on the suggested acceptance 
sampling plan are calculated and illustrated. 
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EMPIRICAL BAYES ESTIMATES ................................................................................................................  209 

Souradeep Das and Sudhansu S. Maiti 

This article develops a new control chart for the mean using empirical Bayes estimates. We assume that the 
quality characteristic of the proposed control chart follows a normal distribution with unknown mean and 
variance. Both the parameters have known prior probability distributions. In practice, the parameters of priors 
are unknown and are estimated using the empirical Bayes approach. For the performance assessment of the new 
control chart, the Average Run Length (ARL) procedure is used while the process is in control and out of control. 
A real-life example is also considered to evaluate the performance of the proposed control chart. 

COMPARISON OF SINGLE SERVER RETRIAL QUEUING PERFORMANCE  
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S. Aarthi

A single server retrial fuzzy queuing model is presented in this study. An unreliable 𝐹𝑀/𝐹𝑀/1 fuzzy retrial 
queue with a virtually unlimited retrial orbit and a standard queue is investigated. After an unspecified amount 
of time has elapsed and the server is workable and inactive, orbit patrons don't rejoin the regular queue, but 
instead, enter the server momentarily. Customers who arrive and discover the server is engaged or has struggled 
are placed in the regular queue, whereas customers who are disrupted are always placed in orbit. The model's 
prosecution proportions are also calculated in a hazy environment. The main goal of this investigation is to 
compare the efficacy of a single server retrial queuing system based on fuzzy queuing theory and intuitionistic 
fuzzy queuing theory. The arrival, service, failure, orbit, and repair rates are documented using triangular and 
triangular intuitionistic fuzzy numbers. The evaluation metrics for the fuzzy queuing theory model are proffered 
as a range of possible values, whereas the intuitionistic fuzzy queuing theory model encompasses a wide range of 
values. An approach is conducted to discover quality measures using a design protocol in which the fuzzy values 
are left alone and not repurposed to crisp values, allowing us to draw research findings in an ambiguous future. 
Two numerical problems are solved to emphasize the method's protracted survivability.  
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Shivendra Pratap Singh, Surinder Kumar, Naresh Chandra Kabdwal 

In this article, we propose a new length-biased weighted form of Wilson Hilferty distribution named as Length-
Biased Weighted Wilson Hilferty Distribution. The various Statistical properties of the proposed distribution 
like, reliability function, hazard rate function, reverse hazard rate function, moment generating function, 
quantile function, the coefficient of variation etc. are considered to understand its nature. Furthermore, we have 
used the method of maximum likelihood for estimation of the parameters of proposed distribution. Also, we obtain 
the Shannon’s entropy, stochastic ordering, Lorenz and Bonferroni curves. The performance of the proposed 
distribution is compared with competitive distributions using two real data sets.  
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A TWO NON-IDENTICAL UNIT STANDBY SYSTEM WITH CORRELATED 
PREVENTIVE MAINTENANCE TIME AND TIME TO PREVENTIVE  
MAINTENANCE AND INVERSE GAUSSIAN REPAIR TIME DISTRIBUTION  ...........................  247 

Anju Rani, Rakesh Gupta, Pradeep Chaudhary 

The paper deals with the cost benefit analysis of a two non-identical unit cold standby system model with the 
implementation of preventive maintenance (PM) on the priority unit after it has operated for a random duration. 
The objective is to evaluate the economic viability and performance of such system. A single repairman is 
consistently available within the system, responsible for both PM and repair of each failed unit. The priority in 
repair is given to priority (p) unit over ordinary (o) unit. The failure time distribution of each unit is assumed to 
be exponential while the repair time distribution of both the unit is taken as inverse Gaussian. The PM time and 
time to PM of the priority unit are correlated having their joint distributions as bivariate exponential. By 
considering the regenerative point technique, various measures of system effectiveness are obtained.  

ON ESTIMATION AND PREDICTION FOR 
THE XLINDLEY DISTRIBUTION BASED ON RECORD DATA .........................................................  258 

F. Zanjiran, S.M.T.K. MirMostafaee

This paper investigates the estimation of the unknown parameter in the XLindley distribution using record values 
and inter-record times, both in classical and Bayesian frameworks. It also delves into Bayesian prediction of a 
future record value. We also study the problem of estimation and prediction for the XLindley distribution based 
on lower records alone. A simulation study, as well as an analysis of a real data example, are conducted for 
comparison and illustration. The numerical findings underline that including the inter-record times in the study 
may enhance the performance of the estimators and predictors. 

IMPROVED DEGRADATION TEST USING INVERSE 
GAUSSIAN PROCESS FOR SIMPLE STEP-STRESS MODEL  .............................................................  273 

G. Sathya Priyanka, S. Rita, M. Iyappan

The accelerated Degradation testing (ADT) experiments are important technical methods in reliability studies. 
Different type of accelerating degradation models has developed with the time and can be used in different types 
of situations. However, it has become necessary for the manager to test how many numbers of unit should be 
tested at a particular stress level so that the cost of testing is less. Accelerated Degradation testing (ADT) is 
preferred to be used in mechanized industries to obtain the required information about the reliability of product 
components and materials in a short period of time. Accelerated test conditions involve higher than usual 
pressure, temperature, voltage, vibration or any other combination of them. Data collected at such accelerated 
conditions are extrapolated through a physically suitable statistical model to estimate the lifetime distribution at 
design condition stress the life data collected from the high stresses the need to be extrapolated to estimate the life 
distribution under the normal-use condition. A special class of the ADT is the step-stress testing which regularly 
increases the stress levels at some pre-fixed time points until the test unit fails. Such experiments allow the 
experimenter to run the test units at higher-than-usual stress conditions in order to secure failures more quickly. 
The Inverse Gaussian process is flexible in incorporating random effects and explanatory variables. The different 
types of models based on IG process are random drift model, random volatility model and random drift- volatility 
model. In this paper we have considered random drift model for the study on stochastic degradation models for 
simple step-stress model using inverse Gaussian process observed in degradation problems.  
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CONSTRUCTION OF DOUBLE SAMPLING INSPECTION PLANS 
FOR LIFE TESTS BASED ON LOMAX DISTRIBUTION  ......................................................................  282 

A. Pavithra and R. Vijayaraghavan

A life test is a random experiment performed on manufactured products such as electrical and electronic 
components to estimate their life period based on a randomly chosen components. The lifespan of a component is 
considered as a random variable that follows a certain continuous-type distribution, called the lifetime 
distribution. Reliability sampling is one of the decision-making methodologies in product control and deals with 
inspection procedures for sentencing one or more lots or batches of items submitted for inspection. The concept 
of sampling plans for life tests involving with two random samples is employed in the present study under the 
assumption that the lifetime random variable is described by the Lomax distribution. A procedure based on mean 
/ median life criterion is developed for designing the optimum plans with minimum sample sizes when two points 
on the desired operating characteristic curve are prescribed to ensure protection to the producer and the consumer. 

A COMPREHENSIVE STUDY OF LENGTH-BIASED TRANSMUTED DISTRIBUTION  ............  291 

Danish Qayoom, Aafaq A. Rather 

In this study, we explore a new probability distribution termed as the Length-Biased Transmuted Mukherjee-Islam 
(LBTMI) distribution. This exploration enhances the conventional Transmuted Mukherjee-Islam distribution 
by integrating a weighted transformation approach. The paper examines the probability density function and the 
corresponding cumulative distribution function associated with the LBTMI distribution. A comprehensive 
examination of the unique structural properties of the proposed model is carried out, including 
the survival function, conditional survival function, hazard function, cumulative hazard function, mean residual 
life, moments, moment generating function (MGF), characteristic function (CF), cumulant generating function 
(CGF), likelihood ratio test, ordered statistics, entropy measures, and Bonferroni and Lorenz curves. To ensure precise 
estimation of model parameters, the study employs the maximum likelihood estimation method, contributing 
significantly to the advancement of statistical modelling in this domain.  

THE EXPECTED FISHER INFORMATION MATRIX OF POISSON HALF LOGISTIC MODEL   

Ibrahim Abdullahi, Aminu Suleiman Mohammed and Sani Musa 

This study delves into the computation and evaluation of the expected Fisher information matrix within the context 
of the Poisson-type I half logistic (PHL) distribution. Leveraging confidence intervals and their associated coverage 
probabilities, our investigation aimed to study the performance of information matrix by the maximum likelihood 
method in estimating parameters. Our results unveiled a consistent trend: as the sample size expanded, 
a reduction in the length of the confidence interval was observed, and the 95% asymptotic confidence interval’s 
coverage probability aligned within the expected nominal size. This serves as a testament to the accuracy and 
robustness of the information matrix’s performance within the PHL distribution framework. Also, tested using 
some real data set.  

BULK ARRIVING RETRIAL QUEUE WITH G-QUEUE AND RENEGING CLIENTS ....................  314 

J. Bharathi, S. Nandhini, Nur Aisyah Abdul Fataf

We consider a server queue with negative clients (G-Queue) in this effort, where clients are serviced one after the 
other in batches in a system of variable size. Additionally, we presumptively have a general distribution for the 
service times, delay times, and repair times. For various states, we concrete the probability-generating functions 
for the number of customers in the orbit. We scrutinize a single server queue with batches of reneging or balking 
clients in a system of variable size in this work. Different performance measures and unique situations are 
examined. The outcomes of this work have applications in satellite communication, software-design for various 
computer-communication systems and mailing systems among other things. 
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A BAYESIAN APPROACH FOR CHRIS-JERRY DISTRIBUTION 
USING VARIOUS LOSS FUNCTIONS  .....................................................................................................  324 

Dr. G Meenakshi and Balachandar.B 

The paper introduces a Bayesian approach for estimating parameters of the Chris-Jerry distribution, focusing on 
the use of a conjugate prior, specifically the gamma prior. The Bayesian estimation method is developed with a 
various loss function, offering a robust framework for parameter estimation. symmetric loss function and Linex 
loss functions are commonly used in Bayesian statistics to balance the trade-off between bias and variance. The 
central idea is to derive the Bayes estimate of the distribution parameter by leveraging the properties of the 
conjugate gamma prior. Conjugate priors simplify the Bayesian analysis by ensuring that the posterior 
distribution belongs to the same family as the prior, facilitating analytical calculations. The proposed 
methodology is implemented and validated through numerical illustrations using. This involves applying the 
developed Bayesian estimation framework to real-world data or simulated scenarios, demonstrating its 
effectiveness and practical applicability. The numerical and simulation studies are done by using r software  

PROFIT AND AVAILABILITY ANALYSIS 
OF UTENSIL INDUSTRY SUBJECT TO REPAIR FACILITY ................................................................  333 

Amit Kumar, Pinki Kumari 

The main objective of the paper is to optimize the availability and profit values of the utensil industry. There are 
three distinct units in the utensil industry and two of them work in reduced state. It is assumed that unit A is 
failed in complete failure mode while units B and C completely failed through partial failure mode. The system is 
in a failing condition when one of the units completely fails. There is a qualified technician to fix the fault in the 
system. Timelines for failure and repair are unrelated to one another. The repair time is exponential while the 
failure time distribution is general. Many factors, including mean time to system failure, availability, busy 
period, estimated number of server visits and profit values are calculated from tables. 

ANALYSIS OF THE MULTIPLE WORKING VACATIONS, BATCH SERVICE AND 
RENEGING QUEUING SYSTEM UNDER SINGLE SERVER POLICY...............................................   341

Lidiya P, K Julia Rose Mary 

In this paper, we analysed the multiple working vacation queuing model with reneging under a single server 
policy. Reneging describes the situation where a customer or entity decides to leave the queue before being served. 
The presence of reneging behaviour affects queue and service efficiency, as customers leaving the queue 
prematurely can impact overall system performance and customer satisfaction. In this model, customers arrive 
at a service facility and form a queue to be served by a single server. The arrival follows the Poisson distribution, 
and the service follows the exponential process. Batches of customers are served under the General Bulk Service 
Rule. In GBSR, rather than individual customer arriving at a queue one by one, customers arrive in groups or 
batches. Thus, each batch of service contains a minimum of ′a′ units and a maximum of ′b′ units of customers. 
The steady-state equation, the various performance measures for the system, and particular cases of the described 
model are derived. 
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CRITICAL ANALYSIS OF FAILURE AND REPAIR RATES 
OF POLY-TUBE MANUFACTURING PLANT USING PSO  .................................................................  351 

Shakuntla Singla, Diksha Mangla, Umar Muhammad Modibbo, A.K. Lal 

A proper maintenance strategy is essential for the optimal performance of poly tube manufacturing to ensure 
high reliability. It involves a complex structure consisting of many components interconnected in series or 
parallel configurations. This project's contribution is the development of a method for evaluating the performance 
of an industrial system using previously unknown data. The RAM index, influenced by failure and repair rates, 
has been devised to identify the system's most critical component that impacts reliability, availability, and 
maintainability, collectively known as RAM. For performance analysis, a Markov-based simulation system model 
has been formulated and resolved to refine the results through particle swarm optimization (PSO). The transition 
diagram facilitates the construction of ordinary differential equations (ODEs), which represent various 
operational states such as full capacity, reduced capacity, and failure. These ODEs are then solved using initial 
and boundary condition.  

A STUDY ON THE IMPACT OF TRANSFORMING PARAMETER IN BOX - COX 
TRANSFORMATION FOR NON-NORMAL DATA TO ENHANCE PROCESS CAPABILITY ....  365 

J. Krishnan and R. Vijayaraghavan

Process Capability Analysis (PCA) helps to improve and monitor the quality of the manufacturing products in 
industries. The most commonly and traditionally applied indices are process capability index and process 
capability ratio. Many statistical tests require the condition that the data to be approximately normally 
distributed. When it comes to reality the data often do not follow a normal distribution. In such instances, 
different approaches are employed. Box-Cox Transformation (BCT) is one such methodology that is often used by 
quality practitioners relying on single transforming parameter lamda to transform the non-normal data into 
normal data. The widely used approach to decide the transforming parameter lamda is based on the rounded value 
of lamda instead of an optimal value of lamda. There are two transforming expressions available in BCT method. 
The choice of the value for lamda in BCT can have a significant impact on the results. This paper concentrates on 
the impact of data transformation in BCT method through two different expressions based on an optimal as well 
as a rounded value of lamda. The influence made by the estimates of process capability and process performance 
indices is also studied in this paper. The result of the analysis clearly indicates that the optimal value of lamda 
when employed in the first BCT transformation expression to estimate the process capability indices for non-
normal data provides improvised results. For data analysis, Ms-Excel and Minitab 21 software has been used in 
this study. 

ANALYSIS OF PERSONALIZED STRESS RECOGNITION 
IN THE OFFICE ENVIRONMENT ...............................................................................................................  377 

Jigna Jadav, Dr. Uttam Chauhan 

In today's fast-paced lifestyle, pursuing holistic well-being has increased interest in monitoring and managing 
stress levels. Heart rate variability (HRV), a non-invasive measure of autonomic nervous system activity, has 
emerged as a valuable tool for assessing individual responses to stress. This study focuses on utilizing the 
capabilities of the Apple Watch to collect continuous HRV data in real-world contexts. A diverse dataset from 
individuals working in software companies was gathered, including HRV recordings during various stress-
inducing scenarios. By employing HRV Time Domain, Frequency Domain, and Nonlinear features, the study 
uses Principal Component Analysis (PCA) to extract relevant features, considering the personalized nature of 
stress reactions. Addressing variations in stress responses among individuals, the study introduces an innovative 
approach using Long Short-Term Memory (LSTM) networks. A hybrid model, combining feature selection, 
dimensionality reduction, and ensemble techniques, is developed to predict stress levels based on individualized 
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HRV patterns. Rigorous training and validation reached to an 88% accuracy rate. These findings demonstrate 
the effectiveness of the proposed methodology. The LSTM model accurately forecasts stress responses, 
highlighting the potential of Apple Watch-acquired HRV data for stress assessment. Beyond prediction, the study 
enhances understanding of the complex interplay between HRV dynamics and unique stress reactions. This novel 
approach, leveraging Apple Watch features and intelligent computing, offers a personalized method to predict 
stress levels using K-Means Clustering Algorithm. Through integrating K-means clustering and person-specific 
HRV analysis, the research endeavours to advance our comprehension of the intricate interplay between 
physiological responses and stressors. The study offers a novel perspective on stress response variations by 
delving into the distinct autonomic patterns characterizing each cluster. It sets the stage for developing targeted 
interventions and personalized stress management strategies.  

SURVIVAL PROBABILITY AND MEAN RESIDUAL LIFE TIMES 
OF SHOCK MODEL WITH ADDITIONAL RISK  ...................................................................................  390

Abhijeet Jadhav and S. B. Munoli 

A shock model with two types of shocks functioning in the presence of an additional risk is proposed. Survival 
probability and mean residual life times of the proposed models are derived and assessed through the data of life 
testing experiment. Model validation and estimation of survival probability and mean residual life times is done 
through simulation studies. Comparison of survival probabilities and mean residual life times of models 
functioning without and with additional risk is made.  

APPLICATION OF NON-DESTRUCTIVE TESTING METHODS 
AND EVALUATION OF CONDITION OF REINFORCED CONCRETE FRAMING  .....................  400 

Alena Rotaru 

The condition evaluation for reinforced concrete framing requires comprehensive analysis of the factors 
influencing their performance such as strength, protective layer thickness, rebar diameter, thermal conductivity, 
humidity, adhesion of coatings, etc. Non-destructive methods are especially relevant when the characteristics of 
concrete and rebars are unknown and the scope of testing is considerable. Non-destructive testing allows to 
effectively monitor the conditions of technical devices, structures and buildings and enables to evaluate the 
timeliness and quality of repair and maintenance of a facility. Non-destructive testing provides the most reliable 
characteristics of the parameters defining the technical condition of the facilities under test. Non-destructive 
testing of the structural strength is applied in those areas, which have been exposed to loads due to natural and 
man-made contingencies.  

APPLICATION OF POLAR COORDINATES 
IN THE SUMMATION OF THE GAUSSIAN DISTRIBUTION ............................................................  408 

James DANIEL, Kayode AYINDE, Emmanuel Erhuvwu DUDU, Okechukwu Ijeoma 
EBERECHUKWU  

This work applies the polar coordinates system of advanced calculus in the summation of the Gaussian 
distribution. In trying to achieve this aim, sub-concepts such as complex variables, gamma function of half, error 
function, and the relation between the error function and the standard normal distribution were defined and 
explained at various stages of the work. The embedded theorem which seems to be a new theorem also came up in 
the body of the work. 
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REGRESSION MODEL OF ARC OVERVOLTAGE DURING SINGLE-PHASE NON-
STATIONARY GROUND FAULTS IN NEUTRAL ISOLATED NETWORKS ...................................  425 

Najaf Orujov, Huseyngulu Guliyev, Sara Alimammadova 

In order to perform insulation tests of electrical equipment under load in neutral insulated networks, it is 
necessary to create an artificial overvoltage, and at this time, it is necessary to determine the mathematical 
relationships between the single-phase non-stationary ground and the closing parameters. In the case of single-
phase non-stationary earth faults, the dependencies between important parameters such as overvoltage frequency, 
earth fault resistance and earth fault angle obey complex laws. Therefore, for practical conditions, adequate 
mathematical models should be developed that allow to know the interdependencies of such parameters. In this 
work, the problem of analytical determination of the relationship between the overvoltage generated in neutral 
insulated networks as a result of non-stationary earth faults, the earth fault resistance and the earth fault angle 
was considered. For this purpose, a regression equation was obtained for the dependence of the overvoltage 
frequency on the ground fault resistance and the ground fault angle, and the corresponding spatial description 
was given. The obtained results confirmed the existence of a strong correlation between these parameters and can 
be used for practical purposes.  

ANALYSIS OF A SINGLE SERVER SYSTEM WITH HETEROGENEOUS ARRIVAL, 
HETEROGENEOUS SERVICE, SYSTEM FAILURE AND MAINTENANCE  ...................................  434 

Mohammed Shapique A, Vaithiyanathan A 

This paper investigates a single-server queuing system with heterogeneous service, failure, and maintenance. The 
proposed model features a server acting as both the main and backup server. System failure can occur at any 
stage. When a failure happens, instead of stopping the service entirely, the main server functions as a backup, 
providing service at a reduced rate. Once all jobs in the system have been serviced, the backup server enters the 
maintenance state. Following the repair process during maintenance, the server transitions to an idle state, 
awaiting incoming jobs. Explicit expressions for both transient and steady-state behaviours of the system are 
derived. Additionally, key system performance metrics are discussed in this paper, accompanied by graphical 
illustrations to visualize system size probabilities and performance indices. 

ON CERTAIN CLASSES OF CONFORMALLY FLAT 
LORENTZIAN PARA-KENMOTSU MANIFOLDS .................................................................................  446 

K. L. Sai Prasad, P. Naveen and S. Sunitha Devi

In this present paper, we classify and explore the geometrical significance of a class of Lorentzian almost 
paracontact metric manifolds namely Lorentzian para-Kenmotsu (briefly LP-Kenmotsu) mani-folds whenever 
the manifolds are either conformally flat or conformally symmetric. It was found that a conformally flat LP-
Kenmotsu manifold is of constant curvature and a conformally symmetric LP-Kenmotsu manifold is locally 
isomorphic to a unit sphere. At the end, we obtain the scalar curvature of ϕ-conformally flat LP-Kenmotsu 
manifolds. 
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ESTIMATION OF HAZARD AND SURVIVAL FUNCTION 
FOR COMPETING RISKS USING KERNEL  
AND MIXTURE MODEL IN BIMODAL SETUP  .....................................................................................  454 

A. M. Rangoli, A. S. Talawar

Aim of the present paper is to find suitable model for bimodal data. We have modelled mixture of two Weibull 
distributions in the presence of competing risks and also used Epanechnikov kernel to estimate hazard and 
survival functions. We considered prostate cancer data for application of the mixture model and kernel. We used 
maximum likelihood estimation (MLE) to estimate parameters of the mixture model, as the equations have no 
closed form, so we considered expectation–maximization (EM) algorithm. The mixture model and kernel gave 
good fit to the bimodal data. The prostate cancer data consists of three causes, we have estimated hazard function 
for these three causes using mixture model and kernel. The asymptotic confidence interval for the parameters of 
mixture model to all three causes were estimated. Also compared survival curve of mixture model with kernel 
and Kaplan-Meier survival curves for all the three causes.  

EXPLORE THE DYNAMICS OF MANUFACTURING INDUSTRIES: 
RELIABILITY ANALYSIS THROUGH STOCHASTIC PROCESS MODELING  .............................  467 

Sonia, Shakuntla Singla 

In nowadays, the chief attention of the researcher is to study how the reliability analysis of manufacturing 
industrial systems by using the stochastic process. This topic tells us, how the manufacturing industries perform 
over time with the help of mathematical models which include randomness and uncertainty. Through stochastic 
processes we examine the reliability of these systems, technologists can recognize possible failure points and 
develop tactics to improve overall performance and effectiveness. The reliability of a manufacturing industrial 
system can be examined through a stochastic process, which permits for the estimate of failure rates and 
maintenance agendas. This analysis can lead to more well-organized and cost-effective procedure of the system. 
In this study, the researcher analysed the possibility plan for reliability through many distributions such as the 
normal distribution, gamma distribution, weibull distribution, and exponential distribution. The result of the 
study was prepared using Minitab software. The result of the study shows that the normal distribution of 
reliability fits best in comparison to the gamma, weibull, and exponential distributions.  

MULTICOMPONENT RELIABILITY UNDER PATHWAY MODEL ...................................................  472 

T. PRINCY

In this paper, we consider a system with a finite number of components. It is assumed that the system architecture 
is a series format. The system fails when any one of the components fails. The case where the lifetimes of the 
components, are independently distributed and have pathway density is considered. Then the survival function, 
hazard function, the expected time to failure, general moments, etc. of the system lifetime are computed. It is 
shown that the hazard function can have many types of shapes, including bathtub shapes. The estimation of 
stress-strength reliability is considered based on the method of maximum likelihood estimation when both stress 
and strength variables follow the pathway model. Finally, to show the applicability of the proposed model in a 
real-life scenario, remission time data from cancer patients is analyzed. 
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ON AN INTERNAL DEPENDENCE OF SIMULTANEOUS MEASUREMENTS ..............................  487 

Valentin Vankov Iliev 

In this paper we show that there exists an internal dependence of the simultaneous measurements made by the 
two pairs of linear polarizers operated in each leg of the apparatus in Aspect’s version of Einstein-Podolsky-Rosen 
Gedankenexperiment. The corresponding Shannon-Kolmogorov’s information flow linking a polarizer from one 
leg to a polarizer from the other leg is proportional to the absolute value of this function of dependence. It turns 
out that if Bell’s inequality is violated, then this information flow is strictly positive, that is, the experiment 
performed at one leg is informationally dependent on the experiment at the other leg. By throwing out the sign 
of absolute value, we define the signed information flow linking a polarizer from one leg to a polarizer from the 
other leg which, in turn, reproduces the probabilities of the four outcomes of the simultaneous measurements, 
predicted by quantum mechanics. We make an attempt to illustrate the seeming random relation between the 
total information flow, the total signed information flow, and the violation of Bell’s inequality in terms of a kind 
of uncertainty principle. 

MAXWELL-GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS  ........................  495 

Alfred Adewole Abiodun, Aliyu Ismail Ishaq, Olakiitan Ibukun Adeniyi, Ifeanyi Vivian Omekam, 
Jumoke Popoola, Olubimpe Mercy Oladuti and Eunice Ohunene Job  

This paper proposed a three parameter Maxwell-Gompertz distribution as an extension of Gompertz distribution. 
Some statistical properties of the distribution such as moments, survival and hazard functions, quantile function, 
Rényi entropy and order statistics were derived. Maximum likelihood method was used to estimate the model 
parameters. A simulation study was carried out in order to gain an insight into the performance on small, 
moderate and large samples. The flexibility of the new distribution was empirically demonstrated in comparison 
to four other extensions of Gompertz distributions using two real life datasets.  

DETERMINATION OF VITERBI PATH FOR 3 HIDDEN 
AND 5 OBSERVABLE STATES USING HIDDEN MARKOV MODEL  .............................................  509 

T. Raja jithendar, M. Tirumala Devi, and G. Saritha

Hidden markov model (HMM) is a statistical markov model in which the system being modeled and is assumed 
to be a markov process with unobservable (i.e., Hidden) states. In HMM, the state is not directly visible but the 
output depend on the state is visible. Each state has a probability distribution over the possible output tokens. 
The model is referred to as a hidden markov model even if these parameters are known exactly. The viterbi is one 
of the estimate underlying state path in hidden markov models. In this paper, viterbi path is derived using hidden 
markov model.  

APPLICATION OF EXTENDED LOMAX DISTRIBUTION 
ON THE RELIABILITY ANALYSIS OF SOLAR PHOTOVOLTAIC SYSTEM  .................................  516 

Anas Sani Maihulla, Ibrahim Yusuf, Michael Khoo B. C., and Ameer Abdullahi Hassan 

In this study, a novel distribution called the Extended-Lomax distribution which generalizes the existing Lomax 
distribution and has increasing and decreasing shapes for the hazard rate function was proposed. Various 
structural properties of the new proposed distribution are derived including the survival function, hazard 
function, and rth moment. The probability density function (PDF) plots indicated that the distribution is skewed 
to the right. To estimate the parameters of the newly proposed distribution, two estimation methods which include 
the Maximum likelihood approach and Method of Moments was employed. The main objective of the proposed 
distribution’s construction was to increase the adaptability of the current Lomax distributions so that they could 
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better suit reliability data sets than alternative candidate distributions with an equivalent number of parameters. 
This distribution should be able to eliminate the Heavy-tail of the current distribution and model both monotonic 
and non-monotonic patterns of failure rates. Solar photovoltaic system reliability data was used to evaluate the 
performance of the proposed Extended Lomax distribution as well as the estimation methods.  

CONFIDENCE INTERVALS FOR THE PARAMETER OF THE IWUEZE 
DISTRIBUTION WITH APPLICATIONS TO MEDICAL AND ENGINEERING DATA  ..............  526 

Wararit Panichkitkosolkul 

One of the lifetime distributions is the Iwueze distribution, which is constructed by combining the exponential 
and gamma distributions. In this paper, confidence intervals (CIs) are proposed for the parameter of the Iwueze 
distribution using the likelihood-based, Wald-type, bootstrap-t, and bias-corrected and accelerated (BCa) 
bootstrap methods. We evaluated the performance of the proposed CI methods through Monte Carlo simulation 
in terms of their coverage probability (CP) and average length (AL) in various scenarios. Furthermore, we had 
also derived the explicit formula for the Wald-type CI, which is straightforward for computation. The simulation 
results showed that the likelihood-based and Wald-type CIs returned satisfactory results according to coverage 
probabilities, even for the setting of small sample sizes. On the other hand, both the bootstrap-t and BCa bootstrap 
CIs yield CPs lower than the nominal confidence level when sample sizes are small. However, as the sample sizes 
increase, the CP of all CIs tend to approach the nominal confidence level. The parameter values also have a minor 
influence on the CP of all CIs when the sample size is fixed. Moreover, the AL of all CIs decreases as the sample 
size increases. The Wald-type and likelihood-based CIs have very similar ALs for all parameter values. In general, 
the bootstrap-t CI tends to yield the shortest interval. The effectiveness of all CIs was demonstrated by applying 
them to medical and engineering data, yielding results consistent with those of the simulation study.  

OPTIMIZATION OF PREVENTIVE MAINTENANCE BY A COMPARATIVE APPROACH 
BASED ON EXACT RESOLUTION METHODS AND GENETIC ALGORITHMS: 
APPLICATION TO A PRODUCTION UNIT  ...........................................................................................  544 

Ngnassi Djami A.B., Samon J.B, Nzié W 

The control of the maintenance of the industrial installations, in particular of the costs due to the implementation 
of the preventive policies is very interesting because of the growing importance of this service in the chains of 
production. The objective of this paper is to minimize the preventive maintenance costs of a production unit. For 
this, a state of the art on the maintenance cost models according to the policy used is first made, then a synthesis 
of the optimization methods is made in order to deploy the exact resolution methods and the genetic algorithms. 
The result of this paper is the proposal of a cost model corresponding to a periodic maintenance policy with 
minimal repair to the failure and the optimization of the periodicities of the partial revisions of the production 
unit.  

BAYES ESTIMATOR OF PARAMETERS 
OF BINOMIAL TYPE EXPONENTIAL CLASS SRGM USING GAMMA PRIORS ..........................  564 

Rajesh Singh, Kailash R. Kale and Pritee Singh 

The Reliability is one of the key characteristics of software that operates flawlessly and in accordance with needs 
of users. The assessment of Reliability is very important but it is complicated. The oneparameter exponential class 
failure intensity function is used in this article to quantify the model and assess the software Reliability. The scale 
parameter and the number of existing total failures are the model's parameters. Using the Bayesian approach, the 
estimators of parameters are obtained under the assumption that gamma priors are suitable to provide prior 
information of the parameters. Using risk efficiencies computed under squared error loss, the performance of 
proposed estimators is studied with their corresponding maximum likelihood estimators. The suggested Bayes 
estimators are found to outperform over the equivalent maximum likelihood estimators.  
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Abstract

This review article presents an overview of bulk arrival and bulk service with breakdown QM’s. The
concept of bulk arrivals and bulk service has a new significance in the world of reality. To prevent
the problem of traffic congestion, researchers must concentrate their efforts on developing models and
processes to address the issue. Numerical methods of QM’s are critical in many industries, notably
in production lines, to alleviate traffic congestion. This study seeks to give analysts, researchers, and
industry professionals enough information to model congestion problems and extract various performance
indicators to improve the QS’s.

Keywords: Bulk arrival, Bulk service, Vacations, Breakdown.

1. Background and preliminaries

In order to improve the total service of the customers, queueing theory has been widely used
as an operations management strategy to assess and simplify workforce needs, scheduling, and
inventory. A.k.Erlang, a Danish mathematician, statistician, and architect, is credited with
inventing not only queuing theory, but also the field of telephone traffic engineering as a whole.

Chaudhry and Templeton [73] provided a thorough examination of bulk queuing. A great
place to start with customised modelling is with bulk arrivals analysis, which is a simplified
version of our normal named customer analysis. To simulate a hospital outpatient department
with a weekly clinic, a fixed-capacity transportation link, and an elevator, batch arrivals were used
to represent bulk supplies and batch services. Under some conditions, networks of such queues
are known to exhibit a product form of fixed distribution. Users enter in groups, and each group
is served continuously in batch-arrival batch-service QM. In networking and telephony devices,
such as multiple processors computer networks, where each programme requires the loading
of memory units from a primary memory store, such queueing strategies begin to provide an
example for performance measurement. A circuit-switched telecoms system that accommodates
a number of traffic types, such as voice, video, and data, all of which have varying broadband
requirements and holding durations.

Bailey [74] gets credit for developing bulk service QM’s. He created the method, which he
called "fixed-batch service." The server always serves a particular lot of customers in each group
in fixed-batch service QS’s. Kendall pioneered the embedded Markov-chain approach. This is
accomplished through the use of regeneration points. Using Kendall’s terminology for single
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queueing nodes, MX/MY/1 indicates a M/M/1 queue with entries in groups defined by the
random variable X and services in bulk given by the random variable Y. GIX/GY/1 is extended
in the same way as the GI/G/1 queue.

The following is a summary of the paper: The models of bulk arrival queues with breakdown
are discussed in Section 2. The objective of Section 3 is on bulk service queues with breakdown.
Finally, Section 4 presents the conclusion and summary.

2. Bulk arrival queues with server breakdown

A. M. Sultan et al. [34] explored a multi server, bulk arrival (M[x]/M/C; C − 1/FCFS) QM
using an extended Monte Carlo simulation. Because of the system breakage, the system can
only serve with C or (C-1) servers. Average queue size, Average waiting time, and blocking
probability were all established as measures of system efficiency. Simulation of the complete
system yields numerical results. The performance evaluation of the finite buffer bulk and bunch
service GeoX/GY/1/K + B queue with several vacations, which could be employed in large
wireless connections as well as other systems analysed by Seok Ho Chang and Dae Won Choi[35].
The Steady State(SS) probabilities and periods of the quantity of items in the system were
provided at three different eras: departure, random, and arrival. Various helpful performance
measurements were also been offered, such as the loss probability, the mean delay in the packet
queue. The operation of a M[x]/G/1 QS under vacation criteria with startup/closedown timings
was examined by Jau-Chuan Ke [36]. When all of the clients in the system have been processed,
the server stops working at the closedown time. The server uses one of two vacation policies
after shutdown: (1) multi vacation policies or (2) SV policies. In particular, the system features
for the vacation models were examined. In a SS situation, Ahmed M.M Sultan [37] developed
a workable solution for batch arrival queuing difficulties caused by the breakage of one of the
heterogeneous servers. Due to the limitless number of possible variations in bulk queues and the
breakage of one of the servers, massive tables with exact results were generated with different
queueing variables. An M[x]/G/1 QM’s with an unreliable server and a SV policy was presented
by M. Haridass and R. Arumuganathan [38].

While the server was running, it was susceptible to breakage, and the arrival time was
determined by the server’s up and down states. The time taken for anything to fail is exponentially
distributed, and repair times are also distributed in a basic way. With the help of a numerical
illustration, a cost model for QS’s was also explored. The Two stage N-policy MX/M/1 QS with
startup times and server breakdowns was explored by V. Vasanta Kumar et al. [39]. The ideal
value of N was determined using a cost function. Moreover,in addition to the N policy, the study
of a QS with alternative vacation rules was also looked forward. In an MX/G(a, b)/1 queuing
model with periodic vacations and closedown periods, S.Jeyakumar and B. Senthilnathan [40]
tested the effect of the server breakage without interruption. It’s also been noticed that when the
rate of refurbishment rises, the projected line length lowers. G.Ayyappan and S.Shyamala [41]
extended a single server with a BV and a random breakage. Transient solutions SS and probability
generating function (PGF) were both assessed explicitly. N.A. Hassan and S.A. Hoda Ibrahim [42]
demonstrated a recursive method for solving problems involving multi-level QM’s in SS. When
modifying the characteristics of a system, this method has been used to provide many of the
system efficiency metrics. When modifying system parameters, the breakage of servers has an
impact on system efficiency metrics. Charan Jeet Singh et al. [43] developed a single server QM
with vacation, where goods are sent in bulk. The PGF of the number of components in the system
was calculated using the Supplimentary Variable Technique (SVT), which can then be used to
produce evaluation metrics like the average number of parts of the system, average waiting time,
and so on.

In their examination of a bulk arrival two-stage retrial queueing models with balking, reneging,
orbital search, and server breakdown, J.Ebenesar Anna Bagyam et al.[44] discussed the problem
of delay time and reserved time. SVT provides an analytical solution to this model. In their study,
Sushil Ghimire et al.[45] looked at a bulk QS with a fixed batch size of ’b’ with users entering
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the system in a Poisson manner and being segregated exponentially with the rate. Using PGF
method, we may derive equations for Wq, Ws, Lq and Ls after constructing the mathematical
model. S. Suganya [46] investigated into a M[X]/G/1 that has SOS, Multi Vacation, breakdown,
and Repairs. The SVT is used to calculate the PGF of the number of consumers in the wait.
This concept is applicable to large-scale production and communication networks. Madhu Jain
and Amita Bhagat [47] generalized at how to deal with impatient consumers in the bulk arrival
M/G/1 retry wait and changed the vacation policy. Zaiming Liu and Yang Song [48] examined a
batch arrival MX/M/1 queue model with functioning breakdown. WV is not the same as taking
a break from work. Communication systems, transportation systems, production systems, and so
on are all examples of this.

S. Maragathasundari [49] investigated a three stage heterogeneous service bulk arrival QM
with various vacation policies. All arriving consumers must go through all three steps of service.
The server can take a long vacation if he or she desires. The QS SS results are derived. In
an MX/G(a, b)/1 queuing model, M. Haridass and R.P. Nithya [50] generalised the server
breakdown with interrupted vacation. In addition, a cost model has been built. A feedback
QM with Bernoulli server vacation, multiple phases of unit service, and random server failure
was reviewed by Sundar Rajan et al.[51]. The expected number of units and SS PGF had been
calculated. Gautam Choudhury and Mitali Deka [52] analysed the queue size distribution due
to busy time commencement era, and the waiting time distribution at random eras. In addition,
several reliability indices and the system reliability function’s LT were calculated. The concept of
bulk arrivals was researched by S.P. Niranjan and K. Indhira [53]. To avoid a congestion problem,
researchers must concentrate their efforts on developing models and processes to address the
issues. It can assist researchers, engineers, and statisticians in the application of these models.
G.Ayyappan et al. [54] investigated a bulk arrival with two different types of general bulk service
QM with server breakage and modified M-vacation. The stationary queue size distribution at a
random era, the busy period distribution, and the waiting time distribution were all generalised
by Gautam Choudhury and Mitali Deka[55]. The LT of the system reliability function were also
calculated.

R. P. Nithya and M. Haridass [56] developed a bulk QM that included a breakdown, batch
control, and several vacations. The findings can also be utilised to make managerial decisions
about how to reduce overall costs and they found the optimum operating policy in a QM. In
practise, Charan Jeet Singh et al.[57] proved that a wide range of queuing system models for
various capacity issues may be investigated in a general environment by taking into account the
broad dispersion of service operations, bulk arrival, and unreliable servers.In this model, the
stochastic principle was utilised to analyse a huge, unreliable arrival queue with vital services
under the hypothesis of a Bernoulli feedback schedule. Many industries, such as telephone,
wireless mobile networks, industrial production systems, and others, have real-world queueing
challenges. G. Ayyappan and R. Supraja [58] explored an MX/G(a, b)/1 QM with two stages of
service subjected to system breakages and BV. The SVT was used to find performance indicators
such as system state probabilities, average queue size, and queue length in the queue. S.
Jeyakumar and B. Senthilnathan [59] investigated a variable bulk service estimation approach
with numerous WV’s and server breakdowns. The queue size was calculated for various arrival
rates, service rates during WV’s, service rates during regular periods, and WV duration. G.
Ayyappan and P.Thamizhselvi [60] presented two categories of batch arrivals: high-priority and
non-priority (retrial) clients, both of whom were treated with non-preemptive priority. Bernoulli
Feedback, low-priority client collisions, orbiting search, and a revised BV for an unpredictable
server, featured a breakdown and a time delay before repairs can begin. Customers arrive at this
location via the compound Poisson process.

G. Ayyappan and S. Karpagam [61] looked at a generic bulk service with a backup server,
an unpredictable arrival rate, multiple vacations, a server failure, and a second optional repair.
Using a multiple vacation policy, G. Ayyappan and M. Nirmala [62] investigated the transient
and SS behaviour of the MX/G(a, b)/1 queue with breakdown and two stages of repair with
delay. In addition, the PGF of the queue size at any arbitrary and departing era was obtained.
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According to the numeric values, the average queue length and waiting time grows as the arrival
rate, breakge rate, and average queue size and waiting time of the batch of consumers increases.
It’s also been noticed that as service and repair rate rises, the projected line size and waiting
time for a batch of clients decreases. M[X]/G(a, b)/1, a QS with multiple vacation, closedown,
essential, and optional repairs was generalised by G. Ayyappan and T. Deepa [63]. When the
queue length drops below, the server close down and goes into multiple vacations. G. . The
general bulk service queueing strategy with broken and repaired backup servers, numerous
vacations, and a reservice request control policy was studied by G. Ayyappan and S. Karpagam
[64]. It has also been observed that the predicted wait length grows when the primary server’s
rate of vacation does.

An innovative recoverable server QM with bulk input and state-dependent levels was examined
by Charan Jeet Singh et al. [65], taking into consideration generic repair possibility, time to repair,
and service processes. The server can offer two levels of service, the first of which is required
and the second of which is optional. Jitendra Kumar and Vikas Shinde [66] discovered explicit
mathematical equations for real-world challenges like customer dispatching methods for bulk
arrivals and bulk services with multi-servers that include a mix of customers with systems
holding and cancellation methods. MATLAB-9 was used to calculate the numerical results. This
model can be analysed with time dependent arrival and service rates, which gives our model
a more realistic feel. G. Ayyappan and R. Supraja [67] explored a bulk arrival non-Markovian
queueing system with balking under BV, breakage, and repair under BV, breakage, and repair.
A single server Markovian WV queue with customer balked and breakage was developed by
R. Kalyanaraman and A. Sundaramoorthy [68]. Furthermore, the arrival rates has been affected
by the state of the server. For a system that provides three stage of heterogeneous services for
consumers that renege during server vacation and system outage periods, Samuel Ugochukwu
Enogwe and Sidney Iheanyi Onyeagu [69] proposed a single server batch arrival QM. Queuing
performance metrics including the probability of the system being idle, the utilisation factor Lq,
Ls, Wq, and Ws were also calculated. G. Ayyapan and J. Udayageetha [70] examined a general
retrial queueing system with priority services using M[X1], M[X2], /G1,G2/1. In this research,
the system is entered by two distinct client types from separate classes using several independent
compound Poisson processes. And also, they examined the server adheres to the pre-emptive
priority principle how when it comes to working breakdown, startup/closedown times, and
Bernoulli vacations with generic vacation periods. According to the non-preemptive priority
service rule, G. Ayyappan et al.[71] suggested a single server serve two groups of consumers. In
this paper, defined breakdowns are explored along with admission control, balking, and Bernoulli
vacation. The server slows down service for the current client when the system experiences
a breakdown, and then the repair work starts. Additionally, it is explained that a policy of
admission control is in place to prevent the server from allowing all users to access the system.
Two individualistic batch arrival queues with rapid feedback, a modified Bernoulli vacation,
and server breakdown are incorporated in this study’s steady state analysis by G. Ayyappan at
al.[72] Priority and ordinary clients go into two different categories that need to be taken into
account. And they are also talking about the non-preemptive priority discipline suggested by this
approach.

3. Bulk service queues with server

K. C. Madan [1] explored a single channel QM in groups of fixed size b(≥ 1) with Poisson
arrivals and exponential service. The service channel, on the other hand, is liable to breakagess
that happen at times. For the SS, the PGF of the queue size was obtained. I. P. Singh et al. [2]
investigated a system that serves a fixed-size batch and is prone to random breakage. After
repairs, the system enters an idle state before returning to a working state. The LT techniques
were used to obtain the various transition probabilities as well as the SS solution. R. Nadarajan
and D. Jayaraman [3] studied a Markovian tandem queue with two units and included general
bulk service in unit II and server vacation in unit II, random breakage in both units, and a
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finite interval waiting room. The SS probabilities and conditions were derived using the Matrix
Geometric concept. Madhu Jain [4] used the PGF method to produce an analytical and explicit
queue size distribution for distinct states. The mean queue length in a SS for various states
were also determined. Madhu Jain and Poonam Singh [5] generalised a broad bulk service
QM with repeated delayed vacations and a service time that’s also state-dependent. In these
environments, several real-life transportation systems, such as shuttle bus routes, cabs, fast lifts,
and tour operators, can be shown.

Madhu Jain and Praveen Kumar Agrawal [6] examined a state-dependent M/Ek/1 QM’s with
server breakage and vacation time. The length of a server’s vacation and its duration has been
exponentially distributed. In both a WV and a busy period, service times has been considered
to be Erlangian distributed. Investigation can be improved by adding bulk input/service. Lotfi
Tadj and Gautam Choudhury [7] analysed a bulk service QS that had an ineffective server,
Poisson input, and regular maintenance and processing times. A condition of stability has been
established, along with SS system size distributions. The best management strategy was explored,
with examples given to illustrate the point. Mathu Jain and Anamika Jain[8] studied a QM that
includes WV’s and server breakages, both of which require a series of phases of repair before
operation can be restored. Some performance criteria were established. The influence of different
variables was investigated using a sensitivity analysis. By applying the concept of multi optional
repair, Madhu Jain et al.[9] investigated the unstable M/Ek/1/WV queue. This approach is more
stable and flexible since it combines the concepts of WV and service disruption due to server
breakage. The SS equations that defines the model has also been built. M/G/1 queue Gautam
Choudhury and Mitali Deka[10] presented that each customer requires two stages of service, the
server is unprdictable and may fail at any time during the service, and the server is on a BV
schedule.

Vikas Shinde and Deepali Patankar [11] studied with the departure of anxious clients
and server vacations. They created the equations for SS probability as well as various system
performance metrics, and also developed a cost model to establish the best service charge. Jau-
Chuan Ke et al. [12] examined a multi-server QM with infinite capacity and a second optional
service (SOS) channel. The optimization problem was solved using the quasi-Newton method and
the Particle Swarm Optimization (PSO) method. The multistage batch arrival queue, including
reneging on vacation and breakage times, was thoroughly analyzed. Sivagnanasundararam et al.
[13] used SVT to produce SS solutions, and the average waiting time and average delay length.
This concept can be applied to communication networks as well as large-scale manufacturing
businesses. Under SS conditions, Sanjeet Singh and Naveen Kapil[14] examined the optimal
operation of a single replaceable and server in a Markovian queuing system. The server’s breakage
and repair times are expected to be exponentially distributed. R P Nithya and M Haridass [15]
analysed queue length distribution and also discussed the implications of various parameters on
the performance of the system. S. Sasikala and K. Indhira [16] analysed a QM where customers
were being served in batches in a bulk service, which can be fixed or variable in size. They
explained why the service rate may be affected by the number of people in line for service. S.
Jeyakumar and B. Senthilnathan [17] explained a model for variable bulk service queueing with
various WV’s and server breakages During WV’s, the length of the queue was also obtained for
different arrival and service rates.

M.Thangaraj and P.Rajendran [18] investigated batch arrival QM with two types of service
patterns and a SV. S. Sasikala et al. [19] studied the SS behaviour of the M X / G(a,b) /1 queue
in the presence of server downtime, numerous vacations, setup time, and N-policy. Using the
PGF technique, the performance of the proposed QM may be measured. S.Bharathidass et al.[20]
discussed single server Markovian arrival and Erlangian bulk service queues with state reliable
rates. The system’s state probabilities and expected number of units were explicitly calculated.
G.Ayyappan and S.Karpagam [21] examined a batch arrival general bulk service single server QS
with server breakage and optional second repair, stand-by server, balking, variable arrival rate,
and many vacation. It has also been found that as the service rate of the main server increases,
the projected queue size and waiting time decreases. Jitendra Kumar and Vikas Shinde [22]
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developed a methodology for dealing with bulk arrivals and bulk service queues. Lq, Ls, Wq and
Ws response times, as well as the efficiency of the server corresponding to consumers, have all
been measured. MATLAB-9 was used to calculate the numerical results. Using the additional
variable technique, Madhu Jain et al.[23] generalised the permanance modelling and analysis of a
single server general service QM’s with service interruption. M.Thangaraj and P.Rajendran [24]
created and investigated batch arrival QM’s with two types of service patterns and two types
of vacations. Messaoud Bounkhel et al.[25] analysed a Markovian QS and used a numerical
method based on operators to calculate the SS system size probabilities, as well as used a scientific
method to calculate the PGF of these probabilities. The performance of a non-Markovian bulk
service queuing models with an server, a stand-by server, loss and feedback, N-policy, and
varied vacation Bernoulli schedules was investigated by G. Ayyappan and S. Karpagam [26] .The
stand-by server has only been used while the primary server is being repaired. The queue size
PGF was calculated, along with certain key performance indicators.

Srinivas R. Chakravarthy et al. [27] reported their findings in the setting of a single server
queue with batch Markovian arrivals and a general service time distribution, regardless of batch
size. For the general model, the SS probability vector has been determined almost directly, and
we showed how explicit solutions look in a number of particular instances. Using reasoning
from renewal theory, Niek Baer et al. [28] proposed a novel decomposition-based solution
strategy for such queues, as well as they found the range of the wait period metric for multi-type
server systems. The performance analysis of a non-preemptive priority M/M/1 queuing model
with system breakage and repair time was conducted by K. Ruth Evangelin and V. Vidhya [29].
Investigation was done on the SS changes that occur in the equations of the queuing system
using the complementary variable approach. Finally, the waiting time can also be computed
using Little’s formula, and a graphical depiction.Shanthi et al.[30] generalised a new numerical
technique and utilized it to evaluate the transient stability of a bulk service queueing system with
a server maintenance and breakage model using an infinite generator matrix and basic matrices.
N.A. Hassan [31] demonstrated a simulation technique for solving SS problems involving multi-
level QM’s. When modifying the characteristics of a system, this method has been used to provide
many of the metrics of system efficiency. When modifying system parameters, the breakage of
servers had an impact on system efficiency metrics. In this study, G.Ayyappan and M.Nirmala
[32] investigate the frustration of the client with an unreliable bulk queueing system with two
forms of vacation. The server is allowed to take either a type I vacation or a type II vacation,
subject to the size of the queue. And they also say that the server may experience malfunctions,
and it requires a lot of setup time before repairs can commence. In this research, Rani Rajendiran
and Indhira Kandaiyan [33] analysed the transient scrutiny of a batch arrival feedback queueing
system with balking and two phases of variable service with differing levels of service subjected
to Bernoulli vacation. They say that if the server is unable to accommodate the customer’s request
when they arrive, they also have the choice to deny services and exit the service area.

4. Conclusion

In this paper, a comprehensive review has been done on bulk queue with server Breakage models.
One of the main reasons for conducting this survey is to get insight into the bulk arrival and
bulk service models with breakages. These models are widely used and it plays a prominent part
in the sectors of telephones, wireless mobile networks, and industrial production systems. The
topics connected to bulk models with Breakage, which has been discussed in various fields, have
been synthesized. A wide spectrum of literature has been examined, with suitable citations.
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Abstract 

The distribution of unscheduled capacity corresponding to the difference between current and 

forecast values should be carried out according to the criterion of minimum costs for the units 

involved to cover this capacity. In operational management, the optimization of power distribution 

is the process of adjusting the regime for active power, obtained during its short-term planning and 

optimization. Some of the optimization parameters, such as the relative increase in energy 

consumption and a measure of the efficiency of the use of water resources, can be determined in the 

optimization of short-term regimes and used in the optimization of operational regimes. Other 

parameters included in the operational optimization equation are either calculated during 

operational control using telemetered parameters, or are set. During the operational optimization of 

the regime, unscheduled power between stations must be distributed in such a way as to ensure the 

same relative increases in energy consumption at power plant units, taking into account the relative 

increases in power losses in the network from the power of these stations. The article considers a 

comparison of two methods for the operational assessment of the relative increments of power losses 

for the tasks of operational optimization of the mode by active power. 

Keywords: Knowledge Assessment, Training, Fuzzy Knowledge Base 

I. Introduction

Operational optimization of load distribution in a mixed power system has a number of features, 

both in terms of the sequence of algorithmic constructions, and in terms of software 

implementation of the developed algorithms. The possible participation of HPPs in covering 

unplanned capacity, corresponding to the difference between current and forecast values, makes it 

necessary to conduct operational optimization of the regime, taking into account the efficient use 

of water resources in the energy system, and should be carried out according to the criterion of 

minimum energy consumption at power plants involved in covering this capacity. The 

implementation of this principle is algorithmically fraught with difficulties associated with the use 

of the current telemetered mode parameters. At the same time, it is especially difficult to estimate 

the relative increases in power losses, since the relative increase in power losses from the power of 

power plants changes both with a change in the network layout and operating parameters [1]. 
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II. Methods for assessing relative growth of power loss

In operational management, the optimization of active power distribution is the process of 

adjusting the regime for active power obtained during its short-term planning [2-4]. As with short-

term planning, in a hydrothermal power system with operational control, the equation for the 

optimal distribution of active capacities between power plants is the equation: 

𝑏1

1−𝜎1
=  𝜆𝑎

𝑞𝑎

1−𝜎𝑎
=  𝜆𝑏

𝑞𝑏

1− 𝜎𝑏
= ⋯ =  𝜆𝑛

𝑞𝑛

1− 𝜎𝑛
  (1) 

The operational optimization algorithm consists in the implementation of the mode re-

optimization equation (1) for active power. 

It should be noted that of the parameters included in the operational optimization equation, 

only the coefficient of efficiency in the use of water resources λ and the coefficients of the 

characteristics of relative increases in energy consumption at power plant units are determined 

during short-term forecasting and from preliminary calculations, and the rest are either calculated 

during operational control using remotely measured parameters, or are set. At the same time, λ, 

found in the course of short-term forecasting, participate as constant coefficients in characterizing 

the relative increase in water consumption at HPPs. 

In contrast to short-term planning, with operational optimization of the regime for active 

power, the optimization equation is characterized as follows: when the regime changes, unplanned 

power between stations must be distributed in such a way as to ensure the same relative increases 

in energy consumption at power plant units, taking into account the relative increases in power 

losses in the network from power these stations. At the same time, taking into account the relative 

increases in power losses from the power of power plants is a correction of the relative increases in 

energy consumption at the corresponding power plants. To implement the principle of optimality, 

it is necessary to quickly estimate the power losses and the relative increases in active power losses 

in the network. 

An operational assessment of the relative increments of active power losses in the network is 

carried out either on the basis of the current values of the power of power plants or voltages in 

controlled nodes, and are found either by regression equations or by the method of average 

voltages. 

As shown above, the distribution of unscheduled power, corresponding to the difference 

between current and forecast values, should be carried out according to the criterion of minimum 

fuel consumption on the units involved in covering this power and correspond to formula (1). 

Included in the denominator of equation (1), the variable σi - is the relative increase in active 

power losses in the network from the power corresponding to the power plant. The use of σi 

values found from short-term calculations is impossible, since with a change in both the network 

scheme and the mode of operation of the power system, the values of σi also change, so it is 

necessary to use methods for determining σi at the pace of the process using the current 

telemetered mode parameters. Below are two methods for determining the relative increases in 

active power losses in the network. 

III. Construction of analytical characteristics of relative increments of active power

losses in electrical networks by node voltage vectors 

In operational management, to determine the relative growth of power losses in the power 

system, telemetry of source voltage vectors can be used without introducing data on the 
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parameters of the electrical network, loads of power plants and consumers into the calculations [5-

6]. 

As is known, in the general case for heterogeneous networks. 

𝜎𝑖
𝑃 + 𝜗𝑖

ƍ
=  

2 (𝑈1− 𝑈0)

𝑈
   (2) 

𝜎𝑖
ƍ

− 𝜗𝑖
𝑃 = 2 sin 𝛿𝑖    (3) 

Where, 

𝜎𝑖
𝑃, 𝜎𝑖

ƍ
, 𝜗𝑖

𝑃, 𝜗𝑖
ƍ
 – relative increments of active power losses by source active power, relative

gains of active power by source reactive power, relative increments of reactive power losses by 

source active power and relative increments of reactive power losses by source reactive power, 

respectively, Ui- source voltage, U0 - balancing node voltage, U is the average network voltage, σi 

is the angle between the voltage vectors of the sources and the balancing nodes. 

In the general case, these equations are not enough to determine the relative power losses, 

since the number of unknowns is greater than the number of equations. For an approximate 

solution of these equations, we first neglect the inhomogeneity of the network, when the quality 

factor of all branches is assumed to be the same, i.e. 

𝜓𝑠 = arctg
𝑥𝑠

𝑟𝑠
  = idem    (4) 

Then, taking into account 

𝜗𝑖
𝑝 = - 𝜎𝑖 

𝑃tg𝜓    (5) 

𝜗𝑖
𝑄 = - 𝜎𝑖 

𝑄tg𝜓   (6) 

Equations (2) and (3) will take the form: 

𝜎𝑖
𝑝- 𝜎𝑖 

𝑄tg𝜓=
2(Ui−U0)

U
  (7) 

𝜎𝑖
𝑄 +𝜎𝑖 

𝑃𝑡𝑔𝜓= 2sin𝛿𝑖   (8) 

By solving equations (7), (8) we obtain the following formulas for the relative gains in active 

power losses: 

𝜎𝑖
𝑝=

2(Ui−U0)

U
 cos2 𝜓 + sinδ1 sin2𝜓   (9) 

𝜎𝑖
𝑄=

−(Ui−U0)

U
 sin2𝜓 + 2sinδ1 cos2 𝜓          (10) 

And if we neglect the difference in the phase angles of the power of the nodes, then tg𝜑𝑖 = 
𝑄𝑖

𝑃𝑖
, 

will be the same for all nodes, and then there will be the following relations between the relative 

gains in losses: 𝜎𝑖
𝑄 = 𝜎𝑖 

𝑝
𝑡𝑔𝜑 and 𝜗𝑖

𝑄 =  𝜗𝑖 
𝑃tg𝜑

In this case, equations (2) and (3) will take the following form: 

𝜎𝑖
𝑝 + 𝜗𝑖 

𝑃tg𝜑=
2(Ui−U0)

U
         (11) 

𝜎𝑖 
𝑝

𝑡𝑔𝜑 - 𝜗𝑖
𝑃 = 2sin δi          (12) 

By solving equations (11) and (12), we obtain the following equations for relative loss 

increments: 
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𝜎𝑖
𝑝=

2(Ui−U0)

U
 cos2 𝜑 + sinδ1 sin2𝜑          (13) 

𝜎𝑖
𝑄=

(Ui−U0)

U
 sin2𝜑 + 2sinδ1 sin2𝜓          (14) 

As can be seen from Figure 1, the sum of the right and left parts of equations (9) and (10) for 

different values of the quality factor of all branches is a band of possible solutions limited between 

tg𝜓𝑚𝑎𝑥  and tg𝜓𝑚𝑖𝑛  on the voltage plane and an increase in active power losses[7-9]. 

And the sum of the right and left parts of the equation (13) and (14) at different values of the 

phase angles of power is a band of possible solutions limited between tg𝜑𝑚𝑎𝑥  and tg𝜑𝑚𝑖𝑛  on the 

voltage plane and increase in active power losses. 

Figure 1.a) The dependence of σР on voltage at the same quality factors of the branches 

b) The dependence of σР on voltage at the same phase angles of power in the nodes

Adding the left and right parts of equations (9), (10), (13), (14) and dividing by 2, we obtain 

the equations for the relative increments of active power losses in the network for two averaged 

parameters. 

𝜎𝜄 = 
(Ui−U0)

U
 (2cos2 𝜓 + 2cos2 𝜑 − sin2𝜓 +sin2𝜑) 

sinδ1 (sin2𝜓 + sin2𝜑+2cos2 𝜓+ 2sin2𝜑)          (15) 

Equation (15) is a combination of two graphs shown in fig. 1 and therefore the boundary of 

possible changes in the relative increments of losses becomes even narrower and therefore the 

accuracy of the calculations increases. Let us denote the coefficients of two variables 
(𝑈𝑖−𝑈0)

𝑈
 , sinδ1,,

inside the brackets, respectively, A and B, then equation (15) will take the form: 

𝜎𝜄 = A 
(𝑈𝑖−𝑈0)

𝑈
+ Bsinδ1          (16) 

The relative increase in active power losses is obtained as a function of two variables 
(𝑈𝑖−𝑈0)

𝑈

and sinδ1, Ui and U0 are the voltages of the source and the balancing node, they are usually 

maintained at the nominal value, telemetered and can be used at the pace of the control process. 

It should be noted that the resulting equation can be used for operational control if the 

coefficients for two variables 
(𝑈𝑖−𝑈0)

𝑈
 and sinδ1 are determined from preliminary calculations, since

it is not possible to determine the components of the equation inside the brackets at the pace of the 

process. To obtain a working formula for a quick assessment of the relative increase in power 

losses, it is necessary to calculate a number of characteristic modes of the power system with the 

determination of the coefficients A and B in equation 16, and also determine U - the average 

voltage of the network. The fact is that the use of the U-average voltage of the network is difficult 

because usually the voltage telemetry contains significant measurement errors. Therefore, to 

determine the average network voltage, one can use the regression dependences of the average 

tg𝜓𝑚𝑎𝑥 

tg𝜓𝑚𝑖𝑛

U0

σP

tg𝜑𝑚𝑎𝑥 

tg𝜑𝑚𝑖𝑛 

U0

σP

RT&A, No 2 (78) 

 Volume 19, June, 2024 

38



V.Kh. Nasibov, R.R. Alizade, I.Y. Mastaliyev, A.M. Ramazanli
SHORT VERSION OF ARTICLE TITLE

voltage as a function of the voltage of some nodes. To determine these nodes, it is possible to carry 

out steady state calculations for normal and post-accident modes with the determination of the 

nodes on the voltage of which the mains voltage mode depends to the greatest extent, the so-called 

sensor nodes. The voltage of these nodes can be taken as factors for determining the average 

network voltage. 

To determine the coefficients A and B, calculations were made for some characteristic modes 

of the Azerenerji energy system. The results of calculations with the determination of the 

coefficients A and B are given below: 

№ А В 

1 0.0021 0.172 

2 0.0025 0.165 

3 0.0022 0.167 

4 0.0024 0.169 

5 0.0023 0.168 

It can be seen from the table that coefficient A changes in ten-thousand digits, and B - in 

thousandth digits, so the arithmetic average value will correspond quite accurately to the desired 

coefficients: 

Avr.= 0.0023, Vav.= 0.168 and equation (16) will take the form: 

𝜎𝜄 = 0.0023 
(Ui−U0)

U
+ 0.168sinδ1 (17) 

To determine U - the average voltage of the network as a function of the voltages of some 

nodes, calculations of normal modes and post-emergency modes were carried out in the 

Azerenergy system, obtained by typical outages of some power lines, a total of 64 calculations. As 

a result, 7 nodes were identified, on the voltage of which the mains voltage mode depends to the 

greatest extent, the so-called sensor nodes. The voltages of these nodes were determined as factors 

for determining the average network voltage. Below, without details, the found regression 

coefficients for the mean stress are given. 

U= 121 + 0.7722 UHOV  + 0.4930 UMUSH +0.5923 UKHUR+ 

0.2215 UMAS+ 0.4622 UAKSU+0.2123 UAGC+0.3311 UAGS (18) 

In this case, the standard deviation (SD) at the experimental points is 0.7%, and in the basic 

modes, when all factors are taken at an average level, the SD is 1.5%, which is at the level of the 

error in measuring telemetered node voltages. Thus, according to the telemetered values of the 

voltages of the sources, the balancing node and the 7 nodes listed above, it is possible to determine 

the relative increases in power losses in the network at the pace of the process. 

Numerous calculations of the relative increases in power losses by the voltage vectors of the 

nodes show that the error for the minimum and maximum modes is greater (8%) than for the 

typical average modes (5%), when operational optimization of the modes by active power is 

possible. 

IV. Construction of analytical characteristics of the relative increase in losses

in the network by the active capacities of power plants 

Here, it is required to build the dependence ∆Р(Рi) on the basis of the experiment planning matrix, 
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where Рi is the load of power plants participating in the operational optimization of the regime. As 

is known, on the basis of the experiment planning matrix, equations are obtained with normalized 

values of the factors, i.e. varying from +1 to -1. For management purposes, not normalized, but 

natural values of factors are needed. In this regard, the construction of equations by natural values 

and their analysis are considered [10]. 

To obtain a regression equation with natural values of the factors, regression equations were 

constructed to determine the power losses in the power system, where the following power plants 

were the factors with the ranges of change in their total load for characteristic modes. 

1. Shimal PP (760-560 MW)

2. Sumgayit PP (500-300 MW)

3. Canub PP (700-500 MW)

4. Azerbaijan TPP (1780-1580 MW)

5. Gobu PP (380-180 MW)

Regression models were obtained in a fractional-factorial experiment of the type N=25-

1=24=16, in which the results of ΔP analyzes show a fairly high accuracy of the models. The 

planning matrix, indicating the interaction of factors used as additional factors and the interaction 

used in the regression equation, are given below. The losses ΔP in the network, obtained as a result 

of calculating the steady state using the corresponding program, are also indicated there. 

Tab. 1 

Table 1: Planning matrix 

№ 
Shimal PP 

Х1 

Sumgayit PP 

Х2 

Canub PP 

Х3 

Azerbaijan 

TPPХ4 

Gobu PP 

Х5 
ΔP 

1 760+j400 500+j300 700+j400 1780+j900 380+j200 110,7 

2 530+j280 500+j300 700+j400 1780+j900 180+ j100 99,1 

3 760+j400 300+ j160 700+j400 1780+j900 180+ j100 98,4 

4 530+j280 300+ j160 700+j400 1780+j900 380+j200 97,1 

5 760+j400 500+j300 500+ j280 1780+j900 180+ j100 101,8 

6 530+j280 500+j300 500+ j280 1780+j900 380+j200 99,9 

7 760+j400 300+ j160 500+ j280 1780+j900 380+j200 99,2 

8 530+j280 300+ j160 500+ j280 1780+j900 180+ j100 104,9 

9 760+j400 500+j300 700+j400 1580+ j800 180+ j100 100,9 

10 530+j280 500+j300 700+j400 1580+ j800 380+j200 99,1 

11 760+j400 300+ j160 700+j400 1580+ j800 380+j200 98,4 

12 530+j280 300+ j160 700+j400 1580+ j800 180+ j100 104,1 

13 760+j400 500+j300 500+ j280 1580+ j800 380+j200 102 

14 530+j280 500+j300 500+ j280 1580+ j800 180+ j100 107,4 

15 760+j400 300+ j160 500+ j280 1580+ j800 180+ j100 106,5 

16 530+j280 300+ j160 500+ j280 1580+ j800 380+j200 105,3 

Below, without details, the regression equation ΔP and the relative increase in power losses 

for characteristic modes are carried out. 

For the operational optimization of the active power mode, the controlled parameters are the 

capacities of the power plants Shimal ES, Sumgayit ES, Janub ES and Azerbaijan TPP, and 

therefore the relative increases in power losses are determined as partial derivatives of the 

equation of power losses with respect to the capacities of the corresponding stations. 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

40



V.Kh. Nasibov, R.R. Alizade, I.Y. Mastaliyev, A.M. Ramazanli
SHORT VERSION OF ARTICLE TITLE

ΔP = 622,97- 0,3201*Х1 - 0,3405Х2 - 0,3445Х3 - 0,2185Х4 - 0,357Х5+0,000118Х1Х2 

+0,000106Х1Х3+0,000107Х1Х4+0,000105Х2Х3+0,000105Х2Х4+0,000102Х3Х4

σ1=-0,3201+0,000118Х2+0,000107Х4 

σ2=-0,3405+0,000118Х1+0,000105Х3 

σ3=-0,3445+0,000106Х1+0,000105Х2 

σ4=-0,2185+0,000107Х1+0,000105Х2 

The resulting models at all experimental points have a very high accuracy. Numerous 

calculations show that the standard deviation of the calculated data from the experimental data is 

on average 4% for the maximum and minimum modes, and 7% for the middle modes, when 

operational optimization is possible. If we take into account that the proposed regression equations 

will be used in the additional optimization of the regime with the operational management of the 

distribution of approximately 200 MW of unscheduled active power, then the above deviations fall 

within the accuracy of the initial data and they can be used for the purposes of operational 

optimization. 
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Abstract

The transient and metaheuristic cost analysis of a MX/G(a, b)/1 retrial queue with random failure
during an extended Bernoulli vacation with impatient clients is covered in this study. Any batch that
arrives and discovers the server is busy, down, or on vacation joins an orbit. In the alternative, only one
new customer from the group joins the service right away, while the others join the orbit. After providing
each service, the server either waits to serve the following customer with probability (1 − θ) or goes on
vacation with probability θ. It has been found that these systems express steady-state solutions and are
dependent on time probability generating functions in consideration of their Laplace transforms. We also
discuss a few exceptional and particular instances. After that, the impact of different parameters on the
system’s effectiveness is evaluated. We are also talking about ANFIS. Additional approaches employed in
this study to swiftly determine the system’s optimum cost include genetic algorithms (GA), artificial bee
colonies (ABC), and particle swarm optimization (PSO). We also examined the graph-based convergence
of several optimization algorithms.

Keywords: Batch arrival, Retrial queues, Feedback, Extended Bernoulli Vacation, ANFIS, Cost
Optimization.

1. Introduction

For the development, capacity planning, performance assessment, and optimization of
numerous real-world systems, queueing theory offers a potent tool. Chaudhry and Templeton[1]
provided a comprehensive analysis of bulk queuing. Bulk arrival analysis, a condensed form of
customer examination, is a great place to start with customised models. Bulk service queuing
models were created by Bailey [2]. He invented the process known as “fixed-batch service”. The
server continuously offers a specific batch of services to each set of users in fixed-batch service
queueing systems (QS).

The “retrial queueing”system, which is used when a customer enters and the server is occu-
pied, requires the customer to leave the appropriate area and repeat his request after a certain
period of time. This property is essential for network technologies, cognitive networks, online
computing systems, manufacturing systems, and other systems.

Sumitha and Udaya Chandrika [3] investigated a retrial queuing system with starting failure,
single vacation, and orbital search. In batch arrival retrial queues, Radha et al. [4] studied some
system performance measures are evaluated using the supplementary variable technique (SVT)
and the steady-state (SS) probability generating function (PGF) for system size.

Gomez-Corral has talked a lot about a retrial QS with FCFS discipline and typical retrial
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periods. The M/G/1 retrial queue with feedback and starting failures was described by Krishna
Kumar et al. [5]. Yang, Tao, and Hui Li[6] investigated an M/G/1 retrial queue with a starting
failure-prone server. An analysis of a feedback retrial queuing system with starting failures and a
single vacation was studied by Mokaddis et al. [7].

In a Vacation, queueing system the server could be temporarily unavailable for a number of
reasons, including maintenance monitoring, tending to other queues, or simply taking a break.
When the server is unavailable to users, that time period is referred to as a “vacation ”. A single
server batch arrival Bernoulli feedback QS with a waiting server, K-variant vacations, and anxious
clients was examined by Bouchentouf et al. [8]. The transient behaviour of a batch arrival feedback
retrial queue with starting failure and Bernoulli vacation (BV) was investigated by Ayyappan
and Sathiya [9]. Assuming that repair, service, and vacation times are randomly distributed, the
time-dependent PGF are also computed in relation to their Laplace transforms(LT).

Numerous academics who have studied queueing techniques with interruptions have as their
primary tenet that, in the event of a failure, the service channel will be promptly repaired. A
transient analysis of the M[X1], M[X2]/G1, G2/1 retrial QS’s with priority services, working break-
down, start up/close down time, BV, reneging, and balking was studied by Ayyappan et al. [10].
Kulkarni et al. [11] established a retrial queue with a server prone to failures and maintenance.
Ayyappan and Shyamala [12] created an M[X]/G/1 with Bernoulli schedule, server vacation,
random break down and second optional repair. And also calculate the typical length of the line
and the typical wait period in closed form. When the repair is finished, a number of consumers
who had previously used the services wait for the remainder to be provided. Jau-Chuan Ke et al.
[13] demonstrated a waiting line with customers complaining and providing feedback the servers
malfunctioned. Furthermore, if all servers are already in use when a customer arrives, he will
either join a retrial orbit or decline. When a service is finished, the client can exit the system or
rejoin the retrial group to receive more services. They can also design a cost function to determine
the system’s ideal parameter settings under the stability condition. Computer telecommunication
systems is a example of application for these types.

A consumer may try again until they are happy if they are not satisfied with the service
they received. Takacs [14] investigates this at first, allowing the consumer who has finished the
service to provide feedback to the rear of the line. An M/(G1, G2)/1 feedback retrial queue with
two phase service, variant vacation policy under delaying repair for impatient Customers was
analysed by Rajadurai et al. [15].

Many real-world systems have impatient customers as a built-in feature, particularly when the
customer is a human, a perishable product, or some moving object that can depart the service area
and their waiting period in the queue reaches certain pre-defined threshold values. This clearly
explains why queueing literature frequently discusses the impatience phenomenon. Accounting
impatience is crucial in the setting of lines for group service because a client could spend a
large amount of time in the system while waiting for the accumulation of a sufficient number of
customers.

More focus has been placed on the numerous retrial lineups with non-persistent (impatient)
consumers. A discussion about the study of a retrial queue with group service of impatient
clients involved D’rienzo et al. [16]. A batch arrival retrial queuing model with starting failures
and customer impatience was addressed by Nila and Sumitha [17]. Customers arrive in batches
in line with the Poisson process. In certain situations, the clients refuse and break their promises.
The analysis of a retrial QS with priority services, working breakdown, BV, admission control,
and balking was explained by Ayyappan et al. [18]. Ayyappan and Nirmala [19] explored an
analysis of customer’s impatience on bulk service QS’s with an unreliable server, setup time
and two types of multiple vacations. Sethi.R et al. [20] investigated the cost optimization and
ANFIS computing of an unreliable M/M/1 queueing system with customers’ impatience under
n-policy. The ideal Cost Analysis for Discrete-Time Recurrent Queue with Bernoulli Feedback
and Emergency Vacation was described by M. Vaishnawi [21]. In order to calculate costs, PSO,
ABC, and GA are also used. To ensure the best deal, these methods compare and contrast the
outputs.
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The paper’s structure is as follows: Section 2 provides a detailed explanation of the mathemat-
ical model. Section 3 discusses the ideas and formulae governing our system as well as how to
obtain the time-dependent solution of our model. The PGF for the queue length at each given
epoch and the SS performance of the system are explicitly determined in Section 4. In Section
5, the pertinent stability condition has been uncovered. In Section 6, we precisely estimate the
mean queue size, mean queue waiting time, and efficiency features for each state of the system.
In Section 7, we present a practical illustration. We offer a numerical study and associated graphs
in Section 8. Furthermore, an ANFIS was provided in Section 9. The Cost optimization is offered
by Section 10. The conclusion is presented in Section 11.

2. Model Description and Analysis

We suppose that the underlying queueing model is as follows:
Arrival process: Customers enter a poisson stream, and bulk service is offered on an FCFS basis.
Considering that a batch of “i”customers enters the system, Λ > 0 represents the average batch
arrival rate, and Λcidt(i ≥ 1) represents the first order probability during the short interval of
time (ϖ, ϖ + dϖ]. We define a batch arrival and a bulk service as having a smallest batch size of
“a”and a highest batch size of “b”.
Retrial process: When a customer arrives and discovers that the server is busy, unavailable, or
broken, the customer has two options: (1) leave the service area with a probability of d and join a
pool of blocked customers known as an orbit; or (2) balk the system with a probability of d̄ in
accordance with FCFS, which implies that only the customer at the head of the orbit queue is
permitted access to the server.
When the server is idle, the customer at the head of the retrial queue engages with potential
primary customers to see who can cancel their service request and, with prob., g, either move up
in the retrial queue or leave the system with prob., (1 − g).
A general (arbitray) distribution with the distribution function A(u) and the density function
a(u) determines the retrial interval.
Let g(ς)dς be the conditional prob., density of completing the retrial within the range (ς, ς + dς],
where ς is the elapsed retrial time.

g(ς) =
a(ς)

1 − A(ς)

and therefore,

a(u) = g(u)e−
∫ u

0 g(ς)dς

Inter-retrial times have an arbitrary dist., A(ς) with correponding Laplace-Stieltijes transforms
(LST) A∗(u).
Service process: The server enters an idle state wherever a fresh or returning user comes before
quickly resuming regular operations for the newcomers. A generic (arbitrary) distance with the
distance function B(ς) and the density function b(ς) follows the service time.
Given the elapsed retrial time ς, define ϕ(ς)dς as the conditional probability of service completion
within the range (ς, ς + dς].

ϕ(ς) =
b(ς)

1 − B(ς)

and therefore,

b(ϖ) = ϕ(ϖ)e−
∫ ϖ

0 ϕ(ς)dς
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The random variable B with the dist., function B(ς) and LST B∗(ϖ) denotes the service time.
Random failure: Failures are anticipated to occur sporadically throughout the system and ought
to follow a poisson stream with an average failure rate of τ > 0. The repair times follow a general
dist.„ which is represented by the random variable D and the dist., function D(ς), with the LST
D∗(ϖ).
The length of repairs is determined by a general (arbitrary) dist., with a dist., function D(ς)
and a density function d(ς). Given an elapsed repair time of ς, define α(ς)dς as the conditional
probability of completing repairs within the range (ς, ς + dς].

α(ς) =
d(ς)

1 − D(ς)

and therefore,

d(ϖ) = α(ϖ)e−
∫ ϖ

0 α(ς)dς

Extended Bernoulli vacation:If there are any unfinished parts of the service, the server has
two options: either accept the BV with a probability of θ or keep serving them with a probability
of (1 − θ). After the vacation is over, the server either undertakes the second type of optional
extended Bernoulli vacation with a prob., of µ or continues to serve the remaining batches with a
prob., of (1 − µ).
The random variable F with the distance function F(ς) and LST F∗(ϖ) is employed to represent
the server’s leisure time. This arbitrary variable F follows a general distribution.
The server’s vacation time follows a general(arbitrary) dist., function F(ϖ) and density function
f (ϖ). Let β(ς)dς be the conditional prob., of a completion of a vacation during the interval
(ς, ς + dς], given that the elapsed repair time is ς, so that

β(ς) =
f (ς)

1 − F(ς)

and therefore,

f (ϖ) = β(ϖ)e−
∫ ϖ

0 β(ς)dς

The system’s stochastic processes are all considered to be independent of one another.
Feedback Rule: Clients who are unhappy with their offerings can re-join the line once they’ve
been completed, give feedback to receive another service with minimal difficulty, or both p
(0 ≤ p ≤ 1), otherwise the system must be terminated with complement prob. q = (1 − p)

3. DEFINITIONS:

We define
1. Pn(ς, ϖ)= Prob., that the server will be idle at time ϖ with n(n ≥ 0) customers in the orbit and
ς for the customer’s elapsed retrial time.
2. Qn(ς, ϖ)= Prob., that the server will be busy at time ϖ with n(n ≥ 0) customers in the orbit
and η for the customer’s elapsed retrial time.
3. Rn(ς, ϖ)= Prob., that at time ϖ, there are n(n ≥ 0) customers in the orbit and the server is
offline due to system repair and waiting for repairs to start with elapsed repair time ς.
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4. Vn(ς, ϖ)= Prob., that there are n(n ≥ 0) consumers in orbit at time ϖ and the server is on
vacation with elapsed vacation time ς.
5. There are no customers in the orbit at time ϖ, and the server is inactive but still available in the
system, according to the probability P0(ϖ).
The following differential-difference equations regulate the model:

d
dϖ

P0(ϖ) = −ΛP0(ϖ) + (1 − θ)d̄
∫ ∞

0
Q0(ς, ϖ)ϕ(ς)dς + (1 − µ)

∫ ∞

0
V0(ς, ϖ)β(ς)dς (1)

∂

∂ς
Pn(ς, ϖ) +

∂

∂ϖ
Pn(ς, ϖ) = −[Λ + g(ς)]Pn(ς, ϖ), n ≥ 1 (2)

∂

∂ς
Q0(ς, ϖ) +

∂

∂ϖ
Q0(ς, ϖ) = −[Λ + τ + ϕ(ς)]Q0(ς, ϖ) (3)

∂

∂ς
Qn(ς, ϖ) +

∂

∂ϖ
Qn(ς, ϖ) = −[Λ + τ + ϕ(ς)]Qn(ς, ϖ) + Λ

n

∑
k=1

CkQn−k(ς, ϖ), n ≥ 1 (4)

∂

∂ς
R0(ς, ι, ϖ) +

∂

∂ϖ
R0(ς, ϖ) = −[Λ + α(ς)]R0(ς, ϖ), n = 0 (5)

∂

∂ς
Rn(ς, ι, ϖ) +

∂

∂ϖ
Rn(ς, ϖ) = −[Λ + α(ς)]Rn(ς, ϖ) + Λ

n

∑
k=1

CkRn−k(ς, ϖ), n ≥ 1 (6)

∂

∂ς
V0(ς, ϖ) +

∂

∂ϖ
V0(ς, ϖ) = −[Λ + β(ς)]V0(ς, ϖ), n = 0 (7)

∂

∂ς
Vn(ς, ϖ) +

∂

∂ϖ
Vn(ς, ϖ) = −[Λ + β(ς)]Vn(ς, ϖ) + Λ

n

∑
k=1

CkVn−k(ς, ϖ), n ≥ 1 (8)

The following boundary conditions must be met in order to answer the given equation:

Pn(0, ϖ) =(1 − θ)d̄
∫ ∞

0
Qn(ς, ϖ)ϕ(ς)dς + (1 − θ)d

∫ ∞

0
Qn−1(ς, ϖ)ϕ(ς)dς

+
∫ ∞

0
Rn(ς, ϖ)α(ς)dς + (1 − µ)

∫ ∞

0
Vn(ς, ϖ)β(ς)dς, n ≥ 1 (9)

Q0(0, ϖ) =Λp(1 − g)
b

∑
r=a

a−1

∑
k=0

Ck

∫ ∞

0
Pn−k+b(ς, ϖ)dς

+ (1 − θ)p
b

∑
r=a

∫ ∞

0
Pr(ς, ϖ)g(ς)dς +

b

∑
r=a

∫ ∞

0
Vr(ς, ϖ)β(ς)dς (10)

Qn(0, ϖ) =Λp(1 − g)
a−1

∑
k=0

Ck

∫ ∞

0
Pn−k+b(ς, ϖ)dς + p

∫ ∞

0
Pn+b(ς, ϖ)g(ς)dς

+ Λg
∫ ∞

0
Pn+b(ς, ϖ)dς +

∫ ∞

0
Vn+b(ς, ϖ)β(ς)dς (11)

R0(ς, 0, ϖ) =τQ0(ς, ϖ), n = 0 (12)

Rn(ς, 0, ϖ) =τQn(ς, ϖ), n ≥ 1 (13)

Vn(0, ϖ) =θ
∫ ∞

0
Qn(ς, ϖ)ϕ(ς)dς, n ≥ 1 (14)

We presume that the system is initially empty of users and that the server is idle. Thus, the initial
conditions are

Vn(0) = Rn(0) = Qn(0) = 0, n ≥ 0

P0(0) = 1, Pi
n(0) = 0, n ≥ 1 (15)

RT&A, No 2 (78) 
 Volume 19, June, 2024 

46



Rani R and Indhira K
METAHEURISTIC COST SCRUTINY OF MX/G(A, B)/1 RETRIAL QUEUE

Generating functions of the queue length (The time-dependent solution):

P(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnPi
n(ς, ϖ); P(Ψ, ϖ) =

∞

∑
n=0

ΨnPn(ϖ)

Q(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnQn(ς, ϖ); Q(Ψ, ϖ) =
∞

∑
n=0

ΨnQn(ϖ)

R(ς, ι, Ψ, ϖ) =
∞

∑
n=0

ΨnRn(ς, ι, ϖ); R(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnRn(ς, ϖ)

V(ς, Ψ, ϖ) =
∞

∑
n=0

ΨnVn(ς, ϖ); V(Ψ, ϖ) =
∞

∑
n=0

ΨnVn(ϖ)

C(Ψ) =
∞

∑
n=1

CnΨn; Q(Ψ) =
a−1

∑
r=0

QrΨr (16)

which define the LT of a function f (ϖ) as it converges within the circle defined by z ≤ 1.

f̄ (s) =
∫ ∞

0
e−sϖ f (ϖ)dϖ,R(s) ≥ 0 (17)

Using (15) and the LT from equations (1) through (14), we arrive at

(s + Λ) p̄0(s) = 1 + (1 − θ)d̄
∫ ∞

0
Q̄0(ς, s)ϕ(ς)dς + (1 − µ)

∫ ∞

0
V̄0(ς, s)β(ς)dς (18)

∂

∂ς
P̄n(ς, s) + [s + Λ + g(ς)]P̄n(ς, s) = 0, n ≥ 1 (19)

∂

∂ς
Q̄0(ς, s) + [s + Λ + ϕ(ς)]Q̄0(ς, s) = 0 (20)

∂

∂ς
Q̄n(ς, s) + [s + Λ + ϕ(ς)]Q̄n(ς, s) = Λ

n

∑
k=1

CkQ̄n−k(ς, s), n ≥ 1 (21)

∂

∂ς
R̄0(ς, ι, s) + [s + Λ + α(ς)]R̄0(ς, s) = 0 (22)

∂

∂ς
R̄n(ς, ι, s) + [s + Λ + α(ς)]R̄n(ς, s) = Λ

n

∑
k=1

CkR̄n−k(ς, s), n ≥ 1 (23)

∂

∂ς
V̄0(ς, s) + [s + Λ + β(ς)]V̄0(ς, s) = 0 (24)

∂

∂ς
V̄n(ς, s) + [s + Λ + β(ς)]V̄n(ς, s) = Λ

n

∑
k=1

CkV̄n−k(ς, s), n ≥ 1 (25)
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P̄n(0, s) = (1 − θ)d̄
∫ ∞

0
Q̄n(ς, s)ϕ(ς)dς + (1 − θ)d

∫ ∞

0
Q̄n−1(ς, s)ϕ(ς)dς

+
∫ ∞

0
R̄n(ς, s)α(ς)dς + (1 − µ)

∫ ∞

0
V̄n(ς, s)β(ς)dς, n ≥ 1 (26)

Q̄0(0, s) = Λp(1 − g)
b

∑
r=a

a−1

∑
k=0

Ck

∫ ∞

0
P̄n−k+b(ς, s)dς

+ (1 − θ)p
b

∑
r=a

∫ ∞

0
P̄r(ς, s)g(ς)dς +

b

∑
r=a

∫ ∞

0
V̄r(ς, s)β(ς)dς (27)

Q̄n(0, s) = Λp(1 − g)
a−1

∑
k=0

Ck

∫ ∞

0
P̄n−k+b(ς, s)dς + p

∫ ∞

0
P̄n+b(ς, s)g(ς)dς

+ Λg
∫ ∞

0
P̄n+b(ς, s)dς +

∫ ∞

0
V̄n+b(ς, s)β(ς)dς (28)

R̄0(ς, 0, s) = τQ̄0(ς, s), n = 0 (29)

R̄n(ς, 0, s) = τQ̄n(ς, s), n ≥ 1 (30)

V̄n(0, s) = θ
∫ ∞

0
Q̄n(ς, s)ϕ(ς)dς, n ≥ 1 (31)

By multiplying equations (19) through (31) by Ψn and adding the results over n, we can obtain
using the generating function mentioned in equation (16).

∂

∂ς
P̄(ς, Ψ, s) + [s + Λ + g(ς)]P̄(ς, Ψ, s) = 0 (32)

∂

∂ς
Q̄(ς, Ψ, s) + [s + Λ(1 − C(Ψ)) + ϕ(ς)]Q̄(ς, Ψ, s) = 0 (33)

∂

∂ς
R̄(ς, ι, Ψ, s) + [s + Λ(1 − C(Ψ)) + α(ς)]R̄(ς, Ψ, s) = 0 (34)

∂

∂ς
V̄(ς, Ψ, s) + [s + Λ(1 − C(Ψ)) + β(ς)]V̄(ς, Ψ, s) = 0 (35)

P̄(0, Ψ, s) = (1 − θ)(d̄ + dΨ)
∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς +

∫ ∞

0
R̄(ς, Ψ, s)α(ς)dς

+ (1 − µ)
∫ ∞

0
V̄(ς, Ψ, s)βςdς − d̄(1 − θ)

∫ ∞

0
Q̄0(ς, s)ϕ(ς)dς

− (1 − µ)
∫ ∞

0
V̄0(ς, s)β(ς)dς, n ≥ 1 (36)

ΨbQ̄(0, Ψ, s) = Λ(1 − g)pC(Ψ)
∫ ∞

0
P̄(ς, Ψ, s)dς + p

∫ ∞

0
P̄(ς, Ψ, s)g(ς)dς

+ Λg
∫ ∞

0
P̄(ς, Ψ, s)dς +

∫ ∞

0
V̄(ς, Ψ, s)β(ς)dς (37)

R̄(ς, 0, Ψ, s) = τQ̄(ς, Ψ, s), n ≥ 1 (38)

V̄(0, Ψ, s) = θ
∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς, n ≥ 1 (39)

Equation (18) in (36) gives us

P̄(0, Ψ, s) = [1 − (s + Λ)P̄0(s)] + (1 − θ)(d̄ + dΨ)
∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς

+
∫ ∞

0
R̄(ς, Ψ, s)α(ς)dς + (1 − µ)

∫ ∞

0
V̄(ς, Ψ, s)β(ς)dς

(40)
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Equation (32), when integrated between 0 and ς, yields

P̄(ς, Ψ, s) = P̄(0, Ψ, s)e−(s+Λ)ς−
∫ ς

0 g(ϖ)dϖ (41)

Once more, integrating equation (41) by parts with respect to ς yiedls,

P̄(Ψ, s) = P̄(0, Ψ, s)
[

1 − Ā(s + Λ)

s + Λ

]
(42)

where,

Ā(s + Λ) =
∫ ∞

0
e−(s+Λ)ςdA(ς)

When integrating equations (33) to (35) from 0 to ς, similar outcomes are found.

Q̄(ς, Ψ, s) = Q̄(0, Ψ, s)e−ζ(Ψ,s)ς−
∫ ς

0 ϕ(ϖ)dϖ (43)

R̄(ς, ι, Ψ, s) = R̄(ς, 0, Ψ, s)e−ζ(Ψ,s)ς−
∫ ς

0 α(ϖ)dϖ

R̄(ς, Ψ, s) = R̄(ς, 0, Ψ, s)
[

1 − D̄(ζ(Ψ, s))
ζ(Ψ, s)

]
(44)

V̄(ς, Ψ, s) = V̄(0, Ψ, s)e−ζ(Ψ,s)ς−
∫ ς

0 β(ϖ)dϖ (45)

where the values of P̄(0, Ψ, s),Q̄(0, Ψ, s),R̄(0, Ψ, s) and V̄(0, Ψ, s) are given by (37) to (40).
Taking into account ς yiedls, integrate equations (43) to (45) by parts once more.

Q̄(Ψ, s) = Q̄(0, Ψ, s)
[

1 − B̄(ζ(Ψ, s))
ζ(Ψ, s)

]
(46)

R̄(Ψ, s) = τQ̄(0, Ψ, s)
[

1 − B̄(ζ(Ψ, s))
ζ(Ψ, s)

] [
1 − D̄(ζ(Ψ, s))

ζ(Ψ, s)

]
(47)

V̄(Ψ, s) = V̄(0, Ψ, s)
[

1 − F̄(ζ(Ψ, s))
ζ(Ψ, s)

]
(48)

Where,

B̄(ζ(Ψ, s)) =
∫ ∞

0
e−ζ(Ψ,s)ςdB(ς)

D̄(ζ(Ψ, s)) =
∫ ∞

0
e−ζ(Ψ,s)ςdD(ς)

F̄(ζ(Ψ, s)) =
∫ ∞

0
e−ζ(Ψ,s)ςdF(ς)

are, in order, the LST of the following values: retrial time A(ς), service time B(ς), repair time
D(ς), and vacation time F(ς).
Now, multiplying both side of equations (41),(43) to (45) by g(ς),ϕ(ς),α(ς) and β(ς) and inte-
grating over ς, we obtain ∫ ∞

0
P̄(ς, Ψ, s)g(ς)dς = P̄(0, Ψ, s)Ā(s + Λ) (49)∫ ∞

0
Q̄(ς, Ψ, s)ϕ(ς)dς = Q̄(0, Ψ, s)B̄(ζ(Ψ, s)) (50)∫ ∞

0
R̄(ς, ι, Ψ, s)α(ς)dς = R̄(ς, 0, Ψ, s)D̄(ζ(Ψ, s)) (51)∫ ∞

0
V̄(ς, Ψ, s)β(ς)dς = V̄(0, Ψ, s)F̄(ζ(Ψ, s)) (52)
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Using equations (50) in (39)

V̄(0, Ψ, s) = θQ̄(0, Ψ, s)B̄(ζ(Ψ, s)) (53)

Using equations (49) in (37) and (38), we get

Q̄(0, Ψ, s) =
P̄(0, Ψ, s)

Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))[
Λ(1 − g)pC(Ψ)

(
1 − Ā(s + Λ)

s + Λ

)
+ pĀ(s + Λ) + Λg

(
1 − Ā(s + Λ)

s + Λ

)]
(54)

R̄(ς, 0, Ψ, s) = τQ̄(0, Ψ, s)
(

1 − B̄(ζ(Ψ, s))
(ζ(Ψ, s))

)
(55)

Using equation (50) to (52) in (40) we get

P̄(0, Ψ, s) =
Nr(Ψ)

Dr(Ψ)
(56)

Nr(Ψ) =[1 − (s + Λ)P̄0(s)][Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))]

Dr(Ψ) =Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

−
[

Λ(1 − g)pC(Ψ)

(
1 − Ā(s + Λ)

s + Λ

)
+ pĀ(s + Λ) + Λg

(
1 − Ā(s + Λ)

s + Λ

)]
[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ, s)) + τD̄(ζ(Ψ, s))

(
1 − B̄(ζ(Ψ, s))

(ζ(Ψ, s))

)
+ θ(1 − µ)F̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

]
where,

ζ(Ψ, s) = s + Λ(1 − C(Ψ))

Subs/- P̄(0, Ψ, s) from equation (56) into equation (53) to (55)

Q̄(0, Ψ, s) =

Λ(1 − g)pC(Ψ)
(

1−Ā(s+Λ)
s+Λ

)
+ pĀ(s + Λ) + Λg

(
1−Ā(s+Λ)

s+Λ

)
Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))


[

Nr(Ψ)

Dr(Ψ)

]
(57)

R̄(ς, 0, Ψ, s) =τ

(
1 − B̄(ζ(Ψ, s))

(ζ(Ψ, s))

) [
Nr(Ψ)

Dr(Ψ)

]
Λ(1 − g)pC(Ψ)

(
1−Ā(s+Λ)

s+Λ

)
+ pĀ(s + Λ) + Λg

(
1−Ā(s+Λ)

s+Λ

)
Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

 (58)

V̄(0, Ψ, s) =θB̄(ζ(Ψ, s))
[

Nr(Ψ)

Dr(Ψ)

]
Λ(1 − g)pC(Ψ)

(
1−Ā(s+Λ)

s+Λ

)
+ pĀ(s + Λ) + Λg

(
1−Ā(s+Λ)

s+Λ

)
Ψb − θF̄(ζ(Ψ, s))B̄(ζ(Ψ, s))

 (59)

Updating equations (56) to (59) in (42), (46) to (48) We determine the PGF of various conditions
in the system under a transient condition.
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4. The Steady state’s findings:

To define the SS prob., we disregard the argument ϖ wherever it appears in the time-dependent
analysis.

lim
s→0

s f̄ (s) = lim
ϖ→∞

f (ϖ)

P(Ψ) = P(0, Ψ)

(
1 − Ā(Λ)

Λ

)
(60)

Q(Ψ) =

(
1 − B̄(ζ(Ψ))

ζ(Ψ)

)
P(0, Ψ) (61)Λ(1 − g)pC(Ψ)

(
1−Ā(Λ)

Λ

)
+ pĀ(Λ) + Λg

(
1−Ā(Λ)

Λ

)
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

 (62)

R(Ψ) = τ

(
1 − B̄(ζ(Ψ))

ζ(Ψ)

)(
1 − D̄(ζ(Ψ))

ζ(Ψ)

)

P(0, Ψ)

Λ(1 − g)pC(Ψ)
(

1−Ā(Λ)
Λ

)
+ pĀ(Λ) + Λg

(
1−Ā(Λ)

Λ

)
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

 (63)

V(Ψ) = θB̄(ζ(Ψ))

(
1 − F̄(ζ(Ψ))

ζ(Ψ)

)

P(0, Ψ)

Λ(1 − g)pC(Ψ)
(

1−Ā(Λ)
Λ

)
+ pĀ(Λ) + Λg

(
1−Ā(Λ)

Λ

)
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

 (64)

where,

P(0, Ψ) =
Nr(Ψ)

Dr(Ψ)

Nr(Ψ) = [1 − ΛP̄0][Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))]

Dr(Ψ) = Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

−
[

Λ(1 − g)pC(Ψ)

(
1 − Ā(Λ)

Λ

)
+ pĀ(Λ) + Λg

(
1 − Ā(Λ)

Λ

)]
[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))] (65)
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4.1. Queue sizes distribution at a certain epoch:

The PGF is a of the queue size dist., at a random interval, is obtained by adding (60) to (63) with
the idle term.

K(Ψ) =
Nr(Ψ)

Dr(Ψ)
(66)

Nr(Ψ) = ΛP0ζ(Ψ)
(

Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ)

+g (1 − Ā(Λ))]

[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))])− (1 − Ā(Λ))ζ(Ψ)[Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

+ Λ [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ) + g (1 − Ā(Λ))]

[(1 − B̄ζ(Ψ)) + τ(1 − B̄ζ(Ψ))(1 − D̄ζ(Ψ)) + θB̄ζ(Ψ)(1 − F̄ζ(Ψ))]]

+ (1 − Ā(Λ))ζ(Ψ)[Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))

+ Λ [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ) + g (1 − Ā(Λ))]]

[(1 − B̄ζ(Ψ)) + τ(1 − B̄ζ(Ψ))(1 − D̄ζ(Ψ)) + θB̄ζ(Ψ)(1 − F̄ζ(Ψ))]]

Dr(Ψ) = ζ(Ψ)Λ
{

Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ)

+ g (1 − Ā(Λ))]

(
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ)))

}

5. Stability Condition

The PGF needs to meet P(1)=1. Applying the L’Hopital rules and equating the expression to 1
results in the result that satisfies the requirement.

b − [(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)] + p(1 − g)(1 − Ā(Λ))

+ pĀ(Λ) + g(1 − Ā(Λ))[(1 − θ)(d + d̄)(1 − ΛE(I)E(B)) + τE(B)

− θΛ(1 − µ)E(I)A1] + ΛθE(I)A1

Now we can determine the prob., that are unknown. P(1)=1 is therefore fulfilled if

Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ) + g (1 − Ā(Λ))][
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+ θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))

]
> 0

ρ =

[(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)] + [p(1 − g)(1 − Ā(Λ))
+pĀ(Λ) + g((1 − Ā(Λ))][(1 − θ)(d + d̄)(1 − ΛE(I)E(B))

+ τE(B)− θΛ(1 − µ)E(I)A1] + ΛθE(I)A1

b
(67)

then ρ < 1 is the condition to be satisfied for the existence of the SS for the model under
consideration.

6. Performance Evaluation:

This section includes system performance metrics, a model stability study, and some unique
system prob., while the system is in various states.
We obtain the following prob., if the system fulfills the stability requirement ρ < 1.

RT&A, No 2 (78) 
 Volume 19, June, 2024 

52



Rani R and Indhira K
METAHEURISTIC COST SCRUTINY OF MX/G(A, B)/1 RETRIAL QUEUE

• Let P be the SS Prob., that the server is idle during the retrial time.

P = lim
Ψ→1

P(Ψ) = P(1) =
(1 − θ)(1 − Λp0)(1 − Ā(Λ))

Λ(1 − θ)− [p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))]
[(1 − θ)(d + d̄) + θ(1 − µ)]

• If the server is busy, let Q be the SS Prob.,

Q = lim
Ψ→1

Q(Ψ)

Q(1) =E(B)×
(1 − Λp0)[p(1 − g)(1 − Ā(Λ))E(I)]

b + ΛθE(I)A1 − [(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]
+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))]
(1 − θ)(d + d̄)(1 − ΛE(I)E(B)) + τE(B)− Λθ(1 − µ)E(I)A1


• R ought to indicate the SS Prob., that the server is being repaired.

R = lim
Ψ→1

R(Ψ)

R(1) =τE(B)E(D)×
(1 − Λp0)[p(1 − g)(1 − Ā(Λ))E(I)]

b + ΛθE(I)A1 − ([(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]
+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))]
[(1 − θ)(d + d̄)(1 − ΛE(I)E(B)) + τE(B)− Λθ(1 − µ)E(I)A1])


• Using V as the SS Prob., we may assume that the server is on vacation.

V = lim
Ψ→1

V(Ψ)

V(1) =θE(F)E(I)×
(1 − Λp0)(−ΛE(B)p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))

+ p(1 − g)((1 − Ā(Λ))))

b + ΛθE(I)A1 − ([(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]
+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))][(1 − θ)(d + d̄)

(1 − ΛE(I)E(B)) + τE(B)− Λθ(1 − µ)E(I)A1])


6.1. Average queue length:

Computing at Ψ = 1 and differentiating (65) with regard to Ψ yields the mean number of users
in the queue (Lq) under SS conditions.

Lq = lim
Ψ→1

d
dΨ

P(Ψ)

P′(1) =
Nr′′(1)Dr′(1)− Dr′′(1)Nr′(1)

2(Dr′(1))2
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D
′
(1) = −Λ2E(I)

{
Ψb − θF̄(ζ(Ψ))B̄(ζ(Ψ))− [(1 − g)pC(Ψ) (1 − Ā(Λ)) + pĀ(Λ)

+g (1 − Ā(Λ))]

[
(1 − θ)(d̄ + dΨ)B̄(ζ(Ψ)) + τD̄(ζ(Ψ))

(
1 − B̄(ζ(Ψ))

(ζ(Ψ))

)
+θ(1 − µ)F̄(ζ(Ψ))B̄(ζ(Ψ))]}

D
′′
(1) = −Λ2 {E(I(I − 1))[1 − θ − [p − g(p − 1)(1 − Ā(Λ))][1 − θµ]]

+2E(I)[b + ΛθE(I)A1 −
(
[(1 − g)pE(I)(1 − Ā(Λ))][(1 − θ)(d + d̄) + θ(1 − µ)]

+[p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))][(1 − θ)(d + d̄)(1 − ΛE(I)E(B))

+τE(B)− Λθ(1 − µ)E(I)A1])]}

N′(1) =− Λ2E(I)
{

1 − θ − [p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))][(1 − θ)(d + d̄)

+θ(1 − µ)]}+ (1 − Λ)
{
−ΛE(I)(1 − θ)(1 − Ā(Λ)) + Λ2E(I)E(B)

(p(1 − g)(1 − Ā(Λ)) + pĀ(Λ) + g(1 − Ā(Λ))) + θΛE(I)E(F)
}

N′′(1) =− Λ2 {E(I(I − 1)) (1 − θ − A4(1 − θµ)) + 2E(I) (b + θΛE(I)A1 − A2(1 − θµ)

+A4[(1 − θ) (1 − ΛE(I)E(B))] + τE(B)− θΛ(1 − µ)E(I)A1)}
+ (1 − Λ)

{
(1 − Ā(Λ))[−(1 − θ)ΛE(I(I − 1))− ΛE(I)(b + θΛE(I)A1)]

+Λ2E(I)E(B)A2 + Λ2[E(I(I − 1))E(B) + E(I)E2(B)][p(1 − g)((1 − Ā(Λ)))

+pĀ(Λ) + g((1 − Ā(Λ)))]− θΛ2E(B)E(F)E(I)2

+Λθ[E(I(I − 1))E(F) + E(I)E2(F)]
}

where,

A1 =E(B) + E(F)

A2 =p(1 − g)E(I)((1 − Ā(Λ)))

A4 =p − g(p − 1)(1 − Ā(Λ))

• The Little’s formula (Wq) is used to determine how long an average customer waits in
queue.

Wq =
Lq

ΛE(I)

7. Practical application of the model:

The field of telecommunications networks may be able to use the suggested model. This
system manages a lot of consumer telephone communications. Call takers are referred to as
servers and callers as customers in this context. A consumer may elect to exit the system if he
calls and discovers that all the servers are occupied (impatience). Customers wait in orbit while
the server is overloaded, out of commission, or undergoing maintenance. If a server has any
questions or concerns that fall outside of their area of expertise, they may need to refer them
to other servers who are available or speak with a senior in order to acquire the answers. A
service failure can be used to represent this circumstance. The speed at which the agent receives
responses from the expert in this case is known as the repair rate. Additionally, the server may do
various maintenance procedures known as "vacations." Additionally, after each customer’s service
is finished, dissatisfied customers may re-join the line and be classified as feedback consumers.

8. Numerical Results

In this section, we’ll use MATLAB to demonstrate how different parameters affect observations of
system behavior. The batch size distance of the arrivals in this section is geometry; with a mean
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of 2. Here, the exponential distance is followed by the service, vacation, and repair stages. By
creating erroneous assumptions about the parameters, we make sure that the stability criterion is
satisfied. Tables 1 to 3 present estimated values for our queueing system’s utilization factor (ρ),
average queue length (Lq), and average waiting time (Wq).

Table 1: The effects of arrival rate (Λ) on ρ, Lq, and Wq

g = 0.5, p = 1.5, E = 0.6, G = 2.2, θ = 3, d = 3,
e = 0.6, µ = 0.9, B = 1.5,D = 1, F = 0.7, z = 1,b = 2, τ = 1.8

Arrival rate (Λ) ρ Lq Wq

0.30 0.022680 3.505127 5.841879
0.31 0.096336 4.616984 7.446748
0.32 0.169992 6.010404 9.391256
0.33 0.243648 7.742148 11.730527
0.34 0.317304 9.878047 14.526540
0.35 0.390960 12.494169 17.848813
0.36 0.464616 15.678118 21.775164

Table 2: The effects of the service rate ϕ(ς) on ρ, Lq, Wq

g = 7.8, p = 0.7, E = 0.8, G = 6, θ = 1, d = 3, e = 4.6,
µ = 0.7, D = 1, F = 0.7, Λ = 0.3, z = 1, b = 2, τ = 1

service rate (B) ρ Lq Wq

0.50 0.737200 0.223375 0.372292

0.51 0.687360 0.189247 0.315412

0.52 0.637520 0.160488 0.267480

0.53 0.587680 0.135989 0.226649

0.54 0.537840 0.114943 0.191572

0.55 0.488000 0.096748 0.161247

0.56 0.438160 0.080947 0.134912

Table 3: The effects of the Breakdown rate (τ) on ρ, Lq, Wq

g = 0.2, p = 0.7, E = 2.9, G = 9, θ = 1,
d = 7, e = 8.6, µ = 0.2, B = 7,D = 2, F = 0.7, Λ = 0.4,z = 2, b = 4

breakdown rate
(τ)

ρ Lq Wq

1.0 0.264592 5.619523 7.024404

1.1 0.303092 6.095933 7.619916

1.2 0.341592 6.575234 8.219042

1.3 0.380092 7.057428 8.821784

1.4 0.418592 7.542516 9.428145

1.5 0.457092 8.030500 10.038125

1.6 0.495592 8.521381 10.651727
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The two-dimensional graph that represents the system measurement of performance is shown
in Figure 1 (a − c).

• The figure 1 (a) demonstrates how the utilization factor (ρ), estimated queue length (Lq),
and expected waiting time (Wq) all increase as the arrival rate (Λ) does.

• The figure 1 (b) shows that while the utilization factor (ρ) decreases, the service rate ϕ(ς)
rises. Expected waiting time (Wq) and queue length (Lq) decrease.

• The breakdown rate (τ), utilization factor (ρ), expected queue size (Lq), and expected
waiting time (Wq) all show increasing trends in the figure 1 (c).

The three-dimensional graph of the system indicators of performance is shown in Figure 2
(a − c).

• The surface in figure 2 (a) shows the growth of the arrival rate (Λ), estimated length of the
line (Lq), and estimated wait time (Wq).

• Figure 2 (b) shows that as the service rate ϕ(ς) rises, the estimated queue size (Lq) and
waiting time (Wq) both decrease.

• Figure 2 (c) shows that as the breakdown rate τ rises, expected queue lengths (Lq) and
waiting times (Wq) also rise.

The numerical results above allow us to determine the influence of attributes on the system’s
evaluation criteria, and we can be assured that they are representative of realistic conditions.

(a) ρ, Lq, Wq verses arrival rate Λ (b) ρ, Lq, Wq verses Service rate ϕ(ς)

(c) ρ, Lq, Wq verses Breakdown rate τ

Figure 1: 2D representation effects
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(a) ρ,Lq, Wq verses arrival rate Λ (b) ρ,Lq, Wq verses Service rate ϕ(ς)

(c) ρ,Lq, Wq verses Breakdown rate τ

Figure 2: 3D representation effects

9. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS modal is actually applicable in a variety of fields, such as modes of transport,
congestion, telecommuting, atmospheric research, etc. Artificial neural networks are used in
communications networks to accomplish a variety of goals, including an increase in customers,
expense reduction, shorter wait times, etc. With variations in arrival rates while on vacation,
service rates, repair rates, and repair to busy rates, the current modal allows us to examine the
impatience of the client while they wait for the service.

A very helpful approach for ANFIS is created by combining soft computing methods, artificial
neural networks (ANNs), and fuzzy systems (FS). We are showing a simplified idea of the ANFIS
architecture by using the fuzzy parameters. We can implement an ANFIS input-output function
and input-output data pairs as fuzzy if-then logic. The fuzzy toolbox of MATLAB software can
be utilized for contrasting the computational findings with the implementation of an ANFIS
network.

The input parameters and the membership function are assumed to be the Λ, ϕ(ς), and τ
Gaussian functions in order to produce computational results based on ANFIS. (see Fig. 3a, b,
c). It is assumed that the linguistic values are low, moderate, or high. Tick marks are placed
over the curves made for the results obtained analytically in Figure 1a, 1b and 1c to indicate the
results produced by the ANFIS approach for the queue size. The figures show that the numer-
ical outcomes produced using the Runge-Kutta method and the ANFIS results are nearly identical.
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(a) ρ, Lq, Wq verses arrival rate Λ (b) ρ, Lq, Wq verses Service rate ϕ(ς)

(c) ρ, Lq, Wq verses Breakdown rate τ

Figure 3: ANFIS representation effects

10. Cost Optimization:

The term "optimization" describes the method of determining the set of parameters for an ob-
jective function that produces the highest or lowest outcome. The continual, business-oriented
activity known as "cost optimization" aims to reduce expenditures and costs while raising the
organization’s value. Standardizing, streamlining, and rationalizing platforms, application de-
velopment, procedures, and services are all part of this process, along with establishing the
most competitive possible terms and prices for all business transactions. The operating cost and
profit of a system are closely tied in real-world situations. Therefore, the system’s designers or
managers place a lot of emphasis on reducing operational expenses per unit of time in order to
enhance the system’s earnings. Our objective is to identify the best cost per unit of time (TC)
characteristics. In order to do this and increase the cost-effectiveness of our developed approach,
we will build our competence in this field.
Ch - Holding expense for every user in the system per unit of time.
Cb - The cost for each unit of time the server is turned on and used.
Cv - The cost imposed on the server in vacation mode per unit of time.
Cr - The cost to repair the server after its failure, calculated per unit of time.
C1 - The cost per unit over a busy time.
C2 - Cost for each unit of time used over the vacation period.

TC = ChLq + CvV + CbQ + CrR + C1γb + C2γv
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The TC problem is solved using metaheuristic optimisation methods including PSO, ABC,
and GA. In view of the importance of cost optimisation, this study was conducted using the
global search optimisation algorithms particle swarm optimisation (PSO), artificial bee colony
(ABC), and genetic algorithms (GA), each of which is separately described in three different
subsections of this section. If the algorithm’s assumptions are correct, local search techniques
frequently offer the level of computer efficiency required to find the global optimal. Tables 5 to 7
display the effects of Λ, τ, and ϕ on TC* using PSO, ABC, and GA.

Table 4: Cost sets for optimal policy

Cost
sets

Ch Cv Cb Cr C1 C2

1 10 9 7 6 7 8

2 8 4 6 4 8 9

3 7 6 8 3 9 6

10.1. Particle Swarm Optimization (PSO)

One of the meta-heuristic methods used to solve optimization issues is the particle swarm
optimization (PSO) technique, which has been employed successfully in a number of single
objective optimization problems. Kennedy and Eberhart first proposed this algorithm. The PSO
algorithm has the benefit of being simple to implement and apply for solving different function
optimization problems, which can be categorized as function minimization or maximization
problems.

Table 5: Effect of Λ, τ, ϕ(ς) on TC∗ using PSO

g = 0.2, p = 0.7, G = 9, θ = 0.95, d = 7, e = 8.6,
c = 0.2, B = 7, D = 2, τ = 1.6, b = 4

Cost sets TC∗

Cost set 1 Cost set 2 Cost set 3
0.4 149.1752 133.0711 127.2781

Λ 0.5 162.6882 143.5244 136.3697
0.6 173.5857 152.1798 143.7058
1.6 149.1752 133.0711 127.2781

τ 1.7 161.5959 141.8755 134.7960
1.8 175.6139 151.7985 143.2466
7 149.1752 133.0711 127.2781

ϕ(ς) 8 184.5033 159.0594 151.0219
9 230.2302 192.6975 181.7546

10.2. Artificial Bee Colony(ABC)

One of Dervis Karaboga’s most recent algorithms—created in 2005—is called the Artificial Bee
Colony and was modeled after the cunning behaviour of honey bees. Basic process indicators like
colonies and highest levels are essentially all that are used. Like PSO and differential evolutionary
approaches, it is equally simple to comprehend. The search for huge areas of nectar-containing
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food sources, and ultimately the one with the most nectar, is the bees’ main goal. This population-
based search approach is the main one used by ABC. The cost of the suggested structure is
decreased through a process known as ABC.

Table 6: Effect of Λ, τ, ϕ(ς) on TC∗ using ABC

g = 0.2, p = 0.7, G = 9, θ = 0.95, d = 7, e = 8.6,
c = 0.2, Λ = 0.4, D = 2, τ = 1.6, b = 4

Cost sets TC∗

Cost set 1 Cost set 2 Cost set 3
0.4 108.0030 108.8585 109.6965

Λ 0.5 112.6458 113.7397 114.0666
0.6 115.8805 117.2631 116.9601
1.6 108.0030 108.8585 109.6965

τ 1.7 112.4344 113.2737 114.1395
1.8 117.4656 117.8425 118.7674
7 108.0030 108.8585 109.6965

ϕ(ς) 8 120.7245 120.9982 122.5394
9 138.2173 134.5400 136.4184

10.3. Genetic Algorithm (GA)

The genetic algorithm, created in the 1960s and 1970s by Bremermann, Holland, and their
colleagues, is a technique for addressing optimization problems brought on by natural selection,
the mechanism that promotes evolution in biology. They are frequently employed to deliver
superior solutions to stochastic search issues. The full procedure serves as a representation of the
criteria for choice that were used to select the people who would make the best parents for the
coming human generation.

Table 7: Effect of Λ, τ, ϕ(ς) on TC∗ using GA

g = 0.2, p = 0.7, G = 9, θ = 0.95, d = 7, e = 8.6,
c = 0.2, Λ = 0.4, D = 2, B = 7, b = 4

Cost sets TC∗

Cost set 1 Cost set 2 Cost set 3
0.4 152.5341 131.8364 124.6592

Λ 0.5 163.2414 141.3111 131.8853
0.6 170.0165 148.0781 136.4720
1.6 152.5341 131.8364 124.6592

τ 1.7 167.5959 142.6723 133.7200
1.8 184.4744 154.7915 143.8279
7 152.5341 131.8364 124.6592

ϕ(ς) 8 192.8582 162.3320 151.7762
9 243.6750 200.7627 185.9493
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10.4. Analogy of PSO, ABC and GA

This section compares the three approaches—particle swarm optimization (PSO), artificial
bee colony (ABC), and genetic algorithm (GA)—to determine which has the least expense using
the corresponding MATLAB programs. Then, one by one, the MATLAB programs for each of
the aforementioned algorithms are run. We found that all three programs generated values that
were nearly identical. Because of this, the three solutions are nearly comparable in terms of their
optimum results and the fewest associated costs. It proves the reliability (local) and potency of
these three simple techniques. Any technique can be used to calculate the optimal cost; however,
PSO outperforms all others in comparison to our model. Because PSO has so many advantages,
we have found that it is the best approach out of all of them. It performs well in global queries,
requires a small number of arguments, is easy to configure, and is unaffected by design variable
scalability. In addition to suffering sluggish convergence in a concentrated searching region, PSO
has a tendency to lead to swift and early convergence in mid-optimal locations (being able to
impair local search capabilities).

10.5. Convergence in PSO, ABC and GA

After employing an optimization methodology like PSO, ABC, or GA, it is crucial to comprehend
whether a particle recovers to normal or not and when it will roam around in search of a better
solution. As a result, convergence is a significant component of cost evaluation. A statistical
analysis (Fig. 4) of the outcomes demonstrates that ABC exceeds the PSO approach. For the whole
standard optimization, ABC had fewer functional evaluations overall than PSO. The findings
demonstrate that PSO converges more quickly. ABC cannot be employed if a speedy result is
required for time-sensitive applications.

The study shows the applicability of our concept to real-world situations. Some of the
analysts’ financial issues will be partially overcome once they know how much the system will
cost overall. The current situation may heavily rely on the cost-benefit assessment that was
produced, which serves to illustrate the logic of our strategy and aid network administrators and
specialists in lowering the issue of communications services that explicitly deal with blocking.

11. Conclusion:

This paper investigates the MX/G(a, b)/1 retrial queue with random failure and feedback
under extended Bernoulli vacation with impatient customers. The SVT is utilized to determine
indicators of efficiency for the various system stages. The efficiency of the system is then evaluated
after considering the effects of various parameters. Finally, we gave a thorough explanation of the
ANFIS. PSO, ABC, and GA are also used to compute the total cost. In an effort to find the best
offer, these techniques compare and contrast the outcomes. The impetus for this study came from
the prospective applications for the developed model, such as call centres, wireless networks, or
telecommunication infrastructures, which might be powered by controlled precision test queueing
systems to provide outstanding service at low prices. The simple mail transfer protocol utilizes a
way to convey the messages between the mail servers. The recommended approach might be
used in an email system’s transfer model.
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Abstract 

The main aspects of the use of automatic monitoring and control systems in order to increase the 

reliability of power lines are considered. The article highlights modern technologies and techniques 

that make it possible to quickly identify and prevent possible emergency situations on power 

transmission lines. The advantages of automated systems compared to traditional monitoring and 

control methods are discussed, and examples of research and practical applications of such systems 

are presented. The results obtained can be useful for energy specialists and engineers involved in the 

design, operation and maintenance of power transmission lines, as well as for developers and 

manufacturers of automated monitoring and control systems. 

Keywords: power lines, sensors, monitoring, automatic control 

I. Introduction

The reliability of power transmission lines (PTLs) plays a key role in ensuring the stable 
operation of energy systems. Power transmission lines are the main channel for transmitting 
electricity from generating sources to end consumers, and their reliability directly affects the 
continuity of power supply. Failures or malfunctions in power transmission lines can lead to 
power outages, which have serious consequences for both industry and residential areas, including 
loss of production, financial losses and even threats to human life and health. 

Moreover, modern energy systems are becoming increasingly complex and integrated, with 
an increasing share of distributed generation, including renewable energy sources such as solar 
and wind power. In this context, the reliability of transmission lines becomes even more critical, 
since even small power outages can have a cascading effect on the operation of the entire energy 
system. Therefore, ensuring the reliability of power lines is an essential condition for ensuring 
stable and safe operation of energy systems as a whole. Online monitoring and automatic control, 
which are provided by ASMU systems, are becoming necessary tools for the timely identification 
and elimination of possible problems on power lines, which helps to increase their reliability and 
ensures the efficient functioning of the entire energy system [1-3]. 

In recent years, there has been a significant increase in interest in automated monitoring and 
control systems (ASMU) in various fields, including energy. This increase in interest is due to 
several factors. Firstly, with the development of technology and the introduction of the Internet of 
Things (IoT) concept, it has become possible to create more efficient and intelligent monitoring 
systems that are capable of continuously collecting and analyzing equipment condition data in real 
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time. This allows operators to quickly respond to any anomalies and prevent possible accidents. 
Secondly, the desire to improve the efficiency and reliability of technical systems also 

stimulates interest in ASMU. Automated monitoring and control systems make it possible to 
optimize maintenance and repair processes, reduce personnel and resource costs, and also increase 
the service life of equipment due to timely detection and elimination of faults. 

Finally, the growing need for security and reliability of critical infrastructures such as power 
systems is also driving demand for ASMUs. Automated monitoring and control systems provide a 
higher level of control and protection, which helps prevent incidents and minimize their 
consequences. 

Thus, automated monitoring and control systems are becoming an integral part of modern 
technical infrastructure, ensuring continuous operation and increased reliability of various 
technical systems, including energy ones. 

II. Formulation of the problem

ASMUs (automatic monitoring and control systems) are an important component of modern 
energy systems, providing continuous monitoring and control of power transmission lines (PTLs). 
The technical characteristics and capabilities of ASMU include the use of various types of sensors 
and sensors, such as temperature, humidity, pressure, vibration and others, to continuously collect 
data on the condition of power transmission line equipment. This data is transmitted to a central 
control center via data networks such as the Internet, cellular or satellite communications, ensuring 
a rapid response to any changes or faults. 

In addition, ASMUs are equipped with high-performance controllers and management 
software capable of analyzing sensor data and making appropriate decisions in real time. This 
allows monitoring and control systems to automatically respond to changes in the technical 
condition of power lines, preventing possible emergency situations and ensuring the 
uninterrupted operation of the energy system. In addition, ASMUs integrate with other control 
and automation systems to optimize the operation of the entire energy system and increase its 
efficiency. 

Finally, one of the important characteristics of ASMUs is their data analytics and diagnostic 
capabilities. Using machine learning and data analytics techniques, ASMUs are able to identify 
hidden patterns, predict possible failures and determine the causes of failures based on the 
analysis of collected data. This allows operators of monitoring and control systems to make 
informed decisions on the maintenance and repair of power lines, minimizing the risk of 
emergency situations and ensuring stable operation of the energy system. 

The use of automated monitoring and control systems (ASMU) is a key solution for increasing 
the reliability of power transmission lines (PTLs) and ensuring the safety of energy systems in 
general. The main benefits of ASMU for power line reliability include: 

Firstly, increasing the efficiency and effectiveness of diagnostics and detection of possible 
faults or anomalies in the operation of power lines. ASMUs are capable of continuously 
monitoring the condition of equipment and automatically identifying any deviations from normal 
operation, which allows you to quickly respond to potential threats and prevent possible 
emergency situations. 

Secondly, optimization of planned and emergency maintenance of power lines. ASMUs make 
it possible to carry out preventive maintenance and repair of equipment at more optimal time 
intervals based on real data about its condition, which reduces the likelihood of failures and 
increases the service life of power lines [4]. 

In addition, ASMUs provide the ability to automatically control and optimize the operation of 
power lines in real time depending on changing operating conditions, such as load, weather 
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conditions, etc. This allows for more efficient use of resources and ensures stable power supply in 
all conditions. 

Finally, ASMUs help improve safety and protect transmission lines from external threats such 
as power outages, cyber-attacks or natural disasters. Automatic monitoring and control systems 
ensure a quick response to any threats and prevent the possible consequences of such incidents 
from spreading to other parts of the energy system. 

III. Problem solution

When transporting electricity through a specific power transmission line, the permissible 
current loads are regulated. In this case, current limit values are used that determine the sag of the 
wires above the critical value. These data are taken for the most extreme conditions, which do not 
occur in more than 90% of the operating time of power lines [5]. Consequently, there is a resource 
for transmitting large capacities without violating the regulations. That is, it is possible to transmit 
additional power (15–30%) almost 90% of the operating time. The presence of a monitoring system 
allows you to use this additional resource without reducing the reliability regulations. To do this, it 
is necessary to monitor the current level and temperature of the wires along the entire route and, in 
accordance with the real state of the line, dynamically adjust the level of transmitted power (Fig. 
1). 

Figure 1: Efficiency of energy transfer in power transmission lines with static and dynamic parameters 

Telemetric monitoring of power line wire parameters was first proposed more than 40 years ago. The 
first controlled parameter via a telemetric radio channel was the current in the wire. The appearance of the 
American patent Remote measuring system [6] dates back to this time (“Systems for remotely measuring 
current in a wire with transmission of the measured value via a radio channel”). The proposed solution used 
power to the measuring device from an induction transformer due to the current flowing in the wire. It was 
measured through a transformer current sensor. The signal modulated the grid circuit of the tube transmitter 
(Fig. 2). As can be seen in the figure, the current meter used measuring and current transformers to power the 
lamp circuit (anode and filament circuit). The transmitter is made on a single-tube stage. The AM RF signal is 
used by modulating the grid current of the transmitter oscillator. In the last 15 years, thanks to the 
development of information technology, the commercial implementation of power line wire monitoring 
systems has become possible. 
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Figure 2: Circuit diagram of a remote current meter with a radio channel 

Currently, various monitoring systems for overhead power lines are widely used throughout the 
world, providing the system operator with detailed information about the current state of overhead cable 
power supply networks. The monitoring system consists of a network of measuring units connected through 
a communication channel with equipment at the control center. Measuring units are distributed along the 
power line route and mounted on supports or directly on high-voltage wires. Figure 3 shows the structure of 
the transmission line capacity monitoring system. 

Figure 3: Power line wire monitoring system 

Control rooms are located at the nodes of energy redistribution networks. Currently, they usually use 
SCADA systems that provide processing and interpretation of data received from measuring units (Fig. 4). 
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Figure 4: Structure of the measuring unit and monitoring center 

The measuring unit includes the following basic components: 
• a group of sensors for measuring the main current parameters of the wire line;
• processor module for processing measured data;
• data transmission system;
• autonomous power module.
Depending on the functional purpose, various types of sensors can be used in monitoring systems:
• for measuring current in a wire;
• temperature of the wire in the span;
• mechanical stress of the wire at suspension points (strain gauges);
• for measuring attenuation in optical fibers of ground wires or phase wires;
• to measure critical sag;
• climatic conditions (weather station);
• vibration characteristics of wires (accelerometers). Current measurement is carried out using a non-

contact method, for which sensors based on the Hall effect or Rogowski coil are used. 
Currently, wireless communication channels are mainly used to transmit data in overhead line 

monitoring systems - these are GSM or ISM radio modems operating at frequencies of 434, 868 MHz and 2.4 
GHz. GSM modems have been used in the market of automated process control systems for more than ten 
years, including for data transmission in monitoring systems. The first models had limited capabilities for 
transmitting SMS messages and data in analog mode. The operation of such devices in analog modem mode 
provides a data transfer speed of only 9.5 kbaud, and payment is made in accordance with the time spent on 
the network. The GPRS system implements packet switching throughout the entire communication channel, 
significantly optimizing data transmission services in GSM networks. It establishes connections almost 
instantly, utilizes network resources, and occupies bandwidth only when data is actually being transmitted, 
ensuring extremely efficient use of available bandwidth. GPRS provides a multipoint transmission service 
(multicast) between a specific network provider and a group of mobile subscribers with GPRS terminals. 
GPRS requires traffic payment, which is charged only for the volume of transmitted and received 
information, and not for the time the modem is in the receiving/transmitting state. To transfer data from the 
measuring modules to the monitoring system server, a wireless network created on the basis of xBee radio 
modems from Digi can be used. Currently, transceivers are produced at frequencies of 868 MHz and 2.4 GHz. 
Transceivers provide a line-of-sight data transmission range of up to 4 km. Based on a network of ZigBee 
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transceivers with a backbone topology, it is possible to organize relay data transmission over the network 
between meters to the monitoring system data server. The direction of transmission in the transmission 
network along power lines is always set towards the server. To increase reliability, it is possible to 
alternatively bypass the problematic node that blocks communication along the chain. 

IV. Conclusions

In conclusion, the application of automatic monitoring and control systems (ASMU) is an important 
step to ensure the reliability of power transmission lines (PTLs) and improve the efficiency of energy systems 
in general. ASMUs provide the ability to continuously monitor the condition of equipment, automatically 
identify and eliminate faults, optimize the operation of power lines and analyze data to predict possible 
failures. These systems play a key role in ensuring a stable and safe power supply, as well as reducing the cost 
of maintaining and repairing power lines. 

However, further development of ASMU requires efforts to improve monitoring and data analytics 
technologies, as well as the creation of standards and regulations to ensure compatibility and interoperability 
of various monitoring and management systems. In the future, the development of ASMU will be aimed at 
improving automation and artificial intelligence, which will improve the efficiency and reliability of energy 
systems, ensuring stable and uninterrupted power supply in any conditions. 
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Abstract 

This paper pictures the importance and the generalization of a new family of distribution developed 

on Triangle distribution. The new family provides some useful expansions, properties and a suitable 

alternative to some of existing models with same and higher number of parameters. Exponential 

distribution (one parameter) and Inverse Weibull distribution (Two parameter) play the role of sub-

models. This new family distribution is used as a statistical model to estimate the parameters using 

the maximum likelihood estimation method. A complete study of Percentage points has been tabled. 

Two real-world data sets are investigated, demonstrating the suggested model's capacity to fit a 

variety of data sets along with some other models. 

Keywords: G-family of distribution, Maximum Likelihood estimation, Percentage 
Points, Lifetime data. 

I. Introduction

Let us suppose a random variable 𝑇 ∈ (𝑎, 𝑏) for −∞ ≤ 𝑎 < 𝑏 < ∞ having a probability density 
function (pdf) 𝑦(𝑡) and 𝑊[𝐹(𝑥)] be a function of a cumulative distribution function (cdf) of the 
random variable X which satisfies some statistical conditions such as 𝑊[𝐹(𝑥)] ∈ (𝑎, 𝑏), 𝑊[𝐹(𝑥)] is 
differentiable and monotonically non-decreasing and 𝑊[𝐹(𝑥)] → 𝑎 as 𝑥 → −∞ and 𝑊[𝐹(𝑥)] → 𝑏 as 
𝑥 → ∞. Aljarrah et al. (2014) defined the T-X family cdf by 𝐺(𝑥) = ∫ 𝑦(𝑡)𝑑𝑡 = 𝑌{𝑊[𝐹(𝑥)]}

𝑊[𝐹(𝑥)]

𝑎
, 

where 𝑊[𝐹(𝑥)] satisfied all the conditions. The corresponding pdf of T-X family of distribution is 
𝑔(𝑥) = {

𝑑

𝑑𝑥
𝑊[𝐹(𝑥)]} 𝑦{𝑊[𝐹(𝑥)]}. 

This study suggests a new distribution family that is inspired by the Triangle-G family. Below is a 
quick explanation of the Trianlge-G family. The pdf and cdf of Triangle distribution is as follows 

𝑔(𝑥; 𝑝) =
2𝑥

𝑝
;  𝑥 ∈ ℝ     (1.1)

𝐺(𝑥; 𝑝) =
𝑥^2

𝑝
;  𝑥 ∈ ℝ (1.2) 

The simple form (putting 1p = ) of the pdf and cdf of Triangle distribution is defined as 
𝑔(𝑥) = 2𝑥; 𝑥 ∈ ℝ         (1.3)  

     𝐺(𝑥) = 𝑥2; 𝑥 ∈ ℝ (1.4) 
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This distribution has a number of advantages, such as its simplicity and capacity for enhancing the 
flexibility of PDF and CDF while introducing new flexible models. Researchers may have more 
options when it comes to these distributions along with trigonometric functions. 

Here a table of chronological review has been added for the recent G-families based on the 
trigonometric functions and their inverses techniques. 

Table 1: Literature reviews of some recent trigonometric functions and G-families 

Sl. No. Authors Years Contributions in distribution family 
1 Souza et al. 2022 Sec-G class of probability distribution 
2 Sakthivel et al. 2022 transmuted Sin-G class of probability distribution 
3 Mahmood et al. 2022 extended cosine-G class of probability distribution 

4 Rahman M. 2021 Arcsine-G class of probability distribution 
5 Eghwerido et al. 2021 Teissier-G class of probability distribution 

6 Chesneau et al. 2021 distribution based on the arccosine function 
7 Muhammad et al. 2021 exponentiated sine-G class of probability 

distribution 
8 Ahmad et al. 2021 exponential T-X class of probability distribution 
9 Liang Tung et al. 2021 arcsine-X class of probability distribution 

10 Alkhiary et al. 2021 ArcTan Lomax distribution 
11 Souza et al. 2021 Tan-G class of probability distribution 
12 Muhammad et al. 2021 A New Extended Cosine—G distributions 

13 He et al. 2020 arcsine exponentiated- X class of probability 
distribution 

14 Al-Babtain et al. 2020 Sine Topp-Leone-G class of probability distribution 
15 Chesneau and Jamal 2019 Sine Kumaraswamy-G class of probability 

distribution 
16 Mahmood et al. 2019 A New Sine-G Family of Distributions: Properties 

and Applications 
17 Chesneau et al. 2019 new class of probability distributions via cosine and 

sine functions 
18 Mahmood et al. 2019 sine-G class of probability distribution 

The Triangle-G family of distribution was introduced in this study. The Tr-G family's key benefit is 
that practitioners will have a one-parameter class that is adaptable to actual data in relevant 
disciplines. It may be a good substitute for other distributions with one, two, three, or four 
parameters. In some real-world circumstances, nevertheless, it might also exceed other kinds of 
distributions in terms of model fit, although this is not always assured. Additionally, a full account 
of some of its mathematical properties is provided.  

The outline of rest of the paper is as follows. The derivation of the form for the Tr-G density function 
described in Section 2. Some of the general mathematical aspects of the proposed family that are  
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included in Section 3. In Section 4, one unique model of this family is presented, along with various 
plots of their pdfs and hrfs.  The proposed model's percentage point results are discussed in Section 
5.  
In Section 6, we use two particular models of the proposed family on real data sets to demonstrate 
their applicability. In Section 7, some concluding remarks are presented. 

II. Triangle- G (TR-G) family of distribution

The derivation of pdf and cdf of Triangle-G family of distribution is discussed in this section. Let us 
consider a random variable X that belongs to the Triangle-G family, the cdf and pdf can be written 
in the following form 

𝐺𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝑝; 𝜙) =
𝐹(𝑥;𝜙)2

𝑝
; 𝑥 ∈ ℝ (2.1) 

𝑔𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝑝; 𝜙) =
2𝐹(𝑥;𝜙)𝑓(𝑥;𝜙)

𝑝
; 𝑥 ∈ ℝ  (2.2) 

The simplest form of TR-G family of distribution is formed by putting 1p = . The cdf and pdf are as 
follows 

𝐺𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝜙) = 𝐹(𝑥; 𝜙)2; 𝑥 ∈ ℝ (2.3) 

𝑔𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝜙) = 2𝐹(𝑥; 𝜙)𝑓(𝑥; 𝜙); 𝑥 ∈ ℝ      (2.4) 

Here ( );f x  and ( );F x  are considered as the pdf and cdf of baseline (or parent) random

variable depending on the parameter vector. The complementary cdf (or survival function (srf)), 
instantaneous failure rate (or hazard rate function (hrf), retro hazard (or reversed hazard rate 
function), integrated hazard rate (or cumulative hazard rate function) can be written as below 

𝑆𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝑝; 𝜙) = 1 − [
𝐹(𝑥;𝜙)2

𝑝
]; 𝑥 ∈ ℝ (2.5) 

ℎ𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝑝; 𝜙) =
2𝐹(𝑥;𝜙)𝑓(𝑥;𝜙)

𝑝−[𝐹(𝑥;𝜙)2]
; 𝑥 ∈ ℝ  (2.6) 

𝑟𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝑝; 𝜙) =
2𝑓(𝑥;𝜙)

𝐹(𝑥;𝜙)
; 𝑥 ∈ ℝ (2.7) 

𝐻𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒−𝐺(𝑥; 𝑝; 𝜙) = −log [1 − {
𝐹(𝑥;𝜙)2

𝑝
}]; 𝑥 ∈ ℝ (2.8) 

III. Some Properties
I. Quantile function, Median, Bowley skewness and Moors kurtosis

The quantile function (also known as the inverse cdf) of the Triangle-G family follows by inverting 
the Triangle-G distribution function. Let us consider 𝑢 ∼ 𝑈(0,1), the 𝑢𝑡ℎ quantile function of TR-G is 
defined as 𝑄𝐹(𝑢) is the solution of 𝑄(𝑢) > 0. It may be written as follows in terms of the tangent 
trigonometric function as 

𝑥 = 𝑄𝐹(𝑢) = 𝐺−1(𝑢) = 𝐹−1 [(𝑝𝑢)
1

2]   (3.1)
where 𝑢 ∈ (0,1). The quantile function expression may be used to generate random numbers from 
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TR-G distributions. The median of the TR-G family can be obtained by setting 𝑢 = 0.5. The effects of 
the shape parameters on the skewness and kurtosis can be studied by using (3.1).  
The Bowley skewness (S) and Moors kurtosis(K) can be formulated as 

  (𝑆) =
𝑄(

3

4
)+𝑄(

1

4
)−2𝑄(

1

2
)

𝑄(
3

4
)−𝑄(

1

4
)

 and  (𝐾) =
𝑄(

3

8
)−𝑄(

1

8
)+𝑄(

7

8
)−𝑄(

5

8
)

𝑄(
6

8
)−𝑄(

2

8
)

where 𝑄(. ) represents the quantile function. When the distribution is symmetric, 𝑆 = 0 and when 
the distribution is right (or left) skewed, 𝑆 > 0(or 𝑆 > 0). The tail of the distribution gets thicker as 
𝐾 expands. These metrics exist even for distributions without moments and are less subject to 
outliers. 

II. Critical Points and Asymptotes

The critical points of 𝑓(𝑥) are the solution 0x of the nonlinear equation 𝑓′(𝑥0) = 0 i.e., 
2𝑓(𝑥)2 + 𝐹(𝑥)𝑓′(𝑥)

𝑝
= 0 

The critical points of ( )h x  are the solution *x of the nonlinear equation ( )* 0h x = i.e., 

2𝑓(𝑥∗)2[𝐹(𝑥∗)2 + 𝑝] + 2𝐹(𝑥∗)𝑓′(𝑥∗)[𝑝 − 𝐹(𝑥∗)2]

[𝑝 − 𝐹(𝑥∗)2]2
= 0 

By identifying the sign of the second derivative of the function taken at this point, we are able to 
identify the type of the critical point. 

IV. Ordinary and Incomplete moments, Moment generating Function and Mean
Deviation

Moments are crucial in the fields of actuarial and financial science, especially in applications. It 
assists the researcher in taking important features and characteristics of the suggested distribution 

under perspective. The thr moment of the TR-G family of distribution is given by 

𝜇𝑟
′ = ∫ 𝑥𝑟𝑔𝑇𝑟−𝐺(𝑥; 𝑝, 𝛷)

∞

−∞
𝑑𝑥 (3.4) 

Using the pdf of TR-G family of distribution (2.1) in equation number (3.4), we have 

𝜇𝑟
′ = ∫

𝑥𝑟𝐹(𝑥)2

𝑝

∞

−∞

𝑑𝑥 

Using Binomial Expansions 

𝜇𝑟′ = ∑ 𝛼𝑘𝜓2𝑘+1

∞

𝑘=0
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Where 𝛼𝑘 = ∑
2(−1)𝑘

𝑝(2𝑘+1)!

∞

𝑘=0
 and 𝜓2𝑘+1 = ∑ 𝐺(𝑥)4𝑘+2∞

𝑘=0

The thi incomplete moment is defined as ( ); ,I x p  and is given by 

𝐼(𝑥, 𝜃, 𝛷) = ∫ 𝑥𝑖𝑓(𝑥, 𝜃, 𝛷)

𝑡

−∞

𝑑𝑥 

𝐼(𝑥) = ∑ 𝛼𝑘𝛹𝑖,2𝑘+1

∞

𝑘=0

 

Getting the mean deviations is important for lifetime models as well. The following are the possible 
ways to express the mean deviations from the mean and median for a random variable 𝑋 ∼ 𝑇𝑅 − 𝐺. 

𝜀1 = ∫ |𝑥 − 𝜇1
′ |

∞

0
𝑔𝑇𝑅−𝐺(𝑥, 𝑝, 𝛷)𝑑𝑥 = 2𝜇1

′ 𝐺(𝜇1
′ ) − 2𝐼(1)(𝜇1

′ ). 

where 𝐼1(𝜇1) is the first incomplete moment of TR-G family. 

𝜀2 = ∫ |𝑥 − 𝑄(0.5)|
∞

0
𝑔𝑇𝑅−𝐺(𝑥, 𝑝, 𝛷)𝑑𝑥 = 𝜇1

′ − 2𝐼(1)(𝑄(0.5)) 

The moment-generating function and cumulant-generating function for the TR-G family can be 
expressed in a general form as follows 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!
 𝛼𝑘𝛹𝑟,2𝑘+1

∞

𝑟,𝑛=0
.    

  𝛷𝑥(𝑡) = 𝑀𝑥(𝑖𝑡) = ∑
(𝑖𝑡)𝑟

𝑟!
 𝛼𝑘𝛹𝑟,2𝑘+1

∞

𝑟,𝑛=0
. 

V. Reliability function for parallel and series systems

Let us Consider an independent system with 𝑛 ∗ TR-G family-equipped components. The reliability 
of the parallel system (P) and reliability of the series system (S) are provided by 

𝑅𝑝(𝑥; 𝑝, 𝛷) = [1 − {
2𝐹(𝑥)𝑓(𝑥)

𝑝
}]

𝜃𝑛∗

. 

𝑅𝑠(𝑥; 𝑝, 𝛷) = [{1 − {
2𝐹(𝑥)𝑓(𝑥)

𝑝
}}

𝜃

]

𝑛∗

. 

VI. Mean time to failure (MTTF), mean time between failure (MTBF) and
availability (AvB)

The reliability signs MTTF, MTBF, and AvB are based on techniques and procedures for predicting 
a product's longevity. A failure rate and the subsequent time frame of expected performance may 
be quantified using metrics such as MTTF, MTBF, and AvB, which are techniques of delivering a 
numerical number based on a compilation of data.  
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If 𝑋 ∼ 𝑇𝑅 − 𝐺(𝑝1, 𝛷1) then the MTBF is given as 

𝑀𝑇𝐵𝐹 =
−𝑥

ln(1−𝐺(𝑥;𝑝1,𝛷1))
;  𝑥 > 0. 

If 𝑋 ∼ 𝑇𝑅 − 𝐺(𝑝2, 𝛷2) then the MTTF is given as 

𝑀𝑇𝑇𝐹 = 𝐸(𝑋) = 𝜇1
′ |(𝑝2, 𝛷2);  𝑥 > 0. 

The AvB is consider the probability that the component is successful at time x , i.e.

𝐴𝑣𝐵 = 𝑀𝑇𝑇𝐹/𝑀𝑇𝐵𝐹 = −𝜇1
′ |(𝑝2, 𝛷2)

ln(1 − 𝐺(𝑥, 𝑝1 , 𝛷1))

𝑥
. 

VII.Bonferroni and Lorenz curves

Bonferroni and Lorenz curves defined for a given probability 𝜋 is given by 

𝐵(𝜋) = 𝐼1(𝑞)/𝜋𝜇1
′  and 𝐿(𝜋) = 𝐼1(𝑞)/𝜇1

′ . 

Where 𝑞 = 𝑄(𝜋) is the quantile function of 𝑋 at 𝜋. 

IV. Special Members of TR-G family of distribution

This section carries certain cases of the intended family of distributions by using different base 
cumulative distribution functions.  

I. TR-Inverse Weibull Distribution

Let us consider the cdf and pdf of Inverse Weibull distribution with positive parameter (𝛼, 𝛽) given 

by 𝛼𝛽𝛼𝑥−𝛼−1𝑒−(
𝛽

𝑥
)

𝛼

and 𝑒−(
𝛽

𝑥
)

𝛼

 respectively with the random variable 𝑋. Considering that 𝐹(𝑥; 𝛼, 𝛽) 
and 𝑓(𝑥; 𝛼, 𝛽) are the cdf and pdf of the two-parameter Inverse Weibull distribution. 
The cdf of the three parameter TR-IW distribution (substituting in (2.2)), for 𝑥 > 0, can be expressed 
as 

𝐺𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽, 𝑝) =
𝑒

−(
𝛽
𝑥)

2𝛼

𝑝
;     𝑥 ∈ ℝ, 𝑝 > 0. (4.1) 

The corresponding pdf and the complementary cdf (or survival function (srf)), instantaneous failure 
rate (or hazard rate function (hrf), retro hazard (or reversed hazard rate function), integrated hazard 
rate (or cumulative hazard rate function) (three parameter) can be written as below 

𝑔𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽, 𝑝) =
2𝛼𝛽𝛼𝑥−𝛼−1𝑒

−(
𝛽
𝑥)

2𝛼

𝑝
;     𝑥 ∈ ℝ, 𝑝 > 0. (4.2) 

𝑆𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽, 𝑝) = 1 − [
𝑒

−(
𝛽
𝑥

)
2𝛼

𝑝
]; 𝑥 ∈ ℝ (4.3) 

ℎ𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽, 𝑝) =
4𝛼𝛽𝛼𝑥−𝛼−1𝑒

−(
𝛽
𝑥)

4𝛼

𝑝[𝑝−{𝑒
−(

𝛽
𝑥)

4𝛼

}]

; 𝑥 ∈ ℝ (4.4) 
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𝑟𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽, 𝑝) = 4𝛼𝛽𝛼𝑥−𝛼−1; 𝑥 ∈ ℝ (4.5) 

𝐻𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽, 𝑝) = −log [1 − {[
𝑒

−(
𝛽
𝑥)

2𝛼

𝑝
]}]; 𝑥 ∈ ℝ (4.6) 

By substituting 𝑝 = 1, the two parameter TR-IW exists with the pdf and cdf 

𝑔𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽) = 2𝛼𝛽𝛼𝑥−𝛼−1𝑒−(
𝛽

𝑥
)

2𝛼

;     𝑥 ∈ ℝ,   (𝛼, 𝛽) > 0. (4.7) 

𝐺𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽) = 𝑒−(
𝛽

𝑥
)

2𝛼

;     𝑥 ∈ ℝ,  (𝛼, 𝛽) > 0.      (4.8) 

𝑆𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽) = 1 − 𝑒−(
𝛽

𝑥
)

2𝛼

;     𝑥 ∈ ℝ,  (𝛼, 𝛽) > 0. (4.9) 

ℎ𝑇𝑅−𝐼𝑊(𝑥; 𝛼, 𝛽) =
2𝛼𝛽𝛼𝑥−𝛼−1𝑒

−(
𝛽
𝑥)

2𝛼

1−𝑒
−(

𝛽
𝑥)

2𝛼 ;     𝑥 ∈ ℝ,   (𝛼, 𝛽) > 0.    (4.10) 

Figure 1: pdf, cdf, survival and hazard plot of Tr-IW (three parameter) distribution 
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Figure 2: pdf, cdf, survival and hazard plot of Tr-IW (two parameter) distribution 

The PDF in figures 1 and 2 can have different forms based on the values of the parameters. The shape 
of the proposed distribution is closed to bell shape by increasing the shape parameter. Furthermore, 
the hrf can be increasing or unimodal-bell shape, it increases the distribution's adaptability to fit 
various sets of lifespan data, as seen in figure 4. 

Table 2: New contributed special cases of the Triangle-G family 

Sl. No. Baseline mode CDF form Generated Model Support 

1 Exponential (1 − exp(−𝜆𝑥))
2

𝑝
Tr-E 𝑥 ∈ ℝ∗ 

2 Rayleigh (1 − exp (
−𝑥2

2𝜎2 ))

2

𝑝

Tr-R 𝑥 ∈ ℝ∗ 

3 Frechet exp (
−𝑥 − 𝑚

𝑠
)

−2𝛼

𝑝
Tr-F 𝑥 ∈ ℝ∗ 

4 Gamma ((
1

𝛤(𝛼)
) 𝛾(𝛼, 𝛽𝑥))

2

𝑝

Tr-G 𝑥 ∈ ℝ∗ 

5 Lomax (1 − (1 +
𝑥
𝜆

))
−2𝛼

𝑝

Tr-L 𝑥 ∈ ℝ∗ 

V. Practical Illustration

This section discusses the theoretical significance of the Tr-G model utilizing two applications to 
complete real data. The competitive distributions' best-fitting capabilities are determined using 
certain analytical metrics. To choose the most suited ones, the values of the Akaike Information 
Criterion (AIC),  
Hannan-Quinn Information Criterion (HQIC), Corrected Akaike Information Criterion (CAIC), and 
Bayesian Information Criterion (BIC) were taken into consideration. Other goodness-of-fit tests, such 
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as the Cramer-von Mises (W) distance value test, the Kolmogorov-Smirnov (K-S) statistic with 
accompanying p values, and the loglikelihood function, are also recorded in addition to 
discriminating tests. The AIC, BIC, CAIC, and HQIC values as well as the W and K-S tests are 
consistently should be lowest for the ideal model. To compare the competing distributions, the 
model with the highest p values for the K-S statistics is used. Two data sets have been taken into 
consideration. 

Dataset 1: The Tr-IW (three parameter) distribution is analysed using the dataset contained the 
lifetimes of fifty devices. They were given by: 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 
72, 75, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 0.1, 0.2, 1, 1, 79, 82, 82, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 
18, and 18. 

   (a) (b) 

(c) 
Figure 3: Boxplot (a), Histogram (b) and Normal QQ plot (c) for Data set 1 

The competing models included the generalized modified Extended Cosine Power (ECSP) model 
[29], Weibull–Poisson (GMWP) model, generalized modified Weibull-Geometric (GMWG) model, 
generalized modified Weibull-logarithmic (GMWL) model [7], Poisson-odd generalized uniform 
(POGE-U) model [28], exponentiated generalized linear exponential (EGLE) model [35], gamma-
uniform (GU) model [41], generalized linear failure rate (GLFR) model [36], beta Weibull (BW) 
model [21], generalized modified Weibull (GMW) model [9], modified Weibull distribution (MW) 
model [20], generalized linear exponential (GLE) model [25], beta-modified Weibull (BMW) model 
[37], power (P) model. 
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Table 3: MLE’s and other statistics value for dataset 1 

Model Estimated Parameter Model Comparison Method 

p̂ ̂ ̂ ̂ ̂ L− AIC BIC K-S (p-value)

Tr-IW3 0.10 0.23 0.44 - - 128.30 262.60 268.33 0.05 (0.97) 

ECSP 0.21 86.01 0.35 - - 202.59 411.91 416.92 0.08 (0.86) 

GU 0.27 51.94 0.09 86.71 - 207.33 418.65 426.30 0.15 (0.20) 

TUq -0.19 0.10 86.0 0.93 - 212.86 433.72 441.37 0.12 (0.42) 

BMW 2.4×10-

4 

0.05 0.20 0.17 1.4 220.28 450.56 460.12 0.13 (0.36) 

BW 1.0×10-

5

0.13 0.07 3.32 - 223.11 454.22 461.87 0.12 (0.42) 

MW 0.06 0.02 0.36 - - 226.16 460.31 466.05 0.14 (0.33) 

EGLE 3.3×10-

3

1.7×10-

4 

4.56 0.11 - 224.34 456.67 464.32 0.15 (0.21) 

GLE 9.9×10-

3 

4.5×10-

4 

0.73 - - 235.93 477.85 483.59 0.16 (0.14) 

GLFR 3.8×10-

3

3.1×10-

4

0.53 - - 233.15 472.29 478.03 0.16 (0.13) 

POGE-
U 

0.02 0.37 1.77 87.01 - 206.68 419.34 425.08 0.09 (0.75) 

GMWP 5.4×10-

8 

0.13 0.08 2.13 - 220.88 451.75 461.31 0.14 (0.28) 

GMWL 2.13 2.68 0.01 0.28 1.00 217.77 445.53 455.09 0.13 (0.36) 

GMWG 9.4×10-

8 

0.12 0.08 2.23 0.46 220.78 451.55 461.11 0.13 (0.33) 

GMW 1.0×10-

5 

0.07 0.22 1.37 - 221.40 452.81 460.46 0.15 (0.23) 

P 86.01 0.73 - - - 219.89 433.78 447.60 0.99 8.9×10-16 
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Figure 4: Plots of the estimated pdfs for dataset 1 

Dataset 2: The dataset of 72 survival times in days of guinea pigs, voluntary contaminated with 
different doses of tubercle bacilli [8] is used for analysed the Tr-IW (two parameter). The data are 
listed as 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 
60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 
127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376. 

(a)  (b) 

  (c) 
Figure 5: Boxplot (a), Histogram (b) and Normal QQ plot (c) for Data set 2 
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The comparative distributions are the New Sine Inverse Weibull (NSIW) model [23], sine inverse 
Weibull model (SIW) [19], inverse Weibull model (IW) [17], inverse Nadarajah-Haghighi model 
(INH) [40], inverse exponential model (IED) [18] and inverse Rayleigh model (IRD) [42].  

Table 4: MLE’s and other statistics value for dataset 2 

Model 

Estimated 
Parameter 

Model Comparison 

̂ ̂ L− AIC BIC ( )KS p value−

Tr-IW2 0.74 33.07 356.25 716.51 721.06 0.09 (0.85) 
NSIW 1.19 59.28 391.11 786.23 790.78 0.12 (0.25) 
SIW 1.09 78.68 391.82 787.66 792.21 0.13 (0.20) 
IW 1.42 54.15 395.65 795.47 799.85 0.15 (0.07) 
INH 1.84 25.78 400.47 804.94 809.49 0.14 (0.11) 
IED 60.09 - 402.67 807.34 809.62 0.18 (0.01) 
IRD 2124.00 - 406.77 815.53 817.81 0.26 (0.0001) 

Figure 6: Plots of the estimated pdfs for dataset 2 

VI. Results

The three parameter Tr-IW distribution is applied in Dataset1 and compared with three, four and 
more parameter distribution models. The Tr-IW model is fitted comfortably more flexible than other 
models with more parameters. The two parameter Tr-IW model is fitted better than the other equal 
parameter models.  
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VII. Conclusion and Remarks

The triangle family of distribution is introduced. Some of the important properties are discussed. 
Inverse Weibull model is taken as sub model distribution. The paper introduced two types of 
distribution with two and three parameters. Both of the distributions are discussed with various 
properties and real-life data fitting. Both of the distributions are fitted consistently better than the 
other models with equal and more parameter. This paper introduced one created family and two 
generated model with a hope that it will attract wider applications in several areas such as reliability 
engineering, insurance, hydrology, economics and survival analysis. 
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Abstract 

The work examines the main technical indicators of electromechanical converters callers with 

levitation elements, a generalized design method has been developed tions, as well as design diagrams 

and functional dependencies of the main varieties of electromechanical devices with elements of 

levitation. Analytical expressions for the levitation coefficient as a function of the dimensions of the 

magnetic core and coefficient factor of force multiplicity, technical characteristics of levitation material 

element, set superheat temperature. A mathematical model has been compiled for based on the 

parameters of the current mode and forces from the equations of electrical, magnetic, mechanical and 

thermal circuits of the magnetic system. As a result, the main dimensions of the magnetic system and 

dimensionless quantities. Analytic expressions for the main dimensions, the specified values of the 

winding overheating temperature are taken into account, input and output parameters, the condition 

of uniformity of the magnetic field in the working air nom gap. The optimal values of the dimensions of 

the magnetic circuit, active resistors have been determined winding voltages are minimal, resulting in 

minimization of losses active capacities. 

Key words: levitation element, electromechanical apparatus, research, method, 
magnetic system, mathematical model, current mode, force mode, stability, 
mechanism. 

I. Introduction

The widespread use of electromechanical devices with levitation elements in automatic 
control systems ensures high reliability, accuracy, and stability during control and regulation of 
parameters and the technological process as a whole. 

The designs of electromechanical devices with a levitation screen are more effectively 
involved in solving these problems, since in these devices there are no friction forces, the working 
stroke of the moving part is automatically controlled and additional elements are not required (for 
example, mechanical springs, guides, gearboxes, supports, etc.) [5-18]. 

Automation of technological processes requires automatic control of the vertical positions 
of the moving parts of working mechanisms using external force and alternating current voltage. In 
this case, there is a need to measure external force, stabilize the current on a variable load and obtain 
several nominal values of the current on the load. The design of a simple electromechanical device 
with a levitation element consists of a vertically located magnetic circuit 1, a stationary alternating 
current winding 2 and a levitation element 3 (fiqure 1). In the force mode, the levitation element is 
made in the form of a solid aluminum frame, and in the current mode - in the form of a short-
circuited winding. When the device is turned on to the power source, the levitation element may 
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strike the upper yoke of the magnetic circuit. 

Figure 1. Design of a simple electromechanical device with LE 

A magnetic system with a levitation element (straight and stepped forms) is shown in figure 2.  To 
eliminate this undesirable phenomenon, a compensation winding 4 is placed near the yoke, which 
is connected in series with the power winding 1; a signal winding 5 is also provided. During 
operation of the device with the levitation element, the compensation winding is turned off. The AC 
winding (or excitation winding) is powered by an AC voltage source U1 and is made of several 
sections, by switching which a family of control characteristics is achieved  1-4, 9. 

Figure 2. Magnetic system with levitation element (straight (a) and step b)) 
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II. Formulation of the problem

When the excitation winding (EW) is connected to the power source, currents flow through the 
EW and the levitation element (LE), which significantly exceed the rated currents. As a result, losses 
in the LE sharply increase and all the energy released in it goes to heating it. Depending on its size, 
the temperature can reach a high value and, before reaching the steady-state value, the LE can melt. 
Therefore, the minimum dimensions of the LE must be limited. 

In accordance with the insulation class, the permissible values of the LE overheating 
temperature are set. To reduce it, it is necessary to reduce the lateral heat transfer surface of the LE, 
which in turn is associated with an increase in the aspect ratio ne2=h2/c2 under the condition 
S02=c2h2=const and this can lead to an increase in the height of the magnetic system and a 
deterioration in the lateral stability of the LE. To determine the optimal relationship between the 
main dimensions of the LE c2 and h2, the dependence of the dimensionless quantity ne2 on the 
geometric dimensions of the magnetic circuit (a, b, c), the force multiplicity factor np, the physical 
and technical characteristics of the LE material and the given overheating temperature   2 is 
determined. 

III. Problem solution

Based on the established dependencies of dimensions and parameters, a mathematical 
model is compiled for certain parameters of current and force modes: 
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By jointly solving equations (1)-(2) for LE made of copper and aluminum, we have: 
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Expressions (6)-(12) when implemented using the appropriate calculation program make it possible 
to compile tables 1-3, which show the parameter values for LE made of copper and aluminum. 
Figure 3 respectively show the graphical dependences of the coefficient ne2 =f(2) on the current at 
the stroke values  7-16.   

Table 1.  Values of coefficients Mm, Ma 
mc ma 

2 3 4 5 6 Mm, Ma 
2 0.573464 0.53438 0.518343 0.510589 0.506504 Mm 

0.938378 0.916929 0.914149 0.91672 0.920897 Ma 

3 0.594826 0.530443 0.49976 0.482146 0.470856 Mm 

0.953061 0.89554 0.870198 0.85682 0.848954 Ma 

4 0.608226 0.528249 0.489108 0.466072 0.450967 Mm 

0.962093 0.882866 0.844812 0.822862 0.808747 Ma 

5 0.617415 0.526858 0.482207 0.455742 0.43828 Mm 

0.96821 0.874482 0.828279 0.800992 0.783072 Ma 

6 0.624107 0.525901 0.477373 0.448546 0.429485 Mm 

0.972627 0.868526 0.816656 0.785732 0.765256 Ma 

Table 2.  Values of levitation element parameters depending on overheating temperature 
Parameter 2 0 ,Оm m 2 ,0С 

80 90 100 110 
2 0 10 -8Om m 

1.7210-8 

2.420 2.494 2.567 2.642 
2 0/2 10 - 1 2  302.50 277.10 256.70 240.18 

Em 6.8323 6.2584 5.7977 5.4246 
2 0 10 -8Om m 

2.8710-8 
4.015 4.135 4.256 4.376 

2 0/2 10 - 1 2  501.890 459.510 425.620 397.880 
Em 1.7226 1.5771 1.4608 1.3652 

Table 3. ne2 values for a levitation element made of copper and aluminum at 2 = 800С and np=1 
mc Material ma 

2 3 4 5 6 
2 Al 3.918 3.651 3.541 3.488 3.460 

Cu 0.615 0.578 0.574 0.570 0.585 
3 Al 4.064 3.624 3.414 3.294 3.217 

Cu 0.641 0.542 0.498 0.475 0.462 
4 Al 4.155 3.609 3.341 3.184 3.081 

Cu 0.656 0.520 0.454 0.417 0.393 
5 Al 4.218 3.599 3.294 3.114 2.994 

Cu 0.667 0.505 0.426 0.379 0.348 
6 Al 4.264 3.593 3.261 3.065 2.934 

Cu 0.675 0.495 0.406 0.353 0.318 
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Figure 3. Coefficient dependency ne2 =f(2) 

The patterns of changes in the values of the coefficients Mm, Ma from the dimensionless 
quantities ma, mc show that the smallest values of the coefficients Mm, Ma occur at ma = 6, mс =6, and 
the largest values correspond to the values ma=2, mс=6. At ma=6, mс=6, the values of specific magnetic 
conductivity  and cross-sectional area of the magnetic core rod Sc are minimal. At ma=2, mс=6, the 
values of these parameters, on the contrary, are maximum. Therefore, the overall dimensions in the 
first option are smaller than in the second. With increasing coefficients Mm, Ma and load capacity, 
the value of the coefficient ne2 increases, which leads to an increase in the overall size of the magnetic 
system. An increase in the overheating temperature leads to a decrease in the coefficients Em, Ea, as 
a result, the overall size and dimensionless value ne2 decrease 6-14,18. The given values of the 
coefficient ne2 in Table 3 allow you to pre-select the minimum values of the coefficient and the 
corresponding values of ma, mс. Next, the main dimensions of the magnetic system, other 
dimensions and parameters are determined, the minimum values of the coefficients, temperature, 
etc. are taken into account. in order to ensure the reliability of control of electromechanical devices 
in general.  

IV. Conclusions

The obtained values take into account the minimum values of the coefficients ne1 and ne2, the specified 
values of the overheating temperature 1 and 2, the working stroke xp, the condition of uniformity of the 
magnetic field, the load current I1, ma =2  6 ; mc =2  6. Electromechanical devices with levitation elements are 
low-current electrical devices, have simple designs, high accuracy, and stable performance characteristics. The 
active resistance of the excitation windings and the levitation element is minimal; as a result, losses of active 
power will also be reduced to a minimum. 

Analytical expressions for the main parameters necessary for the design of electromechanical devices with 
levitation elements for various purposes are obtained. The calculation of electromechanical devices with 
levitation elements is significantly simplified by determining the optimal values for the height and thickness of 
the excitation winding and the levitation element. 
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Abstract 

 This paper proposes a procedure for formulating the software reliability growth model using the non-

homogeneous poisson process. We consider the software reliability growth model, which includes 

imperfect debugging, change points, and testing effort. Nevertheless, when formulating their software 

reliability models, the majority of scientists make the assumption of a constant detection rate per fault. 

When software is tested, they all suppose that each fault has an equal chance of being detected and 

that the rate is equal between generations. In practice, the fault detection rate varies depending on 

the test teams’ abilities, program size, and software properties. Troubleshooting, even in the most 

realistic situations relevant to the error reintroduction rate due to incomplete debugging phenomena. 

In this case, changes in error detection and error introduction rates during software development 

program. Therefore, here we incorporate the generalized logic test workload function and change 

points. Parameters in software reliability modeling. Estimated using the least squares estimation 

method unknown parameters of the new model. Therefore, in our newly proposed model, we collect 

software testing data. use data from a practical application to illustrate the proposed model. 
Experimental results show that the proposed SRGM framework for imperfect debugging of integrated 

test jobs and change points has fairly accurate prediction capabilities. 

Keywords: software reliability growth model, Non-homogeneous poison 

process(NHPP), Testing effort, Change Point 

I. Introduction

Software reliability growth models (SRGMs) have a substantial historical background within 

the field of software engineering, serving as a pivotal tool for quantitatively evaluating and 

forecasting program reliability[1,2,3]. Over time, these models have developed to tackle the 

intricacies of software systems and the requirement for precise reliability evaluations. Many 

factors contribute to software failure, but mostly software fails from the design perspective. 

Software also fails whenever code is programmed or when changes are made to a project. Over 

the last few decades, numerous statistical models have been used to measure software 

reliability. As a result, we have discussed many established earlier models[4,5,6,7]. We believe 

that our new NHPP-based software reliability growth models have been proven quite efficient 

in practical software reliability engineering. 
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Researchers have examined several SRGMs throughout history to assess metrics like the 

number of remaining faults, software dependability, failure rate, failure intensity, and more. The 

literature has examined several classical models, focusing on factors such as time delay, correction 

procedure, fault severity, change point, and flawless debugging. Researchers have studied these 

models under specific assumptions.  The researchers also incorporated the concept of perfect 

debugging, a process in which the testing team detects and fixes software errors, all while preventing 

the introduction of new errors during the testing process[8,9,10,11]. It is implausible that the 

statement is true, as the elimination process may introduce new defects that the testing team may be 

unaware of Several academics have suggested conducting experiments on faulty debugging.  

There exist two distinct possibilities of incorrect debugging, specifically, i) imperfect fault 

removal and ii) generation of fault. When imperfect fault removal is present, the number of defects 

stays constant, signifying the elimination of the initial identified faults without introducing new 

ones. As new faults emerge in the system following the removal of the original problems, the overall 

fault content rises during the error generation scenario[12,13,14]. First introduced in 1985 was the 

concept of imperfect debugging. Subsequently, the concept of error production emerged, 

challenging the standard models' premise of complete flaw elimination upon detection. In our 

proposed model, we predict the existence of an imperfect debugging process that incorporates 

change points and testing efforts[15]. 

 This paper fills this gap with this approach and is organized as follows. Sections II and III are 

discussed as NHPP software reliability growth models and software growth model change points 

respectively. In section IV, numerical description. Section V validates the analytical results and 

numerical interpretation. section VI cost model formulation and analysis of reliability and cost 

Section VII discusses the conclusion. 

II. Non-homogeneous Poisson process uses software reliability growth models

The NHPP model is based on the assumption that software systems are subject to failures at random 

times due to the occurrence of residual errors. NHPP is often used to describe fault phenomena in 

the process testing phase. If N(t) follows a Poisson distribution with mean function m(t), then the 

counting process {N(t), t ≥ 0} is called NHPP with intensity function λ(t), t ≥ 0 and is given as: 

 ( )[ ( )]
Pr{ ( ) } , 0,1,2,...

!

k
m tm t

N t k e k
k

    (1) 

and 

0
( ) ( )

t

m t y dy   (2) 

Inversely, 

( )
( )

dm t
t

dt
   (3) 

The failure intensity function λ(t) or the mean function m(t) is the basic building block of all NHPP 

models. 

The majority of reliability growth models for NHPP software operate under the assumption 

that the failure rate is directly proportional to the residual fault content. We derive a comprehensive 

category of NHPP-based SRGMs by solving the following differential equation:      

 
( )

( ) ( ) ( )
dm t

b t a t m t
dt

   (4) 

Where, a(t) represents the fault content function, which represents the entire number of faults in the 

software, including both initial and introduced faults at time t. b(t) represents the fault detection rate 
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per fault at time t, and m(t) represents the predicted number of faults detected by time t, which is 

the mean value function. The solution to the differential equation (1) can be expressed as follows: 

 ( ) ( )( ) ( ) ( )

o

t

B t B y

o

t

m t e m a y b y e dy 
 

  
  

  (5) 

We have ( ) ( )

o

t

t

B t b y dy  and 
0 0( )m t m , where 

0t represents the initial time of the debugging 

procedure. Several NHPP models that now exist can be regarded as specific instances of the 

overarching model described in equation (2). 

