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The main purpose of this study was to optimize the performance parameters of the casting process using a neural 
network approach. The casting process is molten or liquefied metal is poured into the mould cavity, after 
solidification it takes the near net shape of the cavity. The entire manufacturing process goes through six stations 
viz Pouring turret "ladle", "Tundish", "Mould", "Water spray chamber", "Support roller" and "Torch cutter". 
The Artificial Neural Network (ANN) technique is used in this paper to analyze the casting system’s availability, 
profitability, and state probability variation. An effort has been made to identify the most critical component of 
the system. The outcomes of the analysis will help the practitioners in deciding effective maintenance strategies. 
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derived and studied. The model’s parameters are estimated using the maximum likelihood approach. A simulation 
study was conducted to investigate the consistency of the newly proposed model, using the average bias and root 
mean square error (RMSE) as metrics. The outcome of the simulation suggested that as sample sizes increase, 
both the average bias and root mean square error (RMSE) decrease, indicating that the distribution is consistent. 
Finally, two real-life datasets were used to explore the new model’s importance and adaptability in comparison 
to other competing models The results of the application revealed that the new distribution out performs its 
competitors. 
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It has been observed by statistician that to find a suitable model for the survival analysis of cancer patients is 
really challenging. The main reasons for that is the highly positively skewed nature of datasets. During recent 
decades several statistician tried to propose one parameter, two-parameter, three-parameter, four-parameter and 
five-parameter probability models but due to either theoretical or applied point of view the goodness of fit provided 
by these distributions are not very satisfactory. In this paper a compound probability model called gamma-Sujatha 
distribution, which is a compound of gamma and Sujatha distribution, has been proposed for the modeling of 
survival times of cancer patients. dolor Many important properties of the suggested distribution including its 
shape, moments (negative), hazard function, reversed hazard function, quantile function have been discussed. 
Method of maximum likelihood has been used to estimate its parameters. A simulation study has been conducted 
to know the consistency of maximum likelihood estimators. Two real datasets, one relating to acute bone cancer 
and the other relating to head and neck cancer, has been considered to examine the applicability, suitability and 
flexibility of the proposed distribution. The goodness of fit of the proposed distribution shows quite satisfactory 
fit over other considered distributions. 

ON A DISCRETE TIME SHOCK MODEL IN CRITICAL SITUATION ..............................................  95
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In this paper, we study a discrete time shock model which is defined based on the length of the time between 
successive shocks. For a system that is exposed to a sequence of random shocks over time under this model, if the 
interarrival time between two successive shocks is equal to a prefixed critical time point such as δ, the system 
fails, and the system is not damaged otherwise. We have considered two situations for the system, which are 
regular situation and critical situation, then we investigate the statistical behavior of the systemŠs lifetime under 
these situations. More precisely, we obtain the probability generating function of the system’s lifetime, the mean 
time to failure, the variance of the system’s lifetime, the Laplace transform of the system’s lifetime, and some other 
related results. We end the paper with an example including numerical comparisons of the results. 
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AND DEWMA METHODS ............................................................................................................................  107
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Statistical Process Control plays a crucial part in improving the quality and lowering the fluctuation in the 
production process environment. In SPC, the most popularly used methods are Shewhart control chart techniques 
and EWMA techniques which distinguish itself for its quick identification of minute process deviations, which 
makes it an essential tool for guaranteeing product. EWMA methods detect variances in quality of the product 
as well as services, measure process mean shifts with control charts, and track manufacturing process parameters 
to find deviations and make necessary adjustments. The exponential distribution was employed in this study 
because it may reflect vast and bulk production in everyday life. Exponentially distributed data, evaluate it 
alongside the EWMA function. This paper’s objective is to study the impact of EWMA & DEWMA parameters 
within the EWMA control chart’s performance using exponential distribution. Further, A few tables are provided 
with suitable illustrations that can be available with parameters with the help of these findings. The study also 
examines how the EWMA parameter affects the shape of the distribution. 
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The paper vividly describes the non-parametric estimation of basic quantities for right censored data of times to 
death for patients with tongue cancer. Here we compare patients with two different sets of DNA profile using 
several parameters like reliability function, cumulative hazard rate function, smoothed hazard rate function and 
ageing intensity function. With the help of graphical representations of these functions, we analyse which DNA 
profile patients have better prognosis. 
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David Ikwuoche John, Mathew Stephen 

In this study, a modified 2-parameter skew t distribution called the transmuted skew student t distribution 
(TSStD) was presented. Some statistical and reliability properties of TSStD such as the quantile function, the 
raw moments, and the moment generating function (among others), were derived. Through the method of 
maximum likelihood, the two parameters of the model were estimated. The stability of the model was studied via 
Montecarlo simulations utilizing bias, mean square error, and root mean square error as metrics. The results 
from the stability study revealed that the TSStD was well-behaved. Four datasets were modeled with the 
transmuted skewed student t distribution and four other probability density models. On the basis of information 
criteria, the results revealed that the transmuted skew student t distribution provides a better fit for all the 
datasets compared to the other competing models. 

SINE-TOPP-LEONE EXPONENTIATED G FAMILY OF DISTRIBUTIONS: PROPERTIES, 
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A. M. Isa, S. I. Doguwa, B. B. Alhaji, H. G. Dikko

In this research article, we have introduced a new class of continuous probability distributions known as the Sine 
Topp-Leone Exponentiated-G family of distributions. This newly proposed family exhibits a higher degree of 
flexibility compared to some of the established distribution families. The various models within this family find 
wide-ranging applications in fields such as physics, engineering, and medicine. Some statistical properties of the 
Sine Topp-Leone Exponentiated-G family of distributions such as moments, moment generating function, 
quantile function and order statistics are derived. Two special models were also presented and studies. Maximum 
likelihood estimation method was used to estimate parameters of the models. The consistency of the proposed 
family was determine using simulation studies. Two real life datasets were analyzed to show the flexibility of the 
proposed model and the results of the analysis showed that, the proposed model was more efficient and best fit the 
data sets than its competitors. 
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S.V. Rzayeva, N.M. Piriyeva, I.A. Guseynova

This article is devoted to the analysis of the reliability of typical power supply circuits. The question of what 
factors have the greatest impact on the reliability of power supply circuits, as well as what methods and tools are 
used to analyze and improve their reliability is considered. Particular attention is paid to the comparative analysis 
of various types of power supply schemes and the determination of their advantages and disadvantages in terms 
of reliability. The article also discusses current trends and developments in the field of increasing the reliability 
of power supply and possible ways to optimize existing circuits. The results obtained can be useful for specialists 
in the field of power engineering and electrical engineering in the design, maintenance and modernization of 
power supply systems. 

FUZZY LOGIC RELIABILITY BLOCK DIAGRAM APPROACH FOR PATIENT HEALTH 
MONITORING USING R PROGRAMMING  ..........................................................................................  179

Liji Sebastian, Rita S, Vennila J 

In this research, a new approach using fuzzy logic and reliability block diagram (RBD) techniques is used to 
ensure the reliability of patient health monitoring systems. This technique handles uncertainties in health 
information, while RBD assesses system reliability by displaying factor relations. The RBD model construct for 
system components and measure reliability using probabilistic models. Fuzzy logic identifies the effect of 
uncertainties on overall reliability. Using this approach in a simulated health monitoring scenario, using R, we 
demonstrate its effectiveness and potential to increase reliable health monitoring for improved patient outcomes 
and healthcare efficiency. Furthermore, the awareness gained from this study can be directed beyond healthcare 
such as modern process control and environmental sensing.  

RELIABILITY ANALYSIS OF AN ANTI-DRONE SYSTEM BY CONSIDERING RANDOM 
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Dharmaraja Selvamuthua, Harshita Badiyasara, Smrati Tripathia, Priyanka Kalitab, Raina Rajc 

In today’s security landscape, the proliferation of unauthorized drones in restricted airspace has emerged as a 
significant threat. These drones pose various risks, from potential surveillance and espionage to more sinister 
possibilities such as physical attacks. Consequently, the development of effective anti-drone laser systems has 
become increasingly vital. Our study focuses on three main objectives: modeling internal reliability, identifying 
critical components, and studying the factors affecting the reliability of anti-drone systems. We aim to enhance 
the overall performance and effectiveness of anti-drone laser systems by analyzing the reliability of critical 
components and understanding how system parameters influence system reliability. To this end, reliability block 
diagram (RBD) methodology has been employed to compute the reliability of the laser subsystem in the anti-
drone system. Additionally, we conduct a comprehensive review of component-wise reliability to identify 
vulnerable points within the system, thus enabling targeted improvements and optimizations. To capture the 
realistic scenario of system failure behavior, different distributions have been used to compute the reliability of 
the system, ensuring a thorough understanding of its operational reliability in diverse conditions. Finally, the 
energy values and probability of hitting are obtained for the anti-drone laser system to effectively mitigate 
environmental challenges. 

STRATEGIES FOR REPLACEMENT IN WORKFORCE SCHEDULING RELIABILITY 
MODELS  ..........................................................................................................................................................  206

Iyappan. M, Balaji. M, R. Saranraj, G. Sathya Priyanka 

It is a typical occurrence to replace some industrial equipment or components, such as electronic chips, bulbs, 
etc. It deals with the ideas of dependability theory, in which the likelihood of an equipment malfunctioning 
instantly is calculated assuming that it has operated normally for a given amount of time, 't'. In reliability, it's 
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known as the hazard rate. The rate of hazard may be rising, falling, or staying the same. However, replacement 
tactics are employed to maintain output. Basically, two distinct approaches are employed. 1. Replacing a broken 
item; 2. Replacing items on a regular basis. Since it is a preventive measure to maintain production, the effective 
administration of maintaining system functionality depends on the application of both reliability concepts in 
addition to replacement theory. One may envision a similar issue with the personnel system as well. To determine 
the best manpower policies in this situation, replacement methods and dependability theory can also be coupled. 
This theory's application to labor systems is examined, and appropriate methods for employee replacement and 
advancement are covered in order to ensure the system's successful upkeep. In order to obtain the best fit, 
manpower planning is a dynamic process that controls the movement of workers into, through, and out of the 
organization. In order to determine appropriate manpower replacement policies for promotion and replacement 
of personnel for the successful maintenance of the system, this study discusses the application of dependability 
theory and the renewal process. 

PERFORMANCE ANALYSIS OF M[X]/GB/1 FEEDBACK RETRIAL QUEUE WITH VARIABLE 
SERVER MODEL .............................................................................................................................................  215

N. Micheal Mathavavisakan, K. Indhira

In this article, a working vacation policy-based on bulk arrival feedback retrial queueing system with variable 
server capacity has been analyzed. The server can serve a minimum of one customer and a maximum of B 
customers in a batch in accordance with the variable server capacity bulk service rule. As soon as the orbit becomes 
empty at the time of service completion, the server goes for a working vacation. The server works at a lower speed 
during a working vacation period. In addition, the steady state probability generating function for system size 
and orbit size is generated by incorporating the supplementary variables technique (SVT). Further, the 
conditional decomposition law is shown for this retrial queueing system. Moreover, system performance metrics, 
and significant special instances are discussed. Finally, the effects of various parameters on the system 
performance are analyzed numerically. 

STOCHASTIC MODELING AND PERFORMABILITY ANALYSIS OF REPAIRABLE SYSTEM 
OF A PLYWOOD INDUSTRY ....................................................................................................................... 230 

Mr. Amit Kumar Singh, Dr. P. C. Tewari 

The current paper analyzes the performance behavior concerning the performability of the Veneer layup system 
in a plywood industry. A Markovian Approach is utilized to develop a process model for the system and enhance 
to evaluate system performability i.e. the function of system availability. The study investigates the impact of 
varying failure and repair rates on the availability of system, variation in the availability is also determined by 
varying available repair facilities, using a licensed software package. Particle Swarm Optimization (PSO) method 
has been employed to optimize the results. Additionally, a Decision Support System (DSS) has been proposed for 
making strategic decisions regarding financial investments and maintenance order priorities. The findings of the 
paper will aid the practitioners in deciding the maintenance order priorities among various subsystems. 

E-BAYESIAN ESTIMATION FOR BATHTUB-SHAPED LIFETIME DISTRIBUTION BASED
ON UPPER RECORD VALUES .....................................................................................................................  242

Sana, M. Faizan 

In this research paper, we presents the expected Bayesian (E-Bayesian) estimation of bathtub-shaped lifetime 
(BSL) distribution for scale parameter based on upper record values (URV) using a conjugate prior distribution. 
Also, we are considered different prior distributions for the E-Bayesian estimators. Some properties of the E-
Bayesian estimators are discussed. A simulation study is given to compare the performance of the E-Bayesian 
estimators with Bayesian estimator. we notice that the E-Bayesian estimators are perform better than the Bayesian 
estimators. Moreover, the performance of the Bayesian estimators and E-Bayesian estimators for Prior II are 
better than Prior I. Also, we observe that if we increase the sample size n then the estimators are showing lesser 
mean square error (MSE). 
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In order to improve upon the efficiency of an estimate in double sampling for estimating population mean of 
character under study using an auxiliary variable, a part of survey resources are used to collect the information 
on auxiliary variable. Some authors have suggested exponential-type estimators and some others advocated for 
log-type estimators. But combination of such is required for specific situation. This paper presents a class of 
logarithmic-cum-exponential ratio estimators in double sampling setup. The expressions for the mean squared 
error and bias of the proposed class of estimators are derived for two different cases(sub-sample and independent 
sample). Sometimes the persons involved in the sample survey have to undergo for risk on life. For example, data 
collection in naxalites area, working in intense forest, interview during spread of epidemic or data collection in 
politically disturbed region. Such risk may affect the accuracy, efficiency of estimation. A linear Risk function is 
used for the proposed class of estimators. Two cases of double sampling are compared in terms of relative efficiency 
in view to risk aspect.It is found that the proposed class of estimators has a lower mean squared error than the 
simple mean estimator, usual ratio, usual exponential, usual log estimators in the double sampling setup. In 
addition, these theoretical results are supported by a numerical example. Risk function based simulated study is 
performed for the support of findings of the content. Optimal sample sizes under risk are derived and compared 
under two cases. 

STOCHASTIC ANALYSIS OF A GAS TURBINE SYSTEM WITH PRIORITY AND RANDOM 
INSPECTION BY SINGLE SERVER UNDER DIFFERENT HUMID CONDITIONS .......................  263

Pinki, Vijeta Kumari, Dalip Singh 

In this study, we investigated the impact of two different humid levels on the reliability measures of a stochastic 
model for a gas turbine system composed of a gas turbine and a steam turbine. To enhance the system’s overall 
performance, we prioritize gas turbine repair over steam turbine repair in addition to a combined inspection and 
preventative maintenance approach. To find some reliability measures, such as the mean time to system failure, 
availability, etc., semi-Markov process and regenerating point technique are utilized. These measures are 
analysed graphically based on the data obtained from a gas turbine power plant in Delhi, India. 

PYTHON IMPLEMENTATION OF FUZZY LOGIC FOR ZERO-INFLATED POISSON SINGLE 
SAMPLING PLANS ......................................................................................................................................... 275

Kavithanjali S, Sheik Abdullah A 

Acceptance sampling is used in Statistical Quality Control (SQC) to conduct lot quality evaluations through 
sample inspections which involve probability theory and fuzzy sets. It aims to optimize quality, costs, and 
productivity, frequently applying linguistic variables when accurate parameter values are not good enough which 
is handled using fuzzy set theory. This research analyses single sampling plans (SSP) in the presence of fuzzy 
number non-conformities, modelling them with the Zero-inflated Poisson (ZIP) distribution structure. This 
study presents a unique method to single sampling plans (SSP) inside the Zero-inflated Poisson (ZIP) 
distribution framework that makes use of fuzzy logic approaches. In addition, we show how to apply this method 
using a Python programme, providing practical suggestions for real-world quality control complications. 
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ANALYSIS OF NON-MARKOVIAN BATCH ARRIVAL RETRIAL QUEUE WITH PRIORITY 
SERVICES, IMMEDIATE FEEDBACK, PUSH OUT, DIFFERENTIATED BREAKDOWNS, 
DELAYED REPAIR, RANDOMIZED VACATION ..................................................................................  282

G. Ayyappan, S. Nithya

Priority and ordinary customers arrive according to Poisson processes, and their service time based on the general 
distribution. The server constantly offers a single service for both priority and ordinary customers. We compute 
the Laplace transforms of the time-dependent probabilities of system states using the probability generating 
function and supplementary variable technique. Numerical results are obtained which are also examined to 
facilitate the sensitivity analysis of system descriptions. 

PERSONALIZED FEATURES-BASED STRESS DETECTION WITH HYPERPARAMETER 
TUNING USING GENETIC ALGORITHM ...............................................................................................  298

Jigna Jadav, Uttam Chauhan 

In recent years, there have been considerable improvements in how we keep track of mental health, especially with 
devices you can wear, which give us a better chance of spotting and dealing with problems like stress before they 
become serious. This research paper presents an innovative approach. Experimental validation uses a 
comprehensive dataset of 15 subjects working as multinational company employees. Heart Rate Variability(HRV) 
was obtained from wearable sensors using Apple Watch during working hours. We have calculated time, 
frequency and non-linear domains as well and added personalized features like a person's age, height, weight, 
etc. Recurrent Neural Network( RNN )and Long Short-Term Memory ( LSTM )models are applied and get an 
accuracy of 87% and 90%, respectively. To enhance stress detection accuracy by optimizing hyperparameters 
using a genetic algorithm (GA) explicitly targeting the configuration of LSTM models. Key hyperparameters, 
including the number of units in the LSTM layer and the number of training epochs, are optimized to maximize 
stress detection accuracy. Model Through 5 generations of evolution, the GA identifies optimal hyperparameter 
settings of 45 units in the LSTM layer 49 epochs, significantly improving stress detection accuracy compared to 
baseline configurations. It gives 92 % accuracy with optimized hyperparameters. Analyzing recorded data, we 
observe that the time per training step decreases gradually, indicating efficient convergence during optimization. 
Simultaneously, stress detection accuracy steadily improves over epochs, showcasing the model's effectiveness in 
learning patterns from physiological data. So, This study provides insights into the practical application of 
genetic algorithms for hyperparameter optimization in healthcare contexts, contributing to advancements in 
personalized monitoring and intervention strategies for mental well-being. 

ANALYSIS OF SINGLE SERVER FEEDBACK RETRIAL QUEUE WITH BERNOULLI 
WORKING VACATION AND STARTING FAILURE ............................................................................  310

Keerthiga S, Indhira K 

The suggested queueing model describes a single-server feedback retrial queueing system with starting failure, 
Bernoulli working vacation and vacation interruptions. The server departs on a working vacation as soon as orbit 
is empty. During the working vacation period, the server provides a slower level of service. The supplementary 
variable method was utilized to determine the steady-state probability-generating functions for the system and 
its orbit. If there are consumers in the system at the end of each vacation, the server becomes idle and ready to 
serve new customers. The average busy time and the average busy cycle are presented as important system 
performance indicators. Additionally, the adaptive neuro-fuzzy interface system has compared the numerical 
results with the neuro-fuzzy results. Finally, particle swarm optimization (PSO) were utilized to obtain the best 
(optimal) cost for the system in this study. We have examined the convergence of these optimization strategies. 
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IMPROVING THE SPECTRAL EFFICIENCY IN DOWNLINK MULTIPLE USER MULTIPLE 
INPUT MULTIPLE OUTPUT TRANSMISSION FOR FIFTH GENERATION AND BEYOND 
WIRELESS COMMUNICATIONS ...............................................................................................................  327

Abdulmujeeb Akajewole Masud, Donatus Uchechukwu Onyishi 

This research presents a solution in Multiple Input Multiple Output (MIMO) wireless systems to meet the 
growing demand for high data rates in cellular networks. Although MIMO systems offer greater capacity, the 
higher frequencies used have caused interference problems, especially for mobile User Equipment (UE). This 
research aims to reduce interference problems in the downlink of Multi-user MIMO (MU-MIMO) systems, with 
a specific focus on improving Quality of Service (QoS) metrics, such as outage probability and Signal-to-
Interference plus Noise Ratio (SINR). Existing solutions to these challenges are complex due to the dynamic 
nature of the factors involved in modelling real-world scenarios. As such, an Improved Downlink MU-MIMO 
(ID-MU-MIMO) algorithm is developed as a solution to these problems. The ID-MU-MIMO method employs 
both single antenna users and multiple transmitter antennas. The performance of the suggested algorithm is 
compared to the IEEE 802.11ax standard specification and a previous research work for validation and 
evaluation. Performance measures considered to aid validation included outage probability, spectrum efficiency, 
and communication connection reliability. On this premise, the outcomes showed that the proposed ID-MU-
MIMO scheme outperforms both the IEEE 802.11ax standard and current MD-MU-MIMO systems. In 
particular, compared to IEEE 802.11ax, the ID- MU-MIMO technique achieved a 7.71% reduction in 
interference. When compared to the performance of the random and uniform MD-MU-MIMO algorithms, the 
proposed ID-MU- MIMO scheme showed a reduction in interference in percentages of 8.90% and 2.28%, 
respectively. The ID-MU-MIMO scheme outpermed the random and uniform MD-MU-MIMO algorithms in 
terms of Signal-to-Interference Noise Ratio (SINR), outperforming them by 4.27% and 2.75%, respectively, and 
resource block use, outperforming them by 20.05% and 3.89%, respectively. 

ENHANCING PROCESS CAPABILITY ANALYSIS FOR LOGNORMAL DATA UTILIZING 
BOX COX TRANSFORMATION AND GOODNESS OF FIT TESTS ..................................................  343

J. Krishnan, R. Vijayaraghavan

Process capability analysis is a valuable tool in quality assurance, but deviations from normal distribution 
necessitate adjustments to basic process capability indices. Process control literature offers solutions for non-
normality, with data transformation being a common approach. The Box- Cox transformation (BCT) is often 
used to normalize non-normal data, relying on maximum likelihood estimation (MLE) to determine the 
transformation parameter, lambda. Alternative methods exist for estimating the single transformation parameter 
lamda, employing goodness-of-fit tests instead of the MLE method. This study explores two expressions within 
the Box-Cox transformation (BCT), encompassing both optimal and rounded values of lambda. The primary goal 
is to identify an effective method for transforming non-normal data into a distribution closer to normality through 
goodness-of-fit tests, aiming to obtain accurate estimates for process capability analysis in alignment with six 
sigma standards. Furthermore, this study focuses on the influence of utilizing both optimal and rounded values 
of lambda when transforming non-normal data to normal, and how these lambda values impact the estimates of 
process capability analysis. The findings reveal that methods such as Shapiro-Wilk's (SW) and Artificial 
Covariate (AC) outperform the MLE method. Moreover, employing the optimal lambda value during data 
transformation leads to improved estimates of process capability. Data simulation and analysis were conducted 
using Minitab software and the R programming language. 
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INFERENCE ON THE INVERSE POWER BURR-HATKE DISTRIBUTION UNDER TYPE II 
CENSORING ....................................................................................................................................................  356

Pavitra Kumari, Vinay Kumar 

There are many real-life situations, where data require probability distribution function which have decreasing 
or upside-down bathtub (UBT) shaped failure rate function. The inverse power burr hatke distribution consists 
both decreasing and UBT shaped failure rate functions. Here, we address the different estimation methods of the 
parameter and reliability characteristics of the inverse Pareto distribution from both classical and Bayesian 
approaches. We consider classical estimation procedures to estimate the unknown parameter of inverse power 
burr-hatke distribution, such as maximum likelihood. Also, we consider Bayesian estimation using squared error 
loss function based joint priors. The Monte Carlo simulations are performed to compare the performances of the 
obtained estimators in mean square error sense. Finally, the flexibility of the proposed distribution is illustrated 
empirically using one real-life datasets. The analyzed data shows that the introduced distribution provides a 
superior fit than some important competing distributions such as the Weibull, inverse Pareto and Burr-Hatke 
distributions. 

ANALYSIS OF TWO NON-IDENTICAL UNIT SYSTEM HAVING SAFE AND UNSAFE 
FAILURES WITH REBOOTING AND PARAMETRIC ESTIMATION IN CLASSICAL AND 
BAYESIAN PARADIGMS .............................................................................................................................  364

Poonam Sharma, Pawan Kumar 

The present paper aims at the study of a two non-identical system model having safe and unsafe failures and 
rebooting. The focus centers on the analysis w.r.t important reliability measures and estimation of parameters in 
Classical and Bayesian paradigms. At first one of the units is operational whereas other one is confined to standby 
mode. Any unit may suffer safe or unsafe failure. A safe failure is immediately taken up for remedial action by a 
repairman available with the system all the time, while the case of unsafe failure cannot be dealt directly but first 
rebooting is performed to convert the unsafe failure to safe failure mode so as to start repair normally. A switching 
device is used to make the repaired and standby units operational. The lifetime of both the units and switching 
device are taken to be exponentially distributed random variables whereas the distribution of repair times are 
assumed to be general. Regenerative point technique is employed to derive assosciated measures of effectiveness. 
To make the study more elaborative and visually attractive, some of the derived characteristics have been studied 
graphically too. A simulation study has also been undertaken to exhibit the behaviour of obtained characteristics 
in Classical and Bayesian setup. Valuable inferences about MLE and Bayes estimates have been drawn from the 
tables and graphs for varying values of failure and repair parameters. 

RELIABILITY ESTIMATION OF STRESS-STRENGTH MODEL USING FUZZY DISTORTION 
FUNCTION UNDER UNCERTAINTY IN ENVIRONMENTAL FACTORS ......................................  380

K Sruthi, M Kumar 

In the reliability estimation of stress-strength models, external factors such as temperature, humidity, etc. may 
influence the distribution of stress and strength random variables. In traditional reliability analysis, these 
external factors are accounted for by introducing a real-valued distortion function, which replaces the original 
distribution with a distorted one. However, it’s important to note that the effect of these external factors is not 
always adequately represented by a single real-valued function. To address this issue, we propose the use of fuzzy 
numbers within the distortion function. In this paper, we introduce the concept of a "fuzzy distortion function" 
to incorporate the uncertainty stemming from external factors when estimating the reliability of stress-strength 
relationships. We present a methodology for estimating fuzzy reliability by employing this fuzzy distortion 
function. Through an illustrative example, we demonstrate how this approach to estimating fuzzy reliability 
offers a wider range of possibilities for system reliability and provides more comprehensive insights into the 
system’s behaviour. Throughout our exploration, we have delved into the diverse properties inherent in fuzzy 
distortion functions. These properties highlight the versatility and adaptability of such functions in capturing 
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uncertainty within data sets. Moreover, we have scrutinized several methods for constructing fuzzy distortion 
functions from pre-existing ones. By examining these methods, we gain valuable insights into how fuzzy 
distortion functions can be tailored to specific contexts and applications, thereby enhancing the accuracy and 
robustness of reliability analysis in complex systems. Additionally, in the conventional stress-strength model, 
reliability is determined without considering the uncertainty in the parameters of the distribution function. The 
drawback of existing methods in the literature is that they do not consider the uncertainty or fuzziness in the 
parameters of the distribution. Therefore, we estimate the system reliability in the presence of fuzzy parameters 
in the distribution function of corresponding random variables. The method we discuss in this paper provides a 
reliability estimate of the given system under realistic situations. A sensitivity analysis study is carried out to 
examine the behaviour of mean square errors (MSE) of estimated system reliability under various scenarios. It is 
observed that MSE can be significantly reduced by a suitable choice of parameters in the membership function of 
fuzzy parameters. 