I. Software reliability growth model with change point

The NHPP SRGM, which combines imperfect debugging with a change-point problem, is based on 

the following assumptions: 

 When faults that have been detected are removed at time t, there exists the potential for the

introduction of additional faults at a rate denoted as ( )t .

1

2

,  0
( )

,  

t y
t

t y






 
 



 We express the rate of fault detection as a step function
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,  0
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,  

b t y
b t
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 This study proposes an NHPP model to analyze the fault detection phenomenon in software

systems.

Continuous monitoring of the testing strategy and resource allocation is possible throughout 

the fault detection process. It may be more justifiable to reassess the provided change point ( )y . 

Based on these assumptions, we can derive the new set of differential equations to generate the new 

mean value function. 
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( ) ( ) ( )
dm t

b t a t m t
dt
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The mean value function of the model is given as follows: 
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 (7) 

III. Proposed model

 In this part, we present a software reliability growth model that integrates flawed debugging 

practices with change-point and testing endeavors. Commencing with the imperative nature of 
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software reliability testing, we shall establish certain assumptions for the construction of our model. 

Inspection can identify a significant number of defects during the initial stage of the testing phase. 

Several factors, such as the efficiency of fault detection, the density of faults, the level of testing effort, 

and the rate of inspection, influence the pace of fault detection[17]. Subsequently, the rate of fault 

detection is contingent upon other supplementary characteristics, including the relationship 

between failures and faults, the factor of code expansion, the proficiency of test teams, the size of the 

program, and the testability of the software. 

Assumptions of the proposed model 

• According to the Non-Homogeneous Poisson Process (NHPP), the fault removal process is

implemented.

• The software system may experience intermittent failures due to the presence of residual

faults within the system.

• The average number of faults identified within the time interval (t, t + κt) by the present

testing-effort expenditures is directly related to the average number of remaining defects in

the system.

• A generalized logistic TEF model represents the testing-effort consumption curve.

 ( )
1 . t

A
W t

n e 




• When faults that have been detected are removed at time t, there exists the potential for the

introduction of additional faults at a rate denoted as ( )t .
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• We express the rate of fault detection as a step function
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A generalized logistic TEF, which incorporates the fault introduction rate and change point, can 

characterize the software reliability growth model as follows: 
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Software reliability R(x/t) refers to the probability that no software problem will be detected during 

the time interval (t, t + x), where t ≥ 0, x > 0. 

       
  

m t x m t
R x t e

    ƒ (10) 

IV. Numerical Description

The existing models in the literature have employed the maximum likelihood estimation technique 

for parameter estimations. This study employs a nonlinear least square estimation (LSE) approach. 

We have utilized two historical data sets to substantiate the performance and conducted a 

comparative analysis between the presented model and current models. It is possible to find 

statistical measures like the sum of the square of error (SSE), root mean square error (RMSE), and 

adjusted R-square. We will now provide you with formulas for statistical measures that assess the 

model's fit to the data. 

Root mean squared error (RMSE): 

* 2

1

1
( ( ))

N

i i

i

MSE y m t
N n 

 



RMSE MSE  (11) 

 adjusted R2 (Adjusted R2): 

2 (1 )( 1)
 1

1

R N
Adjusted R

N M

 
 

 
 (12) 

 sum of squared error (SSE): 

 * 2( ( ))
N

i i

i M

SSE y m t


   (13) 

V. Result analysis

Table 1 presents the overview of the data sets [16]. Table 2 represents the software reliability growth 

model and its mean value function. The unknown parameters in the proposed model are a, b1, and 

b2, and the unknown parameters in the testing effort function are β, n, and A. We have examined the 

proposed model with the given dataset. The results obtained from the TEF are as follows: a = 56.367, 

β = 12.054, and n = 0.256. The rate at which faults are introduced before the change point α1 is 

evaluated to be 0.2, whereas the rate at which faults are introduced after the change point α2 is 

evaluated to be 0.5. The results of the LSE reveal that the values of a, b1, and b2 are respectively 210.7, 

0.2536, and 0.443. Table 3 shows that our proposed model is more accurate in RMSE, Adjust R2, and 

SSE values than existing models. The fitting comparison of all models for using the data set is 

graphically illustrated in Figure 1. Figure 1, it can be seen that the proposed model fits the actual 

data better than all other models. Figure 2 a) RMSE, (b) Adjust R2, (c) SSE graphically shows that 

compared to all models and Figure 2 shows a better fit proposed model.  
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Table 1: summary of the data set 

 Time  cumulative failure  testing effort consumption 

 1  15  2.45 

 2  44  4.90 

 3  66  6.86 

 4  103  7.84 

 5  105  9.52 

 6  110  12.89 

 7  146  17.10 

 8  175  20.47 

 9  179  21.43 

 10  206  23.35 

 11  233  26.23 

 12  255  27.67 

 13  276  30.93 

 14  298  34.77 

 15  304  38.61 

 16  311  40.91 

 17  320  42.67 

 18  325  44.66 

 19  328  47.6 

Table 2: Software reliability growth model and their mean value function 

No.   Name of the Model  MVF 

1. Goel-Okumoto  ( GOM )  ( ) (1 )btm t a e 

2. Delay S-shaped ( DSSM )
( ) (1 (1 ) )btm t a bt e  

3. PNZ ( PNZM ) ( ) [1 ][1 ]
1

bt

bt

a
m t e at

be










 
    

  

4. PZ ( PZM )
1

( ) [ ][1 ] [ ]
1

bt t bt

bt

a
m t c a e e e

be





  



 
     

  

5. Proposed  ( PM ) Equation (9)

Table 3: Comparison criteria 

Model  Parameter estimation  RMSE  Adjust R2  SSE 

Goel-Okumoto   760.5, 0.03227a b       12.53  0.9851   2656 

Delay S-shaped  374.1, 0.1978a b         13.73  0.9857  3205 

 PNZ       53.49, 0.005551,a     14.52  0.9807   3160 

0.38, 0.9413b  

 PZ  423.3, 1.1, 0.8845,a      12.24  0.9863  2246 

     0.1167, 0.98b c               

 Proposed  
1 2210.7, 0.2536, 0.443,a b b    6.1253  0.9889  1704 
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Figure 1: MVF curve for various model 

(a)  (b)  (c) 
Figure 2: (a)RMSE, (b) Adjust R2,(c) SSE 

VI. Cost model assumptions and formulation

Based on the above assumptions, we establish a cost function. 

 During the first stages of the development process [18,19], there is an incurred cost for

establishing the project. Designate this as C0.

 The cost of testing is directly proportional to the duration of the testing process. Define  1E T

as the anticipated cost of testing. 

 Therefore,  1 1  E T CT

 Here   represents the discount rate. 

 During debugging phase, the fault removal cost is proportional to the total time spent on

debugging. Let  2E T represent the expected cost of reducing.

 Therefore,    2 2 = yE T C m T 

 Here, y is the expected time for resolving each defect during the testing process.
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 The cost of fixing faults is directly proportionate to the time needed for their fix during the

warranty period. Let  3E T denotes the projected cost of fixing all defects during the warranty

duration.

 Therefore,      3 3         wwE T C m T m T   

 Where, w represents the expected repair time for each defect during the warranty period, and

 
wT  denotes the duration of the warranty. 

 Undiscovered faults that impact the software's reliability always result in a penalty cost after

its release. Let E4 (T) denote the risk cost.

  Therefore,    4 4 1  / ) [ wE T C R x T 

Let E(T) be the total software expenditure. E(T) can be expressed as: 

         0 1 2 3 4           1   [ / )y ww wE T C C T C m T C m T m T C R x T         (14) 

Where, 
1 2 3, ,C C C and 

4C as weights for the following: the cost of testing, the cost of error removal 

during testing, the cost of error removal throughout the warranty term, and the penalty for software 

failure. 

The cost coefficients
0 1,C C , ⋯ , etc. are often established based on prior knowledge and the current 

state of the market. In this study, we can take 
0 1 2 3 4  $100,    $150,    $75,    $200,  C C C C C   

 $1000,    0.1,    $0.5,    0.04,    40,y w wx T      and 0.9  . We can determine  15 times with 

a development cost of $172601.327 and reliability is 0.916. Figure 3 shows the minimum cost and 

this time reliability. 

 Figure 3 shows reliability and cost analysis with time 

VII. Conclusion

This study introduces a novel change point software reliability growth model that incorporates the 

testing effort function, the NHPP framework, and imperfect debugging. In imperfect debugging, 

there exists a generalized logistic testing effort function and the impact of modification points. 

We examine the new model and introduce the explicit mean value function. In addition, this 

model has been compared to several existing imprecise change point debugging models based on 
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the root mean squared error (RMSE), adjusted R2, and sum square error (SSE) values on the data set. 

Quantitative findings indicate that the suggested model has a superior level of goodness-of-fit. This 

proposed model appears to be slightly more advanced, but imperfect debugging, testing effort, and 

change point impact results in a more robust property that accurately simulates the fluctuating fault 

detection rate.  

This study additionally examines a software cost model that integrates warranty expenses, risk 

costs, and mistake removal costs. This approach facilitates the determination of the optimal testing 

cessation point for the product, reducing anticipated total expenses, and ensuring adherence to the 

software reliability growth model.  

By incorporating this component, the model can provide a more accurate estimation of software 

reliability, hence improving its practical usefulness. In our future work, we will also engage in 

parameter estimation using the maximum likelihood estimation technique. This strategy will offer a 

strong and statistically reliable method to estimate the model parameters. This property accurately 

represents the real-world consequences of the testing process. 
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Abstract 

This article introduces an innovative extension of the Juchez distribution, referred to as 

the length-biased Juchez distribution. This distribution, a specific instance of the broader 

weighted distribution, is thoroughly explored in terms of mathematical and statistical 

properties. Parameter estimation is accomplished through the application of maximum 

likelihood estimation techniques. To highlight the practical significance of this new 

distribution, a comprehensive analysis is conducted using two real-life lifetime datasets. 

The findings underscore the relevance and applicability of the proposed distribution in 

modeling and analyzing diverse datasets. 

Keywords: Length biased distribution, Juchez distribution, Order 

statistics, Survival analysis, Maximum likelihood estimation. 

1. Introduction

In statistics, the theory of weighted probability distributions has retained a reputed and prominent 

place because it provides a new shape to the existing classical distribution by introducing an 

additional parameter to it. This additional parameter brings more superiority and flexibility to a 

class of distribution functions and it should be very significant from data analysis point of view. 

This extra parameter can be introduced through various techniques. One of such technique is of 

weighted technique. The idea of weighted distribution was propounded firstly by Fisher [10] to 

study how the method of ascertainment can influence the form of distribution of recorded 

observation. Later, Rao [16] developed this concept in a collective way in association with modeling 
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statistical data when usual practice of using standard distributions was found to be unsuitable. The 

theory of weighted distributions plays a dominant and tremendous practical role in probability, 

statistics and mathematics. The concept of weighted distribution provides an integrative 

conceptualization for model stipulation and data representation problems. The weighted 

distributions also provide a collective approach for correction of biases that exists in unequally 

weighted sample data. The weighted distribution reduces to length biased distribution when the 

weight function considers only the length of units of interest. Length biased distribution have been 

applied in various biomedical areas such as survival analysis, family history, reliability analysis, 

clinical trials, intermediate events and population studies were a proper sampling frame is absent. In 
such situation items are sampled at a rate proportional to their lengths so that the larger value could 

be sampled with higher probability. 

Many authors have described and developed some important length biased probability 

models along with their illustrations in various fields. Al-Omari and Alanzi [6] presented inverse 

length biased Maxwell distribution and obtain its statistical inference with an application. Andure 

(Yawale) and Ade [7] presented the new length biased Hamza distribution with statistical properties 

and applications. Saghir, Tazeem and Ahmad [24] discussed on the length biased weighted 

exponentiated inverted weibull distribution and introduce its necessary properties. Mustafa and 

Khan [12] developed the length biased power hazard rate distribution with some properties and 

applications. Abdullah et al. [2] presented the size biased Lomax distribution with applications. 

Alidamat and Al-Omari [5] described the length biased two parameter Mirra distribution with 

application to engineering data. Ahajeeth et al. [4] proposed the area biased Amarendra distribution 

with its application to model lifetime data. Sanat [25] derived the beta-length biased Pareto 

distribution and its properties. Ganaie and Rajagopalan [11] presented the length biased power 

quasi Lindley distribution with properties and applications of lifetime data. Abd-Elfattah et al. [1] 

studied the length biased Burr-XII distribution with properties and application. Reyad et al. [22] 

proposed the length biased weighted Erlang distribution. Rather and Subramanian [16] discussed on 

length biased Sushila distribution with properties and applications. Nanuwong and Bodhisuwan 

[14] executed the length biased beta-Pareto distribution with its structural properties and

application. Saghir and Khadim [23] presented the mathematical properties of length biased

weighted Maxwell distribution. Rather et al [21] enriched the research by offering a comprehensive

overview, perspectives, and characterizations of a new size biased Ailamujia distribution with

applications in engineering and medical science which shows more flexibility than classical

distributions. Rather and Subramanian [19] discussed the characterization and estimation of length

biased weighted generalized uniform distribution. Rather and Subramanian [18], obtained length

biased sushila distribution with properties and its applications. Shenbagaraja et al. [26], discussed

length biased Garima distribution. Rather and Subramanian [20], conducted a thorough examination

of the length biased erlang-truncated exponential distribution with life time data. Subramanian and

Rather [27], obtained a new extension of Shanker distribution with real life data. Rather and Ozel

[17], explored a new length biased power lindley distribution with properties and its applications.

Recently, Mustafa and Khan [13] developed the length biased powered inverse Rayleigh distribution

with applications.

Juchez probability distribution is a recently developed one parametric continuous lifetime 

distribution studied by Echebiri and Mbegbu [9]. Some of statistical features including median, 

mode, mean, moments, coefficient of variation, skewness, kurtosis, mean residual life function, 

hazard function, bonferroni and lorenz curves, order statistics, stochastic ordering and Renyi 

entropy have been presented. Furthermore, its parameter has been estimated by using the maximum 

likelihood estimation.   
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2. Length Biased Juchez Distribution

The probability density function of Juchez distribution is given by 
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and the cumulative distribution function of Juchez distribution is given by 
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Let X be the random variable represents non-negative condition with probability density function

)(xf . Let its non-negative weight function be )(xw , then the probability density function of

weighted random variable wX is given by 
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Depending upon the different weighted functions w(x) obviously when w(x) = xc, proposed

distribution is known as weighted distribution. In this paper, we have to be considered the length

biased version of Juchez distribution termed as length biased Juchez distribution. So the weight 

function considered at w(x) = x by taking weight parameter c is 1 in weights xc resulting distribution 

is known as length biased distribution and its probability density function given by  
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Now by using the equations (1) and (4) in equation (3), we will get required probability density 

function of length biased Juchez distribution as 

)5(1

242

)( 3

23

5
θx

l exx

θ

x
xf








 







 







and the cumulative distribution function of length biased Juchez distribution can be determined as 
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After the simplification of equation (6), we will determine cumulative distribution function of length 

biased Juchez distribution as 
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Figure 1 and figure 2, shows the graphical representation of the pdf and cdf plot and has been R-core 

version [15] for this. 

Figure 1: Pdf plot of length biased Juchez distribution Figure 2: Cdf plot of length biased Juchez distribution 

3. Survival Analysis

In this section, we will derive the survival function, hazard rate function, reverse hazard rate 

function and Mills ratio of the proposed length biased Juchez distribution. The survival or reliability 

function of length biased Juchez distribution can be obtained as 
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The hazard function is also known as hazard rate or failure rate or force of mortality and is given by 
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The reverse hazard rate function is given by 
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The Mills Ratio is given by 
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Figure 3 and figure 4, shows the graphical representation of the survival function and cdf plot. 

Figure 3: Survival function of length biased Juchez 

distribution 

Figure 4: Hazard function of length biased Juchez 

distribution 

4. Order Statistics

Order statistics is a very significant concept in statistical sciences and has wide range of applications 

in modeling auctions, insurance policies, car races, optimizing production processes and estimating 

parameters of distributions. Consider X(1), X(2),…, X(n) be the order statistics of a random sample 

X1, X2,…, Xn from a continuous population with probability density function fx (x) and cumulative 

distribution function FX(x), then the probability density function of rth order statistics X(r) is given 

by 
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By using the equations (5) and (7) in equation (12), we will obtain the probability density function of

rth order statistics X(r) of length biased Juchez distribution as
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Therefore, the probability density function of higher order statistic X(n) of length biased Juchez

distribution can be obtained as 
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and the probability density function of first order statistic X(1) of length biased Juchez distribution 

can be obtained as 
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5. Likelihood Ratio Test

Let the random sample X1, X2,…., Xn of size n drawn from the length biased Juchez distribution. To 

analyze its significance, the hypothesis is to be tested 
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In order to determine, whether the random sample of size n comes from Juchez distribution or 

length biased Juchez distribution, the following test statistic is employed 
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We should refuse to retain the null hypothesis, if 
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Equivalently, we should also refuse to retain the null hypothesis, where 

)21(
)6(

242

1 23

23
n

n

i
i

θ

kx



























 


 



)22(
)6(

242
,

23

23

1

*

n
n

i
i k kkx


















 

 

* where

   wherethatsuch ,* 




  kp is the level of significance.

6. Structural Properties

In this section, we will derive several statistical properties of length biased Juchez distribution which 

include moments, harmonic mean, moment generating function and characteristic function. 

6.1 Moments 

Let X be the random variable following length biased Juchez distribution with parameter θ, then the 

rth order moment E(X r) of introduced distribution can be obtained as  
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After the simplification of above equation, we obtain 
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Now putting r = 1, 2, 3 and 4 in equation (28), we will obtain the first four moments of length biased

Juchez distribution as 
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6.2 Harmonic mean 

The harmonic mean for the executed length biased Juchez distribution can be determined as 
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After the simplification of above equation, we obtain 
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6.3 Moment generating function and characteristic function 

Let X be the random variable following length biased Juchez distribution with parameter θ, then the 

moment generating function of proposed distribution can be obtained as 
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Using Taylor’s series, we obtain 
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Similarly, the characteristic function of length biased Juchez distribution can be obtained as 
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7. Bonferroni and Lorenz Curves

The bonferroni and Lorenz curves also termed as income distribution curves or classical curves are 

frequently being applied to measure the distribution of inequality in income or poverty. The 

bonferroni and Lorenz curves can be executed as 
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After simplification, we obtain 
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8. Maximum Likelihood Estimation and Fisher’s Information Matrix

In this section, we will discuss the technique of maximum likelihood estimation to estimate the 

parameters of length biased Juchez distribution. Consider X1, X2,…., Xn  be a random sample of size 

n from length biased Juchez distribution, then the likelihood function can be defined as 
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The log likelihood function is given by 
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 Now differentiating log likelihood equation (54) with respect to parameter θ, we establish following 

normal equation 
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The above likelihood equation is too complicated to solve it algebraically. Therefore, we use 

numerical technique like Newton Raphson method for estimating the required parameter of 

proposed distribution. 

In order to use the asymptotic normality results for determining the confidence interval. We 
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Since β being unknown, we estimate )(1 I  by ( )(1 


I and this can be used to obtain asymptotic 

confidence interval for .  
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9. Applications

In this section, we have fitted two real lifetime data sets in length biased Juchez distribution to 

determine its goodness of fit and then comparison has been developed in order to reveal that the 

length biased Juchez distribution provides a better result over Juchez, exponential and Lindley 

distributions. The two real lifetime data sets are given below as. 

The following first real data set reported by Bader and priest [8] represents the strength 

measured in GPA for single carbon fibres and impregnated 1000-carbon fibre tows. Single fibres 

were tested under tension at guage length of 10mm with sample size (n = 63) and the data set is 

given below in table 1 

Table 1: Data regarding the strength of carbon fibres measured in GPA reported by Bader & Priest (1982) 

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518 

2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 

2.917 2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 

3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554 

3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020 

The second real lifetime data set represents the waiting time (in minutes) of 65 dental patients, 

waiting before OPD (out Patient Diagnosis) at Halibet hospital, Asmara, from 25th to 29th December, 

2017 available in the master thesis of Abebe [3] and the data set is given below in table 2. 

Table 2: Data regarding waiting time (in minutes) of 65 dental patients waiting before OPD (out Patient Diagnosis) 

2(5) 6 7 8(3) 9 10 11 12(2) 13 14(4) 

15 16 17(2) 18(2) 19 20(3) 22 23(2) 26 27 

28 29(2) 30(3) 31 32 33 35 36(2) 37(2) 40(2) 

41(2) 42 43 44 46 47 49 52 53 55 

56 58 90 

To determine the model comparison criterions along with the estimation of unknown parameters, 

the technique of R software is used. In order to compare the performance of length biased Juchez 

distribution over Juchez, exponential and Lindley distributions, we consider the criterions like AIC 

(Akaike Information Criterion), BIC (Bayesian Information Criterion), AICC (Akaike Information 

Criterion Corrected), CAIC (Consistent Akaike Information Criterion), Shannon’s entropy H(X) and -

2logL. The better distribution is which corresponds to lesser values of AIC, BIC, AICC, CAIC, H(X) 

and -2logL. For determining the criterions AIC, BIC, AICC, CAIC, H(X) and -2logL given below 

following formulas are used. 
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Where n is the sample size, k is number of parameters in statistical model and –2logL is the 

maximized value of log-likelihood function under the considered model. Table 3 shows the 

parameter and standard error values and table 4 shows the comparison of distributions. 

Table 3: Shows MLE and S.E Estimates for the data set 1 and data set 2 

Data 

sets 

Distributions MLE S.E

1 

Length Biased 

Juchez 

1.45059991ˆ  0.07765314ˆ 

Juchez 1.07320917ˆ  0.06273572ˆ 

Exponential 0.32687301ˆ  0.04118174ˆ 

Lindley 0.53923226ˆ  0.04958387ˆ 

2 

Length Biased 

Juchez 

2.4289412ˆ  0.1590837ˆ 

Juchez 1.6783037ˆ  0.1224368ˆ 

Exponential 0.6615390ˆ  0.1008835ˆ 

Lindley 0.9934028ˆ  0.1144634ˆ 

Table 4: Shows Comparison and Performance of fitted distributions 

Data 

sets 

Distributions -2logL AIC BIC AICC CAIC H(X) 

1 

Length Biased 

Juchez 

186.03 188.03 190.1731 188.0955 188.0955 2.9528 

Juchez
211.9434 213.9434 216.0865 214.0089 214.0089 3.3641 

Exponential 266.8915 268.8915 271.0347 268.9570 268.9570 4.2363 

Lindley 242.7153 244.7153 246.8584 244.7808 244.7808 3.8526 

2 

Length Biased 

Juchez

100.0493 102.0493 103.8105 102.1127 102.1127 1.5392 

Juchez 
118.4688 120.4688 122.23 120.5322 120.5322 1.8225 

Exponential 121.5341 123.5341 125.2953 123.5975 123.5975 1.8697 

Lindley 114.5096 116.5096 118.2708 116.5730 116.5730 1.7616 

From results given above in table 4, it has been clearly realized and observed that the length biased 

Juchez distribution has lesser AIC, BIC, AICC, CAIC, H(X) and -2logL values as compared to the 
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Juchez, exponential and Lindley distributions. Hence, it can be concluded that the length biased 

Juchez distribution provides a better fit over Juchez, exponential and Lindley distributions.   

10. Conclusion

In the present study, we have developed a new class of Juchez distribution termed as length biased 

Juchez distribution. The proposed new distribution is executed by using the length biased technique 

to its classical distribution. Its various structural properties those include moments, shape of the pdf 

and cdf, harmonic mean, order statistics, survival function, hazard rate function, reverse hazard 

function, moment generating function, bonferroni and Lorenz curves have been derived. The 

parameter of proposed new distribution is estimated by using the maximum likelihood estimation. 

Finally, a new distribution has been examined and analyzed with two real data sets to demonstrate 

its superiority and flexibility. Hence, it is revealed from the results that the proposed length biased 

Juchez distribution leads to a better fit over Juchez, exponential and Lindley distributions.  
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Abstract 

This paper introduces an optimization approach to impute missing data within the 𝐾-means cluster 

analysis framework. The proposed method has been applied to Philippine climate data over the 

previous 18 years (2006-2023) with the goal of classifying the regions according to average annual 

temperature including the maximum and minimum. This dataset contains missing values which is 

the result of the weather stations’ measurement failure for some time and there is no chance of 

recovery. As an effect, the regional groupings are greatly affected. This paper adapts a modified 

method of missing value imputation suitable for climate data clustering, inspired by the work of 

Bertsimas et al. (2017). The proposed methodology focuses on imputing missing values within 

observations by finding the value that minimizes the distance between the observation and a cluster 

centroid in which the Mahalanobis distance is used as the similarity measure. Consequently, the 

outcomes of clustering obtained through this optimization approach were compared with certain 

imputation techniques namely Mean Imputation, Expectation-Maximization algorithm, and MICE.  

The assessment of the derived clusters was conducted using the silhouette coefficient as the 

performance metric. Results revealed that the proposed imputation gave the highest silhouette scores 

which means that most of the observations were being clustered appropriately as compared to the 

results using other imputation algorithms. Moreover, it was found out that most of the areas showing 

the features of extreme condition are located in the middle part of the country. 

Keywords: Optimization, K-Means, Mahalanobis 

I. Introduction

The risk of extreme temperature most directly affects health by compromising the body’s ability to 
regulate its internal temperature. Loss of internal temperature control can result in various illnesses 
including heat cramps, heat exhaustion, heatstroke, and hyperthermia from extreme heat events [7]. 
Thus, awareness of the climatic differences of a particular region of interest becomes a major concern 
for the safety of the individual. 

In detecting weather phenomena like extreme temperature, it is important to classify or cluster 
the regions according to their climatic elements. However, the problem of missing climatic data is 
common in most weather stations which might result from damaged or failure of the weather 
equipment or instrument. Also, events such as sickness or vacation of the personnel in-charge can 
create daily missing data values which could affect the climate statistics. If this happens, there will 
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be no record of measurements for a particular time and could affect the clustering of weather data 
which is a valuable endeavor in multiple respects. For example, the results can be used in various 
ways within a larger weather prediction framework or could simply serve as an analytical tool for 
characterizing climatic differences [4]. 

From the study of Calvo et al. [6], a new clustering technique was shown aiming to generate a 
robust regionalization using climate datasets with incomplete information. Their method provided 
a new approach to cluster time series of different temporal lengths using most of the information 
contained in heterogeneous sets of climate records. Although they showed that their algorithm is 
able to generate a climatically consistent regionalization, it must be noted that there is no imputation 
happened on the missing information. In a sense, the clustering accuracy is somehow questionable. 

A common practice for dealing with missing values in the context of clustering is to first impute 
the missing values, and then apply the clustering algorithm on the completed data [5]. From the 
study of Bertsimas et al. [3], a flexible framework based on formal optimization to impute missing 
data was proposed. Specifically, this framework can readily incorporate various predictive models 
like the 𝑘 Nearest Neighbors (𝑘NN) for data classification in which the missing data of an 
observation is imputed by determining the 𝑘 nearest observations and getting the average of those 
𝑘 observations. However, the imputation for each observation is not based on the possibility that the 
point belongs to a particular cluster. Thus, the 𝑘NN imputation is based purely on the 𝑘 neighbors 
without the involvement or intervention of the possible resulting clustering. 

Trying to resolve the aforementioned issues or deficiencies, this paper creates an appropriate 
imputation technique for missing values when dealing with clustering problem. Specifically, this 
study aims to construct a two-step optimization approach for data imputation in 𝐾-means cluster 
analysis where 𝐾 is the number of clusters. The first step is to determine the optimal initial cluster 
centroids which are the 𝐾 most frequent nearest neighbors from all incomplete observations, that is, 
the 𝐾 points with highest densities. The second step is then imputing the missing value of an 
observation by determining the value that gives the minimum distance from the observation to a 
cluster centroid. The outcomes of clustering achieved through this optimization approach will be 
compared with some imputation approaches namely Mean Imputation, Expectation-Maximization 
algorithm, and Multivariate Imputation by Chained Equations in which the assessment of the 
derived clusters will be conducted using the silhouette coefficient. 

This paper is arranged as follows. Methodology is introduced and discussed in section 2. The 
model solution is presented and derived in section 3. In section 4, the application of the proposed 
imputation is illustrated while some concluding remarks are stated in section 5. 

II. Methods

This section presents the derivation of the optimization models of the proposed method with 
imputation algorithm. 

Let 𝑋 = {𝑥𝑖}𝑖=1
𝑛  be the dataset given with 𝑝 variables and assume that each data vector 𝑥𝑖

contains continuous variables indexed by 𝑞 ∈ {1, 2, … , 𝑝}. Now, the missing and known values are 
defined by the following sets: 

ℳ = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔}, 
𝒩 = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛}.   

Also, let 𝐽 be the set of indices of all incomplete observations given by 
𝐽 = {𝑖 ∶  𝑥𝑖  ℎ𝑎𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 1 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒}. 

Let 𝑊 ∈ ℝ𝑛×𝑝 be the matrix of imputed values where 𝑤𝑗𝑞  is the imputed value for entry 𝑥𝑗𝑞  for
(𝑗, 𝑞) ∈ ℳ. The full imputation for observation 𝑥𝑗 is referred to as 𝑤𝑗  where 𝑗 ∈ 𝐽. The idea is to 
consider the missing data problem as an optimization problem in which it optimizes the missing 
values in all incomplete data points. Thus, the key decision variables are the missing values 
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{𝑤𝑗𝑞 ∶ (𝑗, 𝑞) ∈ ℳ}. 
As a similarity measure, we can incorporate different types of distance metrics, but we prefer 

to use the Mahalanobis distance because it takes into account the variances and covariances amongst 
the variables which is very important in clustering multivariate data. In constructing the 
Mahalanobis metric, it involves the centroid of the whole dataset which means that the distance 
actually measures a point from the mean of the distribution. Specifically, according to Ghorbani [8], 
the Mahalanobis distance measures the number of standard deviations that an observation is from 
the mean of a distribution. 

In using the Mahalanobis distance as a similarity measure, the nearest neighbors of incomplete 
data are formulated based on the differences of the squared Mahalanobis distances of the two 
observations. Thus, the nearest neighbor of each 𝑤𝑗 , 𝑗 ∈ 𝐽 is the smallest difference 𝑀𝑗 − 𝑀𝑖 for all 𝑖 =

1, 2, … , 𝑛, that is, the smallest deviations between 𝑤𝑗  and 𝑤𝑖  where the squared Mahalanobis distance 
𝑀𝑖 is given by 

𝑀𝑖(𝑤𝑖 , 𝜇) = [𝑤𝑖1 − 𝜇1 … 𝑤𝑖𝑝 − 𝜇𝑝]𝛴−1 [

𝑤𝑖1 − 𝜇1

⋮
𝑤𝑖𝑝 − 𝜇𝑝

] 

with 𝜇 = {𝜇1, … , 𝜇𝑝} and 𝛴 are the mean and covariance matrix of the whole data respectively which 
are updated per iteration. 

Imputation Model 

To obtain the imputed values, the Mahalanobis distance between 𝑤𝑗 , 𝑗 ∈ 𝐽 and its appropriate 
centroid 𝑤𝑖𝑙

, 𝑙 ∈ {1, 2, … , 𝐾} is minimized. Thus, for each 𝑗 ∈ 𝐽, the goal is to solve the imputation
model: 

 min 𝑀𝑗 − 𝑀𝑐 (1) 
subject to 

𝑤𝑐 ∈ {𝑤𝑖𝑙
} 𝑙 = 1, 2, … , 𝐾 (2) 

    𝑤𝑗𝑞 = 𝑥𝑗𝑞   (𝑗, 𝑞) ∈ 𝒩 (3) 
The solution {𝑤𝑗𝑞}, (𝑗, 𝑞) ∈ ℳ are regarded as the imputed values for the corresponding {𝑥𝑗𝑞}. It must 
be noted that in the objective function (1), we assume that 𝑀𝑗 > 𝑀𝑐. If 𝑀𝑐 > 𝑀𝑗, we change the 
objective to max𝑀𝑗 − 𝑀𝑐 in order to represent the same idea that the value of 𝑀𝑗 should be near to 
𝑀𝑐. In other words, the objective function ensures that whatever imputed values 𝑤𝑗𝑞  obtained, the 
observation 𝑤𝑗  is very close to its appropriate cluster centroid 𝑤𝑐 which is selected based on 
constraint (2). These centroids are determined in the assignment model discussed in the next section. 
The constraint (3) assures that all the observed data are preserved. 

Assignment Model 

Let 𝐾 be the number of clusters specified by the analyst. Now, assume that the initial cluster 
centroids are given by {𝑤𝑖𝑙

∶ 𝑙 = 1, 2, … , 𝐾} which are the 𝐾 most frequent nearest neighbors from all
incomplete observations. To obtain the initial centroids, the immediate nearest neighbor for each 𝑤𝑗 , 
𝑗 ∈ 𝐽 must be determined resulting to the following assignment model: 

min ∑ 𝑧𝑖𝑗(𝑀𝑗 − 𝑀𝑖)
𝑛
𝑖=1  (4) 

subject to 
 ∑ 𝑧𝑖𝑗

𝑛
𝑖=1 = 1 (5) 

    𝑧𝑗𝑗 = 0 (6) 
 𝑧𝑖𝑗 ∈ {0, 1} 

The assignment model assigns each incomplete observation to its immediate nearest neighbor 
where 𝑧𝑖𝑗 = 1 if 𝑤𝑖  is the nearest neighbor of 𝑤𝑗  and 0 otherwise. The objective function (4) will 
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determine which 𝑤𝑖  is the nearest neighbor of 𝑤𝑗  among all observations. Because of constraint (5), 
there will only be one immediate nearest neighbor per incomplete observation and an incomplete 
observation cannot be the nearest neighbor of itself because of constraint (6). 

From all of the nearest neighbors, the 𝐾 most frequent observations can then be formulated as 
an optimization problem using the binary variables 𝑦𝑖 ∈ {0, 1} as follows: 

max∑ 𝑦𝑖 ∑ 𝑧𝑖𝑗𝑗∈𝐽
𝑛
𝑖=1  subject to      ∑ 𝑦𝑖

𝑛
𝑖=1 = 𝐾 (7) 

The solution {𝑦𝑖1 , … , 𝑦𝑖𝐾} of model (7) corresponds to the desired initial centroids {𝑤𝑖1 , … , 𝑤𝑖𝐾}. It 
must be noted that the assignment model will work only on complete data with imputed values. For 
the first iteration with missing values, the model can be started with mean values as the warm start 
values for the optimization process. The imputed values from the imputation model are then based 
on the centroids obtained from the assignment model. In return, the centroids are updated based on 
the new imputed values making this procedure an iterative process. 

Imputation Algorithm 

The proposed data imputation algorithm is given in the following steps: 
1. Input: 𝑋 ∈ ℝ𝑛×𝑝, a data matrix with missing entries ℳ = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔},

warm start 𝑊0 ∈ ℝ𝑛×𝑝 and number of clusters 𝐾. 
2. Output: 𝑊∗, a full matrix with imputed values, 𝜇∗ = {𝑤𝑖1 , … , 𝑤𝑖𝐾} initial centroids.
3. Initialize: 𝑊𝑜𝑙𝑑 ← 𝑊0

4. repeat

5. Update mean 𝜇 and covariance matrix 𝛴 based on 𝑊𝑜𝑙𝑑 .
6. Update the auxiliary variables 𝑍∗ using the assignment model.
7. Update the initial centroids 𝜇∗ following:

∑𝑧𝑖𝑙𝑗

𝑗∈𝐽

> ∑𝑧𝑖𝑗

𝑗∈𝐽

 ∀𝑖 ∈ {1, 2, … , 𝑛} 

8. Update the imputation 𝑊∗ using the imputation model.
9. (𝑍𝑜𝑙𝑑 ,𝑊𝑜𝑙𝑑 , 𝜇𝑜𝑙𝑑) ← (𝑍∗,𝑊∗, 𝜇∗)

10. until 𝜇∗ = 𝜇𝑜𝑙𝑑

III. Results

This section presents the solution of the proposed imputation method using Mahalanobis distance. 

Proposition 1. Let 𝑋 = {𝑥𝑖}𝑖=1
𝑛  be a dataset given with 𝑝 variables where the missing and known

values are specified by the sets ℳ = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔} and 𝒩 = {(𝑖, 𝑞) ∶ 𝑥𝑖𝑞  𝑖𝑠 𝑘𝑛𝑜𝑤𝑛} 
respectively. If (𝑗, 𝑞) ∈ ℳ, then the solution of the optimization problem (1-3) is given by 

𝑤𝑗𝑞 = 𝜇𝑞 −
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

 

where 𝜇𝑞 , 𝜎𝑞𝑎 ∈ ℝ and 𝜎𝑞𝑞 > 0. 
Proof. Let (𝑗, 𝑞) ∈ ℳ and consider the optimization problem (1-3). Suppose that 𝑤𝑐 = 𝑤𝑖𝑙

 such that
𝑀𝑗 − 𝑀𝑖𝑙

< 𝑀𝑗 − 𝑀𝑚 for all 𝑚 ≠ 𝑙. Then by considering an unconstrained optimization where we
plugin the values of the 𝑥𝑗𝑞  to the corresponding 𝑤𝑗𝑞  for all (𝑗, 𝑞) ∈ 𝒩 in objective function (1), we 
can use the concept of relative minimum in calculus to solve for 𝑤𝑗𝑞  that would minimize 𝑀𝑗 − 𝑀𝑖𝑙

.
Since the missing variable 𝑤𝑗𝑞  is present only in 𝑀𝑗, the problem reduces to differentiating, 
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𝑀𝑗 = [𝑤𝑗1 − 𝜇1 ⋯ 𝑤𝑗𝑞 − 𝜇𝑞 ⋯ 𝑤𝑗𝑝 − 𝜇𝑝]𝛴−1

[

𝑤𝑗1 − 𝜇1

⋮
𝑤𝑗𝑞 − 𝜇𝑞

⋮
𝑤𝑗𝑝 − 𝜇𝑝]

with respect to 𝑤𝑗𝑞  where 𝜇 = {𝜇1, … , 𝜇𝑝} and 𝛴 are the mean and covariance matrix respectively. 
Now, suppose that 

𝛴−1 =

[

𝜎11 ⋯ 𝜎1𝑞 … 𝜎1𝑝

⋮  ⋮ ⋮ 
𝜎𝑞1

⋮
𝜎𝑝1

⋯

⋯

𝜎𝑞𝑞

⋮
𝜎𝑝𝑞

⋯

⋯

𝜎𝑞𝑝

⋮
𝜎𝑝𝑝]

, 

then we have 

𝑀𝑗 = ∑ ∑ 𝜎𝑎𝑏(𝑤𝑖𝑎 − 𝜇𝑎)(𝑤𝑗𝑏 − 𝜇𝑏)

𝑝

𝑎=1

𝑝

𝑏=1

. 

To differentiate 𝑀𝑗, we have to separate the terms containing 𝑤𝑗𝑞 , that is, 

𝑀𝑗 = ∑ 𝜎𝑞𝑎(𝑤𝑗𝑞 − 𝜇𝑞)(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎=1

+ ∑ ∑ 𝜎𝑎𝑏(𝑤𝑗𝑎 − 𝜇𝑎)(𝑤𝑗𝑏 − 𝜇𝑏)

𝑝

𝑎:𝑎≠𝑞

𝑝

𝑏:𝑏≠𝑞

𝐷𝑤𝑗𝑞
(𝑀𝑗) = 2𝜎𝑞𝑞(𝑤𝑗𝑞 − 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

. 

Finally, equating the derivative to zero will solve for the imputed value as follows 

2𝜎𝑞𝑞(𝑤𝑗𝑞 − 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

= 0 

2𝜎𝑞𝑞𝑤𝑗𝑞 = 2𝜎𝑞𝑞𝜇𝑞 − ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

 

𝑤𝑗𝑞 = 𝜇𝑞 −
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

.  ∎ 

The following theorem will be used to prove the next proposition. 

Theorem 1 (Andreasson et al.). Suppose that 𝑓:ℝ𝑑 → ℝ is in 𝐶2 on ℝ𝑑, that is, 𝑓 is twice differentiable 
with continuous second partial derivatives. Then ∇𝑓(𝑤∗) = 0(𝑑) and ∇2𝑓(𝑤∗) is positive definite 

implies that 𝑤∗ is a strict local minimum of 𝑓 where ∇𝑓(𝑤) = (
𝜕𝑓(𝑤)

𝜕𝑤𝑞
)

𝑞=1

𝑑

. For 𝑑 = 1, 𝑓′(𝑤∗) = 0 and 

𝑓′′(𝑤∗) > 0 implies 𝑤∗ ∈ ℝ is a strict local minimum. 

Proposition 2. The solution 𝑤𝑗𝑞  given in Proposition 1 is a strict local minimum of the optimization 
problem (1-3) in an unconstrained setting. 
Proof (for the case when 𝒅 = 𝟏). Let 𝑓:ℝ → ℝ be defined by the objective function in the 
optimization problem (1-3) in an unconstrained setting. Following the same argument from the 
proof of Proposition 1, for any solution 𝑤∗, we have 

𝑓′(𝑤∗) = 2𝜎𝑞𝑞(𝑤
∗ − 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

⇒ 𝑓′′(𝑤∗) = 2𝜎𝑞𝑞 .

Since 𝑓′(𝑤∗) and 𝑓′′(𝑤∗) are linear functions, then they are continuous. Also, 𝑓′′(𝑤) = 2𝜎𝑞𝑞 > 0 since
the diagonal entries of a covariance matrix are positive assuming that the data samples are unique. 
Now, 
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𝑓′(𝑤𝑗𝑞) = 2𝜎𝑞𝑞 (𝜇𝑞 −
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

− 𝜇𝑞) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

= 2𝜎𝑞𝑞 (−
1

2𝜎𝑞𝑞

∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

) + ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

 

= − ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

+ ∑ 𝜎𝑞𝑎(𝑤𝑗𝑎 − 𝜇𝑎)

𝑝

𝑎:𝑎≠𝑞

= 0.      

Thus, by Theorem 1, the solution 𝑤𝑗𝑞  is a strict local minimum. ∎ 

IV. Application

The proposed methodology is applied on the historical Philippine climate data (2006-2023) taken 
from the 52 weather stations around the country which can be downloaded at 
https://en.tutiempo.net/climate/philippines.html and shown in Table 2. This dataset of three 
continuous variables per year (52 × 54 data matrix) contains actual missing values. This study can 
be considered as a multivariate time series clustering with the goal of classifying the regions 
suspected to have extreme temperature conditions. 

In doing the experiment, the missing elements among the data are firstly imputed using the 
different imputation methods, and then the traditional 𝐾-means algorithm is applied into the 
imputed dataset. The experiments with random centroid initialization (mean, MICE, EM) are 
repeated 100 times with different random seed to reduce the effect of randomness caused by the 
traditional 𝐾-means, and report the best result. 

We use the R function “silhouette()” from the R package “cluster” for obtaining the silhouette 
scores of the clustering results. Silhouette coefficient or Silhouette score ranging from -1 to +1 is a 
measure of how similar an object is to its own cluster compared to other clusters. In other words, it 
is a metric used to calculate the goodness of a clustering [2]. A high value indicates that the object is 
well matched or having a high relationship to its own cluster. Thus, it acts as the accuracy in the case 
when the cluster labels are not known. 

Table 1 shows the silhouette score results from different number of clusters where the numbers 
in red are the highest score per case. 

Table 1: Silhouette Scores (%) using different imputation algorithms 

# of Proposed Mean 
MICE 

Expectation- 
Clusters Imputation Imputation Maximization 

K=2 84.78 75.26 61.51 70.98 

K=3 72.6 62.7 52.64 58.66 

K=4 58.02 36.03 29.39 21.75 

K=5 58.02 22 26.38 19.12 

K=6 57.99 20.5 33.33 19.04 

K=7 41.11 20.09 17.89 18.17 

K=8 38.06 17.89 17.66 17.16 

K=9 36.56 17.59 17.03 16.65 

K=10 36.27 16.88 15.74 17.75 
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Using the proposed imputation method, we can classify the extreme temperature areas. For example, 
if we set 𝐾 = 10, results showed that there are two clusters exhibiting extreme temperature having 
an overall average of at least 28°C. These areas are shown in Figure 1. 

Figure 1: Philippine map with clustering results from the proposed imputation 

From Figure 1, the areas with red spots are classified with extreme temperature. It can be observed 
that most of the areas are located in the middle part of the country. 

V. Concluding Remarks

This paper presents a missing data imputation algorithm that can handle partitional clustering. 
It is created out of an optimization approach for imputing missing data and making use of the 
Mahalanobis distance metric as a similarity measure. Also, it avoids the problem of centroid 
initialization when performing 𝐾-means clustering because the initial cluster centroids are fixed 
based on the algorithm’s generated centroids. 

When clustering the Philippine Climate data with 21% actual missing values, we were able to 
identify 9 places with extreme temperature classification which means that these places must be 
considered when predicting extreme temperature occurrence. It was found out that the proposed 
imputation using Mahalanobis distance gave higher clustering performance and is consistent for 
different number of clusters which means that the proposed optimization approach using 
Mahalanobis distance is a suitable imputation algorithm in the context of partitional clustering. 
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Abstract 

In this study, we employ a weighted transformation approach to introduce a novel model that 

generalises the Transmuted Mukherjee-Islam distribution. The resulting generalized distribution is 

referred to as the Weighted Transmuted Mukherjee-Islam (WTMI) distribution The paper thoroughly 

explores the probability density function (PDF) and the corresponding cumulative distribution 

function (CDF) associated with the WTMI distribution. A thorough investigation of the distinctive 

structural properties of the proposed model is conducted, including survival function, conditional 

survival function, hazard function, cumulative hazard function, mean residual life, moments, moment 

generating function (MGF), characteristics function (CF), cumulant generating function (CGF), 

likelihood ratio test, ordered statistics, entropy measures, and Bonferroni and Lorenz curves. The 

maximum likelihood estimation method is employed for the precise estimation of model parameters. 

Key words: Transmuted Mukherjee-Islam distribution, Reliability analysis, Maximum 

likelihood estimator, Ordered statistics 

1. Introduction

In numerous applied sciences, including, engineering, agricultural science, biological science, 

biomedicine, ecology and various social science fields such as economics, finance, and population 

science, the modelling and analysis of lifetime data holds paramount importance. Multiple lifetime 

distributions have been employed to characterize such data and the effectiveness of statistical analysis 

procedures relies significantly on the chosen probability model or distribution. Consequently, 

substantial efforts have been taken for creating extensive classes of standard probability distributions 

along with corresponding statistical methodologies. Despite these advancements, numerous 

significant challenges persist, as real-world data often deviates from classical or standard probability 

models. Thus, the development of new forms of probability distributions remains a common objective 

of statistical theory. To extend the applicability of probability distributions, the literature proposes 

several methods that introduce additional parameter(s) to established baseline probability models. 

This enhances the flexibility of the models to capture the complexity of the data, leading to several 

generalized classes such as the Pearson Family, Burr Family, Exponentiated Family, Marshall-Olkin 

Family, T − X Family, Transmuted Family, Weighted Family, and more.  

In this article, we employ a weighted transformation approach to introduce a novel model 

that generalizes the Transmuted Mukherjee-Islam distribution. The new generalized distribution will 

be termed as WTMI distribution. The weighted family of distributions emerged from the pioneering 

work of Fisher in 1934 [10], subsequently refined and formalized by Rao in 1965 [16]. This concept 
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serves as an essential tool in statistical theory, particularly in scenarios where observations are 

derived from non-experimental, non-replicated, and non-random conditions. In practice, Observing 

and recording all events is not always possible due to various factors. Some events may not be 

observable by the method used, may only be observable with a certain probability, or may change 

randomly during observation. Additionally, events produced under different mechanisms with 

unspecified relative frequencies may be mixed up and added to the same record. Therefore, the 

original event specification may not be appropriate for the recorded data unless modified. The 

weighted transformation approach enhances the flexibility of standard probability distributions in 

such scenarios. Researchers and scholars have extensively explored weighted probability models, 

along with the application of these models across various domains. Notably, Ghitany et al. [14] 

conducted a comprehensive study on the two-parameter weighted Lindley distribution, focusing on 

its relevance in analyzing survival data. Jain et al. [11] introduced the weighted gamma distribution, 

while Dey et al. [8] contributed significantly by introducing the weighted exponential distribution 

and its estimation techniques. In 2016 Das and Kundu [7], have obtained weighted and length biased 

version of exponential distribution. Kilany [13] have obtained the weighted version of lomax 

distribution. Subramanian and Rather [23] studied the weighted version of the exponentiated 

Mukherjee-Islam distribution, derived its statistical properties. Further, in 2018 Rather et al [20] 

explored the size-biased Ailamujia distribution with applications in engineering and medical science. 

Para and Jan [15] introduced the Weighted Pareto type-II distribution as a new model for handling 

medical science data and unveiling its statistical properties and potential applications across various 

fields. Rather and Subramanian [17] extensively studied the weighted Sushila distribution with 

properties and applications which shows more flexibility then its baseline distribution. Rather and 

Subramanian [19] further explored weighted distributions by offering a comprehensive overview, 

perspectives, and characterizations of the weighted version of Akshaya distribution with applications 

in engineering science.  In a recent contribution, Rather and Ozel [18] discussed the weighted power 

Lindley distribution, demonstrating its effectiveness in analyzing lifetime data. 

2. Probability density function (PDF) and cumulative distribution function (CDF)

The Transmuted Mukherjee-Islam distribution had explored by Rather and Subramanian {21] using 

the quadratic rank transmutation map studied first by Shaw and Buckley in 2007 [22]. Loai M. A. Al-

Zou’bi [4] also obtained various properties of Transmuted Mukherjee-Islam distribution and its 

applications. The probability density function of a random variable say Z  following Transmuted 

Mukherjee- Islam distribution with parameters say    ,,  is given by

)1(11,0,0,0;21),,;( 1 
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And the corresponding cumulative distribution function is 
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Various researchers have attracted to the quadratic transmutation map and they have introduced the 

new members of this family for various choices of baseline distributions. Transmuted Weibull 

distribution by Aryal and Tsokos [5], transmuted inverse Rayleigh distribution by Ahmad et al. [3], 

transmuted Marshall-Olkin Frechet distribution by Afify et al. [2], transmuted generalized Lindley 

distribution by Elgarhy et al. [9], transmuted modified Weibull distribution by Cordeiro et al. [6], 

transmuted exponential Lomax distribution by Abdullahi and Ieren [1], transmuted Burr Type X 

distribution by Khan et al. [12]. 
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Using the weighted transformation approach, the PDF )(zy  of a non-negative random variable Z is 

given by 

 
0;
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)()(
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Where )(zw be a non-negative weight function and   
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In this paper, we will consider the weight function as szzw )(  and PDF of the random variable Z 

to be Transmuted Mukherjee- Islam distribution to derive the PDF of Weighted Transmuted 

Mukherjee- Islam distribution. The PDF of Weighted Transmuted Mukherjee- Islam distribution 

distribution is given by 

  )3(
)(

),,;(
,,,;

s

s

zE

zfz
szg


 

Now 

)4(21)(
0

1

 




















 

 










dz
z

zzzE ss

)5(
)(

2
)1()(

0

12

0

1














 




















dzzdzzzE sss

After simplification we get 

 
)6(

)2()(

2)1(
)(










ss

s
zE

s
s

Using (1) and (4) in (3) we get

 
 

)7(

)2()(

2)1(

21

,,,;

1


















































ss

s

z
zz

szg
s

s

 
 

)8(
2)1(

21)2()(

,,,;

1











































s

z
zss

szg
s

s

The corresponding CDF of WTMI distribution is given by 
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3. Reliability Analysis

3.1 Survival function 

The survival function of WTMI distribution is given by 

)()( tTPtR rT 
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3.2 Conditional survival function 

For an item survived for at least t0 time (years, t0>0), the probability that the item will survive 

additional t years is known as conditional survival function. In case of WTMI distribution the 

conditional survival function is given by 
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3.3 Hazard function 

The hazard function of WTMI distribution is given by 
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3.4 Cumulative hazard function 

The cumulative hazard function of WTMI distribution is given by 
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Similarly, the Conditional Cumulative hazard function of WTMI distribution is given by 
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3.5 Reverse Hazard function 

The reverse hazard function of WTMI distribution is given by 
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After simplification we get 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

128



Danish Qayoom, Aafaq A. Rather  

WEIGHTED TRANSMUTED MUKHERJEE-ISLAM DISTRIBUTION … 

)19(
)(2)()1()2(

21)()2()(

)(
2

1










































ss

s

r
tsts

t
tss

tH

3.6 Mills Ratio 

The Mills ratio of WTMI distribution is given by 
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3.7 Mean residual life 

The mean residual life (MRL) in case of WTMI distribution is given by 
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4. Moments

The rth raw moment about origin of WTMI distributionis defined as 
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The variance and coefficient of variance  VC.  respectively are given by 
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5. Harmonic mean

The harmonic mean of WTMI distribution can be obtained as 
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6. MGF, CF and CGF

The MGF of WTMI distributionis equal to 
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The CF of WTMI distribution can be obtained as 
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The CGF of WTMI distribution is given by 
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7. Estimation of Parameters

Let nzzzz  ...,,,, 321 be a random sample of size n from WTMI distribution. Then The likelihood 

function is defined as the joint density of the random sample, which is given as 

 
 

)40(
2)1(

21)2()(

,,,;),,,(
1

1


































n

l
s

s

l
s

z
zss

szgsL












 
)41(

2)1(

21)2()(

),,,(
1

1


































n

l
s

ls

l

s

z
zss

sL












 
)42(21

2)1(

)2()(
),,,(

11

1

)( 















































 







n

l

l
n

l

s

lnsn

nn z
z

s

ss
sL





 







Taking logarithm on both sides we get 
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Differentiating equation (43) partially with respect to   and equating to zero we get 
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Differentiating equation (43) partially with respect to   and equating to zero we get 
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Differentiating equation (43) partially with respect to   and equating to zero we get 
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Differentiating equation (43) partially with respect to s  and equating to zero we get 
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On solving equation (44), (45), (46), and (47) simultaneously, we obtain the maximum likelihood 

estimators of parameters involved in the given distribution. However, the above system of non-linear 

equations cannot be evaluated directly. So, to get the maximum likelihood estimates for the 

distribution parameters, we have to solve these system of equations using Newton-Raphson method, 

Mathematica, or Secant method. 

8. Distribution of ordered statistics

 Let nzzzz  ...,,,, 321  be a random sample of size n   from WTMI distribution. Then 

)()3()2()1( ...,,,, nZZZZ  be the ordered statistics associated with the given sample such that 
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And the corresponding cumulative distribution function of 
thk  ordered statistics is 
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On substituting nk  ,1  in equation (49) we get the probability density functions of smallest and 

highest  ordered statistics respectively and are given as  
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Their corresponding cumulative density functions are obtained on substituting nk  ,1  in equation 

(50) and are given by
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9. Likelihood ratio test

In the context of probability distributions, the likelihood ratio test is often employed to compare 

whether two distributions adequately describe the observed data or not. Suppose nzzzz  ...,,,, 321  be 

a random sample of size n   from WTMI distribution.. To test the hypothesis 

),,,;()(:0 zgzgH  against ),,,;()(:1 szgzgH 

The likelihood ratio test is defined as 
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So, we reject null hypothesis at  level of significance if 
* such that  )( *P , where 

*

is the critical value at  level of significance of the given test statistics. That is, 
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For large sample size n , )log(2   is distributed as Chi-square distribution with one degree of 

freedom. Also p-value is calculated from the chi-square distribution. On the basis of p-value, we reject 

the null hypothesis when the p-value is less than level of significance. 
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10. Entropy measures

10.1 Renyi entropy and Tsallis entropy 

 By definition, the Renyi entropy is given by 
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After simplification we get 
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Similarly, the Tsallis entropy associated with the given distribution is given by 
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11. Bonferroni and Lorenz curves

The Bonferroni curve of the given distribution is given by 
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After simplification we get 
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Also, the Lorenz curve of the given distribution is given by 
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12. Conclusion

In this research paper, we have explored an innovative extension of the Transmuted Mukherjee-Islam 

distribution, known as the weighted Transmuted Mukherjee-Islam distribution. This distribution is 

formulated by incorporating a weighted model, utilizing the three-parameter Transmuted Mukherjee-

Islam distribution as the base distribution. We thoroughly examine and discuss the newly introduced 

weighted Transmuted Mukherjee-Islam distribution, exploring its mathematical and statistical 

properties. The parameters of this novel distribution are determined through the application of 

maximum likelihood estimation techniques. 
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Abstract

When the probability distributions for the stress (X) and strength (Y) are different members of the
power series family, the expressions of the stress-strength reliability function, R = P(X ≤ Y), are
derived. Apart from stress-strength reliability, it has applications in statistical tolerancing, measurement
of demand-supply system performance, genetic trait hereditary measure, bio-equivalence study, etc. The
Bayes’ estimates of R under squared error and Precautionary losses are derived for various combinations
of distributions of X and Y like binomial, Poisson, negative binomial, and geometric. As in practice, the
availability of prior parameters is difficult; the empirical Bayes estimation procedure has been adopted to
get their estimates from observed data. Simulation results have been reported, and estimates of posterior
risks are compared. In the context of real Soccer games, the Bayes estimates are enumerated and compared
with their classical counterparts.

Keywords: Empirical Bayes’ estimate, Estimated Posterior risk, Precautionary loss, Squared error
loss, Stress-strength reliability.

1. Introduction

It is a satisfactory fact that the strength of a manufactured product is a variable quantity. When
ascertaining the reliability of equipment or the viability of a material, it is also necessary to
consider the stress conditions of the operating environment. The uncertainty of the stressful
environment leads us to take stress as a random component. In the stress-strength model, X is
the stress applied on the unit by the operating system, and Y is the unit’s strength, which is the
in-built capacity of the unit to withstand the applied stress. No doubt, any unit can perform its
actual function if its strength is greater than the stress given to it. In this context, we consider the
reliability (R) as

R = P(X ≤ Y),

which is the probability that the unit performs its task satisfactorily. Also, we can say this is the
probability of the unit overcoming the stress. In this paper, the estimation of R when X and Y are
independently distributed but not necessarily identical follows the power-series distribution. The
quantity R has many applications, for example, statistical tolerance, measurement of demand-
supply system performance, stress-strength reliability, genetic trait hereditary measure, a study
of bio-equivalence, etc.

Several authors explore different statistical properties concerning R for several members of
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the power series distributions. A study on the various estimation methods of R when X and Y
are independently distributed geometric random variables was made by [11]. [2] worked the
Bayes estimation of it. A study on different estimations of the negative binomial distribution
was considered by [8] and [15] in the context of a system reliability estimation. [5] and [4] used
Poisson distribution to explore different estimates of R. [13] studied the application of log series
distribution.

In most of the papers, the Bayes estimate for the stress-strength problems was found for the
continuous distributions, like [16] found the estimate of R for the Gompertz case. [14] found for
Weibull distribution, [1] used type-II censoring for Rayleigh distribution for finding Bayes estimate.
[12] used exponential-Poisson distribution. [9] used generalized exponential distribution, and [7]
used inverted gamma distribution to estimate it using the Bayes method.

In the current work, we consider the Bayesian estimate of R for the stress and strength distri-
butions as general members of the power series family of distributions. Section 2 starts with the
exact expression of R for the generalized form of power series for both X and Y. The Bayesian
estimates of R for power series distributions under squared error loss and precautionary loss, as
well as some prerequisites, are discussed in section 3. The Bayesian estimates and their estimated
posterior risks for particular choices of distributions like binomial, Poisson, negative binomial,
and geometric of X and Y are discussed in section 4. Section 5 is devoted to searching estimates
of the hyper-parameters of the prior distributions and hence is engaged in finding the empirical
Bayes estimates of R. Simulation study results have been reported in section 6. An application of
R in real soccer games is discussed in section 7, where we find the R estimate with the estimated
posterior risk. Section 8 draws concluding remarks.

2. The initial set-up

Let X and Y be two random variables belonging to the power-series family of distributions, which
are defined as follows.

P(X = x) =
a(x)αx

f (α)
, x = 0, 1, ... α > 0 and f (α) =

∞

∑
x=0

a(x)αx. (1)

P(Y = y) =
b(y)βy

g(β)
, y = 0, 1, ... β > 0 and g(β) =

∞

∑
x=0

b(y)βy. (2)

The stress-strength reliability R is given by

R = P(X ≤ Y) =
1

f (α)g(β)

∞

∑
y=0

{ y

∑
x=0

a(x)αx
}

b(y)βy. (3)

Let x1, x2, . . . , xn1 be a sample of size n1 from the distribution of X and y1, y2, . . . , yn2 be a
sample of size n2 from that of Y. Then, the likelihood function is

L(α, β|x, y) =
n1

∏
i=1

P(X = xi)
n2

∏
j=1

P(Y = yj)

=
α∑

n1
i=1 xi

f n1(α)

n1

∏
i=1

a(xi)
β∑

n2
j=1 yj

gn2(β)

n2

∏
j=1

b(yj)

= αtx{ f (α)}−n1
n1

∏
i=1

a(xi)βty{g(β)}−n2
n2

∏
j=1

b(yj)

= L(α|x)L(β|y),
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where tx = ∑n1
i=1 xi, ty = ∑n2

j=1 yj.
The joint posterior density function of α, β corresponding to prior distributions h(α), k(β) is

∏ (α, β|tx, ty) =
L(α, β|tx, ty)h(α)k(β)∫ ∞

0

∫ ∞
0 L(α, β|tx, ty)h(α)k(β)dαdβ

=
L(α|tx)h(α)∫ ∞

0 L(α|tx)h(α)dα
.

L(β|ty)k(β)∫ ∞
0 L(β|ty)k(β)

.

3. Bayes estimation of R for power-series distributions

The main objective of this section is to find Bayes’ estimates of R, the stress-strength reliability.
We have considered two different loss functions, and the Bayes estimates corresponding to each
loss function are given for the general cases. The joint distributions, the prior distributions of
the parameters, and some preliminaries, which are required to find the Bayes estimates of the
different combinations of the power-series model, are discussed.

3.1. The Bayes Estimates under different loss functions

The squared error loss (SEL) and Pre-cautionary loss (PL) functions have been considered. If d is
the estimate of the parameter θ, the SEL is given by

L(d, θ) = (d − θ)2. (4)

Under the SEL, the posterior mean is the Bayes estimate of the parameter θ and is denoted by

d = θ̂ = E(θ).

The Posterior risk, in this case, is

PRSEL = E(θ2)− E2(θ).

The PL is defined as

L(θ, d) =
(d − θ)2

d
.

The Bayes estimate under the PL is defined as

d = θ̂ =
√

E(θ2).

The Posterior risk, in this case, is

PRPL = 2[
√

E(θ2)− E(θ)].

So, the Bayes estimate of R under the SEL is given by

R̂SEL = E(R|tx, ty)

=
∫ ∞

0

∫ ∞

0

∞

∑
y=0

y

∑
x=0

a(x)b(y)αxβy

f (α)g(β) ∏(α, β|tx, ty)dαdβ

=
∞

∑
y=0

y

∑
x=0

∫ ∞
0

a(x)αx

f (α) L(α)h(α)dα∫ ∞
0 L(α)h(α)dα

∫ ∞
0

b(y)βy

g(β)
L(β)k(β)dβ∫ ∞

0 L(β)k(β)dβ
, (5)
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and the same under the PL is R̂PL =
√

E(R2|tx, ty), where

E(R2|tx, ty) =
∫ ∞

0

∫ ∞

0
[

∞

∑
y=0

y

∑
x=0

a(x)b(y)αxβy

f (α)g(β)
]2 ∏(α, β|tx, ty)dαdβ

=
∫ ∞

0

∫ ∞

0

∞

∑
y=0

y

∑
x=0

a2(x)α2x

f 2(α)

b2(y)β2y

g2(β) ∏(α, β|tx, ty)dαdβ +

∫ ∞

0

∫ ∞

0

∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

a(xi)a(xk)α
xi+xk

f 2(α)

b(yj)b(yl)βyj+yl

g2(β) ∏(α, β|tx, ty)dαdβ.

(6)

The estimated posterior risks of Bayes estimate of R under SEL and PL are P̂RSEL = Ê(R2|tx, ty)−
Ê2(R|tx, ty) and P̂RPL = 2[

√
Ê(R2|tx, ty)− Ê(R|tx, ty)], respectively.

3.2. Some particular distributions and joint distributions

Four different distributions have been considered; all belong to the power-series family. These
are binomial (m,p), Poisson (λ), negative binomial (r,η), and geometric (µ) distributions. Let
z1,z2,. . . ,zn be a sample from the distribution of Z. Then, tz=∑n

i=0 zi be the complete sufficient
statistic for estimating the distribution parameter. The probability mass function (pmf) of different
distributions and their joint distributions for a sample of size n are shown in Table 1.

Table 1: The pmfs of the different distributions and their joint distributions

Distribution (Z) pmf, P(Z=z) Joint distribution
Bin(m,p) P(Z=z)=(m

p)pz(1 − p)m−z ptz(1 − p)mn−tz

Poisson(λ) P(Z=z)= e−λλz

z!
e−nλλtz

∏n
i=1 zi !

Negative binomial (r, η) P(Z=z)=(r+z−1
z )ηz(1 − η)r ηtz(1 − η)nr

Geometric (µ) P(Z=z)=µz(1 − µ) µtz(1 − µ)n

3.3. Prior distributions and their probability distribution functions

Each distribution characteristic depends on the value of the single parameter it evolves. The
parameter itself follows a distribution. The probability distribution function (pdf) of the prior
parameters and some forms related to the posterior distribution of the parameters have been
found, and presented in Table 2.

Table 2: The pdfs of the prior parameters and some forms related to the posterior distribution

Distribution Prior distribution pdf of prior dist Terms required for posterior dist

Bin(m,p) Beta(α, β) pα−1(1−p)β−1

B(α,β) Ibin(m, p)= ptz+α−1(1−p)mn−tz+β−1

B(tz+α,mn−tz+β)

Poisson(λ) Gamma(γ, δ) δγe−γλλδ−1

Γδ Ipois(λ)=
(n+γ)(tz+δ)e−(n+γ)λλtz+δ−1

Γ(tz+δ)

Neg bin (r, η) Beta(c,d) ηc−1(1−η)d−1

B(c,d) Ineg(η)=
ηtz+c−1(1−η)nr+d−1

B(tz+c,nr+d)

Geometric (µ) Beta(a,b) µa−1(1−µ)b−1

B(a,b) Igeo(µ)=
µtz+a−1(1−µ)n+b−1

B(tz+a,n+b)

3.4. Some preliminaries

The expression of R is given in 3. The expression for Bayes estimates under SEL and PL are
shown in 5 and 6, respectively. To find the explicit forms, we require some terms defined in this
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section and presented in Tables 3 and 4. These are to be used for finding E(R) and E(R2).

Table 3: Prerequisite for finding E(R) and E(R2)

Distribution Terms related to E(R) (Rdist) Terms for R2 (zi = zk) (Rsqdist)

Bin(m,p) (m
z )

B(tz+z+α,m(n+1)−tz−z+β)
B(tz+α,mn−tz+β) (m

z )
2 B(2z+tz+α,2m−2z+n1m−tz+β)

B(tz+α,mn1−tz+β)

Poisson(λ) (n+γ)(tz+δ)

z!Γ(tz+δ)
Γ(tz+z+δ)

(n+γ+1)(tz+z+δ)

(n2+γ)(tz+δ)Γ2z+tz+δ

(2+n2+δ)(2z+tz+δ)Γtz+δ

Negative binomial (r, η) (r+z−1
z ) B(tz+z+c,nr+r+d)

B(tz+c,nr+d) (r+z−1
y )

2 B(2z+tz+c,2r+n2r+d)
B(tz+c,n2r+d)

Geometric (µ) B(tz+z+a,n+1+b)
B(tz+a,n+b)

B(tz+2z+a,n2+b+2)
B(tz+a,n2+b)

Table 4: Prerequisite for finding E(R) and E(R2)

Distribution Terms for R2 (zj ̸= zk) (Rcovdist)

Bin(m,p) (m
zi
)(m

zj
)

B(zi+zj+tz+α,2n−zi−zj+n1m−tz+β)

B(tz+α,mn1−tz+β)

Poisson(λ)
(n2+γ)(tz+δ)Γ(zi+zj+tz+δ)

(2+n2+δ)
(zi+zj+tz+δ)

Γtz+δ

Negative binomial (r,η) (r+zi−1
zi

)(r+zj−1
zj

)
B(zi+zj+tz+c,2r+n2r+d)

B(tz+c,n2r+d)

Geometric(µ)
B(tz+zi+zj+a,n2+b+2)

B(tz+a,n2+b)

4. Theoretical expression of R for different stress-strength models

The theoretical expressions of R for general power series stress-strength models have been derived
earlier. Such expressions are of theoretical interest because specific members of the power series
family are used for modeling stress and/or strength. Being restricted to the family of power series
distributions, we provide simplified expressions of such quantities for several stress and strength
distribution choices. This section found the posterior distributions for different combinations of
the parameters attached to the different distributions. In each subsection, we have mentioned
the pmfs of the random variables used for stress and strength, the prior distributions of the
parameters involved in the pmfs, the joint posterior distribution of the parameters, the E(R|tx, ty)
and E(R2|tx, ty) that are required for the Bayes estimates R̂.

4.1. X and Y both follow binomial distributions

Let X∼binomial(m1, p1) and Y∼binomial(m2, p2), where p1 ∼beta(α1, β1) and p2 ∼beta(α2, β2).
The joint prior distribution of p1 and p2 is

π(p1, p2) = g(p1).h(p2).

The posterior distribution of p1 and p2 is given by

∏(p1, p2|tx, ty) = Ibin(m1, p1)Ibin(m2, p2). (7)

The Bayes estimate under SEL is given by

R̂SEL = E(RBB|tx, ty)

=
∫ 1

0

∫ 1

0

m2

∑
y=0

min(y,m1)

∑
x=0

(
m1

x

)
px

1(1 − p1)
m1−x

(
m2

y

)
py

2(1 − p2)
m2−y ∏(p1, p2|tx, ty)dp1dp2

=
m2

∑
y=0

min(y,m1)

∑
x=0

Rbin(m1, p1)Rbin(m2, p2). (8)
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The Bayes estimate under PL is R̂PL=
√

E(R2), where E(R2) is given by

E(R2
BB|tx, ty) =

∫ 1

0

∫ 1

0

[ m2

∑
y=0

min(y,m1)

∑
x=0

(
m1

x

)
px

1(1 − p1)
m1−x

(
m2

y

)
py

2(1 − p2)
m2−y

]2

×∏(p1, p2|tx, ty)dp1dp2

=
m2

∑
y=0

min(y,m1)

∑
x=0

Rsqbin(m1, p1)Rsqbin(m2, p2)

+
m2

∑
yj=0

min(yj ,m1)

∑
xi=0

m2

∑
yl=0

min(yl ,m1)

∑
xk=0

Rcovbin(m1, p1)Rcovbin(m2, p2).

The estimated posterior risks are as follows.

P̂RSEL = Ê(R2
BB)− Ê2(RBB).

P̂RPL = 2
(√

Ê(R2
BB)− Ê(RBB)

)
.

4.2. X and Y both follow Poisson distributions

Let X∼Poisson(λ1) and Y∼Poisson(λ2), where λ1 ∼Gamma(γ1, δ1) and λ2 ∼Gamma(γ2, δ2).
The joint prior distribution of λ1 and λ2 is

π(λ1, λ2) = g(λ1).h(λ2).

The posterior distribution of λ1 and λ2 is given by

∏(λ1, λ2|tx, ty) = Ipois(λ1)Ipois(λ2).

Hence, under the SEL

E(RPP|tx, ty) =
∫ 1

0

∫ 1

0

m2

∑
y=0

y

∑
x=0

e−λ1λx
1

x!
e−λ2λ

y
2

y! ∏(λ1, λ2|tx, ty)dλ1dλ2

=
m2

∑
y=0

y

∑
x=0

Rpois(λ1)Rpois(λ2),

and under the PL

E(R2
PP|tx, ty) =

∫ 1

0

∫ 1

0

[ m2

∑
y=0

y

∑
x=0

e−λ1λx
1

x!
e−λ2λ

y
2

y!

]2

∏(λ1, λ2|tx, ty)dλ1dλ2

=
m2

∑
y=0

y

∑
x=0

Rsqpois(λ1)Rsqpois(λ2) +
m2

∑
yj=0

yj

∑
xi=0

m2

∑
yl=0

yl

∑
xk=0

Rcovpois(λ1)Rcovpois(λ2).

4.3. X and Y both follow negative binomial distributions

Let X∼negative binomial(r1,η1) and Y∼negative binomial(r2,η2), where η1 ∼beta(c1, d1) and
η2 ∼beta(c2, d2).
The joint prior distribution of η1 and η2 is

π(η1, η2) = g(η1).h(η2).

The posterior distribution of η1 and η2 is given by

∏(η1, η2|tx, ty) = Ineg(η1)Ineg(η2).
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Therefore, under SEL

E(RNN |tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

(
r1 + x − 1

x

)
ηx

1 (1 − η1)
r
1

(
r2 + y − 1

y

)
η

y
2(1 − η2)

r
2

×∏(η1, η2|tx, ty)dη1dη2

=
∞

∑
y=0

y

∑
x=0

Rneg(η1)Rneg(η2),

and under PL

E(R2
NN |tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

(
r1 + x − 1

x

)
ηx

1 (1 − η1)
r
1

(
r2 + y − 1

y

)
η

y
2(1 − η2)

r
2

]2

×∏(η1, η2|tx, ty)dη1dη2

=
∞

∑
y=0

y

∑
x=0

Rsqneg(η1)Rsqneg(η2) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovneg(η1)Rcovneg(η2).

4.4. X and Y both follow geometric distributions

Let X∼geometric(µ1) and Y∼geometric(µ2), where µ1 ∼beta(a1, b1) and µ2 ∼beta(c2, d2).
The joint prior distribution of µ1 and µ2 is

π(µ1, µ2) = g(µ1).h(µ2).

The posterior distribution of µ1 and µ2 is given by,

∏(µ1, µ2|tx, ty) = Igeo(µ1)Igeo(µ2).

Therefore, under SEL

E(RGG|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

µx
1(1 − µ1)µ

y
2(1 − µ2)∏(µ1, µ2|tx, ty)dµ1dµ2

=
∞

∑
y=0

y

∑
x=0

Rgeo(µ1)Rgeo(µ2),

and under PL

E(R2
GG|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

µx
1(1 − µ1)µ

y
2(1 − µ2)

]2

∏(µ1, µ2|tx, ty)dµ1dµ2

=
∞

∑
y=0

y

∑
x=0

Rsqgeo(µ1)Rsqgeo(µ2) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovgeo(µ1)Rcovgeo(µ2).

4.5. X follows binomial distribution and Y follows Poisson distribution

Let X∼binomial(m,p) and Y∼Poisson(λ), where p∼beta(α, β) and λ ∼gamma(γ, δ).
The joint prior distribution of p and λ is

π(p, λ) = g(p).h(λ).

The posterior distribution of p and λ is given by

∏(p, λ|tx, ty) = Ibin(p)Ipois(λ).
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Under SEL

E(RBP|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

(
m
x

)
px(1 − p)m−x e−λλy

y! ∏(p, λ|tx, ty)dpdλ

=
∞

∑
y=0

y

∑
x=0

Rbin(p)Rpois(λ),

and under PL

E(R2
BP|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

(
m
x

)
px(1 − p)m−x e−λλy

y!

]2

∏(p, λ|tx, ty)dpdλ

=
∞

∑
y=0

y

∑
x=0

Rsqbin(p)Rsqpois(λ) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovbin(p)Rcovpois(λ).

4.6. X follows binomial distribution and Y follows negative binomial
distribution

Let X∼binomial(m,p) and Y∼negative binomial(r,η), where p∼beta(α, β) and η ∼beta(c,d).
The joint prior distribution of p and η is

π(p, η) = g(p).h(η).

The posterior distribution of p and η is

∏(p, η|tx, ty) = Ibin(p)Ineg(η).

So, under SEL

E(RBN |tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

(
m
x

)
px(1 − p)m−x

(
r + y − 1

y

)
ηy(1 − η)r ∏(p, η|tx, ty)dpdη

=
∞

∑
y=0

y

∑
x=0

Rbin(p)Rneg(η),

and under PL

E(R2
BN |tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

(
m
x

)
px(1 − p)m−x

(
r + y − 1

y

)
ηy(1 − η)r

]2

∏(p, η|tx, ty)dpdη

=
∞

∑
y=0

y

∑
x=0

Rsqbin(p)Rsqneg(η) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovbin(p)Rcovneg(η).

4.7. X follows binomial distribution and Y follows geometric distribution

Let X∼binomial(m,p) and Y∼geometric (µ), where p∼beta(α, β) and µ ∼beta(a,b).
The joint prior distribution of p and µ is

π(p, µ) = g(p).h(µ).

The posterior distribution of p and µ is given by

∏(p, µ|tx, ty) = Ibin(p)Igeo(µ).
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Under SEL,

E(RBG|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

(
m
x

)
px(1 − p)m−xµy(1 − µ)∏(p, µ|tx, ty)dpdµ

=
∞

∑
y=0

y

∑
x=0

Rbin(p)Rgeo(µ),

and under PL,

E(R2
BG|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

(
m
x

)
px(1 − p)m−xµy(1 − µ)

]2

∏(p, µ|tx, ty)dpdµ

=
∞

∑
y=0

y

∑
x=0

Rsqbin(p)Rsqgeo(µ) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovbin(p)Rcovgeo(µ).

4.8. X follows Poisson distribution and Y follows binomial distribution

Let X∼Poisson(λ) and Y∼binomial (n,p), where λ ∼gamma(δ, γ) and p ∼beta(α, β).
The joint prior distribution of λ and p is

π(λ, p) = g(λ).h(p).

The posterior distribution of λ and p is given by

∏(λ, p|tx, ty) = Ipois(λ)Ibin(p).

Therefore, under SEL

E(RPB|tx, ty) =
∫ 1

0

∫ 1

0

m

∑
y=0

y

∑
x=0

e−λλx

x!

(
m
y

)
py(1 − p)m−y ∏(λ, p|tx, ty)dλdp

=
∞

∑
y=0

y

∑
x=0

Rpois(λ)Rbin(p),

and under PL

E(R2
PB|tx, ty) =

∫ 1

0

∫ 1

0

[ m

∑
y=0

y

∑
x=0

e−λλx

x!

(
m
y

)
py(1 − p)m−y

]2

∏(λ, p|tx, ty)dλdp

=
∞

∑
y=0

y

∑
x=0

Rsqpois(λ)Rsqbin(p) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovpois(λ)Rcovbin(p).

4.9. X follows Poisson distribution and Y follows negative binomial distribution

Let X∼Poisson(λ) and Y∼negative binomial (r,η), where λ ∼gamma(δ, γ) and η ∼beta(c,d).
The joint prior distribution of λ and η is

π(λ, η) = g(λ).h(η).

The posterior distribution of λ and η is

∏(λ, η|tx, ty) = Ipois(λ)Ineg(η).

So, under SEL

E(RPN |tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

e−λλx

x!

(
r + y − 1

y

)
ηy(1 − η)r ∏(λ, η|tx, ty)dλdη

=
∞

∑
y=0

y

∑
x=0

Rpois(λ)Rneg(η),
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and under PL

E(R2
PN |tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

e−λλx

x!

(
r + y − 1

y

)
ηy(1 − η)r

]2

∏(λ, η|tx, ty)dλdη

=
∞

∑
y=0

y

∑
x=0

Rsqpois(λ)Rsqneg(η) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovpois(λ)Rcovneg(η).

4.10. X follows Poisson distribution and Y follows geometric distribution

Let X∼Poisson(λ) and Y∼geometric (µ), where λ ∼gamma(δ, γ) and µ ∼beta(a,b).
The joint prior distribution of λ and µ is

π(λ, µ) = g(λ).h(µ).

The posterior distribution of λ and µ is

∏(λ, µ|tx, ty) = Ipois(λ)Igeo(µ).

Under SEL

E(RPG|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

e−λλx

x!
µy(1 − µ)∏(λ, µ|tx, ty)dλdµ

=
∞

∑
y=0

y

∑
x=0

Rpois(λ)Rgeo(µ),

and under PL

E(R2
PG|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

e−λλx

x!
µy(1 − µ)

]2

∏(λ, µ|tx, ty)dλdµ

=
∞

∑
y=0

y

∑
x=0

Rsqpois(λ)Rsqgeo(µ) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovpois(λ)Rcovgeo(µ).

4.11. X follows negative binomial distribution and Y follows binomial
distribution

Let X∼negative binomial(r,η) and Y∼binomial (n,p), where η ∼beta(c,d) and p ∼beta(α, β).
The joint prior distribution of η and p is

π(η, p) = g(η).h(p).

The posterior distribution of η and p is given by

∏(η, p|tx, ty) = Ineg(η)Ibin(p).

So, under SEL

E(RNB|tx, ty) =
∫ 1

0

∫ 1

0

m

∑
y=0

y

∑
x=0

(
r + x − 1

x

)
ηx(1 − η)r

(
m
y

)
py(1 − p)m−y ∏(η, p|tx, ty)dηdp

=
∞

∑
y=0

y

∑
x=0

Rneg(η)Rbin(p),
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and under PL

E(R2
NB|tx, ty) =

∫ 1

0

∫ 1

0

[ m

∑
y=0

y

∑
x=0

(
r + x − 1

x

)
ηx(1 − η)r

(
m
y

)
py(1 − p)m−y

]2

×∏(η, p|tx, ty)dηdp

=
∞

∑
y=0

y

∑
x=0

Rsqneg(η)Rsqbin(p) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovneg(η)Rcovbin(p).

4.12. X follows negative binomial distribution and Y follows Poisson
distribution

Let X∼negative binomial(r,η) and Y∼Poisson (λ), where η ∼beta(c,d) and λ ∼gamma(δ, γ).
The joint prior distribution of η and λ is

π(η, λ) = g(η).h(λ).

The posterior distribution of η and λ is given by

∏(η, λ|tx, ty) = Ineg(η)Ipois(λ).

Under SEL

E(R|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

(
r + x − 1

x

)
ηx(1 − η)r e−λλy

y! ∏(η, λ|tx, ty)dηdλ

=
∞

∑
y=0

y

∑
x=0

Rneg(η)Rpois(λ),

and under PL

E(R2
NP|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

(
r + x − 1

x

)
ηx(1 − η)r e−λλy

y!

]2

∏(η, λ|tx, ty)dηdλ

=
∞

∑
y=0

y

∑
x=0

Rsqneg(η)Rsqpois(λ) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovneg(η)Rcovpois(λ).

4.13. X follows negative binomial distribution and Y follows geometric
distribution

Let X∼negative binomial(r,η) and Y∼geometric (µ), where η ∼beta(c,d) and µ ∼beta(a,b).
The joint prior distribution of η and µ is

π(η, µ) = g(η).h(µ).

The posterior distribution of η and µ is given by

∏(η, µ|tx, ty) = Ineg(η)Igeo(µ).

Under SEL

E(RNG|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

(
r + x − 1

x

)
ηx(1 − η)rµy(1 − µ)∏(η, µ|tx, ty)dηdµ

=
∞

∑
y=0

y

∑
x=0

Rneg(η)Rgeo(µ),
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and under PL

E(R2
NG|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

(
r + x − 1

x

)
ηx(1 − η)rµy(1 − µ)

]2

∏(η, µ|tx, ty)dηdµ

=
∞

∑
y=0

y

∑
x=0

Rsqneg(η)Rsqgeo(µ) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovneg(η)Rcovgeo(µ).

4.14. X follows geometric distribution and Y follows binomial distribution

X∼geometric(µ) and Y∼binomial (n,p), where µ ∼beta(a,b) and p ∼beta(α, β).
The joint prior distribution of µ and p is given by

π(µ, p) = g(µ).h(p).

The posterior distribution of µ and p is given by

∏(µ, p|tx, ty) = Igeo(µ)Ibin(p).

Under SEL

E(RGB|tx, ty) =
∫ 1

0

∫ 1

0

m

∑
y=0

y

∑
x=0

µx(1 − µ)r
(

m
y

)
py(1 − p)m−y ∏(µ, p|tx, ty)dµdp

=
∞

∑
y=0

y

∑
x=0

Rgeo(µ)Rbin(p),

and under PL

E(R2
GB|tx, ty) =

∫ 1

0

∫ 1

0

[ m

∑
y=0

y

∑
x=0

µx(1 − µ)r
(

m
y

)
py(1 − p)m−y

]2

∏(µ, p|tx, ty)dµdp

=
∞

∑
y=0

y

∑
x=0

Rsqgeo(µ)Rsqbin(p) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovgeo(µ)Rcovbin(p).

4.15. X follows geometric distribution and Y follows negative binomial
distribution

Let X∼geometric(µ) and Y∼negative binomial (r,η), where µ ∼beta(a,b) and η ∼beta(c,d).
The joint prior distribution of µ and η is

π(µ, η) = g(µ).h(η).

The posterior distribution of µ and η is given by

∏(µ, η|tx, ty) = Igeo(µ)Ineg(η).

Under SEL

E(RGN |tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

µx(1 − µ)r
(

r + y − 1
y

)
ηy(1 − η)r ∏(µ, η|tx, ty)dµdη

=
∞

∑
y=0

y

∑
x=0

Rgeo(µ)Rneg(η),

and under PL

E(R2
GN |tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

µx(1 − µ)r
(

r + y − 1
y

)
ηy(1 − η)r

]2

∏(µ, η|tx, ty)dµdη

=
∞

∑
y=0

y

∑
x=0

Rsqgeo(µ)Rsqneg(η) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovgeo(µ)Rcovneg(η).
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4.16. X follows geometric distribution and Y follows Poisson distribution

X∼geometric (µ) and Y∼Poisson (λ), where µ ∼beta(a,b) and λ ∼gamma(δ, γ).
The joint prior distribution of µ and λ is

π(µ, λ) = g(µ).h(λ).

The posterior distribution of µ and λ is given by

∏(µ, λ|tx, ty) = Igeo(µ)Ipois(λ).

Under SEL

E(R|tx, ty) =
∫ 1

0

∫ 1

0

∞

∑
y=0

y

∑
x=0

µx(1 − µ)
e−λλy

y! ∏(µ, λ|tx, ty)dµdλ

=
∞

∑
y=0

y

∑
x=0

Rgeo(µ)Rpois(λ),

and under PL

E(R2
GP|tx, ty) =

∫ 1

0

∫ 1

0

[ ∞

∑
y=0

y

∑
x=0

µx(1 − µ)
e−λλy

y!

]2

∏(µ, λ|tx, ty)dµdλ

=
∞

∑
y=0

y

∑
x=0

Rsqgeo(µ)Rsqpois(λ) +
∞

∑
yj=0

yj

∑
xi=0

∞

∑
yl=0

yl

∑
xk=0

Rcovgeo(µ)Rcovpois(λ).

5. Estimation of the hyper-parameters

Though the prior distributions are assumed to be known, most of the time, in practice, those need
to be estimated based on observed data. In this section, the estimates of the hyper-parameters of
the prior distributions have been found. These parameters could be estimated using the empirical
Bayes procedure [see [10] and [3]]. Given the observations, the joint likelihood distributions
have been compared with the joint prior distributions. The joint likelihood distributions are just
the multiplication of the likelihood distribution of X and Y, and joint prior distributions are the
multiplication of the prior distributions of the parameters. We can estimate the prior parameters
by comparing them individually with their corresponding likelihood functions. The estimates of
the hyper-parameters are shown in Table 5.

Table 5: Estimate of the hyper-parameters

Distribution Joint distribution Prior distribution Estimate of hyper-parameters

Binomial(m,p) ptz(1 − p)mn−tz pα−1(1−p)β−1

B(α,β) α̂ = tx + 1, β̂ = mn − tx + 1

Poisson(λ) e−nλλtz

∏n
i=1 zi !

δγe−γλλδ−1

Γδ δ̂ = tx + 1, γ̂ = n

Neg. binomial (r, η) ηtz(1 − η)nr ηc−1(1−η)d−1

B(c,d) ĉ = tx + 1, d̂ = nr + 1

Geometric (µ) µtz(1 − µ)n µa−1(1−µ)b−1

B(a,b) â = tx + 1, b̂ = n + 1

6. Simulation study

The properties of the Bayesian estimations of R for the different combinations of stress-strength
models within the power series family have been explored empirically. The estimated posterior
risks for those different combinations have been found.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

150



Soumik Halder, Sudhansu S. Maiti and Mriganka Mouli Chowdhury
BAYESIAN ESTIMATION OF P(X ≤ Y)

Ta
bl

e
6:

G
eo

m
et

ri
c-

G
eo

m
et

ri
c

Sa
m

pl
e

si
ze

D
is

tr
ib

ut
io

n
of

µ
1

D
is

tr
ib

ut
io

n
of

µ
2

A
ct

ua
lR

E(
R

)
E
(R

2 )
Ba

ye
s

es
ti

m
at

e
Po

st
er

io
r

ri
sk

n 1
n 2

c
d

E
(µ

1)
a

b
E
(µ

2)
SE

L
PL

SE
L

PL
15

15
3

7
0.

3
2

8
0.

2
0.

74
5

0.
72

7
0.

53
2

0.
72

7
0.

72
9

0.
00

41
1

0.
00

56
4

15
15

3
7

0.
3

5
5

0.
5

0.
82

4
0.

82
7

0.
68

6
0.

82
7

0.
82

8
0.

00
21

7
0.

00
26

3
15

15
3

7
0.

3
8

2
0.

8
0.

92
1

0.
93

4
0.

87
3

0.
93

4
0.

93
5

0.
00

04
6

0.
00

04
9

15
15

5
5

0.
5

2
8

0.
2

0.
55

6
0.

56
1

0.
31

9
0.

56
1

0.
56

5
0.

00
41

8
0.

00
74

2
15

15
5

5
0.

5
5

5
0.

5
0.

66
7

0.
67

2
0.

45
5

0.
67

2
0.

67
5

0.
00

38
3

0.
00

56
9

15
15

5
5

0.
5

8
2

0.
8

0.
83

3
0.

83
0

0.
69

1
0.

83
0

0.
83

1
0.

00
19

2
0.

00
23

2
15

15
8

2
0.

8
2

8
0.

2
0.

23
8

0.
23

3
0.

05
6

0.
23

3
0.

23
6

0.
00

15
3

0.
00

65
2

15
15

8
2

0.
8

5
5

0.
5

0.
33

3
0.

34
1

0.
11

9
0.

34
1

0.
34

5
0.

00
27

7
0.

00
80

7
15

15
8

2
0.

8
8

2
0.

8
0.

55
6

0.
55

4
0.

31
1

0.
55

4
0.

55
8

0.
00

38
4

0.
00

69
1

15
30

3
7

0.
3

2
8

0.
2

0.
74

5
0.

74
7

0.
56

3
0.

74
7

0.
75

0
0.

00
39

3
0.

00
52

5
15

30
3

7
0.

3
5

5
0.

5
0.

82
4

0.
82

9
0.

68
9

0.
82

9
0.

83
0

0.
00

17
3

0.
00

20
8

15
30

3
7

0.
3

8
2

0.
8

0.
92

1
0.

92
2

0.
85

1
0.

92
2

0.
92

2
0.

00
04

3
0.

00
04

7
15

30
5

5
0.

5
2

8
0.

2
0.

55
6

0.
58

3
0.

34
4

0.
58

3
0.

58
6

0.
00

41
0

0.
00

70
2

15
30

5
5

0.
5

5
5

0.
5

0.
66

7
0.

67
1

0.
45

4
0.

67
1

0.
67

4
0.

00
33

8
0.

00
50

2
15

30
5

5
0.

5
8

2
0.

8
0.

83
3

0.
84

9
0.

72
3

0.
84

9
0.

85
0

0.
00

12
6

0.
00

14
9

15
30

8
2

0.
8

2
8

0.
2

0.
23

8
0.

23
8

0.
05

8
0.

23
8

0.
24

1
0.

00
14

2
0.

00
59

1
15

30
8

2
0.

8
5

5
0.

5
0.

33
3

0.
33

5
0.

11
5

0.
33

5
0.

33
9

0.
00

23
9

0.
00

70
8

15
30

8
2

0.
8

8
2

0.
8

0.
55

6
0.

58
5

0.
34

6
0.

58
5

0.
58

8
0.

00
31

5
0.

00
53

7
30

30
3

7
0.

3
2

8
0.

2
0.

74
5

0.
73

5
0.

54
2

0.
73

5
0.

73
6

0.
00

20
1

0.
00

27
4

30
30

3
7

0.
3

5
5

0.
5

0.
82

3
0.

82
3

0.
67

8
0.

82
3

0.
82

4
0.

00
13

1
0.

00
15

9
30

30
3

7
0.

3
8

2
0.

8
0.

92
1

0.
92

8
0.

86
1

0.
92

8
0.

92
8

0.
00

02
9

0.
00

03
2

30
30

5
5

0.
5

2
8

0.
2

0.
55

6
0.

55
0

0.
30

5
0.

55
0

0.
55

2
0.

00
21

6
0.

00
39

1
30

30
5

5
0.

5
5

5
0.

5
0.

66
7

0.
65

9
0.

43
6

0.
65

9
0.

66
1

0.
00

20
1

0.
00

30
5

30
30

5
5

0.
5

8
2

0.
8

0.
83

3
0.

84
7

0.
71

8
0.

84
7

0.
84

7
0.

00
07

6
0.

00
09

0
30

30
8

2
0.

8
2

8
0.

2
0.

23
8

0.
22

9
0.

05
3

0.
22

9
0.

23
1

0.
00

07
4

0.
00

32
2

30
30

8
2

0.
8

5
5

0.
5

0.
33

3
0.

32
2

0.
10

5
0.

32
2

0.
32

4
0.

00
13

9
0.

00
43

1
30

30
8

2
0.

8
8

2
0.

8
0.

55
6

0.
53

4
0.

28
7

0.
53

4
0.

53
6

0.
00

20
3

0.
00

38
0

RT&A, No 2 (78) 

 Volume 19, June, 2024 

151



Soumik Halder, Sudhansu S. Maiti and Mriganka Mouli Chowdhury
BAYESIAN ESTIMATION OF P(X ≤ Y)

Ta
bl

e
7:

N
eg

at
iv

e
bi

no
m

ia
l-P

oi
ss

on

Sa
m

pl
e

si
ze

D
is

tr
ib

ut
io

n
of

η
D

is
tr

ib
ut

io
n

of
λ

A
ct

ua
lR

E(
R

)
E
(R

2 )
Ba

ye
s

es
ti

m
at

e
Po

st
er

io
r

ri
sk

n 1
n 2

c
d

E
(η
)

δ
γ

E
(λ

)
SE

L
PL

SE
L

PL
15

15
3

7
0.

3
2

10
0.

2
0.

03
9

0.
03

2
0.

00
1

0.
03

2
0.

03
4

7.
61

∗
10

−
5

2.
30

∗
10

−
3

15
15

3
7

0.
3

5
10

0.
5

0.
05

8
0.

05
4

0.
00

3
0.

05
4

0.
05

6
2.

14
∗

10
−

4
3.

90
∗

10
−

3

15
15

3
7

0.
3

8
10

0.
8

0.
07

9
0.

08
0

0.
00

7
0.

08
0

0.
08

3
4.

36
∗

10
−

4
5.

36
∗

10
−

3

15
15

5
5

0.
5

2
10

0.
2

0.
16

2
0.

15
6

0.
02

5
0.

15
6

0.
16

0
1.

06
∗

10
−

3
6.

70
∗

10
−

3

15
15

5
5

0.
5

5
10

0.
5

0.
21

8
0.

21
4

0.
04

8
0.

21
4

0.
21

8
1.

89
∗

10
−

3
8.

75
∗

10
−

3

15
15

5
5

0.
5

8
10

0.
8

0.
27

3
0.

28
3

0.
08

3
0.

28
3

0.
28

9
2.

94
∗

10
−

3
1.

03
∗

10
−

2

15
15

8
2

0.
8

2
10

0.
2

0.
57

0
0.

59
2

0.
35

5
0.

59
2

0.
59

6
4.

00
∗

10
−

3
6.

74
∗

10
−

3

15
15

8
2

0.
8

5
10

0.
5

0.
64

5
0.

63
9

0.
41

3
0.

64
5

0.
64

2
4.

39
∗

10
−

3
6.

85
∗

10
−

3

15
15

8
2

0.
8

8
10

0.
8

0.
70

7
0.

69
3

0.
48

4
0.

69
3

0.
69

6
4.

17
∗

10
−

3
6.

00
∗

10
−

3

15
30

3
7

0.
3

2
10

0.
2

0.
03

9
0.

04
3

0.
00

2
0.

04
3

0.
04

4
7.

27
∗

10
−

5
1.

64
∗

10
−

3

15
30

3
7

0.
3

5
10

0.
5

0.
05

8
0.

05
4

0.
00

3
0.

05
4

0.
05

6
1.

93
∗

10
−

4
3.

48
∗

10
−

3

15
30

3
7

0.
3

8
10

0.
8

0.
07

9
0.

07
5

0.
00

6
0.

07
5

0.
07

7
3.

42
∗

10
−

4
4.

51
∗

10
−

3

15
30

5
5

0.
5

2
10

0.
2

0.
16

2
0.

16
3

0.
02

8
0.

16
3

0.
16

7
1.

35
∗

10
−

3
8.

19
∗

10
−

3

15
30

5
5

0.
5

5
10

0.
5

0.
21

8
0.

24
5

0.
06

2
0.

24
5

0.
24

9
2.

01
∗

10
−

3
8.

15
∗

10
−

3

15
30

5
5

0.
5

8
10

0.
8

0.
27

3
0.

27
3

0.
07

7
0.

27
3

0.
27

7
2.

37
∗

10
−

3
8.

60
∗

10
−

3

15
30

8
2

0.
8

2
10

0.
2

0.
57

0
0.

57
8

0.
33

8
0.

57
8

0.
58

1
3.

77
∗

10
−

3
6.

51
∗

10
−

3

15
30

8
2

0.
8

5
10

0.
5

0.
64

5
0.

64
2

0.
41

6
0.

64
2

0.
64

5
3.

81
∗

10
−

3
5.

91
∗

10
−

3

15
30

8
2

0.
8

8
10

0.
8

0.
70

7
0.

71
6

0.
51

6
0.

71
6

0.
71

8
3.

43
∗

10
−

3
4.

78
∗

10
−

3

30
30

3
7

0.
3

2
10

0.
2

0.
03

9
0.

04
0

0.
00

17
0.

04
0

0.
04

1
5.

61
∗

10
−

5
9.

27
∗

10
−

4

30
30

3
7

0.
3

5
10

0.
5

0.
05

8
0.

06
3

0.
00

4
0.

06
3

0.
06

4
1.

43
∗

10
−

4
2.

24
∗

10
−

3

30
30

3
7

0.
3

8
10

0.
8

0.
07

9
0.

07
8

0.
00

6
0.

07
8

0.
07

9
2.

11
∗

10
−

4
2.

69
∗

10
−

3

30
30

5
5

0.
5

2
10

0.
2

0.
16

2
0.

16
9

0.
02

9
0.

16
9

0.
17

1
6.

16
∗

10
−

4
3.

61
∗

10
−

3

30
30

5
5

0.
5

5
10

0.
5

0.
21

8
0.

24
0

0.
05

9
0.

24
0

0.
24

3
1.

27
∗

10
−

3
5.

27
∗

10
−

3

30
30

5
5

0.
5

8
10

0.
8

0.
27

3
0.

28
2

0.
08

1
0.

28
2

0.
28

4
1.

41
∗

10
−

3
4.

97
∗

10
−

3

30
30

8
2

0.
8

2
10

0.
2

0.
57

0
0.

56
5

0.
32

1
0.

56
5

0.
56

7
2.

02
∗

10
−

3
3.

57
∗

10
−

3

30
30

8
2

0.
8

5
10

0.
5

0.
64

5
0.

63
7

0.
40

7
0.

63
7

0.
63

8
2.

19
∗

10
−

3
3.

44
∗

10
−

3

30
30

8
2

0.
8

8
10

0.
8

0.
70

7
0.

70
0

0.
49

1
0.

70
0

0.
70

1
2.

17
∗

10
−

3
3.

10
∗

10
−

3

RT&A, No 2 (78) 

 Volume 19, June, 2024 

152



Soumik Halder, Sudhansu S. Maiti and Mriganka Mouli Chowdhury
BAYESIAN ESTIMATION OF P(X ≤ Y)

For computation, we draw n1(n2) independent observations from the prior distribution(s)
of the parameters of the stress (strength) distribution(s). For different combinations of those
hyper-parameters of the stress (strength) distributions considered, the hyper-parameters are so
chosen that the expected value of the parameters is equal to the values of the parameters selected
combinations in [6]. We draw a random sample from the distribution(s) of the stress (strength)
distribution(s). Then we compute ˆRSEL, ˆRPL and their estimated posterior risk, where ˆRSEL and

ˆRPL are the Bayesian estimates under squared error and precautionary loss functions. All these
calculations are done using R-Software, and two representative tables are reported in Tables 6 − 7
for space limitation. Some more tables are prepared and may be available from the corresponding
author on request. The figures of the tables compared to [6]. We can say that the estimates under
the Bayesian method are closer than those under MLE and UMVUE. Also, the estimated posterior
risks under the empirical Bayesian method are smaller than the variance of UMVUE and the MSE
of the MLE. So, we can infer that the Bayesian estimation gives better estimates than the MLE
and UMVUE.

7. Real Life Data Analysis

We have provided a real dataset as an application of the stress-strength reliability model, which is
related to soccer matches where the defenders and the goalkeeper are responsible for not allowing
the opposition to score goals. They protect the team from continuous attacks from the opponent
team. The number of goals conceded by the team can be treated as the stress put on the system’s
defence, whereas the number of goals saved by the defence acts as the strength of the team’s
defence. We want to estimate the reliability of the team’s defence, i.e., R = P(X ≤ Y), where X is
the stress on the system, and Y is the system’s strength. We have considered the same dataset
used in [6], where Manchester United played 38 matches against various teams of the EPL in the
season 2017-2018. The data is presented in the Table 8.
Among those 38 matches, in 33 matches, they have saved more goals than they conceded. So,

Table 8: EPL data for Manchester United during 2017-2018

Match Goals conceded Goals saved Match Goals conceded Goals saved
1 0 1 20 2 0
2 0 0 21 0 3
3 0 4 22 0 0
4 2 3 23 0 5
5 0 3 24 0 3
6 0 4 25 2 4
7 0 1 26 0 0
8 0 5 27 1 2
9 2 1 28 1 6

10 0 4 29 2 6
11 1 7 30 1 1
12 1 4 31 0 2
13 0 2 32 2 4
14 2 1 33 1 3
15 1 0 34 0 2
16 2 5 35 1 2
17 0 7 36 1 3
18 1 4 37 0 2
19 2 1 38 0 3

in about 86% cases, the defence system has worked above the stress given by the opposition.
The reliability of the system is estimated using the theory defined above. The data are discrete.
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The authors have shown that the "number of goals conceded" follows a geometric distribution,
whereas the "number of goals saved" follows the Poisson distribution. We have found the
estimates of R under SEL and PL as R̂SEL= 0.84683 and R̂PL= 0.84737 with estimated posterior
risks 5.91 ∗ 10−4 and 6.98 ∗ 10−4, respectively.

8. Concluding remarks

In this article, the Bayesian estimation of R = P(X ≤ Y) has been considered when X and Y
belong to a power-series family of distributions under two loss functions: (i) squared error loss, a
symmetric and (ii) precautionary loss, an asymmetric one. The conjugate prior distribution(s) of
the parameter(s) are chosen for deriving the Bayes estimates of R. Though the prior distributions
are assumed to be known, the practice is not such. Generally, the prior distribution(s) parameters
are estimated based on observations. The empirical Bayes method has been used to estimate the
prior parameters and hence get the estimate of R. Simulation study results slightly favour the
Bayes estimate of R under SEL than that under PL concerning estimated posterior risk sense.
Data analysis result also affirms this. Scientists and practitioners are recommended to use the
proposed Bayes estimate of R.
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Abstract 

Natural catastrophes have a tremendous influence on the environment and our economy, which has 
raised significant concerns and spurred scientific research. Several studies have been done to model the 
economic losses brought on by natural disasters. In this article, we primarily concentrate on examining 
the distributions of economic losses resulting from big catastrophes including wildfires, earthquakes, 
droughts, volcanic eruptions, and harsh weather. We recommend utilizing five well-known statistical 
distributions, including the Weibull, Log-logistics, Gamma, Generalized Pareto, and Lognormal 
distributions since we observe the skewed forms of the empirical distributions. We employ the maximum 
likelihood technique for each distribution for the available data sets in order to estimate the distributions. 
The parameter estimations are numerically computed using the PSO method. We select the distribution 
that best fits the economic losses using the Akaike Information Criterion and Kolmogorov-Smirnov 
statistics. We discovered that the Log-logistic distribution is the distribution that fits the total economic 
losses caused by all-natural disasters the best. 

Keywords: Natural catastrophes, Economic losses, Probability distribution models, 
Maximum likelihood estimation, PSO Method, R-software, Goodness-of-fit tests 

I. Introduction

Nature has been giving us gifts since the beginning of time. But we have also had to deal with the terrible 
things about it. Every year, a large number of different natural disasters, including floods, wildfires, 
earthquakes, extreme heat, cold, and volcanic activity, claim the lives of on average 60,000 people. Direct 
and indirect effects are distinguished by a recognised typology of disaster effects [1]. The destruction of 
fixed assets, raw materials, natural resources, high-yielding crops, and the loss of priceless lives are 
examples of direct repercussions. Indirect effects, which are frequently referred to as economic losses, 
are those that have an impact on economic activity over time, particularly in the goods and services 
sectors [2]. 

According to EM-DAT, catastrophes caused 0.1% of fatalities in the previous two decades. High-
impact incidents accounted for 0.1% to 0.4% of all fatalities. Flood and drought were the deadliest 
natural calamities, but they no longer kill many. Earthquakes are the deadliest nowadays. Along with 
life, calamities also destroy resources. These risks affect economic activity, causing volatility and losses 
for the global economy; see [1,2,3,4]. 

Natural disasters have increased dramatically over the last three decades, posing a significant 
threat to the world's economies, particularly those of developing countries. The impact of economic 
losses on developing countries is far greater than that on developed countries. Between 1970 and 2002, 
6436 natural disasters occurred, with developing countries bearing the brunt of the damage. It 
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demonstrates that developing countries are unable to combat these deadly disasters due to a lack of 
resources [2,3]. The relationship between natural disasters and economic losses is widely evident all 
over the world, and a number of studies have prompted the need for disaster mitigation strategies to 
reduce human and economic suffering. For such studies, we refer the readers to follow [5,6]. 

The preceding discussion highlights the necessity of evaluating the distribution of economic losses 
caused by natural disasters. Estimating economic losses due to disasters was a huge difficulty in the 
early days, and it was dependent on a hypothetical or singular historical occurrence rather than 
mathematical or statistical modelling. Few studies have been done to calculate the economic damages 
incurred by various natural disasters. [7] estimated economic losses for the whole spectrum of extreme 
weather, such as draught and flood, by combining stochastic hydro-meteorological crop-loss models 
with a regionalized computable general equilibrium model. [8] estimated the economic losses caused 
by natural disasters using the input-output model and associated modelling frameworks such as the 
social accounting matrix and the computable general equilibrium. Furthermore, [9] introduced a novel 
modelling framework known as the regional input-output model to explore the effects of natural 
catastrophes. 

Coronese et al. [10] estimated the damage and mortality caused by natural catastrophes using a 
quantile regression model. They discovered an increasing trend in extreme natural catastrophe 
damages, which is consistent with a climate-change signal. Natural catastrophe casualties have 
reduced, despite an increase in economic damages. They also noticed an alarming increase in casualties 
associated with severe temperatures. [4] proposed using extreme value theory for modelling economic 
losses in a monograph, and they employed extreme value and extended pareto distributions for fitting 
heavy tailed distributions of economic losses. [11] discovered that generalised extreme value models 
and generalised Pareto distributions match well to the extreme losses of natural disasters and are 
helpful tools for calculating the tails of loss severity distributions. [12] used a generalised Pareto 
distribution to describe economic damages resulting from non-natural disasters. 

The majority of academicians generally support the use of generalised extreme value distributions 
to describe economic damages brought on by natural disasters. Only one or two natural disasters are 
modelled using probability distribution models. Numerous probability models that are available in the 
literature could match such datasets more accurately than the generalised Pareto distribution. In this 
article, we use different probabilistic models to fit the economic losses caused by six significant 
calamities: drought, earthquake, extreme weather, extreme temperature, wildfire, and volcanic activity. 
For each of these data sets, we look at five three-parameter statistical distributions (size, shape, and 
placement). The new research completely contradicts the studies under consideration and discovers a 
very suitable distribution for natural disasters. For the purpose of calculating numerical maximum 
likelihood estimates of the unidentified model parameters, we use the particle swarm optimization 
approach (PSO). We employ goodness-of-fit tests like Kolmogorov-Smirnov and Akaike Information 
Criterion to choose the probability distribution model that best fits the distribution of natural 
catastrophes. 

This paper is organized into different sections. In the first section, we review the literature on the 
economic loos due to natural disasters.  Which is then followed by a discussion on data and variables 
viz. drought, earthquake, extreme temperature, extreme weather, volcanic activity, and wildfire. Which 
is then knowledge about the three parametric distribution (viz. Weibull, Log-logistics, Gamma, Gen. 
Pareto, and Log-normal) and estimation techniques. Analysis of results follows which is finally 
concluded by the discussion of the results with respect to the objectives of the study. 

II. Data description

The Pro Vention Consortium of the World Bank Catastrophe Management Facility launched a 
coordinated effort to review the quality, accuracy, and completeness of three global disaster data sets 
after realising the need for higher quality data to enhance disaster preparedness and mitigation. These 
were EM-DAT managed by the Centre for Research on the Epidemiology of Disasters (CRED), Sigma 
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maintained by Swiss Reinsurance Company (Zürich), and Nat Cat maintained by Munich Reinsura nce 
Company (Munich). 

Over 22,000 mega catastrophes have occurred throughout the world since 1900, and EM-DAT 
provides crucial core data on their incidence and consequences. The database is created using data from 
a variety of sources, including UN agencies, non-governmental organisations, insurance firms, research 
institutions, and press outlets. Our catastrophe information is taken from the EM-DAT International 
Disaster Database, which CRED and the US Office for Foreign Disaster Assistance both administer 
(OFDA). A disaster is one that meets at least one of the following criteria, according to the database: 10 
or more fatalities, 2000 or more people impacted by hunger and drought, 100 or more by other 
calamities, a government disaster declaration, or an appeal for outside help. 

We examine economic losses caused by draughts, earthquakes, volcanic activity, harsh weather, 
high temperature, and wildfires. Minimum value, maximum value, mean, variance, standard 
deviation, coefficient of variation, skewness, and kurtosis of economic losses due to natural disasters 
were computed. Table 1 shows an overview of the descriptive statistics for each economic variable. 

Table 1: The descriptive statistics of economic losses due to the natural disasters 

Variable Mean Variance 
Coefficient 
Variation 

Skewness Kurtosis 

Draught 340.33 264018.7 150.98 2.66 8.0 
Earthquake 981.81 8821100.0 302.51 5.73 38.6 

Extreme Tem. 196.46 185152.3 219.03 3.92 16.3 
Extreme 
Weather 1363.40 7919309.0 206.40 3.60 16.4 
wildfire 200.53 141181.8 187.37 4.23 21.9 
Volcanic 
Activity 14.05 666.4 183.74 2.48 5.6 

According to the overview, between 1900 and 2018, the minimum damages attributable to natural 
disasters ranged from $0.02 billion to $0.10 billion. Volcanic activity provided the lowest minimum 
losses, but drought and wildfire caused the highest minimum losses. Natural disasters can cause 
maximum losses ranging from $100 to $23030 billion. Volcanic activity has the lowest maximum losses, 
whereas earthquakes have the highest possible losses. The mean or average of all disaster-related losses 
from 1900 to 2018 ranges from $14.05 to $1363.40 billion, with extreme weather events having the 
highest mean value and volcanic activity having the lowest mean value. The range of the standard 
deviation for all six variables is $25.8 to $297 billion. Volcanic activity has the lowest standard deviation 
while earthquakes have the highest. The fact that some effects created by extreme value to the huge 
value in the raw data makes it evident that the standard deviation for each variable is always larger 
than the mean. The degree of asymmetries in a distribution around the mean is determined using the 
coefficient of skewness. All distributions are positively skewed as the skewness value is more than zero 
and lies in between 2.48 and 5.73. The skewness value for an earthquake is the highest at 5.73, clearly 
showing that it is very obviously skewed and that its asymmetric tail is extending to the right, while 
the skewness value for volcanic activity is the lowest at 2.48, showing that it is less obviously skewed 
and that its symmetric tail is also extending to the right. 

The relative peak or flatness of a distribution can be assessed using the value of kurtosis. Kurtosis 
values range from 5.6 to 38.6, and they are always greater than 3. All distributions of economic losses 
have a greater peak than the typical normal distribution. Earthquake's height value is 38.6, which 
suggests the likelihood of a leptokurtic distribution, in which the data set tends to have a prominent 
peak close to the mean and a heavy tail. Volcanic activity obtains the lowest value and tends to have a 
flat peak close to the mean in the data set. The same can be deduced from Figure 1.  It is possible for us 
to state here that one ought to employ the probability distribution models for the purpose of fitting 
such data sets which are positively skewed and have a frequency curve with high peaks. 
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III. Methodology

In this section, we will explain the statistical approaches that would be utilised to achieve the fitting of 
economic variables, which was covered in the previous section. Inclusion in this category includes that 
of probability distributions, parameter estimation, and the goodness-of-fit criterion. 

Figure 1: Boxplots of economic losses due to six main natural disasters 

I. Probability distributions

The human mind is capable of incredible feats, and statistical modelling is one of them. It involves 
abstracting the results of observation in order to determine the similarities and differences between 
occurrences. When it comes to protecting ourselves against the effects of natural disasters, statistical 
models are a typical tool. The process of evaluating risks, making forecasts, and issuing warnings all 
depend heavily on modelling.  

It is possible to draw the conclusion from the previous section that a statistical distribution with a 
right-skewed spread is the most accurate when it comes to modelling economic losses due to natural 
disasters. The current article makes use of five positively skewed distributions, namely the Weibull 
distribution, the Log-logistics distribution, the gamma distribution, the generalised Pareto distribution, 
and the Lognormal distribution, in order to fit the economic losses caused by natural disasters such as 
drought, earthquake, extreme temperature, extreme weather, volcanic activity, and wildfire. The 
probability density function (PDF), and cumulative distribution function (CDF) are given in Table 2.  

The three-parameter Weibull distribution is commonly utilised in reliability and life data analysis 
[13]. Weibull distributions with β=1 have a constant failure rate, indicating usable life or random 
failures. Weibull distributions with β > 1 have a wear-out failure rate. Next is the Log-logistics three-
parameter distribution, often known as the Fisk distribution in economics [14]. Characterizing the 
lifetime distributions log logistics distributions have property of a constant discrete Log-odds rate 
(LOR) with respect to t and ln t [15]. A random variable with a logistic logarithm has a log-logistic 
distribution. It resembles Lognormal but has heavier tails. Its cumulative distribution function is closed, 
unlike the lognormal. This distribution can exhibit a monotonically decreasing failure rate function for 
some parameter values. It is a survival analysis model for occurrences whose rate rises then falls. Some 
applications of the log-logistic distribution are discussed in economics to model wealth or income 
distribution [16] and in hydrology to estimate stream flow and precipitation [17]. 
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Table 2: The PDF & CDF of the distributions 
Model  PDF and its Support  CDF 
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ቁ

ିቀ
భ

ഁ
ቁ

 for 𝛽 ≠0 

Log-
normal 

𝑓(𝑥) =
ଵ

(௫ିఊ)ఈ√ଶగ
𝑒𝑥𝑝 ቄ

[(௫ିఊ)ିఉ]మ

ଶఈమ ቅ, x > γ ≥ 0, − 
∞ < 𝛽< ∞ , α > 0. 

𝐹(𝑥) = 𝛷 ቆ
𝑙𝑛(𝑥 − 𝛾) − 𝛽

𝛼
ቇ

It is positively skewed and the amount of skew depending inversely on the shape parameter. In 
gamma distribution median does not have a closed-form equation. Some applications of the gamma 
distribution are discussed in climatology to estimate the different behaviour of the natural climatic 
events [18] and in hydrological analysis [19]. Environmental studies use the Generalized Pareto 
distribution to model heavy-tailed data sets [4]. The distribution is called the "peaks over thresholds" 
model because it models flood control threshold exceedances. Generalized Pareto distribution models 
are used for extreme event [20]. The log-normal distribution is a function distributing a dependent 
variable in a normal or Gaussian fashion on a logarithmic scale of the independent variable (i.e., if the 
random variable X is log-normally distributed then Y=ln(X) has a normal distribution). A distribution 
that is log-normal in one of its moments will be log-normal in any of its moments with the same 
geometric standard deviation, describing the spread of the dependent variable [21]. The median size of 
any moment is connected to the median size of any other moment by an analytical relationship derived 
by [22]. One of the most common applications where log-normal distributions are used in finance is in 
the analysis of stock prices [23].  

II. Maximum Likelihood Estimation

The most common method for obtaining estimators is by far the maximum likelihood approach. 
According to the MLE concept, the probability distribution that is "most likely" to accommodate for the 
observed data is the one that is wanted. As a result, one must look for the parameter vector value that 
maximises the likelihood function 𝐿(𝜃|𝑥). The notion of maximum likelihood, which selects as the 
estimator that value of the parameter that maximises the PDF 𝑓ఏ(𝑥), effectively presupposes that the 
sample is representative of the population.  

For each sample point x, let 𝜃(𝑥) be a parameter value at which 𝐿(𝜃|𝑥) attains its maximum as a 
function of 𝜃, with x held fixed. Then 𝜃(𝑥) is called the MLE of the parameter 𝜃, ( 𝜃  may be vector 
valued). Obtain n independent observations, x₁, x₂, ..., xₙ the estimates of parameters 𝜃ଵ, 𝜃ଶ, … … … , 𝜃 
can be obtained by solving the differentiation of the logarithmic likelihood function as; 

డ൫ఏ; ௫₁,௫₂,...,௫ₙ ൯

డఏೕ
= 0, 𝑗 =  1, 2, … , 𝑘.  (1) 

Here, we discuss the complete producer of finding the MLEs of the Weibull distribution 
parameters. Consider the pdf and cdf of the Weibull distribution from Table 2. Assuming that the 
observations are independently distributed, the likelihood function is defined by, 
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𝐿(𝛼, 𝛽, 𝛾|𝑑𝑎𝑡𝑎) = ∏ 𝑓(𝑥 , 𝛼, 𝛽, 𝛾)  (2)
ୀଵ

Our aim of estimation is to determine the three unknown parameter 𝛼, 𝛽, 𝛾 by the maximizing the 
likelihood (2) or equivalently log-likelihood function (3). The log-likelihood function is shown below. 

 𝑙𝑜𝑔𝐿൫𝜃;  𝑥₁, 𝑥₂, . . . , 𝑥ₙ ൯ = ∑ ln(𝛽) + (𝛽 − 1) ln(𝑥 − 𝛾) − 𝛽 ln(𝛼) − ቀ
௫ିఊ

ఈ
ቁ

ఉ

൨
ୀଵ  (3) 

Using the conventional approach, we take the partial derivatives of the log-likelihood function (3) 
in terms of 𝛼, 𝛽, 𝛾 and set them equals to zero. We obtain the following equations, 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝜕 ln(𝐿)

𝜕𝛼
=   ቈ൬

1

𝛽
൰ + ln(𝑥 − 𝛾) − ln(𝛼) − ቀ

𝑥 − 𝛾

𝛼
ቁ

ఉ

ln ቀ
𝑥 − 𝛾

𝛼
ቁ = 0,



ୀଵ

 

𝜕 ln(𝐿)

𝜕𝛽
=   ቈ− ൬

𝛽

𝛼
൰ + ൬

𝛽

𝛼
൰ ቀ

𝑥 − 𝛾

𝛼
ቁ

ఉ

 = 0,



ୀଵ

 

𝜕 ln(𝐿)

𝜕𝛾
=   ቈ−

(𝛽 − 1)

(𝑥 − 𝛾)
+ ൬

𝛽

𝛼
൰ ቀ

𝑥 − 𝛾

𝛼
ቁ

ఉିଵ

 = 0.



ୀଵ

 

It is commonly understood that obtaining estimates of unknown parameters by solving equations 
given above numerically is challenging. The particle swarm optimization (PSO) approach is used to 
find unknown parameters estimates and is inspired by the notion of heuristic algorithms. Using this 
process, we can find the MLE for all of the distributions under consideration.   

III. Particle Swarm Optimization Method

The biologically inspired approach known as particle swarm optimization, which was initially 
described by [24], is based on the flocking behaviour of birds. PSO is a population-based, self-adaptive 
search optimization method also referred to as an optimizer. All of the particles in the swarm move 
faster toward the best individual and overall position while continuously evaluating the value of their 
present location according to the same controlling principle. Each particle has a memory that aids it in 
remembering its most recent optimal location. Particle positions are classified as either personal best 
(pbest) or global best (gbest). Each particle has a unique pbest that is based on the journey it has taken. 
The particle compares the fitness value of its present position to that of pbest at each step along its 
route. The pbest is changed to the present location if the latter has a greater fitness value. Each particle 
also had a method of knowing where the swarm's greatest concentration of flowers had been located. 
The gbest, is the name given to this site of the best fitness ever found. There is a single gbest to which 
every particle is drawn throughout the whole swarm. 

In a n-dimensional search space, the position and velocity of individual (particle or solution) i are 
represented as the vectors 𝑋𝑖 =  (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) denote a particle’s position (coordinate) and 𝑉𝑖 =

(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛, ) denote the particle’s flight velocity over a solution space in the PSO algorithm. Each 
individual x in the swarm is scored using a scoring function that obtains a score (fitness value) 
representing how good it solves the problem. Let pbesti and gbest = (x1gbest,..., xgbestn ) be the position of 
individual i and its neighbors’ best position so far, respectively. Each particle records its own personal 
best position (pbest), and knows the best positions found by all particles in the swarm (gbest). Then, all 
particles that fly over the n-dimensional solution space are subject to updated rules for new positions, 
until the global optimal position is found. The modified velocity and position of each individual can be 
calculated using the current velocity and the distance from pbesti to gbest as follows:  

𝑉
ାଵ =  𝜔𝑉

 + 𝐶ଵ𝑅 భ
൫𝑝𝑏𝑒𝑠𝑡

 −  𝑋
൯ + 𝐶ଶ𝑅 మ

൫𝑔𝑏𝑒𝑠𝑡
 −  𝑋

൯ (4)
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 𝑋
ାଵ = 𝑋

 + 𝑉
ାଵ   (5) 

where  𝑉
 velocity of individual i at iteration k, ω weigh parameter (inertia weight), c1, c2 acceleration 

coefficients, 𝑅ௗభ
 𝑎𝑛𝑑 𝑅ௗమ

 random numbers uniformly distributed between 0 and 1, 𝑋
 position of 

individual i at iteration k, 𝑝𝑏𝑒𝑠𝑡
 best position of individual i until iteration k, 𝑔𝑏𝑒𝑠𝑡

 best position of 
the group until iteration k.  

The fundamental structure and pseudo-code of PSO algorithm 
for each particle 

 generate an initial particle 
  end 
 do  
 for each particle 

 calculate fitness value  
 if  the fitness value is better than the best fitness value (pBest) in history 

 set current value as the new pBest 
 end 

 end 
 choose the particle with the best fitness values of all the particles as the gBest 
 or each particle  

 calculate particles velocity according eq (5) 
 update particle position according eq (6)  

 end 
 while maximum iteration criterion is not attained. 

Marinho et al. [25] introduce the Adequacy Model computational library version 2.0.0 for the R 
statistical environment with two major contributions: a general optimization technique based on the 
PSO method (with a minor modification of the original algorithm) and a set of statistical measures for 
assessment of the adequacy of the fitted model. The goodness.fit() function provides some useful 
statistics to assess the quality of fit of probabilistic models. The function can also compute other 
measures such as AIC and KS test statistic. The general form for the function is given below: 

Goodness.fit (pdf, cdf, starts=NULL, data, method=”PSO”, lim_inf, lim_sup, min(x), e, s, N, domain=c (0, inf)) 
where, 

 pdf: probability density function (pdf);
 cdf: cumulative distribution function;
 starts: initial parameters to maximize the likelihood function;
 data: data vector;
 method: method used for minimization of the -log-likelihood function.
 method = “PSO”, then all arguments of the PSO() function could be passed to the goodness.fit()

function.
 lim_inf and lim_sup: define the inferior and superior boundaries of the search space,

respectively;
 e: current error. The algorithm stops if the variance in the last iterations is less than or equal to

e;
 S: number of considered particles
 domain: domain of the pdf. By default the domain of the pdf is the open interval (0, 1).
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IV. Model selection criterion

The choice of the best probability distribution is a crucial step. The best distribution model for economic 
variables is determined using the goodness-of-fit (GoF) test and Akaike information criterion 
(AIC). The model with the lowest AIC value is the best fitting model. We discover the more accurate 
estimate for selecting the optimal model using the PSO approach. In addition, we carry out the same 
task as a probability plot using an empirical CDF plot. The empirical cumulative probability that is 
closest to the S-curve empirical one is chosen as the best fitting. The GoF test determines if a statistical 
model fits a collection of observations supplied in advance. Accordingly, the GoF measures are 
primarily used to summarise the discrepancy between observed values and predicted values under the 
specified statistical model. The minimal error produced, as assessed by the methods below, will be used 
to find the distribution that is best fitted: 

The AIC, developed by [26], ranks models according to how well they fit the data and how little 
error they generate in their estimates. To move away from a solely inferential and limited approach to 
model selection, AIC has become part of a growing movement. It is defined as follows.  

 𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝐿൫𝜃൯ + 2𝑘   (7) 

Among all investigated distributions, the model with the lowest AIC value is regarded to be the 
best fitting model. Kolmogorov- Smirnov test compares empirical and theoretical distributions. Let us 
consider F₀(x) is the population CDF and Sɴ(x) the observed cumulative step function of a sample (i.e., 
Sɴ(x)  = k/N, where k is the number of observation less or equal to x), then KS test statistic is defined as 

𝑇 = max
௫

|F₀(x)  −  Sɴ(x)|.   (8) 

For implications, we reject the hypothesis at the level of significance, 𝛼, if T exceeds the  1 − 𝛼 
quantile as given by the table of quantile for the KS test statistic.  

IV. Results and Discussion

The economic losses caused by six natural catastrophes (drought, earthquake, extreme weather, 
extreme temperature, wildfire, and volcanic activity) are examined in this part and fitted to the five 
probability distributions discussed in section 2. First, the investigation focuses on determining the best-
fitting model using the AIC value. Among all the models evaluated, the model with the lowest AIC 
was deemed the best. However, the PSO technique in R was used to estimate the parameters of the five 
theoretical probability distributions using maximum likelihood estimation. Tables [3–8] provide the 
MLEs, KS statistic (along with p-value), and AIC value for each fitted model for each economic variable. 
The fitting results show that some PDF characteristics are more suited for some places while being less 
appropriate for others. 

Table 3: MLEs, KS statistics, p-value and AIC for all five distributions for Drought data 

Distribution MLE P - Value Statistic AIC 
Log-Logistic 0.7277 94.8424 0.1000 0.5207 0.1131 653.0388 
Weibull(3P) 0.3469 87.8642 0.0978 0.0005 0.2852 659.8648 

Gamma 0.3742 0.0005 0.0629 0.0173 0.2161 654.3794 
Gen.Pareto 1.0106 99.7400 0.0660 0.2976 0.1360 662.5274 
Lognormal 2.6033 4.5910 0.0068 0.4443 0.1202 662.7647 

Figure 3 depicts the PDF plot of all heavy-tailed variables. Our findings are closed in terms of log-
logistic and Weibull distributions. The empirical investigations show that Weibull considerably fits the 
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greatest value whereas Generalised Pareto underestimates it. Meanwhile, of all competing models in 
the research, Generalised Pareto provides the weakest match. The log-logistic model is the second best. 
The KS test statistic are used to select the distribution at 95% confidences interval from the Tables [3-
8] we compare the results for all the distribution.

To fit the distributions for economic losses owing to drought, Table 3 shows that the p-value of
Weibull and Gamma is less than 0.05 so we reject the null hypothesis. Log-logistic distribution has the 
lowest AIC value (653.0338), highest likelihood estimates (0.7277, 94.8424, 0.1), and smallest p-value 
(0.5207). The gamma distribution has the second-lowest AIC value (654.3794) among all distributions. 
Table 4 shows that the p-value of Weibull, Gamma and General Pareto is less than 0.05 that implies we 
reject the hypothesis. Log-logistic has the lowest AIC for earthquake economic losses (1117.5730). 
Weibull has a higher AIC value than Lognormal (1122.6180). 

Table 4: MLEs, KS statistics, p-value and AIC for all five distributions for earthquake data 

Distribution MLE P - Value Statistic AIC 

Log-Logistic 0.5823 68.3169 0.0650 0.3430 0.1029 1117.5730 
Weibull(3P) 0.4213 89.6176 0.0616 0.0046 0.1912 1145.4830 

Gamma 0.4980 0.0015 0.0603 0.0225 0.1644 1240.6280 
Gen. Pareto 2.4820 25.8344 0.0565 0.0332 0.1571 1136.3800 
Lognormal 2.6557 4.0074 0.0439 0.1001 0.1343 1122.6180 

Table 5 shows that the p-value of Gamma is less than 0.05 so we reject the hypothesis. Log-logistics 
has the lowest AIC value (384.8178) across all distributions. Generalized Pareto has the second lowest 
AIC, whereas gamma has the highest. According to Table 6, the p-value of Weibull and Gamma is less 
than 0.05 that implies we reject the null hypothesis. The gamma distribution has the highest AIC value 
among all distributions for the distribution of economic losses brought on by extreme weather, while 
log-logistic has the lowest value. 

Table 5: MLEs, KS statistics, p-value and AIC for all five distributions for Temperature data 

Distribution MLE P - Value Statistic AIC 
Log-Logistic 0.7077 72.8837 0.0600 0.2893 0.1737 384.8178 
Weibull(3P) 0.5810 89.9062 0.0303 0.4292 0.1546 388.0758 

Gamma 0.6875 0.0025 0.0083 0.0068 0.2979 397.0683 
Gen.Pareto 0.8057 62.7886 0.0392 0.9816 0.0824 386.1265 
Lognormal 1.7809 3.8543 0.0110 0.6215 0.1332 390.8100 

Table 6: MLEs, KS statistics, p-value and AIC for all five distributions for Extreme Weather data 

Distribution MLE P - Value Statistic AIC 
Log-Logistic 0.5061 70.7698 0.0500 0.2772 0.1025 1343.7310 

Weibull 0.2981 83.7310 0.0389 0.0003 0.2180 1372.3730 
Gamma 0.2195 0.0004 0.0172 0.0068 0.1738 1384.3180 

Gen. Pareto 3.0613 23.8658 0.0496 0.0984 0.1266 1366.3450 
Lognormal 3.4142 4.7270 0.0423 0.5663 0.0811 1349.6740 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

164



Ashish Jha, Vikas Kumar Sharma, Abhimanyu Singh Yadav 
MODELLING ECONOMIC LOSSES DUE TO NATURAL DISASTER… 

(a) Drought (b) Earthquakes

(c) Extreme Temperature (d) Extreme Weather

(e) Volcanic Activity (f) Wildfire

Figure 2: Fitted CDF plots for economic losses. 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

165



Ashish Jha, Vikas Kumar Sharma, Abhimanyu Singh Yadav 
MODELLING ECONOMIC LOSSES DUE TO NATURAL DISASTER… 

(a) Drought (b) Earthquakes

(c) Extreme Temperature (d) Extreme Weather

(e) Volcanic Activity (f) Wildfire

Figure 3: Fitted PDF plots for economic losses 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

166



Ashish Jha, Vikas Kumar Sharma, Abhimanyu Singh Yadav 
MODELLING ECONOMIC LOSSES DUE TO NATURAL DISASTER… 

According to Table 7, the economic losses as a result of volcanic activity we discovered out of all 
the distributions, log-logistic has the least AIC value, followed by Weibull. Among all, Generalized 
Pareto has the highest AIC values. 

 Table 7: MLEs, KS statistics, p-value and AIC for all five distributions for Volcanic data 

Distribution MLE P - Value KS AIC 
Log-Logistic 0.6367 2.2675 0.0200 0.9628 0.0948 168.3601 
Weibull(3P) 0.5663 9.6857 0.0199 0.0817 0.2390 171.2018 

Gamma 0.3550 0.0253 0.0165 0.2350 0.1955 174.1816 
Gen.Pareto 1.0966 1.9923 0.0200 0.6410 0.14019, 177.8270 
Lognormal 0.8888 2.8176 0.0199 0.9108 0.1061 174.4506 

Next, from Table 8 we discovered that among all distributions, Weibull has a lower AIC value than log-
logistic, which has the second lowest value for the distribution of economic losses caused by wildfire. 
The AIC value of Generalized Pareto is the highest of all. 

Table 8: MLEs, KS statistics, p-value and AIC for all five distributions for Wildfire data 

Distribution MLE P - Value KS AIC 
Log-Logistic 0.5814 40.4627 0.1000 0.5036 0.1244 510.7080 
Weibull(3P) 0.5027 82.5439 0.0998 0.3161 0.1446 504.5558 

Gamma 0.3547 0.0017 0.0477 0.9977 0.0594 516.5590 
Gen. Pareto 1.4600 36.3105 0.0794 0.3054 0.1460 534.6831 
Lognormal 2.9891 2.6805 0.0896 0.0507 0.2044 525.7421 

V. Conclusion and future work

The goal of the current work is to identify the most appropriate three parametric probability models 
for datasets of economic losses from natural catastrophes. For modelling economic losses, scholars have 
previously advocated using the Generalized Pareto or extreme value distribution. Both probability 
distributions are specified on the real line, and economic losses occur on the positive real line. As a 
result, these distributions can offer a negative lower bound on the economic losses. In this work, we 
take into account five significant probability distributions (Weibull, Log-logistics, Gamma, Generalized 
Pareto, and Lognormal) that are defined on the positive real line to describe the economic scenarios. 
Utilizing the KS-test, CDF plot, and AIC criterion, the best fitted probability distribution is determined 
for each dataset. Empirical CDF plots show that Weibull and log-logistic fit pretty well, whereas 
generalised Pareto fits poorly. According to the KS-test statistic, we discovered that the Log-logistic 
and Lognormal suit all economic losses resulting from natural catastrophe data for the stated level of 
significance, 5%. However, draught, earthquake, and extreme weather datasets cannot be fitted by 
Weibull or Gamma. The earthquake dataset does not match the generalised Pareto model. The Log-
logistic distribution offers the greatest fit among all taken distributions for five datasets (drought, 
earthquake, extreme weather, extreme temperature, wildfire, and volcanic activity) according to the 
AIC criteria. It is, nonetheless, the second-best fitted distribution for the wildfire dataset. It should be 
noticed that the Weibull distribution is rejected by the KS-test yet has the minimum AIC for the wildfire 
dataset. As a result, we may also suggest log-logistic for modelling economic losses from wildfires. 
Finally, we advise using the log-logistic probability model to fit and analyse economic losses brought 
on by natural catastrophes in future research. 

 Regression analysis is employed when the assumption of normality is taken into consideration to 
develop and investigate the relationship between the response and explanatory variables. In certain 
applications, the assumption of normalcy is not valid practically; see [27]. Numerous examples are 
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given in [28] that demonstrate the usage of skewed or non-normal distributions for both random 
components and response variables. In such circumstances, we advise fitting parametric regression for 
the economic losses using the log-logistic probability model. The model may be defined as  

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑙𝑜𝑠𝑠 (𝑌) = 𝛽𝑋ᇱ +  𝜎 𝜀 

where 𝑋՚ are the features matrix (regressions of economic losses), 𝛽 is a vector of regression coefficients, 
𝜎 is a scale parameter and 𝜀 stands for random component that may follow the log-logistics distribution. 
Readers are encouraged to take this work into consideration while planning their own future projects 
on modelling of economic losses due to natural disasters. 

Table 9: Ranks of the fitted distributions based on AIC values. 
Variables 

Distributions Draught Earthquake 
Extreme 

Temperature 
Extreme 
Weather 

Volcanic 
Activity Wildfire 

Log-Logistic I I I I I II 
Weibull (3P) III V III IV II I 

Gamma II IV V V III III 
Gen. Pareto IV III II III V V 
Lognormal V II IV II IV IV 
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Abstract 

The availability and profit values of the utensil industry are analyzed using the regenerative point 
graphical technique. The utensil industry contains three different units where two units can work 
with reduced capacity. It is considered that units C and D may be in a complete failed state through 
partial failure but unit B is in only complete failed state. When a unit is completely failed then the 
system is in failed state. An expert technician is available to repair the failed unit. Failure and 
repair times are independent of each other. The distribution of the failure time is general and 
repair time is exponential. Various parameters such as mean time to system failure, availability, 
busy period of the server, expected number of server visits and profit values are calculated with the 
help of tables. 

Keywords: Reliability, base-state, mean sojourn time, availability and profit. 

I. Introduction

To satisfy the growing demand for products, manufacturers and industrialists must produce 
products continually which they can accomplish by optimizing their manufacturing processes. 
This paper discusses the MTSF, availability and profit values of the utensil industry with priority 
in repair using the regenerative point graphical technique under specified conditions. A large 
amount of research work has been done on repairable systems such that Kapur and Kapoor [8] 
described the stochastic nature of a two unit repairable system under one spare unit. Gnedenko 
and Igor [5] explored reliability and probability measures for engineering purposes. Jack and 
Murthy [6] discovered the role of limited warranty and extended warranty for the product. Wang 
and Zhang [16] examined the repairable system of two non identical components under repair 
facility using geometric distributions. Diaz et al. [4] threw light on the warranty cost management 
system. Kumar and Goel [12] explored the idea of an imperfect switch on redundant systems in 
banking industry.  Kumar and Goel [11] analyzed the preventive maintenance in two unit cold 
standby system under general distributions. Malik and Rathee [14] threw light on the two parallel 
units system under preventive maintenance and maximum operation time. Kashid and Kumar [9] 
examined the availability of two unit system under degradation and subject to the repair facility. 
Chaudhary and Tomar [3] examined the behavior of a two unit cold standby system under 
inspection. Kumar et al. [10] evaluate the effects of washing unit in the paper industry by using the 
regenerative point graphical technique. Levitin et al. [13] explored the results of optimal 
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preventive replacement of failed units in a cold standby system by using the poisson process. 
Agarwal et al. [1] analyzed the performance and reliability of water treatment plant under repair 
facility. Jia et al. [7] explored the two unit system under demand and energy storage techniques. 
Sengar and Mangey [15] examined the performance of complicated systems under inspection 
using copula methodology. 

II. System Assumptions

There are following system assumptions: 

• The utensil industry consists of three distinct units such that cutting system, pressing
system, spinning and buffing system.

• Unit B consists of a cutting system in which sheets are cut into circular sheets.
• Unit C has a pressing system that converts the sheets into the shape of utensils.
• Unit D has a spinning and buffing system that gives the final shape and polish to the

utensils.
• It is considered that units C and D may be in a complete failed state through partial

failure but unit B is in only complete failed state.
• Failure time follows general distribution whereas repair time follows the exponential

distribution.
• A server is always available to repair the failed unit.
• The failed unit works like a new unit after repair.

III. System Notations

There are following system notations: 

ji rS rth directed simple path from state ‘i’ to state ‘j’ where ‘r’ takes the positive 
integral values for different directions from state ‘i’ to state ‘j’.  

iffs   A directed simple failure free path from state ξ to state ‘i’. 

cyclem  A circuit (may be formed through regenerative or non regenerative / failed 
state) whose terminals are at the regenerative state ‘m’.  

cyclem  A circuit (may be formed through the unfailed regenerative or non 
regenerative state) whose terminals are at the regenerative ‘m’ state.  

kkU , Probability factor of the state ‘k’ reachable from the terminal state ‘k’ of ‘k’ 
cycle. 

kk
U

,
The probability factor of state ‘k’ reachable from the terminal state ‘k’ of 

cyclek .  

i Mean sojourn time spent in the state ‘i’ before visiting any other states. 

i Total unconditional time spent before transiting to any other regenerative state 
while the system entered regenerative state ‘i’ at t=0. 

i  Expected waiting time spent while doing a job given that the system entered to 
the regenerative state ‘i’ at t=0. 

bB / System first unit is in the operative state/failed state. 

cCC // System second unit is in the operative state/reduced state/failed state. 

dDD // System third unit is in the operative state/reduced state/failed state. 

31 /  The constant partial failure rate of the unit C/D respectively. 
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42 /  The constant complete failure rate of the unit C/D respectively. 

5 The constant complete failure rate of unit B. 

)(/)( 11 tFtf PDF/CDF of repair time of unit C from partial failed state. 

)(/)( 22 tFtf PDF/CDF of repair time of unit C from complete failed state. 

)(/)( 33 tFtf PDF/CDF of repair time of unit D from partial failed state. 

)(/)( 44 tFtf PDF/CDF of repair time of unit D from complete failed state. 

)(/)( 55 tFtf PDF/CDF of repair time of unit B from complete failed state. 

IV. Transition Diagram and Their Descriptions

Figure 1: State Transition Diagram 

In the system transition diagram, there are following states 

where,  BCDS 0 ,  DCBS 1 ,  DBCS 2 ,  CDBS 3 ,  bCDS 4 ,  DCbS 5

BcDS 6 ,  DbCS 7 ,  BCdS 8 ,  CDbS 9 ,  DBcS 10 ,  dCBS 11

V. Transition Probabilities

The transition probabilities are following 
)/( 53111,0  p , )/( 53132,0  p   

)/( 53154,0  p , )/( 532110,1   wwp         

)/( 532133,1   wp , )/( 532155,1   wp     

)/( 532126,1   wp , )/( 54330,2   wwp    

)/( 54357,2   wp , )/( 54348,2   wp  

)/( 543231,3   wp , )/( 543259,3   wp  

)/( 5432210,3   wp , )/( 5423411,3   wp
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13,113,103,92,82,71,61,50,4  pppppppp
  (1)  

It has been concluded that 
14,02,01,0  ppp , 16,15,13,10,1  pppp  

18,27,20,2  ppp , 111,310,39,31,3  pppp   (2) 

VI. Mean Sojourn Time

Let i represents the mean sojourn time. Mathematically, the time taken by a system in a 
particular state becomes 

 dttTPm
j

jii  


0
, )( . 

and  )/(1 5310   , )/(1 53211   w , )/(1 5422   w

)/(1 54323   w , )/(1)()( 554 wtt   , )/(1 2106 w 
)/(1 597 w  , )/(1 4118 w   (3) 

VII. Evaluation of Parameters

All reliability parameters (such as mean time to system failure, availability, busy period of the 
server and expected number of visits) are determined by using the regenerative point graphical 
technique. 

I. Mean Time to System Failure (MTSF)

The regenerative un-failed states (i=0, 1, 2, 3) to which the system can transit (with initial state 0) 
before entering to any failed state (using base state ξ=0) then MTSF becomes 
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II. Availability of the System

The system is available for use at regenerative states j=0, 1, 2, 3 with ξ=0 then the availability of 
system is defined as  
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III. Busy Period of the Server

The server is busy due to repair of the failed unit at regenerative states j= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11 with ξ = 0 then the fraction of time for which the server remains busy is defined as 
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IV. Estimated Number of Visits Made by the Server

The technician visits at regenerative states j= 1, 2, 3 with ξ=0 then the number of visits by the 
repairman is defined as  
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V. Profit Analysis

The profit function may be used to do a profit analysis of the system and it is given by 

020100 VEBEAEP   (8) 

 where, 0E 5000 (Pay per unit uptime of the system)

1E 1000 (Charge per unit time for which technician is busy due to repair)

2E 500 (Charge per visit of the technician) 

VI. Particular cases

It is considered that 
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VIII. Discussion

 Table 1 describes the nature of the mean time to system failure of the utensil industry. It has an 

Table 1: MTSF vs. Repair Rate 

w  =0.02 =0.035 =0.05

0.05 4.357262 4.200299 3.696809 
0.10 4.600326 4.405797 3.903394 
0.15 4.832536 4.599156 4.102564 
0.20 5.054602 4.781421 4.29471 
0.25 5.267176 4.953519 4.480198 
0.30 5.470852 5.116279 4.659367 
0.35 5.666179 5.27044 4.832536 
0.40 5.853659 5.416667 5.057888 
0.45 6.033755 5.555556 5.162037 
0.50 6.206897 5.687646 5.318907 
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increasing trend corresponding to increment in repair rate ( w ) and has decreasing trend 
corresponding to an increment in failure rate (). In this table, the values of parameters are = 0.02, 
0.035, 0.05 and w =0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 respectively. When the value 
of repair rate enhances then MTSF values are also enhanced. When =0.02 changes into =0.035, 
0.05 then MTSF values are declined.  

Table 2 explores the increasing trends of availability with respect to increments in repair rate ( w ) 
and has decreasing trends corresponding to increments in failure rate (). When the value of the 
repair rate is enhanced then the availability values are also enhanced. Also, when the failure rate of 
unit changes =0.02 to 0.035, 0.05 then the availability of system declines.  

Table 2: Availability vs. Repair Rate 

w  =0.02 =0.035 =0.05

0.05 0.665768 0.658036 0.627958 
0.10 0.677838 0.668825 0.640662 
0.15 0.688592 0.678383 0.652123 
0.20 0.698233 0.686909 0.662516 
0.25 0.706926 0.694563 0.671982 
0.30 0.714804 0.70147 0.680641 
0.35 0.721976 0.707736 0.688592 
0.40 0.728534 0.713446 0.695917 
0.45 0.734553 0.71867 0.702689 
0.50 0.742585 0.728578 0.717855 

Table 3 explores the trend of profit values with respect to repair rate ( w ) and its value increase 
corresponding to increments in repair rate ( w ) and decrease corresponding to increments in 
failure rate (). It is concluded that when the value of the repair rate enhances then profit values 
are also enhanced but when the failure rate of the unit changes =0.02 to 0.035, 0.05 then the profit 
of the system declines.  

Table 3: Profit vs. Repair Rate 

w  =0.02 =0.035 =0.05

0.05 57529.56 56550.96 55338.67 
0.10 58611.63 57814.53 56419.58 
0.15 59875.52 58249.63 57660.33 
0.20 60296.25 59831.35 58504.51 
0.25 61854.87 60540.89 59545.69 
0.30 62532.78 61361.63 60161.83 
0.35 63316.93 62278.88 61875.72 
0.40 64193.73 63028.72 62677.66 
0.45 65153.92 64361.91 63559.86 
0.50 66187.82 65507.87 64513.96 
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IX. Conclusion

The performance of the utensil industry is discussed using the regenerative point graphical 
technique. The above tables concluded that when the repair rate increases then the MTSF, 
availability of the system and profit values also increase but when the failure rate increases then 
these reliability measures decrease. It is clear that the regenerative point graphical technique is 
helpful for industries to analyze the behaviour of the products and components of a system.  
` 
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Abstract 

Reliability characteristics of repairable systems have been studied in the past in great detail by 

numerous researchers.  Their findings are based mainly on the significant assumption that the 

repairs are carried out by one or more repair facilities, and the process of repair renews the 

functional behavior of the components or units in the system.  In other words, the statistical 

properties of the components or units can be restored by carrying out the repair upon failure.  This 

means that failed units may be treated “as good as new” after each repair.   In many practical 

situations we observe that in the process of making a unit as good-as-new, considerable damage will 

be done to the operational ability of the repair facility, which may reflect upon the repair rates of the 

units in subsequent repairs.  Intuitively, we expect that the average repair time of a unit to increase 

after each repair. This paper makes an attempt to incorporate these concepts in a two unit warm 

standby redundant system in which the efficiency, equivalently, repair capacity of the repair facility 

decreases upon each repair.   Subsequently, the process of repair may not contribute significantly in 

improving the system reliability.  In order to increase the system reliability and that the system 

might be available in the long run, an optimum replacement of the repair facility in terms of the 

mean time to system failure (MTSF) is suggested. 

Keywords: Reliability, repair facility, warm standby redundant system, optimum 

replacement, Mean time to system failure. 

I. Introduction

A great majority of real systems are repaired after they fail rather than replaced in toto.  Jensen and 

Petersen [8] identified Printed Circuit Board (PCB) as a good example for repairable systems.   This 

is not particularly so since failed PCB’s are often discarded and replaced by new ones. 

Nevertheless, it does emphasize the point that the systems such as sonar systems, radar systems or 

communication systems of which PCB’s form a small proportion are certainly repaired rather than 

discarded.  Repair maintenance is sought to increase the Mean Time To System Failure (MTSF) vis-

à-vis system reliability.  In addition to standby redundancy, repair maintenance is often resorted to 

improve the system reliability.  System components or units are repaired upon their failure. 

Operable standbys are switched over to online for efficient functioning of the system, during the 

repair of the online failed units. 
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One of the important objectives of a system engineer is to resort to repair maintenance that 

increases the mean time to system failure by removing the bottle necks or constrains hindering on 

the improvement of the system reliability.  System performance and reliability characteristics have 

been studied for such systems by great many researchers. Bhat, Gururajan and Nayak [1] provided 

the availability and reliability measures and the MTBF of a two-unit cold standby system 

supported by a single repair facility. Cao and Wu [3] obtained reliability quantities of the system 

and the repair facility of a two-dissimilar-unit cold standby system where the repair facility is 

subject to failure and can be replaced by a new one after it fails.  

Chaudhary, Sharma and Gupta [4] deals with a system composed of two-non identical units 

and a single repairman when the joint distribution of failure and repair times for each unit is 

bivariate exponential distribution. The stochastic analysis of a two-identical unit cold standby 

system wherein a single repair facility appears in and disappears from the system randomly is 

considered by Gupta and Bhardwaj [5].  

Gupta and Tyagi [6] discusses the stochastic analysis of a two identical unit cold standby 

system model with a single repairman depending upon the perfect and imperfect environment. 

Reliability, availability and interval reliability measures of a two-unit warm standby system with a 

single repair facility wherein the lifetime of the functioning unit has a general distribution, while 

the standby unit has a phase-type distribution is derived by Gururajan and Srinivasan [7]. 

Kumar, Malik and Nandal [9] described the stochastic analysis of a repairable system 

consisting of two non-identical units with a single repairman and the distribution for failure rates 

of the units has been considered as negative exponential while arbitrary distributions have been 

taken for repair and treatment rates. A warm standby repairable system including two dissimilar 

units, one repairman and imperfect switching mechanism is studied by Sadeghi and Roghanian 

[11]. 

A well accounted bibliography in this direction is  also found in Osaki and Nakagawa [10], 

Srinivasan and Subramanian [12] and Bhat and Gururajan [2].  Their findings are based mainly on 

the noteworthy assumption that the repairs are carried out by one or more repair facilities, and the 

process of repair renews the functional behavior of the components or units in the system.  In other 

words, the statistical properties of the components or units can be restored by carrying out the 

repair upon failure.  This means that failed units may be treated “as-good-as-new” after each 

repair.  In many practical situations we observe that in the process of making a unit as-good-as-

new, considerable damage may be done to the operational ability of the repair facility, which may 

reflect upon the repair rates of the units in subsequent repairs.  Instinctively, we expect that the 

average repair time of a unit to increase after each repair.  At one stage the repair facility will have 

little contribution to our desire of increasing the system reliability.  At this stage it is worthwhile to 

replace the repair facility by a new one.  This paper incorporates the above mentioned ideas in a 

two unit warm standby repairable system and arrives at an optimum replacement policy, clearly 

indicating the stage of replacement as a function of MTSF. 

II. System Description

Let us characterize the complex two unit standby redundant repairable system under study. 

[01] The system consists of two dissimilar units having same statistical properties.  The

units are labeled as 𝑈1 and 𝑈2.  Initially, 𝑈1 is put online and 𝑈2 is kept as a warm standby.

Whenever a unit fails while functioning online the standby unit is switched over to online

for functioning, and the online failed unit is sent for repair.
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[02] The unit that is kept in standby is vulnerable to failure.  This unit is sent to repair upon

failure in the standby state, and is restored immediately after the completion of its repair.

[03] There are two repair facilities RF1 and RF2.  Online failed units are repaired using RF1

and standby failed units are repaired using RF2.

[04] The repair time distribution of online failed unit (in RF1) is different on each failure.

Furthermore, it is assumed that the repair rate of each unit increases as the number of

repair increases.  In other words, the efficiency of the repair facility decreases after each

repair completion.  On the other hand, a unit that is failed in the standby state is as-good-

as-new after repair

[05] The operational ability of the repair facility is considered not satisfactory once it

completes 2𝑘 number of repairs.

[06] A unit that has completed 2𝑘𝑡ℎ repair may not help us in our objective of improvement

of the system reliability.  At this stage, a replacement policy for the repair facility may be

considered feasible.

[07] All switchover times involved in the system operation are negligible and the switch

that performs the switchover operation is immune to failure.

III. Notation

𝑓𝑖(. ), 𝐹𝑖(. ), �̅�𝑖(. )  𝑝. 𝑑. 𝑓, 𝑐. 𝑑. 𝑓, 𝑠. 𝑓 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖,   𝑖 =  1, 2 
𝑔𝑖𝑗(. ), 𝐺𝑖𝑗(. )  𝑝. 𝑑. 𝑓, 𝑐. 𝑑. 𝑓 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑤ℎ𝑖𝑙𝑒 𝑢𝑛𝑑𝑒𝑟𝑡𝑎𝑘𝑖𝑛𝑔 𝑟𝑒𝑝𝑎𝑖𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑡𝑖𝑚𝑒,  𝑗 =  1, 2, …   

𝑖 =  1, 2 

IV. Stochastic Behaviour of the Standby Unit

During the failure free operation of the one unit online, the behavior of the standby unit can be 

completely described by a stochastic process {𝑄𝑖𝑗(𝑡), 𝑡 >  0}. 

𝑄𝑖𝑗(𝑡) 𝑡 = 𝑃𝑟 {𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑢𝑛𝑖𝑡 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑎𝑡 𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑡ℎ𝑎𝑡 𝑖𝑡 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑖𝑛 (−𝑡, 0)} 

𝑖, 𝑗 =  𝑂, 𝐹;  𝑂 =  𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒, 𝐹 =  𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑝𝑎𝑖𝑟 (1) 

We observe that the time spent in the state 𝑂 and 𝐹 by the standby unit forms an alternating 

renewal process whose transition probabilities may be described through the functions 𝑄𝑖𝑗(𝑡).   

Thus, the transition probabilities represented through 𝑄𝑖𝑗(. ) are evaluated as 

𝑄𝑂𝑂(𝑡) = [ + 𝑒−(+)𝑡][ +  ]−1; 𝑄𝑂𝐹(𝑡)  = 1– 𝑄𝑂𝑂(𝑡)     (2) 

𝑄𝑂𝐹(𝑡) = [ − 𝑒−(+)𝑡][ +  ]−1; 𝑄𝐹𝐹(𝑡) = 1– 𝑄𝐹𝑂(𝑡)       (3) 

We observe that the function 𝑄𝑂𝑂(𝑡) is the p-function of the Kingman’s regenerative 

phenomenon.  Since these functions find repeated usage in our discussion, we provide their 

Laplace Stieltjes Transforms. 

𝑄𝑂𝑂
∗ (𝑠) =

 

 [(+)𝑠]
+



 [(+)(𝑠++)]
 (4) 

𝑄𝐹𝑂
∗ (𝑠) =



 [(+)𝑠]
−



 [(+)(𝑠++)]
 (5) 

𝑄𝑂𝐹
∗ (𝑠) =



 [(+)𝑠]
−



[(+)(𝑠++)]
 (6) 

𝑄𝑂𝑂
∗ (𝑠) =



[(+)𝑠]
+



[(+)(𝑠++)]
(7)
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V. Reliability Analysis

In our effort to characterize the system we define the following events: 

𝑖,0: 𝑒𝑣𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑢𝑛𝑖𝑡 𝑖, 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑠 𝑛𝑜𝑡 𝑔𝑜𝑛𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑛𝑦 𝑟𝑒𝑝𝑎𝑖𝑟 𝑡𝑖𝑙𝑙 𝑡ℎ𝑒𝑛, 𝑗𝑢𝑠𝑡 𝑏𝑒𝑔𝑖𝑛𝑠 𝑡𝑜 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝑜𝑛𝑙𝑖𝑛𝑒 

     𝑖 = 1,2 
 𝑖,1: 𝑒𝑣𝑒𝑛𝑡 𝑡ℎ𝑎𝑡 𝑗𝑡ℎ 𝑟𝑒𝑝𝑎𝑖𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡 𝑖 𝑗𝑢𝑠𝑡 𝑏𝑒𝑔𝑖𝑛𝑠;  𝑎𝑡 𝑡ℎ𝑖𝑠 𝑖𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑢𝑛𝑖𝑡 𝑖𝑠 𝑝𝑢𝑡 𝑜𝑛𝑙𝑖𝑛𝑒 

 𝑖 = 1, 2;  𝑗 =  1, 2, … , 𝑘. 

These events, constituting themselves into a regenerative process, facilitate us to trace the 

behavior of the system completely on a time horizon.  For the system to be continuously operable 

in (0, 𝑡], it is necessary that at the instant of failure of unit 𝑖, unit (3 − 𝑖) should be in operable 

condition.  To facilitate this, the following auxiliary, system down forbidding functions are defined. 

𝑃𝑟(𝑗, 𝑡)𝑡 = Pr {1,𝑗+1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛 (0, 𝑡] / 2,𝑗 𝑎𝑡 𝑡

= 0} 

 𝑗 =  1, 2, …  𝑘 − 1          (8) 

We observe that the function Pr(j, t) t represents the pdf of the time interval between 

2 , j and 1 , j+1 events.  Further 

𝑄𝑟(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗+1𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛(0, 𝑡]/1,𝑗+1𝑎𝑡 𝑡 = 0} 

𝑗 =  1, 2, …  𝑘 − 1          (9) 

𝐻𝑟(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛(0, 𝑡] /2,𝑗−1 𝑎𝑡 𝑡 = 0} 

 𝑗 =  1, 2, …  𝑘      (10) 

We notice that 𝐻𝑟(𝑗, 𝑡) 𝑡 represents the pdf of the time interval between two successive 2 

events.  Similarly, 


𝑟
(𝑗, 𝑡)𝑡 =  𝑃𝑟{2,𝑗  𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛 (0, 𝑡]/2,0 𝑎𝑡 𝑡 = 0}

𝑗 =  1, 2, …  𝑘     (11) 

We observe that the functions (9) and (10) are system down forbidding functions in the sense 

that a system down is not acceptable between the occurrences of two events.  These functions are 

evaluated with the help of regenerative events 𝑖𝑗 observing that, at the instant of failure of 𝑈1 at 

which epoch 𝑈2 has completed its 𝑗𝑡ℎ repair and is found in operable condition in its standby state.   

Thus, the pdf’s between two successive events are 

𝑃𝑟(𝑗, 𝑡) = 𝑓1(𝑡){𝐺2,𝑗(𝑡)© [ +  𝑒−(+)𝑡][ + ]−1}      𝑗 =  1, 2, …  𝑘  (12)    

𝑄𝑟(𝑗, 𝑡) = 𝑓2(𝑡){𝐺1,𝑗+1(𝑡)© [ +  𝑒−(+)𝑡][ + ]−1}   𝑗 = 1, 2, …  𝑘 − 1    (13)  

The pdf between successive regenerative events are obtained using the forward recurrence 

relation between the P and Q functions and also between H and  functions Thus 

 𝐻𝑟(𝑗, 𝑡) = 𝑃𝑟(𝑗 − 1 , 𝑡) © 𝑄𝑟(𝑗 − 1 , 𝑡)  𝑗 =  2, 3, …  𝑘     (14) 

 
𝑟
(𝑗, 𝑡) = 

𝑟
(𝑗 − 1 , 𝑡) © 𝐻𝑟(𝑗 , 𝑡)  𝑗 =  2, 3, …  𝑘    (15) 

 
𝑟
(1, 𝑡) = 𝐻𝑟(1 , 𝑡)  (16) 

where 𝐻𝑟(1, 𝑡) = 𝑓2(𝑡) {𝐺1,1(𝑡) © [ +  𝑒−(+)𝑡][ + ]−1}.
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Observing that a unit switched online after repair at which epoch the repair of the other unit 

commences, is a point of regeneration, we are in a position to write an expression for the reliability 

function of the system.  The reliability function 𝑅(𝑡, 𝑘) of the system is given by 

𝑅(𝑡, 𝑘)  =  �̅�1(𝑡) + 𝑓1(𝑡) 𝑄𝑂𝑂(𝑡)© �̅�2(𝑡) + 𝑓1(𝑡)𝑄𝑂𝑂(𝑡)© 
𝑟
(𝑗, 𝑡)© {�̅�1(𝑡) + 𝑃𝑟(𝑗, 𝑡) © �̅�2(𝑡)}

 𝑗 =  1, 2, …  𝑘      (17) 

The expression (17) is obtained by considering the following mutually exclusive and 

exhaustive cases: 

(a) 𝑈1, which is fresh and has not gone through any repairs, does not fail before 𝑡.

(b) 𝑈2, that is instantaneously switched over from standby and has not gone through any repair till

then, does not fail before 𝑡.

(c) 𝑈𝑖 while operating online after 𝑗𝑡ℎ repair (𝑗 =  1, 2, …  𝑘) does not fail before t.

VI. Availability Analysis

The following auxiliary system-down allowing functions are defined to obtain p.d.f. of time 

intervals between 𝑖,𝑗 events. 

 𝑃𝑎(𝑗, 𝑡)𝑡 = 𝑃𝑟{1,𝑗+1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/2,𝑗  𝑎𝑡 𝑡 =  0}    𝑗 = 1, 2, …  𝑘 − 1   (18) 

 𝑄𝑎(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗+1 𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/1,𝑗+1 𝑎𝑡 𝑡 =  0}   𝑗 = 1, 2, …  𝑘 − 1   (19) 

𝐻𝑎(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗  𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/2,𝑗−1 𝑎𝑡 𝑡 =  0}           𝑗 = 1, 2, …  𝑘    (20) 

 
𝑎

(𝑗, 𝑡)𝑡 = 𝑃𝑟{2,𝑗𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡 𝑖𝑛 (0, 𝑡]/2,0𝑎𝑡 𝑡 =  0}    𝑗 = 1, 2, …  𝑘          (21) 

Schematic representation of system behavior between 𝜔2,𝑗 and 𝜔1,𝑗+1 events is shown in Figure 1. 

 

Figure 1: A Schematic Representation of Evaluation of Pa(j,t) 

𝜔2𝑗 𝑎𝑡 𝑡 = 0 

Online unit 1 fails at u 

The jth repair of unit 2 is 

is not over before u 

and will be over at v 
over before u 

The standby unit is 

Operable 
under repair 

The repair is 

over at v

𝜔1,𝑗+1𝑎𝑡(𝑡, 𝑡 + 𝛿𝑡) 
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We observe that the functions [18] and [19] are system down allowing functions. We scrutinize 

the first possibility that, at the instant of failure of 𝑈1, 𝑈2 has complete its 𝑗𝑡ℎ repair and is found in 

operable condition in its standby state.  The term that corresponds to this possibility is: 

𝑓1(𝑡)[𝐺2,𝑗(𝑡) © {[ + 𝑒−(+)𝑡][ + ]−1}]     𝑗 = 1, 2, …  𝑘 

The second possibility corresponds to the situation when the online 𝑈1 fails at 𝑢, at this time 

point 𝑈2 is found ‘not in operable condition’ and is undergoing repair.  The unit is switched over to 

online for its operation at the epoch of the repair completion.  Thus, the term that corresponds to 

this possibility is: 

𝑓1(𝑡)[𝐺2,𝑗(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1}© 𝑒−𝑡]     𝑗 = 1, 2, …  𝑘 

Thirdly, when online 𝑈1 fails at 𝑢, the  𝑗𝑡ℎ repair of 𝑈2 is not over before 𝑢 and the same will be 

over at 𝑣, 𝑣 >  𝑢.  This probability is given by 

𝐹1(𝑡)𝑔2,𝑗(𝑡)                                                                                            𝑗 = 1, 2, …  𝑘 

Thus, in its totality, the pdf of the time interval between a 2,𝑗 event and 1,𝑗+1 event is given 

by 

𝑃𝑎(𝑗, 𝑡) = 𝑓1(𝑡)[𝐺2,𝑗(𝑡)© {[ + 𝑒−(+)𝑡][ + ]−1}] + 𝑓1(𝑡){𝐺2,𝑗(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1}© 𝑒−𝑡]

+𝐹1(𝑡)[𝑔2,𝑗(𝑡)]                                                                         𝑗 = 1, 2, …  𝑘                (22) 

Similarly, 

𝑄𝑎(𝑗, 𝑡) = 𝑓2(𝑡){𝐺1,𝑗+1(𝑡)©{[ + 𝑒−(+)𝑡][ + ]−1}] + 𝑓2(𝑡){𝐺1,𝑗+1(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1}

     © 𝑒−𝑡] + 𝐹2(𝑡)[𝑔1,𝑗+1(𝑡)]                                                                     𝑗 = 1, 2, …  𝑘 − 1        (23) 

By means of (22) and (23) we obtain, 

𝐻𝑎(𝑗, 𝑡) = 𝑃𝑎(𝑗 − 1, 𝑡)©𝑄𝑎(𝑗 − 1, 𝑡)   𝑗 = 2,3, …  𝑘          (24) 


𝑎

(𝑗, 𝑡) = 
𝑎

(𝑗 − 1, 𝑡)©𝐻𝑎(𝑗, 𝑡)  𝑗 = 2,3, …  𝑘          (25) 


𝑎

(1, 𝑡) = 𝐻𝑎(1, 𝑡)   (26) 

where 

𝐻𝑎(1, 𝑡) = 𝑓2(𝑡)[𝐺1,1(𝑡)©{[ + 𝑒−(+)𝑡][ + ]−1}] + 𝑓2(𝑡)[𝐺1,1(𝑡)©{[ − 𝑒−(+)𝑡][ + ]−1 }©𝑒−𝑡]

+𝐹2(𝑡)[𝑔1,1(𝑡)]

The availability function 𝐴(𝑡, 𝑘) of the system is derived by taking into consideration the 

following mutually exclusive and exhaustive cases: 

(a) 𝑈1, which is fresh and has not gone through any repairs, does not fail before 𝑡.

(b) 𝑈2, that is instantaneously switched over from standby and has not gone through any repair till

then, does not fail before 𝑡.

(c) 𝑈𝑖 while operating online after  𝑗𝑡ℎ repair (𝑗 =  1, 2, …  𝑘) does not fail before 𝑡.

𝐴(𝑡, 𝑘) = �̅�1(𝑡) + 𝑓1(𝑡)[𝑄𝑂𝑂(𝑡) + 𝑄𝑂𝐹(𝑡)©𝑒−𝑡}© �̅�2(𝑡) + 𝑓1(𝑡)[𝑄𝑂𝑂(𝑡) + 𝑄𝑂𝐹(𝑡)©𝑒−𝑡]©
𝑎

(𝑗, 𝑡)

   © {�̅�1(𝑡) + 𝑃𝑎(𝑗, 𝑡)©�̅�2(𝑡) }                                                        𝑗 = 1, 2, …  𝑘 (27)
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VII. Mean Time To System Failure

In the analysis of the system we have assumed arbitrary failure time and repair time distributions 

for the units while working online.  For the purpose of illustration we consider a model in which 

both the units are identical by virtue of their statistical properties and their failure time 

distributions are exponential.  In addition to the assumptions made for the standby unit, we 

formalize the failure time and repair time distributions of the online units. 

𝑓𝑖(𝑡) = 𝑒−𝑡     >  0, i =  1,2

𝑔𝑖𝑗(𝑡) = 
𝑗
𝑒−𝜇𝑗𝑡 

𝑗
> 0, 𝑖 =  1, 2 ;  𝑗 = 1, 2, …  𝑘

The integral equations given in (17) are solved using Laplace transform technique and 

𝑅∗(𝑠, 𝑘 ), the Laplace transform of 𝑅(𝑡, 𝑘) is: 

𝑅∗(𝑠, 𝑘 ) =
1

𝑠+𝜆
+

𝜆ℎ(𝑠)

𝑠+𝜆
+ 𝜆ℎ(𝑠) ∑ 𝐿1

𝑅(𝑠) ∏ 𝐿𝑛
𝑅 (𝑠)

𝑗
𝑛=2

𝑘
𝑗=1 [

1

𝑠+𝜆
+

𝜆𝜇𝑗ℎ(𝑠)

(𝑠+𝜆)3(𝑠+𝜆+𝜇𝑗)
]     (28) 

where  𝐿1
𝑅(𝑠) =  

𝜆𝜇1ℎ(𝑠)

(𝑠+𝜆)(𝑠+𝜆+𝜇𝑗)
, 𝐿𝑛

𝑅 (𝑠) =
𝜆2𝜇𝑛𝜇𝑛−1[ℎ(𝑠)]2

(𝑠+𝜆)2(𝑠+𝜆+𝜇𝑛)(𝑠+𝜆+𝜇𝑛−1)
 and  ℎ(𝑠) =

1

(𝛼+𝛽)
[

𝛽

(𝑠+𝜆)
+

𝛼

(𝑠+𝜆+𝛼+𝛽)
] 

We observe that 𝑅∗(𝑠, 𝑘) is a rational function of its arguments and can be easily inverted for 

small values of 𝑘.   Thus, the reliability can be explicitly computed for small values of k. 

The Mean Time To System Failure (MTSF) is given by 

𝑅∗(0, 𝑘 ) =
1

𝜆
+ ℎ(0) + ℎ(0) ∑ 𝐿1

𝑅(0) ∏ 𝐿𝑛
𝑅 (0)

𝑗
𝑛=2

𝑘
𝑗=1 [1 +

ℎ(0)

1+𝜂𝑗)
]    (29) 

where  𝐿1
𝑅(0) =  

ℎ(0)

1+𝜂1
. 𝐿𝑛

𝑅 (0) =
[ℎ(0)]2

(1+𝜂𝑛)(1+𝜂𝑛−1)
,    ℎ(𝑠) =

1

(𝛼+𝛽)
[

𝛽

𝜆
+

𝛼

𝜆+𝛼+𝛽
] and  𝜂𝑗 =

𝜆

𝜇𝑗

A coding is written for the precise evaluation of R*(0, k).  The program evaluates the MTSF for 

specified values of the parameters.  As a function of t and k, MTSF is evaluated for specific values 

of the parameters and are tabulated in Table 1.   

Table 1: MTSF of the system for the parameters(, , , ) = (0.95, 50, 10, 40) 

k MTSF = R*(0) k MTSF = R*(0) 

1 3.1756 21 6.2046 

2 4.0626 22 6.2056 

3 4.6862 24 6.2028 

4 5.1269 26 6.2075 

6 5.6607 27 6.2077 

8 5.9303 28 6.2078 

10 6.0669 30 6.2079 

12 6.1362 32 6.2080 

13 6.1568 33 6.2081 

15 6.1820 34 6.2081 

16 6.1895 35 6.2081 

18 6.1986 36 6.2081 

19 6.2013 37 6.2081 

20 6.2033 38 6.2081 
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The graphical representation of 𝑅∗(0, 𝑘 ) for specific values of parameters is depicted in Figure 2. 

Figure 2: Graphical Representation of the MTSF for (λ, μ, α, β) = (0.95, 50, 10, 40) 

The graph clearly indicates that there is no improvement in MTSF once it completes 2k = 34 

repairs.  Intuitively one would conclude that it is not worthwhile to retain the repair facility once it 

completes 2k = 34 repairs.  Consequently, we suggest at this stage that the repair facility should be 

replaced by a new one in order to increase the system performance and to make the system to be 

available in the long run. 

VIII. A Provision for Replacement of Repair Facility

A wise strategy suggests that when a repair facility is unable to perform its operation it should be 

scrapped.  If one follows this strategy the system becomes unavailable in the long run.  However, a 

prudent policy is to replace the repair facility by a new one so that the system might be available in 

the long run.  When a repair facility completes 2k repairs, it is replaced by a similar new repair 

facility.  The variable k realizes into a number at which MTSF stabilizes in the sense that  

𝑅∗(0, 𝑘) = 𝑅∗(0, 𝑘 + 𝑟),   𝑟 =  1, 2, 3 …  (30) 

The policy of replacement is as follows: 

“After nk-th repair completion of unit 1, the old repair facility is scrapped and a new repair facility 

is introduced.  Here n denotes the number of such replacements, 

n  1.  We suggest replacement of repair facility only and not operable units.  When a unit, while 

operating online after nk-th repair, fails, it is switched over to the new repair facility; at this epoch 

an operable standby is instantaneously switched online.” 

I. Reliability Analysis of the Modified System

Let us define 

2,5

4,5

6,5

1 8 16 22 30 36

M
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𝑟
(0, 𝑡)𝑡 = 𝑃𝑟{1,1𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 𝑡𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑜𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑖𝑛(0, 𝑡]/1,1𝑎𝑡 𝑡 = 0} (31)

The function 
𝑟
(0, 𝑡) is the pdf of time interval between two successive 1,1 events, during

which the system being operable between these two events. Thus 


𝑟
(0, 𝑡) = 

𝑟
(𝑘, 𝑡)©[𝑔2,𝑘(𝑡)©{[ + 𝑒−(+)𝑡 ][ + ]−1}]𝑓1(𝑡)  (32) 

The reliability function of the modified system is given by 

𝑅1(𝑡, 𝑘) =1 𝑅1(𝑡, 𝑘) + [∑{
𝑟
(0, 𝑡)}

𝑛
∞

𝑛=1

]©{�̅�2(𝑡) + ∑ 
𝑟
(𝑗, 𝑡)

𝑘

𝑗=1

{�̅�1(𝑡) + {𝑔2,𝑘(𝑡)©𝑄𝑂𝑂(𝑡)}𝑓1(𝑡)©�̅�2(𝑡)}} 

(33) 

where 1R1(t, k) is the expression given in the right hand side of (17).  The equation (33) is derived by 

considering the following mutually exclusive and exhaustive possibilities 

(a) the interval (0, t] is not intercepted by an 1, 1 event.

(b) the interval (0, t] is intercepted by at least one 1, 1 event.

II. Availability Analysis of the Modified System

The pdf of time interval between system-down allowing regenerative events is evaluated through 


𝑎

(0, 𝑡)𝑡 = 𝑃𝑟{1,1𝑜𝑐𝑐𝑢𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑡, 𝑡 + 𝑡)/1,1 𝑎𝑡 𝑡 = 0}  (34) 

and is given by 


𝑎

(0, 𝑡) = 
𝑎

(𝑘, 𝑡)© [{𝑔2,𝑘(𝑡)©𝑄𝑂𝑂(𝑡)}𝑓1(𝑡) + {𝑔2,𝑘(𝑡)© 𝑄𝑂𝐹(𝑡)©𝑒−𝑡}𝐹1(𝑡)]   (35) 

Arguments that lead to the derivation of (19) will give us the availability function of the 

system with a provision for a replacement of repair facility.  Thus, 

𝐴1(𝑡, 𝑘) =1 𝐴1(𝑡. 𝑘) + ∑[{
𝑎

(0, 𝑡)}
𝑛

]

∞

𝑛=1

©{�̅�2(𝑡) + ∑ 
𝑎

(𝑗, 𝑡)

𝑘

𝑗=1

{�̅�1(𝑡) + [{𝑔2,𝑘(𝑡)© 𝑄𝑂𝑂(𝑡)}𝑓1(𝑡) 

      +{𝑔2,𝑘(𝑡)© 𝑄𝑂𝐹(𝑡)©𝑒−𝑡}𝐹1(𝑡)]© �̅�2(𝑡)}}           (36) 

where 1A1(t, k) is the expression given on the right hand side of (27). 

The steady state availability of the system is given by 

𝐴∞ = lim
𝑡→∞

𝐴(𝑡) = lim
𝑠→0

𝐴∗(𝑠) 
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Abstract

The objective of the study is to use Bayesian techniques to estimate the scale parameter of the 2Kth order
weighted Maxwell-Boltzmann distribution(KWMBD). This involved using various prior assumptions
such as extended Jeffrey’s, Hartigan’s , Inverse-gamma and Inverse-exponential, as well as different loss
functions including squared error loss function (SELF), precautionary loss function (PLF), Al Bayyati’s
loss function (ALBF), and Stein’s Loss Function (SLF).The maximum likelihood estimation (MLE) is
also obtained. We compared the performances of MLE and bayesian estimation under each prior and its
associated loss functions. And demonstrated the effectiveness of Bayesian estimation through simulation
studies and analyzing real-life datasets.

Keywords: 2Kth Order Weighted Maxwell-Boltzmann Distribution, Prior Distribution, Loss
Function and Bayesian estimation.

1. Introduction

The Maxwell-Boltzmann distribution, characterizes the probability distribution of speeds for
particles in a gas at various temperatures. It provides a statistical framework for understanding
the distribution of kinetic energies among particles, which makes it vital for modeling physical
systems and predicting their behavior. Because of its practical significance, scientists and engineers
closely examine the Maxwell-Boltzmann distribution to attain a deeper understanding of various
scientific phenomena and to create precise models of complex systems. Tyagi and Bhattacharya
[15] were the first to explore the Maxwell distribution as a lifetime model, and introduced
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considerations of Bayesian and minimum variance unbiased estimation methods for determining
its parameters and reliability function. Chaturvedi and Rani [6] derived classical and Bayesian
estimators for the Maxwell distribution by extending it with an additional parameter. Various
Statisticians and Mathematicians have carried out the Bayesian paradigm of Maxwell-Boltzmann
distribution by using loss functions and prior distributions, See, Spiring and Yeung [14] , Rasheed
[11] , Reshi[13] , and Ahmad and Tripathi[1] .

The 2Kth order weighted maxwell-Boltzmann distribution (KWMBD) is a flexible, symmetric
continuous univariate probability distribution suitable for modelling datasets of decreasing-
increasing, bathtub, increasing and constant behaviour. The probability density function (pdf) of
KWMBD is given by:

f (x) =
x2(k+1)α−(3+2k)e−

x2

2α2

2k+ 1
2 Γ(k + 3

2 )
x > 0, α > 0, k ∈ R. (1)

And, the corresponding cummulative distribution function (cdf) of KWMBD is given by:

F(x) = 1 −
Γ
(
(k + 3

2 ),
x2

2α2

)
Γ(k + 3

2 )
x > 0, α > 0, k ∈ R. (2)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

x

f(
x)

α = 1,     k = 0.5
α = 2,     k = 0.5
α = 3,     k = 0.5

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

F
(x

)

α = 1,  k = 0.5
α = 2,  k = 0.5
α = 3,  k = 0.5

Figure 1: Probability density plot and cumulative distribution plot of KWMBD for different combinations of parame-
ters.

2. Methodological Procedure

Bayesian approach utilizes prior beliefs, observed data, and a loss function to make decision
in a structured manner, and is considered more reliable for estimating distribution parameters
Compared to the classical approach, especially when the prior distribution accurately represents
the parameter’s random behavior. In Bayesian analysis, parameters are treated as uncertain
variables, allowing prior knowledge to be incorporated into the analysis. This prior information
is typically described using a probability distribution known as the prior distribution. Friesl
and Hurt[7] noted that employing Bayesian theory is a viable approach for incorporating prior
information into the model, potentially improving the inference process and reflects the parame-
ter’s behavior. However, there are no strict rules for choosing one prior over another, frequently,
prior distributions are selected based on an individual’s subjective knowledge and beliefs . When
sufficient information about the parameter is available, informative priors are preferred; other-
wise, non-informative priors, such as the uniform prior, are used. Aslam [4] demonstrated the
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application of prior predictive distribution for determining the prior density. In this study, we
assume the parameter α follows an extension of Jeffrey’s prior proposed by Al-Kutobi[3] and α2

follows a inverse-gamma prior and are given by:

2.1. Extension of Jeffrey’s prior

The prior, known as extension of Jeffrey’s prior is given by:

g(α) = [I(α)]c1 ; c1 ∈ R+

where, I(α) = −nE{ d2

d2(α)
log f (x)} is fisher-information matrix.

Thus, the resulting extension of Jeffrey’s-prior for KWMBD will be:

g(α) =
[

1
α2

]c1

; c1 ∈ R+ (3)

2.2. Inverse-gamma prior

The density of parameter α2 on assuming it to follow Gamma(β, λ) distribution is given by:

g(α2) =
λβ

Γ(β)
(α2)−β−1e−

λ
α2 (4)

2.3. Loss functions

The idea of loss functions had been introduced first by Laplace, and later during the mid-20th
century it was reintroduced by Weiss[16] . Loss function, serves as a measure of the discrepancy
between observed data and the values predicted by a statistical model. Decisions in Bayesian
inference, apart from relying on experimental data, are not entirely controlled by the loss function.
Moreover, the relationship between the loss function and the posterior probability is significant.
The choice of a loss function depends on the specific characteristics of the data and the goals of
the analysis. Han[9] pointed out that, in Bayesian analysis choosing the right loss function and
prior distribution is essential for making accurate statistical inferences. The Bayesian estimator is
directly impacted by the choice of loss function, while the parameters of the prior density function
may be affected by hyperparameters. Various symmetric and asymmetric loss functions have
been demonstrated to be effective in research conducted by Zellner [17] , Reshi [12] , and Ahmad
[2] , among others. In this study, we have explored squared error, precautionary, Al-Bayyati’s,
and Stein’s loss functions to enhance the comparison of Baye’s estimators. And are given by:

2.3.1. Squared error loss function

The squared error loss function is given by:

lsq(α̂, α) = c(α̂ − α)2; c ∈ R+ (5)

2.3.2. Precautionary loss function

The Precautionary loss function is given by:

lpr(α̂, α) =
c(α̂ − α)2

α̂
(6)

2.3.3. Al-Bayyati’s loss function

The Al-Bayyati’s loss function is given by:

lAl(α̂, α) = αc2(α̂ − α)2; c2 ∈ R+ (7)
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2.3.4. Stein’s loss function

The Stein’s loss function is given by:

lSt(α̂, α) =
α̂

α
− log

(
α̂

α

)
− 1 (8)

3. Parametric Estimation of KWMBD

In this section, we discuss the various estimation methods for KWMB Distribution.

3.1. Maximum Likelihood Estimation

Let x1, x2, x3, ..., xn be a random sample of size n from kth Order Weighted Maxwell-Boltzmann
Distribution. Therefore the maximum likelihood estimator(MLE) of α is:

α̂ =

√
x2

i
n(2k + 3)

(9)

3.2. Baye’s Estimator under Extension of Jeffrey’s Prior

The Joint Probability Density Function of x and given α is given by:

L(x|α) =

n
∏
i=1

x2(k+1)
i α−n(3+2k)e

n
∑

i=1
x2

i

2α2

Γ
(
k + 3

2
) (10)

The posterior probability density function of α for given data x is given by:

π1(α|x) ∝ L(x|α)g(α)

π1(α|x) ∝

n
∏
i=1

x2(k+1)
i α−n(3+2k)e

n
∑

i=1
x2

i

2α2

Γ
(
k + 3

2
) 1

α2c1

π1(α|x) = kα−n(3+2k)−2c1 e

n
∑

i=1
x2

i

2α2

where k is normalising constant independent of α and is given by:

k−1 =

∞∫
0

α−n(3+2k)−2c1 e

n
∑

i=1
x2

i

2α2 dα

k−1 =

(
n
∑

i=1
x2

i

)−n(3+2k)−2c1+1
2

Γ
(

n(3+2k)+2c1−1
2

)
2

−n(3+2k)−2c1+3
2

Therefore, the posterior probability density function is:

π1(α|x) =
2

−n(3+2k)−2c1+3
2 α−n(3+2k)−2c1 e

n
∑

i=1
x2

i

2α2(
n
∑

i=1
x2

i

)−n(3+2k)−2c1+1
2

Γ
(

n(3+2k)+2c1−1
2

) (11)
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3.2.1. Baye’s Estimator under squared error loss function

The Risk Function Under SELF is given by:

R(sq,ej)(α̂) =

∞∫
0

c(α̂ − α)2π1(α|x)dα

R(sq,ej)(α̂) = cα̂2 +

n
∑

i=1
x2

i

(n(3 + 2k) + 2c1 − 3)
− 2α̂c

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−2
2

)
Γ
(

n(3+2k)+2c1−1
2

) (12)

now, the Baye’s estimator is obtained by solving

d(R(sq,ej)(α̂))

dα̂
= 0

and, is given by:

α̂(ej,sq) =

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−2
2

)
Γ
(

n(3+2k)+2c1−1
2

) (13)

3.2.2. Baye’s Estimator under precautionary Loss function

The Risk Function Under PLF is given by:

R(pre,ej)(α̂) =

∞∫
0

c
(α̂ − α)2

α̂
π1(α|x)dα

R(pre,ej)(α̂) = cα̂ + c

n
∑

i=1
x2

i

α̂(n(3 + 2k) + 2c1 − 3)
− 2c

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−2
2

)
Γ
(

n(3+2k)+2c1−1
2

) (14)

now, the Baye’s estimator is obtained by solving

d(R(pre,ej)(α̂))

dα̂
= 0

and, is given by:

α̂(pre,ej) =

√√√√√ n
∑

i=1
x2

i

(n(3 + 2k) + 2c1 − 3)
(15)

3.2.3. Baye’s Estimator under Al-Bayyati’s loss function

The Risk Function Under Al-Bayyati’s loss function is given by:

R(alb,ej)(α̂) =

∞∫
0

αc2(α̂ − α)2π1(α|x)dα

R(alb,ej)(α̂) = α̂2 +

n
∑

i=1
x2

i

(n(3 + 2k) + 2c1 − c2 − 3)
− 2α̂

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−c2−2
2

)
Γ
(

n(3+2k)+2c1−c2−1
2

) (16)
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now, the Baye’s estimator is obtained by solving

d(R(alb,ej)(α̂))

dα̂
= 0

and, is given by:

α̂(alb,ej) =

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−c2−2
2

)
Γ
(

n(3+2k)+2c1−c2−1
2

) (17)

3.2.4. Baye’s Estimator under combination of Stein’s loss function

The Risk Function Under SLF is given by:

R(ste,ej)(α̂) =

∞∫
0

(
α̂

α
− log

(
α̂

α

)
− 1
)

π1(α|x)dα

R(ste,ej)(α̂) = α̂

√√√√√ 2
n
∑

i=1
x2

i

Γ
(

n(3+2k)+2c1
2

)
Γ
(

n(3+2k)+2c1−1
2

) − log(α̂)− m − 1 (18)

where, m is constant of integration.
Now, the Baye’s estimator is obtained by solving

d(R(ste,ej)(α̂))

dα̂
= 0

and, is given by:

α̂(ste,ej) =

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−1
2

)
Γ
(

n(3+2k)+2c1
2

) (19)

3.3. Baye’s Estimator under Inverse-Gamma Prior

The Joint Probability Density Function of x and given α2 is given by:

L(x|α2) =

n
∏
i=1

x2(k+1)
i (α2)

−n(3+2k)
2 e

n
∑

i=1
x2

i

2α2

Γ
(
k + 3

2
) (20)

The posterior probability density function of α2 for given data x is given by:

π2(α
2|x) ∝ L(x|α2)g(α2)

π2(α
2|x) ∝

n
∏
i=1

x2(k+1)
i (α2)

−n(3+2k)
2 e

n
∑

i=1
x2

i

2α2

Γ
(
k + 3

2
) λβ

Γ(β)
(α2)−β−1e−

λ
α2

π2(α
2|x) = k(α2)

−n(3+2k)−2β−2
2 e


n
∑

i=1
x2

i
2 +λ

 1
α2
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where k is normalising constant independent of α and is given by:

k−1 =

∞∫
0

(α2)
−n(3+2k)−2β−2

2 e


n
∑

i=1
x2

i
2 +λ

 1
α2

dα2

k−1 =
Γ
(

n(3+2k)+2β
2

)
 n

∑
i=1

x2
i

2 + λ


n(3+2k)+2β

2

Therefore, the posterior probability density function is:

π2(α
2|x) =

 n
∑

i=1
x2

i

2 + λ


n(3+2k)+2β

2

(α2)
−n(3+2k)−2β−2

2 e


n
∑

i=1
x2

i
2 +λ

 1
α2

Γ
(

n(3+2k)+2β
2

) (21)

3.3.1. Baye’s Estimator under squared error loss function

The Risk Function Under SELF is given by:

R(sq,igp)(α̂
2) =

∞∫
0

c(α̂2 − α2)2π2(α
2|x)d(α2)

R(sq,igp)(α̂
2) = c(α̂2)2 +

 n
∑

i=1
x2

i

2 + λ

2

(
n(3+2k)+2β−2

2

) (
n(3+2k)+2β−4

2

) − α̂2c

 n
∑

i=1
x2

i

2 + λ


(

n(3+2k)+2β−2
2

) (22)

now, the Baye’s estimator is obtained by solving

R(sq,igp)(α̂
2)

d(α̂2)
= 0

and, is given by:

α̂(sq,igp) =

√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


(n(3 + 2k) + 2β − 2)

(23)

3.3.2. Baye’s Estimator under precautionary Loss function

The Risk Function Under PLF is given by:

R(pre,igp)(α̂
2) =

∞∫
0

c
(α̂2 − α2)2

α̂2
π2(α

2|x)dα2

R(pre,igp)(α̂
2) = cα̂2 + c

1

α̂2

 n
∑

i=1
x2

i

2 + λ

2

(
(n(3+2k)+2β−2)(n(3+2k)+2β−4)

4

) − 2c

 n
∑

i=1
x2

i

2 + λ


(

n(3+2k)+2β−2
2

) (24)
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now, the Baye’s estimator is obtained by solving

d(R(pre,igp)(α̂
2))

dα̂2
= 0

and, is given by:

α̂(pre,igp) =

√√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


√
(n(3 + 2k) + 2β − 2)(n(3 + 2k) + 2β − 4))

(25)

3.3.3. Baye’s Estimator under Al-Bayyati’s loss function

The Risk Function Under Al-Bayyati’s loss function is given by:

R(alb,igp)(α̂
2) =

∞∫
0

(α2)c2(α̂2 − α2)2π2(α
2|x)dα2

R(alb,igp) (α̂
2) = (α̂2)4


n
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i
2 + λ
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(
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)
Γ
(
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2
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n
∑
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i
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c2+2

Γ
(
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2

)
Γ
(
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2
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n
∑
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2 + λ


c2+1

Γ
(

n(3+2k)+2β−2c2−2
2

)
Γ
(

n(3+2k)+2β
2

) (26)

now, the Baye’s estimator is obtained by solving

d(R(alb,igp)(α̂
2))

dα̂2
= 0

and, is given by:

α̂(alb,igp) =

√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


(n(3 + 2k) + 2β − 2)

(27)

3.3.4. Baye’s Estimator under combination of Stein’s loss function

The Risk Function Under SLF is given by:

R(s,igp)(α̂
2) =

∞∫
0

(
α̂2

α2 − log

(
α̂2

α2

)
− 1

)
π2(α

2|x)dα2

R(s,igp)(α̂
2) = α̂2 (n(3 + 2k) + 2β)

2

 n
∑

i=1
x2

i

2 + λ

 − log(α̂)− m − 1 (28)

where, m is constant of integration.
Now, the Baye’s estimator is obtained by solving

d(R(s,igp)(α̂
2))

dα̂2
= 0

and, is given by:

α̂(ste,igp) =

√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


(n(3 + 2k) + 2β)

(29)
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Table 1: Baye’s Estimation under Hartigan’s Prior Distribution and Different Combinations of Loss Functions.

Prior Loss Function Baye’s Estimator

Hartigan’s (i.e.c1 = 3/2) Squared-error

√
n
∑

i=1
x2

i

2
Γ
(

n(3+2k)+1
2

)
Γ
(

n(3+2k)+2
2

)

Precautionary

√
n
∑

i=1
x2

i

(n(3+2k))

Al-Bayyati’s

√
n
∑

i=1
x2

i

2
Γ
(

n(3+2k)−c2+1
2

)
Γ
(

n(3+2k)−c2+1
2

)

Stein’s

√
n
∑

i=1
x2

i

2
Γ
(

n(3+2k)+2
2

)
Γ
(

n(3+2k)+3
2

)

Table 2: Baye’s Estimation under Inverse-Exponential Prior Distributions and Different Combinations of Loss
Functions.

Prior Loss Function Baye’s Estimator

Inverse-Exponential (i.e.β = 1) Squared-error

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


(n(3+2k))

Precautionary

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


√

(n(3+2k))(n(3+2k)−2))

Al-Bayyati’s

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


(n(3+2k))

Stein’s

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


(n(3+2k)+2)

3.4. Simulation Study

We conducted simulation studies using R software, generated samples of sizes n=10, 50, and 100
to observe the effect of small, medium, and large samples on the estimators of scale parameter α
of the 2kth order weighted Maxwell Boltzmann distribution. Each process is replicated 500 times
to examine the performance of the MLEs and Bayesian estimators under different priors such as
the extension of Jeffrey’s prior, Hartigan’s prior, inverse-Gamma prior, and inverse-exponential
prior, across different loss functions in terms of average estimates, biases, variances, and mean
squared errors by considering different parameter combinations.The results are presented in the
tables below:
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Table 3: Average estimate, Bias, Variance and Mean Squared Error under Extension of Jeffrey’s prior.

n α k c1 c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 2 5 Estimate 2.97912 2.87293 2.90732 3.27915 2.80839
Bias -0.02088 -0.12707 -0.09268 0.27915 -0.19161

Variance 0.23825 0.22157 0.22691 0.28866 0.21173
MSE 0.23869 0.23772 0.23772 0.36658 0.24844

50 3 -0.5 2 5 Estimate 3.00890 2.98656 2.99396 3.06295 2.97196
Bias 0.00890 -0.01344 -0.00604 0.06295 -0.02804

Variance 0.04693 0.04624 0.04647 0.04864 0.04579
MSE 0.04701 0.04642 0.04642 0.05260 0.04658

100 3 -0.5 2 5 Estimate 3.00411 2.99291 2.99663 3.03075 2.98551
Bias 0.00411 -0.00709 -0.00337 0.03075 -0.01449

Variance 0.02164 0.02148 0.02153 0.02203 0.02137
MSE 0.02166 0.02153 0.02153 0.02297 0.02158

10 4 0.1 1.2 3 Estimate 3.96513 3.94644 3.97758 4.14350 3.88675
Bias -0.03487 -0.05356 -0.02242 0.14350 -0.11325

Variance 0.25397 0.25158 0.25557 0.27733 0.24403
MSE 0.25518 0.25445 0.25445 0.29792 0.25685

50 4 0.1 1.2 3 Estimate 4.00312 3.99937 4.00563 4.03732 3.98695
Bias 0.00312 -0.00063 0.00563 0.03732 -0.01305

Variance 0.05165 0.05155 0.05172 0.05254 0.05123
MSE 0.05166 0.05155 0.05155 0.05393 0.05140

100 4 0.1 1.2 3 Estimate 3.99978 3.99790 4.00103 4.01676 3.99168
Bias -0.00022 -0.00210 0.00103 0.01676 -0.00832

Variance 0.02381 0.02379 0.02382 0.02401 0.02371
MSE 0.02381 0.02379 0.02379 0.02429 0.02378

Table 4: Average estimate, Bias, Variance and Mean Squared Error under Hartigan’s prior.

n α k c1 c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 1.5 5 Estimate 2.98117 2.94416 2.98117 3.38551 2.87491
Bias -0.01883 -0.05584 -0.01883 0.38551 -0.12509

Variance 0.20672 0.20162 0.20672 0.26660 0.19225
MSE 0.20708 0.20474 0.20474 0.41521 0.20789

50 3 -0.5 1.5 5 Estimate 2.99573 2.98825 2.99573 3.06548 2.97350
Bias -0.00427 -0.01175 -0.00427 0.06548 -0.02650

Variance 0.04357 0.04335 0.04357 0.04562 0.04292
MSE 0.04359 0.04349 0.04349 0.04991 0.04363

100 3 -0.5 1.5 5 Estimate 2.99912 2.99537 2.99912 3.03344 2.98793
Bias -0.00088 -0.00463 -0.00088 0.03344 -0.01207

Variance 0.02168 0.02163 0.02168 0.02218 0.02152
MSE 0.02168 0.02165 0.02165 0.02330 0.02167

10 4 0.1 1.5 3 Estimate 3.96310 3.93226 3.96310 4.12731 3.87314
Bias -0.03690 -0.06774 -0.03690 0.12731 -0.12686

Variance 0.25001 0.24614 0.25001 0.27116 0.23879
MSE 0.25137 0.25073 0.25073 0.28737 0.25489

50 4 0.1 1.5 3 Estimate 3.99271 3.98647 3.99271 4.02426 3.97411
Bias -0.00729 -0.01353 -0.00729 0.02426 -0.02589

Variance 0.04954 0.04939 0.04954 0.05033 0.04908
MSE 0.04959 0.04957 0.04957 0.05092 0.04975

100 4 0.1 1.5 3 Estimate 4.00132 3.99819 4.00132 4.01704 3.99197
Bias 0.00132 -0.00181 0.00132 0.01704 -0.00803

Variance 0.02222 0.02219 0.02222 0.02240 0.02212
MSE 0.02222 0.02219 0.02219 0.02269 0.02218

α̂mle= Estimate under maximum likelihood estimation, α̂sq= Bayes estimate under squared
error loss function, α̂pre= Bayes estimate under precautionary loss function, α̂alb= Bayes estimate
under Al-Bayyati’s loss function, α̂ste= Bayes estimate under Stein’s loss function.
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Table 5: Average estimate, Bias, Variance and Mean Squared Error under Inverse-Gamma prior.

n α k β λ c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 1.5 3.5 5 Estimate 2.96815 2.95500 3.02987 4.08292 2.82360
Bias -0.03185 -0.04500 0.02987 1.08292 -0.17640

Variance 0.22183 0.20296 0.21337 0.38746 0.18531
MSE 0.22284 0.20498 0.20498 1.56018 0.21642

50 3 -0.5 1.5 3.5 5 Estimate 3.01586 3.01248 3.02758 3.17368 2.98309
Bias 0.01586 0.01248 0.02758 0.17368 -0.01691

Variance 0.04434 0.04357 0.04400 0.04835 0.04272
MSE 0.04459 0.04372 0.04372 0.07852 0.04301

100 3 -0.5 1.5 3.5 5 Estimate 3.00761 3.00593 3.01346 3.08362 2.99109
Bias 0.00761 0.00593 0.01346 0.08362 -0.00891

Variance 0.02039 0.02021 0.02031 0.02127 0.02001
MSE 0.02045 0.02024 0.02024 0.02826 0.02009

10 4 0.1 1.2 3 3 Estimate 3.96991 3.96910 4.03283 4.39706 3.85199
Bias -0.03009 -0.03090 0.03283 0.39706 -0.14801

Variance 0.24080 0.23493 0.24254 0.28833 0.22127
MSE 0.24171 0.23589 0.23589 0.44598 0.24318

50 4 0.1 1.2 3 3 Estimate 3.97652 3.97628 3.98878 4.05281 3.95172
Bias -0.02348 -0.02372 -0.01122 0.05281 -0.04828

Variance 0.05037 0.05013 0.05044 0.05207 0.04951
MSE 0.05092 0.05069 0.05069 0.05486 0.05184

100 4 0.1 1.2 3 3 Estimate 4.00210 4.00195 4.00822 4.03995 3.98952
Bias 0.00210 0.00195 0.00822 0.03995 -0.01048

Variance 0.02531 0.02525 0.02533 0.02573 0.02509
MSE 0.02531 0.02525 0.02525 0.02733 0.02520

Table 6: Average estimate, Bias, Variance and Mean Squared Error under Inverse-Exponential prior.

n α k β λ c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 1 3.5 5 Estimate 2.93546 2.99603 3.07599 4.23702 2.85660
Bias -0.06454 -0.00397 0.07599 1.23702 -0.14340

Variance 0.22744 0.21819 0.23000 0.43639 0.19836
MSE 0.23161 0.21821 0.21821 1.96661 0.21892

50 3 -0.5 1 3.5 5 Estimate 2.98571 2.99747 3.01265 3.15961 2.96794
Bias -0.01429 -0.00253 0.01265 0.15961 -0.03206

Variance 0.04084 0.04052 0.04093 0.04502 0.03973
MSE 0.04105 0.04053 0.04053 0.07050 0.04076

100 3 -0.5 1 3.5 5 Estimate 2.99384 2.9997 3.00724 3.07762 2.98481
Bias -0.00616 -0.0003 0.00724 0.07762 -0.01519

Variance 0.02369 0.0236 0.02372 0.02484 0.02336
MSE 0.02373 0.0236 0.02360 0.03087 0.02360

10 4 0.1 1 3 3 Estimate 3.96977 3.99370 4.05866 4.43061 3.87445
Bias -0.03023 -0.00630 0.05866 0.43061 -0.12555

Variance 0.25840 0.25532 0.26369 0.31424 0.24030
MSE 0.25931 0.25536 0.25536 0.49966 0.25606

50 4 0.1 1 3 3 Estimate 3.99208 3.99679 4.00938 4.07391 3.97204
Bias -0.00792 -0.00321 0.00938 0.07391 -0.02796

Variance 0.05112 0.05100 0.05132 0.05298 0.05037
MSE 0.05118 0.05101 0.05101 0.05845 0.05115

100 4 0.1 1 3 3 Estimate 3.99707 3.99942 4.00569 4.03745 3.98698
Bias -0.00293 -0.00058 0.00569 0.03745 -0.01302

Variance 0.02562 0.02559 0.02567 0.02608 0.02543
MSE 0.02563 0.02559 0.02559 0.02749 0.02560

From the results of simulation tables 3,4,5, and 6 , conclusions are drawn regarding the
performance and behavior of the estimators under different priors, which are summarized below.

• The performances of the Bayesian and MLEs become better when the sample size increases.

• It has been observed that Bayesian estimation, with square error and precautionary loss func-
tion, outperforms MLE estimation, while mle estimation outperforms Bayesian estimation
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with Albayyati’s and Stein’s loss functions.

• In terms of MSE, the bayesian estimation under precautionary loss function and squared
error loss function gives smaller MSEs as compared to other loss functions.

3.5. Fitting of real life data-set:

For illustrative purposes, we analyze three different types of real datasets. The dataset I consists
of tensile strength measurements (in GPA) from 69 carbon fibers tested under tension at gauge
lengths of 20mm. These measurements were initially reported by Bader and Priest [5] . The
datasets II consists of an accelerated life test conducted on 59 conductors, with failure times
measured in hours. Reported first by Johnston[10] . The dataset III comprises times between
arrivals of 25 customers at a facility and reported first Grubbs[8] . Our objective is to evaluate
and contrast the performance of KWMBD estimates using mle and baysian estimation.

Table 7: Average estimate,Mean Squared Error, AIC, BIC for posterior distribution under different priors for dataset I.

criterion MLE Ex-Jeffreys Prior Hartigan’s Prior I-Gamma Prior I- Exponential Prior

Estimate 2.5001 2.4390 2.4911 2.4144 2.4819
MSE 0.2440 0.2418 0.24320 0.2430 0.2426
AIC 228.6145 197.1729 198.5274 196.5776 198.2806
BIC 230.8486 199.4070 200.7615 198.8117 200.5147

Table 8: Estimates and MSE for Extension of Jeffrey’s and Inverse-Gamma Priors with different loss functions for
dataset I.

α̂mle priors α̂sq α̂pre α̂alb α̂ste

Estimate MSE Estimate MSE Estimate MSE Estimate MSE Estimate MSE
2.5001 0.2440 EX-Jeffrey’s Prior 2.4390 0.2418 2.4475 0.2417 2.4911 0.2432 2.4224 0.2424

I-Gamma Prior 2.4391 0.2418 2.456 0.2416 2.5460 0.2506 2.4064 0.2436

Table 9: Average estimate,Mean Squared Error, AIC, BIC for posterior distribution under different priors for dataset
II.

criterion MLE Ex-Jeffreys Prior Hartegan’s Prior I-Gamma Prior I- Exponential Prior

Estimate 7.16117 6.957312 7.129853 6.855565 7.077978
MSE 2.59377 2.561495 2.583413 2.576478 2.570564
AIC 319.9468 246.6048 247.7058 246.1869 247.3245
BIC 322.0243 248.6823 249.7833 248.2644 249.4021

Table 10: Estimates and MSE for Extension of Jeffrey’s and Inverse-Gamma Priors with different loss functions for
dataset II.

α̂mle priors α̂sq α̂pre α̂alb α̂ste

Estimate MSE Estimate MSE Estimate MSE Estimate MSE Estimate MSE
7.1612 2.5938 EX-Jeffrey’s Prior 6.9577 2.5615 6.9858 2.5610 7.2538 2.6359 6.9027 2.5670

I-Gamma Prior 6.9370 2.5628 6.9931 2.5612 7.5631 2.9010 6.8294 2.5837
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Table 11: Average estimate,Mean Squared Error, AIC, BIC for posterior distribution under different priors for dataset
III.

criterion MLE Ex-Jeffreys Prior Hartegan’s Prior I-Gamma Prior I- Exponential Prior

Estimate 4.0405 3.9242 4.0003 3.8025 3.9433
MSE 0.6053 0.6015 0.6010 0.6264 0.6003
AIC 108.1082 85.9577 86.3621 85.4566 86.0532
BIC 109.3270 87.1765 87.5810 86.6755 87.2721

Table 12: Estimates and MSE for Extension of Jeffrey’s and Inverse-Gamma Priors with different loss functions for
dataset III.

α̂mle priors α̂sq α̂pre α̂alb α̂ste

Estimate MSE Estimate MSE Estimate MSE Estimate MSE Estimate MSE
4.0405 0.6054 EX-Jeffrey’s Prior 3.9242 0.6015 3.9621 0.5998 4.0811 0.6131 3.8522 0.6126

I-Gamma Prior 3.9070 0.6032 3.9829 0.6001 4.2331 0.6713 3.7699 0.6381

The results of tables 7 , 8 ,9 ,10 ,11 and 12 demonstrate that the estimation of parameters for
KWMBD under both priors ( Extension of Jeffrey’s and Inverse Gamma prior) and precautionary
loss function is better compared to the other three loss functions considered and mle estimation,
owing to its lower Mean Squared Error (MSE).

4. conclusion:

We compared estimation methods for the scale parameter α of the 2kth order weighted Maxwell-
Boltzmann distribution, utilizing both Maximum Likelihood Estimation (MLE) and Bayesian
Estimation under various loss functions and prior distributions. This comparison is based on the
simulated data and real-life datasets. Results of simulated data reveal that as the sample size
increases, MSE decreases. and the Bayesian Estimation with the square error loss function and
precautionary loss function outperforms Maximum Likelihood Estimation (MLE). Furthermore,
results from the real-life datasets demonstrate that the estimation of parameters of KWMBD
under both prior distributions and precautionary loss function yields better performance, with
smaller MSE compared to other estimators.

Conflict of interest: The authors confirm that they have no conflicts of interest to disclose
regarding the publication of this paper.
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Abstract

An acceptance sampling plan is a sampling procedure with a set of rules for making decisions about a
lot of products. The decision is based on the number of defectives in a sample. The sampling inspection
plans which are developed for taking decision about a lot based on lifetime of the product are called
reliability sampling plans. In this paper, we have developed Acceptance sampling plan (ASP) based on
truncated life tests when the lifetime of a product follows the exponentiated generalized inverse Rayleigh
distribution (EGIR). The minimum sample sizes needed to ensure the specified life percentile are obtained
for a fixed value of the consumer™s confidence level. The operating characteristic values according to
the different quality levels are obtained and the minimum ratios of the mean life to the specified life are
calculated. The important tables based on the suggested acceptance sampling plan are calculated and
illustrated.

Keywords: Acceptance Sampling Plan, Truncated Life Tests, Percentiles, Exponentiated General-
ized Inverse Rayleigh Distribution, Operating Characteristic function, producer’s Risk

1. Introduction

Two important tools for ensuring quality are statistical quality control and acceptance sampling
(AS). Acceptance sampling is concerned with inspection and decision-making regarding lots of
products and constitutes one of the oldest techniques in quality control. If the quality characteristic
is about the lifetime of the product, the acceptance sampling problem becomes a life test. To
determine the sample size from a lot under consideration is the main issue in most acceptance
sampling plans for a truncated life test.

If the life test indicates that the true mean lifetime of products exceeds the specified one, then
the lot is accepted, otherwise it is rejected. For the purpose of reducing the test time and cost, a
truncated life test may be conducted to determine the smallest sample size to ensure certain mean
lifetime or percentile lifetime of products when the life test is terminated at a pre-determined
time, and the number of failures observed does not exceed a given acceptance number c. The
decision is to accept the lot if a pre-determined mean life time or percentile life can be reached
with a pre-determined high probability which provides protection to the consumer. Therefore,
the life test is ended at the time the failure is observed or at the pre-assigned time, whichever
is earlier. For such a truncated life test and the associated decision rule, we are interested in
determining the smallest sample size to arrive at a decision.

Epstein [3] was the first who considered truncated life tests in the exponential distribution.
Truncated life tests are considered by many authors for various distributions. Sobel and Tischen-
drof [15], Gupta and Groll [5] using Gamma distribution, Kantam and Rosaiah [6] based on Half
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logistic distribution, Ayman et al. [1] using Rayleigh model, Tsai and Wu [17] based on Gener-
alized Rayleigh distribution, Balakrishnan et al. [2] discussed generalized Birnbaum“Saunders
distribution. Kantam et al. [7] considered truncated life tests for log-logistic distribution, Rao [13]
considered acceptance sampling plans for Marshall“Olkin extended Lomax distribution.

Percentiles provide more information about a life distribution than the mean life does. When
the life distribution is symmetric, the 50th percentile or the median is equivalent to the mean life.
Hence, developing acceptance sampling plans based on percentiles of a life distribution can be
treated as a generalization of developing acceptance sampling plans based on the mean life of
it. Lio et al. [8] developed acceptance sampling plans for percentiles using Birnbaum-Saunders
distribution. Rao and Kantam [12] considered acceptance sampling plans for truncated life
tests based on the log-logistic distribution for percentiles. Rao et al. [11] developed acceptance
sampling plans for percentiles based on the inverse Rayleigh distribution. Srinivasa Rao and
Kantam [16] studied acceptance sampling plans for percentiles of half logistic distribution. Rao
and Naidu [14] considered acceptance sampling plans for Percentiles based on the Exponentiated
Half Logistic distribution. Pradeepa Veerakumari and Ponneeswari [10] designed acceptance
double sampling plan for life test based on percentiles of Exponentiated Rayleigh distribution.
Neena Krishna and Jayalakshmi [9] studied special type double sampling plan for life tests
based on percentiles using Exponentiated Frechet Distribution. Percentiles are taken into account
because lesser percentile provides more information than mean life regarding the life distribution.

2. Exponentiated Generalized Inverse Rayleigh Distribution

The Exponentiated Generalized Inverse Rayleigh distribution was developed by Fatima et al. in
2018. The CDF of the Exponentiated Generalized Inverse Rayleigh distribution is given by

F(t; α, σ, γ) = [1 − [1 − e(
−σ2

t2 )]α]γ (1)

The PDF of the distribution is given as

f (t; α, σ, γ) =
2αγσ2

t2 e
−σ2

t2 [1 − e(
−σ2

t2 )]α−1][1 − [1 − e(
−σ2

t2 /)]α]γ−1]; t > 0 (2)

For given 0 < q < 1 the 100qt` actual percentile of the Exponentiated Generalized Inverse Rayleigh
distribution can be given by

tq =
1
σ
[−ln(1 − (1 − q

1
γ )1/α)]−1/2 (3)

The tq increase as q increases Let

η = [−ln(1 − (1 − q
1
γ )1/α)]−1/2 (4)

Then from (3), σ = η/tq
By letting δ = t/tq , F(t) becomes

F(t) = [1 − [1 − e−(δη)−2]α]γ (5)

Equation (5) gives the modified cdf and by partially differentiating the equation (5) w.r.t a we will
get the modified pdf for percentiles of Exponentiated Generalized Inverse Rayleigh distribution
where tq is the 10th percentile of the given distribution.

3. Proposed Acceptance Sampling Plan

Main goal of this study is to obtain minimum sample size required to ensure a percentile life when
the life test is terminated at a pre-determined time t0

q and when the observed number of failures
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does not exceed a given acceptance number. The operating procedure of the sampling plan is
to accept a lot only if the specified percentile of lifetime is fixed with pre-specified probability
λ, which is an indicator of consumer confidence. The life test experiment gets terminated at the
time (c + 1)th failure is observed or at quantile time tq whichever is earlier.

A sampling plan in which a decision about the acceptance or rejection of a lot is based on a
single sample that has been inspected is known as a single sampling plan. A single sampling
plan requires the specification of two quantities which are known as parameters of the single
sampling plan. These parameters are n “ size of the sample and c “ acceptance number for the
sample. The Reliability Single Sampling Plan can be represented as (n, c, t/(t0

q)). Here n and
c are the sample size and acceptance number for the sampling plan. Assume that a life test is
conducted and will be terminated at time t0

q.

3.1. Operating Procedure

The acceptance sampling plan based on truncated life tests consists of the following:

1. Draw a random sample of size n from the lot received from the supplier. The maximum
test duration time is t.

2. We inspect each and every unit of the sample and classify it as defective or non-defective.
At the end of the inspection, we count the number of defective units found in the sample.
Suppose the number of defective units found in the sample is d.

3. We compare the number of defective units (d) found in the sample with the stated acceptance
number (c).

4. We take the decision of acceptance or rejection of the lot on the basis of the sample as
follows: If the number of defective units (d) in the sample is less than or equal to the stated
acceptance number (c), i.e., if d ≤ c defectives out of n occur at the end of the test period t0

q,
we accept the lot and if d > c, we reject the lot.

3.2. Minimum sample size

Given P∗ and assuming that the lot size is large enough to be considered infinite, then the
probability of accepting a lot can be evaluated by the binomial cdf up to c and the smallest sample
size n required to assert that tq > t0

q must satisfy

c

∑
i=0

pi(1 − p)(n−i) ≤ (1 − P∗) (6)

where p=F(t,δq), is the probability of a failure observed during the time t given a specified
100qth percentile of lifetime t0

q and depends only on δ=t/(t0
q) since t0

q increases as q increases.
Accordingly, we have

F(t, δ) < F(t, δ0) ⇐⇒ δ ≤ δ0

Or, equivalently
F(t; tq) < F(t; t0

q) ⇐⇒ tq ≥ t0
q

The smallest sample size n satisfying eq. (6) can be obtained for any given sampling plan
(n, c, t/t0

q) is given in Table 1.

3.3. Operating Characteristic (OC) Function

The OC function L(p) of the acceptance sampling plan (n,c,t/t0
q) is the probability of accepting a

lot. It is given as

L(p) =
c

∑
i=0

pi(1 − p)(n−i) (7)
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where p = F(t, δq) . It should be noticed that F(t, δq) can be represented as a function of δq = t/tq.
Therefore, we have

p = F(t, δ) = F(
t
tq

1
dq

)

where dq=tq/t0
q

Using eq. (7) the OC values can be obtained for any sampling plan (n, c, t/t0
q). The OC values for

the proposed sampling plan is presented in Table 2.

3.4. Producer‘s Risk

The producer’s risk is defined as the probability of rejecting the lot when tq > t0
q. For a given

value of the producer’s risk, say λ , we are interested in knowing the value of dq to ensure the
producer’s risk is less than or equal to λ if a sampling plan (n, c, t/t0

q) is developed at a specified
confidence level P∗. Thus, one needs to find the smallest value dq according to euation (7).

L(p) ≥ 1 − λ

Based on the sampling plans (n,c,t/tq
0) given in Table 1 the minimum ratios of d0.10 at the

producer‘s risk of λ = 0.05 are presented in Table 3.

4. Illustration

Assume that the life distribution is Exponentiated Generalized Inverse Rayleigh distribution, and
the experimenter is interested in showing that the true unknown 10th percentile life t0.10 is at
least 1000 hrs. Let α = 2,γ = 1 and λ = 0.05. It is desire to stop the experiment at time t=1500
hrs. For the acceptance number c=1 from the Table 1 one can obtain the Single Sampling plan
(n, c, t/t0

q)= (9,1,1.5). The optimum sample sizes needed for the given requirement is found to
be as n=9. The respective OC values for the proposed acceptance sampling plan (n, c, t/t0

q) with
P∗ = 0.95 for Exponentiated Generalized Inverse Rayleigh distribution from the Table 2 are given
in below table. This shows that if the actual 10th percentile is equal to the required 10th percentile

tq/(t0
q) 0.75 1 1.25 1.5 1.75 2 2.25 2.5

L(p) 0.0002 0.0525 0.3297 0.7748 0.9629 0.9965 0.9998 1

(t0.10/t0.100 = 1), the producer’s risk is approximately 0.9475 (1 − 0.0525). The producer’s risk
almost equal to zero when the actual 10th percentile is greater than or equal to 2.5 times the
specified 10th percentile. Table 3 gives the d0.10 values for c=1 and t/t0

0.10 = 1.5 to assure that the
producer’s risk is less than or equal to 0.05.
In this example, the value of d0.10 is 1.7136 for c=1,t/t0

0.10 = 1.5 and λ =0.05. This means the
product can have a 10th percentile life of 1.7136 times the required 10th percentile lifetime. That is
under the above Single Sampling Plan the product is accepted with probability of at least 0.95.
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Figure 1: OC curve for the sampling plan (n = 9, c = 1, t/t0
0.10 = 1.5)

5. Construction of the Table

Step 1: Find the value of η for the fixed values of α = 2, γ = 1 and q=0.10

Step 2: Set the value of t/tq
0 =0.7, 0.9, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5

Step 3: Find the sample size n by satisfying L(p) ≤ 1 − P∗ when P∗ = 0.99, 0.95, 0.90 and 0.75.
Here P∗ is the probability of rejecting a bad lot and

L(p) =
c

∑
i=0

pi(1 − p)(n−i)

Step 4: for the n value obtained find the d0.10 value such that L(p) ≥ 1 − λ where λ = 0.05 and
p = F(t/t0

q, 1/dq); dq = tq/t0
q

Table 1: Minimum Sample Size values necessary to assure 10th percentile for Exponentiated Generalized Inverse
Rayleigh distribution

p∗ c t/(t0
q)

0.7 0.9 1.0 1.5 2.0 2.5 3 3.5
0.75 1 576 53 27 5 5 3 3 2

2 841 77 39 8 4 4 3 3
3 1096 101 51 10 7 5 5 3
4 1346 124 62 13 8 6 6 5
5 1592 146 73 15 9 7 7 5

0.90 1 834 76 38 8 5 4 3 2
2 1143 105 52 10 6 5 5 3
3 1433 131 66 12 7 6 5 5
4 1714 156 78 16 8 7 6 6
5 1988 182 91 18 11 8 8 7

0.95 1 1017 93 46 9 5 4 3 3
2 1349 123 61 12 7 5 4 4
3 1662 152 76 15 8 7 5 5
4 1960 180 90 18 10 8 7 7
5 2253 206 103 20 12 9 8 7

0.99 1 1417 128 63 12 7 4 4 3
2 1794 162 81 16 8 7 5 5
3 2143 194 97 18 10 8 7 6
4 2480 225 113 21 12 10 8 8
5 2803 255 127 24 13 10 9 8
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Table 2: Operating characteristic values of the sampling plan (n, c = 1, t/(t0
q)) for a given P∗ under Exponentiated

Genereralized Inverse Rayleigh Distribution distribution

p∗ t/(tq
0) n tq/(tq

0)
0.75 1 1.25 1.5 1.75 2 2.25 2.5

0.75 0.7 576 0 0.2508 0.9963 1 1 1 1 1
0.9 53 0 0.2451 0.9533 0.9996 1 1 1 1
1 27 0.0002 0.2326 0.9055 0.9979 1 1 1 1
1.5 5 0.0222 0.2372 0.6578 0.9185 0.9887 0.9990 0.9999 1
2 5 0.0008 0.0222 0.1537 0.446 0.7469 0.9185 0.9806 0.9964
2.5 3 0.0087 0.0555 0.1848 0.3975 0.6303 0.8128 0.9212 0.972
3 3 0.0024 0.0177 0.0705 0.1848 0.3584 0.5555 0.7306 0.8569
3.5 2 0.0322 0.0905 0.189 0.3223 0.4738 0.6223 0.7497 0.8469

0.90 0.7 834 0 0.0997 0.9924 1 1 1 1 1
0.9 76 0 0.0983 0.9123 0.9992 1 1 1 1
1 38 0 0.0953 0.8345 0.9958 1 1 1 1
1.5 8 0.0007 0.0546 0.3973 0.8131 0.9705 0.9972 0.9998 1
2 5 0.0008 0.0222 0.1537 0.446 0.7469 0.9185 0.9806 0.9964
2.5 4 0.0006 0.0105 0.0658 0.217 0.4541 0.6927 0.8601 0.9477
3 3 0.0024 0.0177 0.0705 0.1848 0.3584 0.5555 0.7306 0.8569
3.5 2 0.0322 0.0905 0.189 0.3223 0.4738 0.6223 0.7497 0.8469

0.95 0.7 1017 0 0.0498 0.9889 1 1 1 1 1
0.9 93 0 0.0481 0.8773 0.9989 1 1 1 1
1 46 0 0.048 0.7787 0.994 0.9999 1 1 1
1.5 9 0.0002 0.0525 0.3297 0.7748 0.9629 0.9965 0.9998 1
2 5 0.0008 0.0222 0.1537 0.446 0.7469 0.9185 0.9806 0.9964
2.5 4 0.00006 0.0105 0.0658 0.217 0.4541 0.6927 0.8601 0.9477
3 3 0.0024 0.0177 0.0705 0.1848 0.3584 0.5555 0.7306 0.8569
3.5 3 0.0008 0.0062 0.0277 0.0827 0.1848 0.3311 0.4996 0.6606

0.99 0.7 1417 0 0.0102 0.0102 1 1 1 1 1
0.9 128 0 0.0103 0.0107 0.9979 1 1 1 1
1 63 0 0.0105 0.0109 0.9889 0.9999 1 1 1
1.5 12 0 0.0065 0.0084 0.659 0.9366 0.9936 0.9996 1
2 7 0 0.0023 0.0023 0.2496 0.5898 0.8503 0.9618 0.9927
2.5 4 0.0006 0.0105 0.0105 0.217 0.4541 0.6927 0.8601 0.9477
3 4 0.0001 0.0019 0.0019 0.0658 0.1844 0.3701 0.5791 0.7581
3.5 3 0.0008 0.0062 0.0062 0.0827 0.1848 0.3311 0.4996 0.6606

Table 3: Minimum ratio of true d0.10 for the acceptability of a lot for the Exponentiated Generalized Inverse Rayleigh
distribution and producer‘s risk of λ = 0.05

p∗ t/(t0
q) n tq/(t0

q)

0.75 0.7 576 1.1554 1.1546 1.1551 1.1551 1.1552 1.1549 1.155 1.1553
0.9 53 1.246 1.2456 1.246 1.2459 1.2459 1.2458 1.2461 1.2464
1 27 1.2985 1.2983 1.2985 1.2981 1.2987 1.2987 1.299 1.2988
1.5 5 1.5676 1.5677 1.5672 1.5665 1.5681 1.5683 1.5696 1.5688
2 5 2.0896 2.0902 2.0899 2.09 2.0878 2.0886 2.0902 2.0909
2.5 3 2.3645 2.3641 2.3639 2.3618 2.3618 2.3637 2.3626 2.3652
3 3 2.8339 2.8365 2.8371 2.8367 2.8322 2.8374 2.8371 2.8336
3.5 2 2.9629 2.962 2.9633 2.9627 2.9585 2.9636 2.9629 2.9631

0.90 0.7 834 1.1811 1.1809 1.1812 1.181 1.1813 1.1811 1.1814 1.1815
0.9 76 1.2846 1.2847 1.2842 1.2841 1.2853 1.2854 1.285 1.2854
1 38 1.3426 1.3426 1.3426 1.3432 1.342 1.3421 1.3422 1.3436
1.5 8 1.6855 1.6857 1.6856 1.6856 1.6881 1.6864 1.688 1.6857
2 5 2.0896 2.0902 2.0899 2.09 2.0878 2.0886 2.0902 2.0909
2.5 4 2.5101 2.5081 2.507 2.5098 2.5098 2.5095 2.5074 2.5107
3 3 2.8339 2.8365 2.8371 2.8367 2.8322 2.8374 2.8371 2.8336
3.5 2 2.9629 2.962 2.9633 2.9627 2.9585 2.9636 2.9629 2.9631

0.95 0.7 1017 1.1956 1.1947 1.1951 1.195 1.1947 1.1951 1.1952 1.1945
0.9 93 1.306 1.3057 1.3059 1.3057 1.3065 1.3064 1.3064 1.3065
1 46 1.3663 1.3666 1.3663 1.3657 1.367 1.3667 1.3674 1.3657
1.5 9 1.7136 1.7136 1.7132 1.7129 1.7139 1.7131 1.7135 1.7151
2 5 2.0896 2.0902 2.0899 2.09 2.0878 2.0886 2.0902 2.0909
2.5 4 2.5101 2.5081 2.507 2.5098 2.5098 2.5095 2.5074 2.5107
3 3 2.8339 2.8365 2.8371 2.8367 2.8322 2.8374 2.8371 2.8336
3.5 3 3.3055 3.3101 3.3104 3.3101 3.3094 3.3103 3.31 3.3079

0.99 0.7 1417 1.2173 1.2171 1.2178 1.2174 1.2176 1.218 1.2178 1.2169
0.9 128 1.3392 1.3388 1.3391 1.3396 1.3394 1.3389 1.3395 1.3395
1 63 1.4046 1.4044 1.4051 1.4056 1.4052 1.4054 1.4051 1.4063
1.5 12 1.7802 1.7775 1.7782 1.7787 1.7778 1.78 1.7796 1.7804
2 7 2.202 2.2049 2.2048 2.2034 2.2033 2.2021 2.2023 2.206
2.5 4 2.5101 2.5081 2.507 2.5098 2.5098 2.5095 2.5074 2.5107
3 4 3.0117 3.0072 3.0121 3.0084 3.0116 3.0102 3.0077 3.0082
3.5 3 3.3055 3.3101 3.3104 3.3101 3.3094 3.3103 3.31 3.3079
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6. CONCLUSION

In this paper, acceptance sampling plan based on percentiles is suggested assuming that the
lifetime of the products follows the Exponentiated Generalized Inverse Rayleigh distribution. The
suggested Acceptance Sampling Plan is studied for fixed consumer’s confidence level, minimum
sample sizes necessary to assert the specified percentile life. The required Acceptance Sampling
Plan tables are calculated and illustrated.
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Abstract

This article develops a new control chart for the mean using empirical Bayes estimates. We assume that
the quality characteristic of the proposed control chart follows a normal distribution with unknown mean
and variance. Both the parameters have known prior probability distributions. In practice, the parameters
of priors are unknown and are estimated using the empirical Bayes approach. For the performance
assessment of the new control chart, the Average Run Length (ARL) procedure is used while the process
is in control and out of control. A real-life example is also considered to evaluate the performance of the
proposed control chart.

Keywords: Average Run Length, Empirical Bayes, Mean Chart, Posterior, Statistical Process
Control.

1. Introduction

Statistical Process Control (SPC) is a popular methodology for monitoring and assessing the
quality of a manufacturing process. The main objective of SPC is to minimize the process
variability. A control chart is the main technique SPC uses to measure whether a manufacturing
process is in control. Dr. Walter Shewhart first proposed the control chart technique in the 1920s.
If the quality characteristic under study is quantifiable, we use variable control charts like X̄, R,
and S charts, etc. For these control charts, it is assumed that the quality characteristic follows
a normal distribution. Over the years, researchers have developed control charts for means by
considering different aspects. [5] proposed a X̄ chart when the quality characteristic follows
a skewed distribution. [9] introduced a new X̄ chart by considering variable sample size and
sampling intervals, which can detect the shift in the process mean in less time than a traditional
X̄ chart. [8] gave an idea of the Max chart by combining the X̄ chart and S chart. [18] proposed a
new control chart for mean based on variable and attribute inspections.

The Bayesian approach has recently become very popular among researchers for constructing
control charts. Using empirical Bayes, [11] developed a multivariate process control chart. [19]
compared the effectiveness of different mean charts under the Bayesian approach. [13] have
constructed a new control chart for the coefficient of variation using prior information when
the mean is variable, and the variance is the function of the mean. [17] designed a two-sided X̄
control chart for mean. [4] developed a new control chart for mean using posterior distribution.
[10] measured the performance of a Bayesian Control Chart using empirical Bayes based on
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Weibull data. [2] proposed a mean control chart using a uniform prior. [12] used Empirical Bayes
methods based on loss functions for a sequential sampling plan. [6] used the Bayesian model for
constructing predictive control charts. [1] designed a Bayesian Shewhart-type control chart for
the Maxwell distributed process.

The entire article is arranged in the following way. Section 2 discusses the Shewhart X̄ chart.
In section 3, a discussion is made on the posterior mean control chart. Section 4 briefly describes
the empirical Bayes method. In section 5, we explain the construction of the new control chart for
mean using empirical Bayes estimates. In section 6, the performance of the proposed control chart
is evaluated concerning the Average Run Length values. In section 7, a real-life dataset is taken to
analyze the performance of the proposed control chart for mean. In the last section (section 8),
concluding remarks are given.

2. X-bar Control Chart

Let X1, X2, . . . , Xn be n observations of a quality characteristic X following a normal distribution
with mean, µ and variance, σ2 of a manufacturing process. Then, according to W. Shewhart, the
3-sigma control limits of X̄ chart are

UCL = µ + 3
σ√
n

LCL = µ − 3
σ√
n

3. Posterior Control Chart for Mean

[4] proposed a new posterior X̄ control chart for process mean. Suppose X1, X2, . . . , Xn be n
observations of a quality characteristic X. It is assumed that Xi’s are independently and identically
distributed normal variables with mean µ and variance σ2(known). Here, the process average µ
has normal prior with known parameters.Then Xi’s ∼ N(µ, σ2) and µ ∼ N(θ, λ2), where θ and λ
are known. So, the posterior mean α0 = x̄ζ0 + θ(1 − ζ0) and the posterior variance is ρ0 = n

σ2ζ0

where ζ0 = nλ2

nλ2+σ2 . Hence, the three-sigma control limits of the posterior control chart for the
mean are

UCL = x̄ζ0 + θ(1 − ζ0) + 3
σ√
n

√
ζ0

CL = x̄ζ0 + θ(1 − ζ0)

LCL = x̄ζ0 + θ(1 − ζ0)− 3
σ√
n

√
ζ0

4. Empirical Bayes method

In the Bayesian method, the probability distribution function’s unknown parameters are con-
sidered the random variables. Suppose X1, X2, . . . , Xn are n observations from f(θ). Here, the
parameter θ has some prior information. , θ has the prior distribution π(θ|ω), where ω is the
hyperparameter. The Bayes’ theorem states that the posterior distribution of θ can be expressed as
proportional multiplication of the likelihood L(θ) and the prior distribution π(θ|ω). Symbolically,
h(θ|x) = L(θ)π(θ|ω)∫

L(θ)π(θ|ω)
∝ L(θ)π(θ|ω)

The Bayesian method is different from the frequentist method. In the parametric empirical Bayes
method, the prior distribution π(θ|ω) takes parametric form, where the prior distribution param-
eters are unknown. [7] estimates the prior parameters using the observed data. These parameters
could be estimated using the empirical Bayes procedure (see [14] and [3]). Given the observations,
the joint likelihood distributions have been compared with the joint prior distributions. The
joint likelihood distributions are just the multiplication of the likelihood distribution of X, and
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joint prior distributions are the multiplication of the prior distributions of the parameters. We
can estimate the prior parameters by comparing them individually with their corresponding
likelihood functions.

5. Control Chart for Mean using Empirical Bayes

Using the empirical Bayes method, we propose a new control chart for the mean. Suppose
X is a quality characteristic of a manufacturing process and is assumed to follow a normal
distribution with mean, µ and variance, σ2. The location parameter, µ, has a normal prior with
unknown parameters, and σ follows an inverse gamma distribution with unknown parameters.
Let X has n observations X1, X2, . . . , Xn, such that Xi ∼ N(µ, σ2). here µ ∼ N(µ0, σ2) and
σ ∼ InverseGamma(α, β).

g(x|µ, σ2) =
1

(σ
√

2π)n
e−

1
2σ2 ∑(xi−µ)2

− ∞ < µ < ∞, σ2 > 0

g(µ|σ2, x) =
1

σ
√

2π
e−

1
2σ2 (µ−µ0) − ∞ < µ0 < ∞

g(σ2|x) = βα

Γα
(σ2)−α−1e

β

σ2 α > 0, β > 0

Hence, the posterior distribution of (µ, σ2) is given by,

g(µ, σ2|x) = g(x|µ, σ2)g(µ|σ2)∫ ∞
0

∫ ∞
−∞ g(x|µ, σ2)g(µ|σ2)dµdσ2

So, posterior mean E(µ|x) = ∑ xi+µ0
n+1 . The empirical Bayes estimate of µ0 is X̄.

So, ˆE(µ|x) = (n+1)x̄
n+1 = x̄.

Now,

E(σ2|x) =
∫ ∞

0
σg(µ, σ2|x)dσ2

=
∫ ∞

0
σg(σ2|x)g(µ|σ2, x)dσ2

=
∫ ∞

0
σg(σ2|x)g(µ|σ2, x)dσ2

=
Γ( n

2 + α)

Γ( n+1
2 + α)

w
n+1

2 +α
1

w
n
2 +α
1

=
Γ( n

2 + α)

Γ( n+1
2 + α)

√
w1

=
2n+2α−1Γ( n

2 + α)√
πΓ(n + 2α)

√
w1

here w1 = ∑ x2
i + 2β + µ2

0 −
x2

0
n+1 .

The empirical Bayes procedure will be used to estimate the parameters. So the estimated values
of the parameters of the likelihood function of σ2 are α̂ = (n − 3)/2 and β̂ = ∑n

i=1(X − X̄)2/2
(see [15]). Therefore

ˆE(σ|x) =
Γ( n

2 + n−3
2 )

Γ( n+1
2 + n−3

2 )

√
2

n

∑
i=1

(xi − x̄)2

=
Γ( 2n−3

2 )

Γ( 2n−2
2 )

√
2

n

∑
i=1

(xi − x̄)2

=
Γ( 2n−3

2 )

Γ( 2n−2
2 + 1

2 )

√
2

n

∑
i=1

(xi − x̄)2
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Hence, the control limits of the proposed control chart for the mean are

UCL = x̄ + L
Γ( 2n−3

2 )

Γ( 2n−2
2 + 1

2 )

√
2

n

∑
i=1

(xi − x̄)2

CL = x̄

LCL = x̄ − L
Γ( 2n−3

2 )

Γ( 2n−2
2 + 1

2 )

√
2

n

∑
i=1

(xi − x̄)2

Here, L is the control chart coefficient.

6. Evaluation of Performance and Comparisons

This section uses Monte Carlo Simulation to compute the proposed control chart’s Average Run
Length (ARL) for mean using empirical Bayes. We consider different sample values of n and
compare the computed in-control-ARL (ARL0) and out-of-control ARL (ARL1) with the existing
posterior mean control chart and Shewhart Control Chart. The decision is based on the value of
ARL1. The control chart with a smaller ARL1 value is more efficient in detecting a shift in the
process mean than other control charts. We consider the shift in process mean as µ∗ = µ + cσ.

Algorithm for construction of UCL and LCL is as follows.

• Step 1: Select a random sample of size n, say, x1, x2, . . . , xn from N(µ, σ2) distribution. Here
we assume that µ has a normal prior and σ has an Inverse Gamma prior with unknown
parameters.

• Step 2: Estimate the posterior distribution parameters using the empirical Bayes procedure.

• Step 3: For given values of n and fixed in-control Average Run Length(ARL), say r0, find
the control chart coefficient L.

• Step 4: Find UCL and LCL for each i, i = 1, 2, . . . , n. The process is in control if all the
values of xi fall within the UCL and LCL of the proposed mean chart.

• Step 5: Next, we find the ARL0 value for a particular choice of the process mean µ.

• Step 6: We shift the process mean µ to a certain amount, say c and compute ARL1 by
repeating steps 1 to steps 5.

Here, we fixed the ARL0 at 370. The ARL values of the proposed control chart are given in Table
1 - Table 3.

We can see the proposed control chart for mean using empirical Bayes estimators has the
least ARL among all the control charts under consideration. The ARL1 of the proposed chart
decreases quickly for a small shift in the process mean. As we increase the sample size, the ARL1
values of the control chart decrease. Therefore, we can conclude that the new control chart for
using empirical Bayes estimators is more efficient than the posterior control chart and Shewhart
X̄ control chart.

7. Illustrative Example

In recent trends, SPC researchers use both simulated and real-life data to evaluate the performance
of a control chart. In this study, we have considered a real dataset from [16] to evaluate the
performance of the new control chart for mean using empirical Bayes estimates. The data set is
given in the appendix section. Here, we have filled out height data in ten subgroups of size 10.
It is assumed that the control chart statistic, fill height, follows normal distribution where the
parameters µ and σ have unknown prior distribution. Using the empirical Bayes procedure, the
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Table 1: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart for n = 10 and ARL = 370

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 281.397 312.467 328.011
0.1 183.248 221.991 249.167

0.15 128.813 144.631 181.701
0.2 86.003 94.297 123.981

0.25 58.238 68.997 87.457
0.3 34.184 39.832 59.301
0.4 9.327 18.115 28.034
0.7 2.265 3.168 4.387
0.9 1.183 1.719 2.814

Table 2: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart for n = 20 and ARL = 370

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 236.234 289.754 300.373
0.1 131.197 168.103 185.559

0.15 67.469 91.476 106.358
0.2 34.482 50.893 61.539

0.25 21.107 29.555 36.807
0.3 12.893 17.985 22.885
0.4 5.221 7.663 9.959
0.7 1.934 2.988 3.824
0.9 1.021 1.504 2.357

Table 3: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart for n = 30 and ARL = 370

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 183.609 262.736 271.659
0.1 96.064 130.865 142.164

0.15 34.627 63.37 71.433
0.2 24.922 32.409 37.614

0.25 9.088 17.731 20.860
0.3 3.167 10.384 12.343
0.4 2.081 4.338 5.163
0.7 1.355 2.805 3.532
0.9 1.008 1.244 1.841

prior parameters are estimated. The UCL and LCL of the new control chart for mean based on
empirical Bayes for the data set are 0.7288446 and -0.6888446, respectively. From figure 2, we
can see that the proposed control chart based on empirical Bayes can detect an out-of-control
observation more precisely than the posterior control chart for mean and Shewhart X̄ chart.
In figure 4, the Average Run Lengths of the proposed chart and other control charts are drawn.
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Figure 1: Comparison of ARLs of Empirical Bayes Mean Control Chart for different sample values

Table 4: Comparison of average run lengths of Empirical Bayes control chart for Mean with Posterior Mean Control
Chart and Shewhart X̄ Control Chart

Shift Empirical Bayes Mean Chart Posterior Mean Chart Shewhart X̄ Chart
L = 3 L = 3 L = 3

0.0 370.398 370.398 370.398
0.05 297.351 322.097 334.916
0.1 180.398 227.721 257.719

0.15 101.842 147.533 182.071
0.2 58.247 94.044 124.894

0.25 34.533 60.687 85.584
0.3 21.331 40.032 59.301
0.4 9.217 18.786 29.912
0.7 1.867 3.538 5.911
0.9 1.198 1.829 2.822

From table 4 and figure 2, we can conclude that the proposed mean chart using the empirical
Bayes estimator has smaller ARL values than the posterior mean control chart as well as Shewhart
X̄ control chart when there occurs a shift. In figure 1, we can see that the width of control limits
for the proposed control chart is narrower than the posterior mean control chart and Shewhart X̄
chart. This implies that the new mean chart based on empirical Bayes estimate can detect an ’out
of control state’ of a process mean earlier.

8. Conclusion

This article proposes a new control chart for mean using the empirical Bayes approach. For the
mean, we compare the performance of the new control chart with that of the existing control
charts. We used ARL values to measure the performance of the control charts for the mean. It is
observed that the proposed control chart can detect the smaller shift in the process mean quickly
than the posterior mean control chart and Shewhart X̄ control chart. It was also noted that the
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Figure 2: Empirical Bayes control chart with that of Posterior Control Chart

Figure 3: Empirical Bayes Control Chart and Shewhart X̄ control chart

proposed control chart performed better for larger sample sizes.
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Figure 4: Comparison of ARLs of Empirical Bayes Mean Control Chart with other Control Charts for the example
dataset
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Abstract 

A single server retrial fuzzy queuing model is presented in this study. An unreliable 𝐹𝑀/𝐹𝑀/1 

fuzzy retrial queue with a virtually unlimited retrial orbit and a standard queue is investigated. After 

an unspecified amount of time has elapsed and the server is workable and inactive, orbit patrons don't 

rejoin the regular queue, but instead, enter the server momentarily. Customers who arrive and 

discover the server is engaged or has struggled are placed in the regular queue, whereas customers 

who are disrupted are always placed in orbit. The model's prosecution proportions are also calculated 

in a hazy environment. The main goal of this investigation is to compare the efficacy of a single server 

retrial queuing system based on fuzzy queuing theory and intuitionistic fuzzy queuing theory. The 

arrival, service, failure, orbit, and repair rates are documented using triangular and triangular 

intuitionistic fuzzy numbers. The evaluation metrics for the fuzzy queuing theory model are proffered 

as a range of possible values, whereas the intuitionistic fuzzy queuing theory model encompasses a 

wide range of values. An approach is conducted to discover quality measures using a design protocol 

in which the fuzzy values are left alone and not repurposed to crisp values, allowing us to draw 

research findings in an ambiguous future. Two numerical problems are solved to emphasize the 

method's protracted survivability. 

Keywords: queuing theory, retrial queues, fuzzy numbers, breakdown, repair 

I. Introduction

We scrutinize an  𝐹𝑀/𝐹𝑀/1 fuzzy retrial queue with an undependable server whose retrial orbit 
and standard queue both have inexhaustible capacity space in this manuscript. People can only 
access the retrial orbit if their service is thwarted due to an outage. Retrial patrons already don't 
resume the consistent backlog; instead, they try accessing the server explicitly at random intervals, 
independent of people arriving and perhaps other retrial clients. These hindered customers, on the 
other hand, can only regain entry access to the servers when it is fully functional and sedentary, and 
they just rehash the service until it is efficaciously processed. In the history of queuing systems, a 
variety of methods for placing fuzzy numbers has been developed. In this paper, we propose a 
method for solving the single server retrial queuing model in both fuzzy and intuitionistic fuzzy 
environments while sustaining their essence. Authors and researchers in the literature on fuzzy 
retrial queuing models used defuzzification methods, whereas here we keep the fuzziness until the 
end. Our paper is one-of-a-kind in this regard.  This method applies to previous methods in that it 
is straightforward, configurable, and relatable. We can focus on the interplay between the retrial 
orbit and the standard queue in particular, which is excluded from the overwhelming bulk of retrial 
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concepts which does not include a standard queue with eternal or nontrivial capacity. The random 
variables are articulated as the combination of two independent random variables, one being a broad 
sweeping binomial random variable and the other of which conforms to the same estimation for a 
real-time constructive criticism prototype, that is, one with an unbounded retrial rate. Furthermore, 
an intriguing stabilization result will be demonstrated, namely that the standard queue can stay 
constant even though a whole system's (and, specifically, the orbit's) stability condition is 
contravened. There seem to be different sorts of breakdowns assumed here: engaged breakdowns 
that happen during a service delivery process and indolent breakdowns that happen when the 
server is not failing but is sluggish. The time between customer entrants, provider closure, 
shutdowns, retrials, and refurbishments are assumed to be a random variable with an exponential 
distribution. 

The retrial queuing model with breakages and renovations is a queuing system with a broad 
array of applications in manufacturing technologies where a server can break down at any time, be 
repaired, and restarted. Retrial queues and queuing systems with malfunctions have both been 
intensively investigated in empirical studies. Authors in the antiquity of retrial queue literature 
considered an innumerable orbit retrial queue and a normal queue, but not a server that is prone to 
failure. Customers who arrive to seek the server preoccupied can enlist the retrial orbit or the regular 
queue, according to their model. Customers who arrive to seek the server down (hectic or ceased) 
are appended to the orbit in retrial concepts without any waiting area and server breakdowns. Some 
models oblige these customers to join the orbit, whereas others offer them the right to terminate the 
system. Except for two alternatives, some models also require or enable in-service customers who 
have been disrupted by a server’s inability to enroll in the retrial orbit. Our prescribed concept is 
unique where orbit consumers need not re-join the standard queue but instead try to enter the server 
instantaneously after an unidentified amount of time has passed and the server is functional and 
idle. Customers who arrive and discover the server is overwhelmed or has struggled are placed in 
the regular queue because customers who are curtailed are always placed in orbit. 

Starting failures, vacations, active shutdowns, and both active and idle breakdowns are all 
taken into account in the retrial fuzzy queue literature. Ramesh et al [1] with the incentre-based 
sorting method, convert the input rates to crisp numerals. By using retrial queuing models, this 
article proposes a ruse for perceiving bounteous exploration mission indicators of crisp values for a 
single server beauty salon using glycolic acid. In a fuzzy environment, the solitary server dual orbit 
retrial queuing model is probed with customer disparagement. Further, 𝛼 −cut methodology is used 
to generate a series of parameterized nonlinear programming for evaluation metrics relying on 
Zadeh's extension principle, which is then remedied utilizing calculus concepts by S S Sanga et al 
[2]. Kannadasan et al [3] used hexagonal fuzzy numbers to the input parameters and solved retrial 
queues with a working vacation. Jain et al [4] looked at the performance of a machine repair system 
that operates in a fuzzy environment with an admission control  𝐹 −policy. The steady-state 
governing equations are constructed using the auxiliary variable correlating to retrial times, and 
then overt derivations for the queue volume probability distributions are deduced by using the 
Laplace transform and iterative method, as well as defuzzification. Upadhyaya et al [5] analyzed the 
𝑀𝑥/𝐺/1 retrial queue with frustrated customers transformed the vacation policy and used Bernoulli 
feedback. The system size distribution and other key data points are determined using an auxiliary 
variable approach and the probability-generating function methodology. S S Sanga et al [6] dealt 
with the admittance control policy for a solo server countable space queuing system with 
disappointed consumers and dispersed retrial times. By introducing ancillary variables correlating 
to residual retrial times and interpreting Chapman–Kolmogorov formulations, the steady flow 
queue size characterization of the system size is reviewed. S S Sanga et al [7] in a dual orbit retrial 
queuing system with different types of customers, ordinary and premium class customers, the 
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behavior of balking customers was probed. The fuzzified indices are ascertained using a 
parameterized non-linear optimization framework that relies on the extension principle of Zadeh 
and the 𝛼 −cut method is used to determine the fuzzified indices. nonlinear programming approach 
based on Zadeh's extension principle and 𝛼 −cut method. Moreover, the performance targets are 
defuzzified using the ranking index method. Ebenesar Anna Bagyam et al [8] considered the state-
dependent batch arrival two-phase retrial queue and used Zadeh's extension principle, the model is 
further examined in a fuzzy environment. Kalpana et al [9] proposed a numerical method to deduce 
the membership function of a fuzzy retrial queue with a solo server line model 𝐹𝑀1, 𝐹𝑀2/𝐹𝑀1, 𝐹𝑀2/

1 with priority and inequitable service rate. In this paper, fuzzy queues are transmogrified into 
classical queues using the 𝛼 −cut methodology and Zadeh's principle. Sherman et al [12] presented 
several stochastic decomposability results as well as stability conditions where the customers in the 
retrial queue do not re-join the regular queue; meanwhile, they try to enter the server until it is found 
to be functional and idle. Mukeba [13] used a method named flexible 𝛼 −cuts method to quantify 
the quality metrics of a solo server fuzzy retrial queue with malfunctions and repair work. Kulkarni 
et al [14] studied the limiting behavior of a solitary server retrial queue where the server is subject 
to malfunctions and repair work. He used Markov regenerative processes to deduce the convergence 
criteria and study the system's limiting behavior. Jau-Chuan Ke et al [16] used the 𝛼 −cut method to 
turn a fuzzy into a group of traditional retrial queues. A sequence of parameterized non-linear 
programs is devised to explain the clan of crisp retrial queues using the membership functions of 
the system components. Artalejo et al [17] are concerned about the balking retrial queue. Using 
classical mean diffusion characteristics, the ergodicity condition is first researched. A recursive 
approach based on the theory of regenerative processes is used to ascertain the restricting 
distribution of the number of clients in the system. Kannadasan et al [18] examined finite capacity 
retrial queues using hexagonal fuzzy numbers. Rani Shobha et al [19] used ANFIS strategy and set 
of differential linear equations in the markovian retrial queue with double orbits. 

Most previous research on fuzzy queuing models has concentrated on two or three fuzzy 
variables, with researchers employing ranking techniques or defuzzification processes to repurpose 
fuzzy variables into crisp. In this paper, we propose a way to collect information about system 
behavior for retrial queues by using five fuzzy variables. Throughout the paper, we keep the fuzzy 
values and don't change them to crisp values for the different membership functions (TFN and 
TIFN). 

The remaining part of the article is configured as regards. Prelims and definitions are covered 
in section 2. The mathematical formalism, as well as the circumstances for stability, are described in 
Section 3. The layout method for dealing with the current model is detailed in Section 4. Standard 
queuing relevant factors are discussed in Section 5, and Mathematical descriptions and visual 
observations are provided in Section 6. This work wraps up with Section 7. 

II. Preliminaries

    The motive of this division is to give some basic definitions, annotations, and outcomes that are 
used in our further calculations. 

Definition 2.1. [10] “A fuzzy set �̃� is defined on 𝑅, the set of real numbers is called a fuzzy number 
if its membership function 𝜇𝐴: 𝑅 → [0,1] has the following conditions: 

(a) �̃� is convex, which means that there exists 𝑥1, 𝑥2 ∈ 𝑅 and 𝜆 ∈ [0,1], such that𝜇�̃�(𝜆𝑥1 +
(1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2)}

(b) �̃� is normal, which means that there exists an 𝑥 ∈ 𝑅 such that 𝜇𝐴(𝑥) = 1̃
(c) �̃� is piecewise continuous.”
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Definition 2.2. [10] “A fuzzy number �̃� is defined on 𝑅, the set of real numbers is said to be a 
triangular fuzzy number (TFN) if its membership function 𝜇𝐴: 𝑅 → [0,1] which satisfies the 
following conditions: 

        𝜇𝐴(𝑥)      = 

{

𝑥−�̃�1

�̃�2−�̃�1
for �̃�1 ≤ 𝑥 ≤ �̃�2

1 for 𝑥 = �̃�2
�̃�3−𝑥

�̃�3−�̃�2
 for �̃�2 ≤ 𝑥 ≤ �̃�3

0 otherwise

 “ 

The triangular fuzzy number is illustrated in Figure 1. 

Figure 1: Triangular fuzzy number 

Definition 2.3. Let the two triangular fuzzy numbers be �̃� ≈ (�̃�1, �̃�2, �̃�3) and �̃� ≈ (�̃�1, �̃�2, �̃�3) and then 
the arithmetic operations on TFN be given as follows: 

(A)Addition

�̃� + �̃� ≈ (�̃�1 + �̃�2,𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})

(1) 
(B)Subtraction

�̃� − �̃� ≈ (�̃�1 − �̃�2,𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})

(2) 
(C) Multiplication

�̃�. �̃� ≈ (�̃�1. �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})

(3) 
(D) Division

�̃�

�̃�
≈ (

�̃�1

�̃�2
, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2})

(4) 

Definition 2.4. “For every triangular fuzzy number �̃� ≈ (�̃�1, �̃�2, �̃�3) ∈ 𝐹(𝑅) ranking function 

ℜ: 𝐹(𝑅) → 𝑅 is defined by graded mean as”

 

ℜ(�̃�) =
(�̃�1 + 4�̃�2 + �̃�3)

6
For any two TFN �̃� ≈ (�̃�1, �̃�2, �̃�3) and

 
�̃� ≈ (�̃�1, �̃�2, �̃�3) we have the following comparisons,

(𝑎)�̃� ≻ �̃� ⇔ ℜ(�̃�) > ℜ(�̃�) 

(𝑏)�̃� ≺ �̃� ⇔ ℜ(�̃�) < ℜ(�̃�) 

(𝑐)�̃� ≈ �̃� ⇔ ℜ(�̃�) = ℜ(�̃�) 

(𝑑)�̃� − �̃� ≈ 0 ⇔ ℜ(�̃�) − ℜ(�̃�) = 0 
A triangular fuzzy number �̃� ≈ (�̃�1, �̃�2, �̃�3) ∈ 𝐹(𝑅) is known to be positive if ℜ(�̃�) > 0 and defined 
by  �̃� ≻ 0 

Definition 2.5. [11] “Let a non–empty set be 𝑋. An Intuitionistic fuzzy set (IFS) �̃�′ is defined as �̃�′ =
{(𝑥, 𝜇𝐴′(𝑥), 𝛾𝐴′(𝑥)/𝑥 ∈ 𝑋)}, where 𝜇𝐴′: 𝑋 → [0,1] and 𝛾𝐴′: 𝑋 → [0,1] denotes the degree of membership 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

221



S. Aarthi
SINGLE SERVER RETRIAL QUEUE WITH REPAIR AND
BREAKDOWN

and degree of non–membership functions respectively where 𝑥 ∈ 𝑋 , for every 𝑥 ∈ 𝑋, 0 ≤ 𝜇𝐴′(𝑥) +

𝛾𝐴′(𝑥) ≤ 1. 

Definition 2.6 [11] An intuitionistic fuzzy set described on R, the real numbers are said to be an 
Intuitionistic fuzzy number (IFN) if its membership function 𝜇𝐴′: 𝑅 → [0,1] and its non–
membership function 𝛾𝐴′: 𝑅 → [0,1] should be agreeable to the following conditions: 

i) �̃�′ is normal, which means that there exists an 𝑥 ∈ 𝑅, such that 𝜇𝐴′(𝑥) = 1, 𝛾𝐴′(𝑥) = 0

ii) �̃�′ is convex for the membership functions 𝜇𝐴′, which means that there exists 𝑥1, 𝑥2 ∈ 𝑅 and
𝜆 ∈ [0,1]  such that    𝜇𝐴′(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{𝜇𝐴′(𝑥1), 𝜇𝐴′(𝑥2)}.

iii) �̃�′ is concave for the non–membership function 𝛾𝐴′ , which means that there exists 𝑥1, 𝑥2 ∈
𝑅 and 𝜆 ∈ [0,1] such that” 𝛾𝐴′(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝑚𝑎𝑥{𝛾𝐴′(𝑥1), 𝛾𝐴′(𝑥2)}.

 Definition 2.7. [11] A fuzzy number �̃�′on 𝑅 is said to be a triangular intuitionistic fuzzy number 

(TIFN) if its membership function 𝜇𝐴′: 𝑅 → [0,1] and non-membership function 𝛾𝐴′: 𝑅 → [0,1] has the 
following conditions:

𝜇�̃�′(𝑥)=

{

𝑥−�̃�1

�̃�2−�̃�1
for �̃�1 ≤ 𝑥 ≤ �̃�2

1 for 𝑥 = �̃�2
�̃�3−𝑥

�̃�3−�̃�2
 for �̃�2 ≤ 𝑥 ≤ �̃�3

0 otherwise
and 

  𝛾𝐴′(𝑥) =

{

 1 for 𝑥 < �̃�1
′ , 𝑥 > �̃�3

′

�̃�2−𝑥

�̃�2−�̃�1
′  for �̃�1

′ ≤ 𝑥 ≤ �̃�2

0 for 𝑥 = �̃�2

 
𝑥−�̃�2

�̃�3−�̃�2
for  �̃�2 ≤ 𝑥 ≤ �̃�3

′

and is given by �̃�′ = (𝑎1, 𝑎2, 𝑎3; 𝑎1′ , 𝑎2, 𝑎3′ ) where 𝑎1′ ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ 𝑎3
′ .

The triangular intuitionistic fuzzy number is illustrated in Figure 2. 
Cases: Let �̃�′ = (𝑎1, 𝑎2, 𝑎3; 𝑎1

′ , 𝑎2, 𝑎3
′ ) be a TIFN then the following cases arise.

Case:1 If �̃�1′ = �̃�1, �̃�3
′ = �̃�3 then �̃�′ represent a triangular fuzzy number.

Case:2 If  �̃�1′ = �̃�1 = �̃�2 = �̃�3
′ = �̃�3 = �̃� then �̃�′ represent a real number �̃�. The parametric form of

TIFN �̃�′ is represented as ( ), , ; , ,A m m     =  where �̃�, �̃�′&𝛽, 𝛽′represents the left spread and
right spread of membership functions and non–membership functions respectively.” 

Figure 2: Triangular intuitionistic fuzzy number 

Definition 2.8. “The extension of fuzzy arithmetic operations of Ming Ma et al [10] to the set of 
triangular intuitionistic fuzzy numbers based upon both location indices and functions of fuzziness 
indices. The location indices number is taken in the regular arithmetic while the functions of 
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fuzziness indices are assumed to follow the lattice rule which is the least upper bound in the lattice 
𝐼′. 

For any two arbitrary TIFN �̃�′ ≈ (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1
′ , 𝛽1

′) and �̃�′ ≈ (�̃�2, �̃�2, 𝛽2; �̃�2, �̃�2
′ , 𝛽2

′) and ∗
∈ {+,−,×,÷}, then the arithmetic operations on TIFN are defined by�̃�′ ∗ �̃�′ = (�̃�1 ∗ �̃�2, �̃�1 ∨ �̃�2, 𝛽1 ∨

𝛽2; �̃�1 ∗ �̃�2, �̃�1
′ ∨ �̃�2

′ , 𝛽1
′ ∨ 𝛽2

′)

In particular, for any two TIFN �̃�′ ≈ (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1
′ , 𝛽1

′) and �̃�′ ≈ (�̃�2, �̃�2, 𝛽2; �̃�2, �̃�2
′ , 𝛽2

′)

the arithmetic operations are defined as  
�̃�′ ∗ �̃�′ = (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1

′ , 𝛽1
′) ∗ (�̃�2, �̃�2, 𝛽2; �̃�2, �̃�2

′ , 𝛽2
′)

�̃�′ ∗ �̃�′ = (�̃�1 ∗ �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ; �̃�1 ∗ �̃�2, 𝑚𝑎𝑥{�̃�1
′ , �̃�2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})

�̃�′ ∗ �̃�′ = (�̃�1 ∗ �̃�2, �̃�1 ∨ �̃�2, 𝛽1 ∨ 𝛽2; �̃�1 ∗ �̃�2, �̃�1
′ ∨ �̃�2

′ , 𝛽1
′ ∨ 𝛽2

′)

In particular, for any two TIFN �̃�′ ≈ (�̃�1, �̃�2, �̃�3; �̃�1′ , �̃�2′ , �̃�3′ ) ≈ (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1
′ , 𝛽1

′), �̃�′ ≈

(�̃�1, �̃�2, �̃�3; �̃�1
′ , �̃�2

′ , �̃�3
′) ≈ (�̃�2, �̃�2, 𝛽2; �̃�2, �̃�2

′ , 𝛽2
′)we define:””

Addition 

�̃�′ + �̃�′ = (�̃�1 + �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ; �̃�1 + �̃�2, 𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})

(5) 
Subtraction 

�̃�′ − �̃�′ = (�̃�1 − �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ; �̃�1 − �̃�2, 𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})

(6) 

Multiplication   

�̃�′ × �̃�′ = (�̃�1 × �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ; �̃�1 × �̃�2, 𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})

(7) 
Division 

�̃�′ ÷ �̃�′ = (�̃�1 ÷ �̃�2, 𝑚𝑎𝑥{�̃�1, �̃�2} ,𝑚𝑎𝑥{𝛽1, 𝛽2} ; �̃�1 ÷ �̃�2, 𝑚𝑎𝑥{𝛼1
′ , 𝛼2

′ } ,𝑚𝑎𝑥{𝛽1
′ , 𝛽2

′})”
(8)

Definition 2.9.“Consider an arbitrary TIFN �̃�′ = (𝑎1, 𝑎2, 𝑎3; 𝑎1′ , 𝑎2, 𝑎3′ ) = (𝑚, α, β;𝑚, α′, β′) and the
magnitude of TIFN �̃�′ is given by  

𝑚𝑎𝑔(�̃�′) =
1

2
∫ (𝛽 + 𝛽′ + 6�̃� − α̃ − �̃�′)𝑓(𝑟)𝑑𝑟
1

0

 

In real-life scenarios, decision-makers select the value of ( )f r  based on their circumstances. Here
for our ease, we choose  𝑓(𝑟) = 𝑟2 

∴  𝑚𝑎𝑔(�̃�′) = (
𝛽 + 𝛽′ + 6�̃� − α̃ − �̃�′

6
) 

For any two TIFN �̃�′ ≈ (�̃�1, �̃�1, 𝛽1; �̃�1, �̃�1
′ , 𝛽1

′ , ) & �̃�′ ≈ (�̃�2, �̃�2, 𝛽2; �̃�2, �̃�1
′ , 𝛽1

′) in 𝐹(𝑅), we define

(𝑎)�̃�′ ≥ �̃�′ ⇔𝑚𝑎𝑔(�̃�′) ≥ 𝑚𝑎𝑔(�̃�′) 

(𝑏)�̃�′ ≤ �̃�′ ⇔𝑚𝑎𝑔(�̃�′) ≤ 𝑚𝑎𝑔(�̃�′) 

        (𝑐)�̃�′ ≈ �̃�′ ⇔𝑚𝑎𝑔(�̃�′) = 𝑚𝑎𝑔(�̃�′)” 
3 

III. Model Description and Stability Conditions

Presume that a single type of customer enters the queue through a Poisson process with a fuzzy 
parameter �̃�. They form a queue to receive an exponentially distributed service with a fuzzy rate �̃� 
from an unreliable server whose failure times are independent and exponentially distributed with 
a fuzzy rate �̃�. When a customer's service is obstructed due to a server failure, the customer can exit 
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the zone and enter the retrial orbit, where a rate is a fuzzy number �̃�. During this time, the server is 
delegated to be repaired at a variable rate �̃�. When the server is functional and idle, orbit consumers 
do not rejoin the standard queue and instead try to enter the server explicitly after an unspecified 
period. All processes in the system are hypothesized to be self-contained and distributed uniformly. 
The queue and orbit sizes are assumed to be infinite, and the service discipline is FIFO (first in first 
out). 

Customers enter the system through a Poisson process with a rate �̃� > 0; �̃�′ > 0 and response 
times are independent and identically distributed exponential random variables with rate �̃� >
0; �̃�′ > 0. Server faults happen at a stable level �̃� > 0; �̃�′ > 0, and server repair occurs at a constant 
rate of �̃� > 0; �̃�′ > 0. A customer whose service is disrupted by a server outage joins orbit and 
spends an accelerating span with a rate �̃� > 0; �̃�′ > 0, whereby it arrives service (if available) or 
persists in orbit for a supplemental period with rate �̃� and exponentially distributed time. 

The number of clients/messages in the line at the time �̃� is signified by 𝑁𝑞𝑡 . 𝑁𝑜𝑡 stands for
the number of clients/messages in the orbit at the time �̃�. The random process �̃�𝑡 is the invasion status 
of the site supplied by  

 1     if the site is overloaded at the time period �̃� 
�̃�𝑡= 

0 if the site is not occupied at the time period �̃� 

whereas �̃�𝑡 exemplifies the site's operational capability at the time �̃� categorized by 

 1     if the site is up and running at the time period �̃� 
Y
t

= 

0 if the site is down at the time period �̃� 

Then {(𝑁𝑞𝑡 , �̃�𝑡 , 𝑁𝑜𝑡 , �̃�𝑡): �̃� ≥ 0} is a continuous-time Markov process of explaining the system's
state at the time �̃�. Let 𝑁𝑠𝑡 symbolised the total number of clients/messages in the system at a time �̃�
which means it represents the number in orbit, queue, and in service. The procedure {𝑁𝑠𝑡: �̃� ≥ 0}

exemplifies how the system size varies over time. The server is operational for a proportion of time, 

and �̃�

(�̃�+�̃�)
; thus, the excellent service rate is �̃��̃�

(�̃�+�̃�)
 and 𝜆(�̃�+�̃�)

�̃��̃�
< 1 is a necessary and sufficient 

condition for stability analysis.[15] 

Specifying �̃�𝑚,𝑛,𝑜,𝑝 as the restricting probability that the system is in the state (𝑚, 𝑛, 𝑜, 𝑝), i.e., 

( )lim
, , , ,, , , t P N m X n N o Y pqt t ot tm n o p ⎯⎯⎯→=  = = = =

Where the index 𝑚 represents the queue size, the index 𝑛 represents the invasion status (0 or 1), the 
index 𝑜 represents the size of the orbit and the index 𝑝 represents the operational capability of the 
server (0 or 1). The orbit and queue size are depicted by the morph variables �̃�1 and �̃�2. 

 Let the generating function of �̃�𝑚,𝑛,𝑜,𝑝 concerning the orbit size as follows 
𝜀𝑚,𝑛,𝑝(�̃�1) = ∑ �̃�1

𝑜∞
𝑜=0 �̃�𝑚,𝑛,𝑜,𝑝 and

 Let the generating function of 𝜀�̃�,𝑛,𝑝(�̃�1) concerning the queue size as follows 

𝜒𝑛,𝑝(�̃�1, �̃�2) = ∑ �̃�2
𝑚

∞

𝑚=0

𝜀𝑚,𝑛,𝑝(�̃�1) 
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Consider the probability-generating function as 𝜀0̃,0,1(�̃�1), 𝜒0,0(�̃�1, �̃�2)and 𝜒1,1(�̃�1, �̃�2) when the server 
is sluggish, ceased, and strenuous respectively. Define 

𝐸(�̃�1, �̃�2) = ∑∑𝑝(𝑜,𝑚)

∞

𝑜=0

∞

𝑚=0

�̃�1
𝑜�̃�2

𝑚 = 𝜀0̃,0,1(�̃�1) + 𝜒0,0(�̃�1, �̃�2) + 𝜒1,1(�̃�1, �̃�2)

is the joint probability generating function of the orbit and queue size where 𝑝(𝑜,𝑚) is the joint 
probability mass function of 𝑁𝑞 and 𝑁𝑜. And

𝐹(�̃�) = ∑𝑞(𝑜)

∞

𝑜=0

�̃�𝑜 = 𝜀0̃,0,1(�̃�) + 𝜒0,0(�̃�, �̃�) + �̃�𝜒1,1(�̃�, �̃�)

is the probability-generating function of system size where 𝑞(𝑜) denote the probability mass 
function of 𝑁𝑠.

IV. Single Server Retrial Queues (𝐹𝑀/𝐹𝑀/1): (∞/𝐹𝐼𝐹𝑂) in Fuzzy and
Intuitionistic Fuzzy Environment 

We assume a solitary-server retrial fuzzy queuing system with limitless capacity. The inter-arrival 
rates �̃�, service rate �̃�, retrial rate �̃�, failure rate �̃� and repair rate �̃� are nearly comprehended and 
depicted by a fuzzy set, 

�̃� = {𝑎, 𝜇𝜆(𝑎)/𝑎 ∈ 𝐴} 

�̃� = {𝑠, 𝜇�̃�(𝑠)/𝑠 ∈ 𝑆} 

�̃� = {𝑜, 𝜇�̃�(𝑜)/𝑜 ∈ 𝑂} 
�̃� = {𝑓, 𝜇�̃�(𝑓)/𝑓 ∈ 𝐹} 

�̃� = {𝑟, 𝜇�̃�(𝑟)/𝑟 ∈ 𝑅} 
In this, 𝐴, 𝑆, 𝑂, 𝐹 & 𝑅 are a traditional universal set of arrival rate, service rate, orbit rate, failure rate, 
and repair rate respectively and their corresponding membership functions are given as 
𝜇𝜆(𝑎), 𝜇�̃�(𝑠), 𝜇�̃�(𝑜), 𝜇�̃�(𝑓)&𝜇�̃�(𝑟) respectively. In addition to that, assume a solitary server retrial 
intuitionistic fuzzy queuing system with limitless capacity. The inter-arrival rates �̃�′, service rate �̃�′, 
retrial rate �̃�′, failure rate �̃�′ and repair rate �̃�′ are nearly comprehended and depicted by an 
intuitionistic fuzzy set, 

�̃�′ = {𝑎, 𝜇𝜆′(𝑎), 𝛾�̃�′(𝑎)/𝑎 ∈ 𝐴} 

�̃�′ = {𝑠, 𝜇�̃�′(𝑠), 𝛾�̃�′(𝑠)/𝑠 ∈ 𝑆}

�̃�′ = {𝑜, 𝜇�̃�′(𝑜), 𝛾�̃�′(𝑜)/𝑜 ∈ 𝑂} 
�̃�′ = {𝑓, 𝜇�̃�′(𝑓), 𝛾�̃�′(𝑓)/𝑓 ∈ 𝐹} 

�̃�′ = {𝑟, 𝜇�̃�′(𝑟), 𝛾�̃�′(𝑟)/𝑟 ∈ 𝑅} 

In this, 𝐴, 𝑆, 𝑂, 𝐹 & 𝑅 are a traditional set of arrival, service, orbit, failure, and repair rate respectively 
and their corresponding membership and non-membership functions are given as 
𝜇𝜆′(𝑎), 𝜇�̃�′(𝑠), 𝜇�̃�′(𝑜), 𝜇�̃�′(𝑓), 𝜇�̃�′(𝑟) & 𝛾𝜆′(𝑎), 𝛾�̃�′(𝑠), 𝛾�̃�′(𝑜), 𝛾�̃�′(𝑓), 𝛾�̃�′(𝑟) respectively. 

V. Solo Server Retrial Queuing Model with Infinite Capacity

Let the following assumptions �̃� and �̃�′ be the fuzzy and intuitionistic fuzzy arrival rates 
respectively; �̃� and �̃�′ be the fuzzy and intuitionistic fuzzy service rates respectively; �̃� and �̃�′ be the 
fuzzy and intuitionistic fuzzy retrial(orbit) rate; �̃� and �̃�′ be the fuzzy and intuitionistic fuzzy failure 
rates respectively; �̃� and �̃�′ be the fuzzy and intuitionistic fuzzy repair rates respectively. At the 
steady-state, the 𝐹𝐼𝐹𝑂 discipline is upheld and the capacity is unlimited. 
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The following are the fabrication characteristics of the above model: 
i) The number of customers in the queue is given as

𝑁𝑞 =
𝜆[�̃��̃�(�̃�+�̃�)+𝜆(�̃�+�̃�)

2
]

�̃�(�̃�+�̃�)[�̃�(�̃�+�̃�)−𝜆(�̃�+�̃�)]
(9) 

ii) The sojourn time of customers in the queue is given as

�̃�𝑞 =
[�̃��̃�(�̃�+�̃�)+𝜆(�̃�+�̃�)

2
]

�̃�(�̃�+�̃�)[�̃�(�̃�+�̃�)−𝜆(�̃�+�̃�)]
(10) 

iii) The number of customers in the orbit is given as

𝑁𝑜 =
�̃�𝜆�̃�[�̃�(�̃�+�̃�−𝜆)+𝜆(�̃�+�̃�)]

�̃�[�̃��̃�−𝜆(�̃�+�̃�)][�̃�(�̃�+�̃�)−𝜆(�̃�+�̃�)]
+

𝜆�̃�(�̃�+�̃�)

�̃�[�̃��̃�−𝜆(�̃�+�̃�)]
(11) 

iv) The sojourn time of customers in the orbit is given as

�̃�𝑜 =
�̃��̃�[�̃�(�̃�+�̃�−𝜆)+𝜆(�̃�+�̃�)]

�̃�[�̃��̃�−𝜆(�̃�+�̃�)][�̃�(�̃�+�̃�)−𝜆(�̃�+�̃�)]
+

�̃�(�̃�+�̃�)

�̃�[�̃��̃�−𝜆(�̃�+�̃�)]
(12) 

v) The number of customers in the system is given as

𝑁𝑠 =
𝜆[�̃�𝜔+(�̃�+�̃�)

2
]

(�̃�+�̃�)[�̃��̃�−𝜆(�̃�+�̃�)]
+

𝜆�̃�(�̃�+�̃�)

�̃�[�̃��̃�−𝜆(�̃�+�̃�)]
(13) 

vi) The waiting time of customers in the system is given as

�̃�𝑠 =
[�̃�𝜔+(�̃�+�̃�)

2
]

(�̃�+�̃�)[�̃��̃�−𝜆(�̃�+�̃�)]
+

�̃�(�̃�+�̃�)

�̃�[�̃��̃�−𝜆(�̃�+�̃�)]
(14) 

VI. Mathematical Description

We considered a communications network with a cohort of streaming server devices linked to an 
interface message microprocessor as a bandwidth network. Messages arrive in a Poisson stream at 
the webserver. If the web host wants to transmit information to someone else host controller, one 
must deliver the data along with the node to the interface message processing unit with which it is 
hooked up. The message is acknowledged if the processor is free; alternatively, it is assumed to be a 
failure and the message is returned to the streaming server computer hard disk in a barrier to be 
transcoded at a later point and is considered a repair rate. In queuing terminology, the buffer in the 
host controller, the interface processing, and the transcoded policy correlate to the orbit, server, and 
retrial discipline, respectively. The above system can be modeled using an 𝐹𝑀/𝐹𝑀/1 retrial queuing 
model. For consideration of performance and efficiency, the organization wants to learn more about 
the platform's characteristics, such as the expected wait time and the number of messages in orbit, 
queue, and system. Interpret the entry, departure, retrial, failure, and repair rate as both TFNs and 
TIFNs symbolized by �̃�, �̃�′; �̃�, �̃�′; �̃�, �̃�′; �̃�, �̃�′ and �̃�, �̃�′ respectively.  

6.1 Solo Server Retrial Fuzzy Queuing Model with Unlimited Capability 

Let �̃� = (4,5,6), is the arrival rate, �̃� = (26,27,28) is the service rate, �̃� = (15,16,17) is the retrial rate, 
�̃� = (37,38,39) is the failure rate, �̃� = (47,48,49) is the repair rate. 

Determine the TFN in the form of (�̃�, �̃�, 𝛽) as �̃� = (5,1,1), �̃� = (27,1,1), �̃� = (16,1,1), �̃� =
(38,1,1), and �̃� = (48,1,1). 

        To determine the values of a number of messages and their sojourn time in the queue, orbit as 
well as a system using suitable formulas among (9), (10), (11), (12), (13) & (14). It is necessary to use 
the appropriate arithmetic operations described in (1), (2), (3), and (4) for add, sub, multiply, and 
divide, respectively. 

The metrics of performance are calculated and tabulated as follows: 
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Table 1: Performance Measures using Triangular Fuzzy Numbers 

Components Number of Messages(�̃�) Waiting Time (�̃�) 

Queue 𝑁𝑞 = (−0.9171,0.0829,1.0829) �̃�𝑞 = (−0.98342,0.01658,1.01658) 

Orbit 𝑁𝑜 = (0.4764,1.4764,2.4764) �̃�𝑜 = (−0.7048,0.2952,1.2952) 
System 𝑁𝑠 = (0.7446,1.7446,2.7446) �̃�𝑠 = (−0.6511,0.3489,1.3489) 

6.2 Solo Server Retrial Intuitionistic Fuzzy Queuing Model with Unlimited Capability 

Let �̃�′ = (4,5,6; 3,5,7), is the arrival rate, �̃�′ = (26,27,28; 25,27,29) is the service rate, �̃�′ =

(15,16,17; 14,16,18) is the retrial rate, �̃�′ = (37,38,39; 36,38,40) is the failure rate, �̃�′ =
(47,48,49; 46,48,50) is the repair rate. 

Determine the TIFN in the form of (�̃�, �̃�, 𝛽; �̃�, �̃�′, 𝛽′) as �̃�′ = (5,1,1; 5,2,2), 𝜇′ = (27,1,1; 27,2,2),
�̃�′ = (16,1,1; 16,2,2), �̃�′ = (38,1,1; 38,2,2), and �̃�′ = (48,1,1; 48,2,2). 

         To determine the values of a number of messages and their sojourn time in the queue, orbit as 
well as a system using suitable formulas among (9), (10), (11), (12), (13) & (14). It is necessary to use 
the appropriate arithmetic operations described in (5), (6), (7), and (8) for add, sub, multiply, and 
divide, respectively. 
         The metrics of performance are calculated and tabulated as follows: 

Table 2: Performance Measures using triangular intuitionistic fuzzy numbers 

Components Number of Messages(�̃�′) Waiting Time (�̃�′) 
Queue 𝑁𝑞

′ = (
−0.9171,0.0829,1.0829;
−1.9171,0.0829,2.0829

) �̃�𝑞
′ = (

−0.98342,0.01658,1.01658;
−1.98342,0.01658,2.01658

) 

Orbit 𝑁𝑜
′ = (

0.4764,1.4764,2.4764;
−0.5236,1.4764,3.4764

) �̃�𝑜
′ = (

−0.7048,0.2952,1.2952;
−1.7048,0.2952,2.2952

) 

System 𝑁𝑠
′ = (

0.7446,1.7446,2.7446;
−0.2554,1.7446,3.7446

) �̃�𝑠 = (
−0.6511,0.3489,1.3489;
−1.6511,0.3489,2.3489

) 

The following figures 3 – 14 depict the visualizations of Tables 1 and 2. 

Figure 3: The number of messages (�̃�𝑞) in the queue Figure 4: The number of messages (�̃�𝑜)in the orbit 
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Figure 5: The number of messages (�̃�𝑠) in the system 

Figure 6: The waiting time of messages (�̃�𝑞)in the 

queue  

Figure 7: The waiting time of messages (�̃�𝑜) in the orbit 

Figure 8: The waiting time of messages (�̃�𝑠) in the 

system 

Figure 9: The membership(𝜇) and the non-

membership(�̃�) functions of the number of messages in 

the queue” �̃�𝑞
′

Figure 10: The membership(𝜇) and the non-

membership(�̃�) functions of the no. of messages in the 

orbit” �̃�𝑜
′
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Figure 11: The membership(𝜇) and the non-

membership(�̃�) functions of the number of messages in 

the system” �̃�𝑠
′ 

Figure 12: The membership(𝜇) and the non-

membership(�̃�) functions of the waiting time of 

messages in the queue” �̃�𝑞
′

Figure 13: The membership(𝜇) and the non-

membership(�̃�) functions of the waiting time of 

messages in the orbit �̃�𝑜
′ 

Figure 14: The membership(𝜇) and the non-

membership(�̃�) functions of the waiting time of 

messages in the system �̃�𝑠
′

VII. Conclusion

The retrial model with breakdowns and repairs has been studied for a large number of fuzzy 
parameters in the fuzzy queuing theory literature. Out of the existing methods for computing its 
characteristics, such as nonlinear programming, alpha cut, left-right method, interval arithmetic 
method, and so on, the present article shows that the suggested method is also suitable for dealing 
with this model, as evidenced by the example outlined in the previous section. Another advantage 
of the proposed method is that we solve the problems using the fuzzy value as is, instead of 
transitioning it to crisp, so it has a broad spectrum of applications in real-world situations. The 
predicted number of messages and their turnaround time in the queue, orbit, and system are 
efficaciously tabulated in this example, and the outcome is achieved in both a fuzzified and 
intuitionistic fuzzy environment. The TFN and TIFN arithmetical representations are used to 
compare the proposed queuing system's correctness. According to the research findings, the fuzzy 
queuing model's quality standards are within the range of the intuitionistic fuzzy queuing model's 
aggregated performance indicators. Because the intuitionistic fuzzy theory is more configurable, the 
intuitionistic fuzzy queuing model is significantly more efficient and appropriate for evaluating the 
dimensions of queuing models. As a result, intuitionistic fuzzy queuing, according to this 
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investigation, is one of the most efficient positions of computing evaluation criteria because the 
evidence gathered from the functionality is simpler to implement and discern. This strategy appears 
to be more pliable than the others because all estimations are fuzzy. As a result, fuzzy queuing 
models with a complicated structure benefit from it. 
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Abstract 

In this article, we propose a new length-biased weighted form of Wilson Hilferty distribution named 

as Length-Biased Weighted Wilson Hilferty Distribution. The various Statistical properties of the 

proposed distribution like, reliability function, hazard rate function, reverse hazard rate function, 

moment generating function, quantile function, the coefficient of variation etc. are considered to 

understand its nature. Furthermore, we have used the method of maximum likelihood for estimation 

of the parameters of proposed distribution. Also, we obtain the Shannon’s entropy, stochastic 

ordering, Lorenz and Bonferroni curves. The performance of the proposed distribution is 

compared with competitive distributions using two real data sets. 

Keywords: Wilson Hilferty distribution, length-biased weighted Wilson Hilferty 

distribution, hazard   function, reversed hazard function, maximum likelihood estimation. 

1. Introduction

The weighted distribution arises when the observations are recorded from random process, the 

probability of recorded observations are not equal, and instead they are recorded according to some 

weighted function. The concept of weighted distributions was first given by [2]. Subsequently, [3] 

introduced a general form for model specification and data interpretation problems and identified 

that many situations can be modelled by weighted distributions.  

Let  𝑇 is as non-negative random variable with the probability density function (pdf) 𝑓(𝑡), then the 

weighted distribution is given by 

𝑔𝑤(𝑡) =
𝑤(𝑡) 𝑓(𝑡)

Ω
(1)
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on the support of 𝑇, where 𝑤(𝑡) > 0  and Ω = ∫ 𝑤(𝑡)𝑓(𝑡)𝑑𝑡 is considered as a normalizing factor 

that forces 𝑔𝑤(𝑡) to integrate to unity. When we replace 𝑤(𝑡) = 𝑡 (𝑖. 𝑒. the length of units) in equation 

(1), we get a special case of the weighted distribution called length biased distribution see, [5]. A 

𝑟. 𝑣. 𝑇, is said to have a length biased weighted distribution if its 𝑝𝑑𝑓 is defined as  

𝑔𝐿(𝑡) =
𝑤𝐿(𝑡) 𝑤𝑗(𝑡) 𝑓(𝑡) 

Ω
(2) 

Where, Ω = ∫ 𝑤𝐿(𝑡) 𝑤𝑗(𝑡) 𝑓(𝑡)𝑑𝑡  and 𝑤𝑗(𝑡) > 0, provided thet 𝑤𝐿(𝑡) = 𝑡. 

Weighted distribution in general and length biased distributions are specifically very useful and 

convenient for the analysis of life time data. Weighted distributions are commonly used in study 

related to reliability, biomedicine, ecology, analysis of family data, branching process and various 

other fields of research, see [6], [8], [10] and [12].  

Many length-biased weighted distributions with applications in different fields have been 

presented in the literature, see [9] discussed the characterization of inverse Gaussian and gamma 

distribution through their length biased distributions, [13] introduced a new class of weighted 

exponential distribution, [14], [15] discussed the length-biased weighted generalized Rayleigh 

distribution and also studied the length biased weighted Weibull distribution for rainfall data in 

India,  a weighted Lindley distribution  for survival data is given by [16], the length-biased 

lognormal distribution with application in the analysis of oil field exploration data is discussed by 

[17], [18] proposed the length-biased weighted exponential and Rayleigh distribution and its 

properties, different methods of estimation of parameters are applied for weighted exponential 

distribution by [19] which introduced by [13], [20] presented the length-biased weighted Lomax 

distribution and application with cancer data, [21] proposed inverted weighted exponential 

distribution and its properties, [24] discussed the length-biased exponential distribution for 

Bayesian reliability estimation, [23] proposed the length-biased weighted Lindley distribution, [25] 

proposed weighted exponentiated inverted exponential distribution and its properties, time and 

failure censoring schemes for Marshall Olkin alpha power extended Weibull distribution is 

presented by [26]. Recently, [28] proposed power weighted Sujatha distribution and application to 

survival times of patients head and neck cancer data, [27] proposed a weighted intervened 

exponential distribution as a lifetime model.    

[1] introduced a Wison Hilferty distribution. For some recent developments of the Wilson Hilferty

destitution the readers may, see [22]. Its probability density function (𝑝𝑑𝑓), and cumulative 

distribution function (𝑐𝑑𝑓), respectively as 

     𝜑(𝑡) =
3  

Γ(α)
𝑡3𝛼−1 (

𝛼

𝛽
)

𝛼

exp {−
𝛼

𝛽
𝑡3} ;   𝑡, 𝛼, 𝛽 > 0 

(3) 

     Φ(𝑡) =
𝛾(𝛼,  

𝛼 

𝛽
𝑡3)

Γ(α)
;   𝑡, 𝛼, 𝛽 > 0         (4) 

where, 𝛼 and  𝛽 are the shape and scale parameters, respectively, Γ(𝛼) = ∫ 𝑡𝜃−1𝑒−𝑡𝑑𝑡
∞

0
 and  𝛾(𝑥, 𝑦) =

∫ 𝑤𝑦−1𝑒−𝑤𝑑𝑤
𝑥

0
  the complete and lower incomplete gamma functions, respectively. 

 In this paper, we propose a new length-biased distribution, called length-biased weighted 

Wilson-Hilferty distribution. Rest of the paper is structured as follows, in Section 2, the proposed 

distribution  is introduced and its properties and reliability characteristics are discussed. In Section 

3, the method of maximum likelihood is discussed for estimating the model parameters. Stochastic 

ordering and entropy are discussed in Section 4. Bonferroni and Lorenz curves and random number 

generation & Quantiles are discussed in Section 5 and 6, respectively. The applications of two real 

data sets are presented in Section 7. Finally, the conclusion is summarized in section 8. 
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2. Length-Biased Weighted Wilson Hilferty Distribution,

its Properties and Reliability Characteristics

In this section, we develop the Length-Biased Weighted Wilson Hilferty distribution. For this 

proposed new distribution, we present the 𝑝𝑑𝑓, 𝑐𝑑𝑓, reliability function, hazard function, moments, 

skewness and discuss some properties. 

Consider the weight function as 𝑤𝑗(𝑡) =
𝑛

𝛼
𝑡𝑘 , 𝑘 > 0, 𝑤𝐿(𝑡) = 𝑡 .  Hence using considered weight

function, unit length and equation (3) into the equation (2), we obtain the density of Length-biased 

weighted Wilson Hilferty distribution (LBWWHD) of the form 

𝑓(𝑡) =
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3 𝑡3𝛼+𝑘 exp{−

𝛼

𝛽
𝑡3}

Γ(𝛼+
𝑘+1

3
)

 ; 𝑡, 𝛼, 𝛽, 𝑘 > 0          (5) 

Where, α, β and  𝑘  are the shape, scale and weighted parameters, respectively. 

Figure 1: pdf plots of LBWWHD 

Figure 1, clearly shows that LBWWH distribution is positively skewed. 

The 𝑐𝑑𝑓 of LBWWHD is given by   

𝐹(𝑡) =
𝛾(𝛼+

𝑘+1

3
,  

𝛼 

𝛽
𝑡3)

Γ(𝛼+
𝑘+1

3
)

 ;     𝑡, 𝛼, 𝛽, 𝑘 > 0 (6) 

where,  ∫ 𝑡𝑠−1𝑥

0
𝑒−𝑡𝑑𝑡 = 𝛾(𝑠, 𝑥) is a lower incomplete gamma function. 

The reliability function  𝑅(𝑡) is given by 
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𝑅(𝑡) = 1 −
𝛾 (𝛼 +

𝑘 + 1
3

, 
𝛼 
𝛽

 𝑡3)

Γ (𝛼 +
𝑘 + 1

3
)

On using some basic concept of an upper incomplete gamma integral’s, it reduces to 

 𝑅(𝑡) =
Γ(𝛼+

𝑘+1

3
,  

𝛼 

𝛽
𝑡3)

Γ(𝛼+
𝑘+1

3
)

 ;     𝑡, 𝛼, 𝛽, 𝑘 > 0     (7) 

where,  ∫ 𝑡𝑠−1∞

𝑥
𝑒−𝑡𝑑𝑡 = Γ(𝑠, 𝑥) is an upper incomplete gamma function. 

Table 1: Reliability function 𝑅(𝑡) of LBWWHD for 𝛼 = 2 𝑎𝑛𝑑 𝛽 = 3 

t  𝑘 = 1  𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

0.5 0.9999827 0.9999965 0.9999993 0.9999999 1.0000000 

0.6 0.9999268 0.9999822 0.9999958 0.999999 0.9999998 

0.7 0.9997537 0.9999303 0.9999809 0.9999949 0.9999987 

0.8 0.9993024 0.9997745 0.9999294 0.9999785 0.9999936 

0.9 0.9982712 0.9993722 0.999779 0.9999244 0.9999748 

1.0 0.9961542 0.9984503 0.9993945 0.99977 0.9999149 

Table 2: Reliability function 𝑅(𝑡) of LBWWHD for 𝑘 = 2 𝑎𝑛𝑑 𝛽 = 3 

t 𝛼 = 1 𝛼 = 2 𝛼 = 3 𝛼 = 4 𝛼 = 5 

0.5 0.9999044 0.9999965 0.9999999 1.0000000 1.0000000 

0.6 0.9997166 0.9999822 0.9999989 0.9999999 1.0000000 

0.7 0.999292 0.9999303 0.9999935 0.9999994 0.9999999 

0.8 0.9984419 0.9997745 0.9999691 0.9999958 0.9999994 

0.9 0.9968914 0.9993722 0.9998803 0.9999773 0.9999957 

1.0 0.9942659 0.9984503 0.9996054 0.9999000 0.9999746 

Table 3: Reliability function 𝑅(𝑡) of LBWWHD for 𝑘 = 2 𝑎𝑛𝑑 𝛼 = 3 

t 𝛽 = 1 𝛽 = 2 𝛽 = 3 𝛽 = 4 𝛽 = 5 

0.5 0.9993884 0.999997 0.9999999 1.0000000 1.0000000 

0.6 0.9955998 0.9999748 0.9999989 0.9999999 1.0000000 

0.7 0.979182 0.9998513 0.9999935 0.9999993 0.9999999 

0.8 0.9297582 0.9993323 0.9999691 0.9999967 0.9999994 

0.9 0.8219026 0.9975858 0.9998803 0.999987 0.9999977 

1.0 0.6472319 0.9927078 0.9996054 0.9999557 0.9999921 

From Table 1, 2 & 3, we conclude that, for the different values of 𝛼, 𝛽 and 𝑘 the reliability of the 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

235



Shivendra Pratap Singh, Surinder Kumar and Naresh Chandra Kabdwal 
LENGTH-BIASED WEIGHTED WILSON HILFERTY DISTRIBUTION… 

distribution decreases with increase in the value of 𝑡. 

Figure 2: Reliability plots of LBWWHD 

Figure 2, shows the reliability behavior of the LBWWHD for varying values of shape parameter 

𝛼, scale parameter 𝛽 and weighted parameter 𝑘. Reliability function behaves like decreasing 

function. 

The hazard function is defined as  

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)

 =
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3 𝑡3𝛼+𝑘 exp{−

𝛼

𝛽
𝑡3} Γ(𝛼+

𝑘+1

3
)

Γ(𝛼+
𝑘+1

3
) Γ(𝛼+

𝑘+1

3
,  

𝛼 

𝛽
 𝑡3)

On simplifying, we get 

     ℎ(𝑡) =
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3 𝑡3𝛼+𝑘 exp{−

𝛼

𝛽
𝑡3}

Γ(𝛼+
𝑘+1

3
,  

𝛼 

𝛽
 𝑡3)

;      𝑡, 𝛼, 𝛽, 𝑘 > 0 (8)
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Figure 3: Hazard rate plots of LBWWHD 

Figure 3, shows the behaviour of hazard function for distinct values of 𝛼, 𝛽 and 𝑘. Clearly, it shows 

that the hazard function of LBWWH behaves increasing hazard rate. 

The reverse hazard rate is defined as 

𝑅ℎ(𝑡) =
𝑓(𝑡)

𝐹(𝑡)

𝑅ℎ(𝑡) =
3 (

𝛼 
𝛽

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽

 𝑡3}  Γ (𝛼 +
𝑘 + 1

3
)

 Γ (𝛼 +
𝑘 + 1

3
)  γ (𝛼 +

𝑘 + 1
3

, 
𝛼 
𝛽

 𝑡3)

On simplifying, we get 

𝑅ℎ(𝑡) =
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3 𝑡3𝛼+𝑘 exp{−

𝛼

𝛽
𝑡3}

γ(𝛼+
𝑘+1

3
,  

𝛼 

𝛽
 𝑡3)

 ;    𝑡, 𝛼, 𝛽, 𝑘 > 0 

Theorem 2.1. For 𝑟 = 0, 1, 2, 3, ...   𝑟𝑡ℎ moment of random variable 𝑇 is given by 

𝜇𝑟
′ = 𝐸(𝑇𝑟) = (

𝛽

𝛼
)

𝑟/3 Γ(𝛼+
𝑘+𝑟+1

3
)

Γ(𝛼+
𝑘+1

3
)

  (9) 

Proof.  It 𝑇 is a random variable with 𝑝𝑑𝑓 𝑓(𝑡) from equation (5), then the  𝑟𝑡ℎ moment is 

𝐸(𝑇𝑟) = 𝜇𝑟
′ = ∫ 𝑡𝑟

3 (
𝛼
𝛽
)

(𝛼+
𝑘+1
3

)

𝑡3𝛼+𝑘 exp {− 
𝛼
𝛽

 𝑡3}

Γ (𝛼 +
𝑘 + 1

3
)

𝑑𝑡
∞

0

 

=
3(

𝛼

𝛽
)
(𝛼+

𝑘+1
3 )

Γ(𝛼+
𝑘+1

3
)

∫ 𝑡(3𝛼+𝑘+𝑟) exp {− 
𝛼

𝛽
 𝑡3} 𝑑𝑡

∞

0
         (10) 

Theorem follows on taking  𝑦 = ( 
𝛼

𝛽
 𝑡3), and using the gamma function in equation (10). 

Lemma 2.1. If a random variable  𝑇 follows Length-biased weighted Wilson Hilferty distribution 

then on substituting  𝑟 = 1, 2 in equation (10),  we obtain the mean and variance, respectively. 

𝐸(𝑇) = (
𝛽

𝛼
)
1/3 Γ (𝛼 +

𝑘 + 2
3

)

Γ (𝛼 +
𝑘 + 1

3
)

𝐸(𝑇2) = (
𝛽

𝛼
)

2/3 Γ (𝛼 + 1 +
𝑘
3
)

Γ (𝛼 +
𝑘 + 1

3
)
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and, 

Variance (𝑇) = (
𝛽

𝛼
)

2/3 Γ (𝛼 + 1 +
𝑘
3
)

Γ (𝛼 +
𝑘 + 1

3
)

− { (
𝛽

𝛼
)
1/3 Γ (𝛼 +

𝑘 + 2
3

)

Γ (𝛼 +
𝑘 + 1

3
)
 }

2

= (
𝛽

𝛼
)

2/3

[
Γ (𝛼 + 1 +

𝑘
3
)

Γ (𝛼 +
𝑘 + 1

3
)

− {
Γ (𝛼 +

𝑘 + 2
3

)

Γ (𝛼 +
𝑘 + 1

3
)
 }

2

] 

Lemma 2.2. If a random variable 𝑇 follows Length-biased Weighted Wilson Hilferty distribution 

then the coefficient of variation (C.V) is given by 

[Γ(𝛼+1+
𝑘

3
) Γ(𝛼+

𝑘+1

3
)−{Γ(𝛼+

𝑘+2

3
)}

2
]

1/2

Γ(𝛼+
𝑘+2

3
)

 (11) 

Proof. Coefficient of variation is given by, 

𝐶. 𝑉. =
√𝑣𝑎𝑟(𝑇)

𝐸(𝑇)
 =

(
𝛽
𝛼
)
1/3

 [ 
Γ (𝛼 + 1 +

𝑘
3
)

Γ (𝛼 +
𝑘 + 1

3
)

− {
Γ (𝛼 +

𝑘 + 2
3

)

Γ (𝛼 +
𝑘 + 1

3
)
 }

2

]

1/2

(
𝛽
𝛼
)
1/3 Γ (𝛼 +

𝑘 + 2
3

)

Γ (𝛼 +
𝑘 + 1

3
)

=

[Γ (𝛼 + 1 +
𝑘
3
)  Γ (𝛼 +

𝑘 + 1
3

) − {Γ (𝛼 +
𝑘 + 2

3
)}

2

]

1/2

Γ (𝛼 +
𝑘 + 2

3
)

Lemma 2.2, follows on using Lemma 2.1. 

Table 4: Coefficients of LBWWHD for 𝛽 = 3 

𝛼 𝑘 Mean Variance CV Skewness Kurtosis 

2 1 1.521644 0.10416361 0.212102093 0.03819147 2.895791 

2 1.590099 0.10032135 0.199192288 0.03175884 2.908649 

3 1.65319 0.09697548 0.188368465 0.02692476 2.918847 

4 1.71185 0.09402637 0.179126206 0.0231893 2.927098 

5 1.766776 0.09139999 0.17111638 0.02023536 2.933893 

4 1 1.482214 0.05474587 0.157857336 0.01590133 2.944386 

2 1.519149 0.05351908 0.152283885 0.01427804 2.94851 

3 1.554379 0.05239432 0.147260131 0.01291154 2.95208 

4 1.588086 0.05135774 0.14270163 0.01174866 2.955199 

5 1.620426 0.05039801 0.138540736 0.01074952 2.957945 
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Table 5: Coefficients of LBWWHD for 𝛼 = 3 

𝛽 𝑘 Mean Variance CV Skewness Kurtosis 

2 

1 1.306386 0.05475973 0.179126208 0.0231893 2.927098 

2 1.348303 0.05323016 0.171116302 0.02023536 2.933893 

3 1.387782 0.05185586 0.164088321 0.01785365 2.939574 

4 1.425148 0.05061155 0.157857366 0.01590133 2.944386 

5 1.460661 0.04947741 0.152283919 0.01427804 2.94851 

4 

1 1.645943 0.08692566 0.179126239 0.0231893 2.927098 

2 1.698755 0.08449762 0.171116343 0.02023536 2.933893 

3 1.748496 0.08231604 0.164088291 0.01785365 2.939574 

4 1.795574 0.08034083 0.157857365 0.01590133 2.944386 

5 1.840318 0.07854049 0.152283878 0.01427804 2.94851 

According to the Table 4 & 5, skewness decreases and kurtosis increases whenever the values of 𝑘 

increases. 

Lemma 2.3. If a random variable 𝑇 follows Length-biased Weighted Wilson Hilferty distribution 

then harmonic mean  (𝐻) is given by 

1

𝐻
= (

𝛼

𝛽
)
1/3 Γ(𝛼+

𝑘

3
)

Γ(𝛼+
𝑘+1

3
)

  (12) 

Proof.  The harmonic mean (𝐻) is defined as 

1

𝐻
= 𝐸 (

1

𝑇
) 

   = ∫
1

𝑡
 𝑓(𝑡)𝑑𝑡

∞

0
  (13) 

Using equation(5), we get 

1

𝐻
= ∫

1

𝑡

3 (
𝛼 
𝛽

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽

 𝑡3}

 Γ (𝛼 +
𝑘 + 1

3
)

𝑑𝑡
∞

0

 

=
3 (

𝛼 
𝛽

)
𝛼+

𝑘+1
3

Γ (𝛼 +
𝑘 + 1

3
)
∫ 𝑡3𝛼+𝑘−1 exp {−

𝛼 

𝛽
 𝑡3} 𝑑𝑡

∞

0

 

Lemma 2.3, follows on using the transformation 𝑦 = (
𝛼

𝛽
 ) 𝑡3, and the gamma function. 

Lemma 2.4. If a random variable 𝑇 follows Length-biased Weighted Wilson Hilferty distribution 

then moment generating function (MGF) and characteristic function (CF) of 𝑇 are respectively, given 

by 

𝑀𝑇(𝑥) = ∑
𝑥𝑟

𝑟!

∞
𝑟=0 (

𝛽

𝛼
)

𝑟/3 Γ(𝛼+
𝑘+𝑟+1

3
)

Γ(𝛼+
𝑘+1

3
)

  (14) 

 ∅𝑇(𝑥) = ∑
(𝑖𝑥)𝑟

𝑟!

∞
𝑟=0 (

𝛽

𝛼
)

𝑟/3 Γ(𝛼+
𝑘+𝑟+1

3
)

Γ(𝛼+
𝑘+1

3
)

    (15) 

Proof: On using equation (5) and Taylor’s series expansion the Lemma 2.4, follows. 
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3. Parameter Estimation

In this section, we estimate the parameters of the LBWWHD by using the maximum likelihood 

technique. Let 𝑇1, 𝑇2 … 𝑇𝑛     be the random sample of size 𝑛 follows the  LBWWHD(𝛼, 𝛽, 𝑘), then the 

likelihood function given as  

𝐿(𝑡) =
3𝑛  (

𝛼 
𝛽

)
𝑛(𝛼+

𝑘+1
3

)

( Γ (𝛼 +
𝑘 + 1

3
))

𝑛 ∏𝑡3𝛼+𝑘exp { −
𝛼 

𝛽
 𝑡3} 

𝑛

𝑖=1

The log-likelihood function can be written as 

log 𝐿(𝑡) = 𝑛 log 3 + 𝑛 (𝛼 +
𝑘+1

3
) log 𝛼 − 𝑛 (𝛼 +

𝑘+1

3
) log 𝛽 

−𝑛 log Γ (𝛼 +
𝑘+1

3
) −

𝛼

𝛽
∑ 𝑡𝑖

3 + (3𝛼 + 𝑘) ∑ log 𝑡𝑖    (16)  

Differentiating equations  (16) partially with respect to 𝛼, 𝛽 and 𝑘 then equate to zero, we get 

normal equations on the following form 

𝜕 log 𝐿(𝑡)

𝜕𝛽
= 0 ⇒  �̂� =

𝛼 ∑ 𝑡𝑖
3

𝑛(𝛼+
𝑘+1

3
)

 (17)  

𝜕 log 𝐿(𝑡)

𝜕𝛼
= 0 ⇒  𝑛 log 𝛼 +

𝑛

𝛼
(𝛼 +

𝑘+1

3
) − 𝑛 log 𝛽 −

1

𝛽
∑ 𝑡𝑖

3 − 𝑛 𝜓 (Γ (𝛼 +
𝑘+1

3
)) 

+3∑ log 𝑡𝑖 = 0    (18)  

𝜕 log 𝐿(𝑡)

𝜕𝑘
= 0 ⇒  

𝑛

3
log 𝛼 −

𝑛

3
log 𝛽 −

𝑛

3
𝜓 (Γ (𝛼 +

𝑘+1

3
)) + ∑ log 𝑡𝑖 = 0       (19) 

where, 𝜓(𝑧) =
𝑑

𝑑𝑧
Γ(𝑧) =

Γ′(𝑧)

Γ(𝑧)
  is a logarithmic derivative of gamma function. As it seems, from 

equations (17), (18) and (19), the analytical solution of 𝛼, 𝛽  and 𝑘 are not available. 

Consequently, we have to use to non-linear estimation of the parameters using iterative method. 

4. Stochastic Ordering and Entropy

Let 𝑋 and 𝑌  be two independent random variables follows LBWWHD with shape parameter 𝛼, 

weighted parameter 𝑘 and the scale parameters 𝛽1 and 𝛽2, respectively. 

When 𝑓𝑋(𝑡) and 𝑓𝑌(𝑡) be the density functions of 𝑋 and 𝑌, then 𝑋 less than 𝑌 in likelihood order 

(𝑋 ≤𝑙𝑟 𝑌) if  
𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
 is an increasing function of 𝑡. Here, 

𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
=  

3 (
𝛼 
𝛽2

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽2

 𝑡3}

 Γ (𝛼 +
𝑘 + 1

3
)

 Γ (𝛼 +
𝑘 + 1

3
)

3 (
𝛼 
𝛽1

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽1

 𝑡3}

𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
=  

 (
𝛼 
𝛽2

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽2

 𝑡3}

 (
𝛼 
𝛽1

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽1

 𝑡3}

𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
=  (

𝛽1

𝛽2
)

𝛼+
𝑘+1

3
exp {𝛼 (

1

𝛽1
−

1

𝛽2
) 𝑡3} (20)
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Differentiating equation (20), with respect to 𝑡, we get 

𝑑

𝑑𝑡
(
𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
) =  3𝛼 𝑡2 (

𝛽1 

𝛽2

)
𝛼+

𝑘+1
3

(
1

𝛽1

−
1

𝛽2

) exp {𝛼 (
1

𝛽1

−
1

𝛽2

) 𝑡3} ≥ 0 

hence, 
𝑑

𝑑𝑡
(

𝑓𝑌(𝑡)

𝑓𝑋(𝑡)
) ≥ 0 when, (

1

𝛽1
−

1

𝛽2
) ≥ 0 i.e.  𝛽2 ≥ 𝛽1. 

Therefore, 𝑋 ≤𝑙𝑟 𝑌 for, 𝛽2 ≥ 𝛽1. If 𝑋 ≤𝑙𝑟 𝑌, then the following ordering shall also holds for the 

LBWWHD ([11]) , 

𝑋 ≤𝑙𝑟 𝑌 ⟹ 𝑋 ≤ℎ𝑟 𝑌 ⟹ 𝑋 ≤𝑚𝑟𝑙 𝑌 
    ⇓ 

𝑋 ≤𝑠𝑡 𝑌 

for 𝛽2 ≥ 𝛽1. 

The idea of entropy has significant importance in several academic disciplines, including 

probability and statistics, physics, communication theory, and economics. Entropy is a measure that 

quantifies the level of variety, uncertainty, or unpredictability shown by a given system. The 

entropy of a random variable 𝑇  may be defined as a quantitative measure of the level of uncertainty 

or variation associated with it. 

The Shannon’s entropy defined by  

𝑆(𝑥) = −𝐸[log 𝑓(𝑡)] 

Using equation (5), we get 

𝑆(𝑥)   = −𝐸

[

log

(

3 (
𝛼 
𝛽

)
𝛼+

𝑘+1
3

𝑡3𝛼+𝑘 exp {−
𝛼 
𝛽

 𝑡3}

 Γ (𝛼 +
𝑘 + 1

3
)

)]

= − log(
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3

Γ(𝛼+
𝑘+1

3
)
) − (3𝛼 + 𝑘)𝐸(log(𝑡)) +

𝛼

𝛽
𝐸(𝑡3) (21) 

By solving the value of 𝐸(log(𝑡)) and 𝐸(𝑡3) and put in equation (21), we get 

𝑆(𝑥) = − log

(

3 (
𝛼 
𝛽

)
𝛼+

𝑘+1
3

 Γ (𝛼 +
𝑘 + 1

3
)

)

− (3𝛼 + 𝑘) (log (
𝛽 

𝛼
) +Ψ(𝛼 +

𝑘 + 1

3
)) +

Γ(𝛼 +
𝑘 + 4

3
)

Γ (𝛼 +
𝑘 + 1

3
)

5. Bonferroni and Lorenz Curves

Let's assume that the random variable 𝑇 is a non-negative with a continuous and twice differentiable 

cumulative distribution function. The Bonferroni curve of the random variable 𝑇 is defined as 

𝐵(𝑝) =
1

𝜇𝑝
∫ 𝑡𝑓(𝑡)𝑑𝑡

𝑞

0
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where, 𝑝 = 𝐹(𝑡), 𝑞 = 𝐹−1(𝑝) and  𝜇 = 𝐸(𝑡) 

𝐵(𝑝) =
Γ(𝛼+

𝑘+1

3
)

𝑝 (
𝛽

𝛼
)
1/3

Γ(𝛼+
𝑘+2

3
)

 ∫ 𝑡
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3 𝑡3𝛼+𝑘 exp{−

𝛼

𝛽
𝑡3}

Γ(𝛼+
𝑘+1

3
)

𝑑𝑡
𝑞

0
 (22) 

      =
3 (

𝛼

𝛽
)
𝛼+

𝑘+1
3

𝑝 (
𝛽

𝛼
)
1/3

Γ(𝛼+
𝑘+2

3
)

∫ 𝑡3𝛼+𝑘+1 exp {−
𝛼

𝛽
 𝑡3} 𝑑𝑡

𝑞

0
 

Substituting, 𝑦 = (
𝛼

𝛽
) 𝑡3 in equation (22), we get Bonferroni curve 

𝐵(𝑝) =
γ(𝛼+

𝑘+2

3
,  

𝛼 

𝛽
𝑞3)

𝑝 Γ(𝛼+
𝑘+2

3
)

(23) 

Lorenz curve is defined as 

𝐿(𝑝) =
1

𝜇
∫ 𝑡𝑓(𝑡)𝑑𝑡

𝑞

0

= 𝑝𝐵(𝑝) 

Using equation (23), we get 

𝐿(𝑝) =
γ(𝛼+

𝑘+2

3
,  

𝛼 

𝛽
 𝑞3)

Γ(𝛼+
𝑘+2

3
)

(24) 

6. Random Number Generation and Quantiles

Random numbers of LBWWH can be easily generate by using the following function 

𝑡 = [(
 𝛽

𝛼
)𝑄−1 (𝛼 +

𝑘 + 1

3
,   1 − 𝑈)]

1/2

where,  𝑈~𝑈(0,1)  and 𝑄−1(𝑎, 𝑧) is inverse of regularized incomplete gamma function, where 

regularized incomplete gamma function is defined as 𝑄(𝑎, 𝑧) =
Γ(𝑎,𝑧)

Γ(𝑎)
 .

Quantiles are given by 

𝑡𝑞 = [(
 𝛽

𝛼
)𝑄−1 (𝛼 +

𝑘+1

3
,   1 − 𝑞)]

1/2

 (25) 

By putting 𝑞 = 0.5 in equation (25), we get the median of LBWWHD 

𝑡0.5 = [(
 𝛽

𝛼
)𝑄−1 (𝛼 +

𝑘 + 1

3
,   0.5)]

1
2

7. Applications

 In this section, we have considered two real data sets to check the suitability of the proposed 

distribution. Further, we have compared the distribution with the Length-Biased weighted Lindley 

distribution (LBWLD), Length-Biased Susheela distribution (LBSD1) and length-Biased Suja 

distribution (LBSD2), for suitability of proposed distribution. For this, we have used Akaike 

information criterion (AIC), Bayesian information criteria (BIC), Akaike Information Criterion 

Corrected (AICC) and Hannan-Quinn Information Criterion (HQIC), respectively. The AIC, BIC, 

AICC and HQIC are defined as: 

AIC = 2𝐾 − 2 log 𝐿, BIC = 𝐾 log 𝑛 − 2 log 𝐿, 
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AICC = AIC + 
2 𝐾(𝐾+1)

𝑛−𝐾−1
  , and  HQIC = 2𝐾 log(log(𝑛)) − 2 log 𝐿. 

where 𝑛 is the sample size, 𝐾 is the number of parameters, and 𝐿 denotes the likelihood function. 

Any probability model having smaller value of AIC, BIC and −𝐿𝑜𝑔𝐿 being the best model to fit the 

data set. 

Dataset 1: The first dataset is taken from [7] which represent the tensile strength, measured in GPa, 

of 69 carbon fibers tested under tension at gauge lengths of 20mm. 

Table 6: MLE, AIC and BIC for gauge lengths of 20 mm 

Distribution 𝜶 𝜷 𝒌 Log L AIC BIC AICC HQIC 

LBWWHD 0.540 3.014 6.259 −48.895 103.790 110.492 104.148 106.449 

LBWLD -- -- -- −87.8984 179.796 184.265 179.973 181.569 

LBSD1 -- -- -- −92.3037 188.607 193.075 188.78 190.380 

LBSD2 -- -- -- −134.128 186.607 188.841 186.66 187.493 

According to the results in Table 6, the LBWWHD has the smallest values of these statistics, 

followed by LBWLD, LBSD1 and LBSD2. Therefore, the suggested distribution is the best choice for 

the tensile strength data. The fitted 𝑝𝑑𝑓𝑠 and empirical 𝑐𝑑𝑓𝑠 plots of the four models are sketched 

in Figure 4. Therefore, we assert that the LBWWHD fitting successfully the empirical plots of the 

data set. 

Figure 4: Estimated densities and cdf plot of the models based on the real dataset 1. 

Dataset 2- The second dataset used by [7], which represent the tensile strength, measured in GPa, 

of 63 carbon fibers tested under tension at gauge lengths of 10mm. 

Table 7: MLE, AIC and BIC for gauge lengths of 10 mm 

Distribution 𝜶 𝜷 𝒌 Log L AIC BIC AICC HQIC 

LBWWHD 0.1587 1.730 7.402 −58.7320 123.464 129.893 123.857 125.992 

LBWLD -- -- -- −93.4265 190.85 195.133 191.046 192.538 

LBSD1 -- -- -- −97.9972 199.994 204.280 200.188 201.680 

LBSD2 -- -- -- −65.9256 133.851 135.995 133.914 134.694 

For the dataset 2, we infer from the Table 7, the LBWWHD has the lowest values of AIC, BIC, 

AICC and HQIC followed by LBWLD, LBSD1 and LBSD2. Therefore, we conclude that LBWWHD is 

the most suitable choice for this dataset among the considered distributions. The fitted pdfs and 

empirical 𝑐𝑑𝑓  plots of the four models are presented in Figure 5 and see that the LBWWHD fitting 

successfully the empirical plots of the data set. 
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Figure 5: Estimated densities and 𝑐𝑑𝑓  plot of the models based on the real dataset 2. 

8. Conclusion

In the present article a new distribution known as the Length-biased Weighted Wilson Hilferty 

distribution, has been proposed. The distribution in discussion is characterized by three parameters 

called shape, scale and weighted parameter. Through the use of certain formulae, the properties and 

characteristics of this distribution such as its moments, failure rate, reliability function etc., 

comprehensively examined and, the parameters estimation and stochastic comparison is also done. 

The examination and subsequent comparison of the criteria for AIC, BIC, AICC and HQIC have 

been conducted in relation to the Length-biased weighted Lindley distribution, Length-biased 

Sushila distribution and Length-biased Suja distribution. The actual lifetime of two sets of data has 

been successfully modelled and the resulting fit has been determined to be satisfactory. 
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Abstract 

The paper deals with the cost benefit analysis of a two non-identical unit cold standby system model 

with the implementation of preventive maintenance (PM) on the priority unit after it has operated for a 

random duration. The objective is to evaluate the economic viability and performance of such system. A 

single repairman is consistently available within the system, responsible for both PM and repair of each 

failed unit. The priority in repair is given to priority (p) unit over ordinary (o) unit.  The failure time 

distribution of each unit is assumed to be exponential while the repair time distribution of both the unit 

is taken as inverse Gaussian. The PM time and time to PM of the priority unit are correlated having 

their joint distributions as bivariate exponential. By considering the regenerative point technique, 

various measures of system effectiveness are obtained.  

Keywords: Transition probabilities, bivariate exponential distribution, regenerative 

point, reliability, MTSF, availability, busy period, net expected profit. 

I. Introduction

The purpose of reliability engineering is to identify probable failures, implement appropriate actions 

to enhance reliability and identify the consequences of those failures. The manufacturers as well as 

consumer of a system always desire a high reliability. High reliability ensures that the system 

performs its intended function consistently and meets the expectations of its users over time. One 

way of improving a system’s reliability is by incorporating additional or duplicate units into the 

system. This strategy is known as redundancy. Another crucial way is by providing regular repair 

and maintenance to the system when they are needed, ensuring its reliability and longevity. 

Maintenance strategies aim to prevent failures, detect potential issues, and rectify any existing 

problems to ensure the system operates optimally. Repair and maintenance strategies play a crucial 

role in improving system reliability, minimizing disruptions and reducing related expenses. These 

strategies focus on proactive and measures to keep the system in optimal working condition and 

address potential issues rather than simply responding to problems after they manifest. 
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Employing redundancies is one of the important aspects of enhancing the system’s effectiveness 

and reliability. Redundant components or resources are intended to serve as backups or fail-safe 

mechanisms that are ready to take over the functions of primary components if they fail or experience 

issues. A significant number of authors including [1, 2, 5, 7, 8, 9] have analyzed the two non-identical 

units cold standby redundant system models due to their vital existence in ensuring uninterrupted 

operations and minimizing downtime in modern organizations and industries. These system models 

are particularly relevant in critical systems and industries where the stakes are high and failures can 

lead to severe consequences, such as aerospace and aviation, healthcare, telecommunications, power 

distributions, industrial control systems and other mission-critical applications to ensure high 

reliability and continuity of operations. In practice, planned maintenance activities performed on the 

system to improve its working capability, prevent potential failures and extend its overall lifespan is 

called preventive maintenance (PM). PM is a proactive maintenance strategy that involves scheduled 

inspections, adjustments and repair with the aim of keeping the system in optimal condition and 

preventing unexpected breakdowns. For example, PM for HVAC (Heating, Ventilation and Air 

Conditioning) systems. PM tasks may include inspecting electrical connections, calibrating controls, 

lubricating moving parts and changing filters on a regular basis. By performing these tasks according 

to a predetermined schedule, potential problems can be found and addressed before they escalate 

into serious issues, which guarantees the HVAC system will operate effectively and reliably. A 

number of authors, including [2, 4, 5, 10] have explored the concept of preventive maintenance (PM) 

i.e. after operating for an arbitrary amount of time, a unit goes for its preventive maintenance. In most

of the studies and models related to maintenance and reliability analysis, it’s commonly assumed that

the working time and PM time of a unit are uncorrelated random variables. However in reality, there

is some sort of positive correlation between the failure time and preventive maintenance time of a

unit. The concept of correlation between failures times and repair times has been analyzed by various

authors including [1, 2, 3, 4, 6].

This paper explores the concept of correlation between time to PM and PM time. The purpose of 

the present paper is to investigate a two non-identical unit cold standby system model with correlated 

PM time and time to PM of priority unit having their joint distribution as bivariate exponential. It is 

also assumed that a single repairman is consistently available with the system for both for PM and 

repair of each failed unit. Here are some economic related measures of system effectiveness that can 

be obtained using regenerative point techniques: 

 Transition probabilities and sojourn times in various states.

 Reliability analysis and mean time to system failure (MTSF).

 Availability analysis of the system during (0, t).

 Expected busy period of repairman during time interval (0, t) that the repairman is

busy in PM and in the repair of p-unit and o-unit. 

 Net expected profit earned by the system in the time interval (0, t)

Graphical representations depicting the MTSF and Profit function with respect to different 

parameters have also been made. 

II. System Description and Assumptions

The following are some assumptions about the system model under study: 

 The system comprises of two non-identical units. One unit is designated as priority

(p) unit while the other is referred as non-priority or ordinary (o) unit.

 Each unit of the system has two possible modes- Normal (N) and Total failure (F).

 Only p-unit is scheduled for preventive maintenance (PM) after working for its

random period of time. 
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 A single repairman is consistently available with the system for PM and repair of a

failed unit. The priority in repair and PM is given to p-unit. 

 The switching device is used to switch on the standby unit into operation promptly

and seamlessly only when the operative unit fails completely. The switching device is assumed to be 

perfect, independent and instantaneous. 

 The failure time distribution of each unit is taken as exponential while the repair time

distribution is taken as inverse Gaussian. The time to PM (X) and PM time (Y) are correlated random 

variables having their joint distribution as bivariate exponential with the density as follows:- 

      -λx-μy
0f x,y =λμ 1-r e I 2 λμrxy ;x,y,λ,μ>0; 0 r<1

where, 

  
 

 




j

0 2
j=0

λμrxy
I 2 λμrxy =

j!

 Each repaired unit ideally functions as good as new.

III. Notations and States of the System

I. Notations:

   E  :  Set of regenerative states 0 1 2 3{S ,S ,S ,S } .

 E  :  Set of non-regenerative states 4 5{S ,S } .

   1 2α ,α       :   Constant failure rate of p-unit and o-unit respectively. 

   i iG (.) g (.)   :   c.d.f./ p.d.f. of time to repair of failed p-unit and o-unit respectively i.e. 

  
  
 
  

2
-3/2 i

i i2
i

(t -β )1
g (t) = t exp dt  ; t > 0,β >0;{i =1,2}

2π 2β t

X  :  Time to PM of an operating unit when other unit is in standby state. 

   Y   :  Time taken in PM of a unit. 

   f(x,y)  :   Joint p.d.f. of (X,Y). 

      -λx-μy
0f x,y =λμ 1-r e I 2 λμrxy ; x,y,λ,μ>0; 0 r<1

where, 

      
 

 




j

0 2
j=0

λμrxy
I 2 λμrxy =

j!

   k(y|x)  :  Conditional p.d.f. of Y given X=x. 

  0 r <1-λrx-μy
0=μe I 2 λμrxy ; x,y,λ,μ>0;

   K(y|x)  :  Conditional c.d.f. of Y given X=x. 

   g(x)  :  Marginal p.d.f. of X i.e. 

    = λ 1- r exp -λ 1- r x

II. Symbols for the states of the system

1 2
0 sN , N :  Unit-1/Unit-2 in Normal (N) mode and operative/ standby state.

1
pmN  :  Unit-1 in normal mode and under preventive maintenance. 

 
1 2
r wF , F         :  Unit-1/Unit-2 in failure (F) mode and under repair/waiting for repair. 
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2
rF               :  Unit-2 in failure (F) mode and under repair. 

By considering these symbols according to assumptions stated earlier, we have the following states of 

the system: 

 Up states       : 
1 2 1 2 1 2 1 2

0 o s 1 pm o 2 r o 3 o rS (N , N ) S (N , N ), S (F , N ), S (N ,F )   

    Down states  : 
1 2

5 pm wS (N ,F )

   Failed states   : 
1 2

4 r wS (F ,F )

Figure 1: Transition diagram 

The transition diagram depicting the system model along with failure rates/repair time c.d.f’s is 

shown in Figure 1. From the transition diagram we find that the epochs of transitions into the states 

5S from 1S  and 4S from 2S   are non-regenerative while all other entrance epochs are regenerative. 

IV. Transition Probabilities and Sojourn Times

By using simple probabilistic arguments, the conditional and unconditional transition probabilities 

are given as: 

01
1

λ(1- r)
p =

α +λ(1- r)
                      

   ' ' '
10|x

2

μ
p =μ exp -λ 1-μ rx ;where μ =

μ+α
                                                

          
  

2
20 1 2 1p = exp 1- 1+2β α β

1
02

1

α
p =

α +λ(1- r)

  exp
(5) ' '

15 13|xp = p = 1-μ -λ 1-μ rx

  
  

(4) 2
24 1 2 123p = p = 1-exp 1- 1+2β α β
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2
30 2 1 2p = exp 1- 1+2β α +λ(1-r) β

            
    

21
34 2 1 2

1

α
p = 1- exp 1- 1+2β α +λ(1- r) β

α +λ(1- r)

     
    

2
35 2 1 2

1

λ(1- r)
p = 1- exp 1- 1+2β α +λ(1- r) β

α +λ(1- r)

43 1p = dG (t) = 1                                      (1-11) 

It can be easily verified that 

 01 02p +p =1  

 (4)
20 23p +p = 1                      

               

Unconditional transitional probabilities are as follows-    

'

10 '

μ (1- r)
p =

(1 - rμ )

                            (12-14) 

Thus, we observe the following relations- 

 01 02p +p =1  

                        

        43p =1                 (15-20) 

Let iT be the sojourn time in state iS E , then the mean sojourn time in state iS is given by

i i= P(T > t)dt 
Therefore 

        0
1

1
=

α + λ(1- r)


        
 
 

'

1 '
2

1- μ
=

α 1- rμ


          2
3 2 1 2

1

1
= 1- exp 1- 1+ 2β α + λ(1- r) β

α + λ(1- r)

       

4 1= β = mean repair time of p-unit. 

5|x

1+λrx
=

μ
           (21-28) 

V. Analysis of results

I. Reliability and MTSF

Let the random variable iT be the time to system failure (TSF), when at time t=0, the system starts its 

operation from state  iS E . Then, the reliability of the system is given by 

i iR (t) P(T t)dt 

53|xp = dK(t | x) = 1

(5)
10|x 13|xp + p = 1

43p =1

30 34 35p +p +p =1

53|xp =1

'
(5)
13 '

μ (1- r)
p = 1-

(1- rμ )

53p =1

(5)
10 13p +p = 1

(4)
20 23p +p = 1 30 34 35p +p +p =1

53p =1

  rx   
  

' '
1|x

2

1
= 1-μ exp - 1-
α

 2
2 1 2 1

2

1
= 1- exp 1- 1+ 2β α β

α

       

5

1
=

μ(1- r)
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To determine iR (t) , we regard the failed state  4S of the system as an absorbing state. By employing

simple probabilistic arguments, we observe the following relations: 

0 0 01 1 02 2R (t) = Z (t) +q (t)© R (t) +q (t)© R (t)

1 1 15 5 10 0 3R (t) = Z (t) + q (t)© Ζ (t) + q (t)© R (t) + q (t)© R (t)
(5)
13

2 2 20 0R (t) = Z (t) +q (t)© R (t)

3 3 30 0 35 5R (t) = Z (t) +q (t)© R (t) +q (t)© R (t)

5 5 53 3R (t) = Z (t) +q (t)© R (t)  (29-32) 

Where 

   0 1Z (t) = exp - α +λ(1- r) t                 

 2-α t 12Z (t) = exp G (t)

5Z (t) = K(t | x)g(x)dx (33-37) 

Taking the Laplace transform of the relations (29-32) and simplifying the resulting set of equations for 
*
0R (s) we obtain;

        * 1
0

1

N (s)
R (s) =

D (s)
  (say) 

    
  

* * * * * * * * * * * * * *
0 01 1 02 2 01 15 5 35 53 3 35 5 01

* * * * * * * *
01 10 02 20 35 53 01 30

Z + q Z + q Z + q q Z 1- q q + Z + q Z q q

1- q q - q q 1- q q - q q q


(5)*
13

(5)*
13

 (38) 

The mean time to system failure (MTSF) can be determined by using the formula; 

       *
0 0 0

s 0
E (t) = R (t)dt = lim R (s)


      (39) 

 
    

  
0 01 1 02 2 01 15 5 35 3 35 5 01

01 10 02 20 35 01 30

p p p p 1 p p p p

1 p p p p 1 p p p p

           


   

(5)
13

(5)
13

(40) 

       II. Availability Analysis

Let p
iA (t) and o

iA (t) be the probabilities that the system is up at epoch ‘t’ due to p-unit and o-unit 

respectively, when the system initially starts from state iS E. By using simple probabilistic laws we 

get the following relation among p
iA (t) . 

        p p p
0 01 020 1 2A (t) = Z (t) + q (t) ©Α (t) + q (t)© Α (t)  

        p p p
101 0 3A (t) = q (t) ©Α (t) + q (t)© Α (t)

(5)
13

        p p p
202 0 3A (t) = q (t) ©Α (t) +q (t)© Α (t)

(4)
23

        p p p p
3 30 34 35 53 0 4A (t) = Z (t) + q (t) ©Α (t) + q (t)© Α (t) + q (t)© Α (t)  

        p p
434 3A (t) = q (t)© Α (t)  

        p p
535 3A (t) = q (t)© Α (t)  (41-46) 

Where, 0 3Z (t) and Z (t) has already been defined in equations (33) and (36).

Taking the Laplace transform of the relations (41-46) and simplifying the resulting set of equations for 
p*
0A (s) we obtain;

 
   

    

* * * * * * * *
0 34 43 35 53 3 01 02p*

0 * * * * * * * * * * *
34 43 35 53 01 10 02 20 30 01 02

Z 1- q q - q q + Z q q + q q
A (s) =

1- q q - q q 1- q q - q q - q q q + q q

(5)* (4)*
13 23

(5)* (4)*
13 23

(47) 

Similarly, employing the same probabilistic reasoning as in case of o
iA (t), (i = 0 -5) the recurrence

relations among can be determined as follows:- 

 1 2Z (t) = exp -α t K( )g(x)dx t | x

  23 1Z (t) = exp -{α +λ(1- r)}t G (t)
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        o o o
0 01 1 02 2A (t) = q (t)©Α (t) + q (t)© Α (t)  

        o o o
1 1 10 0 3A (t) = Z (t) + q (t) ©Α (t) + q (t)© Α (t)

(5)
13  

        o o o
2 2 20 0 3A (t) = Z (t) + q (t) ©Α (t) + q (t)© Α (t)

(4)
23  

        o o o o
3 30 0 34 4 35 5A (t) = q (t) ©Α (t) + q (t)© Α (t) + q (t)© Α (t)  

        o o
4 43 3A (t) = q (t)© Α (t)

      o o
5 53 3A (t) = q (t)© Α (t)  (48-53) 

Taking the L.T. of the relations (48-53) and simplifying the resulting sets of algebraic equations for
o*
0A (s) , we obtain;

  
  

    

* * * * * * * *
34 43 35 53 01 0 02 2o*

0 (5)* (4)** * * * * * * * * * *
34 43 35 53 01 10 02 20 30 01 0213 23

1- q q - q q q Z + q Z
A (s) =

1- q q - q q 1- q q - q q - q q q + q q
 (54) 

For brevity, we have omitted the argument‘s’ from *
ijq (s)  and *

iZ (s) . Now the steady state 

availabilities of the system when p-unit and o-unit are operative, respectively given by; 
p* p p*

2 20 0 0
t s 0

A = lim A (t) = lim sA (s) = N D
 

 (55) 

 o* o o*
0 0 0 3 2

t s 0
A = lim A (t) = lim sA (s) = N D

 
 (56) 

Where 

 (5) (4)
2 30 0 01 02 313 23N = p + p p + p p   (57) 

 3 30 01 1 02 2N = p p + p       (58) 

We observe that 

 2D 0 0

Therefore by using L. Hospital rule, we get 

        
 

 
2p 2

0
s 0

2 2

N s N
A lim (say)

D s D
 

 

 
 

 
3o 3

0
s 0

2 2

N s N
A lim (say)

D s D
 

 

Thus, we have 

 

 

'
2 30 0 01 10 02 20 3 02 30 01 10 02 20 34 4

01 30 01 10 02 20 35 5

D = p + (1- p p - p p ) + p p + (1- p p - p p )p

+ p p + (1- p p - p p )p

  


 (59) 

The mean up time of the system due to p-unit and o-unit during time interval (0, t) are respectively 

given by; 
t t

pp o o
up up 00

0 0

μ (t) = A (u)du and μ (t) = A (u)du   (60-61) 

Thus 
p* o*

p* o*0 0
up up

A (s) A (s)
(s) and (s)

s s
     (63-63) 

III. Busy period analysis

Let 1 2 3
i i iB (t), B (t)and B (t) be the respective probabilities that the repairman is busy in PM, in the repair 

of a failed p-unit and in the repair of failed o-unit at time ‘t’, when system initially starts from state 

iS E. Using simple probabilistic arguments the system of integral equations for  1 2 3
i i iB (t),B (t)and B (t)
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can be easily developed and by the technique of L.T. the values of 1 2 3
0 0 0B (s),B (s)and B (s)    can be easily 

determined.  

The steady state probabilities 1 2 3
0 0 0B ,B and B are given respectively as follows:

    1 ' 2 ' 3 '
0 4 2 0 5 2 0 6 2B = N D , B = N D and B = N D    (64-66) 

Where 

 4 01 30 1 15 5 01 02 35 5N = p p ( + p ) + p p + p p p  
(5) (4)
13 23

 5 02 30 2 24 4 01 02 34 4N = p p ( + p ) + p p + p p p  
(5) (4)
13 23

 6 01 02 3N = p p + p p 
(5) (4)
13 23  (67-69) 

And '
2D is same as in case of availability analysis. 

The expected busy periods of the repairman in PM, in repair of failed p-unit and in the repair of failed 

o-unit respectively, during time interval (0,t) are given by- 

       
t t t

1 1 2 2 3 3
b 0 b 0 b 0

0 0 0

μ (t) = B (u)du, μ (t) = B (u)du and μ (t) = B (u)du    (70-72) 

So that 

    
1* 2* 3*

1* 2* 3*0 0 0
b b b

B (s) B (s) B (s)
μ (s) = , μ (s) = and μ (s) =

s s s
 (73-75) 

IV. Profit Function Analysis

The net expected gain incurred in time interval (0,t) is given by- 

       p o 1 2 3
0 up 1 up 2 b 3 b 4 bP(t) = K μ (t)+K μ (t)-K μ (t)-K μ (t)-K μ (t)    (76) 

Where 

        0K =  revenue per unit time when system is operative due to p-unit. 

        1K =  revenue per unit time when system is operative due to o-unit. 

        2K =  cost per unit time for PM of p-unit. 

        3K =  cost per unit time for repair of failed p-unit. 

        4K =  cost per unit time for repair of failed o-unit. 

Now the expected profit (gain) per-unit time in steady state is given by- 
p o 1 2 3

0 1 0 2 0 3 0 4 00P = K A +K A -K B -K B -K B  (77) 

VI. Graphical Representation

In order to carry out a detailed analysis of the behavior of the system, we plot the MTSF and Profit 

curves with respect to multiple values of the failure rate (α₁), three distinct values of mean repair time 

of o-unit (β₂) and two distinct correlation coefficient (r) values. 

        The MTSF curves w.r.t. "α₁" are displayed in Figure 2 with three distinct values of mean repair 

time of o-unit (β₂), i.e., 0.25, 0.55, and 0.85, as well as two distinct values of correlation coefficient (r), 

i.e., 0.2 and 0.7. The other parameters remain constant at β₁ = 0.9, λ = 0.7, μ =0.18, and α₂ = 0.05.  From

the observations provided in the figure, we observe that MTSF decreases uniformly as the value of

failure rate ‘α₁’ increases. Furthermore, the observation indicates that as the values of the mean repair

time of o-unit ‘β₂’ increase, the expected life of the system decreases. Moreover, with the increase in

the value of the correlation coefficient ‘r’, MTSF tends to increase as well.

        From Figure 3, we observe that the profit decreases as failure rate ‘α₁’ increases with varying 

three different values of ‘β₂’ i.e., 0.25, 0.55 and 0.85 and two different values of correlation coefficient 
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‘r’ i.e., 0.01 and 0.02, when values of other parameters are kept fixed as β₁ = 0.5, λ=0.25, μ=0.4, α₂ = 0.1, 

K₀ = 60, K₁ = 190, K₂ = 200, K₃ = 300 and K₄ = 250. From the curves, the linear trends in Figure 3 indicate 

that there is a constant rate of decrease in profit as the values of the failure rate ‘α₁’ increases. 

        From Figure 2, the dotted curves depict that to achieve MTSF at least 3000 units, the failure rate 

‘α₁’ of unit-1 must be less than 0.012, 0.016 and 0.021, respectively, for β₂ = 0.25, 0.55 and 0.85 when      

r = 0.2. From smooth curves, we observe that to achieve MTSF at least 3500 units, the values of ‘α₁’ 

must be less than 0.011, 0.019 and 0.023, respectively, for β₂ = 0.25, 0.55 and 0.85 when r = 0.7. 

        From Figure 3, the dotted curves reveal that the system is profitable only if ‘α₁’ is less than 0.10, 

0.18 and 0.28, respectively, for β₂ = 0.25, 0.55 and 0.85 when r = 0.01. From smooth curves, we 

conclude that the system is profitable only if ‘α₁’ is less than 0.11, 0.19 and 0.29, respectively, for β₂ = 

0.25, 0.55 and 0.85 when r = 0.02.      

Figure 2: Behaviour of MTSF with respect to α₁ for different values of β₂ and r 
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Figure 3: Behaviour of Profit (P) with respect to α₁ for different values of β₂ and r. 
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Abstract

This paper investigates the estimation of the unknown parameter in the XLindley distribution using
record values and inter-record times, both in classical and Bayesian frameworks. It also delves into
Bayesian prediction of a future record value. We also study the problem of estimation and prediction for
the XLindley distribution based on lower records alone. A simulation study, as well as an analysis of
a real data example, are conducted for comparison and illustration. The numerical findings underline
that including the inter-record times in the study may enhance the performance of the estimators and
predictors.