ANALYTICAL AND COMPUTATIONAL ASPECTS OF A MULTI-SERVER QUEUE WITH 
IMPATIENCE UNDER DIFFERENTIATED WORKING VACATIONS POLICY .............................  393

Aimen Dehimi, Mohamed Boualem, Amina Angelika Bouchentouf, Sofiane Ziani, Louiza 
Berdjoudj 

A multi-server queueing system with synchronous differentiated working vacation policy, Bernoulli schedule 
vacation interruption, and customer impatience (balking and reneging) is studied. The system consists of c 
servers and a finite capacity N, where customers arrive according to a Poisson process and are served in the 
chronological order of their arrival. When the system becomes empty, servers wait for a random duration before 
entering a type-1 working vacation, during which service is provided at a reduced rate. If customers are present 
in the system at the moment of service achievement during this period, the vacation is interrupted. With a certain 
probability, servers return to the regular busy period; otherwise, they continue the working vacation. Upon 
completion of the working vacation, if the system is still empty, servers can take another working vacation of 
shorter duration, named type-2 working vacation; otherwise, they switch to the regular busy period. Customer 
impatience is considered during both the normal busy period and working vacations. A recursive analysis method 
is used to find the steady-state probabilities of the system. Then, some important performance measures are 
obtained. Furthermore, an optimal operational policy for the model is developed to minimize the total expected 
cost. The Grey Wolf Optimization (GWO) meta-heuristic approach is employed to determine the optimal service 
rates for both working vacations and normal busy periods. Finally, several numerical examples are provided to 
validate and support the theoretical findings. 

COSINE MARSHAL-OLKIN-G FAMILY OF DISTRIBUTION: PROPERTIES AND 
APPLICATIONS ............................................................................................................................................... 408 

Akeem Ajibola Adepoju, Alhaji Modu Isa, Olalekan Akanji Bello 

Trigonometric distributions have recently been emphasized due to it applicability and relevance for modeling 
different phenomena. This article contributes to the existing literature on trigonometric family by introducing 
and investigating new trigonometric family of distribution which is developed by compounding the cosine family 
of distribution with Marshall-olkin family of distribution to form a new Cosine Marshall-Olkin family of 
distribution (CMO). Graphical, numerical and analytical approach was explored to study the properties and 
applicability of the new CMO family of distribution. Special representations and important reliability properties 
and other statistical properties were defined. Simulation study was conducted in order to have an insight on the 
estimates of the three parameters model using maximum products of spacing (MPS). Emphases on the greater 
flexibility of the new CMO family of distribution beyond the cosine-G family and other top models of the Cosine 
related family was made through Weibull distribution. The results revealed the superiority of the Cosine 
Marshall-Olkin Weibull model (CMO-W) over others via two data sets. 
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ANALYSIS OF MMAP/PH1,PH2/1 PREEMPTIVE PRIORITY INVENTORY RETRIAL 
QUEUEING SYSTEM WITH SINGLE VACATION, WORKING BREAKDOWN, REPAIR AND 
CLOSEDOWN ..................................................................................................................................................  423

G. Ayyappan, S. Meena

This paper analyzes preemptive priority inventory retrial queueing system with a single vacation, working 
breakdown, repair, and closedown. We assume that an arrival follows the Marked Markovian arrival process and 
that the server will provide them with phase-type services. The (s, S) policy to replenish the items and the 
replenishing duration follow an exponential distribution. In this paper, we consider two types of customers: high-
priority(HP) customers and low-priority(LP) customers. Arriving HP customers should get the service if the 
server is idle and has a positive inventory level; otherwise, they should wait in front of the service station. 
Arriving LP customers get service only if there is a positive inventory level and there are no high-priority 
customers in the system; otherwise, go for the finite capacity size of the orbit. After the completion of service, if 
no one is present in the high-priority queue and orbit, the server will close down the system and then go on a 
single vacation. The server is idle when the vacation period ends. When the server breaks down, it only serves the 
present customer and operates in slow mode while it is being repaired. The number of high-priority customers in 
the system, the number of low-priority customers in the orbit, the inventory level, and server status may all be 
determined in a steady state. Numerous key performance indicators are defined, and a cost analysis is obtained. 
To make our mathematical concept clearer, a few numerical examples are provided. 

OPTIMIZATION OF AN INVENTORY MODEL FOR DETERIORATING ITEMS ASSUMING 
DETERIORATION DURING CARRYING WITH TWO-WAREHOUSE FACILITY ........................  442

Krishan Kumar Yadav, Ajay Singh Yadav, Shikha Bansal 

A common topic in the context of its application in today’s business contexts is inventory modelling and 
management. It is well-known that deterioration has a big impact on inventory management. One of the most 
frequent supply chain concerns is the deterioration of items during transit from a supplier’s storehouse to a 
retailer’s storehouse. In light of this, a two-level supply chain inventory model for decaying goods is developed 
with two warehouse (storehouse) facilities for retailers, namely Owned Warehouse (OW) and Rented Warehouse 
(RW), assuming deterioration both during carrying from a supplier’s storehouse to a retailer’s storehouses and 
in the retailer’s storehouses themselves. Also, we are assuming the selling price and time sensitive demand. We 
are developed this model under inflation. Shortages are not allowed. The main objective of this study is to 
determine the optimal ordering policy in order to maximizes the retailer’s profit per unit of time. The applicability 
of our suggested model is investigated using a numerical example and with the support of MATLAB 
programming software (version: R2021b). Sensitivity analysis is used to examine the effects of changing the 
values of system parameters. Graphical representations are also shown in this paper. 

ON MODELING OF BIOMEDICAL DATA WITH EXPONENTIATED GOMPERTZ INVERSE 
RAYLEIGH DISTRIBUTION ........................................................................................................................  460

Sule Omeiza Bashiru, Alaa Abdulrahman Khalaf, Alhaji Modu Isa, Aishatu Kaigama 

This paper introduces and thoroughly examines the Exponentiated Gompertz Inverse Rayleigh (EtGoIr) 
Distribution, a four-parameter extension of the Gompertz Inverse Rayleigh distribution. The primary focus is on 
its application to biomedical datasets, shedding light on its mathematical and statistical properties. Some 
properties of the distribution that were derived include the quantile function, median, moments, incomplete 
moments, Rényi entropy, and probability weighted moments. The model parameters were estimated using the 
method of maximum likelihood. A simulation study was conducted to investigate the consistency of the proposed 
model. The outcome of the investigation revealed that the model demonstrates consistency, as evidenced by the 
reduction in both root mean square error (RMSE) and bias as sample sizes increase. To showcase the practical 
relevance of the EtGoIr distribution, the paper applies the model to three distinct biomedical datasets. The results 
highlight its enhanced flexibility, demonstrating superior fit compared to its counterpart. 
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BEHAVIOR ANALYSIS PRESENTED SYSYEM WITH FAILURE AND MAINTENANCE RATE 
WITH USING DEEP LEARNING ALGORITHMS  .................................................................................. 476 

Shakuntla Singla, Shilpa Rani, Diksha Mangla, Umar Muhammad Modibbo 

The paper discusses the behavioral analysis and dependability of a three-unit system utilizing RPGT for system 
parameters. Since all three units P, Q and R include parallel subcomponents, in the event that one of them fails, 
the system continues to operate although at a reduced capacity, but it is not profitable to run the system when 
two units are in reduced state hence considered failed state. The rates of failures are exponentially distributed, 
but the rates of repair are generalized, independent, and differ based on the operational unit. Fuzzy concept is 
used to declare/ determine whether the system is in failed/ reduced/ failed state. Graphs and tables are drawn to 
compare failure/repair effect on the parameters values. The system parameters are modelled using Regenerative 
Point graphical Technique (RPGT) and optimized using Deep learning methods such as Adam, SGD, RMS prop. 
The results of the optimization may be used to validate and challenge existing models and assumptions about the 
systems.  

OPTIMIZING INVENTORY CONTROL THROUGH A GRADIENT-BASED MULTILEVEL 
APPROACH IN THE FACE OF DEMAND AND LEAD TIME UNCERTAINTIES ..........................  486

Muragesh Math, D.Gopinath, B. S.Biradar 

Systems of two-level assembly with unknown timing of leads are taken into consideration while arranging 
supplies. Probably, the final product's demand and its deadline are known. When all required parts are on hand, 
each level's assembly process gets underway. To address these problems, we have developed a model for the control 
of inventories for an uncapitatedwarehousing space in a manufacturing plant with unpredictable demand and 
lead times. The goal is to choose orders in a way that minimizes the overall system's cost. We present a multilevel 
optimization model including a rotating horizon that utilizes gradients to handle unknown lead time and 
demand, irrespective of the distributions at the core of them. Furthermore, a precise algorithm is created to solve 
the model. In a case study, we compare our approach with the current model. Our computational results indicate 
that while the new gradient-based multi-level optimization model nearly continuously yields the least expensive 
overall across all parameter settings. These models' performances are either systematically worse or 
extremely sensitive to cost parameters (holding cost, shortfall cost, etc.). 

THE EXPONENTIATED SKEW LAPLACE DISTRIBUTION: PROPERTIES AND 
APPLICATIONS ...............................................................................................................................................  497

Timothy Kayode Samson, Christian Elendu Onwukwe, Ekaette Inyang Enang 

In this paper, a 4-parameter Exponentiated Skew Laplace distribution is defined and studied. Various statistical 
properties including its moment generating function, characteristics function, hazard function, and reliability 
function of the proposed ESLD were derived. The estimation of its parameters was carried out using the maximum 
likelihood method of estimation. The performance of the proposed ESLD compared with other similar distributions 
was demonstrated empirically with daily returns of S & P 500 between 2/02/24 and 28/03/2024 and daily returns 
of Bitcoin between 2/02/24 and 1/04/24 as obtained from Yahoo Finance. The fitness performance of the proposed 
distribution was evaluated based on log-likelihood, AIC, and BIC. Results obtained show that the proposed ESLD 
reported the highest log likelihood as well as the lowest AIC and BIC in the two data sets. This study therefore 
underscores the superiority of the proposed distribution over the some of the similar existing distributions. 
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A NOVEL ASYMMETRIC COMPOUND CLASS OF DISTRIBUTIONS WITH ESTIMATION 
AND APPLICATION ......................................................................................................................................  510

A.G. Al-Kilany, Amal S. Hassan, L.S. Diab, E.S. El-Atfy 

This paper introduces and discusses the novel asymmetric class of distributions that have the name inverse power 
Lomax power series (IPLPS). This class of distributions is produced by combining the inverse power Lomax with 
the power series distributions. This combined approach provides an opportunity for the creation of flexible 
distributions with significant physical implications in many fields, like biology and engineering. The IPLPS 
distributions encompass several new compound distributions as sub-models along with a new class of compound 
distributions. Many statistical features, including moments, quantile function, conditional moments, inverse 
moments, uncertainty measures, and probability-weighted moments, are obtained. As a special model of the 
generated class, the parameters of the inverse power Lomax Poisson distribution are estimated by different 
methods, including least squares, Cramér von Mises, maximum likelihood, and weighted least squares. Through 
an extensive simulation analysis, the execution of different parameter estimation techniques for the inverse power 
Lomax Poisson model is performed to show its validity based on its mean squared error and absolute bias. Two 
real datasets are utilized to show the practicality of the newly generated model. Results show that the inverse 
power Lomax Poisson distribution provides the most fitted model for these datasets in comparison to other 
distributions such as power Lomax, Marshall- Olkin power Lomax, power Lomax Poisson, and Topp-Leone 
Lomax distributions. 

EXPLORING LENGTH BIASED QUASI SUJA DISTRIBUTION: PROPERTIES AND 
APPLICATIONS ...............................................................................................................................................  530

Vidya Yerneni, Aafaq A. Rather 

This paper introduces a new statistical distribution called length biased quasi suja distribution (LBQS). It 
explores its properties, including moments, moment generating function(MGF), characteristic function(CF), 
harmonic mean, reliability, hazard rate and reverse hazard rate. Order statistics of the above distribution is 
obtained. Furthermore, the paper also examines various entropy which measures the randomness of system, like 
Renyi entropy and Tsalli’s entropy. It also evaluates Bonferroni and Lorenz curves which are useful in measuring 
the inequality. It also discusses parameter estimation techniques specifically maximum likelihood estimation and 
likelihood ratio testing. Moreover, a simulation study has been conducted to demonstrate how well the 
distribution would perform in real-life situation. The validity of the distribution is also demonstrated with real-
world data example of failure data, highlighting its potential for practical applications in data analysis. 

A NEW GENERALIZATION OF SABUR DISTRIBUTION ...................................................................  545

Suvarna Ranade, Aafaq A. Rather 

When the weight function depends on the lengths of the units of interest, the resulting distribution is called 
length biased. Length biased distribution is thus a special case of the more general form, known as weighted 
distribution. In this study, we introduce a novel probability distribution named the Length- Biased Sabur 
distribution (LBSD). This new distribution enhances the traditional Sabur distribution by incorporating a 
weighted transformation approach. The paper investigates the probability density function (pdf) and the 
cumulative distribution function (cdf) associated with the LBSD. A thorough examination of the distinctive 
structural properties of the proposed model is conducted, covering the survival function, conditional survival 
function, hazard function, cumulative hazard function, mean residual life, moments, moment generating 
function, characteristic function, likelihood ratio test, ordered statistics, entropy measures, and Bonferroni and 
Lorenz curve. 
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MODELING THE INTERCONNECTED OPERATION OF ENERGY SYSTEMS FOR ENERGY 
SECURITY STUDY IN TODAY’S CONTEXT ............................................................................................  554

Dmitry Krupenev, Natalia Pyatkova 

The paper shows the need for comprehensive research into energy security problems to assess the possibilities of 
interconnected operation of all energy industries with the view to identifying the implications for consumers of 
energy resources in the event of emergencies in one or several industries at the same time. The paper presents a 
methodological framework and features of modeling the interrelated operation of the industries in current context 
and a model developed for these studies. The results of experimental studies using the developed methodology are 
shown through the analysis of several critical situations (threats to energy security) of various nature. 

ESTIMATION OF PARAMETERS FOR KUMARASWAMY EXPONENTIAL DISTRIBUTION 
BASED ON PROGRESSIVE TYPE-I INTERVAL CENSORED SAMPLE ............................................  567

Manoj Chacko, Shilpa S Dev 

In this paper, we consider the problem of estimation of parameters of the Kumaraswamy exponential distribution 
using progressive type-I interval censored data. The maximum likelihood estimators (MLEs) of the parameters 
are obtained. As it is observed that there is no closed-form solutions for the MLEs, we implement the Expectation-
Maximization (EM) algorithm for the computation of MLEs. Bayes estimators are also obtained using different 
loss functions such as the squared error loss function and the LINEX loss function. For the Bayesian estimation, 
Lindley’s approximation method has been applied. To evaluate the performance of the various estimators 
developed, we conduct an extensive simulation study. The different estimators and censoring schemes are 
compared based on average bias and mean squared error. A real data set is also taken into consideration for 
illustration. 

ANALYSIS OF MX/G/1 QUEUE WITH OPTIONAL SECOND SERVICE, FEEDBACK AND 
BERNOULLI VACATION ..............................................................................................................................  583

S. Karpagam, B. Somasundaram, A. Kavin Sagana Mary, R. Lokesh,

In this article the single-server queue situation described with batch arrivals, a mandatory first service and a 
choice of second service are provided to the customers. A general distribution governs the service times, whereas 
a compound Poisson distribution follows customer arrivals. Although each new customer requests the first 
mandatory service, only some of them choose the optional second service. Customers who are dissatisfied with 
mandatory service are more likely to get the required services later on. After every service is finished, the server 
might choose to go on Bernoulli vacation. Time dependent probability generating functions are constructed in 
terms of Laplace transforms using the supplementary variable approach, and explicit results are obtained for the 
steady state. Additionally, mean waiting time and mean queue length expressions are examined. The graphical 
and numerical representations improve comprehension of the results even further. 

INVERTED DAGUM DISTRIBUTION: PROPERTIES AND APPLICATION TO LIFETIME 
DATASET  ......................................................................................................................................................... 595. 

Abdulhameed A. Osi, Shamsuddeen A. Sabo, Ibrahim Z. Musa 

This article presents the introduction of a novel univariate probability distribution termed the inverted Dagum 
distribution. Extensive analysis of the statistical properties of this distribution, including the hazard function, 
survival function, Renyi’s entropy, quantile function, and the distribution of the order statistics, was conducted. 
Parameter estimation of the model was performed utilizing the maximum likelihood method, with the consistency 
of the estimates validated through Monte Carlo simulation. Furthermore, the applicability of the proposed 
distribution was demonstrated through the analysis of two real datasets. 
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A NOVEL HYBRID DISTRIBUTED INNOVATION EGARCH MODEL FOR 
INVESTIGATING THE VOLATILITY OF THE STOCK MARKET .....................................................  605

Mubarak M.T., Adubisi O.D., Abbas U.F. 

When calculating risk and making decisions, investors and financial institutions heavily rely on the modeling of 
asset return volatility. For the exponentiated generalized autoregressive conditional heteroscedasticity 
(EGARCH) model, we created a unique innovation distribution in this study called the type-II-Topp-Leone-
exponentiated-Gumbel (TIITLEGU) distribution. The key mathematical characteristics of the distribution were 
determined, and Monte Carlo experiments were used to estimate the parameters of the novel distribution using 
maximum likelihood estimation (MLE) procedure. The performance of the EGARCH (1,1) model with TIITLEGU 
distributed innovation density in relation to other innovation densities in terms of volatility modeling is 
examined through applications using two Nigerian shock returns. The results of the diagnostic tests indicated 
that, with the exception of the EGARCH (1,1)-Johnson (SU) reparametrized (JSU) innovation density, the fitted 
models have been sufficiently specified. The parameters for the EGARCH (1,1) model with different innovation 
densities are significant at various levels. Furthermore, in out-of-sample prediction, the fitted EGARCH (1,1)-
TIITLEGU innovation density performed better than the EGARCH (1,1)- existing innovation densities. As a 
result, it is decided that the EGARCH-TIITLEGU model is the most effective for analyzing Nigerian stock market 
volatility. 

SINGLE AND DOUBLE ACCEPTANCE SAMPLING PLAN FOR TRUNCATED LIFE TESTS 
BASED ON GAMMA LINDLEY DISTRIBUTION ...................................................................................  619

Sriramachandran G. V. 

For  time-truncated  life  tests,  this work defines single  acceptance  and  double  acceptance sampling plans 
assuming   that the product's lifespan   follows the Gamma   Lindley distribution. The minimum sample size 
needed in a single acceptance sampling plan for lot approval is calculated for a range of parameter combinations 
and a fixed test termination time. This ensures the given average product life and the corresponding number of 
failures. Operational characteristic and producer risk values are also tabulated for these parameter values. Using 
a double acceptance sampling  plan,  the best first  and  second  samples are  obtained to ensure that  the products 
specified average  with a certain level of  customer trust.  Finally,  under  the  same conditions, the  minimum 
sample  size  obtained using  these  strategies  are compared  with other acceptance sampling plans. 

FUZZY VARIABLE LINEAR PROGRAMMING PROBLEMS USING A FUZZY DUAL 
SIMPLEX ALGORITHM ................................................................................................................................  630

Srinivasa Rao Kolli, U.V. Adinarayana Rao, Taviti Naidu Gongada 

In modern research, several brilliant minds investigate linear programming problems involving fuzzy variable 
quantities. Many researchers have turned to linear programming by fuzzy variables to address this problem. 
Various fuzzy simplex approaches have been developed, using ranking functions to handle fuzzy numbers. 
Results from this research suggest that linear ranking functions can provide a straightforward interpretation of 
problems involving linear programming by fuzzy variable quantities. To solve these types of problems, the Fuzzy 
Dual Simplex Tableau method is often applied, which proves useful for sensitivity analysis when modifications 
are made to the activity vectors of the fundamental columns. In this study, a numerical case is presented to 
demonstrate the potential benefits of this approach for future technologies. 

21



Table of Contents RT&A, No 3 (79) 
Volume 19, September 2024 

 

A MODIFIED AILAMUJIA DISTRIBUTION: PROPERTIES AND APPLICATION .......................  638

David Ikwuoche John, Okeke Evelyn Nkiru, Franklin Lilian 

This study presents a modified one-parameter Ailamujia distribution called the Entropy Transformed Ailamujia 
distribution (ETAD) is introduced to handle both symmetric and asymmetric lifetime data sets. The ETAD 
properties like order and reliability statistics, entropy, moment and moment generating function, quantile 
function, and its variability measures were derived. The maximum likelihood estimation (MLE) method was used 
in estimating the parameter of ETAD and through simulation at different sample sizes, the MLE was found to 
be consistent, efficient, and unbiased for estimating the ETAD parameter. The flexibility of ETAD was shown by 
fitting it to six different real lifetime data sets and compared it alongside seven competing one- parameter 
distributions. The goodness of fit (GOF) results from Akaike information criteria, Bayesian information criteria, 
corrected Akaike information criteria, and Hannan-Quinn information criteria show that the ETAD was the best 
fit amongst all the seven competing distributions across all the six data sets. 

MODIFIED GROUP RUNS CONTROL CHART 
FOR MONITORING PROCESS DISPERSION .........................................................................................  653

Chandrakant G. Gardi, Vikas B. Ghute 

Due to a rise in competitiveness, it has become an intense concern to the manufacturers to monitor process 
dispersion to avoid low quality production. To ensure quality production, the control chart that gives early 
detection of change in the dispersion is always encouraged. Researchers have suggested various control charts 
based on different estimators of process dispersion. Recently, many synthetic control charts based on such 
estimators are put forth by researchers to effectively monitor the dispersion in the process. Modified Group Runs 
(MGR) control chart is an extension of synthetic charts with further enhancement in the detection ability. In this 
paper, we propose a MGR control chart based on Downton’s estimator (D). Comparison of MGR control chart 
with synthetic chart based on estimator D reveals the enhanced performance of MGR-D chart. 

ON THE FLEXIBILITY OF TYPE I HALF LOGISTIC EXPONENTIATED FRECHET 
DISTRIBUTION ...............................................................................................................................................  660

Olalekan Akanji Bello, Sani Ibrahim Doguwa, Abukakar Yahaya, Haruna Mohammed Jibril, 

In this article, we delve into the modeling and analysis of lifetimes, which hold substantial importance across 
various scientific and industrial fields. Our focus is on introducing a novel distribution termed the Type I Half-
Logistic Exponentiated Frechet (TIHLEtF) Distribution, which is an extension of the Frechet distribution. We 
have derived a crucial representation of the density function for this distribution. Furthermore, we explore several 
statistical properties associated with the TIHLEtF distribution. These properties encompass explicit expressions 
for the quantile function, probability-weighted moments, moments, moments generating function, reliability 
function, hazard function, and order statistics. To estimate the model parameters, we employ the maximum 
likelihood estimation technique and present the results of a simulation study. To emphasize the superiority of our 
newly introduced distribution, we apply it to two real datasets. The outcomes of our analysis reveal that the 
TIHLEtF distribution outperforms the other considered distributions in terms of fitting the data in these real-
world cases. 

22



Table of Contents RT&A, No 3 (79) 
Volume 19, September 2024 

 

BAYESIAN ANALYSIS OF EXTENDED MAXWELL-BOLTZMANN DISTRIBUTION USING 
SIMULATED AND REAL-LIFE DATA SETS ............................................................................................  675

Nuzhat Ahad, S.P.Ahmad, J.A.R eshi 

The objective of the study is to use Bayesian techniques to estimate the scale parameter of the 2Kth order weighted 
Maxwell-Boltzmann distribution(KWMBD). This involved using various prior assumptions such as extended 
Jeffrey’s, Hartigan’s , Inverse-gamma and Inverse-exponential, as well as different loss functions including 
squared error loss function (SELF), precautionary loss function (PLF), Al Bayyati’s loss function (ALBF), and 
Stein’s Loss Function (SLF).The maximum likelihood estimation (MLE) is also obtained. We compared the 
performances of MLE and bayesian estimation under each prior and its associated loss functions. And 
demonstrated the effectiveness of Bayesian estimation through simulation studies and analyzing real-life datasets. 

BAYESIAN NON-INFERIORITY TEST BETWEEN TWO BINOMIAL PROPORTIONS ................  689

W. B. Yahya, C. P. Ezenweke, O. R. Olaniran, I. A. Adeniyi, K. Jimoh, R. B. Afolayan, M. K. Garba, 
I. Ahmed

The paper aimed to propose a new Bayesian test method for establishing a non-inferiority measure between an 
active treatment (drug) and a new (cheaper) treatment using two independent binomial samples. A Bayesian test 
statistic was developed for testing non-inferiority between two independent binomial proportions. Conjugate Beta 
prior was assumed for the binomial proportions to elicit posterior from the same Beta family of distributions. The 
efficiency of this test method was established via power analysis and its ability to yield the nominal Type I error 
rate (alpha) in a detailed Monte-Carlo study. Results from this study showed that the proposed test method 
yielded higher powers and good estimates of the Type I error rate at the chosen sample sizes and varying non-
inferiority margins (effect sizes). Thus, the new Bayesian test method is very efficient at detecting the significance 
of the non-inferiority margin between two independent binomial proportions when such is not negligible at all 
sample sizes. Further results showed that the size of the two population proportions being tested influences the 
power and the estimated nominal Type I error rate with an increase in power and a good estimate of Type I error 
rate achieved when both population proportions being tested are less than 0.5. It is therefore concluded that the 
new Bayesian test method can be employed whenever it is desirable to establish the existence of non- inferiority 
or otherwise between a pair of (clinical) treatments (drugs). All the simulations and analyses were performed 
with the R statistical package. 

BAYESIAN AND E-BAYESIAN ESTIMATION OF EXPONENTIATED INVERSE RAYLEIGH 
DISTRIBUTION USING CONJUGATE PRIOR  ...................................................................................... 704 

Ramesh Kumar, Hemani Sharma, Rahul Gupta, Ableen Kaur 

This study explores the application of Bayesian and E-Bayesian techniques to estimate the scale parameter of the 
Exponentiated Inverse Rayleigh distribution. Bayesian estimates for the parameter are derived using an 
informative Gamma prior and evaluated under three distinct loss functions: De- Groot, Squared Error, and Al-
Bayyati loss functions. Various Properties of the E-Bayesian estimators under different loss functions have also 
been studied. To compare the effectiveness of E-Bayesian estimates against the Bayesian counterpart, a simulation 
study is conducted using MatLab. The various derived estimators were compared in terms of their Mean Squared 
Error. The results of a simulation study reveal that E-Bayesian estimates exhibit a smaller Mean Squared Error 
in comparison to Bayesian estimates, thereby demonstrating their enhanced efficiency. Among the E- Bayesian 
estimates, the third one stands out as the most effective. Moreover, the analysis highlights that the Squared Error 
loss function outperforms the Al-Bayyati and De-Groot loss functions, exhibiting a smaller MSE. Furthermore, 
the efficacy of these estimators is demonstrated through an analysis of a real-life dataset. 
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AVAILABILITY ANALYSIS FOR IDENTIFICATION OF CRITICAL FACTOR OF A 
THERMAL POWER PLANT ..........................................................................................................................  717

Pardeep Kumar, Vipin Kumar Sharma, Dinesh Kumar 

In the present stimulated business environment, power sector is playing a major role in the economic growth of 
India. During the last 20 years, the country had been facing a poor supply of energy and this supply-demand gap 
is increasing continuously. So, it is important for power plants to improve its power generation capacity 
drastically by reducing the failure rate. In the present paper, to analyze the causes of poor availability, thermal 
power plant has divided into six different systems and a system comprising of waste gases heating system has 
been considered. With the help of transition diagram, mathematical equations have been used to find out the 
availability. After analyzing, it was found that the value of availability is very low and boiler tube failure is one 
of the most critical factors for this low availability of system. Economizer zone has identified having long existence 
time of failures and frequency of occurrence is very high. So, minimizing the failure rate with the help of a proper 
maintenance schedule will result in decreasing the shutdown period of the plant and increasing the system 
availability. 