Keywords: XLindley distribution, lower record values, inter-record times, Bayesian estimation
and prediction.

1. Introduction

The XLindley distribution was first proposed by [8] as an effective new distribution in modeling
lifetime data. Suppose that X is a random variable following the one-parameter XLindley distri-
bution. The probability density function (PDF) and cumulative distribution function (CDF) of X
are given by

f (x; θ) =
θ2

(1 + θ)2 (2 + θ + x)e−θx, (1)

F(x; θ) = 1 −
(

1 +
θx

(1 + θ)2

)
e−θx. (2)

respectively.
We write X ∼ XL(θ) if the PDF of X is given by (1). The XLindley distribution enjoys an

increasing hazard rate function. Chouia and Zeghdoudi [8] demonstrated that the XLindley
distribution can fit better than some other one-parameter distributions such as the exponential,
xgamma and Lindley distributions. Due to the flexibility of the XLindley model, several infer-
ential researches have been accomplished by authors since its inception, for example, Alotaibi et
al. [2] addressed the estimation problem for the XLindley distribution using an adaptive Type-II
progressively hybrid censored data, Nassar et al. [31] investigated the reliability estimation of
the XLindley constant-stress partially accelerated life tests using progressively censored samples
and Alotaibi et al. [3] worked on the reliability estimation under normal operating conditions
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for progressively Type-II XLindley censored data. Moreover, Metiri et al. [29] focused on the
characterization of XLindley distribution using the relation between the truncated moment and
failure rate function or reverse failure rate function.

Suppose that {Xn, n = 1, 2, · · · } is a sequence of identical and independent random vari-
ables. Let {Xn, n = 1, 2, · · · } be a sequence of identically distributed and independent random
variables. If an observation Xj is less than all its preceding observations, then it is termed a
lower record value. Similarly, upper record values can be defined based on the comparisons
with preceding observations in the sequence. The sequence of lower record values along with
the inter-record times can be denoted by (R, T) = {R1, T1, R2, T2, · · · , Rm−1, Tm−1, Rm} where
Ri represents the i-th record value and Ti is the i-th inter-record time, which is the number
of observations needed after occurrence of Ri to obtain a new record value Ri+1. Record data
play a crucial role in various practical scenarios, see for example [5]. Record values and the
related subjects have been studied by many authors; see for example [1, 11, 12, 28]. For in-
stance, Samaniego and Whitaker [38] explored the estimation problem of the mean parameter
of the exponential distribution using records and inter-record times. Doostparast [9] delved into
the Bayesian and non-Bayesian estimation of the two parameters of the exponential distribution
based on records and inter-record times. In a similar study, Doostparast et al. [10] investigated
the Bayesian estimation of the parameters of the Pareto distribution utilizing records and inter-
record times. Kzlaslan and Nadar [21] estimated the parameter of the proportional reversed
hazard rate model based on records and inter-record times. Nadar and Kzlaslan [30] discussed
inferential methods for the Burr type XII distribution using record values and inter-record times.
Additionally, Kzlaslan and Nadar [22, 23] centered their research on inferential procedures for
the generalized exponential and Kumaraswamy distributions based on record values and inter-
record time statistics, respectively. Amini and MirMostafaee [4] examined interval prediction of
future order statistics from the exponential distribution based on records given the inter-record
times. Pak and Dey [32] developed inferential procedures for the estimation of parameters and
prediction of future record values for the power Lindley model using lower record values and
inter-record times. Kumar et al. [24] directed their attention towards the estimation and predic-
tion for the unit-Gompertz distribution based on records and inter-record times. Bastan and Mir-
Mostafaee [6] explored inferential problems for the Poisson-exponential distribution based on
record values and inter-record times. Khoshkhoo Amiri and MirMostafaee [19] studied estima-
tion and prediction issues for the xgamma distribution based on lower records and inter-record
times. Most recently, Khoshkhoo Amiri and MirMostafaee [20] addressed the estimation and
prediction problems for the Chen distribution, utilizing lower records and inter-record times.

In this paper, we intend to discuss estimation and prediction for the XLindley distribution
based on lower records and inter-record times, as well as based on lower records alone. In
what follows, first, we obtain maximum likelihood (ML) estimates and asymptotic confidence
intervals (ACIs) for the parameter of the XLindley distribution in Section 2. In Section 3, we go
through the Bayesian estimation method and find the Bayes estimates of the parameter under a
symmetric loss function and an asymmetric loss function. The Bayes estimates do not seem to be
expressible in closed forms, so we become inclined to use an approximation method such as the
Metropolis-Hastings algorithm. Section 4 is devoted to the Bayesian prediction of a lower future
record value. A simulation study and a real data example are given in Section 5. The numerical
outcomes highlight the effect of incorporating inter-record times in the study on the performance
of estimators and predictors. The paper is concluded with several remarks in Section 6.

2. Maximum Likelihood Estimation

In this section, we proceed to obtain the ML estimates, as well as ACIs, for the unknown param-
eter θ for the XLindley model based on record data. The record data are obtained through an
inverse sampling scheme, where the units are sequentially observed until the mth record occurs.
Additionally, for ease of computation, the mth inter-record time is assumed to be one.
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2.1. ML Estimation Based on Records and Inter-Record Times

In this subsection, our attention shifts towards the ML estimate and an ACI for the parameter.
Let r = (r1, · · · , rm) and t = (t1, · · · , tm−1) be the observed sets of R = {R1, · · · , Rm} and
T = {T1, · · · , Tm−1} respectively coming from XL(θ) distribution. Then, the likelihood function
of θ, given the observed lower records and inter-record times, becomes

L(θ; r, t) =
m

∏
i=1

f (ri)[1 − F(ri)]
ti−1 =

(
θ

1 + θ

)2m

e−θ ∑m
i=1 ri

m

∏
i=1

[
(2 + θ + ri)[ξ(ri, θ)]ti−1

]
, (3)

where

ξ(x, θ) =

(
1 +

θx
(1 + θ)2

)
e−θx, θ > 0. (4)

It is important to note that tm is set to one for the sake of simplifying the equations. Therefore,
the resulting log-likelihood function can be expressed as

l(θ; r, t) = 2m ln θ − 2m ln(1 + θ)− θ
m

∑
i=1

ri +
m

∑
i=1

ln(2 + θ + ri) +
m

∑
i=1

(ti − 1) ln ξ(ri, θ).

Upon taking the partial derivative of the log-likelihood function with respect to (w.r.t.) θ and
setting it equal to zero, we get

∂l(θ; r, t)
∂θ

=
2m

θ(1 + θ)
−

m

∑
i=1

ri +
m

∑
i=1

1
2 + θ + ri

+
m

∑
i=1

(ti − 1)
ψ(ri, θ)

ξ(ri, θ)
= 0,

where

ψ(x, θ) =
∂ξ(x, θ)

∂θ
= −xe−θx

(
1 +

θx
(1 + θ)2 +

θ − 1
(1 + θ)3

)
, θ > 0. (5)

The ML estimate of θ may be determined through solving the above equation. However, it ap-
pears that there is no explicit form for the equation presented above, which necessitates the use
of a numerical method. Subsequently, our focus shifts to constructing an ACI for the parameter θ.

In this context, Fisher’s information is defined as follows I(θ) = −E
(

∂2l ln fθ(R, T)
∂θ2

)
, if the inte-

gral exists, where fθ(r, t) denotes the joint probability function of R1, T1, R2, T2, · · · , Rm−1, Tm−1, Rm.
The second partial derivative of the log-likelihood function w.r.t. θ is given by

∂2l(θ; r, t)
∂θ2 = −2m(1 + 2θ)

[θ(1 + θ)]2
−

m

∑
i=1

1
(2 + θ + ri)2 +

m

∑
i=1

(ti − 1)
(

ψ
′
(ri, θ)ξ(ri, θ)− [ψ(ri, θ)]2

[ξ(ri, θ)]2

)
,

where

ψ
′
(x, θ) =

∂ψ(x, θ)

∂θ
= xe−θx

(
x +

θx2

(1 + θ)2 +
2x(θ − 1)
(1 + θ)3 − 2(2 − θ)

(1 + θ)4

)
, θ > 0. (6)

Let θ̂ML denote the ML estimator (MLE) of θ. Then, the 100(1 − α)% modified asymptotic two-
sided equi-tailed confidence interval (MATE CI) for θ can be given by (see for example [25])(

max
{

0, θ̂ML −
z α

2√
Ĩ(θ̂ML)

}
, θ̂ML +

z α
2√

Ĩ(θ̂ML)

)
,

where zγ represents the γ-th upper quantile of the standard normal distribution and

Ĩ(θ̂ML) = −∂2l(θ|R, T)
∂θ2

∣∣∣∣
θ=θ̂ML

.
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2.2. ML Estimation Based on Record Values

The likelihood function of θ given the lower records r (without considering the inter-record
times) is given by

L∗(θ; r) = f (rm)
m−1

∏
i=1

f (ri)

F(ri)
= (

θ

1 + θ
)2me−θ ∑m

i=1 ri
∏m

i=1(2 + θ + ri)

∏m−1
i=1 (1 − ξ(ri, θ))

, (7)

where ξ(x, θ) is defined in (4).
The corresponding log-likelihood function of θ is then given by

l∗(θ; r) = 2m ln θ − 2m ln(1 + θ)− θ
m

∑
i=1

ri +
m

∑
i=1

ln(2 + θ + ri)−
m−1

∑
i=1

ln[1 − ξ(ri, θ)]. (8)

Taking the first partial derivative of the log-likelihood (8) w.r.t. θ and equating it with zero, we
have

∂l∗(θ; r)
∂θ

=
2m

θ(1 + θ)
−

m

∑
i=1

ri +
m

∑
i=1

1
2 + θ + ri

+
m−1

∑
i=1

ψ(ri, θ)

1 − ξ(ri, θ)
= 0,

where ψ(x, θ) is defined in (5).
So the ML estimate may be obtained by solving the above equation with the help of a numer-

ical technique.
The second partial derivate of (8) w.r.t. θ is obtained to be

∂2l∗(θ; r)
∂θ2 = −2m(1 + 2θ)

[θ(1 + θ)]2
−

m

∑
i=1

1
(2 + θ + ri)2 +

m−1

∑
i=1

(
ψ

′
(ri, θ)[1 − ξ(ri, θ)] + [ψ(ri, θ)]2

[1 − ξ(ri, θ)]2

)
,

where ψ′(x, θ) is defined in (6).
Let θ̂∗ML denote the MLE of θ based on lower records. Following the same approach described

in the previous subsection, the 100(1 − α)% MATE CI for θ can be given by(
max

{
0, θ̂∗ML −

z α
2√

Ĩ∗(θ̂∗ML)

}
, θ̂ML +

z α
2√

Ĩ∗(θ̂∗ML)

)
,

where

Ĩ∗(θ̂∗ML) = −∂2l∗(θ|R, T)
∂θ2

∣∣∣∣
θ=θ̂∗ML

.

3. Bayesian Estimation

In the context of Bayesian estimation, the experimenter’s information can be conveyed through
a probability distribution for the parameter, referred to as the prior distribution. Due to the
constraint that the parameter of the XLindley distribution must be positive, we use the popular
gamma prior for θ, whose PDF is given by

Π(θ) =
baθa−1e−bθ

Γ(a)
, (9)

where, the positive hyperparameters a and b can be set based on the prior information available
to the experimenter. In what follows, we focus on the Bayesian estimation of θ based on records
and inter-record times and based on records alone.
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3.1. Bayesian Estimation Based on Records and Inter-Record Times

Using (3) and the prior (9), we can derive the posterior density of θ given r and t as follows

Π(θ|r, t) =
θ2m+a−1

D(1 + θ)2m e−θ(b+∑m
i=1 ri)

m

∏
i=1

[
(2 + θ + ri)[ξ(ri, θ)]ti−1

]
,

where ξ(x, θ) is defined in (4) and

D =
∫ ∞

0

θ2m+a−1

(1 + θ)2m e−θ(b+∑m
i=1 ri)

m

∏
i=1

[
(2 + θ + ri)[ξ(ri, θ)]ti−1

]
dθ.

The squared error loss function (SELF) is widely used in Bayesian analyses. However, the SELF
may not be appropriate for many real-world scenarios due to its equal weighting of overestima-
tion and underestimation. An alternative asymmetric loss function is the linear-exponential loss
function (LELF), proposed by [42], which is given by

LLE(θ, θ̂) = b[exp{c(θ̂ − θ)} − c(θ̂ − θ)− 1], b > 0, c ̸= 0,

where θ̂ denotes an estimator of θ.
Without loss of generality, we assume b = 1. The appropriate determination of c involves

considering both its sign and magnitude. When c > 0, then overestimation is more serious than
underestimation and vice versa, see [43] for more details. The Bayes estimates of θ under the
SELF and LELF become

θ̂SE =
∫ ∞

0
θΠ(θ|r, t)dθ =

1
D

∫ ∞

0

θ2m+a

(1 + θ)2m e−θ(b+∑m
i=1 ri)

m

∏
i=1

[
(2 + θ + ri)[ξ(ri, θ)]ti−1

]
dθ,

and

θ̂LE = −1
c

ln M(−c|r, t) = −1
c

ln[
∫ ∞

0
e−cθΠ(θ|r, t)dθ]

= −1
c

ln
(

1
D

∫ ∞

0

θ2m+a−1

(1 + θ)2m e−θ(c+b+∑m
i=1 ri)

m

∏
i=1

[
(2 + θ + ri)[ξ(ri, θ)]ti−1

]
dθ

)
,

respectively, provided that the integrals exist.
It appears that the above Bayes estimates of θ may not be expressible in closed forms. There-

fore, we resort to an approximation method, called the Metropolis-Hastings (M-H) algorithm
[27, 15]. An M-H algorithm suitable for our scenario can be outlined as follows.

Algorithm 1

Step1. Start with an initial guess θ0 = θ̂ML and set t = 1.
Step2. Given θt−1, generate θ∗ from a truncated-normal distribution, N(θt−1, σ2)I{θ>0}. Then,

assign θt = θ∗ with the following probability

P = min
{

Π(θ∗|r, t)q(θt−1|θ∗)
Π(θt−1|r, t)q(θ∗|θt−1)

, 1
}

,

where q(x|b) represents the density of N(b, σ2)I{x>0}, otherwise set θt = θt−1.
Step3. Set t = t + 1 and repeat Step 2, T times, where T is a considerably large number. So,

{θM+1, θM+2, · · · , θT} constitutes the generated sample, where M denotes the burn-in period.

The approximate Bayes point estimates of θ under the SELF and LELF are then given by

θ̂SM =
1

M∗

T

∑
t=M+1

θt, and θ̂LM = −1
c

ln
(

1
M∗

T

∑
t=M+1

e−cθt

)
,
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respectively, with M∗ = T − M. In Section 5, we have taken σ2 = 1.
Let θ(1) · · · θ(M∗) denote the ordered values of θM+1, · · · , θT . Define the intervals Lj(M∗) =

[θ(j), θ(j+⌈(1−α)M∗⌉)] for j = 1, 2, · · · , M∗ − ⌈(1 − α)M∗⌉. Consequently, the 100(1 − α)% Chen
and Shao short width credible interval (CSSW CrI) for θ can be represented as Lq(M∗), where q
is determined such that [7]

θ(q+[(1−α)M∗ ]) − θ(q) = min
1≤j≤M∗−[(1−α)M∗ ]

θ(j+[(1−α)M∗ ]) − θ(j).

3.2. Bayesian Estimation Based on Record Values

Using (7) and the prior (9), the posterior density of θ given r is derived to be

Π∗(θ|r) = θ2m+a−1

D∗(1 + θ)2m e−θ(b+∑m
i=1 ri) ∏m

i=1(2 + θ + ri)

∏m−1
i=1 [1 − ξ(ri, θ)]

,

where

D∗ =
∫ ∞

0

θ2m+a−1

(1 + θ)2m e−θ(b+∑m
i=1 ri) ∏m

i=1(2 + θ + ri)

∏m−1
i=1 [1 − ξ(ri, θ)]

dθ.

The Bayes estimates of θ under the SELF and LELF become

θ̂∗SE =
1

D∗

∫ ∞

0

θ2m+a

(1 + θ)2m e−θ(b+∑m
i=1 ri) ∏m

i=1(2 + θ + ri)

∏m−1
i=1 [1 − ξ(ri, θ)]

dθ,

and

θ̂∗LE = −1
c

ln
(

1
D∗

∫ ∞

0

θ2m+a−1

(1 + θ)2m e−θ(c+b+∑m
i=1 ri) ∏m

i=1(2 + θ + ri)

∏m−1
i=1 [1 − ξ(ri, θ)]

dθ

)
,

respectively, provided that the related integrals exist.
It appears that the above Bayes estimates of θ may not have closed-form expressions. So

we may use the M-H algorithm (similar to that described in Algorithm 1) to approximate these
Bayes estimates, see Subsection 3.1. We can also obtain the 100(1 − α)% CSSW CrI for θ using a
similar approach detailed in Subsection 3.1.

4. Bayesian Prediction

Let R1, T1, R2, T2, · · · , Rm−1, Tm−1, Rm be the first m of lower record values and their correspond-
ing inter-record times from XL(θ). Let further r = (r1, · · · , rm) and t = (t1, · · · , tm−1) be the
observed sets of R = {R1, · · · , Rm} and T = {T1, · · · , Tm−1}. We intend to predict the s-th
unobserved lower record value, Rs, where s > m. Using the Morkovian property of records,
the conditional PDF of Rs given R = r and T = t, denoted by f (rs|θ, r, t) is identical to the
conditional PDF of Rs given Rm = rm, denoted by f (rs|θ, rm) (see for example [5, 20]). So, we
have

f (rs|θ, r, t) ≡ f (rs|θ, rm) =
f (rs; θ)[Q(rs, θ)− Q(rm, θ)]s−m−1

F(rm, θ)Γ(s − m)

= [Q(rs, θ)− Q(rm, θ)]s−m−1

(
θ

1 + θ

)2

(θ + 2 + rs)

[1 − ξ(rm, θ)]Γ(s − m)
e−θrs , (10)

where 0 < rs < rm, Q(x, θ) = − ln(F(x; θ)) and ξ(x, θ) is defined in (4).
The Bayes predictive density of Rs given the lower records and inter-record times is obtained

to be

h(rs|r, t) =
∫ ∞

0
f (rs|θ, rm)Π(θ|r, t)dθ.
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It can be easily seen that the associated posterior predictive density may not be obtained analyt-
ically. Thus, we estimate h(rs|, r, t) by means of a sample generated using the M-H algorithm.
Let {θυ, υ = 1, · · · , M∗} be the generated sample using Algorithm 1, where M∗ = T − M. Then,
an estimate of h(rs|r, t) is given by

h̃(rs|r, t) =
1

M∗

M∗

∑
υ=1

f (rs|θυ, rm).

The approximate predictions of Rs under the SELF and LELF (provided that they exist) can be
obtained as

R̃SEM
s =

∫ rm

0
rs h̃(rs|r, t)drs =

1
M∗

M∗

∑
υ=1

∫ rm

0
rs f (rs|θυ, rm)drs, (11)

and

R̃LEM
s =

−1
c

ln
[∫ rm

0
e−crs h̃(rs|r, t)drs

]
=

−1
c

ln[
1

M∗

M∗

∑
υ=1

∫ rm

0
e−crs f (rs|θυ, rm)drs], (12)

respectively.
A 100(1 − α)% two-sided Bayesian prediction interval for Rs is given by (L(r, t), U(r, t)),

where L(r, t) and U(r, t) satisfy the following equations at the same time∫ L(r,t)

0
h(rs | r, t)drs =

α

2
, and

∫ U(r,t)

0
h(rs | r, t)drs = 1 − α

2
.

A 100(1 − α)% approximate two-sided Bayesian prediction interval (ATB PI) for Rs is given
by (L, U), where L and U satisfy the following equations at the same time

1
M∗

T

∑
υ=M+1

∫ L

0
f (rs | θυ, rm)drs =

α

2
, and

1
M∗

T

∑
υ=M+1

∫ U

0
f (rs | θυ, rm)drs = 1 − α

2
.

4.1. Special Case: s = m + 1

For the special case, when s = m + 1, then Y = Rm+1 given Rm = rm follows the truncated
XLindley distribution on interval (0, rm). So, we have

f (rm+1|θ, r, t) ≡ f (rm+1|θ, rm) =
f (rm+1; θ)

F(rm, θ)

=

(
θ

1 + θ

)2

(θ + 2 + rm+1)

1 − ξ(rm, θ)
e−θrm+1 , 0 < rm+1 < rm. (13)

Moreover, we have following two relations

∫ rm

0
rm+1 f (rm+1|θ, rm)drm+1 = − (θ + 2)(θrm+1 + 1) + rm+1(θrm+1 + 2) + 2/θ

(1 + θ)2[1 − ξ(rm, θ)]
e−θrm+1

]rm

0

=
θ + 2 + 2/θ − [(θ + 2)(θrm + 1) + rm(θrm + 2) + 2/θ]e−θrm

(1 + θ)2[1 − ξ(rm, θ)]
,

∫ rm

0
e−crm+1 f (rm+1|θ, rm)drm+1 = − θ2[1 + (θ + c)(θ + 2 + rm+1)]

(θ + c)2(1 + θ)2[1 − ξ(rm, θ)]
e−(θ+c)rm+1

]rm

0

=
θ2{1 + (θ + c)(θ + 2)− [1 + (θ + c)(θ + 2 + rm)]e−(θ+c)rm}

(θ + c)2(1 + θ)2[1 − ξ(rm, θ)]
.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

264



Fatemeh Zanjiran and S.M.T.K. MirMostafaee
ESTIMATION & PREDICTION FOR THE XLD BASED ON RECORDS

Therefore, from (11) and (12), the approximate predictions of Rs under the SELF and LELF can
be obtained as

R̃SEM
m+1 =

1
M∗

M∗

∑
υ=1

∫ rm

0
rm+1 f (rm+1|θυ, rm)drm+1

=
1

M∗

M∗

∑
υ=1

θυ + 2 + 2/θυ − [(θυ + 2)(θυrm + 1) + rm(θυrm + 2) + 2/θυ]e−θυrm

(1 + θυ)2[1 − ξ(rm, θυ)]
,

and

R̃LEM
m+1 =

−1
c

ln

[
1

M∗

M∗

∑
υ=1

∫ rm

0
e−crs f (rs|θυ, rm)drs

]

=
−1
c

ln

[
1

M∗

M∗

∑
υ=1

θ2
υ{1 + (θυ + c)(θυ + 2)− [1 + (θυ + c)(θυ + 2 + rm)]e−(θυ+c)rm}

(θυ + c)2(1 + θυ)2[1 − ξ(rm, θυ)]

]
respectively.

Additionally, A 100(1 − α)% ATB PI for Rm+1 is given by (L, U), where L and U satisfy the
following nonlinear equations

1
M∗

T

∑
υ=M+1

1 − ξ(L, θυ)

1 − ξ(rm, θυ)
=

α

2
, and

1
M∗

T

∑
υ=M+1

1 − ξ(U, θυ)

1 − ξ(rm, θυ)
= 1 − α

2
,

where ξ(x, θ) is defined in (4).

Remark 1. Using the Morkovian property of records, the conditional PDF of Rs given R = r is
identical to the conditional PDF of Rs given Rm = rm (see for example [5, 20]). Therefore, the
approximate Bayesian point predictions and a 100(1− α)% ATB PI for Rs based on record values
can be obtained using a similar procedure described above, with this difference that the M-H
sample, {θυ, υ = 1, · · · , M∗}, must be generated based on only records.

5. Numerical Illustration

This section involves a simulation study, as well as a real data analysis.

5.1. A Simulation Study

Here, we conduct a Monte Carlo simulation to evaluate the accuracy of the point and interval
estimators and approximate predictors that are mentioned in this paper. In this simulation study,
we set the number of replications to N∗ = 1000. For each replication, we generate (m+ 1) records
and their associated inter-record times from XL(θ). We consider the values of m to be m = 3, 4, 5
and the values of the parameter to be θ = 0.5, 1 and 2. In the context of the Bayesian estimation,
we use the approximate non-informative prior with a = b = 0.1. A few replications for which
the predictions became negative were removed from the simulation.

We obtain the ML estimates and the approximate Bayes estimates based on the first m records
and their corresponding (m − 1) record times and based on the first m records alone. Further-
more, we use Geweke’s test [13], Raftery and Lewiss diagnostic [36, 37] and Heidelberger and
Welch’s convergence diagnostic [18] to assess the convergence of the generated M-H Markov
chains. It is worth noting that Heidelberger and Welch [18] made use of or referenced the find-
ings of [39, 16, 17, 40, 41]. In some cases, we have taken every second sampled value (and
adjusted the number of sampled values accordingly) to ensure a convergent M-H Markov chain.
All the final chains have sizes equal to 10000. Figure 1 shows the M-H Markov chains (the figure
is for m = 4 and θ = 1), from which the convergence of the M-H algorithm may be confirmed.

The performance of the different estimators is compared based on their estimated biases
(biases for short) and estimated risks (ERs). Additionally, we evaluate the interval estimators
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Figure 1: Plots of Markov chains for θ, the left panel is for the case based on records and inter-records times, whereas
the right panel is for the case based on lower records alone (m = 4 and θ = 1).

and predictors using the average width (AW) and coverage probability (CP) criteria. If θ̂ is an
estimator of θ and θ̂i is the corresponding estimate obtained in the i-th replication, then the bias
and ERs of θ̂ w.r.t. the SELF and LELF are given by

Bias(θ̂) =
1

N∗

N∗

∑
i=1

(θ̂i − θ), (14)

ERS(θ̂) =
1

N∗

N∗

∑
i=1

(θ̂i − θ)2, (15)

and

ERL(θ̂) =
1

N∗

N∗

∑
i=1

(
exp[c(θ̂i − θ)]− c(θ̂i − θ)− 1

)
, (16)

respectively.
The point and interval predictions for the (m + 1)-th record value, namely Rm+1, are also

calculated. In terms of prediction assessment, we consider the estimated bias (bias for short)
and the estimated prediction risks (EPRs) w.r.t. to the SELF and LELF for the point predictors,
which are defined similarly to (14), (15) and (16), respectively. The simulation results are given
in Table 1 for point estimation, Table 2 for point prediction and Table 3 for interval estimation
and prediction. The results for point estimation and prediction in Tables 1 and 2 are provided
for m = 4 and 5 for the sake of brevity, whereas the results presented in Table 3 are provided for
m = 3, 4 and 5.

Based on Tables 1-3, we draw the following conclusions:
• The point estimators based on records and inter-record times outperform the correspond-

ing point estimators based on record alone in terms of bias and ER in the most cases.
Additionally, the biases and EPRs of the approximate point predictors based on records
and inter-record times are smaller than those of approximate point predictors based on
records alone in the most cases, as well.

• The ERs of the point estimators for θ = 1 and 2 decrease w.r.t. to m in the most cases,
whereas the EPRs of the point predictors decrease w.r.t. m for all selected values of θ
without any exception.

• The AWs of the 95% approximate interval estimators and predictors based on records
and inter-record times are less than those of the 95% approximate interval estimators and
predictors based on records alone (except for one case for which they are equal up to 5
decimals).

• The CPs of the 95% approximate interval estimators and predictors are all equal to or close
to the nominal value 0.95, as expected.
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Table 1: The biases and ERs of the point estimators of θ based on records and inter-record times (first row) and based
on records alone (second row).

m = 4 m = 5
ERL ERL ERL ERL

θ = 0.5 bias ERS c = 0.5 c = −0.5 bias ERS c = 0.5 c = −0.5

MLE 0.0868 0.0971 0.0156 0.0101 0.0669 0.0483 0.0066 0.0056
1.6656 99.041 > 100 0.6617 0.1215 > 100 > 100 0.8858

Bayes (SELF) 0.0943 0.0991 0.0156 0.0104 0.0729 0.0510 0.0070 0.0059
0.6746 2.7953 1.7739 0.1732 0.6977 3.0185 2.6072 0.1802

Bayes (LELF) 0.0795 0.0821 0.0123 0.0089 0.0634 0.0457 0.0062 0.0053
c = 0.5 0.3751 0.7616 0.1494 0.0684 0.3854 0.7803 0.1546 0.0697
Bayes (LELF) 0.1112 0.1246 0.0212 0.0126 0.0831 0.0573 0.0079 0.0066
c = −0.5 1.7028 25.912 > 100 0.6366 1.7503 26.783 > 100 0.6545
θ = 1

MLE 0.2293 0.5745 0.2497 0.0466 0.1564 0.3371 0.1164 0.0300
7.4661 > 100 > 100 3.4686 4.8365 > 100 > 100 2.1844

Bayes (SELF) 0.2394 0.5045 0.1371 0.0443 0.1688 0.3186 0.0806 0.0297
1.2180 6.3531 43.106 0.3665 1.0927 5.8714 9.0584 0.3326

Bayes (LELF) 0.1652 0.3243 0.0602 0.0317 0.1186 0.2277 0.0412 0.0230
c = 0.5 0.4764 1.1666 0.2182 0.1077 0.4107 1.0520 0.1980 0.0973
Bayes (LELF) 0.3505 1.2209 14.838 0.0718 0.2316 0.5204 0.5563 0.0406
c = −0.5 3.9390 75.039 > 100 1.6089 3.4741 67.636 > 100 0.0481
θ = 2

MLE 0.5934 2.9392 2.0688 0.1996 0.4055 1.7905 0.9308 0.1353
9.4667 > 100 > 100 4.4454 9.9441 > 100 > 100 4.6788

Bayes (SELF) 0.5169 2.1067 0.7134 0.1628 0.3695 1.4141 0.4473 0.1166
1.5136 9.0327 7.3213 0.5359 1.5155 8.9470 6.8274 0.5322

Bayes (LELF) 0.2013 0.9833 0.1922 0.0943 0.1448 0.7758 0.1505 0.0759
c = 0.5 0.1222 1.0090 0.1527 0.1139 0.1291 1.0102 0.1549 0.1128
Bayes (LELF) 1.0939 6.8180 59.371 0.3483 0.7305 3.6409 17.917 0.2150
c = −0.5 6.5314 > 100 > 100 2.7891 6.6037 > 100 > 100 2.8190
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Table 2: The biases and EPRs of the approximate Bayes point predictors of θ based on records and inter-record times
(first row) and based on records alone (second row)..

m = 4 m = 5
ERL ERL ERL ERL

θ = 0.5 bias ERS c = 0.5 c = −0.5 bias ERS c = 0.5 c = −0.5

SELF 0.002842 0.017065 0.002167 0.002128 0.000548 0.006948 0.000912 0.000843
0.005136 0.017106 0.002211 0.002098 0.001393 0.007154 0.000958 0.000854

LELF -0.001371 0.017407 0.002159 0.002222 -0.000844 0.006759 0.000865 0.000837
c = 0.5 0.000895 0.017163 0.002166 0.002155 -0.000003 0.006893 0.000899 0.000841
LELF 0.007078 0.017195 0.002235 0.002097 0.001943 0.007233 0.000975 0.000858
c = −0.5 0.009345 0.017514 0.002317 0.002102 0.002780 0.007493 0.001031 0.000874
θ = 1

SELF 0.002136 0.002491 0.000312 0.000312 0.001369 0.000653 0.000082 0.000081
0.002754 0.002453 0.000309 0.000305 0.001667 0.000663 0.000084 0.000082

LELF 0.001516 0.002487 0.000310 0.000313 0.001114 0.000645 0.000081 0.000080
c = 0.5 0.002130 0.002437 0.000305 0.000305 0.001411 0.000651 0.000082 0.000081
LELF 0.002760 0.002504 0.000315 0.000312 0.001625 0.000664 0.000084 0.000082
c = −0.5 0.003379 0.000248 0.000313 0.000307 0.001924 0.000678 0.000086 0.000084
θ = 2

SELF 0.000476 0.000378 0.000047 0.000047 -0.000272 0.000105 0.000013 0.000013
0.000689 0.000397 0.000050 0.000049 -0.000208 0.000106 0.000013 0.000013

LELF 0.000381 0.000374 0.000047 0.000047 -0.000302 0.000105 0.000013 0.000013
c = 0.5 0.000594 0.000392 0.000049 0.000049 -0.000239 0.000106 0.000013 0.000013
LELF 0.000572 0.000382 0.000048 0.000048 -0.000242 0.000105 0.000013 0.000013
c = −0.5 0.000785 0.000401 0.000050 0.000050 -0.000177 0.000106 0.000013 0.000013

Table 3: The AWs and CPs of 95% approximate interval estimators and predictors based on records and inter-record
times (first row) and based on records alone (second row).

m = 3 m = 4 m = 5
θ = 0.5 AW CP AW CP AW CP

MATE CI 1.09579 0.962 0.83556 0.963 0.70605 0.956
6.92765 0.964 5.89956 0.959 7.21595 0.960

CSSW CrI 1.03103 0.955 0.80036 0.952 0.68460 0.951
2.98580 0.957 2.93030 0.952 3.00196 0.957

ATB PI 0.47067 0.945 0.23426 0.938 0.11708 0.948
0.47077 0.942 0.23428 0.938 0.11708 0.949

θ = 1

MATE CI 2.55093 0.953 1.95860 0.954 1.61990 0.951
11.8789 0.966 24.2695 0.977 16.4109 0.965

CSSW CrI 2.29057 0.954 1.82186 0.955 1.54003 0.946
5.46901 0.962 5.77409 0.975 5.43254 0.960

ATB PI 0.18213 0.955 0.08794 0.946 0.04852 0.950
0.18224 0.955 0.08797 0.946 0.04853 0.950

θ = 2

MATE CI 5.81158 0.946 4.58167 0.956 3.75708 0.956
29.2559 0.962 32.4821 0.955 33.8740 0.967

CSSW CrI 4.66783 0.952 4.00381 0.958 3.39805 0.953
8.67913 0.959 9.29240 0.952 9.29188 0.962

ATB PI 0.08007 0.935 0.03415 0.954 0.01698 0.950
0.08012 0.937 0.03416 0.952 0.01699 0.950
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5.2. Real Data Example

Here, we consider the following data on the amount of rainfall (in inches) recorded at the Los
Angeles Civic Center in February from 1999 to 2018; visit the website of Los Angeles Almanac:
www.laalmanac.com/weather/we08aa.php.

0.56, 5.54, 8.87, 0.29, 4.64, 4.89, 11.02, 2.37, 0.92, 1.64,
3.57, 4.27, 3.29, 0.16, 0.20, 3.58, 0.83, 0.79, 4.17, 0.03.

We have used the Kolmogorov-Smirnov (K-S) test to check if the XLindley model fits the data.
The K-S test statistic confirms that the XLindley distribution is quite suitable for fitting the above
data (p-value greater than 0.5). We have extracted the lower records and the corresponding
inter-record times as follows:

i 1 2 3 4
ri 0.56 0.29 0.16 0.03

ki 3 10 6 1

Here, we have used the approximate non-informative prior with a = b = 0.1. We have computed
the ML and approximate Bayes point estimates, along with the 95% approximate interval esti-
mates of the parameter for the XLindley distribution. Additionally, we have derived the point
predictions and 95% ATB PIs for the next future record, namely R5. The numerical results of this
example are given in Table 4, where Case I denotes the case based on records and inter-record
times, whereas Case II denotes the case based on records alone. Our findings suggest that the
subsequent lowest rainfall amount (after 2018) is expected to be around 0.015 inches, which is
the predicted 5-th lower record value since 1999.

Table 4: The numerical results of the real data example.

LELF LELF
Estimation MLE SELF (c = 0.5) (c = −0.5) 95% MATE CI 95% CSSW CrI

Case I 0.9535 0.9729 0.9405 1.0087 (0.2470, 1.6601) (0.3781, 1.7523)
Case II 1.8809 1.8679 1.4782 2.9436 (0, 4.9336) (0.0400, 4.6741)

LELF LELF
Prediction SELF (c = 0.5) (c = −0.5) 95% ATB PI

Case I 0.01495 0.01493 0.01497 (0.00074, 0.02924)
Case II 0.01488 0.01486 0.01490 (0.00073, 0.02923)

6. Concluding Remarks

Recently, the XLindley distribution has been introduced by [8] aiming at proposing a flexible
distribution for lifetime phenomena. In our study, first, we obtained the ML estimates of the
XLindley parameter based on record values and inter-record times, as well as solely based on
records. Then, we considered the Bayesian estimation of the parameter, and we employed both
symmetric and asymmetric loss functions. The Bayesian point estimates involve integrals that
seem to lack closed forms, so we have utilized the M-H method to evaluate them. Our study
extended to predicting future records, especially the immediate subsequent lower record value
as a special case has been explored in detail. A simulation study has been conducted to evaluate
the point and interval estimators of the unknown parameter of the XLindley distribution along
with the approximate point and interval predictors of a future lower record value. The simu-
lation study revealed the impact of including the inter-record times on the performance of the
estimators and predictors. Furthermore, a real data set containing the rainfall data was analyzed,
where a lower record value could serve as an indicator of an impending drought. The predicted
values of the 5-th lower record have been obtained in the example. Summing up, the results
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of this paper are anticipated to offer practical utility in the estimation and prediction in real
phenomena. All the computations of the paper were carried out using the statistical software R
[35], and the packages coda [33, 34], nleqslv [14] and truncnorm [26] therein.
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Turkish Statistical Association, 7:55–62.

[22] Kızılaslan, F. and Nadar, M. (2015). Estimation with the generalized exponential distribu-
tion based on record values and inter-record times. Journal of Statistical Computation and
Simulation, 85:978–999.

[23] Kızılaslan, F. and Nadar, M. (2016). Estimation and prediction of the Kumaraswamy distri-
bution based on record values and inter-record times. Journal of Statistical Computation and
Simulation, 86:2471–2493.

[24] Kumar, D., Dey, S., Ormoz, E. and MirMostafaee, S. M. T. K. (2020). Inference for the
unit-Gompertz model based on record values and inter-record times with an application.
Rendiconti del Circolo Matematico di Palermo Series 2, 69:1295–1319.

[25] Lehmann, E. L. and Casella, G. Theory of Point Estimation. Second Edition, Springer, 1998.
[26] Mersmann, O., Trautmann, H., Steuer, D. and Bornkamp, B. (2018). trunc-

norm: Truncated normal distribution, R package version 1.0-8, https://CRAN.R-
project.org/package=truncnorm.

[27] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21:1087–1092.

[28] MirMostafaee, S. M. T. K., Asgharzadeh, A., & Fallah, A. (2016). Record values from NH
distribution and associated inference. Metron, 74:37–59.

[29] Metiri, F., Zeghdoudi, H. and Ezzebsa, A. (2022). On the characterisation of X-Lindley
distribution by truncated moments. Properties and application. Operations Research and
Decisions, 32:97-109.

[30] Nadar, M. and Kızılaslan, F. (2015). Estimation and prediction of the Burr type XII distri-
bution based on record values and inter-record times. Journal of Statistical Computation and
Simulation, 85:3297–3321.

[31] Nassar, M., Alotaibi, R. and Elshahhat, A. (2023). Reliability estimation of XLindley constant-
stress partially accelerated life tests using progressively censored samples. Mathematics,
11:1331.

[32] Pak, A. and Dey, S. (2019). Statistical inference for the power Lindley model based on record
values and inter-record times. Journal of Computational and Applied Mathematics, 347:156–172.

[33] Plummer, M., Best, N., Cowles, K. and Vines, K. (2006). CODA: Convergence diagnosis and
output analysis for MCMC. R News, 6:7–11.

[34] Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R. and Magnus-
son, A. (2018). coda: Output analysis and diagnostics for MCMC, R package version 0.19-2,
https://CRAN.R-project.org/package=coda.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

271



Fatemeh Zanjiran and S.M.T.K. MirMostafaee
ESTIMATION & PREDICTION FOR THE XLD BASED ON RECORDS

[35] R Core Team (2024). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria.

[36] Raftery, A. E. and Lewis, S. M. (1992). Comment: One long run with diagnostics: Imple-
mentation strategies for Markov chain Monte Carlo. Statistical Science, 7:493–497.

[37] Raftery, A. E. and Lewis, S. M. (1996). Implementing MCMC. In Markov Chain Monte Carlo
in Practice, Eds. W. R. Gilks, S. Richardson and D. J. Spiegelhalter, Chapman and Hall/CRC,
Boca Raton, pp. 115–130.

[38] Samaniego, F. J. and Whitaker, L. R. (1986). On estimating population characteristics from
recordbreaking observations. i. parametric results. Naval Research Logistics Quarterly, 33:531–
543.

[39] Schruben, L. W. (1982). Detecting initialization bias in simulation output. Operations Re-
search, 30:569–590.

[40] Schruben, L., Singh, H. and Tierney, L. (1980). A test of initialization bias hypotheses in
simulation output. Technical Report 471, School of Operations Research and Industrial En-
gineering, Cornell University, Ithaca, New York, 14853.

[41] Schruben, L., Singh, H. and Tierney, L. (1983). Optimal tests for initialization bias in simu-
lation output. Operations Research, 31:1167–1178.

[42] Varian, H. R. (1975). Bayesian approach to real estate assessment. In Studies in Bayesian
Econometrics and Statistics in Honor of Leonard J. Savage, Eds. S. E. Fienberg and A. Zellner,
North-Holland Pub. Co., Amsterdam, pp. 195–208.

[43] Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions.
Journal of the American Statistical Association, 81:446–451.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

272



G. Sathya Priyanka1*, S. Rita2, M. Iyappan3

INVERSE GAUSSIAN PROCESS FOR SIMPLE STEP-STRESS MODEL

IMPROVED DEGRADATION TEST USING INVERSE 

GAUSSIAN PROCESS FOR SIMPLE STEP-STRESS 

MODEL 

G. Sathya Priyanka1* S. Rita2, M. Iyappan3

• 
1*Ph. D Research Scholar, Department of Statistics, Periyar University, Salem-11, India 

sathyapriyankstat@gmail.com 
2Associate Professor and Head, Department of Statistics, Periyar University, Salem-11, India 

ritasamikannu@gmail.com 
3Assistant Professor, Department of Statistics, St. Francis College, Bengaluru-34, India 

iyappastat@gmail.com 

Abstract 

The accelerated Degradation testing (ADT) experiments are important technical methods in 

reliability studies. Different type of accelerating degradation models has developed with the time 

and can be used in different types of situations. However, it has become necessary for the manager 

to test how many numbers of unit should be tested at a particular stress level so that the cost of 

testing is less. Accelerated Degradation testing (ADT) is preferred to be used in mechanized 

industries to obtain the required information about the reliability of product components and 

materials in a short period of time. Accelerated test conditions involve higher than usual pressure, 

temperature, voltage, vibration or any other combination of them. Data collected at such accelerated 

conditions are extrapolated through a physically suitable statistical model to estimate the lifetime 

distribution at design condition stress the life data collected from the high stresses the need to be 

extrapolated to estimate the life distribution under the normal-use condition. A special class of the 

ADT is the step-stress testing which regularly increases the stress levels at some pre-fixed time 

points until the test unit fails. Such experiments allow the experimenter to run the test units at 

higher-than-usual stress conditions in order to secure failures more quickly. The Inverse Gaussian 

process is flexible in incorporating random effects and explanatory variables.  The different types of 

models based on IG process are random drift model, random volatility model and random drift- 

volatility model. In this paper we have considered random drift model for the study on stochastic 

degradation models for simple step-stress model using inverse Gaussian process observed in 

degradation problems. 

Keywords: Degradation problem, random volatility model, accelerated life 

testing, inverse Gaussian process, and random drift-volatility model 

I. Introduction

In automated industries, Accelerated Degradation Testing (ADT) is the ideal method for quickly 

obtaining the necessary information regarding the dependability of product components and 

materials [4]. Higher than normal pressure, temperature, voltage, vibration, etc., or any 

combination of these, are examples of accelerated test conditions. In order to estimate the lifetime 

distribution at design condition stress, data collected under such accelerated conditions are 
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extrapolated using a physically appropriate statistical model. The life data collected from the high 

stresses must also be extrapolated in order to estimate the life distribution under normal-use 

conditions. Step-stress testing is a unique type of ADT in which the stress level is gradually 

increased at predetermined intervals until the test unit malfunctions. 

Such tests are mostly conducted in order to obtain dependability data as soon as possible or to 

save both time and money. Since many pressures tend to accelerate the deterioration process, we 

can employ accelerated degradation tests (ADT) to acquire degradation phenomena more quickly 

[5]. To assess the life characteristics of interest under use conditions, a basic constant stress ADT 

experiment allocates a number of units to different stress levels. The deterioration level of these 

units is then measured, analyzed, and extrapolated to the failure threshold. ADTs have garnered a 

lot of attention because to their ability to significantly reduce the testing length. For ADT data, 

there are two types of models [9]. 

Since Brownian motion's first passage time has an inverse Gaussian distribution, using it as a 

life time model makes sense. It is helpful for researching the dependability and life testing of a 

gadget, product, or subcomponent. In order to shorten the product's life or hasten its performance 

decline, engineers use accelerated testing to estimate the reliability of recently developed products. 

The items are subjected to severe conditions during this test, including a mix of random vibrations, 

increases in temperature, voltage, or pressure [11]. The inverse Gaussian process is a helpful model 

for repair time. Additionally, in the subject of reliability, the inverse Gaussian distribution has been 

applied in numerous fields, including hydrology, cardiology.  

II. Methods

I. Gaussian Process Model Inverse

An inverse Gaussian process {Y(t);  t ≥ 0 } with mean function Ʌ(t) and scale parameter λ has the 

following properties:  

• Y(t) has independent increments for every pair of disjoint intervals (t1 , t2), (t3 , t4) with

t1 < t2 < t3 < t4 the random variables Y(t2) − Y(t1) and Y(t4) − Y(t3) are   independent.

• Each increment Y(t) − Y(s) has an inverse Gaussian distribution IG(ΔɅ(t), λ ΔɅ(t)2) where

ΔɅ = Ʌ(t) − Ʌ(s) and the PDF of an inverse Gaussian distribution random variable IG(μ, λ)

with mean μ and variance 
μ3

λ
 has discussed by Chikkara and Folks (1989) is

𝑓(𝑥; 𝜇, 𝜆) = √
𝜆

2𝜋
𝑥−

3

2 𝑒𝑥𝑝 (−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
)𝑋 > 0     (1) 

• Y(0) = 0 With probability one. When the amount of degradation reaches a pre-specified

critical level D, failure occurs. Let 𝑇 = 𝐼𝑛𝑓{𝑡: 𝑌(𝑡) = 𝐷} denote the failure time. Since the

inverse Gaussian process has a failure time distribution by [16] 

 𝑃(𝑇 < 𝑡) =  𝑃(𝑌(𝑡) > 𝐷) =  1 − 𝐺(𝐷;  Ʌ(𝑡), 𝜆 Ʌ(𝑡)2) 

= Ф[√
𝜆

𝐷
(Ʌ(𝑡) − 𝐷)] − 𝑒2𝜆Ʌ(𝑡)Ф[√

𝜆

𝐷
(Ʌ(𝑡) + 𝐷)] [−√𝜆𝐷(Ʌ(𝑡) + 𝐷)]  (2) 

where, 𝐺 (. ;  Ʌ, 𝜆) is a cumulative distribution function (CDF) of 𝐼𝐺(Ʌ, 𝜆) and  Φ is the 

standard normal CDF.  From above equation we can write the CDF of the failure time distribution 

as  
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𝐻𝜆(𝑡) =  Ф [√
𝜆

𝐷
(𝑡 − 𝐷)] − 𝑒2𝜆𝑡Ф[√

𝜆

𝐷
(𝑡 + 𝐷)]          (3) 

It is an increasing function. Thus, within this class of models, there is a one-to-one 

relationship betweenɅ(𝑡) and the cdf of the failure time distribution 𝐻𝜆(𝑡) for a fixed scale 

parameter 𝜆.  

𝑓(𝑥; 𝜇, 𝜆) = √
𝜆

2л
𝑥

3

2𝑒𝑥𝑝 (−
𝜆(𝑥−𝜇)2

2𝜇2𝑥
)        (4) 

Where 𝜇 > 0 𝑎𝑛𝑑 𝜆 > 0 the parameter 𝜇 is the mean of the distribution and 𝜆 is a scale 

parameter. (Tweedie) gives three form of above pdf, which he obtained by replace the set of 

parameters (𝜇, 𝜆) 𝑏𝑦 (∝, 𝜆) 𝑜𝑟 (𝜇, 𝜙), 𝑜𝑟 (𝜙, 𝜆) using the relationship given by [13] 

𝜇 =
𝜆

𝜙
= (2 ∝)

−1

2 (5) 

Both 𝜇 and 𝜆 are of the same physical extent as the random variable 𝑋 itself; but the 

parameter 𝜇 =
𝜆

𝜙
  is invariant under a scale transformation of 𝑋as can be seen from the following

relationship: 

𝑓(𝑥;  𝜇, 𝜆) = 𝜇−1𝑓 (
𝑥

𝜇
; 1, 𝜙) = 𝜆−1𝑓 (

𝑥

𝜇
; 𝜙, 1)   (6) 

The probability density can be numerically computed using any of the three forms in 

above equation as shown above the cumulative distribution function depends fundamentally on 

only two variables, which might be taken as 𝑥𝜇 and 𝜙. According, the case 𝜇 = 1 for 

the (𝜇, 𝜙) parametric form of above equation could be adopted as a standard form [18]. This has 

also been obtained as a limiting form of the distribution of the sample size in a Wald’s sequential 

probability ratio test and is sometimes referred to as the standard Wald’s distribution of the 

density function model is 

𝜇 [(1 +
9

4𝜙
)

1

2
−

3

2𝜙
]  (7) 

II. Random Effects Inverse Gaussian Process

Random effects are needed in Inverse Gaussian process to account for inexplicable heterogeneous 

degradation rates within the product population. By linking to the Weiner process this investigates 

different options to incorporate the random effects in the IG process model. Consider the wiener 

process W(x)  = μ x + λ B(x) where μ > 0 is the drift parameter and λ > 0 is the volatility 

parameter and B(x) is the standard Brownian motion [12]. Given a fix threshold Ʌ > 0, it is well 

known that the first passage time TA  = inf  {x > 0│W(x) ≥ Ʌ} follows  IG (
Ʌ

μ
,

Ʌ2

λ2) going one step

further, we consider a series of the thresholds Ʌ(t) indexed by t with Ʌ(0) = 0 and Ʌ(t) increasing 

in t, and define the first passage time process Y(t) =  TɅ(t) It is easily verified that the 

induced {Y(t); t > 0} is an IG process with the mean function 
Ʌ(t)

μ
 and variance function 

Ʌ(t)

λ2  by asset

of the stationary and independent increment property of the Wiener process W(x). 

The inverse relation between the IG and the Wiener processes motivates investigation of 

the IG process from a new perspective. Existing results on the Wiener processes can let somebody 

use support to the development of IG process model with the random effects [10]. 
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III. Random Volatility Model

Consider a Wiener process W(x) =  μ−1x + λ
−1

2 B(x) with the induced IG process other way of 

introducing unit-specific random effects is to assume that each unit possesses a separate realization 

of the volatility parameter. Accordingly, volatility parameter in the Inverse Gaussian process is 

random [17]. With the random volatility parameter in the Inverse Gaussian process all units have 

the same mean degradation path, even though they will have different variance functions. The 

Inverse Gaussian process with random volatility parameter was originally proposed by Wang and 

Xu (2010). 

Shortcoming of random volatility model is unusual to use the volatility parameter to 

control heterogeneity in the Weiner process thus application of random volatility model is limited. 

Thus, random drift model was proposed which overcome inadequacy of random volatility model 

[13]. 

IV. Random Drift Model

An effective way to incorporate random effect in the IG process is to let 𝜇 be a random variable. To 

avoid the negative values of 𝜇 (Whitmore 1986) and ensure mathematical tractability, we assume 

𝜇 − 1 follows a truncated normal distribution 𝑇𝑁 (𝜔, 𝑘−2), 𝑘 > 0 with PDF 

𝑔(μ−1;  𝜔, 𝑘−2) =
𝑘.𝜙[𝑘(𝜇−1−𝜔)]

1−Ф(−𝑘𝜔)
𝜇 > 0         (8) 

Where (. ) is a standard normal PDF. In a degradation test, if the degradation of the ith testing unit 

is observed at time 𝑡𝑖𝑜 < 𝑡𝑖1 < ⋯ .< 𝑡𝑖𝑛𝑖 with observations 𝑌𝑖(𝑡𝑖𝑗), 𝑗 = 0,1,2, … . , 𝑛𝑖 the joint PDF of 

𝑌𝑖 = [𝑌𝑖(𝑡𝑖1), 𝑌𝑖(𝑡𝑖2), … . 𝑌𝑖(𝑡𝑖𝑛𝑖) ] is computed by first conditioning on the random drift parameter 𝜇𝑖 

and then marginalizing it, which yields the following equation is 

𝑓𝐼𝐺(𝑌𝑖) =
1−𝜙(−�̃�𝑖�̃�𝑖)

1−𝜙(−𝑘𝜔)

𝑘

�̃�𝑖
𝛱𝑗=1

𝑛𝑖 √
𝜆𝛬𝑖𝑗

2

2л𝑦𝑖𝑗3

�̃�𝑖
2
�̃�𝑖−𝑘2𝜔2

2
− 𝜆 ∑

𝛬𝑖𝑗2

2𝑦𝑖𝑗

𝑛𝑖
𝑗=1  (9) 

Where,𝑌𝑖𝑗 = 𝑌𝑖(𝑡𝑖𝑗) − 𝑌𝑖(𝑡𝑖𝑗 − 1) is the observed increment 𝛬𝑖𝑗 = Ʌ(𝑡𝑖𝑗) − Ʌ(𝑡𝑖𝑗 − 1) 

        �̃�𝑖𝑗 = √𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗) + 𝑘2      (10) 

𝜔 ̃𝑖𝑗 =
[𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘2𝑒𝑥𝑝∝0+∝1𝑥𝑗]

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
 (11) 

Then the log-likelihood function is given by 

  𝑙(𝜃) = ∑ ∑ [𝑙𝑛
𝑘

�̃�𝑖𝑗
+

�̃�𝑖𝑗
2
�̃�𝑖𝑗

2−𝑘2𝑒𝑥𝑝(2∝0+2∝1𝑥𝑗)

2
+

1

2
∑ [𝐼𝑛(𝜆𝜕𝛬𝑖𝑗𝑘) −

𝜆𝛬
𝑖𝑗𝑘2

𝑦𝑖𝑗𝑘
]

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑗=1
𝑗
𝑖=1       (12) 

𝑙(𝜃)   is the likelihood function up to a constant can be expressed by the above equation. 

Where    𝜃 is a parameter vector include ∝0 , ∝1 , 𝜆, 𝛽, 𝑎𝑛𝑑 𝑘 

V. Accelerated Degradation Test Assumptions

Let total N number of units is put into test. Suppose 𝑆0 be the usage stress 𝑆𝐻 being the maximum 

acceptable stress. To collect the degradation data timely we allocate these units J stress level 

𝑆1 < 47 𝑆2 < ⋯……… < 𝑆𝐽 with 𝑆0 < 𝑆1and 𝑆𝐽 = 𝑆𝐻 consider 𝑁𝑗 units to be allocated to jth stress 

level.  𝑗 = 1, 2, 3, … . . 𝐽. The degradation of these units is affected by the stress. Here, we have 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

276



G. Sathya Priyanka1*, S. Rita2, M. Iyappan3

INVERSE GAUSSIAN PROCESS FOR SIMPLE STEP-STRESS MODEL

assumed 𝜇𝑖 =  ℎ(𝑠), and 𝜆is constant over𝑠, where ℎ(𝑠) is a link function reflecting the effect of the 

stress on the degradation process [17].  

Due to the above assumption the degradation speed and drift changes with the stress. 

Another alternative is that 𝜆 = ℎ(𝑠) while 𝜇 is constant which is not valid for random drift model 

since𝜇 is changing from unit to unit. For simplicity and without loss of generality, the additional 

assumptions are, the measurement time interval, and the number of measurements 𝐾𝑗under the jth 

stress level, where 𝑗 = 1,2, ……… 𝐽, are pre-determined and the link function follows one of the 

following acceleration relations: 

• Power law relations ℎ(𝑠) =  𝜑0 . 𝑠
∝

• Arrhenius relation ℎ(𝑠) =  𝜑0 . 𝑒
−∝

𝑠

• Exponential relation ℎ(𝑠) =  𝜑0 . 𝑒
∝𝑠

In real time applications the time approved for the test is often given by the manager and 

time intervals at which the units are measured are predetermined because of the working time of 

experimenters [10]. Thus, we assume that 𝜏𝑗 and 𝑘𝑗 are given. In our model we delight these two 

variables as decision variables, and then we optimally determine their values. When the assumed 

stress-degradation relation i.e., is correct we can use a two-stress ADT, i.e., 𝐽 = 2 in our model. But, 

in this minimum variance plan we are unable to check the validity of the assumed stress-

degradation relationship. Thus, we prefer to use three-stress ADT planning taking 𝐽 = 3 to check 

the validity of the assumed model. In our settings, the purpose of ADT planning is to optimally 

determine the stress levels (𝑆𝑗), and the number of samples for each stress level (𝑁𝑗) are be 

investigated in our proposed work [4].  

VI. Normalizing the Stress Level

We standardize the stress levels depending on the acceleration relationship of the stress on the rate 

of degradation as follows:  

𝑍𝑗 =
𝑙𝑛𝑆𝑗−ln𝑆0

𝑙𝑛𝑆𝐻−ln𝑆0
 For the power law relation 

 𝑍𝑗 =

1

𝑆0
 − 

1

𝑆𝑗
1

𝑆0
 − 

1

𝑆𝐻

       For the Arrhenius relation 

𝑍𝑗 =
𝑆𝑗 − 𝑆0

𝑆𝐻− 𝑆0
       For the exponential relation 

From the above consistency, it is readily seen that 𝑥0  = 0, 𝑥𝑗 = 1, and 0 < 𝑍𝑗 ≤ 1 for 

𝑗 = 1,2… . , 𝐽  then. 
ℎ(𝑥) = 𝑒𝑥𝑝 (∝0+∝1 𝑍𝑗) 

ℎ(𝑥) =  𝜑0 . 𝑒
−∝
𝑠

ln ℎ(𝑥) = ln𝜑0 −
∝

𝑠
Were, ∝0= ln 𝜑0 −

∝

𝑆0
, ∝1=∝ (

1

𝑆0
−

1

𝑆𝐻
) For the Arrhenius function, ∝0= ln 𝜑0 +∝ 𝑙𝑛𝑆0 , ∝1=

∝ (ln 𝑆𝐻 − 𝑙𝑛𝑆0) For the power law function and ∝0= ln 𝜑0 +∝ 𝑆0 , ∝1=∝ (𝑆𝐻 − 𝑆0) For the 

exponential function. 

VII. Inferential Procedure

We suppose that the ith unit under the jth stress level is measured at time tijk  = kτj with 

observations Yij (tijk), k = 0,1, … … . . , kj . Let Yijk = Yij (tijk) − Yij (tij, k − 1) be the observed 

increments, and Ʌijk = Ʌ(tijk) − Ʌ(tijk, k − 1). Now, the log-likelihood function up to a constant can 

be expressed by the equation above 1. The Fisher information matrix I(θ) for the element 

∝0, ∝1, k, ω, Ʌ(. ) can be developed as below [5]. We assume nonlinear function for Ʌ(. ), i.e., 

 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

277



G. Sathya Priyanka1*, S. Rita2, M. Iyappan3

INVERSE GAUSSIAN PROCESS FOR SIMPLE STEP-STRESS MODEL

Ʌ(t) =  tβ and then θ = (k, ω, ∝0, ∝1, β)’ detailed expression for the elements along with the 

elements of the fisher information matrix can be developed as follows. 

𝜕𝑙(𝜃)

𝜕𝜔𝑗
= ∑ ∑ [0 +

1

2
{
2(𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘2𝜔𝑗)𝑘

2

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
− 2𝑘𝜔𝑗

2} +
1

2
∑ (0 − 0)

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑖=1
𝐽
𝐽=1    (13) 

𝜕𝑙(𝜃)

𝜕𝜔𝑗
= ∑ ∑ [{

𝑘2(𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
2𝑘2𝜔𝑗}]

𝑁𝑗

𝑖=1
𝐽
𝐽=1     (14) 

𝜕2𝑙(𝜃)

𝜕𝜔𝑗2
= ∑ ∑ [{

−𝑘2(0+𝑘2)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
− 𝑘2}]

𝑁𝑗

𝑖=1
𝐽
𝐽=1   (15) 

𝜕2𝑙(𝜃)

𝜕𝜔𝑗2
= ∑ ∑ (

−𝑘2(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗))

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2 − 𝑘2)
𝑁𝑗

𝑖=1
𝐽
𝐽=1       (16) 

𝜕𝑙(𝜃)

𝜕𝛽
= ∑ ∑ [(

𝛬𝑖𝑗𝑘

𝜕𝛽
{

𝜆(𝜆𝛬𝑖𝑗𝑘+𝑘2𝜔𝑗)

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
}) + ∑ (

1

𝛬𝑖𝑗𝑘
−

2𝜆𝛬𝑖𝑗𝑘

𝑌𝑖𝑗𝑘
)

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑖=1
𝐽
𝑗=1    (17) 

𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽
= ∑ ∑ [

(𝜆
𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽
){(2𝑘𝜔𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗))+2𝑘𝜔𝑗−𝑘𝜆𝛬(𝑡𝑖𝑗𝑘𝑗)+𝑘3𝜔}

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
2 −

𝑘𝜆
𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
]

𝑁𝑗

𝑖=1
𝐽
𝐽=1        (18) 

𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
= ∑ [𝑍𝑗𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ 𝑒𝑥𝑝(∝0+∝1 𝑥𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2 𝑥𝑗]

𝐽
𝑗=1     (19) 

𝜕2𝑙(𝜃)

𝜕∝0
2

= ∑ [𝑒𝑥𝑝(∝0+∝1 𝑍𝑗)
𝜕𝑙(𝜃)

𝜕𝜔𝑗
+ 𝑒𝑥𝑝(∝0+∝1 𝑍𝑗)

𝜕2𝑙(𝜃)

𝜕𝜔𝑗
2
]𝐽

𝑗=1   (20) 

𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽
= ∑ ∑ [

1

2
{

2(2𝜆𝛬(𝑡𝑖𝑗𝑘𝑗))
𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽
+𝑘2𝜔

𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽

𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2 −
𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)𝜆

𝜕𝛬(𝑡𝑖𝑗𝑘𝑗)

𝜕𝛽

(𝜆𝑌𝑖𝑗(𝑡𝑖𝑗𝑘𝑗)+𝑘2)
2 } +

1

2
∑ (−

𝛬𝑖𝑗𝑘

𝑌𝑖𝑗𝑘

𝜕𝛬𝑖𝑗𝑘

𝜕𝛽
)

𝑘𝑗

𝑘=1
]

𝑁𝑗

𝑗=1
𝐽
𝑗=1         (21) 

And then the fisher information matrix can be developed as given below: 

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0
2 ] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝑘 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝜆 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕∝1
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1
2 ] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝑘 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝜆 
] 𝐸 [−

𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝑘 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝0𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝1𝜕𝑘 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝1𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕∝1𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘 2
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽  
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝜆 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝜆 2
]

[−
𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝑘𝜕𝛽  
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝜆𝜕𝛽 
]

𝐸 [−
𝜕2𝑙(𝜃)

𝜕𝛽 2
]

   (22) 

The log-likelihood function can be maximized to obtain maximum likelihood estimator MLEs [9]. 

The direct maximization of log-likelihood function gives equations which are computationally 

difficult to solve. Under the truncated normal distribution, direct maximization of the likelihood 

function often yields a solution far away from the MLE.  

III. Results

I. Numerical Study

Utilizing the methodology of G. Yang et al. (2007), the suggested process is demonstrated here. In a 

case study, 30 samples at the electrical connector were found to have failed if the data were 

collected under one of three temperature levels: 55°C, 75°C, or 100°C. The resistors in the MEMS 

LAB at the Faculty of Engineering and Technology were all part of a constant stress ADT. The 

normal use temperature and threshold value for the percent increase in resistance were assumed to 

be l=6, where observed at different times during the measurement. The samples are tabulated in 

Table 1 with the 7th point of the second unit under 55°C labeled blank, as suggested by Yang et al. 

(2007), to maintain the monotone behavior of the stress. 
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Table 1: Stress relaxation data under the temperature level 

Temperature 
S. 

No 
Stress loss Mean 

Time 

550c 

1 2.13, 2.06, 3.43, 4.36, 5.86, 6.24, 6.63, 7.34, 7.58, 8.42, 9.57 

7.60 

2 2.34, 3.65, 4.69, 4.85, 5.36, 0, 6.59, 8.48, 9.35, 10.95 

3 2.8, 3.56, 4.65, 5.89, 6.3, 7.65, 8.95, 9.21, 10.45, 11.32 

4 2.96, 3.58, 5.38, 5.32, 7.68, 8.27, 8.61, 9.854, 10.97, 11.57 

5 
3.65, 4.55, 5.33, 7.58, 8.39, 9.37, 9.33, 10.24, 11.89, 12.54, 

13.59  

6 3.59, 5.69, 5.87, 6.29, 8.98, 10.25, 11.00, 12.69, 13.69, 15.91 

750c 

7 2.98, 4.98, 5.87, 6.38, 8.56, 10.21, 11.98, 11.00, 13.24, 15.38 

10.65 

8 3.65, 4.27, 6.29, 8.91, 9.54, 10.14, 12.69, 14.32, 16.90 

9 3.69, 4.28, 6.72, 8.34, 8.64, 10.81, 11.20, 14.57, 16.90, 18.18 

10 3.58, 4.92, 6.91, 7.34, 9.38, 11.78, 12.98, 13.92, 15.39, 18.29 

11 3.58, 4.87, 7.96, 8.64, 10.94, 12.61, 13.94, 15.38, 17.82, 19.34 

12 5.96, 5.89, 8.91, 9.67, 12.67, 13.54, 15.98, 17.51, 20.64, 23.94 

1000c 

13 4.89, 5.91, 8.47, 9.38, 11.84, 13.57, 15.94, 16.97, 18.54, 19.82 

14.09 

14 4.94, 6.85, 7.95, 9.64, 10.87, 12.67, 15.47, 16.32, 18.94, 21.98 

15 5.97, 6.31, 8.57, 10.91, 12.97, 14.51, 16.78, 18.96, 19.49, 21.34 

16 4.25, 7.58, 9.34, 10.64, 13.95, 15.27, 16.97, 19.84, 20.46, 22.7 

17 5.94, 6.28, 8.94, 12.73, 14.61, 16.37, 18.39, 21.78, 22.96, 24.75 

18 
4.18, 8.91, 10.94, 12.71, 15.67, 17.64, 19.78, 21.64, 24.97, 

28.45 

Table 2: Measurement time under different temperatures 

Temperature Measurement time epochs (in hours) 

55℃ 107, 238, 540, 838, 1063, 1249, 1536, 1789, 2164, 2414, 1812 

75℃ 45, 109, 247, 411, 641, 758, 1017, 1232, 1621, 249 

100℃ 44, 110, 204, 322, 457, 684, 847, 1041, 1204 

Figure 1: Measurement temperatures 
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In the following, we will determine the optimal ADT plans based on both models. Suppose 

10 units are available for the ADT test. In the ADT, we set 𝜏𝑗 = 24, and 𝑘𝑗 = 14  for all𝑗 = 1,2, … . 𝐽. 

this setting means that we measure the degradation level once every day, and the test lasts two 

weeks [19]. Our planning involves selecting the stress level, (𝑥1, 𝑥2, … , 𝑥𝐽−1) , and the proportion of 

samples allocated to each testing level, (𝑁1, 𝑁2, … , 𝑁𝐽−1)) . Consider a two-level ADT plan. Suppose 

we are interested in minimizing the asymptotic variance of B10, the 0.1-quantile of the failure time 

distribution at use conditions. When 𝐽 = 2 yields the optimal ADT design 

The elements of fisher matrix by solving through mat lab are: 

[
 
 
 
 

−1.258 × 108 −1.269 × 108 −1.6891 × 109 −20.91 × 108 −1.62 × 105

−1.18 × 108 −8.94510 × 107 −1.6541 × 109 −15.7351 × 108 −1.127 × 108

−1.26578 × 109

−21.32 × 108

−1.29 × 105

−1.3298 × 109

−15.761 × 108

−1.113 × 108

−6.791 × 109

−8.458 × 1012

−1.325 × 108

−8.734 × 1012

−4.9780 × 109

−1.39 × 107

−1.339 × 109

−1.38 × 107

−5.69 × 107 ]

Table 3: Optimization table for random drift model 

Process 𝑥1 𝑥2 𝑁1 𝑁2 𝑆𝑡𝑑(𝜑𝑝) 

Random drift 

model 
0 1 1 9 4216 

The table above displays the ideal ADT design. The fact that 0 is the ideal lower stress value is 

visually appealing. This outcome is accurate since, even when testing the unit under real-world 

conditions, the degradation under typical use conditions happens quickly enough to minimize the 

inaccuracy brought on by extrapolating to the failure threshold. 

Table 4: Optimization table for simple IG process 

Process 𝑥1 𝑥2 𝑁1 𝑁2 𝑆𝑡𝑑(𝜑𝑝) 

Simple Inverse 

Gaussian model 
0 1 1 9 17450 

IV. Discussion

Due to its ability to account for variance in sample product results from unit to unit, the random 

drift model was chosen for this paper's investigation. With time, many techniques for testing the 

product are developed. Accelerated deterioration testing, however, is more beneficial in the 

electronics sector than other approaches. Testing the product quickly is necessary because the 

corporation creates huge samples of comparable products. To study deterioration performance 

more effectively, an accelerated degradation test is more appropriate since it increases the stress 

value during life testing, causing the part to fail faster, and it gathers degradation data to forecast 

product reliability.  

With time, several accelerating degradation models have emerged that can be applied in 

various contexts. However, to reduce testing costs, it has become imperative for the management 

to test the number of units that should be tested at a certain stress level. The development of the 

Simple Stress Accelerated Degradation Test technique considered a number of necessary criteria, 

including tightening the value of constraints, robustness, and optimality of design. Therefore, the 

number of units and stress value are optimized using the inverse Gaussian process. This paper 

presents a proposed model that minimizes the asymptotic variance value to estimate the number 

of units required for the optimal stress level. A helpful tool for evaluating the value of vectors 

required to estimate the asymptotic variance is the Fisher information matrix. 
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Abstract 

A life test is a random experiment performed on manufactured products such as electrical and 

electronic components to estimate their life period based on a randomly chosen components. The 

lifespan of a component is considered as a random variable that follows a certain continuous-type 

distribution, called the lifetime distribution. Reliability sampling is one of the decision-making 

methodologies in product control and deals with inspection procedures for sentencing one or more 

lots or batches of items submitted for inspection. The concept of sampling plans for life tests involving 

with two random samples is employed in the present study under the assumption that the lifetime 

random variable is described by the Lomax distribution. A procedure based on mean / median life 

criterion is developed for designing the optimum plans with minimum sample sizes when two points 

on the desired operating characteristic curve are prescribed to ensure protection to the producer and 

the consumer. 

Keywords: Consumer’s risk, Double sampling plan, Lomax distribution, 
Operating characteristic function, Producer’s risk, Reliability sampling. 

1. Introduction

Sampling inspection is a product control strategy that decides whether a lot should be accepted or 
rejected based on the information obtained by the inspection of random sample(s) drawn from the 
submitted lot(s). Sampling inspection procedures are generally classified according to the nature of 
the quality characteristics, namely, measurable and non-measurable. When the quality 
characteristics are non-measurable, but are classified into go or no-go basis, such as good or bad, 
non-conforming or conforming, etc., the sampling inspection procedures are termed as attribute 
sampling. When the quality characteristics are measurable on a continuous scale, the corresponding 
sampling inspection procedures are called variables sampling, which are devised under the implicit 
assumption that the quality characteristic is a continuous random variable following a specific 
probability distribution.  Reliability sampling plans, also termed as life test sampling plans, are 
operationally attributes sampling procedures, but involve lifetime of the components or items as a 
random variable which is distributed according to a specific continuous type probability 
distribution, such as the exponential, Weibull, lognormal, gamma distributions, etc. The lifetime of 
the components or items is observed by putting the sampled items under the test, called life test, 
which is defined as the process of evaluating the lifetime of the items through experiments. The 
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literature in product control provides the importance of various continuous probability distributions 
like exponential, Weibull, lognormal and gamma distributions as well as several compound 
distributions for modeling lifetime data in the studies relating to the design and evaluation of 
reliability sampling plans.  

The earlier works, which laid the foundation for the expansion of various types of sampling 
plans, would include the theory of reliability sampling proposed and developed from [1] - [8]. 
Significant contributions in the development of life test sampling plans employing exponential, 
Weibull, lognormal and gamma distributions as well as several compound distributions for 
modeling lifetime data have also been made in the past four decades. A detailed account of such 
plans was provided in [9]. The recent advances in the theory of life test sampling plans provided in 
[10] – [28].

Lomax distribution, introduced in [29], is a heavy-tailed probability distribution and is
considered as Pareto Type II distribution. It has a wide range of applications in many fields which 
include business, economics, actuarial, medical and biological sciences. It has been proved to be 
much useful in reliability and life testing studies and in survival analysis. Properties of Lomax 
distribution and its extended form can be seen in [30] – [33]. In this paper, a specific life-test sampling 
plan is devised with reference to the life-time quality characteristic, which is modeled by Lomax 
distribution. A procedure for the selection of such plans indexed by acceptable and unacceptable 
mean life ensuring protection to the producer and consumer is described with illustrations. Tables 
yielding optimum Double sampling plans for life tests are constructed for a set of fixed values of 
shape parameter of the Lomax distribution. 

2. Lomax Distribution

Let T be a random variable representing the lifetime of the components. Assume that T follows 
Lomax distribution. The probability density function and the cumulative distribution function of T 
are, respectively, defined by 

𝑓(𝑡; 𝜃, 𝜆) =
𝜆

𝜃
(1 +

𝑡

𝜃
)
−(𝜆+1)

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0  (1) 

and 𝐹(𝑡; 𝜃, 𝜆) = 1 − (1 +
𝑡

𝜃
)
−𝜆

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0,  (2) 

where 𝜆 and θ are the shape and scale parameters, respectively. 
The mean life, the median life, the reliability function and hazard function for specified time 

t under Lomax distribution are. Respectively, given by 

𝜇 =
𝜃

𝜆−1
,  𝑓𝑜𝑟 𝜆 > 1,    (3) 

𝜇𝑑 = 𝜃(√2
𝜆

− 1),    (4) 

𝑅(𝑡; 𝜃, 𝜆) = (1 +
𝑡

𝜃
)
−𝜆

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0    (5) 

and 𝑍(𝑡; 𝜃, 𝜆) = 𝜆

𝜃
(1 +

𝑡

𝜃
)
−1

, 𝑡 > 0, 𝜃 > 0, 𝜆 > 0.    (6) 

The reliability life is the life beyond which some specified proportion of items in the lot will 
survive. The reliability life associated with Lomax Distribution is defined and denoted by 

𝜌(𝑡; 𝜃, 𝜆) = 𝜃(𝑅−1/𝜆 − 1), (7)
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Where R is the proportion of items surviving beyond life. 
The proportion,𝑝, of product failing before time t, is defined by the cumulative probability 

distribution of T and is expressed by  

𝑝 = 𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡; 𝜃, 𝜆).  (8) 

3. Operating Characteristic Function of Life Test Sampling Plan

The performance of a single sampling plan adopted in life testing is measured by the associated 
operating characteristic (OC) function, denoted by 𝑃𝑎(𝑝), which gives the probability of accepting a 
lot as a function of the failure probability p. Under the conditions for the application of binomial and 
Poisson models, the expressions for 𝑃𝑎(𝑝) are, respectively, expressed by  

𝑃𝑎(𝑝) = ∑ (
𝑛
𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥𝑐

𝑥:0   (9) 

and 𝑃𝑎(𝑝) = ∑ 𝑒−𝑛𝑝
(𝑛𝑝)𝑥

𝑥!

𝑐
𝑥:0 .  (10) 

Associated with a specific value of p, there exists a unique value of 𝑡/𝜃, which can be derived 
as a function of p and 𝜆from the cumulative distribution function by virtue of expressions (2) and (8) 
as  

𝑡

𝜃
= (1 − 𝑝)−1/𝜆 − 1.   (11) 

The expression for 𝑡/𝜇is then derived using (3) and (11) as 

𝑡

𝜇
= (𝜆 − 1)[(1 − 𝑝)−1/𝜆 − 1],  (12) 

which indicates that associated with any specific value of p, there exists a unique value of the 
dimensionless ratio 𝑡/𝜇. As the value of p is associated with𝑡/𝜇, the operating characteristic function 
of a life test sampling plan can be considered as a function of 𝑡/𝜇 rather than p, and, hence, the OC 
curve of the plan could be obtained by plotting the acceptance probabilities against the values of𝑡/𝜇. 

4. Double Sampling Plans for Life Tests with Zero or One Failure

Often in practice sampling inspection plans for life tests are required to be constructed for product 
characteristics that involve costly or destructive testing. Industrial situations sometimes may 
warrant small samples to be used for inspection. In such cases, sampling inspection plans allowing 
either zero failures or a fewer number of failures in the samples are often employed for sentencing 
the submitted lots. According to [34], a single sampling plan by attributes with zero acceptance 
number (zero failures) is undesirable as it does not provide protection to the producer and fails to 
safeguard the primary interests of the producer.  

Figure 1 depicts that a single sampling plan for life tests with zero failures or zero acceptance 
number, designated by 𝑆𝑆𝑃 − (𝑛,  0), is not desirable as it fails to provide protection to the producer 
against the acceptable mean life of the product. It can be realized in general that the OC curves of 
any such single sampling plans having zero failures would be uniquely in poor shape, which 
obviously does not ensure protection to producers, but safeguard the interests of consumers against 
unacceptable mean life of the product.  

It can be demonstrated that single sampling plans allowing one failure or more number of 
failures in a sample of items do not possess the undesirable properties or characteristics of 𝑆𝑆𝑃 −

(𝑛,  0), but would require larger sample sizes rather than small sample sizes. This shortcoming can 
be prevailed, to some extent, if double sampling plans allowing a maximum of one failure in the 
random samples drawn from the lot are effectively adopted for sentencing the lot submitted.    
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In small sample situations, single sampling plans with a fewer number of failures such as 
𝑐 = 0and 𝑐 = 1 can be used. But, the OC curves of 𝑐 = 0 and 𝑐 = 1plans reveal the fact that there 
would always be a conflicting interest between the producer and the consumer as 𝑐 = 0 plans would 
provide protection to the consumer with lesser amount of risk of accepting the lot against the 
unacceptable mean life of the product while 𝑐 = 1 plans offer protection to the producer with lesser 
risk of rejecting the lot having acceptable mean life. Such conflict can be annulled if one is able to 
design a life test plan having its OC curve lying between the OC curves of 𝑐 = 0 and 𝑐 = 1plans.  

Figure 1:  Operating Characteristic Curves of Single and Double Sampling Plans for Life Tests 

Based on Lomax Distribution Having smaller acceptance number𝑐1 = 0 and𝑐2 = 1 

From Figure 1, it can also be observed that there is a wide gap between the OC curves of 𝑐 = 0 and 
𝑐 = 1plans. Hence, it is desirable to bridge the gap by determining a suitable plan such that its OC 
curve is expected to lie between the OC curves of 𝑐 = 0 and 𝑐 = 1 plans.  

A double sampling plan with 𝑐1 = 0 and 𝑐2 = 1, designated by 𝐷𝑆𝑃 − (𝑛1, 𝑛2), overcomes 
the shortcoming of 𝑐 = 0 plans to a greater extent by providing a desirable shape of the OC curve, 
which is considered as favorable to both producer and consumer. It can also be shown that the OC 
curves of 𝐷𝑆𝑃 − (𝑛1, 𝑛2) would lie between the OC curves of 𝑐 = 0 and 𝑐 = 1 plans.  

One can observe that the OC curve of 𝐷𝑆𝑃 − (𝑛1, 𝑛2) coincides with the OC curve of 𝑐 = 1 
single sampling plan at the upper portion and coincides with the OC curve of 𝑐 = 0 single sampling 
plan at the lower portion. This salient feature would be of much help in determining an optimum 
𝐷𝑆𝑃 − (𝑛1, 𝑛2) providing protection to the producer and consumer against rejection of the lot for the 
specified acceptable mean life and against acceptance of the lot for the specified unacceptable mean 
life. Detailed discussion on the significance and construction of sampling plans with the utilization 
of the conditions c = 0 and c = 1 together as an alternative to single sampling plans with either c = 0 
or with c = 1 are found in the literature of acceptance sampling and especially from [35] – [37]. The 
operating procedure of 𝐷𝑆𝑃 − (𝑛1, 𝑛2) is as follows: 
Step 1: Draw a random sample of 𝑛1 items from a given lot and put them for a life test.  
Step 2: Observe the number,𝑚1, of failures before reaching the predetermined time t. If 𝑚1 = 0, while 

testing 𝑛1 items, then accept the lot; if 𝑚1 > 1, reject the lot; if 𝑚1 = 1, draw a second random 
sample of 𝑛2items and put them for a life test. 

Step 3: Observe the number, 𝑚2, of failures while testing 𝑛2items. If 𝑚2 = 0,  then accept the lot; if 
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𝑚2 ≥ 1, then reject the lot. 
Associated with 𝐷𝑆𝑃 − (𝑛1, 𝑛2) are the performance measures, called OC and ASN functions, which 
are, respectively, expressed by 

𝑃𝑎(𝑝) = 𝑝(0|𝑛1, 𝑝) + 𝑝(1|𝑛2, 𝑝)𝑝(0|𝑛2, 𝑝)              (13) 

And  𝐴𝑆𝑁(𝑝) = 𝑛1 + 𝑛2𝑝(1|𝑛1, 𝑝),   (14) 

Where p is the proportion,𝑝, of product failing before time t, and 𝑝(0|𝑛1, 𝑝), 𝑝(0|𝑛2, 𝑝) and𝑝(1|𝑛1, 𝑝) 
are defined either from the binomial distribution or from the Poisson distribution whose probability 
functions are given as expressions (9) and (10).  Under the conditions of binomial distribution, the 
expressions for 𝑃𝑎(𝑝)and 𝐴𝑆𝑁(𝑝) are, respectively, given by 

𝑃𝑎(𝑝) = (1 − 𝑝)𝑛1 + 𝑛1𝑝(1 − 𝑝)𝑛1+𝑛2−1  (15) 

and 𝐴𝑆𝑁(𝑝) = 𝑛1 + 𝑛1𝑛2𝑝(1 − 𝑝)𝑛1−1.     (16) 

Similarly, under the conditions of Poisson distribution, the expressions for 𝑃𝑎(𝑝)and 𝐴𝑆𝑁(𝑝) are, 
respectively, given by 

𝑃𝑎(𝑝) = 𝑒𝑥𝑝( − 𝑛1𝑝) + 𝑛1𝑝 𝑒𝑥𝑝( − (𝑛1 + 𝑛2)𝑝)  (17) 

 and 𝐴𝑆𝑁(𝑝) = 𝑛1 + 𝑛1𝑛2𝑝 𝑒𝑥𝑝( − 𝑛1𝑝).   (18) 

It is known that, under the assumption of Lomax distribution for a lifetime quality 
characteristic, p is defined by the cumulative probability distribution of the lifetime random variable, 
T, and is expressed by  

𝑝 = 𝑃(𝑇 ≤ 𝑡) = 𝐹(𝑡; 𝜃, 𝜆) 

It can be noted that the double sampling plan for life tests allowing a maximum of one failure 
based on Lomax distribution is specified by the parameters 𝑛1, 𝑛2, 𝜃and λ, where 𝑛1 and 𝑛2 are the 
sample sizes under the plan, and 𝜃and λ are the parameters of Lomax distribution. As discussed 
earlier, the failure probability p is associated with 𝑡/𝜃, through the distribution function of Lomax 
distribution, and the acceptance probabilities can be computed when the sets of values of 𝑛1, 𝑛2and 
λ are specified. The probabilities of acceptance of the submitted lot under the double sampling plan 
for life tests can be computed against the dimensionless ratio𝜇/𝜇0 based on the procedure described 
in the following Subsection for different combinations of parameters 𝑛1, 𝑛2 and λ, where 𝜇/𝜇0 is the 
ratio of the actual mean life to the assumed mean life. It is to be noted that any change in the values 
of these parameters would have some impact in the nature of the OC curve.   

While selecting a sampling inspection plan for its application, it is the conventional practice 
to define the OC curve in accordance with the desired discrimination and to select the corresponding 
sampling plan. It is known that the operating ratio, defined as the ratio of the limiting quality level 
to the acceptable quality level, is one of the widely used measures of discrimination in sampling 
plans, and is, in general, used to fix the OC curve. 

Further, a smaller value of 𝜇/𝜇0 would indicate that the actual mean life is relatively much 
smaller than the acceptable mean life whereas a larger value, which is nearer to one would indicate 
that the difference between 𝜇 and 𝜇0 is less. When the actual mean life is much smaller than the 
acceptable mean life, smaller the values of λ, greater is the protection to the consumer, whereas 
protection to the producer is more for larger values of λ. As the actual mean life increases, acceptance 
probabilities would increase, which indicate that the lots having items with higher mean life that is 
close to the acceptable mean life will most often have a greater chance of acceptance. 
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5. Procedure for the Selection of DSP – (n1, n2) for Life Tests

Sampling inspection plans for attributes or variables are constructed based on a general approach 
that the operating characteristic curves of the desired plans should pass through two prescribed 
points, namely, the acceptable quality level,𝑝0, and the limiting quality level,𝑝1, which are associated 
with the producer’s risk, 𝛼, and the consumer’s risk,𝛽, respectively. The specification of these points 
is required for the purpose of ensuring protection to the producer as well as the consumer and is 
considered for fixing the OC curve in accordance with a desired degree of discrimination. The 
operating ratio, R, defined as the ratio of 𝑝1to𝑝0, is often used as the measure of discrimination.  

As discussed in the earlier sections, a specific sampling plan for life tests can be determined 
by specifying the requirements that the OC curve should pass through two prescribed points, 
namely,(𝜇0, 𝛼) and (𝜇1, 𝛽), where𝜇0and𝜇1are the acceptable and unacceptable mean life associated 
with the risks 𝛼and 𝛽, respectively. In such a case, the operating ratio, 𝑅 = 𝜇0/𝜇1, which is the ratio 
of acceptable mean life to unacceptable mean life, can be used as the measure of discrimination just 
similar to the operating ratio of the limiting quality level to the acceptable quality level. It is obvious 
to note that 𝜇1<𝜇0, and hence, R >1. An optimum double sampling plan for life tests can be 
determined by satisfying the following two conditions so that the maximum producer's and 
consumer's risks would be fixed at 𝛼and 𝛽, respectively: 

𝑃𝑎(𝜇0) ≥ 1 − 𝛼   (19) 

and       𝑃𝑎(𝜇1) ≤ 𝛽. 
(20) 

It is to be noted that the OC function given as (15) or (17) is not directly related to the mean 
life; but it can be expressed as a function of 𝑡/𝜇, which corresponds to p, i.e., the proportion of lot 
failing before time t. The procedure is appropriately used to compute the operating characteristics 
while searching for the optimum values of the sampling plan satisfying the conditions (19) and (20). 

For the specified values of 𝑡/𝜇0 and𝑡/𝜇1, the optimum values of 𝑛1 and 𝑛2 of 𝑫𝑺𝑷 − (𝒏𝟏, 𝒏𝟐) 
under the conditions of Lomax distribution satisfying the conditions (19) and (20) can be determined 
by using the following procedure:  
Step 1: Specify the value of the shape parameter λ or its estimate. 
Step 2: Specify the values of 𝑡/𝜇0 and𝑡/𝜇1, with the associated risks 𝛼 = 0.05and𝛽 = 0.10, 

respectively, so that the operating ratio is defined by𝑅 = 𝜇0/𝜇1.  
Step 4: Using the relationship between p and𝜇, from (3) and (8), obtain𝑝0and𝑝1corresponding to 𝑡/𝜇0

and 𝑡/𝜇1. 
Step 5:  Search for the values of 𝑛1 and 𝑛2 for the specified strength (𝜇0,  1 − 𝛼)  and  (𝜇1,  𝛽) with the 

values of 𝑝0 and𝑝1, or equivalently with the values of 𝑡/𝜇0 and𝑡/𝜇1, by using either the 
expression (15) or the expression (17), such that the conditions (19) and (20) are satisfied. 

Based on the above procedure, the optimum double sampling plans for life tests under the 
assumption of Lomax distribution are obtained for a set of five values of λ, given as 1.25, 1.5, 1.75, 2 
and 3, and for various sets of combinations of 𝑅 = 𝜇0/𝜇1 and 𝑡/𝜇0. These plans are provided in Tables 
1 through to 5 along with the values of minimum ASN at𝑡/𝜇0. The optimum plans given in the tables 
are obtained under the conditions of binomial distribution by a search procedure using the 
expression (15) for the OC function and the expression (8) for the proportion of product failing in an 
appropriate manner. The parameters of the optimum plans would have a maximum of 5 percent 
producer's risk and a maximum of 10 percent consumer's risk. 

5.1. Numerical Illustration 

In an electronic device manufacturing industry, a quality control practitioner wishes to adopt a 
suitable sampling inspection plan under isolated lot conditions. Though the practitioner is interested 
to have only zero failures in the random sample items which are placed under the life test, keeping 
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in mind the manufacturer’s capabilities of producing long survival items, he wishes to allow a 
maximum of one failure item under the sampling plan. Hence, he desires to adopt a double sampling 
plan allowing a maximum of one failure in the randomly sampled items which are to be considered 
for a life test. 

The past history in the industry reveals that the life time random variable is distributed 
according to Lomax distribution, whose shape parameter is specified to be λ = 1.5. It is expected that 
the plan shall provide the desired degree of discrimination, which is measured in terms of the 
operating ratio,𝑅, ensuring protection to the producer in terms of the acceptable mean life 𝜇0 = 2000 
hours with the associated risk of 5 percent and protection to the consumer against the unacceptable 
mean life 𝜇1 = 110 hours with the associated risk of 10 percent.  

The practitioner would like to terminate the life test within 1 hour. Based on the given 
information, one gets 𝑅 = 𝜇0/𝜇1 = 18.2 ≈ 18, and𝑡/𝜇0 = 0.0005. The value of shape parameter λ = 
1.5, with the ratio 𝑅 = 𝜇0/𝜇1 = 18 and 𝑡/𝜇0 = 0.0005, the optimum double sampling plan is chosen 
with the sample sizes 𝑛1 = 88 and 𝑛2 = 178, which yield the minimum𝐴𝑆𝑁 = 109 at𝑡/𝜇0. Thus, the 
desired plan for the given conditions is implemented as given below: 

1. Draw a random sample of 𝑛1 = 88 items from a submitted lot and place them for life test.
2. Observe the number of failures before reaching the termination time of 1 hour.
3. Terminate the life test once the termination time, i.e., t = 1 hour, is reached.
4. If no failures are observed in the 88 items tested or until time t is reached, accept the lot; if

one failure is observed in the 88 items tested, select a random sample of 𝑛2 = 178 items and
place them for a life test.

5. Accept the lot, when no failures are observed while testing 178 items; reject the lot, if one or
more failures are observed.

6. Treat the items which survive beyond time t = 1 hour as accepted.

5.2. Numerical Illustration 

It is assumed that the lifetime of the components in an electronic device follows a Lomax distribution 
with shape parameter λ = 3.0. It is desired to implement a double sampling plan for life tests to 
sentence a submitted lot of manufactured components. The experimenter involved in the decision-
making process fixes the test termination time as t = 75 hours. The acceptable and unacceptable 
proportions of the lot failing before time t are, respectively, prescribed as 𝑝0 = 0.003 and 𝑝1 =
0.055with the associated risks fixed at the levels 𝛼 = 0.05  and 𝛽 = 0.10. The values of 𝑡 𝜇⁄  
corresponding to 𝑝0 = 0.003  and 𝑝1 = 0.055 are determined as 𝑡 𝜇0⁄ = 0.002and 𝑡 𝜇1⁄ = 0.038. 
Hence, the desired operating ratio is obtained as 𝑅 = 𝜇0/𝜇1 = 19.

The value of shape parameter λ = 3, with the ratio R = 19 and the index 𝑡 𝜇0⁄ = 0.002, one 
obtains the optimum double sampling plan having its parameters specified as 𝑛1 = 42 and 𝑛2 = 120 
which yield the minimum𝐴𝑆𝑁 = 56 at 𝑡 𝜇0⁄ = 0.002. These parameters satisfy the conditions (9) and 
(10). The acceptable mean life and unacceptable mean life are, then, determined as 𝜇0 =
𝑡 0.002 = 37500⁄ hours and 𝜇1 = 𝑡 0.038 = 1973.7⁄ ≈ 1974 hours, respectively. 

6. Conclusion

A double sampling inspection plans for life-tests which involve two samples and allows a maximum 
of one failure is proposed when the lifetime quality characteristic is modeled by a Lomax 
distribution. A procedure for the selection of the proposed plan is discussed through numerical 
illustrations. The sampling plan which could be derived by the procedure discussed in this paper 
will ensure protection to the producer and consumer as the plans are indexed by acceptable and 
unacceptable proportion of product failing before the specified time, t. The practitioners can generate 
the required sampling plans for various choices of shape parameter λ, adopting the procedure. 
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Abstract 

In this study, we explore a new probability distribution termed as the Length-Biased Transmuted 

Mukherjee-Islam (LBTMI) distribution. This exploration enhances the conventional Transmuted 

Mukherjee-Islam distribution by integrating a weighted transformation approach. The paper examines 

the probability density function and the corresponding cumulative distribution function associated 

with the LBTMI distribution. A comprehensive examination of the unique structural properties of the 

proposed model is carried out, including the survival function, conditional survival function, hazard 

function, cumulative hazard function, mean residual life, moments, moment generating function 

(MGF), characteristic function (CF), cumulant generating function (CGF), likelihood ratio test, 

ordered statistics, entropy measures, and Bonferroni and Lorenz curves. To ensure precise estimation of 

model parameters, the study employs the maximum likelihood estimation method, contributing 

significantly to the advancement of statistical modelling in this domain. 

Key words: Transmuted Mukherjee-Islam distribution, Weighted transformation, Reliability 

analysis, Maximum likelihood estimator, Ordered statistics 

1. Introduction

One fundamental aim of statistics is to develop precise predictive models for real-world phenomena. 

However, due to the complex nature of these phenomena, conventional modelling approaches may 

prove inadequate. As a result, an array of probability distributions has been devised to address these 

challenges by using various transformation approaches. In our study, we introduce a novel extension 

of Transmuted Mukherjee-Islam distribution termed as LBTMI distribution. This distribution is 

crafted through the Fisher’s [6] weighted transformation technique, initially introduced in 1934, and 

further elucidated by Rao [17] in 1965. This method allows us to construct weighted models of 

observations based on predefined weighted functions. The weighted distribution reduces to length 

biased distribution when the weight function considers only the length of the units. The concept of 

length biased sampling was first introduced by Cox [4] and Zelen [26]. Scholars and researchers have 

extensively delved into weighted probability models and their wide-ranging applications across 

diverse domains. Modi and Gill [13] discussed the length-biased weighted Maxwell distribution, 

while Sanat [23] derived the beta-length biased Pareto distribution. Reyad et al. [22] examined the 

length-biased weighted Frechet distribution, elucidating its properties and practical applications. 

Rather and Subramanian [20] introduced a method for characterizing and estimating the length-

biased weighted generalized uniform distribution. Mudasir and Ahmad [14] provided an in-depth 
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discussion on the characterization and estimation of the length-biased Nakagami distribution, and 

Khan et al. [7] discussed the weighted modified Weibull distribution. In subsequent years, Rather and 

Subramanian [19] explored the length-biased Erlang truncated exponential distribution, highlighting 

its practical applications. Mathew and Chesneau [12] studied the Marshall-Olkin length-biased 

Maxwell distribution. In recent developments, Rather and Ozel [18] introduced a new length-biased 

power Lindley distribution with applications. Al-Omari and Alanzi [1] presented the inverse length-

biased Maxwell distribution and conducted statistical inference with an illustrative application. 

Mustafa and Khan [15] developed the length-biased powered inverse Rayleigh distribution with 

practical applications. 

The Transmuted Mukherjee-Islam distribution had explored by Rather and Subramanian [21] 

using the quadratic rank transmutation map studied first by Shaw and Buckley [24] in 2007. Loai M. 

A. Al-Zou’bi [2] also obtained various properties of Transmuted Mukherjee-Islam distribution and its

applications. The probability density function of a random variable say Z  following Transmuted

Mukherjee- Islam distribution with parameters say    ,,  is given by

11,0,0,0;21),,;( 1 
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And the corresponding cumulative distribution function is 
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Several researchers have explored the quadratic transmutation mapping approach, introducing new 

members to this family across various baseline distributions. These include the transmuted extreme 

value distribution by Aryal and Tsokos [3], the transmuted Frechet distribution by Mahmoud and 

Mandouh [10], the transmuted generalized linear exponential distribution by Elbatal et al. [5], the 

transmuted additive Weibull distribution by Mansour et al. [11], the transmuted Gompertz 

distribution by Khan et al. [8], and the transmuted generalized inverse Weibull distribution by Khan 

et al. [9]. Additionally, Subramanian and Rather [25] examined the weighted version of the 

exponentiated Mukherjee-Islam distribution, deriving its statistical properties. Furthermore, Otiniano 

et al. [16] delved into the transmuted generalized extreme value distribution. 

2. Probability density function (PDF) and cumulative distribution function (CDF)

Using the weighted transformation approach, the PDF )(zyw  of a non-negative random variable Z is 

given by 
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Where )(zw  be a non-negative weight function and 
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Note that different choices of the weight function )(zw  give different weighted distributions. 

Consequently for weight function zzw )( , the resulting distribution is called length-biased 

distribution. Let us assume that  the PDF of the random variable Z  to be Transmuted Mukherjee-

Islam distribution, so the PDF of Length-Biased Mukherjee-Islam(LBTMI) distribution is given by  

 
)(

),,;(
,,;

zE

zfz
zg





 (3) 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

292



Danish Qayoom, Aafaq A. Rather  

A COMPREHENSIVE STUDY OF LENGTH-BIASED … 

Now 
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After simplification we get 
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The corresponding CDF of LBTMI distribution is given by 
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After simplification we get 
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3. Reliability Analysis

3.1 Survival function 

The survival function of LBTMI distribution is given by 

)()( tTPtR rT 
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After simplification we get 
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After simplification we get 
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3.2 Conditional survival function 

In case of LBTMI distribution the conditional survival function is given by 

)|()|( 000 tTttTPttR rT 

)(

)(
)|(

0

0
0

tTP

ttTP
ttR

r

r
T






)(

)(
)|(

0

0
0

tR

ttR
ttR

T

T
T




   
 

   
 















2)1(

)1(2)()1()12(2)1(

2)1(

)()1(2)()1()12()(2)1(

)|(

12

112

12

0

1

0

12

0



















tt

tttt

ttRT (16) 

   
   tt

tttt
ttRT

)1(2)()1()12(2)1(

)()1(2)()1()12()(2)1(
)|(

112

0

1

0

12

0
















(17) 

3.3 Hazard function 

The hazard function of LBTMI distribution is given by 
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3.4 Cumulative hazard function 

The cumulative hazard function of LBTMI distribution is given by 

 )(ln)( tRtH TTC 
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Similarly, the Conditional Cumulative hazard function of LBTMI distribution is given by 

 )|(ln)|( 00 ttRttH TTC 

   
    


















tt

tttt
ttHTC

)1(2)()1()12(2)1(

)()1(2)()1()12()(2)1(
ln)|(

112

0

1

0

12

0







3.5 Reverse Hazard function 

The reverse hazard function of LBTMI distribution is given by 
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After simplification we get 
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3.6 Mills Ratio 

The Mills ratio of LBTMI distribution is given by 
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3.7 Mean residual life 

The mean residual life (MRL) in case of LBTMI distribution is given by 
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After simplification we get 
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4. Moments

The rth raw moment about origin of LBTMI distributionis defined as 
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After simplification we get 
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Putting 4,3,2,1 r in (26) we get 
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The variance and coefficient of variance  VC. respectively are given by
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And 
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5. Harmonic mean

The harmonic mean of LBTMI distributionis defined as 
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After simplification we get 
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6. MGF, CF, and CGF

The moment generating function of LBTMI distribution is 
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The characteristics function of LBTMI distribution is 
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The cumulant generating function of LBTMI distribution is 
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7. Estimation of Parameters

Let nzzzz  ...,,,, 321 be a random sample of size n  from LBTMI distribution. Then the likelihood 

function is defined as the joint density of the random sample, which is given as 
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Taking logarithm on both sides we get 
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Differentiating equation (43) partially with respect to   and equating to zero we get 
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Differentiating equation (43) partially with respect to   and equating to zero we get 
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Differentiating equation (43) partially with respect to   and equating to zero we get 
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Simultaneously solving equation (44), (45), and (46), gives the maximum likelihood estimators of 

parameters involved in the given distribution. However, direct evaluation of the aforementioned 

system of nonlinear equations is unfeasible. To obtain maximum likelihood estimates for the 

distribution parameters, it is necessary to employ iterative methods such as the Newton-Raphson 

method, Mathematica, or the Secant method to solve this system effectively. 

8. Distribution of ordered statistics

Suppose we draw a random sample nzzzz  ...,,,, 321  of size n   from LBTMI distribution. Then the 

ordered statistics corresponding to the given sample is )()3()2()1( ...,,,, nZZZZ  such that

)()3()2()1( ... nZZZZ  , Where  

)...,,,,min( 321)1( nzzzzZ 

and )...,,,,max( 321)( nn zzzzZ 

The PDF of 
thk ordered statistics from LBTMI distribution is given by 
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And the corresponding CDF of 
thk ordered statistics is 
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On substituting nk  ,1  in equation (48) we get the PDF of smallest and highest  ordered statistics 

respectively and are given as 
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And 
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Their corresponding CDFs are obtained on substituting nk  ,1  in equation (49) and are given by 
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9. Likelihood ratio test

The likelihood ratio test is a statistical technique designed to explore the adequacy of fit between two 

models. Specifically, in the realm of probability distributions, it is utilized to check the suitability of 

two distinct distributions in explaining observed data and its purpose is to ascertain whether the 

inclusion of additional parameters in a statistical model substantially enhances its ability to accurately 

represent the data or not. Suppose nzzzz  ...,,,, 321 be a random sample of size n   from LBTMI 

distribution.. To test the hypothesis  

),,,;()(:0 zfzgH  against ),,;()(:1 zgzgH 

The likelihood ratio test is defined as 
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So, we reject null hypothesis at  level of significance if 
* such that  )( *P , where 

*

is the critical value at  level of significance of the given test statistics. That is, 
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For large sample size n , )log(2   is distributed as Chi-square distribution with one degree of 

freedom. Also p-value is calculated from the chi-square distribution. On the basis of p-value, we reject 

the null hypothesis when the p-value is less than level of significance. 

10. Entropy measures

10.1 Renyi entropy and Tsallis entropy 

 By definition, the Renyi entropy is given by 
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After simplification we get 
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Similarly, the Tsallis entropy associated with the given distribution is given by 
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11. Bonferroni and Lorenz curves

The Bonferroni curve of the given distribution is given by 
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After simplification we get 
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Also, the Lorenz curve of the given distribution is given by 
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12. Conclusion

In this paper, we have introduced a novel extension of the Transmuted Mukherjee-Islam distribution. 

This extension incorporates a weighted transformation approach and the existing three-parameter 

Transmuted Mukherjee-Islam distribution and generates four parametric innovative model known as 

the Length-Biased Transmuted Mukherjee-Islam distribution. We conduct a thorough analysis of the 

Length-Biased Transmuted Mukherjee-Islam distribution, investigating its mathematical formulation 

and statistical properties in detail. Parameter estimation for this new distribution is performed using 

maximum likelihood estimation techniques. Additionally, to assess the goodness of fit between these 

two models, we employ the likelihood ratio test. 
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Abstract 

This study delves into the computation and evaluation of the expected Fisher information matrix 

within the context of the Poisson-type I half logistic (PHL) distribution. Leveraging confidence 

intervals and their associated coverage probabilities, our investigation aimed to study the 

performance of information matrix by the maximum likelihood method in estimating parameters. 

Our results unveiled a consistent trend: as the sample size expanded, a reduction in the length of 

the confidence interval was observed, and the 95% asymptotic confidence interval’s coverage 

probability aligned within the expected nominal size. This serves as a testament to the accuracy and 

robustness of the information matrix’s performance within the PHL distribution framework. Also, 

tested using some real data set. 

Keywords: Poisson half logistic, Maximum likelihood estimation, Fisher 
information matrix, confidence interval. 

1. Introduction

The information matrix in maximum likelihood estimation is crucial as it quantifies the precision 
of parameter estimates, aiding in the construction of confidence intervals. It reflects the inverse of 
the variance-covariance matrix of the score function, providing insights into the asymptotic 
behavior of the maximum likelihood estimator. 

  Confidence intervals, a key component of statistical inferences, leverage the information 
matrix to quantify the uncertainty surrounding parameter estimates. They offer a range of 
plausible values for the parameters, enhancing the interpretability and reliability of statistical 
analyses. In essence, the information matrix and confidence intervals together form integral tools 
for understanding the robustness and precision of maximum likelihood estimates in statistical 
inference. 

In engineering, the information matrix is crucial for assessing the precision of parameter 
estimates in various models. For example, in structural engineering, when estimating parameters 
related to material properties or structural components, the information matrix helps engineers 
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understand how well their estimates capture the underlying characteristics of the system. This is 
vital for designing structures with optimal safety margins. In social science, the information matrix 
is essential for understanding the reliability of parameter estimates in models describing human 
behavior or societal trends. For instance, in economics, when estimating the coefficients of a model 
describing consumer behavior, the information matrix helps economists gauge the precision of 
their estimates, informing policy decisions. 

There have been several contributions in the literature regarding the applications of the 
information matrix. for example, [1] provided a discussion on deriving the information matrix for 
a logistic distribution. [2] derived the asymptotic expansions of the information matrix test statistic. 
Small-sample performance of the information matrix test was discussed by [3]. The performance 
evaluation of track fusion with information matrix filter was studied by [4]. The approximate 
Fisher information matrix to characterize the training of deep neural networks was used by [5]. 
The Fisher information matrix in gravitational-wave data analysis was extended by [6]. The 
general expressions for the quantum Fisher information matrix with its applications to discrete 
quantum imaging was provided by [7].  

The rest of the paper follows: Section 2, discussed about Fisher information matrix. Section 3, 
provided the expected Fisher information matrix of Poisson-type I half logistic (PHL), and some 
simulation studies with real data example. Section 4, is the conclusions. 

2. On the Fisher information matrix

This section elucidates the significance of Fisher information by delving into fundamental concepts 
in statistics, including unbiased estimators, the information inequality (Cramer-Rao inequality), 
and the asymptotic normality of maximum likelihood estimation (MLE). For details (see, [8]). 

2.1. Asymptotic characteristics of MLE 

To comprehend the significance of Fisher information, this section elucidates fundamental 
statistics concepts, including unbiased estimators, the Cramer-Rao inequality (information 
inequality), and the asymptotic normality of MLE. 

Estimation in statistics involves mapping real values from observed data. Various methods 
exist for estimation. Let ( )  be an estimator where   represents the observation pattern. For 
instance, a constant function that maps a specific value, irrespective of observed data, can serve as 
an estimator. Evaluation of estimation methods is crucial. 

Mean Square Error (MSE) is one criterion for evaluation. Assuming a random variable ix is 

generated by a distribution with a probability density function ( *)P x  and true parameter value 

* , MSE is defined as; 
2( ( ) *)MSE E    = − 

 (1) 

Where ( ) ( )
x

E X xp x dx=  and ( )
2

( ) ( ) ( )
x

Var X x x E x p x dx= − . MSE can be decomposed into 

the variance of the estimator and the square of the bias between the expectation of the estimator 
and the true parameter value. 

Focusing on unbiased estimators with zero bias ( )( ( ) *) 0E   − = , the variance of the

estimator becomes crucial. The Cramer-Rao inequality establishes a lower bound for the variance 

of an unbiased estimator  : 
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1

( )
( *)

Var
F




   (2) 

where is the Fisher information. An efficient estimator achieves this lower bound. For 
unidimensional parameters, the inverse of the Fisher information sets a bound on the estimator’s
lower variance. 
Returning to the Maximum Likelihood (ML) estimator, ML exhibits desirable properties, including

asymptotic normality and asymptotic efficiency. In regularity conditions, the ML estimator   
satisfies: 

( )1*,
( *)

N
F

 


→                                                                                                                                               (3) 

This implies that the ML estimator asymptotically follows a normal distribution with the mean 
being the true parameter value and the variance (covariance matrix) being the inverse of the Fisher 
information. 

In summary, the asymptotic efficiency of the ML estimator, characterized by the variance 
being the inverse of the Fisher information, makes it the best choice from the Mean Square Error 
perspective, given the restriction to unbiased estimators. This property, known as asymptotic 
efficiency, allows psychology researchers to optimize not only the estimation method but also 
experimental design and stimuli for variance reduction (increasing Fisher information) in their 
studies. 

2.2 Definition of the Fisher Information Matrix 

Let 1( ,...., )k  =  represent k-dimensional parameters. The Fisher information matrix for the i-th 
participant (or trial) concerning parameter ξ is defined as 

( ) log ( ) log ( )

T

i i iF E L y L y
 

  
 

   
=    

    

 (4) 

where log ( )iL y





 is a 1k   column vector, and T denotes the transpose operation. In other 

words, ( )iF  is a k k matrix. The (m, n) element of the Fisher information matrix is given by  

( , )( ) log ( ) log ( )i m n i i

m n

F E L y L y
 

  
 

 
=  

 

. The expectation is over dependent variables y, 

assuming the model ( )iP y is true. The Fisher information depends on parameter values   and
stimuli (as well as the model). Although conventionally, the stimuli symbol is omitted in the Fisher 
information matrix representation, it’s important to note that the Fisher information is dependent 
on experimental design and stimuli. 

Additionally, when the true model is known, the following equation holds:
2

2
( ) log ( ) log ( ) log ( )

T

i i i iF E L y L y E L y
  

   
  

     
= = −     

      

  (5) 

This means that researchers can calculate the Fisher information matrix using either the square of 
the score function or the second derivatives of the log-likelihood function. The choice between 
methods depends on the characteristics of the models. In the definition using second derivatives, 
the (m, n) element of the Fisher information matrix is given by 

2

( , )( ) log ( )i m n i

m n

F E L y


 
 

 
= −  

 

(6)
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3. The Fisher Information Matrix of PHL

Here, we derive the expected Fisher information matrix of the Poisson half logistic distribution, 
and applied it to study the confidence interval of the maximum likelihood estimators using 
simulation studies and real data example. 

3.1 On the PHL 

The Poisson half logistic (PHL) distribution was introduced by [9], using the convolution of half 
logistic (HL) and Poisson distributions. The PHL was applied to right censored data in [9]. The 
probability density, and cumulative distribution are respectively given by; 

( )( )

1

1

2

2
( )

1 1

x

x

e

ex

x

e e
f x

e e








 



−

−

 −
  +−  

−
=

− +

  (7) 

and 
1

1
1

( )
1

x

x

e

e
e

F x
e








−

−

 −
  +  −

=
−

 (8) 

Where 0   and  0R − .

The quantile function of the PHL distribution can be used to obtain a random data distributed 

according to CHLP(α, λ): if U is a uniform (0, 1), then,  

( )( ) ( )( )ln 1 1 ln 1 11
ln 1 ln 1

u e u e
X

 

  

    − + − +    = − − − + 
        

 (9) 

is a random variable distributed PHL. 
There have been several contributions regarding the HL distribution, one can see, 

complementary Poisson generalized half logistic [10], generalized half-logistic Poisson [11], 
extension of the generalized half logistic [12], estimation of the reliability of a stress–strength 
system from Poisson half logistic distribution [13], type I half-logistic family [14], new extended 
cosine generalized half logistic [15], for more details see, [16]. 

3.2 The expected Fisher Information Matrix of PHL 

The maximum likelihood of   and   can be obtain numerically by simultaneously solving (11) 
and (12) when set equal to zero using mathematical packages such as nlminb in R-software. Let a 

vector of parameter be ( ),
T

  = , then the total log likelihood function of the PHL is given by 

( )

( )
( )
( )

1

1 1

( ( )) log 2 log log log 1

1
2 1
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e
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 (10) 

The first partial derivative of ( ( ))log l   that is ∂log ℓ(α, λ)/∂α and ∂log ℓ(α, λ)/∂λ are
computed as; 

( )
2

1 1 1

( ( , ))
2 2

1 1

i i

i
i

x xn n n
i i

i x
x

i i i

x e x elog l n
x

e e

 




  


 

− −

−
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= = =

= − − +
+ +

   (11)
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1

( ( , )) 1

1 1

i

i i
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x x
i

log l n ne e

e e



 

  

 

−

− −
=

 −
= − −  

− + 
  (12) 

For a very large sample we apply the usual approximation that the MLEs of the CHLP can be 

approximated as bivariate normal with mean zero and variance covariance matrix 1( , )I  −
, 

where ( , )I   is the expected information matrix. Alternatively, we can use 1( , )J  − ) evaluated 
at  and   to construct the asymptotic variance - covariance matrix of the MLEs. 
Where, 

2 2

2 2

2 2

2

log log

( ( , ))
( , )

( , ) ( , ) log log
T

l l

log l
J

l l

 

    
 

       

 

 
  
 = = 
  
 
 

 (13) 

Thus, we compute the element of the J(α, λ) as
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To construct the asymptotic distribution for the maximum likelihood estimate we consider the 
following Lemma and Theorem. 
Lemma 1. For k R  and ,q N  , let 

( )( )

1

1( 1)

2
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2
( , , )
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i
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Then, 
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Where , (.,.)o pB is a partial derivative of a beta function with respect to p. 

Proof. By expanding the exponential expression 
1

1

x

x

e

e
e






−

−

 −
  +   then applying generalized binomial 

expansion to ( )
(.)

1 xe −+ . Finally, some algebraic transformation of ( )1 xu e −= − and obtain the

integral. 

Theorem 1. The maximum likelihood estimators ( ),n n  of ( ),  are consistent estimators and

( ),
T

n nn    − − is asymptotically normal with mean vector 0 and the variance covariance

matrix 1I −
, where 

2 log

( , ) ( , )T

l
I E



     

 
= −  

 

 and the elements of the Fisher information matrix 

I are; 
2

2 2 2

( ( , )) 1

( 1)

logl e
E

e





  

 

 
= + 

− 

 (16)

2 ( ( , ))
2 (1,1,2)

logl
E

  




 
= − 

 

(17)
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2

2

( ( , )) 1
2 (1,2,2) 2 (1,2,3) 2 (2,2,3)

logl
E

  
  

 

 
= + + − 

 

 (18) 

Where (.,.,.) is given in Lemma 1. 

For r = 1, 2., let ( , )T  = be the estimates of  , and r be the rth component of  . Then, a 

100(1 )%− asymptotic confidence interval for r is given 

( )2 , 2 ,r r rr r rrACI w j w j =   +  (19) 

Where r is the rth component of  , rrj is the ( , )thr r diagonal elements of 1I −
, and 2w  is 

the quantile 1 − ϵ/2 of the standard normal distribution. 

 3.3 Simulation study 

In this part, we evaluate the Information matrix through the confidence interval and its coverage 
probability, by the performance of the maximum likelihood estimates using simulation study. We 
generate 10,000 samples from the PHL (α, λ), each of sample sizes n=20, 50,…,300 using some 
selected values of 0   and  0R − .

The resulting simulations are displayed in Figures 1, 2,3 and 4. The result shows that the method of 
maximum likelihood performed consistently and length of the confidence interval decrease as 
sample size increase, also, the coverage probability (PC) of the 95% asymptotic confidence interval 
is within the nominal size, showing how accurate the information matrix performed. Below is the 
simulation algorithm. 
1. Choose the sample size n, replication number M,
2. Choose the values of parameters   and  ,
3. Generate random Pi ∼ Uniform(0, 1) distribution, i = 1, 2, 3, …,n,
4. Generate random Xi, i = 1, 2, 3, ・・ ・ n, from (3),
5. Calculate the MLEs from the simulated data,
6. Compute the expected information matrix
7. Compute the 95% asymptotic confidence interval for ( , )  = using 

( )2 , 2 , , 1,2r r rr r rrACI w j w j r =   + =  

8. Compute the length of ACI
9. Repeat steps 2–4, M times.
10. Compute the average ACI and coverage probability (CP)

Figure 1: Plots of the estimated average length of ACL and CP for the simulated data for α = 1.0 and λ= 1.0 
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Figure 2: Plots of the estimated average length of ACL and CP for the simulated data for α = 2.5 and λ= 2.5 

Figure 3: Plots of the estimated average length of ACL and CP for the simulated data for α = 0.8 and λ= 0.9 

Figure 4:Plots of the estimated average length of ACL and CP for the simulated data for α = 0.5 and λ= 3.5 

3.4 Application to Real Dataset 

This subsection consists of illustration of the PHL expected information matrix to obtain 
confidence interval for the parameters using a real data with good fit by KS (Kolmogorov Smirnov) 
test statistic. The data set is given by [17] the data set are the 100 observations on breaking stress of 
carbon fibers (in Gba): The data set analyzed are: 194, 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 
3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 
3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 
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2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 
1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 
4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05, 3.65. 
We estimated the parameters by maximum likelihood and tested the good fit by KS test as   = 
1.2004,   = 7.2595, with KS = 0.0823. The asymptotic Fisher information matrix is computed and 
the asymptotic confidence intervals are computed to verify the performance of the derived 
information matrix as ACI = (1.0391, 1.3618) and ACI = (4.8419, 9.6772). The confidence 
intervals are very good indicating the accuracy of the computed information matrix. Figure 5 
shows the plot of the fitted PHL density and cumulative distribution function showing the good 
fit. 

401.9967 21.3447

21.3447 1.7906
I

− 
=  

− 
 and 1

0.00677717 0.08078816

0.08078816 1.52152823
I −  

=  
 

Figure 5: Plots of the estimated density and cumulative distribution function of PHL 

4. Conclusion

In this study, we computed and assessed the expected information matrix for the PHL distribution, 
utilizing confidence intervals and their coverage probabilities. Our findings underscore the 
consistent performance of the maximum likelihood method, showcasing: as sample size increased, 
the confidence interval length consistently decreased. Moreover, the 95% asymptotic confidence 
interval’s coverage probability (PC) remained within the expected nominal size, affirming the 
accuracy and reliability of the information matrix’s performance. 

Acknowledgments: I will like to thank the editor, and referees for their useful comments which 
improve the paper. 
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Abstract

We consider a server queue with negative clients (G-Queue) in this effort, where clients are serviced
one after the other in batches in a system of variable size. Additionally, we presumptively have a general
distribution for the service times, delay times, and repair times. For various states, we concrete the
probability-generating functions for the number of customers in the orbit. We scrutinize a single server
queue with batches of reneging or balking clients in a system of variable size in this work. Different
performance measures and unique situations are examined. The outcomes of this work have applications
in satellite communication, software-design for various computer-communication systems and mailing
systems among other things.

Keywords: G-Queue, Retrial Queue, Bulk, Reneging Clients, Sudden Breakdown

1. Introduction

The concept of positive and negative consumers coming in a queueing system received further
interest and was researched due to its usage in organizations, industry, manufacturing, computer
field, and network systems. This study [7] proposed such queues (G-Queues) for the first time to
simulate neural networks. In [10] tremendous improvements have been made to the wait times for
retrials and vacations. Adapted from [2], in [15] discussed the M/G/1 retrial queueing system,
which has two service phases and immediate feedback. In this system, the regular busy server
is impacted by the arrival of negative customers. By incorporating the idea of G-queues with
immediate feedback used by [17]. A finite-source retrial queueing system is considered in [14]
along with impatient clients and catastrophic failures. In [13] considered a modified Bernoulli
vacation schedule with negative arrivals, reneging and starting failure.

Many authors have examined the queueing issues caused by different combinations of server
vacations. A literature review on queues with server vacations can always be found in [6].
Consider this reliability modelling with G-queues in [8], when server failures are described by
the arrival of negative clients that cause certain clients to lose service. It was taken into account
by [12] to evaluate the queue containing feedback and server vacations (optional) utilizing an
SVP (single vacation policy). In [9] examined a bulk- arriving with a server(starting) and more J
service options. A batch arrival queue with an additional service channel was researched by [5]
under -policy. Retrial queueing technique and balking clients are delved by [3, 4].

Both [1, 11] provided retry queues that take into consideration server faults and repair. The
queueing indices and reliability features of an RRQM (repairable retrial queueing model) were

RT&A, No 2 (78) 

 Volume 19, June, 2024 

314

mailto:bharathij2022@gmail.com, mailto: n.aisyah@upnm.edu.my, mailto: nandhini.s@vit.ac.in


J. Bharathi, S. Nandhini, Nur Aisyah Abdul Fataf
BULK ARRIVING RETRIAL G-QUEUE

investigated by [16] in terms of reliability. On the M/G/1 retrial queue model with service, we
have reviewed a variety of academic publications. This work is motivated by the Retrial Queue
model (RQM), which includes service and repair.

The remainder of this article is categorized as follows. We provide a brief mathematical
overview and its application of the model is specific in Section 2. The notations and the number
of consumers in the orbit/system at a steady state are shown in Section 3 and Section 4. The
system performance metrics and numerical outcomes are presented in Section 5 and Section 6.
The work’s conclusion is stated in section 7.

2. The Mathematical Model’s descriptions

Consider an SSRQM (single server retry queueing system) with negative and positive independent
arrivals. Assume that both categories of customers enter the system using separate Poisson
processes with rates of λ and δ respectively. The bulk size Y is a RV (random variable) with df
(distribution function) P( ˜̃Y = k) = ˜̃Tk, k = 1, 2, . . . .,.

If a huge proportion of positive consumers discover the server free upon arrival, any newly
incoming customer begins his service, and others join the orbit. When positive customer enter the
service with prob., (probability) 1-˜̃b and exit with probability ˜̃b, balking (or reneging) may occur.

One of the arrivals starts his service, and others join the orbital, if a batch of affirmative
clients finds the server unoccupied upon arrival. The generic distribution for the retrial queue is
DF(distribution function) Al(x̃1) with associated it LST(Laplace Stieltjes transform) A∗

l (s) and

HR(Hazard rate) Υ(x̃1)dx̃ = dAl(x̃1)
1−Al(x̃1)

.

This service-time also follows a generic distribution with DF Bl(x̃1), LST B∗
l (s), nth factorial

moments ˜̃in and its HR, µ(x̃1)dx̃ = dBl(x̃1)
1−Bl(x̃1)

. By the Poisson process, negative consumers come
individually at a rate of δ. A server breakdown occurs when a negative client gets into the system,
removing the server’s functioning positive client. The server stops service and waits for repairs
to begin whenever it fails.

This waiting time of the server is known as delay time. The Delay time follows a general
distribution with DF El(x̃1), LST E∗

l (s), nth factorial moments ˜̃kn and its HR, χ(x̃1)dx̃1 = dEl(x̃1)
1−El(x̃1)

.
When a negative customer comes up, the system no longer has the positive customer in service,
which forces the server to breakdown. When a server breaks down, it stops service and waits for
repair to begin. The server’s waiting period of time is known as the delay time. Furthermore, the
repair time has a general distribution with DF Fl(x̃1), LSTF∗

l (s), nth factorial moments ˜̃ln and its

HR, ξ(x̃1) =
dFl(x̃1)

1−Fl(x̃1)
.

2.1. Application of the Model in Real Life

The size of the message buffer (orbit) of a CPS (computer processing system), where messages
(customers) are received at a time. The work of processing communications falls on the processor
(server). A virus infection (a negative customer) might affect the active mail server, and electronic
failures (breakdowns) could occur at any time throughout the service term and require urgent
repair. At that time, if the processor is not available, FCFS temporarily stores the messages in a
buffer to be served later (retrial time). When all messages have been treated (processed) and there
are no pending new messages, the processor will carry out several maintenance procedures, such
as virus scanning, to improve the computer’s performance. The processor checks the messages
after each maintenance process is done before deciding whether to restore the rate of the standard
services. If the system is currently empty of messages, the processor may decide to do another
maintenance task.
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3. Probability Notations

The system’s stochastic processes are all considered to be independent from one another. We now
introduce some more notations that will be utilized in this model’s mathematical formulation.
Let C(t̃) be the server state, where C(t̃)

C(t̃) =


0 −→ idle (server)
1 −→ busy (server)
2 ↣ server is repair(waiting process)
3 −→ server is repair(under process)

Then the process {C(t̃), ˜̃N(t̃); t̃ ≥ 0} is a Markov Process.
Define the following probabilities are, for t̃ ≥ 0
˜̃I0(t̃) = P{{C(t̃) = 0, ˜̃N(t̃) = 0}

˜̃Iñ(x̃1, t̃)dx̃1 = P{{C(t̃) = 0, ˜̃N(t̃) = ñ}, x̃1 < A0
l (t̃) ≤ x̃1 + dx̃1, ñ ≥ 1,

˜̃Mñ(x̃1, t̃)dx̃1 = P{{C(t̃) = 1, ˜̃N(t̃) = ñ}, x̃1 < B0
l (t̃) ≤ x̃1 + dx̃1, ñ ≥ 0

˜̃Qñ(x̃1, t̃)dx̃1 = P{{C(t̃) = 2, ˜̃N(t̃) = ñ}, x̃1 < E0
l ≤ x̃1 + dx̃1

˜̃Rñ(x̃1, t̃)dx̃1 = P{{C(t̃) = 3, ˜̃N(t̃) = ñ}, x̃1 < F0
l ≤ x̃1 + dx̃1

4. Steady State Equations

The collection of equations governing the dynamics of the system behaviour in steady state is
obtained using the SVM(supplementary variable method) as follows:

˜̃bλ ˜̃I0 =
∫ ∞

0

˜̃I0(x̃1)Θ(x̃1)dx̃1 +
∫ ∞

0

˜̃R0ξ(x̃1)dx̃1 (1)

d ˜̃Iñ(x̃1)

dx̃1
+ (λ + Υ(x̃1))

˜̃Iñ(x̃1) = 0, ñ ≥ 1 (2)

d ˜̃Mñ(x̃1)

dx̃1
+ ( ˜̃bλ + δ + µ(x̃1))

˜̃Mñ(x̃1) =
˜̃bλ

∞

∑
k=0

˜̃Tk
˜̃Mñ−k(x̃1) (3)

d ˜̃Qñ(x̃1)

dx̃1
+ ( ˜̃bλ + χ(x̃1))

˜̃Qñ(x̃1) =
˜̃bλ

∞

∑
k=0

˜̃Tk
˜̃Q ˜̃n−k(x̃1) (4)

d ˜̃Rñ(x̃1)

dx̃1
+ ( ˜̃bλ + ξ(x̃1))

˜̃Rñ(x̃1) =
˜̃bλ

∞

∑
k=0

˜̃Tk
˜̃Rñ−k(x̃1) (5)

The B.c (boundary conditions) are

˜̃Iñ(0) =
∫ ∞

0

˜̃I0(x̃1)Θ(x̃1)dx̃1 +
∫ ∞

0

˜̃R0ξ(x̃1)dx̃1 − ˜̃bλ ˜̃I0 (6)

˜̃M0(0) = λ ˜̃T1
˜̃I0 +

∫ ∞

0

˜̃I1(x̃1)Υ(x̃1)d(x̃1) (7)

˜̃Mñ(0) = λ ˜̃Tñ+1
˜̃I0 +

∫ ∞

0

˜̃Iñ+1(x̃1)Υ(x̃1)d(x̃1) + λ
∞

∑
k=0

˜̃Tk

∫ ∞

0

˜̃Mñ−k+1(x̃1)d(x̃1) (8)
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˜̃Qñ(0) = δ
∫ ∞

0

˜̃Mñ(x̃1)d(x̃1) (9)

˜̃Rñ(0) =
∫ ∞

0

˜̃Qñ(x̃1)χ(x̃1)d(x̃1) (10)

Normalization Condition is

˜̃I0 +
∞

∑̃
n=1

∫ ∞

0

˜̃Iñ(x̃1)d(x̃1) +
∞

∑̃
n=1

∫ ∞

0

˜̃Mñ(x̃1)d(x̃1) +
∞

∑̃
n=0

∫ ∞

0

˜̃Qñ(x̃1)d(x̃1) +
∞

∑̃
n=0

∫ ∞

0

˜̃Rñ(x̃1)d(x̃1)

(11)
The following findings are obtained by multiply equ (2) - (10) by z̃1

ñ and adding all val-
ues(possible) of ñ:

d ˜̃I(x̃1, z̃1)

dx̃1
+ (λ + Υ(x̃1))

˜̃I(x̃1, z̃1) = 0 (12)

d ˜̃M(x̃1, z̃1)

dx̃1
+ ( ˜̃bλ(1 − ˜̃T(z̃1)) + δ + µ(x̃1)

˜̃M(x̃1, z̃1) = 0 (13)

d ˜̃Q(x̃1, z̃1)

dx̃1
+ ( ˜̃bλ(1 − ˜̃T(z̃1)) + χ(x̃1))

˜̃Q(x̃1, z̃1) = 0 (14)

d ˜̃R(x̃1, z̃1)

dx̃1
+ ( ˜̃bλ(1 − ˜̃T(z̃1)) + ξ(x̃1))

˜̃R(x̃1, z̃1) = 0 (15)

Equations (12) to (15), using to solve partial differential

˜̃I(x̃1, z̃1) =
˜̃I(0, z̃1)[1 − Al(x̃1)]e−λx̃1 (16)

˜̃M(x̃1, z̃1) =
˜̃M(0, z̃1)[1 − Bl(x̃1)]e−Ñ(z̃1)x̃1 (17)

˜̃Q(x̃1, z̃1) =
˜̃Q(0, z̃1)[1 − El(x̃1)]e−O(z̃1)x̃1 (18)

˜̃R(x̃1, z̃1) =
˜̃R(0, z̃1)[1 − Fl(x̃1)]eO(z̃1)x̃1 (19)

where N(z̃1) = O(z̃1) + δ, and O(z̃1) =
˜̃bλ(1 − ˜̃T(z̃1))

˜̃I(0, z̃1) =
∫ ∞

0

˜̃M(x̃1, z̃1)Θ(x̃1)dx̃1 +
∫ ∞

0

˜̃R(x̃1, z̃1)ξ(x̃1)dx̃1 − ˜̃bλ ˜̃I0 (20)

˜̃M(0, z̃1) =
1
z̃1

∫ ∞

0

˜̃M(x̃1, z̃1)Υ(x̃1)dx̃1 +
λ ˜̃T(z̃1)

z̃1

[∫ ∞

0

˜̃I(x̃1, z̃1)dx̃1 + b̃λ ˜̃I0

]
(21)

˜̃Q(0, z̃1) = δ
∫ ∞

0

˜̃M(x̃1, z̃1)dx̃1 (22)

˜̃R(0, z̃1) =
∫ ∞

0

˜̃D(x̃1, z̃1)ξ(x̃1)dx̃1 (23)

The orbital size partial PGF (probability generating function) while the server is inactive,
active, waiting for repair, under repair

˜̃I(z̃1) =

[ ˜̃I0(1 − A∗
l (λ))

˜̃b{N(z̃1)B∗
l (N(Z̃1))

+δ ˜̃T(z1)(1 − B∗
l (N(z̃1)))E∗O(z̃1)F∗(O(z̃1))}

]
[

z̃1N(z̃1)− {[A∗
l (λ) +

˜̃Tz̃1(1 − A∗
l (λ))]N(z̃1)B∗

l N(z̃1)

+δ(1 − B∗
l (N(z̃1)))E∗

l (O(z̃1))F∗
l (O(z̃1))}

] (24)
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˜̃M(z̃1) =
˜̃I0 A∗

l (λ)(B∗
l (N(z̃1))− 1)[

z̃1N(z̃1)− {[A∗
l (λ) +

˜̃Tz̃1(1 − A∗
l (λ))]N(z̃1)B∗

l N(z̃1)

+δ(1 − B∗
l (N(z̃1)))E∗

l (O(z̃1))F∗
l (O(z̃1))}

] (25)

˜̃Q(z̃1) =
˜̃I0 A∗

l (λ)δ(E∗
l (N(z̃1))− 1)(1 − B∗

l (N(z̃1)))[
z̃1N(z̃1)− {[A∗

l (λ) +
˜̃Tz̃1(1 − A∗

l (λ))]N(z̃1)B∗
l N(z̃1)

+δ(1 − B∗
l (N(z̃1)))E∗

l (O(z̃1))F∗
l (O(z̃1))}

] (26)

˜̃R(z̃1) =
˜̃I0 A∗

l (λ)δ(F∗
l (N(z̃1))− 1)(1 − B∗

l (N(z̃)))E∗
l (N(z̃1))[

z̃1N(z̃1)− {[A∗
l (λ) +

˜̃Tz̃1(1 − A∗
l (λ))]N(z̃1)B∗

l N(z̃1)

+δ(1 − B∗
l (N(z̃1)))E∗

l (O(z̃1))F∗
l (O(z̃1))}

] (27)

Since ˜̃I0 can be calculated using the normalization condition and represents the probability
that the server would be idle while there are no customers in the orbit,

˜̃I0 =



δ(1 − ˜̃j1 + ˜̃j1 Al
∗(λ))− λ ˜̃j1(1 − B∗

l (δ))

(1 + δ ˜̃k1 + δ ˜̃l1)

δ(1 − ˜̃b)(1 − ˜̃j1 + ˜̃j1 Al
∗(λ)) + ˜̃bδAl

∗(λ)

−(1 − ˜̃b)(Al
∗(λ))λ ˜̃j1(1 − B∗

l (δ))(1 + δ ˜̃k1 + δ ˜̃l1)


We establish the following definitions for the PGF for the system’s customers:

˜̃Kl(z̃1) =
˜̃I0 +

˜̃I(z̃1) +
˜̃M(z̃1) +

˜̃Q(z̃1) +
˜̃R(z̃1)

˜̃Kl(z̃1) =
˜̃I0{N1

D1}

N1 =


z̃1N(z̃1)[1 − ˜̃b(1 − Al

∗(λ))] + ( ˜̃b − 1)(1 − Al
∗(λ)) ˜̃T(z̃)[N(z̃)B∗(N(z̃11))

+δ(1 − B∗
l (N(z̃1)))Ẽ∗(O(z̃1))F∗

l (O(z̃1))]− A∗(λ)[B∗
l (N(z̃1))

+(1 − B∗
l (N(z̃1)))(z̃1(O(z̃1)) + δ)]



D1 =

{
z̃1N(z̃1)− [A∗

l (λ) +
˜̃Tz̃1(1 − A∗

l (λ))]{N(z̃1)B∗
l (N(z̃1)) + δ(1 − B∗

l (N(z̃1)))

E∗
l (O(z̃1))F∗

l (O(z̃1))}

}

We define the probability generating functions of the number of customers in the orbit, where
˜̃Hl(z̃1) =

˜̃I0 +
˜̃I(z̃1) + z̃1

˜̃M(z̃1) +
˜̃Q(z̃1) +

˜̃R(z̃1) and ˜̃Hl(z̃1) =
˜̃I0

N2
D1

N2 =


z̃1N(z̃1)[1 − ˜̃b(1 − Al

∗(λ))]− Al
∗(λ)[B∗

l (N(z̃1))

+(1 − B∗
l (N(z̃1)))(z̃1(O(z̃1)) + δ)]

+( ˜̃b − 1)(1 − Al
∗(λ)){ ˜̃T(z̃1)[N(z̃1)B∗

l (N(z̃1))

+δ(1 − B∗
l (N(z̃1)))E∗

l (O(z̃1))F∗
l (O(z̃1))]}


5. Performance Measures

We derive the system performance of our model.
By differentiating ˜̃Kl(z̃1) with respect to z̃1 and evaluating at z̃1 = 1, the average number of
consumers in the system ˜̃Ls in steady-statestate conditions may be determined.

˜̃Ls = lim
z̃→1

˜̃K
′
(z̃)

RT&A, No 2 (78) 

 Volume 19, June, 2024 

318



J. Bharathi, S. Nandhini, Nur Aisyah Abdul Fataf
BULK ARRIVING RETRIAL G-QUEUE

˜̃Ls =
˜̃I0
(Dr′Nr′′1 − Nr′1Dr′′)

2(Dr′)2

Nr′1 =

{
(− ˜̃bλ ˜̃j1 + δ)[1 − ˜̃b(1 − A∗

l (λ))] + A∗
l (λ)

˜̃bλ ˜̃j1 + ( ˜̃b − 1)(1 − A∗
l (λ))

{ ˜̃bλ ˜̃j1[−B∗
l (δ) + δ(1 − B∗

l (δ))(
˜̃k1 +

˜̃l1)] + δ ˜̃j1}

}

Nr′′1 = −



[ ˜̃bλ ˜̃j2 + 2˜̃bλ ˜̃j1][1 − ˜̃b(1 − A∗
l (λ))] + A∗

l (λ)B∗
l (δ)

˜̃bλ ˜̃j2

+( ˜̃b − 1)(1 − A∗
l (λ)){2 ˜̃j1(− ˜̃bλ ˜̃j1B∗

l (δ)

+δ(1 − B∗
l (δ))

˜̃bλ ˜̃j1( ˜̃k1 +
˜̃l1)) + δ ˜̃j2 − ( ˜̃bλ ˜̃j2B∗

l (δ)

+2B∗
l (δ)

˜̃bλ ˜̃ji ˜̃i1 + 2δ(B∗
l λ ˜̃j1)2 ˜̃i1( ˜̃k1 +

˜̃l1))

+δ(1 − B∗
l (δ))[(

˜̃bλ ˜̃j1)2( ˜̃l2 + ˜̃k2)

+ ˜̃bλ ˜̃j2( ˜̃l1 + ˜̃k1) + 2( ˜̃bλ ˜̃j1)2 ˜̃k1
˜̃l1]}


Dr′ = δ(1 − ˜̃j1 + ˜̃j1 A∗

l (λ))− λ ˜̃j1(1 − B∗
l (δ))[1 + δ( ˜̃l1 + ˜̃k1)]

Dr′′ =



−λ ˜̃j2(1 − B∗
l (δ))− 2λ ˜̃j2 − δ ˜̃j2(1 − A∗

l (λ))

−2 ˜̃j1(1 − A∗
l (λ))(−λ ˜̃j1B∗

l (δ) + δλ ˜̃j1(1 − B∗
l (δ))(

˜̃k1 +
˜̃l1))

+2(λ ˜̃j1)2 ˜̃i1(δ + ( ˜̃k1 +
˜̃l1))− 2δ(λ ˜̃j1)2(1 − B∗

l (δ))
˜̃k1

˜̃l1

−δλ ˜̃l2( ˜̃k1 +
˜̃l1)(1 − B∗

l (δ))− (λ ˜̃j1)2(1 − B∗
l (δ))(

˜̃k2 +
˜̃l2)


By differentiating ˜̃Hl(z̃1) with respect to z̃1 and evaluating at z̃1 = 1, the average number of

consumers in the orbit ˜̃Lq in steady-statestate conditions may be determined

˜̃Lq = lim
z̃→1

˜̃H
′
l(z̃)

˜̃Lq = ˜̃I0
(Dr′Nr′′2 − Nr′2Dr′′)

2(Dr′)2

Nr′2 =


[− ˜̃bλ ˜̃j1 + δ][1 − ˜̃b(1 − A∗

l (λ))] + A∗
l (λ)

˜̃bλ ˜̃j1 A∗
l (λ)

+( ˜̃b − 1)(1 − A∗
l (λ)){ − ˜̃bλ ˜̃j1B∗

l (δ)

+δ[1 − B∗
l (δ)]

˜̃bλ ˜̃j1( ˜̃k1 +
˜̃l1) + δ ˜̃j1}



Nr′′2 =



−[ ˜̃bλ ˜̃j2 + 2˜̃bλ ˜̃j1][1 − ˜̃b(1 − A∗
l (λ))] + A∗

l (λ)[
˜̃bλ ˜̃j2B∗

l (δ) + δ ˜̃bλ ˜̃j1 ˜̃i1

+δ( ˜̃bλ ˜̃j1)2 ˜̃i2 + δ ˜̃bλ ˜̃j2 ˜̃i1 − ˜̃bλ ˜̃j2(1 − B∗(δ))]

+( ˜̃b − 1)(1 − A∗
l (λ))2[

˜̃j1(− ˜̃bλ ˜̃j1)B∗
l (δ) + δ(1 − B∗

l (δ))
˜̃bλ ˜̃j1( ˜̃k1

+ ˜̃l1)− (( ˜̃bλ ˜̃j2)B∗
l (δ)) + 2( ˜̃bλ ˜̃j1)2[ ˜̃i1 + δ ˜̃i1( ˜̃k1 +

˜̃l1)]

+[1 − B∗
l (δ)]((

˜̃bλ ˜̃j1)2[ ˜̃k2 +
˜̃l2 + 2 ˜̃k1

˜̃l1] + ˜̃bλ ˜̃j2( ˜̃l1 + ˜̃k1))]
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6. Numerical Results

We demonstrate the various settings on system behavior measurements in this section using
MATLAB. We examine retrial times, service times, service times with a reduced speed, vacation
times, delayed repair times, and exponentially distributed repair times. To meet the stability
condition, the numerical measurements are chosen at random. Regarded predicted values of our
model’s varying metrics, such as the typical queue size and the probability that the server isn’t
active while retries, and the likelihood that the server is idle overall. and the likelihood that the
server is idle overall. λ = 1, δ = 1, ˜̃j1 = 1, ˜̃j1 = 0, µ = 15, χ = 0.9, ξ = 0.8, ˜̃b = 0.6.

In Table 1 represents the effect of retrial rate (Υ) on ˜̃I0, ˜̃I(1), ˜̃M(1), ˜̃Q(1) and Lq

Table 1: The effect of retrial rate (Υ) on ˜̃I0, ˜̃I(1), ˜̃M(1), ˜̃Q(1) and Lq

Υ ˜̃I0
˜̃I(1) ˜̃M(1) ˜̃Q(1) ˜̃R(1) Lq

6 0.9169 0.0079 0.0628 0.0055 0.0105 1.2886
7 0.9171 0.0067 0.0627 0.0054 0.0104 1.3339
8 0.9176 0.0059 0.0626 0.0053 0.0103 1.3692
9 0.9180 0.0052 0.0625 0.0052 0.0102 1.3976
10 0.9185 0.0047 0.0624 0.0051 0.0101 1.4208

Figure 1: I0 versus ˜̃b and Υ

Figures provide illustrations of three-dimensional graphs (1–5).
Figure 1 demonstrates ˜̃b and Υ increases I0 also increases, Figure 2 demonstrates ˜̃b and µ increases
I0 also increases , Figure 3 demonstrates ˜̃b and Υ increases I0 also increases , Figure 4 demonstrates
shows µ increases ˜̃Lqand ˜̃Wq also increases , Figure 5 demonstrates Υ increases ˜̃Lqand ˜̃Wq also
increases. Through the aforementioned numerical examples, we got able to see how parameters
influenced the system’s performance metrics and determine that the findings were accurate for
real-world applications.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

320



J. Bharathi, S. Nandhini, Nur Aisyah Abdul Fataf
BULK ARRIVING RETRIAL G-QUEUE

Figure 2: I0 versus ˜̃b and µ

Figure 3: I0 versus µ and Υ
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Figure 4: µ versus ˜̃Lq and ˜̃Wq

Figure 5: Υ versus ˜̃Lq and ˜̃Wq
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7. Conclusion

We discussed a server queue with negative clients in this effort, where customers are serviced
one after the other in batches in a system of variable size. Additionally, we presumptively have a
general distribution for the service times, delay times, and repair times. For various states, we
derived the probability generating functions for the number of customers in the orbit. We have
explored a single server queue with batches of reneging or balking clients in a system of variable
size in this work. Different performance measures and unique situations have been examined.
The outcomes of this work have applications in satellite communication, software-design for
various computer-communication system and mailing systems among other things. By including
orbit search, starting failure, and working vacation policies, this work can also be expanded.
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Abstract 

The paper introduces a Bayesian approach for estimating parameters of the Chris-Jerry distribution, 

focusing on the use of a conjugate prior, specifically the gamma prior. The Bayesian estimation 

method is developed with a various loss function, offering a robust framework for parameter 

estimation. symmetric loss function and    Linex loss functions are commonly used in Bayesian 

statistics to balance the trade-off between bias and variance. The central idea is to derive the Bayes 

estimate of the distribution parameter by leveraging the properties of the conjugate gamma prior. 

Conjugate priors simplify the Bayesian analysis by ensuring that the posterior distribution belongs 

to the same family as the prior, facilitating analytical calculations. The proposed methodology is 

implemented and validated through numerical illustrations using. This involves applying the 

developed Bayesian estimation framework to real-world data or simulated scenarios, demonstrating 

its effectiveness and practical applicability. The numerical and simulation studies are done by using 

r software 

. 
Keywords: prior, posterior distribution, posterior mean loss function, linex loss  

      function and symmetric loss function 

I. Introduction

In the realm of statistical inference, the Bayesian approach stands as a formidable paradigm, offering 
a unique perspective that seamlessly integrates prior knowledge with observed data to yield more 
robust and nuanced estimates. At the heart of Bayesian estimation lies the elegant concept of 
conjugate priors, a fact that not only simplifies the computational complexity but also enriches the 
analytical insights. 

This article aims to unravel the significance of conjugate priors and their pivotal role in 
streamlining the inference process. From their foundational principles to practical applications, this 
paper will explore how these priors provide a harmonious bridge between prior beliefs and 
empirical evidence, creating a coherent framework for making informed decisions. The Bayesian 
paradigm, with its emphasis on updating beliefs in light of new information, has found extensive 
applications across various fields, from finance and engineering to medicine and machine learning. 
Within this framework, the choice of prior distributions can profoundly impact the outcome of 
Bayesian analyses. Conjugate priors, by virtue of their mathematical properties, offer an elegant 
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solution, simplifying the computations involved in posterior distribution calculations. This article 
will delve into the conceptual underpinnings of Bayesian estimation, shedding light on the 
fundamental principles that distinguish it from frequentist approaches. Then   transition to the 
concept of conjugate priors, explaining how these specially chosen prior distributions yield posterior 
distributions of the same family, facilitating analytical tractability. 

Moreover, the research showcases real-world examples where Bayesian estimation with 
conjugate priors has proven to be a powerful tool, enhancing decision-making processes in situations 
ranging from medical diagnostics to quality control in manufacturing. By illustrating the versatility 
and efficiency of this methodology, we aim to empower readers to harness the full potential of 
Bayesian analysis in their own pursuits. 

The Linex loss function, short for Linear Exponential loss function, is a variant of the 
asymmetric loss functions commonly used in regression analysis. Unlike traditional symmetric loss 
functions like Mean Squared Error (MSE) or Mean Absolute Error (MAE), Linex loss asymmetrically 
penalizes overestimation and underestimation differently. It is particularly useful when the cost of 
underestimation is not the same as the cost of overestimation, making it suitable for scenarios where 
errors in one direction are more critical than errors in the other. The Linex loss function is defined 
as 
The LINEX loss function you provided is: 

L(θ, θ̂) = a. eb(θ−θ̂) − b(θ − θ̂) − 1 

where: 
• L(θ, θ̂) is the LINEX loss function.
• θ is the true parameter value.
• θ̂ is the estimated parameter value.
• a and b are parameters that control the shape of the loss function.

This type of LINEX loss function is sometimes used in Bayesian estimation, and Zellner is
indeed associated with Bayesian methods. In Bayesian statistics, the choice of a loss function is 
crucial in constructing a suitable posterior distribution. The LINEX loss function, as you've written 
it, is a combination of linear and exponential terms, and the parameters a and b determine the weight 
given to these terms. 

A symmetric loss function is a mathematical function used to measure the discrepancy or 
error between predicted and actual values in a regression problem. Unlike asymmetric loss 
functions, which penalize overestimation and underestimation differently, symmetric loss functions 
treat overestimation and underestimation equally 

The symmetric loss function  L(θ, d)  =  C(d −  θ)2𝑓  penalizes the deviation between the 
decision d and the unknown parameter θ. Here, C is a scaling constant, and f is a parameter that 
controls the sensitivity of the loss function to deviations. This loss function is symmetric because it 
penalizes deviations equally on both sides of the decision d. The exponent 2 f controls the curvature 
of the loss function around d. larger values of f make the loss function more sensitive to deviations 
from d, leading to sharper penalties. 
In the context of Bayesian estimation, our exploration centers on the symmetric loss function, 
elegantly expressed as  

L(θ, d)  =  C(d −  θ)2𝑓 

with C serving as a constant. The transformation into the quadratic loss function (QLF) 
occurs when f assumes the value of 1, resulting in the concise form  
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L(θ, d)  =  C(d −  θ)2 

By streamlining the equation through the abstraction of C to 1, we seamlessly transition to 
the squared error loss function (SELF). Introducing an alternative, the absolute loss function takes 
the form L (θ, d) = | (d − θ) |. Notably, the squared error loss function (SELF) 

L(θ, d)  =  (d −  θ)2 

The goal in Bayesian estimation is to find the posterior distribution of the parameter θ given 
the observed data. This involves combining the likelihood function with a prior distribution and the 
loss function. The posterior distribution is then obtained by maximizing the posterior expected loss 
(also known as the Bayes risk) with respect to θ or using other Bayesian decision theoretic criteria.  

II. Review of literature

Box, G. E. P., Tiao, G. C., and Jenkins, G. M [6] done a foundational work in the field of Bayesian 
statistics. Zellner introduces the concept of Bayesian estimation and prediction with asymmetric loss 
functions and computational methods for Bayesian estimation and prediction using asymmetric loss 
functions [20]. Parsian introduces the concept of Bayes estimation using a LINEX loss function and 
explained its uses in Bayesian estimation and its advantages in decision-making under uncertainty 
[18]. Feroze, N. and Aslam, M.  discusses [12] Bayesian analysis of the error function distribution 
using various loss functions and examine how different loss functions impact Bayesian estimation 
in the context of the error function distribution. Zaka, A. and Akhter, A. S. compares [19] various 
methods for estimating parameters of the power function distribution and done a simulation study 
and real-world. Chrisogonus K. Onyekwere and Okechukwu J. Obulezi [8] have proposed a new 
one-parameter distribution named Chris-Jerry is suggested from a two-component mixture of 
Exponential (θ) distribution and Gamma (3, θ) distribution with mixing proportion p = θ/ θ+2 having 
a flexibility advantage in modeling lifetime data. In this paper the posterior mean of Chris-jerry 
distribution is derived with various loss function. 

III. A Bayesian approach for Chris-jerry distribution

The probability distribution function of Chris-jerry distribution is given by 

f(x) =
θ2

θ+2
. (1 + θx2). e−θx              x , θ > 0    (1) 

       In this section the posterior distribution of Chris-jerry distribution is obtained. Let 𝑋1, 𝑋2, …. be 
a sequence of random variables from Chris-jerry distribution, then the likelihood function is given 
by  

π(xi) = ∏
θ2

θ+2
. (1 + θxi

2). e−θxin
i=1   (2) 

The prior is gamma prior (conjugate prior) 

p(θ) =
e−θ.θr−1

ϒr
 r > 0, θ > 0         (3)
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The posterior distribution is given by 

p(𝜃/𝑥) =
1

k
∗

θ2n

(θ+2)n ∗ ∏ (1 + θxi)
𝑛
𝑖=1 ∗ (e−θ ∑ xi

n
1 ) ∗

e−θ.θr−1

ϒr
    (4) 

Were 

k = ∫
θ2n

(θ + 2)n
(1 + θxi)

n. (e−θ ∑ xi
n
1 ) ∗

e−θ. θr−1

ϒr
dθ

∞

0

 

𝐾 = ∑(−1)𝑗𝑐(𝑛 + 𝑗 − 1, 𝑗) ∑ 𝑐(𝑛, 𝑖)(𝑥)𝑙

∞

𝑙=0

 

∞

𝑗=0

{ϒ(2𝑛 + 𝑙 + 𝑗 + 𝑟)}

2𝑛+𝑗[ϒ𝑟][∑ 𝑥𝑖
𝑛
1 + 1]2𝑛+𝑙+𝑗+𝑟

The posterior mean is given by 

𝐸[𝜃] = ∫ θp(𝜃/𝑥)𝑑𝜃
∞

0

 

= ∫ θ
1

k
∗

θ2n

(θ + 2)n
∗ ∏(1 + θxi)

𝑛

𝑖=1

∗ (e−θ ∑ xi
n
1 ) ∗

e−θ. θr−1

ϒr
𝑑𝜃

∞

0

 

Case: I 
Bayesian estimation of θ under linex loss function by Zellner [Zellner, A. (1986).] 

L(θ, θ̂) = a. eb(θ−θ̂) − b(θ − θ̂) − 1  (5) 

Where a>0, b≠0; a is scale of loss function and b determines its shape. Without loss of generality, we 
assume a= 1 and obtain bayes estimate of θ 

In Zeller's linex loss function, θ̂ represents the reference value or the target value that the 
parameter θ is compared to θ̂. It can be thought of as the "ideal" or "desired" value of θ. The linex 
loss function measures the deviation of θ from θ̂ 

For example, if you are estimating a parameter θ and you have a prior belief or expectation 
about its value, you might set θ̂to that prior belief. Then, the linex loss function would measure how 
much the estimated value of θ deviates from that prior belief. 

Here 

E[L(θ, θ̂)] =
1

kГr
∫[1. eb(θ−θ̂) − b(θ − θ̂) − 1] ∗ p(𝜃/𝑥)

∞

0

dθ 

= ∫[1. eb(θ−θ̂) − b(θ − θ̂) − 1] ∗

∞

0

θ2n+r−1

ϒr(θ + 2)n
(1 + θxi)

n. (e−θ ∑ xi
n
1 −θ)dθ

=
1

ϒr
∫[1. eb(θ−θ̂) − b(θ − θ̂) − 1] ∗

∞

0

θ2n+r−1

(θ + 2)n
(1 + θxi)

n. (e−θ ∑ xi
n
1 −θ)dθ

∑(−1)jc(n + j − 1 , j) ∗ (
1

2
)

j

= d

∞

j=0
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∑ c(n, i)(x)l = f

∞

l=0

 

∑ xi

n

i=1

+ 1 = h

E[L(θ, θ̂)] =
1df

ϒr
[({

e−bθ̂. ϒ(2n + r + j + l)

[h − b]2n+r+j+l
}) − {

b(ϒ2n + r + j − l)

h2n+r+j−l
} + θ̂b {

ϒ2n + r + j + l

h2n+r+j+l
}

− {
ϒ2n + r + j + l

ℎ2n+r+j+l
} ] 

Case: II (Bayesian estimation of θ under Symmetric loss function) 
Symmetric loss function for the decision d for the unknown parameter θ is defined by 

 L(θ, d)  =  C(d −  θ)2𝑓     (6) 

f= 1, 2….. 

E[L(θ, d)] =
1

kГr
∫[C(d −  θ)2𝑓] ∗

∞

0

θ2n+r−1

(θ + 2)n
. (e−θ(∑ xi+1) n

1 ) ∏(1 + θxi)

𝑛

𝑖=1

dθ 

where C is a constant. When f = 1 reduces to quadratic loss function (QLF) given by 

L(θ, d) =  C(d −  θ)2  (7) 

For some constant C. The value of the constant C makes no difference to a decision, and can be 
ignored by setting it equal to 1 and reduced to the SELF. Absolute loss function is another symmetric 
loss function given by 

𝐿 (𝜃, 𝑑) =  | (𝑑 −  𝜃)|  (8) 

The squared error loss function (SELF) is widely used in decision theory problems and is defined as 
L(θ, d)  =  (d −  θ)2                                                                                                        (9) 

IV. Simulation Study

Posterior Distribution: The posterior distribution represents our updated beliefs about the 
parameter θ after observing the data. It is proportional to the product of the prior distribution and 
the likelihood function. Sampling: in this research Markov Chain Monte Carlo (MCMC) methods is 
used, implemented in the r software, to sample from the posterior distribution and estimate the 
parameters of interest. 

The following algorithm outlines the steps involved in Bayesian inference using the specified 
model and data. It involves defining the model, computing the likelihood, performing posterior 
inference, analyzing the results, and outputting the estimates and diagnostics. 

Stan Code Explanation 

• Input Data:
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Obtain input data: 
n: Number of data points. 
x: Observed data points. 
r: Parameter influencing the shape of the gamma prior distribution for theta. 
C: Constant used in the loss function. 
f: Exponent used in the loss function. 
d: Target value used in the loss function. 

• Initialize Model:
Define the prior distribution: 
θ ~ Gamma (shape = r, rate = 1). 

• Likelihood Calculation:
Compute the likelihood using a custom loss function: 
Calculate the log-likelihood contribution for each data point: 
Compute terms related to the observed data x, the parameter theta, and the loss 
function parameters C, f, and d. 
Accumulate the log-likelihood contributions. 

• Posterior Inference:
Combine the prior distribution and likelihood to obtain the posterior distribution: 
Posterior ∝ Prior × Likelihood. 

• Bayesian Inference:
Use Bayesian inference techniques (such as Markov Chain Monte Carlo) to sample 
from the posterior distribution: 
Obtain posterior samples for the parameter theta using Stan's sampling algorithm. 
Specify the number of chains and iterations for sampling. 

• Analysis:
Analyze the posterior samples to estimate the posterior distribution of theta: 
Compute summary statistics (e.g., mean, median, quantiles) of the posterior 
samples. 
Visualize the posterior distribution if necessary. 

• Output:
Output the results of the analysis, such as posterior mean estimates, credible 
intervals, and diagnostic information about the inference procedure. 

Table 1: Comparison of Posterior Means for Different Loss Functions and Sample Sizes (simulated 

data) 
n/ 𝐸[𝜃] 50 100 200 

Without loss 0.0861636 0.04134565 0.02038608 
Symmetric loss function 3.458547 3.045888 2.563339 
Quadratic loss function (QLF) 0.08745913 0.04159895 0.02039235 
Squared error loss function 0.08671715 0.04156098 0.02036867 
Linex loss function 0.08599036 0.04149021 0.0203717 

From the above table show that the posterior mean increase when d and f values increase. Which 
mean the larger values of  f make the loss function more sensitive to deviations from d, leading to 
sharper penalties. 
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V. Real life data

Table: 2 shows the life of fatigue fracture of Kevlar 373/epoxy subjected to constant pressure at 90 

% stress level until all had failed. Source:(8) 
0.0251 0.6748 0.912 1.3503 1.7746 2.0408 2.4951 4.8073 
0.0886 0.6751 0.9836 1.3551 1.8475 2.0903 2.526 5.4005 
0.0891 0.6753 1.0483 1.4595 1.8375 2.1093 2.9911 5.4435 
0.2501 0.7696 1.0596 1.488 1.8503 2.133 3.0256 5.5295 
0.3113 0.8375 1.0773 1.5728 1.8808 2.21 3.2678 6.5541 
0.3451 0.8391 1.1733 1.5733 1.8878 2.246 3.4045 9.096 
0.4763 0.8425 1.257 1.7083 1.8881 2.2878 3.4846 
0.565 0.8645 1.2766 1.7263 1.9316 2.3203 3.7433 

0.5671 0.8851 1.295 1.746 1.9558 2.347 3.7455 
0.6566 0.9113 1.3211 1.763 2.0048 2.3513 3.9143 

. 

Figure: 1 Graph of posterior distribution of Chris-jerry distribution   

Table: 3 Comparison of Posterior Means for Different Loss Functions (real-life data) 

Loss functions Posterior Mean 

Without any loss function 1.179317 

Symmetric loss function 1.220796 

quadratic loss function 1.200863 

Squared error loss function 1.201302 

Linex loss function 1.197762 
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The above presents a comparative analysis of posterior means under different loss functions, 
revealing notable disparities in estimation outcomes. Without any loss function, the posterior mean 
is observed to be substantially higher, suggesting potential bias in the estimation process. 
Conversely, employing loss functions leads to a decrease in the posterior mean, highlighting the 
influence of the chosen loss function. Specifically, the symmetric loss function yields the highest 
posterior mean, while the Linex loss function results in the lowest. These findings underscore the 
significance of selecting an appropriate loss function. Notably, the posterior mean of the provided 
data has been calculated, emphasizing the practical relevance of these results. 

VI. Conclusion

The Bayesian estimation of parameters for the Chris-Jerry distribution with a gamma prior, 
considering various loss functions, reveals subtle differences in posterior mean estimates. The 
absence of a specific loss function yields a posterior mean estimate of 1.179317, while employing a 
symmetric loss function slightly increases the estimate to 1.220796. Conversely, quadratic and 
squared error loss functions result in slightly lower estimates of 1.200863 and 1.201302, respectively. 
The use of a Linex loss function produces a posterior mean estimate of 1.197762. These findings 
underscore the importance of the choice of loss function in Bayesian estimation. While variations are 
observed in the posterior mean estimates across different loss functions, the differences remain 
relatively subtle, indicating robustness in the estimation process. However, it is essential to note that 
these results are contingent upon the provided dataset and may vary with alternative datasets or 
priors. In conclusion, this study contributes to the understanding of Bayesian estimation methods 
for the Chris-Jerry distribution with a gamma prior. Future research could delve deeper into 
exploring additional loss functions and their implications for parameter estimation in Bayesian 
frameworks, thereby enhancing the applicability of these methods in diverse statistical analyses. 
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Abstract 

The main objective of the paper is to optimize the availability and profit values of the utensil 
industry. There are three distinct units in the utensil industry and two of them work in reduced 
state. It is assumed that unit A is failed in complete failure mode while units B and C completely 
failed through partial failure mode. The system is in a failing condition when one of the units 
completely fails. There is a qualified technician to fix the fault in the system. Timelines for failure 
and repair are unrelated to one another. The repair time is exponential while the failure time 
distribution is general. Many factors, including mean time to system failure, availability, busy 
period, estimated number of server visits and profit values are calculated from tables.  

Keywords: Reliability, base state, mean sojourn time, availability and profit. 

I. Introduction

Manufacturers and industrialists continuously produce goods to meet the rising demand for 
goods, which they can do by optimizing their manufacturing procedures. For product 
development, reliability engineering presents an integrated approach that helps in the design and 
maintenance of the products. To calculate the profit values, it is important to analyze the 
availability of the system. This study examines the MTSF, availability and profit values of the 
housewares sector, emphasizing the need of utilizing the regenerative point graphical technique 
for priority in repair under specific circumstances. A large amount of research work has been done 
on repairable systems such that Kapur and Kapoor [5] analyzed the behaviour of a two unit system 
subject to repair facility and one spare unit is kept in cold standby mode. Gnedenko and Igor [3] 
explored reliability and probability measures to solve the complexity of repairable system. Jack 
and Murthy [4] discovered the role of limited warranty and extended warranty for the product. 
Wang and Zhang [10] examined the repairable system of two non identical components under 
repair facility using geometric distributions. Kumar and Goel [7] threw light on the preventive 
maintenance in two unit cold standby repairable system under general distributions. Chaudhary 
and Tomar [2] threw light on the stochastic behavior of a two unit cold standby system under 
inspection. Kumar et al. [6] described the effects of washing unit in the paper industry by using the 
regenerative point graphical technique. Levitin et al. [8] explored the results of optimal preventive 
replacement of failed units in a cold standby system by using the poisson process. Agarwal et al. 
[1] analyzed the performance and reliability of water treatment plant under repair facility. Sengar
and Mangey [9] examined the availability and profit values of complicated repairable system with
inspection using copula methodology.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

333



Amit Kumar and Pinki Kumari 
PROFIT AND AVAILABILITY ANALYSIS OF UTENSIL 
 INDUSTRY SUBJECT TO REPAIR FACILITY 

II. System Assumptions

There are following system assumptions: 

• The utensil industry has three distinct units such that cutting system, pressing system,
spinning and buffing system.

• Sheets are cut into circular sheets with the help of cutting system (A).
• Sheets are converted into the shape of utensils by using pressing technology (B).
• Spinning and buffing machinery give the final shape and polish to the utensil.
• It is considered that units B and C may be in a complete failed state through partial

failure but unit A is in only complete failed state.
• Failure time follows general distribution whereas repair time follows the exponential

distribution.
• A technician is always available to repair the failed unit.
• The failed unit works like a new unit after repair.

III. System Notations

There are following system notations: 

ji rS  rth directed simple path from state ‘i’ to state ‘j’ where ‘r’ takes the positive integral 
values for different directions from state ‘i’ to state ‘j’.  

iffs   A directed simple failure free path from state ξ to state ‘i’. 

cyclem  A circuit (may be formed through regenerative or non regenerative / failed state) 
whose terminals are at the regenerative state ‘m’.  

cyclem  A circuit (may be formed through the unfailed regenerative or non regenerative 
state) whose terminals are at the regenerative ‘m’ state.  

kkU , Probability factor of the state ‘k’ reachable from the terminal state ‘k’ of ‘k’ cycle. 

kk
U

, The probability factor of state ‘k’ reachable from the terminal state ‘k’ of cyclek . 

i Mean sojourn time spent in the state ‘i’ before visiting any other states. 

i Total unconditional time spent before transiting to any other regenerative state 
while the system entered regenerative state ‘i’ at t=0. 

i Expected waiting time spent while doing a job given that the system entered to the 
regenerative state ‘i’ at t=0. 

aA / System first unit is in the operative state/failed state. 

bBB // System second unit is in the operative state/reduced state/failed state. 

cCC // System third unit is in the operative state/reduced state/failed state. 

31 /  The constant partial failure rate of the unit B/C respectively. 

42 / The constant complete failure rate of the unit B/C respectively. 

5 The constant complete failure rate of unit A. 

)(/)( 11 tFtf PDF/CDF of repair time of unit B from partial failed state. 

)(/)( 22 tFtf PDF/CDF of repair time of unit B from complete failed state. 

)(/)( 33 tFtf PDF/CDF of repair time of unit C from partial failed state. 

)(/)( 44 tFtf PDF/CDF of repair time of unit C from complete failed state. 

)(/)( 55 tFtf PDF/CDF of repair time of unit A from complete failed state. 
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IV. Transition Diagram and Their Descriptions

Figure 1: State Transition Diagram 

In the system transition diagram, there are following states  

where,  ABCS 0 ,  CBAS 1 ,  CABS 2 ,  BCAS 3 ,  aBCS 4 ,  CBaS 5

AbCS 6 , CaBS 7 ,  ABcS 8 ,  BCaS 9 ,  CAbS 10 ,  cBAS 11

V. Transition Probabilities

The transition probabilities are following 
)/( 53111,0  p , )/( 53122,0  p   

)/( 53154,0  p ,  )/( 532110,1  p         

)/( 532133,1  p , )/( 532155,1  p     

)/( 532126,1  p , )/( 54330,2  p    

)/( 54357,2  p , )/( 54348,2  p  

)/( 542331,3  p , )/( 542359,3  p  

)/( 5423210,3  p , )/( 5423411,3  p

13,113,103,92,82,71,61,50,4  pppppppp
          (1)  

It has been concluded that 
14,02,01,0  ppp , 16,15,13,10,1  pppp  

18,27,20,2  ppp , 111,310,39,31,3  pppp   (2) 

VI. Mean Sojourn Time

Let i represents the mean sojourn time. Mathematically, the time taken by a system in a particular 
state becomes 

 S0  S2 S1 S3

 S9

 S10

 S11  S6  S8

 S5  S4  S7

)(1 tf)(2 tf )(3 tf

)(2 tf )(4 tf

)(5 tf )(5 tf )(5 tf )(5 tf

)(4 tf

12

)(3 tf

3

4

5 5 5 5

3

2 4
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 dttTPm
j

jii  


0
, )( . 

and  )/(1 5310   , )/(1 53211   , )/(1 5422  
)/(1 54233   , )/(1)()( 554   tt , )/(1 2106  

)/(1 597   , )/(1 4118    (3) 

VII. Evaluation of Parameters

Using the regenerative point graphical technique, all reliability parameters (including mean time 
to system failure, availability, busy period of technician and expected number of technician visits) 
are calculated. It is considered that  

tetf 1
11 )(   , tetf 2

22 )(   , tetf 3
33 )(   , tetf 4

44 )(   , tetf 5
55 )(  

and,   54321 ,   54321 .

I. Mean Time to System Failure

The system can transition to regenerative un-failed states (i=0, 1, 2, 3) using initial state 0 before 
reaching any failed state (using base state ξ=0). At that point, MTSF becomes  
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II. Availability of the System

The system is available for use at regenerative states j=0, 1, 2, 3 with ξ=0 then the availability of 
system is defined as  
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III. Busy Period of the Technician

The technician is busy due to repair of the failed unit at regenerative states j= 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11 with base state ξ = 0 then the fraction of time for which the technician remains busy is 
defined as  
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IV. Estimated Number of Visits Made by the Technician

The technician visits at regenerative states j= 1, 2, 3 with ξ=0 then the number of visits by the 
repairman is defined as  

 





























































 































































 

 
11

0

22
102

'.)0(
3

1

11
101

)0(

0
i

kk
Vk

ii
Sr

pr
Sr

j
kk

Vk

j
Sr

pr
SrV



 




















1111,01010,099,088,077,066,0

55,044,033,022,011,000,0

33,022,011,0 ][






UUUUUU

UUUUUU

UUU

RT&A, No 2 (78) 

 Volume 19, June, 2024 

337



Amit Kumar and Pinki Kumari 
PROFIT AND AVAILABILITY ANALYSIS OF UTENSIL 
 INDUSTRY SUBJECT TO REPAIR FACILITY 

 




























2232

32

33

23

)2(3)3)(2()]52([

)2()3)(2(

)]3)(2()3)[(2(

)]3)(2()3)[(2(








 (7) 

V. Profit Analysis

If a system produces revenue for its developer, it is considered valuable. The availability of the 
system, busy period of the technician and expected number of visits by the technician are taken 
into consideration to calculate the profit values of the system. The profit function may be used to 
do the profit analysis of the system and it is given by 

020100 VEBEAEP   (8) 

 where, 0E 8000 (Pay per unit uptime of the system)

 1E 500 (Charge per unit time for which technician is busy) 

2E 200 (Charge per visit of the technician) 

VIII. Discussion

 Table 1 describes the nature of the mean time to system failure of the utensil industry. It has an 

Table 1: MTSF vs. Repair Rate 

increasing trend corresponding to increment in repair rate () and has decreasing trend 
corresponding to an increment in failure rate (). In the above table, the values of parameters are 
= 0.025, 0.04, 0.06 and =0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10 respectively. When the 
value of repair rate enhances then MTSF values are also enhanced. When =0.025 changes into 
=0.04, 0.06 then MTSF values are declined.  

Table 2 explores the increasing trends of availability with respect to increments in repair rate () 
and has decreasing trends corresponding to increments in failure rate (). When the value of the 
repair rate is enhanced then the availability values are also enhanced. Also, when the failure rate of 
unit changes =0.025 to 0.04, 0.06 then the availability of system declines.  

  =0.025 =0.04 =0.06 

0.01 4.357262 4.200299 3.696809 
0.02 4.600326 4.405797 3.903394 
0.03 4.832536 4.599156 4.102564 
0.04 5.054602 4.781421 4.29471 
0.05 5.267176 4.953519 4.480198 
0.06 5.470852 5.116279 4.659367 
0.07 5.666179 5.27044 4.832536 
0.08 5.853659 5.416667 5.25355 
0.09 6.033755 5.555556 5.162037 
0.10 6.206897 5.687646 5.318907 
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Table 2: Availability vs. Repair Rate 

  =0.025 =0.04 =0.06 

0.01 0.623324 0.604782 0.542904 
0.02 0.628307 0.609813 0.547959 
0.03 0.633159 0.614717 0.552904 
0.04 0.637887 0.619499 0.557741 
0.05 0.642494 0.624164 0.562476 
0.06 0.646985 0.628716 0.56711 
0.07 0.651365 0.633159 0.571646 
0.08 0.655637 0.637497 0.576089 
0.09 0.659806 0.641734 0.58044 
0.10 0.663876 0.645873 0.584703 

Table 3 explores the trend of profit values with respect to repair rate () and its value increase 
corresponding to increments in repair rate () and decrease corresponding to increments in failure 
rate (). It is concluded that when the value of the repair rate enhances then profit values are also 
enhanced but when the failure rate of the unit changes =0.025 to 0.04, 0.06 then the profit of the 
system declines.  

Table 3: Profit vs. Repair Rate 

  =0.025 =0.04 =0.06 

0.01 2438.338 2386.076 2019.52 
0.02 2467.262 2415.876 2049.467 
0.03 2495.431 2444.927 2078.759 
0.04 2522.874 2473.257 2107.417 
0.05 2549.618 2500.892 2135.461 
0.06 2575.691 2527.857 2162.912 
0.07 2601.117 2554.178 2189.787 
0.08 2625.919 2579.875 2216.104 
0.09 2650.121 2604.972 2241.881 
0.10 2673.744 2629.49 2267.135 

IX. Conclusion

The regenerative point graphical technique is used to calculate the performance of the utensil 
industry. According to the given tables, it is clear that MTSF, availability and profit values 
increased with increment in repair rate but these reliability measures decreased with increment in 
failure rate. It is observed that if the system is more available then it gives more profit to the 
developer. It is evident that industries can examine the behavior of products and system 
components with the help of the regenerative point graphic technique.  
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Abstract

In this paper, we analysed the multiple working vacation queuing model with reneging under a single
server policy. Reneging describes the situation where a customer or entity decides to leave the queue
before being served. The presence of reneging behaviour affects queue and service efficiency, as customers
leaving the queue prematurely can impact overall system performance and customer satisfaction. In this
model, customers arrive at a service facility and form a queue to be served by a single server. The arrival
follows the Poisson distribution, and the service follows the exponential process. Batches of customers are
served under the General Bulk Service Rule. In GBSR, rather than individual customer arriving at a
queue one by one, customers arrive in groups or batches. Thus, each batch of service contains a minimum
of ′a′ units and a maximum of ′b′ units of customers. The steady-state equation, the various performance
measures for the system, and particular cases of the described model are derived.

Keywords: Reneging, Multiple Working vacations (MWV), Queue length, Bulk service, System
size

1. Introduction

Erlang developed queuing theory while working for the Telephone Company to analyse the
behaviour of telephone traffic and optimise the capacity of telephone exchanges. His work laid
the foundation for the study of waiting lines and has since been widely applied in various
fields to improve system performance and efficiency. The main objective of queuing theory is
to understand and optimise the performance of systems that involve waiting lines. By studying
factors such as arrival rates, service rates, queue lengths, and waiting times, queuing theory
provides insights into how to improve efficiency, and reduce waiting times.

In queuing theory, a vacation queuing model is a type of queuing system where the server
may take breaks or go on vacation, leading to periods of time when service is not available. This
type of model is often used in scenarios where service providers have scheduled breaks, such
as in customer service centres, healthcare facilities, or manufacturing processes. Analysing and
optimising vacation queuing models involves considering factors of the duration and frequency
of vacations, the impact on service during vacation periods, and strategies to minimise the effects
of downtime on customer satisfaction. The concept of "multiple working vacations" refers to a
scenario where the server in a queuing system takes several breaks or vacations during their
work.

The concept of the GBS rule was indeed introduced by Neuts. The GBS rule, which he
introduced, is used to analyse queuing systems where customers arrive in batches and are served
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as a single entity with a fixed service time for the entire batch. In a batch arrival process, rather
than individual customers arriving at a queue one by one, customers arrive in groups or batches.

Reneging is a term used in queuing theory to describe the situation where a customer or
entity decides to leave the queue before being served. This reneging occurs when customers
experience long waiting times or delays in service. Customers who renege may seek alternative
service providers or simply give up. This can result in lost business opportunities and decreased
customer satisfaction. Various strategies can be used to address reneging, such as optimising
service processes to reduce waiting times, providing clear communication about the expected
waiting times, management techniques that minimise reneging rates.

This paper analyses the queuing system that combines multiple working vacations, batch
service, a single server, and reneging behaviour. For this model, we obtained steady state
equations, measures of performances, and analysed the particular cases.

2. Review of literature

Research on vacation and reneging queuing models has gained significant attention from re-
searchers in the field of queuing theory. The MAP/PH/1 queuing system, including setup,
shutdown, multiple vacations, standby server, malfunction, maintenance, and reneging, was
examined by [4]. In their paper, the matrix-analytic technique has been used to investigate
the total number of consumers existing in the system within a steady-state probability matrix.
The non-Markovian approach, which includes longer vacations, renewal processes, and service
interruptions followed by repair stages, was studied by [25]. Fixing the M/M/2 machine issue
with rushing clients. Under multiple working vacations and strategy (0, Q, N, M) plans, machines
are considered to be fixed proposed by [15]. A single server with limitless capacity the Markovian
queue structure, is analysed in [12] thesis, has multiple working vacations, an adjustment period,
and reneging, by considering both limited capacities and continuous-time queuing systems. An
M/M/C queuing model involving changing working vacations was examined by [26]. Addition-
ally, the model’s cost function is developed, and the quadratic fit search method is used to look
into its optimisation.

Single server’s batch of arrival queuing concept for the system, which provides customers
who renege during server vacation and system failure times with three stages of heterogeneous
services introduced by [7]. The supplemental parameter method has been used to create steady-
state probability distribution functions for the queue size. A boundless capacity of one-server
Markovian queue mechanism with one working vacation, reneging, and retention of reneged
clients evaluated in the thesis of [11]v. A different working vacation queue method involving a
second optional service, an unstable server, and the retention of reneged clients was investigated
by [21]. They also covered an optimisation problem under a certain cost model. With a practical
retention plan for reneged clients and Bernoulli’s planned altered vacation regulations, [23]
developed a multi-server finite capacity queuing method. The steady-state probability is obtained
using the matrix analytical approach. Measures of performance that are produced with an
application are also developed and dealt with using the particle swarming optimisation (PSO)
meta-heuristic. State-dependent reneging, maintenance of reneged clients, and infinite-capacity
single-server Markovian line systems with one working vacation evaluated by [1].

Using Bernoulli responses and client impatience in the context of several vacations, [3]
derived a multi-server queuing model. Host vacations, malfunctions, and join or balk tactical
behaviours. Additionally, demonstrated how important the reneging option is when the initial
system involving non-strategic clients is unreliable researched by [6]. The Markovian queuing
structure, which includes working vacation, Bernoulli scheduling disruption, initialization time
according to suggestions, reneging of impatient clients, and retention of reneged clients evaluated
by [9]. The M/M/1 feedback line with backward balking, backward reneging, and multiple
operating vacations was investigated by [14]. The matrix methodology and the ant colony
optimisation (ACO) strategy are used to generate the steady-state system length estimates for
the model. Reneging, multiple vacations, and set-up period queuing methods were proposed
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by [2]. The server provides guidance in three stages; the first two are required, while the third is
optional. The server’s support duties will be completed if it needs to take a required vacation
during that period.

Buffer-modified reverse balking in a single-server finite capacity feedback queuing system,
as well as the retention of impatient clients investigated by [24]. The infinite buffering M/M/1
queue with variation working vacations subject to Bernoulli scheduling vacation interruption,
in which consumers balk with a probability, was studied by [19]. For various server states,
determine a closed-form formulation of the system’s capacity and the steady-state probabilities.
Evaluate the cost optimisation problem using the quadratic fit-finding technique. M/M/1/N
feedback on the operating vacation queuing system, including reneging, was presented by [8].
They implement the Markov process approach to generate the steady-state probability equations.
The matrix approach was applied to solve the steady-state probabilities, and a cost model was also
developed. Hospitalisation and queuing management processes, including decisions to discharge
patients too soon and noncompliance examined by [27]. In order to minimise the hospital’s
total projected costs, they formulate their solution as an infinite-horizon total discounted cost
Markov decision process that balances bed utilisation and patient experiences while they wait for
admission. To explain how certain important system factors affect the optimal adaptive policy. An
adaptable queuing system, including the retention of reneging consumers, was proposed by [22].
Furthermore, the costs and performance analysis, along with the steady-state and transient-
state measures of performance, provide numerical illustrations for demonstrating the model’s
usefulness in assessing wait times in the service field. The M/M/1 drive-thru lines in order to
gain insight into the possibility of reneging occurrences and determine how customers’ sensitivity
to entry times affects their choice of exiting the line early. By adding reneging behaviour to the
queuing theory with fundamental equations, they suggest improving the theory’s applicability
and improving its reflection and interpretation of queuing issues in the real world discussed
by [5]. Three distinct categories of client behavior, such as balking, interruptions, and reneging,
were examined by [28]. They researched multi-server preference queues, including client balking,
interruptions, and reneging, from an analytical and practical perspective. The idea of the client-
reneging effect was introduced by [18]. They analysed reneging versus no-reneging, where
customers are balanced and strategic. Client tactics and they take into consideration the fluid
on-off concept of the standard queue, including vacations and failures.

Also, how client reneging impacted the formulation of a queue system with two separate shifts.
It shows the manner in which lost consumers and costs are analysed in an engaged service policy.
Utility operations are also used as decision-making tools analysed by [10]. The F-policy, server
keeping up, reneging, and balking queue procedures using only one server and limited capacity
were determined by [13]. The recursive approach is used to attain the steady state. Multiple
working vacations under breakdown, types of breakdown for heterogeneous arrival queuing
model analysed by [16, 17]. Multiple working vacations under heterogeneous with encouraged
arrival evaluated by [20]. With the help of the appropriate literature, we are able to evaluate the
queuing model with reneging under the MWV single server policy.

3. Methodology

In this paper analysed the M/M(a, b)/1/MWV queuing system with reneging. Instead of the
server being fully idle during the vacation period, the server serves at a different rate during
multiple working vacations. The service rate varies depending on the arrival state. Server provides
service during the regular busy period with parameter µrb and under multiple working vacations,
the server provides service with parameter µwv with exponential distribution. Customer arrive
at the system with the parameter λv it follows Poisson distribution. In this model, batches of
customers are served under the General Bulk Service Rule. Thus, each batch of service contains a
minimum of ′a′ units and a maximum of ′b′ units of customers. Suppose the number of customers
waiting in the queue is less than ′a′ the server begins a vacation random variable V with parameter
ξ. Let

RT&A, No 2 (78) 

 Volume 19, June, 2024 

343



Lidiya P, K Julia Rose Mary
MWV QUEUING SYSTEM WITH RENEGING

RI
n(t) = Pr{Nc(t) = n, L(t) = 0} 0 ≤ n ≤ a − 1

QV
n (t) = Pr{Nc(t) = n, L(t) = 1} n ≥ 0

PB
n (t) = Pr{Nc(t) = n, L(t) = 2} n ≥ 0

L(t) = 0, the size of the queue and system are same.
L(t) = 1 or 2 , the total number of customers in the system is the sum of the number of customers
in queue and the size of the service batches that contains particular a ≤ x ≤ b customers.
Hence the probabilities of the steady state are ,

QV
n = lim

t→∞
QV

n (t); RI
n = lim

t→∞
RI

n(t); PB
n = lim

t→∞
PB

n (t);

exist and the Chapman Kolmogrove equations satisfied by them in the steady state are given by,

λvRI
0 = µrbPB

0 + µwvQV
0 (1)

λvRI
n = λvRI

n−1 + (µrb + (n − 1)α)PB
n + (µwv + (n − 1)α)QV

n ; 1 ≤ n ≤ a − 1 (2)

(λv + ξ + µwv)QV
0 = λvRI

a−1 +
b

∑
n=a

(µwv + (n − 1)α)QV
n (3)

(λv + ξ + (µwv + (n − 1)α))QV
n = λvQV

n−1 + (µwv + (b + n − 1)α)QV
n+b; n ≥ 1 (4)

(λv + µrb)PB
0 =

b

∑
n=a

(µrb + (n − 1)α)PB
n + ξQV

0 (5)

(λv + (µrb + (n − 1)α))PB
n = λvPB

n−1 + (µrb + (b + n − 1)α)PB
n+b + ξQV

n ; n ≥ 1 (6)

4. Steady state solution

To solve the steady state equation, the forward shifting operator E on PB
n and QV

n are introduced
then,

E(PB
n ) = PB

n+1; E(QV
n ) = QV

n+1 f or n ≥ 0

Thus the (4) gives homogeneous difference equation as,

[λv + (µwv + (b + n − 1)α)Eb+1 − (λv + ξ + (µwv + (n − 1)α)E]QV
n = 0 (7)

The characteristics equation of (7) is obtained as,

z(u) = λv + (µwv + (b + n − 1)α)ub+1 − (λv + ξ + (µwv + (n − 1)α))u = 0 (8)

by taking x(u) = (λv + (µwv + (b + n − 1)α)) and y(u) = (λv + ξ + (µwv + (n − 1)α), it is found
that |y(u)| < |x(u)| on |u| = 1. By Rouche’s theorem z(u) has unique root rv inside the contour
|u| = 1. (7) has a homogeneous solution as,

QV
n = rn

v QV
0 (9)

From (6) we get,

[λv + (µrb + (b + n − 1)α)Eb+1 − (λv + (µrb + (n − 1)α)E]PB
n = −ξrn+1

v QV
0 (10)

By applying Rouche’s theorem to (10) as,

[λv + (µrb + (b + n − 1)α)Eb+1 − (λv + (µrb + (n − 1)α)E]PB
n = 0

RT&A, No 2 (78) 

 Volume 19, June, 2024 

344



Lidiya P, K Julia Rose Mary
MWV QUEUING SYSTEM WITH RENEGING

The above equation has unique root r with |r| < 1. Also (10) gives a non-homogeneous
solution as,

PB
n =

[
Zrn − ξrn+1

v

[λv + (µrb + (b + n − 1)α)rb+1
v − (λv + (µrb + (n − 1)α)rv]

]
QV

0 (11)

PB
n = (Zrn + Z∗rn

v )Q
V
0 (12)

Where
Z∗ =

ξrv

[λv(rv − 1) + µrbrv(1 − rb
v) + αrv((n − 1)− (b + n − 1)rb

v)]
(13)

The expression for RI
n is obtained by adding (1) & (2) and substitute PB

n and QV
n values,

RI
n =

{
Z
[

µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2

λv

(
1 − rn−1

v
1 − rv

)]
+ Z∗

[
µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2
v

λv

(
1 − rn−1

v
1 − rv

)]
+

µwv

λv

(
1 − rn+1

v
1 − rv

)
+ αr2

v

(
1 − rn−1

1 − rv

)}
QV

0

Now to calculate Z, considering (5) and substitute PB
n and QV

n values we find,

Z
[
(λv + µrb)−

µrb(ra − rb+1)

(1 − r)
− f racraα((a − 1)− (b − 1)rb−a+11 − r

]
= ξ − Z∗

(
(λv + µrb)−

µrb(ra
v − rb+1

v )

(1 − rv)
− ra

vα((a − 1)− (b − 1)rb−a+1
v

(1 − rv)

)
the above expression can be simplified as,

Zµrb(1 − ra)

(1 − r)
=

ξ

(1 − rv)
− Z∗µrb(1 − ra

v)

(1 − rv)
(14)

Hence the probability of queue size of the steady-state equation in terms of QV
0 are obtained,

QV
n = (rn

v )Q
V
0 n ≥ 0 (15)

PB
n = (Zrn + Z∗rn

v )Q
V
0 n ≥ 0 (16)

where

Z =
(1 − r)

µrb(1 − ra)

[
ξ

(1 − rv)
− Z∗µrb(1 − ra

v)

(1 − rv)

]
(17)

Z∗ =
ξrv

[λv(rv − 1) + µrbrv(1 − rb
v) + αrv((n − 1)− (b + n − 1)rb

v)]
(18)

and

RI
n =

{
Z
[

µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2

λv

(
1 − rn−1

v
1 − rv

)]
+ Z∗

[
µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2
v

λv

(
1 − rn−1

v
1 − rv

)]
+

µwv

λv

(
1 − rn+1

v
1 − rv

)
+ αr2

v

(
1 − rn−1

1 − rv

)}
QV

0

(19)

by using normalizing condition and calculated the value of QV
0

∞

∑
n=0

QV
n +

∞

∑
n=0

PB
n +

a−1

∑
n=0

RI
n = 1
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By substituting PB
n , QV

n and RI
n we observe that,

∞

∑
n=0

rn
v QV

0 +
∞

∑
n=0

(Zrn + Z∗rn
v )Q

V
0 +

a−1

∑
n=0

[
RI

n =

{
Z
[

µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2

λv

(
1 − rn−1

v
1 − rv

)]
+

Z∗
[

µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2
v

λv

(
1 − rn−1

v
1 − rv

)]
+

µwv

λv

(
1 − rn+1

v
1 − rv

)
+ αr2

v

(
1 − rn−1

1 − rv

)}
QV

0 = 0

Then,

(QV
0 )

−1 = ω(rv, µwv) + Zω(r, µrb) + Z∗ω(rv, µrb) + Γ(rv) + ZΓ(r) + Z∗Γ(rv) (20)

where

ω(x, y) =
1

(1 − x)

(
1 +

y
λv

(c − x(1 − xa)

(1 − x)
)

)

Γ(x) =
[

αx
λv(1 − x)

(cx − (1 − xa)

(1 − x)

]

5. Performance Measures

In this section, the performance measures of expected queue length, expected waiting time of
the queue, expected system length and expected waiting time of the queue for multiple working
vacations model with reverse balking under types of breakdowns model are derived.

5.1. Mean queue length

The expected queue length is given by,

Lq =
∞

∑
n=1

n(QV
n + PB

n ) +
a−1

∑
n=1

nRI
n

By substituting PB
n , QV

n and RI
n we observe that,

Lq =
∞

∑
n=1

n(rn
v QV

0 ) +
∞

∑
n=1

n(Zrn + Z∗rn
v )Q

V
0 +

a−1

∑
n=1

n
{

Z
[

µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2

λv

(
1 − rn−1

v
1 − rv

)]
+ Z∗

[
µrb
λv

(
(1 − rn+1)

(1 − r)

)
+

αr2
v

λv

(
1 − rn−1

v
1 − rv

)]
+

µwv

λv

(
1 − rn+1

v
1 − rv

)
+ αr2

v

(
1 − rn−1

1 − rv

)}
QV

0

Lq = Zω∗(r, µrb) + Z∗ω∗(rv, µrb) + ω∗(rv, µwv) + ZΓ∗(r) + Z∗Γ∗(rv) + Γ∗(rv) (21)

where

ω∗(x, y) =
x

(1 − x)2 +
y

λv(1 − x)

[
a(a − 1)

2
+

axa+1(1 − x)− x2(1 − xa)

(1 − x)2

]
(22)

Γ∗(x) =
αx2

λv(1 − x)

{
a(a − 1)

2
+

axa−1(1 − x) + xa − 1
(1 − x)2

}
(23)

and Z & Z∗ are given by (17) & (18).
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5.2. Mean System Length

The expected system length is given by,

Ls = Lq + ρ

Ls = {Zω∗(r, µrb) + Z∗ω∗(rv, µrb) + ω∗(rv, µwv) + ZΓ∗(r) + Z∗Γ∗(rv) + Γ∗(rv)}+ ρ

where ω∗(x, y) and Γ∗(x) are given by (22) & (23).

5.3. Mean Waiting Time of the Queue

The expected waiting time of the queue is given by,

Wq =
Lq

λ

Wq =
Zω∗(r, µrb) + Z∗ω∗(rv, µrb) + ω∗(rv, µwv) + ZΓ∗(r) + Z∗Γ∗(rv) + Γ∗(rv)

λv

where ω∗(x, y) and Γ∗(x) are given by (22) & (23).

5.4. Mean Waiting Time of the System

The expected waiting time of the system is given by,

Ws =
Ls

λ

Ws =
{Zω∗(r, µrb) + Z∗ω∗(rv, µrb) + ω∗(rv, µwv) + ZΓ∗(r) + Z∗Γ∗(rv) + Γ∗(rv)}+ ρ

λv

where ω∗(x, y) and Γ∗(x) are given by (22) & (23).
If Pr(wv), Pr(busy) and Pr(idle) denote the probability that the server in idle, regular busy and busy
vacation period then

Pr(idle) =
a−1

∑
n=0

RI
n (24)

where the RI
n is given by (19).

Pr(busy) =
∞

∑
n=0

PB
n =

(
Z

(1 − r)
+

Z∗

(1 − rv)

)
QV

0 (25)

Pr(wv) =
∞

∑
n=0

QV
n =

QV
0

(1 − rv)
(26)

6. Particular cases

6.1. Classical M/M(a, b)/1/MWV model

By letting α = 0 (21) and we obtain,

QV
n = (rn

v )Q
V
0 n ≥ 0
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PB
n = (Zrn + Z∗rn

v )Q
V
0 n ≥ 0

RI
n =

[
µrb
λv

(Zgn(r) + Z∗gn(rv) + gn(rv)

]
QV

0 0 ≤ n ≤ a − 1

where

Z =
(1 − r)

µrb(1 − ra)

[
ξ

(1 − rv)
− Z∗µrb(1 − ra

v)

(1 − rv)

]

Z∗ =
ξrv

λv(rv − 1) + µrbrv(1 − rb
v)

Further
Lq = Zω∗(r, µrb) + Z∗ω∗(rv, µrb) + ω∗(rv, µwv)

where

ω∗(x, y) =
x

(1 − x)2 +
y

λv(1 − x)

[
a(a − 1)

2
+

axa+1(1 − x)− x2(1 − xa)

(1 − x)2

]
Thus, observed that our specified model coincides with the M/M(a, b)/1/MWV queuing model
analysed by J.R.Mary and A.Begum (2011).

Conclusion

In this study, the M/M(a, b)/1/MWV queuing model with reneging is analyzed. In this model,
GBSR is followed. The steady-state solution, the various performance measures for the system,
and particular cases are calculated.

Reneging factors into queuing systems, making it difficult for service providers to predict and
plan for service demand. Reducing reneging in a queuing system is important for improving
customer satisfaction, optimising service efficiency, and maximising revenue opportunities. The
impact of reneging on queuing systems can affect both customers and service providers. By
implementing a system with multiple working vacations effective queue management techniques,
optimising service processes, and improving the overall customer experience, it is possible to
minimise reneging behaviour and enhance the performance of the queuing system. Further in
the future, the model may be extended to the arrival of multiple working vacations queue with
the concept of balking.
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Abstract 

A proper maintenance strategy is essential for the optimal performance of poly tube manufacturing to 

ensure high reliability. It involves a complex structure consisting of many components interconnected 

in series or parallel configurations. This project's contribution is the development of a method for 

evaluating the performance of an industrial system using previously unknown data. The RAM index, 

influenced by failure and repair rates, has been devised to identify the system's most critical component 

that impacts reliability, availability, and maintainability, collectively known as RAM. For performance 

analysis, a Markov-based simulation system model has been formulated and resolved to refine the 

results through particle swarm optimization (PSO). The transition diagram facilitates the construction 

of ordinary differential equations (ODEs), which represent various operational states such as full 

capacity, reduced capacity, and failure. These ODEs are then solved using initial and boundary 

condition. 

Keywords: Availability analysis, Supplementary variable Technique, Particle swarm 
optimization (PSO),Critical Analysis. 

I. Introduction

In contemporary settings, the advancement of technology has diminished the need for physical labor. 
The creation of various machines and equipment results in less manual work and more precise 
outcomes. Therefore, for optimal performance, the efficiency of this equipment is crucial, which relies 
entirely on its operation and maintenance, as well as that of its components. Reliability can be defined 
as the likelihood of success at a given time t, meaning the probability that a machine designed to 
fulfill its function within a set timeframe under certain external conditions will do so successfully. A 
system or device is considered highly reliable or dependable when it executes the intended task 
flawlessly without encountering any issues. However, consistent usage of a system inevitably leads to 
wear and tear of parts, meaning no system can maintain maximum efficiency indefinitely. 
Consequently, a system's reliability and efficiency are compromised when specific components 
deteriorate and fail. The motive of the study can help the manufacturing plant to get maximum 
production by ensuring that the system is as fault-free as possible through effective management, 
control and maintenance. This paper deals with the availability of the system having different 
numbers for the rates of failing and repairing. For the first time, an evolutionary optimization 
approach, namely PSO, is used to anticipate accessibility in the process sector. The existing methods 
including Markov and Genetic Algorithm confirmed or validated the outcomes generated for 
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optimum allocation/ availability. This is customary that these outcomes are valuable for the 
management of the industry for adopting a suitable maintenance program and strategies. 

Cox [1] employed a supplemental variable approach to determine the system's dependability and 
availability. After that, many researchers reported the system's reliability via the supplementary 
variable technique. Ying-Shen et al. [2] developed a series-parallel system to find the availability of 
GA. Sagayaraj et al. [4] documented the system’s reliability via a mixed series-parallel combination. 
The highest degree of dependability and availability is important not just to minimize total 
production costs but also to limit the danger of risks (Yang et al., [5]). Chaudhary et al. [6] evaluated 
the “reliability, availability, and maintainability” (RAM) in a cement factory with various failure and 
repair rates. The study's goal is to identify essential subsystems of a cement plant so that effective 
solutions to enhance their RAM characteristics can be offered, resulting in an improvement in cement 
plant capacity utilization. TPP availability, dependability, and planning have transformed into 
important needs in recent years as society's demand for energy has increased (Kuo and Ke, [7]). Sunita 
et al. [8] discussed the sensitive analysis of the thresher plant under study. Sunita et al. [9] discussed 
RAP via a constraint optimization genetic algorithm. Sunita et al. [10] find the solution to constrained 
problems using particle swarm optimization. RAM (reliability, availability, and maintainability) of 
threshing machines in agriculture was observed by Anchal et al. [11]. Vanita et al. [12] highlighted the 
effect on profit and availability of a briquette machine under the minor and major faults handled by 
two repairmen. An effort is also being made to assess the plant's dependability and reliability by 
using continual failure and repair rates. A deep learning process was examined by Singla et al. [13] in 
order to optimize the reliability parameters and boost industry revenues and manufacturing of a 2:3 
good system. Singla et al. [14] investigate a failing system by applying a genetic algorithm to ascertain 
the reliability metrics influenced by the rate of degradation and the rate of preventive maintenance. 

So far, the polytube sector has received little attention, despite the fact that it plays a significant 
part in our everyday lives. In any sector, this normality assumption for the rates of failing and 
repairing are not feasible.  Keeping this in mind, we analyzed a four-unit Polytube sector subjected to 
fluctuating subsystems' failing and repairing rates in the current study, and we used supplementary 
variable technique to explore the reliable model of the Polytube sector.  An effort is also being made to 
assess the plant's dependability/reliability by using continual failing and repairing rates.  

The goal of the presented work is to maximize system's availability with respect to each unit 
while maintaining constant operation over time and at varying rates. The goal of this work is to 
concentrate on how sensitivity of units of the system is reliable to the availability. The paper is 
structured as follows: Section 2 provides an explanation of the model's specifics, including the state 
overview, assumptions, notations, and model frame. The mathematical representations is covered in 
Section 3. The methodology used to know the effect different rates is presented in section 4. The 
system's critical analysis is discussed in Section 5. Section 6 has concluded with the results discussion. 
Presented in Section 7 is the conclusion. 

II. Model descriptions and Symbols

2.1 System description 

Due to the fact that iron pipe corrodes rapidly in damp and humid environments, shortening its 
lifespan and making that fragile and more leakage susceptible. Polytube industries, making plastic 
pipes, is crucial in our daily lives since these are used to transport portable water, fluids (liquids other 
than water and gases) from one location to another. This study aimed at the “Polytube industry”, 
which is made up of four subsystems: “Mixture”, “Extruder”, “Die” and “Cutter” as shown in figure 
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1. The following is a detailed system’s description along with the notations, as necessary for the
formulation of mathematical structure:

Figure 1 : Structure of Polytube Manufacturing Plant 

 

Figure 2 : Transitions States   of  Polytube Manufacturing Plant. 

• Sub-system Q (Mixture)  Its failure results in the system's total failure. 
• Sub-system R (Extruder)    Its failure results in the system's total failure. 
• Sub-system S (Dye)  This is utilized for making various diameters of pipe 

Mixer Extruder 
Extrusion 

Dye 

Trifling 

Cutter 


𝑆

(�̌�) 

𝑄𝑅𝑆ҧ𝑇 1

 

𝑄𝑅𝑆ҧ𝑇 ഥ 3 

𝑞𝑅𝑆𝑇ത  9 

𝛽1(𝑙ሙ)

𝛽2(𝑙ሙ)
𝛽1(𝑙ሙ) 

𝛽1(𝑙ሙ)𝛽1(𝑙ሙ)

𝛽2(𝑙ሙ)

𝛽2(𝑙ሙ)

𝛽3(𝑙ሙ)

𝛽3(𝑙ሙ)

𝛽3(𝑙ሙ)

𝛽4(𝑙ሙ)

𝛽4(𝑙ሙ)

𝛽4(𝑙ሙ)


𝑄

(�̌�))


𝑄

(�̌�) 


𝑄

(�̌�)


𝑅

(�̌�)


𝑅

(�̌�)


𝑅

(�̌�) 


𝑅

(�̌�)

𝑇(�̌�) 


𝑆

(�̌�) 


𝑆

(�̌�)


𝑆

(�̌�)

𝑇(�̌�) 
𝛽3(𝑙ሙ) 

𝑇(�̌�) 

𝛽4(𝑙ሙ)

𝑞𝑅𝑆ҧ𝑇 6 

𝑄𝑟𝑆𝑇5 𝑞𝑅𝑆𝑇 4 

𝑄𝑅𝑆𝑇ത 2
𝑄𝑅𝑆𝑇 0

𝛽2(𝑙ሙ)

𝑄𝑅𝑠𝑇 8 𝑄𝑅𝑆𝑡 11 

𝑄𝑅𝑠𝑇ത 14 𝑄𝑟𝑆ҧ𝑇ത 13 

𝑄𝑅𝑆ҧ𝑡 15 𝑞𝑅𝑆ҧ𝑇ത 12 

𝑄𝑟𝑆𝑇 ഥ 10 


𝑄

(𝑚)ේ

𝑇(�̌�) 

𝑄𝑟𝑆ҧ𝑇 7

RT&A, No 2 (78) 
 Volume 19, June, 2024 

353



Shakuntla Singla, Diksha Mangla, Umar Modibbo, A.K. Lal 
C. A. OF FAILURE AND REPAIR RATES OF PLANT USING PSO

• Sub-system T (Cutter)  This subsystem consists of 2 series - connected elements. The     
 first item is the blade, that shreds a pipe, while the 2nd second  

   element is the engine (motor), that slice a pipe in various sizes. 

2.2 Symbols 

Table 1: Various notations regarding model 

𝑄, 𝑅, 𝑆, 𝑇 
Signify that the subsystem is fully 
operational. 

𝑆ҧ,𝑇ത 
Designate the minimized configuration 
of the subsystems "S" and "T" 

𝑞, 𝑟, 𝑠, 𝑡    
Designate the subsystem's failure 
condition. 

𝛽𝑖(𝑙ሙ)(i = 1, … , 4) Represents subsystem’s 𝑄, 𝑅, 𝑆, and 𝑇 
rate of failing respectively.


𝑄

(�̌�),
𝑅

(�̌�),
𝑆

(�̌�), 𝑎𝑛𝑑 𝑇(�̌�) 
Repair rates of 𝑄, 𝑅, 𝑆 and 𝑇, 
respectively. 

𝑃𝑜(𝑡) 
Specify fully operational system 
without any failure 

𝑃𝑖(𝑙ሙ, �̌�, 𝑡)(𝑖 = 1, … ,16)

Represents the probability of the 
industry  in state I, at time t, with an 
expired failure time 𝑙ሙ and an
elapsed time of repair 𝑙ሙ.

2.3 Assumptions 

The current study is based on the following assumptions 
• Repairing ((𝑅𝑟) and failing rates(𝐹𝑟) are not dependent on each other ,independent to each other .
• A repairing subsystem is as good as original.
• Repair services are available.

III. Mathematical presentation of the system
3.1. Rates of Failing (𝑭𝒓)and repairing (𝑹𝒓) are taken as variable 

If there are variable rates of failing (𝐹𝑟) and repairing (𝑅𝑟) for the transitory state, the differential 
difference equation using Chapman Kolmogrov’s rule connected with the state transition diagram 
(fig. 1) are as follow: 

𝑃0(𝑡 + ∆𝑡) = [1 − 𝛽1(𝑙ሙ)∆𝑡 − 𝛽2(𝑙ሙ)∆𝑡 − 𝛽3(𝑙ሙ)∆𝑡−𝛽4(𝑙ሙ)∆𝑡]𝑃0(𝑡) + ∫
𝑆

(�̌�)𝑃1(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ ∆𝑡

+ ∫𝑇(�̌�)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ∆𝑡 + ∫ 
𝑄

(�̌�)𝑃4(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ ∆𝑡 + ∫
𝑅

(�̌�)𝑃5(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ ∆𝑡

𝑃0(𝑡 + ∆𝑡) − 𝑃0(𝑡)

= −[𝛽1(𝑙ሙ)∆𝑡 + 𝛽2(𝑙ሙ)∆𝑡 + 𝛽3(𝑙ሙ)∆𝑡+𝛽4(𝑙ሙ)∆𝑡]𝑃0(𝑡) + ∫
𝑆

(�̌�)𝑃1(𝑙ሙ, �̌�, 𝑡)𝑑𝑙 ∆𝑡

+ ∫𝑇(�̌�)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ∆𝑡 + ∫ 
𝑄

(�̌�)𝑃4(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ ∆𝑡 + ∫
𝑅

(�̌�)𝑃5(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ ∆𝑡

Dividing both sides by∆𝑡,we get 
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𝑃0(𝑡 + ∆𝑡) − 𝑃0(𝑡)

∆𝑡

= −[𝛽1(𝑙ሙ) + 𝛽2(𝑙ሙ) + 𝛽3(𝑙ሙ) + 𝛽4(𝑙ሙ)]𝑃0(𝑡) + ∫
𝑆

(�̌�)𝑃1(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ

+ ∫𝑇(�̌�)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ + ∫ 
𝑄

(�̌�)𝑃4(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ + ∫
𝑅

(�̌�)𝑃5(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ

[
𝑑

𝑑𝑡
+ 𝑍0] 𝑃0(𝑡) = 𝐸0    (1) 

Likewise, we may construct the differential equation for the other states as: 
[

𝜕

𝜕𝑡
+

𝜕

𝜕𝑙ሙ
+

𝜕

𝜕�̌�
+ 𝑍𝑖(𝑙ሙ, �̌�)] 𝑃𝑖(𝑙ሙ, �̌�, 𝑡) = 𝐸𝑖(𝑙ሙ, �̌�, 𝑡)      for i=1,2 and 3    (2) 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑙ሙ
+

𝜕

𝜕�̌�
+ 

𝑄
(�̌�)] 𝑃𝑗(𝑙ሙ, �̌�, 𝑡) = 𝛽1(𝑙ሙ)𝑃𝑘(𝑡) for j=4,6,9 and 12  and k=0 to 3 respectively       (3) 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑙ሙ
+

𝜕

𝜕�̌�
+ 

𝑅
(�̌�)] 𝑃𝑝(𝑙ሙ, �̌�, 𝑡) = 𝛽2(𝑙ሙ)𝑃𝑘(𝑡) for p=5,7,10 and 13 and k=0 to 3 respectively   (4) 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑙ሙ
+

𝜕

𝜕�̌�
+ 

𝑆
(�̌�)] 𝑃𝑠(𝑙ሙ, �̌�, 𝑡) = 𝛽3(𝑙ሙ)𝑃𝑟(𝑙ሙ, �̌�, 𝑡)   for s=8 and 14 and r=1 and 3 respectively  (5) 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑙ሙ
+

𝜕

𝜕�̌�
+ 𝑇(�̌�)] 𝑃𝑢(𝑙ሙ, �̌�, 𝑡) = 𝛽4(𝑙ሙ)𝑃𝑣(𝑙ሙ, �̌�, 𝑡)    for u=11 and 15 and v= 2 and 3 respectively  (6) 

Where, 
𝑍0 = 𝛽1(𝑙ሙ) + 𝛽2(𝑙ሙ) + 𝛽3(𝑙ሙ) + 𝛽4(𝑙ሙ)

𝐸0 = ∫
𝑆

(�̌�)𝑃1(𝑙ሙ, �̌�, 𝑡)𝑑𝑙 + ∫𝑇(�̌�)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑑𝑙 + ∫ 
𝑄

(�̌�)𝑃4(𝑙ሙ, �̌�, 𝑡)𝑑𝑙 + ∫
𝑅

(�̌�)𝑃5(𝑙ሙ, �̌�, 𝑡)𝑑𝑙

𝑍1(𝑙ሙ, �̌�) = 
𝑆

(�̌�)+𝛽1(𝑙ሙ) + 𝛽2(𝑙ሙ) + 𝛽3(𝑙ሙ) + 𝛽4(𝑙ሙ)

𝐸1(𝑙ሙ, �̌�, 𝑡) = 𝛽3(𝑙ሙ)𝑃0(𝑡) + 
𝑄

(�̌�)𝑃6(𝑙ሙ, �̌�, 𝑡) + 
𝑅

(�̌�)𝑃7(𝑙ሙ, �̌�, 𝑡) + 
𝑆

(�̌�)𝑃8(𝑙ሙ, �̌�, 𝑡) + 𝑇(�̌�)

𝑍2(𝑙ሙ, �̌�) = 𝑇(�̌�)+𝛽1(𝑙ሙ) + 𝛽2(𝑙ሙ) + 𝛽3(𝑙ሙ) + 𝛽4(𝑙ሙ)

𝐸2(𝑙ሙ, �̌�, 𝑡) = 𝛽4(𝑙ሙ)𝑃0(𝑡) + 
𝑄

(�̌�)𝑃9(𝑙ሙ, �̌�, 𝑡) + 
𝑅

(�̌�)𝑃10(𝑙ሙ, �̌�, 𝑡) + 
𝑆

(�̌�)𝑃3(𝑙ሙ, �̌�, 𝑡) + 𝑇(𝑚)𝑃11(𝑙ሙ, �̌�, 𝑡)

𝑍3(𝑙ሙ, �̌�) = 𝑇(�̌�)+
𝑆

(�̌�) + 𝛽1(𝑙ሙ) + 𝛽2(𝑙ሙ) + 𝛽3(𝑙ሙ) + 𝛽4(𝑙ሙ)

𝐸3(𝑙ሙ, �̌�, 𝑡) = 𝛽4(𝑙ሙ)𝑃1(𝑙ሙ, �̌�, 𝑡) + 𝛽3(𝑙)𝑃2(𝑙ሙ, �̌�, 𝑡) + 
𝑄

(�̌�)𝑃12(𝑙ሙ, �̌�, 𝑡) + 
𝑅

(�̌�)𝑃13(𝑙ሙ, �̌�, 𝑡)

+ 
𝑆

(�̌�)𝑃14(𝑙ሙ, �̌�, 𝑡) + 𝑇(�̌�)𝑃15(𝑙ሙ, �̌�, 𝑡)

Boundary Conditions: 
𝑃𝑎(0, �̌�, 𝑡) = 𝛽𝑏(𝑙ሙ)𝑃0(𝑡)   for a=1,2,4 and 5  and b=3,4,1and 2 respectively    (7) 
𝑃3(0, �̌�, 𝑡) = ∫ 𝛽4(𝑙ሙ)𝑃1(𝑙ሙ, �̌�, 𝑡) 𝑑𝑙ሙ + ∫ 𝛽3(𝑙ሙ)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑑𝑙ሙ   (8) 
𝑃𝑐(0, �̌�, 𝑡) = ∫ 𝛽𝑑(𝑙ሙ)𝑃1(𝑙ሙ, �̌�, 𝑡) 𝑑𝑙ሙ for c=6 to 8 and d= 1 to 3 respectively    (9) 
𝑃𝑜(0, �̌�, 𝑡) = ∫ 𝛽𝑝(𝑙ሙ)𝑃2(𝑙ሙ, �̌�, 𝑡) 𝑑𝑙ሙ for o=9 to 11 and p=1,2 and 4 respectively   (10) 
𝑃𝑎1

(0, �̌�, 𝑡) = ∫ 𝛽𝑎2
(𝑙ሙ)𝑃3(𝑙ሙ, �̌�, 𝑡) 𝑑𝑙ሙ for a1=12 to 15 and a2=1 to 4 respectively     (11) 

Initial Condition: 

𝑃𝑖(𝑙ሙ, �̌�, 0) = 0; (𝑖 = 1 . . . 15)       (12) 
𝑃0(0) = 1       (13) 
For finding the systems’ reliability 𝑅𝑟𝑒 (t)), the solutions of differential equations (DE) (1-6) have been 
obtained. Shakuntla et.al (2011) used Lagrange’s method to solve Chapman-Kolmogorov differential 
equation (DE) with constant rates of failing and repairing. To obtain the probability 𝑃𝑖(𝑡)(𝑖 = 1 …  15), 
every state equation (2-6) and the initial conditions (7-11) were solved: 

𝑃15(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑇(�̌�)𝑑�̌� [
∫ 𝛽4(�̌� − 𝑙ሙ)𝑃3(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽4(𝑙ሙ)𝑃3(𝑙ሙ, �̌�, 𝑡)𝑒∫𝑇(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (14) 

𝑃14(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑆(�̌�)𝑑�̌� [
∫ 𝛽3(�̌� − 𝑙ሙ)𝑃3(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽3(𝑙ሙ)𝑃3(𝑙ሙ, �̌�, 𝑡)𝑒∫𝑆(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (15) 

𝑃13(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑅(�̌�)𝑑�̌� [
∫ 𝛽2(�̌� − 𝑙ሙ)𝑃3(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽2(𝑙ሙ)𝑃3(𝑙ሙ, �̌�, 𝑡)𝑒∫𝑅(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (16) 

𝑃12(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑄(�̌�)𝑑�̌� [
∫ 𝛽1(�̌� − 𝑙ሙ)𝑃3(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽1(𝑙ሙ)𝑃3(𝑙ሙ, �̌�, 𝑡)𝑒∫ 𝑄(�̌�)𝑑�̌�𝑑𝑙ሙ
] (17)
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𝑃11(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑇(�̌�)𝑑�̌� [
∫ 𝛽4(�̌� − 𝑙ሙ)𝑃2(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽4(𝑙ሙ)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑒∫𝑇(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (18) 

𝑃10(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑅(�̌�)𝑑�̌� [
∫ 𝛽2(�̌� − 𝑙ሙ)𝑃2(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽2(𝑙ሙ)𝑃2(𝑙ሙ, �̌�, 𝑡)𝑒∫𝑅(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (19) 

𝑃9(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑄(�̌�)𝑑�̌� [
∫ 𝛽1(𝑚 − 𝑙)𝑃2(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽1(𝑙ሙ)𝑃2(𝑙, 𝑚, 𝑡)𝑒∫𝑄(�̌�)𝑑�̌�𝑑𝑙ሙ
]  (20) 

𝑃8(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑆𝜇(𝑚)𝑑𝑚 [
∫ 𝛽3(𝑚 − 𝑙)𝑃1𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ 𝑑𝑙ሙ

+ ∫ 𝛽3(𝑙ሙ)𝑃1(𝑙, 𝑚, 𝑡)𝑒∫𝑆(�̌�)𝑑�̌�𝑑𝑙ሙ
]     (21) 

𝑃7(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑅(𝑚)𝑑𝑚 [
∫ 𝛽2(�̌� − 𝑙ሙ)𝑃1(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽2(𝑙ሙ)𝑃1(𝑙ሙ, �̌�, 𝑡)𝑒∫𝑅(𝑚)𝑑𝑚𝑑𝑙ሙ
]     (22) 

𝑃6(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑄(𝑚)𝑑𝑚 [
∫ 𝛽1(�̌� − 𝑙ሙ)𝑃1(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽1(�̌�)𝑃1(𝑙ሙ, �̌�, 𝑡)𝑒∫ 𝑄(�̌�)𝑑�̌�𝑑𝑙ሙ
]  (23) 

𝑃5(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫𝑅(𝑚)𝑑𝑚 [
𝛽2(�̌� − 𝑙ሙ)𝑃0(𝑡 − 𝑙ሙ)

+ ∫ 𝛽2(𝑙ሙ)𝑃0(𝑡)𝑒∫𝑅(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (24) 

𝑃4(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑄(𝑚)𝑑𝑚 [
𝛽1(�̌� − 𝑙ሙ)𝑃0(𝑡 − 𝑙ሙ)

+ ∫ 𝛽1(𝑙ሙ)𝑃0(𝑡)𝑒∫ 𝑄(�̌�)𝑑�̌�𝑑𝑙ሙ
]       (25) 

𝑃3(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑍3(𝑙ሙ,�̌�)𝑑𝑙ሙ [

∫ 𝐸3(𝑙ሙ, �̌�, 𝑡)𝑒∫ 𝑍3(𝑙ሙ,�̌�)𝑑𝑙𝑑𝑙ሙ

+ ∫ 𝛽4(�̌� − 𝑙ሙ)𝑃1(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ) 𝑑𝑙ሙ

+ ∫ 𝛽3(𝑏 − 𝑎)𝑃2(𝑙ሙ, �̌� − 𝑙ሙ, 𝑡 − 𝑙ሙ)

]       (26) 

𝑃2(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑍2(𝑙ሙ,�̌�)𝑑𝑙ሙ [∫
𝐸2(𝑙ሙ, �̌�, 𝑡)𝑒∫ 𝑍2(𝑙ሙ,�̌�)𝑑𝑚𝑑𝑙ሙ

+𝛽4(�̌� − 𝑙ሙ)𝑃0(𝑡 − 𝑙ሙ)
]       (27) 

𝑃1(𝑙ሙ, �̌�, 𝑡) = 𝑒− ∫ 𝑍1(𝑙ሙ,�̌�)𝑑𝑙ሙ [∫
𝐸1(𝑙ሙ, �̌�, 𝑡)𝑒∫ 𝑍1(𝑙ሙ,�̌�)𝑑𝑙𝑑𝑙

+𝛽3(�̌� − 𝑙ሙ)𝑃0(𝑡 − 𝑙ሙ)
]       (28) 

𝑃0(𝑡) = 𝑒−𝑍0𝑡[1 + ∫ 𝐸0(𝑡)𝑒𝑍0𝑡𝑑𝑡]                       (29)
If the manufacturing plant supply the rates of failing and repairing, we may find the reliability 𝑅𝑟𝑒(𝑡) 
in concern to probability𝑃0(𝑡) & via equation (1). Hence, Reliability  𝑅𝑟𝑒(𝑡) of manufacturing plant is 
given by 
𝑅𝑟𝑒(𝑡) = 𝑃0(𝑡) + ∫ ∑ 𝑃𝑖(𝑙ሙ, �̌�, 𝑡)3

𝑖=1 𝑑𝑙ሙ𝑑�̌�                      (30)
3.2. Failure𝐅𝐫 and 𝐑𝐫 Repair rates are constant 

When both the rates of failing and repairing are consistent, the system of equations (1-6) collapses to 
simple differential equations (DE) form, as shown below: 
[

𝑑

𝑑𝑡
+ 𝐶] 𝑃0(𝑡) = 

𝑆
𝑃1(𝑡) + 𝑇𝑃2(𝑡) + 

𝑄
𝑃4(𝑡) + 

𝑅
𝑃5(𝑡)   (31) 

[
𝑑

𝑑𝑡
+ 

𝑆
+ 𝐶] 𝑃1(𝑡) = 𝛽3𝑃0(𝑡) + 

𝑄
𝑃6(𝑡) + 

𝑅
𝑃7(𝑡) + 

𝑆
𝑃8(𝑡) + 𝑇𝑃3(𝑡)     (32) 

[
𝑑

𝑑𝑡
+ 𝑇 + 𝐶] 𝑃2(𝑡) = 𝛽4𝑃0(𝑡) + 

𝑄
𝑃9(𝑡) + 

𝑅
𝑃10(𝑡) + 

𝑆
𝑃3(𝑡)  + 𝑇𝑃11  (33) 

[
𝑑

𝑑𝑡
+ 𝑇 + 

𝑆
+ 𝐶] 𝑃3(𝑡) = 𝛽4𝑃1(𝑡) + 𝛽3𝑃2(𝑡) + 

𝑄
𝑃12(𝑡) + 

𝑅
𝑃13 +

 
𝑆

𝑃14(𝑡)  + 𝑇𝑃15(𝑡)       (34) 

[
𝑑

𝑑𝑡
+ 

𝑄
] 𝑃𝑗(𝑡) = 𝛽1𝑃𝑘(𝑡)  for j=4,6,9 and 12 and k=0 to 3 respectively  (35) 

[
𝑑

𝑑𝑡
+ 

𝑅
] 𝑃𝑝(𝑡) = 𝛽2𝑃𝑘(𝑡) for p=5,7,10 and 13 and k=0 to 3 respectively  (36) 

[
𝑑

𝑑𝑡
+ 

𝑆
] 𝑃𝑠(𝑡) = 𝛽3𝑃𝑟(𝑡) for s=8 and 14 and r=1 and 3 respectively       (37) 

[
𝑑

𝑑𝑡
+ 𝑇] 𝑃𝑢(𝑡) = 𝛽4𝑃𝑣(𝑡)      for u=11 and 15 and v= 2 and 3 respectively   (38) 

Where C=𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 
Initial conditions: The initial conditions of the subsystems are as under: 
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𝑃𝑖(0) =      {
1,          𝑖 = 0
0 , otherwse

                                                  (39) 

One can obtain the state probabilities 𝑃𝑖(𝑖 = 1, … ,15) by solving differential equations (14-29) 
along with initial boundations (30). 
3.3. Steady State 

Manufacturing firms are continuously looking for long-term availability in order to meet their goals. 
This may be calculated numerically concerning 𝑑

 𝑑𝑡
→ 0 as𝑡 → ∞   into the system of equations (31-38)

therefore; the system of equations (31-38) reduces to the following system of linear equations: 
[𝐶]𝑃0 − 

𝑆
𝑃1 − 𝑇𝑃2 − 

𝑄
𝑃4 − 

𝑅
𝑃5 = 0  (40) 

[
𝑆

+ 𝐶]𝑃1−𝛽3𝑃0 − 
𝑄

𝑃6 − 
𝑅

𝑃7 − 
𝑆

𝑃8 − 𝑇𝑃3 = 0  (41) 
[𝑇 + 𝐶]𝑃2−𝛽4𝑃0 − 

𝑄
𝑃9 − 

𝑅
𝑃10 − 

𝑆
𝑃3 − 𝑇𝑃11 = 0  (42) 

[𝑇 + 
𝑆

+ 𝐶]𝑃3−𝛽4𝑃1 − 𝛽3𝑃2 − 
𝑄

𝑃12 − 
𝑅

𝑃13 −  
𝑆

𝑃14 − 𝑇𝑃15 = 0  (43) 


𝑄
𝑃𝑗−𝛽1𝑃𝑘 = 0 for j=4,6,9 and 12 and k=0 to 3  respectively  (44) 


𝑅

𝑃𝑝−𝛽2𝑃𝑘 = 0 for p=5,7,10 and 13 and k=0 to 3 respectively  (45) 


𝑆
𝑃𝑠−𝛽3𝑃𝑟 = 0 for s=8 and 14 and r=1 and 3 respectively  (46) 

𝑇𝑃𝑢−𝛽4𝑃𝑣 = 0  for u=11 and 15 and v=2 and 3 respectively  (47) 
The availability  𝐴𝑎𝑣(𝑡) of the system can be computed as, 

𝐴𝑎𝑣(𝑡) = ∑ 𝑃𝑖(𝑡)3
𝑖=0                                     (48) 

The system’s availability 𝐴𝑎𝑣(𝑡), specified in equation (48) is evaluated at different values for various 
rates of failing and repairing. This might noticed here that we have only considered the most 
important subsystems(𝑄, 𝑅, 𝑆, 𝑇)  
At the final point, the steady state availability has been solved by using   the system of linear 
equations (31-38) recursively be expressing all the probabilities in terms of 𝑃0. These are obtaining as 
below: 
 𝑃𝑖 = 𝑁𝑖𝑃0 for i= 1 to 3  (49) 
𝑃𝑗 =

𝛽1

𝑄

𝑃𝑘  for j=4,6,9 and 12 and k=0 to 3  respectively       (50) 

𝑃𝑝 =
𝛽2

𝑅

𝑃𝑘 for p=5,7,10 and 13 and k=0 to 3 respectively  (51) 

𝑃𝑠 =
𝛽3

𝑆

𝑃𝑟  for s=8 and 14 and r=1 and 3 respectively       (52) 

𝑃𝑢 =
𝛽4

𝑆

𝑃𝑣 for u=11 and 15 and v=2 and 3 respectively  (53) 

where 
𝑁1 =

𝛽3

𝑈3
+

𝛽3𝑇𝛽4

𝑈1𝑈2𝑈3
,    𝑁2 =

𝛽4

𝑈2
+

𝑆𝛽4𝑁1

𝑈1𝑈2
,𝑁3 =

𝛽4

𝑈1
𝑁1 +

𝛽3

𝑈1
𝑁2 

𝑈1 = 𝑇 + 
𝑆
, 𝑈2 = 𝑇 + 𝛽3 −

𝑆𝛽3

𝑈1
, 𝑈3 = 

𝑆
+ 𝛽4 −

𝑇𝛽4

𝑈1
−

𝑆𝛽3𝑇𝛽4

𝑈1𝑈2𝑈1

Now using the normalizing conditions∑ 𝑃𝑖 = 115
𝑖=0 , we get 

𝑃0 = [1 +
𝛽1

𝑄

+
𝛽2

𝑅

+ (1 +
𝛽1

𝑄

+
𝛽2

𝑅

+
𝛽3

𝑆

) 𝑁1 + (1 +
𝛽1

𝑄

+
𝛽2

𝑅

+
𝛽4

𝑇
) 𝑁2 + (1 +

𝛽1

𝑄

+
𝛽2

𝑅

+
𝛽3

𝑆

+
𝛽4

𝑇
)𝑁3]

−1

  (54) 

As a result, the manufacturing plant's steady-state availability is attained as: 
𝐴𝑎𝑣(∞) = ∑ 𝑃𝑖

3
𝑖=0 =  [1 + 𝑁1 + 𝑁2 + 𝑁3]𝑃0    (55) 

IV. Methodology used for availability analysis of poly tube plant using PSO
4.1. Introduction 

Inspired by swarming behaviors found in nature, such as flocks of fish and birds, Particle Swarm 
Optimization (PSO) is a potent meta-heuristic optimization algorithm, also called a stochastic search 
algorithm, based on population dynamics. It is a computational method used to optimize the 
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problem. It performs its task of optimization by improving particle solutions. This algorithm works 
with some parameters, like particle size, population, position, velocity, search space, etc. In PSO, the 
population, like the bird group, represents a swarm, and each member of the swarm represents a 
particle. Every particle's movement is dictated by its local position. Each particle has velocities that 
direct the flight of particles. The search space refers to the spectrum in which the technique calculates 
the most effective regulatory variables. The value will be reset if the searching space is exceeded by 
any particle's optimal control value. 
4.2. Working procedure of PSO with an example 

To better understand how PSO operates, let's look at an example. A flock of birds flying aimlessly in 
an area, trying to find a single piece of food. Not a single bird is aware of the location of the food, i.e., 
they are aware of their progress in each iteration, even though they are unsure of the ideal eating 
position. They launch themselves in different directions and adhere to the PSO's search plan, i.e., 
swiftly follow that bird that is close to food. Each particle or bird, starting from a randomly selected 
population, moves through the searching space in randomly chosen directions while recalling its best 
historical positions and those of its neighbors, i.e., the highest ranking globally. Follow that bird to the 
global best position to obtain the optimal value, i.e., food.  
4.3. PSO Algorithm Fundamentals 

Step I Start 
Step II Initializes particles   with velocity vectors (𝜇)and random positions  
Step III Use of Fitness equation: Find out the fitness of the particles 
Step IV      Evaluate and Update p best and g best  
Step V Numerically solved and updating of the position of the velocity vectors  
Step VI      Numerically solved and updating of the position of the velocity vectors. 
Step VII Numerically solved and updating of the position of the particles. 
Step VIII Termination Satisfies? 
Step IX      Stop. 

Table 2 : Different notations used during Algorithm 

𝜇𝑖𝑗
𝑛 Represents particle’s velocity vector 𝑖 at time 𝑡 in 

dimension  𝑗. 

𝑟𝑖𝑗
𝑡 Represents particle’s position vector 𝑖 at time 𝑡 in 

dimension  𝑗. 

 𝑃𝐵𝑒𝑠𝑡,𝑡
𝑖  

Represents particle’s best position 𝑖 through initializing 
time t in dimension 𝑗. 

𝐿𝐵𝑒𝑠𝑡,𝑡
𝑖  

The best position that any particle has had in the 
neighborhood of particle 𝑖 in dimension  𝑗 initialization 
through time t. 

𝑎1,𝑎𝑛𝑑 𝑎2 
Designates the constants of positive acceleration that are 
employed to balance the social and cognitive aspects, 
respectively. 

𝑟1𝑗
𝑡  𝑎𝑛𝑑  𝑟2𝑗

𝑡 Time-dependent random integers drawn from a uniform 
distribution. 
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Figure 3: Flow diagram of PSO 
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4.4. Availability analysis of the industry with various failure(𝐅𝐫) 𝐚𝐧𝐝 repair(𝐑𝐫) rate. 

After applying the methodology of PSO over the fitness function i.e. an equation(55) for 

availability over different rate of failure and repair for each subsystem Q,R, S and T. We get 

the following variation presented from table 3 to 6 and corresponds figure 4 to 7.  

Table 3. Effect on Availability(𝐴𝑎𝑣 ) of Mixture with various  combination of Failure (𝐹𝑟)and Repair Rate (𝑅𝑟). 
β1 Aav σT Aav 

0.003122 0.31321 0.011276 0.50199 
0.005446 0.30147 0.018296 0.66397 
0.007046 0.25008 0.026777 0.70571 
0.009462 0.14193 0.033979 0.81269 
0.011776 0.13373 0.040393 0.85321 
0.013864 0.13325 0.047671 0.93818 
0.015398 0.08774 0.054925 0.95747 
0.017696 0.07875 0.061103 0.99269 

Table 4. Effect on Availability(𝐴𝑎𝑣 ) of Extruder with various  combination of Failure (𝐹𝑟)and Repair Rate (𝑅𝑟) 
β2 Aav ɸQ Aav 

0.003517 0.31321 0.004498 0.40221 
0.004683 0.27397 0.011015 0.52269 
0.005914 0.15675 0.018255 0.59321 
0.00665 0.13373 0.025938 0.64108 

0.007282 0.102 0.032681 0.69269 
0.008272 0.04782 0.039192 0.69269 
0.009272 0.04782 0.046988 0.84675 
0.010744 0.03037 0.053954 0.96397 

Table 5. Effect on Availability(𝐴𝑎𝑣 ) of Dye with various  combination of Failure (𝐹𝑟)and Repair Rate (𝑅𝑟) 
β3 Aav 

R
 Aav 

0.006091 0.37162 0.002535 0.57981 
0.008081 0.31108 0.00958 0.62774 
0.010847 0.24269 0.01655 0.67675 
0.012656 0.19654 0.023479 0.74269 
0.014349 0.08774 0.030528 0.8029 
0.016375 0.06323 0.037996 0.86818 
0.018533 0.05037 0.046239 0.89321 
0.020701 0.11634 0.053487 0.90571 
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Table 6. Effect on Availability(𝐴𝑎𝑣 ) of Die with various  combination of Failure (𝐹𝑟)and Repair Rate (𝑅𝑟) 
β4 Aav μS Aav 

0.007677 0.31321 0.003084 0.58774 
0.008446 0.16134 0.010663 0.61221 
0.009871 0.15675 0.017025 0.69682 
0.010192 0.08774 0.024024 0.78571 
0.011578 0.07981 0.031726 0.82397 
0.012815 0.0629 0.037879 0.87321 
0.013071 0.04774 0.044432 0.89269 
0.014671 0.02037 0.051264 0.89408 

Figure 4 : Effect on Availability(𝐴𝑎𝑣 ) of Mixture  with various  combination of Failure (𝛽1)and Repair Rate (
𝑇

).

Figure 5 : Effect on Availability(𝐴𝑎𝑣 ) of Extruder  with various  combination of Failure 

(𝛽2) and Repair Rate (
𝑄

).
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Figure 6 : Effect on Availability(𝐴𝑎𝑣 ) of Die with various combination of failure 

(𝛽3) and repair rate(
𝑅

).

Figure 7 : Effect on Availability(𝐴𝑎𝑣 ) of Cutter  with various  combination of Failure 

(𝛽4)and Repair Rate (
𝑆

). 

V. Critical Analysis

The Critical Analysis has been done to  demonstrate the impact of the subsystem on the overall 
system's availability than any of the other subsystems. Over long running of system ,How the 
availability percentage increased or decreased of a unit with respect to failure or repair rate with 
passage of time with comparison of other? To know the preference of subsystem to give more 
attention to met the requirements up to more efficient level, a critical analysis has been applied on the 
results obtain. 

Table 7. Critical Analysis of system component for their available performance time 

Systems 
Failure 

Rate(Fr) 

Decreases in 
Availability 

(Aav ) 

Repair 
Rate(Rr) 

Increase in 
availability 

(Aav ) 

Repair 
Ranking (Rr) 

Mixture 
0.003122-
0.017696- 

23% 
0.003122-
0.061103 

49% II 

Extruder 
0.003517-
0.010744 

28% 
0.004498-
0.053954 

56% I 

Dye 0.006091- 26% 0.002535- 32% III 
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VI. Result and Observations

The following results are obtained after applying the methodology. 
• Table 3 and figure 4 shown the variation in availability of component mixture with respect to

both failure and repair rate which are depicted that with increase failure rate the availability
decreases and with increasing repair rate, availability increases.

• Table 4 and figure 5 resulted about the behaviour of component extruder’s availability with
respect to both failure and repair rate which are depicted that with increase failure rate the
availability decreases and with increasing repair rate, availability increases.

• Table 5 and figure 6 shown the variation in availability of component dye with respect to both
failure and repair rate which are depicted that with increase failure rate the availability decreases
and with increasing repair rate, availability increases.

• Table 6 and figure 7 shown the variation in availability of component cutter with respect to both
failure and repair rate which are depicted that with increasing failure rate the availability
decreases and with increasing repair rate, availability increases.

• Table 7 analyzed the component performance based on availability with failure and repair rate.

VII. Concluding observations

Availability of polytube is optimized by using particle swam optimization technique. During PSO 
maximum allowable velocity and weight parameters play a vital rule for analysis. For various 
combination of failure and repair rate many runs were performed. The optimal availability is 
achieved 99% at Failure rate increase from (0.003517-0.010744) and repair rate (0.004498-0.053954). The 
fundamental modeling of the manufacturing plant represents the flow of row material from one 
subsystem to another subsystem. With the help of transition diagram all the possible stages (Failure, 
Repair and reduced) are helpful to find the probabilities of every stage. To calculate (steady state and 
transit state)  the sensitive analysis of failure and repair rate of the subsystem  with maintenance 
strategy play an important rule for the management to get maximum availability of the system 
without failure. The table's (3-6) reveals the numerical analysis of the optimized availability of 
polytube manufacturing plant. Further the results are explained graphically from the (Figure3-6). The 
comparative analysis demonstrates that the subsystem Extruder has the greatest impact on the overall 
system's availability than any of the other subsystems. Other subsystems have a minor impact on the 
availability of the polytube manufacturing facility. For finding the optimal solution PSO techniques is 
very helpful . With the help of this techniques one can use different combination of failure and repair 
rate to get the optimal solution.  
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Abstract 

Process Capability Analysis (PCA) helps to improve and monitor the quality of the manufacturing 

products in industries.  The most commonly and traditionally applied indices are process capability 

index and process capability ratio. Many statistical tests require the condition that the data to be 

approximately normally distributed. When it comes to reality the data often do not follow a normal 

distribution. In such instances, different approaches are employed. Box-Cox Transformation (BCT) 

is one such methodology that is often used by quality practitioners relying on single transforming 

parameter lamda to transform the non-normal data into normal data. The widely used approach to 

decide the transforming parameter lamda is based on the rounded value of lamda instead of an 

optimal value of lamda. There are two transforming expressions available in BCT method. The 

choice of the value for lamda in BCT can have a significant impact on the results. This paper 

concentrates on the impact of data transformation in BCT method through two different expressions 

based on an optimal as well as a rounded value of lamda. The influence made by the estimates of 

process capability and process performance indices is also studied in this paper. The result of the 

analysis clearly indicates that the optimal value of lamda when employed in the first BCT 

transformation expression to estimate the process capability indices for non-normal data provides 

improvised results. For data analysis, Ms-Excel and Minitab 21 software has been used in this 

study. 

Keywords: Non-normal, Box-Cox Transformation, MLE, Process Capability, Six 

sigma 

I. Introduction

Process capability analysis (PCA) is a continuous process of monitoring and improving the quality 

of finished products produced by industries. PCA addresses the issues relating to how well a 

manufacturing process meets the required specification and it requires most often that the data 

should obey the assumption of normal distribution. The traditional process capability indices are 

purely based on normality assumption. When it comes to reality, the data often do not follow a 

normal distribution. In such instances, different approaches are employed. Data transformation for 

preserving a somewhat normal distribution has been recommended in [1]. Box - Cox 

transformation (BCT) is one such methodology that is often used by quality practitioners. The 

empirical study made in [2] has demonstrated that the findings of transformed data are much 
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superior to the results of the original data (NT methods). Further, NT methods are found to be 

inadequate in capturing the capability of the process unless the underlying distribution is close to 

or approximately normal. NT methods are unsatisfactory because the distribution deviates 

significantly from normal. See, [3]. Process capability indices are calculated using samples of data 

based on short-term or within group variation, whereas performance indices are calculated using 

all the data points and long-term or overall variation [4]. The process capability indices are 

denoted by Cp and Cpk, and process performance indices are denoted by Pp and Ppk. A detailed 

review on various methods that are chosen for performance comparison in their ability to handle 

non-normality while computing the process capability indices is presented in [5]. The most 

commonly and traditionally applied indices by industries are process capability index Cp and 

process capability ratio Cpk, which are given below in Table 1 along with the respective 

performance indices, where x is the sample mean, USL is the upper specification limit and LSL is

the lower specification limit.   

Table 1: Process Capability and Process Performance Indices 

Process capability indices Process performance indices 

Cp =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎𝑊

Cpk = min (CPU, CPL) 

𝐶𝑃𝑈 =
𝑈𝑆𝐿− 𝑥 

3𝜎𝑊
,    𝐶𝑃𝐿 =

 𝑥 − 𝐿𝑆𝐿

3𝜎𝑊

Pp =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙

Ppk = min (CPU, CPL) 

𝑃𝑃𝑈 =
𝑈𝑆𝐿− 𝑥 

3𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙
,  𝑃𝑃𝐿 =  

 𝑥 − 𝐿𝑆𝐿

3𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙

A detailed review on process capability indices for non-normal data is presented in [3] with 

an emphasis on Box - Cox transformation (BCT) and on the parameter estimation approach 

utilizing a search method to estimate the process capabilities. In [6], a method of converting non-

normal data into normal data is discussed and the transformed data is analyzed using the process 

capability indices (PCI). Further, an improved BCT model has been proposed to deal with the non-

normal data and to calculate the process capability indices. The choice of the value of the 

transforming parameter, λ and the conversion formula in BCT might have a significant impact on 

the results. Hence, in this paper, the estimates of process capability indices are obtained and the 

analysis is carried out using the optimal as well as the rounded value of λ through BCT to obtain 

improvised estimates of process capability indices and process performance indices (PPI) within 

the standard of six sigma level. Thus, the objective of the study in this paper is to investigate the 

effectiveness of the BCT conversion formula and the optimal as well as the rounded value of λ in 

data transformation and in process capability analysis for non-normal data. This study would 

assist in suggesting the most efficient way of utilizing the BCT parameter λ in data transformation 

to approximate normal data as well as to estimate process capability and PPM values for non-

normal data with the least amount of error. 

II. Methodology

In data analysis, normally distributed independent observations with constant mean and variance 

are generally assumed. However, in reality, data frequently do not follow a normal distribution. A 

family of power transformation, termed as Box - Cox transformation (BCT), for a positive response 

variable X in such circumstances has been suggested by Box and Cox. See, [7]. The goal of BCT is to 

stabilize variance and make the data more closely resemble a normal distribution. The following is 

the conversion formula:  
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𝑥𝜆 =  
𝑥𝜆− 1

𝜆
, 𝑓𝑜𝑟 𝜆 ≠ 0

log 𝑥, 𝑓𝑜𝑟 𝜆 = 0

    (1) 

It may be noted that since an analysis of variance is unchanged by a linear transformation, the 

expression given as (1) is equivalent to 

𝑥𝜆 =  
𝑥𝜆 , 𝑓𝑜𝑟 𝜆 ≠ 0

log 𝑥, 𝑓𝑜𝑟 𝜆 = 0
    (2) 

The expression given as (1) is slightly preferable for theoretical analysis since it is continuous 

at λ = 0 ,7}. The major effort in BCT is connected to the transformation of x to xλ, with the 

parameter λ describing a specific transformation. A single transforming parameter λ is the main 

source of dependence for this family of transformations and its value is determined using 

maximum likelihood estimation. One may refer to [7] and [8]. The original non-normal data is used 

to estimate the value of λ, which is then used to convert the data into approximately or nearer to 

normal based on the value of λ [6]. Initially, λ is selected within a predetermined range of values. 

With the selected λ, one would assess the following: 

Lmax = −  
1

2
 In σ 2 + In J λ, X    (3) 

Lmax = −  
1

2
 In σ 2 +  (λ − 1)  In Xi

n
i=1     (4) 

where 

 λ, X =  
∂W i

∂Xi

n
i=1 =  Xi

λ−1n
i=1  for all λ       (5) 

From (5), one may have J (λ, X) = (λ − 1)  In Xi
n
i=1 . The estimate of 

2̂ for fixed λ is defined by

,/)(ˆ 2 nS   where S(λ) is the residual sum of squares in the analysis of variance of X. Plotting 

maxL  against λ is possible after computing maxL for a number of λ values within the range. The 

value of λ that maximizes maxL yields the maximum likelihood estimator of λ. Using the

expression (1) or (2), the data and specification limits are converted to a normal variate with the 

optimal value of λ *5+. The transformed observations xλ are assumed to satisfy the normality 

assumption for an unknown λ. Based on this assumption, the transformed observations are used to 

estimate the mean and variance [7]. The maximum likelihood estimates of the mean and standard 

deviation are, respectively, given by 

μ =  
1

n

xi
2− 1

λ

n
i=1     (6) 

and 

σ =  
1

n
 

Xi
λ− 1

λ
−  

1

n

Xi
λ− 1

λ
n
i=1  

2
n
i=1    (7) 

It has been shown in [6] that, for a common probability distribution, the BCT correctly 

transforms non-normal data into normal with a success rate of over 97%. Validity of the process 

capability index based on the transformation method has been verified and concluded that the 

process capability index using BCT is effective. The choice of the value for λ in a Box - Cox 

transformation might have a significant impact on the results. In BCT, there are primarily two 

phases to convert non-normal data into normal data, the first one is to find the transforming 

parameter λ and then to generate transformed normal data by substituting the non-normal data 

along with the λ value in the appropriate BCT formula, which may be either expression (1) or its 

equivalent expression (2). In general, the rounded value of λ is preferred over optimal value of λ 

because of its ease of transformation, viz., square root transformation when λ = 0.50, cube root 

transformation when λ = 0.33, fourth root transformation when λ = 0.25, natural log transformation 
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when λ = 0.0, reciprocal square root transformation when λ = - 0.50, reciprocal transformation 

when λ = - 1.00 and no transformation when λ = 1.00 *3+.  

III. Numerical Illustrations

Process capability analysis for non-normal data is carried out to assess the capability of the non-

normal process in a real-life situation. It is to be noted in [6] that the value of CPU and CPK are 

0.73, which are below the benchmark value of 1.33 in industries and hence, the process is not 

capable. The corresponding PPM values are 14765 ensures that the process is within the standard 

of three sigma limit only. The rounded value of λ is widely used to transform non-normal data into 

normal data rather than the optimal value of λ in BCT through maximum likelihood estimation 

(MLE). Moreover, as pointed out earlier, there are two transforming expressions available in BCT 

method. One may refer to *7+. It is interesting to note that in *6+, the rounded value of λ is taken for 

data transformation instead of the optimal value of λ. Expression (2) is used to transform the non-

normal data into normal data than the expression (1) in BCT. The influence of data transformation 

utilizing optimal and rounded values of λ via expressions (1) and (2) of BCT method will be 

examined and the results of estimated process capability analysis will be compared to the results 

recorded in [6]. 

A producer, who produces mechanical parts, wants to analyze whether one type of 

mechanical components comply with the specification. The real data (RD) set pertaining to 

warping presented in Table 2 is extracted from [6]. In order to assure production quality, the 

measured warping of mechanical parts should not exceed 9.5 (i.e., USL = 9.5). Before starting with 

the real data to carry out process capability analysis, it is essential to ensure that the data is normal. 

According to the result given in [6] and from the summary of the real data set, the p-value is found 

to be 0.012, which is less than the prescribed 5% level of significance. However, 5% of the data 

points lie outside the 95% confidence interval and therefore, the hypothesis that the data follow a 

normal distribution could be rejected, establishing the fact that the data would not follow normal 

distribution. One may refer to Table 3. Hence, the real data must be transformed in order to ensure 

normality.  

Table 2: Real Data Set of Warping 

2.000 2.887 0.650 3.612 0.550 6.637 1.525 5.300 1.400 0.350 

1.050 3.187 1.262 3.574 3.100 2.400 7.900 4.012 0.975 0.712 

3.750 5.899 1.400 2.725 4.887 1.525 4.750 4.350 5.175 0.875 

1.612 2.187 3.200 1.312 2.849 0.950 5.274 8.325 6.625 3.550 

2.800 2.025 5.287 1.562 1.200 2.987 5.412 3.050 4.737 7.812 

3.287 7.037 1.675 2.462 6.225 6.200 0.525 4.387 4.050 4.212 

0.425 5.800 3.550 1.050 7.237 2.450 1.500 9.037 6.300 4.037 

8.700 4.937 0.950 4.149 3.150 1.687 4.300 1.412 3.825 7.600 

4.325 5.475 3.474 5.187 3.850 5.987 3.137 5.337 3.062 2.074 

1.762 4.050 0.787 3.212 4.774 2.750 9.112 2.562 5.862 2.650 

Table 3: Summary of Real Data 

Variable Mean SD Min Median Max Skewness Kurtosis P-value

RD 3.628 2.178 0.350 3.250 9.112 0.58 -0.31 0.012 

BCT makes use of the MLE approach to figure out the single transformation parameter using 

expressions (3), (4), and (5). As described earlier, there are two methods to transform non-normal 

data into normal data depending on the value obtained in the Box - Cox plot, namely, the 
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estimated value and the rounded value of λ. It is significant to note from the Box - Cox plot that the 

rounded value of λ is 0.50, and the estimate (optimal) of λ is 0.45. The corresponding lower and 

higher confidence limits are 0.24 and 0.70. One may refer to Figure 1 for further details. In [6], the 

rounded value (RV) of λ is considered instead of optimal value (OV) of λ to transform non-normal 

data into normal data through BCT using expression (2) and hence, the transforming expression 

reduces to square root transformation when λ = 0.50. The optimal and rounded values of λ have 

been taken into consideration while transforming non-normal data into normal data and both the 

expressions (1) and (2) are utilized to perform process capability analysis. 

Figure 1: Estimate of λ through Box - Cox Plot for RD 

Figure 2: Probability Plot for RD, TD (RV) and TD (OV) based on expression (1) and (2) 

Here, expressions (1) and (2) are used to convert the non-normal real data into normal data 

based on optimal and rounded value of λ. Table 4 displays the summary values of transformed 

data, whereas Figure 2 displays the probability plot of the real data and the transformed data 

based on RV and OV of λ. The p -values corresponding to the optimal and rounded λ tabulated in 

Table 4 are greater than the 5% and 1% level of significance, which would indicate that the data 

would follow a normal distribution. Hence, the transformed data can be used to estimate process 

capability and carry out process performance analysis.  

RT&A, No 2 (78) 

 Volume 19, June, 2024 

369



Krishnan J and Vijayaraghavan R   

PROCESS CAPABILITY ANALYSIS TROUGH BOX-COX TRANSFORAMTION 

Table 4: Summary of Transformed Data using BCT Method 

Variable λ Value Mean SE of Mean Min Median Max Skewness Kurtosis P-value

RD - 3.628 0.218 0.350 3.250 9.112 0.58 -0.31 0.012 

TD (RV) (1) 0.50 1.810 0.059 0.591 1.802 3.018 -0.04 -0.73 0.461 

TD (RV) (2) 0.50 1.620 0.119 -0.081 1.605 4.037 -0.04 -0.73 0.462 

TD (OV) (1) 0.45 1.697 0.051 0.623 1.699 2.702 -0.10 -0.72 0.337 

TD (OV) (2) 0.45 1.509 0.109 -0.084 1.525 3.642 -0.14 -0.70 0.391 

* TD (RV) (1) – Transformed data based on rounded value of λ through BCT expression 1 | TD (RV) (2) – Transformed data 

based on rounded value of λ through BCT expression 2 | TD (OV) (1) – Transformed data based on rounded value of λ 

through BCT expression 1 | TD (OV) (2) – Transformed data based on rounded value of λ through BCT expression 1

I. Estimate of PCI and PPI Utilizing Rounded Value of λ Through BCT

The estimates of process capability indices CPU and CPK are 1.34 and process performance indices 

PPU and PPK are 1.32 respectively, when utilizing RV of λ for data transformation through BCT 

expression (1) and CPU and CPK are 0.73, and PPU and PPK are 0.71 through BCT expression (2). 

The result obtained from expression (1) based on OV of λ is approximately equal to the guideline 

value 1.33 and hence, the process is capable to produce the mechanical parts within the given 

specification limit and the respective PPM values of process capability and process performance 

indices are 28 and 38 ensuring that the process is better than 5σ limits. On the other hand the result 

obtained from expression (2) does not meet the standard of guideline value 1.33 in industries and 

the respective PPM values are 14778 and 16303, which conform that the process is within 3σ limit 

only and hence, the process may be considered as incapable. Additionally, some data points are 

beyond specification limits. Hence, when RV of λ is utilized to transform non-normal data into 

normal data through BCT expression (1), better results would be possible rather than BCT 

expression (2). One may refer Tables 5 and 6, and Figures 3 and 4 for more information. 

Figure 3: Estimate of Process Capability and Performance Indices for TD (RV) Data 

 Based on Expression (1) in BCT Method 
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Figure 4: Estimate of Process Capability and Performance Indices for TD (RV) Data 

 Based on Expression (2) in BCT Method 

Table 5: Estimate of Process Capability and Performance Indices Based on Transformed Data 

Variable 
λ 

PCI and PPI of transformation data 

based on expression (1); 

45.0/)1( 45.0  xx
in BCT 

PCI and PPI of transformation data 

based on expression (2); 
50.0xx 

in BCT

USL Cpk PPM Ppk PPM USL Cpk PPM Ppk PPM 

TD (RV) 0.50 4.164 1.34 28 1.32 38 3.082 073 14778 0.71 16303 

TD (OV) 0.45 3.898 1.47 5 1.45 7 2.754 0.71 17001 0.69 18689 

Table 6: Process Fallout in Defective Parts per Million With Respect to Different Sigma Levels 

Sigma Level Percentage PPM Values 

6 99.9997% 3.4 

5 99.98% 233 

4 99.4% 6,210 

3 93.3% 66,807 

2 69.1% 308,537 

1 30.9% 691,462 

II. Estimate of PCI and PPI Utilizing Optimal Value of λ Through BCT

The estimate of process capability indices CPU and CPK are 1.47 and process performance indices 

PPU and PPK are 1.45 respectively, when utilizing OV of λ through BCT expression (1) and CPU 

and CPK are 0.71 and PPU and PPK are 0.69 through BCT expression (2). The result attained using 

OV of λ through expression (1) is greater than the guideline value 1.33 and the capability of the 

process is excellent. Hence, the process is capable to produce the mechanical parts within the given 

specification limit. The respective PPM values of process capability and process performance 

indices are 5.05 and 7.29, which guarantee that the process is better than 5σ limit and 

approximately follow 6σ result, whereas the actual PPM value corresponding to 6σ is 3.4 *9+. 
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Conversely, the result observed from expression (2) is below the guideline of 1.33, which would 

indicate that the process could not be considered as capable and the respective PPM values are 

17007 and 18689, ensuring that the process is within the standard of 3σ limit. Hence, making use of 

OV of λ to transform non-normal data into normal data through BCT expression (1) provides 

better results than BCT expression (2). One may refer to Table 5 and 6, and Figure 5 and 6 for 

details. 

Figure 5: Estimate of Process Capability and Performance Indices for TD (OV) Data 

Based on Expression (1) in BCT method 

Figure 6: Estimate of Process Capability and Performance Indices for TD (OV) Data 

Based on Expression (2) in BCT Method 
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A process is categorized as inadequate, if PCI < 1.00; capable, if 1.00 ≤ PCI ≤ 1.33; satisfactory, 

if 1.33 ≤ PCI ≤ 1.50; excellent, if 1.50 ≤ PCI ≤ 2.00; and super, if ≥ 2.00. Automotive industries use 

CPK = 1.33 as a benchmark in assessing the capability of the process. If Cp and CPK are greater 

than or equal to 2 and 1.5, respectively, a process is said to be under six-sigma controls. Similarly, 

Pp and PPK must be more than 2 and 1.5, respectively, for a process to generate six-sigma results. 

See, [9]. Table 6 lists the process fallout in PPM in relation to the proportion of good items and 

PPM values for various sigma levels.  

IV. Result and Discussion

The primary goal of this study is to investigate the effect of rounded value (RV) and optimal value 

(OV) of the transforming parameter λ, on data transformation and estimation of process capability 

and process performance indices through the BCT method. Furthermore, in order to obtain the 

transformed normal data and the estimates of process capability indices (PCIs) and process 

performance indices (PPIs), the identified λ values, such as RV and OV of λ must be substituted in 

BCT using expressions (1) and (2). The estimates of CPU and CPK in [6] are 0.73 while PPU and 

PPK are 0.71, respectively. These values are below the industry benchmark value of 1.33, indicating 

that the process is not capable. Remarkably, the RV of λ is used for estimating PCI and PPI, and 

also for data transformation rather than the OV of λ. However, as demonstrated by a numerical 

example in this study, the use of optimal λ value to convert non-normal data into normal data 

produces results that are as near to normal as possible and have a smaller standard error of mean 

than the RV of λ. One may refer to Table 4. Hence, the industry benchmark value of 1.33 is met by 

the estimated CPU and CPK of 1.47 and PPU and PPK of 1.45, respectively, based on OV of λ 

through BCT expression (1).  

Process is, therefore, as demonstrated in Table 5 and 6, thought to be capable of producing 

manufacturing parts that meet the specification limit. Besides the estimates of process capability 

and process performance indices, the respective PPM values are essential in assessing the process 

fallout. It may be noted that only 3.4 defective items out of every million products should have 

been recorded in a production process that conforms to the standard of 6σ. When using the OV of 

λ in expression (1) of the BCT method, the process approximately follows 6σ outcome, as indicated 

by the PPM values of 5.05 and 7.29. One may refer to Table 5, and Figure 5 and 6. 

The mean and range charts (X bar – R charts) are drawn for transformed data based on the OV 

and RV of λ, in order to clearly visualize the statistical control over the process of non-normal real 

data. All of these data points in Figures 7, 8, 9 and 10 fall within the control limits, indicating that 

the process is statistically under control. However, compared to the results obtained from a RV of 

λ, the estimate and PPM values corresponding to transformed data based on OV of λ produced 

significantly better outcomes. 

It is evident from Table 4, and Figures 7, 8, 9 and 10 that when data is transformed using the 

OV of λ, the standard error of mean obtained is smaller than the one obtained from the RV of λ. 

Hence, it is necessary to use optimal λ to get better results, as it reflects the exact transforming 

pattern rather than a rounded value and this ensures all data points as close to normal as possible. 

Specifically, the utilization of BCT expression (1) to convert non-normal data into normal data 

produces better results than using BCT expression (2) when an OV of λ is used. As pointed out in 

[7], the BCT expression (1) is slightly preferable than expression (2) for theoretical analysis because 

it is continuous at λ = 0. Also, it can be observed from Figures 4 and 6 that some of the data points 

fall beyond the specification limit conforming that, the process is not capable to produce the 

mechanical parts within the speciation limit when estimated using RV of λ through expression (2). 

This result can be compared with [6] to understand that, using OV of λ through BCT expression (1) 

produces improvised results that are nearer to the standard of 6σ than using Rounded RV of λ. 
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Figure 7: Xbar and R Chart for Transformed Data using Rounded Value of λ through expression (1) 

Figure 8: Xbar and R Chart for Transformed Data using Rounded Value of λ through expression (2) 

Figure 9: Xbar and R Charts for Transformed Data using Optimal Value of λ through expression (1) 
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Figure 10: Xbar and R Charts for Transformed Data using Optimal Value of λ through expression (2) 

V. Conclusion

The methodology of continuously assessing and enhancing the quality of manufacturing products 

in industries is known as process capability analysis. In order to handle the problems pertaining to 

how well a manufacturing process satisfies the necessary specifications, PCA needs that the data 

should follow the normal distribution. If the normality assumptions are violated or failed, some 

adjustments must be made to the traditional process capability indices, which would solely 

depend on normality assumptions. A significant methodology for handling non-normal data is 

data transformation. One such methodology is the Box-Cox Transformation. Using a single 

transforming parameter λ, which can be either a rounded value from the MLE approach or an 

estimated (optimal) value, the non-normal data can be converted into normal data. By taking into 

account of the objective of this paper, both optimal and rounded value of λ are considered for data 

transformation through two BCT expressions. Based on the data analysis, improvised estimates of 

PCIs and PPIs are obtained, when utilizing an optimal value of λ through BCT expression (1) 

rather than the rounded value of λ through BCT expression (2). The corresponding PPM values of 

the PCIs and PPIs are very smaller and approximately follow the case of standard of 6σ. 

Furthermore, it is evident that the transformed data is nearer to normal with a smaller standard 

error of mean when utilizing optimal value of λ. Thus, one can conclude that the improvised 

estimates would generally be obtained by utilizing optimal value of λ than the rounded value of λ 

when using Box-Cox transformation. In particular, the most effective results for PCI’s and PPI’s are 

quite possible only when utilizing optimal value of λ through BCT expression (1) rather than BCT 

expression (2).  
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Abstract 

In today's fast-paced lifestyle, pursuing holistic well-being has increased interest in monitoring and 

managing stress levels. Heart rate variability (HRV), a non-invasive measure of autonomic nervous 

system activity, has emerged as a valuable tool for assessing individual responses to stress. This study 

focuses on utilizing the capabilities of the Apple Watch to collect continuous HRV data in real-world 

contexts. A diverse dataset from individuals working in software companies was gathered, including 

HRV recordings during various stress-inducing scenarios. By employing HRV Time Domain, 

Frequency Domain, and Nonlinear features, the study uses Principal Component Analysis (PCA) to 

extract relevant features, considering the personalized nature of stress reactions. Addressing 

variations in stress responses among individuals, the study introduces an innovative approach using 

Long Short-Term Memory (LSTM) networks. A hybrid model, combining feature selection, 

dimensionality reduction, and ensemble techniques, is developed to predict stress levels based on 

individualized HRV patterns. Rigorous training and validation reached to an 88% accuracy rate. 

These findings demonstrate the effectiveness of the proposed methodology. The LSTM model 

accurately forecasts stress responses, highlighting the potential of Apple Watch-acquired HRV data 

for stress assessment. Beyond prediction, the study enhances understanding of the complex interplay 

between HRV dynamics and unique stress reactions. This novel approach, leveraging Apple Watch 

features and intelligent computing, offers a personalized method to predict stress levels using K-

Means Clustering Algorithm. Through integrating K-means clustering and person-specific HRV 

analysis, the research endeavours to advance our comprehension of the intricate interplay between 

physiological responses and stressors. The study offers a novel perspective on stress response 

variations by delving into the distinct autonomic patterns characterizing each cluster. It sets the stage 

for developing targeted interventions and personalized stress management strategies. 

Keywords:  Stress Detection, Apple Watch Dataset, HRV, LSTM 

I. Introduction

Nowadays, stress detection research has made strides with cutting-edge methods. Wearable tech 

captured heartbeat dynamics for stress prediction in college students [1]. Wearable sensors gathered 

diverse physiological signals, showcasing multi-dimensional stress responses [2]. Deep learning in 

2022, with "Stress Detection Using Deep Convolutional Neural Networks," revealed patterns in 

physiological data [3]. "Stress Recognition Using Wearable Sensors and Mobile Phones" combined 

wearables and mobiles for accessible stress assessment [4]. Collectively, these studies illuminate 

stress's nuances via tech-driven insights. Wearables and deep learning enhance stress detection's 

precision, potentially personalizing interventions. This dynamic interdisciplinary progress ushers in 

more accurate, accessible strategies for stress assessment.  

Many Datasets are publicly available for stress recognition. The novelty resides in the integration of 

HRV analysis. No prior study has generated a continuous 15-day dataset from working 

professionals in software companies using the Apple Watch. This dataset serves as a rich resource 
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for understanding stress over time. Furthermore, the study introduces personalized stress detection 

through clustering, recognizing the diversity of stress manifestations. As individuals navigate the 

challenges of modern work environments, their physiological responses to stress manifest in unique 

ways. The dataset is augmented with discrete emotion labels corresponding to their tasks, 

specifically Neutral, Stress, and Not Stress. This dataset provides a foundation for personalized 

stress assessment, acknowledging that stress responses are distinct for each individual. 

II. Proposed Methodology

The physiological signal calculated by the time interval (R-R Interval) between consecutive 

heartbeats in milliseconds is known as heart rate variability. The supportive branch of the autonomic 

nervous system (ANS) controls the stress or reaction, preparing us to act, respond, and conduct in 

rebuttal to life's diverse needs. The time between heartbeats (R-R interval) varies from beat to beat, 

and this variation in HRV can reveal a lot about the body's physiological state. HRV should naturally 

rise during relaxing activities and fall during stressful situations when the body is able to take 

advantage of increased sympathetic action. Heart rate variability is higher when the heart beats 

slowly; when the heart rate increases, such as during stress or exercise, it decreases during relaxing 

activities. Heart rate and HRV are in the inverse relation. The Heart rate variability level intuitively 

varies daily depending on activity, anxiety, and work-related stress. The duration between 

heartbeats (R-R interval) fluctuates from beat to beat and can give information about the body's 

physiological reaction.  

When investigated in a deeper context, stress is detrimental in workplace situations. According to 

The American Institute of Stress [5], 80% of workers feel stress on the job, so we have decided to 

detect stress in working employees. Here, we have mentioned different datasets available to see the 

stress conditions of persons using physiological Signals. 

Authors [6] (Park & Kim, 2018)  used an HRV signal to predict a daily mental stress level using a 

photoplethysmography (PPG) sensor in the wristband-type wearable device. They extracted low-

frequency (0.04Hz – 0.15Hz) and high-frequency (0.15Hz – 0.4Hz) features of HRV using the 

autoregressive (AR) model. Eight university students' data was collected using a self-evaluation PSS 

scale for 30 seconds thrice daily for a week. Linear regression provided an accuracy of 

86.35%, although additional machine learning algorithms and well-known PPG analytic tools can 

produce better outcomes. ten users wore the FITBIT device to detect stress and an online 

questionnaire. In addition, it measures different physical activities like sleeping patterns, BMI, and 

Heart rate variability[7]. 

The Heart rate (HR), galvanic skin response (GSR), and electrooculogram (EOG) signals are collected 

from 11 subjects. The participants were also given a mental arithmetic task and a challenging LEGO 

assembly without instructions to predict stress. They applied a k-means clustering algorithm for 

heart rate, EDA, and EOG and got an accuracy of 70.6 percent, 74.6 percent, and 63.7 percent, 

respectively[8].  

To identify different physiological changes during a stressful task. The Trier Stress Test was used to 

prompt stress, with resting and stress phase ECGs, and the inter-second heart rate was recorded 

(using a FitBit). The study enlisted the participation of 30 student doctors and 30 general public. 

More investigation with a large sample of people with stratified anxiety scores based on the 

Depression Anxiety Stress Scale is required to further analyze the association with HRV [9].   

The WESAD (Wearable Stress and Affect Detection) dataset [10] is a publicly available dataset used 

for research in affective computing and physiological signal analysis. It was developed to support 

developing and evaluating algorithms and models for stress and affect detection using wearable 

sensors. The dataset includes physiological sensor data collected from wearable devices, such as 

heart rate sensors and accelerometers, and self-assessment labels related to the participants' stress 
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levels and affective states. The data was collected from 15 participants in a controlled environment 

while they underwent different stress-inducing tasks and activities. 

AMIGOS [11] was designed to collect participants' emotions in two social contexts: individual and 

group. AMIGOS was constructed in 2 experimental settings. First, 40 participants watched 16 short 

emotional videos. Then, they watched four long videos, including a mix of lone and group sessions. 

These emotions were annotated with self-assessment of affective levels and external assessment of 

valence and arousal through GSR and ECG signals. 

The SWELL dataset [12] comprises heart rate variability (HRV) indices derived from the multimodal 

SWELL knowledge work (SWELL-KW) dataset, designed for research on stress and user modelling. 

This dataset was developed by researchers at the Institute for Computing and Information Sciences 

at Radboud University. The SWELL dataset was created through experiments involving 25 subjects 

engaged in typical office work activities, such as writing reports, making presentations, reading 

emails, and searching for information. The dataset captures various data modalities, including 

computer logging, facial expressions, body postures, ECG signals, and skin conductance. Each 

participant in the study underwent three different working conditions: stress,  time pressure, and 

interruption. 

The author was involved in curating a Social Media Status dataset highlighting three key emotions: 

happiness, sadness, and anger. This dataset was drawn from status updates contributed by seven 

distinct individuals and acquired from Kaggle. The dataset's core focus was emotions, with entries 

structured to include the status text and corresponding sentiment. Achieved an accuracy of around 

79% using a CNN classifier [13]. 

I. Extraction of Heart Rate from Apple Watch

An optical heart sensor in the Apple Watch SE, as shown in Figure 1, measures your heart rate and 

heart rhythm. Utilize the Breath application to calculate your stress with maximum precision. The 

Apple Watch has numerous capabilities that can be used to track stress levels. For instance, it 

features a heart rate monitor that can detect variations in the wearer's heart rate and heart rate 

variability, which can signal stress levels. A breathing app for the Watch also leads users through 

breathing exercises to lower stress. The gadget also monitors sleep patterns, physical activity levels, 

and other health indicators that may assist in pinpointing stress origins and offer insights into 

general well-being. It's crucial to remember that these features shouldn't be used to diagnose or treat 

any medical conditions and aren't intended to replace expert medical advice. 

Figure 1:  Apple Watch SE 

Gathering data in real-life contexts remains uncommon due to challenges such as limited context 

and reliance on self-reported information. Real-world data collection possesses both advantages and 

challenges. While it maintains ethical constraints and context awareness, it lacks a clear ground truth 

and introduces noisy data. HRV in real-world scenarios and highlighted its small relationship with 

stress compared to controlled lab settings[14]. This underscores the importance and complexity of 

real-world data collection, offering insights that can be challenging to deduce. 
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Figure 2: Extraction Process of Heart Rate Using Apple Watch 

Figure 2 shows the process of extracting heart rate using The Apple Watch and the Health 

application on your paired iPhone. It can accurately measure your heart rate.  

 Ensure your Apple Watch is correctly worn on your wrist.

 Tap the Heart Rate app on your Apple Watch.

 Begin measuring your heart rate within the app.

 Wait a few seconds for your heart rate to display on the Watch.

 The data is automatically synced to the Health app on your paired iPhone.

 Open the Health app on your iPhone to see heart rate data trends.

 Download Export.XML file

 Extract Heart Rate Data from that XML file.

Figure 3: Heart Rate Signals of Subjects 

Figure 3 shows individual plots for the subject's heart rate signal, showcasing the variations in their 

heart rate over time. The exact appearance of the plots and the specific data details depend on the 

content of the CSV file. This t would be useful for visualizing and analyzing heart rate variability 

among different subjects in the dataset.  
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II. File Preprocessing

Figure 4 explains the heart rate variability (HRV) data analysis derived from XML files, particularly 

focusing on data collected through Apple Watch devices. The script's main objective is to calculate 

a diverse array of HRV features encompassing both time domain and frequency domain metrics, 

subsequently organizing and storing these features within a CSV (Comma-Separated Values) file. 

Several critical libraries for XML parsing, HRV analysis, numerical computations, CSV handling, file 

searches, and operating system interactions are imported to initiate this processed. By defining a 

designated time frame using start and end dates, the script specifies the period for data extraction 

and evaluation. 

Figure 4: Process of File Generation 

Utilizing the glob function, the script locates the relevant XML files containing heart rate data. The 

CSV file that will house the calculated HRV features is opened, and its initial row is allocated for 

labels describing the different metrics that will be computed and saved. 

III. Features Calculations & Selection

The core functionality of the script involves iterating through the identified XML files. 'Record' 

elements are examined within each file to determine pertinent heart rate data. Valid heart rate 

measurements are isolated by cross-referencing the data's time stamps with the designated time 

frame. Subsequently, the script calculates RR intervals, the temporal gaps between consecutive 

heartbeats, from the heart rate values. It forms the basis for HRV analysis, then employs the HRV 

analysis library to address missing values, perform frequency domain analysis and compute time 

domain. Here is the summarized description of HRV analysis. The data is obtained from an Apple 

Health export file and is parsed using the xml.etree Element Tree module. We define a specific date 

range to query the data for analysis. 

First, we iterate over the XML file to extract heart rate values recorded within the specified date 

range. We filter out the relevant data based on the sample type, explicitly focusing on heart rate 

measurements ('HKQuantityTypeIdentifierHeartRate'). The extracted heart rate values are stored in 

a list called heart rates. Next, we calculate the RR intervals from the extracted heart rate values, 

representing the time between successive heartbeats. We utilize a formula to estimate the RR 

intervals from the heart rate values, considering the average duration between successive heartbeats. 

Additionally, we apply the Malik rule, which was implemented through the 

hrvanalysis.remove_ectopic_beats function to identify and remove ectopic beats from the RR 
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interval data. 

Time domain features quantify RR interval variability, revealing insights into heart rate fluctuations 

over specific time spans. The Mean NN Interval (Mean NNI) portrays the average duration between 

successive normal heartbeats [15]. The Standard Deviation of NN Intervals (SDNN) characterizes 

overall RR interval variability, indicative of autonomic modulation. The Root Mean Square of 

Successive Differences (RMSSD) reflects short-term variability with parasympathetic sensitivity [16]. 

The Percentage of NN50 Intervals (pNN50) gauges parasympathetic influence by identifying RR 

intervals differing by over 50 ms [17]. 

Frequency domain analysis dissects HRV into frequency bands. Low Frequency (LF) power signifies 

both sympathetic and parasympathetic activity, whereas High Frequency (HF) power primarily 

denotes parasympathetic modulation [17]. The LF/HF ratio quantifies sympathetic-parasympathetic 

balance [18]. 

The nonlinear analysis captures intricate patterns. Sample Entropy (SampEn) gauges HRV 

complexity based on pattern repetition. Poincaré plots visually explore RR interval relationships, 

providing insights into autonomic dynamics [19]. 

Additional PhysioBank, PhysioToolkit, and PhysioNet furnish resources for physiological signal 

access and analysis. Advanced HRV analysis methods are exhaustively covered, offering insights 

into diverse techniques [20]. 

To organize and store the accumulated HRV features, the script combines these metrics with the 

corresponding heart rate values and unique subject identifiers. This composite data is structured 

into arrays and consistently added as new rows within the previously opened CSV file. As the script 

concludes the analysis for each subject, it echoes the calculated HRV feature arrays to the console. 

This Python script provides an automated and systematic approach to parsing, analyzing, and 

storing HRV data from Apple Watch-generated XML files. It facilitates an in-depth exploration and 

understanding of physiological monitoring and health analysis within heart rate variability. 

Figure 5: Feature Importance vs. Explained Variance Ratio 
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Figure 5 indicates the most influential features by examining the explained variance ratios associated 

with each principal component. These ratios indicate the proportion of total variance  

Figure 6: K-Fold Stratified Sampling and Accuracy 

in each component's dataset. The indices of the most impactful features are identified by sorting 

these ratios in descending order. The actual feature names are then extracted from the original 

dataset columns. We Have Used the stratified cross-validation method to evaluate the performance 

of a machine learning model in a way that ensures the distribution of target classes within each fold 

of the cross-validation is representative of the overall distribution in the dataset. This is particularly 

important when dealing with imbalanced datasets where certain classes might be underrepresented. 

The goal is to prevent any particular class from being disproportionately overrepresented or 

underrepresented in any fold, which could lead to biased model evaluation. StratifiedKFold is used 

to split the data into training and testing sets while preserving the class distribution as defined in 

Figure 6. The model is trained and evaluated on each cross-validation fold, and the results are stored 

in the fold_results list. In our work, six fold results are achieved. 

III. Experimental Results and Discussion

We Have used the architecture of the LSTM model [21] using the Keras API provided by TensorFlow 

[22]. The model consists of an LSTM layer with 64 units, a fully connected (Dense) layer with three 

output units (matching the number of classes) and a softmax activation function. The model is 

compiled with the Adam optimizer and categorical cross-entropy loss function, which is suitable for 

multiclass classification. We referenced the existing models with the proposed ones. In the base 

paper, the author [23]  observed the root-mean-square error (RMSE) and Mean absolute error (MAE) 

without calibration samples. The accuracy of the classification models on the SWELL Dataset for  

HRV signals was 61.6%. After adding 100 calibration samples, accuracy increased to  93.9%. Machine 

learning algorithms, such as supervised and unsupervised, are used on the SWELL-KW Dataset. 

From that, decision tree induction has the highest accuracy, with 75 % accuracy [24]. In our 

experimental setup, we get an overall 88% accuracy by applying the LSTM model and considering 

the time series property. However, neither author used the time-series property to obtain the result. 

The epoch-wise accuracy and loss plot visualizes the training process, showcasing the evolution of 

accuracy and loss over the training epochs, as shown in Figure 7. 
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Figure 7: Epochwise Accuracy and Loss Plot 

Figure 8: Confusion Matrix for Different Stress Conditions 

Figure 8 illustrates the Confusion Matrix, delineating each row as representing the actual stress 

level observed in the dataset, while each column represents the predicted stress level generated by 

the model. 

By analyzing the values within the confusion matrix, we can assess the model's ability to classify 

instances into their respective stress categories correctly. For instance, the diagonal elements of the 

confusion matrix represent the instances where the predicted stress level aligns with the actual stress 

level, indicating accurate predictions by the model. On the other hand, off-diagonal elements 

highlight instances where the model misclassifies the stress level, providing insights into the types 

of errors made by the model. It defines various stress conditions observed in the study. Stress levels 

are stratified into three distinct categories: 0, 1, and 2, each conveying specific contextual nuances. 

Stress level 0 denotes a neutral state, indicative of an absence of significant stressors and a generally 

favourable condition. Conversely, stress level 1 signifies the experience of stress triggered by 

particular circumstances such as meetings, presentations, or looming project deadlines, reflecting 

stress responses associated with task-related pressures. In contrast, stress level 2 delineates stress 

stemming from routine work responsibilities within the organizational setting, highlighting stress 

manifestations arising from day-to-day job demands and obligations. This categorization provides 

a nuanced understanding of stress dynamics, encompassing varying stressors in professional 

environments. 
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Figure 9: The flow of Stress Detection 

Figure 9 illustrates the overall flow of stress detection systems, 

 The stress detection process begins by gathering data through smartwatches worn by 15

employees. These smartwatches collect various physiological information that could

indicate stress levels.

 A dataset is constructed with the collected data. This dataset includes information in terms

of frequency, time, and nonlinear domains. These aspects provide a comprehensive view of

the physiological signals related to stress.

 Preprocessing techniques are applied to enhance the quality of the dataset. This involves

cleaning and refining the data to eliminate noise, inconsistencies, or irrelevant information.

 The dataset identifies 22 features derived from Heart Rate Variability (HRV).

 A subset of 8 features are selected using Principal Component Analysis (PCA) to streamline

the analysis. This reduces the complexity of the data while retaining its essential patterns.

 The process of model evaluation involves using k-fold stratified sampling. This technique

ensures that the dataset is divided into subsets while maintaining the distribution of stress

levels in each subset. Subsequently, a Long Short-Term Memory (LSTM) model is employed,

a type of neural network well-suited for sequence data. This model utilizes the selected

features to predict and categorize stress levels in subjects.

IV. Personalized Model

As different users have relatively different responses to stress conditions, examining the individuals' 

heart rate variability ranges, the dataset and machine learning model should be designed carefully. 

So we have applied the clustering algorithm after applying LSTM Model on 15 Individuals and after 

applying  K-means Clustering Algorithm.  

Authors investigated stress response patterns through the application of K-means clustering. The 

authors utilize K-means clustering to analyze and group stress response data from individuals. By 

applying this technique, they aim to identify distinct. This study contributes to the field of stress 
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research by utilizing a data-driven approach to understand and categorize stress response 

behaviours [25].Research was conducted to investigate stress response clusters using K-means 

analysis. The authors explore distinct clusters within stress response data by employing the K-means 

clustering algorithm. The study aims to identify and characterize patterns in how individuals 

respond to stress factors [26].  

Figure 10: The flow of Personalized Stress Detection 

Figure 11: Clusters According to Stress Response of Individuals 
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Performing K-means clustering on individuals based on their response to stress conditions. K-means 

clustering is a popular unsupervised machine-learning technique used for grouping similar data 

points into clusters. In your case, the data points would represent individuals, and the features could 

be the responses of those individuals to stress conditions. Calculating the average heart rate and 

condition for each subject creates a data frame that is subsequently sorted by condition values in 

Figure 10. Employing the K-Means algorithm with three clusters, the script performs clustering on 

the data and assigns cluster labels to each subject. These cluster labels are then mapped to stress 

response labels, and the resulting categorical stress levels are incorporated into the data frame. The 

data visualization aspect involves generating a 3D scatter plot using Plotly Express, wherein cluster 

labels, subject IDs, and stress response labels are represented along the x, y, and z axes, respectively, 

as shown in Figure 11. Customizations to the plot are applied, including axis labels, hover data, and 

legend formatting. Overall, it serves to analyze and visualize stress response patterns in relation to 

different subjects. 

V. Discussion
Our study delves into stress assessment and management, leveraging the unobtrusive and non-

invasive capabilities of wearable technology, specifically the Apple Watch. The overarching goal is 

to develop a methodology that enables the continuous and accurate detection of stress over extended 

periods, aligning with the growing emphasis on holistic well-being and stress management in 

today's fast-paced world. Our study aimed to utilize Apple Watch-acquired HRV data for 

personalized stress assessment, employing a robust methodology involving feature extraction, 

model development, and validation. Through rigorous analysis, we achieved an impressive 88% 

accuracy rate in predicting stress levels using an LSTM model, highlighting the efficacy of our 

approach. These findings underscore the potential of wearable technology in monitoring and 

managing stress effectively. While promising, our study acknowledges limitations such as the small 

sample size and the need for further validation. 

Additionally, it's worth noting that other models beyond LSTM, such as Random Forest or Support 

Vector Machines, could also be explored for stress prediction. Recommendations include validation 

across diverse populations and settings, comparative analysis with existing methods, and 

exploration of long-term intervention effects. Overall, our study contributes to advancing stress 

assessment methodologies and offers practical solutions for personalized stress management in real-

world contexts. Lastly, the use of wearable devices for stress assessment raises ethical considerations 

related to data privacy, informed consent, and potential stigmatization. It is essential to address 

these ethical concerns and ensure responsible use of personal health data in stress management 

interventions. 

VI. Conclusion and Future Work

Based on our experimental findings, it was evident that applying suitable preprocessing techniques 

led to a notable enhancement in classifier efficiency, improving results by approximately 4-5%. We 

are achieving 88% accuracy using LSTM. This study offers a meticulously designed blueprint for 

stress detection. It underscores the potential of smartwatch-derived physiological data and 

advanced machine learning techniques in comprehensively addressing the complex challenge of 

stress assessment. This research's outcomes contribute to our understanding of stress dynamics and 

the development of reliable tools for stress monitoring, holding significant implications for 

individual well-being and workplace productivity. As this research advances stress detection using 

physiological data and LSTM analysis, several avenues for future work emerge. One significant 

direction is the exploration of a more extensive and diverse dataset to validate the model's 

performance across different demographic and environmental factors. Incorporating physiological 

signals beyond HRV, such as skin conductance and body temperature, could enrich the model's 

accuracy. Personalized features can be added to detect stress in individuals. Researchers could 

consider exploring more advanced clustering techniques that can capture variations within clusters 
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more effectively or combining clustering with other analysis methods to provide a more 

comprehensive understanding of stress response patterns at both the group and individual levels. 

This paper is a strong foundation for further research in stress analysis and physiological responses, 

potentially contributing to both scientific understanding and practical applications in health and 

wellness for individuals. 
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Abstract 

A shock model with two types of shocks functioning in the presence of an additional risk is 

proposed. Survival probability and mean residual life times of the proposed models are derived and 

assessed through the data of life testing experiment. Model validation and estimation of survival 

probability and mean residual life times is done through simulation studies. Comparison of survival 

probabilities and mean residual life times of models functioning without and with additional risk is 

made.      

Keywords: Damage Shock, Catastrophic Shock, Additional Risk, Survival 
Probability, Mean Residual Life Time, Life Testing Experiment, Maximum 
Likelihood Estimator. 

I. Introduction

Failure of equipment/ death of a living being is usually attributed to a single cause, however 
various risks competing for the life of an equipment/ individual must be considered when 
assessing reliability/ survivability. A tool may fail due to manufacturing defect, (e.g. Geometric 
irregularity), not maintaining operating conditions when in use, overstressing, etc. An individual 
with heart failure is more likely to die from kidney failure than person without heart problem. 
Thus, the focus is on studying complexities of survival in the presence of competing or additional 
risk(s).  

In our day-to-day life, we encounter with many examples wherein failure of a system/ 
equipment/ individual due to two types of shocks namely damage shock (causing damage) and 
catastrophic shock. [13] have discussed the examples of death due to heart attack (damage shock) 
or cardiac arrest (catastrophic shock). Here, one cannot rule out the possibility of death of a heart 
patient due to accident/ stroke/ renal failure.  

Another example could  involve an individual undergoing treatment for diabetes. 
Consider an individual receiving a treatment for diabetes. This marks the damage shock, where 
the initial impact is significant, but with proper management, the person can lead a healthy life. 
For the condition to lead to a more serious outcome, the damage must escalate. If the diabetes is 
poorly controlled, it will lead to complications such as kidney failure or severe cardiovascular 
issues, it happens when the damage exceeds the manageable threshold. A catastrophic shock may 
occur if the blood sugar level collapses suddenly due to hypoglycemia, where the person's body 
doesn't have enough glucose for proper functioning. This can result in loss of consciousness, and if 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

390

mailto:abhijadhav10292@gmail.com
mailto:sbmunoli@yahoo.co.in


Abhijeet Jadhav and S. B. Munoli  
SURVIVAL PROBABILITY AND MRLTS OF SHOCK MODEL 
WITH ADDITIONAL RISK 

not promptly addressed, it may lead to death. And also, additional risks come in the form of 
coexisting health conditions, like the development of nerve damage or an increased risk of 
infections due to compromised immunity. It highlights the importance of not only managing 
diabetes but also addressing associated risks to ensure a comprehensive approach to health and 
well-being.    

The case of an investor who invests in a diversified portfolio of stocks also serves as an 
example for the problem being considered here. Consider an individual investing in a diverse 
portfolio of stocks. A damage shock occurs when a sudden market downturn due to economic 
uncertainties, has the potential to lead to a decline in the overall portfolio value. If this downturn 
escalates into a systemic financial crisis, exceeding the investor's tolerance threshold, it could result 
in a market collapse, causing significant and insurmountable losses. On the other hand, a 
catastrophic shock, such as an unforeseen event like a global pandemic, introduces an 
unpredictable element beyond routine market fluctuations and systemic crises, including the 
influence of geopolitical events. These events can significantly amplify challenges, contributing to 
the complexity of financial decision-making. An additional shock could be fluctuations in prices of 
other related goods. For instance, if major companies’ stocks experience a decline, investors may 
swiftly shift their focus to alternative assets like gold or experience financial losses due to 
unanticipated changes in tax regulations.  

Mean Residual Life (MRL) function is an interesting alternative to the survival function or 
the hazard function of a survival distribution. It is the expected additional lifetime given that a 
component has survived until time ‘𝑡’. Actuaries employ MRL to design insurance portfolio. 
Biomedical researchers use MRL in analyzing survivorship. Increasing MRL distributions are 
useful models in the studies of life lengths (durations) of wars and strikes. These functions occur 
naturally in the studies of optimal disposal of an asset, renewal theory, dynamic programming and 
branching processes. MRL has been widely considered in the literature by researchers of several 
areas. Few of them are listed here.   

A detailed analysis of the mean residual life (MRL) for various lifetime distributions, 
including the Weibull distribution, was studied in [15]. The mixture representations for the 
reliability functions of the conditional residual life and inactivity time of a coherent system with ‘n’ 
independent and identically distributed components have been derived in [11]. The modeling and 
inference of a family of generalized MRL models under case-cohort and nested case-control 
designs have been studied in [7]. The limiting process and nonparametric simultaneous confidence 
bands for the mean residual life function using transformation of limiting process to Brownian 
motion was studied by [6]. The patterns of change in life expectancy and life span equality, 
describing them through trajectories of mortality improvements over age and time have been 
explored in [2]. The developed R package ‘reslife,’ which enables efficient computation of mean 
residual lifetimes is given by [16]. Several conditions for compare the largest order statistics from 
resilience-scale models with reduced scale parameters in the form of mean residual life order are 
discussed in [5].  

Here are some of the references that contribute to the literature on shock models: The 
fundamental work on shock models is by [1]. The reliability of a device subjected to shocks 
modeled by a nonhomogeneous Poisson process, demonstrating that the first-time total damage 
exceeds a critical threshold is an increasing failure rate average random variable was studied by 
[12]. A shock model framework was discussed in [4], examining scenarios where the failure rate 
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increases over time, and the mean residual life decreases. The study in [14] investigated reliability 
in systems exposed to shocks from a renewal point process, offering analytical expressions for time 
to failure in parallel systems. The significance of analyzing product reliability through the 
investigation of the damage process was addressed in [8]. The classification of shock models in 
system reliability is discussed in [10]. The extension of generalizing the results to the generalized 
Polya process (GPP), where initial shocks have dependent increments, was studied in [3]. In the 
present study, we have further worked on the [13] paper, where the authors investigated the 
survival probability of a component subjected to damage and fatal (catastrophic) shocks, under 
fixed and random threshold setups.  

In this paper, a shock model with two kinds of shocks namely damage and catastrophic 
shocks in the presence of an additional risk is considered. The model, its survival probability and 
MRL functions are discussed in Section 2. The Life Testing experiment is explained in Section 3. In 
Section 4, Monte-Carlo simulation is used to validate the model and mean residual life times of the 
models with and without additional risks are also analyzed in the same section. Discussions and 
conclusions are outlined in Section 5. 

II. Survival Probability of the Model

Suppose a component/ system is subjected to a sequence of shocks occurring randomly in time as 
events of Poisson process with intensity 𝜆, 𝜆 > 0. Each shock will be either a damage shock 
(causing damage) or catastrophic shock. If the damage exceeds the threshold of the component, the 
component fails or the component fails at the occurrence of catastrophic shock. The damages are 
non-accumulative, that is the component functions as good as new one as long as the damage does 
not exceed component’s threshold. Let ‘𝑝’ and (1 − 𝑝) be the probabilities that a shock is damage 
shock and catastrophic shock respectively. Let the damages follow exponential distribution with 
parameter ‘𝜃’, ‘𝑢’ be the threshold of the component. The survival probability of the component at 
mission time ‘𝑡’ of the model as derived in [13] is given by 

𝑆1(𝑡) = 𝑒−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)] (1) 
The corresponding MRL at time ‘𝑡’ is given by 

𝜇1(𝑡) =
1

𝜆(1−𝑝(1−𝑒−𝑢𝜃))
   (2) 

If the component is made to function under the additional risk (other than its two modes of failure) 
and assuming this additional risk has ageing impact. Weibull distribution (with shape parameter >
1) would be a better candidate to explain the impact of additional risk on the survival probability
of the component. 
Let, 𝑆1𝐴(𝑡) be the survival probability of the component which is experiencing shocks of two types 
as explained above and functioning under additional risk. Considering all the aforementioned 
features of the model, 𝑆1𝐴(𝑡)  is given by 

𝑆1𝐴(𝑡) = e−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)]. 𝑒−(𝛼𝑡)𝛽                         (3)
The mean residual life (MRL) and other properties of several families of Weibull related 

life distributions are discussed in [9]. One interesting family of Weibull life distribution is with 𝛼 =
1

√2
  and 𝛽 = 2. For this family of Weibull distribution, the survival probability and MRL are given 

by 

𝑆𝐴(𝑡) = 𝑒−
1

2
𝑡2

(4)
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𝜇𝐴(𝑡) =
√2𝜋(1−Φ(𝑡))

𝑒
− 

1
 2 𝑡2

   (5) 

From (5), it is evident that 𝜇𝐴(𝑡) has an explicit form and computationally easy. 
Using this special case of Weibull in (3), the expression for 𝑆1𝐴(𝑡) reduces to  

𝑆1𝐴(𝑡) = 𝑒−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)]− 
𝑡2

2   (6) 
The MRL corresponding to 𝑆1𝐴(𝑡) given in (6) is given by 

 𝜇1𝐴(𝑡) =
𝑒

1
2 [𝜆(1−𝑝(1−𝑒−𝑢𝜃))]

2

.√2𝜋 (1−Φ(𝑡−𝜆(𝑝(1−𝑒−𝑢𝜃)−1)))

𝑒
−𝜆𝑡[1−𝑝(1−𝑒−𝑢𝜃)]

.𝑒
− 

1
2 𝑡2

    (7) 

The computations of 𝑆1(𝑡), 𝑆𝐴(𝑡) and 𝑆1𝐴(𝑡) for two parameter combinations 𝑝 =  0.55, 𝜆 =

 0.40, 𝑢 = 0.80, 𝜃 = 0.65 and 𝑝 =  0.4, 𝜆 =  0.70, 𝑢 = 1.1, 𝜃 = 0.55 at various values of ‘𝑡’ are 
presented in Table 1. Also, it is to be noted that the MRL corresponding to 𝑆1(𝑡) do not depend on 
‘𝑡’ and are computed as 2.1833 and 1.9449 respectively for two parameter combinations considered. 
Table 2 presents MRL times for Weibull given in (5) and MRL times of proposed model given in (7) 
at different values of ‘𝑡’ for the two parameter combinations considered.   

Table 1: Theoretical Computation of Survival Probability 

𝒑 =  𝟎. 𝟓𝟓, 𝝀 =  𝟎. 𝟔𝟓, 𝒖 = 𝟏. 𝟏,

𝜽 = 𝟎. 𝟕𝟎 

𝒑 =  𝟎. 𝟒𝟓, 𝝀 =  𝟎. 𝟕𝟓, 𝒖 = 𝟏. 𝟓,

𝜽 = 𝟎. 𝟖𝟎 

t 𝑆1(𝑡) 𝑆𝐴(𝑡) 𝑆1𝐴(𝑡) 𝑆1(𝑡) 𝑆𝐴(𝑡) 𝑆1𝐴(𝑡) 

0.5 0.795318 0.882497 0.701865 0.773309 0.882497 0.682443 
0.75 0.709269 0.75484 0.535384 0.680032 0.75484 0.513315 

1 0.63253 0.606531 0.383649 0.598007 0.606531 0.36271 
1.25 0.564094 0.457833 0.258261 0.525875 0.457833 0.240763 
1.5 0.503063 0.324653 0.163321 0.462444 0.324653 0.150134 

1.75 0.448634 0.216265 0.097024 0.406664 0.216265 0.087947 
2 0.400095 0.135335 0.054147 0.357612 0.135335 0.048398 

Table 2: Theoretical Computation of Mean Residual Life 

𝒑 =  𝟎. 𝟓𝟓, 𝝀 =  𝟎. 𝟔𝟓, 

𝒖 = 𝟏. 𝟏, 𝜽 = 𝟎. 𝟕𝟎 

𝒑 =  𝟎. 𝟒𝟓, 𝝀 =  𝟎. 𝟕𝟓, 

𝒖 = 𝟏. 𝟓, 𝜽 = 𝟎. 𝟖𝟎 

t 𝑚𝐴(𝑡) 𝑚1𝐴(𝑡) 𝑚𝐴(𝑡) 𝑚1𝐴(𝑡) 

0.5 0.876365 0.670411 0.876365 0.650837 
0.75 0.752571 0.590263 0.752571 0.574534 

1 0.65568 0.525471 0.65568 0.512631 
1.25 0.57843 0.472297 0.57843 0.461667 
1.5 0.515816 0.428065 0.515816 0.419154 

1.75 0.464307 0.390824 0.464307 0.383269 
2 0.421369 0.359125 0.421369 0.352654 
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III. Life Testing Experiment

In order to estimate 𝑆1𝐴(𝑡) and 𝜇1𝐴(𝑡), suppose ‘𝑟’ components with life distribution (1 − 𝑆1𝐴(𝑡)) 
are subjected to life test. The life testing is continued until all the ‘𝑟’ components fail. Let 𝑟1, 𝑟2 and 
𝑟3 = (𝑟 − 𝑟1 − 𝑟2) be the numbers of components that fail due to damage shock, catastrophic shock 
and due to additional risk respectively. The 𝑖𝑡ℎ component fails at 𝑛𝑖

𝑡ℎ shock and 𝑡𝑖1, … , 𝑡𝑖𝑛𝑖
 be the

time epoch at which the 𝑖𝑡ℎ component has experienced shocks. (𝑡𝑖𝑗 − 𝑡𝑖𝑗−1) are independent
exponential random variables having exponential distribution with parameter 𝑝𝜆, 𝑗 = 1,2, … , 𝑛𝑖 
and 𝑖 = 1,2, … , 𝑟. It is to be noted that, the component which fails due to additional risk also 
experiences shocks and if any component has to fail due to additional risk, it has sustained all the 
damages due to damage shock and it will not experience catastrophic shock. Further it is assumed 
that, whenever a component fails due to damage shock (damage exceeding threshold), that 
damage is not measurable and the impact of catastrophic shock is also not measurable. Let 𝑋𝑖𝑗 
denote the amount of damage caused by 𝑗𝑡ℎ damage shock of the 𝑖𝑡ℎ component and 𝑋𝑖𝑗′𝑠 are
assumed to be independently distributed exponential random variables with parameter 𝜃, 𝜃 > 0.  
The joint distribution of 𝑛𝑖, 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖

, 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1 of the ‘𝑟1’ components that have failed due to
damage shock is given by 

∏(𝑝𝜆)𝑛𝑖 𝑒−𝑝𝜆𝑡𝑛𝑖

𝑟1

𝑖=1

 𝜃𝑛𝑖−1 𝑒
−𝜃 ∑ 𝑥𝑖𝑗

𝑛𝑖−1

𝑗=1
 
 𝑒−𝑢𝜃 

= (𝑝𝜆)∑ 𝑛𝑖
𝑟1
𝑖=1  𝑒−𝑝𝜆 ∑ 𝑡𝑛𝑖

𝑟1
𝑖=1  𝜃∑ 𝑛𝑖

𝑟1
𝑖=1 −𝑟1  𝑒

−𝜃 ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
𝑟1
𝑖=1  𝑒−𝑟1𝑢𝜃               (8)

Similarly, the joint distribution of 𝑛𝑖, 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖
, 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1 for ‘𝑟2’ components that fail due to

catastrophic shock is given by 

∏ (𝑝𝜆)𝑛𝑖−1 𝑒−𝑝𝜆𝑡𝑛𝑖−1𝑟2
𝑖=1 𝜃𝑛𝑖−1 𝑒

−𝜃 ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
 
(1 − 𝑝)𝜆 𝑒−(1−𝑝)𝜆(𝑡𝑛𝑖

−𝑡𝑛𝑖−1)

= (𝑝𝜆)
∑ 𝑛𝑖

𝑟2
𝑖=1 −𝑟2 𝑒−𝑝𝜆 ∑ 𝑡𝑛𝑖−1

𝑟2
𝑖=1  𝜃∑ 𝑛𝑖

𝑟2
𝑖=1 −𝑟2  𝑒

−𝜃 ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
𝑟2
𝑖=1  (1 − 𝑝)𝑟2  𝜆𝑟2  𝑒−(1−𝑝)𝜆 ∑ (𝑡𝑛𝑖

−𝑡𝑛𝑖−1)
𝑟2
𝑖=1   (9) 

And, letting 𝑦𝑖  be the time epoch at which 𝑖𝑡ℎ component has failed due to additional risk, 𝑖 =

1,2, … , 𝑟3; the joint distribution of 𝑛𝑖 , 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑛𝑖
, 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖

, 𝑦𝑖  for ‘𝑟3’ components that fail due to
additional risk is given by 

∏ (𝑝𝜆)𝑛𝑖 𝑒−𝑝𝜆𝑡𝑛𝑖
𝑟3
𝑖=1  𝜃𝑛𝑖  𝑒

−𝜃 ∑ 𝑥𝑖𝑗
𝑛𝑖
𝑗=1  𝑦𝑖𝑗  𝑒−

1

2
𝑦𝑖𝑗

2

 

= (𝑝𝜆)∑ 𝑛𝑖
𝑟3
𝑖=1  𝑒−𝑝𝜆 ∑ 𝑡𝑛𝑖

𝑟3
𝑖=1  𝜃∑ 𝑛𝑖

𝑟3
𝑖=1  𝑒

−𝜃 ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1

𝑗=1
𝑟3
𝑖=1 ∏ 𝑦𝑖𝑗

𝑟3
𝑖=1  𝑒−

1

2
 ∑ 𝑦𝑖𝑗

2𝑟3
𝑖=1   (10) 

Combining the above three cases, the joint distribution 𝐿 of all the random variables involved is 
given by 

𝐿 = 𝑝𝑛.−𝑟2 𝜆𝑛. 𝑒−𝑝𝜆𝑡.. 𝑒−𝜆𝑡.′𝜃𝑛.−𝑟1−𝑟2  𝑒−𝑟1𝑢𝜃 𝑒−𝜃(𝑥1.+𝑥2.+𝑥3.) (1 − 𝑝)𝑟2  𝑦.  𝑒−
1

2
 𝑦.. 2𝑟3  (

1

√2
)

2𝑟3
 (11) 

where 

𝑡. . = ∑ 𝑡𝑛𝑖

𝑟1

𝑖=1

+ 2 ∑ 𝑡𝑛𝑖−1 − ∑ 𝑡𝑛𝑖
+ ∑ 𝑡𝑛𝑖

𝑟3

𝑖=1

𝑟2

𝑖=1

𝑟2

𝑖=1

𝑡.′ = ∑(𝑡𝑛𝑖

𝑟2

𝑖=1

− 𝑡𝑛𝑖−1)

𝑛𝑖 . = ∑ 𝑛𝑖  ; 𝑖 = 1(1)3

𝑟𝑖

𝑖=1

 

𝑛. = 𝑛1. +𝑛2. +𝑛3. 
𝑦. = ∏ 𝑦𝑖𝑗

𝑟3
𝑖=1  , 𝑦. . = ∑ 𝑦𝑖𝑗

2𝑟3
𝑖=1
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𝑥1. = ∑ ∑ 𝑥𝑖𝑗
𝑛𝑖−1
𝑗=1

𝑟1
𝑖=1  ,   𝑥2. = ∑ ∑ 𝑥𝑖𝑗

𝑛𝑖−1
𝑗=1

𝑟2
𝑖=1  ,      𝑥3. = ∑ ∑ 𝑥𝑖𝑗

𝑛𝑖−1
𝑗=1

𝑟3
𝑖=1

Considering 𝐿 as the function of parameters, the maximum likelihood estimators 
�̂�, �̂�, �̂� respectively of 𝜃, 𝜆 and 𝑝 are given by 
�̂� =

𝑛.−𝑟1−𝑟2

(𝑥1.+𝑥2.+𝑥3.)+𝑟1𝑢
 (12) 

�̂� =
𝑟2𝑡..+𝑛.𝑡.′

𝑡.′(𝑡..+𝑡.′)
  (13) 

�̂� =
𝑡.′(𝑛.−𝑟2)

𝑟2𝑡..+𝑛.𝑡.′
 (14) 

Using the invariance property of MLE, the MLEs of 𝑆1𝐴(𝑡), 𝜇1𝐴(𝑡) are obtained as �̂�1𝐴(𝑡) and �̂�1𝐴(𝑡) 
respectively and are given by  

�̂�1𝐴(𝑡) = 𝑒−�̂�𝑡[1−𝑝(1−𝑒−𝑢�̂�)]− 
𝑡2

2  (15) 

�̂�1𝐴(𝑡) =
𝑒

1
2

[�̂�(1−�̂�(1−𝑒−𝑢�̂�))]

2

√2𝜋 (1−Φ(𝑡−�̂�(𝑝(1−𝑒−𝑢�̂�)−1)))

𝑒
−�̂�𝑡[1−�̂�(1−𝑒−𝑢�̂�)]

𝑒
− 

1
2 𝑡2

 (16) 

IV. Simulation Study and Analysis
Monte-Carlo simulation is used to generate the random variables of the model. For considered 
values of 𝑢 = 𝑢0, 𝑝 = 𝑝0, 𝜃 = 𝜃0, 𝜆 = 𝜆0 using the following algorithm, all the random variables 
involved are generated.  

Step 1: Generate a random number 𝑤𝑖  from 𝑈(0,1). If 0 < 𝑤𝑖 < (1 − 𝑒− 
𝑡2

2 ), then it is considered 

that the failure of component is due to additional risk. In this case;  
i. Initialize 𝑛𝑖 , 𝑡𝑖. and 𝑥𝑖 .  with zero.

ii. Generate 𝑦𝑖 Weibull random variable with 𝜎 =
1

√2
 , 𝛽 = 2. 

iii. Generate 𝑡𝑖1 with exp (𝑝0𝜆0).
iv. Generate 𝑥𝑖1, an exp(𝜃0) random variable.
v. Compare 𝑡𝑖1 with 𝑦𝑖  and 𝑥𝑖1 with 𝑢0 .
vi. If (𝑡𝑖1 < 𝑦𝑖) and (𝑥𝑖1 < 𝑢0), then 𝑛𝑖 is incremented by 1 and 𝑡𝑖1 is added to 𝑡𝑖. , 𝑥𝑖 is added to

𝑥𝑖. .

Steps (ii) to (vi) are repeated until either 𝑥𝑖1 > 𝑢 or 𝑡𝑖1 > 𝑦𝑖. 

Step 2: If 𝑤𝑖 ≥ 𝑒− 
1

2
𝑡2

, the failure of the component is attributed to either damage shock or 
catastrophic shock. 
i. A uniform random variable 𝑈(0,1) ‘𝑉𝑖’ is generated. If 0 < 𝑉𝑖 < 𝑝 = 𝑝0, then the failure of

the component is due to damage shock.
ii. An exp (𝜃0) random variable 𝑋𝑖1 is generated, 𝑛𝑖 is raised by 1. If 𝑋𝑖1 < 𝑢0, this step is

repeated. The process is stopped when it is found that 𝑋𝑖1 > 𝑢0.
iii. 𝑛𝑖 number of exp (𝑝0𝜆0) (inter-arrival times) are generated and are added to get 𝑡𝑖𝑛𝑖

 .

In this way the random variables 𝑛𝑖 , 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1, 𝑡𝑖𝑛𝑖
 are generated.

On the other hand, if 𝑉𝑖 ≥ (𝑝 = 𝑝0), the failure of component is due to catastrophic shock. The 
random variables 𝑛𝑖 , 𝑋𝑖1, … , 𝑋𝑖𝑛𝑖−1 are generated as in Step 2(ii). (𝑛𝑖 − 1) exponential random
variables with parameter 𝑝0𝜆0 are generated, which will be inter-arrival times. Adding these inter-
arrival times 𝑡𝑖𝑛𝑖−1 is obtained. Another exponential random variable with parameter (1 − 𝑝0)𝜆0 is
generated which will be (𝑡𝑖𝑛𝑖

− 𝑡𝑖𝑛𝑖−1).
Steps 1 and 2 are repeated for 𝑟 = 25,30,40,50,100 and the statistics 𝑛. , 𝑡. . , 𝑡.′ , 𝑦. , 𝑦. . , 𝑥1. , 𝑥2. and 𝑥3.
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are computed using which the MLEs of parameters are obtained. By using these MLEs of 
parameters in the expressions for 𝑆1𝐴(𝑡), 𝜇1𝐴(𝑡), �̂�1𝐴(𝑡), �̂�1𝐴(𝑡) are obtained for 𝑡 =

0.5, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 . 
The whole process is repeated for 𝑀 = 10000 times. The means of the estimated 𝑆1𝐴(𝑡) and 𝜇1𝐴(𝑡) 
along with their mean absolute biases (bold figures) for the parameter combination 𝑝 =  0.55, 𝜆 =

 0.65, 𝑢 = 1.1, 𝜃 = 0.70 with 10,000 repetitions are presented in Tables 3 and 4 respectively. Tables 
5 and 6 provide the same results for 𝑝 =  0.45, 𝜆 =  0.75, 𝑢 = 1.5, 𝜃 = 0.80 . 

Table 3: Estimated 𝑆1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.55, 𝜆 =  0.65, 𝑢 = 1.1, 𝜃 = 0.70 

𝑺𝟏𝑨(𝒕) Estimated 

t 𝑆1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.701865 
0.63938 

0.062486 
0.656183 
0.045683 

0.660343 
0.041523 

0.679049 
0.022817 

0.68783 
0.014035 

0.75 0.535384 
0.470406 
0.064979 

0.483974 
0.05141 

0.488583 
0.046801 

0.509491 
0.025894 

0.519406 
0.015979 

1 0.383649 
0.318379 
0.06527 

0.335333 
0.048316 

0.339598 
0.044051 

0.359111 
0.024538 

0.368459 
0.015191 

1.25 0.258261 
0.204561 
0.053701 

0.218266 
0.039995 

0.221742 
0.036519 

0.237781 
0.02048 

0.245543 
0.012718 

1.5 0.163321 
0.123468 
0.039852 

0.133461 
0.02986 

0.136015 
0.027305 

0.147905 
0.015416 

0.153717 
0.009603 

1.75 0.097024 
0.070008 
0.027016 

0.076662 
0.020362 

0.078376 
0.018648 

0.086426 
0.010598 

0.090401 
0.006623 

2 0.054147 
0.03729 

0.016857 
0.041367 
0.01278 

0.042426 
0.011721 

0.047442 
0.006705 

0.049944 
0.004203 

Table 4: Estimated 𝜇1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.55, 𝜆 =  0.65, 𝑢 = 1.1, 𝜃 = 0.70 

𝝁𝟏𝑨(𝒕) Estimated 

t 𝜇1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.670411 
0.574976 
0.095435 

0.619012 
0.051398 

0.621026 
0.049384 

0.63513 
0.035281 

0.651381 
0.019029 

0.75 0.590263 
0.512992 
0.077271 

0.548831 
0.041432 

0.550462 
0.039801 

0.561868 
0.028395 

0.574971 
0.015292 

1 0.525471 
0.461967 
0.063504 

0.491556 
0.033915 

0.492897 
0.032574 

0.50226 
0.023211 

0.512989 
0.012482 

1.25 0.472297 
0.419406 
0.052891 

0.444151 
0.028146 

0.445268 
0.027029 

0.453059 
0.019238 

0.461964 
0.010333 

1.5 0.428065 
0.383482 
0.044583 

0.404417 
0.023649 

0.405359 
0.022707 

0.41192 
0.016146 

0.419403 
0.008662 

1.75 0.390824 
0.352837 
0.037987 

0.370733 
0.020091 

0.371536 
0.019288 

0.377121 
0.013703 

0.38348 
0.007344 

2 0.359125 
0.326443 
0.032683 

0.341885 
0.01724 

0.342576 
0.016549 

0.347378 
0.011747 

0.352835 
0.00629 
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Table 5: Estimated 𝑆1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.45, 𝜆 =  0.75, 𝑢 = 1.5, 𝜃 = 0.80 

𝑺𝟏𝑨(𝒕) Estimated 

t 𝑆1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.682443 
0.611759 
0.070683 

0.614114 
0.068329 

0.626848 
0.05559481 

0.633057 
0.049385 

0.639267 
0.043175 

0.75 0.513315 
0.435668 
0.077647 

0.438186 
0.075129 

0.451885 
0.061430 

0.458616 
0.054699 

0.465381 
0.047934 

1 0.36271 
0.291466 
0.071243 

0.293714 
0.068995 

0.306021 
0.056688 

0.312114 
0.050596 

0.318267 
0.044442 

1.25 0.240763 
0.183179 
0.057584 

0.184947 
0.055816 

0.194684 
0.046079 

0.199541 
0.041222 

0.204471 
0.036292 

1.5 0.150134 
0.108149 
0.041985 

0.109402 
0.040731 

0.11635 
0.033783 

0.119842 
0.030291 

0.123403 
0.026730 

1.75 0.087947 
0.059982 
0.027965 

0.060794 
0.027153 

0.065322 
0.022625 

0.067615 
0.020332 

0.069965 
0.017982 

2 0.048398 
0.031252 
0.017145 

0.031736 
0.016661 

0.034451 
0.013946 

0.035837 
0.012560 

0.037264 
0.011133 

Table 6: Estimated 𝜇1𝐴(𝑡) and its Mean Absolute Bias for 𝑝 =  0.45, 𝜆 =  0.75, 𝑢 = 1.5, 𝜃 = 0.80 

𝝁𝟏𝑨(𝒕) Estimated 

t 𝜇1𝐴(𝑡) r = 25 r = 30 r = 40 r = 50 r = 100 

0.5 0.650837 
0.606371 
0.044466 

0.608328 
0.04251 

0.618495 
0.032342 

0.619872 
0.030965 

0.623134 
0.027704 

0.75 0.574534 
0.538577 
0.035957 

0.540165 
0.034369 

0.548412 
0.026122 

0.549528 
0.025006 

0.552169 
0.022365 

1 0.512631 
0.483114 
0.029517 

0.484423 
0.028208 

0.491211 
0.02142 

0.492129 
0.020502 

0.494299 
0.018332 

1.25 0.461667 
0.43711 

0.024558 
0.438202 
0.023465 

0.443864 
0.017804 

0.444628 
0.017039 

0.446436 
0.015232 

1.5 0.419154 
0.398474 
0.020681 

0.399397 
0.019758 

0.404175 
0.01498 

0.404819 
0.014335 

0.406343 
0.012811 

1.75 0.383269 
0.365663 
0.017605 

0.366451 
0.016817 

0.370526 
0.012742 

0.371076 
0.012193 

0.372374 
0.010894 

2 0.352654 
0.337519 
0.015135 

0.338198 
0.014456 

0.341708 
0.010946 

0.34218 
0.010473 

0.343298 
0.009356 
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V. Results and Conclusion

From Tables 1 and 2, it is found that, for both parameter combinations, the theoretical values of 
𝑆1(𝑡), 𝑆𝐴(𝑡) and 𝑆1𝐴(𝑡) and 𝜇1(𝑡), 𝜇𝐴(𝑡) and 𝜇1𝐴(𝑡) are non-increasing in ‘𝑡’. 𝜇1(𝑡) is independent of 
time ‘𝑡’, so its values for any considered parameter combinations will be constant for all values of 
‘𝑡’. The model functioning in the presence of additional risk has smaller survival probability and 
mean residual life times. From tables 3 and 5, it is clear that the Maximum Likelihood Estimators 
(MLEs) underestimate the true survival probability. The estimated survival probability for all time 
points (t) tend to improve as the sample size increases at all time points. Also, mean absolute bias 
(bold figures) decreases as the sample size increases, implying that larger samples lead to more 
accurate estimators, which is a desirable statistical property. Tables 4 and 6 collectively 
substantiate the inference drawn regarding the mean residual life times, akin to the analysis 
conducted for survival probability.  

To improve the performance of Maximum Likelihood Estimators (MLEs), one can think of 
greater sample size. Increase in sample size may not be a better choice, especially when one is 
dealing with real life cases and/ or high-cost units. Alternatively, one can explore other methods of 
estimation. 
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Abstract 

The condition evaluation for reinforced concrete framing requires comprehensive analysis of the 

factors influencing their performance such as strength, protective layer thickness, rebar diameter, 

thermal conductivity, humidity, adhesion of coatings, etc. Non-destructive methods are especially 

relevant when the characteristics of concrete and rebars are unknown and the scope of testing is 

considerable. Non-destructive testing allows to effectively monitor the conditions of technical 

devices, structures and buildings and enables to evaluate the timeliness and quality of repair and 

maintenance of a facility. Non-destructive testing provides the most reliable characteristics of the 

parameters defining the technical condition of the facilities under test. Non-destructive testing of 

the structural strength is applied in those areas, which have been exposed to loads due to natural 

and man-made contingencies. 

Keywords: non-destructive testing methods, reinforced concrete framing, buildings and 

structures, strength, natural and man-made contingencies. 

I. Introduction

The reinforced concrete non-destructive testing is a method to obtain the compression strength and other 

properties of the concrete from existing structures. This test provides immediate results and informs on the 

actual strength and properties of the concrete framing. The standard method for evaluating the quality of 

concrete in buildings or structures is in parallel testing the specimens for strength, compression, bending, and 

tension. 

II. Methods

The concrete strength non-destructive test methods are divided in two groups, as shown in Table 1. 

Table 1: Non-destructive test methods 

Direct (local failure methods) Indirect 

Edge chipping Impact pulse 

Shear test Rebound resilience 

Metal disk pullout test Plastic yield 

Ultrasonic testing 

I. Direct concrete test methods (local failure methods)

The local failure tests are tentatively non-destructive. Their basic advantage is veracity. They provide results 

as much as accurate that they may be used for plotting calibration curves for indirect methods, as shown in 

Table 2. 
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Table 2: Direct concrete test methods 

Method Description Advantage Disadvantages 

Shear test method Evaluation of the effort 

required to destroy the 

concrete while pulling 

out an anchor 

- High precision

- Commonly applied

calibration curves

- Labor-intensive

- Unable to be used to

evaluate the strength of

densely reinforced and

thin-walled structures

Edge chipping Measuring the effort 

required to chip off 

concrete on an edge of 

the structure. The 

method is used to test the 

strength of linear 

structures: piles, square-

section columns, support 

beams 

- Simple to use

- No preliminary

preparation

- Not applicable if the

concrete layer is thinner

than 2 cm or severely

damaged

Disk pullout Recording the effort to 

destroy the concrete 

while pulling out a metal 

disk. The method was 

widely used in Soviet 

time, currently it is 

hardly ever applied due 

to the temperature limits 

- Suitable to test the

strength of densely

reinforced structures

- Not as labor-intensive

as shear test

- Requires preparation:

the disks need to be

glued onto the concrete

surface 3-24 hours

before testing

Examples of direct non-destructive test methods 

Picture 1: Shear test method 
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Picture 2: Shear test method Picture 3: Shear test method

Picture 4: Edge chipping method Picture 5: Disk pullout method

II. Indirect concrete test methods

In contrast to local failure methods, the concrete impact pulse methods are more productive. However, the 

concrete strength is tested in the surface layer 25-30 cm thick, so their applicability is limited. In the said 

cases, it is necessary to scour the surface of the concrete areas to be tested or to remove the damaged surficial 

layer, as shown in Table 3. 

Table 3: Indirect concrete test methods 

Method Description Advantage Disadvantages 

Impact pulse 

Recording the energy 

generated as a striking 

block hits. A. Schmidt 

hammer is used for the 

studies. 

- Compact equipment

- Simple and easy

- Concrete class can be

determined at the same

time 

Relatively poor accuracy 

Rebound resilience 

Measuring the striking 

block path when hitting 

the concrete. A Schmidt 

sclerometer and similar 

devices are used for the 

studies. 

- Simple and fast testing - Strict requirements to

the test area preparations

- Equipment requires to

be frequently calibrated

Plastic yield 

Measuring the imprint 

left on the concrete upon 

hitting by a metal ball. 

Obsolete but still 

frequently used method. 

A Kashkarov hammer 

- Easy-to-find equipment

- Simple and easy

- Low precision of

results

RT&A, No 2 (78) 

 Volume 19, June, 2024 

402



Alena Rotaru 

APPLICATION OF NON-DESTRUCTIVE TESTING 

Method Description Advantage Disadvantages 

and static pressure 

devices are used for the 

evaluation. 

Kashkarov hammer 

concrete strength 

evaluation 

Ultrasonic method 

Measuring the 

oscillation rate of the 

ultrasound penetrating 

the concrete 

- Possibility to conduct

massive inspections for

an indefinite number of

times

- Low cost of the testing

- Possibility to evaluate

the strength of structural

deep layers

- Higher requirements to

surface quality

- Highly skilled worker

is required

Examples of indirect non-destructive test methods 

Picture 6: Impact pulse method Picture 7: Rebound resilience method

Picture 8: Ultrasonic method

Impact pulse method 

The impact pulse method is widely used among the non-destructive methods owing to the simple 

measurements. It allows to determine the concrete class, to measure at different angles to the surface, to 

consider the plasticity and resilience of concrete. 

Essence of the method: A spring actuated spherically tipped striking block hits the surface. The blow energy 

is consumed for the deformation of the concrete. The plastic strains result in a dimple, while the elastic strain 
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produces a reactive force. An electromechanical transducer converts the mechanical impact energy into an 

electric pulse. The results are issued in compression strength units. 

The advantages of the method include its promptness, low labor input, no sophisticated calculations, and low 

dependence on the concrete composition. Its disadvantage is that the strength can only be determined in a 

layer max 50 mm deep. 

Rebound resilience method 

The rebound resilience method is leveraged from the metal hardness determination practice. The tests are 

conducted with sclerometers – spring-loaded hammers with spherical dies. The springs allow the free 

rebound after the impact. A scale with a pointing needle shows the path of the rebounding tip. The concrete 

strength is determined by the calibration curves that account for the hammer’s position as the rebound 

magnitude depends on its direction. The average value is calculated by the data of 5 to 10 measurements 

made on a certain area. The distance between the impact spots is 30 mm or more. 

The rebound resilience measuring range is between 5 and 50 MPa. The method’s advantages include 

simplicity and quickness of measurement and the possibility to evaluate the strength of densely reinforced 

structures. Its key disadvantages are the same as with the other impact methods: surficial strength check (to a 

depth of 20-30 mm), need for frequent calibrations (every 500 blows) and the plotting of calibration curves. 

Plastic yield method 

The plastic yield method is known as one of the cheapest. Its essence is the determination of hardness of a 

surface by measuring the mark left by a steel ball/pin built in a hammer. For the testing, the hammer is 

oriented perpendicular to the concrete surface and used to make several hits. An angle scale is, then, used to 

measure the imprints on the striking block and the concrete. In order to facilitate diameter measurements, 

carbon or white paper sheets are used. The characteristic outputs are recorded and the average value is 

calculated. The concrete strength is determined by the ratio of sizes of the imprints. 

The working principle of the plastic yield testing instruments is based on the die impression by a hit or with 

static pressure. Static pressure devices have limited use, though; impact instruments are most common: hand-

held and spring-loaded hammers, pendulum devices with ball/disk die. The minimum hardness of the die 

steel is HRC60, the ball’s diameter is at least 10 mm, and the disk’s thickness is 1 mm or more. The impact 

energy should be equal to or greater than 125 N. 

This method is simple and fast and may be used for densely reinforced structures, but only suitable for 

evaluating the strength of concrete up to M500. 

Ultrasonic testing 

The ultrasonic method is the record of the velocity of penetrating ultrasonic waves. The tests technically 

distinguish point-to-point scanning, when probes are set on different sides of the tested specimen, and 

surficial scanning, when the probes are set at one side. The point-to-point scanning, contrary to all other 

strength NDT methods, allows to test the strength in sub-surficial and deep layers of structures. 

Ultrasonic instruments for non-destructive concrete testing may be used not only for the concrete strength 

determination but also for the flaw detection, quality control of concrete casting, determination of depth and 

search for reinforcement bars in concrete. They allow to conduct multiple massive tests of products of any 

shape and to continuously monitor the increase or decrease in strength. 

The concrete strength vs. ultrasound velocity ratio is subject to the filler amount and composition, cement 

flow rate, concrete mix preparation and concrete compaction degree. A drawback of the method is the 

relatively high error at the acoustic-to-strength performance transition. 

Apart from the methods listed here, there are some less popular strength test methods. Electric potential 

method, infrared, vibration and acoustic methods are at their experimental stage of use. 
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III. Results

Table 4: Accuracy of concrete non-destructive test methods 

№ Method Application range, MPa Measuring accuracy 

1 Plastic yield 5…50 ± 30... 40% 

2 Rebound resilience 5... 50 ± 50% 

3 Impact pulse 10... 70 ± 50% 

4 Pullout 5... 60 no data 

5 Shear test 5... 100 no data 

6 Edge chipping 10... 70 no data 

7 Ultrasonic 10... 40 ± 30... 50% 

The test area requirements are listed in the following table 5: 

Table 5: Test methods 

Method Total 

measurements per 

area 

Minimum distance 

between measuring 

sports in an area, 

mm 

Minimum structure 

edge to measuring 

spot distance, mm 

Minimum structure 

thickness, mm 

Rebound resilience 9 30 50 100 

Impact pulse 10 15 50 50 

Plastic yield 5 30 50 70 

Edge chipping 2 200 -0 170 

Pullout 1 2x disk diameter 50 50 

Shear test at anchor 

depth: 

40 mm 

< 40 mm 

1 

2 
5h 150 2h 

The most challenging cases for testing the concrete framings are when they are exposed to aggressive 

factors: chemical (salts, acids, oils), thermal (high temperatures, freezing at an early age, varying freezes and 

thaws), atmospheric (carbonization of the surface layer). During the inspection it is necessary to visually, by 

tapping or wetting with phenolphthalein solution (cases of concrete carbonization) identify the surface layer 

with disturbed structure. The concrete of such framings for non-destructive testing is prepared by removing 

the surface layer at the control area and scouring the surface with a honing stick. In such a case, the strength 

of concrete should be primarily determined by local failure methods or by sampling. When impact-pulse and 

ultrasonic devices are used, surface roughness should not exceed Ra 25, as shown in Table 6. 

Table 6: Strength of concrete grades 

Concrete compression 

strength class (B) 

Nearest concrete grade 

(M) by compression

strength

Average strength of 

concrete of this class, 

kgf/cm
2

Deviations of the nearest 

concrete grade from the 

strength of concrete of 

this class, % 

B3,5 M50 45.84 +9.1

B5 M75 65.48 +14.5

B7,5 M100 98.23 +1.8

B10 M150 130.97 +14.5

B12,5 M150 163.71 -8.4

B15 M200 196.45 +1.8

B20 M250 261.94 -4.6

B22,5 M300 294.68 +1.8

B25 M350 327.42 +6.9

B27,5 M350 360.16 -2.8
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Concrete compression 

strength class (B) 

Nearest concrete grade 

(M) by compression

strength

Average strength of 

concrete of this class, 

kgf/cm
2

Deviations of the nearest 

concrete grade from the 

strength of concrete of 

this class, % 

B30 M400 392.90 +1.8

B35 M450 458.39 -1.8

B40 M500 523.87 -4.6

B45 M600 589 

B50 M650 655 

B55 M700 720 

B60 M800 786 

Non-destructive humidity testing 

A certain moisture (up to 30-50% for cellular concrete) dwells in construction materials in the course of 

manufacturing process (the process moisture). Normally, the moisture content of concrete framings during 

the first heating period reduces to 4-6% by weight. 

In order to obtain the whole picture, it is advisable to proceed with several evaluations with different physical 

principles. Moisture meters or humidity testers are used to measure the moisture content of concrete. The 

operating principle of a moisture meter is based on the dependence between the dielectric permittivity of a 

material and its moisture content. It is important to note that the moisture content of a concrete differs from 

its content on the surface. The measuring methods on the surface are resultant for a depth down to 20 mm 

and do not always follow the reality. 

IV. Conclusions

Based on the studies performed, we may conclude that the actual strength of concrete framings can be set by 

various non-destructive methods, as well as the main parameters affecting the quality of products and 

building structures by modern, high-precision instruments. 

In order to check and evaluate the concrete strength, it is advisable to use non-destructive test methods as 

they are more accessible and inexpensive in comparison with laboratory testing of specimens. The main 

provision to obtain reliable values is the construction of calibration curves of the instruments. It is also 

necessary to address any factors leading to distorted measuring results. 

Cost-effectiveness can be achieved both during the construction of buildings and structures and in the 

process of their operation. This is promoted by non-destructive methods of quality testing and evaluation of 

the materials used. 
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Abstract

This work applies the polar coordinates system of advanced calculus in the summation of the Gaussian
distribution. In trying to achieve this aim, sub-concepts such as complex variables, gamma function of
half, error function, and the relation between the error function and the standard normal distribution
were defined and explained at various stages of the work. The embedded theorem which seems to be a new
theorem also came up in the body of the work.

Keywords: Normal distribution, Standard Normal Distribution, Gaussian Distribution, gamma
Function of Half, Embedded Theorem, Polar Coordinates.

1. Introduction

When Mathematics is used to study observational phenomena, a mathematical model is con-
structed for the phenomena. This involves an idealization and simplification of the original
phenomena to the extent that a mathematical problem is developed. The mathematical solution
obtained, eventually has to be interpreted in terms of the original problem.There are essentially
two types of mathematical models:the deterministic model and the non-deterministic or proba-
bilistic model [12]. The deterministic model is a model which stipulates that the conditions under
which an experiment is performed determine the outcome of the experiment. Example, a body
is allowed to fall freely from a height above ground level, the distance(s) traveled is completely
determined by the time t (seconds) during which the body has been in motion and the initial
velocity u with acceleration a, is given as S = a2

t + ut. Based on the given expression, it is possible
to determine the value of S for known values of u and t. this shows that for deterministic models,
the results of the experiment depend only on the physical conditions operating [4, 2].

However, non-deterministic or probabilistic models introduce uncertainty into the mathematical
problem [7]. In the context of probabilistic models, the Gaussian distribution, also known as the
normal distribution, plays a vital role in various fields such as statistics, physics, finance, and
engineering [6]. In recent years, there has been a growing interest in developing efficient methods
for the summation of the Gaussian distribution. One such method is the application of polar
coordinates in the summation of the Gaussian distribution[8]. [10] proposed a Bayesian inferential
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method for directional data modelled by projected normal distributions. [18] Projected normal
distributions, also referred to as angular Gaussian distributions, are created by imposing different
constraints on the parameter space associated with a multivariate Gaussian distribution. This
resolves the non-identifiability issue that arises when the support of a random variable changes
from an Euclidean space to a spherical space [9]. In mathematics and statistics, the Gaussian
distribution, also known as the normal distribution, is a crucial concept used to model various
real-world phenomena that exhibit a bell-shaped curve [17] [13].

The Gaussian distribution is characterised by its mean and standard deviation, which determine
the central tendency and spread of the distribution, respectively [11]. In the work by [10],
they proposed a Bayesian inferential method for directional data modeled by projected normal
distributions, which are also referred to as angular Gaussian distributions. These distributions are
created by imposing different constraints on the parameter space associated with a multivariate
Gaussian distribution, allowing for the resolution of the non-identifiability issue when the
support of a random variable changes from a Euclidean space to a spherical space. The general
projected normal distribution, a simple and intuitive model for directional data in any dimension,
is discussed by [10]. They describe a new parameterisation of the general projected normal
distribution that makes inference in any dimension tractable, including the important three-
dimensional case. This new parameterisation allows for closed-form full conditionals of the
unknown parameters and proposes a slice sampler to draw the latent lengths without rejection.
The work by [10] demonstrates the applicability and effectiveness of the projected normal
distribution in modeling directional data, particularly in higher dimensions.

1.1. Statement of the Problem

In an attempt to prove that
∞∫

−∞

1
σ
√

2π
exp

−
(

(x−µ)2

2σ2

)
δk = 1 (1.1)

one will meet the following problems:

1. One must understand the meaning of the gamma function of half which is defined by [15]
as

Γ (1/2) =

∞∫
0

t−1/2 exp−t δt (1.2)

2. The proof of the integral function

∞∫
−∞

1
σ
√

2π
exp−(1/2)t2

δt = 1 (1.3)

must be known.

This work will make these problems easy to see.

1.2. Aim and Objectives of the Study

The aim of this work is to show clearly that equation 1.1 is equal to 1 without making assumptions
of any kind. The main objectives of this work is as follows:

1. The derivation of the Gaussian distribution.

2. To prove the Gaussian distribution using the direct integration method.
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2. Materials and Methods

2.1. Binomial Distribution

Proposition 1. If X is a binomial random variable, then the probability of obtaining x successes
in n trials of a binomial experiment with probability of success P is given by

f (x) =

{
(n

x)px(1 − p)n−x; x = 0, 1, 2, · · · , n; 0 < p < 1
0, otherwise

(2.1)
We show that f (x) is a probability distribution function with parameters n and P. At this stage, n
is a positive integer and 0 < P < 1, it is clear that f (x) ≥ 0

n

∑
i=0

f (x) =
n

∑
i=0

(
n
x

)
px(1 − p)(n−x)

= [(1 − p) + p]n

∴
n

∑
i=0

f (x) = 1

(2.2)

Proposition 1 is called the binomial distribution.

Theorem 2.1. If X has binomial distribution, then the moment-generating function of the random

variable X is MXt =
[
(1 − p) + Pet]n Proof.

MXt = E
(

etX
)

=
n

∑
i=0

etx
(

n
x

)
px(1 − p)n−x

=
n

∑
i=0

ete
(

n
x

) (
pet)x

(1 − p)n−x

MXt =
[
(1 − p) + pet]n

■

Corrolary 1. If X has a binomial distribution, then

E (X) = np (2.3)

Var (X) = np (1 − p) (2.4)

2.2. The Derivation of the Normal Distribution

[1] states the limit of the symmetrical binomial distribution using theorem 2.2 below.

Theorem 2.2. If X has a symmetrical binomial distribution with mean µ and variance σ2,then as
n tends to infinity,

Z = (x−µ)
σ2 (2.5)

Equation 2.5 approaches the standard normal distribution.

Proof.

µ = np = 1
2 n;

σ =
√

np (1 − p) = 1
2
√

n;

Z =
x − µ

σ
=

x − 1
2 n

1
2
√

n
;
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Now the distance ∆Z between successive values of Z is given by

∆Z =
(x + 1)− 1

2 n
1
2
√

n
−

x − 1
2 n

1
2
√

n
=

1
1
2
√

n
(2.6)

lim
n→∞

∆Z = 0

Hence the symmetrical binomial histogram will appears to become more like a curve as n tends
to infinity

.

We take the value of f (x) = Y . Then the distance ∆Y is the value between two successive values
of Y.

We take the values corresponding to x and x + 1 and multiply them by σ .

Y =

(
n
x

)
px (1 − p)n−x σ

=
n!

(n − x)! x!

(
1
2
√

n
) (

1
2 n
)

∆Y =
n!

(n − x + 1)! x + 1!
( 1

2 n
)( 1

2
√

n
)

− n!
(n − x)! x!

( 1
2 n
)( 1

2
√

n
)

=
( 1

2 n
)( 1

2
√

n
)
n!

×
[
(n − x)! x! − (n − x + 1)! (n − x)!
(n − x + 1)! (n − x)! (n − x)! x!

]
=
( 1

2 n
)( 1

2
√

n
)
n!

×
[
(n− x+ 1)! x![(n + x)− (x + 1)]
(n− x+ 1)! (x + 1)! (n − x)! x!

]
=
( 1

2 n
)( 1

2
√

n
)√

n)
[

n!
(x + 1)! (n − x)!

]
× [(n − x)− (x + 1)]

=
( 1

2 n
)( 1

2
√

n
)[ n!

(n − x)! x!

]
× (n − x − x − 1)

(x + 1)

∆Y = Y
[
(n − 2x − 1)

(x + 1)

]
From equation 2.6

∆Z =
1

1
2
√

n

∴
∆Y
∆Z

= Y
[
(n − 2x − 1)

(x + 1)

]
1
2
√

n (2.7)
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From equation 2.5

Z =
(x − µ)

σ2 = Zσ + µ

x = Z 1
2
√

n + 1
2 n (2.8)

Substitute equation 2.8 into equation 2.7, we have

∆Y
∆Z

= Y

(n −
√

nZ − n − 1
)(

1
2
√

nZ + 1
2 n + 1

)
 1

2
√

n

∆Y
∆Z

= Y

 −
(

1
2 n
)

Z −
(

1
2
√

n
)

(
1
2
√

n
)

Z +
(

1
2 n
)
+ 1


limn→∞

∆Y
∆Z

tends to
δY
δZ

= −YZ separating the variables

∫
δY
Y

=
∫

−ZδZ

logeY =
−Z2

2
+ logeK

where K is the constant of Integration

loge
Y
K

=
−Z2

2

∴ Y = Ke−
1
2 Z2

(2.9)

■

2.3. The Proof of the Standard Normal Distribution Using Substitution Method

[16] states the standard normal distribution as in theorem 2.3 below.

Theorem 2.3. The random variable Z is said to have a standard normal distribution if its pdf is

φ (Z) = f (Z; 0, 1) =
1√
2π

e−
1
2 Z2

We show below that φ(z) is a valid pdf Proof.

1√
2π

∞∫
−∞

e−
1
2 Z2

δZ =
2√
2π

∞∫
0

e−
1
2 Z2

δZ (2.10)

let x = 1
2 Z2, so that

δZ =

√
2

2
√

xδx
(2.11)
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Substitute equation 2.11 into equation 2.10

2√
2π

∞∫
0

e−
1
2 Z2

δZ =
1√
π

∞∫
0

x−
1
2 e−xδx

= 1
2
√

πΓ
(

1
2

)
=

√
π√
π

1√
2π

∞∫
−∞

e−
1
2 Z2

δZ = 1

(2.12)

■

[16] is silent about the origin of the standard normal distribution. Also there is no attempt to
show Let us call equation 2.13

Γ
( 1

2
)
=

√
π (2.13)

In the proof, we shall called equation 2.13 assumption 1. [16] also stated theorem 2.4 below.

Theorem 2.4. Let Z have a standard normal distribution. Define x to be x = σZ + µ. Then it can
be shown that x is a random normal variable with pdf given as

f
(

x; µ, σ2
)
=

1
σ
√

2π
e
− 1

2

(
x − µ

σ

)2

Proof.

x = σz + µ

Z =
x − µ

σ
δz
δx

=
1
σ

The density function for x is

f
(

x; µ, σ2
)
=

1
σ
√

2π
e
− 1

2

(
x − µ

σ

)2

{
−∞ < µ < ∞

σ > 0
(2.14)

Now we now show that f
(
x; µ, σ2) = 1

f
(

x; µ, σ2
)
=

1
σ
√

2π
e
− 1

2

( x − µ

σ

)2

δx (15)

DANIEL, AYINDE, DUDU, and EBERECHUKWU
SUMMATION OF THE GAUSSIAN DISTRIBUTION

RT&A, No 2 (78) 

 Volume 19, June, 2024 

413



Let y =
x − µ

σ
, x = yσ + µ

δx = σδy (16)

Substituting equation 16 into equation 15 we have

∞∫
−∞

f (y; 0, 1) =
∞∫

−∞

1
σ
√

2π
e−

1
2 y2

δy

From Theorem 2.3

∞∫
−∞

f (y; 0, 1) =
∞∫

−∞

1
σ
√

2π
e−

1
2 y2

δy = 1

(2.17)

■

His entire work rest on the assumption 1 of Theorem 2.3. Assumption 1 is the gamma function
of half. Theorem 2.5 below is the proof of the gamma function of half as resented by [5].

Theorem 2.5. Γ
(

1
2

)
=

√
π

Proof.