WEIGHTED R-NORM ENTROPY FOR LIFETIME DISTRIBUTIONS: PROPERTIES AND 
APPLICATION .................................................................................................................................................  725

Bilal Ahmad Bhat, M.A.K Baig 

In the field of information theory, different uncertainty measures have been introduced by various researchers. 
These measures are widely used in reliability and survival studies. In this article, we introduce two new weighted 
uncertainty measures which are known as weighted R-Norm entropy (WRNE) and weighted R-Norm residual 
entropy (WRNRE). WRNE and WRNRE are “length- biased” shift-dependent uncertainty measures in which 
higher weight is assigned to large values of the observed random variable. Several important properties of these 
measures are studied. Some significant characterization results and the relationships of WRNRE with other 
reliability measures are presented. We also show that the survival function is uniquely determined by the 
WRNRE. Finally, based on a real life data set of bladder cancer patients, we illustrate the importance of WRNE 
and WRNRE. 

AN IMPROVED ESTIMATOR OF FINITE POPULATION MEAN UNDER RANKED SET 
SAMPLING .......................................................................................................................................................  736

Francis Delali Baeta, Dioggban Jakperik, Michael Jackson Adjabui 

To obtain reliable estimates of population parameters, data that is sampled for estimation must accurately 
represent the underlying population. Sampled data that is representative of the underlying population depends 
also on the sampling technique that was used in obtaining them. This is very important since sampling bias could 
lead to over or under estimation of parameters. Ranked Set Sampling is considered to be a better alternative to 
the classical sampling designs in obtaining such data. Ranked Set Sampling is designed to minimize the number 
of measured observations required to achieve a desired precision in making inferences, and thus it is more 
economical to use for the purposes of estimation, compared to the classical sampling designs. This is also an added 
advantage in cases where it is difficult to obtain data. Many estimators have been developed recently for the 
estimation of finite population mean under ranked set sampling. This paper aims to improve estimation by 
modifying an existing estimator using a simple linear combination of the known population mean, square root of 
the known coefficient of variation, and the known median of an auxiliary variable. The theoretical properties of 
the proposed estimator, such as the bias and mean squared error were derived up to the first order of 
approximation, using Taylor’s expansion. The bias, mean squared error, absolute relative bias, and the relative 
efficiency were used as means of evaluation and comparison between the proposed modified estimator and its 
competitors. The R software was used to aid computations. Empirical applications to real data showed that the 
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proposed modified estimator is superior to the competing estimators that were compared since it has least bias, 
the least mean squared error, the least absolute relative bias, and the highest relative efficiency in all sample sizes 
that were considered. The bias and mean squared error of the modified estimator under Ranked Set Sampling was 
found to be smaller than those of the existing estimators that were compared. Hence it is more efficient and capable 
of providing reliable estimates than the existing estimators that were compared and so we recommend that it 
should be used in survey estimations. 

BAYESIAN ESTIMATION OF PARAMETERS AND RELIABILITY CHARACTERISTICS IN 
THE INVERSE GOMPERTZ DISTRIBUTION ..........................................................................................  744

Taiwo. M. Adegoke, Latifat A. Abimbola, Oladapo M. Oladoja, Oyindamola. R. Oyebanjo, K.O. 
Obisesan 

In this study, we derive Bayes’ estimators for the unknown parameters of the Inverse Gompertz Distribution 
(IGD) using three alternative loss functions: the Squared Error Loss Function (SELF), the Entropy Loss 
Function (ELF), and the Linex Loss Function. Closed-form formulas for Bayes estimators are not possible when 
both parameters are unknown, hence Lindley’s approximation (L-Approximation) is used for computation. We 
examine the performance of these estimators using their simulated hazards and assess their effectiveness in 
parameter estimation. It was discovered that as the sample size increases, parameter estimations became more 
precise and accurate across all functions. However, ELF consistently has lower MSE values than SELF and 
LINEX, indicating better parameter estimation. This pattern was also seen in the estimation of the hazard 
function, where ELF regularly beat SELF and LINEX, implying more efficient parameter estimation overall. 

A TWO-PARAMETER ARADHANA DISTRIBUTION WITH APPLICATIONS TO 
RELIABILITY ENGINEERING .....................................................................................................................  757

Ravi Shanker, Nitesh Kumar Soni, Rama Shanker, Mousumi Ray, Hosenur Rahman Prodhani 

The search for a statistical distribution for modelling the reliability data from reliability engineering is 
challenging and the main cause is the stochastic nature of the data and the presence of skewness, kurtosis and 
over-dispersion. During recent decades several one and two-parameter statistical distributions have been 
proposed in statistics literature, but all these distributions were unable to capture the nature of data due to the 
presence of skewness, kurtosis and over-dispersion in the data. In the present paper, two-parameter Aradhana 
distribution, which includes one parameter Aradhana distribution as a particular case, has been proposed. Using 
convex combination approach of deriving a new statistical distribution, a two- parameter Aradhana distribution 
has been proposed. Various interesting and useful statistical properties including survival function, hazard 
function, reverse hazard function, mean residual life function, stochastic ordering, deviation from mean and 
median, stress-strength reliability, Bonferroni and Lorenz curve and their indices have been discussed. The raw 
moments, central moments and descriptive measures based on moments of the proposed distribution have been 
obtained. The estimation of parameters using the maximum likelihood method has been explained. The simulation 
study has been presented to know the performance in terms of consistency of maximum likelihood estimators as 
the sample size increases and. The goodness of test of the proposed distributions has been tested using the values 
of Akaike Information criterion and Kolmogorov-Smirnov statistics. Finally, two examples of real lifetime 
datasets from reliability engineering have been presented to demonstrate its applications and the goodness of fit, 
and it shows a better fit over two-parameter generalized Aradhana distribution, quasi Aradhana distribution, 
new quasi Aradhana distribution, Power Aradhana distribution, weighted Aradhana distribution, gamma 
distribution and Weibull distribution. The flexibility, tractability and usefulness of the proposed distribution 
show that it is very much useful for modelling reliability data from reliability engineering. As this is a new 
distribution and it has wide applications, it will draw the attention of researchers in reliability engineering and 
biomedical sciences to search many more applications in the future. 
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STATISTICAL DESIGN OF CONDITIONAL REPETITIVE GROUP SAMPLING PLAN 
BASED ON TRUNCATED LIFE TEST FOR PERCENTILE LIFETIME USING 
EXPONENTIATED GENERALIZED FRECHET DISTRIBUTION .......................................................  775

S. Jayalakshmi, S. Vijilamery

Reliability Acceptance sampling plan is used to assess whether to accept or reject a product depending on its 
lifetime. An inspection carried out for the purpose of determining if lifetime inspections are performing properly 
can be tested by submitting a truncated lifetime test. In this paper describes a new approach on Conditional 
Repetitive Group Sampling Plan based on Truncated life test is proposed and the lifetime follows an 
Exponentiated Generalized Frechet Distribution. For each consumer risk, it is determined whether minimum 
sample sizes are required to assert a percentile life. It is calculated that the operating characteristic function values 
of the sampling plans as well as the producer’s risk ratio corresponding to the sampling plans. The results are 
illustrated with numerical examples and a real-world data set is used to demonstrate the impact and performance 
of the suggested acceptance sampling plans. 

NEW EXTENSION OF INVERTED MODIFIED LINDLEY DISTRIBUTION WITH 
APPLICATIONS ...............................................................................................................................................  788

Devendra Kumara, Anju Goyalb, P. Pareekc, M. Sahaa 

In this article we, proposed a new two parameter distribution called inverted power modified Lindley distribution. 
The main objective is to introduce an extension to inverted modified Lindley distribution as an alternative to the 
inverted exponential, inverted gamma and inverted modified Lindley distributions, respectively. The proposed 
distribution is more flexible than the above mentioned distributions in terms of its hazard rate function. In the 
part of estimation of the proposed model, we first utilize the maximum likelihood (ML) estimator and parametric 
bootstrap confidence intervals, viz., standard bootstrap, percentile bootstrap, bias-corrected percentile (BCPB), 
bias-corrected accelerated bootstrap (BCAB) from the classical point of view as well the Bayesian estimation under 
different loss functions, squared error loss function, modified squared error loss function, and Bayes credible 
interval as to obtain the model parameter based on order statistics. A simulation study is carried out to check the 
efficiency of the classical and the Bayes estimators in terms of mean squared errors and posterior risks, 
respectively. Two real life data sets, have been analyzed for order statistics to demonstrate how the proposed 
methods may work in practice. 

A MAP/PH1, PH2/2 INVENTORY QUEUEING SYSTEM WITH TWO COMMODITY, 
MULTIPLE VACATION, SERVER FEEDBACK, WORKING BREAKDOWN, REPAIR AND 
EMERGENCY REPLENISHMENT ...............................................................................................................  805

G. Ayyappan, N. Arulmozhi

We investigate a continuous review inventory queuing system in the present study that has two heterogeneous 
servers: Server-2, which is reliable, and Server-1, which is unreliable. An exponentially distributed random time 
is used to describe the repair process when server-1 has an interruption. On the other hand, server-2 is completely 
dependable, but it goes on vacation when the system is empty. These two goods can be reordered under ordering 
regulations. To ensure customer satisfaction, an emergency replenishment of one item with no lead time occurs 
when the on-hand inventory level falls to zero. We use the matrix analytic approach for the QBD process under 
a steady-state probability vector. We also take into account the overall cost and the busy time. Furthermore, 
numerical data shows the benefits of the suggested approach in a range of random circumstances. 
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Abstract 

I was born in Moscow on September 10, 1934. I wrote about my family and previous 
generations of Yastrebenetsky (a soldier under Emperor Nicholas I, a businessman, a doctor, 
a chemical engineer) in my book "Generations of Yastrebenetsky” [1]. After finishing the 
institute and postgraduate studies, 2/3 years of my life were connected with activity in the 
fields of reliability and safety of technical systems. This activity is the subject of the article. 

Keywords: Reliability, Safety, Nuclear Power Plant, Instrumentation and Control 
system. 

1. Reliability

I worked in the Central Scientific Research Institute of Complex Automatization (CSRICA) in 
Moscow and was engaged in the analysis of the dynamic characteristics of industrial automatic 
regulators. At the international exhibition in Moscow, I saw a big poster with the inscription “We have 
high reliability: λ= ...1/ hours”. I didn’t know, what its reliability? What its λ? And a question naturally 
happened: what is the reliability of the regulators with dynamic characteristics I researched? Neither 
we nor the creators and manufacturers of the regulators knew this. We did not have stands for reliability 
tests, manufacturers did not fulfill reliability tests at that time, and an analytical assessment of reliability 
could not be done due to the lack of data on the component's reliability. I got “carte blanche” in CSRICA  
for reliability work and created in CSRICA the group of reliability (what later became the Reliability 
Laboratory and the Reliability Department). The idea arose- the determination of reliability measures 
from collecting and processing statistical data on regulators’ failures and repairs during their operation. 
At that time, it was not clear whether operational data could be used to obtain objective information 
about the reliability of industrial automation. We began with the development of methods for collecting 
and processing information, ways to increase its validity. We chose the nearest thermal power plant 
with many new automatic regulators, trained and monitored the plant personnel who collected 
information. The first quantitative estimates of automatic regulator reliability measures were published 
in 1965 [2]. In the future, the analysis of statistical data about operational reliability, in particular point 
stochastic processes (flows) of failures became one of the directions of my future work. 

My activities in the reliability area included: 
• Assessing and ensuring the reliability of information computer systems (ICS) developed by

CSRICA in different branches of industries ( thermal power plants with units 300 MWt  and 800 MWt , 
nuclear power plants (NPP) in the USSR and Bulgaria with VVER-1000 reactors, including 6 units of 
Zaporizhzhya NPP (ZNPP)- the biggest in Europe, and unit RBMK-1500 Ignalina NPP in Lithuania, 
chemical-technological enterprises, metallurgy etc.).Even before the first fuel loading at unit 1 ZNPP I 
was taken around the locations inside the reactor and touched the reactor equipment with my hands. 
After the start-up of unit 1 ZNPP, we collected and analyzed data on the reliability of the ICS and all 
Instrumentation and Control systems (I&C) of this unit. It turned out that the weak point of these 
systems was the Universal Complex of Technical Means (UCTS). I remember what the adjusters said to 
me about the UKTS at unit 1: "We'll start the unit with it, but will we be able to stop it later?”. We 
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analyzed information about the reliability of this complex - as a result, it was soon replaced. It's hard 
to count the time I spent on business trips to ZNPP. I often remember the resolution of the USSR Deputy 
Minister of Energy and Electrification A. Maioretc on the leoer: "Efforts to improve the reliability of 
NPP instrumentation and control systems (I&CS) can never be considered sufficient". 

• Collecting and processing statistical data on the reliability of I&C components -sensors,
actuators, meters, various devices, and first, new computer systems. The aims of these works were to 
create feedback with information about reliability between the users of automation equipment and its 
manufacturers, development of recommendations on reliability improvement (e.g., Moscow plant 
“Manometer”, plant “Lvivpribor”), create reliability databases, collection and processing of 
information for maintenance optimization (overhaul intervals, nomenclature and several spare parts, 
etc.). Proposed norms for overhauls and spare parts for automation equipment were developed 
together with the enterprises of the USSR Ministry of Energy and Electrification and introduced at all 
USSR thermal power plants. 

• Development of methods to assess and ensure the reliability of automatic I&C systems for
technological processes, including methods of assessing these systems functional reliability, analysis of 
the impact of reliability on efficiency, analysis of metrological failures, etc. 

• The analysis of the operating reliability of the I&CS in different branches of industry resulted
in the necessity to develop new mathematical models of reliability which were published in Russian 
(“Proceedings of the USSR Academy of Science. Technical Cybernetics”, “Automatic and Remote 
Control”), then translated and reprinted in English: 

-new class of regenerative random processes [2],
-models of unrenewable and renewed elements reliability under external disturbances ([3], [4]),
-models of failures flow, when external disturbance are stochastic processes ([5]),
-a rarefaction of the Markov renewal process ([6])
-flow of failures caused by the crossing of non-constant levels’’’’’’00/ by regenerating random

process [7]. 
I can add the model of regenerative processes with some types of regenerative points (together 

with V. Rykov), published in Ukrainian journal [8]. 
• Elaboration of USSR standards ([9], [10]), and sets of departmental standards (example- ]11])

which contain requirements for the reliability of ICSTP and components, their reliability assessment 
and testing, organization of the maintenance. 

• My first books on reliability [12], [13] (together with B. Solyanik) and [14] (author of foreword
– acad. B.V. Gnedenko) were published in 1968, 1978 and in 1982 in Moscow. These books contained
reliability models and information on the reliability of I&C systems and their components under
operating conditions. Those were the times of rapid development of reliability research when such
books were sold out in 14000, 10000 and 7000 copies -unthinkable quantities for the present time. The
books were based on the data of the operational reliability of automatics collected by us.

I participated in many scientific and technical conferences, meetings, and reliability tests in 
different parts of the huge Soviet Union: - from the northeast (Bilibinskaya NPP in Chukotka) to the 
southwest (Azerbaijan, Armenia). From the southeast (Vladivostok, Irkutsk) to the northwest (Riga, 
Tallinn). The map of the USSR with the places of my official trips is shown in Fig. 1.  

These places included different parts of USSR from Nord-West (Riga- collaboration with schools 
of prof. Kordonsky and Scliarevich) to South-East (Vladivostok, Branch of USSR Academy of Science-
O.V. Abramov), from Nord-East ( Bilibino NPP in Chukotka- verification of reliability and safety) to
South-West ( Baku, Sumgait- common work with Reliability Department of Oil and Chemical
Avtomatization Institute- Sh.A. Kiasbeily) Safety of Nuclear Power Plants (NPP’s) Problems of NPP’s
safety have always been urgent since NPP’s began to operate. In Ukraine the work on NPP safety was
especially vital after the accident at Chernobyl NPP - the most severe and widely known in the world
of all technogenic accidents. In all countries, where NPP’s are operated, there are state organizations
that regulate the state policy in the field of NPP safety. Currently, such an organization in Ukraine is
called the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU). It includes Technical Support
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Organization - State Scientific and Technical Center for Nuclear and Radiation Safety (SSTC NRS), also 
subordinate to the National Academy of Sciences of Ukraine. 
 

Figure 1. The map of USSR with marked places of trips 
 

The impetus for the work on the reliability of Information and Control Systems was the Board of 
Directors of the enterprises of the Ministry of Instrument Engineering in 1984 under the leadership of 
the Director of the Institute of Control Problems Acad. V.A. Trapeznikov and the Minister of Instrument 
Engineering M.S. Shkabardni. I made a report on the state of work on the reliability of NPP automation. 
After my report, I was regularly invited to the Industrial Department of the Central Commioee of the 
CPSU (Yu.I. Abramov) – Moscow, Old Square to discuss the situation with work on the reliability of 
NPP automation. 

My university y activity in reliability: 
- lectures on reliability as a professor of Kharkov Polytechnical University (Departments 

“Technical Cybernetics” and “Systems Analysis”) and the other universities in USSR and the other 
countries (the most distant university was Havana, Cuba), 

- issue of textbook for universities on the reliability of automatic control systems, agreed upon 
USSR State Educational Commioee (together with G. Ivanova) [15]. 

A considerable help to me, as to many my colleagues in reliability, was rendered by the 
outstanding specialists in the mathematical reliability theory, grouped around the of the Moscow State 
University Department of Probability Theory, headed by acad. B.V. Gnedenko. Guidance of this 
Department had handed him by famous mathematic – acad. A. Kolmogorov. The book B.V. Gnedenko, 
A.D. Soloviev, Yu.V. Beliaev [16] became as classical for reliability specialists and was issued in many 
languages (fig. 2).  
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Figure 2. The book “Mathematical methods in reliability theory” with autographs of two authors 
 
I gave reports on the seminars and school organized by this Department. Prof. A.D. Soloviev (Fig. 3) 
and prof. I.A. Ushakov performed as opponents in defense of my Dr. Sc. thesis. The most memorable 
meeting for me was the school in Dilijan (Armenia) in 1970. The Department of Probability Theory at 
Moscow University brought together reliability specialists from all over the Soviet Union. Many of 
them became my lifelong friends. 

Subsequently in 2006 Gnedenko was named international non-commercial association 
"Gnedenko-Forum” created by I.A. Ushakov and A. V. Bochkov. "Gnedenko-Forum” joined the 
specialists working in the fields of reliability and mathematic statistics applications in safety, risk 
analysis, survivability. "Gnedenko-Forum” aims are establishing contacts between specialists in the 
world and exchange of professional information (about new publications, international conferences, 
meetings, participation in organization of conferences, etc.).  

"Gnedenko-Forum” publishes in the USA the quarterly electronic journal in English "Reliability: 
Theory & Applications". Since 2006 about 1000 articles have been published that contained both 
theoretical and methodological problems and practical papers related to reliability. The journal is 
registered with the U.S. Library of Congress. Prof. V. Rykov is the Editor-in-Chief of the journal now. I 
was honored to be as President of the "Gnedenko-Forum” in 2014-2020. Before me, President of the 
"Gnedenko-Forum” in 2012-2015 was prof. Way Kuo, one of the world's most famous specialists in 
safety and the reliability of electronic systems. After me President of "Gnedenko-Forum" became prof. 
B. Dimitrov (USA). I am very glad that thanks to "Gnedenko-Forum” I have renewed regular contacts 
with my long-time reliability colleagues – prof. V. Kashtanov, prof. V. Rykov, prof. I. Shubinsky, who 
continue to be active. 
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The word "regulation" has gone through my life. My first business trip was to test regulators for 
a steam boiler. Then was followed by work on the analysis of dynamic characteristics of technological 
processes automatic regulators, the results of which are given in the book "Industrial Automatic 
Regulators" [17]. And then, for many years, safety regulation of NPP’s and other critical facilities was 
the area of my activity. 

SNRIU and SSTC NRS were based on the specialists who worked at the Chernobyl NPP during 
the accident and later connected with the restoration of the Chernobyl NPP after the accident. The first 
SNRIU head and creator was N.A. Steinberg, who was appointed to position chief engineer Chernobyl 
NPP immediately after the accident.  

The former employees of the Chernobyl NPP who joined SNRIU and SSTC NRS felt on their 
shoulders what it is NPP safety. I had a lot to learn from these people because after the USSR collapse 
my activity related to SSTC NRS, which included Kharkov Reliability Department as Kharkov 
subsidiary. Main objects of SNRIU and SSTC NRS activities were 4 operating NPPs of Ukraine with 13 
(after commissioning of two power units in 2004 - 15) power units. Besides, the objects of activity are 
NPP spent fuel storage facilities, "Shelter" facility above the unit 4 of Chernobyl NPP, research nuclear 
reactors, various sources of ionized radiation, etc.  

Starting from 1993, for long time I have been supervising a set of activities on nuclear and 
radiation safety regulation, defined by instrumentation and control systems (I&CS), for all these objects. 
The main directions of my work on safety were: 

• Development of SNRIU regulatory requirements to NPP I&CS and their components 
(hardware, software, software -hardware complexes) according to nuclear and radiation safety 
criteria. The document [18] containing such requirements was issued in 2000. The I&CS 
creation for two new VVER-1000 power units and I&CS modernization of many Ukrainian 
units for their life extension were carried out in accordance with the requirements of document 
[18]. In 2015, this document was revised [19] taking into account the experience of Ukrainian 
NPPs operation, the lessons of the accident at Fukushima NPP and changes in the international 
requirements (first of all, IAEA and In addition, the requirements were divided into regulatory 
requirements established by SNRIU, and technical requirements established by the operating 
organization – National Energy Company "Energoatom". [20]. According to [18] and [19], 
Ukrainian companies developed I&CS for NPPs in Bulgaria, the Czech Republic, Armenia and 
other countries. 

• Development of SNRIU regulatory requirements: 
- methods of assessment of compliance of safety important ICS NPP with the 

requirements for nuclear and radiation safety; 
- requirements for the procedure and content of work for the life extension of I&CS 

included in NPP safety important systems, etc. 
• More than 1000 state nuclear and radiation safety expertise’s (safety reviews) of I&CS for NPP’s 

, research reactors, NPP spent fuel storage facilities, the Object “Shelter” above unit 4 
Chernobyl NPP, etc. It was performed ICS safety reviews, designed for Ukrainian NPP not only 
by Ukrainian companies, but also by the largest foreign companies - "Westinghouse" (USA), 
"Siemens" (Germany), "Skoda-Controls" (Czech Republic). 

• Development of methods of safety analysis: 
- Fukushima NPP accident lessons related to ICS and the participation in the Ukrainian 

NPP activity following from these lessons (stress- tests, the implementation of post-
accident monitoring systems, reserve diesel generators control systems, black boxes 
systems, etc.) 

- I&CS for NPP units life extension, 
- development of NPP I&CS hardware ageing investigations, including analysis of the 

drift of their characteristics in time, 
- impact of I&CS failures on NPP violations, 
- new NPP I&CS safety important digital systems reliability in operation conditions. 
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- determination of ICS NPP functional safety measures. 
 
My international activities in NPP I&CS safety included: 
 

- the activity in International Atomic Energy Agency (IAEA) as a member of Technical 
Working Group on NPP Instrumentation and Control (1999-2011). Co-author of IAEA 
documents, the main of them - IAEA Safety standard SSG-39 [21] and book "Core 
knowledge of I&CS in NPP" [22], 

- the activity in International Electrotechnical Commission (IEC) as an expert in 
Subcommioee SC-45 A "Instrumentation, control and electric power systems of nuclear 
facilities" of Technical commioee TС-45 "Nuclear Instrumentation" (from 2002 to now). 

- Participation in elaboration of different IEC standards, in IEC meetings, collaboration 
with regulatory bodies and organizations for technical support USA, Germany, France, 
Bulgaria and other countries. 

- the organization in Kharkov by Kharkov Department SSTC NRS 1-5 International 
Scientific Technical Conferences "NPP Instrumentation and control systems: safety 
aspects" with participants of countries from Argentina to Hong Kong, including USA, 
Russia, Germany, France, etc. 

- Speaker at 7 (2000- 2015) American Nuclear Society conferences "Nuclear power 
instrumentation, control and human-machine interface technologies (NPIC &HMIT)". 

 
My activity in NPP Safety related to a lot of business trips in the world. The map of the world with 
marked places of businestrips is shown in fig.3. 
 
As the result of the work were published the books: 

- Two books on I&CS NPP safety published in Russian in Ukraine in 2004 [23] and 2011 
[24], where I was an editor and one of the authors. Book [23] was translated into English 
by the US Nuclear Regulatory Commission. 

- Two books in English published by IGI Global (USA) on the safety and cybersecurity 
of NPP I&CS in 2014 [25] and in 2020 [26] edited by myself and prof. V. Kharchenko. 
The authors of most chapters of these books were my colleagues from SSTC NRS and 
V. Kharchenko's colleagues from the National Airspace University KhaI (Ukraine). 

- In 2022 SSTC NRS began to publish the books series to 30th anniversary of SSTC NRS 
(in Ukrainian). Among them there is the book [27] prepared by SSTC NRS Kharkiv 
subsidiary with the results of our works devoted to NPP I&CS safety. New direction 
of work related to NPP safety- safety of small modular reactors [28]. 

 
2. Safety of Nuclear Power Plants (NPP’s)

 
Problems of NPP’s safety have always been urgent since NPP’s began to operate. In Ukraine the 

work on NPP safety was especially vital after the accident at Chernobyl NPP- the most severe and 
widely known in the world of all technogenic accidents.  In all countries, where NPP’s are operated, 
there are state organizations that regulate the state policy in the field of NPP safety. Currently, such an 
organization in Ukraine is called the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU). It 
includes Technical Support Organization - State Scientific and Technical Center for Nuclear and 
Radiation Safety (SSTC NRS), also subordinate to the National Academy of Sciences of Ukraine. 

The word "regulation" has gone through my life. My first business trip was to test regulators for 
a steam boiler. This was followed by work on the analysis of dynamic characteristics of technological 
processes automatic regulators, the results of which are given in the book "Industrial Automatic 
Regulators" [17]. And then, for many years, safety regulation of NPP’s and other critical facilities was 
the area of my activity. 
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SNRIU and SSTC NRS were based on the specialists who worked at the Chornobyl NPP during 
the accident and later connected with the restoration of the Chornobyl NPP after the accident. The first 
SNRIU head and creator was N.A. Steinberg, who was appointed to the position of chief engineer 
Chornobyl NPP immediately after the accident. The former employees of the Chornobyl NPP who 
joined SNRIU and SSTC NRS felt on their shoulders what it is NPP safety. I had a lot to learn from these 
people because after the USSR collapse my activity related to SSTC NRS, which included Kharkov 
Reliability Department as Kharkov subsidiary. Main objects of SNRIU and SSTC NRS activities were 4 
operating NPPs of Ukraine with 13 (after commissioning of two power units in 2004 - 15) power units. 
Besides, the objects of activity are NPP spent fuel storage facilities, "Shelter" facility above unit 4 of 
Chornobyl NPP, research nuclear reactors, various sources of ionized radiation, etc.  Starting from 1993, 
for long time I have been supervising a set of activities on nuclear and radiation safety regulation, 
defined by instrumentation and control systems (I&CS) for all these objects.  

 
The main directions of my work on safety were: 
 
- Development of SNRIU regulatory requirements to NPP I&CS and their components 

(hardware, software, software-hardware complexes) according to nuclear and radiation safety criteria. 
The document [18] containing such requirements was issued in 2000. The I&CS creation of two new 
VVER-1000 power units and I&CS modernization of many Ukrainian units for their life extension was 
carried out in accordance with the requirements of the document [18]. In 2015, this document was 
revised [19] considering the experience of Ukrainian NPPs operation, the lessons of Fukushima NPP 
accident, and changes in the international requirements (first, the International Atomic Energy Agency 
(IAEA) and International Electrotechnical Commission (IEC).  In addition, the requirements were 
divided into regulatory requirements established by SNRIU, and technical requirements established by 
the operating organization – National Energy Company "Energoatom" [20]. According to [18] and [19], 
Ukrainian companies developed I&CS for NPPs in Bulgaria, the Czech Republic, Armenia, and other 
countries. The regulatory requirements contain methods of assessment of compliance with of safety 
important ICS NPP with the requirements for nuclear and radiation safety, requirements for the 
procedure and content of work for the I&CS life extension, etc.  