Γ(n) =
∞∫

0

xn−1e−xδx

Let n = 1
2

Γ( 1
2 ) =

∞∫
0

x−
1
2 e−xδx (18)

Put x
1
2 = 1√

2
t, x = 1

2 t2, δx
δt

= t

δx = tδt (19)
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Substituting equation 19 into equation 18 we have

Γ(1/2) =

∞∫
0

(
1
2 t2
)−1/2

e−
1
2 t2

tδt

=

∞∫
0

e−
1
2 t2
(

1
2 t2
)−1/2

tδt

=
√

2
∞∫

0

e−
1
2 t2

tδt

= 1
2

√
2

∞∫
0

e−
1
2 t2

tδt

=
1
2

√
2
√

2π

∞∫
−∞

1√
2π

e−
1
2 t2

δt (20)

=
1
2

√
2
√

2π × 1

=
1
2

√
2
√

2
√

π

Γ(1/2) =
√

π

■

At equation 20 she made the assumption that
∞∫

−∞

1√
2π

e−
1
2 t2

δt = 1. Let called this assumption

2. The success of the proof of Theorem 2.5 depends on assumption 2. Now for [16] to prove
assumption 2 (2.3), he made assumption 1 [(2.5). Also for [5] to prove assumption 1 (2.5) she
made assumption 2 (2.3). Let us see how [5] presents the proof of the normal distribution. She
used theorem 2.6 below.

Theorem 2.6. A random variable X has a normal distribution and is referred to as a normal

random variable if and only if its probability density is given by f
(
x; µ, σ2) = 1

σ
√

2π
e
− 1

2

( x − µ

σ

)2

Proof. Since ex is always positive, it follows that f(x) ≥ 0 as long as σ > 0.
We show that the total area under the curve is equal to 1. That is, to show that

∞∫
−∞

f (x)δx = 1

Let Z = (x−µ)
σ2 and δx = σδz

∞∫
−∞

1
σ
√

2π
e
− 1

2

(
x − µ

σ

)2

δx =

∞∫
−∞

1√
2π

e−
1
2 z2

δz

=

∞∫
0

2√
2π

e−
1
2 z2

δz (21)

But
∞∫
0

e−
1
2 z2

δz =
Γ(1/2)√

2

(22)
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Substituting equation 22 into equation 21 we have

= 2√
2π

× Γ(1/2)√
2

= 2×
√

π√
2π×

√
2

(23)

∴

∞∫
−∞

1
σ
√

2π
e
− 1

2

( x − µ

σ

)2

δx = 1

(2.24)

■

Again we can see the assumption 1 at the point of equation 23. That is Γ(1/2) =
√

π. Just like
the work of [16], [5] also made the same assumption 1 in order to prove the standard normal
distribution, which in this case is known as assumption 2.

2.3.1 The Complex Number System

[14, 3] stated that there is no real number x that satisfies the polynomial equation

x2 + 1 = 0 (2.25)

To permit solution of equation 2.25 and other similar equations, the set of complex number is
introduced. A complex number takes the form.

z = a + bi (2.26)

Where a and b are real numbers and i which is called the imaginary unit has the property that.

i = −1 (2.27)

From equation 2.26, a is called the real part of z and b is called the imaginary part of z. z is called
a complex variable.

2.3.2 The Argand Diagram

The real number can be graphically represented as a point on the real line. By using the cartesian
coordinate system, a pair of real numbers can be graphically represented by a point in the plane.
The Argand diagram is a device which represents complex numbers in the plane of the Cartesian
coordinate system. The pair of real numbers a and b of equation 2.26 are plotted as a point in the
plane and then joined that point to the origin with a straight line. See figure 2.1 below.

x

y

a

b
(a, b)

0

Z

Figure 2.1: Argand Diagram 1
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Figure 2.1 presents a visual representation of a complex number in polar coordinates on an
Argand diagram. The diagram consists of a complex plane with a horizontal real axis (X − axis)
and a vertical imaginary axis (Y − axis). A complex number ’z’ is depicted as a point in this plane.
The distance ’r’ from the origin to the point represents the modulus of the complex number,
which is the magnitude of the vector. The angle ’θ’ (theta) between the positive real axis and
the line segment connecting the origin to the point ’z’ represents the argument of the complex
number, which indicates its direction. The coordinates ’a’ and ’b’ on the real and imaginary axes,
respectively, correspond to the real and imaginary parts of the complex number. The polar form
of the complex number is expressed as ’z = r(cos θ + sin θ)’, which provides an alternative way to
represent complex numbers using the magnitude and angle instead of the traditional rectangular
form ’a + bi’.

According to [3], this straight line is the graphical representation of the complex variable z of
equation refeq2.14. The plane it is plotted against is referred to as the complex plane. The entire
diagram is called an Agrand Diagram.

2.4. Polar Form of a Complex Variable

We can express the complex variable of equation refeq2.14 in a different form on an Argand
diagram. Let Oz be a complex variable. Let r be the length of complex variable and 0 the angle
made with OX. See figure 2.2 below.

x

y

a

b

z

0

r

θ

Figure 2.2: Argand Diagram 2

Figure 2.2 demonstrates the Cartesian coordinate system with the X-axis and Y-axis representing
the real and imaginary parts of complex numbers, respectively. The figure is used to explain
the concept of integrating the function e( − x?) over the entire range of x to obtain the value of
the integral ’I’. The shaded area under the curve of the function e( − x?) in the first quadrant of
the (X?Y) plane represents the geometric interpretation of the integral. The integral ’I’ is a key
component in the derivation of the standard normal distribution and is related to the gamma
function and the area under the normal curve.

From Figure 2.2

r =
√

a2 + b2 (2.28)

θ = tan−1
(

b
a

)
(2.29)

a = r cos θ (2.30)

b = r sin θ (2.31)

Substituting equation 2.30 and equation 2.30 into equation 2.26 we have

z = r (cos θ + sin θ) (2.32)
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Equation 2.32 is the polar form of equation 2.26, r is called the modulus of the complex variable z
and is often abbreviated to ’Mod z’ or indicated by |z| . 0 is called the argument of the complex
variable and can be abbreviated to ’arg z’.

2.5. Integral Functions

The gamma function Γ(x) is defined by the integral

Γ(x) =
∞∫

0

tx−1e−tδt for x > 0 (33)

Integrating equation 33 by part we have

Γ(x + 1) = xΓ(x) (34)

When x = n, a positive integer greater than 1, equation 34 becomes

Γ(n + 1) = n!Γ(1) (35)

From equation 33 we have that

Γ(1) = 1 (36)

Substitute equation 36 into equation 35 we have

Γ(n + 1) = n! (37)

When x = 1/2

equation 33 becomes

Γ(1/2) =

∞∫
0

t(
1
2 )e−tδt (38)

3. Analysis and Result

3.1. The Direct Intergration Method

3.1.1 The Gamma Function of Half Γ(1/2)

Theorem 3.1. The gamma function of half defined as follows:

Γ(1/2) =

∞∫
0

t(1/2)e−tδt

= Γ(π)
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Proof.

Γ(1/2) =

∞∫
0

t(1/2)e−tδt

Let t = u2; δt = 2uδu, Γ(1/2) =
∞∫
0

u−1e−u2
2uδu

Γ(1/2) = 2
∞∫

0

e−u2
δu (1)

Unfortunately,
∞∫
0

e−u2
δu cannot easily be determined by normal means. It is however, important,

so we have to find a way of getting round the difficulty. We now convert equation 1 into the polar
coordinates form. See figure 3.1 below.

Let I =
∞∫
0

e−x2
δx Then also I =

∞∫
0

e−y2
δy

I2 =

 ∞∫
0

e−x2
δx

 ∞∫
0

e−y2
δy


=

 ∞∫
0

e−x2
δx

 ∞∫
0

e−y2
δy


=

∞∫
0

∞∫
0

e(x2+y2)δxδy (2)

δa = δxδy represent an element of area in the (X − Y) plane and the integration with the stated
limit covers the whole of the first quadrant. See figure 3.2 below

Now converting to polar coordinates, the element of area becomes δa = rδθδr

r2 = x2 + y2 (3)

e−(x2+y2) = e−r2

Form figure 3.2 below the limit of r are 0 ≤ r ≤ ∞. The limit of θ are O ≤ θ ≤ π/2. Equation 2
becomes

I2 =

(π
2 )∫

0

∞∫
0

e−r2
rδrδθ (4)
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Let k = r2, δk = 2rδr

=

(π
2 )∫

0

∞∫
0

e
−k2

2 δkδθ

=

(π
2 )∫

0

[
− 1

2 e−k
]∞

0
δθ

=

(π
2 )∫

0

(
1
2

)
δθ

=
[

θ
2

](π
2 )

0

= π
4

∴ I =
√

π
2 (5)

Before the diversion into the polar coordinates, we had established equation 1 that Γ (1/2) =

2
∞∫
0

e−u2
δu

Then substitute equation 5 into equation 1, Γ (1/2) = 2 × 1
2
√

π

Γ (1/2) =
√

π (6)

x

y

a

b

0

Z
δx

δy

Figure 3.1: The (X − Y) Plane
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x

y

a

y

0

r
θ

δθ

rδθ

δr

Figure 3.2: The Complex Plane

Figure 3.2 provides a graphical representation of the complex plane with polar coordinates (r, θ)
used to represent a complex number. The figure demonstrates the conversion of an element
of area from Cartesian coordinates (δx, δy) to polar coordinates (δa = rδθδr). This conversion is
essential in the proof of the gamma function of half (?(1/2)) using polar coordinates. The figure
shows how the radial distance ’r’ and the angle θ are used to define the position of a point in the
complex plane. The element of area in polar coordinates, represented by the shaded sector, is
used to integrate the function e( − r2/2) over the complex plane, which is a crucial step in the
derivation of the standard normal distribution.

This is the proof of the gamma function of half using the polar coordinates system of advanced
calculus. This result opens the way for the proof of the standard normal distribution. ■

3.2. The Standard Normal Distribution

Theorem 3.2.
∞∫

−∞

1√
2π

e−
1
2 z2

δz = 1 Proof.

∞∫
−∞

1√
2π

e−
1
2 z2

δz = 2 1√
2π

0∫
−∞

e−
1
2 z2

δz (7)

Fortunately, we can now apply polar coordinates in the summation of the integral in equation 7.

Dividing equation 3 by 2, we have r2

2 = x2+y2

2

e
−
(

x2+y2

2

)
= e−

r2

2

With the same limits as of figure 3.1 we can easily see that

I2 =

(π
2 )∫

0

∞∫
0

e−
1
2 r2

rδrδθ
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Let k = 1
2 r2, δr =

δk
r

=

(π
2 )∫

0

∞∫
0

e−kδkδθ

=

(π
2 )∫

0

[
−e−k

]∞

0
δθ

=

(π
2 )∫

0

δθ

= [θ]
(π

2 )
0

= π
4

I =
√

π
2

∴ I =
√

2π
2 (8)

Substituting equation 8 into equation 7, we have,

2√
2π

∞∫
0

e−
1
2 z2

δz =
2√
2π

×
√

2π
2

∴

∞∫
−∞

1√
2π

e−
1
2 z2

δz = 1 (9)

■

3.3. Derivation of the Normal Curve

Now, back to [1], the derivation of the normal curve from the asymmetric binomial distribution

was given in theorem 2.3. From equation 2.9 we had that, Y = Ke−
1
2 Z2

From proposition (2.0) it is
obvious that:

y = k
∞∫

−∞

e−
1
2 z2

δz = 1 (3.10)

From theorem 3.2, we had that
∞∫

−∞

e−
1
2 z2

δz =
√

2π (3.11)

Substituting equation 3.11 into equation 3.10 we have that k = 1√
2π

y = 1√
2π

e−
1
2 z2

(3.12)

Equation 3.12 is called the ”normal curve”.
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3.4. The Normal Equation

The equation of the normal distribution was given by equation 1.1 as

If f (x) =
1

σ
√

2π
exp

− 1
2

( x − µ

σ

)2

∞∫
−∞

f (x)δx =

∞∫
−∞

1
σ
√

2π
exp

− 1
2

( x − µ

σ

)2

δx

=
1

σ
√

2π

∞∫
−∞

exp
− 1

2

(
x − µ

σ

)2

δx

Let z = x−µ
σ and x = zσ + µ and δx = σδz

=
1

œ
√

2π

∞∫
−∞

exp− 1
2 z2

œδz

=
1√
2π

∞∫
−∞

exp− 1
2 z2

δz

From theorem 3.2, we had that
∞∫

−∞
exp−

1
2 z2

δz =
√

2π

=

√
2π√
2π

∴

∞∫
−∞

f (x)δx = 1

4. Discussion of Results

Ordinarily, all integral functions are difficult to integrate. They are not well behaved in regard to
integration. Hence the integral functions

Γ( 1
2 ) =

∞∫
0

tx−1e−tδt

f (x) =
∞∫

0

t(1/2)e−tδt

cannot easily be determined by normal means. This may be the root cause why [16] did
not make any attempt to prove that Γ( 1

2 ) =
√

π. [5] used the substitution method to prove
the gamma function of half and the standard normal distribution. She knew that the direct
integration method will leads to complex analysis. First, the so called ”Assumption 1” which is
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the gamma function of half has being proved to be equal to
√

π on theorem 4.0 with the aid of
the polar coordinates system. To the student of statistics this should no longer be an assumption.
Secondly the ”Assumption 2” which is known as the standard normal distribution was proved on
theorem 4.1. Also this is made possible by the aid of the polar coordinates system. The derivation
of the normal distribution is also an area where many Authorities shy away from. [3] made an
attempt to derive it, but he leaves the integral part of the function untouched.

5. Conclusion

I have not seen the direct integration method in the literature of the normal distribution but
substitution method, before now. This work have used the integration method through the help
of polar coordinate to derive the summation of the Gaussian Distribution.
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Abstract 

In order to perform insulation tests of electrical equipment under load in neutral insulated 

networks, it is necessary to create an artificial overvoltage, and at this time, it is necessary to 

determine the mathematical relationships between the single-phase non-stationary ground and the 

closing parameters. In the case of single-phase non-stationary earth faults, the dependencies 

between important parameters such as overvoltage frequency, earth fault resistance and earth fault 

angle obey complex laws. Therefore, for practical conditions, adequate mathematical models should 

be developed that allow to know the interdependencies of such parameters. In this work, the problem 

of analytical determination of the relationship between the overvoltage generated in neutral 

insulated networks as a result of non-stationary earth faults, the earth fault resistance and the earth 

fault angle was considered. For this purpose, a regression equation was obtained for the dependence 

of the overvoltage frequency on the ground fault resistance and the ground fault angle, and the 

corresponding spatial description was given. The obtained results confirmed the existence of a 

strong correlation between these parameters and can be used for practical purposes. 

Keywords: isolated electrical network, non-stationary ground fault, overvoltage factor, 

ground fault resistance, ground fault angle, regression equation, correlation 

I. Introduction

It is known that the failure of electrical equipment can cause various traumas of the staff, 

disruption of the technological process and serious accidents, so special tests are carried out to 

prevent such problems in advance. In general, such tests are carried out when one of the following 

situations occurs: equipment or installation is put into operation, after an accident, planned and 

unplanned repairs, a certain period of time has passed since previous inspections, etc. At the same 
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time, high-voltage testing of electrical equipment insulation is mandatory for neutral-insulated 

electrical networks with a voltage of up to 35 kV [1, 2]. 

It is a very urgent issue to obtain preliminary information about the potential damage of 

electrical equipment in neutral insulated networks and to perform high-voltage tests of insulation 

under load in order to ensure the uninterrupted supply of electricity to electricity consumers [3, 4]. 

It is clear from the research works carried out in this direction that various methods and tools are 

proposed [5-8].      

A method of testing the insulation under load in neutral-insulated networks was proposed 

[9]. According to this method, artificial non-stationary earth faults are created in the network based 

on Petersen's theory to test the insulation under load. It is possible to use the multifunctional high-

voltage thyristor commutator device created in this regard. Using this device, it is possible to 

create an artificial single-phase non-stationary earth fault that obeys Petersen's theory in neutral-

isolated networks. Thus, by providing different values of the phase angles through the control unit 

of the device, it is possible to create grounding of the phase of the network through the switching 

unit. Since switching processes are controlled by changing the grounding angle and resistance, it is 

possible to adjust its characteristic quantities (grounding current, arc output voltage). At the same 

time, since the quantities characterizing the switching process depend on the insulation resistance 

of the network with respect to ground, the artificial non-stationary ground faults created on the 

basis of Petersen's theory in neutral-isolated networks through the commutator allow both 

monitoring the insulation of the network with respect to ground and detecting damage in it. 

The value of the arc overvoltage during the transition processes is of great importance when 

conducting the tests. The value of the arc overvoltage, as mentioned, depends on the ground fault 

resistance, the ground fault angle and the phase capacity of the network with respect to ground. 

Therefore, it is important to determine the ground fault resistance and the ground fault angle in 

advance in order to control the transient processes and determine the value of the test voltage 

accordingly. For this purpose, it is important to determine the dependence of the frequency of arc 

overvoltage in neutral insulated networks as a result of non-stationary earth faults, the dependence 

of the earth fault resistance, the angle of earth fault and the phase capacity of the network with 

respect to earth.  

II. Statement of the problem for the regression model of arc overvoltage

In general, in order to determine the dependencies between the mentioned parameters, the 

numerical solution of the system of differential equations characterizing the transition process of 

the non-stationary earth fault created in neutral isolated networks should be performed using 

modern computing technologies. However, the numerical solution of the problem becomes much 

more difficult due to the "stiffness" of the mentioned differential equations. In other words, since 

the system of differential equations is non-linear, during their numerical integration, the stability 

of the solution is violated in some cases and the results are distorted. Therefore, in order to 

overcome such difficulties, it is important to obtain analytical expressions that determine the 

dependences between the frequency of the arc overvoltage  K  and the ground fault resistance

 0R , the ground fault angle   and the phase capacitance  fC of the network with respect to the 

ground. 

It should be noted that for the considered research question, in [10,11], the arc overvoltage 

ratio is determined from the ground fault resistance, in [12,13], the arc overvoltage ratio is from the 

ground fault angle, and in [14,15], the arc overvoltage ratio is determined from the derivation of 

analytical expressions for the dependences of the phase capacity of the network on the ground has 

already been considered. As a continuation of the conducted research, the regression model of the 
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dependence of the single-phase arc overvoltage on the ground fault resistance and the ground 

fault angle in neutral-insulated networks is considered. The mathematical model to be obtained 

will allow to ensure the value of the arc overvoltage at the required value by controlling the 

transition processes that occur during the artificial earth-stationary earth faults created for the 

purpose of carrying out tests under load. 

III. Problem solving method and algorithm

 Obtaining an analytical expression for the dependence of the frequency of the arc overvoltage 

during single-phase faults on the neutral-insulated electrical network   constC f   on the earth

fault resistance and the earth fault angle is considered. For this purpose, the results of the 

experimental studies carried out in the low-voltage model of the neutral-isolated network, given in 

table 1, are used  mkFC f 1  [8,9].

Table 1:  ,0RfK  addiction

OmR ,0


300 600 900 1200 1500 

5 2,45 3,16 3,30 3,10 2,16 

10 2,29 2,91 2,96 2,86 2,03 

15 2,16 2,69 2,77 2,66 1,93 

20 2,05 2,51 2,62 2,49 1,84 

25 1,96 2,35 2,49 2,35 1,76 

30 1,88 2,22 2,38 2,24 1,69 

 As can be seen from Table 1, the relationship between the frequency of arc overvoltage and 

the ground fault resistance and the ground fault angle can be approximated by the following 

regression equation [16]: 

,sin
0

cb
R

a
K    (1) 

 Here ,a ,b c  are regression coefficients. 

 If we accept substitutions x
R


0

1
 and ysin  in equation (1), we can write the regression 

equation as follows: 

,cbyaxK   (2) 

In other words, the dependence between the frequency of arc overvoltage  K  and the

conductance of the ground fault circuit  x  and the sine of the ground fault angle  y  can be

approximated by a linear regression equation (table 2). In determining the type of the model, such 

a judgment was used that if the change of the result indicator is directly proportional to the change 

of the factor indicators, then the linear model is considered adequate [17]. 
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Table 1:  yxfK , addiction

 Sm

x y

0,500 0,866 1,000 0,866 0,500 

0,200 2,45 3,16 3,30 3,10 2,16 

0,100 2,29 2,91 2,96 2,86 2,03 

0,067 2,16 2,69 2,77 2,66 1,93 

0,050 2,05 2,51 2,62 2,49 1,84 

0,040 1,96 2,35 2,49 2,35 1,76 

0,033 1,88 2,22 2,38 2,24 1,69 

The regression coefficients of equation (2) are determined by the following well-known 

expressions [16]: 





























ybxaKc
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rrr
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 (3) 

Here x average value of quantity x ; y  average value of quantity y ; K average value 

of quantity K ; x mean square deviation of quantity x  from its mean value  x ; y mean

square deviation of quantity y  from its mean value  y ; K  mean square deviation of quantity 

K from its mean value  K ; xyr  linear correlation coefficient between the quantities x  and y ; 

Kxr linear correlation coefficient between the quantities K and x ; Kyr linear correlation 

coefficient between the quantities K  and y . 

IV. Modeling results

The numerical values of the statistical indicators necessary for the determination of the 

coefficients of regression dependence and the identification of the model sought are determined 

according to the correlation table given in table 3. According to Table 3, the following markings 

were adopted: 

 2xxA i  ;  2yyB i  ;   2KKC i  ;      yyxxD ii  ;

   xxKKM ii  ;    yyKKN ii   

The data array consists of a sample, and the calculated values of the statistical indicators 

necessary for determining the coefficients are given below: 
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Table 3: Correlation table

iK A B C D M N 

1 0,200 0,500 2,45 0,01400278 0,06071296 0,001708 -0,02915733 0,0048911 -0,0101845 

2 0,200 0,866 3,16 0,01400278 0,01430416 0,564502 0,01415267 0,0889078 0,0898595 

3 0,200 1,000 3,30 0,01400278 0,06431296 0,794475 0,03000933 0,1054744 0,2260421 

4 0,200 0,866 3,10 0,01400278 0,01430416 0,477942 0,01415267 0,0818078 0,0826835 

5 0,200 0,500 2,16 0,01400278 0,06071296 0,061835 -0,02915733 -0,0294256 0,0612715 

6 0,100 0,500 2,29 0,00033611 0,06071296 0,014082 -0,00451733 -0,0021756 0,0292395 

7 0,100 0,866 2,91 0,00033611 0,01430416 0,251335 0,00219267 0,0091911 0,0599595 

8 0,100 1,000 2,96 0,00033611 0,06431296 0,303968 0,00464933 0,0101078 0,1398181 

9 0,100 0,866 2,86 0,00033611 0,01430416 0,203702 0,00219267 0,0082744 0,0539795 

10 0,100 0,500 2,03 0,00033611 0,06071296 0,143388 -0,00451733 -0,0069422 0,0933035 

11 0,067 0,500 2,16 0,00021511 0,06071296 0,061835 0,00361387 0,0036471 0,0612715 

12 0,067 0,866 2,69 0,00021511 0,01430416 0,079148 -0,00175413 -0,0041262 0,0336475 

13 0,067 1,000 2,77 0,00021511 0,06431296 0,130562 -0,00371947 -0,0052996 0,0916341 

14 0,067 0,866 2,66 0,00021511 0,01430416 0,063168 -0,00175413 -0,0036862 0,0300595 

15 0,067 0,500 1,93 0,00021511 0,06071296 0,229122 0,00361387 0,0070204 0,1179435 

16 0,050 0,500 2,05 0,00100278 0,06071296 0,128642 0,00780267 0,0113578 0,0883755 

17 0,050 0,866 2,51 0,00100278 0,01430416 0,010268 -0,00378733 -0,0032089 0,0121195 

18 0,050 1,000 2,62 0,00100278 0,06431296 0,044662 -0,00803067 -0,0066922 0,0535941 

19 0,050 0,866 2,49 0,00100278 0,01430416 0,006615 -0,00378733 -0,0025756 0,0097275 

20 0,050 0,500 1,84 0,00100278 0,06071296 0,323382 0,00780267 0,0180078 0,1401195 

21 0,040 0,500 1,96 0,00173611 0,06071296 0,201302 0,01026667 0,0186944 0,1105515 

22 0,040 0,866 2,35 0,00173611 0,01430416 0,003442 -0,00498333 0,0024444 -0,0070165 

23 0,040 1,000 2,49 0,00173611 0,06431296 0,006615 -0,01056667 -0,0033889 0,0206261 

24 0,040 0,866 2,35 0,00173611 0,01430416 0,003442 -0,00498333 0,0024444 -0,0070165 

25 0,040 0,500 1,76 0,00173611 0,06071296 0,420768 0,01026667 0,0270278 0,1598315 

26 0,033 0,500 1,88 0,00236844 0,06071296 0,279488 0,01199147 0,0257284 0,1302635 
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Continuation of table 3 

27 0,033 0,866 2,22 0,00236844 0,01430416 0,035595 -0,00582053 0,0091818 -0,0225645 

28 0,033 1,000 2,38 0,00236844 0,06431296 0,000822 -0,01234187 0,0013951 -0,0072699 

29 0,033 0,866 2,24 0,00236844 0,01430416 0,028448 -0,00582053 0,0082084 -0,0201725 

30 0,033 0,500 1,69 0,00236844 0,06071296 0,516482 0,01199147 0,0349751 0,1770795 

 2,450 22,392 72,26 0,09830667 1,28608320 5,390747 0,00000000 0,4112667 1,9987760 

Thus, based on the data of table 3, mean square deviations and two-dimensional correlation 

coefficients for individual quantities are calculated based on known formulas. The numerical 

values obtained are as follows: 
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Then, based on statements (3), the calculated values of regression coefficients of equation (1) 

or (2) are obtained as follows:  

;18,4a ;55,1b .91,0c  

Thus, after determining the regression coefficients, the dependence (1) (or (2)) between the 

frequency of the arc overvoltage generated in neutral insulated networks during single-phase non-

stationary earth faults and the earth fault resistance (or circuit conductance) and the sine of the 

earth fault angle can be written in the following obvious way: 

91,0sin55,1
18,4

0

 
R

K  (4) 

or 

91,055,118,4  yxK  (5) 

As it can be seen, the regression model obtained in the form of (4) between the parameters 

during single-phase non-stationary earth faults is in a form that is simple and easy to implement in 

practice. 

Let's check the adequacy of the obtained regression dependence (5) between the frequency of 

overvoltage and the conductance of the ground fault circuit and the sine of the ground fault angle 

during single-phase non-stationary ground faults. For this, by calculating the multivariate 

correlation coefficient, its significance can be checked with the Fisher criterion [16]. 

Based on the data, the value of the multivariate correlation coefficient is as follows: 
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We check the significance of the multivariate correlation coefficient with the F Fisher test. It 

is known that the regression equation at the   significance level is considered adequate if the 

),,( 21 kkFF  condition is met [17], here 21, kk  are the degrees of freedom. 

The reported value of the F Fisher criterion is determined based on the data as follows: 

 
.132

1
3

1
2

1

2








R
n

R

F

The table value of the F Fisher criterion is taken from the table depending on the 

significance level    and degrees of freedom  21, kk [17]: 

;05,0  ;21 k ;2733032  nk   .35,3,, 21 kkF 

Since   35,3,,132 21  kkFF  , the multivariate correlation coefficient  95,0R  and the 

statistical significance of the regression equation is confirmed. 

It should be noted that the multivariate correlation coefficient  195,0 R  close to unity

indicates that the dependence between the frequency of arc overvoltage and the conductance of the 

ground-fault circuit and the sine of the ground-fault angle can be considered a strong linear 

correlation relationship. It is recommended to use neutral-isolated networks when solving 

practical problems for organizing under-load tests of insulation of electrical equipment. 

A 3D (spatial) image of the dependence of the frequency of the arc overvoltage on the earth 

fault resistance and the earth fault angle was constructed based on the regression equation (4) 

obtained using computer modeling reporting methods (Fig. 1). The numerical results of the 

regression model obtained between the parameters mentioned in Figure 1, in other words, the 

existence of a strong correlation relationship between the quantities are visually confirmed. 

Figure 1. Earth fault resistance times overvoltage and a 

 3D image of its dependence on the angle of closure with the ground 
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VI. Conclusions

1. An easy-to-realize regression model was obtained between the frequency of arc

overvoltage in neutral insulated networks as a result of non-stationary earth faults subject to 

Petersen's theory, the conductance of the earth fault circuit and the sine of the earth fault angle. 

The proposed analytical dependence between the mentioned parameters can be considered as a 

strong linear correlation relationship and based on this, the value of the test voltage can be 

determined. 

2. The obtained results can be easily used during load tests of insulation of electrical

equipment in the neutral isolated networks of the Azerenergy system, and at the same time, 

during the investigation and analysis of the results of non-stationary ground faults that occurred in 

the network. 
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Abstract

This paper investigates a single-server queuing system with heterogeneous service, failure, and mainte-
nance. The proposed model features a server acting as both the main and backup server. System failure
can occur at any stage. When a failure happens, instead of stopping the service entirely, the main server
functions as a backup, providing service at a reduced rate. Once all jobs in the system have been serviced,
the backup server enters the maintenance state. Following the repair process during maintenance, the
server transitions to an idle state, awaiting incoming jobs. Explicit expressions for both transient and
steady-state behaviours of the system are derived. Additionally, key system performance metrics are
discussed in this paper, accompanied by graphical illustrations to visualize system size probabilities and
performance indices.

Keywords: Heterogeneous service; Generating function; Continued fraction; Modified Bessel
function, Time-dependent probabilities, Steady-state probabilities

1. Introduction

Queuing systems, fundamental to understanding the dynamics of service provision in various
domains, have traditionally been modelled under the assumption of homogeneity, where service
rates remain constant across servers. However, the real-world landscape presents a diverse array
of scenarios where servers exhibit heterogeneous characteristics, ranging from differing capacities
to varied processing speeds. This departure from homogeneity introduces complexities that
demand novel modelling approaches to accurately capture system behaviours. In this paper, we
delve into the realm of heterogeneous servers within queuing systems, focusing on the intricate
interplay between server diversity and system resilience. Our investigation aims to address
the challenges posed by system failures, a ubiquitous occurrence in service environments, by
proposing a resilient model where servers seamlessly transition between primary and backup
roles to ensure continuity of service provision. Specifically, we contribute to the literature by
analyzing a single-server queuing system providing two types of service: fast and slow. Instead
of halting service entirely during failure, our proposed model allows the server to transition into
a backup role and continue providing service at a reduced rate, thus minimizing downtime and
enhancing operational resilience.

Several authors have explored queuing systems with heterogeneous servers. For instance,
Kumar and Madheswari [8] utilized a Markovian queue model to investigate a system featuring
two servers with different characteristics and multiple vacation periods. Using the matrix
geometric method, they determined the stationary queue length distribution and average system
size for this setup. Krishnamoorthy and Sreenivasan [9] analyzed an M/M/2 queuing system
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with two servers of different types. One server remains continuously available, while the other
server goes on vacation when no customers are waiting for service. Upon returning from vacation,
the second server operates at a reduced rate if the first server is already busy. The authors
examined the system’s behaviour in a steady state using the matrix geometric method.

Efrosinin and Rykov [5] analyzed a multi-server system with heterogeneous exponential
queues. Their study demonstrates techniques for computing steady-state probabilities and deriv-
ing distributions for waiting and sojourn times. Efrosinin et al. [6] investigated a controllable
multi-server heterogeneous queueing system in which servers operate at different service rates
without preemption. Additionally, the authors have applied the concept of heterogeneity in
service to cloud centres. Wang et al. [13] introduced the concept of heterogeneous servers in cloud
centres to strike an optimal balance between expected response time and power consumption. By
incorporating servers with varying capabilities, they aimed to efficiently handle stochastically
arriving requests in cloud environments. From the literature survey, it is observed that many
authors have focused on utilizing two servers to provide heterogeneous service, with both servers
operating at different speeds. However, in this paper, we depart from this convention by consider-
ing a single server capable of providing two distinct services. For instance, imagine a modern
banking system where a single ATM offers both cash withdrawal and deposit services, catering
to the diverse needs of customers. This type of service is also applied in cloud computing. In a
cloud computing platform, a single virtual machine instance may be tasked with handling both
high-priority real-time data processing and lower-priority batch processing tasks. Additionally,
while traditional heterogeneous server models assume a fixed arrival rate, our proposed model
introduces heterogeneity in the arrival rate as well, reflecting real-world scenarios where incoming
requests vary in frequency and urgency.

In service systems, customers often experience heterogeneous service, which can stem from
various reasons. In this paper, we focus on addressing the challenges posed by system failures
resulting from technical anomalies, a scenario ubiquitous in real-world service environments.
System failures can occur due to several reasons such as negative customers [7], disaster ([3],
[11]) and catastrophes [4]. Ammar [2] investigated the two-processor heterogeneous system
with catastrophes, server failures and repairs. Sudhesh and Savitha studied three heterogeneous
systems with catastrophes. From the literature survey, it is observed that many authors have
considered that when a system encounters a disaster, all customers are removed from the system,
and the system switches to a failure state. After the repair process, the server switches to an idle
state and waits for customers to arrive.

In response to such disruptions, our proposed model incorporates a resilient mechanism
wherein the primary server seamlessly transitions into a backup role whenever a failure occurs.
During these periods of contingency, the backup server delivers service at a reduced rate, thereby
mitigating the impact of disruptions on service provision and maintaining a degree of continuity
for system users. Upon serving all customers in the system, the backup server switches to the
maintenance state, initiating necessary repairs to restore the system to full functionality. This
proactive approach to maintenance ensures the integrity and reliability of the system, minimizing
downtime and enhancing overall operational resilience. By integrating these aspects into our
queuing model, we aim to provide a comprehensive framework for analyzing and optimizing the
performance of service-oriented systems under diverse operating conditions. The objective of
this paper is to analyze a single-server queueing system where the server provides two types of
service: fast and slow. Instead of halting service entirely during failure, the server transitions
into a backup role and continues providing service at a reduced rate. Once all customers have
been served, the backup server switches to a maintenance state. Following maintenance, the
server returns to an idle state and waits for customers to arrive. To analyze this system, we derive
both transient and steady-state probabilities using Laplace transform and generating function
techniques.

This article is structured as follows: Section 2 presents the application of the proposed model.
Section 3 provides the model description. The time-dependent probabilities of the system are
discussed in Section 4, while Section 5 focuses on the performance measures of the system in the
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transient state. In Section 6, the steady-state probabilities are presented, followed by a discussion
on the performance indices of the system in the steady state in Section 7. A numerical illustration
of the system is provided in Section 8, and Section 9 offers the conclusion of the proposed work.

2. Application of the proposed system

The proposed system is applied in Disaster Recovery Systems, which are crucial components of
critical IT infrastructure such as data centres or cloud-based services where high availability is
essential. A disaster recovery system ensures business continuity and data integrity in the face of
unexpected events like hardware failures, natural disasters, or cyber-attacks. In this system, the
main server is responsible for handling regular operations and serving client requests. Meanwhile,
the backup server operates in a standby mode, continuously replicating data and configurations
from the active server to ensure that it remains up-to-date with the latest data.

In the event of a system failure on the main server, the backup server automatically takes over
the responsibilities of the main server in a process known as fail-over. This fail-over mechanism
may be triggered either manually or automatically by monitoring systems that detect the failure
of the main server. Once the main server is repaired and ready to operate again, it can resume its
regular duties, and the data changes that occurred during the fail-over period can be synchronized
back to the main server. The main server acting as a backup server in this context provides
redundancy and enhances the overall reliability of the system. It ensures that critical services and
applications remain available even during unexpected disruptions, thereby reducing downtime
and minimizing the impact on end-users or customers.

3. Model Description

Consider a system that consists of a single server acting as the main server and also a backup
server, providing different types of service. Whenever a failure occurs in the main server, the
backup server acts as the main server but with a slower service rate, denoted by µ2. Arrival
occurs to the main server according to a Poisson process with rate λ1, whereas arrivals occur
with rate λ2 when the backup server is active. Customers receive service at the main server
with exponential rate µ1, while the backup server has a reduced service rate µ2, where µ2 ≤ µ1.
Assume that failures of the main server occur at an exponential rate γ. Once the backup server
becomes idle, it promptly enters a state of preventive maintenance (state V), characterized by
an exponentially distributed duration with a mean of 1/ξ. Throughout the maintenance period,
customers are prohibited from entering the system. The moment the server’s maintenance is
finished, it promptly transitions back to the primary processor and becomes prepared to attend
the new customers.

Let {N(t), M(t) : t ≥ 0} be the 2-dimensional continuous time Markov chain. Let {N (t) , t ≥ 0}
denote the number of customers in the system at any time t and {M (t) , t ≥ 0} represents the
state of the system at any time t with state space

S =
{
(0, 0) ∪

{
(n, r) , n ∈ Z+, r = 1, 2

}
∪ V

}
.

The state (0, 0) represents that the server is idle and waiting for customers to arrive. The state
(n, 1) represents the main server is busy and providing service to the nth customer. The state
(n, 2) represents the backup server is busy and providing service to the nth customer. The state
V represents the server is in a maintenance state and the server is inoperative in this state. Let
Pn,r (t) = P {N (t) = n, M (t) = r} be the probability that the server is in state r with n number
of customers in the system at any time t and let PV (t) denote the probability that the server is in
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maintenance state. Then Pn,r (t) and PV (t) satisfies the following forward Kolmogorov equations

P
′
V(t) = −ξPV(t) + µ2P1,2(t), (1)

P
′
0,0(t) = −λ1P0,0(t) + ξPV(t) + µ1P1,1(t), (2)

P
′
1,1(t) = −(λ1 + µ1 + γ)P1,1(t) + λ1P0,0(t) + µ1P2,1(t), (3)

P
′
n,1(t) = −(λ1 + µ1 + γ)Pn,1(t) + λ1Pn−1,1(t) + µ1Pn+1,1(t), n ≥ 2, (4)

P
′
1,2(t) = −(λ2 + µ2)P1,2(t) + µ2P2,2(t) + γP1,1(t), (5)

P
′
n,2(t) = −(λ2 + µ2)Pn,2(t) + λ2Pn−1,2(t) + µ2Pn+1,2(t) + γPn,1(t), n ≥ 2. (6)

with the initial condition P0,0(0) = 1.

4. Time-dependent probabilities

This section presents the time-dependent probabilities of the system being busy when the main
server is active, denoted as Pn,1(t), when the backup server is active, denoted as Pn,2(t), during
maintenance, denoted as PV(t), and in the idle state, denoted as P0,0(t).

4.1. Evaluation of Pn,1(t)

This section presents the time-dependent probability of the system being busy when the main
server is active. Let P̂n,r(s) denote the Laplace transform of Pn,r (t). Taking Laplace Transform on
Equation (4) and rearranging, we get

P̂n,1(s)
P̂n−1,1(s)

=
λ1

(s + λ1 + µ1 + γ)− µ1
P̂n+1,1(s)

P̂n,1(s)

.

On simplification, we obtain

P̂n,1(s) = β1

 p1 −
√

p2
1 − α2

1

α1

 P̂n−1,1(s).

The above equation recursively yields

P̂n,1(s) = β1
(n−1)

 p1 −
√

p2
1 − α2

1

α1

(n−1)

P̂1,1(s), n ≥ 2, (7)

where

p1 = s + λ1 + µ1 + γ, α1 = 2
√

λ1µ1, β1 =

√
λ1

µ1
.

Taking inverse Laplace transform on Equation (7), we get

Pn,1(t) = λ1βn−2
1 e−(λ1+µ1+γ)t [In−2(α1(t − u))− In(α1(t − u))] ∗ P1,1(t), (8)

where In(t) represents modified Bessel function of first kind of order n. Thus the probability
that the main server is busy Pn,1(t) is expressed in terms of P1,1(t). The expression for P1,1(t) is
presented in Equation (22)
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4.2. Evaluation of Pn,2(t)

To obtain the time-dependent probability of Pn,2(t), we define a generating function as follows.
Let

G(z, t) =
∞

∑
n=1

Pn,2(t)zn

Using Equations (5) and (6), we obtain

∂

∂t
G(z, t) =

[
−(2+µ2) + (2z +

µ2

z
)
]

G(z, t) + γ
∞

∑
n=1

Pn,1(t)zn − µ2P1,2(t). (9)

Solving Equation (9) yields,

G(z, t) = γ
∫ t

0

∞

∑
n=1

Pn,1(u)zne−(2+µ2)(t−u)e−(2z+ µ2
z )(t−u)du

− µ2

∫ t

0
P1,2(u)e−(2+µ2)(t−u)e−(2z+ µ2

z )(t−u)du. (10)

Let
α2 = 2

√
2µ2, β2 =

√
2

µ2
.

Then

e−(2z+ µ2
z )t =

∞

∑
n=−∞

(β2z)n In(α2t). (11)

Using Equation (11) in Equation (10) and equating the coefficient of zn, we arrive

Pn,2(t) = γ
∫ t

0

∞

∑
m=1

Pm,1(u)e−(2+µ2)(t−u)βn−m
2 In−m(α2(t − u))du

− µ2

∫ t

0
P1,2(u)e−(2+µ2)(t−u)βn

2 In(α2(t − u))du. (12)

The above holds for n ≤ −1 with the left-hand side replaced by zero. Using I−n(x) = In(x) for
n ≥ 1

0 = γ
∫ t

0

∞

∑
m=1

Pm,1(u)e−(2+µ2)(t−u)β−n−m
2 In+m(α2(t − u))du

− µ2

∫ t

0
P1,2(u)e−(2+µ2)(t−u)β−n

2 In(α2(t − u))du. (13)

From Equations(12) and (13), we get

Pn,2(t) = γ
∫ t

0

∞

∑
m=1

Pm,1(u)e−(2+µ2)(t−u)βn−m
2 [In−m(α2(t − u))− In+m(α2(t − u))du. (14)

4.3. Evaluation of PV(t) and P0,0(t)

This section presents the time-dependent probabilities of the maintenance state and idle state.
Taking Laplace transform on Equation (1), we obtain

P̂V(s) =
µ2

s + ξ
P̂1,2(s). (15)

On inversion, we get
PV(t) = µ2e−ξt ∗ P1,2(t).
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Taking Laplace transform on (2), we obtain

P̂0,0(s) =
1

s+1

[
1 + ξ P̂V(s) + µ1P̂1,1(s)

]
. (16)

On inversion, we have

P0,0(t) = e−1t ∗
[

δ(t) + ξPV(t) + µ1P1,1(t)
]

. (17)

Setting n = 1 in Equation (14) and taking Laplace transform, we get

P̂1,2(s) = Φ̂(s)P̂1,1(s), (18)

where

Φ̂(s) =
γ

2

∞

∑
m=1

βm−1
1 β2−m

2

 p1 −
√

p2
1 − α2

1

α1

m−1 p2 −
√

p2
2 − α2

2

α2

m

(19)

and
p2 = s + λ2 + µ2.

Inverting Equation (19), we get

Φ(t) = γλ1

∞

∑
m=1

βm−1
1 β1−m

2 e−(λ1+µ1+γ)t [Im−2(α1t)− Im(α1t)] ∗ e−(λ2+µ2)t

× [Im−1(α2t)− Im+1(α2t)] .

Taking Laplace Transform on (3), we get

P̂11(s) =
λ1

s + λ1 + µ1 + γ
P̂0,0(s) +

µ1

s + λ1 + µ1 + γ
P̂2,1(s). (20)

Setting n = 2 in Equation (7) and using Equations (16), (15), (18) in Equation (20), after some
algebra, we have

P̂1,1(s) = λ1

∞

∑
k=0

(µ1β1)
k

k

∑
r=0

(
λ1µ2

µ1β1

)r (k
r

)
1

(s + λ1)r+1

 p1 −
√

p2
1 − α2

1

α1

k−r
r

∑
j=0

ξ j
(

r
j

)(
Φ̂(s)
s + ξ

)j

.

(21)

On inversion

P1,1(t) =
λ2

1
β1

∞

∑
k=0

(µ1β1)
k

k

∑
r=0

(
λ1µ2

µ1β2

)r (k
r

)
e−λ1t tr

r!
∗ e−(λ1+µ1+γ)t [Ik−r−1(α1t)− Ik−r+1(α1t)]

∗
∞

∑
j=0

ξ j
(

r
j

)
e−ξt tj−1

(j − 1)!
∗ (Φ(t))∗j. (22)

5. Performance Measures

In this section, the expected system size and variance of the proposed model are presented.

RT&A, No 2 (78) 

 Volume 19, June, 2024 

439



Mohammed Shapique A, Vaithiyanathan A
ANALYSIS OF A HETEROGENEOUS SERVICE

5.1. Expected system size

The expected system size, denoted as E(N(t)), is defined as follows.

E(N(t)) =
∞

∑
n=1

n (Pn,1(t) + Pn,2(t))

Using Equations (3) − (6), we get

d
dt

E[N(t)] = λ1P0,0(t) + (λ1 − µ1)
∞

∑
n=1

Pn,1(t) + (λ2 − µ2)
∞

∑
n=1

Pn,2(t).

Integrating,

E(N(t)) = λ1

∫ t

0
P0,0(u)du +

∞

∑
n=1

[∫ t

0
(λ1 − µ1)Pn,1(u)du +

∫ t

0
(λ2 − µ2)Pn,2(u)du

]
.

5.2. Variance

The variance of the number of customers at time t is defined as

V(N(t)) = E[N2(t)]− E(N(t))2

where

E[N2(t)] =
∞

∑
n=1

n2 [Pn,1(t) + Pn,2(t)]

Using Equations (3) − (6), we obtain

d
dt

E[N2(t)] = λ1P0,0(t) +
∞

∑
n=1

[
λ1(2n + 1)Pn,1(t) + µ1(1 − 2n)Pn,1(t) + λ2(2n + 1)Pn,2(t)

+ µ2(1 − 2n)Pn,2(t)

]
.

Integrating,

E[N2(t)] = λ1

∫ t

0
P0,0(u)du +

∞

∑
n=1

[
λ1(2n + 1)

∫ t

0
Pn,1(u)du + µ1(1 − 2n)

∫ t

0
Pn,1(u)du

+ λ2(2n + 1)
∫ t

0
Pn,2(u)du + µ2(1 − 2n)

∫ t

0
Pn,2(u)du

]
.

where Pn,1(t), Pn,2(t) and P0,0(t) are given in Equations (18), (14) and (17) respectively.

6. Stationary Analysis

This section presents the steady-state analysis of the proposed model. The steady-state equations
of the proposed model are as follows.

0 = −ξπM + µ2π1,2, , (23)

0 = −λ1π0,0 + ξπM + µ1π1,1, , (24)

0 = − (λ1 + µ1 + γ)π1,1 + λ1π0,0 + µ1π2,1, , (25)

0 = − (λ1 + µ1 + γ)πn,1 + λ1πn−1,1 + µ1πn+1,1, n = 2, 3, 4, ..., (26)

, 0 = − (λ2 + µ2)π1,2 + µ2π2,2 + γπ1,1, , (27)

0 = − (λ2 + µ2)πn,2 + λ2πn−1,2 + µ2πn+1,2 + γπn,1, n = 2, 3, 4, ...., (28)
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We define a generating function

Gi (z) =
∞

∑
n=1

πn,izn, i = 1, 2.

Using Equations (25) and (26) and summing for n = 1, 2, 3, ..., we get

G1 (z) =
z

(z − z1) (z − z̄1)
{µ1π1,1 − λ1π0,0z} (29)

where

z1 =
(λ1 + µ1 + γ) +

√
(λ1 + µ1 + γ)2 − 4λ1µ1

2λ1
,

z̄1 =
(λ1 + µ1 + γ)−

√
(λ1 + µ1 + γ)2 − 4λ1µ1

2λ1
.

It is noted that for λ1 > 0, µ1 > 0, γ > 0, the roots z1 > 1, 0 < z̄1 < 1. Setting z = z̄1 in Equation
(29), we obtain

G1 (z) =
∞

∑
n=1

(
z
z1

)n
λ1π0,0

Comparing the coefficient of zn in the above expression, we obtain

πn,1 = λ1

(
1
z1

)n
π0,0 (30)

Similarly, using Equations (27) and (28) and summing for n = 1, 2, 3, ..., we get

G2 (z) =
zλ2

(zλ2 − µ2) (z − 1)
{µ2π1,2 − γG1 (z)} (31)

Setting z = 1 in (31), after some algebraic manipulation, we get

G2 (z) =
γλ1λ2z

µ2

(
1 − λ2

µ2

)
(1 − z)

[
∞

∑
n=1

(
1
z1

)n
−

∞

∑
n=1

(
z
z1

)n
]

π0,0

Using Equation (30) in the above expression and equating the coefficients of zn on both sides, we
get

πn,2 = γλ1

{
∞

∑
i=1

(
1
z1

)i n

∑
m=1

(
λ2

µ2

)m
−

n−1

∑
i=1

n−i

∑
j=1

(
λ2

µ2

)i( 1
z1

)j
}

π0,0 (32)

Setting n = 1 in the above result and using it in (23), we obtain

πM =
γλ1λ2

ξ

∞

∑
i=1

(
1
z1

)i
π0,0. (33)

An explicit expression for π0,0 can be obtained using the normalisation condition as follows.

πM + π0,0+

∞

∑
n=1

πn,1 +
∞

∑
n=1

πn,2 = 1. (34)

Using the results (30), (32) and (33) in the above condition, we get

π0,0 =

[
1 +

γλ1λ2

ξ

∞

∑
i=1

(
1
z1

)i
+ γλ1

∞

∑
n=1

{
∞

∑
i=1

(
1
z1

)i n

∑
m=1

(
λ2

µ2

)m
−

n−1

∑
i=1

n−i

∑
j=1

(
λ2

µ2

)i( 1
z1

)j
}

+
∞

∑
n=1

λ1

(
1
z1

)n
]−1

.
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7. Performance indices

This section presents the expected system size of the proposed model

7.1. Expected system size

Let E(Ns), E(N1) and E(N2) denote the expected number of customers in the system, main server
and the backup server respectively.

E (NS) = E (N1) + E (N2) .

Using the result (30) and (31), we get

E (N1) =
λ1z1

(1 − z1)
2 π0,0,

E (N2) = γλ1

∞

∑
n=1

n

{
∞

∑
i=1

(
1
z1

)i n

∑
m=1

(
λ2

µ2

)m
−

n−1

∑
i=1

n−i

∑
j=1

(
λ2

µ2

)i( 1
z1

)j
}

π0,0.

Applying Little’s formula, the expected number of customers waiting in the system and the queue
is given by

E (Ws) =
1

λ1
E (N1) +

1
λ2

E (N2)

, E
(
Wq
)
=

∞

∑
n=1

(n − 1)πn,1 +
∞

∑
n=1

(n − 1)πn,2.

8. Numerical illustration

In this section, we provide a numerical illustration of our proposed model. The parameter values
are chosen based on the stability conditions λ1

µ1
< 1 and λ2

µ2
< 1. The parameter values are as

follows: λ1 = 0.6, λ2 = 0.5, µ1 = 1.1, µ2 = 1, γ = 0.3, and ξ = 0.1. Figures 1 and 2 depict the
behaviour of the main server P1,n(t) and the backup server P2,n(t), respectively. We assumed
that the initial condition P0,0(0) = 1. As a result, the probability curve of P1,n(t) starts at 1 and
gradually decreases until it reaches the steady state. Conversely, all other probability curves for
P1,n(t) begin at zero, increase initially, and converge to the steady state. Figures 3 and 4 showcase
the expected system size and variance of the system for varying values of the arrival rate λ1. We
observe that as the arrival rate increases, the mean and variance graphs also increase. Figures
5 and 6 show the expected system size and variance for different values of the arrival rate λ2.
Figures 7-10 display the stationary probabilities of the system. Figures 7 and 8 provide insights
into the probabilities associated with the main and backup servers, respectively. From the graphs,
it is observed that as n increases, the probability curves of πn,1 and πn,2 decrease and attain the
steady state. Finally, Figures 9 and 10 demonstrate the expected system size in the main and
backup servers. We notice that as the arrival rate increases, the expected system size E(Ni), where
i = 1, 2, for both the main and backup servers also increases. This provides important insights
into the system’s performance under different workload scenarios.
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Figure 1: Probabilities of the main server P1,n(t).
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Figure 2: Probabilities of the backup server P2,n(t).
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Figure 3: Mean system size for different arrival rate λ1.
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Figure 4: Variance of the system for different λ1.
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Figure 5: Mean system size for different λ2.
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Figure 6: Variance of the system for different λ2.
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Figure 7: Steady state probability πn,1 for
different arrival rate λ1.
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Figure 8: Steady state probability πn,2 for
different arrival rate λ2.
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Figure 9: Mean system size E(N1) against λ1
for various γ rates
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Figure 10: Mean system size E(N2) against λ2
for various γ rates.

9. Conclusion

This paper investigates an M/M/1 queueing system with heterogeneous service rates and periodic
server maintenance. By deriving explicit expressions for both the transient and steady-state
probabilities, the study provided a comprehensive understanding of the system’s performance
under various operating conditions. The establishment of the mathematical framework and the
utilization of analytical techniques were instrumental in achieving the desired analysis. The
current study focused on a single server setup. One can extend this work by investigating
multi-server configurations
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Abstract

In this present paper, we classify and explore the geometrical significance of a class of Lorentzian
almost paracontact metric manifolds namely Lorentzian para-Kenmotsu (briefly LP-Kenmotsu) mani-
folds whenever the manifolds are either conformally flat or conformally symmetric. It was found that
a conformally flat LP-Kenmotsu manifold is of constant curvature and a conformally symmetric LP-
Kenmotsu manifold is locally isomorphic to a unit sphere. At the end, we obtain the scalar curvature of
ϕ-conformally flat LP-Kenmotsu manifolds.
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I. Introduction

In 1995, Sinha and Sai Prasad [11] defined a class of almost paracontact metric manifolds namely
para-Kenmotsu (briefly P-Kenmotsu) and special para-Kenmotsu (briefly SP-Kenmotsu) mani-
folds in similar to P-Sasakian and SP-Sasakian manifolds. In 1989, K. Matsumoto [3] introduced
the notion of Lorentzian paracontact and in particular, Lorentzian para-Sasakian (LP-Sasakian)
manifolds. Later, these manifolds have been widely studied by many geometers such as Mat-
sumoto and Mihai [4], Mihai and Rosca [5], Mihai, Shaikh and De [6], Venkatesha and Bagewadi
[13], Venkatesha, Pradeep Kumar and Bagewadi [14, 15].

In 2018, Abdul Haseeb and Rajendra Prasad defined a class of Lorentzian almost paracontact
metric manifolds namely Lorentzian para-Kenmotsu (briefly LP-Kenmotsu) manifolds [1, 2] and
they studied ϕ-semisymmetric LP-Kenmotsu manifolds with a quarter-symmetric non-metric
connection admitting Ricci solitons [7, 8]. As an extension, Sai Prasad et al., [9] have studied
LP-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type (1, 3). Further,
they also have studied and shown that the LP-Kenmotsu manifolds admitting both irrotational
and conservative pseudo-projective curvature tensors are Einstein manifolds of constant scalar
curvature [10].

In 2023, Sunitha and Sai Prasad [12] have defined a class of Lorentzian para-Kenmotsu mani-
folds admitting a quarter-symmetric metric connection and shown that it is either ϕ-symmetric
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or concircular ϕ-symmetric with respect to quarter-symmetric metric connection if and only if
it is symmetric with respect to the Riemannian connection, provided the scalar curvature of
Riemannian connection is constant. Recently, Rao, Sunitha and Sai Prasad [16] have studied
ϕ-conharmonically flat and ϕ-projectively flat LP-Kenmotsu manifolds. They have shown that
ϕ-conharmonically flat LP-Kenmotsu manifold is an η-Einstein manifold with zero-scalar cur-
vature and ϕ-projectively flat LP-Kenmotsu manifold is an Einstein manifold with the scalar
curvature r = n(n − 1).

In this work we explore a class of conformally flat Lorentzian para-Kenmotsu (LP-Kenmotsu)
manifolds. The following is the layout of the current paper: Following the introduction, Section
2 includes some preliminaries on Lorentzian para-Kenmotsu manifolds. In section 3, we study
conformally flat Lorentzian para-Kenmotsu manifolds and shown that they are of constant cur-
vature. Further in section 4, we study and have shown that Lorentzian para-Kenmotsu manifold
satisfying the condition R(X, Y).C = 0 is locally isomorphic to a unit sphere Sn(1). Finally in
section 5, it is shown that ϕ-conformally flat LP-Kenmotsu manifold is an η-Einstein manifold
with the scalar curvature r = n(n − 1).

II. Preliminaries

An n-dimensional differentiable manifold Mn admitting a (1, 1) tensor field ϕ, contravariant
vector field ξ, a 1-form η and the Lorentzian metric g(X, Y) satisfying

η(ξ) = −1, (1)

ϕ2X = X + η(X)ξ, (2)

g(ϕX, ϕY) = g(X, Y) + η(X)η(Y), (3)

g(X, ξ) = η(X), (4)

ϕξ = 0, η(ϕX) = 0, rank ϕ = n − 1 (5)

is called Lorentzian almost paracontact manifold [3].

In a Lorentzian almost paracontact manifold, we have

Φ(X, Y) = Φ(Y, X), where Φ(X, Y) = g(ϕX, Y). (6)

A Lorentzian almost paracontact manifold Mn is called Lorentzian para-Kenmotsu manifold if
[1]

(∇Xϕ)Y = −g(ϕX, Y)ξ − η(Y)ϕX, (7)

for any vector fields X and Y on Mn and ∇ is the operator of covariant differentiation with
respect to the Lorentzian metric g.

It can be easily seen that in a LP-Kenmotsu manifold Mn, the following relations hold [1]:

∇Xξ = −ϕ2X = −X − η(X)ξ, (8)

(∇Xη)Y = −g(X, Y)ξ − η(X)η(Y), (9)

for any vector fields X and Y on Mn.

Also, in an LP-Kenmotsu manifold, the following relations hold [1]:

g(R(X, Y)Z, ξ) = η(R(X, Y)Z)

= g(Y, Z)η(X)− g(X, Z)η(Y),
(10)
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R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (11)

R(X, Y)ξ = η(Y)X − η(X)Y, (12)

S(X, ξ) = (n − 1)η(X) (13)

S(ϕX, ϕY) = S(X, Y) + (n − 1)η(X)η(Y), (14)

S(X, Y) = ag(X, Y) + bη(X)η(Y), (15)

for any vector fields X, Y and Z and S is the Ricci tensor of Mn.

The Riemannian Christoffel curvature tensor R of type (1, 3) is given by:

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z, (16)

where ∇ be its Levi-Civita connection.

III. LP-Kenmotsu manifolds with C(X, Y)Z = 0

In this section, we consider conformally flat Lorentzian para-Kenmotsu manifolds.

The Weyl-conformal curvature tensor C(X, Y)Z is given by

C(X, Y)Z = R(X, Y)Z

− 1
(n − 2)

[g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X − S(X, Z)Y]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y],

(17)

where
S(X, Y) = g(QX, Y).

Using (16), we get from (17)

R(X, Y)Z =
1

(n − 2)
[g(Y, Z)QX − g(X, Z)QY + S(Y, Z)X − S(X, Z)Y]

+
r

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y].

(18)

By taking Z = ξ in (18) and on using (4), (12) and (13), we get

η(Y)X − η(X)Y =
1

(n − 2)
[η(Y)QX − η(X)QY] +

(n − 1)
(n − 2)

[η(Y)X − η(X)Y]

− r
(n − 1)(n − 2)

[η(Y)X − η(X)Y].
(19)

Taking Y = ξ and using (1), we get

QX =
( 1

n − 1
− 1

)
X +

( r
n − 1

− 1
)

η(X)ξ. (20)

It shows that the manifold is η-Einstein.

Further on contracting (20), we have
r = n(n − 1). (21)

Now, by using (21) in (20), we get
QX = (n − 1) X. (22)
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Then by putting (22) in (19), we get

R(X, Y)Z = g(Y, Z)X − g(X, Z)Y. (23)

Thus, a conformally flat LP-Kenmotsu manifold is of constant curvature. The value of this con-
stant is +1. Hence, we can state

Theorem 1. A conformally flat LP-Kenmotsu manifold is locally isometric to a unit sphere
Sn(1).

IV. LP-Kenmotsu manifold satisfying R(X, Y).C = 0

Using (4), (11) and (13) we find from (17) that

η(C(X, Y)Z) =
1

n − 2
[
( r

n − 1
− 1

)
(g(Y, Z)η(X)− g(X, Z)η(Y))

− (S(Y, Z)η(X)− S(X, Z)η(Y))].
(24)

Putting Z = ξ in (24) and on using (4), (13) we get

η(C(X, Y)ξ) = 0. (25)

Again, taking X = ξ in (24), we get

η(C(ξ, Y)Z) =
1

n − 2
[S(Y, Z) + (n − 1)η(Y)η(Z)]

− 1
n − 2

( r
n − 1

− 1
)
[g(Y, Z) + η(Y)η(Z)].

(26)

Now,
(R(X, Y)C)(U, V)W = R(X, Y)C(U, V)W − C(R(X, Y)U, V)W

− C(U, R)(X, Y)V)W − C(U, V)R(X, Y)W.
(27)

Using R (X, Y) .C = 0, we find from above that

g[R(ξ, Y)C(U, V)W, ξ]− g[C(R(ξ, Y)U, V)W, ξ]

− g[C(U, R(ξ, Y)V)W, ξ]− g[C(U, V)R(ξ, Y)W, ξ] = 0.

Using (4) and (11) we get

− C(U, V, W, Y)− η(Y)η(C(U, V)W)− g(Y, U)η(C(ξ, V)W)

+ η(U)η(C(Y, V)W)− g(Y, V)η(C(U, ξ)W) + η(V)η(C(U, Y)W)

− g(Y, W)η(C(U, V)ξ) + η(W)η(C(U, V)Y) = 0,

(28)

where
C(U, V, W, Y) = g(C(U, V)W, Y).

Putting U = Y in (28), we get

− C(U, V, W, U)− η(U)η(C(U, V)W) + η(U)η(C(U, V)W)

+ η(V)η(C(U, U)W) + η(W)η(C(U, V)U)− g(U, U)η(C(ξ, V)W)

− g(U, V)(C(U, ξ)W)− g(U, W)η(C(U, V)ξ) = 0.

(29)

Let {ei : i= 1, . . . ,n} be an orthonormal basis of the tangent space at any point, then the sum for
1≤i≤n of the relations (29) for U = ei gives

(1 − n)η(C(ξ, V)W) = 0,
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which implies
η(C(ξ, V)W) = 0 as n > 3. (30)

Using (25) and (30), (28) takes the form

− C(U, V, W, Y)− η(Y)η(C(U, V)W) + η(U)η(C(Y, V)W)

+ η(V)η(C(U, Y)W) + η()η(C(U, V)Y) = 0.
(31)

Using (24) in (31) we get

−C(U, V, W, Y) + η(W)
1

n − 2

[( r
n − 1

− 1
)(

η(U)g(V, Y)− η(V)g(U, Y)
)

−
(
η(U)S(V, Y)− η(V)S(U, Y)

)]
= 0.

(32)

In virtue of (30), (26) reduces to

S(Y, Z) =
( r

n − 1
− 1

)
g(Y, Z) +

( r
n − 1

− n
)

η(Y)η(Z). (33)

Using (33), (31) reduces to
C(U, V, W, Y) = 0, (34)

which proves that the manifold is conformally flat. Hence, by using the Theorem 1, we state

Theorem 2. If in an LP-Kenmotsu manifold Mn(n> 3) the relation R(X, Y).C= 0 holds, then
it is locally isometric with a unit sphere Sn(1).

For a conformally symmetric Riemannian manifold, we have ∇C= 0. Hence for such a man-
ifold R(X, Y).C= 0 holds. Thus, we have the following corollary of the above theorem.

Corollary 1. A conformally symmetric LP-Kenmotsu manifold Mn (n> 3) is locally isometric
with a unit sphere Sn(1).

V. ϕ-conformally flat LP-Kenmotsu manifold

Let C be the Weyl conformal curvature tensor of Mn. Since at each point p∈Mn the tangent space
T (Mn) can be decomposed into the direct sum Tp (Mn) =ϕ

(
Tp (Mn)

)
⊕L

(
ξp
)
, where L

(
ξp
)

is
a 1-dimensional linear subspace of Tp (Mn) generated by ξp, we have a map:

C :Tp (Mn)×Tp (Mn)×Tp (Mn)→φ
(
Tp (Mn)

)
⊕L

(
ξp
)

It may be natural to consider the following particular cases:

1. C:Tp (Mn)×Tp (Mn)×Tp (Mn)→L
(
ξp
)

, that is, the projection of the image of C in ϕ
(
Tp(Mn)

)
is zero.

2. C:Tp (Mn)×Tp (Mn)×Tp (Mn)→ϕ
(
Tp (Mn)

)
, that is, the projection of the image of C in

L
(
ξp
)

is zero.

3. C:ϕ
(
Tp (Mn)

)
×ϕ

(
Tp (Mn)

)
×ϕ

(
Tp (Mn)

)
→L

(
ξp
)
, that is, when C is restricted to(

Tp (Mn)
)
×ϕ

(
Tp (Mn)

)
×φ

(
Tp (Mn)

)
, the projection of the image of C in ϕ

(
Tp (Mn)

)
is

zero. This condition is equivalent to

ϕ2C(ϕX, φY)ϕZ= 0. (35)
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Definition 1. A differentiable manifold (Mn, g) , n> 3, satisfying the condition (35) is called ϕ-
conformally flat.

Now our aim is to find the characterization of LP-Kenmotsu manifolds satisfying the condi-
tion (35).

Theorem 3. Let Mn be an n-dimensional, (n> 3), ϕ-conformally flat LP-Kenmotsu manifold.
Then Mn is an η-Einstein manifold.

Proof. Suppose that (Mn, g) , n> 3, is a ϕ-conformally flat LP− Kenmotsu manifold. It is easy to
see that ϕ2C(ϕX, ϕY)ϕZ= 0 holds if and only if g(C(ϕX, ϕY)ϕZ, φW) = 0 for any X, Y, Z, W∈χ (Mn).
So, by the use of (17), ϕ-conformally flat means

g(R(ϕX, ϕY)ϕZ, ϕW) =
1

n − 2
[g(ϕY, ϕZ)S(ϕX, ϕW)− g(ϕX, ϕZ)S(ϕY, ϕW)

+ g(ϕX, ϕW)S(ϕY, ϕZ)− g(ϕY, ϕW)S(ϕX, ϕZ)]

− r
(n − 1)(n − 2)

[g(ϕY, ϕZ)g(ϕX, ϕW)

− g(ϕX, ϕZ)g(ϕY, ϕW)].

(36)

Let {e1, . . . ,en−1, ξ} be a local orthonormal basis of vector fields in Mn. Using that {ϕe1, . . . ,ϕen−1, ξ}
is also a local orthonormal basis, if we put X=W=ei in (36) and sum up with respect to i, then

n−1

∑
i=1

g(R(ϕei, ϕY)ϕZ, ϕei) =
1

n − 2

n−1

∑
i=1

[g(ϕY, ϕZ)S(ϕei, ϕei)

− g(ϕei, ϕZ)S(ϕY, ϕei) + g(ϕei, ϕei)S(ϕY, ϕZ)

− g(ϕY, ϕei)S(ϕei, ϕZ)]

− r
(n − 1)(n − 2)

n−1

∑
i=1

[g(ϕY, ϕZ)g(ϕei, ϕei)

− g(ϕei, ϕZ)g(ϕY, ϕei)].

(37)

It can be easily verified that

n−1

∑
i=1

g(R(ϕei, ϕY)ϕZ, ϕei) = S(ϕY, ϕZ) + g(ϕY, ϕZ), (38)

n−1

∑
i=1

S (ϕei, ϕei) =r+n−1, (39)

n−1

∑
i=1

g (ϕei, ϕZ) S (ϕY, ϕei) =S (ϕY, ϕZ) , (40)

n−1

∑
i=1

g (ϕei, ϕei) =n+1, (41)

and
n−1

∑
i=1

g (ϕei, ϕZ) g (ϕY, φei) =g(ϕY, ϕZ). (42)

So, by virtue of (38)-(42) the equation (37) can be written as

S (ϕY, ϕZ) =
(

r
n−1

−1
)

g (ϕY, ϕZ) . (43)
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Then by making use of (3) and (14), the equation (43) takes the form

S (Y, Z) =
(

r
n−1

−1
)

g (Y, Z) +
(

r
n−1

−n
)

η (Y) η (Z) . (44)

Therefore from (44), by contraction, we obtain

r = n(n − 1). (45)

Then by substituting (45) in (44), we get

S(Y, Z) = (n − 1)g(Y, Z)

which implies Mn is an η-Einstein manifold with the scalar curvature r = n(n − 1).

This completes the proof of the theorem.

VI. Conclusion

The present work explores the geometrical significance of a new class of Lorentzian paracontact
metric manifolds namely the Lorentzian para-Kenmotsu manifolds whenever these manifolds
are either conformally symmetric or conformally flat. The concepts and various geometrical
properties of these manifolds can be applied in various aspects of Applied Mathematics such as
Computational Fluid Dynamics, in designing the Super Resolution Sensors in Communications
Engineering, and also in the field of General Theory of Relativity.
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Abstract 

Aim of the present paper is to find suitable model for bimodal data. We have modelled mixture of 

two Weibull distributions in the presence of competing risks and also used Epanechnikov kernel 

to estimate hazard and survival functions. We considered prostate cancer data for application of 

the mixture model and kernel. We used maximum likelihood estimation (MLE) to estimate 

parameters of the mixture model, as the equations have no closed form, so we considered 

expectation–maximization (EM) algorithm.  The mixture model and kernel gave good fit to the 

bimodal data. The prostate cancer data consists of three causes, we have estimated hazard function 

for these three causes using mixture model and kernel. The asymptotic confidence interval for the 

parameters of mixture model to all three causes were estimated. Also compared survival curve of 

mixture model with kernel and Kaplan-Meier survival curves for all the three causes. 

Keywords: Weibull mixture model, EM algorithm, kernel, hazard, bimodal. 

I. Introduction

The general Statistical analyses were different from survival analysis because of the presence of 
censoring. Basically, censoring means incomplete data. In survival analysis or medical studies, it is 
quite common that more than one cause of failure may be directed to a subject at the same time. It is 
required for an investigator to estimate a specific risk in the presence of other risk factors. In 
statistical literature, this process is known as the analysis of competing risks model. It is assumed, 
in the analysis of competing risks model, that data consist of a time to failure and an indicator 
denoting the cause of failure. In survival analysis our main objective is to estimate survival and 
hazard functions. Survival analysis can be done using parametric, non-parametric and Bayesian 
methods. For parametric approach we generally consider Weibull distribution because it has 
increasing, decreasing and constant hazard rate, but this distribution can be used when data is 
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unimodal. When we have bimodal data we cannot use the standard parametric lifetime 
distributions, in that case we can use mixture of distributions. For nonparametric approach we can 
consider the kernel method to estimate the hazard and survival functions.  

Many authors work on mixture of distributions and kernel based methods to estimate hazard 
and survival functions. Modelling of mixture of gamma, mixture of Weibull and mixture of log 
normal distributions for analysing the heterogeneous survival data was considered by [1], for that 
they have considered mice data and Lung cancer dataset. The mixture of two and three Weibull 
distributions was modelled and estimated the parameters using MLE and tested for best fit of the 
models by [2], and used five different examples to show the hazard and survival functions. A 
parametric mixture model of three different distributions was used to analyse heterogeneous 
survival data by [3]. They have simulated the data and estimated the parameters using expectation-
maximization (EM) algorithm and also compared individual distribution like exponential, gamma 
and Weibull with the mixture of these three distributions. Similarly, many authors have worked on 
mixture models ([4], [5], [6]). Estimation of the hazard function and its associated factors in gastric 
cancer patients using Wavelet and kernel smoothing methods was carried out by [7]. Repeated time 
to event models to characterize the repeated occurrence of clinical events and visualization of kernel 
based hazard with comparison to Weibull and Gompertz models was considered by [8]. (see also 
[9], [10]). 

In present paper, we are considering estimation of density, hazard and survival functions using 
Epanechnikov kernel and mixture of two Weibull distributions. For estimation we are consider the 
prostate cancer data which is bimodal given in [11]. Generally, for bimodal data it is not appropriate 
to use standard parametric lifetime distributions but mixtures of those distributions are suitable for 
bimodal. Here we are considering two cases, case-I consists of estimation of hazard and survival 
function using mixture of two Weibull distributions and case-II considers kernel method of 
estimation. 

II. Methods

2.1    Case-I: Mixture of two Weibull distribution 

Now we are considering a parametric approach using mixture of two Weibull distributions. The 
study considers fitting of bimodal data to the mixture of Weibull distributions in presence of 
competing risks and calculation of the hazard and survival functions. The functional form of mixture 
distribution is given below. 

Let 𝑇1, 𝑇2, … , 𝑇𝑛 be the failure time of n patients where 𝑇𝑖 ∈ (0, 𝑡] , 𝑖 = 1,2, … , 𝑛 if we consider k 
competing events then 𝑇𝑖𝑗 → 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑡ℎ𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑗𝑡ℎ𝑐𝑎𝑢𝑠𝑒. Each patient fail due to only
one cause 𝑇𝑖 = min (𝑇𝑖1, 𝑇𝑖2, … , 𝑇𝑖𝑘) . Let us consider C be the censoring time such that  𝑇𝑖𝑗 =

min (𝑇𝑖𝑗 , 𝐶). Let 𝐹(𝑡) be the cumulative distribution function (CDF) and 𝑓(𝑡) be probability 
distribution function and ℎ(𝑡) and 𝑆(𝑡) be hazard and survival function at time t. 

𝐹(𝑡) = 1 − (𝜋1𝑒
−𝛼𝑡𝛾

+ 𝜋2𝑒
−𝛽𝑡𝜆

)                                                           (1)

𝑓(𝑡) = 𝜋1𝛼𝛾𝑡𝛾−1𝑒−𝛼𝑡𝛾
+ 𝜋2𝛽𝜆𝑡𝜆−1𝑒−𝛽𝑡𝜆  (2) 

𝑆(𝑡) = 1 − 𝐹(𝑡) 

𝑆(𝑡) = 𝜋1𝑒
−𝛼𝑡𝛾

+ 𝜋2𝑒
−𝛽𝑡𝜆 (3)
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ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝜋1𝛼𝛾𝑡𝛾−1𝑒−𝛼𝑡𝛾+𝜋2𝛽𝜆𝑡𝜆−1𝑒−𝛽𝑡𝜆

𝜋1𝑒−𝛼𝑡𝛾+𝜋2𝑒−𝛽𝑡𝜆
 (4) 

Here 𝜋1and 𝜋2 be the weights such that 𝜋1 + 𝜋2 = 1 

And 𝛼 and 𝛾 be scale and shape parameters with weight 𝜋1and 𝛽 and 𝜆 be scale and shape 
parameters with weight 𝜋2. 

Likelihood function L is given as 

𝐿 = ∏ 𝑓(𝑥𝑖)

𝑛

𝑖=1

 

𝐿 = ∏(𝜋1𝛼𝛾𝑡𝑖
𝛾−1

𝑒−𝛼𝑡𝑖
𝛾

+ 𝜋2𝛽𝜆𝑡𝑖
𝜆−1𝑒−𝛽𝑡𝑖

𝜆
)

𝑛

𝑖=1

Now the likelihood function in terms of competing risks can be given as 

𝛿𝑖𝑗 = (
1  𝑖𝑡ℎ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑓𝑎𝑖𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑗𝑡ℎ  𝑐𝑎𝑢𝑠𝑒, 𝑗 = 1,2, … … , 𝑘

0  𝑖𝑡ℎ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑎𝑖𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑗𝑡ℎ𝑐𝑎𝑢𝑠𝑒 (𝐶𝑒𝑛𝑠𝑜𝑟𝑒𝑑)

𝐿 =  ∏ ∏(𝑓𝑗(𝑡𝑖))
𝛿𝑖𝑗

𝑘

𝑗=1

𝑛

𝑖=1

𝑆(𝑡𝑖)
1−𝛿𝑖𝑗

     L=∏ ∏ (ℎ𝑗(𝑡𝑖))
𝛿𝑖𝑗𝑘

𝑗=1
𝑛
𝑖=1 𝑆(𝑡𝑖)     (5) 

Now the log likelihood of equation (5) can be written as, 

𝑙 = 𝑙𝑜𝑔𝐿 = ∑∑ ((𝛿𝑖𝑗 ∗ log (ℎ𝑗(𝑡𝑖))) + log(𝑆(𝑡𝑖)))
𝑘

𝑗=1

𝑛

𝑖=1

 

𝑙 = ∑∑

(

(𝛿𝑖𝑗 ∗ log(
𝜋1𝛼𝑗𝛾𝑗𝑡𝑖

𝛾𝑗−1
𝑒−𝛼𝑗𝑡𝑖

𝛾𝑖
+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖

𝜆𝑗−1
𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

𝜋1𝑒
−𝛼𝑗 𝑡𝑖 

𝛾𝑗
+ 𝜋2𝑒

−𝛽𝑗𝑡𝑖

𝜆𝑗
)) + log (𝜋1𝑒

−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

)

)

𝑘

𝑗=1

𝑛

𝑖=1

𝑙 = ∑ ∑ ((𝛿𝑖𝑗 (log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

) − log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+𝑘
𝑗=1

𝑛
𝑖=1

𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

))) + log (𝜋1𝑒
−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

))              (6) 

 For cause 𝑗 we can write log likelihood as 

𝑙𝑗 = ∑ (log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)) 
𝑛𝑗

𝑖=1

− ∑log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)

𝑛𝑗

𝑖=1

+ ∑log (𝜋1𝑒
−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

)

𝑛

𝑖=1

 

          (7) 
Now estimating the parameter values using MLE, and it is obtained by first order partial derivatives 
with respect to each parameter and equating to zero. But these equations do not have closed form, 
so to estimate the parameter values we consider numerical estimation that is Newton-Raphson 
method or we can use expectation–maximization (EM) algorithm. The first order partial derivatives 
are given in Appendix. 
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2.1.1    Expectation–Maximization (EM) Algorithm 

The EM algorithm is a powerful iterative method used for finding maximum likelihood estimates or 
maximum a posteriori estimates in statistical models where the data is incomplete or contains latent 
variables. The EM algorithm consists of an-expectation step (E-step), and a maximization step (M-
step). The advantage of the EM algorithm is that it solves a difficult incomplete-data problem by 
constructing two easy steps. The E-step only needs to compute the conditional expectation of the 
log-likelihood with respect to the incomplete data, given the observed data. The M-step needs to 
find the maximizer of this expected likelihood. An additional advantage of this method compared 
to other optimization techniques is that it is very simple, and it converges reliably [12]. Let 𝑌 be the 
observed data and 𝑋 be the missing data. We also write 𝑙, 𝑙𝑐 and 𝑙𝑚 for the log-likelihoods based on 
the observed, complete and missing data distributions respectively. The EM algorithm consists of 
iterating two steps. First is the expectation, or “E”, step, in which an objective function is constructed 
from the complete data likelihood. Second is the maximization, or “M”, step, in which the previously 
computed objective function is maximized. These two steps are then alternated until some 
convergence criterion is met [13]. Whatever value of 𝜃 the algorithm converges to and is used as our 
parameter estimate. 

The E-step of the EM algorithm consists of computing the conditional expectation of the 
complete data likelihood, given the observed data. That is, the objective function at iteration 𝑘 is 
given by 

𝑄(𝜃|𝜃𝑘−1) = 𝐸𝜃𝑘−1
(𝑙𝑐(𝜃; 𝑦, 𝑋)|𝑌 = 𝑦)  (8) 

Where 𝜃𝑘−1 is the parameter estimate obtained from the previous iteration. 

The M-step of the EM algorithm consists of maximizing the objective function constructed in the 
previous E-step. That is, we define 𝜃𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃|𝜃𝑘−1). Typically, this optimization must be 
performed numerically via, e.g., gradient ascent or the Newton-Raphson algorithm. In fact, it is 
possible to divide the set of parameters into groups (possibly with each group containing a single 
parameter) and optimize over each group individually with the others held fixed. This is called the 
Expectation-Conditional Maximization, or ECM, algorithm. Notationally, we can combine the E and 
M-steps of the EM algorithm into a single “update function”. We write 𝑀(𝜃𝑘−1) =

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃|𝜃𝑘−1). The EM algorithm can thus be viewed as the iterative application of this update
function, 𝑀.

2.1.2    Asymptotic Confidence Bounds 

The MLE’s do not have closed form to know the distribution to calculate confidence intervals, in 
such a case we go with asymptotic distribution of the MLE of the parameters [14]. It is known that 
the asymptotic distribution of the MLE �̂� is given by  

(�̂� − 𝜃) → 𝑁4(0, 𝐼−1(𝜃))

Where 𝐼−1(𝜃) → Fisher information matrix of the unknown parameters 

𝜃 = (𝛼1, 𝛼2, 𝛼3, 𝛽1, 𝛽2, 𝛽3, 𝛾1, 𝛾2, 𝛾3, 𝜆1, 𝜆2, 𝜆3) . 

The elements of the 4 𝑋 4 matrix of 𝐼−1(. ),  are approximated by 𝐼𝑖𝑗(�̂�),
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where 

𝐼𝑖𝑗(�̂�) = −
𝜕2𝑙(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗

|
𝜃=�̂�

 Where, �̂� = (𝛼1̂, 𝛼2̂, 𝛼3̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛾1̂, 𝛾2̂, 𝛾3̂, 𝜆1̂, 𝜆2̂, 𝜆3̂)  estimated parameters.

Now information matrix can be written as, 

𝜕2𝑙(𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
=

[

𝜕2𝑙

𝜕 𝛼𝑗
2

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛽𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛽𝑗

𝜕2𝑙

𝜕 𝛽𝑗
2

𝜕2𝑙

𝜕𝛽𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕𝛽𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕𝛽𝑗𝜕𝛾𝑗

𝜕2𝑙

𝜕 𝛾𝑗
2

𝜕2𝑙

𝜕𝛾𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛼𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛽𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕𝛾𝑗𝜕𝜆𝑗

𝜕2𝑙

𝜕 𝜆𝑗
2 ]

 (9) 

The elements of the fisher information matrix are given in Appendix. 

Therefore, the approximate 100(1 − 𝛾)% two-sided, confidence interval for 𝜃 is given by 

   �̂� ± 𝑍𝛾/2 √ 𝐼−1(�̂�)            (10) 

Here 𝑍𝛾/2is the upper 𝛾/2 th percentile of a standard normal distribution. 

2.2    Case-II: Kernel density Estimation 

A kernel is a weight function of observation on 𝑥 and scaling parameter ℎ which is called as the 
Bandwidth. The scaled distances obtained at a point 𝑥 is used to compute kernel density at that 
point. The kernel density function is regarded as probability density [8]. The estimator to estimate 
density is given by,  

𝑓(𝑢) =
1

𝑛
∑ 𝐾(𝑢)

𝑛

𝑖=1

 

Where, 𝐾(. )  → Kernel Function 
The kernel function has the following properties viz,. 

𝐾(𝑢) ≥ 0, for all u 

∫𝐾(𝑢)𝑑𝑢 = 1 (normalization) 

𝐾(−𝑢) = 𝐾(𝑢) (symmetry) 

∫𝑢 𝐾(𝑢) 𝑑𝑢 = 0 

And  ∫𝑢2 𝐾(𝑢) ≠ 0 

Using the kernels we can estimate the survival and hazard functions. In general, to obtaining 
pattern for rate of failure the hazard curve is more obvious than survival curve. Hazard rate 
functions can be used for several statistical analysis in medicine, engineering and economics. For 
instance, hazard function commonly used when presenting results in clinical trials involving 
survival data. Several methods for hazard function estimation have been considered in the literature 
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([7], [9],[10]). Hazard function estimation by nonparametric methods has an advantage in flexibility 
because no formal assumptions are made about the mechanism that generates the sample order or 
the randomness [15]. There are many kernels in the literature say, Uniform, Triangle, Epanechnikov, 
Quartic, Triweight, Gaussian, Cosine etc. Now for our study we consider the Epanechnikov kernel 
[16].  

𝐾(𝑢) =
3

4
(1 − 𝑢2)I(|u| ≤ 1) 

By considering 𝑢 =
𝑡−𝑋𝑖

𝑏

Then kernel becomes 

𝐾𝑏(𝑡) =
3

4𝑏
(1 − (

𝑡−𝑋𝑖

𝑏
)

2

)  I(|
t−Xi

b
| ≤ 1)          (11) 

Where, 𝑏 is the bandwidth , 𝑛 is the number of observation, 𝑋𝑖  is the given observation and  𝑡  is the 
point where kernels are calculated. 

From this kernel many bumps are formed and summing the bumps gives us the density function. 

The kernel density function is given by, 

𝑓�̂�(𝑡) =
1

𝑛𝑏
∑ 𝐾 (

𝑡 − 𝑋𝑖

𝑏
)

𝑛

𝑖=1

 

𝑓�̂�(𝑡) =
1

𝑛𝑏
∑

3

4

𝑛

𝑖=1

(1 − (
𝑡 − 𝑋𝑖

𝑏
)

2

)  I (|
t − Xi

b
| ≤ 1) 

The estimation of the CDF, 𝐹�̂� is constructed by integrating 𝑓�̂� . That is

𝐹�̂�(𝑡) = ∫ 𝑓�̂�(𝑥)
𝑡

−∞

𝑑𝑥 =
1

𝑛
∑ 𝐾(

𝑡 − 𝑋𝑖

𝑏
)

𝑛

𝑖=1

 

Where, 𝐾(𝑡) = ∫ 𝐾(𝑥)𝑑𝑥
𝑡

−∞
 

Estimation of hazard function using kernel [17], 

ℎ̂(𝑡) =
1

𝑏
∑ 𝐾 (

𝑡−𝑋𝑖

𝑏
)𝑛

𝑖=1 ∆Λ̂(𝑡𝑖)     (12) 

 Where, 𝑛 is the number of failure times, 𝑏 is the bandwidth, Λ̂(𝑡) is the Nelson-Aalen estimator of 
the cumulative hazard function. 

2.2.1    Nelson-Aalen estimator of cumulative hazard function 

Let the hazard function be, 

ℎ(t) = lim
𝑙→0

1

𝑙
𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝑙/𝑇 ≥ 𝑡) =

𝑓(𝑡)

𝑆(𝑡)

where 𝑓(𝑡) be density function and 𝑆(𝑡) be survival function, and the survival function in terms of 
hazard function can be expressed as, 

𝑆(𝑡) = 𝑒−∫ ℎ(𝑢)
𝑡
0 𝑑𝑢
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Now the cause specific hazard function be given by, 

ℎ𝑗(t)= lim
𝑙→0

1

𝑙
𝑝(𝑡 ≤ 𝑇 < 𝑡 + 𝑙, 𝐽 = 𝑗 /𝑇 ≥ 𝑡) 

ℎ(𝑡) = ∑ℎ𝑗(𝑡)

𝐽

𝑗=1

 

And the cumulative cause specific hazard function be given by 

Λ(𝑡) = ∫ ℎ(𝑢)𝑑𝑢
𝑡

0

 

And cause specific Nelson-Aalen estimator of the cumulative hazard [18] is given by, 

Λj(𝑡) = ∑
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑜 𝑓𝑎𝑖𝑙 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑎𝑢𝑠𝑒 𝑗 𝑎𝑡 𝑡𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑗𝑢𝑠𝑡 𝑝𝑟𝑖𝑜𝑟 𝑡𝑜 𝑡𝑘

𝐾

𝑘=1

2.2.2    Selection of the Bandwidth 

Important thing in the kernel density estimation is selection of the bandwidth. We calculate 
bandwidth using Silverman’s Rule [19]. That is 

�̂� =
1.06∗�̂�

𝑛
1
5

  (13) 

Where,  �̂� is the sample standard deviation. 

2.2.3   Kaplan-Meier (K-M) Estimator 

The Kaplan-Meier estimator known as the product limit estimator is a non-parametric statistic used 
to estimate the survival function from lifetime data [20]. An important benefit of the Kaplan–Meier 
curve is that, the method can take into account some types of censored data, particularly right-
censoring, which occurs if a patient withdraws from a study, or is lost due to follow-up, or is alive 
without event incidence at last follow-up. The Kaplan-Meier estimate is an easiest way of computing 
survival over time. The Kaplan Meier estimator of survival function is defined as 

�̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖

)

𝑖:𝑡𝑖<𝑡

 

Where 𝑡𝑖is the failure time, 𝑑𝑖is the number of events that occurs at time 𝑡𝑖and 𝑛𝑖  is the number 
individuals at risk of experiencing the event immediately prior to 𝑡𝑖. 

III. Results

The prostate cancer data consists of 489 patients, 25.5% of them are failed due to cancer, 19% failed 
due to CVD and 25.74% failed due to other causes and rest of the data were censored. Median failure 
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time for cancer patients is 23 months and for CVD patients 20.5 months and for other causes 24 
months. 

From figure 1 we can see that our data is bimodal, to fit this data, we used mixture of two 
Weibull distributions (black line) and the kernel density estimation (red line). Figure 2 explains the 
hazard curves for three different causes cancer, CVD and other causes. Here we can see that for 
cause cancer and CVD the hazard initially increases till 30 months then decreases. For other causes 
the hazard increases-decreases-increases, so we can say that, the hazard function is non-monotonic. 
Figure 3 explains the survival curve of three causes using kernel, mixture model and Kaplan-Meier 
survival functions. Here we can observe that kernel and mixture model survival curves are close to 
each other. For all three causes Kaplan-Meier survival curve has less probability of surviving as 
compared to the kernel and mixture model. Table 1 shows the estimated parameter values using 
MLE by considering EM algorithm. Table 2 gives the estimated parameter values with their 
corresponding standard error and confidence limits.  

Figure 1: Histogram of the data with fitted Mixture of Weibull distribution and Epanechmikov kernel. 

Figure 2: Hazard curves using mixture model and kernel for three causes

Figure 3: Survival curves using mixture model, kernel and Kaplan-Meier for three causes
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Table 1: Estimated parameter values for three causes 

Parameter Cancer CVD Other Causes 

𝜋1 0.8155268 0.810495 0.9224448 
𝜋2 0.1844732 0.1895035 0.07755524 
𝛼 0.001494359 0.001097538 0.000103001 
𝛽 0.000370462 0.000076065 0.000848062 
𝛾 1.241094000 1.058928000 1.954219000 
𝜆 2.180196000 2.600613000 2.469943000 

Table 2: Estimated parameter values, standard error (SE), lower control limit (LCL) and upper control limit (UCL)

Causes Parameters SE LCL UCL 

Cancer 

𝛼 =0.001494359 0.000059337 0.001378061 0.001610657 

𝛽 =0.000370462 0.000006754 0.000357225 0.000383700 

𝛾 =1.241094000 0.004894528 1.231500902 1.250687098 

𝜆 =2.180196000 0.000420388 2.179372055 2.181019945 

CVD 

𝛼 =0.001097538 0.000139156 0.000824797 0.001370279 

𝛽 =0.000076065 0.000001373 0.000073374 0.000078756 

𝛾=1.058928000 0.000000469 1.058927081 1.058928919 

𝜆 =2.600613000 0.000187876 2.600244771 2.600981229 

Other 
causes 

𝛼 =0.000103001 0.000003077 0.000096969 0.000109032 

𝛽 =0.000848062 0.000022916 0.000803148 0.000892976 

𝛾 =1.954219000 0.000666012 1.952913641 1.955524359 

𝜆 =2.469943000 0.011053927 2.448277701 2.491608299 

IV. Discussions

From the study we conclude that, in real life situations with competing risks data, if data is bimodal 
we can use mixture of distributions or kernel methods to estimate hazard and survival functions. In 
this paper we have considered both approach to estimate hazard and survival function in presence 
of the competing risks. To estimate the parameters of the mixture models we have used MLE as it 
does not have closed form so we considered EM algorithm to estimate parameters of all three causes. 
We have also calculated the standard error and asymptotic confidence interval for all the parameters. 
All the estimated parameters are statistically significant at 5% level of significance. Here we can see 
that hazard function initially increases, then decreases and increases. For survival curve we have 
compared kernel, mixture model and Kaplan-Meier methods. So, when we have bimodal density, 
and having competing risks approach, the mixture model (as a parametric approach) is more 
appropriate or kernel method (as a nonparametric approach) is more appropriate to estimate hazard 
and survival functions. 
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Appendix: 

The log likelihood function (7) for the mixture of two Weibull distribution in presence of 
competing risks is given as 

𝑙𝑗 = ∑ (log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)) 
𝑛𝑗

𝑖=1
 − 

∑ log (𝜋1𝛼𝑗𝛾𝑗𝑡𝑖
𝛾𝑗−1

𝑒−𝛼𝑗𝑡𝑖
𝛾𝑖

+ 𝜋2𝛽𝑗𝜆𝑗𝑡𝑖
𝜆𝑗−1

𝑒−𝛽𝑗𝑡𝑖

𝜆𝑗

)
𝑛𝑗

𝑖=1
+ ∑ log (𝜋1𝑒

−𝛼𝑗𝑡𝑖

𝛾𝑗

+ 𝜋2𝑒
−𝛽𝑗𝑡𝑖

𝜆𝑗

)𝑛
𝑖=1  

Here we are considering first with cause 1, that is 𝐺1 stands for failure times for cause 1, so here 
𝑗 = 1. Similarly, we can consider cause 2 and 3 as G2 and G3 respectively. 
𝑒𝑎 = 𝑒−(𝛼∗(𝐺1𝛾)) ; 𝑒𝑏 = 𝑒−(𝛽∗(𝐺1𝜆)); 𝑒𝑎𝑎 = 𝑒−(𝛼∗(𝑥𝛾)); 𝑒𝑏𝑏 = 𝑒−(𝛽∗(𝑥𝜆)); 

𝑙𝑜𝑔𝑥2 = 𝑙𝑜𝑔(𝐺12) ; 𝑥2𝑔 = 𝐺12∗𝛾 ; 𝑥2𝑙 = 𝐺12∗𝜆; 𝑥𝑔1 = 𝐺1𝛾−1;  𝑥𝑙1 = 𝐺1𝜆−1 

𝑑𝑒𝑛𝑜1 = (𝑝1 ∗ 𝛼 ∗ 𝛾 ∗ 𝑥𝑔1 ∗ 𝑒𝑎) + (𝑝2 ∗ 𝛽 ∗ 𝜆 ∗ 𝑥𝑙1 ∗ 𝑒𝑏) 

𝑑𝑒𝑛𝑜2 = 𝑝1 ∗ 𝑒𝑎 + 𝑝2 ∗ 𝑒𝑏 

𝑑𝑒𝑛𝑜3 = 𝑝1 ∗ 𝑒𝑎𝑎 + 𝑝2 ∗ 𝑒𝑏𝑏 

𝑛𝑢𝑚𝑒1 = 𝑝1 ∗ 𝛾 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 ∗ (1 − 𝛼 ∗ (𝐺1𝛾)) 

𝑛𝑢𝑚𝑒2 = 𝑝1 ∗ (𝐺1𝛾) ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒3 = 𝑝1 ∗ (𝑥𝛾) ∗ 𝑒𝑎𝑎 

𝑛𝑢𝑚𝑒𝑏1 = 𝑝2 ∗ 𝜆 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 ∗ (1 − 𝛽 ∗ (𝐺1𝜆)) 

𝑛𝑢𝑚𝑒𝑏2 = 𝑝2 ∗ (𝐺1𝜆) ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏3 = 𝑝2 ∗ (𝑥𝜆) ∗ 𝑒𝑏𝑏 

𝑛𝑢𝑚𝑒𝑔1 = 𝑝1 ∗ 𝛼 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 ∗ (𝛾 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛼 ∗ 𝑔 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1)) 

𝑛𝑢𝑚𝑒𝑔2 = 𝑝1 ∗ 𝛼 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑔3 = 𝑝1 ∗ 𝛼 ∗ (𝑥𝛾) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑎𝑎 

𝑛𝑢𝑚𝑒𝑙1 = 𝑝2 ∗ 𝑏 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 ∗ (𝜆 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛽 ∗ 𝜆 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1)) 

𝑛𝑢𝑚𝑒𝑙2 = 𝑝2 ∗ 𝛽 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑙3 = 𝑝2 ∗ 𝛽 ∗ (𝑥𝜆) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑏𝑏 

𝑛𝑢𝑚𝑒𝑎1 = 𝑝1 ∗ 𝛾 ∗ 𝑥2𝑔 ∗ 𝛼 ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑎2 = 𝑝1 ∗ 𝛾 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑎3 = 𝑝1 ∗ (𝐺1𝛾) ∗ 𝑒𝑎 

𝑛𝑢𝑚𝑒𝑎4 = 𝑝1 ∗ (𝑥𝛾) ∗ 𝑒𝑎𝑎 

𝑛𝑢𝑚𝑒𝑏11 = 𝑝2 ∗ 𝜆 ∗ 𝑥2𝑙 ∗ 𝛽 ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏22 = 𝑝2 ∗ 𝜆 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏33 = 𝑝2 ∗ (𝐺1𝜆) ∗ 𝑒𝑏 

𝑛𝑢𝑚𝑒𝑏44 = 𝑝2 ∗ (𝑥𝜆) ∗ 𝑒𝑏𝑏 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗

= ∑(
𝑛𝑢𝑚𝑒1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1
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𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗
2 = ∑(

(𝑑𝑒𝑛𝑜1 ∗ 𝑝1 ∗ 𝛾 ∗ 𝑥2𝑔 ∗ 𝑒𝑎 ∗ (−𝛼 − 2)) − (𝑛𝑢𝑚𝑒1 ∗ 𝑛𝑢𝑚𝑒1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑑𝑒𝑛𝑜2 ∗ 𝑝1 ∗ 𝑒𝑎 ∗ (−(𝐺12∗𝛾))) − (𝑛𝑢𝑚𝑒2 ∗ 𝑛𝑢𝑚𝑒2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑑𝑒𝑛𝑜3 ∗ 𝑝1 ∗ 𝑒𝑎𝑎 ∗ (−(𝑥2∗𝛾))) − (𝑛𝑢𝑚𝑒3 ∗ 𝑛𝑢𝑚𝑒3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑏1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑏2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑏3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗
2 = 𝑠𝑢𝑚 ∑(

(𝑑𝑒𝑛𝑜1 ∗ 𝑝2 ∗ 𝜆 ∗ 𝑥2𝑙 ∗ 𝑒𝑏 ∗ (−𝛽 − 2)) − (𝑛𝑢𝑚𝑒𝑏1 ∗ 𝑛𝑢𝑚𝑒𝑏1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑑𝑒𝑛𝑜2 ∗ 𝑝2 ∗ 𝑒𝑏 ∗ (−(𝐺12∗𝜆))) − (𝑛𝑢𝑚𝑒𝑏2 ∗ 𝑛𝑢𝑚𝑒𝑏2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑑𝑒𝑛𝑜3 ∗ 𝑝2 ∗ 𝑒𝑏𝑏 ∗ (−(𝑥2∗𝜆))) − (𝑛𝑢𝑚𝑒𝑏3 ∗ 𝑛𝑢𝑚𝑒𝑏3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑔1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑔2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑔3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗
2 = ∑ (

((𝑝1∗𝑑𝑒𝑛𝑜1∗𝛼∗𝑒𝑎∗𝑙𝑜𝑔(𝐺1)∗𝑥𝑔1∗(𝛾∗𝑙𝑜𝑔(𝐺1)+2−𝛾∗𝑙𝑜𝑔(𝐺1)∗𝛼∗(𝐺1𝛾)−𝛼∗(𝐺1𝛾)−𝛼∗𝛾∗(𝐺1𝛾)∗𝑙𝑜𝑔𝑥2−𝛼∗(𝐺1𝛾)−𝛼∗𝛾∗𝑥2𝑔))−(𝑛𝑢𝑚𝑒𝑔1 ∗𝑛𝑢𝑚𝑒𝑔1))

𝑑𝑒𝑛𝑜12 )
𝑛𝑗

𝑖=1
  +  

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜2 ∗ 𝛼 ∗ ((𝑙𝑜𝑔(𝐺1))

2
) ∗ (𝐺1𝛾) ∗ 𝑒𝑎 ∗ (1 − 𝛼 ∗ 𝛾 ∗ (𝐺12∗𝛾))) − (𝑛𝑢𝑚𝑒𝑔2 ∗ 𝑛𝑢𝑚𝑒𝑔2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜3 ∗ 𝛼 ∗ ((𝑙𝑜𝑔(𝑥))

2
) ∗ (𝑥𝛾) ∗ 𝑒𝑎𝑎 ∗ (1 − 𝛼 ∗ 𝛾 ∗ (𝑥2∗𝛾))) − (𝑛𝑢𝑚𝑒𝑔3 ∗ 𝑛𝑢𝑚𝑒𝑔3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑙1

𝑑𝑒𝑛𝑜1
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑙2

𝑑𝑒𝑛𝑜2
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑙3

𝑑𝑒𝑛𝑜3
)

𝑛

𝑖=1

  

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗
2 = ∑ (

(𝑝2∗𝑑𝑒𝑛𝑜1∗𝛽∗𝑒𝑏∗𝑙𝑜𝑔(𝐺1)∗𝑥𝑙1∗(𝜆∗𝑙𝑜𝑔(𝐺1)+2−𝜆∗𝑙𝑜𝑔(𝐺1)∗𝛽∗(𝐺1𝜆)−𝛽∗(𝐺1𝜆)−𝛽∗𝜆∗(𝐺1𝜆)∗𝑙𝑜𝑔𝑥2−𝛽∗(𝐺1𝜆)−𝛽∗𝜆∗𝑥2𝑙))−(𝑛𝑢𝑚𝑒𝑙1∗𝑛𝑢𝑚𝑒𝑙1)

𝑑𝑒𝑛𝑜12 )
𝑛𝑗

𝑖=1
 +  

 ∑ (
(𝑝2∗𝑑𝑒𝑛𝑜2∗𝛽∗((𝑙𝑜𝑔(𝐺1))

2
)∗(𝐺1𝜆)∗𝑒𝑏∗(1−𝛽∗𝑙∗(𝐺12∗𝜆)))−(𝑛𝑢𝑚𝑒𝑙2∗𝑛𝑢𝑚𝑒𝑙2)

𝑑𝑒𝑛𝑜22 )
𝑛𝑗

𝑖=1
− 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜3 ∗ 𝛽 ∗ ((𝑙𝑜𝑔(𝑥))

2
) ∗ (𝑥𝜆) ∗ 𝑒𝑏𝑏 ∗ (1 − 𝛽 ∗ 𝜆 ∗ (𝑥2∗𝑙))) − (𝑛𝑢𝑚𝑒𝑙3 ∗ 𝑛𝑢𝑚𝑒𝑙3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗𝛾𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗𝛼𝑗

= −∑(
(𝑑𝑒𝑛𝑜1 ∗ 𝑝1 ∗ 𝛼 ∗ 𝑥2𝑔 ∗ 𝑒𝑎 ∗ (𝛾 ∗ 𝑙𝑜𝑔(𝐺12) + 1 − 𝛼 ∗ 𝛾 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑎1 ∗ 𝑛𝑢𝑚𝑒𝑔1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜1 ∗ 𝑥𝑔1 ∗ 𝑒𝑎 ∗ (𝛾 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛼 ∗ 𝛾 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑎2 ∗ 𝑛𝑢𝑚𝑒𝑔1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 
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∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜2 ∗ (𝐺1𝛾) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑎 ∗ (1 − 𝛼 ∗ (𝐺1𝛾))) − (𝑛𝑢𝑚𝑒𝑎3 ∗ 𝑛𝑢𝑚𝑒𝑔2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑝1 ∗ 𝑑𝑒𝑛𝑜3 ∗ (𝑥𝛾) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑎𝑎 ∗ (1 − 𝛼 ∗ (𝑥𝛾))) − (𝑛𝑢𝑚𝑒𝑎4 ∗ 𝑛𝑢𝑚𝑒𝑔3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗𝛽𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗𝜆𝑗

= −∑(
(𝑑𝑒𝑛𝑜1 ∗ 𝑝2 ∗ 𝛽 ∗ 𝑥2𝑙 ∗ 𝑒𝑏 ∗ (𝜆 ∗ 𝑙𝑜𝑔(𝐺12) + 1 − 𝛽 ∗ 𝜆 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑏11 ∗ 𝑛𝑢𝑚𝑒𝑙1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜1 ∗ 𝑥𝑙1 ∗ 𝑒𝑏 ∗ (𝜆 ∗ 𝑙𝑜𝑔(𝐺1) + 1 − 𝛽 ∗ 𝜆 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1))) − (𝑛𝑢𝑚𝑒𝑏22 ∗ 𝑛𝑢𝑚𝑒𝑙1)

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜2 ∗ (𝐺1𝜆) ∗ 𝑙𝑜𝑔(𝐺1) ∗ 𝑒𝑏 ∗ (1 − 𝛽 ∗ (𝐺1𝜆))) − (𝑛𝑢𝑚𝑒𝑏33 ∗ 𝑛𝑢𝑚𝑒𝑙2)

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
(𝑝2 ∗ 𝑑𝑒𝑛𝑜3 ∗ (𝑥𝜆) ∗ 𝑙𝑜𝑔(𝑥) ∗ 𝑒𝑏𝑏 ∗ (1 − 𝛽 ∗ (𝑥𝜆))) − (𝑛𝑢𝑚𝑒𝑏44 ∗ 𝑛𝑢𝑚𝑒𝑙3)

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗𝛽𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗𝛼𝑗

= ∑(
𝑛𝑢𝑚𝑒1 ∗ 𝑛𝑢𝑚𝑒𝑏1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒2 ∗ 𝑛𝑢𝑚𝑒𝑏2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
𝑛𝑢𝑚𝑒3 ∗ 𝑛𝑢𝑚𝑒𝑏2

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛼𝑗𝜆𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗𝛼𝑗

= ∑(
𝑛𝑢𝑚𝑒1 ∗ 𝑛𝑢𝑚𝑒𝑙1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒2 ∗ 𝑛𝑢𝑚𝑒𝑙2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
𝑛𝑢𝑚𝑒3 ∗ 𝑛𝑢𝑚𝑒𝑙3

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛽𝑗𝛾𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗𝛽𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑏1 ∗ 𝑛𝑢𝑚𝑒𝑔1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

− ∑(
𝑛𝑢𝑚𝑒𝑏2 ∗ 𝑛𝑢𝑚𝑒𝑔2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

+ 

∑(
𝑛𝑢𝑚𝑒𝑏3 ∗ 𝑛𝑢𝑚𝑒𝑔3

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1

 

𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝛾𝑗𝜆𝑗

=
𝜕2𝑙𝑜𝑔𝑙𝑗

𝜕𝜆𝑗𝛾𝑗

= ∑(
𝑛𝑢𝑚𝑒𝑔1 ∗ 𝑛𝑢𝑚𝑒𝑙1

𝑑𝑒𝑛𝑜12
)

𝑛𝑗

𝑖=1

+ ∑(
𝑛𝑢𝑚𝑒𝑔2 ∗ 𝑛𝑢𝑚𝑒𝑙2

𝑑𝑒𝑛𝑜22
)

𝑛𝑗

𝑖=1

− 

∑(
𝑛𝑢𝑚𝑒𝑔3 ∗ 𝑛𝑢𝑚𝑒𝑙3

𝑑𝑒𝑛𝑜32
)

𝑛

𝑖=1
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Abstract 

In nowadays, the chief attention of the researcher is to study how the reliability analysis of 

manufacturing industrial systems by using the stochastic process. This topic tells us, how the 

manufacturing industries perform over time with the help of mathematical models which include 

randomness and uncertainty. Through stochastic processes we examine the reliability of these 

systems, technologists can recognize possible failure points and develop tactics to improve overall 

performance and effectiveness. The reliability of a manufacturing industrial system can be examined 

through a stochastic process, which permits for the estimate of failure rates and maintenance agendas. 

This analysis can lead to more well-organized and cost-effective procedure of the system. In this study, 

the researcher analysed the possibility plan for reliability through many distributions such as the 

normal distribution, gamma distribution, weibull distribution, and exponential distribution. The 

result of the study was prepared using Minitab software. The result of the study shows that the 

normal distribution of reliability fits best in comparison to the gamma, weibull, and exponential 

distributions. 

Keywords: Manufacturing Industry, Reliability. 

1. Introduction

The introduction of stochastic models in the field of manufacturing industrial systems has confirmed 

to be an operative device for forecasting system reliability and classifying potential failure points. 

By including probabilistic parameters into the analysis, technologists and managers can up to date 

about maintenance agendas, system upgrades, and other tactics to recover overall system 

performance. As technology continues to advance and data collection methods become more 

sophisticated, the use of stochastic models is likely to become even more widespread in the field of 

industrial engineering. The world is expanding quickly and heading towards a "smart world" where 

technology controls everything. The cost and complexity of industrial processes have greatly 

increased with the advancement of technology in the twenty-first century. Hence, it has become 

crucial to run industrial systems with the least amount of downtime possible in order to achieve 

optimal productivity, boost revenue, and prevent losses. Hence, dependability and investigation of 

complex industrial systems is a need that cannot be avoided. 

      Many studies have been done on the subject of dependability modelling, analysis, and 

complex industrial systems under various operating situations and hypotheses. So first read a 

review on the modelling and analysis of complex industrial systems' reliability, in which different 
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reliability indices were presented in relation to various system parameters and various failure and 

repair rate distribution types used by various authors were discussed. Taking into account different 

failure distributions analysed failure data, and goodness of fit testing. 

      It was discovered that the exponential distribution was the foundation for the consequences 

of stochastic processes for system performance, and additional behaviour analysis of the process 

industry was conducted based on steady-state availability analysis and reliability analysis. In order 

to determine if the findings obtained genuinely have an exponential distribution, we develop a 

stochastic model for an industrial process in this study. Several of the foundational ideas are covered 

in the part after this one before we move on. Shihu Xiang, Jun Yang [1] analyzed in the paper 

reliability of WSN by considering random failures, energy consumption, environmental randomness 

and interference. F Delmotte et al [2] presented in their paper, modelling of reliability with 

possibility theory, a new approach based on a fusion rule by using a vector expressing the 

dependability on the data basics. Hasan et al [3], observed in their paper that the higher order logic 

formalization of some fundamental reliability theory concepts which can be built for reliability 

analysis in engineering system. J Dunyak et al [4] discussed in their paper that the probability of any 

event can be calculated by fuzzy fault tree which is independent of union, intersection and 

complements of any sequence of event. This allows a comprehensive analysis of the system. Q Zhang 

et al [5] discussed the belief reliability which is defined as the chance that a system is within a feasible 

domain. Measuring system reliability by a reasonable metric is a common problem in reliability 

engineering and the metric can degenerate either probability theory-based reliability or uncertainty 

theory-based reliability. Shakuntla Singla, Pooja Dhawan [6] analysis the behavior of a single unit 

subdivision after a complete failure by the help of RPGT. The situation is constructed and resolved 

by using RPGT to calculate system constraints. K Sachdeva et al [7] studies the sensitivity and 

productivity of a stochastic model whose technical faults may clear into either guarantee or coverage 

policies, the producer is answerable for all repair or replacement costs during normal or extended 

warranty. Profit and availability are calculated in all conditions. Kumar et al [8] presented in their 

paper overview of reliability analysis. Reliability analysis in different industries like milk, sugar, 

Thermal plant, petroleum industries etc. and to optimize the reliability using different techniques 

like G.A., H.A, PSO, machine learning etc. 

2. Reliability analysis

It represents the Time to Failure as a statistical distribution, which is often defined by a certain 

pattern, using a Reliability Distribution Analysis. The aforementioned distribution types may be 

used. The timing of failure for a component is an example of a random event for which the result is 

unpredictable. Probability distributions are used to represent such occurrences. It is uncertain when 

that component will fail prior to putting a demand on it. A probability distribution models the 

distribution of the chance of failure at various periods. Random variables will be identified in this 

book by a capital letter, such as T for time. Researcher use little letter, such as t for time, to indicate 

when the random variable takes on a value. For instance, we would find P (T≤t) if we wanted to 

know the likelihood that the component would fail before time t. There are two types of random 

variables: discrete and continuous. The random variable in a discrete distribution has a specific or 

countable range of potential values, such as the number of demands before failure. The random 

variable in a continuous distribution is not restricted to certain potential values, unlike the time-to-

failure distribution. 

Probability R (t) = P (T>t), t≥0,  Where T- Random variable 

t- Time

Failure probability distribution function F (t) = 1- R (t) = P (T≤ t) 

Probability density function 
𝑇

F (t) = ∫ f (t) dt 
−∞
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(i) Normal Distribution

A distribution in which continuous random variable has the probability density function with the

following formula is given by

f (t) = 
1

𝜎√2𝜋
 𝑒

−(𝑡−𝜇)

2𝜎2

2

Where µ and 𝞼 are arbitrary constant 

(ii) Gamma distribution

A distribution in which continuous random variable has the probability density function with the

following formula is given by

f (t) = c 𝑡𝑎−1 𝑒−𝑏𝑡  , t ≥ 0 Where a, b and c are constant

(iii) Weibull distribution

A distribution in which continuous random variable has the probability density function with the

following formula is given by

f (t) = a 𝑡𝑏 𝑒 
−(𝑎𝑡𝑏+1 )

(𝑏+1) , t ≥ 0 Where a and b are constant 

(iv) Exponential distribution

A distribution in which continuous random variable has the probability density function with the

following formula is given by

f (t) = { 𝜆𝑒−𝜆𝑡 ,
0, 𝑡 < 0

 0 < 𝑡 < ∞ 

3. MANUFACTURING INDUSTRY PROCESS

A Manufacturing industry is chosen for reliability distribution and to know about the failure. The 

industrial procedure is divided into five sub systems. The sub system name with number of 

machines, their failure and mean time failure explained as below. 

Table 1: Industrial Process with Failures 

Industrial Process with Failures 

Sub System Number of machines  Failure condition Mean time failure MTBF 

A. Storage Room 5 Never Fails 100000 

B. Mixture 3 Failed when 2 

machines fail 

20000 

C. Slasher 5 Failed when 3 

machines fail

16000 

D. Loom 300 Failed when 30 

machines fail 

50000 

E. Machine for Fabric 

Inspection

3 Failed when all 3 

machines fail 

80000 

The reliability for stochastic model R1 (t) =1-∑ 𝑃𝑖(𝑡) = 04
𝑖=1  

The value of transient probabilities is obtained by using following equations. 

𝑃𝑜
′(t) +∑ 𝜆𝑖𝑃0(𝑡) = 04

𝑖=1 , 

𝑃𝑖
′(t) = λi 𝑃0(𝑡) Where i=1, 2, 3, 4 
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Figure 1: Space diagram of manufacturing Industrial Process 

The above figure describes the sub system of industry in which A, B, C, D and E are the operating 

conditions and a, b, c, d and e describe the failed state of the model. 

Figure 2: Reliability analysis through Probability Curve for Normal, Gamma, Weibull and Exponential Distribution 

ABCDE 
0

ABCDe 
4 (λ4)

AbCDE 
1 (λ1)

ABcDE 
2 (λ2)

ABCdE 
3 (λ3)
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4. Result

The reliability of the model checked using the above equations. The probability distribution can be 

explained and plots by using Minitab software. In probability curve left line shows the lower bounds 

for confidence intervals, right line shows upper bounds for confidence intervals and middle line 

shows most fitted probability distribution. When value of P is more than its given value them 

distribution is best fit. In the above figure 2. it is cleared that normal distribution of probability is 

best fit. So, the conclusion of this study is that for reliability of an industry normal distribution is the 

fit. So, this represents the best distribution for maintenance of an industrial process. 

5. Conclusion

The reliability distribution of an industrial system can be effectively analysed through stochastic 

processes, which provide a probabilistic framework for modelling and predicting system failures. 

This approach can help industries optimize maintenance schedules and improve overall system 

performance. 
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Abstract

In this paper, we consider a system with a finite number of components. It is assumed that the system
architecture is a series format. The system fails when any one of the components fails. The case where
the lifetimes of the components, are independently distributed and have pathway density is considered.
Then the survival function, hazard function, the expected time to failure, general moments, etc. of the
system lifetime are computed. It is shown that the hazard function can have many types of shapes,
including bathtub shapes. The estimation of stress-strength reliability is considered based on the method
of maximum likelihood estimation when both stress and strength variables follow the pathway model.
Finally, to show the applicability of the proposed model in a real-life scenario, remission time data from
cancer patients is analyzed.

Keywords: Survival Function, Pathway Distribution, Multicomponent Reliability, Stress-Strength
Reliability, Expected Time to Failure

1. Introduction

Consider a multicomponent system consisting of k components, connected in a series format
so that the system fails if any of the k components fails. Let the lifetimes of the components be
the random variables X1, ..., Xk, Xj > 0, j = 1, ..., k. Let X be the minimum, X = min{X1, ..., Xk}.
Then the system failure time is X. Suppose that the components are functioning independently.
Then the probability that X > t for some t is given by

Pr{X > t} = Pr{X1 > t}Pr{X2 > t}...Pr{Xk > t}. (1)

That is, in terms of the distribution functions

1 − FX(t) = [1 − FX1(t)]...[1 − FXk (t)]

where FXj(t) = Pr{Xj ≤ t} is the distribution function of Xj, j = 1, ..., k and FX(t) is that of X.
Then the density of X, if FXj(t) is differentiable, is given by the following:

fX(t) = − d
dt

[1 − FX(t)] =
k

∑
j=1

{
[− d

dt
Pr{Xj > t}]

k

∏
i ̸=j=1

Pr{Xi > t}
}

. (2)
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Basic notions of reliability analysis may be seen, from [1], [2], and [3]. Reliability analysis for
dependent cases may be seen, for example, from [4], [5] and [6]. We will examine (2) and study
its properties and connections to various problems in different fields. First, we will consider the
case when the density of xj belongs to the general family of functions called the pathway model.
The original pathway model was introduced by Mathai [7] for the real rectangular matrix-variate
case. Later, Mathai and Provost [8] was extended it to the complex domain. The pathway model
for the real scalar positive variable case can be stated as follows:

f1(x) = c1xγ[1 − a(1 − q)xδ]
η

1−q , q < 1 (3)

for a > 0, δ > 0, η > 0, γ > −1, 1 − a(1 − q)xδ > 0 and f1(x) = 0 elsewhere. The functional part
of the basic type-1 beta density is xα−1(1 − x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0 and zero elsewhere.
Hence (3) can be looked upon as a generalized type-1 beta form, that is, for η

1−q = β − 1, δ =

1, q = 0, γ = α − 1 one has the type-1 beta form. Note that one can also relocate the variable x.
Write the model as

f2(x) = c2(x − α)γ[β − a(1 − q)(x − α)δ]
η

1−q , q < 1 (4)

for η > 0, a > 0, δ > 0, x ≥ α, β > 0, α > 0, 0 < α ≤ x ≤ α + [ β
a(1−q) ]

1
δ . Note that the basic type-1

beta model, triangular density, power function model, uniform density, etc are particular cases
of (3). The limiting form of the exponentiated versions of (3) and (4) can also be shown to be
Bose-Einstein density in Physics. Note that when q approaches 1 then the support will extend
to 0 ≤ x < ∞ from the finite range support in (3). For q > 1, write 1 − q = −(q − 1) so that the
model in (3) switches into the model, which is another family of functions,

f3(x) = c3xγ[1 + a(q − 1)xδ]
− η

q−1 , q > 1 (5)

for a > 0, η > 0, γ > −1, δ > 0, x ≥ 0. The functional part of the basic type-2 beta density is
xα−1(1+ x)−(α+β), 0 ≤ x < ∞, α > 0, β > 0. Hence (5) can be looked upon as a generalized type-2
beta model. If relocation of the variable is required, then replace x in (5) by x − α > 0 so that
0 < α ≤ x < ∞. Observe that the standard F-density, type-2 beta density, Pareto density, etc are
particular cases in (5). The exponentiated version of (5), that is, put x = e−cy, c > 0,−∞ < y < ∞
is connected to various densities such as the generalized logistic density, see [9], the standard
logistic density, a limiting form giving rise to the famous Fermi-Dirac density in Physics also.
Now, let q → 1− in (3) and q → 1+ in (5). Then both the models in (3) and (5) go to

f4(x) = c4xγe−aηxδ
, a > 0, η > 0, δ > 0, x ≥ 0 (6)

and zero elsewhere. We may also relocate the variable, if necessary. Observe that (6) is in the form
of a generalized gamma density. For γ = δ − 1 it is the Weibull density. The standard gamma
density, chisqure density, exponential, density, Maxwell-Boltzmann density, Raleigh density, etc
are special cases of (6). Thus, (3) or (5) is the basic pathway model or all cases of (3), (5) and
(6) are contained in (3) or (5). For q < 1, q > 1, q → 1 will cover almost all densities in current
use and all these are contained in (3) or (5). Hence a wide spectrum of models is covered in
the problems that we discuss in this paper. The advantage of the model in (3) or (5) in a model
building situation is the following: If f1(x), f3(x), f4(x) are to be treated as statistical densities,
then c1, c2, c3 are the normalizing constants, there and they are the following:

c1 =
δ[a(1 − q)]

γ+1
δ Γ( η

1−q + 1 + γ+1
δ )

Γ( γ+1
δ )Γ( η

1−q + 1)
, q < 1, γ + 1 > 0, a, δ, η > 0 (7)

.

c3 =
δ[a(q − 1)]

γ+1
δ Γ( η

q−1 )

Γ( γ+1
δ )Γ( η

q−1 − γ+1
δ )

q > 1, γ + 1, a, δ, η > 0,
η

q − 1
− γ + 1

δ
> 0 (8)
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.

c4 =
δ(aη)

γ+1
δ

Γ( γ+1
δ )

, γ + 1 > 0, δ > 0, a > 0, η > 0. (9)

For δ = 1, a = 1, η = 1, γ = 0 in (3) gives the famous Tsallis statistics in nonextensive statistical
mechanics. This Tsallis statistic is valid for q < 1, q > 1, q → 1 situations. It is stated that over
3000 articles were written on this Tsallis statistics between 1990 and 2010 period. Tsallis statistics,
excluding the normalizing constant, is a power function model in the sense

d
dx

f1(x) = −[ f1(x)]q.

For a = 1, δ = 1, η = 1, (5) gives superstatistics in statistical mechanics. This is valid for
q > 1, q → 1 situations but not for q < 1. Dozens of articles are also published in this area.
The development in Tsallis statistics is available from his book, see [10]. The basic paper
on superstatistics is by [11]. From a physical point of view, superstatistics is constructed by
superimposing a distribution over another distribution. But from a statistical point of view,
superstatistics is nothing but an unconditional density in a Bayesian setup when both the
conditional density and prior density belong to generalized gamma families. By using this
pathway model several compound distributions are developed for details see, [12],[13] and [14].

1.1. A particular case

Our interest here is to examine the multi-component system failure under a pathway model of
(3), thereby (5) and (6) for the particular case γ = δ − 1. In this case, the normalizing constants
simplify and the models go into very simple forms. This particular case of (3),(5) and (6) is the
following:

f5(x) = aδ(η + 1 − q)xδ−1[1 − a(1 − q)xδ]
η

1−q , q < 1 (10)

for a > 0, δ > 0, η > 0, η + 1 − q > 0, 1 − a(1 − q)xδ > 0.

f6(x) = aδ(η + 1 − q)xδ−1[1 + a(q − 1)xδ]
− η

q−1 , q > 1 (11)

for a > 0, δ > 0, η > 0, η + 1 − q > 0, x ≥ 0.

f7(x) = aδηxδ−1e−aηxδ
, δ > 0, a > 0, η > 0. (12)

The corresponding survival probabilities are the following:

S5(t) = [1 − a(1 − q)tδ]
η

1−q +1, q < 1, (13)

for a > 0, δ > 0, η > 0, 1 − a(1 − q)tδ > 0.

S6(t) = [1 + a(q − 1)tδ]
− η

q−1+1, q > 1, a, δ, η > 0, t ≥ 0 (14)

.
S7(t) = e−aηtδ

, a > 0, η > 0, t ≥ 0. (15)

2. Multicomponet Failure Under Pathway Model

Recall the probability of failure from (1). Then, under the pathway model of (4) to (6) for the
particular case γ = δ − 1 it is the following, writing for convenience the form in (14) for q > 1:

Pr{x > t} =
k

∏
j=1

[1 + aj(qj − 1)tδj ]
−

ηj
qj−1+1

(16)
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for aj > 0, δj > 0, ηj > 0, ηj + 1 − qj > 0, qj > 1, qj < 1, qj → 1, j = 1, ..., k. For any particular j, we
can take the form in (13) or (14) or (15). Thus, (16) gives a very rich family of probabilities. The
density of x in this case, denoted by f (x), is the following:

f (t) = − d
dt

Pr{x > t} =
k

∑
j=1

(ηj + 1 − qj)ajδjt
δj−1

× [1 + aj(qj − 1)tδj ]
−

ηj
qj−1 {

k

∏
i ̸=j=1

[1 + ai(qi − 1)tδi ]
− ηi

qi−1+1}. (17)

Therefore the hazard function of x, denoted by h(t), is the following:

h(t) =
fx(t)

Pr{x > t} =
k

∑
j=1

(ηj + 1 − qj)ajδjt
δj−1

1 + aj(qj − 1)tδj
(18)

for qj > 1, qj < 1, qj → 1, ηj > 0, ηj + 1 − qj > 0, aj > 0, δj > 0, j = 1, ..., k. Observe that when a
qj → 1 for a particular j, the corresponding term is simply ηjajδjt

δj−1. Thus, a rich variety of
hazard functions of having curves of various shapes are available from (18). For example, for
k = 2, q2 → 1 we have the form, denoted by h(t),

h(t) =
(η1 + 1 − q1)a1δ1tδ1−1

1 + a1(q1 − 1)tδ1
+ η2a2δ2tδ2−1, q1 > 1. (19)

The different shapes of the hazard function of multicomponent systems under the pathway model
are demonstrated.

Figure 1 Figure 2

Figure 3 Figure 4

Figure 1: η1 = 3, η2 = 1, q1 = 1.5, a1 = 2, a2 = 1, δ1 = 1, δ2 = 1
Figure 2: η1 = 0.5, η2 = 2, q1 = 1.5, a1 = 2, a2 = 1, δ1 = 1, δ2 = 1
Figure 3: η1 = 3, η2 = 1

1500 , q1 = 1.5, a1 = 2, a2 = 1
2 , δ1 = 1, δ2 = 1

Figure 4: η1 = 3, η2 = 1
2 , q1 = 1.5, a1 = 2, a2 = 1

2 , δ1 = 1, δ2 = 1

Another case for k = 2, q1 > 1 and q2 < 1, h(t) becomes;

h(t) =
(η1 + 1 − q1)a1δ1tδ1−1

1 + a1(q1 − 1)tδ1
+

(η2 + 1 − q2)a2δ2tδ2−1

1 − a2(1 − q2)tδ2
, (20)
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for q1 > 1, q2 < 1, aj > 0, δj > 0, ηj > 0, ηj + 1 − qj > 0, j = 1, 2. All types of shapes are available
from (20).

Figure 5 Figure 6

Figure 7 Figure 8

Figure 5: η1 = 2, η2 = 2, q1 = 1.9, q2 = 0.9, a1 = 1, a2 = 4, δ1 = 2, δ2 = 2
Figure 6: η1 = 2, η2 = 2, q1 = 1.9, q2 = 0.9, a1 = 1

10 , a2 = 1
10 , δ1 = 2, δ2 = 2

Figure 7: η1 = 2, η2 = 2, q1 = 1.9, q2 = 0.9, a1 = 1
100 , a2 = 1

100 , δ1 = 5, δ2 = 3
Figure 8: η1 = 2, η2 = 2, q1 = 1.9, q2 = 0.9, a1 = 3, a2 = 4, δ1 = 5, δ2 = 3

2.1. Expected time to failure

From here onward, all discussions connected with k = 2 also contain the case of k − 1 of the
lifetimes x1, . . . , xk are identically distributed so that there will only be two distinct densities. This
can be computed from the density of x itself or from the survival function of x. That is,

E(t) =
∫ ∞

0
t fx(t)dt =

∫ ∞

0
Sx(t)dt (21)

where Sx(t) = Pr{x > t} is the survival function of t. Integration by parts once gives the second
part in (21). Hence the ρ-th moment of the time to failure is the following:

E(tρ) =
∫ ∞

0
tρ fx(t)dt = ρ

∫ ∞

0
tρ−1Sx(t)dt

= ρ
∫ ∞

0
tρ−1{

k

∏
j=1

[1 + aj(qj − 1)tδj ]
−

ηj
qj−1+1

}dt, qj > 1. (22)

Take qj < 1 for the type-1 case and qj → 1 for the gamma case. Hence all different forms are
there in (22). For k = 2, a general integral in this category, denoted by I1, is the following:

I1 =
∫ ∞

0
tξ [1 + a1(q1 − 1)tδ1 ]

− η1
q1−1+1

[1 + a2(q2 − 1)tδ2 ]
− η2

q2−1+1dt. (23)

Replace ξ by ρ − 1 and multiply the integral by ρ to obtain the ρ-th moment from I1. The integral
in (23) has the structure of a Mellin convolution of a ratio. For two functions g1(x1) and g2(x2)
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the Mellin convolution of a ratio has the format

g(u) =
∫

v
vg1(uv)g2(v)dv (24)

so that the Mellin transform of g(u), with Mellin parameter s, or

Mg(s) =
∫ ∞

0
us−1g(u)du

has the form
Mg(s) = Mg1(s)Mg2(2 − s) (25)

where
Mg1(s) =

∫ ∞

0
xs−1

1 g1(x1)d and Mg2(2 − s) =
∫ ∞

0
x−s+1

2 g2(x2)dx2

where g1 and g2 need not be statistical densities. If they are statistical densities then the situation
is the following: Mg1(s) = E(xs−1

1 ), Mg2(2 − s) = E(x−s+1
2 ) and u = x1

x2
, x2 = v, x1 = uv and the

Jacobian is v. E[ x1
x2
]s−1 = E[xs−1

1 ]E[x−s+1
2 ] when x1 > 0 and x2 > 0 are independently distributed

real scalar positive random variables, where E denotes the expected value. Then the density of u,
denoted by g(u), is available from the inverse Mellin transform. That is,

g(u) =
1

2πi

∫ c+i∞

c−i∞
[E(us−1)]u−sds =

1
2πi

∫ c+i∞

c−i∞
Mg1(s)Mg2(2 − s)u−sds, i =

√
−1. (26)

In (25), g1 and g2 need not be statistical densities. The only condition is that the Mellin transforms
exist. For the existence of inverse Mellin transform, general conditions are available, see books on
complex analysis, or see [15]. For evaluating (23) let

g1(x1) = [1 + xδ1
1 ]

− η1
q1−1+1 and g2(x2) = xξ−1

2 [1 + a2(q2 − 1)xδ2
2 ]

− η2
q2−1+1

so that for u = [a1(q1 − 1)]
1

δ1

g(u) =
∫

v
vg1(uv)g2(v)dv =

∫ ∞

0
vξ [1 + a1(q1 − 1)vδ1 ]

− η1
q1−1+1

× [1 + a2(q2 − 1)vδ2 ]
− η2

q2−1+1dv = I1 (27)

which is the right side of (23) or the item to be evaluated. But

Mg1(s) =
∫ ∞

0
xs−1

1 [1 + xδ1
1 ]

− η1
q1−1+1dx1

=
Γ( s

δ1
)Γ( η1

q1−1 − 1 − s
δ1
)

δ1Γ( η1
q1−1 − 1)

(28)

for η1 + 1 − q1 > 0, δ1 > 0, η1 > 0, 1 < q1 < η1 + 1,ℜ(s) > 0 where ℜ(·) means the real part of
(·).

Mg2(2 − s) =
∫ ∞

0
x−s+1

2 xξ−1
2 [1 + a2(q2 − 1)xδ2

2 ]
− η2

q2−1+1dx2

=
Γ( ξ−s+1

δ2
)Γ( η2

q2−1 − 1 − (ξ−s+1)
δ2

)

δ2[a2(q2 − 1)]
ξ−s+1

δ2 Γ( η2
q2−1 − 1)

(29)
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for ℜ(ξ − s + 1) > 0, δ2 > 0, η2 > 0, η2 + 1 − q2 > 0, 1 < q2 < η2 + 1,ℜ( η2
q2−1 − 1 − (ξ−s+1)

δ2
) > 0.

Hence I1 is available from the inverse Mellin transform, remembering that u = [a1(q1 − 1)]
1

δ1 .

I1 = [δ1δ2[a2(q2 − 1)]
ξ+1
δ2 ]−1[Γ(

η1

q1 − 1
− 1)Γ(

η2

q2 − 1
− 1)]−1

× 1
2πi

∫ c+i∞

c−i∞
Γ(

s
δ1
)Γ(

η2

q2 − 1
− 1 − (ξ + 1)

δ2
+

s
δ2
)

× Γ(
η1

q1 − 1
− 1 − s

δ1
)Γ(

ξ + 1
δ2

− s
δ2
)

 [a1(q1 − 1)]
1

δ1

[a2(q2 − 1)]
1

δ2

−s

ds (30)

for max{0, ξ+1
δ2

+ 1 − η2
q2−1} < c < min{ξ + 1, η1δ1

q1−1 − δ1}, δj > 0, aj > 0, 1 < qj < ηj + 1, ξ >

−1, ηj > 0, ηj + 1 − qj > 0, j = 1, 2. This I1 can be written as a H-function, see [16]. That is,
denoting the constant part by C, we have

I1 = C H2,2
2,2

ω

∣∣∣∣(2−
η1

q1−1 , 1
δ1
),(1− (ξ+1)

δ2
, 1

δ2
)

(0, 1
δ1
),( η2

q2−1−1− (ξ+1)
δ2

, 1
δ2
)

 (31)

for 0 < |ω| < 1 where

ω =
[a1(q1 − 1)]

1
δ1

[a2(q2 − 1)]
1

δ2

and [δ1δ2[a2(q2 − 1)]
ξ+1
δ2 ]−1[Γ(

η1

q1 − 1
− 1)Γ(

η2

q2 − 1
− 1)].

Observe that the roles of [a1(q1 − 1)]
1

δ1 and [a2(q2 − 1)]
1

δ2 can be interchanged by interchanging
the roles of g1 and g2. For the existence conditions and properties of H-function see Mathai et al.
(2010)[16]. MATHEMATICA programs are available for computing H-functions.
Note that I1 of (23) has nine different forms there. We can have q1 > 1, (q2 > 1, q2 < 1, q2 → 1).
Similarly for q1 < 1 and q1 → 1 cases. When q1 → 1 and q2 → 1 we have the integral in (23) as

=
∫ ∞

0
tξe−a1η1tδ1−a2η2tδ2 dt. (32)

This (32) for either δ1 = 1 or δ2 = 1 corresponds to the Laplace transform or moment-generating
function of a generalized gamma density. One can go through the steps (23) to (31) and obtain
the following result for q1 → 1, q2 → 1:

I2 = [δ1δ2(a2η2)
ξ+1
δ2 ]−1 1

2πi

∫ c+i∞

c−i∞
Γ(

s
δ1
)Γ(

ξ + 1 − s
δ2

)[
(a1η1)

1
δ1

(a2η2)
1

δ2

]−sds (33)

= [δ1δ2(a2η2)
ξ+1
δ2 ]−1H1,1

1,1

 (a1η1)
1

δ1

(a2η2)
1

δ2

∣∣∣∣(1−
ξ+1
δ2

, 1
δ2
)

(0, 1
δ1
)

 , (34)

for (a1η1)
1

δ1

(a2η2)
1

δ2

< 1. The Mellin-Barnes representation in (33) can be written in the following form by

replacing s
δ1

by s and writing c∗ = [δ2(a2η2)
ξ+1
δ2 ]−1:

I2 = c∗
1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(

ξ + 1
δ2

− δ1

δ2
s)[

a1η1

(a2η2)
δ1
δ2

]−sds. (35)

Evaluating this at the poles of Γ(s) at s = 0,−1,−2, ... the residue at s = −ν is given by

lim
s→−ν

(s + ν)Γ(s)Γ(
ξ + 1

δ2
− δ1

δ2
s)ω−s =

(−1)ν

ν!
Γ(

ξ + 1
δ2

+
δ1

δ2
ν)ων, ω =

(a1η1)

(a2η2)
δ1
δ2

.
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Therefore I2 is available as the sum of the residues.

I2 =
1

δ1δ2(a2η2)
ξ+1
δ2

∞

∑
ν=0

(−1)ν

ν!
Γ(

ξ + 1
δ2

+
δ1

δ2
ν)ων (36)

for 0 < a1η1 < (a2η2)
δ1
δ2 . Note that for δ1 = δ2 = δ the right side of (36) is a binomial series,

giving a binomial sum for a1η1 < a2η2. The analytic continuation part is available from the poles

of Γ( ξ+1
δ2

− s
δ2
). Replacing s

δ2
by s we have from (33), for ĉ = [δ1(a2η2)

ξ+1
δ2 ]−1,

I2 = ĉ
1

2πi

∫ c+i∞

c−i∞
Γ(

δ2

δ1
s)Γ(

ξ + 1
δ2

− s)[
(a1η1)

δ2
δ1

(a2η2)
]−sds. (37)

The poles of Γ( ξ+1
δ2

− s) are at s = ξ+1
δ2

+ ν, ν = 0, 1, 2, .... Then

I2 = ĉω
− ξ+1

δ2

∞

∑
ν=0

(−1)ν

ν!
Γ(

ξ + 1
δ1

+
δ2

δ1
ν)ω−ν (38)

for ω > 1. Thus, (36) and (38) give the series for all values of ω > 0. Again, for δ1 = δ2, (38)
reduces to a binomial sum.

3. One Factor with Negative Exponent

We can observe that in the pathway model for the cases of q > 1 and q → 1, x and 1
x belong to the

same family of functions. In other words both the situations xδ and x−δ, with δ > 0, are admissible

cases. When x−δ is there then the survival function will be of the form 1− [1+ a(q− 1)t−δ]
− η

q−1+1.
Let us again consider the case of two components, independently acting, or k = 2 where x1 has a
pathway model of beta type-2 and x2 has an inverted type-2 beta pathway model. Then the h-th
moment of the system survival time, written in terms of the survival function, is the following:

E(th) =
∫ ∞

0
th fx(t)dt = h

∫ ∞

0
th−1Sx(t)dt = h

∫ ∞

0
th−1[1 + a1(q1 − 1)tδ1 ]

− η1
q1−1+1

× {1 − [1 + a2(q2 − 1)t−δ2 ]
− η2

q2−1+1}dt. (39)

In order to evaluate the integral in (39) let us consider the general integral

g2 =
∫ ∞

0
tγ−1[1 + a1(q1 − 1)tδ1 ]

− η1
q1−1+1

[1 + a2(q2 − 1)t−δ2 ]
− η2

q2−1+1dt. (40)

This can be evaluated with the help of Mellin convolution of a product. Let x1 > 0, x2 > 0, u =
x1x2, v = x2 or x1 = u

v , Jacobian is 1
v . Let the corresponding functions be f8(x1) and f9(x2). Then

consider the integral

g2 =
∫ ∞

0

1
v

f8(
u
v
) f9(v)dv. (41)

Then Mellin convolution of a product says that Mg2(s) = M f8(s)M f9(s) where s is the Mellin
parameter. In terms of independently distributed real scalar positive random variables x1 and
x2, with densities f8(x1) and f9(x2) respectively, g2 will represent the density of the product

x1x2 = u. Take u = [a2(q2 − 1)]
1

δ2 , x2 = v and let

f8(x1) = [1 + xδ2
1 ]

− η2
q2−1+1 and f9(x2) = xγ

2 [1 + a1(q1 − 1)xδ1
2 ]

− η1
q1−1+1.

Then
f8(

u
v
) = [1 + a2(q2 − 1)v−δ2 ]

− η2
q2−1+1
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Then the Mellin transform of f8, with Mellin parameter s, denoted by M f8(s), is the following:

M f8(s) =
∫ ∞

0
xs−1

1 f8(x1)dx1 =
Γ( s

δ2
)Γ( η2

q2−1 − 1 − s
δ2
)

δ2Γ( η2
q2−1 − 1)

for ℜ(s) > 0,ℜ( η2
q2−1 − 1 − s

δ2
) > 0, η2 + 1 − q2 > 0. But

1
v

f9(v) = vγ−1[1 + a1(q1 − 1)vδ1 ]
− η1

q1−1+1.

Then
∫ ∞

0
1
v f8(

u
v ) f9(v)dv, with the above f8 and f9, agrees with the integral to be evaluated in (40).

The Mellin transform of f9 is given by

M f9(s) =
∫ ∞

0
xs−1

2 xγ
2 [1 + a1(q1 − 1)xδ1

2 ]
− η1

q1−1+1dx2 =
Γ( s+γ

δ1
)Γ( η1

q1−1 − 1 − s+γ
δ1

)

δ1[a1(q1 − 1)]
γ+s
δ1 Γ( η1

q1−1 − 1)

for ℜ(s + γ) > 0,ℜ( η1
q1−1 − 1 − s+γ

δ1
) > 0, η1 > 0, η1 + 1 − q1 > 0. Now, Mg2(s) = M f8(s)M f9(s).

Then, taking the inverse Mellin transform, for c̃ = [δ1δ2[a1(q1 − 1)]
γ
δ1 Γ( η1

q1−1 − 1)Γ( η2
q2−1 − 1)]−1,

g2 = c̃
1

2πi

∫ c+i∞

c−i∞
Γ(

s
δ2
)Γ(

s + γ

δ1
)Γ(

η2

q2 − 1
− 1 − s

δ2
)

× Γ(
η1

q1 − 1
− 1 − γ + s

δ1
){[a1(q1 − 1)]

1
δ1 [a2(q2 − 1)]

1
δ2 }−sds (42)

= c̃H2,2
2,2

[a1(q1 − 1)]
1

δ1 [a2(q2 − 1)]
1

δ2

∣∣∣∣(2−
η2

q2−1 , 1
δ2
),(2+ γ

δ1
− η1

q1−1 , 1
δ1
)

(0, 1
δ2
),( γ

δ1
, 1

δ1
)

 (43)

for [a1(q1 − 1)]
1

δ1 [a2(q2 − 1)]
1

δ2 < 1. We can also obtain series forms here.

3.1. Limiting forms of this special case

When q1 → 1 and q2 → 1 then we have the following integral for the ρ-th moment of the time to
failure:

I3 = ρ
∫ ∞

0
tρ−1[e−a1η1tδ1 ][1 − e−a2η2t−δ2 ]dt (44)

In order to evaluate (44) we will consider the following general integral:

g =
∫ ∞

0
tγe−b1tδ1−b2t−δ2 dt (45)

for bj > 0, δj > 0, j = 1, 2. This integral in (45) is connected to many problems in different fields.
For δ1 = 1, δ2 = 1 it is the basic Krätzel integral, see [17], [18], [19] and [20]. For δ1 = 1, δ2 = 1

2 it is
the reaction-rate probability integral in nuclear reaction-rate theory, see [21]. The integrand in (45)
for δ1 = 1, δ2 = 1, normalized, is the inverse Gaussian density in stochastic processes. Hence (45)
is a generalization of all these basic integrals. This integral can be explicitly evaluated by treating
it as a Mellin convolution of a product. Let u = x1x2, v = x2 or x2 = v, x1 = u

v with Jacobian
1
v . Since the integrand in (45) is a product of positive integrable functions, by multiplying with
appropriate normalizing constants, one can create statistical densities out of them. Hence we
can treat the Mellin convolution of a product as the statistical problem of computing the density
of a product of two statistically independently distributed real positive scalar random variables.
Then E(us−1) = [E(xs−1

1 )][E(xs−1
2 )] where E denotes the expected value, or in terms of the Mellin

transforms, Mg(s) = M f10(s)M f11(s) where s is the Mellin parameter. Then g has the structure

g =
∫

v

1
v

f10(
u
v
) f11(v)dv. (46)
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Take
f10(x1) = e−xδ2

1 ⇒ f10(
u
v
) = e−b2v−δ2 (47)

where u = b
1

δ2
2 = (a2η2)

1
δ2 . Then the Mellin transform of f1 is of the form

M f10(s) =
∫ ∞

0
e−xδ2 dx =

1
δ2

Γ(
s
δ2
),ℜ(s) > 0. (48)

Take

f11(x) = xγ+1e−b1xδ1 ⇒ (49)

M f11(s) =
∫ ∞

0
xγ+1+s−1e−b1xδ1 dx

= [δ1b
s+γ+1

δ1
1 ]−1Γ(

s + γ + 1
δ1

),ℜ(s + γ + 1) > 0. (50)

Observe that f10 from (46) and f2 from (49), when substituted in (46) gives the integral to be
evaluated in (50), which by the Mellin convolution of a product is the inverse Mellin transform of
the product M f10(s)M f11(s), available from (48) and (50). Therefore the integral in (50) is given by

g =
1

2πi

∫ c+i∞

c−i∞
M f10(s)M f11(s)u

−sds

= c̄
1

2πi

∫ c+i∞

c−i∞
Γ(

s
δ2
)Γ(

γ + 1
δ1

+
s
δ1
)(b

1
δ1
1 b

1
δ2
2 )−sds

= c̄H2,0
0,2

b
1

δ1
1 b

1
δ2
2

∣∣∣∣
(0, 1

δ2
),( γ+1

δ1
, 1

δ1
)

 , (51)

where c̄ = [δ1δ2b
γ+1
δ1

1 ]−1. When the poles are simple, (51) can be written as a sum of two series.
When 1

δ1
= m1 and 1

δ2
= m2 where m1, m2 = 1, 2, ... (positive integers) then the H−function in (51)

can be written as a G−function and can be evaluated in explicit series forms. In the reaction rate
probability integral δ1 = 1 and 1

δ2
= 2 and this problem is of the above type and explicit series

forms may be seen from [21].

4. Multi-component stress-strength Reliability

A system containing more than one component is referred to as a multi-component system. It may
consist of parallel or series components, or it may involve an intricate combination of both. Many
real-world applications of MSS models may be found in areas including industrial processes,
military technology, communication networks, etc. For example, a person may survive with only
one healthy kidney, hence, kidney function in the human body is a one-out-of-two system. The
MSS system functions when at least s(1 ≤ s ≤ k) of its k identical and independent strength
components function properly against a common strength. Let X1, X2, . . . , Xk be independent
random variables with a common distribution function F(.) and subjected to the common random
stress Y with a distribution function G(.). Thus the system reliability in a Multi-component stress
strength model Rs,k is given by

Rs,k = P [at least s ofX1, X2, . . . , Xk exceed Y]

=
k

∑
i=s

(
k
i

)
(P [Xi > Y])i(P [Xi ≤ Y])k−i

=
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1 − F(y)]i [F(y)]k−i dG(y) (52)
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The multi−component system reliability given in equation (1) was first introduced by Bhat-
tacharyya and Johnson [22]. After that, many authors have shown considerable interest in the
multi-component stress−strength reliability for details refer [23], [24] etc.
In many complex systems that emerge in the domains of biology, chemistry, economics, geog-
raphy, medicine, physics, etc., modelling and analysing lifetime data are crucial. The literature
introduces a variety of q-type distributions for modeling lifetime data, the most prominent of
which are the q-exponential, q-gamma, q-Gaussian etc, see [25] and [26], q-Weibull refer [27]
and q-K-distribution, see [14]. The basic motivation for constructing statistical distributions
for modelling lifetime data is the ability to model both monotonic and non-monotonic failure
rates, even though the baseline failure rate may be monotonic. The Weibull distribution is most
commonly used to describe lifetime data, which can only exhibit monotonic and constant shapes
for its hazard rate function. However, the q-Weibull distribution can exhibit unimodal, bathtub-
shaped, monotonically decreasing, monotonically increasing, and constant shapes for its hazard
rate function. Hence, it is a useful generalization of the Weibull distribution. Here we discuss a
classical inference on the multi-component stress-strength reliability when the stress and strength
components are independent random variables distributed as (11). Then the Multi-component
stress strength system reliability Rs,k is given by

Rs,k =
k

∑
i=s

(
k
i

) ∫ ∞

−∞
[1 − F(y)]i [F(y)]k−i dG(y)

=
k

∑
i=s

(
k
i

) ∫ ∞

0

[
(1 + α(q − 1)yδ)

− η1
q−1+1

]i [
1 − (1 + α(q − 1)yδ)

− η1
q−1+1

]k−i

× αδ(η2 + 1 − q)yδ−1
[
(1 + α(q − 1)yδ)

− η2
q−1

]
dy (53)

After simplification, we get

Rs,k =
(η2 + 1 − q)
(η1 + 1 − q)

k

∑
i=s

(
k
i

)
B(

(η2 + 1 − q)
(η1 + 1 − q)

, k − i + 1) for
η2 + 1 − q
η1 + 1 − q

> 0. (54)

In this section, we created random samples from stress and strength variables for various
parameter values and sample size combinations. In three scenarios, (s, k) = (1, 3), (2, 6), and (3, 7)
we estimated the MSS reliability. Tables 1 present the estimated values, bias, and mean square
error (MSE).

multirow graphicx lscape

Table 1: The MLE, Bias and SE of the estimator of Rs,k

n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)
R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE

15 0.120119 0.020119 0.000405 0.064679 0.012048 0.000145 0.058502 0.013048 0.000170
20 0.093342 0.006658 0.000044 0.049380 0.003252 0.000011 0.037616 0.007838 0.000061
25 0.094298 0.005702 0.000033 0.049759 0.002873 0.000008 0.038526 0.006928 0.000048
30 0.104346 0.004346 0.000019 0.055473 0.002842 0.000008 0.050787 0.005333 0.000028
35 0.101434 0.001434 0.000002 0.053631 0.001000 0.000001 0.044765 0.000689 0.000001
n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)

R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE
50 0.193680 0.011861 0.000141 0.107388 0.007388 0.000055 0.093504 0.006548 0.000043
100 0.170321 0.011497 0.000132 0.093361 0.006639 0.000044 0.081143 0.005813 0.000034
125 0.186056 0.004238 0.000018 0.102703 0.002703 0.000007 0.089360 0.002404 0.000006
200 0.178269 0.003549 0.000013 0.097947 0.002054 0.000004 0.085158 0.001798 0.000003
250 0.181112 0.000706 0.000001 0.099623 0.000377 0.000000 0.086631 0.000325 0.000000
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n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)
R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE

25 0.338753 0.018390 0.000338 0.205363 0.012029 0.000145 0.181581 0.010727 0.000115
150 0.347079 0.010064 0.000101 0.210166 0.007226 0.000052 0.185749 0.006559 0.000043
250 0.353725 0.003418 0.000012 0.215051 0.002341 0.000006 0.190202 0.002105 0.000004
300 0.356246 0.000897 0.000001 0.216886 0.000506 0.000000 0.191872 0.000435 0.000000
800 0.356669 0.000474 0.000000 0.217124 0.000268 0.000000 0.192077 0.000231 0.000000
n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)

R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE
25 0.233742 0.016258 0.000264 0.133105 0.009752 0.000095 0.116415 0.008585 0.000074
150 0.240789 0.009211 0.000085 0.136981 0.005876 0.000035 0.119772 0.005228 0.000027
250 0.253195 0.003195 0.000010 0.145040 0.002183 0.000005 0.126965 0.001965 0.000004
300 0.247085 0.002916 0.000009 0.140967 0.001891 0.000004 0.123313 0.001687 0.000003
800 0.248977 0.001023 0.000001 0.142251 0.000606 0.000000 0.124468 0.000532 0.000000
n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)

R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE
50 0.534931 0.034931 0.001220 0.367358 0.034024 0.001158 0.332781 0.032781 0.001075
100 0.478824 0.021176 0.000448 0.315918 0.017415 0.000303 0.283795 0.016205 0.000263
200 0.488284 0.011716 0.000137 0.323447 0.009887 0.000098 0.290755 0.009245 0.000086
450 0.496283 0.003717 0.000014 0.330132 0.003202 0.000010 0.296994 0.003006 0.000009
700 0.499025 0.000975 0.000001 0.332562 0.000771 0.000001 0.299289 0.000711 0.000001
n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)

R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE
50 0.357590 0.024256 0.000588 0.218419 0.018419 0.000339 0.193363 0.016892 0.000285
100 0.315656 0.017677 0.000313 0.188037 0.011963 0.000143 0.165723 0.010748 0.000116
200 0.326700 0.006633 0.000044 0.195442 0.004558 0.000021 0.172365 0.004106 0.000017
450 0.328412 0.004921 0.000024 0.196541 0.003459 0.000012 0.173343 0.003128 0.000010
700 0.332360 0.000973 0.000001 0.199353 0.000647 0.000000 0.175891 0.000580 0.000000
n (s,k)=(1,3) (s,k)=(2,6) (s,k)=(3,7)

R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE R-MLE R-Bias R-MSE
50 0.177839 0.011172 0.000125 0.097755 0.006846 0.000047 0.084999 0.006052 0.000037
100 0.155884 0.010783 0.000116 0.084773 0.006136 0.000038 0.073587 0.005361 0.000029
300 0.170740 0.004074 0.000017 0.093368 0.002459 0.000006 0.081116 0.002169 0.000005
500 0.162740 0.003926 0.000015 0.088604 0.002305 0.000005 0.076923 0.002024 0.000004
700 0.166253 0.000414 0.000000 0.090677 0.000232 0.000000 0.078745 0.000202 0.000000

5. Real Data Application

In this section, we explore an actual data set to illustrate the flexibility of the proposed model.
The information displays, in months, how long 128 bladder cancer patients were in remission.
The data set is given in Table 2.

Table 2: Remission times of bladder cancer patients data

0.08 2.09 13.29 0.4 2.26 3.57 5.06 7.09 9.22 13.8 25.74 0.5
3.48 4.87 23.63 0.2 2.23 6.94 8.66 13.11 3.52 4.98 6.97 9.02
3.88 5.32 7.39 10.34 14.83 34.26 0.9 2.69 4.18 5.34 7.59 10.66
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28
15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
11.79 18.1 1.46 4.4 5.85 8.26 11.98 19.13 1.76 3.25 4.5 6.25
79.05 1.35 6.76 17.14 2.87 5.62 7.87 11.64 17.36 1.4 3.02 4.34
5.71 7.93 22.69 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 5.49
7.66 11.25 21.73 2.07 3.36 6.93 8.37 12.02 2.02 12.07 20.28 2.02
3.36 12.03 3.31 4.51 6.54 8.53 8.65 12.63
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We compare the proposed model’s goodness of fit to a few competing models, such as Weibull,
Frechet Weibull, transmuted Weibull, and modified Weibull (MW), using a few discrimination
criteria, such as the Akaike Information Criterion (AIC), Anderson Darling test (AD-test), Cram©r-
von Mises test (CRVM), and Kolmogorov-Smirnov test with its p-value. The MLEs of the
parameters, as well as the values of the AIC, are provided in Tables 3 and 4, respectively. These
findings suggest that the proposed model is the best model because it has the lowest test statistic
values among all fitted models. The plots of the fitted PDF, CDF, P-P plot, and Q-Q plot for the
proposed distribution and Weibull distribution are displayed in Figure 9.

Table 3: The estimated value of the parameters of the fitted model.

Generalized q-Weibull q=2.5925 η = 4.8920 α = 0.0179 δ = 1.4273
Weibull α = 1.0478 β = 9.5607 —- —–
Frechet Weibull (FW α = 1.1446 β = 1.881 —– —–
Transmuted Weibull α = 1.1333 β = 14.6198 λ = 0.7449 —–
Modified Weibull alpha=1.3172 β = 0 : 0938 λ = 1.4783 —–

Table 4: The value of AIC, AD-test, CRVM-test, KS-test, and p-value of the fitted model.

Model AIC AD-test CRVM-test KS-test p=value
Generalized q-Weibull 827.4798 0.12177 0.01758 0.03504 0.99943
Weibull 832.174 0.957709 0.153703 0.0700169 0.556965
Frechet Weibull (FW) 896.002 6.11825 0.978722 0.140799 0.0125018
Transmuted Weibull 829.917 0.560038 0.0879162 0.0587652 0.76866
Modified Weibull 834.174 0.957709 0.153703 0.0700169 0.556965

Figure 9: The histogram and theoretical densities, empirical and theoretical CDFs, Q-Q plots, P-P
plots of the fitted data.
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6. Conclusion

In this study, we take into account a system with k-connected components in series. The lifetimes
of the components, X1, ..., Xk, are randomly distributed and have pathway densities for the
pathway parameters q < 1, q > 1, or q → 1. Then, the survival function, hazard function,
expected time to failure, and general moments of x = min{X1, X2, . . . , Xn} are computed. It is
demonstrated that the hazard function can take on various shapes, including a bathtub shape. The
estimation of stress-strength reliability is assessed through the maximum likelihood estimation
technique when both stress and strength variables conform to the pathway model. Remission time
data from cancer patients is examined to see how the model is relevant in practical situations. The
proposed distribution consistently provides better fits for real data compared to other models.
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Abstract

In this paper we show that there exists an internal dependence of the simultaneous measurements made
by the two pairs of linear polarizers operated in each leg of the apparatus in Aspect’s version of Einstein-
Podolsky-Rosen Gedankenexperiment. The corresponding Shannon-Kolmogorov’s information flow
linking a polarizer from one leg to a polarizer from the other leg is proportional to the absolute value
of this function of dependence. It turns out that if Bell’s inequality is violated, then this information
flow is strictly positive, that is, the experiment performed at one leg is informationally dependent on the
experiment at the other leg. By throwing out the sign of absolute value, we define the signed information
flow linking a polarizer from one leg to a polarizer from the other leg which, in turn, reproduces the
probabilities of the four outcomes of the simultaneous measurements, predicted by quantum mechanics.
We make an attempt to illustrate the seeming random relation between the total information flow, the total
signed information flow, and the violation of Bell’s inequality in terms of a kind of uncertainty principle.

Keywords: EPR thought experiment, Aspect’s optical version, Informational dependence, Bell’s
inequality.

1. Introduction, Notation

1.1. Introduction

In the context of the bipartite quantum system that describes Aspect’s optical version of Einstein-
Podolsky-Rosen Gedankenexperiment (see [1] and [5]), we consider the pairs of linear polarizers
operated in each leg of the apparatus as pairs of self-adjoined linear operators

Aµi =

(
cos µi sin µi
sin µi − cos µi

)
, Bνj = Aνj ,

where µi, νj ∈ [0, π], i, j = 1, 2, are the angles of the polarizers. Note that each pair has a
time switch which interchanges polarizers, the corresponding time being shorter than the time
necessary for a light signal to travel from one of the pairs of polarizers to the other (Einstein
locality assumption for independence).

Each pair of operators Aµ1 , Aµ2 and Bν1 , Bν2 acts on the state space of the corresponding
quantum subsystem (a unitary plane). By tensoring with the unit operator on the other plane,
we obtain two pairs of self-adjoined linear operators Aµ1 , Aµ2 and Bν1 , Bν2 with spectre {1,−1}
on the state space of the whole quantum system (tensor product of the two unitary planes).
Moreover, for each i, j = 1, 2 the operators Aµi and Bνj commute because the state space of the
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whole quantum system has an orthonormal frame consisting of eigenvectors of both operators. In
this case the corresponding measurements are said to be simultaneous.

In accord with the axiom of quantum mechanics about the observables, after fixing initial
state we can consider the members of this frame as outcomes of a sample space with probability
assignment consisting of probabilities predicted by this axiom. Moreover, with an abuse of the
language, we can also consider the operators as random variables with range {1,−1} on this
sample space. Under the condition that the singlet state is initial, any one of these random
variables has probability distribution ( 1

2 , 1
2 ). Moreover, if µ ∈ {µ1, µ2} and ν ∈ {ν1, ν2}, then

pr((Aµ = 1) ∩ (Bν = 1)) = pr((Aµ = −1) ∩ (Bν = −1)) =
1
2

sin2
(

µ− ν

2

)
,

pr((Aµ = 1) ∩ (Bν = −1)) = pr((Aµ = −1) ∩ (Bν = 1)) =
1
2

cos2
(

µ− ν

2

)
.

Therefore, the product of random variablesAµBν has probability distribution
(

sin2
(

µ−ν
2

)
, cos2

(
µ−ν

2

))
and expected value E(AµBν) = − cos(µ− ν).

On the other hand, the joint experiment (see [7, Part I, Section 6]) of the binary trials
Aµ = (Aµ = 1) ∪ (Aµ = −1) and Bν = (Bν = 1) ∪ (Bν = −1) produces the probability
distribution (

1
2

sin2
(

µ− ν

2

)
,

1
2

cos2
(

µ− ν

2

)
,

1
2

cos2
(

µ− ν

2

)
,

1
2

sin2
(

µ− ν

2

))
with Boltzmann-Shannon entropy E(θµ,ν), where E(θ) = −2θ ln θ − 2( 1

2 − θ) ln( 1
2 − θ) and θµ,ν =

1
2 sin2

(
µ−ν

2

)
. We extend the function E(θ), θ ∈ (0, 1

2 ), (see [6, 4.1,5.1]) as continuous on the closed

interval [0, 1
2 ].

By modifying the entropy function E(θ), we obtain the strictly increasing degree of dependence
function e : [0, 1

2 ]→ [−1, 1], which mimics the regression coefficient (see [6, 5.2]).
It turns out that the average quantity of information I(Aµ,Bν) (see [3, §1]) of one of the

experiments Aµ and Bν, relative to the other can be found by the formula I(Aµ,Bν) = |e(θµ,ν)| ln 2.
We can consider I(Aµ,Bν) as a measure of the flow carrying information between these two
binary trials (see [6, 5.3]). Since s is an invertible function, the corresponding signed information
flow I(s)(Aµ,Bν)(θ) = e(θ) ln 2 replicates the probability distribution (2) produced by quantum
mechanics.

In terms of Aspect’s experiment, the sum I(A,B) = ∑2
i,j I(Aµi ,Bνj) (called total information

flow) can be thought about as a measure of the flow carrying information between the two
pairs of polarizers. In his paper [2] John Bell deduced under the assumptions of "locality" and
"realism" that if measurements are performed independently (Einstein locality assumption for
independence) on the two separated particles (photons in Aspect’s experiment) of an entangled
pair, then the assumption that the outcomes depend upon "hidden variables" implies constraint
condition called Bell’s inequality (see Subsection 4.1). It comes out that if Bell’s inequality is
violated, then the total information flow is strictly positive. In other words, in this case there
exists an informational dependence between the two legs of apparatus.

In the end of the paper we discuss the relation between the information flow I(A,B) and the
violation of Bell’s inequality. Using Examples 1 and the Java program from the link that can be
found there, we note that this relation is subject to a kind of uncertainty principle.

1.2. Notation

H: 2-dimensional unitary space with inner product 〈x|y〉 which is linear in the second slot and
anti-linear in the first slot;
I = IH: the identity linear operator on H;
H⊗2 = H⊗H: the unitary tensor square with inner product 〈x1 ⊗ x2|y1 ⊗ y2〉 = 〈x1|y1〉〈x2|y2〉;
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U (2): the unit sphere in H⊗2;
Spec(A): the real spectre of a self-adjoined linear operator A on H with trace zero, having the
form Spec(A) = {λ(A)

1 , λ
(A)
2 }, λ

(A)
1 + λ

(A)
2 = 0;

u(A) = {u(A)
1 , u(A)

2 }: the orthonormal frame for H, formed by the corresponding eigenvectors of
A;
H(A)

i : the eigenspaces Cu(A)
i of A, i = 1, 2.

2. Self-Adjoint Operators on H

2.1. Two Special Commuting Operators

We fix an orthonormal frame h = {h1, h2} for H and identify the self-adjoined operators with
their matrices with respect to h. For any µ ∈ [0, π] we denote by Aµ the self-adjoined operator(

cos µ sin µ
sin µ − cos µ

)
.

We have λ
(Aµ)
1 = 1, λ

(Aµ)
2 = −1, and

u(
Aµ)

1 = (cos
µ

2
)h1 + (sin

µ

2
)h2, u(

Aµ)
2 = (− sin

µ

2
)h1 + (cos

µ

2
)h2.

For any ν ∈ [0, π] we set Bν = Aν.

Note that {h1 ⊗ h1, h1 ⊗ h2, h2 ⊗ h1, h2 ⊗ h2} and u(Aµ) ⊗ u(Bν) = {u(Aµ)
1 ⊗ u(Bν)

1 , u(
Aµ)

1 ⊗

u(Bν)
2 , u(

Aµ)
2 ⊗ u(Bν)

1 , u(
Aµ)

2 ⊗ u(Bν)
2 } are orthonormal frames for H⊗2.

Let us set Aµ = Aµ ⊗ I, Bν = I⊗ Bν. It is a straightforward check that the last two linear

operators on H⊗2 are also self-adjoined with λ
(Aµ)
1 = λ

(Bν)
1 = 1, λ

(Aµ)
2 = λ

(Bν)
2 = −1, the λ

(Aµ)
i -

eigenspace H(Aµ)
i = H(Aµ)

i ⊗ H has orthonormal frame {u(Aµ)
i ⊗ u(Bν)

1 , u(
Aµ)

i ⊗ u(Bν)
2 }, and

the λ
(Bν)
i -eigenspace H(Bν)

i = H⊗H(Bν)
i has orthonormal frame {u(Aµ)

1 ⊗ u(Bν)
i , u(

Aµ)
2 ⊗ u(Bν)

i },
i = 1, 2.

Since u(Aµ) ⊗ u(Bν) is an orthonornal frame of H⊗2 consisting of eigenvectors of both Aµ and
Bν, then the last two operators commute.

Let ψ ∈ U (2) and let S(ψ;Aµ,Bν) be the sample space with set of outcomes u(Aµ) ⊗

u(Bν) = {u(Aµ)
1 ⊗ u(Bν)

1 , u(
Aµ)

1 ⊗ u(Bν)
2 , u(

Aµ)
2 ⊗ u(Bν)

1 , u(
Aµ)

2 ⊗ u(Bν)
2 } and probability assignment

{p11, p12, p21, p22} with pij = |〈u
(Aµ)
i ⊗ u(Bν)

j |ψ〉|2, i, j = 1, 2. With an abuse of the language, we

consider the observable Aµ as a random variable Aµ : u(Aµ) ⊗ u(Bν) → R, Aµ(u
(Aµ)
1 ⊗ u(Bν)

j ) =

λ
(Aµ)
1 , Aµ(u

(Aµ)
2 ⊗ u(Bν)

j ) = λ
(Aµ)
2 , j = 1, 2, on the sample space S(ψ;Aµ,Bν) with probability

distribution pAµ
(λ

(A)
i ) = |〈u(Aµ)

i ⊗ u(Bν)
1 |ψ〉|2 + |〈u(Aµ)

i ⊗ u(Bν)
2 |ψ〉|2, i = 1, 2, and pAµ

(λ) = 0 for

λ /∈ Spec(Aµ). Identifying the event {u(Aµ)
i ⊗ u(Bν)

1 , u(
Aµ)

i ⊗ u(Bν)
2 } with the "event" Aµ = λ

(Aµ)
i ,

we have pr(Aµ = λ
(Aµ)
i ) = |〈u(Aµ)

i ⊗ u(Bν)
1 |ψ〉|2 + |〈u(Aµ)

i ⊗ u(Bν)
2 |ψ〉|2, i = 1, 2.

We also consider the observable Bν as a random variable Bν : u(Aµ) ⊗ u(Bν) → R, Bν(u
(Aµ)
j ⊗

u(Bν)
1 ) = λ

(Bν)
1 , Bν(u

(Aµ)
j ⊗ u(Bν)

2 ) = λ
(Bν)
2 , j = 1, 2, on the sample space S(ψ;Aµ,Bν) with

probability distribution pBν
(λ

(A)
i ) = |〈u(Aµ)

1 ⊗ u(Bν)
i |ψ〉|2 + |〈u(Aµ)

2 ⊗ u(Bν)
i |ψ〉|2, i = 1, 2, and

pBν
(λ) = 0 for λ /∈ Spec(Bν). Identifying the event {u(Aµ)

1 ⊗ u(Bν)
i , u(

Aµ)
2 ⊗ u(Bν)

i } with the "event"

Bν = λ
(Bν)
i , we have pr(Bν = λ

(Bν)
i ) = |〈u(Aµ)

1 ⊗ u(Bν)
i |ψ〉|2 + |〈u(Aµ)

2 ⊗ u(Bν)
i |ψ〉|2, i = 1, 2.
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In particular, let us set ψ = 1√
2
(h1 ⊗ h2 − h2 ⊗ h1). We have

pr(Aµ = λ
(Aµ)
i ) =

1
2
|〈u(Aµ)

i |h1〉〈u
(Bν)
1 |h2〉 − 〈u

(Aµ)
i |h2〉〈u

(Bν)
1 |h1〉|2+

1
2
|〈u(Aµ)

i |h1〉〈u
(Bν)
2 |h2〉 − 〈u

(Aµ)
i |h2〉〈u

(Bν)
2 |h1〉|2

and
pr(Bν = λ

(Bν)
j ) =

1
2
|〈u(Aµ)

1 |h1〉〈u
(Bν)
j |h2〉 − 〈u

(Aµ)
1 |h2〉〈u

(Bν)
j |h1〉|2+

1
2
|〈u(Aµ)

2 |h1〉〈u
(Bν)
j |h2〉 − 〈u

(Aµ)
2 |h2〉〈u

(Bν)
j |h1〉|2.