- More than 1000 state nuclear and radiation safety expertise (safety reviews) of I&CS were 
fulfilled, designed for Ukrainian NPP not only by Ukrainian companies but also by the largest foreign 
companies - "Westinghouse" (USA), "Siemens" (Germany), "Skoda-Controls" (Czech Republic). 

 
Development of methods of safety analysis: 
 
- Fukushima NPP accident lessons related to I@CS lessons (stress- tests, the implementation of 

post-accident monitoring systems, reserve diesel generators, black boxes systems, etc.) 
- I&CS for NPP unit's life extension, NPP I&CS hardware aging investigations, including analysis 

of the drift of their characteristics in time, impact of I&CS failures on NPP violations,  
- Comparison of NPP and other systems safety development and safety assurance principles 

(launch vehicles control systems for nuclear warheads -example most powerful intercontinental 
ballistic missile SS-18 “Satan” [21] together with the Chief Constructor of this system Y. Aizenberg; 
control systems for rocket-cosmic complexes [22] together with Prof. V. Kharchenko and V. Scliar; 
hydraulic power plant-example emergency on Saiano-Sushenskaia  plant [23] together with  Prof. S. 
Artuh ) 

- Analysis of new NPP I&CS safety important digital systems reliability in operation conditions. 
 
My international activities in NPP I&CS safety included: 
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- the activity in IAEA as a member of the IAEA Technical Working Group on NPP 
Instrumentation and Control (1999-2011). Co-author of IAEA documents, the main of them - IAEA 
Safety standard SSG-39 [24] and book "Core knowledge of I&CS in NPP" [25], 

- the activity in IEC as an expert in Subcommioee SC-45 A "Instrumentation, control and electric 
power systems of nuclear facilities" of Technical Commioee TС-45 "Nuclear Instrumentation" (from 
2002 to now). Participation in the elaboration of different IEC standards, in IEC meetings, 

- collaboration with USA, Germany, France, Bulgaria and other countries regulatory bodies and 
organizations for technical support, 

- the organization in Kharkov-by-Kharkov Department SSTC NRS 1-5 International Scientific 
Technical Conferences "NPP Instrumentation and control systems: safety aspects" with participants 
from different countries from Argentina to Hong Kong, including USA, Russia, Germany, France, etc. 

- Speaker at 7 American Nuclear Society conferences "Nuclear power instrumentation, control 
and human-machine interface technologies (NPIC &HMIT)".  

 
My activity in NPP Safety related to a lot of business trips around the world. The map of the 

world with marked places for business trips is shown in Fig.3. 
As a result of the work, the books were published: 
- Two books on I&CS NPP safety were published in the Russian language in Ukraine in 2004 [26] 

and 2011 [27], where I was an editor and one of the authors. Book [26] was translated into English by 
the US Nuclear Regulatory Commission. 

- Two books in English were published by IGI Global (USA) on the safety and cybersecurity of 
NPP I&CS in 2014 [28] and in 2020 [29] edited by myself and Prof. V. Kharchenko. 

SSTC NRS published the book series on the 30th anniversary of SSTC NRS (in Ukrainian). Among 
them, was the book [30] prepared by SSTC NRS Kharkiv subsidiary with the results of our works 
devoted to NPP I&CS safety.  
 

Figure 3. My activity in NPP Safety 
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The new direction of my work is related to NPP safety - small modular reactors (SMR) ([31]). In 
this definition: small- physically a fraction of the size of a conventional nuclear power reactor, modular- 
making it possible for systems and components to be factory-assembled and transported as a unit to 
location for installation, reactor- harnessing nuclear fission to generate heat to produce energy.  

My colleagues from SSTC NRS S.A. Trubchaninov and   I.I. Chervonenko are now prepared    
“M.A. Yastrebenetsky. Biographical indexes.  Aladin Print. Kharkov. 2024 (In Ukrainian, Russian, 
English)” [34]. (Author of preface - Academic A.V. Nosovsky, Director of “Nuclear Power Plant Safety 
Institute” of Ukrainian National Academy of Science). The common number of my publications in this 
document included 350 names. 
 

3. Big Safety
 

The definition of "Big Safety" for   safety-critical technical and organization-technical systems 
was proposed and introduced in our articles with Prof. V. Kharchenko in 2020-2021 ([32], [33]). Big 
Safety is a result of a crossing of the following 10 aoributes: 

• big/complex systems,  
• big safety properties (types of Big Safety)- nuclear, radiation, fire, information, transport, 

functional, ecological, infection safety, protectability from natural hazards, from military 
hazards, 

• big/complex environment, 
• big consequences from fatal failures,  
• big number of fatal failures reasons, 
• big data, 
• big requirements for safety,  
• big time system development,  
• big toolbox for safety assessment and assurance,  
• big resources for safety assurance. 

 
A typical example of Big Safety is NPP safety. 

 
Unfortunately, time leads to the originating of new types of Big Safety. Not so far, the problem 

of cybersecurity raised. Infection safety was included in some Big Safety types after the COVID-19 
appearance.  Military actions in Ukraine made it relevant to calculate as protectability of non-military 
objects (NPP, hydraulic and thermal power plants, offshore gas pipelines for military hazards. What 
may be the next?  

 
4. My nearest teachers and colleagues

 
In this anniversary article I would like to thank my teachers and colleagues in reliability and 

safety, who have provided me with great assistance throughout my life 
 

 Academician Boris Vladimirovich Gnedenko (B.V.) (1912-1995) 
B.V.'s works on probability theory are widely known throughout the world - they 
were the pride of Soviet science, and many generations of specialists were 
educated in them. My acquaintance with B.V.'s textbook "Probability Theory 
Course" dates to 1961. B.V. quickly appreciated that reliability theory is based on 
works on probability theory, and in 1965 a classic appeared - the book by B.V., A.D. 
Soloviev, Yu.K. Belyaev [34]. I’d like to say about signatures on this book: A.D. 
Soloviev's "To dear Mikhail Anisimovich from one of the authors" and B.V.'s "Now 

from two." Personal acquaintance with B.V. took place at the All-Union school - meeting “Theory of 
queueing systems’’, headed by B.V. in Dilijan (Armenia) in 1970, where I met many of my future 
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colleagues for life. It was "a holiday that is always with me." B.V. invited me to report on my works, 
and one day he even asked me to chair a meeting. Then I participated in the following schools in 
Pushchino-on-Oka and Zagulba (Azerbaijan). The role of B.V. in my fate is extremely high. B.V. invited 
me to participate in the seminars he led at Moscow University, supported my doctoral dissertation and 
suggested opponents for it, and wrote a preface to my book [15]. He visited me in Kharkov and spoke 
there at my seminar. I am glad to have friendly relations with B.V.'s descendants - his son Dima, who 
works at the Department of Probability Theory at Moscow State University, and in Boston (USA) - with 
B.V. granddaughter Katya. 

Professor Alexander Dmitrievich Soloviev (A.D.) (1927-2001) 
The next gift that the school in Dilijan gave me was meeting A.D. A.D.'s whole life 
related to Moscow State University - he graduated from it and taught there, and 
for many years - at the department headed by B.V. In Dilijan we tried not to leave 
A.D. - we listened to his stories and tales. A.D. reviewed my articles in the journal 
"Izvestiya of the USSR Academy of Sciences. Technical Cybernetics" and it is not 
surprising that B.V. suggested him as my opponent for my doctoral dissertation. 
We often met at his home, discussing the results. And when A.D. came to Kharkov 
for my defense, I did not recognize him - he sacrificed his luxurious long artistic 

hair for me - "So that there would be no negative reaction from conservative members of the Kharkov 
Academic Council." After the main defense, he again defended me in the Academic Council of the 
Moscow Bauman Higher Technical School, where the Higher Aoestation Commission sent my work. 
A.D.'s authority was indisputable.  A.D. twice (in 1974 and 1977) came to Kharkov for my seminar, 
where his reports aoracted a full hall of listeners, visited my home and his  favorite place - the Kharkov 
bazaar, charmed my entire family and, to the horror of the women, he himself went to show off his 
culinary skills in our kitchen. 

 Professor Igor Alekseevich Ushakov (I.A.) (1933-2015) (Fig.)., 
I.A. – a pupil of B.V. Gnedenko, was the leader of my generation of reliability 
specialists. Much of what he did is associated with the word "first" - the first 
reference book on reliability calculations, repeatedly reprinted in different 
languages, the first works on optimal redundancy, on the analysis of complex 
networks, etc. I got acquainted with I.A. before Dilijan and met him many times 
in Moscow, in Kharkov, in   Irkutsk, in Leningrad, (where I.A. arrived one 
summer in a light shirt with a tennis racket, and there it snowed,) and after that 
in San Diego.   His talents were diverse and energy colossal - he worked at the 

research institute on a closed topic. headed departments at universities, supervised countless 
dissertations, supervised reliability journals, wrote a series of children's books "History of Science 
through the Prism of Insights", wrote wonderful memoirs, drew and played football. I.A.'s results to 
domestic science should have made him a member of the USSR Academy of Sciences, but this did not 
happen because of envy and lack of objectivity. I.A. moved to the USA, taught, and worked in well-
known companies. He came up with the idea of uniting reliability specialists who remained in the 
USSR, those who left the USSR abroad, and foreign specialists in an association under the name of his 
teacher - "Gnedenko-Forum". I was proud that I.A. offered me to become one of the next vice presidents 
(and then president)) of "Gnedenko-Forum". 
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Professor Volodymir Vladimirovich Rykov (V.V.) 
Of all my colleagues, the duration of my contacts with V.V. is the longest - we came 
to work at   CSRiCA almost simultaneously - he to the computing center after 
Moscow Lomonosov University (The head of his diploma was Acad.  A.N. 
Kolmogorov), me-   I to the dynamics department. V.V. was the editor of my book 
[14] and a co-author of an article [9] on regenerative processes with several types 
of regeneration points.  And he also gave me a bed in his apartment in Praslin 
during difficult times. I continued to work at CSRiCA until the collapse of the 

USSR.  V.V.  went to universities-at the Gubmint Institute of Petrochemical and Gas Industry and at the 
University of Peoples Friendship.  He is a professor at both to this day. V.V. is a world-famous specialist 
in reliability and queueing systems’’. He retains great energy. His books and articles have been 
published in Russia and abroad. He implements the interface between specialists from Russia and the 
rest of the world through various conferences and meetings. In addition, VV is the editor-in-chief of the 
journal ”Reliability: Theory & Applications”. Of all my colleagues, V.V. is the absolute record man of 
the number of grandchildren () and great-grandchildren! 

 
Professor Boian Dimitrov (B.D.) 
B.D.  was a postgraduate student at Moscow Lomonosov University- he was a pupil 
of Acad.  Gnedenko and he had contact with this school all his life.  My acquaint 
with him began from Dilijan.  B.D. long time lived in the USA; he was a professor 
at Keoering University. Thank him, V.V. Rykov was invited to this university for 2 
years. B.D. change me to the position of Gnedenko -Forum President. I think that 
he is more energetic than me. 

Professor Victor Alekseevich Kashtanov (V.A.) 
V.A. graduated Department “Probability Theory’ in Moscow Lomonosov State 
University and after that he was the first post-graduate student of Prof.  A.D. 
Soloviev. During long time V.A.  was head of Department and Dean of the Moscow 
Institute of Electronics and Mathematics, named after A. N. Tikhonov.   Now he is 
an ordinary Professor of Department of Applied Mathematics of National Research 
University's “Higher School of Economics”.   He is an Honors Scientist of Russia.  
V.A.   scientific results related to controlled stochastic models, controlled random 

processes, theory of complex systems service, methods of assurance complex systems reliability.  Now 
V.A. is Vice–President (and future President) of Gnedenko- Forum. I had contact with V.A. for many 
years.

Professor Igor Borisovich Shubinsky (I.B.)  
I.B. graduated in 1961 from Kyiv High Engineer Radio Technic School (KVIRTU). 
This was a very non-standard school -   leading specialists in probability theory and 
reliability were the teachers, and my near colleague in reliability and friend General 
Nikolai Shishonok was the deputy of the chief.  I first time met I.B.  in the Leningrad 
area in 1970 in the military form- he served in the Pushkin military school of radio-
electronic.   In 1989 colonel I.B. ended military activity and began to work/ at 
Leningrad University instead of famous specialist Prof. A.M.Polovko.   Then I.B.  

created the power organization “Information Security in Railway Transport “, I.B. is the author of an - 
interesting book about the analysis of information system’s functional reliability. I didn’t see I.B. for a 
long time. After that, I met him at the Second International Symposium on Stochastic Models in 
Reliability Engineering, Life Science, and Operations Management, 2016, in Beer Sheva, Israel.  Now 
we have regular contacts during “Gnedenko Forim” meetings.  I add, that I.B. is the chief redactor of 
the scientific-technical journal “Dependability”, I am his deputy. 
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Professor Viacheslav Sergeevich Kharchenko (V.S.) 
The number of common works with co-authors in my bibliographic indexes [34] 

is 
the maximum together with V.S., more than 20. There are books in Russian and 
English [26, 27, 28, 29] and a lot of articles. V.S. graduated from Kharkiv High 
Command Engineering Military College of Rocket Troops where his scientific 
supervisor was my friend Prof. Alexander Larin- an honored scientist of Ukraine 
and Russia. V.S. was a “real colonel”- his military activity ended as head of the 
department of the Kharkiv Military University. V.S. is the author of more than 700 

inventions (!) and an Honored Inventor of Ukraine. Now V.S. is the head of the department 
“Computer Systems, Networks, and Cybersecurity” At National Aerospace University's Kharkiv 
Aviation Institute". The energy of V.S. is fantastic- he prepared more than 60 PhD and D.Sc. and 
organizes every month seminar “Critical Computer Systems and Technology” (2001 - at present time), 
he is a founder and general chair of international conference “Dependable Systems, Services and 
Technologies" (IEEE DESSERT, 2006 - at present time), he was the President of Ukrainian Scientific-
Educational IT Society (2018-2023). I fulfilled all my work in the Big Safety area together with V.S. Today 
we live in different countries, but we can have regular contact. We continue our common work! 
 

Dr. Sc. Alexander Vladimirovich Bochkov (A.V.) 
A.V., as I.A. Ushakov, graduated from the Moscow Aviation Institute. I wrote 
higher about Gnedenko-Forum.  Together with  I. A. Ushakov , A.V. was the so-
founder  Gnedenko-Forum and for many years he fulfilled a huge work devoted 
to its development, he is the Scientific Secretary of the e-Journal ”Reliability: 
Theory & Applications”. Area of his scientific interests - safety very big systems, 
and now he is Scientific Secretary of the Scientific and Technical Council Research 
and Design Institute for Information Technology, Signaling and 
Telecommunications in Railway Transportation – NIIAS, JSC.  I became 

acquainted with A.V. thanks to our invitations to Hong Kong City University President Prof. Way Kyo. 
One of his colleagues at this university was a famous specialist in reliability prof. Singpurvalla.  Many 
talented people are very rare events. But A.V. is included in this class. He is lyrical poet, and I have his 
7(!) books on my shelf.   Every poem is accompanied by the corresponding picture of different artists. 
I’m waiting music and song on A.V. poems! 
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Abstract

This paper is devoted to the approximation of a function by a trigonometric polynomial based on its
inaccurate values at selected points. Two methods of observation are considered. The first method is
to make observations at points evenly distributed on the segment where the function is specified. The
second method is to take observations at the points of division into a finite number of equal parts of the
neighbourhoods of the selected points. Upper estimates of the standard deviation of the function from
trigonometric polynomials are constructed and the rate of their convergence is estimated. Differences
were found in the computational complexity of these approximations and in the number of observations of
the function values at the selected points. Thus, the problem of approximating a function from inaccurate
observations of their values at selected points is a multi-criteria one and its solution depends on the choice
of observation points.

Keywords: trigonometric functions, inaccurate observations, error in function estimation, experi-
mental plan

1. Introduction

This paper is devoted to the approximation of the periodic function from inaccurate observa-
tions. To solve this problem, Chebyshev, Hermite, Jacobi, Laguerre polynomials, trigonometric
polynomials are used for the exact values of the function at the selected points (see, for example,
[1], [2]). However, the task becomes significantly more complicated if it is necessary to evaluate
the function based on inaccurate observations at selected points. In this case, there are many
different solutions that need to be compared by various indicators (solution error, computational
complexity, number of observation points). In this paper, two solutions to this problem are
proposed and compared.

Trigonometric polynomials were used to approximate the function from inaccurate obser-
vations. The first method of approximation consists in observing the function at points evenly
distributed over the segment of its assignment. In the second method, observations are considered
at the points of division into a finite number of equal parts of the neighbourhoods of the selected
points. In both cases, upper estimates of the standard deviation of the approximation of the
function from its exact value are constructed. Despite the proximity of the upper estimates
obtained, differences in the computational complexity of these approximations are found in the
number of observations of the function values at the selected points.

The proposed algorithm for estimating the value of a function by a trigonometric polynomial
using inaccurate deterministic or stochastic observations, unlike classical algorithms, allows
us to estimate the rate of convergence of the estimates obtained to the estimated parameters.
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And considering a small interval of time observation makes it possible to build an experiment
planning procedure. The authors previously used this idea to solve the problem of estimating the
parameters of a number of ordinary differential equations and their systems, partial differential
equations [3], [4].

The paper considers a function f (x) that is continuously differentiable on the segment [0, 2π].
This function decomposes into a Fourier series in the space L2[0, 2π]. Denote

fn(x) =
a0

2
+

n

∑
k=1

(ak cos(kx) + bk sin(kx)), (1)

ak =
1
π

∫ 2π

0
f (x) cos(kx)dx, bk =

1
π

∫ 2π

0
f (x) sin(kx)dx, k = 0, 1, ..., n.

It is known (see, for example, [5]) that under given conditions for the function f (x) there exists a
number C such that |ak| ≤ C/k, |bk| ≤ C/k, k = 1, . . . , and, therefore,

π
∞

∑
k=n+1

(a2
k + b2

k) =
∫ 2π

0
( f (x)− fn(x))2dx = D(n) = O(n−1). (2)

In this paper, we will consider two different estimates of the function f (x) based on inaccurate
observations. The first estimate of f̂n(x) of the function f (x) is constructed as follows. Let
ta

p,k, tb
p,k, εa

p,k, εb
p,k, p = 1, . . . , k = 0, ..., independent random variables. Moreover, the random

variables ta
p,k, tb

p,k have a uniform distribution on the segment [0, 2π], and random variables

εa
p,k, εb

p,k characterizing measurement errors have zero mean and variance σ2. Then we define
random variables

âk =
2
m

m−1

∑
p=0

( f (ta
p,k) + εa

p,k) cos(kta
p,k), b̂k =

2
m

m−1

∑
p=0

( f (tb
p,k) + εb

p,k) sin(ktb
p,k) (3)

and we will make the first assessment

f̂n(x) =
â0

2
+

n

∑
k=1

(âk cos(kx) + b̂k sin(kx)). (4)

The second estimate f̄ (x) of the function f (x) is based on inaccurate observations in the
following way. Let xp = 2πp/m, p = 0, . . . , m− 1,and random variables εp,j, p = 0, . . . , m−
1, j = −(2N + 1), . . . , 2N + 1, characterizing measurement errors are independent, and have zero
mean and variance σ2.Let’s assume random measurements of quantities f (xp) equal

f̄ (xp) =
1

2N + 1

N

∑
j=−N

( f (xp + jh) + εp,j), h = N−α.

Let’s construct a second estimate of the function f (x)

f̄n(x) =
ā0

2
+

n

∑
k=1

(āk cos(kx) + b̄k sin(kx)). (5)

āk =
2
m

m−1

∑
p=0

f̄p cos(kxp), b̄k =
2
m

m−1

∑
p=0

f̄p sin(kxp), k = 0, 1, . . . , n.

Our task is to build upper bounds

M
∫ 2π

0
( f (x)− f̂n(x))2dx, M

∫ 2π

0
( f (x)− f̄n(x))2dx

and compare them.
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2. The error of the first estimate

Obviously, the inequality is fair

M
∫ 2π

0
( f (x)− f̂n(x))2dx =

∫ 2π

0
M[( f (x)− fn(x)) + ( fn(x)− f̂n(x))]2dx ≤

≤ 2
[∫ 2π

0
( f (x)− fn(x))2dx + M

∫ 2π

0
( fn(x)− f̂n(x))2dx

]
.

In turn,

M
∫ 2π

0
( fn(x)− f̂n(x))2dx = πM

[(
a0 − â0

2

)2
+

n

∑
k=1

(ak − âk)
2 +

n

∑
k=1

(bk − b̂k)
2

]
.

Then it is not difficult to get from the formulas (4)

Mâ0 = a0 ⇒ M
(

a0 − â0

2

)2
=

1
m

(
σ2 +

1
2π

∫ 2π

0
f 2(x)dx− a2

0

)
,

Mâk = ak ⇒ M(ak − âk)
2 ≤ 4

m

(
σ2 +

1
2π

∫ 2π

0
f 2(x)dx− a2

k

)
, k = 1, 2, . . . ,

Mb̂k = bk ⇒ M(bk − b̂k)
2 ≤ 4

m

(
σ2 +

1
2π

∫ 2π

0
f 2(x)dx− b2

k

)
, k = 1, 2, . . . .

It follows from this and from the formula (2) that

M
∫ 2π

0
( f (x)− f̂n(x))2dx ≤ 2

[
D(n) +

π(8n + 1)
m

(
σ2 +

1
2π

∫ 2π

0
f 2(x)dx

)]
(6)

and, therefore, due to the formulas (2), (6) we have

M
∫ 2π

0
( f (x)− f̂n(x))2dx = O(n−1) + O(nm−1). (7)

In particular, for n = [m1/2] we have (here [a] is the integer part of the real number a)

M
∫ 2π

0
( f (x)− f̂n(x))2dx = O(m−1/2). (8)

3. The error of the second estimate

Let ∆ fp = f̄ (xp)− f (xp), first evaluate M(∆ fp)2. From the continuous differentiability of the
function f (x) by [0, 2π] we have

max( sup
0≤x≤2π

| f (x)|, sup
0≤x≤2π

| f ′(x)|) = C < ∞.

Then

M(∆ fp)
2 = M

[
1

2N + 1

N

∑
j=−N

( f (xp + jh) + εp,j)− f (xp)

]2

=

= M

[
1

2N + 1

N

∑
j=−N

( f (xp + jh) + εp,j − f (xp))

]2

=
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= M

[
1

2N + 1

N

∑
j=−N

( f (xp + jh)− f (xp)) +
1

2N + 1

N

∑
j=−N

εp,j

]2

=

=

[
1

2N + 1

N

∑
j=−N

( f (xp + jh)− f (xp))

]2

+
σ2

2N + 1
≤

≤
[

1
2N + 1

N

∑
j=−N

C|j|h
]2

+
σ2

2N + 1
= O(h2N2) + O(N−1).

Therefore, the relation is fulfilled

sup
0≤p≤m−1

M(∆ fp)
2 = O(h2N2) + O(N−1).

In particular, for h = N−3/2 we get

sup
0≤p≤m−1

M(∆ fp)
2 = O(N−1). (9)

Using this definition of the estimate f̄p, we construct an estimate of the error of the function f̄n(x).
Denote

f ∗n (x) =
a∗0
2

+
n

∑
k=1

(a∗k cos(kx) + b∗k sin(kx)), (10)

a∗k =
2
m

m−1

∑
p=0

fp cos(kxp), b∗k =
2
m

m−1

∑
p=0

fp sin(kxp), k = 0, 1, . . . , n.

Consider

M
∫ 2π

0
( f (x)− f̂n(x))2dx =

∫ 2π

0
M[( f (x)− fn(x)) + ( fn(x)− f ∗n (x)) + ( f ∗n (x)− f̂n(x))]2dx ≤

≤ 3
[∫ 2π

0
( f (x)− fn(x))2dx+

∫ 2π

0
( fn(x)− f ∗n (x))2dx+

∫ 2π

0
M( f ∗n (x)− f̂n(x))2dx

]
. (11)

Let’s focus first on the assessment
∫ 2π

0 ( f (x)− f ∗n (x))2dx.

∫ 2π

0
( fn(x)− f ∗n (x))2dx =

∫ 2π

0
dx

[
a0 − a∗0

2
+

n

∑
k=1

(ak − a∗k ) cos(kx) +
n

∑
k=1

(bk − b∗k ) sin(kx)

]2

=

=
π

2

[
(a0 − a∗0)

2 + 2
n

∑
k=1

[
(ak − a∗k )

2 + (bk − b∗k )
2
]]

.

We have

(a0 − a∗0)
2 =

(
1
π

∫ 2π

0
f (x)dx− 2

m

m−1

∑
p=0

f (xp)

)2

=

(
1
π

m−1

∑
p=0

∫ xp+1

xp
f (x)dx− 2

m

m−1

∑
p=0

f (xp)

)2

=

=

(
1
π

m−1

∑
p=0

∫ xp+1

xp
( f (x)− f (xp))dx

)2

≤
(

1
π

m−1

∑
p=0

∫ xp+1

xp

2πC
m

dx

)2

≤ 16π2C2

m2 .

It is not difficult to get when xp ≤ x ≤ xp+1, k = 0, 1, . . . , n− 1,

| f (x) cos(kx)− f (xp) cos(kxp)| ≤ | f (x)| · | cos(kx)− cos(kxp)|+

+| cos(kxp)| ·
∣∣ f (x)− f (xp)

∣∣ ≤ 2πC(k + 1)
m

.
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It follows that

|ak − a∗k | =
∣∣∣∣∣ 1
π

∫ 2π

0
f (x) cos(kx)dx− 2

m

m−1

∑
p=0

f (xp) cos(kxp)

∣∣∣∣∣ =
=

∣∣∣∣∣ 1
π

m−1

∑
p=0

∫ xp+1

xp
( f (x) cos(kx)− f (xp) cos(kxp))

∣∣∣∣∣ dx ≤ 4πC(k + 1)
m

.

Then
n

∑
k=0

(ak − a∗k )
2 ≤ 16C2π2(n + 1)(n + 2)(2n + 3)

6m2 = O(n3m−2),

By analogy, we have

n

∑
k=0

(bk − b∗k )
2 ≤ 16C2π2(n + 1)(n + 1)(2n + 3)

6m2 = O(n3m−2).

Therefore, ∫ 2π

0
( fn(x)− f ∗n (x))2dx = O(n3m−2). (12)

Let’s now move on to the evaluation of M
∫ 2π

0
( f ∗n (x)− f̄ (x))2dx, by calculating first

M
∫ 2π

0
( f ∗n (x)− f̄n(x))2dx = πM

(
(a∗0 − ā0)

2

4
+

n

∑
k=1

M(a∗k − āk)
2+

n

∑
k=1

M(b∗k − b̄k)
2

)
. (13)

And then let’s use the equalities

A =
n

∑
k=1

M(a∗k − āk)
2 =

n

∑
k=1

M

(
2
m

m−1

∑
p=0

∆ fp cos(kxp)

)2

=

=
4

m2

n

∑
k=1

M

(
m−1

∑
p=0

∆ fp cos(kxp)
m−1

∑
q=0

∆ fq cos(kxq)

)
=

=
4

m2

m−1

∑
p=0

m−1

∑
q=0

M∆ fp∆ fq

n

∑
k=1

cos(kxp) cos(kxq).