Taking into account the form of the eigenvectors of the matrices Aµ and Bν, we obtain

pr(Aµ = λ
(Aµ)
i ) = pr(Bν = λ

(Bν)
j ) =

1
2

, i, j = 1, 2.

We identify the intersection (Aµ = λ
(Aµ)
i ) ∩ (Bν = λ

(Bν)
j ) with the event {u(Aµ)

i ⊗ u(Bν)
j }, i, j =

1, 2, in the sample space S(ψ;Aµ,Bν) and obtain

pr((Aµ = λ
(Aµ)
i ) ∩ (Bν = λ

(Bν)
j )) =

1
2
|〈u(Aµ)

i |h1〉〈u
(Bν)
j |h2〉 − 〈u

(Aµ)
i |h2〉〈u

(Bν)
j |h1〉|2.

In particular, we have

pr((Aµ = λ
(Aµ)
1 ) ∩ (Bν = λ

(Bν)
1 )) =

1
2

sin2
(

µ− ν

2

)
,

pr((Aµ = λ
(Aµ)
1 ) ∩ (Bν = λ

(Bν)
2 )) =

1
2

cos2
(

µ− ν

2

)
,

pr((Aµ = λ
(Aµ)
2 ) ∩ (Bν = λ

(Bν)
1 )) =

1
2

cos2
(

µ− ν

2

)
,

pr((Aµ = λ
(Aµ)
2 ) ∩ (Bν = λ

(Bν)
2 )) =

1
2

sin2
(

µ− ν

2

)
.

The random variable AµBν has probability distribution

pAµBν
(1) = sin2

(
µ− ν

2

)
, pAµBν

(−1) = cos2
(

µ− ν

2

)
,

and pAµBν
(λ) = 0 for λ 6= ±1. The expected value of this random variable is E(AµBν) =

− cos(µ− ν).
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3. Entropy and Degree of Dependence

3.1. Entropy

Now, we combine the terminology and notation of this paper with those of [6]. Let us set

A = (Aµ = λ
(Aµ)
1 ), B = (Bν = λ

(Bν)
1 ), Ac = (Aµ = λ

(Aµ)
2 ), Bc = (Bν = λ

(Bν)
2 ). α = pr(A) = 1

2 ,
β = pr(B) = 1

2 .
The pair (A, B) of events in the sample space S(ψ;A,B) produces an experiment

J = (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B) ∪ (Ac ∩ Bc) (1)

(cf. [3, I,§5]) and the probabilities of its results:

ξ1 = pr(A ∩ B) =
1
2

sin2
(

µ− ν

2

)
, ξ2 = pr(A ∩ Bc) =

1
2

cos2
(

µ− ν

2

)
,

ξ3 = pr(Ac ∩ B) =
1
2

cos2
(

µ− ν

2

)
, ξ4 = pr(Ac ∩ Bc) =

1
2

sin2
(

µ− ν

2

)
. (2)

The probability distribution (ξ1, ξ2, ξ3, ξ4) satisfies the linear system [6, 4.1. (3)] whose solutions
form a straight line with parametric representation ξ1 = θ, ξ2 = 1

2 − θ, ξ3 = 1
2 − θ, ξ4 = θ in

the hyperplane ξ1 + ξ2 + ξ3 + ξ4 = 1. Note that the parameter θ = ξ1 runs within the closed
interval [0, 1

2 ]. The entropy of (ξ1, ξ2, ξ3, ξ4) is E(θ) = −∑4
k=1 ξk(θ) ln(ξk(θ)) = −2θ ln θ − 2( 1

2 −
θ) ln( 1

2 − θ) and the function E(θ) can be extended as continuous on the interval [0, 1
2 ]. It strictly

increases on the interval [0, 1
4 ], strictly decreases on the interval [ 1

4 , 1
2 ] and has a global maximum

at θ = 1
4 . In particular, maxθ∈[0, 1

2 ]
E(θ) = E( 1

4 ) = 2 ln 2. Since minθ∈[0, 1
4 ]

E(θ) = E(0) = ln 2 =

E( 1
2 ) = minθ∈[ 1

4 , 1
2 ]

E(θ), we obtain minθ∈[0, 1
2 ]

E(θ) = ln 2.

3.2. Degree of Dependence

It is more useful to modify the entropy function, thus obtaining the strictly increasing degree of
dependence function e : [0, 1

2 ]→ [−1, 1],

e(θ) =


− E( 1

4 )−E(θ)
E( 1

4 )−E(0)
if 0 ≤ θ ≤ 1

4

E( 1
4 )−E(θ)

E( 1
4 )−E( 1

2 )
if 1

4 ≤ θ ≤ 1
2 .

Taking into account the values of extrema of entropy function, we obtain

e(θ) =

{
−2 + E(θ)

ln 2 if 0 ≤ θ ≤ 1
4

2− E(θ)
ln 2 if 1

4 ≤ θ ≤ 1
2 .

The events A and B are independent exactly when the entropy is maximal (equal to 2 ln 2), that
is, when e(θ) = 0 and this, in turn, is equivalent to the equality |µ− ν| = π

2 . We have e(θ) = −1
or e(θ) = 1 if and only if |µ− ν| = 0 or |µ− ν| = π, respectively, and in these two cases the
entropy is minimal and equal to ln 2. Now, let, in addition, assume that A and B are events in a
sample space with equally likely outcomes. If e(θ) = −1, then one of A and B is a subset of the
complement of the other (maximal negative dependence), and if e(θ) = 1 one of them is a subset of
the other (maximal positive dependence).

3.3. The Information Flow

The experiment J from (1) is the joint experiment (see [7, Part I, Section 6]) of two simple binary
trials: Aµ = A ∪ Ac and Bν = B ∪ Bc with pr(A) = pr(B) = 1

2 . The average quantity of information
of one of the experiments Aµ and Bν, relative to the other, (see [3, §1]), is defined in this particular case
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by the formula I(Aµ,Bν)(θ) = ξ1(θ) ln 4ξ1(θ) + ξ2(θ) ln 4ξ2(θ) + ξ3(θ) ln 4ξ3(θ) + ξ4(θ) ln 4ξ4(θ).
The above notation is correct since the interchanges of A and Ac or B and Bc causes permutations
of ξi’s. Thus, we obtain I(Aµ,Bν)(θ) = maxθ∈[0, 1

2 ]
E(θ)− E(θ). Now, the definition of the degree

function e(θ) yields immediately I(Aµ,Bν)(θ) = |e(θ)| ln 2 for θ ∈ [0, 1
2 ].

Translating into the language of information theory, we have e(θ) = −1 or e(θ) = 1 if
and only if I(Aµ,Bν)(θ) = max0≤τ≤ 1

2
I(Aµ,Bν)(τ) = ln 2. Finally, we have e(θ) = 0 if and

only if I(Aµ,Bν)(θ) = 0, and under this condition the experiments Aµ and Bν are said to be
informationally independent.

3.4. The Signed Information Flow

Let us set I(s)(Aµ,Bν)(θ) = e(θ) ln 2 for θ ∈ [0, 1
2 ] and call this quantity average quantity of signed

information of one of the events Aµ = λ
(Aµ)
1 and Bν = λ

(Bν)
1 , relative to the other. Then I(Aµ,Bν) =

|I(s)(Aµ,Bν)| and since the function e is invertible, we obtain θ = e−1( 1
ln 2 I(s)(Aµ,Bν)). In

particular, the value of the signed information flow I(s)(Aµ,Bν) reproduces the probability
distribution (2) predicted by quantum theory.

4. Four Operators and Bell’s Map

For any µ1, µ2, ν1, ν2 ∈ [0, π] we consider the self-adjoined operators Aµi , Bνj , i, j = 1, 2, see
Subsection 2.1. We extend notation introduced in Sections 2 and 3 in a natural way: θij =
1
2 sin2

(
µi−νj

2

)
, θij ∈ [0, 1

2 ], Aµi , Bνj , I(Aµi ,Bνj) = |e(θij)| ln 2, i, j = 1, 2. The sum I(A,B) =

∑2
i,j=1 I(Aµi ,Bνj) is said to be the average quantity of information of one of the pairs of experiments

A = {Aµ1 ,Aµ2} and B = {Bν1 ,Bν2} relative to the other, or, total information flow. The sum
I(s)(A,B) = ∑2

i,j=1 I(s)(Aµ,Bν) is said to be the average quantity of signed information of one of
the pairs of experiments A = {Aµ1 ,Aµ2} and B = {Bν1 ,Bν2} relative to the other, or, total signed
information flow.

Thus, we obtain the functions

I(A,B) : [0, π]4 → R, (µ1, µ2, ν1, ν2) 7→ (ln 2)
2

∑
i,j=1
|e(θij)|,

and

I(s)(A,B) : [0, π]4 → R, (µ1, µ2, ν1, ν2) 7→ (ln 2)
2

∑
i,j=1

e(θij),

which represents the intensity of information flow (respectively, signed information flow) between
the pairs of experiments A and B. We note that 0 ≤ I(A,B)(µ1, µ2, ν1, ν2) ≤ 4 ln 2 and −4 ln 2 ≤
I(s)(A,B)(µ1, µ2, ν1, ν2) ≤ 4 ln 2.

In case µ1 = µ2 = ν1 = ν2 we have θ11 = θ12 = θ21 = θ22 = 0, e(θ11) = e(θ12) = e(θ21) =
e(θ22) = −1, hence I(A,B) = 4 ln 2 and I(s)(A,B) = −4 ln 2. In case µ1 = µ2 = π

2 , ν1 = ν2 = 0
we have θ11 = θ12 = θ21 = θ22 = 1

4 , e(θ11) = e(θ12) = e(θ21) = e(θ22) = 0, and I(A,B) = 0.
Finally, in case µ1 = µ2 = π, ν1 = ν2 = 0 we have θ11 = θ12 = θ21 = θ22 = 1

2 , e(θ11) = e(θ12) =

e(θ21) = e(θ22) = 1, and I(s)(A,B) = 4 ln 2.
Since the image of a compact and connected set via continuous function I(A,B) (respectively,

the continuous function I(s)(A,B)) is a compact and connected subset of R, we obtain that the
range of I(A,B) (respectively, I(s)(A,B)) coincides with the interval [0, 4 ln 2] (respectively, with
the interval [−4 ln 2, 4 ln 2]).
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4.1. Bell’s Inequality

The equality |Aµ1Bν1 +Aµ1Bν2 +Aµ2Bν1 −Aµ2Bν2 | = 2 yields (with an abuse of the probability
theory) Bell’s inequality

|E(Aµ1Bν1) + E(Aµ1Bν2) + E(Aµ2Bν1)− E(Aµ2Bν2 | ≤ 2,

that is, |b(µ1, µ2, ν1, ν2)| ≤ 2, where b(µ1, µ2, ν1, ν2) = cos(µ1 − ν1) + cos(µ1 − ν2) + cos(µ2 −
ν1)− cos(µ2 − ν2).

J. S. Bell in [2] proves that if there exist "...additional variables which restore to the (quantum)
theory causality and locality", then the above inequality is satisfied. Since I(A,B) = 0 is equivalent
to the equalities |µi − νj| = π

2 , i, j = 1, 2, this yields b = 0. Thus, we obtain that if Bell’s inequality
is violated, then the total information flow I(A,B) is strictly positive, that is, the experiments A

and B are informationally dependent.

Examples 1. Note that the results of all calculations below are rounded up to the 7-th digit.
1) (Aspect’s experiment) µ1 = π

8 , µ2 = 3π
8 , ν1 = π

4 , ν2 = 0. Then we obtain cos(π
8 ) = 0.9238795,

cos( 3π
8 ) = 0.3826834, and therefore b(π

8 , 3π
8 , π

4 , 0) = 2.3889551. On the other hand, θ11 = θ12 =

θ21 = 1
2 sin2( π

16 ) = 0.0190301, e(θ11) = e(θ12) = e(θ21) = −0.0415353, θ22 = 1
2 sin2( 3π

16 ) =

0.154329, e(θ22) = −0.1084492. Hence we have I(A,B) = 0.1615415 and I(s)(A,B) = −0.2330551.
2) µ1 = π, µ2 = 2π

3 , ν1 = 0, ν2 = π
3 . Then we have b(π, 2π

3 , 0, π
3 ) = −2.5. On the other hand,

θ11 = 1
2 sin2(π

2 ) = 0.5, e(θ11) = 1, θ12 = θ21 = 1
2 sin2(π

3 ) =
3
8 = 0.375, e(θ12) = e(θ21) = 0.1887219,

θ22 = 1
2 sin2(π

6 ) =
1
8 = 0.125, e(θ22) = −0.1887219. Hence we obtain I(A,B) = 1.0855833 and

I(s)(A,B) = 1.1887219
3) µ1 = π

2 , µ2 = 0, ν1 = π
4 , ν2 = 3π

4 . Then b(π
2 , 0, π

4 , 3π
4 ) = 2

√
2. On the other hand, θ11 =

θ12 = θ21 = 1
2 sin2(π

8 ) = 0.0732233, e(θ11) = e(θ12) = e(θ21) = −0.3994425, θ22 = 1
2 sin2( 3π

16 ) =

0.154329, e(θ22) = −0.10844492. Hence we have I(A,B) = 0.9053727 and I(s)(A,B) = −0.22827767.
4) µ1 = π, µ2 = 0, ν1 = 0, ν2 = π. Then we have b(π, 0, 0,−π) = 2. On the other hand,

θ11 = θ22 = 1
2 sin2(π

2 ) = 0.5, e(θ11) = e(θ22) = 1, θ12 = θ21 = 1
2 sin2(0) = 0, e(θ12) = e(θ21) = −1.

Therefore we obtain I(A,B) = 4 ln 2 = 2.7725887 = max I(A,B) and I(s)(A,B) = 0.
5) µ1 = 5π

6 , µ2 = 2π
3 , ν1 = π

3 , ν2 = π
2 . In this case we have b( 5π

6 , 2π
3 , π

3 , π
2 ) = 1 −

√
3

2 .
On the other hand, θ11 = 1

2 sin2(π
4 ) = 1

4 , e(θ11) = 0, θ12 = θ21 = 1
2 sin2(π

6 ) = 1
8 , e(θ12) =

e(θ21) = −0.1887219, θ22 = 1
2 sin2( π

12 ) = 0.0334936, e(θ22) = −0.6453728. Hence we have
I(A,B) = 0.7089624 and I(s)(A,B) = −0.267929.

6) The link
http://www.math.bas.bg/algebra/valentiniliev/

contains a Java experimental implementation "dependencemeasurements2" depending on five
parameters: an non-negative integer n and four real numbers µ1, µ2, ν1, ν2 from the closed interval
[0, π]. One can also find the description of this program at the above link.

Examples 1 and, especially, example 6), yield that the relations between I(A,B) and b, and
I(s)(A,B) and b seem to be random. Below we present an attempt to explain the uncertainty of
this relation by refereing to [6, 5.4, 5.5]. We define the events

U = {(µ1, µ2, ν1, ν2) ∈ [0, π]4||b(µ1, µ2, ν1, ν2)| ≤ 2},

V = {(µ1, µ2, ν1, ν2) ∈ [0, π]4|I(A,B)(µ1, µ2, ν1, ν2) ∈ [0, 2 ln 2]},

VS = {(µ1, µ2, ν1, ν2) ∈ [0, π]4|I(s)(A,B)(µ1, µ2, ν1, ν2) ∈ [0, 4 ln 2]},

with complements Uc, Vc, and VSc in [0, π]4. We suppose that the probabilities α = pr(U),
β = pr(V), and β(s) = pr(VS) in the sample space [0, π]4 furnished with normalized Borel
measure are known. The probabilities τ = pr(U ∩ V) and τ(s) = pr(U ∩ VS) run through
the closed intervals I(α, β) = [max(0, α + β− 1), min(α, β)] and I(α, β(s)), respectively. In case
τ = min(α, β)] (respectively, τ(s) = min(α, β(s))]) there exists a relation of inclusion (up to
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a set of probability 0) between U and V (respectively, between U and VS). Otherwise, both
conditional probabilities pr(Vc|U) and pr(V|Uc) (respectively, pr(VSc|U) and pr(VS|Uc)) can
not be simultaneously as small as one wants (a kind of uncertainty principle).

Remark 1. The probabilities α = pr(U), β = pr(V), τ = pr(U ∩V), and τ(s) = pr(U ∩VS) can
be approximated by using Examples 1, 6). We draw a random sample X of size n from the
sample space [0, π]4 and consider X as a sample space with n equally likely outcomes. Then

the probabilities α̂(n), β̂(n), τ̂(n), and τ̂(s)(n) of the traces of U,V, U ∩V, and U ∩VS on X (the
sample proportions) are unbiased estimators for α, β, τ, and τ(s) when n is large.

Note that as an output of n iterations of the random process from example 6) we can
also find: a) the approximation [L(n), J(n)] of the range of I(A,B) and the approximation
[LS(n), JS(n)] of the range of I(s)(A,B) under the condition |b| ≤ 2, b) the above sample

proportions, and c) the approximations pr(Vc|U)(n) = α̂(n)−τ̂(n)
α̂(n) , pr(V|Uc)(n) = β̂(n)−τ̂(n)

1−α̂(n) , and

pr(VSc|U)(n) = α̂(n)−τ̂(s)(n)
α̂(n) , pr(VS|Uc)(n) = β̂(s)(n)−τ̂(s)(n)

1−α̂(n) .
Below are the results obtained by drawing a random sample of size n = 1000:

α̂(1000) = 0.838, β̂(1000) = 0.704, τ̂(1000) = 0.614, τ̂(s)(1000) = 0.087, pr(Vc|U)(1000) =
0.2673031, pr(V|Uc)(1000) = 0.5555555, pr(VSc|U)(1000) = 0.8961814, pr(VS|Uc)(1000) =
0.0185185.
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Abstract 

This paper proposed a three parameter Maxwell-Gompertz distribution as an extension of Gompertz 

distribution. Some statistical properties of the distribution such as moments, survival and hazard 

functions, quantile function, Rényi entropy and order statistics were derived. Maximum likelihood 

method was used to estimate the model parameters. A simulation study was carried out in order to 

gain an insight into the performance on small, moderate and large samples. The flexibility of the 

new distribution was empirically demonstrated in comparison to four other extensions of Gompertz 

distributions using two real life datasets.  

Keywords: Maxwell-Gompertz, generator, skewness, Rényi entropy, maximum 
likelihood 

I. Introduction

Gompertz distribution is a popular distribution commonly used in many applied problems, 
particularly in modelling lifetime data [1]. The distribution is often characterized by an increasing 
hazard function and it is commonly used to describe the distribution of adult life spans by 
actuaries and demographers [2]. It is also considered for modelling survival data in some sciences 
such as gerontology [3], computer science [4], biology [5], and marketing science [6]. For more 
details about the Gompertz distribution and its applications, see [7], [8]. The cumulative 
distribution function (cdf) and probability density function (pdf) of the Gompertz random variable 
X are respectively given as  


− −

= −
( 1)

( , ) 1 ,  

bxc e
bT x e     (1) 

and 

 
− −

=  
1

,( , )
( )

0; 0bx
bxc e

bt x ce e x  (2) 

where  = (b, c) with b denting the shape parameter and c the scale parameter. 
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The development of new families of distributions has become an important trend in the 
theory and application of distributions. Such new families of distributions are often compounded 
by adding one or more parameters to the well-known standard baseline distributions. This has 
become necessary because the resulting extended new distributions provide greater flexibility in 
modelling observed data. A few of such families of distributions which have been explored in the 
recent times include, among others the Beta-G of [9], a new generalized odd log-logistic family of 
distributions by [10], The generalized odd half-Cauchy family of distributions by [11], a New 
Kumaraswamy generalized family of distributions by [12].  

Several other families of distributions can be mentioned such as Odd F family of distributions 
by [13], Odd Beta Prime family of distributions by [14], Generalized odd Maxwell family of 
distributions by [15], Generalized beta-generated distributions of [16], Garhy-generated family of 
distributions by [17], Gamma-G Type-3 of [18], The Logistic-X family of [19], a new Weibull-X 
family of [20], a-Zubair-G family of [21], and a new Alpha power transformed family distribution 
by [22].  

Gompertz distribution has been extended by some authors in the literature through the 
addition of one or more other parameters. Some of such studies in the recent time include the 
modified beta Gompertz distribution by [23], the generalized Gompertz distribution by [24] which 
was based on an idea of [25], the cubic transmuted Gompertz distribution by [26], the odd 
generalized exponential-Gompertz distribution by [27], the transmuted Gompertz distribution by 
[28] and the odd lindley-Gompertz distribution by [29]. This article seeks to develop a distribution
that has the characterization of the Gompertz and Maxwell distributions in a unified framework.
The Maxwell distribution was introduced by [30], and it has the cdf given as

     


 
=  

 

2

2

2 3
( , ) , ,

2 2

u
G u a

a
 (3) 

with  − −= 
1

0
( , ) b s

u
u b s e ds denoting the lower incomplete gamma function. The associated pdf 

of (3) is 



−

=
2

2

222 ,
( , )

3

u

au e
g u a

a
 , 0u a    (4) 

where a is the scale parameter. 
Studies involving Maxwell generalized family of distributions have not been widely covered 

in the literature. However, [31] proposed Maxwell–Weibull distribution by applying the odd ratio 
link approach of [32]. Also, [33] developed Maxwell-Dagum distribution while [34] developed 
Maxwell-Lomax distribution. 

II. Methods
2.1.The Maxwell-Gompertz (Mgom) Distribution 

Consider a random variable X which follows the Gompertz distribution with the cumulative and 
probability density functions as defined in (1) and (2) respectively. Following [31] who proposed 
Maxwell family of distributions for continuous generator, we can present the cumulative density 
function of Maxwell-G family as  






−

−

= 
( , ) 2

1 ( , )

0

2

222
( ; , )

3

T x

T x
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 =    −  
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T x
a
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and the corresponding pdf is given as 
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 = −    − −−     
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3 2 2

2 ( , ) ( , ) 1 ( , )
(; , ) exp

1 ( , 1 ( ,2 (1 ( , )) 2

t x T x T x
f a

T x T xa T x a
,    (6) 

where  = ( , )b c  denotes the vector of parameters of the baseline Gompertz distribution. 
Substituting (1) in (5) gives the proposed cdf of the Maxwell-Gompertz (MGom) distributions 

as 
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and on substituting (1) and (2) in (6), the pdf can be obtained as  
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2.2 Linear Representation of MGom Density 

Consider the power series expansion of the exponential function 
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Putting (9) in (8) and dropping (a,b,c) in f (a,b,c) for simplicity, we have 
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Considering the generalized binomial expansion in power of positive real number  , 
expressed as 

   ( )
( ) ( )

( )




=

−  +
− =

 + −


0

1 1
1

! 1

k

k

k

u
x x

k u k
.         (11) 

By applying (11) to (10) we obtain 
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Thus, the pdf of the MGom distribution expressed as a linear representation is obtained by 
applying (9) to (12) which gives  
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The plots of the pdf and cdf of MGom distribution using different parameter values are 
displayed in Figures 1 and 2 respectively. From Figure 1, it is observed that the pdf of the MGom 
distribution is skewed to the right and therefore will be a good model for different kinds of 
positively skewed data sets. 

Figure 1: Plots of pdf and cdf of EGILx distribution 

2.3 Statistical Properties 

Some structural properties of the Maxwell-Gompertz distribution are discussed in this section. 

2.3.1 Moments 

 Suppose that X denote a continuous random variable, the rth non-central moment of X is given by 

( )


−

= ( )r rE X x f x dx .         (15) 

Taking f(x) as the pdf of the MGom distribution given in (14), the rth moments of X is given as 
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By inserting (17) into (16), we obtain 

( ) ( )



=

−
 

=   
 − − − − 


 ,
, 0 0

( )
1 1

r

r
l m

l m

yy dy
e

b m l b m l
E X  (18) 

 
( )( )

( )



=

+


−
+

−



=

 ,

1

, 0

1
1

l m

r

l m

b
r

m l
.           (19) 

which is the moments of MGom distribution. 
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2.3.2. Quantile function 

Quantile function of MGom can be derived by inverting the cdf given in (7). 
If we let  
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then by solving (20) for x we obtain 
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where u is a uniform random variable defined on interval ( )0,1 .

We can obtain the three quartiles Q1, Q2 and Q3 from (21) by using u = 0.25, 0.50 and 0.75 
respectively. 

2.3.3 Survival function 

The survival function for the MGom random variable  X~MGom ( , , )a b c from the cdf in (7) is 
obtained as   
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The plot of the survival function of MGom for different parameter values is displayed in 
Figure 3.    

Figure 2:  Plots of the survival function of MGom distribution 

As observed from the plots in Figure 2, the value of the survival function equals one at initial 
value of zero, it decreases as x increases and degenerates to zero as x becomes larger, which is a 
major characteristic of survival function. 
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2.3.4 Hazard function 

The hazard function can be obtained using the pdf in (8) and survival function in (22) as 
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The plots for the hazard function of MGom distribution for different parameter values are 
shown in Figure 4.      

Figure 3: Plot of the hazard function of MGom distribution 

From the plots in Figure 3, it is observed that the value of the hazard function increases as X 
increases, meaning that the conditional probability of failure within a given interval of time for a 
random variable following MGom distribution increases as life ages. 

2.3.5 Rényi entropy 

If X is a random variable with density function ( )f x  as defined in (8), then the Rényi entropy of 

the MGom distribution is defined as 
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The term ( )f x in (24) can be simplified as 
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By applying (9) to (25), we have 
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Using binomial expansion defined in (11), equation (26) becomes 
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which on simplification becomes 
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integral of (28) and substituting (17) gives 

( )  −

 

−

−


=

−=  , , , ,
, 0 0

( )bx
i j k l

m l
m

l m

f x d ex dx

 
( ) ( )

 



= =−

 

− −
= =

− −

 


, , , , , , , ,
, 0 , 0

0
1 1

i j k l m i j
y

k l m
l m l me dy
b m l b m l

.   (29) 

 Substituting (29) in (24), the Rényi entropy of the MGom distribution can be given as  

( )
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 =
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2.3.6 Order statistics 

Suppose that 1 2, ,..., nX X X is a random sample of size n from MGom distribution and (1) (2) ( ), ,..., nX X X

denote the corresponding order statistics of the sample, then the pdf of the thi order statistics is 
given as  

− −= −
− −

1 1!
( ) ( )[ ( )] [1 ( )]

( 1)!( 1)!
i nn

f x f x F x F x
i n

,    (31) 

where ( )F x  and ( )f x are defined in (7) and (8).  Using the definition of binomial expansion for the 

term −− 1[1 ( )]nF x , (31) can be expressed as 
−

+ −

=

− 
= −  

− −  
 1

0

!
( ) ( 1) ( ) ( )

( 1)!( 1)!

n i
k i k

i

n in
f x f x F x

ki n
.         (32) 

Consequently, using (7) and (8), the pdf of thi order statistics for the MGom distribution can 
be obtained as 

−
+ −

=

− 
= −  

− −  
 1

,
0

!
( 1) ( ) ( )

( 1)!( 1)!

n i
MGom k i k
i n MGom MGom

i

n in
f f x F x

ki n
.             (33) 

From (33), The pdf of the smallest and largest order statistics can be obtained by setting i = 1 
and i = n respectively. 
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2.3.7 Parameter estimation 

This section derives the maximum likelihood estimator of MGom distribution. Let 1 2, ,..., nX X X be a 

random sample of size n drawn from X~ MGom( ) with observed values 1 2, nx x x ,where 

 = ( , , )Ta b c is a 1p  vector of parameters to be estimated. The likelihood function is given as 

 = =

− − − −
− −

− − − −
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The log likelihood function ( ) is obtained as  
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Taking the partial derivatives of (35) with respect to a, b and c to obtain 
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Setting  =


0,
a


=


0

b
and  =


0

c
, and solving the resulting nonlinear system of equations, 

we can obtain the maximum likelihood estimates ˆˆ ˆ, ,a b c . However, these equations cannot be
solved analytically, thus statistical software can be used to solve them numerically using iterative 
methods. 

III. Results
3.1       Simulation study 

A simulation study is carried out here to investigate the performance of the maximum likelihood 
estimates of MGom distribution. The simulation is based on the quantile function defined in (21) 
for four sets of parameter vector  = ( , , )a b c . We generate 1000 replications of random samples of 
sizes 50, 100, 200 and 500. The four sets of the parameter’s values are assigned as follows:  
Set 1:  a = 0.5, b = 0.5, c = 0.5 
Set 2:  a = 1.0, b = 1.0, c = 1. 0 
Set 3:  a = 2.0, b = 2.0, c = 2.0 
Set 4:  a = 0.5, b = 2.0, c = 1.0.  

The maximum likelihood estimates = ˆˆ ˆ ˆ( , , )a b c  are determined based on each generated 
sample, by maximizing the log-likelihood function in (35). The average estimates, average bias, 
denoted Bias and Root mean square error (RMSE) are then determined where 
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=

 =  −
1000

1

1ˆ ˆBias( ) ( )
1000 j

j   and  
=

 
 =  − 

  


1/2
1000

2

1

1ˆ ˆRMSE( ) ( )
1000 j

j
. 

The results of the simulation study are displayed in Tables 1 and 2. 

Table 1: The parameter estimates (Est), Bias and RMSE. 

N 

 a = 0.5,  b = 0. 5, c = 0.5 a = 1.0, b =1. 0, c = 1.0 
Parameter   Est  Bias RMSE   Est   Bias  RMSE 
a 0.5374 0.0374 1.9486 1.2385 0.2385 2.1963 

50 b 0.5187 0.0187 1.5791 1.2189 0.2189 1.7649 
c 0.5265 0.0265 1.8411 1.3019 0.3019 1.9253 
a 0.5210 0.0210 1.2814 1.2273 0.2273 1.8189 

100 b 0.5146 0.0146 1.3166 1.1916 0.1916 1.4729 
c 0.5158 0.0158 1.5778 1.2342 0.2342 1.6071 
a 0.5113 0.0113 1.1519 1.1218 0.1218 1.4658 

200 b 0.5138 0.0138 1.1608 1.1126 0.1126 1.2075 
c 0.5114 0.0114 1.2764 1.1480 0.1480 1.4526 
a 0.5037 0.0037 0.7342 1.0490 0.0490 0.8903 

500 b 0.5069 0.0069 0.6969 1.0307 0.0307 0.5933 
c 0.5023 0.0023 0.7564 1.0657 0.0657 0.7505 

Table 2: The parameter estimates (Est), Bias and RMSE. 
 a = 2.0,  b = 2. 0, c = 2.0 a = 0.5,  b =1.0, c = 2.0 

N Parameter   Est Bias RMSE   Est  Bias RMSE 
a 2.2882 0.2882 2.2462 0.5164 0.0164 1.8385 

50 b 2.1828 0.1828 1.8214 1.2062 0.2062 2.0963 
c 2.3944 0.3944 2.0236 2.1642 0.1642 2.1462 
a 2.1901 0. 1901 2.1038 0.5099 0.0099 1.1713 

100 b 2.1643 0.1643 1.6454 1.1616 0.1616 1.7189 
c 2.2729 0.2729 1.9016 2.1001 0.1001 2.0038 
a 2.1421 0.1421 1.9643 0.5056 0.0056 1.0418 

200 b 2.1226 0.1226 1.4325 1.0823 0.0823 1.3658 
c 2.1933 0.1933 1.7031 2.0992 0.0992 1.8643 
a 2.0442 0.0442 0.8606 0.5021 0.0021 0.6241 

500 b 2.0320 0.0320 0.6542 1.0361 0.0361 0.7903 
c 2.0580 0.0580 0.7730 2.0542 0.0542 0.7606 

3.2       Data Application 

Application of the MGom distribution to two real life data sets are provided to show how it can be 
applied in practice in comparison to other distributions in the family. The proposed distribution is 
compared with four other Gompertz distribution extensions, namely: power Gompertz (powGom), 
exponentiated Gompertz (expGom), Marshall-Olkin Gompertz (M-OGom) and odd-logistic 
Gompertz (Odd-loGom). The goodness-of- fit criteria and tests used in the choice of the most 
appropriate distribution include Akaike's Information Criterion (AIC), Consistent Akaike's 
Information Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information 
Criterion (HQIC), as well as Anderson-Darling ( )*A  and Cramér-von Mises ( )*W  tests. These can

be computed as follows 
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, where = ( )i iz F x  and 'ix s are the ordered observations,

is the maximized log likelihood of the parameter vector  = ( , , )a b c , n is the number of 
observations, and p is the number of estimated parameters. 
The model with the smallest value of these measures is preferred to other models.  

Dataset 1: This dataset is taken from [35]. The data represent the time between failures of 30 
repairable items. 
1.43,0.11,0.71,0.77,2.63,1.49,3.46,2.46,0.59,0.74,1.23,0.94,4.36,0.40,1.74,4.73,2.23,0.45,0.70,1.06,1.46,0.30
,1.82,2.37,0.63,1.23,1.24,1.97,1.86,1.17. 
Dataset 2:  The dataset consists of 100 observations of breaking stress of carbon fibers (in Gba) 
given by [36] as given below: 
0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 
1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 
2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 
2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 
3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 
4.70, 4.90, 4.91, 5.08, 5.56. 

Dataset 1 

Figure 4:   Density and boxplots for dataset 1 
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Dataset 2 

Figure 5:   Density and boxplots for dataset 2 

Figure 6:  TTT Plots for datasets 1 and 2 

Table 3:   MLEs and goodness-of-fit-statistics for dataset 1.  

Model a B C AIC CAIC BIC HQIC A* W* 

MGom 0.5463 0.1282 1.2171 85.3735 85.6965 89.5771 86.7183 0.1290 0.0173 
PowGom 0.4806 0.0131 1.3732 86.9282 86.9513 91.6231 89.3729 0.3642 0.0532 
ExpGom 1.8355 0.2814 1.3073 86.2447 86.8677 91.1483 88.0894 0.3466 0.0471 
M-OGom 0.3422 0.3516 0.2785 88.6075 89.1306 92.3111 89.9522 0.4120 0.0868 
Odd-lGom 0.5555 0.0223 1.5030 86.0282 86.2965 90.2318 87.2183 0.2114 0.0279 

Table 4:   MLEs and goodness-of-fit-statistics for dataset 2 

Model a B C AIC CAIC BIC HQIC A* W* 

MGom 0.2628 0.1015 1.8936 278.528 278.779 286.344 281.691 0.3542 0.0563 
PowGom 0.1010 0.0561 1.8671 298.771 299.022 306.587 301.934 0.5600 0.0791 
ExpGom 0.3620 0.5327 0.7557 293.555 293.805 301.371 296.718 0.5109 0.0711 
M-OGom 0.0835 0.7208 0.2346 307.515 307.765 315.331 310.678 0.8052 0.1309 
Odd-lGom 0.1329 0.5124 1.6392 291.109 291.359 298.924 294.272 0.4564 0.0674 
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IV. Discussion

As observed from Tables 1 and 2, for all the different parameter settings, the average of the 
estimates for a, b, and c get closer to the true parameter values as the sample size increases. Also, 
the average Bias and the RMSE decrease as the sample size increases. These results validate the 
asymptotic properties of maximum likelihood estimators. 

As observed from the density plot as well as box plot depicted in Figures 4 and 5, it is clear 
that dataset 1 is heavily skewed to the right and, dataset 2 is moderately skewed to the right, hence 
the two datasets are could be good for a flexible model like MGom distribution. The total time on 
test (TTT) curve of the datasets are also plotted in Figure 6 to obtain the empirical behaviour of the 
hazard function. As observed, the shapes of the hazard function of both datasets are concave 
showing increasing hazards, and this could also be a good candidate for Gompertz distribution 
and any of its compound distributions. 

Tables 3 and 4 present the maximum likelihood estimates and the values of goodness-of-fit 
statistics for datasets 1 and 2 respectively. It was found that MGom distribution had the smallest 
values of all these measures ( *AIC,  CAIC,  BIC,  HQIC, A  and *W ) and therefore can be best used in
comparison to other Gompertz extensions for modelling real life situations of positively skewed 
data with increasing hazard rates. 
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Abstract 

Hidden markov model (HMM) is a statistical markov model in which the system being modeled and 

is assumed to be a markov process with unobservable (i.e., Hidden) states. In HMM, the state is not 

directly visible but the output depend on the state is visible. Each state has a probability distribution 

over the possible output tokens. The model is referred to as a hidden markov model even if these 

parameters are known exactly. The viterbi is one of the estimate underlying state path in hidden 

markov models. In this paper, viterbi path is derived using hidden markov model. 

Keywords: Hidden markov model, Viterbi algorithm, Hidden states, Observable 

states. 

I. Introduction

Viterbi algorithm is a dynamic programming algorithm to obtain the maximum posterior 

probability estimate of the most likely sequence of hidden states and viterbi path results in a 

sequence of observed events, especially in the context of hidden markov model. Antibiotics are 

medicines that fight against bacterial infections in people and animals. They work by killing the 

bacteria or by making it hard for the bacteria to grow and multiply. Antibiotics can be taken in 

different ways orally (by mouth) this could be, tablets, pills, capsules, or liquids. Another way to 

take is topically, this might be a cream, ointment, eye drops, or ear drops, through an injection 

intramuscular or intravenously, this is usually used for more serious infections. Maria Luz Gamiz 

[7] et al applied hidden markov models in reliability and maintenance. Janani Kalyanam [3]

discussed the probabilistic algorithm for list viterbi decoding. Viterbi A.J [10] derived error bounds

for convolution codes and asymptotically optimum decoding algorithm. Shinghal R[9] et al

described the modification of the viterbi algorithm formally, and a measure of its complexity is

derived. The modified algorithm uses heuristic to limit the search through a directed graph or

trellis. G Saritha[2] et al discussed the reliability for 4-modular and 5-modular redundancy system

by using Markov technique.
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II. Mathematical model

Assume there are M possible states to choose from, the state could be any one of {1,2,3,…,m}. The 

transition probability should be quantified from state i to state j as𝑎𝑖𝑗 . The transition could happen 

from any one of the M possible states to another one of the M possible states, there are in total 

M×M possibilities. They can be arranged in the following matrix representation, known as state 

transition matrix S. 
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Here 𝑎𝑖𝑗 ,i=1,2,3,….m, j=1,2,3,…m are probability values between 0 and 1, each row has to be 

summed to 1, and 𝑎𝑖𝑗  can be written as 

 iXjXPa kkij  1|

Therefore, 

ASS T

k

T

k 1 , i.e., matrix multiplication of previous state with transition,
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The emission matrix B is the probabilities of a state i in an observed value j. The observation has K 

possible values {0,1, 2,…,k}. 





















mkmm

k

k

bbb

bbb

bbb

B









21

22221

11211

Here ijb  represents the probability of state i to emit observable j and can be written as 

 iXjYPb kkij  |

Therefore, 
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Initial state probability distribution is denoted by 𝜋0and is given by

𝜋0 = [𝑃1𝑃2 … 𝑃𝑖 … 𝑃𝑚] 

The transition matrix is a regular matrix whose elements are probabilities of one state to another 

state. The probability between hidden states to observable states is called emission probability, the 

matrix representation of emission probabilities is called emission matrix. Here the rows represent 

hidden states and columns represent observable states. 
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In this paper the hidden state space S= {Nausea, Diarrhea, Stomach pain} and the observable state 

space B={Amoxicillin + Potassium Clavunate(ap),Cefixime(ce), Amoxicillin(am), Azithromycin (az), 

Ciprofloxacin(cp)}. 

The initial probability  25.0,3.0,45.00 

The transition probability matrix between hidden states is S= 

The emission matrix is B= 

II. Viterbi Algorithm

For the large number of possibilities forward and backward algorithm cannot be used to get the 

maximum probability. Viterbi algorithm is used to obtain the maximum posterior   probabilities of 

the most likely sequence of hidden states. The total possibilities are 𝑚 = 𝑛𝑡 = 35 = 243,  where n is 

the number of hidden states and t is  the number of observations. Out of these possibilities, let us 

consider the viterbi path 2 4 1 3 5. Then 

0875.0)()/2(),2(

045.0)()/2(),2(

099.0)()/2(),2(







SPSPSP

DPDPDP

NPNPNP

And the viterbi probabilities are 

,0875.0)3(,045.0)2(,099.0)1( 111  VVV

Similarly 

045.0),4(,05.0),4(,07.0)/()/4(),4(  SPDPNNPNPNP

03.0),4(,15.0),4(,028.0)/()/4(),4(  SPDPDNPNPNP

105.0),4(,05.0),4(,014.0)/()/4(),4(  SPDPSNPNPNP

 N  D  S 

N 0.5 0.2 0.3 

D 0.2 0.6 0.2 

S 0.1 0.2 0.7 

 

ap ce am az cp 

N 0.33 0.22 0.19 0.14 0.12 

D 0.35 0.15 0.15 0.25 0.1 

S 0.15 0.35 0.25 0.15 0.1 
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And the viterbi probabilities are 

,0091875.0)3(,00675.0)2(,00693.0

001225.0014.00875.0

,0012.0028.0045.0

,00693.007.0099.0

max)1( 222 






















 VVV

045.0),1(,07.0),1(,165.0)/()/1(),1(  SPDPNNPNPNP

03.0),1(,21.0),1(,066.0)/()/1(),1(  SPDPDNPNPNP

 105.0),1(,07.0),1(,033.0)/()/1(),1(  SPDPSNPNPNP

And the viterbi probabilities are 

,0009646875.0)3(,0014175.0)2(,00114345.0)1( 333  VVV

075.0),3(,03.0),3(,095.0)/()/3(),3(  SPDPNNPNPNP

05.0),3(,09.0),3(,038.0)/()/3(),3(  SPDPDNPNPNP

175.0),3(,03.0),3(,019.0)/()/3(),3(  SPDPSNPNPNP

And the viterbi probabilities are 

0001688203.0)3(,000127575.0)2(,0001086278.0)1( 444  VVV

03.0),5(,02.0),5(,06.0)/()/5(),5(  SPDPNNPNPNP

02.0),5(,06.0),5(,024.0)/()/5(),5(  SPDPDNPNPNP

07.0),5(,02.0),5(,012.0)/()/5(),5(  SPDPNNPNPNP

And the viterbi probabilities are 

,0000118174.0)3(,0000076545.0)2(,0000065177.0)1( 555  VVV

Now, 

Max{V1(1), V1(2), V1(3)}=0.099 

Max{V2(1), V2(2), V2(3)}=0.0091875 

Max{V3(1), V3(2), V3(3)}=0.0014175 

Max{V4(1), V4(2), V4(3)}=0.0001688203 

Max{V5(1), V5(2), V5(3)}=0.000011817 

The above probabilities are shown in the following diagram and it gives the final path 

 N    S    D  S  S 
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 Figure 1: The different states probabilites 

. 

START 

S N D 

N D S 

N D S 

N D S 

N D S 

END 

0.045 0.099

9999

9

0.0875 

0.045 

0.07 

0.05 

0.07 0.02 

0.21 

0.05 0.15 
0.028 0.03 0.014 

0.05 0.105 

0.165 
0.07 

0.045 0.066 

0.07 

0.03 
0.033 

0.105 

0.06 

0.03 0.095 

0.075 

0.09 

0.038 

0.175 
0.03 

0.019 

0.012 
0.06 

0.02 0.024 

0.02 

0.03 

RT&A, No 2 (78) 

 Volume 19, June, 2024 

513



T. Raja jithendar, M. Tirumala Devi and G. Saritha 

VITERBI PATH FOR 3 HIDDEN AND 5 OBSERVABLE STATES 

 Figure 2: viterbi probabilities of hidden states 

 Figure 3: Maximum probabilities of viterbi path 
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From figure 2, we observe that, for tablet Amoxicillin + Potassium Clavunate (apc), the probability 

for Nausea, Diarrhea, Stomach pain are maximum and the tablet Cefixime(cf), takes the second 

place and the reaming  are almost equal. 

From figure 3, we observe that the  Maximum probabilities of viterbi path for different antibiotic.  

Amoxicillin + Potassium Clavunate (ap) gets maximum and the second maximum probability is for 

Cefixime(ce), and the reaming  are almost equal. 

IV. Conclusion

In this paper, I used the technique of hidden markov model for  5 observable, 3 hidden states to find 

the viterbi path. By the path, we observe that the most common side effects of antibiotics is stomach 

pain. The maximum path for hidden markov model is Nausea, Stomach pain, diarrhea, Stomach 

pain, Stomach pain with maximum probability   0.0000118174. 
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Abstract 

In this study, a novel distribution called the Extended-Lomax distribution which generalizes the 

existing Lomax distribution and has increasing and decreasing shapes for the hazard rate function 

was proposed. Various structural properties of the new proposed distribution are derived including 

the survival function, hazard function, and rth moment. The probability density function (PDF) 

plots indicated that the distribution is skewed to the right. To estimate the parameters of the newly 

proposed distribution, two estimation methods which include the Maximum likelihood approach 

and Method of Moments was employed. The main objective of the proposed distribution’s 

construction was to increase the adaptability of the current Lomax distributions so that they could 

better suit reliability data sets than alternative candidate distributions with an equivalent number 

of parameters. This distribution should be able to eliminate the Heavy-tail of the current 

distribution and model both monotonic and non-monotonic patterns of failure rates. Solar 

photovoltaic system reliability data was used to evaluate the performance of the proposed Extended 

Lomax distribution as well as the estimation methods. 

 Keywords: Lomax distribution, Moments, Heavy-tail, monotonic, failure rates, reliability 

1. Introduction

Reliability analysis plays a crucial role in ensuring the dependable performance of industrial 

systems. The Lomax distribution, a popular probability distribution for modeling lifetime data and 

reliability, has been employed in various applications. However, to improve the accuracy of 

reliability assessments for a repairable industrial system, it is essential to extend the Lomax 

distribution and adapt it to the characteristics of the data collected from that system. The moments 

and inference for the order statistics and generalized order statistics are given in [1], [2,] and [3], 

respectively. Assuming all distributional assumptions are satisfied, the goodness of fit between the  

probability distribution and the provided data sets plays a critical role in the precision of 

parametric statistical inference and data set modeling. A lot of studies have gone into creating 
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distributions with more flexible and desirable features so that real-world data sets with different  

densities and failure rates can be adequately modeled. Currently, researchers are focused on 

creating new hybrid distributions that generalize existing ones, aiming to achieve better data 

modeling capabilities. These hybrid distributions are formed by combining a baseline distribution 

with a family distribution. Several authors have extensively reviewed different families of 

distributions Hamedani et al. [4]. The distributional properties, estimation and inference of the 

Lomax distribution are described in the literature as follows. In record value theory, some 

properties and moments for the Lomax distribution have been discussed in [5], [6], [7], [8]. 

Reliability analyses of solar photovoltaic system using Gumbel-Hougaard family copula 

distribution as studied by Maihulla et al. [16]. RAMD analyses was used by Anas and Yusuf [17] 

for analyzing the photovoltaic system. Performance prediction of small solar system for house 

used was studied by Anas and Yusuf [18]. 

      This distribution was constructed with the primary goal of improving the flexibility of 

classical distributions so that they can fit survival data sets better than other candidate 

distributions with an equal number of parameters. This distribution should be capable of modeling 

various types of failure rates, including monotonic and non-monotonic patterns. The Lomax 

distribution, also known as the Pareto distribution of the second kind with two parameters (α, λ), 

has attracted significant attention from theoretical and statistical researchers due to its applications 

in reliability and lifetime testing studies. Lomax first introduced and studied this distribution in 

1954, and it has since been utilized for analyzing business failures, as well as in economic, 

behavioral, scientific, and traffic modeling. The solar energy conversion into electricity is a very 

promising technique, knowing that the source is free, clean and abundant in several countries. 

However, the effect of the solar cell’s temperature on the photovoltaic panel performance and 

lifespan remains one of the major disadvantages of this technology. 

      The present research has been categorized into seven main sections. Introduction is the first 

section. Proposed extended Lomax distribution is presented in section 2. Section 3 comprised up of 

the estimation methods used in the research. Mathematical properties of the proposed distribution 

were presented in section 4. Application of the proposed distribution to the Solar photovoltaic 

system were presented in section 5 of the paper. Summary and conclusion were presented in 

section 6 and 7 respectively. 

1.1 Reliability theory 

Reliability theory is a branch of applied mathematics that focuses on the study of the reliability and 

failure of systems, components, and processes. It is concerned with understanding and quantifying 

the probability that a system or component will operate without failure over a specified period or 

under given conditions. Reliability theory is widely used in engineering, quality control, and risk 

analysis to design, evaluate, and improve the dependability of various systems and products. 

Reliability theory encompasses issues such as: 

1.1.1 Reliability engineering 

Reliability engineering deals with the interdisciplinary use of probability, statistics and stochastic 

modeling, combined with engineering insights into the design and the scientific understanding of 

the failure mechanism, to study the various aspects of reliability. Frequently, it is desirable to 

understand and be able to predict the overall system failure characteristics for any given 

configuration. 
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1.1.2 Reliability modeling 

Reliability modeling deals with model building to obtain solutions to problems in predicting, 

estimating and optimizing the survival or performance of an unreliable system, the impact of the 

unreliability, and actions to mitigate this impact [19][20]. 

1.1.3 Reliability management 

Reliability management deals with the various management issues in the context of managing the 

design, manufacture and/or operation of reliable products and systems. The emphasis is on the 

business viewpoint, as unreliability has consequences in cost; time wasted, and in certain cases the 

welfare or an individual or the security of a nation. 

1.2 Standard Lomax distribution 

The Lomax distribution, also known as the Pareto Type II distribution or the shifted Pareto 

distribution, is a probability distribution used in statistics and probability theory. It is often used to 

model heavy-tailed or long-tailed data and is closely related to the Pareto distribution. The Lomax 

distribution is defined by the probability density function (PDF)[9][21]: 

𝑓(𝑥) =
𝜆𝜅

(1+𝜆𝜅)(𝜅+1)   (1) 

The cumulative distribution function associated with the (1) above is; 

𝐹(𝑥) = 1 − (1 + 𝜆𝜅)−𝜅       (2) 

Survival function (Reliability) as: 

𝑅(𝑥) = (1 + 𝜆𝜅)−𝜅       (3) 

Hazard rate function corresponding to (3) will be; 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
=

𝜆𝜅

(1+𝜆𝜅)
 (4) 

One of the key characteristics of the Lomax distribution is its heavy tail, which means that it has a 

higher probability of extreme values compared to many other probability distributions. The tail 

index λ controls the heaviness of the tail. When 𝜆 is small, the tail is heavier, indicating that 

extreme values are more likely. An important aspect of the Lomax distribution is how the values of 

the shape and the scale parameter affect such distribution characteristics as the shape of the PDF 

curve, the reliability, and the failure rate. 

2. The Proposed Extended Lomax Distribution

 Consider a continuous distribution G with density g and the Weibull cdf 

𝐹(𝑥) = 1 − 𝑒−𝛼𝑥𝛽
 (5) 

 With positive parameters 𝛼 and 𝜷. Based on this density, by replacing x with 
𝐺(𝑥)

𝐺(𝑥)̅̅ ̅̅ ̅̅ ̅
 for �̅�(𝑥) = 1 − 𝐺(𝑥) Silver et al. [15] define the cdf family by: 

 𝐹(𝑥; 𝛼, 𝛽, 𝜁) = ∫ 𝛼𝛽𝑡𝛽−1𝑒−𝛼𝑡𝛽
𝑑𝑡 = 1 − exp [−𝛼[

𝐺(𝑥;𝜁)

�̅�(𝑥;𝜁)
]𝛽]

𝐺(𝑥)

𝐺(𝑥)̅̅ ̅̅ ̅̅ ̅

0
  (6) 

  Where 𝐺(𝑥; 𝜁) is a baseline cdf, which depends on a parameter vector 𝜻. The family pdf is reduced 

to: 

(𝑥; 𝛼, 𝛽, 𝜁) = 𝛼𝛽𝑔(𝑥; 𝜁)
𝐺(𝑥;𝜁)𝛽−1

�̅�(𝑥;𝜁)𝛽+1 exp [−𝛼[
𝐺(𝑥;𝜁)

�̅�(𝑥;𝜁)
]𝛽]  (7) 

 The hazard rate function is given by: 
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ℎ(𝑥; 𝛼, 𝛽, 𝜁) =
𝛼𝛽𝑔(𝑥;𝜁)𝐺(𝑥;𝜁)𝛽−1

�̅�(𝑥;𝜁)𝛽+1  (8) 

  Inserting (4) into (6) we have; 

𝐹(𝑥) = 1 − exp [−𝛼 [
1−(1+𝜆𝜅)−𝜅

(1+𝜆𝜅)−𝜅
]

𝛽

]    (9) 

  From the above equation, we’ve 

  𝐹(𝑥) = 1 − exp [−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏       (10) 

 From the above CDF we’ve 

  𝑅(𝑥) = exp [−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏       (11) 

 To evaluate for 𝑓(𝑥) i.e probability density function 

𝑓(𝑥) =
−𝑑𝑅(𝑥)

𝑑𝑡
 (12) 

  We need to find the derivative of 𝑅(𝑡) with respect to t. Given expression for 𝑅(𝑡) and 𝑅(𝑥) =

exp [−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏 using chain rule: 
𝑑𝑅(𝑥)

𝑑𝑡
= exp [−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏 𝑑

𝑑𝑥
(1 − (1 + 𝜆𝜅)𝜅)  (13) 

We next find 
𝑑

𝑑𝑥
(1 − (1 + 𝜆𝜅)𝜅) using chain rule again: 

𝑑

𝑑𝑥
(1 − (1 + 𝜆𝜅)𝜅) = −𝑎𝑏(1 − (1 + 𝜆𝜅)𝜅)𝑏−1

𝑑

𝑑𝑥
(1 + 𝜆𝜅)𝜅 

    Simplifying the equation we’ve 

 = 𝑎𝑏𝜅𝜆((1 + 𝜆𝜅)𝜅)𝑏−1(1 + 𝜆𝜅)𝜅−1                                                                                                                (14) 

  Therefore, the probability density function for the newly generated extended Lomax distribution is: 

   𝑓(𝑥) = exp [−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏[𝑎𝑏𝜅𝜆((1 + 𝜆𝜅)𝜅)𝑏−1(1 + 𝜆𝜅)𝜅−1]                                                        (15) 

The Hazard rate function h(x) represents the instantaneous failure rate at time x. It is defined as the 

conditional probability that a system or component fails at time x given that it has survived up to 

that time. For continuous distribution, the hazard rate can be calculated as the ratio of the PDF to 

the survival function. 

ℎ(𝑥) =
𝑓(𝑥)

𝑅(𝑥)
 (16) 

To find the hazard rate function, we need to differentiate the negative logarithm of the reliability 

function with respect to time (x) 

−𝑙𝑛𝑅(𝑥) = −ln [exp[−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏] = [𝑎[(1 + 𝜆𝜅)𝜅]𝑏]  (17) 

Differentiating the above equation with respect to x using chain rule;
𝑑

𝑑𝑥
[𝑎[(1 + 𝜆𝜅)𝜅]𝑏] = [𝑎𝑏𝜅𝜆((1 + 𝜆𝜅)𝜅)𝑏−1(1 + 𝜆𝜅)𝜅−1]   (18) 

Therefore, the hazard rate function for the newly generated extended Lomax distribution 

corresponding to (10) and (15); 

ℎ(𝑥) = 𝑎𝑏𝜅𝜆((1 + 𝜆𝜅)𝜅)𝑏−1(1 + 𝜆𝜅)𝜅−1  (19) 

3. Parameter estimation

The choice of parameter estimation method depends on the nature of the data, the statistical 

model, the sample size, and the specific goals of the analysis. Each method has its own strengths  

and weaknesses, we consider these factors when selecting an appropriate technique. 

3.1.1 Maximum Likelihood Estimation (MLE) 

MLE is a widely used method for parameter estimation. It seeks to find the values of parameters 

that maximize the likelihood function, which measures how well the observed data fit the model. 

MLE is often used for a wide range of statistical models and has desirable properties, such as 

asymptotic efficiency. 
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𝐿(𝑎, 𝑏, 𝜅, 𝜆; 𝑡) ∝ [𝑎𝑏𝜅𝜆] + 𝑛2𝑙𝑛𝑎(𝑏 + 1) ∑ ln(1 + 𝜆𝑥𝑗) +𝑛
𝑗=1

∑
ln(1 − (1 + 𝜆𝑥)𝑘) + 𝑛2(𝜅 − 1) ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1(1 + 𝜆𝑥)𝜅−1 +

∑ ln(1 − (1 + 𝜆𝑥)𝑘) + 𝑛2(𝜅 − 1) ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1(1 + 𝜆𝑥)𝜅−1𝑛
𝑗=𝑛1+1

𝑛
𝑗=1  (20) 

Based on the above equation, by solving the likelihood equations with respect to 𝑎, 𝑏, 𝜅, 𝜆 after 

equating them to zero, the MLEs (�̅�, �̅�, �̅�, �̅�) of 𝑎, 𝑏, 𝜅, 𝜆 can be obtained. This procedure can be done

as follows: 
𝜕𝐿

𝜕𝑎
=

𝑛2

𝑎
− 𝑛2 ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1(1 + 𝜆𝑥)𝜅−1) + ∑ ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1+(1 + 𝜆𝑥)𝜅−1𝑛

𝑗=𝑛1+1  

 (21) 
𝜕𝐿

𝜕𝑏
=

𝑛

𝑏
+ (𝑏 − 1)

(1+𝜆𝑥)−𝜅−1−(1+𝜆𝑥)−1

1−(1+𝜆𝑥)−1
∑

𝑥𝑗

1+𝜆𝑥𝑗

𝑛
𝑗=1 (𝜅 + 1 −

𝜅

(1+𝜆𝑥𝑗)
𝜅

−1
) + 

𝜅(𝑎 − 1) ∑ 𝑥𝑗
𝑛
𝑗=𝑛1

(1+𝜆𝑥)−𝜅−1−(1+𝜆𝑥)−1

1−(1+𝜆𝑥)−1  (22) 

𝜕𝐿

𝜕𝜅
=

𝑛

𝑘
+ (1 − 𝑏) ln(1 + 𝜆𝑡)

(1+𝜆𝑡)−𝜅−1

1−(1+𝜆𝑥)−𝜅
∑ ln(1 + 𝜆𝑡𝑗)𝑛

𝑗=1 (1 −
1

(1+𝜆𝑡𝑗)
𝜅

−1
) + (𝑏 − 1) ∑ ln(1 +𝑛

𝑗=𝑛1+1

𝜆𝑡𝑗)
(1+𝜆𝑡𝑗)

−𝜅
−1

1−(1+𝜆𝑡𝑗)
−𝜅  (23) 

𝜕𝐿

𝜕𝜆
=

𝑛

𝜆
− 𝑛(𝑏 − 1) ln(𝑎𝑏𝜅) ((1 + 𝜆𝑥)𝜅)𝑏−1 + (𝜅 − 1) ∑ ln(𝑎𝑏𝜅(1 + 𝜆𝑡)𝑏)𝑛

𝑗=𝑛1
+ (1 −

1

(1+𝜆𝑡𝑗)
𝜅−1

−1
)     (24) 

From equation (21), the following equation can be used to calculate �̅� as a function of 𝑏, 𝜅, 𝜆. 
𝑑

𝑑𝑎
(

𝑛2

𝑎
− 𝑛2 ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1(1 + 𝜆𝑥)𝜅−1) + ∑ ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1𝑛

𝑗=𝑛1+1 = 0  (25)  

To simplify this, we’ll first find the derivatives of the individual terms with respect to a, and then 

set the expression equal to zero. 
𝑑

𝑑𝑎
(− 𝑛2 ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1(1 + 𝜆𝑥)𝜅−1) = −𝑛2

𝑑

𝑑𝑎
(ln(𝑎𝑏𝜅𝜆) ((1 + 𝜆𝑥)𝜅)𝑏−1(1 + 𝜆𝑥)𝜅−1) = 0 (26) 

Now, differentiating the natural logarithm term. Differentiating the expression inside the 

logarithm with respect to  

𝑑

𝑑𝑎
(ln(𝑎𝑏𝜅𝜆) (1 + 𝜆𝑥)𝑏−1) + (1 + 𝜆𝑥)𝜅−1) =

1

((𝑎𝑏𝜅𝜆(1+𝜆𝑥)𝑏−1+(1+𝜆𝑥)𝜅−1)

𝑑

𝑑𝑎
[((𝑎𝑏𝜅𝜆(1 + 𝜆𝑥)𝑏−1+(1 +

𝜆𝑡)𝜅−1)]  (27) 

 Differentiating the expression inside the logarithm. Summing up the individual derivatives: 

�̅�(𝑏𝜅𝜆) =
𝑛2

𝜅2 − 𝑛2
[(𝑏𝜅𝜆(1+𝜆𝑥)𝑏−1+(1+𝜆𝑡)𝜅−1]

((𝑎𝑏𝜅𝜆(1+𝜆𝑥)𝑏−1+(1+𝜆𝑡)𝜅−1)
+ ∑

[(𝑎𝑏𝜅𝜆(1+𝜆𝑥)𝑏−1]

((𝑎𝑏𝜅𝜆(1+𝜆𝑥)𝑏−1+(1+𝜆𝑡)𝜅−1)
= 0𝑛

𝑗=𝑛1+1  (28) 

From equation (28), the above equation can be used to calculate �̅� as a function of 𝑏, 𝜅 𝑎𝑛𝑑 𝜆.By 

substituting �̅�(𝑏𝜅𝜆) in (22), (23), and (24) the MLE of 𝑏𝜅𝜆 can be produced by solving the likelihood 

equations
𝜕𝐿

𝜕𝑏
= 0, 

𝜕𝐿

𝜕𝜅
= 0, and 

𝜕𝐿

𝜕𝜆
= 0 with regard to 𝑏, 𝜅 𝑎𝑛𝑑 𝜆 by utilizing Newton-rampson 

numerical iteration method. The MLEs of the reliability function, and Hazard rate function at 𝑡0, 

denoted by �̅�(𝑡0) and ℎ̅(𝑡0) are obtained by substituting (�̅�, �̅�, �̅�, �̅�) in equations (11) and (19)

respectively. 

4. Mathematical Properties

The major mathematical properties of the proposed extended Lomax distribution are derived and 

presented in this section. 

4.1 Moment 

In the method of moments, we set the sample moments equal to the corresponding population 

moments. This approach provides estimates for the parameters based on simple algebraic 

equations. Some of the most important features and characteristics of a distribution can be studied 

through moments. (e.g tendency, dispersion, and skewness) [10]. 

𝜇𝑟 = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

0
𝑓(𝑥)𝑑𝑥 (29)
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𝜇𝑟 = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

0
exp [−𝑎[1 − (1 + 𝜆𝜅)𝜅]𝑏[𝑎𝑏𝜅𝜆((1 + 𝜆𝜅)𝜅)𝑏−1(1 + 𝜆𝜅)𝜅−1]𝑑𝑥  (30) 

In any statistical analysis, especially in the field of applied statistics, it is crucial to keep in mind the 

importance of moments. Moments can be used to examine key distributional properties like 

kurtosis, skewness, dispersion, and tendency, among others. Assume that M is a random variable 

in a Lomax distribution with parameters 𝜿 and 𝜆, in that case, the 𝑟𝑡ℎ moment of M is given as: (𝜎 

𝐵′) 𝐵 (𝑟 + 1, 𝜎 − 𝑟) 

𝐸(𝑀′) = (
𝜆

𝜅
)𝜅(𝑟 + 1, 𝜆 − 𝑟)                                                                                                                          (31)

Also, suppose X is random variable that assumes the proposed extended Lomax distribution. From 

equation (30), the 𝑟𝑡ℎ  moment of X is therefore obtained as:  

𝐸(𝑋𝑟) = 𝑎𝑏𝜅𝜆((1 + 𝜆𝜅)𝜅)𝑏−1 𝑎𝑏𝜅𝜆(𝑖+1)

𝜅𝑟 𝜅(𝑟 + 1, 𝑎𝑏𝜅𝜆(𝑖 + 1) − 𝑟)                                                            (32)

The mean is obtained my equating  𝑟 = 1 in equation (32) 

5. Application to Solar Photovoltaic System

A statistical model called the Extended Lomax distribution is used in many different domains, 

such as survival analysis, reliability analysis, and modeling of extreme occurrences. It is an 

effective instrument for comprehending and forecasting the performance and dependability of 

solar photovoltaic (PV) systems over time. 

      The Extended Lomax distribution was used to simulate the possibility of extreme events in the 

context of solar PV systems over 360 days, such as abrupt declines in efficiency, component 

failures, or unforeseen changes in energy output. Engineers and academics can estimate the chance 

of future occurrences and obtain insights into the probability distribution of solar PV system 

performance by fitting historical data to the Extended Lomax distribution. The efficiency of the 

proposed life distribution is demonstrated in this section using real-life data sets. The data set 

contains information about the reliability of Solar photovoltaic system by times (in days) [11]. The 

data set consists of twenty (12) observations as presented in Table 1 below: 

 Table 1: Computation of Reliability for different values of time 

Time (In days) Reliability 

30 

60 

90 

120 

150 

180 

210 

240 

270 

300 

330 

360 

0.99912 

0.94321 

0.89824 

0.83345 

0.74561 

0.71984 

0.70125 

0.66257 

0.62152 

0.59452 

0.54529 

0.41984 
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Table 2: The MLEs and Information Criteria of the models based on the solar data set 

Models �̅� �̅� �̅� �̅� 

Proposed model 13.237 8.648 9.183 5.984 

Mohamed and 

Essam [12] 

3.978 2.967 4.826 5.034 

Abdelaziz 

Alsubie 2021 

[13] 

6.284 6.936 6.920 3.961 

F. Hashem et al.

[14] 

0.284 - 4.783 0.947 

 Figure 1: PDF of the Proposed Extended Distribution 

Figure 2: Reliability Function of the Proposed Extended Distribution 
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Figure 3: CDF of the Extended Lomax Distribution 

6. Summary

In this study, we introduce a three-parameter Extended Lomax distribution by compounding the 

Weibull-G Family of Distributions and the Lomax distributions. The shape of the hazard function 

of the new compounding distribution can be monotonically decreasing or upside-down bathtub. 

Some mathematical and statistical properties of the new model are studied. We estimate the model 

parameters by the Maximum likelihood (MLE) approach, and Method of Moments. We present a 

simulation study to illustrate the performance of estimators. The flexibility and potentiality of the 

proposed model are illustrated by means of a real data set (from the reliability analysis of a 

repairable solar photovoltaic system). We hope that the Extended Lomax distribution may attract a 

wider range of applications in areas such as engineering, survival and lifetime data, economics, 

meteorology, hydrology, and others. PDF, Reliability plot and cumulative distribution function 

plots for the proposed extended Lomax distribution were displayed in Figure 1, 2, and 3 

respectively. 

7. Conclusion

By addressing the limitations of the standard Lomax distribution and extending it to fit the specific 

data from an industrial system, this research aims to enhance the reliability analysis and support 

better decision-making in the context of the industrial system’s operation and maintenance. The 

proposed distribution was compared to some existing distributions, it was discovered that the 

proposed life distribution is right-skewed and that changing the parameters’ values results in 

different shapes. The proposed Extended Lomax distribution is more efficient than the competing 

distribution’s pdfs and reliability for different values of shape parameters from a real-life data set, 

as shown in Figures 1. 
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Abstract 

One of the lifetime distributions is the Iwueze distribution, which is constructed by combining the 
exponential and gamma distributions. In this paper, confidence intervals (CIs) are proposed for the 
parameter of the Iwueze distribution using the likelihood-based, Wald-type, bootstrap-t, and bias-
corrected and accelerated (BCa) bootstrap methods. We evaluated the performance of the proposed 
CI methods through Monte Carlo simulation in terms of their coverage probability (CP) and 
average length (AL) in various scenarios. Furthermore, we had also derived the explicit formula for 
the Wald-type CI, which is straightforward for computation. The simulation results showed that the 
likelihood-based and Wald-type CIs returned satisfactory results according to coverage probabilities, 
even for the setting of small sample sizes. On the other hand, both the bootstrap-t and BCa 
bootstrap CIs yield CPs lower than the nominal confidence level when sample sizes are small. 
However, as the sample sizes increase, the CP of all CIs tend to approach the nominal confidence 
level. The parameter values also have a minor influence on the CP of all CIs when the sample size is 
fixed. Moreover, the AL of all CIs decreases as the sample size increases. The Wald-type and 
likelihood-based CIs have very similar ALs for all parameter values. In general, the bootstrap-t CI 
tends to yield the shortest interval. The effectiveness of all CIs was demonstrated by applying them 
to medical and engineering data, yielding results consistent with those of the simulation study. 

Keywords: lifetime distribution, interval estimation, likelihood, Wald, bootstrap 

I. Introduction

In reliability and lifetime data analysis, lifetime distributions are statistical distributions that can be 
used to describe the behavioral structure of lifetime data. Lifetime distributions are utilized to 
represent the duration before the occurrence of a significant event, such as failure or incidence [1]. 
The field of lifetime data analysis has had substantial growth and progress in terms of technique, 
theory, and application. The distribution theory focuses on the capacity to easily handle and adapt 
to modeling lifespan data. While a tractable probability distribution could be useful for replicating 
random samples, its practical value to businesses lies in its flexibility [2]. This suggests that while 
tractable distributions are desirable, more complex ones must be created to support relevant 
applications.  
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Many lifetime distributions have been proposed in statistics in the past few decades. 
Nevertheless, these distributions frequently do not offer a precise match because of either their 
basic distributional properties or the structure of the lifetime data. Several distribution theory 
experts are trying to suggest a new lifetime distribution consistent with the stochastic nature of 
lifespan data. Before 1958, the exponential distribution was the only lifetime distribution accessible 
for the analysis and modeling of lifetime data. The Lindley distribution was presented by Lindley 
[3] as an alternative lifespan distribution. Based on their comprehensive analysis of the statistical
properties and practical uses, Ghitanty et al. [4] determined that the Lindley distribution offers a
much superior match compared to the exponential distribution. Shanker et al. [5] observed that
when analyzing exponential and Lindley distributions, there is a significant competition between
these two distributions. However, they also identified specific datasets in which neither
distribution provided a sufficient fit. Shanker [6, 7] proposed two new one-parameter lifespan
distributions, named Shanker distribution and Akash distribution. These distributions
demonstrated better fit to data than both exponential and Lindley distributions. Furthermore, the
Lindley, exponential, Shanker, and Akash distributions were thoroughly examined by Shanker
and Fesshaye [8]. They discovered that while these distributions work well for most datasets, there
are some that still do not provide the best fit. In addition, Shanker [9] introduced the Sujatha
distribution, which has a considerably better fit when compared to the exponential, Lindley,
Shanker, and Akash distributions. Shanker [10] proposed the Garima distribution, a single-
parameter lifespan distribution, as a suitable statistical model for data collected from the
behavioral sciences. However, this distribution likewise fails to provide a satisfactory match for
several actual lifespan datasets.

The current paper is to identify a distribution that can accurately depict the diversity within 
the data sets while remaining flexible and tractable. When a distribution does not provide a 
sufficient match, many researchers choose to transform the dataset to meet the assumptions of the 
distribution. Nevertheless, this approach is unsuitable as it leads to the loss of the dataset’s 
inherent characteristics. Some researchers prefer to adjust the distribution by incorporating extra 
shape or scale parameters to better fit with the characteristics of the data set. However, in cases 
where the current distributions are unable to generate a suitable fit, it is more advantageous to 
seek out an alternative distribution that can. This approach involves refraining from transforming 
the original dataset or modifying the distribution to fit the dataset. Recently, Elechi et al. [11] 
proposed the Iwueze distribution, a five-component mixture of exponential and gamma 
distributions with a constant scale parameter, and different shape parameters 2, 3, 4, and 5. This 
distribution has superior efficiency in comparison to other one-parameter distributions. The 
flexibility of the Iwueze distribution is demonstrated through its application to relief times of 
patients receiving an analgesic.  

In the review literature, there is no research study for estimating the confidence intervals (CIs) 
for the parameter of the Iwueze distribution. Therefore, the objective of the paper is to propose the 
CIs for the parameter of the Iwueze distribution in four methods, namely, likelihood-based CI, 
Wald-type CI, bootstrap-t interval, and bias-corrected and accelerated (BCa) bootstrap CI. We 
conduct a simulation study and analyze real data sets to compare the performance of CIs for the 
parameter of the Iwueze distribution. 

The following is the outline of the paper. In Section 2, the Iwueze distribution are explained. 
Section 3 involves the computation of the likelihood-based, Wald-type, bootstrap-t, and BCa 
bootstrap CIs for the parameter of the Iwueze distribution. Section 4 evaluates the effectiveness of 
the proposed CIs by utilizing Monte Carlo simulation in various circumstances. Section 5 contains 
two numerical examples. Ultimately, the final section of the paper contains the discussion and 
conclusions. 
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II. The Iwueze Distribution

The Iwueze distribution is obtained by combining the exponential and gamma distributions using 
appropriate mixing probabilities. The gamma distribution has a fixed scale parameter θ  and four 
different shape parameters:  2, 3, 4, and 5. Let X  be a random variable which follow the Iwueze 
distribution with parameter .θ  The probability density function (pdf) of the Iwueze distribution 
can be obtained by utilizing a mixture model with five component mixing probabilities. The pdf is 
given by 

5
2 2

4 3 2( ; ) (1 ) , 0, 0.
2 6 12 24

xf x x x e xθθθ θ
θ θ θ θ

−= + + > >
+ + + +

Figure 1 shows the plots of the Iwueze distribution pdf with several parameter values .θ  The 
mean (or the first  central  moment) and variance (or the second central moment) of X  are given 
by 

( )
( )

4 3 2

4 3 2

2 2 3 3 4(2 5)
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2 6 12 24
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Figure 1: Plots of the pdf of the Iwueze distribution for θ  = 0.2, 0.5, 1, and 2

The log-likelihood function log ( | ),iL xθ  is maximized to obtain the point estimator of .θ  
Therefore, the maximum likelihood (ML) estimator for θ  of the Iwueze distribution is derived by 
the following processes: 

24 3 2 2

1 1
log ( | ) 5 log( ) log( 2 6 12 24) log 1

n n

i i i i
i i

L x n n x x xθ θ θ θ θ θ θ
θ θ = =
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∑ ∑

( )3 2

4 3 2
1

5 4 6 12 12 .
2 6 12 24
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i
i

n n xθ θ θ
θ θ θ θ θ =

+ + +
= − −

+ + + + ∑
The subsequent equation is a nonlinear equation obtained through the process of solving the 
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equation 
set

log ( ; ) 0iL x θ
θ
∂

=
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 for ,θ  

( )3 2 set
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− − =
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Due to the absence of a closed-form solution for the ML estimator of parameter ,θ  numerical 
iteration methods are employed to solve the associated non-linear equation [12]. In this study, the 
maxLik package [13] was utilized to perform ML estimation using the Newton-Raphson technique 
in the RStudio program [14]. 

III. Confidence Intervals for the Parameter of the Iwueze Distribution

I. Likelihood-based Confidence Interval

The likelihood function for the Iwueze distribution, ( | ),L xθ  is a function of the parameter ,θ
given the observed data .x  It encapsulates the probability of observing the given data under 

various hypothetical values of .θ  After solving 
set

(log 0,)L xθ
θ
∂

=
∂

∣  the ML estimator of ,θ  ˆ ,MLθ  will 

be obtained, and this is the most “likely” estimate given the observed data. 
The likelihood-based CI is then constructed around this ML estimator. The process begins by 

defining a likelihood ratio ( )λ θ  as ˆ( ) ( | ) ( | ).L x L xλ θ θ θ=  Under regular conditions, as per the
Wilks’  theorem, 2log ( )λ θ−  follows approximately a chi-square distribution with degrees of 
freedom equal to the number of parameters being estimated. Therefore, the CI for θ  at (1 )100%α−  
confidence level is given by 

2
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where 2
1 ,1αχ −  is the critical value from the chi-square distribution with 1 degree of freedom [15,16]. 

In the specific case of the Iwueze distribution, the likelihood ratio test becomes more intricate due 
to the composite nature of the distribution. The gamma component, characterized by a scale 
parameter and shape parameters, adds layers of complexity to the likelihood function, 
necessitating advanced computational techniques, like numerical optimization, for effective ML 
estimator calculation and CI construction. 

Brent’s method, a root-finding algorithm often used in optimization, is used for finding the 
maximum MLE in the Iwueze distribution. It is an advanced technique that combines the bisection 
method, the secant method, and inverse quadratic interpolation [17]. Given that 
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Brent’s method seeks θ  such that ( ) 0.f θ =  The method combines bracketing methods and open 
methods.  Initially, if ( ) ( ) 0f a f b <  it starts with the bisection method to ensure reliability.  Then, 
depending on the function’s behavior, it switches between the secant method (linear interpolation): 
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and inverse quadratic interpolation (quadratic polynomial interpolation): 
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The method iteratively refines the estimate of the root, switching methods based on which 
provides a more accurate or stable estimate [18,19]. Figure 2 shows the plot 2log ( )λ θ−  versus θ  

(solid blue line), 2
0.95,1χ   (dashed red line), and 95% likelihood-based CI (solid green line) when a 

random sample of size 20 sampled from the Iwueze distribution with 1.=θ  

Figure 2: The plot of 2log ( )λ θ−  versus θ  

Because the cut-point for constructing a likelihood-based CI often involves the use of an 
asymptotic distribution like the chi-square distribution, this reliance is grounded in Wilks theorem, 
the effectiveness of the likelihood-based CI in approximating the true parameter values does rely 
on the assumption that the sample size is sufficiently large for the asymptotic approximation to be 
valid.  However, likelihood-based CI does not always rely on large sample sizes.  It can provide 
accurate interval estimates even in cases with smaller sample sizes, assuming the likelihood 
function behaves well.  

II. Wald-type Confidence Interval

The Wald-type CI is a fundamental statistical tool used for estimating the uncertainty associated 
with a parameter estimate in a probability distribution. Central to this method is the ML estimate 
of the parameter, denoted as θ̂  for the Iwueze distribution. The foundation of the Wald-type CI 
lies in the quadratic approximation of the log-likelihood function, ( | ),L xθ  which can be expanded 

using a Taylor series around ˆ.θ  The Wald statistic approximates the log-likelihood ratio when 
expanded to the second-order term around the ML estimate, with the first-order term equal to zero 
at the ML estimate as follows: 

( ) ( )
22
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where I θ( )ˆ is the estimated observed Fisher information. The Wald statistic can thus serve as an  
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approximation to the LRT statistic, particularly when the sample size is large enough for the 
asymptotic properties to hold, leading to a quadratic approximation of the log-likelihood ratio [20-
22]. 

For the Iwueze distribution, the observed Fisher information is as follows: 
( )3 2
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Thus, the estimated Fisher information is as follows: 
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and the Wald-type CI for θ  at (1 )100%α−  confidence level is given by 

2

1

1
ˆ ,ˆ( )Iz αθ θ−

−
±

where 1 ( /2)z α−  denotes the ( )th1 ( / 2)α−  quantile of the standard normal distribution. 

III. Bootstrap-t Confidence Interval

The bootstrap-t CI emerges as an advanced technique designed to calibrate the CI for an estimated 
parameter by incorporating the inherent variability of the estimate’s standard error. This method 
extends the bootstrap percentile method by factoring in the fluctuation of the standard error, 
thereby enhancing the accuracy and reliability of the interval, particularly in small sample contexts 
or when dealing with estimators that deviate from normality [23-25]. The algorithmic foundation 
of the bootstrap-t CI can be delineated in the following steps: 

1) Initialization: Commence with a sample 1, , nX X  from which the parameter estimate θ̂  

and its standard error ˆ. .( ).S E θ  
2) Bootstrap Resampling: Generate B = 1000 bootstrap samples, * *

1 , , ,nX X  by random 
sampling with replacement from the original dataset. 

3) Statistical Computation: For each bootstrap sample, calculate the bootstrap replicate of the
estimator, denoted as *ˆ ,θ  and its associated standard error *ˆ. .( ).S E θ  

4) Studentization: Construct the bootstrap-t statistic for each replicate as
*

* *

1 *

ˆ ˆˆ ˆ( , , ) .
ˆ( )

t X
I

θ θθ θ
θ−

−
=  

This studentized statistic adjusts for the variability in the standard error of the bootstrap estimate. 
5) Repeating this process B = 1000 times yields an empirical distribution of the estimator;

from which we can estimate the distribution of the pivotal quantity. 
6) Empirical Distribution:  Formulate the empirical distribution of the bootstrap-t statistics

from the ensemble of B  replicates. 
7)  Quantile Extraction: Ascertain the critical values,  ( )

*
/2t α  and ( )

*
1 ( /2) ,t α−  which correspond to 

the / 2α  and 1 ( / 2)α−  quantiles of the empirical bootstrap-t distribution, 
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8) Interval Construction: The bootstrap-t CI is then articulated as:
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IV. Bias-Corrected and Accelerated (BCa) Bootstrap Confidence Interval

The BCa bootstrap CI is a technique used for constructing CIs. This method refines the basic 
bootstrap procedure by introducing adjustments for both bias and skewness in the distribution of 
bootstrap estimates. Bias is calculated based on the proportion of bootstrap estimates that are less 
than the observed estimate, and this information is then used to adjust the percentiles of the CI. An 
acceleration parameter is incorporated to account for the skewness or asymmetry of the bootstrap 
distribution [26-28]. The algorithm is as follows: 

1) Bootstrap Resampling: Draw B =  1000 bootstrap samples from the empirical distribution of
the original sample and calculate the bootstrap estimates *ˆ ,bθ  for 1,2, ...,1000.b =

2) Bias Correction 0( ) :z  Determine the proportion of bootstrap estimates that are less than the 

original estimate ˆ,θ  denoted .p  The bias correction factor 0z  is the quantile of the standard 
normal distribution corresponding to .p  

3) Acceleration ( ) :a  Calculate the acceleration value a  which accounts for the asymmetry of
the estimator’s distribution. This is often estimated by the jackknife or other methods that quantify 
the skewness of the sampling distribution. 

4) Adjusted Percentiles: Transform the bias-corrected normal deviates to adjust the percentiles
for constructing the CI. The adjusted percentiles are given by 

( )
* 0 /2

0
0 /21L

z z
p z

a z z
α

α

 +
= Φ +  − + 
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( )
0 1 ( /2)*

0
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−

 +
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where Φ  is the standard normal cumulative distribution function, and 2zα  and 1 2z α−  are the 

( / 2)α -th and  ( )1 ( / 2)α− -th quantiles of the standard normal distribution, respectively. 
5) CI Construction: The BCa bootstrap CI is constructed using the percentiles *

Lp  and *
Up  to

extract the corresponding quantiles from the bootstrap distribution of *ˆ .MLθ  The formula is as 
follows 

( ) ( )* *
* *ˆ ˆ, ,

L UP P
θ θ 
  

where *
*
( )
ˆ

LP
θ  and ( )*

*ˆ
UP

θ  are * th( )Lp  and * th( )Up  quantiles of the bootstrap estimates *
b̂θ . 

IV. Simulation Study and Results

This simulation study evaluates the effectiveness of 95% confidence interval (CI) 
construction methods in different scenarios. Our focus includes sample sizes, parameter values, 
coverage probability (CP), and the average length (AL) of the intervals. We vary sample sizes ( )n  
at 10, 20, 30, 40, 100, 200, and 500, while also altering the distribution’s parameter values ( )θ  to 0.2, 
0.5, 0.75, 1, 1.5, 2, and 3. The CPs and ALs of the CIs are estimated using Monte Carlo simulations 
with 2,000 replications. 
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Table 1. Coverage probability and average length of the 95% CIs for the parameter of the Iwueze distribution 

n  θ  
Coverage probability Average length 

Likelihood Wald Bootstrap-t BCa Likelihood Wald Bootstrap-t BCa 

10 0.2 0.953 0.950 0.902 0.905 0.1135 0.1132 0.1014 0.1065 
0.3 0.956 0.952 0.899 0.902 0.1691 0.1688 0.1512 0.1582 
0.5 0.950 0.950 0.896 0.893 0.2811 0.2806 0.2536 0.2661 

0.75 0.949 0.951 0.898 0.903 0.4177 0.4170 0.3770 0.3940 
1 0.952 0.951 0.905 0.903 0.5525 0.5515 0.5007 0.5237 

1.5 0.951 0.957 0.906 0.905 0.8285 0.8252 0.7483 0.7934 
2 0.953 0.959 0.897 0.897 1.1382 1.1303 1.0045 1.0872 

2.5 0.958 0.961 0.908 0.908 1.4943 1.4856 1.3334 1.4720 
20 0.2 0.946 0.950 0.923 0.926 0.0792 0.0791 0.0749 0.0763 

0.3 0.961 0.960 0.931 0.927 0.1185 0.1184 0.1120 0.1142 
0.5 0.949 0.945 0.920 0.921 0.1972 0.1971 0.1881 0.1922 

0.75 0.942 0.944 0.919 0.917 0.2931 0.2929 0.2780 0.2833 
1 0.943 0.946 0.925 0.921 0.3872 0.3868 0.3674 0.3740 

1.5 0.945 0.944 0.927 0.926 0.5768 0.5757 0.5458 0.5603 
2 0.947 0.945 0.921 0.923 0.7888 0.7862 0.7495 0.7749 

2.5 0.955 0.964 0.930 0.933 1.0421 1.0372 0.9785 1.0177 
30 0.2 0.946 0.948 0.936 0.934 0.0644 0.0643 0.0622 0.0631 

0.3 0.959 0.957 0.940 0.939 0.0967 0.0966 0.0933 0.0947 
0.5 0.945 0.949 0.932 0.935 0.1601 0.1600 0.1542 0.1564 

0.75 0.951 0.952 0.936 0.937 0.2385 0.2383 0.2309 0.2335 
1 0.957 0.957 0.939 0.939 0.3153 0.3151 0.3036 0.3074 

1.5 0.955 0.955 0.938 0.940 0.4712 0.4706 0.4568 0.4648 
2 0.959 0.958 0.940 0.942 0.6419 0.6405 0.6153 0.6281 

2.5 0.948 0.952 0.934 0.939 0.8384 0.8358 0.8043 0.8264 
50 0.2 0.957 0.958 0.946 0.946 0.0498 0.0497 0.0485 0.0490 

0.3 0.952 0.952 0.942 0.940 0.0746 0.0746 0.0728 0.0735 
0.5 0.961 0.958 0.945 0.950 0.1234 0.1234 0.1204 0.1216 

0.75 0.951 0.953 0.935 0.936 0.1839 0.1838 0.1800 0.1819 
1 0.953 0.952 0.940 0.938 0.2434 0.2433 0.2370 0.2393 

1.5 0.947 0.949 0.939 0.941 0.3640 0.3637 0.3557 0.3596 
2 0.955 0.958 0.950 0.950 0.4930 0.4923 0.4830 0.4906 

2.5 0.950 0.952 0.939 0.940 0.6448 0.6436 0.6271 0.6392 
100 0.2 0.949 0.947 0.943 0.943 0.0351 0.0350 0.0346 0.0349 

0.3 0.948 0.950 0.938 0.945 0.0526 0.0526 0.0520 0.0525 
0.5 0.946 0.948 0.941 0.944 0.0874 0.0874 0.0860 0.0868 

0.75 0.945 0.946 0.939 0.939 0.1299 0.1298 0.1281 0.1291 
1 0.950 0.951 0.949 0.949 0.1715 0.1715 0.1687 0.1701 

1.5 0.944 0.945 0.938 0.939 0.2562 0.2561 0.2523 0.2549 
2 0.946 0.946 0.943 0.944 0.3481 0.3479 0.3443 0.3476 

2.5 0.948 0.948 0.941 0.947 0.4560 0.4556 0.4492 0.4551 
200 0.2 0.951 0.949 0.948 0.948 0.0248 0.0248 0.0246 0.0248 

0.3 0.954 0.952 0.945 0.946 0.0370 0.0370 0.0366 0.0369 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

533



Wararit Panichkitkosolkul 
CONFIDENCE INTERVALS FOR THE PARAMETER OF THE 
IWUEZE DISTRIBUTION 

n  θ  
Coverage probability Average length 

Likelihood Wald Bootstrap-t BCa Likelihood Wald Bootstrap-t BCa 

0.5 0.951 0.949 0.947 0.947 0.0616 0.0616 0.0612 0.0617 
0.75 0.949 0.949 0.948 0.950 0.0917 0.0917 0.0912 0.0920 

1 0.944 0.948 0.940 0.943 0.1215 0.1215 0.1203 0.1212 
1.5 0.951 0.951 0.944 0.948 0.1809 0.1808 0.1793 0.1809 

2 0.956 0.957 0.951 0.951 0.2461 0.2460 0.2438 0.2460 
2.5 0.942 0.944 0.936 0.935 0.3209 0.3207 0.3184 0.3213 

500 0.2 0.945 0.944 0.940 0.943 0.0156 0.0156 0.0156 0.0157 
0.3 0.948 0.949 0.944 0.947 0.0235 0.0235 0.0233 0.0235 
0.5 0.946 0.946 0.946 0.947 0.0390 0.0390 0.0389 0.0392 

0.75 0.951 0.951 0.949 0.952 0.0580 0.0580 0.0576 0.0582 
1 0.948 0.947 0.945 0.947 0.0767 0.0767 0.0763 0.0769 

1.5 0.947 0.949 0.941 0.947 0.1144 0.1144 0.1136 0.1145 
2 0.954 0.953 0.952 0.948 0.1552 0.1552 0.1538 0.1552 

2.5 0.949 0.948 0.948 0.947 0.2019 0.2019 0.2003 0.2021 

I. Coverage Probability

Table 1 displays the simulation results for the CP, whereas Figure 3 visually represents the results. 
The parameter value θ  has a minor impact on the CP of all CIs. This indicates that the value of CP 
of all CIs is relatively constant, regardless of the value of the parameter .θ  The sample size 
significantly affects the CP across all CPs. For small sample sizes ( n = 10, 20, and 30), the CPs for 
the likelihood-based and Wald-type CIs are close to the nominal level of 0.95, whereas the 
bootstrap-t and BCa bootstrap CIs provide CPs that are noticeably less than 0.95. However, their 
performance improves with larger sample sizes, with the CPs approaching the nominal level more 
closely. This implies that although these approaches are sample size-dependent, they provide 
sufficient coverage for larger samples. Furthermore, the likelihood-based and Wald-type CIs 
exhibit a more rapid convergence rate in comparison to the bootstrap-t and BCa bootstrap CIs. 

The likelihood-based and Wald-type CIs show greater stability in CP when both sample size 
and parameter value are considered, as they maintain values that are more closely approximate to 
the nominal level in a range of parameter values and sample sizes. On the other hand, the 
bootstrap-t and BCa bootstrap CIs demonstrate greater variability in CP, particularly for small 
sample sizes, in which case they tend to underperform. 

II. Average Length

The AL usually decreases as the sample size increases, as expected in the evaluation of CIs. For 
example, when the sample size is n  = 10 and θ  = 2, the AL for the Wald-type CI is high, roughly 
1.1303. Nevertheless, when the sample size is increased to n  = 500, the AL for the Wald-type CI 
reduces significantly to approximately 0.1552. 

The AL also varies with different parameter values of .θ  As the value of the parameter θ  
increases, the AL tends to increase for all CIs. At θ  = 0.2  and n  = 10, the AL for the Wald-type CI 
is approximately 0.1132. However, at θ  = 2.5, the AL increases to approximately 1.4856. 

The Wald-type and likelihood-based CIs have very similar ALs for all parameter values 
when compared to the two other methods. This means that both Wald-type and likelihood-based 
CIs have a very similar interval width and coverage probability. The bootstrap-t and BCa bootstrap 
CIs tend to yield shorter intervals for lower values of ,θ  while demonstrating an increase in the 
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AL as the parameter value θ  increases. The bootstrap-t CI generally provides the shortest interval. 
For example, for θ = 1  and n  = 50, the ALs are 0.2434 for likelihood-based CI, 0.2433 for Wald-type 
CI, 0.2370 for bootstrap-t CI, and 0.2393 for BCa bootstrap CI. These findings indicate that the 
bootstrap-t method yields the narrowest interval on average, but the likelihood-based method 
yields slightly wider intervals. 

Figure 3: Plots of the CPs of the CIs for θ  of the Iwueze distribution 

Figure 3: (Continued) 
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Figure 4: Plots of the ALs of the CIs for θ  of the Iwueze distribution 

Figure 4: (Continued) 

IV. Numerical Examples

We applied four CIs for the parameter of the Iwueze distribution defined in the previous section to 
two real-world situations. The adequacy of the Iwueze distribution’s performance is being 
compared to that of the following alternative distributions: 

 The Komal distribution [29]. Its pdf is
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 The Lindley distribution [3]. Its pdf is
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 The exponential distribution. Its pdf is
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I. Lifetime Data about the Duration of Relief in the Analgesic Patients

The first data set consists of the lifetime data about the duration of relief (measured in minutes) 
experienced by 20 patients who were administered an analgesic. This data was reported by Gross 
and Clark [41]. The data are as follows: 1.1, 1.5, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.2, 1.4, 
3.0, 1.7, 2.3, 1.6, 2.0. Some descriptive statistics of the data set are reported in Table 2. 

Table 2. The descriptive statistics of the lifetime data about the duration of relief in the analgesic patients 
Min Mean Median SD Q1 Q3 Max 
1.100 1.900 1.700 0.704 1.475 2.050 4.100 

The ML technique is used to estimate all distribution parameters. For model comparison, we 
evaluated the log-likelihood (log L), Akaike’s information criterion (AIC), and Bayesian 
information criterion (BIC). For this data set, estimates of the parameters, their standard errors 
(SE), and goodness of fit measures are given in Table 3. 

Table 3. The ML estimates, SE, AIC and BIC for the lifetime data about the duration of relief in the analgesic patients 
Distributions Estimates (SE) Log L AIC BIC 

Iwueze 1.8013 (0.0312) -25.9446 53.8892 54.8849
Komal 0.7404 (0.0146) -31.1797 64.3593 65.3550

Adya 1.0602 (0.0146) -28.4095 58.8189 59.8147
Pranav 1.4014 (0.0156) -31.1933 64.3865 65.3823

Prakaamy 2.2735 (0.0261) -30.7198 63.4396 64.4353
Akshaya 1.4417 (0.0282) -26.5071 55.0141 56.0098

Rani 1.7195 (0.0163) -32.6543 67.3085 68.3043
Rama 1.5213 (0.0232) -29.8533 61.7066 62.7023

Suja 1.8954 (0.0248) -30.2010 62.4020 63.3978
Ishita 1.0948 (0.0148) -30.0824 62.1647 63.1604

Sujatha 1.1367 (0.0224) -28.7488 59.4975 60.4933
Garima 0.7396 (0.0197) -31.6058 65.2116 66.2073

Aradhana 1.1232 (0.0233) -28.1850 58.3700 59.3658
Devya 1.8419 (0.0286) -27.2522 56.5044 57.5001

Amarendra 1.4808 (0.0258) -27.8193 57.6387 58.6344
Shanker 0.8039 (0.0142) -29.8917 61.7833 62.7791

Akash 1.1569 (0.0212) -29.7613 61.5226 62.5183
Lindley 0.8039 (0.0142) -30.2536 62.5073 63.5030

Exponential 0.5263 (0.0139) -32.8371 67.6742 68.6699

The AIC and BIC values in Table 3 illustrate that the Iwueze distribution provides an 
adequate fit to as compared with other distributions. The ML estimator for this data is 1.8013. 
Table 4 presents the 95% CIs for the parameter of the Iwueze distribution. The likelihood-based 
method yields a CI ranging from 1.4783 to 2.1720, with an interval length of 0.6937. Similarly, the 
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Wald-type method provides a CI of 1.4553 to 2.1472, also with a length of 0.6919, which is almost 
identical to the likelihood-based method in terms of range and uncertainty. In contrast, the 
bootstrap-t method and the BCa bootstrap method both produce notably narrower CIs. 

Table 4. The 95% CIs and lengths for the lifetime data about the duration of relief in the analgesic patients 

Methods Confidence intervals Lengths 
Likelihood-based (1.4783, 2.1720) 0.6937 
Wald-type (1.4553, 2.1472) 0.6919 
Bootstrap-t (1.6363, 2.0162) 0.3799 
BCa Bootstrap (1.5776, 1.9507) 0.3731 

II. The Strengths of Glass Fibers

The second data set is from Smith and Naylor [42] on the strengths of 1.5 centimeter glass fibers 
measured at the National Physical Laboratory in England. This data set is given as follows: 0.55, 
0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 
1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 
0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 
1.63, 1.67, 1.70, 1.78, 1.89. Some descriptive statistics of the data set are reported in Table 5. 

Table 5. The descriptive statistics of the strengths of glass fibers 
Min Mean Median SD Q1 Q3 Max 
0.550 1.507 1.590 0.3241 1.375 1.685 2.240 

The ML method was utilized for estimating the parameters of the distributions. We assessed 
the log-likelihood (log L), Akaike’s information criterion (AIC), and Bayesian information criterion 
(BIC) for model comparison. Table 6 provides estimates of the parameters, their standard errors 
(SE), and goodness of fit measures for this data set. 

Table 6. The ML estimates, SE, AIC and BIC for the strengths of glass fibers 
Distributions Estimates (SE) Log L AIC BIC 
Iwueze 2.0894 (0.0137) -68.6897 139.3794 141.5225
Komal 0.8905 (0.0070) -84.5918 171.1836 173.3268
Adya 1.2237 (0.0064) -77.1008 156.2016 158.3447
Pranav 1.5607 (0.0063) -90.4814 182.9627 185.1059
Prakaamy 2.4974 (0.0100) -93.0292 188.0583 190.2015
Akshaya 1.7091 (0.0130) -69.5206 141.0413 143.1844
Rani 1.8802 (0.0063) -98.1100 198.2199 200.3630
Rama 1.7313 (0.0098) -84.8598 171.7197 173.8628
Suja 2.1133 (0.0099) -88.7335 179.4670 181.6101
Ishita 1.2520 (0.0064) -84.1406 170.2812 172.4243
Sujatha 1.3501 (0.0104) -77.4048 156.8096 158.9527
Garima 0.9157 (0.0096) -85.0308 172.0617 174.2048
Aradhana 1.3464 (0.0110) -74.9384 151.8768 154.0199
Devya 2.1013 (0.0121) -74.9042 151.8085 153.9516
Amarendra 1.7201 (0.0114) -75.5186 153.0372 155.1804
Shanker 0.9563 (0.0066) -81.1391 164.2781 166.4213
Akash 1.3554 (0.0096) -81.8636 165.7272 167.8704
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Lindley 0.9563 (0.0066) -81.3693 164.7387 166.8818 
Exponential 0.6636 (0.0070) -88.8303 179.6606 181.8038 

The AIC and BIC values, estimates of the parameters, their SEs, and measures of goodness of 
fit for this dataset are provided in Table 6. It shows that the Iwueze distribution fits better than 
other distributions. For this set of data, the ML estimator is 2.0894. Table 7 reports comparisons of 
95% CIs and their lengths for parameter estimation using several methods. The likelihood-based 
method estimates the CI to be between 1.8691 and 2.3292, with an interval length of 0.4601. The 
Wald-type method yields a marginally narrower CI, ranging from 1.8597 to 2.3192, and has an 
interval length of 0.4595, closely aligning with the results of the likelihood-based method. In 
contrast, the bootstrap-t method offers a narrower CI, spanning from 2.0240 to 2.1552, with the 
shortest interval length of 0.1312. Similarly, the BCa bootstrap method provides an even tighter CI, 
ranging from 2.0288 to 2.1627, with the interval length at 0.1339. 

Table 7. The 95% CIs and lengths for the strengths of glass fibers 
Methods Confidence intervals Lengths 
Likelihood-based (1.8691, 2.3292) 0.4601 
Wald-type (1.8597, 2.3192) 0.4595 
Bootstrap-t (2.0240, 2.1552) 0.1312 
BCa Bootstrap (2.0288, 2.1627) 0.1339 

Conclusion and Discussion 

This paper proposes and evaluates four approaches for using likelihood-based, Wald-type, 
bootstrap-t, bias-corrected and accelerated (BCa) bootstrap methods to construct confidence 
intervals (CIs) for the parameter of the Iwueze distribution. This study also derived and provided 
the explicit formula for the Wald-type CI. The evaluation of CIs in simulation studies involves the 
consideration of both the coverage probability (CP) and the average length (AL) of the intervals. 
As the sample sizes increase, the results indicate a notable pattern where the CPs of all methods 
converge toward the nominal confidence level.  The likelihood-based and Wald-type CIs yielded 
satisfactory outcomes in terms of coverage probabilities, even for the setting of small sample sizes. 
However, the bootstrap-t and BCa bootstrap CIs provide the CP less than the nominal confidence 
level, especially in small sample sizes. The practical application of all CIs was shown by applying 
them to medical and engineering data, producing results consistent with the simulation study's 
results. 

The bootstrap techniques examined in this study rely on the assumption that resampled data 
accurately represent the underlying population. For datasets with very small sample sizes and 
significant skewness, the validity of the assumption that resampled data accurately represent the 
underlying population may be compromised. Consequently, this could impact the reliability of the 
CIs derived from these methods. Moreover, the computational requirements of bootstrap 
techniques, particularly the BCa bootstrap CI, might present challenges in situations where 
computational resources are limited. To facilitate the computation of bootstrap confidence 
intervals in the R programming language, numerous packages are accessible, with the 'boot' 
package [43] and the 'bootstrap' package [44] being notable examples. 

Future research could explore other mixed distributions, such as the Chris-Jerry distribution 
[45], Hamza distribution [46], among others. The construction of CIs for the coefficient of variation 
and the population mean is an interesting topic that requires additional research. Additionally, 
there appears to be a gap in the literature regarding hypothesis testing for the parameters of the 
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Iwueze distribution. These topics represent valuable opportunities for future studies. 
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Abstract 

The control of the maintenance of the industrial installations, in particular of the costs due to the 

implementation of the preventive policies is very interesting because of the growing importance of 

this service in the chains of production. The objective of this paper is to minimize the preventive 

maintenance costs of a production unit. For this, a state of the art on the maintenance cost models 

according to the policy used is first made, then a synthesis of the optimization methods is made in 

order to deploy the exact resolution methods and the genetic algorithms. The result of this paper is 

the proposal of a cost model corresponding to a periodic maintenance policy with minimal repair to 

the failure and the optimization of the periodicities of the partial revisions of the production unit. 

Keywords: Preventive maintenance, Reliability, Optimization, Cost, Genetic 
algorithm 

1. Introduction

Today, maintenance occupies a very important place in the production chain because the failure of 
a system during production can have direct and indirect consequences that are extremely 
detrimental for the system and for other business functions. The failure of a machine can generate: 
delays in delivery, loss of customers, larger stocks of finished products, cash flow difficulties, etc. 

Sudden breakdowns are sometimes very costly and the loss of production during corrective 
interventions causes a loss of profit which can affect the profits of the company. Add to this safety 
issues, diminished production quality and possible loss of reputation for the company, it becomes 
clear that such failures should not be tolerated where preventive maintenance is required. 
Optimizing preventive maintenance is a process of improving their performance and efficiency (of 
the company). This process tries to balance the requirements of preventive maintenance (legislative, 
economic, technical, etc.) and the resources used to carry out their program (labour, spare parts, 
consumables, equipment, etc.). The goal of preventive maintenance optimization is to choose the 
appropriate policy for each piece of equipment and the identification of the periodicity of this policy 
should be carried out to achieve the objectives concerning the safety, the reliability of the equipment 
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and the availability of the system. When preventive maintenance optimization is effectively 
implemented, overall preventive maintenance costs will be reduced. 

2. State of the art on maintenance cost models according to the policy used

Production and service equipment constitute an important part of the capital of the majority of 
industries. This equipment is generally subject to degradation with use and time. For some of these 
systems, such as aircraft, nuclear systems, oil and chemical facilities, it is extremely important to do 
everything possible to avoid failure in operation because it can be dangerous. Moreover, for 
continuously operating units such as oil refineries, the loss of earnings is high in the event of a 
stoppage. Therefore, maintenance becomes a necessity to improve reliability. The growing 
importance of maintenance has generated an ever-increasing interest in the development and 
implementation of maintenance strategies for improving system reliability, preventing failures and 
reducing maintenance costs. 

2.1. Notions on maintenance 

2.1.1. Standard definitions 

According to standard NF X 60-10 (December 1994), maintenance is "all activities intended to 
maintain or restore an item in a state or under given operating safety conditions, to accomplish a 
required function. These activities are a combination of technical, administrative and managerial 
activities ". 

Corrective maintenance is the set of actions carried out after detection of the failure and 
intended to return an item to a state in which it can perform a required function (NF EN 2001). 
Preventive maintenance is the set of actions carried out at predetermined time intervals or according 
to prescribed criteria and intended to reduce the probability of failure or the degradation of the 
functioning of an asset (NF EN 2001). 

2.1.2. Effects of maintenance on systems 

Maintenance can be characterized by its effect on the state of the system after receiving a 
maintenance action, as follows [1, 2]: 

- Perfect repair (maintenance): Any maintenance action that brings the system back to an "as
good as new" state. After perfect maintenance, the system has the same failure rate as a new
system. A replacement is considered perfect maintenance. Example: complete overhaul of an
engine.

- Minimal repair (maintenance): Any action that brings the failure rate of the system back to what
it was just before the “As bad as old” failure. Example : changing a car tyre.

- Imperfect repair (maintenance): Any action that restores the system to a state between “as good
as new” and “as bad as old”. It is considered as a general case encompassing the two extreme
cases, perfect repair (maintenance) and minimal repair (maintenance). Example: development
of an engine.
In Summaries and classifications of possible causes for imperfect maintenance are
systematically given [3, 4, 5, 6, 7].

2.2. Concepts on reliability 

The evolution The AFNOR X606500 standard defines reliability as “the ability of an entity to perform 
a required function, under given conditions, during a given time interval”. 
It is defined by: ( )R t P= ( E not failing during the duration  0 ,  t assuming that it is not failing at 
the moment 0t = ). 
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2.2.1. Weibull model 
This mathematical model covers quite a large number of lifetime distributions. It was first used in 
the study of material fatigue, it has been useful in the study of failure distributions of vacuum tubes, 
and is now in almost universal use in reliability. 
Its distribution function is given by the expression 1. 
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This is the exponential distribution, the special case of the Weibull distribution. 
- If 3  , the Weibull distribution approaches the normal distribution from which it can

practically not be distinguished from 4 = .

2.2.2. Proactive maintenance approaches 
The idea is to compare the real distribution function with the theoretical one. We measure the 
difference, point by point between these two functions (relation 4). 

( ) ( )
in i iD f t F t= −   (4) 

The maximum difference thus obtained is given by relation 5. 
( ) ( ).max maxn i iD f t F t= −    (5) 

( )iF t and ( )if t  denote respectively the theoretical distribution function and the real 
distribution function. 
The theoretical distribution function is given by relation 6. 
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The real distribution function is calculated using the empirical relationships according to the 
size (N) of the data [8,9] (relationships 7 to 9). 
• Method of median ranks ( 20N  ):

0,3
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• Mean rank formula ( 20 50N ):
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• Grouping by classes with k N= ( 50N  ): 
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i
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n
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N
=
       (9) 

With the Kolmogorov-Smirnov table, the value of the difference ,nD  is determined at a fixed 
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level of significance  . There by: 
➢ If .max ,n nD D  , then the hypothesis of the theoretical model is refused. 
➢ If .max ,n nD D  , then the hypothesis of the theoretical model is accepted. 

2.3. Maintenance policies for elementary systems 

An elementary system is defined as any part that is part of a machine (screw, seal, shaft, pinion, pin, 
etc.) or a machine that is part of a set, such as a grinder in an infant flour production line, a turn in a 
mechanical production line. In this case, the reliability characteristics and any other variable of the 
model relate to the entire system, itself can be broken down into elementary entities. 

2.3.1. Age-dependent preventive maintenance policy 

According to this policy, an elementary component is replaced when it reaches the age T  or failure 
depending on which event occurs first [7]. The average cost per unit of time is given by relation 10. 

 . ( )   1  ( )

0

( )
( )

Cp R T R T

T
C T

R t dt

+ −
=


  (10) 

o T : Age of preventive replacement (decision variable); 
o Cp : Cost of preventive replacement;
o Cc : Failure cost including replacement cost; 
o ( )R t : Reliability function;
o  . ( )  1 ( )Cp R T R T+ − : Total cost of the cycle; 

o 
0

( )
T

R t dt : Cycle length expectation.

Since then, several extensions or variants of this model have emerged [10,11,12,13,14,15]. 

2.3.2. Periodic preventive maintenance policy 

 In this policy, an item is preventively maintained at fixed time intervals kT ( 1,2,...k = ) independent 
of failure history, and repaired upon failure. Another basic periodic preventive maintenance policy 
is “periodic replacement with minimum repair to failure” where an item is replaced at 
predetermined times kT ( 1,2,...k = ) and failures are eliminated by minimum repairs [16]. In this 
class, we can also cite the block replacement policy where an element is replaced at pre-arranged 
times kT and on failure (generally used for multi-component systems). For this last policy, the 
characterized random process is a renewal process, the average cost per unit of time is given by 
relation 11. 

. ( )  
( )

Cc H T Cp
C T

T

+
=   (11) 

o ( )H T : Average number of replacements from 0 to T ; 
o Cp : Cost of the part; 
o Cc : Cost caused by the failure. 
The difficulty with the previous expression lies in the determination of the renewal function

( )H T . 
With the concepts of minimal repair and especially imperfect maintenance, different extensions 

and variants of these two policies have been proposed [17,18,19,20,21]. 

2.3.3. Periodic replacement policy with minimum repair 

This policy is a variant of the previous one, the difference is that following a failure, the element 
receives a minimal repair. Therefore, failures occur following an inhomogeneous Poisson process. 
The average number of failures in an interval  0 ;T is given by relation 12.
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0
( ) ( )

T

H T t dt=   (12) 

( )t represents the failure occurrence rate. For a non-repairable component, it represents the failure
rate. Relationship 11 then becomes relationship 13. 

   
( )

0
.   

. ( )   
( )

T

Cc t dt Cp
Cc H T Cp

C T
T T

 +
+ 

= =  (13) 

2.3.4. Imperfect Periodic Maintenance Policy with Minimal Repair 

Under this policy, the item is not replaced periodically but just receives imperfect maintenance. As 
an example, we can cite an industrial machine that periodically receives partial overhauls and after 
a certain number of partial overhauls, the machine receives a general overhaul. This will mean that 
the rate of occurrence of failures will change after each preventive maintenance action, because we 
recall that, imperfect maintenance makes it possible to reduce the failure rate to a level between the 
initial failure rate (nine) and the one just before the maintenance. In this case, the effect of each 
maintenance on the system must be measured. The system failure rate after each maintenance will 
be expressed as a function of this effect and the previous failure rate. We give Gertsbakh 's model 
[22] where he assumes that the effect of all preventive maintenance is constant. It varies the failure
rate exponentially, by an amount equal to e ( 0 ). The average cost per unit time is given by
relation 14.

( )( ) ( ) 1 . ( ). 1   ...     1  .   

( )
K

Cc H T e e K Cp Cov

C T
KT

 −
+ + + + − +

=   (14) 

o Cc : Minimum repair cost;
o Cp : Cost of imperfect preventive maintenance (partial overhaul); 
o Cov : Cost of the general overhaul; 
o K : Number of partial revisions before the general revision; 
o e : Degradation factor. 
There are other maintenance policies for single-component systems whose synthesis is 

presented [23,24,25,26,27,28,29,30]. 
In view of this synthesis of the maintenance cost models according to the policy used, it appears that 
the imperfect periodic maintenance policy with minimal repair is the most appropriate for the 
maintenance department. It is therefore this model that will be developed in the Application part of 
this paper. 

III. Optimization methods

There are many optimization methods. However, they can be classified into two main categories: 
exact resolution methods and stochastic methods. In the first category, we find all the methods that 
seek the minimum of a function based on the knowledge of a search direction, often given by the 
gradient of this function. In the case of multiple optima, they stop on the first encountered. Stochastic 
methods are an alternative to overcome this drawback. The three most popular stochastic methods 
are genetic algorithms, simulated annealing, and tabu search. They are able to find the global 
minimum of a function even in very difficult cases, but the computation time can be high. 

3.1. Exact resolution methods 

A few methods of the class of complete or exact algorithms are presented. These methods give a 
guarantee to find the optimal solution for an instance of finite size in a limited time and to prove its 
optimality [31]. We will give the desired idea of each method and describe in more detail the method 
of the golden ratio, which will be part of the methods deployed in this work. 
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3.1.1. Separation and evaluation method (Branch and Bound) 

The separation and evaluation algorithm, better known by its English name Branch and Bound 
(B&B), is based on a tree method of finding an optimal solution by separations and evaluations, by 
representing the solution states by a state tree, with knots, and leaves [32]. 

3.1.2. Plane cutting method (Cutting-Plane) 

The plane cut method was developed by [33]. It is intended to solve combinatorial optimization 
problems which are formulated in the form of a linear program. 

3.1.3. Mathematical methods 

To determine an optimum, the mathematical methods are based on the knowledge of a search 
direction often given by the gradient of the objective function with respect to the parameters. 

3.1.4. Conjugate gradient method 

The conjugate gradient method [34,35,36,37], is an improved variant of the steepest slope method, 
which involves following the opposite direction of the gradient. This method has the disadvantage 
of creating orthogonal search directions, which slows down the convergence of the algorithm. The 
method of Fletcher and Reeves [34] solves this problem by determining the new search direction 
from the gradient at the current and previous steps. 

3.1.5. Quasi-Newton methods 

Quasi-Newton methods consist in imitating Newton's method where the optimization of a function 
is obtained from successive minimizations of its second-order approximation. They do not calculate 
the Hessian but they use a positive definite approximation of the Hessian which can be obtained 
either by the expression proposed by Davidon -Fletcher-Powell, or by that proposed by Broyden -
Fletcher- Goldfard -Shanno [38]. 

3.1.6 Golden ratio method 

The golden ratio method (golden search method) is an optimization technique that seeks the 
extremum (minimum or maximum) of a function, in the case of a unimodal function, i.e. in which 
the global extremum sought is the single local extremum. If there are several local extrema, the 
algorithm gives a local extremum, without it being guaranteed that it is the absolute extremum. The 
steps of the method are as follows: 

• 1st step: take the two points (1 )c a r h= + −  and d a rh= + the interval   ,a b , with

( )5 1 / 2r = − and h b a= − . 

• 2nd step: if the values of ( )f x for these two points are almost equal ( ( ) ( ))f a f b and the
width of the interval is small enough ( 0h  ) , then stop the iteration to exit the loop and
declare 0x c= or 0x d= depending on whether ( ) ( )f c f d or not. If not, go to step 3. 

• 3rd step: if ( ) ( )f c f d , take the new upper limit of the interval b d . If not, take the new
lower limit of the interval a c . Then return to the 1st step.

We note the following points concerning the procedure of the method of the golden ratio: 
- At each iteration, the new width of the interval is : ( (1 )( ))b c b a r b a rh− = − + − − = or

d a a rh a rh− = + − = , so that it becomes r times the width of the old interval ( )b a h− = .

- The golden r ratio is fixed such that a point 2

1 1 1C b rh b r h= − = − in the new interval   ,c b

conforms with (1 )d a rh b r h= + = − − , that is 2 1r r= − , 2 1 0r r+ − = , ( 1 1 4) / 2r = − + + = 

( 5 1) / 2− .
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3.2. Genetic Algorithms 

3.2.1. Origin and principle 

Genetic algorithms (GA) are stochastic optimization algorithms based on the mechanisms of natural 
selection and genetics [39,40]. The researcher Reichenberg [41], is the first scientist who introduced 
evolutionary algorithms by publishing his work ''Evolution strategies.’’ These algorithms are 
broadly inspired by Darwin's theory of evolution published in 1859. Next, Holland [42] proposed 
the first genetic algorithms to solve combinatorial optimization problems, and they were also 
developed by the work of David Goldberg published in 1989 [43]. 
        The aim of the genetic algorithm is to bring up, from one generation to another, the candidates 
(potential solutions) most suited to solving the problem. Each generation is made up of a defined 
number of individuals, these form a population, and each of them represents a point in the search 
space. Each individual (chromosome) has information coded in the form of a chain of characters that 
analogically constitutes genes. Then the passage from one generation to another is carried out based 
on the process of evolution by the use of evolutionary operators like selection, crossing, and 
mutation. 

Their operating principle is quite simple. From an initial population created at random, 
composed of a set of individuals (chromosomes), we proceed to the evaluation of their parent 
qualifications to highlight the best suited, as long as the least effective are rejected. Then, the most 
qualified individuals are chosen by privileged selection by giving them a chance to reproduce by 
crossing and mutating via the two operators of crossing and mutation. Then by relaunching this 
process several times, the optimal solution can be refined by passing from one generation to another. 

3.2.2. Description of the formalism used 
The convergence of genetic algorithms has been demonstrated for many problems, although 
optimality cannot be guaranteed. The ability of a genetic approach to find the right solution often 
depends on the adequacy of the coding, the evolution operators, and the measures of adaptation to 
the problem being addressed. The method proposed here is based on genetic algorithms [43]and 
evolutionary strategies [44]. It combines the principle of survival of the ablest individuals and 
genetic combinations for an elitist research mechanism. The genetic method produces new solutions 
(children) by combining existing solutions (parents) selected from the population, or by mutation. 
The central idea is that parent solutions will tend to produce superior child solutions in terms of 
adaptation so that ultimately a solution obtained is optimal. 
       In this study, we used a genetic method previously defined by [45] with a definition of the 
chromosome and the operators of selection, combination, and mutation concerned. Unlike genetic 
algorithms, the genetic method used is designed to minimize and not maximize. This method, like 
genetic algorithms, is not limited by assumptions about the objective function and research space, 
such as continuity or differentiability. It uses a population of points simultaneously by contrast with 
usual methods using only one point. Genetic operators are elitistically improving the search process 
to find the global optimum. There are more complicated genetic operators, but the basic operators 
and their various modifications can generally be applied. The choice of these operators depends on 
the nature of the problem and the performance requirements. The genetic algorithm that we are 
going to implement is as follows, where the process is applied to iteration k : 

a. Data coding;
b. Generation of the initial population

0P of N individuals;

c. Assessment of the adaptation of all individuals in the population;
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d. Selection of a proportion of the best individuals (parents for the production of new

individuals);
e. The Crossing of all individuals in the population

kP two by two with a probability
mP ,we 

will have N children noted
kC ; 

f. Mutation of all individuals in the population, we will have N  elements noted 
kM ; 

g. Choice of the most suitable individuals, i.e., those who optimize the objective function;
h. If the stop test is verified, stop, otherwise return to step a.

 We will choose, as a stop test in our implementation, a finite number of iterations. 
          It is important to note that the stopping criterion can be several cycles of the algorithm (number 
of generations), the average of the adaptations of individuals, a convergence factor, etc. 
An individual represents a vector of decision variable (parameters), and its adaptation is measured 
by the objective function. The formalism and the genetic operators are detailed below. 

3.2.2.1. Data coding 

 The first step is to properly define and code the problem. That step associates with each point of the 
search space a specific data structure called a chromosome, which will characterize each individual 
in the population. This step is considered to be the most important step in GA because the success 
of these algorithms depends heavily on how individuals are coded. 
There are different choices for coding a chromosome, this choice being a very important factor in the 
progress of the algorithm so it must be well suited to the problem being addressed: 

• Binary coding: It is the most used coding. The chromosome is coded by a string of bits
(which can take the value 0 or 1) containing all the information necessary to describe a point
in space;

• Multi-character coding: this is often more natural. We are talking about multiple characters
as opposed to bits. A chromosome is then represented by a series of numbers or characters,
each representing a gene;

• Coding in the form of a tree: this coding in tree structure starts from a root (comprising
several parts equal to the number of initial individuals), from which one or more children
can be derived. The tree then builds up gradually, adding branches to each new generation.

3.2.2.2. Generation of the initial population 
Each chromosome is the potential result of the optimization problem. We define a chromosome as a 
chain composed of genes, which are the parameters (decision variables) to find. The value of a gene 
is called an allele. The possible value of an allele is an integer or a real value. Each gene is created 
randomly, using equation 15. 

 ( ) ( ) ( )( )j j j j jl u l
a a a a = + −   (15) 

Where: 
–  0;1j  is chosen randomly 

– ( ) ( ),j jl u
a a are the minimum and maximum limits of the allele ja .They are chosen according to the 

problem to be treated. 

  Each chromosome, called an individual in a haploid representation, can be written: 

1,..., ,...,i j mX a a a =  

With: 
– m is the number of genes 
– i = 1,..., N and N is the size of the population (number of individuals). 

All the constraints are taken into account in the initial phase of population creation. When an 
individual is created, if the constraints are respected, this individual is integrated into the initial 
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population; otherwise, it is not. At the start of the algorithm, the initial population contains 
individuals. 
The length of the chromosome m  and the size of the population N is two of the four adjustment 
parameters of the genetic method. 

3.2.2.3. Objective function and adaptation 

We evaluate the different solutions proposed to treat them according to their relevance and to see 
which the best is. For this, we use the objective function. 
This function measures the performance of each individual. To be able to judge the quality of an 
individual and thus compare him to others.  

3.2.2.4. Selection of the most suitable individuals 

When the entire population is assessed at generation t , individuals are ranked in ascending order 
of objective function. Then the selection is made. Selection helps to statistically identify the best 
individuals in a population and eliminate the bad ones from one generation to the next. This operator 
also gives a chance to the bad elements because these elements can, by crossing or mutation, generate 
relevant descendants compared to the optimization criterion. 
         The first N G  individuals (the best N G ) are selected to be parents. G is the third setting 
parameter of the genetic method. G is called the generation gap. G makes it possible to select a part 
of the population to provide sufficient genetic material without decreasing the speed of convergence 
[43]. There are different selection techniques: 

• Selection by rank: This selection method always chooses the individuals with the best
adaptation scores, without allowing chance to intervene;

• Selection by wheel: For each parent, the probability of being selected is proportional to their
adaptation to the problem (their score by the fitness function). This selection mode can be
imaged by a casino roulette wheel, on which all the chromosomes of the population are
placed, the place is given to each of the chromosomes being proportional to its adaptation
value. Also, the higher an individual's score, the more likely he is to be selected. We spin the
wheel as many times as we want individual sons. The best will be able to be drawn several
times, and the worst never;

• Selection by tournament: Two individuals are chosen at random, their adaptation functions
are compared, and the best suited is selected;

• Uniform selection: We are not interested in the adaptation value of the objective function,
and the selection is made in a random and uniform manner such that each individual has
the same probability ( ) 1/P i N=  as all other individuals, where N  is the total number of
individuals in the population;

• Elitism: The passage from one generation to another through the crossing and mutation
operators creates a great risk of losing the best chromosomes. Therefore, elitism aims to copy
the best (or first - best) chromosome (s) from the current population to the new population
before proceeding to the mechanisms of crossing and mutation. This technique quickly
improves the solution because it prevents the loss of the most qualified chromosome when
passing from one generation to another.

3.2.2.5. Crossing 
The selected population is divided into / 2N couples formed randomly. Two parents 

1P ,and 
2P  are 

chosen randomly from the potential parents and their genes are combined according to equation 16. 
( ) ( ) ( )( )1 2 1( )j j j j ja k a P a P a P = + −   (16) 

Where: 
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– 
j is a uniform random number, 

– 1,...,k N G N=  + , the k th individual, 
– 1,...,j m= . 

The newly created individual is then evaluated. If its adaptation is better than that of the worst 
parent, it is integrated into the population to training the next generation. If it is not the case, we 
repeat the combination. 

3.2.2.6. Mutation of all individuals in the population 

The mutation operator is a process where a minor change in the genetic code is applied to an 
individual to introduce diversity and thus avoid falling into local optima. This operator is applied 
with a probability 

mP generally lower than that of the crossing 
cP . This probability must be low. 

Otherwise, the GA will turn into a random search. 

3.2.2.7. Choosing the best solutions 

This choice consists in retaining the solutions which have a lower value of the objective function, 
and putting them in the population 

1kP +
.  

3.2.2.8. Stopping criterion 

The stopping criterion is evaluated in the current population. If it is filled, the whole population has 
converged on the solution. Otherwise, the reproduction pattern will be repeated. The stopping 
criterion used in this method expresses that all individuals have converged on the same solution and 
assumes that evolution is no longer possible, that is to say, that no better solution can be found. 
        The whole strategy is elitist because only the best individuals are selected for survival from one 
generation to the next and can be the parents of new and better individuals. To ensure convergence 
of the algorithm, the parameters N  and G  must be adjusted with care. The size of the population 
N affects both the performance and efficiency of the algorithm [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 
56, 57, 58, 59, 60]. The algorithm is less efficient with very small population sizes. Large population
size may contain more interesting solutions and discourage premature convergence towards sub-
optimal solutions, but requires more assessments per generation, which can lead to a low 
convergence rate. The generation gap G determines the proportion of the population that remains 
unchanged between two generations. 
        It is chosen to select individuals as severely as possible, without destroying the diversity of the 
population too much. The global strategy used assumes that all the individuals who make up the 
population, from generation to generation, satisfy all the constraints. 
The best solution for the latest generation represents the solution to the problem by the defined 
criteria. 

IV. Application

The objective of this application is to minimize the maintenance cost of a production unit whose 
operating time history is given in table 1. 

Table 1: Time Between Failures (TBF) History 

Operation number  Date   TBF (hours) 

1 09/30/2022  4350 
2 12/01/2022 2720 
3 05/01/2022 9830 
4 09/06/2022 2110 
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5 07/08/2022 1410 
6 11/08/2022 1940 
7 10/09/2022 2880 
8 10/13/2022 2590 
9 06/11/2023 2140 
10 26/11/2023 1270 
11 12/15/2023 2930 
12 03/03/2023 5670 
13 04/06/2023 3350 
14 09/28/2023 6440 

It is assumed that the maintenance service follows an imperfect periodic maintenance policy with 
minimal repair, for which the cost model given by relation 14 is valid. 

4.1. Determination of the parameters of Weibull 

table 2 gives the calculation of the real distribution function ( ( )f t ). 
Table 2:  Calculation of ( )f t

( )TBF hours in
in ( )f t

1270 1 1 0.04861111 
1410 1 2 0.11805556 
1940 1 3 0.1875 
2110 1 4 0.25694444 
214 0 1 5 0.32638889 
2590 1 6 0.39583333 
2720 1 7 0.46527778 
2880 1 8 0.53472222 
2930 1 9 0.60416667 
3350 1 10 0.67361111 
4350 1 11 0.74305556 
5670 1 12 0.8125 
6440 1 13 0.88194444 
9830 1 14 0.95138889 

By drawing the straight line which passes through the pair of points ( /100 , ( )t f t ) on the 
Weibull paper and its parallel which passes through the origin (assuming the simplifying hypothesis 
of the model according to which 0 = ), we obtain the following values: 33 100hours =  = 3300h

and 3 = (see figure 1) . 
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Figure 1:  Estimation of Weibull parameters 

4.2. Kolmogorov- Smirov validation test 

table 3 gives the value of the deviation as a function of the values of ( )f t and of ( )F t . The values of 
( )F t being obtained by relation 6. 

Table 3:  Calculation of the gap

( )TBF hours ( )F t ( )f t .n iD

1270 0.13766232 0.04861111 0.08905121 
1410 0.16686699 0.11805556 0.04881143 
1940 0.29220549 0.1875 0.10470549 
2110 0.33556924 0.25694444 0.0786248 
2140 0.34330302 0.32638889 0.01691413 
2590 0.45989253 0.39583333 0.0640592 
2720 0.49306656 0.46527778 0.02778878 
2880 0.53331059 0.53472222 0.00141163 
2930 0.54539607 0.60416667 0.0587706 
3350 0.64318313 0.67361111 0.03042798 
4350 0.82405842 0.74305556 0.08100286 
5670 0.94777262 0.8125 0.13527262 
6440 0.97781660 0.88194444 0.09587216 
9830 1 0.95138889 0.04861111 

      From table 3, 
.maxnD = 0.13527262. 

For industrial equipment we take a risk of error  = 0.05. 
By exploiting the catalog giving the Level of significance of  , we find: ,nD  = 0.349. 
It can be seen that .max ,n nD D  , consequently, the hypothesis according to which the times of

failure follow a Weibull law is validated. 
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4.3. Development of the cost model 

The following assumptions are made: 
Under the following two assumptions: 

❑ The element receives minimal repair following failure, so failures occur according to an
inhomogeneous Poisson process.

❑ The system failure distribution follows a Weibull model with 0 = .
According to relations 3 and 12 giving respectively the rate of failures and the average number of 
failures, we have relations 17 and 18. 
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0 0
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❑ By replacing 17 in 14, we obtain the relations 19 and 20.
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The relation 20 represents our objective function to be minimized. To achieve this goal, two 
exact resolution methods will be used (the simple derivation technique and the golden ratio 
method), in order to compare their results with those of the genetic algorithm. 

4.4. Optimization using simple derivation 

The objective function ( )C T that we want to minimize is differentiable and in this case, it suffices to 

determine optT the solution of the equation ( )
0

C T

T


=


which will lead us to the minimum cost (

minC ) 

of ( )C T by taking into consideration the following conditions: 

 0Cc ; 0Cp ; 0Cop ; 0T ; 0K ; 1 ; 0 and ( )
0

C T

T T

  
 

  

By performing a simple derivation of the ( )C T previous expression, we obtain relations 21 and 
22. 
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We deduce the expression for optT for that ( )
0

C T

T


=


by relation 23. 

According to relation 22, we have: 
( )( ) ( )( ) 1 ( 1). . 1   ...      1  .        
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−
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We have established a program on Matlab to calculate the value of optT in hours and days and
the minimum cost (Algorithm 1). 

The maintenance costs are proposed as well as the number of partial overhauls K and the 
maintenance efficiency factor ( table 4). 

Table 4:  Data for simulation on Matlab

Cc Cp Cov K   

170000 900000 8000000 8 0.9 3 3300 

 %******************************************************************** 
 %    Algorithm 1 Calculation code for simple derivation 
  %******************************************************************** 
  %            Developed by: Dr NGNASSI DJAMI Aslain Brisco 
 %                                         Teacher-Researcher 
 %********************************************************************  
 %                                 Main program 
 %******************************************************************** 
 clear all  
 close all  
 clcc  
 %******************************************************************** 
 %                     Inserting data (Cc, Cov, Cp, K, beta, eta, alfa) 
 %********************************************************************  
 A0=1; 
  for j= 1: K -1 

    A0=A0+exp(j*alpha); 
    end  

 A1=( eta^beta )/(beta-1); 
 A2=(K- 1)* Cp+Cov ; 
 A3=Cc*A0; 
 T =[ 0:6000]; 
  C=(((T.^(beta-1 ))* Cc*A0)/(K*( eta^beta )))+(A2./(K*T)); 
 TT=(A1*(A2/A3 ))^ (1/beta) 
 T1=TT/24 
 Cmin = (((TT. ^(beta-1)) *Cc*A0)/(K*(eta^beta))) +(A2. /(K*TT))    
 %C(Toptimum)  
 plot (T, C); 
 %********************************************************************** 

 By executing the proposed code, we obtain the results presented table 5. 
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Table 5:  optT and 
minC obtained by simple derivation

      System 
optT in hours optT in days min ( )C USD

Unit production     1181.3   49.2192 2269.8 

figure 2 graphically shows the evolution of cost over time. 

Figure 2: Cost evolution over time 

The curve presented in figure 2 illustrates the result of the program. The cost begins to decrease until 
it reaches its minimum value of optT , then it increases over time. 

4.5. Optimization using the golden ratio method 

The program proposed in Matlab for the golden ratio method is given by Algorithm 2. 
%*********************************************************************************** 
%   Algorithm 2 Calculation code for Golden Search Method 

  %*********************************************************************************** 
  %                 Developed by: Dr NGNASSI DJAMI Aslain Brisco 
  %                                             Teacher-Researcher 
  %*********************************************************************************** 
  %                                               Main program 
%***********************************************************************************  
clear all  
close all  
clcc  
%***********************************************************************************  
% %%                                                Input 
%*********************************************************************************** 
fx =(((x.^(beta-1 ))* Cc*A0)/(K*( eta^beta )))+(A2./(K*x)); 
max = 100; 
es = 10^-5; 
r = (5^.5-1)/2; 
************************************************************************************* 
% %%                 Determine the Interval for the Initial Guess 
%*********************************************************************************** 
x =[ 0:6000]; 
f = subs( fx,x ); 
a=100; 
b=6000; 
%*********************************************************************************** 
%%%%%                           Perform Golden Search 
%**************** ******************************************************************* 
x1 = a; 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

558



Ngnassi Djami A.B; Samon J.B; Nzié W 
OPTIMIZATION OF PREVENTIVE MAINTENANCE 

xu = b; 
iter = 1; 
d = r*( xu -xl); 
x1 = xl+d ; 
x2 = xu- d; 
f1 = subs( fx,x 1); 
f2 = subs( fx,x 2); 
if f1<f2 
xopt = x1; 
else 
xopt = x2; 
end 
while ( 1) 
d = r*d; 
if f1<f2 
x1 = x2; 
x2 = x1; 
x1 = xl+d ; 
f2 = f1; 
f1 = subs( fx,x 1); 
else 
xu = x1; 
x1 = x2; 
x2 = xu- d; 
f1 = f2; 
f2 = subs( fx,x 2); 
end 
iter = iter+1; 
if f1<f2 
xopt = x1; 
else 
xopt = x2; 
end 
if xopt ~=0 
ea = (1 - r)* abs(( xu -xl)/ xopt )*100; 
end 
if ea <=es|| iter  >= maxit, break 
end 
end 
Gold = xopt 
%******************************************************************************* 

By implementing the proposed program, we obtain the results of table 6. 
Table 6:  optT and 

minC obtained by golden ratio method

      System optT in hours optT in days min ( )C USD

Unit production     1181.3   49.2192 2269.8 

The results provided by the golden ratio method are identical to those of the simple derivation, 
which proves the effectiveness of this method in finding the extremum of a unimodal function. 

4.6 Optimization using genetic algorithm 

The program proposed in Matlab for the genetic algorithm is given by Algorithm 3. 
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%*********************************************************************************************************** 
%                                 Algorithm 3 Calculation code for Genetic Algorithm 
************************************************************************************************************* 
%                                   Developed by: Dr NGNASSI DJAMI Aslain Brisco 
%                                                            Teacher-Researcher 
%*********************************************************************************************************** 
%                                                                 Main program 
%*********************************************************************************************************** 
clear all  
close all  
clcc  
%*********************************************************************************************************** 
%                                                            Parameter initialization 
%*********************************************************************************************************** 
Np= 60;       % Population size 
Pc = 0.5;       % Probability of crossing 
Pm=0.01;        % Probability of mutation 
Kmax = 100;  % Maximum number of iterations 
lb = [100 ];      % lower bound 
ub = [6000 ];   % upper bound 
x0 = [1010 ];    % Approximate value 
Fitness_F=@(x)(((x(1 ).^ (beta-1))*cc*A0)/(k*(nu^beta)))+(A2./(k*x(1)) ); 
options= gaoptimset (‘populationsize' ,60, 'generations' ,100, 'MutationFcn' ,{@ 
mutationadaptfeasible ,0.01}, 'crossoverfraction' ,0.5, 'initialpopulation' ,[1010], 'PopInitRange' 
,[lb;ub] , 'plotfcns' ,@gaplotbestindiv) 
[ xo_ga fo_ga ]= ga ( Fitness_F ,1,options); 
Cmin = fo_ga 
Tmin_Hours_ga = xo_ga 
Tmin_days_ga = xo_ga /24 
%*********************************************************************************************************** 
      By running the proposed program after fifteen iterations, the results given in table 7 are obtained. 

Table 7: optT and 
minC obtained by genetic algorithm

Execution 0( )opt HoursT x− 0( / 24)opt daysT x− min ( )C USD

1 1181.3 49.2192 2269.8 
2 1181.3 49.2192 2269.8 
3 1181.3 49.2192 2269.8 
4 1256.4 52.3503 2278.6 
5 1181.3 49.2192 2269.8 
6 1188.9 49.5364 2269.9 
7 1181.3 49.2192 2269.8 
8 1181.3 49.2192 2269.8 
9 1176.1 49.0061 2269.9 

10 1181.3 49.2192 2269.8 
11 1159.9 48.3273 2270.6 
12 1148.8 47.8665 2271.6 
13 1181.3 49.2192 2269.8 
14 1181.2 49.2185 2269.8 
15 1181.3 49.2190 2269.8 
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According to table 7, we observe a uniqueness of solution for the colored iterations. On the 

other hand, for the other iterations, we rather observe a diversity of solutions. However, we notice 
that the colored solutions correspond exactly to the optimal solution of our problem. Indeed, the 
minimum value of the cost and the durations of exploitations of the production unit are the same as 
those of the two preceding methods, therefore the method of the genetic algorithm is convergent. 

4.7. Interpretation of results 

The results obtained in this application show that the production unit will have to undergo a partial 
overhaul after 49 days of operation, and after five partial overhauls, i.e. more than eight months of 
operation, the production unit will receive a general revision. 

5. Conclusion

Having reached the end of writing this paper, the objective of which was to minimize the preventive 
maintenance costs of a production unit, we first developed the cost model corresponding to an 
imperfect periodic maintenance policy with minimal repair, then we deployed two exact resolution 
methods (the simple derivation technique and the golden ratio method) and a stochastic method 
(the genetic algorithm), each time proposing a code on Matlab. It turns out that by implementing the 
different methods, a uniformity of the optimal solution is obtained, which well justifies the 
convergence of the genetic algorithm. Furthermore, thanks to the proposed Matlab code, we were 
able to determine the periodicity at which the production unit will undergo a general overhaul. 

References 

[1] Sheu SH, Lin Y, Liao G. Optimum policies for a system with general imperfect maintenance.
Reliability Engineering and System Safety 2006: 91: 362-369. 

[2] Pham H, Wang H. Imperfect maintenance. European Journal of Operational Research 1996:
94: 425-438. 

[3] Thomas LC A survey of maintenance and replacement models of multi-item systems.
Reliability Engineering 1986: 16:297-309. 

[4] Valdez-Flores C, Feldman RM A survey of preventive maintenance models for hastically
deteriorating single-unit systems. Naval Research Logistics 1989: 36: 419-446. 

[5] Cho ID, Parlar M. A survey of maintenance models for multi-unit systems. European Journal
of Operational Research 1991: 51: 1-23. 

[6] Van Der Duyn Schouten F. Maintenance policies for multicomponent systems. In: Ozekici ,
S. (Ed.), Reliability and maintenance of complex systems: And Overview. Reliability and
Maintenance of Complex System 1996: 154: 117–136.

[7] Dekker R, Wildman RE, Van Der Duyn Schouten FA A review of multicomponent
maintenance models with economic dependence. Mathematical Methods of Operational Research 
1997: 45: 411-435.  

[8] Aupied J. Experience feedback applied to the operational safety of equipment in operation.
Editions Eyrolles 1994. 

[9] Thomas M. Reliability, predictive maintenance and machine vibration. University of Quebec
Press 2012. 

[10] Tahara A, Nishida T. Optimal replacement policy for minimal repair model. Journal of
Operations Research Society of Japan 1975: 18: 113-124. 

[11] Nakagawa T. Optimal policy of continuous and discrete replacement with minimal repair
at failure. Naval Research Logistics Quarterly 1984:31:543-550. 

[12] Sheu S, Kuo C, Nakagawa T. Extended optimal age replacement policy with minimal repair.
RAIRO: Operational Research 1993:27:337-351. 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

561

https://link.springer.com/book/10.1007/978-3-662-03274-9
https://link.springer.com/book/10.1007/978-3-662-03274-9


Ngnassi Djami A.B; Samon J.B; Nzié W 
OPTIMIZATION OF PREVENTIVE MAINTENANCE 
[13] Sheu S, Griffith W. S, Nakagawa T. Extended optimal replacement model with random

minimal repair costs. European Journal of Operational Research 1995:83:636-649. 
[14] Block HW, Langberg NA, Savits TH Repair replacement policies. Journal of Applied

Probability 1993: 30: 194-206. 
[15] Wang H, Pham H. Some maintenance models and availability with imperfect maintenance

in production systems. Annals of Operations Research 1999: 91: 305-318. 
[16] Barlow RE, Hunter LC Optimum preventive maintenance policies. Operations Research

1960: 8: 90-100. 
[17] Liu X, Makis V, Jardine AKS A replacement model with overhauls and repairs. Naval
Research Logistics 1995: 42:1063-1079.
[18] Berg M, Epstein B. A modified block replacement policy. Naval Research Logistics 1976: 23:

15-24.
[19] Tango T. Extended block replacement policy with used items. Journal of Applied

Probability 1978: 15: 560-572. 
[20] Nakagawa T. A summary of periodic replacement with minimal repair at failure. Journal of

Operations Research Society of Japan 1981a: 24:213-228. 
[21] Nakagawa T. Modified periodic replacement with minimal repair at failure. IEEE

Transactions on Reliability 1981b: R-30 (2): 165-168. 
[22] Gertsbakh I. Reliability Theory with applications to preventive maintenance. Springer,

Berlin 2002:34:1111-1114. 
[23] Zheng X, Fard N. A maintenance policy for repairable systems based on opportunistic

failure rate tolerance. IEEE Transactions on Reliability 1991: 40: 237-244. 
[24] Jayabalan V, Chaudhuri D. Replacement policies: a near optimal algorithm. IIE Transactions

1995:27:784-788. 
[25] Nguyen DG, Murthy DNP Optimal repair limit replacement policies with imperfect repair.
Journal of Operational Research Society 1981: 32: 409-416.
[26] Kijima M, Nakagawa T. Replacement policies of a shock model with imperfect preventive

maintenance. European Journal of Operations Research 1992:57: 100-110. 
[27] Hastings NA.The repair limit method. Operational Research Quarterly 1969: 20: 337-349.
[28] Wang H, Pham H. Optimal maintenance policies for several imperfect maintenance models.

International Journal of Systems Science 1996: 27: 543-549. 
[29] Nakagawa T, Osaki S. The optimum repair limit replacement policies. Operational Research

Quarterly 1974: 25: 311-317. 
[30] Dohi T, Matsushima N, Kaio N, Osaki S. Nonparametric repair-limit replacement policies

with imperfect repair. European Journal of Operational Research 1997: 96 (2): 260–273. 
[31] Puchinger J, Raidl. GR Combining metaheuristics and exact algorithms in combinatorial

optimization: A survey and classification. In proceedings of the first international work- coreference 
on the interplay between natural and artificial computation 2005:41–53.  

[32] Land A. H, Doig AG An automatic method for solving discrete programming problems.
Econometrica 1960:28(3):497–520. 

[33] Schrijver A. Theory of linear and integer programming. Wiley and Sons 1986.
[34] Fletcher R, Reeves CM Function minimization by conjugal gradients. Computer Journal

1964:7: 148-154. 
[35] Fletcher R. Practical Methods of Optimization. John Wiley & Sons 1987.
[36] Press WH Numerical Recipes in C: The art of Scientific Computing. Cambridge University

Press 1992. 
[37] Culioli JC Introduction to optimization. Ellipsis 1994.
[38] Minoux M. Mathematical programming: Volume 1 Theory and algorithms. Ed. Dunod 1983.
[39] Tabeb M. Parallelization of a genetic algorithm for the single-machine scheduling problem

with sequence-dependent setup times. University of Quebec at Chicoutimi 2008. 

RT&A, No 2 (78) 
 Volume 19, June, 2024 

562



Ngnassi Djami A.B; Samon J.B; Nzié W 
OPTIMIZATION OF PREVENTIVE MAINTENANCE 
[40] Benhaddad H, Belabbas M. Parallel genetic algorithm for flow shop scheduling. Master's

thesis, University of Msila 2022. 
[41] Reichenberg I. Cybernetic solution path of an experimental problem. Library Translation

No.1122, Royal Aircraft Establishment, Famborough , UK 1965. 
[42] Holland JH Adaptation in natural and artificial systems. University of Michigan press 1975.
[43] Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison

Wesley 1989. 
[44] Schewefel HP Numerical Optimization of computer models. Wiley Publishing 1981.
[45] Bicking F, Fonteix C, Corriou JP, Marc I. Global optimization by artificial life: a new

technique using genetic population evolution. RAIRO-Operations Research 1994: 28 (1): 23-36. 
[46] Digalakis JG, Margaritis KG. On benchmarking functions for genetic algorithms.

International Journal of Computer Mathematics 2001:77(4): 481-506. 
[47] Jason G D, Konstantinos G M.  An experimental study of benchmarking functions for genetic

algorithms. International Journal of Computer Mathematics 2002: 79(4): 403-416. 
[48] Koumousis VK, Katsaras CP. A saw-tooth genetic algorithm combining the effects of

variable population size and reinitialization to enhance performance. in IEEE Transactions on 
Evolutionary Computation 2006: 10 (1): 19-28.  

[49] Vedat T, Ayse T D. An improved genetic algorithm with initial population strategy and self-
adaptive member grouping. Computers & Structures 2008: 86: 1204-1218. 

[50] Wei C, Chi W, Yajun W. Scalable influence maximization for prevalent viral marketing in
large-scale social networks. Proceedings of the 16th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining – KDD 2010: 10: 1029-1038.  

[51] Nasr A, Elmekkawy TY. Robust and stable flexible job shop scheduling with random
machine breakdowns using a hybrid genetic algorithm. Int. J. Production Economics 2011:132:279-
291.  

[52] Hongbin D, Tao L, Rui D, Jing S. A novel hybrid genetic algorithm with granular
information for feature selection and optimization. Applied Soft Computing 2018: 65:33-46. 

[53] Ahmad H, Khalid A, Esra’a A, Eman A, Awni H, Surya Prasath VB. Choosing mutation and
crossover ratios for genetic algorithms—a review with a new dynamic approach. Information 
2019:10 (390):1-36.  

[54] Ailiang Q, Dong Z, Fanhua Y, Ali AH, Zongda W, Zhennao C, Fayadh A, Romany FM,
Huiling C, Mayun C. Directional mutation and crossover boosted ant colony optimization with 
application to COVID-19 X-ray image segmentation. Computers in Biology and Medicine 2022:148.  

[55] Sethembiso Nonjabulo L, Akshay Kumar S . Effects of Particle Swarm Optimization and
Genetic Algorithm Control Parameters on Overcurrent Relay Selectivity and Speed. in IEEE Access 
2022: 10: 4550 – 4567.  

[56] Junfeng Z, Yanhui Z, Yubo Z, Wen-Long S, Zhile Y, Wei F. Parameters identification of
photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic 
learning. Applied Energy 2022: 314.  

[57] Guo X, Wei T, Wang, Liu S, Qin S, Qi L. Multiobjective u-shaped disassembly line balancing
problem considering human fatigue index and an efficient solution. in IEEE Transactions on 
Computational Social Systems 2023: 10 (4): 2061-2073.  

[58] Agushaka JO, Ezugwu AE, Abualigah L et al. Efficient initialization methods for
population-based metaheuristic algorithms: a comparative study. Arch Computat Methods Eng 
2023: 30: 1727–1787.  

[59] Asha A, Rajesh A, Poonguzhali I, Shabana U, Salem A. Optimized RNN-based performance
prediction of IoT and WSN-oriented smart city application using improved honey badger algorithm. 
Measurement 2023: 210.  

[60] Yong W, Zhen L, Gai-Ge W. Improved differential evolution using two-stage mutation
strategy for multimodal multi-objective optimization. Swarm and Evolutionary Computation 
2023:78.  

RT&A, No 2 (78) 
 Volume 19, June, 2024 

563

https://www.sciencedirect.com/journal/computers-in-biology-and-medicine
https://ieeexplore.ieee.org/author/37089243678
https://ieeexplore.ieee.org/author/37302100700


Rajesh Singh, Kailash R. Kale, Pritee Singh  
ESTIMATION OF PARAMETERS OF BINOMIAL TYPE 
EXPONENTIAL CLASS SRGM USING BAYESIAN TECHNIQUE 

BAYES ESTIMATOR OF PARAMETERS OF BINOMIAL 
TYPE EXPONENTIAL CLASS SRGM USING GAMMA 

PRIORS 

1Rajesh Singh, 2Kailash R. Kale and 3Pritee Singh 
• 

1R. T. M. Nagpur University, Nagpur-440033. 
2G. N. A. ACS College, Barshitakli, Dist-Akola. 

3Institute of Science, Nagpur. 
rsinghamt@hotmail.com 

kailashkale10@gmail.com 
priteesingh25@gmail.com 

Abstract 

The Reliability is one of the key characteristics of software that operates flawlessly and in accordance 
with needs of users. The assessment of Reliability is very important but it is complicated. The one-
parameter exponential class failure intensity function is used in this article to quantify the model and 
assess the software Reliability. The scale parameter and the number of existing total failures are the 
model's parameters. Using the Bayesian approach, the estimators of parameters are obtained under 
the assumption that gamma priors are suitable to provide prior information of the parameters. Using 
risk efficiencies computed under squared error loss, the performance of proposed estimators is studied 
with their corresponding maximum likelihood estimators. The suggested Bayes estimators are found 
to outperform over the equivalent maximum likelihood estimators. 

Keywords: Binomial process, gamma prior, maximum likelihood estimator (MLE), 
Exponential class, software reliability growth model (SRGM), confluent hyper-
geometric function. 

I. Introduction

The modern computers are widely and extensively used worldwide for solving the majority of 
complex problems pertaining to a variety of fields due to their ability to perform intricate and time-
consuming tasks quickly, accurately, and with effective global communication. When completing all 
of such tasks, very sophisticated computers are used, and they are guided by a series of input 
instructions, known as a program or Software. Since, Software are necessary components of every 
computer system, its performance is crucial and has significant role. 

Software are developed by human and due to its complexity and size, faults are more likely to 
occur. As a result, it gets the user's acceptance or rejection. For acceptance of any Software, its 
reliability is probably most important feature. Reliable software possesses high-quality and meets 
the needs of users or industries or government organizations. Software must be of an acceptable 
quality, which is closely connected to reliability qualities, to please the consumers. Since the 1950s, 
the area of software reliability is being studied by researchers, and several significant results have 
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been produced. A variety of modern Statistical methods may be applied to measure the Software 
reliability. One of the strategy uses a zero-one method, where a flawed Software has a reliability of 
zero and a faultless Software has a reliability of one. Another strategy focuses on testing of Software, 
where software reliability is defined as the proportion of times a software executes an intended 
function as predicted. Thus, the measurement of Software reliability may be done using this method. 

The usage of Software Reliability Growth Models (SRGMs) in the evaluation of software 
reliability is highly beneficial. The operational profile, accessibility of limited failures and irrational 
assumptions provide significant difficulties for SRGMs in practice. When estimating the parameters 
of software reliability model, various fundamental techniques are used which are maximum 
likelihood method, least squares estimation, Bayesian estimation, the EM method, etc., [5], [6], [7] 
and [12] have presented the calculation of factors, such as failure rate and total number of failures 
incorporated in SRGMs. 

Software Engineering is the process of developing a software that can balance the 
dependability, delivery time, and price of the developed software. Software reliability modelling, as 
described by [8] is another way to represent software reliability using a mathematical function of 
involve factors, such as fault introduction, fault removal, the operating environment, etc. Software 
reliability is evaluated mathematically and objectively using the body of Statistics and Probability 
theory.  

The Binomial type models, as categorized by [10] and [11] have been taken into consideration 
for study in this paper. Here, an attempt is made to derive the Bayes estimators for the parameters 
of the Binomial type exponential class. The prior distribution for the total number of initial software 
failures and scale parameters have been taken as the gamma prior distribution assuming that the 
experimenter is having prior information about both the parameters c.f. [14]- [20]. 

II. Model Characterization

Based on the following assumptions [12] have modelled the process of software failure using 
Binomial type models.  

• The defect that resulted in a software failure will always be immediately fixed.
• There are ߠ intrinsic faults in the programme.
• The hazard rates ܼ(ݐ) for all faults are same.

According to [12, 19], if ݂(ݐ) is the class of the SRGM and  (ݐ)ߣ =  .is failure intensity (ݐ)݂ߠ 
Considering binomial process and solving the differential equations using boundary conditions 

ܲ(0) = 1 and ܲ(0) = 0 ∀ ݊ =  0,1,2, …   ., the following result is obtainedߠ
(ݐ)ܯ]ܲ = ݊] = ൫ఏబ

 ൯ሼ1 − ݊,   ሽఏబି[ݐଵߠ−] ݔሽሼ݁[ݐଵߠ−] ݔ݁ = 0,1,2, … ,  .ߠ
The ܲ[(ݐ)ܯ = ݊] gives the probability that (ݐ)ܯ = ݊ number of failures encountered at time t has a 
binomial distribution i.e. Binomial type of the software reliability model [12].  
The Binomial Type Exponential Class model has failure intensity 

(ݐ)ߣ = ,  ଵ݁ିఏభ௧ߠߠ ݐ > ߠ ,0 > 0 and ߠଵ > 0                (1) 
where ߠ, failure rate (ߠଵ) are the parameters of the model and ݐ be the execution time. This model 
exhibits failure intensity similar to [4] and [13]. The function of the mean failures is given by 

(ݐ)ߤ = [1ߠ − ݁ିఏభ௧]  , ݐ > ߠ ,0 > 0 and ߠଵ > 0                (2) 
The expected number of failures at time t is represented by the Binomial distribution with the mean 
failure function. 

(ݐ)ߤ = ሼ1ߠ  −  ሽ[ݐଵߠ−] ݔ݁
and variance of (ݐ)ܯ is 

[(ݐ)ܯ]ݎܽݒ = ሼ1ߠ  −  .ሽ[ݐଵߠ−] ݔሽሼ݁[ݐଵߠ−] ݔ݁
Let ݉  be the number of failures that occurred upto execution time ݐ , then the likelihood function 
of Binomial type exponential class model is 
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,ߠ൫ܮ ൯ݐ|ଵߠ = ݁ିఏభ௧(ఏబି)ߠଵ
݁ିఏభ்ߠ

  , ݐ > 0, ଵߠ > ߠ ,0 > 0 and ݐ = 0  (3) 
where 

ܶ = ∑ ݐ

ୀଵ  

and 
ߠ

  are falling factorials (cf. [1], [2] and [3]). 
The MLEs of ߠ and ߠଵ are obtained by applying standard method of obtaining MLE from equation 
(3) which comes out to be

∑ ൫ߠ − ݅ + 1൯
ିଵ

ୀଵ =    (4)ݐଵߠ
and 

ଵߠ = ݉ൣݐ൫ߠ − ݉൯ + ܶ൧
ିଵ  (5) 

The solution for θ୫  and ߠଵ can be obtained by solving (4) and (5) using any standard 
iterative method. 

III. Priors for Model Parameters

If the software professional could somehow predict or guess the information about the total number 
of failures present in the software and the value of scale parameter θଵ. Let's thus assume that gamma 
priors are seen to be appropriate for both ߠ and ߠଵ then it would be appropriate to use an 
informative prior for ߠ and ߠଵ. The time-to-first failure distribution for a system with standby 
exponentially dispersed backups may naturally exhibit the gamma likelihood. Additionally, in 
practice, the gamma distribution may appear whenever items were tested, and whenever a part of 
an item or an entire item fails is replaced by an identical one having an exponential failure time 
distribution with parameter, the total amount of time on test could subsequently follow a gamma 
probability function. The gamma distribution is based on the fact that the total of i.i.d. random failure 
times after exponentials with parameters is distributed as gamma [9] and [24]. When an item may 
fail partially, or when a certain number of partial failures occur before an item fails (such as with 
redundant systems), the gamma distribution can be employed. Modelling the time to failure or 
failure rates for products with infant mortality may be done using the continuous Gamma 
probability. 

Many studies have shown that the gamma distribution is feasible for failure rate and 
sufficiently adaptable for real-world hardware reliability applications in life testing. [7] created a 
Bayesian SRGM under the gamma prior assumption for the parameter of exponentially distributed 
periods between model failures. The Bayesian software reliability growth models established by [5] 
and [6] take into account the gamma prior distribution.  

Thus, the gamma prior distributions may be used as informative priors in the current 
investigation for the parameters ߠ, and ߠଵ. Therefore,  

ߙ(ߠ)݃ ൜ߠ
ఈିଵ݁ିఉఏబ   , 0 < ߠ < ∞

0                      , ݁ݏ݅ݓݎℎ݁ݐܱ
and 

ߙ(ଵߠ)݃ ൜ߠଵ
ఎିଵ݁ିఔఏభ       , 0 < ଵߠ < ∞

݁ݏ݅ݓݎℎ݁ݐܱ   ,                        0
where ߟ ,ߚ ,ߙ, and ߥ are hyper parameters of considered priors for ߠ and ߠଵ respectively. The hyper 
parameters ߟ and ߙ are shape parameters and ߥ and ߚ are scale parameters of the prior distributions. 
The flexibility in choices of ߟ ,ߚ ,ߙ, and ߥ  allows the researcher to select the prior model for 
parameters that best expresses the current state of knowledge about the number of failures and 
failure rate.  

Hence, the joint prior distribution of both parameters ߠ and ߠଵ is given as 

,ߠ)݃ ߙ(ଵߠ ൜ ߠ
ఈିଵߠଵ

ఎିଵ݁ିఉఏబ݁ିఔఏభ    , 0 < ,ߠ ଵߠ < ∞
݁ݏ݅ݓݎℎ݁ݐܱ   ,                                                     0

(6)
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IV. Joint Posterior and Marginal Posterior Distributions

Assuming the total execution time is ݐ, during this time ݉  failures are experienced at times ݐ, ݅ =
1,2, … , ݉, θ be the number of failures present in the software and ߠଵ be the failure rate then, 
combining likelihood function (3) with joint prior given by (6), the joint posterior of ߠ and ߠଵ given 
ݐ , ݅ = 1,2, … , ݉(=  is (ݐ
,ߠ൫ߨ ൯ݐଵหߠ ∝ ݁ିఏభ[௧(ఏబି)ା(்ାఔ)]ߠଵ

ାఎ ିଵߠ
ఈିଵ݁ିఉఏబߠ

  , mୣ < θ < ∞,0 < θଵ < ∞  (7) 
The constant of proportionality (normalizing constant) of above equation is 
ܦ =   ݁ିఏభ[௧(ఏబି)ା(்ାఔ)]ߠଵ

ାఎ ିଵߠ
ఈିଵ݁ିఉఏబߠ

ஶ


ߠ݀
ஶ


,  ଵߠ݀ ݉ < ߠ < ∞,0 < ଵߠ < ∞  (8) 

The above expression of D can be solved using the results given in [1], [2], and [3] as 

ܦ = ܥ ∑ ܵ

()݉


ୀ ∑ ൫ାఈିଵ
 ൯ ቀ

௧

(்ାఔ)
ቁ

ି
ଵܫ

ାఈିଵ
ୀ  

where 

ܥ =
௰(ାఎ)

ഀషభ

ഁ భ்(்ାఔ)శആ

ଵܫ = ݎ)߁ + ߖ(1 ቀݎ + 1, ݎ − ݉ + ߟ + 2,
ఉ(்ାఔ)

௧
ቁ 

.)߁          )  is standard Gamma function and ߖ(. , . , . ) is confluent hyper-geometric function 
defined in [1], [2], and [3]. 
The marginal posterior of ߠ, say ߨ(ߠ|ݐ) can be obtained after integrating ߨ൫ߠ,  ൯ over theݐଵหߠ
whole range of ߠଵ and it is 

൯ݐหߠ൫ߨ ∝ ݉)߁ + ߠ(ߟ
ఈିଵ݁ିఉఏబߠ

[ݐ(ߠ − ݉) + (ܶ +  (9)  (ାఎ)ି[(ߥ
where 

ߠ ≥ ݉ , ൫ݐ(ߠ − ݉) + (ܶ + ൯(ߥ ≥ 0 
The marginal posterior of ߠଵ, say ߨ(ߠଵ|ݐ) is the solution of ߨ൫ߠଵหݐ൯ =  ,ߠ൫ߨ ൯ݐଵหߠ

ஶ


 . i.eߠ݀

൯ݐଵหߠ൫ߨ ∝ ଵߠ
ାఎିଵ݁ିఏభ[(்ାఔ)ି௧] ܫଶ 

(10) 
where 

ଶܫ  = ∑ ܵ

()
ୀ ݁ି(ఉାఏభ௧) ∑

(ାఈିଵ)!

!
݉

(ߚ + )ି(ାఈି)ାఈିଵݐଵߠ
ୀ  

V. Bayes Estimates for Model Parameters

The Bayes estimators of ߠ and ߠଵ are posterior mean under the squared error loss function. The 
Bayes estimator for ߠ i.e. the posterior mean can be obtained from (9) and is 

ߠ ∝
௰(ାఎ)

ഀ

ഁ భ்(்ାఔ)శആ ∑ ܵ

()
ୀ ݉

 ∑ ൫ାఈ
 ൯ାఈ

ୀ ቂ ௧

(்ାఔ)
ቃ

ି
 ଷܫ

where 
ଷܫ  = ݎ)߁ + ߖ(1 ቀݎ + 1, ݎ − ݉ + ߟ + 2,

ఉ(்ାఔ)

௧
ቁ 

The Bayes estimator for θଵ is the posterior mean of its marginal posterior distribution (10) is 

ଵߠ ∝
௰(ାఎାଵ)

ഀషభ

ഁ భ்(்ାఔ)శആశభ ∑ ܵ

()
ୀ ݉

 ∑ ൫ାఈିଵ
 ൯ାఈିଵ

ୀ ቂ
௧

(்ାఔ)
ቃ

ି
 ସܫ

Where 
ସܫ = ݎ)߁ + ߖ(1 ቀݎ + 1, ݎ − ݉ + ߟ + 1,

ఉ(்ାఔ)

௧
ቁ 

VI. Discussion

The proposed Bayes estimators i.e. ߠ and ߠଵ of total number of failures (ߠ) and failure rate (ߠଵ) 
for the parameters of Binomial type exponential class SRGM are obtained by considering gamma 
priors and are compared with corresponding maximum likelihood estimators ߠ and ߠଵ 
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respectively. The comparative performance of proposed Bayes estimators against corresponding 

maximum likelihood estimators has been studied based on the risk efficiencies i.e. ܴܧ =
ா൫ఏಳబିఏబ൯

మ

ா൫ఏబିఏబ൯
మ 

and ܴܧଵ =
ா൫ఏಳభିఏభ൯

మ

ா൫ఏభିఏభ൯
మ. The estimators ߠ and ߠଵ are based on the prior parameters ߥ ,ߟ ,ߚ ,ߙ and 

execution time ݐ. The risk efficiencies are calculated by considering different values of these 
constants and arbitrary values of parameters ߠ and ߠଵ using the Monte Carlo Simulation technique 
by generating 103 samples. An execution time ݐ is prefixed and up to this time, sample failures are 
generated and the risk efficiencies are presented in the following Figure 1 to Figure 14.   

Consider the effect of variation in the value of ݐ on the risk efficiencies of the proposed Bayes 
estimator ߠ, given in Figure 1 to Figure 4.  

Figure 1: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ߙ ,(29(1)20 = ߚ ,30 = ߟ ,10 = ߥ ,10 =
10 and   ݐ =  3.0 

Figure 2: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ߙ ,(29(1)20 = ߚ ,30 = ߟ ,10 = ߥ ,10 =
10 and ݐ =  3.5 
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Figure 3: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ߙ ,(29(1)20 = ߚ ,30 = ߟ ,10 = ߥ ,10 =
10 and ݐ =  4.0 

Figure 4: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ߙ ,(29(1)20 = ߚ ,30 = ߟ ,10 = ߥ ,10 =
10 and ݐ =  4.5 

From these figures, it is seen that for the increase in value of ݐ, the risk efficiencies ܴܧ of Bayes 
estimator ߠ decrease as ߠ and ߠଵ increase. The point of maxima varies as the value of ݐ changes. 
Particularly, the risk efficiency ܴܧ attains maxima at smaller values of ߠ and ߠଵ for increasing 
values of ݐ.  

The variation of shape constant ߙ(= 30(5)40) of proposed prior for the total number of failures, 
the risk efficiencies of Bayes estimators ߠ and ߠଵ are presented in Figure 5 and Figure 6.  
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Figure 5: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ ,(29(1)20 = ߚ ,4.0  = ߟ ,10 = ߥ ,10 =
10 and ߙ = 35 

Figure 6: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ ,(29(1)20 = ߚ , 4.0  = ߟ ,10 = ߥ ,10 =
10 and ߙ = 40 

It is observed that the values of risk efficiencies of both the proposed estimators are increased for 
increasing the value of ߙ. Here, in these figures the risk efficiencies of both the estimators are 
increasing for increasing values of ߙ.  

The risk efficiencies of Bayes estimators ߠ and ߠଵ i.e. ܴܧ and ܴܧଵ calculated for different 
values of scale constant ߚ(= 1,10(5)20) of prior proposed for ߠ are summarized in Figure 7 to 
Figure 8.  
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Figure 7: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ ,(29(1)20 = ߙ ,4.0  = ߟ , ,30 = ߥ ,10 =
10 and ߚ = 1 

Figure 8: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ ,(29(1)20 = ߙ ,4.0  = ߟ  ,30 = ߥ ,10 =
10 and ߚ = 15 

Here, the risk efficiencies of both estimators are decreasing for increasing values of ߚ. It is also 
seen that, both the proposed Bayes estimators ߠ and ߠଵ are becoming more inefficient than 
corresponding maximum likelihood estimators as ߚ increases.  

The risk efficiencies of Bayes estimators ߠ and ߠଵ i.e. ܴܧ and ܴܧଵ are also evaluated using 
various values of shape constant ߟ(= 1,10(5)20) of prior for ߠଵ and are summarized in Figure 9 to 
Figure 11.  
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Figure 9: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ,(0.21(0.01)0.12 ݐ,(29(1)20 = ߙ ,4.0  = ߚ ,30 = ߥ  ,10 =
10 and ߟ = 1 

Figure 10: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ(29(1)20 = ߙ ,4.0  = ߚ ,30 = ߥ  ,10 =
10 and ߟ = 15 
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Figure 11: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ ,(29(1)20 =  4.0, ߙ = ߚ ,30 =
ߥ  ,10 = 10 and ߟ = 20 

Here, it is observed that the risk efficiencies of both estimators decrease for the increase in the values 
of ߟ. It is also seen that, both the proposed Bayes estimators ߠ and ߠଵ are becoming more 
inefficient than corresponding maximum likelihood estimators as ߟ increasing.  

The risk efficiencies of Bayes estimators ߠ and ߠଵ i.e. ܴܧ and ܴܧଵ evaluated using various 
values of scale constant ߥ(= 1,10(5)20) of prior ߠଵ and are summarized from Figure 12 to Figure 14. 

Figure 12: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ߙ ,(29(1)20 = ߚ ,30 = ߟ ,10 = ݐ ,10 =
 4.0 and ߥ = 1 
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Figure 13: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ,(0.21(0.01)0.12 ݐ ,(29(1)20 = ߙ ,4.0  = ߚ ,30 = ߟ ,10 =
10 and ߥ = 15 

Figure 14: Risk Efficiencies of ߠ and ߠଵ, for ߠଵ(= =)ߠ ,(0.21(0.01)0.12 ݐ ,(29(1)20 = ߙ ,4.0  = ߚ ,30 = 10, 
ߟ = 10, and ߥ = 20 

Here, it is seen that the risk efficiencies of ߠ are increasing whereas the risk efficiencies of ߠଵ are 
decreasing for increasing the values of ߥ. It is also seen that the proposed Bayes estimator ߠ is 
becoming efficient as ߟ increases whereas ߠଵ becoming more inefficient than the corresponding 
maximum likelihood estimator.  