Therefore, we have

|A| ≤ 4n
m2

m−1

∑
p=0

m−1

∑
q=0
|M∆ fp∆ fq| ≤

2n
m2

m−1

∑
p=0

m−1

∑
q=0

M((∆ fp)
2 + (∆ fq)

2) ≤ 4n sup
0≤p≤m−1

M(∆ fp)
2.

From these relations and the formula (9) we obtain |A| = O(nN−1).
In turn,

M(a∗0 − ā0)
2 =

4
m2 M

(
m−1

∑
p=0

∆ fp

)2

= O(N−1).

Then
n

∑
k=0

M(a∗k − āk)
2 = O(nN−1). (14)

Similarly, it is not difficult to obtain equality

n

∑
k=0

M(b∗k − b̄k)
2 = O(nN−1) (15)

Tsitsiashvili, G. Sh., Osipova, M. A.
ALGORITHMS FOR APPROXIMATING A FUNCTION BASED 
ON INACCURATE OBSERVATIONS

RT&A, No 3 (79) 
Volume 19, September 2024

45



Combining the formulas (13) - (15), we get

M
∫ 2π

0
( f ∗n (x)− f̄n(x))2dx = O(nN−1). (16)

Finally from the formulas (2), (11), (12), (16) we come to the ratio

M
∫ 2π

0
( f (x)− f̄n(x))2dx = O(n−1) + O(n3m−2) + O(nN−1). (17)

In particular, for n = m1/2 and N = m we get

M
∫ 2π

0
( f (x)− f̄n(x))2dx = O(m−1/2).

4. Conslusion

From formulas (8), (17) it follows that the estimation error f̄n(x), as well as the estimation error
f̂n(x) are equal to O(m−1/2). In turn, the number of observations in the first case is equal to
O(nm) = O(m3/2), and in the second case is equal to O(Nm) = O(m2). However, it should be
noted that the formula for calculating the Fourier coefficients (5) can be made more economical
using the fast Fourier transform method (see, for example, [6]).

This work was supported by the Ministry of Science and Higher Education of Russian
Federation (Agreement No 075-02-2024-1440).
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Abstract

The main purpose of this study was to optimize the performance parameters of the casting process
using a neural network approach. The casting process is molten or liquefied metal is poured into the mould
cavity, after solidification it takes the near net shape of the cavity. The entire manufacturing process goes
through six stations viz Pouring turret "ladle", "Tundish", "Mould", "Water spray chamber", "Support
roller" and "Torch cutter". The Artificial Neural Network (ANN) technique is used in this paper to
analyze the casting system’s availability, profitability, and state probability variation. An effort has been
made to identify the most critical component of the system. The outcomes of the analysis will help the
practitioners in deciding effective maintenance strategies.

Keywords: Neural Network Approach, Neural weights, Profit, Availability

1. Introduction

The business sector must adopt the paths of quick technological progress to survive the current
business climate. The absolute necessity for a corporation to survive is now massively automated
systems. Many conventional industrial materials are finding it difficult to fulfill the demands
of today’s industries as industrial manufacturing technologies continue to advance. The man-
ufacturers’ primary focus is on the development of systems with lower development costs so
that maximum profit may be gained, and they have succeeded in doing so to a significant extent
by incorporating some performance improvement approaches into their systems. Even if such
massive systems will eventually fail, the damage can be reduced by increasing their availability.
Because of this, the availability of these systems has emerged as the most important factor in
process industries. They can better comprehend the impact of variations in failure and repair rates
of different subcomponents and units on the system by analyzing performance characteristics.
Tzong [1] emphasized improving cast parts availability and dependability while attempting to
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minimize them as much as feasible. Agarwal and Bansal [2] use high-level repair specialties sus-
ceptible to shifting environmental circumstances to boost system dependability. Agarwal et al.[3]
applied for cold standby redundancy in order to determine different reliability metrics. Bansal
et al. [4] illustrate how to solve milk powder production facilities using the Boolean function
technique and how mission phases affect the system’s reliability. Amit Kumar [5] employed a
probabilistic technique that helps the foundry plant’s quality control departments increase pro-
duction by minimizing cast component rejections, which raises dependability and lowers casting
process costs. Agarwal and Bansal [6] examined the costs and dependability of a multi-component
system, such as a thermal power plant, utilizing the supplemental variable technique to ensure
the system’s maximum dependability. Kumar [7] gives a thorough grasp of the casting industry
to explore the several factors influencing the foundry industry’s casting process and maximize
casting quality, assuming adequate repair facilities are constantly accessible. Bansal [8] enhanced
the availability of a repairable system by introducing the preemptive resume Repair Discipline.
Bansal et al. [9] suggested an orthogonal matrix approach and the reliability was calculated when
the exponential time distribution and Weibull were used to express the failure rate. Bansal and
Tyagi [10] recognized the system’s weak points so that suitable maintenance techniques can be
implemented to strengthen the system’s maintenance policy. Bansal et al. [11] Utilised the Markov
Birth-Death Process, focusing on the leaf spring plant’s performance to ascertain the system’s
availability. Chaudhari and Vasudevan [12] concentrated on creating a casting failure Markov
chain model. It demonstrates how this predictive modeling technique may be used to produce
the chance of casting failure through different casting faults and casting process parameters.
Chaudhary and Bansal [13] offer improved standards for upcoming proposals and execution that
will act as a basis for planning the expansion of hydroelectric power plant generation. Godara
and Bansal [14] discussed the use of neural networks and Boolean functions as two separate
methods for estimating the reliability of a steam turbine power facility. Tyagi and Bansal [15]
resolved a water treatment plant using the Runge-Kutta technique, which aims to enhance the
plant’s operational performance by putting in place efficient maintenance practices. Godara and
Bansal [16] examined the neural network approach’s potential to improve the computer network
system’s dependability and profitability.
Recently, models based on artificial neural networks (ANN) have gained popularity for estimat-
ing system reliability. In this study, we develop a mathematical model of the casting industry
using the Artificial Neural Network (ANN) technique. It has broad applicability in many areas,
including dependability. The ANN is composed of microscopic units known as neurons, each
of which has a distinct weight (synaptic strength) and is linked by synapses. We create neuron
equations employing the neural weight in the mathematical model, and we assess the plant’s
dependability and performance with the aid of these equations. The applicability of different
types of neural networks for probabilistic analysis needs to be thoroughly investigated these days.
When using a neural network approach for analysis, all failure kinds and repair rates are treated
as weights, and these weights are determined by the exponential distribution.

2. System Description

Continuous casting technology is a major advancement in the history of steelmaking and is
influencing the worldwide steel industry. Globally, about 750 million tonnes of steel are produced
annually, with continuous casting accounting for the majority of this solidification. The continuous
casting method, seen in Figure 1, involves the flow of molten steel via a tundish and into the
mould from a ladle. To protect each vessel from air exposure, a slag cover and ceramic nozzles
should be positioned between each vessel. After entering the mould, the molten steel solidifies
into a shell when it freezes up against the water-cooled copper walls. In order to maintain optimal
operation in a steady state, the machine’s driving rolls descend continuously, removing the shell
from the mould at a rate known as the "casting speed" that corresponds to the flow of incoming
metal. The remaining liquid is held in a container by the steel shell that is solidifying beneath
the mould exit. Rolls are used to support steel to lessen ferrostatic pressure-induced bulging.
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The strand’s surface temperature is kept constant by air and water sprays until the molten core
solidifies.

Figure 1: Block diagram

2.1. Assumptions and Notations

• First, we know the probabilities of the states.
• Every subsystem is initially in a fully operational state.
• Every subsystem has a repair facility in case it fails or deteriorates.
• There is a facility for repairs and the Repair rates are constant.
• Each subsystem’s failure rate is both time-dependent and time-independent.

Moreover, the following notations are applied:

• fa1/ra1 failure and repair rate of the 1st unit of turret ladle subsystem.
• fa2/ra2 failure and repair rate of the standby unit of turret ladle subsystem.
• fb/rb failure and repair rate of the Tundish subsystem.
• fc/rc failure and repair rate of the Mould subsystem.
• fd/rd failure and repair rate of the Water spray chamber subsystem.
• fe/re failure and repair rate of the Support roller subsystem.
• fg1/rg1 failure and repair rate of the 1st unit of Torch cutter subsystem.
• fg2/rg2 failure and repair rate of the standby unit of the Torch cutter subsystem.
• wi,j Neural weight of the ith state to the jth state.
• Pi(t) Probability of the ith subsystem.
• A,B,C,D,E,G - Representation of the system is in a fully working state.
• a b c d e g Representation of the system is in the Failed state
• A−, G− Representation of the system is in the partially failed state.
• Pi is the probability that the system is in Si state.
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Figure 2: State transition diagram

2.2. Formulation of Artificial Neural Network Mathematical Model of the
Continuous Casting System of the Steel Industry

The following set of difference differential equations governing the current mathematical model
can be obtained using probability considerations and continuity arguments. There are three layers
in the suggested ANN model: input, hidden, and output.
Input Layer. Input is defined by

Pi(t) = Zi(t)

The following equations define the hidden layer:

P0(t + ∆t) = w0,0Z0 + w1,0Z1 + w2,0Z2 + w9,0Z9 + w10,0Z10 + w11,0Z11 + w12,0Z12 (1)

P1(t + ∆t) = w0,1Z0 + w1,1Z1 + w3,1Z3 + w4,1Z4 + w5,1Z5 + w6,1Z6 + w7,1Z7 + w8,1Z8 (2)

P2(t+∆t) = w0,2Z0 +w2,2Z2 +w3,2Z3 +w13,2Z13 +w14,2Z14 +w15,2Z15 +w16,2Z16 +w17,2Z17 (3)

P3(t+∆t) = w1,3Z1 +w2,3Z2 +w3,3Z3 +w18,3Z18 +w19,3Z19 +w20,3Z20 +w21,3Z21 +w22,3Z22 +w23,3Z23
(4)

P4(t + ∆t) = w1,4Z1 + w4,4Z4 (5)

P5(t + ∆t) = w1,5Z1 + w5,5Z5 (6)

P6(t + ∆t) = w1,6Z1 + w6,6Z6 (7)

P7(t + ∆t) = w1,7Z1 + w7,7Z7 (8)

P8(t + ∆t) = w1,8Z1 + w8,8Z8 (9)

P9(t + ∆t) = w0,9Z0 + w9,9Z9 (10)

P10(t + ∆t) = w0,10Z0 + w10,10Z10 (11)
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P11(t + ∆t) = w0,11Z0 + w11,11Z11 (12)

P12(t + ∆t) = w0,12Z0 + w12,12Z12 (13)

P13(t + ∆t) = w2,13Z2 + w13,13Z13 (14)

P14(t + ∆t) = w2,14Z2 + w14,14Z14 (15)

P15(t + ∆t) = w2,15Z2 + w15,15Z15 (16)

P16(t + ∆t) = w2,16Z2 + w16,16Z16 (17)

P17(t + ∆t) = w2,17Z2 + w17,17Z17 (18)

P18(t + ∆t) = w2,18Z2 + w18,18Z18 (19)

P19(t + ∆t) = w3,19Z3 + w19,19Z19 (20)

P20(t + ∆t) = w3,20Z3 + w20,20Z20 (21)

P21(t + ∆t) = w3,21Z3 + w21,21Z21 (22)

P22(t + ∆t) = w3,22Z3 + w22,22Z22 (23)

P23(t + ∆t) = w3,23Z3 + w23,23Z23 (24)

Where
w0,0 = 1 − w0,1 − w0,2 − w0,9 − w0,10 − w0,11 − w0,12 (25)

w1,1 = 1 − w1,0 − w1,5 − w1,3 − w1,4 − w1,6 − w1,7 − w1,8 (26)

w2,2 = 1 − w2,0 − w2,3 − w2,13 − w2,14 − w2,15 − w2,16 − w2,17 (27)

w3,3 = 1 − w3,2 − w3,1 − w3,18 − w3,19 − w3,18 − w3,19 − w3,20 − w3,21 − w3,22 − w3,23 (28)

The output layer is defined by the following equation with the aid of the equation above.

Availability = P0(t + ∆t) + P1(t + ∆t) + P2(t + ∆t) + P3(t + ∆t) (29)

3. Results and Discussions

In this section, we explore the estimated time-varying state probabilities as revealed by our
analysis applied to the steel industry’s continuous casting system. The utilization of the Artificial
Neural Network (ANN) methodology has yielded valuable insights regarding the optimization of
profit and availability of the system. The system’s initial state probabilities are given in Table 1,
and it is assumed that the system has been operating continuously.

Table 1: Initial Probability of the System

Probability P0 P1 P2 P3 Pi,i= 4 to 23

Value 0.45 0.1 0.1 0.1 0.0125

Based on an analysis of Table 1, it can be observed that a good state has a higher probability
than a failing or degraded state. Additionally, the initial probability of all failed states is 0.0125.
When a system malfunctions, a repair facility is accessible because it is in three states: good,
degraded, and failed.
Table 2 lists the repair rates for each subsystem.
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Table 2: Constant Repair Rate of the System

Repair Rate ra1 ra2 rb rc rd re rg1 rg2

Value 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2

The subsystem’s failure rate is determined by the exponential and Weibull time distribution
basis; there are two possible scenarios.
(1) Useful Life Phase: during this phase, the system’s failure rate is constant and is distributed
exponentially.
(2) Wear-out Phase: this phase is characterized by a Weibull time distribution that follows a
time-dependent failure rate of the system.
In the Useful life Phase, the system’s failure rate is constant and is distributed exponentially, and
the wear-out phase is characterized by a Weibull time distribution that follows a time-dependent
failure rate of the system. In the case of the wear-out phase, the failure rate of the system is
calculated by equation.

f (t) = βt(β−1)ηβ (30)

Where (β) and (η) represent the wear-out phase failure rate’s shape and scale parameters,
respectively. In order to match the starting failure rates of each subsystem and assume constant
failure rates, the shape parameters (β) and scale parameters (η) of the time-dependent failure
rates of each subsystem at time t = 0 have been taken as shown in Table 3.

Table 3: Constant and Time-Dependent Failure Rate

Failure rate fa1 fa2 fb fc fd fe fg1 fg2

Shape Parameter(β) 2 2 2 2 2 2 2 2

Scale Parameter (η) 1.65 2.36 0.75 0.65 0.85 0.9 3 5

Time-dependent Failure rate .0103 .050 .0498 0.066 0.033 0.034 0.031 0.011

Constant Failure rate 0.01 0.05 0.05 0.07 0.04 0.04 0.026 0.03

According to the ANN approach, the linear combination of the initial probability with the
weight function and bias function is added to determine the state probability of any subsystem
over time. To bring the estimated values of state probabilities closer to the measured state
probabilities, bias is a constant that is added to the activation function in the described ANN
model. Therefore, assuming bj = 0 because measured state probabilities have not been taken into
account in this numerical computation.
The ANN input layer of the casting system is determined by the initial probability of the system,
which is given in Table 1. The hidden layer of the network is calculated with the help of equations
1 to 24, in which the neural weight of the system is calculated with the help of a linear combination
of the failure and repair rate of the system, as shown in equations 25 to 28. The hidden layer of the
ANN model shows the state probability of the system. The variation in the state probability of the
system is calculated in both the cases namely useful life period phase and wear-out phase, these
variations are calculated with a time increment of 10 hours. Here in this model, for the calculation
purpose time, the factor is taken in month 10 hours= 0.014 month. The state probability fluctuates
during the wear-out phase and the useful-life period, as Tables 4 to 9 demonstrate.
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Table 4: Change in State Probabilities With Time In Useful-Life Phase)

T P0 P1 P2 P3 P4 P5 P6 P7 P8

10 .4491 .0998 .0999 .0992 .0125 .0126 .0126 .0125 .0125
20 .4483 .0996 .0999 .0986 .0126 .0126 .0127 .0126 .0126
30 .4474 .0993 .0998 .0977 .0126 .0127 .0127 .0126 .0126
40 .4466 .0991 .0997 .0970 .0126 .0127 .0128 .0127 .0127
50 .4457 .0989 .0997 .0962 .0127 .0128 .0129 .0127 .0127
60 .4449 .0987 .0996 .0954 .0127 .0128 .0130 .0127 .0127
70 .4446 .0985 .0995 .0947 .0127 .0129 .0131 .0128 .0128
80 .4431 .0983 .0995 .0939 .0128 .0129 .0131 .0128 .0128
90 .4423 .0980 .0994 .0931 .0128 .0130 .0132 .0128 .0128
100 .4414 .0978 .0993 .0924 .0129 .0130 .0133 .0129 .0129

Table 5: Change in State Probabilities With Time In Useful-Life Phase

T P9 P10 P11 P12 P13 P14 P15 P16 P17

10 .0126 .0129 .0127 .0127 .0126 .0126 .0125 .0125 .0125
20 .0126 .0133 .0130 .0130 .0126 .0127 .0126 .0126 .0125
30 .0127 .0138 .0132 .0132 .0127 .0127 .0126 .0126 .0125
40 .0127 .0142 .0134 .0134 .0127 .0128 .0127 .0127 .0125
50 .0128 .0146 .0137 .0137 .0128 .0129 .0127 .0127 .0125
60 .0128 .0150 .0139 .0139 .0128 .0130 .0127 .0127 .0125
70 .0129 .0155 .0141 .0141 .0129 .0131 .0128 .0128 .0125
80 .0129 .0159 .0144 .0144 .0129 .0131 .0128 .0128 .0126
90 .0130 .0163 .0146 .0146 .0130 .0132 .0128 .0128 .0126
100 .0130 .0167 .0148 .0148 .0130b .0133 .0129 .0129 .0126

Table 6: Change in State Probabilities With Time In Useful-Life Phase

T P18 P19 P20 P21 P22 P23

10 .0125 .0126 .0126 .0125 .0125 .0125
20 .0126 .0126 .0127 .0126 .0126 .0125
30 .0126 .0127 .0127 .0126 .0126 .0125
40 .0126 .0127 .0128 .0127 .0127 .0125
50 .0127 .0128 .0129 .0127 .0127 .0125
60 .0127 .0128 .0130 .0127 .0127 .0125
70 .0127 .0129 .0131 .0128 .0128 .0125
80 .0128 .0129 .0131 .0128 .0128 .0126
90 .0128 .0130 .0132 .0128 .0128 .0126
100 .0129 .0130 .0133 .0129 .0129 .0126
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Table 7: Change in State Probabilities With Time In Wear-Out Phase

T P0 P1 P2 P3 P4 P5 P6 P7 P8

10 .4492 .0998 .0100 .0993 .0125 .0126 .0126 .0125 .0125
20 .4462 .0994 .0992 .0981 .0125 .0127 .0128 .0127 .0127
30 .4404 .0984 .0980 .0964 .0125 .0131 .0133 .0129 .0129
40 .4321 .0970 .0962 .0942 .0125 .0135 .0139 .0133 .0132
50 .4212 .0952 .0940 .0915 .0125 .0142 .0147 .0138 .0136
60 .4078 .0930 .0912 .0883 .0125 .0149 .0157 .0143 .0141
70 .3918 .0904 .0879 .0846 .0126 .0158 .0169 .0150 .0147
80 .3733 .0873 .0841 .0803 .0127 .0168 .0183 .0158 .0155
90 .3522 .0838 .0798 .0756 .0128 .0180 .0199 .0167 .0163
100 .3285 .0799 .0749 .0703 .0129 .0193 .0216 .0178 .0172

Table 8: Change in State Probabilities With Time In Wear-Out Phase

T P9 P10 P11 P12 P13 P14 P15 P16 P17

10 .0126 .0129 .0127 .0127 .0126 .0126 .0125 .0125 .0125
20 .0127 .0141 .0134 .0133 .0127 .0128 .0127 .0127 .0124
30 .0131 .0162 .0146 .0144 .0131 .0133 .0129 .0129 .0124
40 .0135 .0191 .0163 .0159 .0135 .0139 .0133 .0132 .0124
50 .0142 .0229 .0185 .0178 .0142 .0147 .0138 .0136 .0124
60 .0149 .0274 .0212 .0202 .0149 .0157 .0143 .0141 .0123
70 .0158 .0328 .0243 .0230 .0158 .0169 .0150 .0147 .0123
80 .0168 .0391 .0280 .0263 .0168 .0183 .0158 .0155 .0123
90 .0180 .0462 .0321 .0300 .0180 .0199 .0167 .0163 .0123
100 .0193 .0541 .0367 .0341 .0193 .0216 .0178 .0172 .0123

Table 9: Change in State Probabilities With Time In Wear-Out Phase

T P18 P19 P20 P21 P22 P23

10 .0125 .0126 .0126 .0126 .0125 .0125
20 .0125 .0127 .0128 .0127 .0127 .0124
30 .0125 .0131 .0133 .0129 .0129 .0124
40 .0125 .0135 .0139 .0133 .0132 .0124
50 .0125 .0142 .0147 .0138 .0136 .0124
60 .0125 .0149 .0157 .0143 .0141 .0123
70 .0126 .0158 .0169 .0150 .0147 .0123
80 .0127 .0168 .0183 .0158 .0155 .0123
90 .0128 .0180 .0199 .0167 .0163 .0123
100 .0129 .0193 .0216 .0178 .0172 .0123

Tables 4 to 9 analysis show that variations in the wear-out phase decrease by 4.5% to 3.2%,
while variations in the useful life phase decrease by 4.5% to 4.4% in the good state probability.
The variation in the good state probability occurred because of an increase in the failure rate with
respect to time during the wear-out phase. The similarity of state probability fluctuates Because
of the two facts: (1) The values of their individual weights dominate this summation, making the
cumulative effect of the other weights and states insignificant, and (2) The state probability values
at time t=0 are presumptively similar, P4 versus P18 and P17 versus P23 are in both the useful-life
and wear-out phases.
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Here, the upstate (availability) of the system is indicated in the current ANN model output layer.
With the aid of equation (29), the system’s time-related availability is computed, and the results
are displayed in Table (10) and Figure (3).

Table 10: Availability of the system

Time Availability (Wear-out) Availability (useful-life)

10 0.7488 0.7481
20 0.7428 0.7462
30 0.7332 0.7443
40 0.7196 0.7424
50 0.7020 0.7405
60 0.6803 0.7386
70 0.6547 0.7367
80 0.6250 0.7348
90 0.5913 0.7329
100 0.5536 0.7310

Figure 3: Availability with Time

Table 10 analysis shows that the system’s availability decreases over time in both the wear-out
and useful life phases. The system availability drops from 7.4% to 5.5% during the wear-out
phase. On the other hand, availability slightly decreases from 7.4% to 7.3% during the useful-life
phase. When compared to the useful-life phase, the availability decrement varies more during the
wear-out phase. This variation is caused by the wear-out phase failure rate increasing over time,
whereas it remains constant during the useful-life phase.
With the aid of revenue costs and preventive maintenance costs, which fix revenue costs and
variable preventive costs, the profit of the continuous casting system is computed using the given
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equation.
Pro f it = Re A(t)− C1 − C2 (31)

Where Re, C1 and C2 is the revenue cost per unit time, the total cost per unit, and the preventive
maintenance cost of time, here we take C1 =2400, Re=19000, C2=56

Table 11: Profit of the System

Time Profit (Wear-out) Profit (useful-life)

10 11761 11758
20 23371 23499
30 34537 35168
40 45033 46765
50 54632 58290
60 63100 69742
70 70215 81121
80 75745 92429
90 79461 10366
100 81126 11483

Figure 4: Profit with Time

Based on the data presented in Table 11, it can be inferred that the steel industry’s casting
system’s profit increases over time as it wears out and the useful-life phase. The system’s wear-out
phase turns out to be more profitable than its useful-life phase for the main reason that the
wear-out phase’s availability exceeds the useful-life phases. Wear-out phase is a strategic focal
point for optimizing financial returns because of its direct correlation with increased profitability
due to its increased availability.

Shikha Bansal, Sohan Lal Tyagi, Urvashi
AVAILABILITY AND PROFIT OPTIMIZATION OF CONTINUOUS 
CASTING SYSTEM OF THE STEEL INDUSTRY USING ANN TECHNIQUE

RT&A, No 3 (79) 
Volume 19, September 2024

56



4. Conclusion

The implementation of Artificial Neural Network (ANN) techniques in the metals industry’s
continuous casting system has been shown to be beneficial in terms of enhancing productivity
parameters. This study uses an artificial neural network (ANN) approach to optimize casting
system availability in the steel industry during both the useful life and wear-out phases. Conse-
quently, an ANN model has been used to compare the changes in multi-state probabilities with
respect to time for the system’s (i) wear-out phase and (ii) useful life phase. Therefore, it can be
concluded that while the probability of the good state P0 decreases dramatically from 44.92%
to 32.85% during the wear-out phase, it decreases smoothly from 44.91% to 44.14% during the
useful-life segment.
The probability behavior of the degraded states (P1, P2, and P3) is also analyzed. It is found that
the wear-out phase has a greater impact on the variation in the degraded state’s state probability
than the useful-life phase. In the wear-out phase, the probability of degraded states decreases
by approximately 9.98% to 7%, whereas in the useful-life phase, it decreases by approximately
9.98% to 9.24%. In both the useful-life and wear-out phases, the state probability of the failed
state increases with time.
The availability of the casting system is examined in both the useful life and wear-out phases.
It is found that, in comparison to the useful-life phase, the wear-out phase majorly impacts the
system’s availability. The system’s availability drops from 74.9% to 55.4% during the wear-out
phase and from 74.8% to 73.1% during the useful life.
The profit margin of the system has also been examined using revenue and preventive mainte-
nance costs, which adjust for revenue and other expenses. It is concluded that, in comparison to
a useful-life case, the system yields higher profit in terms of time during the wear-out phase.

References

[1] Tzong, R. Y., & Lee, S. L. (1992). Solidification of arbitrarily shaped casting in mold casting
system. International Journal of Heat and Mass Transfer, 35(11), 2795-2803.

[2] Agarwal, S. C., & Bansal, S. (2009). Reliability analysis of a standby redundant complex
system with changing environment under the head of the line repair discipline.Bulletin of
Pure and Applied Sciences, 28(1), 165-173.

[3] Agarwal, S. C., Sahani, M., & Bansal, S. (2010). Reliability characteristic of a cold-standby re-
dundant system International Journal of Research and Review in Applied Sciences (IJRRAS),
3(2), 193-199.

[4] Bansal, S., Agarwal, S.C., Sahani, M., Sharma K. (2018). Evaluation of reliability factors using
B.F technique in milk powder manufacturing plant. International Journal of Research and
Review in Applied Science, vol.4, no.4, pp. 416-424.

[5] Amit Kumara, Aman Kumar Varshneyb and Mangey Rama (2015). Sensitivity analysis for
casting process under stochastic modelling, International Journal of Industrial Engineering
Computations 6, 419 -432.

[6] Agarwal, S. C., & Bansal, S. (2015) Cost analysis of solar thermal electric power plant.
International Journal of Advanced Technology in Engineering and Science, 3(10), 12-22.

[7] Kumar, A., Ram, M. and Rawat, R.S. (2017). Optimization of casting process through
reliability approach, International Journal of Quality & Reliability Management, Vol. 34 No.
6, pp. 833-848. https://doi.org/10.1108/IJQRM-07-2016-0103

[8] Bansal, S., (2018). Availability Analysis of a Repairable Redundant System under Preemptive-
Resume Repair Discipline. International Journal of Mathematics And its Applications, 6(1“D),
665“671.

[9] Bansal, Shikha, and Sohan Tyagi(2018). Reliability analysis of screw manufacturing plant
using orthogonal matrix method. Pertanika Journal of Science & Technology 26(4),1789-1800.

Shikha Bansal, Sohan Lal Tyagi, Urvashi
AVAILABILITY AND PROFIT OPTIMIZATION OF CONTINUOUS 
CASTING SYSTEM OF THE STEEL INDUSTRY USING ANN TECHNIQUE

RT&A, No 3 (79) 
Volume 19, September 2024

57



[10] Bansal S., Tyagi, S. (2021). Mathematical modeling and availability analysis of leaf spring
manufacturing plant. Pertanika Journal of Science & Technology, Vol.29, No.2, pp. 1041-1051.

[11] Bansal, S., Tyagi, S.,Verma, V.K (2022). Performance Modeling and Availability Analysis of
Screw Manufacturing Plant. Materials Today: Proceedings, Vol.57, No.5, pp.1985-1988.

[12] Amit Chaudhari, Hari Vasudevan (2022). Reliability-based design optimization of casting
process parameters using Markov chain model, Materials Today: Proceedings, Volume 63,
Pages 602-606.

[13] Chaudhary, P., and Bansal, S.,(2023). Assessment of the Reliability Performance of Hydro-
Electric Power Station. 3rd International Conference on Advance Computing and Innovative
Technologies in Engineering (ICACITE), Greater Noida, India, pp. 148-153.

[14] Godara, U., and Bansal, S., (2023). Performance of Reliability Factors in Steam Turbine
Generator Power Plant Using Boolean Function Technique and Neural Network Approach.
International Conference on Advances in Electronics, Communication, Computing and
Intelligent Information Systems (ICAECIS), Bangalore, India, pp. 507-512.

[15] Tyagi, S.L., and Bansal, S., (2023). Optimization Model for Wastewater Treatment Process 3rd
International Conference on Advance Computing and Innovative Technologies in Engineer-
ing (ICACITE), Greater Noida, India, 2023, pp. 165-168.

[16] Godara, U., and Bansal, S., (2023). Prediction of Reliability Factor For Multi-State Computer
System With Neural Network Approach. IEEE 2nd International Conference on Industrial
Electronics: Developments & Applications (ICIDeA), Imphal, India, pp. 132-135.

Shikha Bansal, Sohan Lal Tyagi, Urvashi
AVAILABILITY AND PROFIT OPTIMIZATION OF CONTINUOUS 
CASTING SYSTEM OF THE STEEL INDUSTRY USING ANN TECHNIQUE

RT&A, No 3 (79) 
Volume 19, September 2024

58



Sule O.B., Khalaf A.A. and Isah A.M. 
TOPP-LEONE EXPONENTIATED GOMPERTZ INVERSE RAYLEIGH 
DISTRIBUTION: PROPERTIES AND APPLICATIONS  

TOPP-LEONE EXPONENTIATED GOMPERTZ INVERSE 
RAYLEIGH DISTRIBUTION: PROPERTIES AND 

APPLICATIONS  

Sule Omeiza Bashiru1, Alaa Abdulrahman Khalaf2 and Alhaji Modu Isa3  
• 

1Department of Mathematics and Statistics, Confluence University of Science and Technology, 
Osara, Kogi State, Nigeria. 

2Diyala Education Directorate, Diyala, Iraq. 
3Department of Mathematics and Computer Science, Borno State University, Nigeria. 

Email: 1bash0140@gmail.com; 2alaa.a.khalaf35510@st.tu.edu.iq; 3alhajimoduisa@bosu.edu.ng  

Abstract 

This paper focused on deriving a new lifetime distribution having five parameters by 
compounding the Gompertz inverse Rayleigh model and the Topp-Leone exponentiated-G 
family of distributions. The new model is called Topp-Leone exponentiated Gompertz 
inverse Rayleigh (TLEGoIRa) distribution. The new model is very flexible and the shape of 
its pdf can be positively or negatively skewed and symmetric. Some statistical 
characteristics of the new model, such as the moments, incomplete moments, quantile 
function, rényi entropy and order statistics are derived and investigated. The pdf of the 
minimum and maximum order statistics of the new model were derived and studied. The 
model’s parameters are estimated using the maximum likelihood approach. A simulation 
study was conducted to investigate the consistency of the newly proposed model, using the 
average bias and root mean square error (RMSE) as metrics. The outcome of the simulation 
suggested that as sample sizes increase, both the average bias and root mean square error 
(RMSE) decrease, indicating that the distribution is consistent. Finally, two real-life 
datasets were used to explore the new model’s importance and adaptability in comparison 
to other competing models The results of the application revealed that the new distribution 
outperforms its competitors.   

Keywords: Toppleone Exponentiated G., Gompertz Inverse Rayleigh, Quantile 
Function, Order Statistics, MLE. 

I. Introduction

In the realm of distribution theory, the pursuit of developing models that accurately reflect the 
prevailing trends across various disciplines has proven challenging. Classical distributions, which 
form the foundation, often lack the required flexibility and robustness. This inherent limitation has 
spurred researchers within the distribution theory field to undertake the task of extending or 
generalizing existing distributions. The overarching goal is to imbue these distributions with greater 
flexibility and resilience, enabling them to effectively capture the evolving patterns present in 
datasets originating from diverse fields like engineering, environmental sciences, biological sciences, 
medical sciences, and beyond.  

RT&A, No 3 (79) 
Volume 19, September 2024

59

mailto:Email:%201bash0140@gmail.com
mailto:2alaa.a.khalaf35510@st.tu.edu.iq
mailto:3alhajimoduisa@bosu.edu.ng


Sule O.B., Khalaf A.A. and Isah A.M. 
TOPP-LEONE EXPONENTIATED GOMPERTZ INVERSE RAYLEIGH 
DISTRIBUTION: PROPERTIES AND APPLICATIONS  

      This process of extension or generalization entails the introduction of one or more additional 
parameters to the existing distributions. Contemporary approaches to distribution generalization 
frequently involve the utilization of distribution families. Examples of these families include the 
Topp-Leone exponentiated-G distribution by [1], Topp-Leone Kumaraswamy-G distribution by [2], 
Topp-Leone-G distribution by [3], type II half logistic-G distribution by [4], type I half logistic 
exponentiated-G distribution by [5], type II half logistic exponentiated-G distribution by [6], 
transmuted exponentiated generalized G distribution by [7], Topp-Leone odd Lindley G distribution 
by [8], and Topp-Leone Gompertz-G distribution by [9], among others. These families are 
constructed by introducing supplementary shape parameter(s) to the foundational distribution, 
thereby augmenting the efficacy and practicality of data modeling. 
      One significant continuous probability distribution, referred to as the inverse Rayleigh (IRa) 
distribution, was initially introduced by [10] and has since found extensive application in modeling 
system failure times. Notably, the IRa distribution is a specialized form of the broader inverse 
Weibull (IW) distribution. The statistical literature offers various adaptations and extensions of the 
IRa distribution, which can be explored further through references such as [11-13]. An extension of 
particular interest is the Gompertz inverse Rayleigh (GoIRa) distribution, developed by [14], which 
is considered as the baseline distribution in this study. Through the extension of the GoIRa 
distribution, we aim to develop a more adaptable compound distribution.  
     Reference [1] introduced the TLE-G, a distinct family of continuous distributions with the 
cumulative distribution function (cdf ) and probability density function (pdf ) given as: 

( )( )2
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     The cdf and pdf corresponding to the baseline Gompertz inverse Rayleigh (GoIRa) distribution 
are given as: 
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Where 0λ >  is the scale parameter and , 0γ β > are the shape parameters respectively. 
     The primary objective of this research is to utilize the GoIRa distribution as a foundational model 
within the TLE-G framework, aiming to develop a novel extension known as the TLEGoIRa 
distribution. This extension seeks to enhance the flexibility and applicability of the GoIRa 
distribution in capturing complex data patterns across various fields. 
     The remaining content of this article is organized as follows: Section 2 presents the development 
of the TLEGoIRa distribution, including the derivation of its properties and the method for 
estimating its parameters. Section 3 discusses simulation studies conducted to investigate the 
consistency of the estimates and the application of the model to two real datasets to demonstrate the 
practical potential of the new distribution. Finally, Section 4 provides concluding remarks. 
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II. Methods

2.1 Development of Topp-Leone Exponentiated Gompertz Inverse Rayleigh 
(TLEGoIRa) Distribution 

To derive the cdf of the new model, equation (3) is inserted into equation (1) as: 
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     To derive the PDF of the new model, equations (3) and (4) are inserted into equation (2) as follows:
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 (6)    

      where 𝑥𝑥 ≥ 0, and θ,α, ℷ, β, γ > 0. 
     The hazard function for the TLEGoIRa distribution can be obtained using this expression: 
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  The pdf and hazard function plots of the TLEGoIRa distribution are given figures 1 and 2 below:  
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Figure 1:  pdf plots of the TLEGoIRa distribution with different parameter values 

Figure 2:  hazard function plots of the TLEGoIRa distribution with different parameter values 

2.2 Statistical Properties of the TLEGoIRa Distribution 

This section derives some statistical properties of the TLEGoIRa distribution including moments, 
survival function, hazard function, quantile functions, and order statistics. 

2.2.1 Moment 

The rth moment of the TLEGoIRa model is computed using the following expression: 
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  First expanding equation (6) by using generalized binomial expansion ( )
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     Again, using the generalized binomial expansion and the exponential expansion formula 
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   Then we get expansion pdf of TLEGoIRa distribution: 
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     On solving the integral part in the equation above, then the rµ  is: 
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2.2.2 Incomplete Moments 

Equation (7) yields the incomplete moments for the TLEGoIRa distribution with rth (r > 0). [18-19] 
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2.2.3 Quantile Function 

The quantile function of TLEGoIRa distribution is given as 
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 (10) 

     The median of TLEGoIRa distribution is obtained by setting 0.5u = in equation (10) 
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Table 1: Quantiles for given parameter values of the TLEGoIRa distribution. 

(θ, λ, α, β, γ) 
U (0.4, 0.8, 1.2, 1.3, 2.2) (3, 1.3, 0.9, 0.7, 3.3) (2.3, 3, 1.7, 1.4, 1.2) 
0.1 0.45276 0.59975 1.33661 
0.2 0.52743 0.63546 1.41855 
0.3 0.59314 0.66110 1.48066 
0.4 0.65832 0.68289 1.53586 
0.5 0.72712 0.70315 1.58933 
0.6 0.80314 0.72329 1.64475 
0.7 0.89111 0.74472 1.70628 
0.8 0.99973 0.76965 1.78139 
0.9 1.15324 0.80387 1.89139 

2.2.4 Renyi Entropy 

Define the Rényi entropy of the TLEGoIRa distribution using the following formula. [20] 

0

1( ) ( ) , 0, 1
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− ∫  

     By substitution equation (7) into the equation above: 
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     The last integral, we get 
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 (11) 

2.2.5 Order Statistic 

The pdf of the order statistics for the TLEGoIRa distribution is obtained as follows: [21-24] 

( ) ( ) ( ) ( )1
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1 ! !
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  (12) 

     Substituting equations (5) and (6) into equation (12), we have: 
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2.3 Maximum Likelihood Estimation (MLE) 

This section provides the method of estimation of the unknown parameters of the TLEGoIRa 
distribution. Suppose that 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 be nth independent random sample from the TLEGoIRa 
distribution. Then, the log-likelihood function of the TLEGoIRa distribution is given as: 
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Differentiating equation (14) with respect to each unknown parameter and equating them zero, we 
have: 
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   Since equations (15), (16), (17), (18), and (19) are non-linear in parameters, an iterative technique is 
resorted to using Newton-Raphson iterative algorithm to obtain the estimate of the parameters.  

III. Results

3.1      Simulation 

This section describes the conclusions of a simulation research of the TLEGoIRa distribution. The 
study investigates five distinct sets of parameter values: (θ =0.9, α =1.2, γ =0.3, β =0.3, λ=0.5), (θ =1.2, 
α =0.9, γ =0.7, β =0.3, λ=0.5), (θ =1.3, α =1.3, γ =0.8, β =0.6, λ=0.4), and (θ =2, α =2, γ =0.6, β =0.75, λ=0.2). 
Each parameter set yields 1000 samples, with n = 50, 100, 150, and 300. We utilize these samples to 
compute the mean, average bias, and root mean square error (RMSE). To calculate bias and RMSE 
for the calculated parameters, use the formulas below: 

( ) ( )
( )2

1 1

ˆ ˆ
ˆ ˆ, .

N N

i i
i iAbias and RMSE

N N

α α α
α α α= =

−
= − =
∑ ∑  

     Tables 2 and 3 illustrate the results, which demonstrate a clear pattern: as the sample size 
increases, the mean parameter estimates get more precise and closer to the true values. 
Simultaneously, the corresponding RMSEs and Abias approach zero, proving MLEs' reliability and 
consistency. 

Table 2: Results from Monte Carlo simulations of the TLEGoIRa distribution 

θ =0.9, α =1.2, γ =0.3, β =0.3, ℷ=0.5 θ =1.2, α =0.9, γ =0.7, β =0.3, ℷ=0.5 
Parameter N Mean RMSE Abias Mean RMSE Abias 

θ  
50 3.3963 4.9674 2.4963 3.7293 3.6574 2.5293 

100 2.2823 2.9373 1.3823 3.7169 3.3882 2.5169 
150 1.9920 2.1471 1.0920 3.1464 2.3203 1.9464 
300 1.5072 1.4519 0.6072 2.2718 2.2284 1.0718 

α  
50 1.1618 1.3257 0.0981 1.1671 1.6299 0.2671 

100 1.2951 1.1776 0.0951 1.1055 1.3425 0.2055 
150 1.1993 1.1490 0.0644 1.1023 1.3182 0.2060 
300 1.3244 1.0653 0.0455 1.0609 1.0041 0.1609 

γ  
50 0.2144 0.1879 0.0855 0.5295 0.6465 0.1704 

100 0.2459 0.1461 0.0540 0.5168 0.4134 0.1531 
150 0.2632 0.1382 0.0367 0.5023 0.3071 0.1276 
300 0.2599 0.1155 0.0200 0.4994 0.2535 0.1005 

β  
50 0.3311 0.1891 0.0396 0.3246 0.2079 0.0246 

100 0.3274 0.1864 0.0374 0.3136 0.1747 0.0136 
150 0.3233 0.1581 0.0240 0.2956 0.1504 0.0043 
300 0.3209 0.1324 0.0233 0.3020 0.1368 0.0020 

λ  
50 0.9800 0.9588 0.4800 1.9086 1.6432 1.4086 

100 0.8343 0.6752 0.3343 1.2474 1.4809 0.7474 
150 0.7453 0.5092 0.2453 0.9105 1.0670 0.4105 
300 0.6237 0.3144 0.1237 0.7456 0.5470 0.2456 
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Table 3: Results from Monte Carlo simulations of the TLEGoIRa distribution 

θ =1.3, α =1.3, γ =0.8, β =0.6, ℷ=0.4 θ =2, α =2, γ =0.6, β =0.75, ℷ=0.2 
Parameter N Mean RMSE Abias Mean RMSE Abias 

θ  
50 3.9020 3.2589 2.6020 4.6867 4.6171 2.6867 

100 3.1574 2.2916 1.8574 3.9532 3.5984 1.9532 
150 2.7310 2.6574 1.4310 3.4859 2.7741 1.4859 
300 2.9938 1.1012 0.6938 3.0303 2.0658 1.0303 

α  
50 1.5031 2.1812 0.2031 2.2077 3.9702 0.2077 

100 1.4930 2.1254 0.3930 2.6847 3.9583 0.0847 
150 1.4756 2.0739 0.2756 2.0827 3.9374 0.0827 
300 1.3273 1.3373 0.2273 2.4920 3.0661 0.0720 

γ  
50 0.7726 1.0620 0.9709 0.4879 0.3450 0.1920 

100 0.7423 0.5469 0.1073 0.4565 0.2704 0.1434 
150 0.7259 0.4181 0.0976 0.4367 0.2280 0.1132 
300 0.7016 0.3897 0.0594 0.5271 0.1969 0.0728 

β  
50 0.7850 0.5824 0.1850 1.3345 1.2143 0.5845 

100 0.7450 0.5133 0.1450 1.2569 1.1121 0.5069 
150 0.7342 0.4793 0.1342 1.3577 1.1337 0.4877 
300 0.6869 0.4226 0.0869 1.1989 0.9787 0.4489 

λ  
50 2.0712 2.7215 1.6719 1.0376 1.9009 0.8376 

100 1.3579 2.1418 0.9579 0.6940 1.0649 0.4940 
150 0.9976 1.3302 0.5976 0.6385 0.9570 0.4385 
300 0.7083 0.7030 0.3083 0.4223 0.4678 0.2223 

3.2 Applications 

In this section, the practical use of the TLEGoIRa distribution is explored via two real-life data sets. 
Table 4 displays the cdf of the models, which will be compared to the TLEGoIRa distribution. 

Table 4: CDF for the Comparative distributions 

Distribution CDF 
Truncated 
Exponentiated 
Exponential 
Gompertz inverse 
Rayleigh (TEEGoIRa) 
[15] 
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Kumaraswamy 
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     The first dataset (I), shows the tensile strength in GPa of 69 carbon fibers evaluated at 20mm gauge 
lengths. It was utilized by Bader and Priest [25] 
(1.312, 1.314, 1.479 ,1.552,1.700 ,1.803, 1.861 ,1.865 ,1.944, 1.958 ,1.966, 1.997 ,2.006, 2.021 ,2.027, 2.055, 
2.063 ,2.098, 2.140, 2.179 ,2.224 ,2.240, 2.253 ,2.270, 2.272, 2.274, 2.301, 2.301 ,2.359 ,2.382 ,2.382 ,2.426 
,2.434, 2.435, 2.478 ,2.490, 2.511, 2.514, 2.535 ,2.554, 2.566, 2.570, 2.586, 2.629 ,2.633, 2.642, 2.648, 2.684 
,2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848 ,2.880, 2.954, 3.012, 3.067 ,3.084, 3.090, 3.096, 
3.128, 3.233, 3.433 ,3.585, 3.585).  
     The second dataset (II), shown here represents COVID-19 mortality rate data for Mexico over a 
108-day period from March 4th to July 20, 2020. It was utilized by Almongy et al. [26]

(8.826, 6.105 ,10.383, 7.267 ,13.220, 6.015 ,10.855, 6.122 ,10.685, 10.035, 5.242 ,7.630 ,14.604 ,7.903 ,6.327 
,9.391 ,14.962 ,4.730 , 3.215 ,16.498, 11.665 ,9.284, 12.878, 6.656,3.440 ,5.854, 8.813 , 10.043, 7.260, 5.985, 
4.424 ,4.344 ,5.143 ,9.935 ,7.840 ,9.550 , 6.968 ,6.370 ,3.537 ,3.286 ,10.158, 8.108 ,6.697 ,7.151 ,6.560 , 2.988 
,3.336 ,6.814 ,8.325 ,7.854 ,8.551 ,3.228, 3.499 ,3.751, 7.486 ,6.625 ,6.140 ,4.909 ,4.661 ,1.867 ,2.838 ,5.392, 
12.042, 8.696 ,6.412 ,3.395 ,1.815 ,3.327 ,5.406 ,6.182 ,4.949 ,4.089 , 3.359 ,2.070, 3.298 ,5.317 ,5.442 ,4.557 
,4.292 ,2.500 ,6.535 , 4.648 ,4.697 ,5.459 ,4.120, 3.922 ,3.219, 1.402 ,2.438, 3.257 , 3.632, 3.233 ,3.027, 2.352 
,1.205 ,2.077, 3.778, 3.218, 2.926, 2.601, 2.065, 1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923). 
     Tables 5, and 6 for data (I), and  (II) show that the TLEGoIRa distribution beats Comparative 
distributions in several key criteria, including Akaike information criterion (AIC) , Consistent AIC 
(CAIC),Bayesian information criterion (BIC), Hannan-Quinn information (HQIC),Kolmogorov-
Smimov (KS) ststistic, Anderson-Darling (A), and Cramer-von Mises (W) values. The lower values 
of these measures for the TLEGoIRa distribution are preferable for comparative distributions. 
     Figures 3, and 5 show the Fitted densities for Data I, and II, respectively, and Figures 4, and 5 
show the empirical cdf plots for Data I and II. These visualizations enable us to evaluate the goodness 
of fit and see how well the model fits the data. 
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Table 5: Goodness-of-Fit Statistics for Data I 

Dist. MLEs -2L AIC CAIC BIC HQIC W A K-S p-
value 

TLEGoIRa 

θ� :1.4173 
α�:1.4214 
ℷ�:0.1896 
β� :1.6041 
γ�:2.0224 

48.81 107.62 108.58 118.79 112.05 0.0178 0.1600 0.0414 0.9997 

TEEGoIRa 

θ� :0.0443 
α�:0.8522 
ℷ�:3.3049 
β� :3.5479 
γ�:4.1427 

49.36 108.74 109.69 119.91 113.17 0.0356 0.2930 0.0530 0.9900 

BeGoIRa 

θ� :1.7430 
α�:1.0087 
ℷ�:0.0292 
β� :0.7674 
γ�:1.8205 

50.50 111.03 111.99 122.21 115.47 0.0165 0.1487 0.0982 0.5177 

KuGoIRa 

θ� :1.7872 
α�:1.0734 
ℷ�:0.0238 
β� :0.7657 
γ�:1.8912 

49.63 109.29 110.24 120.46 113.72 0.0164 0.1481 0.0750 0.8313 

EGGoIRa 

θ� :0.9743 
α�:1.7609 
ℷ�:0.0223 
β� :0.7207 
γ�:1.8454 

50.12 110.28 111.23 121.45 114.71 0.0165 0.1483 0.0826 0.7330 

WeGoIRa 

θ� :1.8695 
α�:1.0161 
ℷ�:0.0322 
β� :0.7167 
γ�:1.4519 

49.64 109.29 110.24 120.46 113.72 0.0308 0.2515 0.0598 0.9659 
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Figure 3: Fitted densities for Data I 

Figure 4: Empirical cdf plot for Data I 
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Table 6: Goodness-of-Fit Statistics for Data II 

Dist. MLEs -2L AIC CAIC BIC HQIC W A K-S p-
value 

TLEGoIRa 

θ� :0.6769 
α�:1.4676 
ℷ�:0.1046 
β� :2.1082 
γ�:0.7180 

265.12 540.24 540.83 553.65 545.68 0.0357 0.2127 0.0565 0.8805 

TEEGoIRa 

θ� :0.9677 
α�:1.1598 
ℷ�:0.0450 
β� :1.2991 
γ�:0.8986 

265.62 541.25 541.84 554.66 546.69 0.0517 0.3001 0.0646 0.7577 

BeGoIRa 

θ� :1.2413 
α�:0.9903 
ℷ�:0.0079 
β� :0.3841 
γ�:0.8618 

267.77 545.54 546.13 558.95 550.98 0.0909 0.5702 0.0833 0.4415 

KuGoIRa 

θ� :1.1977 
α�:0.9940 
ℷ�:0.0108 
β� :0.3686 
γ�:0.7788 

268.42 546.85 547.44 560.26 552.29 0.0802 0.4945 0.0683 0.6936 

EGGoIRa 

θ� :0.9884 
α�:1.2186 
ℷ�:0.0095 
β� :0.3768 
γ�:0.8146 

267.83 545.66 546.25 559.07 551.10 0.0846 0.5260 0.0605 0.8236 

WeGoIRa 

θ� :1.4253 
α�:1.0311 
ℷ�:0.1373 
β� :1.3555 
γ�:0.51167 

265.26 540.56 541.15 553.97 546.00 0.0433 0.2484 0.0607 0.8208 
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Figure 5: Fitted densities for Data II 

Figure 6: Empirical cdf plot for Data II 
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IV. Discussion

In this paper, we introduce a novel extension of the GoIRa model, referred to as the TLEGoIRa 
distribution. We provide explicit expressions for various statistical properties, including ordinary 
moments, incomplete moments, quantile function, rényi entropy and order statistics of the 
TLEGoIRa distribution. To estimate the unknown parameters, we employ the method of maximum 
likelihood estimation and undertake a simulation research to investigate the average bias and root 
mean square error (RMSE) as sample sizes rise. The results show a consistent model performance, 
with diminishing Abias and Rmse as the sample size grows. Furthermore, we validate the 
effectiveness of the proposed model through two real-life applications. Through these applications, 
we demonstrate that the proposed model outperforms several other competitive models in terms of 
goodness of fit. This empirical evidence underscores the enhanced flexibility and robustness of our 
novel model in accurately representing and modeling the characteristics of the given datasets when 
compared to the other competitive models under consideration. 
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Abstract 

 It has been observed by statistician that to find a suitable model for the survival analysis of cancer 

patients is really challenging. The main reasons for that is the highly positively skewed nature of 

datasets. During recent decades several statistician tried to propose one parameter, two-parameter, 

three-parameter, four-parameter and five-parameter probability models but due to either theoretical 

or applied point of view the goodness of fit provided by these distributions are not very satisfactory. 

In this paper a compound probability model called gamma-Sujatha distribution, which is a 

compound of gamma and Sujatha distribution, has been proposed for the modeling of survival times 

of cancer patients. dolor Many important properties of the suggested distribution including its 

shape, moments (negative), hazard function, reversed hazard function, quantile function have been 

discussed. Method of maximum likelihood has been used to estimate its parameters. A simulation 

study has been conducted to know the consistency of maximum likelihood estimators. Two real 

datasets, one relating to acute bone cancer and the other relating to head and neck cancer, has been 

considered to examine the applicability, suitability and flexibility of the proposed distribution. The 

goodness of fit of the proposed distribution shows quite satisfactory fit over other considered 

distributions. 

Keywords: Survival analysis, compounding, hazard function, reversed hazard 

rate function, stress-strength parameter, maximum likelihood estimation, 

applications. 

I. Introduction

Several statistical distributions have been extensively used for the modeling and analysis of 

survival times (time to event) data, also known as reliability data in biomedical sciences. On 

comparative studies on gamma and Weibull [1] distribution done by Shanker et al [2]  shows that 

on some datasets relating to head and neck cancer these two classical two-parameter lifetime 

distributions does not provide  good fit and on some datasets  they perform diversely. During 

recent decades researchers were trying to modify Weibull distribution which would provide better 

fit to survival times of cancer patients. We know that the Weibull distribution is the most popular 

distribution for modeling survival data that properly explain the mortality and failure. Several 

authors have extended the Weibull distribution by adding one or more additional shape 

parameters to bring more flexibility in the shape of the distribution to accommodate the nature of 
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the data. For example, exponentiated generalized Weibull (EGW) distribution by Cordeiro et al [3], 

Beta-Weibull (BW) distribution by Famoye et al [4], Kumaraswamy Weibull (Kum-W) distribution 

by Cordeiro et al [5], exponentiated Kumaraswamy Weibull (EKumW) distribution by Eissa [6], 

Alpha power Weibull (APW) distribution by Nassar et al [7], are some among others. Although, 

these two, three and four parameters extended Weibull distribution provide good fit to survival 

times of cancer patients, but are not quite satisfactory because, in general, cancer data are highly 

positively skewed. 