VII. Conclusions

Both the proposed Bayes estimator of ߠ and ߠଵ i.e. ߠ and ߠଵ can be preferred over corresponding 
MLEs if the parameters of gamma priors for model parameters are properly chosen. The value of ݐ 
should be small for moderate values of true parameters and prior constants. The values of shape 
constant α of prior proposed for ߠ should be chosen moderately large for smaller values of ݐ. The 
values of scale constant ߚ of prior proposed for the total number of failures i.e. ߠ should be chosen 
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smaller when values of ݐ are small. The values of prior parameters ߟ and ߥ should be chosen smaller 
for smaller values of ݐ. 
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Abstract

The article considers multi-component and multi-stage mathematical models of queuing systems (QS)
with the distribution of the incoming flow simultaneously between the system components, which consist
of a certain number of service channels and waiting places in the queue. The maintenance of requirements
with a lack of time to stay in the service channel and waiting is considered, while the service process in
the QS of each component consists of several stages with the corresponding duration, and the full-service
period is equal to the sum of such time intervals. The number of components and their parameters
correspond to the similar characteristics of the production divisions of the repair enterprise. The study
of the effectiveness of the operation of the repair enterprise as a multi-component and multi-stage QS
consists in determining the values of the initial parameters of the QS components, taking into account
the restrictions imposed on them, in order to obtain the largest values of the probabilities of servicing the
requirements of the QS components and the system as a whole. The model is implemented using Any
Logic University Researcher, which allows you to combine the principles of system dynamics with the
paradigms of agent and discrete-event modelling. The proposed approach to the modelling of maintenance
and repair processes by production divisions of the enterprise as a multi-component and multi-phase
QS allows to determine the effectiveness of the functioning of such a QS and to obtain arguments for
increasing the efficiency of its operation.

Keywords: aviation repair enterprise, aircraft, maintenance and repair, multi-component and
multi-phase queuing system

1. Introduction

About 2% of the total worldwide fossil fuel usage corresponds to fuel consumption in aviation.
Hybrid renewable integration, electrification, hydrogenation and optimizations are necessary
roadmaps for the transition towards low-carbon airport transportation systems [1]. The rise of
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aircraft electrification with a few digital transformations in their operation and maintenance
is making significant strides toward the sustainability of the aviation industry due to these
absolutely new disruptive technologies and is a new challenge in air transportation development
during the following decades.

As a result, aircraft emissions have caused approximately 2% of the total CO2 emissions [2].
Concept of More Electrical Aircraft (MEA) becomes much stronger [3], [4], so as the concepts of
Hybrid Electrical Aircraft (HEP) and Full Electric Aircraft (FEP) in next few years will be realized
in reality and the HEP and FEP will appear in operation evidently [1] − [4]. Components such as
air-conditioning, cabin pressurization, de-icing, landing gear, and brake systems have traditionally
been powered by pneumatic, hydraulic, or mechanical systems. Nowadays, it’s becoming more
common to see these components being electrically powered “ current MEA concept [2]. The
number of electrically powered components will be increased on the board of HEP and FEP
aircraft, and so will the power needs and complexity of the systems. Transmitting large quantities
of electrical power around an aircraft at a high voltage is required to minimize resistive losses.
This transmission creates (or increases) the risk of insulation breakdown and arcing, which can
cause catastrophic equipment failure ” as electric equipment as other usual onboard equipment
of the aircraft.

Also, the ground handling operations, which are used in airports for handling activities and
processing passengers with the help of specially designed vehicles known as ground support
equipment (GSE), will be changed from traditional energy usage on more environmentally
efficient “ electrified and hydrogenated [5].

Thus, electrical systems become decisive on board the aircraft both in terms of flight support
and in carrying out maintenance services, which predetermines the need for high levels of
reliability in carrying out such work. These FEA and HEA concepts will compete with sustainable
aviation fuels (SAFs) implementation in the aviation sector, including biofuels [6] and hydrogen
[7].

The aircraft maintenance system is designed to maintain and restore the airworthiness and
serviceability of aircraft and prepare them for flight. Technical operation is carried out by
operators, aviation and technical bases, maintenance and repair enterprises, repair enterprises,
aviation and technical services of airports [8], [9].

One of the main factors of aircraft flight safety is the reliability of the on-board power
supply system, which includes power sources, a control and protection system, switching
equipment of the power distribution system, electric drives, lighting equipment, light signalling,
fire extinguishing and anti-icing systems, and some other equipment. New investigations should
be focused on the safety aspects of manned electric (HEP or FEP) flight based on the emerging
technologies that are expected to be developed in the current decade, including their maintenance
in airports and repair plants. The biggest safety concern is with the lithium-ion batteries that
will power HEP or FEP aircraft. The batteries have the potential to ignite during the charging
process through an uncontrollable temperature increase known as a thermal runaway.´ Also,
battery energy uncertainty and battery charging safety will be the subject for flight hazards. In
addition, any damage to the battery that causes the chemicals inside to be exposed to oxygen or
water can lead to rapid oxidation and system failure.

Maintenance of the power supply system is carried out during capital and other repairs (or
during equivalent works), inspections, modifications, upgrading, elimination of defects, which
are carried out by aircraft repair enterprises both individually and collectively in the relevant
workshops, production divisions, production areas, laboratories, stands, etc.

The work [10] is devoted to the creation and introduction into practice of aviation information
and advisory systems for the maintenance of passenger aircraft based on modern computer
technologies and mathematical methods of information processing.

In [11], the structure of the methodical apparatus for ensuring a given level of serviceability of
on-board equipment products, in particular optoelectronic sighting systems of military aircraft of
the Air Force of Ukraine, is proposed.

Methodical approaches to the structural and parametric determination of general requirements
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for ground flight maintenance facilities are considered in the paper [12], which can be used to
develop a methodology for conducting tests and assessing the quality of modern air traffic control
systems at all stages of the life cycle.

Based on the analysis of the existing methods of calculating the durability indicators of the
radio-electronic system of the aircraft, the factors affecting its reliability were identified in [13],
and measures were proposed to improve the existing scientific and methodological apparatus for
calculating such indicators.

Works [14] and [15] are devoted to the analysis of the causes of failure situations at the
airport. The aircraft maintenance system was analysed, it was shown that ensuring uninterrupted
operation of the airport, execution of the daily flight plan in extraordinary situations is possible
only by introducing into the control circuit of the aircraft ground maintenance system an intelligent
decision support system for dispatchers, which will take into account the positive experience
of their actions in typical, extraordinary and failure situations. This will allow, in particular,
to reduce the time to get out of a malfunctioning situation and to optimize the operational
planning of the ground maintenance of aircraft, considering the available equipment and special
equipment.

In work [16], organizational measures are given, with the help of which it is possible to
minimize the lack of transport aviation during the transportation of cargoes, including the
oversized ones. Data on incidents related to aircraft ground maintenance are given, the causes of
the events are indicated. The main ways of eliminating the problems of standardization of airfield
technical support in the conditions of interaction with NATO and in the processes of international
integration are defined.

The work [17] is devoted to the solution of the problem of minimizing the risks of import
substitution in the process of factory repair of military aviation equipment in the conditions of a
special period, the issue of post-repair maintenance of military aviation equipment due to the
manufacture of the necessary component parts by domestic enterprises in the process of import
substitution is analysed.

The work [18] presents the results of the quality of repair of aircraft equipment at aircraft
repair enterprises. A significant proportion of failures detected during the operation of aviation
equipment after capital (medium) repair is a consequence of manufacturing defects of components
(parts) that were installed on aircraft. Technological methods for ensuring sufficient repair quality
and significantly reducing the risks of production defects are proposed.

The work [19] is devoted to the problem of mathematical modeling of the processes of
technical operation of military aircraft. The results of the analysis show that the most acceptable
modelling method in terms of the compliance of the models with the proposed requirements is
the simulation modelling method, and the more accepted model class for creating a stochastic
model of aircraft maintenance and repair processes is the class of semi-Markov models.

In work [20], a three-dimensional model of an aircraft skin element with riveted seams was
built using the Sold Works software, wind load simulation was carried out in the ANSYS software
package, which made it possible to determine the stress-strain state of aircraft skin elements in
the presence of multifocal damage to riveted seams.

Modern methods and approaches to modelling technological systems are considered in [21].
Basic definitions and concepts are given. New approaches to solving problems that arise during
the development of models of mechanisms, systems and processes of machine-building production
are proposed.

In work [22], it is proposed to consider the functioning of car service enterprises as an open
multi-channel QS, in which random processes occur due to the combined action of random
factors. As a result of the experimental study, information was obtained about the indicators
characterizing maintenance and repair, as well as affecting the change in the parameters of these
processes. The developed model makes it possible to consider the specifics of managing car
maintenance stations.

In [23], a model for assessing the technical condition of radio-electronic elements of water
transport vessels using control and diagnostic equipment as a QS with a limited number of
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channels and a storage of arriving customers is considered. On the basis of various optimization
criteria, it is possible to establish a rational system for assessing the technical condition of such
elements, to determine the feasibility of developing a certain (rational, optimal) number of
different types of control and diagnostic equipment and the effectiveness of new assessment
methods.

The work [24] is devoted to the development of a simulation model of the influence of an
accurate assessment of the readiness factor of mobile control and diagnostic complexes on the
reliability of control of radio-electronic systems of marine transport.

In work [25], a new model of the task of managing the processes of diagnosis and monitoring
of automation tools is proposed for the objects of rail-water transport connection, compiled based
on the results of experimental research and mathematical description using Markov chains with
an informative parameter in the form of damage intensity, aimed at increasing the efficiency of
forecasting the technical condition of automation equipment.

The work [26] describes for locomotive repair workshops in the form of multi-channel QS
with a limited queue. A simulation model of such a workshop as a QS object was developed,
which allowed rational use of equipment, labor force, as well as distribution of repair work time.

In work [27], the issue of modelling the maintenance and repair processes of technical
components of a distributed information system is considered. The model is based on a joint
presentation of the serviced system and its technical operation process in the form of a closed
non-homogeneous QS consisting of two types of QSs. The QS of the first type simulates the
functioning processes of repair bodies to meet and serve the arriving customers.

In work [28], a study of the actions of railway transport emergency units as a process of
functioning of QSs was carried out. The authors established quantitative relationships between
the intensity of the influence of a railway accident dangerous factors, on one hand and, on the
other hand, the time of arrival, deployment and productivity of emergency liquidation units
and the effectiveness of liquidation works due to the implementation of the network-centric
management principles for complex dynamic hierarchical transport systems.

In paper [29], mathematical models of QSs with the distribution of the arrival flow of customers
simultaneously over several service channels are considered. The model is implemented using
agent simulation in the AnyLogic University Researcher environment and the Java compiler. The
use of the proposed mathematical models will make it possible to establish areas of accepted
values of the probability of successful completion of assigned tasks in order to make managerial
decisions regarding the rational use of forces and means for the elimination of the consequences
of railway transport events.

Thus, to improve the management processes for material, human, financial and informational
resources during the maintenance and repair of aircraft and other means of transport, in particular
on-board power supply systems, a wide range of methods of operations research, the queuing
theory and simulation modelling are currently used.

2. Methods

The on-hand practical experience of the organization of maintenance and repair of aviation
equipment indicates that certain types of technical systems of aircraft that require various types
of repair work, modifications, upgrade, inspections, elimination of defects, etc. are sent to specific
production divisions of the repair enterprise, which, according to their purpose, carry out the
necessary types of work according to the specified technologies.

To simulate the processes of maintenance and repair of aircraft, which are carried out by the
production divisions of the aircraft repair enterprise, it is advisable to use multi-component and
multiphase QSs, which can be of both Markov and non-Markov types, capable of serving the
arriving flows of non-priority, in general, heterogeneous (mixed) customers. At the same time,
the system can have an arbitrary number of common service channels of the same type, and each
component can also have an arbitrary number of places in the queue.
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The same service channels can have different performance depending on the types of re-
quirements for which they are involved: when the j-component of the system receives uniform
requirements with the rate λj determined by the overall rate λ of the source, in the general case,
of mixed customers. The magnitude of the source of mixed customers entering the system has an
intensity (arrival rate) of

λ =
L

∑
j=1

λj, (1)

where L is the number of components in the QS. The service process in each component of the
QS consists of several stages (phases) with the corresponding duration Ti, then the full-service
period Ts is equal to

Ts =
KE

∑
j=1

Ti (2)

where KE is the number of such phases.
All Ti durations have certain probability distributions with the appropriate parameters, then

Ts will have a generalized Erlang distribution with the parameters of the probability distributions
of order KE.

The number of components and their parameters correspond to similar, characteristics of the
repair enterprise.

The study of the operation effectiveness of the aviation repair enterprise as a multi-component
QS will consist in determining the probability and time characteristics of each component and
the QS as a whole. Let’s consider several examples.

Example 1. Two-component QS of M/E4/2/3 type in the first component and of M/E3/1/2
in the second component with restrictions on the time spent in the service period β1,2 and waiting
γ1,2, which is due to the force majeure circumstances in the QS operation: β1,2 is the intensity of
leaving the service channel due to the limitation of time spent in the system during the service
period; γ1,2 is the intensity of customers leaving the queue due to the time limit of their stay in
the system during the service waiting period.

The graph of the states of this QS coincides with the graph of the states of the QS presented in
Fig.1.

In Fig. 1 it is indicated:
µ11 = µ/ + β/

1 ; µ12 = 2µ/ + 2β/
1 ; µ13 = µ12 + γ/

1 ; µ14 = µ12 + 2γ/
1 ; µ15 = µ12 + 3γ/

1 ; µ/ =

4µ1; µ1 = 1
ts1

; β/
1 = 4β1; β1 = 1

tlims1

; γ/
1 = 4γ1; γ1 = 1

tlimw1

; µ21 = µ// + β//
2 ; µ// = 3µ2; µ2 =

1
ts2

; β//
2 = 3β2; β2 = 1

tlims2

; µ22 = µ21 + γ//
2 ; γ//

2 = 4γ2; γ2 = 1
tlimw2

; where tlims1
, tlims2

are the

limited service time; tlimw1
, tlimw2

are the limited waiting time.
The QS states of the first component are characterized by the following probabilities [30][31]:

P/
c/ =

4

∑
j=1

P/
c/ j; c/ = 1, 5, (3)

where P/
1 is the probability of occupation of one channel (1 customer in the component); P/

2 is
the probability of occupation of 2 channels (2 customers in the component); P/

3 is the probability
of 3 customers being in the component, of which 2 are served, one is in the queue; P/

4 is the
probability of 4 customers being in the component, of them 2 are served and 2 are in the queue;
P/

5 is the probability of 5 customers being in the component, of which 2 are being served and 3
are in the queue:

P/
1 = ∑4

j=1 P/
1j; P/

2 = ∑4
j=1 P/

2j; P/
3 = ∑4

j=1 P/
3j; P/

4 = ∑4
j=1 P/

4j; P/
5 = ∑4

j=1 P/
5j.
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Figure 1: State graph of QS of M/E4/2/3 type in the first component and M/E3/1/2 type in the second component
with restrictions on the time spent in the service period β1,2 and waiting γ1,2

Similarly, for the QS states of the second component:

P//
c// =

3

∑
j=1

P//
c// j; c// = 1, 3, (4)

where P//
1 is the probability of one customer being served in the component; P//

2 is the
probability of 2 customers being in the component, one of them is in service, the other is in the
queue; P//

3 is the probability of 3 customers being in the component, one of them is in service,
two are in the queue:

P//
1 = ∑3

j=1 P//
1j ; P//

2 = ∑3
j=1 P//

2j ; P//
3 = ∑3

j=1 P//
3j .

The number of busy service channels in the components [30], [31]:

k1 =
P/

1 + ∑5
c/=2 P/

c/

4
, (5)

k2 =
∑3

c//=1 P//
c//

3
. (6)

Probability of service in the first component:
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P/
S = 1 − P/

lS − ∑
(n+m)//

c//=1
P//

c// = 1 − P/
f l − ∑

(n+m)//

c//=1
P//

c// ,

where P/
lS is the probability of loss of a request; P/

f l is the probability of failure of serving
a request.

P/
f l = P/

(n+m)/ −
P/

bo
4 = P/

5 − P/
bo
4 ,

where P/
bo = ∑4

d=2;j=2(d − 1)P/
(b1−1)j, b1 = 2, (n + m)/

then P/
20 = ∑4

i=2(i − 1)P/
1i, P/

30 = ∑4
i=2(i − 1)P/

2i, P/
40 = ∑4

i=2(i − 1)P/
3i, P/

50 = ∑4
i=2(i −

1)P/
4i, P/

b0 = ∑5
i=2 P/

io. P/
ls = P/

f l + P/
lvS

+ P/
lvq

.

where P/
lvS

is the probability of the customer leaving the system in the service channel; P/
lvq

is the
probability of the customer leaving the system in the queue.

When
P/

f l = P/
5 − P/

b0
4 ;

P/
lvS

= β1k1
λ1

;

P/
lvq

=
γ1 N(1)

q
λ1

;

where P/
ls = P/

5 − P/
b0
4 +

(β1k1+γ1 N(1)
q )

λ1
.

The expressions for the probabilities of the QS states of the first and second components are
similar to the QS considered above.

The probability of customer service in the second component is

P//
S = 1 − P/

ls − ∑5
c/=1 P/

c/ ,
where

P//
lS = P//

f l + P//
lvS

+ P//
lvq

;

P//
f l = P//

3 − P//
b0
3 ;

P//
lvS

= β2k2
λ2

;

P//
lvq

=
γ2 N(2)

q
λ2

.
Provided β2 = γ2, then

P//
lvq

=
β2 N(2)

q
λ2

.

P/
bo = ∑3

d=2;j=2(d − 1)P//
(b2−1)j, b2 = 2, (n + m)//,

then P//
20 = ∑3

j=2(j − 1)P//
1j , P//

30 = ∑3
j=2(j − 1)P//

2j ,
Where

P//
ls = P//

3 − P//
b0
3 +

(β2k2+γ2 N(2)
q )

γ2
.

Whence the average number of requests N(i)
q that are in the queue and waiting for service in

the i-component:

N(1)
q = ∑m/

q/=1

q/P/
(n+q)/

kE/ = ∑3
q/=1

P/
(2+q/)

4 ;

N(2)
q = ∑m//

q//=1

q//P//
(n+q)//

kE// = ∑2
q//=1

P//
(1+q//)

3 .

The average number of customers N(i) in the i-component:

N(1)
q = ∑

(n+m))/

c/=1

c/P/
(c)/

kE/ = ∑5
c/=1

c/P/
(c)/

4 ;
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N(2)
q = ∑

(n+m)//

c//=1

c//P/
(c)//

kE// = ∑3
c//=1

c//P//
(c)//

3 ;
Duration of waiting time for the customer in the queue for the i-component equals:

W(1)
q =

N(1)
q

λ1
; W(2)

q =
N(2)

q
λ2

.
Customer service time in the QS:

ttsq = (λ1t(1)s +λ2t(2)s )
(λ1+λ2)

;

t(1)s = N(1)

λ1
; t(2)s = N(2)

λ2
;

Duration of waiting for customers in QS queues: wwqs =
(λ1w(1)

q +λ2w(2)
q )

(λ1+λ2)
;

Probability of QS failure: Pqs
f l =

(λ1Pf l1
+λ2Pf l2

)

(λ1+λ2)
.

When applying the proposed mathematical models, it is advisable to consider the following:
• in multi-component QSs, the performance of any component decreases compared to a

single-component system at the same rates of service stages. With the same values of
the parameters of each component of the QS, the performance of multi-component and
single-component systems will be the same;

• if one of the components is a QS with a queue, and the second component is a QS with
failures, then the QS with a queue has a higher performance, simultaneously reducing the
performance of the second component;

• with small values (0 ≤ PS ≤ 0.1), the impact on the system as a whole or on a separate
component of the intensities of customers leaving the system during the service period
and being in the queue is insignificant. When these intensities change, the PS value will
fluctuate relative to its average value.

Example 2. We will conduct a sensitivity study of the two-component QS mathematical model
presented in Fig. 1. The simulation model of the two-component QS is presented in Fig. 2.

Figure 2: Probability density of grain delivery time distribution at optimal sizes of the fleet of vehicles (trucks and
ships)

The model was implemented using System Dynamics computer simulation in the AnyLogic
University Researcher environment.
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3. Results

The results of experiments on the sensitivity of the model are presented in Table 1 and Fig. 3 - 10.
The model was implemented using System Dynamics computer simulation in the AnyLogic

University Researcher environment.
A set of dynamic variables (Dynamic Variable) P11_1−P54_1 and P11_2−P33_2 were used to

establish and fix the probabilities of the QS states according to the structure of the studied QS.
The usual double (Variable) type variables M11−M13 and M21−M23 were used as calculation
variables of the proposed QS. The initial system parameters λ1, λ2, µ/, µ//, γ/

1 , γ//
1 ,/1 ,//

1 are
described in detail above.

The probabilities of the QS states are calculated according to the general principle of solving
systems of the Kolmogorov equations and the system dynamics format in the AnyLogic University
Researcher environment, according to Fig. 1:
«P11_1 = (L1*P0 + M12*P24_1)/(L1+M11);
P12_1 = (M11*P11_1)/(L1+M11);
P13_1 = (M11*P12_1)/(L1+M11);
P14_1 = M11*P13_1/(L1+M11);
P21_1 = (L1*(P11_1+P12_1+P13_1+P14_1)+M13*P34_1)/(L1+M12);
P22_1 = M12*P21_1/(L1+M12);
P23_1 = M12*P22_1/(L1+M12);
P24_1 = M12*P23_1/(L1+M12);
P31_1 = (L1*(P21_1+P22_1+P23_1+P24_1)+M14*P44_1)/(L1+M13);
P32_1 = M13*P31_1/(L1+M13);
P33_1 = M13*P32_1/(L1+M13);
P34_1 = (M13*P33_1)/(L1+M13);
P41_1 = (L1*(P31_1+P32_1+P33_1+P34_1)+M15*P54_1)/(L1 + M14);
P42_1 = M14*P41_1/(L1+M14);
P43_1 = M14*P42_1/(L1+M14);
P44_1 = (M14*P43_1)/(L1+M14);
P51_1 = L1*(P41_1+P42_1+P43_1+P44_1)/M15;
P52_1 = P51_1;
P53_1 = P52_1;
P54_1 = P53_1;
P11_2 = (L2*P0+M22*P23_2)/(L2+M21);
P12_2 = (M21*P11_2)/(L2+M21);
P13_2 = M21*P12_2/(L2+M21);
P21_2 = (L2*(P11_2+P12_2+P13_2)+M23*P33_2)/(L2+M22);
P22_2 = M22*P21_2/(L2+M22);
P23_2 = (M22*P22_2)/(L2+M22);
P31_2 = L2*(P21_2+P22_2+P23_2)/M23;
P32_2 = P31_2;
P33_2 = P32_2;
P0 = 1-(P11_1 + P12_1 + P13_1 + P14_1 + P21_1 + P22_1 + P23_1 + P24_1 + P31_1 + P32_1 +
P33_1 + P34_1 + P41_1 + P42_1 + P43_1 + P44_1 + P51_1 + P52_1 + P53_1 + P54_1 + P11_2 +
P12_2 + P13_2 + P21_2 + P22_2 + P23_2 + P31_2 + P32_2 + P33_2);»

The model sensitivity experiment is implemented as a cyclical gradual change of one of the
selected initial parameters by Java software code [32], [33], [34]:
«double step = 0.01;
Mu1 += step;
double dataVariant = Mu1;
double m_1 = 4*Mu1, b_1 = 4*Beta1, g_1 = 4*Gama1,
m_2 = 3*Mu2, b_2 = 3*Beta2, g_2 = 3*Gama2;
M11 = m_1 + b_1; M12 = 2*(m_1 + b_1); M13 = M12 + g_1;
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M14 = M12 + 2*g_1; M15 = M12 + 3*g_1; M21 = m_2 + b_2;
M22 = M21 + g_2; M23 = M21 + 2*g_2;
double Pc_2 = P11_2 + P12_2 + P13_2 + P21_2 + P22_2 + P23_2 + P31_2 + P32_2 + P33_2,
Pc_1 = P11_1 + P12_1 + P13_1 + P14_1 + P21_1 + P22_1 + P23_1 + P24_1 + P31_1 + P32_1 + P33_1
+ P43_1 + P41_1 + P42_1 + P43_1 + P44_1 + P51_1 + P52_1 + P53_1 + P54_1,
P20_1 = P12_1 + 2*P13_1 + 3*P14_1, P30_1 = P22_1 + 2*P23_1 + 3*P24_1, P40_1 = P32_1 + 2*P33_1
+ 3*P43_1, P50_1 = P42_1 + 2*P43_1 + 3*P44_1,
P20_2 = P12_2 + 2*P13_2, P30_2 = P22_2 + 2*P23_2,
P1_2 = P11_2 + P12_2 + P13_2, P2_2 = P21_2 + P22_2 + P23_2, P3_2 = P31_2 + P32_2 + P33_2,
P1_1 = P11_1 + P12_1 + P13_1 + P14_1, P2_1 = P21_1 + P22_1 + P23_1 + P24_1, P3_1 = P31_1 +
P32_1 + P33_1 + P43_1,
P4_1 = P41_1 + P42_1 + P43_1 + P44_1, P5_1 = P51_1 + P52_1 + P53_1 + P54_1,
Ppok_q_1 = (Beta1 / L1) * ((1*P3_1 + 2*P4_1 + 3*P5_1)/4),
Ppok_serv_1 = (Beta1 / L1) *((P1_1 + 2*(P2_1 + P3_1 + P4_1 + P5_1))/4),
Pfalue_1 = P5_1 - ((P20_1 + P30_1 + P40_1 + P50_1)/4),
Pvrtat_1 = Pfalue_1 + Ppok_serv_1 + Ppok_q_1,
Pser_1 = 1 - Pvrtat_1 - (Pc_2),
Ppok_q_2 = (Beta2 / L2) * ((1*P2_2 + 2*P3_2)/3),
Ppok_serv_2 = (Beta2 / L2) * (Pc_2 /3),
Pfalue_2 = P3_2 - ((P20_2 + P30_2) / 3),
Pvrtat_2 = Pfalue_2 + Ppok_serv_2 + Ppok_q_2,
Pser_2 = 1- Pvrtat_2 - Pc_1;
dataset_Pserv_1.add(dataVariant, Pser_1);
dataset_Pserv_2.add(dataVariant, Pser_2);»

The generalized characteristics of the QS of the system components are the service probabilities
P/

s and P//
s .

These characteristics include the initial parameters and some other parameters of the QS
components, the calculation formulas of which are presented above.

The initial parameters of the experiments and the results of their implementation are presented
in Table 1.

Graphs of dependences of service probabilities P/
s and P//

s on the initial parameters of the
model are presented in fig. 3-10.

In the calculation example, the boundary value of the service probabilities of QS components
Pb.vs = 0.6 is set, i.e. P/

s and P//
s must not be less than 0.6 at the same time, provided that the

components serve requirements with the same priorities.

Figure 3: Graph of the dependence of the probabilities P/
s and P//

s on the parameter µ/

From the graphs of the dependences of the probabilities P/
s and P//

s on the parameter µ/
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Table 1: The results of sensitivity experiments for the mathematical model of the QS components functioning

Numbers
of graphs

of
depend-es

Initial parameters of the model Results of sensitivity experiments

constant
variables
[range]

Ranges of
changes in
probabil-es

Values of
service

probabil-es

Values of
variable
param-s

3

λ1 = λ2 =

µ// = γ/
1 =

γ//
2 = β/

1 =
β//

2 = 0.5

µ/

[0.01...2.5]

P/
S

[0.59...0.75]
P//

S
[0.38...0.8]

P/
S = 0.15

P//
S = 0.8

P/
S = P//

S
=0.69

µ/ = 0.01
µ/ = 2.5
µ/ = 0.69

4

λ1 = λ2 =
µ/ = µ// =

γ/
1 = γ//

2
= β//

2 = 0.5

β/
1

[0.01...2.5]

P/
S

[0.49...0.98]
P//

S
[0.3...0.8]

P/
S = 0.98

P//
S = 0.8

P/
S = P//

S
=0.65

β/
1 = 0.01

β/
1 = 2.5

β/
1 = 0.62

5

λ1 = λ2 =

µ// = γ//
2 =

β/
1 =

= β//
2 = 0.5

γ/
1

[0.01...2.5]

P/
S

[0.679...0.683]
P//

S
[0.618...0.626]

P/
S = 0.58

P//
S

=0.626

γ/
1 = 2.5

γ/
2 = 2.5

6

λ1 = λ2 =

γ/
1 =

= γ//
2 = β/

1 =

= β//
2 = 0.5

β/
1

[0.01...2.5]

P/
S

[0.4350.902]
P//

S
[0.5970.593]

P/
S = 0.902

P//
S = 0.622
P/

S = P//
S

=0.62

β/
2 = 2.5

β/
2 = 0.47

β/
2 = 0.34

7

λ1 = λ2 =
µ// =

= γ//
1 = γ/

2
= β/

1 = 0.5

β//
2

[0.01...2.5]

P/
S

[0.4350.902]
P//

S
[0.8770.434]

P/
S = 0.902

P//
S = 0.877
P/

S = P//
S

=0.651

β/
2 = 2.5

β/
2 = 0.01

β/
2 = 0.41

8

λ1 = λ2 =
µ// =

= γ//
1 = β/

1
= 0.5

γ//
2

[0.01...2.5]

P/
S

[0.6260.73]
P//

S
[0.5580.652]

P/
S = 0.73

P//
S = 0.652

γ/
1 = 2.5

γ/
2 = 2.5

9

λ2 = µ// =

γ/
1 = γ//

2 =

β/
1 = β//

2 =
= 0.5

λ/
1

[0.01...2.5]

P/
S

[0.499...0.952
...0.879]

P//
S

[0.884...0.8]

P/
S = 0.499

P/
S = 0.952

P/
S = 0.873

P//
S = 0.884

P//
S = 0.01

P/
S = P//

S =
= 0.657

λ/
1 = 0.4

λ/
1 = 1.65

λ/
1 = 2.5

λ/
1 = 0.01

λ/
1 = 2.5

λ/
1 = 0.45

10

λ1 = µ// =

γ/
1 = γ//

2 =

β/
1 = β//

2 =
= 0.5

λ/
2

[0.01...2.5]

P/
S

[1.0...0.047]
P//

S
[0.50...0.68

...0.049]

P/
S = 1.0

P/
S = 0.047

P/
S = 0.50

P//
S = 0.68

P//
S = 0.049

P/
S = P//

S =
= 0.64

λ/
1 = 0.01

λ/
1 = 2.5

λ/
1 = 0.06

λ/
1 = 0.9

λ/
1 = 2.5

λ/
1 = 0.57

presented in Fig. 3, it can be seen that when µ/ = 0.01, then P/
s = 0.75, P//

s = 0.378, while at
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µ/ = 2.5 the probabilities are P//
s = 0.8 and P/

s = 0.53, i.e. do not satisfy the boundary condition.
At µ/ = 0.69 the probabilities are P/

s = P//
s = 0.66, which satisfies the boundary condition.

Figure 4: Graphs of the dependence of the probabilities P/
s , P//

s on the parameter β/
1

From Fig. 4, which shows the graphs of the dependences of the probabilities P/
s , P//

s on the
parameter β/

1 , it is possible to investigate that with β/
1 = 0.01 the probabilities P/

s = 0.98 and
P//

s = 0.378 with β/
1 = 2.5 probabilities P/

s = 0.48 and P//
s = 0.8, i.e. do not satisfy the boundary

condition. At β/
1 = 0.62 probabilities P/

s = P//
s = 0.65, which is a satisfactory result.

Figure 5: Graphs of the dependence of the probabilities P/
s , P//

s on the parameter γ/
1

From those presented in fig. 5 graphs of the dependence of the probabilities P/
s , P//

s on the
parameter –γ/

1 , it is possible to investigate that at γ/
1 = 2.5 the probabilities P/

s = 0.68 and
P//

s = 0.626, which satisfies the boundary condition.
In Fig. 6 are presented the graphs of dependences of the probabilities P/

s , P//
s on the parameter

µ//, from which it can be seen that at µ// = 2.5 the probabilities P/
s = 0.902 and P//

s = 0.593.
This option does not meet the boundary condition. At µ// = 0.47 P/

s = 0.668 and P//
s =′= 0.626

at µ// = 0.34/
s = P//

s = 0.62. These options meet the boundary condition. The option with
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Figure 6: Graphs of the dependence of the probabilities P/
s , P//

s on the parameter µ//

µ// = 0.47 may be preferable, because with µ// = 0.47 at t(s2)
= 2.18, and with µ// = 0.34 at

t(s2)
= 2.94.

Figure 7: Graphs of the dependence of the probabilities P/
s , P//

s on the parameter β//
2

From the graphs of the dependences of the probabilities P/
s , P//

s on the parameter β//
2 ,

presented in Fig. 7, it can be seen that at β//
2 = 0.41, P/

s = P//
s = 0.651. This option meets

the boundary condition. Options at β//
2 = 2.5, P/

s = 0.902 and P//
s = 0.593 and at β//

2 = 0.01,
P//

s = 0.432 and P//
s = 0.877 do not meet the boundary condition.

µ// = 0.34 at t(s2)
= 2.94.

From Fig. 8, which shows graphs of the dependence of the probabilities P/
s , P//

s on the
parameter γ//

2 , it can be determined that with γ//
2 = 2.5, P/

s = 0.78 and P//
s = 0.652, which

corresponds to the boundary condition.
From those presented in Fig. 9 graphs of the dependence of the probabilities P/

s , P//
s on the

parameter λ1, the following conclusions can be drawn: at λ1 = 0.45, P/
s , P//

s = 0.652, which
satisfies the boundary condition.
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Figure 8: Graphs of the dependence of the probabilities P/
s , P//

s on the parameter γ//
2

Figure 9: Graphs of the dependence of the probabilities P/
s , P//

s on the parameter λ1

Other options do not meet the boundary condition
at λ1 = 0.45, P/

s = 0.506 and P//
s = 0.884, as at λ1 = 0.04P/

s = 0.499 and P//
s = 0.87; at

λ1 = 1.65, P/
s = 0.952 and P//

s = 0.13; at λ1 = 2.5, P/
s = 0.873 and P//

s = 0.01.
From those presented in Fig. 10 graphs of the dependence of the probabilities P/

s , P//
s on the

parameter λ2 it can be seen that the boundary condition is met by the variant with λ2 = 0.57, P/
s =

P//
s = 0.64. Other options do not meet the boundary condition, namely: at λ2 = 0.01, P/

s = 1.0
and P//

s = 0.51, at λ2 = 0.06P/
s = 0.977 and P//

s = 0.50; at λ2 = 0.9, P/
s = 0.432 and P//

s = 0.68;
at λ2 = 2.5, P/

s = 0.47 and P//
s = 0.49. We summarize the obtained results in the Table 2 and

determine Ps of the two-component QS from the formula:
Ps = 1 − (1 − P/

s )(1 − P//
s ).

From the Table 2, it can be seen that the determined results of the initial parameters, which
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Figure 10: Graphs of the dependence of the probabilities P/
s , P//

s on the parameterλ1

Table 2: Results of the sensitivity experiments analysis

Probabilities
of service

λ1 λ2 λ1 λ2 µ/ γ/
1 β/

1 µ// γ//
2 β//

2
0.45 0.55 0.43 0.57 0.69 2.5 0.62 0.34 2.5 0.41

P/
s 0.66 0.65 0.65 0.64 0.63 0.62 0.62 0.62 0.73 0.65

P//
s 0.66 0.63 0.67 0.64 0.63 0.63 0.62 0.62 0.65 0.65
Ps 0.88 0.87 0.87 0.87 0.86 0.88 0.86 0.86 0.91 0.88

correspond to the boundary condition, make it possible to obtain the most acceptable values of
the probability values P/

s , P//
s and Ps. In turn, the above-mentioned initial parameters reflect

and quantitatively characterize both the external conditions of the system’s functioning (λ) and
its internal capabilities and limitations (µ, β, γ) in response to changes in external conditions,
including force majeure circumstances.

4. Conclusions

The new energy planning and management requirements should support innovation in aircraft
designs and their operation and maintenance. They must allow for the smooth integration of
new technologies into the air operations domain. Therefore, the term ’energy’ should be used
together with the term ’fuel’ (’energy/fuel’, for example), wherever appropriate, to accommodate
operations with aircraft that use other energy sources than conventional hydrocarbon-based
fuel. Also, the development of new production standards and safety and certification rules by
regulators often lag behind technological development, bringing product development to a halt,
including new onboard electrical equipment and technologies. Therefore, it is appropriate to
include in the service system the possibility of the occurrence of force majeure circumstances
and to consider the system with their impact on the results. The proposed theoretical approach
consists in the fact that in a multi-component queueing system (QS), the value of the probability
of serving a customer in a certain QS component can be determined taking into account that
the second component contains the sum of all probabilities of the "enlarged" states of other
components of the QS.

Based on this theoretical provision, the modelling of vehicle maintenance and repair processes,
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using the example of an aviation repair enterprise, allows to determine the necessary initial
parameters of the system components as interacting QSs and to obtain the largest values of the
probabilities of servicing the arriving customers in these components and the system as a whole,
which provide an acceptable level of its reliability.

When studying real production, logistics, and other systems for which the mathematical
apparatus of queueing theory is adequate, the necessary initial mathematical parameters of the
system components must be expressed through physical parameters (flows of vehicles or other
objects requiring maintenance, performance of equipment for various types of work, production
tasks, time constraints, etc.), which will make it possible to optimize specific technologies and
enterprises.

When modelling QS processes, non-standard system dynamics solutions were proposed in
the AnyLogic University Researcher environment, which allowed to:

- solve a multi-rank system of Kolmogorov equations;
- implement multi-iterative sensitivity experiments with the initial parameters of the QS;
- obtain experimental dependences of the influence of all key parameters on QS indicators, in

particular, service probabilities.
The described mathematical apparatus and modelling tools have shown their relevance to

real processes and can be applied to improve the performance of multi-component and multi-
phase queueing systems, which reflect the technological processes occurring in real production,
transport-logistics and other systems intended for operation, maintenance and repair of technical
equipment of various nature.

New hazards concerning the operation and maintenance of the new onboard electric equip-
ment and systems should be investigated to complete the safety analysis of new clean aviation
increasing their sustainability in the future. They will connect with normal flight operation of the
new aircraft (their separate systems and equipment), so as with their production, maintenance,
and repair. However, the proposed mathematical apparatus must cover new links and allow safe
and sustainable solutions.
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Abstract 

This paper relates to the reliability measures analysis of two identical unit system with reboot 
facility. Initially, one unit of the system is in operative mode and another unit is kept in cold 
standby mode. A technician is always available with the system to perform repairing and 
rebooting activities. Here, the system operative unit failed in safe mode and unsafe mode. 
During unsafe failure, repair activity cannot be done immediately but first rebooting is done to 
transform unsafe failure into safe failure, and then repair activity is performed as usual. 
Sometimes, the technician needs refreshments due to continuous work and provides better 
services after taking refreshments. The unit works like a new one after repair. The failure time of 
the unit in safe mode, unsafe mode and technician refreshment request time are assumed to be 
general while the repair time of the unit, rebooting delay time and technician refreshment time 
are taken as exponential. Reliability measures such as mean time to system failure, availability 
of the system, busy period of the repairman, the expected number of visits by the technician and 
profit values are calculated using tables. 

Keywords: Availability, cold standby, regenerative point, rebooting, and refreshment. 

I. Introduction

In daily life, there are many situations such as the breakdown of the unit that caused machine 
failure. One way to avoid loss and increase the reliability of the system is to use the cold standby 
facility. With the occurrence of the complexity of machines and advancements in industrial sectors 
or organizations, the focus is on increasing the reliability and profit of the industry. The prominent 
point is that the designs and layout of complex machines or equipment should be so that it 
increases the reliability of the system and always tries to minimize the shortcomings responsible 
for its downtrends. Hence, designing a reliable system has become an essential step in almost 
every sector. So, the concept of rebooting is used to transform the unit from unsafe failure to safe 
failure. Sometimes, a technician is tired and needs refreshment. After taking refreshment, the 
repairman provides better service, and after getting the repair, the unit works like a new one. 
Many researchers such as Zhang and Wang [15] described a different unit repairable cold standby 
system that gives seniority to the operative unit. Hsu et al. [4] explored the standby system having 
reboot delay, general repair, switching failure, and unreliable repair facility. Jyh-Bin et al. [6] 
analyzed various reliability measures of a repairable system having standby switching failures and 
facility of reboot delay.  
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 Dhall et al. [2] discussed the reliability of the similar unit stochastic approach under the 
repair and replacement of the failed unit subjected to inspection. Ke and Liu [7] examined the 
repairable system having a single server that identified the failed unit before repair and rebooting. 
Kumar and Goel [10] highlighted the two-unit cold standby redundant system subjected to 
inspection before repairing the failed unit and using the concept of preventive maintenance. Goel 
et al. [3] explained the performance of a cold standby redundant system with a server to inspect 
the failed unit before repair. 

        Temraz [14] evaluated the reliability measures for dependent system with load sharing and 
subject to degradation facility. Jain et al. [5] described the machine system as having online and 
standby units for system sustainability with server vacation, observing imperfect fault and its 
recovery using the reboot approach. Kumar and Jain [11] examined the reliability measures of a 
warm standby machine system having multiple components with recovery failure supported by 
the reboot process. Levitin et al. [12] evaluated the cold standby systems with elements exposed to 
shocks during operation and task transfers under preventive maintenance. Agrawal et al. [1] 
described the nature of the water treatment reverses osmosis plant using the regenerative point 
graphical technique. Sengar and Mangey [13] examined the complex manufacturing system subject 
to inspection facility using copula methodology. Kumar and Sharma [8] evaluated the availability 
and profit analysis of a repairable two unit cold standby system under refreshment using the 
regenerative point technique. Kumar et al. [9] explored the performance of two unit cold standby 
system under inspection and subject to refreshment facility.  

II. System Assumptions

There are following system assumptions: 

• The whole system has two identical units- first operative and second cold standby.
• The cold standby unit takes place when the operative unit stops functioning.
• A technician is always available to repair the failed unit.
• The failed unit behaves like a new one after repair.
• When the unit fails in unsafe mode then the reboot process is used to convert it to

safe mode.
• Refreshment is offered to the technician to enhance his efficiency.
• Repair time, refreshment time and reboot delay time are exponentially distributed

whereas times for failure of the unit in safe mode and unsafe mode and technician
refreshment request are general.

III. System Notations

There are following system notations: 

 R Collection of regenerative states )9,3,2,1,0( iS i
CsgOO /)(/ The system unit is operative and in normal mode / suitable good condition 

mode /cold standby mode 
ba /  The probability that the cold standby unit is working/ not working 

 // 1 The constant failure rate of the unit of the system in safe mode/rate with unit 
goes to unsafe mode/ rate by which the repairman needs refreshment  

)(/)( 11 tGtg  PDF/ CDF of the repair time of the unit 

)(/)( 11 tFtf  PDF/ CDF of refreshments time that restores freshness to the technician 

)(/)( 11 tHth  PDF/ CDF of reboot delay time 
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)(/)( ,, tQtq srsr  PDF/ CDF of first passage time from rth to sth regenerative state or sth failed 
state without halting in any other RSi  in (0,1] 

)(tMr  Represents the probability of the system that it initially works RSr  at a time 
(t) without moving through another state RSi 

)(tWr  Probability that up to time (t) the server is busy at the state rS  without transit 
to another state RSi   or before return to the same state through one or more 
non regenerative states  

 / Laplace convolution / Laplace Stieltjes Convolution 
//   

Symbol for Laplace Transform/ Laplace Stieltjes Transform/ Function’s 
derivative  

 /     / Upstate/ regenerative state/ failed state 

IV. State Descriptions

The system has up states as well as down states and these individual states are 
described in table 1:  

Table 1: State Descriptions 

 States Descriptions 

 S0  It is a regenerative upstate with two units such that one is operative (O) and 
  other is cold standby (Cs). 

 S1 This regenerative upstate has two units such that one is failed under repair (Fur) and 
the other is in operative mode (O).  
  S2 It is a regenerative upstate under refreshment facility (sut) where one unit is failed &
waiting for repair (Fwr) and the other is in operative mode (O). 

 S3 It is a regenerative down state and the system has two units such that one is failed 
under repair (Fur) and the other is failed and waiting for repair (Fwr). 

 S4 It is a down state where one unit fails under repair (FUR) continuously from the 
prior state and the other unit is failed & waiting for repair (Fwr). 

 S5 It is a down state that has two units under refreshment facility (sut) such that one is 
failed and waiting for repair (Fwr) and other is failed & waiting for repair (FWR)
continuously from the previous state. 

 S6 At this down state, the system has two units such that one is failed under repair 
(FUR) continuously from the previous state and the other unit is failed and waiting 
for repair (FWR) continually from the prior state. 

 S7 This down state has two units under continuous refreshment facility (SUT) such that 
one is failed & waiting for repair (Fwr) and the other is failed & waiting for repair 
(FWR) continuously from the previous state. 

 S8 This down state has two units under refreshment facility continuously from the 
prior state (SUT) in unsafe mode of failure of unit such that operative unit is failed 
under unsafe mode F(uns) and the other is failed and waiting for repair (FWR) 
continuously from the previous state. 
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 S9 This down state has two units such that the operative unit is failed under unsafe 
mode F(uns) and the other is in good condition. 

 S10 This down state has two units such that the operative unit is failed under unsafe 
mode F(uns) and the other is failed under repair (FWR) continuously from the 
previous state.  

Figure 1: State Transition Diagram 

V. Transition Probabilities

The transition probabilities are calculated using 
tetf  )(1 , tetg  )(1 , teth  )(1  (1) 
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VI. Mean Sojourn Time

In the cold standby redundant system, i  represents the mean sojourn time. Mathematically, time 
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VII. Reliability Measures Evaluations

I. Mean Time to System Failure (MTSF)

Let the cumulative distribution function of the first elapsed time be )(ti from the regenerative 
state iS to the failed state of the system. Treating the failed states as an absorbing state then the 
repetitive interface for )(ti being 

)()()()()( 10103090 ttQtQtQt    

)()()()()()()( 0102121410,11 ttQttQtQtQt    

)()()()()( 12127282 ttQtQtQt    (5) 
Taking LST on the above equation (5) then get 
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Now, system reliability is accessed by using the inverse LT on equation (6) such that 
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II. Availability of the system

From the transition diagram, the system is available at the regenerative up states 0S , 1S  and 2S . 
Let )(tAi  is the probability that the system is in upstate at time (t) specified that the system arrives 
at the regenerative state iS  at t = 0. Then the repetitive interface for )(tAi is  

)()()()()()()()( 01013039090 tMtAtqtAtqtAtqtA   

)()()]()()()([

)()()()()(

11)45(10.11)4,10.(11)45.(114.11

0102121

tMtAtqtqtqtq

tAtqtAtqtA

nn 


)()()]()()([)( 21)76(8.21)76.(21212 tMtAtqtqtqtA 

)()]()([)( 1)54.(31313 tAtqtqtA n 

)()()( 1919 tAtqtA    (8) 

Where,      taetM )(
0

1)(  , tetGtM )(
1

1)()(   , tetFtM )(
2

1)()(   (9) 

Using LT of the above relation (8), then get 
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III. Busy Period of the Server

From the transition diagram, it is clear that the technician is busy at states 1S , 2S and 3S . Let )(tBi  
is the probability that the repairman is busy due to the repair of the failed unit at time ‘t’ specified 
that the system arrives at the regenerative state iS  at t = 0. Then the repetitive interface for )(tBi is  
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and D is formerly declared. 
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IV. Estimated number of visits made by the server

The transition diagram explores that the technician visits at states 1S  and 2S . Let )(tN i  is the 
estimated number of visits made by the repairman for repair in (0, t] specified that the system 
arrives at the regenerative state iS  at t = 0. Then the repetitive interface for )(tN i is 

 )](1[)()](1[)()](1[)()( 1013039090 tVtQtVtQtVtQtV   
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Using LST on the above relations (13), then get 
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V. Particular Cases
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where   1A  and 2A   are defined above. 
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VI. Profit Analysis

 Using reliability parameters, the profit (P) of the system during the time interval (0,t] is 

020100 VTBTATP R   (19) 

Where, 0T 1000 (Price tag per unit uptime) 

 1T 500 (Cost per unit time for technician Busy) 

 2T 100 (Charge per visit by the technician) 

VIII. Discussion

Generally, cold standby redundancy is used to enhance the system performance and sometimes 
refreshment is offered to the technician to enhance his efficiency. 

        The system performance is calculated with reliability measures such as MTSF, availability 
of the system and profit values. Table 2 shows the increasing trend of MTSF with respect to 
refreshment rate , keeping the values of other parameters =0.3, 1=0.2, =0.4, =0.3, ξ=0.2 are 
failure rate of the unit in safe mode, unsafe mode, refreshment request rate, repair rate of unit, 
rebooting delay rate respectively, and these are taken constantly for simplicity. When  changing 
from 0.3 to 0.4, 1 changing from 0.2 to 0.3,   varying from 0.4 to 0.5 then MTSF declined.  

       The table reveals that as the rate of repair  changes from 0.3 to 0.4, and reboot delay rate ξ 
changes from 0.2 to 0.3 then MTSF enhances.  

Table 2: MTSF vs. Refreshment Rate 

 =0.3, 1=0.2
=0.4,  =0.3
ξ=0.2 a=0.8 

b=0.2 

=0.4 1=0.3 =0.5 =0.4 ξ=0.3 

0.1 1.49505 1.40182 1.38431 1.42983 1.45287 1.50588 
0.2 1.52616 1.42729 1.40848 1.45878 1.48644 1.53438 
0.3 1.55598 1.45179 1.4316 1.48666 1.51862 1.56687 
0.4 1.58457 1.47538 1.45372 1.51351 1.54951 1.59368 
0.5 1.61202 1.4981 1.47492 1.53948 1.57917 1.62598 
0.6 1.63839 1.51475 1.49524 1.56438 1.60768 1.64788 
0.7 1.66375 1.54115 1.51475 1.58849 1.6351 1.67466 
0.8 1.68814 1..5615 1.53349 1.61178 1.6615 1.69586 
0.9 1.71164 1.58118 1.5515 1.63429 1.68694 1.72568 
1 1.73427 1.60021 1.56883 1.65605 1.71145 1.74655 

The availability of the redundant system is also affected by the refreshment and reboot facilities. 
Table 3 explores the availability of the system and its value increase corresponding to increments 
in refreshment rate  when the system's other parameters =0.3, 1=0.2, =0.4, =0.3, ξ=0.2 possess 
constant values. When the failure rate of a unit in safe mode changes (=0.3 to 0.4), unsafe mode 
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changes (1=0.2 to 0.3) then the availability of system declines. 
        Also, when the technician request rate changes (=0.4 to 0.6) then the system’s availability 

declines but when the repair rate of unit changes (=0.5 to 0.7), reboot rate of unit changes (ξ=0.2 to 
0.3) then the availability of the system enhances.  

Table 3: Availability vs. Refreshment Rate 

 =0.3, 1=0.2
=0.4,  =0.3
ξ=0.2 a=0.8 

b=0.2 

=0.4 1=0.3 =0.5 =0.4 ξ=0.3 

0.1 0.11217 0.10168 0.0973 0.10666 0.1181 0.11682 
0.2 0.156 0.14251 0.13534 0.14863 0.16336 0.16537 
0.3 0.19261 0.17718 0.16728 0.18385 0.20078 0.20742 
0.4 0.22302 0.20641 0.19401 0.21326 0.23162 024353 
0.5 0.24825 0.23098 0.21639 0.23776 0.25703 0.2744 
0.6 0.26922 0.25162 0.23516 0.25819 0.27804 0.30074 
0.7 0.28668 0.26899 0.25094 0.27525 0.29546 0.32323 
0.8 0.30128 0.28362 0.26427 0.28955 0.30998 0.34246 
0.9 0.31354 0.296 0.27557 0.30157 0.32214 0.35894 
1 0.32389 0.3065 0.28525 0.31172 0.33237 0.3731 

It is evident from table 4 that the system uses constant parameters such that =0.3, 1=0.2, =0.4, 
=0.3, ξ=0.2and the trend of profit values enhanced with respect to increments in refreshment rate 
. When the failure rate of a unit  in safe mode changes from 0.3 to 0.4 and unsafe mode changes
from 0.2 to 0.3 then the profit of the system decreases.

 Also, when the technician request rate  changes from 0.4 to 0.5 then profit values decline 
but when the repair rate of unit  changes from 0.5 to 0.7  and reboot rate changes from ξ=0.2 to 0.3 
then the profit value enhances.  

Table 4: Profit vs. Refreshment Rate 

 =0.3, 1=0.2
=0.4,  =0.3
ξ=0.2 a=0.8 

b=0.2 

=0.4 1=0.3 =0.5 =0.4 ξ=0.3 

0.1 46.91405 41.65736 39.76882 43.94127 50.09497 50.82808 
0.2 66.50537 59.48843 55.46915 62.40709 70.57429 74.43605 
0.3 83.49143 75.18573 68.73058 78.49941 88.13762 96.1274 
0.4 98.10396 88.87597 79.89434 92.41253 103.1117 115.7624 
0.5 110.635 100.7582 89.2898 104.399 115.8591 133.3744 
0.6 121.3797 111.0531 97.21094 114.7191 126.7243 149.0903 
0.7 130.6097 119.9755 103.9094 123.616 136.0128 163.0801 
0.8 138.5628 127.7217 109.5955 131.3055 143.9851 175.5265 
0.9 145.4418 134.4642 114.4424 137.9734 150.859 186.6077 
1 151.4167 140.3518 118.5933 143.7773 156.8144 196.4892 
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IX. Conclusion

The refreshment and reboot approach plays a vital role in system configuration and its 
functioning. These features enhance the capacity of the technician and performance of the system. 
Tables explore the increasing trends of MTSF, availability and profit values of the system using 
reboot and refreshment facilities.  
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Abstract 

The escalating connectivity of devices in the Internet of Things (IoT) era necessitates robust 
security             measures while accommodating resource constraints. Lightweight cryptography addresses 
this need, focusing on algorithm development for devices with limited resources. This research 
proposes the Lightweight Crypto System (LCS) as a hybrid cryptosystem, integrating the 
Lightweight Symmetric Algorithm (LSA) and the Lightweight Hash Algorithm (LHA). LSA is a 
modified AES-128 variant, enhancing data confidentiality, while LHA, derived from SHA-256, 
verifies data integrity. The study evaluates the proposed LCS on criteria such as execution time, 
memory usage, avalanche effect, collision  resistance, and entropy, emphasizing the optimal balance 
between performance and security achieved by LSA and LHA. The findings position LCS as a 
compelling solution for securing IoT devices without compromising on stringent security 
requirements. 

Keywords: Internet of Things (IoT), Lightweight Cryptography, Hybrid 
Cryptosystems, LSA, LHA, Security. 

1. Introduction

The Internet of Things (IoT) integration poses security challenges [1]. With threats like unau- 
thorized access and data breaches, secure communication is vital. Our research introduces 
Lightweight Crypto System (LCS) as an adaptable solution [2], enhancing IoT security. It safe- 
guards user privacy and ensures data integrity in the interconnected IoT landscape [3, 4]. 

The Lightweight Crypto System (LCS) is a breakthrough in IoT security, tailored for resource- 
constrained devices [5, 6, 7]. Comprising three key elements, it forms a comprehensive security 
framework. The Lightweight Symmetric Algorithm (LSA), a modified AES-128, ensures 
efficient symmetric encryption for data confidentiality [8]. Elliptic Curve Cryptography (ECC) 
facilitates secure key exchange and authentication [9]. Additionally, the Lightweight Hash 
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Algorithm (LHA) enhances data integrity verification in the LCS system. Together, these 
components provide robust solutions for confidentiality, authenticity, access control, and data 
integrity in IoT communication. LCS’s effectiveness stems from the collaboration of its three 
components: LSA ensures data confidentiality with a tailored version of AES-128 for IoT 
constraints, ECC facilitates secure key exchange, and the proposed LHA enhances data 
integrity verification. This integration positions LCS as a versatile solution addressing the 
complex security demands of the evolving IoT landscape. 

1.1. Motivation and Contribution 

This research is driven by the growing IoT landscape and the security challenges it poses. With 
the surge in connected devices, addressing security concerns becomes crucial. The motivation stems 
from the need to enhance IoT security infrastructure due to escalating concerns about data privacy 
and integrity. This research aims to provide innovative cryptographic solutions tailored for 
resource-constrained IoT devices, bridging the gap between security and performance. The major 
contribution is the exploration of a LCS ensuring efficient and secure communication in     the 
interconnected IoT landscape. 
• Lightweight Crypto System (LCS): Introduction of a specialized hybrid cryptosystem tailored

for IoT environments, providing a comprehensive security solution for resource- constrained
devices [11].

• Lightweight Symmetric Algorithm (LSA): Development and implementation of LSA, a
modified AES-128 algorithm optimized for IoT devices, ensuring efficient and secure data
confidentiality [8].

• Lightweight Hash Algorithm (LHA): Proposal and implementation of LHA, a novel lightweight
hash algorithm designed for data integrity verification in resource-constrained IoT devices,
striking a balance between security and performance [12].

• Performance and Security Parameter Analysis: Rigorous evaluation of LCS through per- 
formance metrics and key security parameters, including execution time, memory usage,
avalanche effect, collision resistance, and entropy, offering insights into the system’s robust- ness
and efficiency.

• Real-world Testbed Implementation: Practical validation of LCS on an IoT testbed using
ESP32 hardware, demonstrating its effectiveness in real-world IoT scenarios and providing      a
foundation for further optimization of cryptographic processes in IoT environments.

2. Related Work

IoT security literature investigates cryptographic methods due to the growing impact of IoT in 
daily life, especially in critical areas like smart homes and healthcare. The resource constraints of IoT 
devices necessitate lightweight and energy-efficient security solutions, posing a challenge to 
widespread adoption. Recent research explores the potential benefits of integrating lightweight 
blockchain technology, emphasizing the role of hashing in constructing a robust blockchain 
structure for enhanced IoT security [13]. This study evaluates various hash techniques on a 
Raspberry Pi device, providing quantitative insights into the performance of hash functions for 
lightweight blockchain-based IoT applications [13]. 

The IoT’s growth introduces security challenges for embedded devices [14]. A solution proposes 
using MD5, a hashing algorithm, to enhance IoT security, fortifying embedded devices against 
internet-based attacks [14]. This approach seamlessly integrates with the IoT framework and is 
endorsed for securing embedded systems in IoT [14]. 

The study in [15] tackles the lack of reliable hybrid cryptosystems for securing critical IoT 
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devices. It explores lightweight encryption algorithms such as TEA, XTEA, XXTEA, RSA, and 
ECC, aiming for optimal security in constrained environments. The proposed hybrid 
cryptosystem, incorporating chaotic theory for key generation, outperforms RSA and XXTEA by 
40%, showcasing enhanced security and superior performance for safeguarding IoT devices 
[15]. 

In [16], the paper underscores the crucial role of cryptography in data security, introducing 
the Secure Hash Algorithm-3 (SHA-3) for data verification. Implementing a low-power technique, 
latch-based clock gating, enhances power efficiency in SHA-3 algorithm designs [16]. 

In [17], the paper recognizes the pivotal role of wireless sensor networks (WSNs) in collecting 
and transmitting sensitive information. It addresses challenges in WSN infrastructure design 
due to resource limitations and emphasizes the need for efficient authentication solutions. The 
proposed 2AMD-160, a Secure Hash Algorithm, outperforms MD5 and SHA1 in both execution 
time and security in comparative analysis [17]. 

The IoT’s global connectivity introduces security challenges, requiring energy-efficient 
solutions. Existing methods compromise between security and energy consumption [18] 
proposes a BLAKE2b-based authentication with modified ECDSA, demonstrating improved 
signature times on Raspberry Pi-3. The scheme exhibits resistance to attacks, suitable for 
resource-constrained IoT devices. 

In [23], the paper shows how message-level security instead of transport level security is 
used to provide end-to-end secure communication between IoT devices and Gateway. Various 
symmetric and asymmetric security algorithms along with different data formats such as XML, 
JSON and EXI are executed and compared. Used Blowfish encryption algorithm for IoTSyS 
framework[23]. 

3. Proposed Methodology

In addressing the escalating security concerns associated with the ever-expanding Internet of 
Things (IoT) ecosystem, we introduce a comprehensive Lightweight Crypto System (LCS) that 
harmoniously integrates three key cryptographic components: “MyLightSymAlgo" (LSA), Elliptic 
Curve Cryptography (ECC), and the novel “MyLightHashAlgo" (LHA). This section gives 
detail description for each of the components. The architecture for proposed hybrid model (LCS) 
sender side and receiver side execution approach is presented in Figure 1 and 2, respectively. 

Figure 1: Proposed Hybrid Model (LCS) (Sender Side Execution) 
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The sequential execution flow of the proposed approach is illustrated in Figure 3. The detail 
explanation for each component for proposed hybrid model (LCS) is presented below. 

3.1 MyLightSymAlgo (LSA): Lightweight Symmetric Encryption 

LSA, a key element of the proposed LCS, is a tailored variant of AES-128, designed to address 
security requirements in resource-constrained IoT devices by introducing efficiency-enhancing 
modifications and replacements [8]. 
• Algorithmic Modifications: LSA undergoes meticulous changes within AES-128 to create       a

lightweight encryption process for IoT devices, considering constraints like limited
processing power and memory.

• Enhanced Encryption/Decryption: The final LSA version shows notable improvements over AES-
128, excelling in both encryption and decryption for faster data transformation, crucial for real-
time processing in IoT.

Figure 2: Proposed Hybrid Model (LCS) (Receiver Side 
Execution) 

Figure 3: Sequence of Execution 
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• Security and Sensitivity: LSA aims for a highly secure encryption system with sensitivity to small
input changes, enhancing overall security by producing significant output variations [8].

• IoT Data Security: LSA is designed to secure data from IoT sensors, suitable for resource- 
constrained devices where traditional cryptographic methods may be impractical.

As part of LCS, LSA ensures data confidentiality in IoT, protecting sensitive information while 
addressing IoT device limitations. The LSA diagram is depicted in Figure 4. The step-by-step 
operations of the LSA employed for secure data encryption is presented in      Algorithm 1[8]. 

Figure 4: LSA General Diagram 

Algorithm 1 Lightweight Symmetric Algorithm (LSA) 
1: procedure LSA (Data Block, Round Keys) 
2: XOR Data Block with corresponding Pre Round Key 
3: Apply Parity Transformation 
4: for each byte in Data Block do 
5: Substitute byte using innovative SubBytes table 
6:  Rearrange bytes using Junction Jumping strategy 
7: XOR with corresponding Round Key byte 
8: end for 
9: Substitute byte using innovative SubBytes table 
10: XOR Data Block with corresponding Round Key byte 
11: Output: Encrypted Data Block 
12: end procedure 

3.2 Elliptic Curve Cryptography (ECC): Asymmetric Encryption and Key 
Generation 

Compared with other traditional public key encryption algorithm such as RSA algorithm, ECC 
algorithm can provide the same security with short key length. ECC operates on elliptic curves 
over finite fields so provide complexity [19]. The advantages of elliptic curves are: Encryption, De- 
cryption and Signature Verification speed up, due to shorter key lengths, High safety performance, 
Small storage space, Fast processing speed, and Low bandwidth requirements [20, 21]. 
3.3 MyLightHashAlgo (LHA): Lightweight Hash Algorithm for Integrity 
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MyLightHashAlgo (LHA), a crucial element of Lightweight Crypto System (LCS) for resource- 
constrained IoT devices, improves data integrity using the optimal SHA256 variant, SHA256SUBPT. 
Proposed as the Lightweight Hash Algorithm (LHA), SHA256SUBPT achieves a balance 
between  performance and security, with its architecture illustrated in Figure 5. 
• LHA Architecture Block Wise: LHA processes data in 512-bit blocks, employing a block-wise

approach for efficient handling, contributing to a 256-bit message digest. The block-wise
architecture is illustrated in Figure 6.

Figure 5: LHA Architecture 

Figure 6: LHA Architecture Block Wise 

• Hash Function of LHA: LHA’s hash function, grounded in Merkle-damgard construction,
executes multiple rounds of operations to generate a 256-bit message digest, ensuring data
integrity. The graphical representation is illustrated in Figure 7.

• Each Round of Hash Function of LHA: In each round of the LHA hash function, crypto- graphic
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operations like bitwise transformations and XOR summations are applied to input data, 
enhancing algorithm complexity. The iterative process ensures intricate manipulations, leading 
to the generation of a secure 256-bit hash digest, as depicted in Figure 8. LHA’s hash function’s 
round operation integrates key operations like Majority and Choose selections, XOR summations, 
and optimizations such as round reduction, Rijndael substitution, and Parity transformation 
which replace all state variables-64 bit, except A and E, with the 1's complements of their present 
values if their present values happen to be odd to enhance efficiency and security. 

Figure 7: Hash Function of LHA 

Figure 8: Each Round of Hash function of LHA 

– Ma: Majority selects the next output in a bit-wise manner based on the majority bit for the
three input bytes.

– Ch: Choose selects the next output in a bit-wise manner based on the values in the ’x’
variable; if x[i] = 0, y[i] is selected, else z[i] is selected.

– Σ0: Sigma A: XOR Summation on A.
– Σ1: Sigma E: XOR Summation on E.
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• LHA - SECURITY PARAMETERS: To evaluate the security of the LHA algorithm, we
consider Collision Resistance and Shannon Entropy as crucial security parameters.
Collision Resistance: This property in cryptographic hash functions ensures that it is
challenging to find two inputs (a and b) such that they produce the same output (H(a) = H(b)),
where a /= b.
Shannon Entropy: This parameter is employed to gauge Confusion, specifically the obfus- 
cation of the Input-Output Relationship.

4. Experimental Result Analysis

The evaluation and results analysis were conducted to compare the performance of the Lightweight 
Symmetric Algorithm (LSA) against the Advanced Encryption Standard (AES) in terms of 
execution time and memory consumption. Security parameters such as avalanche effect, 
Hamming distance, and entropy were considered. 

4.1 LSA vs AES Execution Time Comparison 

We conducted a thorough evaluation of the execution time for the LSA compared to the Advanced 
Encryption Standard (AES). This analysis provides insights into the relative efficiency of LSA 
and AES in handling cryptographic operations, with implications for real-world applications and 
system performance. Figure 9 represents the LSA vs AES in terms of execution time. 

Figure 9: LSA vs AES in term of Execution Time 

4.2 LSA vs AES Memory Consumption Comparison 

Our study assessed the memory consumption of Lightweight Symmetric Algorithm (LSA) com- 
pared to Advanced Encryption Standard (AES), providing insights into their resource 
requirements for optimizing cryptographic algorithm performance. Figure 10 visually 
represents the LSA vs AES memory consumption dynamics. 
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4.3 Security Parameters Evaluation 

The algorithm’s security assessment centered on the avalanche effect, hamming distance, and 
entropy, evaluating diffusion, confusion, and bit changes. Parameters were derived from 10,000 
randomly generated blocks to conduct a thorough security analysis. 

Figure 10: LSA vs AES in term of Memory Consumption 

4.3.1 LSA Avalanche Criterion Evaluation 

Our assessment of the Lightweight Symmetric Algorithm (LSA) scrutinizes its performance using 
the Avalanche Criterion (AC), considering first, second, and third-order criteria along with the 
average. This comprehensive analysis sheds light on LSA’s efficacy in diffusing changes in input 
data, reflecting in output data, essential for robust cryptographic applications. 

Table 1: Performance of LSA in term of Avalanche Criterion 

 1st Order AC   2nd Order AC   3rd Order AC   Average AC 

AES  49.00%  49.00%  49.00%  49.00% 
LSA  49.00%  42.00% 49.00% 46.66% 

Table 1 displays LSA’s performance in Avalanche Criterion (AC) at various orders and the 
average AC, contrasting with AES’s constant 49.00%. LSA shows variations, notably a 2nd 
Order AC drop to 42.00%, resulting in an average AC of 46.66%, indicating different levels of 
change propagation compared to AES. Figure 11 visually compares LSA and AES in terms of 
Avalanche Effect, offering insights into their respective responses to modifications in input data 
and highlighting their unique diffusion characteristics. 

4.3.2 LSA Entropy Criteria 

Table 2 reveals the performance of LSA and AES based on Entropy criteria, indicating a 50.00% 
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Hamming Distance for both and very close Shannon’s Entropy values. LSA slightly edges higher 
at 3.612 compared to AES’s 3.611, showcasing comparable security aspects related to confusion 
and the number of flipped bits after conversion. 

Table 2: Performance of LSA in term of Avalanche Criterion 

Hamming Distance Shannon‘s Entropy (Log2) 

AES 50.00% 3.611 
LSA 50.00% 3.612 

Figure 11: LSA vs AES in Term of Avalanche Effect 

Figure 12 illustrates the evaluation of LSA versus AES based on Hamming Distance, showing 
an equivalent and favorable 50.00% for both algorithms. Hamming Distance, measuring bit differ- 
ences between original and encrypted data, underscores their similar and consistent performance 
in this security parameter. 

Figure 12: LSA vs AES in Term of Hamming Distance 
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Figure 13: LSA vs AES in term of Shannon Entropy 

In Figure 13, LSA and AES exhibit identical Shannon Entropy values of 3.612, emphasizing their 
equivalent performance in providing a high degree of confusion and obfuscation in the input-
output relationship. These similar Shannon Entropy values highlight a strong level of security 
for both algorithms in this parameter. 

4.1. Performance Analysis for SHA256 and LHA 

4.4.1 Memory Consumption of SHA256 and LHA 

Figure 14 presents the results of experiments evaluating the memory consumption of SHA256 
and LHA, offering a comparison of their respective requirements under specified conditions. 
The analysis provides insights into the efficiency and resource utilization of SHA256 and LHA, 
highlighting their impacts on memory consumption in cryptographic operations. 

Figure 14: Performance of SHA256 and LHA in Term of Memory Consumption 

4.4.2 Performance of SHA256 and LHA in Term of Execution time 

Figure 15 illustrates the experimentally evaluated execution time performance of SHA256 and 
LHA, offering insights into the time efficiency of both algorithms, including processing time 
and     overall execution speed. 
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4.4.3 Collision Count Analysis 

The collision count analysis for SHA256 and LHA, considering different sizes of strings per hash, 
is presented in the Table 3. The collision count is an important metric to assess the robustness 
and security of hash functions. 

Figure 15: Performance of SHA256 and LHA in Term of 
Execution time 

Table 3: Collision Count Analysis for SHA256 and LHA 

Size of String per Hash SHA256 Collision 
Count 

LHA Collision 
Count 

04 Hex 6.10621 6.10645 
08 Hex 5.2e-05 3.25e-05 
16 Hex 0 0 
32 Hex 0 0 
64 Hex (Full Hash code) 0 0 

4.4.4 Shannon Entropy Analysis 

The Shannon Entropy analysis for SHA256 and LHA, considering different sizes of strings per 
hash, is presented in the Table 4. Shannon Entropy is a measure of uncertainty or information 
content in a system. 

Table 4: Shannon Entropy Analysis for SHA256 and LHA 

Size of String per Hash SHA256 Shannon 
Entropy 

LHA Shannon 
Entropy 

04 Hex 1.81759 1.81727 
08 Hex 2.59429 2.59478 
16 Hex 3.2089 3.20719 
32 Hex 3.61134 3.61357 
64 Hex (Full Hash code) 3.8196 3.82103 
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4.4.5 Performance Analysis of AES vs LSA and SHA vs LHA on ESP32 
Platform 
In this configuration, the ESP32-CAM acts as an access point with a WebSocket server and 
DHT11 sensor, transmitting encrypted data. The M5Stack ESP32 serves as a client, connecting 
to ESP32-CAM, triggering operations with three buttons, ensuring secure communication and 
decoding of encrypted data for display.  

Table 5: Comparison of LSA and AES Encryption/Decryption Performance 
for Text-Based Data 

Parameter LSA 
(microseconds) 

AES 
(microseconds) 

Encryption Time 268 1680 
Encryption Time per Block 48 384 

Decryption Time 267 2060 
Decryption Time per Block 48 464 

Data Length 69 bytes 69 bytes 

Table 6: Comparison of LSA and AES Encryption/Decryption Performance 
for Image-Based Data 

Parameter LSA 
(microseconds) 

AES 
(microseconds) 

Encryption Time 7205 61438 
Encryption Time per Block 32 320 

Decryption Time 3090 73251 
Decryption Time per Block 32 368 

Data Length 3056 bytes 3056 bytes 

Table 7: Comparison between the Performance of the LSA and AES For Image-based 
Data 

Algorithm Operation 
Time 
(μs) 

Time per  
Block 
(μs) 

Data 
Length 
(bytes) 

Hash 
Function 

Hash 
Time 
(μs) 

Hash 
Time per 
Block (μs) 

AES with 
SHA Encrypt 69226  320 3440 SHA256 2037  9 

AES with 
SHA Decrypt 82459  368 3440 SHA256 2037  9 

LSA with 
LHA Encrypt 8108  32 3440 LHA256 1259  5 

LSA with 
LHA Decrypt 8059  32 3440 LHA256 1259  5 
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Figure 16: Performance analysis of AES vs LSA on text/image based data on IoT Set up 

Figure 17: Performance analysis of AES/SHA vs LSA/LHA on text/image based data on 
IoT Set up 

Tables 5 and 6 compare LSA and AES encryption/decryption performance for text-based and image-
based data. Figure 16 illustrates the experimentally evaluated execution time performance of 
AES and LSA on IoT set up. Tables 7 and 8 compare performance of combination of LSA-LHA and 
AES-SHA encryption/decryption for text-based and image-based data. Figure 17 illustrates the 
experimentally evaluated execution time performance of AES-SHA and LSA-LHA on IoT setup. 

Table 8: Comparison between the Performance of the LSA and AES for Text based data 

Algorithm Operation Time
(μs) 

Time per 
Block 
(μs) 

Data 
Length 
(bytes) 

Hash 
Function 

Hash 
Time 
(μs) 

Hash 
Time per 
Block (μs) 

AES with 
SHA 

Encrypt 1755 400 69 SHA256 146 36 

AES with 
SHA 

Decrypt 2016 464 69 SHA256 146 36 

LSA with 
LHA 

Encrypt 311 64 69 LHA256 81 20 

LSA with 
LHA 

Decrypt 281 64 69 LHA256 81 20 
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Table 9 and 10 detail the throughput of AES and LSA for text-based and image-based data, 
respectively. Furthermore, Table 11 illustrates the throughput of AES and SHA for image data, while 
Table 12 showcases the throughput of LSA and LHA for image data. 

Table 9: Text-Based Data Throughput of LSA and AES 

Parameter LSA 
Throughput 
(Mb/s) 

AES 
Throughput 
(Mb/s) 

Encryption Throughput 2.06 0.33 
Decryption Throughput 2.07 0.27 
Data Length 69 bytes 69 bytes 

Table 10: Image-Based Data Throughput LSA and AES 

Parameter LSA 
Throughput 
(Mb/s) 

AES 
Throughput 
(Mb/s) 

Encryption Throughput 3.39 0.40 
Decryption Throughput 3.41 0.33 
Data Length 3056 bytes 3056 bytes 

Table 11: AES with SHA Throughput with Image Data 

Operation Throughput (Mb/s) 
AES Encryption 0.40 
AES Decryption 0.33 
SHA Hashing 13.51 

Table 12: LSA with LHA Throughput with Image Data 

Operation Throughput (Mb/s) 
LSA Encryption 3.39 
LSA Decryption 3.415 
LHA Hashing 21.86 

The comparison tables show that LSA consistently outperforms AES in encryption and decryption 
performance for both text-based and image-based data, with lower times per block and higher 
throughput. When combined with LHA, LSA demonstrates remarkable efficiency, especially for 
image data, surpassing AES with SHA. These findings highlight LSA's potential for secure and 
efficient data transmission, particularly in applications like IoT and image processing. 

5. Conclusion

Our Hybrid Lightweight Cryptographic System (LCS) is a significant advancement in IoT data 
security, employing LSA for encryption, ECC for key management, and LHA for integrity 
verification. Our LHA algorithm outperforms SHA-256, showcasing similar collision resistance in 
practical scenarios, ensuring enhanced performance without compromising security. Additionally, 
LSA with LHA exhibits notable performance improvements in comparison with AES128 with 
SHA256, particularly in real-time image-based data transmission on ESP32. When working with 
text data, there's an observed approximately 79.5% improvement in performance, and when 
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working with image data, the improvement is approximately 86.8%. Such improvements have 
potential implications for real-time applications, particularly where latency is a concern. This study 
paves the way for future cryptographic optimizations in IoT. Identifying and addressing potential 
security vulnerabilities in these areas will be a key focus of our future research. 
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Abstract

This paper focuses on estimating the product of two population means. Within this paper, we have
introduced three distinct classes of estimators for product of two population means. These estimators
take into account the known population mean of an auxiliary variable under the framework of stratified
random sampling and the presence of non-response in the study variable. Basically, for case (I) we
assume the non-response on the study variable and utilize the auxiliary information corresponding to the
responding units of the study variable and in case (II), we utilize the complete dataset from the auxiliary
variable while also accounting for non-response in the study variable. In case (III) we combined both the
information of the auxiliary variable and assumed the non-response on the study variable. Expressions
for bias and mean square error have been derived, extending up to the first-order derivative. We have
also pinpointed some specific members of the proposed estimator. We have conducted a simulation study
to evaluate the valuable insights into the performance of the suggested classes of estimators with the
conventional estimator.

Keywords: Product of two population means, Auxiliary variable, Stratified Sampling, Non-
response, Mean square error

1. Introduction

The product of two population means is a common parameter used in various areas, including
agriculture, economics, social sciences, public health and other scientific investigations. The
estimation problem of the product of two population means is very useful in practice. For instance,
suppose we want to estimate the total production in a farm having N plants then we select some
plants and observe the number of pods and the seeds in pods in a plant then from selected
units we will calculate the average number of pods/plant and average number of seeds/plant.
Multiplying the average number of seeds/plant and the number of pods/plant with the total
number of plants we get the total number of seeds.

In the case of finite population utilizing the auxiliary information(s), the estimation problems
related to the product of population means have been examined by several researchers such as
Singh[14], Singh[15], Singh[16], Singh[17], Ray and Singh[11], Srivastava et al.[20] and Khare[3]
Kumar and Srivastava [8].

Any researcher or statistician may typically encounter the phenomena of the non-response in
a scientific investigation or in a sample survey. The reasons for the occurrence of the non-response
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are the respondent’s unwillingness to respond to some questions that are sentimental, the person
not at home, Lack of enthusiasm, etc.

To cope with the complications of non-response, Hansen and Hurwitz [2] have put forward a
method of sub-sampling from non-responding units. Using information from responding and
sub-sampling units picked from non-responding units in the sample, he suggested a population
mean estimator.

In the existence of non-response, the estimation of the product of population means utilizing
auxiliary information has been considered by Khare and Sinha[4, 5] and Khare et al.[6].

For stratified populations, Khare and Jha[7], Singh et al.[18] and Mishra et al.[9] have suggested
precise estimators of population parameters in the situation of non-response on study character
using known and unknown population mean of auxiliary variable.

Motivated by Khare and Jha[7], Three classes of estimators are proposed to estimate the prod-
uct of two population means under the stratified random sampling with the known population
mean of auxiliary character having the non-response on study character. The expressions for bias
and mean square error (MSE) of the suggested estimators have been obtained. For the numerical
study, the data generated by simulation using R-software has also been given to validate the
supremacy of the suggested estimators.

2. Notations and Sampling procedure:

In the study of the population η : (η1, η2, η3...ηN) of the size N. The population is divided into L
strata. We denote yh (h = 1, 2) as study characters of the population having population means Yhi
(h = 1, 2) in the ith stratum, (i = 1, 2, 3..L) and for the auxiliary character (x), the population mean
is denoted by Xi which is known for each stratum. For each stratum, the stratum proportion and
size is also known. Let Ni1 and Ni(2) are the number of units belonging to the responding and

non-responding part of the ith stratum such that Ni1 + Ni(2) = Ni. For the ith stratum, Wi1 = Ni1
N

and Wi2 =
Ni(2)

N represent the response and non-response rates.
Here, we are considering the problem in stratified population using non-response in each

stratum, the estimation of P (= Y1Y2) for known X has been considered. The sampling procedure
we use for the study is as:
we select ni units from ith stratum, ni1 units are selected from Ni1 units using simple random
sampling without replacement (SRSWOR) method of sampling, Here, we obtain ni1 units as
respondent and ni(2) units as non-responding units out of ni selected units. We select ri units,(
ri =

ni(2)
ki

, ki > 1
)

from ni(2) units of the ith stratum.
Using the information available on (ni1 + ri) units, the estimator y∗hi, (h = 1, 2) is given by Hansen
and Hurwitz[2] method as follows:

y∗hi =
ni1
ni

yhi(1) +
ni(2)

ni
yhi(2), (1)

where, yhi(1) denotes the sample means of yh for ni1 responding units in the ith stratum and
yhi(2) is the sample mean of ri units drawn from non-responding units (ni(2)) in the ith stratum.
The estimator y∗hi (h = 1, 2) is unbiased and has variance given by:

V(y∗hi) =
(1 − fi)

ni
S∗2

yhi +
Wi(ki − 1)

ni
S∗2

yhi(2) (2)

where, S∗2
yhi and S∗2

yhi(2) are the population mean square for ni1 responding units and non-

responding units of ith stratum of the population.
The Hansen and Hurwitz [2] estimator for the auxiliary variable x, we have

x∗i =
ni1
ni

xi(1) +
ni(2)

ni
xi(2) (3)
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where, xi(1) and xi(2) are the sample means of x for ni1 responding units and based on ri units
sub-sampled from ni(2) non-responding units of the ith stratum.

In the presence of non-response, the stratified sample means for Yh (h = 1, 2) and X are given
as follows:

y∗hst =
L

∑
i=1

Wiy∗hi and x∗st =
L

∑
i=1

Wix∗i (4)

In each stratum utilizing the information on ni units, the stratified sample mean to estimate X
is given by:

xst =
L

∑
i=1

Wixi (5)

where, Wi =
Ni
N .

3. Proposed Classes of Estimators:

Let P̂st = y∗1sty
∗
2st denotes an estimator for P using stratified random sampling in the existence

of non-response. We propose three different estimators for P under different situations of
non-response which are given as follows:

Case (A): Utilizing Incomplete information on yh, (h = 1, 2) and corresponding values of x
when X is known.

l1 = d(1)(P̂st, m1) (6)

Case (B): Incomplete information on yh, (h = 1, 2) and complete information on x for the
known X.

l2 = d(2)(P̂st, m2) (7)

Case (C): Utilizing Incomplete information on yh, (h = 1, 2) and corresponding values of x
and complete information on auxiliary variable.

l3 = h(P̂st, m1, m2) (8)

such that,

d(j)(P, 1) = P, d1(j)(P, 1) = 1, h(P, 1, 1) = P and h1(P, 1, 1) = 1 where,

d1(j)(P, 1) =
[ δ

δP̂st
d(j)(P̂st, mj)

]
(P,1)

, d2(j)(P, 1) =
[ δ

δmj
d(j)(P̂st, mj)

]
(P,1)

,

h1(P, 1, 1) =
[ δ

δP̂st
h(P̂st, m1, m2)

]
(P,1,1)

, h2(P, 1, 1) =
[ δ

δm1
h(P̂st, m1, m2)

]
(P,1,1)

h3(P, 1, 1) =
[ δ

δm2
h(P̂st, m1, m2)

]
(P,1,1)

for j=1,2. (9)

We denote, P̂st = y∗1sty
∗
2st, m1 =

x∗st
X

and m2 = xst
X

.
We assume that the function d(1)(P̂st, m1), d(2)(P̂st, m2) and h(P̂st, m1, m2) are fulfilling the

regularity conditions which are given as follows:

• For any sample chosen from any design, the selected functions d(j)(P̂st, mj), and h(P̂st, m1, m2)
take the values in two-dimensional and three-dimensional real space G1 and G2 having the
points (P, 1) and (P, 1, 1).

• The partial derivatives of the first-order and second-order with respect to P̂, m1 and m2 for
the functions d(j)(P̂st, mj), and h(P̂st, m1, m2) are continuous and bounded in G1 and G2.
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(10)

Using the regularity conditions (10) and expanding the function d(j)(P̂st, mj), for j = 1, 2 and
h(P̂st, m1, m2) about the point (P, 1) and (P, 1, 1) respectively by utilizing Taylor’s series up to the
second-order partial derivatives, we get

lj = d(j)(θ1) + (P̂st − P)d1(j)(θ1) + (mj − 1)d2(j)(θ1) +
1
2

[
(P̂st − P)2d11(j)

(θ∗1 ) + (mj − 1)2d22(j)(θ
∗
1 ) + 2(P̂st − P)(mj − 1)d12(j)(θ

∗
1 )
]

(11)

l3 = h(θ2) + (P̂st − P)h1(θ2) + (m1 − 1)h2(θ2) + (m2 − 1)h3(θ2)+

1
2

[
(P̂st − P)2h11(θ

∗
2 ) + (m1 − 1)2h22(θ

∗
2 ) + (m2 − 1)2h33(θ

∗
2 )

+ 2(P̂st − P)(m1 − 1)h12(θ
∗
2 ) + 2(P̂st − P)(m2 − 1)h13(θ

∗
2 )

+ 2(m1 − 1)(m2 − 1)h23(θ
∗
2 )
]

(12)

Where, θ1 = (P, 1), θ∗1 = (P̂∗
st, m∗

j ), θ2 = (P, 1, 1), θ∗2 = (P̂∗
st, m∗

1 , m∗
1), P̂∗ = P + α1(P̂st − P) and

m∗
j = 1 + α2(mj − 1), 0 < αj > 1 for j = 1, 2.

Here, d1(j)(θ1) and d11(j)(θ1) are the first and second-order partial derivatives with respect to
P̂st and d2(j)(θ1) and d22(j)(θ1) are the first and second-order partial derivatives with respect to mj
for the function d(j)(θ1). Similarly h1(θ2), h2(θ2) and h3(θ2) are the first-order partial derivatives
with respect to P̂st, m1 and m2 respectively and using the condition given in equation (9) and
presume that the second-order derivatives are very small in equations (11) and (12), the expression
for lj and l3 are given as follows:

lj = P̂st + (mj − 1)d2(j)(θ1) + P−1(P̂st − P)(mj − 1)d2(j)(θ
∗
1 ) (13)

l3 = P̂st + (m1 − 1)h2(θ2) + (m2 − 1)h3(θ2) (14)

For the function d(j)(P̂st, mj), for j = 1, 2 and h(P̂st, m1, m2), under the conditions given in
equation (10) the Bias(lj), bias(l3), MSE(lj) and MSE()l3) are always exist.

4. Properties of the Proposed Classes of Estimators

Utilizing the large sample approximation, we assume that:

y∗1st = Y1(1 + ϵ0), y∗2st = Y2(1 + ϵ1), x∗st = X(1 + ϵ2) and

xst = X(1 + ϵ3) (15)

Such that |ϵi| < 1 and E(ϵi) = 0 ∀ i = 0, 1, 2, 3.
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We also have,

E(ϵ2
0) =

V(y∗1st)

Y2
1

=
1

Y2
1

L

∑
i=1

{
W2

i fiS2
y1i

+
(ki − 1)

ni
Wi2S2

y1i(2)

}
,

E(ϵ2
1) =

V(y∗2st)

Y2
2

=
1

Y2
2

L

∑
i=1

{
W2

i fiS2
y2i

+
(ki − 1)

ni
Wi2S2

y2i(2)

}
,

E(ϵ2
3) = E(ϵ2ϵ3) =

V(xst)

X2 =
1

X2

L

∑
i=1

{
W2

i fiS2
xi

}
,

E(ϵ2
2) =

V(x∗st)

X2 =
1

X2

L

∑
i=1

{
W2

i fiS2
xi
+

(ki − 1)
ni

Wi2S2
xi(2)

}
,

E(ϵ0ϵ1) =
Cov(y∗1sty

∗
1st)

Y1Y2
=

1
Y1Y2

L

∑
i=1

W2
i

{
fiSy1iy2i +

(ki − 1)
ni

Wi2Sy1iy2i(2)

}
,

E(ϵ0ϵ2) =
Cov(y∗1stx

∗
st)

Y1X
=

1
Y1X

L

∑
i=1

W2
i

{
fiSy1ixi +

(ki − 1)
ni

Wi2Sy1ixi(2)

}
,

E(ϵ1ϵ2) =
Cov(y∗2stx

∗
st)

Y2X
=

1
Y2X

L

∑
i=1

W2
i

{
fiSy2ixi +

(ki − 1)
ni

Wi2Sy2ixi(2)

}
,

E(ϵ0ϵ3) =
Cov(y∗1stxst)

Y1X
=

1
Y1X

L

∑
i=1

W2
i

{
fiSy1ixi

}
,

E(ϵ1ϵ3) =
Cov(y∗2stxst)

Y2X
=

1
Y2X

L

∑
i=1

W2
i

{
fiSy2ixi

}
(16)

Where, (S2
y1i

, S2
y2i
) represent the population mean square error of (y1, y2) for ith stratum and

(S2
y1i(2)

, S2
y2i(2)

) are the population mean square of ri units sub-sampled from ni(2) units of the

study variable for ith stratum and (S2
xi

, S2
xi(2)

) represent the population mean square error of x for

ith stratum and ri units sub-sampled from ni(2) for ith stratum respectively.
(Sy1iy2i , Sy1ixi , Sy2ixi ) and (Sy1iy2i(2), Sy1ixi(2), Sy2ixi(2)) are the covariance between (Sy1iy2i , Sy1ixi ,

Sy2ixi ) and (Sy1iy2i(2), Sy1ixi(2), Sy2ixi(2))stratum of the population and ri units sub sampled from

ni(2) units of the population for the ith stratum respectively and fi =
(

1
ni
− 1

Ni

)
.

The Bias and MSE of lj and l3 by using the equation (81) and (82) respectively up to the n−1

terms of order are given as below:

Bias(lj) = E(lj − P) = E
[

P̂st + (mj − 1)d2(j)(θ1)

+ P−1(P̂st − P)(mj − 1)d2(j)(θ
∗
1 )− P

]
= E(P̂st − P) + P−1E(P̂st − P)(mj − 1)d2(j)(θ1) (17)

MSE(lj) = E(lj − P)2 = E(P̂st − P)2 + E(mj − 1)2d2
2(j)(θ1)

+ 2E(P̂st − P)(mj − 1)d2(j)(θ1) (18)

Bias(l3) = E(l3 − P) = E
[

P̂st + (m1 − 1)h2(θ2) + (m2 − 1)h3(θ2)− P
]

= E(P̂st − P) (19)

MSE(l3) = E(l3 − P)2 = E(P̂st − P)2 + E(m1 − 1)2h2
2(θ2) + E(m2 − 1)2h2

3(θ2)

− 2E(P̂st − P)(m1 − 1)h2(θ2) + 2E(P̂st − P)(m2 − 1)h3(θ2)

+ 2E(m1 − 1)(m2 − 1)h2(θ2)h3(θ2) (20)
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The equation (86) can be written as:

MSE(l3) = E(l3 − P)2 = MSE(P̂st) + Ah2(θ2) + Bh3(θ2) + 2Ch2(θ2)

+ 2Dh3(θ2) + 2Eh2(θ2)h3(θ2) (21)

Where, MSE(P̂st) = E(P̂st − P)2, A = E(m1 − 1)2, B = E(m2 − 1)2, C = E(P̂st − P)(m1 − 1), D =
E(P̂st − P)(m2 − 1) and E = E(m1 − 1)(m2 − 1).

Now, to get the optimum value of d2(1)(θ1), d2(2)(θ1), h2(θ2) and h3(θ2) We partially differentiate the
expression (18) w.r.t. d2(1)(θ1), d2(2)(θ1) and equation (21) w.r.t h2(θ2) and h3(θ2) and equating to zero.
Assuming that the partial derivatives of order second are positive, we get

d2(1)(θ1)(opt) = − X
V(x∗st)

[
Y2Cov(y∗1st, x∗st) + Y1Cov(y∗2st, x∗st)

]
(22)

d2(2)(θ1)(opt) = − X
V(xst)

[
Y2Cov(y∗1st, xst) + Y1Cov(y∗2st, xst)

]
(23)

h2(θ2)opt =
(DE − BC)
(AB − E2)

(24)

h3(θ2)opt =
(CE − AD)

(AB − E2)
(25)

The minimum mean square errors after putting the optimum values of d2(1)(θ1), d2(2)(θ1), h2(θ2) and
h3(θ2) in equation (18) and (21) are given by:

MSE(l1)min = MSE( p̂st)−
P2

V(x∗st)

[
Cov(y∗1st, x∗st)

Y1
+

Cov(y∗2st, x∗st)

Y2

]2

(26)

MSE(l2)min = MSE( p̂st)−
P2

V(xst)

[
Cov(y∗1st, xst)

Y1
+

Cov(y∗2st, xst)

Y2

]2

(27)

MSE(l3)min = MSE( p̂st)−
[

BC2 + AD2 − 2CDE
AB − E2

]
(28)

Members of the proposed classes l1, l2 and l3:
For the given condition in (9), any parametric function d(1)(P̂st, m1), d(2)(P̂st, m2) and h(P̂st, m2) can

produce a class of asymptotic estimators. Such types of estimators have a very large number of classes.
Some of the members are given below for the proposed classes of estimators:

lj1 = P̂st(λ1 + (1 − λ1)mj), lj2 = (P̂st + a1(mj − 1))mβ
j

lj3 = P̂st(mj)
α2 , lj4 = P̂st(2 − mα3

j ), lj5 = P̂st exp
[mj − 1

mj + 1

]
l31 = P̂st(γ1 + m1γ2 + (1 − γ1 − γ2)m2), l32 = P̂st exp[α4(m1 − 1)

+ α5(m2 − 1)], l33 = P̂stm
α6
1 mα7

2 , l32 = P̂st
1
2

[
1 + α8mγ3

1 + (1 − α8)m
γ4
2

]
(29)

The MSEs of the suggested classes of the estimators will attain the minimum value of the MSE given
in equation (26), (27), (28) for the optimum value d2(1)(θ1), d2(2)(θ1), h2(θ2) and h3(θ2) given in equation
(22), (23), (24) and (25). The member of the proposed classes of the estimators l1, l2 and l3 given in equation
(29) will also attain the same minimum MSE. The optimum values are occasionally in the form of some
unknown parameters and occasionally in the form of the value of unknown constants these values can be
obtained from past data (Reddy [13]) or can be estimated by sample values that do not affect the minimum
MSE of the estimator up to the term of order ( 1

n ) (Srivastva and Jhajj [19]).
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5. Comparison of (l1, l2 and l3) with Pertinent Estimators [P̂st]

In stratified random sampling, the estimator for P in the case of non-response is defined as:

P̂st = y∗1sty
∗
2st (30)

The MSE of the P̂st is given as:

MSE(P̂) = P2

[
V(y∗1st)

Y2
1

+
V(y∗2st)

Y2
2

+ 2
Cov(y∗1st, y∗2st)

Y1Y2

]
(31)

6. Simulation Study:

To evaluate the characteristics of suggested classes of estimators, we perform a simulation study to artificially
generate the population using normal distribution. For this study, we generate a population of size 4500.
The following table (1) shows the distributions of the population generated to perform the study.

Table 1: Sample Size and Distribution

Strata No. Stratum Size(Ni) Sample Size (ni) Distribution of y1hi
∼ N(µ, σ2) Distribution of y2hi

∼ N(µ, σ2) Distribution of xhi
∼ N(µ, σ2)

1 1800 600 N(500,81) N(900,121) N(600,100)
2 1200 400 N(300,64) N(500,100) N(300,121)
3 900 300 N(400,100) N(400,64) N(500,81)
4 600 200 N(500,121) N(300,81) N(300,64)

Here, we employ some transformations suggested by Reddy et al.[12]. To generate the population for
study variables and auxiliary variable with some association. The following table (2) shows the required
transformation and correlation to generate the random variables. Now, to estimate the approximate mean
square error of the suggested classes of the estimators and estimator P̂st. We average the outcomes after
6000 iterations of the loop.

To calculate the approximate mean square error (AMSE) the formula is given as follows:

AMSE(m∗
1) =

1
6000

6000

∑
t=1

(m∗
1 − P)2

where, m∗
1 = P̂st, l1 l2 and l3.

Table 2: Transformation and correlation:

Strata no. cor(y1hi
, xhi

) cor(y1hi
, xhi

) Transformed auxiliary variable xhi
using y1hi

Transformed auxiliary variable xhi
using y2hi

I −0.58 −0.60 x11i = ry1 x1 y11i + x1i
√

1 − r2
y1 x1

x21i = ry2 x1 y21i + x1i
√

1 − r2
y2 x1

II −0.62 −0.72 x12i = ry1 x2 y12i + x2i
√

1 − r2
y1 x2

x22i = ry2 x2 y22i + x2i
√

1 − r2
y2 x2

III −0.70 −0.58 x13i = ry1 x3 y13i + x3i
√

1 − r2
y1 x3

x23i = ry2 x3 y23i + x3i
√

1 − r2
y2 x3

IV −0.65 −0.65 x14i = ry1 x4 y14i + x4i
√

1 − r2
y1 x4

x24i = ry2 x4 y24i + x4i
√

1 − r2
y2 x4
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Table 3: Percentage relative efficiency (PRE) of the proposed estimator with respect to relevant estimators.

Rate of Non-response Estimators 1/k

1/2 1/3 1/4
10% P̂st 100(3991.83) 100(4484.76) 100(5022.54)

l1 117.97(3383.59) 118.25(3792.38) 118.49(4238.51)
l2 115.26(3463.26) 113.39(3954.87) 111.83(4491.21)
l3 118.22(3376.57) 118.80(3774.79) 119.45(4204.63)

20% P̂st 100(4509.60) 100(5508.47) 100(6616.83)
l1 118.06(3819.70) 118.10(4664.08) 118.08(5603.45)
l2 113.21(3983.25) 110.62(4979.58) 108.69(6087.46)
l3 118.26(3813.21) 118.40(4652.04) 115.57(5580.08)

30% P̂st 100(5034.18) 100(6578.39) 100(8146.68)
l1 117.98(4266.66) 118.24(5563.51) 118.54(6872.50)
l2 111.72(4505.72) 108.73(6049.82) 106.93(7618.18)
l3 118.14(4261.11) 118.47(5552.53) 118.85(6854.30)

(Note: The AMSE of the estimators are shown in parenthesis.)

Table (3) depicts the AMSE of the estimators P̂st, l1, l2 and l3 for different values of k and non-response
rates.

From the above Table (3) we can see that as we increase the value of k and non-response rates from 10%
to 30% the approximate means square error of the estimators P̂st, l1, l2 and l3 increases.

7. Conclusion

The proposed estimators l1, l2 and l3 are found to be more efficient than the estimator P̂st . And it is also
observed that from Table (3) the proposed classes of estimators l1 and l3 are found to be almost equally
efficient for the different choices of sub-sampling fraction and non-response rates.

The AMSE(l1) less than or greater than AMSE(l2) depending upon the situation of correlation between
study variables y1, y2 and auxiliary variable x. Rao[10] has shown the situation when the conventional
estimator using x∗ and alternate estimator using x will be less than each other depending upon the situations
given by him. This theory also works here in the case of l1, l2 and l3.

Here, some times AMSE(l1) < AMSE(l2) then AMSE(l3) will be less than AMSE(l2) and almost equal
or less than AMSE(l1). But if AMSE(l1) > AMSE(l2) then AMSE(l3) will be less than AMSE(l1) and
almost equal to the AMSE(l2). So the use of AMSE(l3) is advisable if the condition when AMSE(l1) <
AMSE(l2) or AMSE(l1) > AMSE(l2) is unknown.

Hence, for the estimation of P under the stratified random sampling in the existence of non-response for
the Known X. We suggest to use the estimators l1, l2 and l3 depending on the situations discussed in the
results.
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Abstract

The suggested queueing model describes a single-server feedback retrial queueing system with starting
failure, Bernoulli working vacation and vacation interruptions. The server departs on a working vacation
as soon as orbit is empty. During the working vacation period, the server provides a slower level of service.
The supplementary variable method was utilized to determine the steady-state probability-generating
functions for the system and its orbit. If there are consumers in the system at the end of each vacation,
the server becomes idle and ready to serve new customers. The average busy time and the average busy
cycle are presented as important system performance indicators. Additionally, the adaptive neuro-fuzzy
interface system has compared the numerical results with the neuro-fuzzy results. Finally, particle swarm
optimization (PSO) were utilized to obtain the best (optimal) cost for the system in this study. We have
examined the convergence of these optimization strategies.

Keywords: Retrial queues, Feedback, Supplementary variable technique, Starting Failure and
Working Vacation,ANFIS.

1. Introduction

In a queueing system (QS), queues involving continuous tries occur when a consumer comes
and identify the server is occupied. The client is instructed to leave the service region and join
a virtual area referred to as the ’orbit’. Subsequently, the customer within the orbit can make a
service request after a period of time. In a vacation periods, the server halts its service entirely,
becoming unavailable to the primary clients for a short duration, which is termed a "vacation."
However, during the working vacation (WV) period, the server provides services to consumers,
albeit at a reduced service rate. Also, the server’s vacation may be ignored if customers arrive
during the vacation period, and the server may resume operation in its regularly scheduled
manner. It is known as the vacation interruption(VI) strategy. Major uses for this QS include
delivering network services, online services, file transfer services, mail services and so on. A more
realistic RQ with feedback happens in many real-world scenarios; for instance, in multiple-access
telecommunications systems, where data returned as failures is forwarded again, it may be treated
as a retrial queue with feedback.

1.1. Survey of Literature

In an M/G/1 retrial queue (RQ) with general retrial times, consumers who find the server
busy join the orbit according to the first-come,first-served (FCFS) principle as studied by Gomez-
Corral [1]. Such an instance occurs in certain communication protocols, in production lines at
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stores, etc. The RQ has been extensively studied by Falin and Templeton [2], Artalejo and Corral
[3], Artalejo [4], etc. Many authors have investigated a single server retrial queue (SSRQ) with
WVs and VIs,including Zhang and Hou [16], Gao and Liu [6], Gao et al. [5], Zhang and Liu [22],
and Rajadurai et al. ([7], [8], [9]). Mokaddis et al.[10] explored the M/G/1 retrial queue with
Bernoulli feedback,Starting Failure (SF) and a single vacation (SV). Clients in orbit connect to the
server via FCFS discipline, and an arbitrary distribution is assumed for the retry time. The server
goes on vacation when there are no clients on the system. If the server comes back from vacation
and there are no consumers, it waits for the first client to arrive on the system from the outside.

Krishna Kumar et al.[11] researched a RQ with feedback and a server exposed to SF, as well as
a general stochastic decomposition rule for M/G/1 vacation models. Rajadurai [12] investigated
a single server preemptive priority RQ based on Bernoulli working vacation (BWV) and VIs.
Rajadurai et al.[13] explored a SSRQ system with BWV and VI. Performance indicators and
analytical illustrations are provided. Jain and Kumar [26] analyzed bulk arrival general service
RQ subject to balking, feedback and vacation interruption under multiple WV policy. Pazhani
Bala Murugan and Keerthana [27] investigated an M/G/1 feedback RQ with WV and a waiting
server. Keerthiga and Indhira [28] examined SSRQ with two phases of service for retrial customers.
Agarwal et al. [29] discussed detection of optimal WV service rate for retrial priority G-queue
with immediate Bernoulli feedback. Rachita Sethi et al.[17] researched a threshold-based repair
facility for machining systems with a WV approach. WV was established to allow repairmen
to offer service at a reduced rate as opposed to entirely discontinuing operations. The idea of
F-policy is used to govern its arrival in the system. The implementation of a threshold N-policy
to start the repair reduces the system’s cost. Performance measurements are computed utilizing
the 4th-order Runge-Kutta approach, and the numerical findings obtained are compared to the
adaptive neuro fuzzy inference system (ANFIS).

Charu Bhargava and Madhu Jain [18] studied the “Modelling and Analysis of a Markovian
multi server queue with an (e,d) SV procedure, server failures and repairs". Some stationary
performance indicators are established after service completion using the matrix geometric
technique. Additionally,the direct search method is utilised to estimate the best no. of idle,
vacationing, and total no. of servers at the most affordable price. Also, the acquired numerical
outcomes have been compared using a soft computing technique (SCT) based on an ANFIS.
Radhika Agarwal et al.[19] analyzed the performance metrics that are used in improving service
standards using the SVT and compared the analytical outcomes to the neuro fuzzy outcomes
via the ANFIS (SCT). In addition, single and bi-objective minimization issues are explored with
minimum attained via “PSO and a multi-objective GA" respectively.

In this research, we have extended the work of Rajadurai et al. [13] by including the ideas
of feedback and SF. By using PSO, we have also performed a cost analysis of the model under
consideration. Because the suggested solution improves repeatedly and the system gives us the
best option that is feasible, this approach has gained a lot of reputation in recent years. When it
comes to queueing analysis, this technique may be used to get productive outcomes, whether
the goal is to save overall costs or maximize performance metrics. This framework aids in our
analysis of various real-world queuing scenarios, allowing us to enhance the customer experience.
To that extent, this article contributes. In areas with heavy traffic and congestion, this kind of
project is highly pertinent and beneficial.

To the best of author’s knowledge, there has been no previous research that has examined in
this work. Therefore, to fill up this gap, in this article, we consider the feedback RQ with WV and
VI subjected to server breakdown and repair. SVT has been used, and for some of the variables,
a 3D graphical representation has also been provided. To attain optimal operating conditions,
minimize expected costs, and maximize economic performance PSO a well-known meta-heuristic
technique are applied. The aforementioned framework may be used in a wide variety of situations,
including but not limited to: telephone switching, telecommunications, computer networks, online
ticket booking centers, aviation traffic control, quality control procedures, and inspection testing
of items. The purpose of this investigation is to estimate the queue length and orbit size dist.,
which will be implemented to calculate the system’s performance metrics.
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The following is an overview of our article: Section 2 provides a detailed discussion of the
queueing paradigm. Section 3 specifically determines the system’s steady state (SS) behavior
and the queue length’s PGF at a random epoch. Section 4 includes various substantial indicators
of system behavior. Section 5 discussed particular cases. Sections 6 and 7 provide numerical
outcomes and cost optimization. Finally, Section 8 provides a conclusion and overview of the
study.

2. Model description

A comprehensive explanation of this framework is given below:

The arrival process: New customers join the system from the outside, according to a Pois-
son process (PP), at a rate of µ.

The retrial process: According to FCFS discipline, when a customer visits while the server
is occupied or unavailable, the consumer departs the service area and joins a group of blocked
clients known as “orbit." The server appears to be accessible to the clients at the front of the
orbit queue. Every customer’s successive inter-retrial duration’s are determined by an arbitrary
probability distribution function (PDF) B(x), with an associated density function (df) b(x) and the
“Laplace-Stieltjes transform" (LST) β∗(θ).

The service process: When a new or repeated consumers enters at the server while it’s idle,
the server promptly begins its regular service for the incoming customers. The service time fol-
lows a general dist., and PDF C(x), a df c(x), a LST α∗(θ) & the 1st and 2nd moments are C1 and C2.

The Bernoulli working vacation process: The server goes on a WV whenever the orbit is
empty, and the duration of this vacation follows an exponential dist., with a specified parameter
γ. If a consumer visits during vacation time, the server will continue to operate at a slower
service rate. The WV time is a slower-paced operating period. In the event that any clients in the
orbit reach the instant of service completion during the vacation time, the server will end the
vacation and return to its normally busy state, which is known as VI. On the other hand, if there
are no clients in the system at the completion of the vacation, the server rejoins the system and
waits to serve a new client with prob.r1 (SWV) or makes for another WV with prob. r2 = 1 − r1
(MWV). When a vacation is over and there are still consumers in its orbit, the server resumes
usual operation. During the WV period, the service time is determined by a general random
variable Hv with a dist., function Hv(t), LST H∗

v (φ) & the 1st and 2nd moments are h1 and h2,
respectively.

Feedback Procedure: After getting their normal services, dissatisfied customers have two options:
they may either exit the system with probability ω̄ = (1 − ω) or they can return to the orbit as
unsatisfied clients and get a service again with probability ω .

Starting Failure: The customer will almost definitely start receiving service right away if the
server is successfully activated. If the server is unable to start the service, the consumer exits the
service area, enters the orbit, and repeats the request for the service after some time. The server
is instantly repaired if a failure occurs. SF happens with prob. λ̄ and successful service begins
with prob.λ.

Repair Process: If the server fails to start, the repair process begins immediately. During
the repair process, the server refuses to serve external or repeat consumers. Repair times have a
distribution function I(x) and a corresponding density function i(x), and the first two moments
are I1 and I2, respectively.
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The system’s stochastic processes are considered to be independent of each other.

2.1. Practical justification of the recommended paradigm

The suggested scenario has beneficial applications in a telecommunications. For example,
we investigate a communication system designed for making reservations at restaurants. Let
us consider a scenario in which a restaurant uses a phone system to accept reservations and
provide a range of other services. client can use this system to reserve a table for themselves.
The supervisor who answers all calls is in charge of this phone system. The consumer is able to
pick up the phone (leave the system) or inquire regarding event reservations, purchase tickets
for an upcoming musical performance, etc. after reserving a table. A caller must reaffirm their
reservations if there is a possibility of a misinterpretation stemming from an unclear network
or other related difficulties (feedback). When the manager is occupied overseeing other areas of
the restaurant, he is unable to answer calls (vacation mode). In these circumstances, the junior
manager often serves, albeit somewhat more slowly (WV).In this stage, the supervisor returns
right away (i.e., a vacation interruption happens) if there are any calls in the system after the
phone call is over (at service completion). However, the supervisor continues to take care of
other restaurant-related matters if no calls come in after completing his secondary work (vacation
mode). It is likely that when a consumer calls, the line is busy and that the client will call back
after some period of time (retrial). It is possible that during a phone conversation, a bad signal,
inadequate network coverage, or a virus attack (SF) might occur, causing the client to lose service.
Once the communication system’s signal is repaired, it functions flawlessly.

3. Scrutiny of the steady state probabilities

In steady state (SS), we presume that B(0) = 0, B(∞) = 1, C(0) = 0, C(∞) = 1, and Hv(0) = 0,
Hv(∞) = 1, I(0) = 0,I(∞) = 1, are continuous at φ̃ = 0. So that the function η(φ̃), ζ(φ̃), κ(φ̃),
and υ(φ̃), are the hazard rates of the conditions (retrial, normal service,vacation and repair) are

η(φ̃)dφ̃ =
dB(φ̃)

1 −B(φ̃)

ζ(φ̃)dφ̃ =
dC(φ̃)

1 − C(φ̃)

κ(φ̃)dφ̃ =
dHv(φ̃)

1 −Hv(φ̃)

υ(φ̃)dφ̃ =
dI(φ̃)

1 − I(φ̃)

L(ξ) =


0, if the server is free
1, if the server is active period
2, if the server is operative mode on WV period
3, if the server is on repair

Thus, the state of the system B0(ξ),C0(ξ), H0
v(ξ), and I0(ξ) are required to construct a

bivariate Markov process {N(ξ); ξ ≥ 0 }, where L(ξ) belongs to the server stage (0, 1, 2, 3) based
on if the server is idle, typical operative period,slow service and repair time.

3.1. Ergodicity Condition

Let {ξσ; σ = 1, 2, ...} represent a series of epochs in which either a service time is reduced or
completed. Uσ = {L(ξσ+), X(ξσ+)} is a random vector sequence. The embedded Markov chain
generated by the RQ system. Its state space is S={0,1,2,3} x N.
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3.2. Theorem

The embedded Markov chain {Uσ; σϵN} is ergodic iff ρ < B̄(µ) for our system to be stable, where
ρ = λµC1 + λ̄(1 + µI1) + λω.

3.3. System of governing equations

For the procedure {N(ξ), ξ ≥ 0}, we specify the prob., ϕ0(ξ) = P{L(ξ) = 0, X(ξ) = 0} and
χ0(ξ) = P{L(ξ) = 1, X(ξ) = 0} the probability densities,
χσ(φ̃, ξ)dφ̃ = P{L(ξ) = 1, X(ξ) = σ, φ̃ ≤ B0(ξ) < φ̃ + dφ̃},

for ξ ≥ 0, φ̃ ≥ 0 and σ ≥ 1.
Ψσ(φ̃, ξ)dφ̃ = P{L(ξ) = 2, X(ξ) = σ, φ̃ ≤ C0(ξ) < φ̃ + dφ̃},

for ξ ≥ 0, φ̃ ≥ 0, σ ≥ 0.
Λv,σ(φ̃, ξ)dφ̃ = P{L(ξ) = 3, X(ξ) = σ, φ̃ ≤ H0

v(ξ) < φ̃ + dφ̃},
for ξ ≥ 0, φ̃ ≥ 0 and σ ≥ 0.

Πσ(φ̃, ξ)dφ̃ = P{L(ξ) = 4, X(ξ) = σ, φ̃ ≤ I0(ξ) < φ̃ + dφ̃},
for ξ ≥ 0, φ̃ ≥ 0, σ ≥ 1.

In subsequent parts, the following probabilities are applied:

1. The prob., of the server being idle and on WV at time ξ is denoted by ϕ0(ξ).

2. The prob., of the server being idle and on typical active period at time ξ is denoted by χ0(ξ).

3. If there are accurately σ clients in the orbit at time ξ and the elapsed retrial time of the test
clients undergoing retrial is between φ̃ and φ̃ + dφ̃, then the prob., that this is the case is
χσ(φ̃, ξ).

4. When there are σ consumers in the orbit, the prob., of the test customer’s elapsed regular
service time ranging between φ̃ and φ̃ + dφ̃ is Ψσ(φ̃, ξ).

5. Λv,σ(φ̃, ξ)dφ̃ and Πσ(φ̃, ξ)dφ̃ is the prob., that there are precisely σ patrons in the orbit,
with the elapsed (reduced service time and repair time) of the test patron being between φ̃
and φ̃ + dφ̃ at time ξ.

Suppose that the sequel fulfills the stability condition, thus we can provide χ0 = limξ→∞χ0(ξ)
and limiting densities are
χσ(φ̃) = limξ→∞χσ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 1.
Ψσ(φ̃) = limξ→∞Ψσ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 0.
Λv,σ(φ̃) = limξ→∞Λv,σ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 0.
Πσ(φ̃) = limξ→∞Πσ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 1.

Applying the SVT, we create the following system of equations.
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µχ0 = γr1ϕ0 (1)

(µ + γ)ϕ0 = γr2ϕ0

∫ ∞

0
Λv,0(φ̃)κ(φ̃)dφ̃ +

∫ ∞

0
Ψσ(φ̃)ζ(φ̃)dφ̃ (2)

d
dφ̃

χσ(φ̃) + (µ + η(φ̃))χσ(φ̃) = 0, σ ≥ 1 (3)

d
dφ̃

Ψ0(φ̃) + (µ + ζ(φ̃))Ψ0(φ̃) = 0, σ = 0. (4)

d
dφ̃

Ψσ(φ̃) + (µ + ζ(φ̃))Ψσ(φ̃) = µΨσ−1(φ̃), σ ≥ 1 (5)

d
dφ̃

Λ0,v(φ̃) + (µ + γ + κ(φ̃))Λ0,v(φ̃) = 0, σ = 0. (6)

d
dφ̃

Λσ,v(φ̃) + (µ + γ + κ(φ̃))Λσ,v(φ̃) = µΛv,σ−1(φ̃), σ ≥ 1. (7)

d
dφ̃

Π0(φ̃) + (µ + υ(φ̃))Π0(φ̃) = 0, σ = 0. (8)

d
dφ̃

Πσ(φ̃) + (µ + υ(φ̃))Πσ(φ̃) = µΠσ−1(φ̃), σ ≥ 1. (9)

At φ̃ = 0 the steady state boundary conditions are as follows:

χσ(0) = ω̄
∫ ∞

0
Ψσ(φ̃)ζ(φ̃)dφ̃ + ω

∫ ∞

0
Ψσ−1(φ̃)ζ(φ̃)dφ̃ + ω̄

∫ ∞

0
Λv,σ(φ̃)κ(φ̃)dφ̃

+ ω
∫ ∞

0
Λv,σ−1(φ̃)κ(φ̃)dφ̃ +

∫ ∞

0
Πσ(φ̃)υ(φ̃)dφ̃ (10)

Ψ0(0) = λ
∫ ∞

0
χ1(φ̃)η(φ̃)dφ̃ + λµ̄χ0 + γ

∫ ∞

0
Λ0,v(φ̃)dφ̃, σ = 0 (11)

Ψσ(0) = λ
∫ ∞

0
χσ+1(φ̃)η(φ̃)dφ̃ + λµ

∫ ∞

0
Ψσ(φ̃)dφ̃ + γ

∫ ∞

0
Λσ,v(φ̃)dφ̃, σ ≥ 1 (12)

Λv,σ(0) =

{
µϕ0, σ = 0
0, σ ≥ 1

(13)

Π1(0) = λ̄
∫ ∞

0
χ1(φ̃)η(φ̃)dφ̃ + λ̄µχ0 (14)

Πσ(0) = λ̄
∫ ∞

0
χσ(φ̃)η(φ̃)dφ̃ + λ̄µ

∫ ∞

0
χn−1(φ̃)dφ̃, σ ≥ 2 (15)

The normalizing condition is

χ0 + ϕ0 +
∞

∑
σ=1

∫ ∞

0
χσ(φ̃)dφ̃ +

∞

∑
σ=0

∫ ∞

0
Ψσ(φ̃)dφ̃ +

∞

∑
σ=0

∫ ∞

0
Λσ,v(φ̃)dφ̃ (16)

+
∞

∑
σ=1

∫ ∞

0
Πσ(φ̃)dφ̃ = 1
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3.4. The steady state solution

The PGF is used to compute the steady state solution for the RQ model. To solve the aforemen-
tioned equations, the generating functions for |ϑ| < 1 are described as below:

χ(φ̃, ϑ) =
∞

∑
σ=1

χσ(φ̃)ϑσ; χ(0, ϑ) =
∞

∑
σ=1

χσ(0)ϑσ;

Ψ(φ̃, ϑ) =
∞

∑
σ=0

Ψσ(φ̃)ϑσ; Ψ(0, ϑ) =
∞

∑
n=0

Ψ0(0)ϑσ; i = 1, 2

Λv(φ̃, ϑ) =
∞

∑
σ=0

Λv,σ(φ̃)ϑσ; Λv(0, ϑ) =
∞

∑
σ=0

Λv,σ(0)ϑσ;

Π(φ̃, ϑ) =
∞

∑
σ=1

Πσ(φ̃)ϑσ; Π(0, ϑ) =
∞

∑
σ=1

Πσ(0)ϑσ

Next multiply the SS eqn. and SS boundary conditions from (3) to (15) by ϑσ and adding over σ,
(σ = 0, 1, 2, ...)

∂

∂φ̃
χ(φ̃, ϑ) + [µ + η(φ̃)]χ(φ̃, ϑ) = 0 (17)

∂

∂φ̃
Ψ(φ̃, ϑ) + [µ(1 − ϑ) + ζ(φ̃)]Ψ(φ̃, ϑ) = 0 (18)

∂

∂φ̃
Λv(φ̃, ϑ) + [γ + µ(1 − ϑ) + κ(φ̃)]Λv(φ̃, ϑ) = 0 (19)

∂

∂φ̃
Π(φ̃, ϑ) + [µ(1 − ϑ) + υ(φ̃)]Π(φ̃, ϑ) = 0 (20)

Solving the partial differential eqns. (17) to (20), we obtain

χ(φ̃, ϑ) = χ(0, ϑ)[1 −B(φ̃)]e−µφ̃ (21)

Ψ(φ̃, ϑ) = Ψ(0, ϑ)[1 − C(φ̃)]e−F (ϑ)φ̃ (22)

Λv(φ̃, ϑ) = Λv(0, ϑ)[1 −Hv(φ̃)]e−Fv(ϑ)φ̃ (23)

Π(φ̃, ϑ) = Π(0, ϑ)[1 − I(φ̃)]e−F (ϑ)φ̃ (24)

where F (ϑ) = µ(1 − ϑ), Fv(ϑ) = γ + µ(1 − ϑ)

Multiplying equation (10) and (12,13,15) by appropriate powers of ϑ, adding over n with few
mathematical manipulations, we obtain

χ(0, ϑ) = (ω̄ + ωϑ)
∫ ∞

0
Ψ(φ̃, ϑ)ζ(φ̃)dφ̃ + (ω̄ + ωϑ)

∫ ∞

0
Λv(φ̃, ϑ)κ(φ̃)dφ̃ (25)

+
∫ ∞

0
Π(φ̃, ϑ)υ(φ̃)dφ̃ − (µ + γr1)ϕ0

Ψ(0, ϑ) =
λ

ϑ

∫ ∞

0
χ(φ̃, ϑ)η(φ̃)dφ̃ + λµ

∫ ∞

0
χ(φ̃, ϑ)dφ̃ + γ

∫ ∞

0
Λv(φ̃, ϑ)dφ̃ + λµχ0 (26)

Λv(0, ϑ) = µϕ0 (27)

Π(0, ϑ) = λ̄ϑµ
∫ ∞

0
χ(φ̃, ϑ)dφ̃ + λ̄

∫ ∞

0
χ(φ̃, ϑ)η(φ̃)dφ̃ + ϑµλ̄χ0 (28)

Using eqn (21,23 and 27) in eqn (26)

Ψ(0, ϑ) = λχ(0, ϑ)

[
ϑ + (1 − ϑ)B̄(µ)

ϑ

]
+ µϕ0V(ϑ) + λγr1ϕ0 (29)
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Similarly using equation (21) in (28)

Π(0, ϑ) = ϑγr1λ̄χ0 + λ̄χ(0, ϑ)[ϑ + (1 − ϑ)B̄(µ)] (30)

Substituting equations (22),(23) and (24) in (25), we obtain

χ(0, ϑ) = (ω̄ + ωϑ)Ψ(0, ϑ)C̄(F (ϑ)) + (ω̄ + ωϑ)Λv(0, ϑ)H̄v(Fv(ϑ)) + Π(0, ϑ)Ī(F (ϑ))− µϕ0 − γr1ϕ0
(31)

Using equations (27),(29) and (30) in equation (31)

χ(0, ϑ) = ϑ


(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (32)

substituting equation (32) in (29) and (30),we obtain

Ψ(0, ϑ) =


λ[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0][ϑ + (1 − ϑ)B̄(µ)] + µϕ0V(ϑ) + λγr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]


(33)

Π(0, ϑ) =


λ̄[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0] + ϑλ̄γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (34)

Substituting equations (27) and (32) to (34) in (21) to (24)

χ(φ̃, ϑ) = ϑ


(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (35)

× [1 −B(φ̃)]e−µφ̃

Ψ(φ̃, ϑ) =


λ[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0][ϑ + (1 − ϑ)B̄(µ)] + µϕ0V(ϑ) + λγr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]


(36)

× [1 − C(φ̃)]e−F (ϑ)φ̃

Λv(φ̃, ϑ) = µϕ0[1 −Hv(φ̃)]e−Fv(ϑ)φ̃ (37)

Π(φ̃, ϑ) =


λ̄[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0] + ϑλ̄γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (38)

× [1 − I(φ̃)]e−F (ϑ)φ̃
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3.5. Theorem

The stationary dist. of the no. of clients in the orbit while the server is free,normal operative
service, slow service and the prob. that the server is idle is described by ρ < B̄(µ) under the
stability condition

χ(ϑ) = ϑ



(ω̄ + ωϑ)ϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ) λ
µ γr1ϕ0C̄(F (ϑ))

+ ϑ λ̄
µ γr1ϕ0Ī(F (ϑ))− ϕ0 − γr1

µ ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]


(39)

× [1 − B̄(µ)]

Ψ(ϑ) =


λ[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0][ϑ + (1 − ϑ)B̄(µ)] + µϕ0V(ϑ) + λγr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (40)

× [1 − C̄(F (ϑ))]

µ(1 − ϑ)

Λv(ϑ) =
µϕ0V(ϑ)

γ
(41)

Π(ϑ) =


λ̄[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0] + ϑλ̄γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (42)

× [1 − Ī(F (ϑ))]

µ(1 − ϑ)

Proof. Taking the equations. (35) − (38) and integrating them with regard to φ̃ and ob-
tain the partial PGF’s χ(ϑ) =

∫ ∞
0 χ(φ̃, ϑ)dφ̃, Ψ(ϑ) =

∫ ∞
0 Ψ(φ̃, ϑ)dφ̃, Λv(ϑ) =

∫ ∞
0 Λv(φ̃, ϑ)dφ̃,

Π(ϑ) =
∫ ∞

0 Π(φ̃, ϑ)dφ̃,.

We can find the prob. that the server is free by using the normalisation condition (χ0) and (ϕ0)
by establishing functions as, when there is no consumer in the orbit ϑ = 1 in (3.39)− (3.42) and
using the “L’Hospital rule" if it is required, we examine χ0 + ϕ0 + χ(1) + Ψ(1) + Λv(1) + Π(1) =
1. ■

3.6. Theorem

The stability constraint ρ < B̄(µ) used to determine the PGF of the no. of clients in the system
and the orbit size dist. at a stationary point in time is given by

Hs(ϑ) =
Nes(ϑ)

Des(ϑ)
(43)

H0(ϑ) =
Ne0(ϑ)

Des(ϑ)
(44)

Proof. The “PGF of the no.of consumer in the system (Hs(ϑ)) and in the orbit (H0(ϑ))" is
calculated by applying Hs(ϑ) = χ0 + ϕ0 + χ(ϑ) + ϑ{Ψ(ϑ) + Λv(ϑ)}+ Π(ϑ). and H0(ϑ) = χ0 +
ϕ0 + χ(ϑ) + {Ψ(ϑ) + Λv(ϑ)}+ Π(ϑ). Insert the eqns. (39)− (42) in the earlier results,then the
eqns. (43) and (44) may be computed immediately. ■
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4. Measures of system performance

This part calculates many appropriate system prob., system efficiency metrics, and signifies the
mean busy period and cycle that occur while the system is in various phases.

4.1. System state probabilities

By putting ϑ → 1 in equations. (39)− (42) and applying “L Hospital’s rule" wherever possible.
we obtain the following findings.
(i)Pr(The server being available for the duration of the retrial)

χ(1) = ϕ0[1 − B̄(µ)]



[[ µ
γ [1 − H̄v(γ)]− µC1[1 − H̄v(γ)]]− λ

µ γr1[ω + µC1]

+ λ̄
µ γr1[1 − µI1]

B̄(µ) + λω − λµC1 − λ̄(1 + µI1)


(45)

(ii)Pr(The server is operative on usual service period)

Ψ(1) =


ϕ0λC1[[[

µ
γ [1 − H̄v(γ)]− µC1[1 − H̄v(γ)]]]− λγr1[ω + µC1

+ λ̄γr1[1 − µI1] + µ[µH1 +
µ
γ [1 − H̄v(γ)]]]

B̄(µ) + λω − λµC1 − λ̄(1 + µI1)

 (46)

(iii)Pr(The server is on WV)

Λv(1) =
ϕ0µ[1 − H̄v(γ)]

γ
(47)

(iv)Pr(The server is under repair time during usual active period)

Π = Π(1) =


ϕ0λ̄I1[[[

µ
γ [1 − H̄v(γ)]− µC1[1 − H̄v(γ)]]]− λγr1[ω + µC1]

+ λ̄γr1[1 − µI1] + λ̄γr1]

B̄(µ) + λω − λµC1 − λ̄(1 + µI1)

 (48)

4.2. Average system size and its orbit

In a steady state, the system,
(i) Differentiating the equation (44) and the predicted no. of clients in the orbit (Lq) is established
with regard to ϑ and ϑ = 1.

Lq = H
′
o(1) = lim

ϑ→1

d
dϑ

Ho(ϑ) = ϕ0

[
Ne

′′′
q (1)De

′′
q (1)− De

′′′
q (1)Ne

′′
q (1)

3(De′′q (1))2

]
(49)

(ii) The predicted no. of clients in the system (Ls) is determined by differentiating the eqn. (43)
with regard to ϑ and giving ϑ = 1 yields.

Ls = H
′
s(1) = lim

ϑ→1

d
dϑ

Hs(ϑ) = ϕ0

[
Ne

′′′
s (1)De

′′
q (1)− De

′′′
q (1)Ne

′′
q (1)

3(De′′q (1))2

]
(50)

(iii) The mean waiting time of consumers in the system and queue [Ws and Wq] are computed

utilizing “Little’s method" Ws =
Ls
µ and Wq =

Lq
µ respectively.
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4.3. Mean busy period and the busy cycle

Let A(Tb) and A(Tc) be the predicted sizes of the busy period and cycle, respectively under
steady state conditions. The outcomes are derived directly from the justification of a different
renewal procedure [5] , which concludes in

ϕ0 =
A(T0)

A(Tb) + A(T0)
; A(Tb) =

1
µ

(
1
ϕ0

− 1
)

; A(Tc) =
1

µϕ0
= A(T0) + A(Tb). (51)

where T0 is the period of time spent in the system’s null state. Because there is an exponential
difference in time between the arrivals of two customers and A(T0) = (1/µ) with the parameter
µ.

5. Particular Cases

We examine a few real-world examples of our technique that are consistent with the existing
research in this area.
Case (i): No feedback,No VI and No SF
If ω = 1,λ = 1, and γ = 0. The model may be lowered to a M/G/1 RQ with WV and the findings
match those of Arivudainambi et.al.[14]
Case (ii): No retrial, No feedback and No starting failure.
Let r2 = 0,ω = 1, λ = 1 and B̄(µ) → 1. our framework has been simplified to an “M/G/1 queue
with WVs and VI". Our results agree with Zhang and Hou [15].

6. Numerical Analysis

This section will demonstrate the different settings for system performance measures by using
MATLAB. We investigate exponentially distributed retrial, service, slower pace service, vacation
and repair periods. Numerical measurements are selected at random in order to fulfil the stability
criteria. Tables 1 to 3 provides assessed outcomes of the idle prob., χ0, ϕ0 the “mean queue size
(Lq), mean waiting time in the queue (Wq)" in our QM.
Table 1 shows that the retrial rate (η) escalates,χ0 escalates, but Lq, Wq decreases for the value of
ω = 0.19, µ = 0.9, λ = 0.8, γ = 3, H̄v(γ) = 0.9, r1 = 0.5.
Table 2 demonstrates that the vacation rate (γ) mounts,ϕ0 increases,Lq, Wq subsides for the value
of ω = 0.19, µ = 1.5, λ = 0.19, H̄v(γ) = 0.9, r1 = 0.9.
Table 3 clearly displays that feedback rate (ω) mounts, χ0, Lq, Wq diminshes for the value of
µ = 0.9, λ = 0.10, H̄v(γ) = 0.9, r1 = 0.19, γ = 0.9.

Table 1: The impact of Retrial rate (η) on χ0, Lq, Wq

Retrial rate (η) χ0 Lq Wq

2.0 2.0718 0.0883 0.0982
2.5 2.2132 0.0885 0.0984
3.0 2.3172 0.0821 0.0912
3.5 2.3969 0.0728 0.0809
4.0 2.4599 0.0621 0.0690
4.5 2.5110 0.0507 0.0564
5.0 2.5532 0.0391 0.0434

The Figure 1 (a) indicates that retrial rate (η) escalates, (Lq) and (Wq) increases. The
Figure 1 (b) displays that vacation rate (γ) escalates, (Lq) and (Wq) decreases. The Figure 1 (c)
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Table 2: The impact of Vacation rate (γ) on ϕ0, Lq, Wq

Vacation rate
(γ)

ϕ0 Lq Wq

0.31 0.3724 0.6878 1.3756
0.32 0.3756 0.4931 0.9863
0.33 0.3785 0.3460 0.6921
0.34 0.3811 0.2890 0.4780
0.35 0.3835 0.1658 0.3316
0.36 0.3857 0.1211 0.2422
0.37 0.3878 0.1005 0.2010

Table 3: The impact of Feedback rate (ω) on χ0, Lq, Wq

Feedback rate
(ω)

χ0 Lq Wq

0.10 0.8306 0.2211 0.2457
0.20 0.8269 0.2008 0.2231
0.30 0.8233 0.1812 0.2013
0.40 0.8197 0.1623 0.1804
0.50 0.8161 0.1443 0.1603
0.60 0.8125 0.1270 0.1411
0.70 0.8090 0.1105 0.1227

(a) Retrial rate η Vs Lq, Wq (b) Vacation rate γ Vs Lq, Wq.

(c) Feedback rate ω Vs Lq, Wq.

Figure 1: Effects of a few parameters on 3D representation.

demonstrates that feedback rate (ω) increases, (Lq) and (Wq) diminshes.
We may use the numerical findings above to determine the influence of features on the
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system’s assessment criteria with certainty, the outcomes correspond to actual circumstances.

6.1. ANFIS Computing

Using the fuzzy toolbox of MATLAB software, an ANFIS network can be executed to compare
outcomes from analyses. ANFIS, a soft computing approach, is an effective tool for identifying
important results that are useful in busy everyday environments. This approach aids in the iden-
tification of approximate solutions for measurements whose definite outcomes would otherwise
be difficult to determine.

In our framework, a neuro-fuzzy technique is used to compute the expected no. of consumers
in the queue (Wq) by changing the retrial rate (η), vacation rate (γ) and feedback rate (ω)),
as shown in the numerical results in Figure 2 (a − c). We consider the parameters (η, γ and
ω) as linguistic variables (LV) that are performed for four epochs each. The analytic (ANFIS)
outcomes are exhibited by the solid (dashed) lines. In the context of fuzzy systems, these factors
are regarded as LV and are used as input variables in ANFIS networks.

The Gaussian function provides the membership functions for each of these input variables.
The following are the linguistic values for each parameter: low, average, high, and excessive. The
diagrams demonstrate agreement between the analytical findings for the paradigm and the neuro
fuzzy results achieved through the ANFIS approach.

(a) Retrial rate η Vs Wq (b) vacation rate γ Vs Wq

(c) Feedback rate ω Vs Wq

Figure 2: Effects of a few parameters on 2D representation.(ANFIS)

7. Cost Optimization

Our research aims to maintain system accessibility while optimizing system costs. Con-
sequently, we establish the predicted cost function for system performance metrics and then
accomplish a numerical analysis of the machining system under study. In order to calculate the
best average cost per unit of time (TC), the parameters must be determined. This section discusses
the best cost construct for the suggested approach using the standard cost notation form, and it
provides the estimated total cost per unit of time as follows:
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ETC = ShLs + SbΨ + SvΛ + SrΠ + S1ζ + S2κ (52)

where,

• Sh = Holding cost per unit consumer.

• Sb = Cost per unit time while the server provides service during a usual busy period.

• Sv = Cost per unit time in the system when the server is on vacation.

• Sr = Cost per unit time for providing repair to the failed server.

• S1 = Cost per unit time consumer served by the mean service rate ζ.

• S2 = Cost per unit time consumer served by the mean vacation rate κ.

Equation (52) has an estimated total cost function that is multivariate and nonlinear. Therefore,
developing an analytical solution for optimal parameter values say ζ∗ and κ∗ is problematic.
In order to determine the most suitable numerical value for the decision parameters, the well-
recognised meta heuristic technique: The optimization approach used is called Particle Swarm
Optimization (PSO).

Choosing at random the present values for the cost element and the parameters are : µ = 0.05,
B̄(µ) = 4.5, λ̄ = 5.9, H̄v(γ) = 0.75, (ζ∗ = 0.3670, κ∗ = 0.3900).
Our goal is to identify the best values that will allow us to minimise the cost function. The five
sets of cost factors that we have chosen are listed below.

Table 4: Cost Sets values for different cost aspects

Cost sets Sh Sb Sv S1 S2 Sr
Set 1 $15 $75 $20 $19 $12 $10
Set 2 $20 $85 $25 $17 $19 $23
Set 3 $25 $95 $30 $15 $15 $29

Applying the PSO algorithm using MATLAB software to the previously specified cost factors.
In this research, we have 100 candidates, 500 iterations throughout, and a range of parameters
between 0.006 and 0.65 for the lower and upper bounds.
Tables 5 demonstrates that the effects of µ, ω, γ on TEC∗ using PSO.

Table 5: The PSO approach is executed by changing µ, ω and γ to determine the minimal cost for different cost sets.

Parameters (TEC∗)
Cost set 1 Cost set 2 Cost set 3

0.20 $75.1471 $59.7276 $66.7365
µ 0.25 $115.1554 $87.6434 $92.1116

0.30 $151.7660 $114.6657 $119.3708
1.00 $73.5533 $58.6272 $65.7761

ω 1.15 $74.5054 $59.2872 $66.3535
1.20 $74.8255 $59.5074 $66.5452
1.25 $78.6575 $61.4278 $67.9418

γ 1.30 $76.0953 $60.0313 $66.8629
1.35 $73.5533 $58.6272 $65.7761

By changing a few of the variables, we were able to determine the entire system’s cost, and we
found that for µ = 1.00, γ = 1.35 and (ζ∗ = 0.3670, κ∗ = 0.3900) the lowest cost was $58.6272.
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7.1. Particle Swarm Optimization

A precise evaluation of the QM is highly essential to offer adequate service and decrease
congestion with the increasing expansion of computer networking and communications. If the
greatest number of consumers can access an affordable system, then this is feasible. As a result,
solutions that incorporate cost optimisation are very beneficial and advised. Jain et al. [25]
and Jain and Meena [24] presented a cost investigation of a queueing model that includes an
unreliable server and vacation periods. Utilizing the particle swarm optimization (PSO) approach,
we have attempted to deal with the cost constraints in networking systems. This approach may
sort through a very vast number of possible solutions to identify the most appropriate one. PSO
has an additional benefit over a variety of optimisation strategies in that it does not require the
objective function to be possible to differentiate.

Using this procedure, we first initiate a given population consisting of several particles or
candidates. These candidates are then forced to travel inside the search space while adhering to
the specified parameters and the goal function over their location and velocity. Every particle’s
fitness value is computed and to assess the values of the global best (gbest) and personal best
(pbest) in more detail. The new gbest value is the particle whose pbest value is greater than gbest.
This technique keeps on going until the predetermined number of iterations is reached. The
algorithmic rule for PSO was first proposed by Kennedy and Eberhart [20]. The price optimization
of a discrete-time RQ with SF utilizing this method has been examined by Upadhyaya [21]. Zhang
et al.[22] examined set up cost and numerical answers for a single server recurrent model with
state-dependent service using the PSO algorithmic approach. We have cited Malik et al.[23]
investigation as it pertains to the operation of the PSO and GA algorithm.

(a) Convergence in PSO (b) Expected Total Cost

Figure 3: (a)2D and 3D visualization of PSO optimization

7.2. Convergence in PSO

Convergence holds significant importance within meta-heuristic optimization algorithms,
representing the gradual improvement of potential solutions towards an optimal or near-optimal
solution. The convergence pattern of an algorithm reflects its efficacy in exploring the solution
space adeptly and moving closer to the global optimum. The findings from these figures suggest
that employing the concept of a working vacation enhances the system’s stability and reliability.
This is due to the consistent availability of the server during this period. When a machine fails,
the server responds quickly to the problem, but it provides a slower rate of service than when the
machine is operating normally. Within PSO, particles converge toward the most optimal solution
they are aware of, coming together as their movements become restricted and the finest solution
steadies. Fig 3(a) Demonstrates that PSO achieves convergence towards the optimal cost. Fig
3(b)Displays the convexity and optimality of the cost function concerning the cost sets utilized in
the optimization analysis.
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8. Conclusion

In this research, a single server feedback retrial queueing system with starting failures,
Bernoulli working vacations, and vacation interruptions was investigated. The number of
customers in the system and its orbit are used to find the PGFs. This is done by using the
“supplementary variable method". The average orbital queue length and the system average
queue length have precise expressions. Numerical examples are used to verify the analytical
conclusions. The mean busy period as well as other significant system performance indicators
are determined. Also,numerical outcomes are compared to ANFIS. We have demonstrated
how to optimize the functioning of a real-world service system using the PSO meta-heuristic
algorithm. This suggested paradigm may be used in communication networks, supermarkets,
management and production industries, etc. Basically, it is nearly impossible to construct a
paradigm in which the server never defects or deactivates in any of these enormous sectors. As a
result, this analysis is pertinent and in favour of scenarios in which a server can remain idle to
maximise the consumption of resources. This model’s construction helps to prevent the regular
overcrowding issues that networking and communication systems suffer. The suggested model
may be expanded in the future to incorporate other factors, such as modified vacation policy,
randomized policy, consumer impatience , priorities, and setup times.
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Abstract 

The relevance of ensuring the efficiency of equipment, devices and installations (object) of 
electric power systems increases every year and becomes the most important problem of 
maintaining energy security. The decrease in work efficiency is due to a number of factors, but, 
first, an increase in the relative number of objects, the service life of which exceeds the standard 
value. An illustration of the methodology for quantifying, comparing and ranking the monthly 
average values of indicators of the operational reliability of 110 kV overhead power 
transmission lines and above given in order to identify and restore the wear of the least reliable 
lines. 

Keywords. Analysis, operational reliability, overhead power lines, automated system, 
classification, features, varieties 

I. Introduction

At present, the service life of more than half of overhead power transmission lines 
(hereinafter - OHL) of electric power systems (hereinafter - EPS) exceeds the standard value, which 
leads to a decrease in their efficiency [1]. To limit the consequences of this change, risk oriented 
approaches are being developed for organizing their maintenance and repair (hereinafter - MRO) 
[2-4]. Their essence boils down to the theory of production assets management by ensuring a 
balance between operating costs and the risk of damage. It is known, that [5]: 
− there is no methodology for calculating the technical condition index (hereinafter - TC). There
is no monitoring of the TC overhead power lines, the methods used to assess the risk of damage
are subjective;
− there are no operational recommendations to improve the efficiency of the overhead
transmission lines.

TC OHL determines the reliability and safety of their work. Therefore, the possibility of 
assessing the indicators of operational reliability by analogy with the individual reliability of 
power units is relevant [6]. The apparent simplicity of this solution is deceptive, and, first of all, 
because there are no statistical data on continuous monitoring of the TC of overhead transmission 
lines, and according to statistical data on the failure within one month, it is impossible to assess the 
reliability indicators of specific overhead transmission lines due to their small number. When 
comparing and ranking indicators of operational reliability, the use of the mathematical apparatus 
for analyzing homogeneous statistical data is unacceptable, because the data are multidimensional 
and scarce [7].  
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We also shall remind that: 
− the efficiency of functioning of EPS facilities today is understood as a joint accounting of
efficiency, reliability of operation and safety of service;
− such an expanded concept of efficiency is due to the increase in the number of objects
requiring operational inspection not only for efficiency, but also for reliability and safety;
− operational survey is understood as a quantitative assessment of work efficiency;
− if, for design purposes, a methodology for quantitative assessment of reliability indicators
been developed and is widely used in practice to compare the design options of objects under
design, then there is no methodology for calculating operational reliability indicators for solving
operational problems. The science intensity, cumbersomeness and laboriousness of calculating
operational reliability indicators requires a transition to automated systems for assessing,
comparing and ranking, with monthly submission to the management of EPS facilities and
electrical enterprises of guidelines for increasing the TC. The implementation of automated
systems for analyzing TC of EPS facilities allows a large power grid enterprise to save tens of
millions of rubles [5];
− unfortunately, there is no methodology for quantitative assessment of service safety indicators
not only when solving operational problems, but also when designing EPS facilities [5];
− identity of the methodological approach to the assessment, comparison and ranking of EPS
objects does not affect the discrepancy between the calculation algorithms due to the fundamental
features of the functioning of these objects.

II. Initial data and indicators of operational reliability of OHL of EPS.

Initial data on OHL represented by constant and variable parts. The permanent part is 
compiled on the basis the passport data of the OHL and includes the name of the line, the name of 
the electro network enterprise (hereinafter - ENE), the nominal voltage, the year of commissioning, 
the material of the supports, the length of the line, the number of circuits. The variable part is 
compiled on the basis of operational logs and includes the following information about the change 
in the state of the OHL: name of the OHL, rated voltage, date (month, day, hour) of shutdown and 
activation, type of shutdown (emergency, by emergency or planned request). This information is 
entered into special tables of the database (we will designate them, respectively, as tables A and B) 
and are used in assessing the indicators of the operational reliability of the OHL EPS. These 
averaged indicators theoretically allow us to compare the operational reliability of a number of EPS 
and are necessary to control the nature of changes in the reliability of OHL in the calculated month 
in comparison with the reliability in the previous month. For illustrative purposes, table 1 shows 
the results of the assessment of indicators characterizing the initial data on the OHL of the EPS in 
one of the calculated months and their operational reliability. 

Table 1. Illustration of the initial data and estimates of the operational reliability indicators of OHL 110 kV 

and above EPS 

Parameters Symbol 
Unit of 

measure 
Quantitative 
estimation The formula of calculation 

Initial data OHL 
Number OHL nt,l unit 273 
Total length Lt,l кm 7918,5 Lt=ΣLi 
Number of automatic 
switching-off. 

nt,а unit 58 

- the same, but with
successful RUE

nt,r unit 50 

Number of switching-off 
under the emergency request 

nt,e,r, unit 94 
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Parameters Symbol 
Unit of 

measure 
Quantitative 
estimation The formula of calculation 

Duration of emergency idle 
time 

Тt,e hour. 407 Тt,e=Тe+тe.r. 

Number AT OHL AT

t,ln
unit 164 

Total length AT AT

tL кm 4853 AT AT

t iL L= 

Total service life AT AT

tТ
years 3718 AT AT

t iТ Т = 

Parameters of operative reliability 
Specific number of automatic 
switching-off 

*

t,а Sw-off 
/years 

12,9 * 2

t,а t,а t,l12 10 n L= 

Specific number of automatic 
switching-off with successful 
RUE 

*

t,r Sw-off 
/years 

7,6 * 2

t,r t,r t,l12 10 n L = 

Specific number of 
switching-off under the 
emergency request 

*

t,e.r. Sw-off 
/years 

14,2 * 2

t,e.r t,e.r t,l12 10 n L= 

Average duration of idle 
time under repair under the 
emergency request 

*

e.r.М ( ) hour 4,3 e,r .зn

*

e.r. e.r,i t,e.r

i 1

М ( ) n 
=

=

Average duration of idle 
time in emergency repair 

*

e.rp.М ( ) hour 3,3 e . rрn

*

e.rp. e.rр,i e.rр

i 1

М ( ) n 
=

=

Relative duration of idle 
time in emergency repair 

*

e.r.К % 0,71 * 4

e.r. e,r m e,rК 10 Т (Т L )= 

Average length OHL *

tМ (L) кm 29 Lt,av=Lt,l/nt,l 

Relative number AT OHL AT

t,ln
% 60,1 AT 2 AT

t,l t,l t,ln 10 n n=

Relative length AT OHL AT

t,lL
% 61,3 AT 2 AT

t,l t,l t,lL 10 L L=

Average service life AT OHL * AT

tМ ( Т ) years 22,7 * AT AT AT

t t t,lМ ( Т ) Т n = 

Average length AT OHL * AT

tМ (L ) кm 23,6 * AT AT AT

t t t,lМ (L ) L n=

Note: Te<Te.r.; Тm - the duration of the calculated month, AT - symbolic designation of OHL, the service life 
of which exceeds the standard value 

To compare these indicators with the reliability indicators given in reference books and 
literature on the reliability of EPS facilities, the monthly average estimates of the reliability 
indicators of OHL, multiplied by the number of months in a year (12) and reduced to a 
conventional line 100 km long. 

As expected, the given monthly average values of operational reliability indicators may 
differ significantly from the average annual values due to the uneven distribution of the intensity 
of the impact of disturbing factors (for example, thunderstorm activity) throughout the year. 
Nevertheless, a significant excess of the reduced average monthly value of the estimate of the 
operational reliability indicator of the average annual value indicates insufficient protection of the 
OHL from the main influencing factor in the calculated month. 

III. Initial data and indicators of operational reliability of OHL ENE EPS

The possibility of comparing the operational reliability of OHL ENE EPS is one of the most 
urgent tasks of the EPS and, first of all, because it allows you to optimize the total operating costs 
of the EPS. The methodology for assessing the operational reliability indicators of OHL ENE EPS is 
similar to the methodology for assessing the operational reliability indicators of OHL EPS as a 
whole. The essential difference is that information on passport data and changes in the technical 
condition of OHL must classify according to the "name of the ENE". Here, similar to the data in 
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table A, tables AN are compiled, where N - is the conditional serial number of the ENE EPS, which 
are also practically unchanged, but unlike table A, they do not contain the column "name of the 
ENE". The automated generation of AN tables is not difficult. 

IV. Initial data and indicators of operational reliability OHL ENE ESP.

The ability to compare the operational reliability of the OHL ENE ESP is one of the most 
pressing issues for EPS and, above all, because it allows you to optimize the total operating costs of 
the EPS. The methodology for assessing operational reliability indicators OHL ENE ESP is similar 
to the methodology for assessing operational reliability indicators OHL ESP as a whole. The 
essential difference is that information on the passport data and changes in the technical condition 
of the OHL classified according to the "ENE name" attribute. Here, similar to the data in Table A, 
tables АN compiled, where N is the conditional serial number ENE ESP, which are also practically 
unchanged, but unlike Table A, they do not contain the column "ENE name".  

The automated generation of AN tables is not difficult. Of course, when classifying passport 
data according to ENE manually, the grouping process is laborious and cumbersome. But it is 
carried out only once. Formation of BN tables turns out to be much more difficult, since in table B, 
and of course, in the operational logs, there is no information about the name of the ENE, to which 
the OHL belongs, the state of which has changed. Searching for the passport data of a specific OHL 
among hundreds of considered OHL is tedious, and the risk of a wrong decision turns out to be 
unacceptably high. An automated search can, of course, solve this problem without error. But even 
in this case, the time spent turns out to be unacceptably large. 

Offered: 
− transform the adopted sequence of OHL placement (as a rule - by voltage class) into a
sequence of OHL names in alphabetical order, indicating the name of the ENE of each OHL
(analogue - telephone directory);
− define the OHL group, the first letter of the name of which coincides with the first letter of the
name of the recognized OHL;
− among a relatively small number of OHL of this group (maximum - several tens of OHL), it is
quite simple to identify the desired ENE, on the balance of which this OHL is located, manually.

Table 2. Results of calculation of indicators of initial data and estimates of indicators of operational 

reliability 

Parameters Unit of 
measure 

ENE N 
1 2 3 4 5 6 7 8 

Initial data 
nt,l unit 49 22 28 7 29 34 69 18 
Lt,l кm 1600 561 850 220 1026 604 1253 1802 
nt,а unit 31 0 4 1 14 6 23 18 
nt,r unit 25 0 3 1 7 3 9 3 
nt,e,r, unit 20 2 7 0 15 13 23 14 
Тt,e hour 97,4 2,5 21,5 0 97,5 60 83,7 44,4 
AT

t,ln
unit 38 16 20 7 13 18 41 11 

AT

tL
кm 1214 392 633 220 403 470 610 911 

AT

tТ
years 653 256 403 109 291 442 1340 224 

Parameters of operative reliability 
*

t,а Sw-off /years 23,3 0 5,6 5,5 16,4 8,2 17,6 4,0 

*

t,r Sw-off /years 18,8 0 4,5 5,5 8,2 6,0 8,6 2,0 

*

t,e.r. Sw-off /years 15 4,2 9,9 0 17,6 25,8 22 9,3 
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Parameters 
Unit of 

measure 
ENE N 

1 2 3 4 5 6 7 8 
*

e.r.М ( ) hour 4,9 1,5 3 0 6,5 4,6 3,6 3,8 

*

e.r.К % 0,85 0,061 0,35 0 1,32 1,38 0,93 0,34 

*

tМ (L) кm 327 25,8 30,4 31,4 35,4 17,8 12,2 100,1 

AT

t,ln
% 77,6 72,7 71,4 100 44,8 52,9 59,4 61,1 

AT

t,lL
% 45,9 69,1 74,5 100 39,3 77,8 48,7 50,6 

* AT

tМ ( Т ) hour 17,2 16,0 20,2 15,6 22,4 24,6 32,7 20,4 

* AT

tМ (L ) кm 31,9 24,5 31,7 31,4 31 26,1 14,9 82,8 

Table 2 shows the results of calculations of operational reliability indicators OHL ENE ESP. 
This data allows you to: 
1. Compare and rank ENE. For example, according to the indicator, the ranking of ENE in order
of increasing reliability is: ENE1, ENE7, ENE5, ENE6, ENE3, ENE4, ENE8 and ENE2. If we take
into account that for EPS as a whole, the value is 12.9 sw-off / years (see Table 1), then we can
conclude that the least reliable OHL are ENE1, ENE7 and ENE5.
2. Draws attention to the fact that the ranking results depend on the operational reliability
indicator. For example, the OHL in ENE6 is the least reliable for the indicator and in ENE7 for the
indicator. To overcome this ambiguity of the decision, it is necessary either to choose for
comparison one of ten indicators of operational reliability or to calculate an integral indicator that
takes into account the significance of each of the 10 indicators. The second method is more reliable,
but it also requires solving a number of tasks, such as assessing the degree of relationship between
indicators of operational reliability, overcoming the difference in their dimensions and scale, and
preserving the physical essence [8].
3. Increasing the reliability of comparison and ranking of operational reliability indicators
requires taking into account their random nature. As a first approximation, the ENE list classified
into three groups. The indicators of the first group OHL ENE accidentally differ from the same
indicator for OHL ESP as a whole, the second group is not accidentally less than the indicator for
OHL ESP, and the third group is not accidentally higher than the indicator for OHL ESP.
4. An illustration of the solution to these problems requires special consideration.

III. Analysis of OHL ENE, the operational reliability of which is the lowest

Before carrying out this analysis, let us answer one non-standard question: how much can 
the operational reliability of the OHL ESP increase if the reliability of the OHL ENE1 increased at 
least to the level of the operational reliability of the OHL ESP in the calculated month? According 
to table 1, and according to table 2 for ENE1. 

It is easy to see that approximate equality achieved by reducing the value by about half. At 
the same time, the specific number of automatic shutdowns OHL ESP will decrease by 
102·15/85=17.6%. Such a dramatic change is certainly tempting. 

The purpose of the analysis of OHL ENE1 is to recognize the types of signs for which the 
specific number of automatic shutdowns of OHL ENE1 most higher than the estimate for OHL 
ENE1. For illustrative purposes, table 3 shows the results of calculating the specific number of 
automatic trips when classifying OHL ENE1 by voltage class, service life, support material and 
OHL length. Analysis of these data shows: 
− the dependence of the specific number of automatic shutdowns OHL on the voltage class,
known from reference books, remains unchanged according to long-term data - with an increase in
the nominal voltage, the specific number of automatic shutdowns OHL decreases;
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− the dependence of the specific number of automatic OHL shutdowns on the service life is also
clearly confirmed. It is somewhat overestimated in the initial period of operation and significantly
increases when the service life is exceeded ΔТ=53 years.
− at the initial stage, the classification of OHL according to the material of the supports [metal or
mixed (metal, reinforced concrete or wood)] turned out to be inappropriate, since their significance
is approximately the same;
− most often automatically shut off OHL, the length of which is in the range (31 ÷ 60) km.

Table 3. Illustration of the significance of the varieties of features that characterize the operational reliability 

of OHL ENE1. 
The name Parameters 

attribute varieties nа, unit Lл, кm λ*, sw-off /years 
ENE1 31 1600 23,3 

Voltage class, кV 330 2 268 9,0 
220 5 284 21,1 
110 24 1048 27,5 

Service life, years ≤ 17 6 228 31,6 
18-35 - 7,2 - 
36-52 4 654,8 7,5 
≥ 53 21 710 35,5 

Material of support Metal 10 513,3 23,4 
Mixed 21 1086,7 23,2 

Length of a line, кm ≤ 30 4 330,2 14,5 
30-60 20 613,3 39,2 
60-90 6 542,5 13,3 
≥ 90 1 114 10,5 

Table 4. Recognition of the most significant variety of signs for OHL ENE1 with L = 30-60 km 
The name Parameters 

attribute varieties nа, unit Lл, кm λ*, sw-off /years 
ENE1, Lл=30-60 кm 20 613,3 39,2 

Voltage class, кV 330 - - 
220 2 78,7 30,4 
110 18 534,6 40,4 

Service life, years ≤ 17 4 94,9 50,6 
18-35 - - - 
36-52 2 202 119 
≥ 53 14 316,4 53,1 

Material of support Metal 5 252,7 19,7 
Mixed 15 360,6 41,5 

Table 5. Results of the third stage of classification OHL ENE1 

The name Parameters 
attribute varieties nа, unit Lл, кm λ*, Sw-off /years 

ENE1, Ll=30-60 кm; ΔТсл>53 years 14 316,4 53,1 
Voltage class, kV 220 - - - 

110 14 316,4 53,1 
Material of support Metal 5 173,3 34,6 

Mixed 9 143,1 75,5 

To recognize the OHL features, with a length from 31 to 60 km, Table 4 shows the results of 
their classification according to the characteristics: stress class, service life and material of supports. 
The calculation results allow us to conclude: 
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− the significance of the varieties of the attribute "stress class" has changed little. Only the excess
of the specific number of automatic shutdowns OHL 110 kV over OHL 220 kV became clearer;
− the dependence of the specific number of automatic OHL shutdowns on the service life has
also remained unchanged;
− but the higher reliability of OHL on metal supports known from the operational experience
was confirmed - the specific number of automatic shutdowns is almost two times less;
− the largest specific number of automatic shutdowns is observed at OHL, the service life of
which is 1.5 times higher than the standard value. Since the length of these lines is 316.4 km, and
the OHL number is 7, let us clarify the significance of these OHL by classifying them according to
the remaining two features, stress class and support material. The calculation results are shown in
Table 5.

Analysis of this data shows: 
− the greatest significance of the varieties of signs established at the second stage of the
classification - OHL with ΔТ>53 years is entirely related to OHL with Uн=110 kV.
− at the third stage, a significant excess of the operational reliability of OHL on metal supports
compared to OHL on mixed supports manifests itself.

Let's summarize the results. Determined that: 
− 110 kV OHL on mixed towers with a length of 30 to 60 km, the service life of which exceeds
one and a half of the rated service life, are subject to increase in the reliability of operation on
ENE1;
− it is easy to see that it is for these types of signs that an intuitive choice of OHL is made,
subject to TC certification and overhaul;
− the recommended method allows to set the list of OHL to be restored in ENE automatically
according to the statistical data of operation. It refers to risk-based approaches since it significantly
reduces the risk of an erroneous decision;
− with all the apparent cumbersomeness and laboriousness, the apparent simplicity of the
analysis of the operational reliability of OHL is deceptive, primarily because when comparing and
ranking estimates of operational reliability indicators, their random nature was not taken into
account, and thus the recommendations were not specified. The possibility of an accidental
discrepancy is objective and indicates the inexpediency of classification, and the use of the
recommended methods and algorithms requires an unconditional transition to automated systems
for analyzing operational reliability

Conclusion 

1. The developed methods and algorithms for assessing, comparing and ranking indicators of
operational (average monthly) performance (economy, reliability and safety), practical testing of 
individual stages of their application according to statistical operating data indicate real 
possibilities for improving the management of production assets; 

2. This result is due to a significant increase in the number of objects, the service life of which
has exceeded the standard values; 

3. For example OHL with voltage 110 kV and above:
− calculation formulas and quantitative estimates of monthly average values of operational
reliability indicators characterizing their TC are given. These estimates can be compared with
similar estimates calculated for the month preceding the calculated one;
− calculated and compared the monthly average values of OHL operational reliability indicators
for ENE EPS. These estimates allowed for the first time to rank the operational TC OHL EPS, to
identify enterprises with the least operational reliability;
− since this enterprise may include dozens of OHL, not all of which do not meet the
requirements of operational reliability, an illustration of the OHL recognition method that requires
immediate (prompt) recovery is given
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The use of the developed algorithms in automated systems for assessing, comparing and 
ranking production assets eliminates the risk of erroneous decisions of an intuitive approach when 
organizing operation, maintenance and repair.  
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Abstract 

 
This paper describes the role of queuing theory in developing queuing networks in companies.  

Queuing networks can be considered as a collection of nodes where each node stands for a service 

facility. It is a powerful and versatile tool for modeling facilities in manufacturing products. In the 

realm of service industries like scooter manufacturing, the queuing theory and simulation play a 

vital role. These concepts help in predicting queue lengths and waiting durations when multiple 

scooters are manufactured and distributed using first come first serve discipline. Tables are used to 

explore the availability of furnished scooters in the companies and their comparative study analyzes 

the waiting scooters and space availability in the companies.  

 

Keywords: Queue network, space availability, service facility, simulation and 

production analysis.  

 

I. Introduction 
 

Most works on queuing models are restricted to deriving the formulations for transient or 

stationary states. The past study has not paid much attention to the analysis of queuing systems in 

the directions such as waiting times and space availability. Frequently, some information about the 

distribution of scooters in lorry and number of waiting scooters is analyzed with the help of 

simulation. Generally, simulation is the representation of reality through the use of a model/device 

which will react in the same manner as reality under a given set of conditions such as testing the 

performance of a scooter under different conditions.  

Baskett et al. [1] analyzed the different networks of queues under different classes of 

customers using joint equilibrium distribution. Reddy et al. [11] evaluated the queue system with 

multiple vacations and a server leaves for a vacation of random length when the queue length is 

less than requirement. Divya and Indhira [6] threw light on the queuing model with working 

vacation where during the vacation period, the server provides service at a slower pace. Baba [16] 

evaluated the queue model with multiple working vacations where the server works with different 

rates. Chakravarthy [4] examined a single server stochastic queue model with Markovian arrivals 

and impatient customers where customers can become impatient after waiting a random amount 

of time.  

Chinwuko et al. [3] analyzed the effects of queuing theory in a banking system with first 

come first serve discipline where the organization needs five servers instead of three available 

servers. Igwe et al. [2] evaluate the performance of queue management in supermarkets subject to 

average service rate using first come first serve descipline. Roy and Sinha [12] examined the effects 

of internet banking on customer acceptance of electronic payment systems where credit card and 
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debit card provide variety of services to the customers. Zhang and Liu [9] analyzed the queue with 

server breakdown, working vacations and vacation interruption using the supplementary variable 

method.  

Rajadurai [15] analyzed the sensitivity of a retrial queuing system with disasters under 

working vacations where a system may become defective by disasters at any point of time under 

availability of a regular server. Saraswat [7] evaluated the effects of a single counter Markovian 

queuing model with multiple inputs. Bura [8] examined the M/M/∞ queue subject to impatient 

customers where customers are impatient due to low quality of service. Chakravarthy and 

Kulshrestha [13] described a queuing model with backup server in the absence of the main server 

to continued the process.  

Agrawal et al. [10] described the steady state probability distribution of a queuing model 

with working vacation under two types of server breakdown using first come first serve discipline. 

Narmadha and Rajendran [14] analyzed the queuing network through many developments which 

made its existence in many fields. Daş et al. [5] described the fluctuation in the participation of 

companies and two stage stochastic industrial networks under uncertain demand.   

The production of two scooter companies is analyzed with simulation to calculate the 

number of waiting scooters and available space. It is considered that both companies have the 

same production per day but have different probability values and random number values. Tables 

are used to explore the availability of furnished scooters in the companies and their comparative 

study analyzes the waiting scooters and space availability in the companies.  

 

II. Assumptions 

 
To describe the performance of the scooter industry, there are following assumptions 

• There are two scooter companies such that company (A) and company (B).  

• It is considered that companies (A) and (B) may produce 150 scooters.  

•   The daily production varies from 146 to 154.  

• The probabilities of production per day of both companies are different.  

• The average number of scooters waiting in the factory and average number of available 

spaces in the lorry are analyzed by using simulation.   

                                                                             

III. Descriptions of Company (A) and (B) 

 
(I) Analysis of Scooter Company (A) 

 

A scooter company (A) manufactures 150 scooters. The daily production varies from 146 to 154. 

Now, it is observed that  

 
Table 1: Production per day of company (A) 

 

Production 

Per Day 

146 147 148 149 150 151 152 153 154 

Probability 0.04 0.09 0.12 0.14 0.11 0.10 0.20 0.12 0.08 

 

Then the furnished (or tested good position) scooters are transported in a lorry accordingly 150 

scooters using the following random variables,  

X=80, 81, 76, 75, 64, 43, 18, 26, 10, 12, 65, 68, 69, 61, 57. 

Then simulate the following: 

(i) Average number of scooters waiting in the factory. 

(ii) Average number of available space in the lorry. 
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Solution. From the given data, get  

 
Table 1.1: Probability Distribution of Company (A) 

 

Production Probability Cumulative Probability Random Number 

146 0.04 0.04 0-3 

147 0.09 0.13 4-12 

148 0.12 0.25 13-24 

149 0.14 0.39 25-38 

150 0.11 0.50 39-49 

151 0.10 0.60 50-59 

152 0.20 0.80 60-79 

153 0.12 0.92 80-91 

154 0.08 1.00 92-99 

     
Table 1.2: Number of waiting Scooter and Available Space in lorry of Company (A) 

 

Sr. No. Random  No. Production 

Per Day 

No. of Scooters 

Waiting 

No. of available 

Space in Lorry 

1 80 153 3  

2 81 153 3  

3 76 152 2  

4 75 152 2  

5 64 152 2  

6 43 150   

7 18 148  2 

8 26 149  1 

9 10 147  3 

10 12 147  3 

11 65 152 2  

12 68 152 2  

13 69 152 2  

14 61 152 2  

15 57 151 1  

   Sum=21 Sum=9 

 

Here, production per day is calculated from (Table-1.2). 

So, (i) Average number of scooters waiting in the factory=21/15. 

      (ii) Average number of available space in the lorry=9/15.  

 

(II) Analysis of Scooter Company (B) 

 

A scooter company (B) manufactures 150 scooters. The daily production varies from 146 to 154. 

Now, it is observed that  
Table 2: Production per day of company (B) 

 

Production 

Per Day 

146 147 148 149 150 151 152 153 154 

Probability 0.05 0.08 0.10 0.16 0.10 0.08 0.20 0.15 0.08 
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Then the furnished (or tested good position) scooters are transported in a lorry accordingly 150 

scooters using the following random variables,  

X=95, 70, 60, 85, 65 48, 25, 15, 10, 18, 75, 78, 87, 65, 54.  

Then simulate the following:  

(i) Average number of scooters waiting in the factory. 

(ii) Average number of available space in the lorry.  

Solution. From the given data, get  

 
Table 2.1: Probability Distribution of Company (B) 

 

Production Probability Cumulative Probability Random Number 

146 0.05 0.05 0-4 

147 0.08 0.13 5-12 

148 0.10 0.23 13-22 

149 0.16 0.39 23-38 

150 0.10 0.49 39-48 

151 0.08 0.57 49-56 

152 0.20 0.77 57-76 

153 0.15 0.92 77-91 

154 0.08 1.00 92-99 

       
Table 2.2: Number of waiting Scooter and Available Space in lorry of Company (B) 

 

Sr. No. Random  No. Production 

Per Day 

No. of Scooters 

Waiting 

No. of Available 

Space in Lorry 

1 95 154 4  

2 70 152 2  

3 60 152 2  

4 85 153 3  

5 65 152 2  

6 48 150   

7 25 149  1 

8 15 148  2 

9 10 147  3 

10 18 148  2 

11 75 152 2  

12 78 153 3  

13 87 153 3  

14 65 152 2  

15 54 151 1  

   Sum=24 Sum=8 

  

Here, production per day is calculated from (Table-1.4). 

So, (i) Average number of scooters waiting in the factory=24/15. 

      (ii) Average number of available space in the lorry=8/15. 

 

  

658



 
Mohit Yadav, Shruti Gupta and Sandeep Singh 

APPLICATIONS OF SIMULATION  

AND QUEUING THEORY IN SCOOTER INDUSTRY  

 
RT&A, No 2 (78) 

                  Volume 19, June, 2024  

 

 

IV. Discussion 

 
From tables 1.1 and 1.2 it is clear that the number of scooters waiting (21) is more than the available 

spaces (9) in lorry. So, it is concluded that the number of production is more than the available 

space in lorry. From tables 2.1 and 2.2 it is clear that the number of scooters waiting (24) is more 

than available space (8) in the lorry. So, it is concluded that the number of production is more than 

the available space in lorry.                            

 

V. Conclusion 

 
From tables, it is concluded that the average number of waiting scooters in company (A) is less 

than the average number of waiting scooters in company (B). Thus, the production of scooters in 

company (B) is more than the production of company (A).  
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