During recent decades several researchers have been trying to derive a suitable lifetime 

distribution to model data which are highly positively skewed, especially survival times of cancer 

patients. The search for highly positively skewed continuous distribution (mean is much less than 

the variance) has been studied by several researchers using compounding technique as the 

compounding always provides a highly positively skewed distributions. For instance, gamma 

distribution is a positively skewed distribution and its compounding with other positively skewed 

distribution provides highly positively skewed distribution. A compound gamma distribution 

arises when a random variable say X , follows gamma distribution with a shape parameter  and

scale parameter  and the parameter   itself behaves as a random variable with some 

distribution which is known as mixing distribution. There are four important one parameter 

positively skewed lifetime distributions namely, exponential distribution, Lindley distribution by 

Lindley [8], Shanker distribution by Shanker [9] and Sujatha distribution by Shanker [10] for 

modeling and analysis of survival time of cancer patients and out of these four distributions, 

Sujatha distribution provides much better fit as compared to the other distributions. The gamma-

Lindley distribution (G-LD) proposed by Abdi et al [11] which is a compound of gamma 

distribution with Lindley distribution of Lindley [8] is highly positively skewed distribution. The 

gamma – Shanker distribution (G-SD) introduced by Ray and Shanker [12], which is a compound 

of gamma distribution with Shanker distribution of Shanker [9] is also highly positively skewed 

distribution. Further exponential-Shanker distribution (E-SD) suggested by Ray and Shanker [13] 

which is the compound of exponential distribution with Shanker distribution is also positively 

skewed distribution. The G-LD and the G-SD for 0, 0, 0x      are defined by its probability 

density function (pdf) and cumulative density function (cdf) as follows  

 
 

  

2 1

2

1
; ,

1
G LD

x x
f x

x





  
 

 



 

  


 
  (1) 

 
   

  
1

1 1
; ,

1
G LD

x x
F x

x





   
 

 
 

     


 
 (2) 

 
 

  

2 2 1

22

1
; ,

1
G SD

x x
f x

x





   
 

 



 

  


 
 (3)

 
  

2 2

12

(1 ) (1 )
; ,

1
G SD

x x
F x

x





   
 

 
 

     


 
 (4) 

Sujatha distribution is defined by its pdf and cdf 
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The motivations for considering the gamma-Sujatha distribution (G-SUD), the compound of 

gamma and Sujatha distribution are as follows:   
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(i). Suppose X is the lifetime of component following gamma distribution with shape parameter   

and scale parameter  . If the sample is drawn from the population having variability in the scale 

parameter , then the variability can be well explained by assuming the distribution of   to be 

Sujatha distribution. 

(ii). In real life situation, the sustainability of the components of population differs from each other 

in terms of heterogeneity. The analysis of data from such populations, heterogeneity can easily be 

taken into consideration using compound distributions. G-LD and G-SD are the two compound 

distributions proposed for the analysis of such variation in the components of populations. As 

Sujatha distribution provides better fit over Lindley and Shanker distributions, it is the expectation 

that the G-SUD would provide better fit over existing compound distributions. 

 (iii). In general, compound distribution is the most suited distributions for the datasets having 

long right tail, which have been observed in some real lifetime datasets relating to cancer datasets. 

(iv). As Sujatha distribution performs well  compared to exponential and Lindley distribution so it 

is hoped that G-SUD would performs  better over the classical gamma and Weibull distributions as 

well as other two-parameters distributions.  

The whole paper is divided into eleven sections. The section one is introductory in nature. The 

gamma-Sujatha probability model and some of its results are given in section two. The hazard 

function and the reversed hazard function of the proposed probability model are given in section 

3. Section four contains the quantile and the moments of the distribution. The extreme order

statistics and the stochastic ordering of the distribution are given in sections 5 and 6 respectively. 

The maximum likelihood estimation of parameters and the estimation of stress-strength parameter 

of the distribution are discussed in sections seven and eighth. The simulation study to know the 

consistency of maximum likelihood estimators and applications of the distribution are provided in 

sections nine and ten respectively. The conclusion of the whole paper is given in section eleven.  

II. Gamma-Sujatha Distribution

The pdf and the cdf of gamma-Sujatha distribution (G-SUD) are obtained as 
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     (8)

Figure 1 and 2 shows the pdf and cdf of G-SUD for selected values of parameters.  The G-SUD 

shows the tendency to accommodate right tail and for particular values of parameters, the tail 

approach to zero at a faster rate. This means that G-SUD would provide better fit appropriately to 

those datasets where there is an extended right tail or the right tail approaches to zero at a faster 

rate. Such datasets are quite prevalent in the biomedical sciences relating to survival times of 

cancer patients. 
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 Fig. 1: pdf plots of G-SUD 

  Fig. 2: cdf plots of G-SUD 

Theorem 1: The G-SUD is decreasing for 1   . 

Proof:  We have, 
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where C is a constant. We have 

RT&A, No 3 (79) 
Volume 19, September 2024

81



Mousumi Ray and Rama Shanker  
A PROBABILITY MODEL FOR SURVIVAL ANALYSIS … 

 
       
       

2

2

1 2 31
log ; ,

1 2

x xd
f x

dx x x x x

    
 

    

          
         

 For 1  ,    log ; , 0
d

f x
dx

    and this means that   f x  is decreasing for all x

III. Hazard function and Reversed hazard function

The hazard function and the reverse hazard function are two important functions of a distribution. 

The reliability (survival) function of G-SUD is given by      
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The corresponding hazard and reversed Hazard function of G-SUD are given by 
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 Fig.3:  Hazard function of G-SUD 
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 Fig.4:  Reverse hazard function of G-SUD 

Theorem 2: For 1  , the hazard function of the G-SUD is decreasing and for 1   it is unimodal. 

Proof: We have 
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It is quite obvious that for 1  ,   0x   and for 1  ,   0x   has a global maximum at mode 

(say 
0x ). 

Theorem 3: The G-SUD has decreasing reverse hazard function.

Proof: We have,
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This proves the theorem for all ,  . 

IV. Quantiles and Moments

The pth quantiles 
px of G-SUD is defined by  pF x p ,is the root of the equation 
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It should be noted that this
px  may be used to generate G-SUD random variates. Further, the 

median of G-SUD can be obtained from above equation by taking
1

2
p  . 

The moments of G-SUD can be obtained as follows: 

If X G-SUD  ,   then, 
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Thus, in general,  rE X   for 1r  .This means that all moments of G-SUD are infinite and hence 

G-SUD has no mean. As G-SUD has no mean, if we take a sample  1 2, ,..., nX X X  from G-SUD, 

then mean X  does not tend to a particular value. Since G-SUD has no raw and central moments, 

we have to derive inverse moments. Negative moments are useful in several life applications, such 

as life testing problems and estimation purpose. The negative moments for G-SUD can be obtained 

as follows: 

The thr negative moment (about origin) ( )r 
 ,of the G-SUD is given by,
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

   


          
  

 (14)

Thus, for r = 1,2,3 and 4, we have 
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 

 
  

2

1 2

2 6
, 1

2 1

 
 

   


 
  

  
 (15)

 

 
   

2

2 2 2

2 3 12
, 2

2 1 2

 
 

    


 
  

   
 (16)

 

 
    

2

3 3 2

6 4 20
, 3

2 1 2 3

 
 

     


 
  

    
 (17)

 

 
     

2

4 4 2

24 5 30
, 4

2 1 2 3 4

 
 

      


 
  

     
 (18)

It is obvious from the above expressions for negative moments that negative moments are not 

defined for 1  . 

V. Extreme Order Statistics

Let, 1: :,...,n n nX X be the order statistics of a random sample of size n from the G-SUD  , 

distribution with distribution function  F x . The cdf of the minimum order statistic 1:nX is given by 

 

  
          

 

  
1:

2

22

2

22

1 2 2 2
2

1
1

2
n

n

X

x x x
x x

x
F x

x

 



        
  

 

  





          
     
      
   
 
  

The cdf of the maximum order statistic 1:nX is given by 

 

          

 

  
:

2

2

22

1 2 2 2

1

2
n n

n

X

x x x
x

x
F x

x





        

 

  


          
  
     

  
   

 
  

VI. Stochastic Orderings

In probability theory and Statistics, a stochastic order quantifies the concept of one random 

variable being “bigger” than other. In many problems, it becomes necessary to compare two 

lifetime distributions with reference to some of their characteristics. Stochastic orders provide the 

necessary tools in such case. 

A random variable X  is said to be smaller than a random variable Y  in the  

i. Stochastic order  stX Y  if    X YF x F y  for all x

ii. Hazard rate order  hrX Y if    X Yh x h y for all x

iii. Mean residual life order   mrlX Y  if    X Ym x m y for all x

iv. Likelihood ratio order  lrX Y if 
 

 
X

Y

f x

f Y
 decrease in x

iv. Likelihood ratio order  lrX Y if 
 

 
X

Y

f x

f Y
 decrease in x

The following results due to Shaked and Shantikumar [14] are well known for establishing 
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stochastic ordering of distributions: 

lr hr mrl

st

X Y X Y X Y

X Y

 



Theorem 4: Let  1 1 1G-SUD ,X   and  2 2 2G-SUD ,X   .If
1 2    and

1 2  if

1 2 1     with 
1 2  , then 

1 2 1 2 1 2lr hr stX X X X X X  .

Proof: We have 

 

 

       

       

2

1 1 2

1

2

2 33 2

1 1 1 1 1 1 2 2 2

2 33 2

2 2 2 2 2 2 1 1 1

1 2 2

1 2 2

X

X

x x xf x
x

f x x x x



 



        

        







         
 


         
 

    (19)

Case I: For 
1 2    , we get

  
      

      

23 2 3
1 1 1 2 2

2

1 23 2
12 2 2 1 1

1 1 2

1 1 2

x x x
G x

xx x

       

      

           
  

          
 

     

    

   

    
1 2 1

2 2

2 12 2 1 1

log 2 1 2 13 3

1 2 1 2

d G x x x

dx x xx x x x

    

        

         
      
                  

   2 1Q Q  
 (20)

Where 

 
   

    
2

2 13

1 2

x
Q

x x x

 


    

   
  
        

 
 

 

     

     
2 2

2

3 2 1 1 2
0

1 2

x xd
Q

d x x x

     


     

        
  

      

 (21)

The 1X is stochastically smaller than 2X with respect to the likelihood ratio for 1 2   

provided 1 2  .

Case II: For 1 2 1     , we get

 
    

    

1 2

2

1 1 1

2 2

2 2 2

1 2

1 2

x x x
G x

xx x

     

    

      
  

  
        

 
 (22)

 

   

    

   

    

2

1 21 1 2 2

2 2

1 1 2 2

log

2 1 2 1

1 2 1 2

d G x

dx

x x

x x x xx x x x

      

        

        
        
                  

   1 2S S  
 (23)

Where 

  
   

    
2

2 1

1 2

x
S

x xx x

   


   

   
   
       

 
    

     
2

2

4 6 4 2 6 2 1 1
0

1 2

x xd
S

d x xx x

     


    

       
   

     

 for 1   
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Thus, for 1 2  , 
 2log

0
d G x

dx
 . The 1X is stochastically smaller than 2X with respect to the 

likelihood ratio for 1 2 1     provided 1 2  . 

VII. Estimation of parameters

Let  1 2, ,..., nx x x be the observed values of a random sample  1 2, ,..., nX X X from the G-SUD. Then 

the log-likelihood function is given by 

 
       

 

1

2

3
1 1

2
3

1

1 1 2

,
2

n n

n i i i

i i

n

i

i

x x x

L

x





    


 
 





 





              
  

   

 



The log-likelihood function of G-SUD is thus obtained as 

           

       

22

1

1 1

ln , ln 3 ln ln 2 ln 1 1 2

1 ln 3 ln

n

i i

i

n n

i i

i i

L n n n x x

x x

          

  



 

             
 

    



 

The maximum likelihood estimators of  and , say ̂ and ̂ are the simultaneous solutions of the 

following log likelihood  

     

    
   

2
1 1 1

ln , 2 3
ln ln 0

1

n n n
i

i i

i i ii i

L xn
x x

x x

   


      

   
     

    
  

   

 
 

        
 

 2 2
1 1

ln , 2 1 2( ) 13 1
3 0

2 1 1 2

n n
i

i i ii i

L n xn

xx x

    


         

    
     

         
 

It is very difficult to solve these two log-likelihood equations directly, so we will use Fisher’s 

scoring method.  We have  

            

     

2
2

2 2 2
2

1

2 1 2 3ln ,

1

n i i i i

i
i i

x x x xL n

x x

      

    

              
 

    


 

    

       

     
 

2

2 2

2
2

1 1

1

2 3 2 1ln , ln ,1

1

i i

n n
i i

i i i
i i

x x

x xL L

xx x

  

      

       

    
 

             
  

       
 

     

 

       

   

        

2

2 22
2

2 2 2 2
2 2

1

2 1 1 2

2 2 2 1 2 1ln , 3

2 1 1 2

i i

n
i

i
i i

x x

n n xL n

x x

     

     

        

       
 

              
  

         


The following equation can be solved for MLE’s of ̂ and ̂  of G-SUD 

   

   

 

 
00

0

2 2

2

0

2 2
0

2
ˆˆ
ˆˆ

ln , ln , ln ,

ˆ

ˆln , ln , ln ,

L L L

L L L

  
  

     

   

      

    


    
   

                       

where 0 and 0 are initial value of  and   respectively. The initial values of the parameters

taken in this paper for estimating parameters are 0 0.5  and 0 0.5  . 
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VIII. Estimation of the Stress-Strength parameter  R P X Y 

In reliability, the stress-strength model describes the life of a component which has a random 

strength X subjected to a random stress Y .The component fails at the instant that the stress 

applied to it exceeds the strength, and the component will function satisfactory Whenever X Y . 

In this section our objective is to estimate  R P X Y   when 

 1 1G-SUD ,X   and  2 2G-SUD ,Y   , X and Y are independently distributed. The, the 

Stress- Strength Parameter is given by 

     
0

| YR P X Y P X Y Y y f y dy


    

   
0

1 X YF y f y dy


   

     

    

 

    

  

     
1 2

1 2

2

1 1 1 1 1 2

2 2 23

2 2 1 1 1 1

2 22

1 1
1

2 32 20
1 1 2 2 1 1

1 2
1

2 2
1 2

1
1

2 2

y
y y

y y

y
y dy

y y

 

 

    
  
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Let,  1 2, ,..., nx x x be the observed value of a random sample of size n from G-SUD  1 1,  and 

 1 2, ,..., my y y be the observed value of a random sample of size m  from G-SUD  2 2,  . 
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Solving these non-linear equations using any iterative methods available in R  packages we can 

obtain the MLEs of the parameters as  1 2 1 2
ˆ ˆ ˆ ˆ, , ,    and hence the MLE of R can thus be obtained 

as 
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Ŝ  G  1 2 1 2
ˆ ˆ ˆ ˆ, , ,   

IX. A Simulation Study

This section contains a simulation study to examine the consistency of maximum likelihood 

estimators of the G-SUD. The mean, bias (B), MSE and variance of the MLE’s are computed using 

the formulae 

1

1 ˆ
n

i

i

Mean H
n 

  ,  
1

1 ˆ
n

i

i

B H H
n 

  ,  
2

1

1 ˆ
n

i

i

MSE H H
n 

  , 2Variance MSE B 

Where,   ,H   and  ˆ ˆ ˆ,i iH   . 

The simulation results for different parameter values of G-SUD have been presented in tables 1 

and 2 respectively using acceptance-rejection method: 

a. Acceptance -rejection method for generating random samples from the G-SUD consists of

following steps.

i. Generate a random variable Y from exponential     and  U from Uniform  0,1

ii. If
( )

( )

f y
U

M g y
 , then set X Y (“accept the sample”); otherwise (“reject the sample”)

and if reject then repeat the whole process until we get the required samples, where 

M is a constant.

b. The sample sizes 25,50,100,150,200n  are taken

c. The parameter values are considered as 5.5   , 0.6    and  6   , 10 

d. Each sample size is replicated 10000 times

Tables 1 and 2 reveal that for increasing sample size, the value of the biases, MSE and variances of

the MLE of the parameters of G-SUD becoming smaller and certify the first-order asymptotic

theory of maximum likelihood estimators.

Table 1: The mean, Biases, MSE and Variances of G-SUD for 5.0   , 0.6   

Parameters Sample Size Mean Bias MSE Variance 

       ̂  25 5.105803 0.1058031 0.01352763 0.002333342 

50 5.097851 0.0978509 0.01195673 0.00238192 

100 5.093918 0.0939184 0.0109286 0.00210792 

150 5.092278 0.0922778 0.01075683 0.00224162 

200 5.089048 0.0890482 0.00983284 0.00190325 

       ̂  25 0.595456 -0.0045436 0.00004471 0.00002407 

50 0.595628 -0.0043716 0.00004846 0.00002935 

100 0.596119 -0.0038801 0.00004259 0.00002753 

150 0.596454 -0.0035456 0.00003761 0.00002504 

200 0.596588 -0.0034117 0.00003651 0.00002487 

Table 2: The mean, Biases, MSE and Variances of G-SUD for 6.0   , 10   

Parameters Sample Size Mean Bias MSE Variance 

       ̂  25 5.945172 -0.05482844 0.0042597 0.00125354 

50 5.961664 -0.03833594 0.0027186 0.00271866 

100 5.980525 -0.01947528 0.0025010 0.00212172 

150 5.985068 -0.01893228 0.0023664 0.00200800 

200 5.987536 -0.01246439 0.0022490 0.00209365 

       ̂  25 10.08853  0.08852744 0.0120358 0.00419872 

50 10.06313  0.06317850 0.0088113 0.00481984 
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100 10.03813  0.03813436 0.0064691 0.00501485 

150 10.02125  0.02124674 0.0064981 0.00604670 

200 10.00821  0.00820760 0.0055774 0.00550691 

X. Applications

This section deals with the goodness of fit of G-SUD over G-LD, G-SD, Weibull and gamma 

distributions to illustrate its applications and using two real datasets relating to survival time of 

acute bone cancer and head and neck cancer patients. The summary of the two datasets are 

presented in tables 3 and 4 respectively. The total time to test (TTT) plots of the two datasets are 

given in figures 5 and 6 respectively. The goodness of fit of the considered distributions for two 

datasets is provided in tables 5 and 6 respectively.  The fitted plots of the considered distributions 

for the two datasets are given in figure 7. The p-p plots of the considered distributions for the two 

datasets are finally presented in figures 8 and 9 respectively. The datasets are as follows: 

Dataset 1: Acute bone cancer 

This dataset represents the survival times (in days) of 73 patients who diagnosed with acute bone 

cancer available in Mansour et al [15] and are as follows: 

0.09, 0.76, 1.81, 1.10, 3.72, 0.72, 2.49, 1.00, 0.53,0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 

1.57, 4.93, 11.07, 1.63, 1.39, 4.54, 3.12,86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1 .46, 2.75, 

1.38, 2.76, 1.86, 2.68, 1.76,0.67, 1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 13.75, 0.67, 3.70, 

0.76, 3.63, 0.68,2.65, 0.95, 2.30, 2.57, 0.61, 3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 4.18, 1.37. 

Table 3: The summary of acute bone cancer dataset 

Min. 1st Qu. Median Mean Variance 3rd Qu. Max. 

0.090 0.920 1.570 3.755 112.33 2.750 86.010 

 Fig.5:  TTT-plot of the acute bone cancer dataset and simulated data of G-SUD respectively. 

Dataset 2: Head and Neck cancer 

This dataset is the survival time of 44 patients diagnosed by Head and Neck cancer disease are 

available in Efron [16] and are given by  

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 

94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194,195, 209, 249, 281, 319, 339, 432, 469, 

519, 633, 725, 817, 1776 

Table 4: The summary of head and neck cancer dataset 

Min. 1st Qu. Median Mean Variance 3rd Qu. Max. 

 12.20   67.21 128.50  223.48 93286.41   219.00 1776.00 
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Fig.6:  TTT-plot of the head and neck cancer dataset and simulated data of G-SUD respectively. 

Table5: ML estimates, 2log L ,AIC , BIC and K-S statistics with their P-values of the distributions for acute bone 

cancer data set  

Distributions ML estimates 

 ˆ ˆ.S Eof 

 ˆ ˆ.S Eof 

2log L AIC BIC K-S p- value

G-SUD 4.4567 (1.1253) 

0.7646 (0.1776) 

281.7757 285.7757 300.0857 0.09 0.86 

G-SD  4.8969(1.3904) 

0.4967(0.1360) 

282.8051 286.8051 301.1151 0.10 0.39 

G-LD 5.1600(1.8468) 

0.4375(0.1602) 

284.315 288.315 302.625 0.11 0.33 

Gamma   0.1985(0.0389) 

0.7456(0.1057) 

334.5311 338.5311 352.8411 0.56 0.00 

Weibull 0.4395(0.0687) 

0.7655(0.0567) 

322.8033 326.8033 341.1133 0.25 0.00 

Table 6: ML estimates, 2log L , AIC,BIC and K-S statistics with their P-values of the distributions for head and neck 

cancer dataset. 

Distributions ML estimates 

 ˆ ˆ.S Eof 

 ˆ ˆ.S Eof 

2log L AIC BIC K-S p- value

G-SUD 8.6223 (11.3202) 

11.1699(14.5932) 

558.4763 562.4763 576.7863 0.08 0.90 

G-SD 8.6787(11.7435) 

10.0923(14.8515) 

558.4641 562.4641 576.7741 0.09 0.81 

G-LD 8.4483(10.4902) 

11.1557(14.3688) 

558.4555 562.4555 576.7655 0.09 0.70 

Gamma 0.0047(0.0010) 

1.0522(0.1886) 

564.0254 568.0254 582.3354 1.00 0.00 

Weibull 0.0070(0.0034) 

0.9234(0.0809) 

563.7155 567.7155 582.0255 0.5 0.04 
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Fig. 7:  Fitted plots of distributions for acute bone cancer and head and neck cancer datasets 

Fig. 8:  P-P plots for considerd distributions of acute bone cancer dataset 

Fig. 9:  P-P plots for considerd distributions of head and neck cancer dataset 
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From the summary of the two datasets in  tables 3 and 4, it is quite obvious that the considered 

datasets are highly positively skewed and highly over-dispersed. Based on the values of -2logL , 

AIC (Akaike information criterion), Kolmogorov – Smirnov (K-S) statistic and the fitted plots of 

two parameter lifetime distributions, it is crystal clear from the goodness of fit that two parameters 

G-SUD is the best for modelling survival times of patients suffering from acute bone cancer and

head and neck cancer. It can be recalled that recently Klakattawi [17] proposed a new extended 

Weibull distribution with five parameters and used it for analysing survival time of cancer patients 

and found that it gave much better fit than several two-parameter, three parameter ,four parameter 

and five parameter lifetime distribution including Weibull distribution, alpha power Weibull 

(APW) distribution by Nassar et al [7], Beta-Weibull (BW) distribution by Famoye et al 

[4],Kumararaswamy-Weibull (Kum-W) distribution by Cordeiro et al [5], exponentiated 

generalized Weibull (EGW) distribution by Cordeiro et al [3], a new Kumaraswamy family of 

generalized Weibull distribution by Ahmed et al [18] and exponentiated Kumaraswamy Weibull 

distribution by Eissa [6], some among others. Here we would like to emphasize that the proposed 

gamma-Sujatha distribution (G-SUD) provides much closure fit than all these two-parameter, 

three-parameter, four-parameter and five-parameter lifetime distributions as it can be seen from 

the test of goodness of fit given by Klakattawi [17]. The most interesting feature of G-SUD is that 

being two-parameter distribution is much easier to characterize and handle the distribution as 

compared to three-parameter, four-parameter and five parameter distributions and hence it can be 

considered an important probability model for modeling survival time of cancer patients. 

XI. Concluding Remarks

In this paper, we propose a gamma-Sujatha probability model, a compound of gamma and Sujatha 

distribution to model data of long tails. Some important statistical and reliability properties have 

been discussed. Maximum likelihood estimation has been discussed for estimating parameters and 

simulation studies to know the consistency of ML estimators are presented. The goodness of fit of 

the G-SUD has been compared with several well-known two-parameter distributions and 

observed that it provides much better fit and hence it can be considered as an important 

probability models for survival time of patients suffering from acute bone cancer and head and 

neck cancer in  biomedical science. As the proposed distribution is the new probability model, a lot 

of works can be done in the future and definitely it will draw the attention of research workers in 

biomedical sciences and biomedical engineering.  
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Abstract

In this paper, we study a discrete time shock model which is defined based on the length of the time
between successive shocks. For a system that is exposed to a sequence of random shocks over time
under this model, if the interarrival time between two successive shocks is equal to a prefixed critical
time point such as δ, the system fails, and the system is not damaged otherwise. We have considered
two situations for the system, which are regular situation and critical situation, then we investigate
the statistical behavior of the systemŠs lifetime under these situations. More precisely, we obtain the
probability generating function of the system’s lifetime, the mean time to failure, the variance of the
system’s lifetime, the Laplace transform of the system’s lifetime, and some other related results. We end
the paper with an example including numerical comparisons of the results.

Keywords: discrete time shock model, intershock time, critical time point

1. Introduction

Studying systems in various sciences is very important in maintaining, improving and reducing
their errors. Shock models are useful models for studying the systems which are subject to
random shocks at random times. Since the probabilistic behavior of a system under the influence
of factors such as shocks is important to prevent system failure, therefore, shock models have
attracted a great deal of interest in applied probability, reliability theory, and engineering. There
are three basic types of shock models in the literature, which are cumulative shock models,
extreme shock models, and run shock models. In a cumulative shock model, a system break
down because of a cumulative effect; in an extreme shock model, a system break down because
of one single large shock; in a run shock model, the range of a certain number of consecutive
shocks is considered a failure criterion. For more on these, see, e.g., [1], [8], [18], and [23].
Moreover, models that can be produced by combining these traditional models can be found in
[9].

In addition to the above traditional shock models, there are other shock models that have
been introduced and developed in recent years. The so-called δ-shock model is among these
new models that have received more attention. According to the δ-shock model, the system
fails when the interarrival time between two successive shocks (intershock time) falls below a
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prefixed threshold δ > 0. Therefore, the lifetime of the system is defined by T = ∑N
i=1 Xi, where

X1, X2, . . . represent the intershock times, and the random variable N is the wating time for the
first intershock time which is less than δ, i.e., {N = n} iff {X1 > δ, . . . , Xn−1 > δ, Xn ≤ δ}. The
δ-shock model was first introduced by Li et al. in [13], after which it was widely studied by
many scientists and researchers, for example, [14], [27], [15], [16], and [26]. Some extensions and
generalizations were provided for the δ-shock model, see, e.g., [3], [19], and [20]. Moreover, a
mixed shock model is defined by Wang and Zhang in [26] in which the system fails when an
extreme shock occurs or a δ-shock. Ma and Li [17] have introduced and studied a censored δ-
shock model. Eryilmaz [4] studied the lifetime behavior of a discrete time δ-shock model. Tuncel
and Eryilmaz [24] investigate the survival function and the mean lifetime of the system failure
considering the proportional hazard rate model. Goyal et al. [6] studied a general class of shock
models with dependent intershock times.

In this paper, we aim to study a new discrete time shock model, which can be reduced to the
classical δ-shock model in a special case. In general, in the new model, we do not have a critical
threshold as was the case for δ-shock models, however, we have a critical time point so that if
the intershock time is equal to the critical time point, then the system fails. To our knowledge,
there is no such a shock model as this in the literature. Furthermore, we investigate the system
under the assumption that the intershock times X1, X2, . . . are inflated at a particular point of
time. This means that the frequency of some points of the times between successive shocks may
occur more than expected in regular models. We will study the lifetime of the system under the
new model and new assumptions. To this end, we obtain the probability generating function of
the system’s lifetime, the mean time to failure of the system, the variance of the system’s lifetime,
the Laplace transform of the system’s lifetime, and some other related results. Furthermore, we
provide an illustrative example for the new model.

The paper organized as follows. Section 2 introduces the model and assumptions. The statis-
tical properties of the intershock times under the inflation property are investigate in Section 3.
The life properties of the system under the new model are derived in Section 4. The paper ends
with an example in Section 5.

2. Model Description

2.1. Regular Situation

We consider a system that is subject to a sequence of external shocks occur randomly over
time. Let Xi denote the time between ith and (i + 1)th shocks for i = 1, 2, . . . . We assume
that the intershock times X1, X2, . . . take positive integer values and are independent identically
distributed (i.i.d.) by an arbitrary discrete distribution with probability mass function (pmf)
P(X = x) (with P(X = 0) = 0). The performance of the system is such that when the intershock
time is not equal to a prefixed positive integer δ (i.e. Xn ̸= δ), the system does not fail, and
if Xn = δ, the system fails. Under these assumptions the lifetime of the system is defined as
follows:

Tδ =
N

∑
i=1

Xi, (1)

where the stopping random variable N is defined as

{N = n} ⇔ {X1 ̸= δ, X2 ̸= δ, . . . , Xn−1 ̸= δ, Xn = δ}. (2)

Hence, the pmf of N is obtained as follows:

P(N = n) =
(
1 − P(X1 = δ)

)n−1P(X1 = δ), n = 1, 2, . . . ,

that is, the random variable N has the geometric distribution with mean 1
P(X1=δ)

.
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Figure 1: Visual understanding of the system under the model.

Note that in the case where δ = min{Xi : i = 1, 2, . . . } we have

{N = n} = {X1 ̸= δ, X2 ̸= δ, . . . , Xn−1 ̸= δ, Xn = δ}
= {X1 > δ, X2 > δ, . . . , Xn−1 > δ, Xn = δ},

= {X1 > δ, X2 > δ, . . . , Xn−1 > δ, Xn ≤ δ},

thus, the model reduces to the classical δ-shock model.
Note also that when the intershock times Xi’s follow a regular distribution, we say that the

system is in a regular situation.

2.2. Critical Situation

We are interested in studying the condistions in which the system is in a critical situation. Since
the system fails whenever the intershock time equals the critical time point δ, so one of the
conditions that makes the system to go from a regular situation to a critical situation is that
the intershock times have an overdispersion at the point δ. This means that the frequency of
intershock times at point δ may occur more than expected in a regular model. In this case, the
intershock times Xi’s follow an inflated distribution (with inflation point δ), and we denote the
lifetime of the system by T+

δ .

3. Properties of Intershock Times Under Inflation

According to the descriptions in Section 2, the intershock time X takes positive integer values
with a pmf P(X = x). Based on the assumptions, the distribution of intershock times X is either
regular (not inflated) or inflated. Thus, as useful notations, henceforth, instead of P(X = x) we
will use Preg(X = x) and P+(X = x), respectively, if X is distributed by a regular distribution or
if X is distributed by an inflated distribution.

In the context of inflated distributions, a discrete random variable X with support χ is said
to be inflated at a particular point k (k ∈ χ), if its pmf is given by

P+(X = x) =


α + (1 − α)Preg(X = x) if x = k,

(1 − α)Preg(X = x) if x ∈ χ − {k},

(3)

where α ∈ [0, 1] is an inflation parameter.
For example, if X1, X2, . . . are i.i.d. 3-inflated geometric distribution, we have Preg(X = x) =

p(1 − p)x−1 for x = 1, 2, . . . , and 0 < p ≤ 1, thus

P+(X = x) =

{
α + (1 − α)p(1 − p)2 if x = 3,
(1 − α)p(1 − p)x−1 if x ∈ {1, 2, 4, 5, 6, . . . }.

For some references on inflated distributions, see, for example, [5], [10], [12], and [21].
In following, we investigate some distributional properties of a general k-inflated distribution.

First, the main property of an inflated distribution is proved in the following theorem.
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Theorem 1. Let the intershock time X follows the k-inflated distribution in (3). Then P+(X =
k) ≥ Preg(X = k).

Proof. We have 0 ≤ Preg(X = x) ≤ 1 for any x in its support. On the other hand, for α = 0
we have P+(X = k) = Preg(X = k), and for α = 1, P+(X = k) is degenerated pmf. Now, let
us consider α ∈ (0, 1). Therefore multiplying both sides of Preg(X = k) < 1 by α and adding
−αPreg(X = k) to both sides gives

α − αPreg(X = k) > 0.

Finally, adding both sides by Preg(X = k), we get α + (1 − α)Preg(X = k) > Preg(X = k), that is,
P+(X = k) > Preg(X = k). This completes the proof. ■

Therefore, by Theorem 1, in a k-inflated distribution the probability of occurrence of k is
higher than in a distribution with regular pmf Preg(X = x).

In the next theorem, we obtain the cumulative distribution function (cdf) of a k-inflated
random variable distributed by (3).

Theorem 2. Let the intershock time X follows the k-inflated distribution in (3). If the cdf of X in
regular mode is denoted by Freg(x), then the cdf of X in inflated mode is given by

F+(x) =


(1 − α)Freg(x) if x < k,

α + (1 − α)Freg(x) if x ≥ k.

Proof. Using (3), we have for x < k,

F+(x) =
x

∑
j=0

P+(X = j) = (1 − α)
x

∑
j=0

Preg(X = j) = (1 − α)Freg(x),

and if x ≥ k, we have

F+(x) =
x

∑
j=0

P+(X = j) =

((
(1 − α)

x

∑
j=0

Preg(X = j)
)
− (1 − α)Preg(X = k)

)
+ α + (1 − α)Preg(X = k)

= α + (1 − α)Freg(x).

This completes the proof. ■
Theorem 3. Let the intershock time X follows the k-inflated distribution in (3). If the reliability
function of X in regular mode is denoted by F̄reg(x), then the reliability function of X in inflated
mode is given by

F̄+(x) =


α + (1 − α)F̄reg(x) if x < k,

(1 − α)F̄reg(x) if x ≥ k.

Proof. By using the definition of reliability function (F̄+(x) = P+(X > x)) and using Theorem
2 the proof is straightforward. ■

In the following theorem, we obtain the moments related to interarrival times between suc-
cessive shocks under k-inflated distribution in (3).

Theorem 4. Let Ereg[Xr] be the rth moment of the intershock time X in its regular mode. The
rth moment of the k-inflated version of X distributed by (3) is

E+[Xr] = αkr + (1 − α)Ereg[Xr].

In particular, for r = 1 and r = 2, we have

E+[X] = αk + (1 − α)Ereg[X], (4)

E+[X2] = αk2 + (1 − α)Ereg[X2]. (5)
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Proof. We have

E+[Xr] = ∑
x

xrP+(X = x) =

((
(1 − α)∑

x
xrPreg(X = x)

)
− (1 − α)krPreg(X = k)

)
+ kr (α + (1 − α)Preg(X = k)

)
= αkr + (1 − α)Ereg[Xr].

The theorem is proved. ■

Corollary 1. The variance of a k-inflated intershock time X distributed by (3) is given by

Var+(X) = Varreg(X) + α2
(

2kEreg[X]− E2
reg[X]− k2

)
+ α

(
2E2

reg[X]− Ereg[X2]− 2kEreg[X] + k2
)

,

where Varreg(X) is the variance of X in its regular mode.

Proof. Use Equations (4) and (5) and the definition of variance. This completes the proof. ■
In following, we calculate the probability generating function (pgf) of the inflated distribution

in (3).

Theorem 5. If intershock time X follows the k-inflated distribution in (3), then its pgf is

G+
X (z) = αzk + (1 − α)Greg

X (z),

where Greg
X (z) is the pgf of X in its regular mode.

Proof. We have

G+
X (z) = E+[zX ] = ∑

x
zxP+(X = x) = αzk + (1 − α)∑

x
zxPreg(X = x)

= αzk + (1 − α)Ereg(zX)

= αzk + (1 − α)Greg
X (z).

The theorem is proved. ■
Note that if α = 0, then Equation (3) gives P+(X = x) = Preg(X = x), F+(x) = Freg(x),

F̄+(x) = F̄reg(x), E+[Xr] = Ereg[Xr], and G+
X (z) = Greg

X (z). Therefore, when the inflation param-
eter α tends to zero, then the inflation property for the random variable X reduces the regular
state.

4. Statistical Properties of the System’s Lifetime

Following Section 2, when the intershock times are not equal to δ, the system continues to work
safely. Indeed, if our observations of intershock times have overdispersion at point δ, then the
system is in an critical situation and is expected to fail soon. Hence, it is important to study the
lifetime of the system when the intershock times follow an δ-inflated distribution. This is done
in the following.

The reliability function (or survival function) of the system’s lifetime can be expressed by

P(Tδ > t) = P

(
N

∑
i=0

Xi > t

)
=

∞

∑
n=1

P

(
n

∑
i=1

Xi > t

)
P(N = n). (6)

Since the distribution of intershock times is arbitrary, therefore, deriving a general explicit
representation of the reliability function from Equation (6) is difficult, or very complex if ob-
tained. Therefore, the probability generating function (pgf) can be useful for calculation of the
probability mass function of the system’s lifetime. Following theorem gives us the pgf of the
system’s lifetime.
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Theorem 6. Let X1, X2, . . . be the intershock times in the model described in Section 2, and let
also X denotes a generic random variable of Xi’s. When the system is in the critical situation,
the pgf of the system’s lifetime becomes

GTδ
(z) =

(
αzδ + (1 − α)Greg

X (z)
) (

α + (1 − α)Preg(X = δ)
)

1 − (1 − α)Preg(X ̸= δ)
(

αzδ + (1 − α)Greg
X (z)

) . (7)

Proof. Since the system is in the critical situation, so X is δ-inflated distrebuted. The pgf of
T+

δ can be written as (by using Equation (1))

GT+
δ
(z) = E[zT+

δ ] = E
[
z∑N

i=1 Xi
]

= E
[

E+
[
z∑N

i=1 Xi
∣∣N]]

= E
[(

G+
X (z)

)N
]

= GN
(
G+

X (z)
)
, (8)

where GN(z) is the pgf of random variable N.
Since N has geometric distribution with parameter P+(X = δ), therefore, the pgf of N is

obtained as (use also (3))

GN(z) =
z
(
α + (1 − α)Preg(X = δ)

)
1 −

(
1 −

(
α + (1 − α)Preg(X = δ)

) )
z

. (9)

Hence, by using Equation (9) in Equation (8), we obtain

GT+
δ
(z) =

G+
X (z)

(
α + (1 − α)Preg(X = δ)

)
1 −

(
1 −

(
α + (1 − α)Preg(X = δ)

) )
G+

X (x)
. (10)

Consequently, by applying Theorem 5 to Equation (10) we get the desired result. This com-
pletes the proof. ■

In the next theorem, we obtain an explicit formula for the mean lifetime of the system, which
defines the system’s mean time to failure. The second moment is also provided.

Theorem 7. Let X1, X2, . . . be intershock times in the model described in Section 2, and let also
X denotes a generic random variable of Xi’s. The mean lifetime of the system in the critical
situation is

E[T+
δ ] =

αδ + (1 − α)Ereg[X]

α + (1 − α)Preg(X = δ)
, (11)

and the second moment is

E[T+
δ

2
] =

(
(1 − α)Preg(X ̸= δ)

α + (1 − α)Preg(X = δ)

)
(1 − α)

(
Ereg[X2]− δ2Preg(X = δ)

)
+ δ2 (α + (1 − α)Preg(X = δ

)
+

2((1 − α)Preg(X ̸= δ))2

(α + (1 − α)Preg(X = δ))2

(
(1 − α)

(
Ereg[X]− δPreg(X = δ)

) )2

+ 2
(

(1 − α)Preg(X ̸= δ)

α + (1 − α)Preg(X = δ)

)(
(1 − α)

(
Ereg[X]− δPreg(X = δ)

) )
× δ

(
α + (1 − α)Preg(X = δ

)
. (12)

Proof. Since N is a stopping time for Xi’s (i = 1, 2 . . . ), so the mean lifetime of the system
can be computed as

E[T+
δ ] = E

[
E

[
N

∑
i=1

Xi

] ∣∣N] =
∞

∑
n=1

E+

[
n

∑
i=1

Xi

]
P(N = n) = E+[X]E[N]. (13)
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Since N follows the geometric distribution with parameter P+(X = δ), therefore (use also
(3))

E[N] =
1

P+(X = δ)
=

1
α + (1 − α)Preg(X = δ)

, (14)

and by using Equation (14) in Equation (13), we obtain

E[T+
δ ] =

E+[X]

α + (1 − α)Preg(X = δ)
. (15)

Using Theorem 4 we have E+[X] = αδ + (1 − α)Ereg[X], and by putting this in Equation (15),
we get to Equation (11).

For the second moment, by conditioning on N, we can write

E[T+
δ

2
] =

∞

∑
n=1

E+

( n

∑
i=1

Xi

)2 ∣∣N = n

 P+(N = n). (16)

A simple calculation show that

E+

( n

∑
i=1

Xi

)2 ∣∣N = n

 =
n

∑
i=1

E+[X2
i |N = n] + 2 ∑ ∑

1≤i<j≤n
E+[XiXj|N = n]. (17)

From the definition of random variable N (see (2)), we have

E+[X2
i |N = n] =

{
E+[X2|X ̸= δ], i = 1, 2, . . . , n − 1,
E+[X2|X = δ], i = n,

thus,
∞

∑
n=1

E+[X2
i |N = n] = (n − 1)E+[X2|X ̸= δ] + E+[X2|X = δ]. (18)

Similarly,

∑ ∑
1≤i<j≤n

E+[XiXj|N = n] =
(

n − 1
2

)
(E+[X|X ̸= δ])2 + (n − 1)E+[X|X ̸= δ]E+[X|X = δ]. (19)

By using Equations (19) and (18) in (17) and then via Equation (16), we obtain

E[T+
δ

2
] =

(
E[N]− 1

)
E+[X2|X ̸= δ] + E+[X2|X = δ]

+ E[(N − 1)(N − 2)]
(
E+[X|X ̸= δ]

)2

+ 2(E[N]− 1)
(

E+[X|X ̸= δ]E+[X|X = δ]

)
.

Since E[N] = 1
P+(X=δ)

and E[(N − 1)(N − 2)] = 2(P+(X=δ)−1)2

(P+(X=δ))2 , therefore,

E[T+
δ

2
] =

(
P+(X ̸= δ)

P+(X = δ)

)
E+[X2|X ̸= δ] + E+[X2|X = δ]

+
2(P+(X ̸= δ))2

(P+(X = δ))2

(
E+[X|X ̸= δ]

)2

+ 2
(

P+(X ̸= δ)

P+(X = δ)

)
E+[X|X ̸= δ]E+[X|X = δ]. (20)
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On the other hand, using Equation (3) and Theorem 4, we have

P+(X = δ) = α + (1 − α)Preg(X = δ), (21)

P+(X ̸= δ) = 1 − P+(X = δ) = (1 − α)Preg(X ̸= δ), (22)

E+[X|X = δ] = δ
(
α + (1 − α)Preg(X = δ)

)
, (23)

E+[X|X ̸= δ] = E+[X]− E+[X|X = δ] = (1 − α)
(
Ereg[X]− δPreg(X = δ)

)
, (24)

E+[X2|X = δ] = δ2 (α + (1 − α)Preg(X = δ)
)

, (25)

E+[X2|X ̸= δ] = E+[X2]− E+[X2|X = δ] = (1 − α)
(

Ereg[X2]− δ2Preg(X = δ)
)

. (26)

The desired result (12) is obtained by putting Equations (21)–(26) in Equation (20). The proof is com-
plete. ■

Next, an explicit expression for the variance of lifetime of the system is given for the defined
shock model.

Theorem 8. Let X1, X2, . . . be the intershock times in the model described in Section 2, and let
also X denotes a generic random variable of Xi’s. When the system is in the critical situation,
the variance of the system’s lifetime is

Var(T+
δ ) =

1
α + (1 − α)Preg(X = δ)

(
Varreg(X) + α2

(
2δEreg[X]− E2

reg[X]− δ2
)

+ α
(

2E2
reg[X]− Ereg[X2]− 2δEreg[X] + δ2

))
+

(
αδ + (1 − α)Ereg[X]

) (
(1 − α)Preg(X ̸= δ)

)(
α + (1 − α)Preg(X = δ)

)2 .

Proof. By using the second Wald’s identity (see page 30 from [11]), the variance of the
system’s lifetime can be written as

Var(T+
δ ) = Var

(
N

∑
i=1

Xi

)
= Var+(X)E[N] + (E+(X))2 Var(N). (27)

Since N has geometric distribution with parameter P+(X = δ), therefore

Var(N) =
1 − P+(X = δ)(

P+(X = δ)
)2 =

P+(X ̸= δ)(
P+(X = δ)

)2 . (28)

By using Equations (28) and (14) (for E[N]) in Equation (27), we obtain

Var(T+
δ ) =

Var+(X)

P+(X = δ)
+

(E+[X])2 P+(X ̸= δ)(
P+(X = δ)

)2 . (29)

From Equation (3) we have P+(X = δ) = α + (1 − α)Preg(X = δ), and thus, P+(X ̸= δ) =
(1 − α)Preg(X ̸= δ). Besides, by Theorem 4 and Corollary 8 we have, respectively,

E+[X] = αδ + (1 − α)Ereg[X],

Var+(X) = Varreg(X) + α2
(

2δEreg[X]− E2
reg[X]− δ2

)
+ α

(
2E2

reg[X]− Ereg[X2]− 2δEreg[X] + δ2
)

.

Finally, by putting these identities in Equation (29) we obtain the desired result. The theorem
is proved. ■

The Laplace transform (or the Laplace–Stieltjes transform) of T+
δ is derived in the following

theorem.
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Theorem 9. Let X1, X2, . . . be the intershock times in the model described in Section 2, and let
also X denotes a generic random variable of Xi’s. Assuming that the system is in the critical
situation, the Laplace transform of the system’s lifetime is

LT+
δ
(s) =

e−sδ
(
α + (1 − α)Preg(X = δ)

)
1 − ∑x ̸=δ

[
e−sδ

(
α + (1 − α)Preg(X = δ)

)] .

Proof. By properties of conditional expectation and using the fact that the random variable
N is independent of Xi’s (i = 1, 2, . . . ), we have

LT+
δ
(s) = E

[
e−sT

]
= E

[
E
[
e−s ∑N

i=1 Xi
∣∣N]] =

∞

∑
n=1

E
[
e−s ∑N

i=1 Xi
∣∣N = n

]
P(N = n)

=
∞

∑
n=1

E+

[
e−s ∑n

i=1 Xi I(N=n)

]
.

Using the definition of N (see Equation (2)) and the fact that X is δ-inflated distributed, we
have

LX(s) =
∞

∑
n=1

E+

[
e−s ∑n

i=1 Xi I(X1 ̸=δ,X2 ̸=δ,...,Xn−1 ̸=δ,Xn=δ)

]
=

∞

∑
n=1

(
E+

[
e−sX I(X ̸=δ)

])n−1
E+

[
e−sX I(X=δ)

]
.

Hence (by geometric series),

LT+
δ
(s) =

E+

[
e−sX I(X=δ)

]
1 − E+

[
e−sX I(X ̸=δ)

] , (30)

that is

LT+
δ
(s) =

e−sδP+(X = δ)

1 −
(

E+[e−sX ]− e−sδP+(X = δ)

) =
e−sδ

(
α + (1 − α)Preg(X = δ)

)
1 − ∑x ̸=δ

[
e−sx

(
α + (1 − α)Preg(X = x)

)] .

This completes the proof. ■

Remark 1. Note that if we consider α = 0 in the above theorems, the distribution of intershock
times reduces to a regular distribution, consequently, the above results investigate the system’s
lifetime in its regular situation.

5. Illustrative Example

Transistors are one of the crucial components that are almost always present in any electronic
device. It is common knowledge that transistors tend to heat up during operation and that this
temperature increase can significantly affect their performance and dependability. Understand-
ing the thermal challenges that transistors confront is crucial for engineers and designers. One of
the reasons for the heat increase of transistors is high voltage, and high voltages usually damage
the transistor as shocks. Transistors are usually cooled by using cooling fans (often with an pas-
sive heat exchanger such as a heat sink) so that they don’t get damaged. For more information,
we refer the reader to [22] and [2].

Here, we consider a specific transistor as a system which is exposed to a sequence of external
shocks in the form of high voltages. The transistor must operate within its specified voltage
and current limits to prevent overheating and shocks occur randomly in any period of time
x = 1, 2, . . . , the values of x’s are as minutes. If the interarrival time between two successive
high voltages is more than 5 minutes, the transistor has enough time to cool itself. If the inter-
arrival time between two successive high voltages is less than 5 minutes, the cooling fan will
automatically turn on to cool the transistor. In the case when the interarrival time between two
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successive high voltages is equal to 5 minutes, the cooling fan will not turn on due to incorrect
detection at the time length 5 minutes, so the transistor will be damaged. Observations show
that the number of high voltages with interarrival times greater than 5 minutes and less than 5
minutes are approximately equal.

Indeed, the above example follows the shock model described in Section 2. Now, we present
some illustrative computational results. Let us consider the case when the intershock times
X1, X2, . . . are i.i.d. distributed by the geometric distribution with mean 1

p , that is, the pmf of Xi

(i = 1, 2, . . . ) is P(Xi = xi) = p(1 − p)xi−1 for xi = 1, 2, . . . . Assuming that the critical intershock
time x = δ = 5 is the median of Xi’s (based on observations), some different values can be
chosen for the parameter p. The median of a geometric distribution with parameter p is given
by

Median =

⌈
−1

log2(1 − p)

⌉
.

By solving the equation
⌈ −1

log2(1−p)

⌉
= 5, we find that p ∈ [ 2−24/5

2 , 2−23/4

2 ). Thus, some different
choices for the parameter p can be p = 0.135, p = 0.145, and p = 0.155. Assuming that
Tδ = ∑N

i=1 Xi is the lifetime of the above system, in Table 1 we present the pmf P(Tδ = t) and
the reliability function P(Tδ > t) for p = 0.135, 0.145, 0.155, δ = 5, and some values of t. Also,
we have considered the lifetime of the system in its critical situation, that is, T+

δ = ∑N
i=1 Xi, in

which the distribution of Xi’s is inflated at the critical time point x = δ = 5.
From Table 1 we can see that the probability of system’s lifetime in critical situation (P(T+

δ =
t)) at the critical time point t = δ = 5 is greater than the probability of system’s lifetime at other
time points, and also the reliability function (P(T+

δ > t)) at the critical point t = δ = 5 is smaller
than the reliability function at other time points. In general, the probability P(T+

δ = δ) increases
when the inflation parameter α increases. Also, as expected, an increase in inflation parameter
α leads to a decrease in reliability function. By comparing P(Tδ > t) and P(T+

δ > t), it is clear
that the system is more stable in the regular situation. This is consistent with what was expected
from the theory, results, and purpose of the paper.

Table 1: The pmf and reliability function of the system’s lifetime
p δ t P(Tδ = t) P(Tδ > t) α P(T+

δ = t) P(T+
δ > t)

0.135 5 1 0.00571 0.99429 0.3 0.0333 0.9667
2 0.00567 0.98869 0.0308 0.9359
3 0.00564 0.98289 0.0286 0.9073
4 0.00561 0.97737 0.0264 0.8809
5 0.00558 0.97179 0.1304 0.7505
6 0.00555 0.96624 0.0356 0.7149
7 0.00551 0.96073 0.0334 0.6815

0.145 5 1 0.00600 0.99400 0.6 0.0365 0.9635
2 0.00596 0.98804 0.0320 0.9315
3 0.00593 0.98211 0.0281 0.9034
4 0.00589 0.97622 0.0246 0.8788
5 0.00586 0.97036 0.4001 0.4787
6 0.00582 0.96454 0.0351 0.4436
7 0.00579 0.95875 0.0309 0.4127

0.155 5 1 0.00624 0.99376 0.9 0.0140 0.9860
2 0.00620 0.98756 0.0119 0.9741
3 0.00616 0.98140 0.0100 0.9641
4 0.00612 0.97528 0.0085 0.9556
5 0.00609 0.96919 0.8243 0.1313
6 0.00605 0.96314 0.0084 0.1229
7 0.00601 0.95713 0.0071 0.1158
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The following figure shows the mean lifetime of the above system versus p for critical time
point t = δ = 5 and some different values of the inflation parameter α. For α = 0, we have the
mean lifetime of the system in regular situation (E[Tδ]). Figure 2 shows that the mean lifetime
of the system in the regular state is higher than the mean lifetime of the system in the critical
situation (E[T+

δ ]). Also, we see that as the inflation parameter increases, the mean lifetime of the
system decreases.

Figure 2: Plot of E[T+
δ ] versus p for δ = 5 and some different values of inflation parameter α.
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Abstract

Statistical Process Control plays a crucial part in improving the quality and lowering the fluctuation
in the production process environment. In SPC, the most popularly used methods are Shewhart control
chart techniques and EWMA techniques which distinguish itself for its quick identification of minute
process deviations, which makes it an essential tool for guaranteeing product. EWMA methods detect
variances in quality of the product as well as services, measure process mean shifts with control charts,
and track manufacturing process parameters to find deviations and make necessary adjustments. The
exponential distribution was employed in this study because it may reflect vast and bulk production in
everyday life. Exponentially distributed data, evaluate it alongside the EWMA function. This paper’s
objective is to study the impact of EWMA & DEWMA parameters within the EWMA control chart’s
performance using exponential distribution. Further, A few tables are provided with suitable illustrations
that can be available with parameters with the help of these findings. The study also examines how the
EWMA parameter affects the shape of the distribution.

Keywords: Average run length, Exponential distribution, EWMA control Chart, Statistical Process
Control.

1. Introduction

Walter A. Shewhart created Statistical process control in the (SPC) early 1920s at Bell Laboratories.
To keep an eye on industrial activities, SPC uses technology that evaluates and regulates quality.
SPC is a technique that is commonly used to discover production-line flaws and verify that the
final product meets defined quality requirements. SPC is commonly used in manufacturing or
production processes to assess how reliably a product functions under its design specification
parameters. SPC helps to improve product quality, eliminate process variation, maintain reg-
ulatory and customer requirements, and reduce scrap, waste, defects, and reworks. Shewhart
pioneered the control chart and the theory of a statistical control condition in 1920. A control
chart can be used to observe how a process develops over time. Control charts are utilized to
ensure quality regularly. The basic limitation of the memory-less charting system is its inability
to track minute changes in process parameters. The exponentially weighted moving average
(EWMA) and cumulative sum (CUSUM) are the two finest frequent types of memory-based
control charts. They integrate historical and present data to discover minor and reduce changes
in process parameters. The name Geometric weighted moving average was adapted to reflect
the fact that EWMA charts are constructed using exponential smoothing, for additional coverage
for the EWMA, see [6] and [10] developed the double exponential moving average (DEMA) to
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reduce the temporal delay caused by traditional moving averages. Moving averages, on the other
hand, are prominent for their long lag. The double exponential moving average (DEMA) reacts
by producing a more efficient averaging approach.

2. Exponential Weighted Moving Averages (EWMA)

The EWMA chart is an instance of a control chart used in Statistical Quality Control (SQC) for
tracking variables or attribute-type data through an entire period of outcome from the tracked
enterprise or industrial process. In contrast to other control charts, the EWMA chart estimates
the EWMA of all historical sample averages. Although the EWMA chart relies on the normal
distribution, it is also fairly robust in considering the existence of non-normally distributed
quality parameters. There is a chart shift which lets quality attributes that are more accurately
reflected through the Poisson distribution. The graphic just monitors the process mean; assessing
the process variability implies an additional approach. Unlike a conventional moving average,
which allocates equal weight to all data points within a specific period, EWMA offers higher
importance to newly acquired observations while dropping the weight for previous observations
exponentially. EWMA differs from a simple moving average because every data point in the time
interval is given the same significance. EWMA can be especially beneficial in finance and time
series analysis. Compared to a normal moving average, it gives a better representation of the data.
The responsiveness might be transformed by improving the λ value. Calculating the EWMA over
a shorter time period (smaller in size λ) causes it to be more responsive to recent changes. It is
also utilized in quality control and process improvement, as recent observations provide a better
indication of a process’s present status.
Enhanced the Shewhart control chart’s power by integrating the EWMA statistic [14]. The
exponentially weighted moving average concepts which is develops [8] . The properties and
enhancements of EWMA was developed by [9] . The EWMA control charts are utilized by [4] to
monitor an analytical procedure. The features of the exponential EWMA chart are developed
with parameter estimates in [12]. Improving EWMA chart performance [1]. Using an exponential
type estimator of mean, [13] functioned in a hybrid exponentially weighted moving average
(HEWMA) control chart. A nonparametric HEWMA-p control chart is developed by [2] to adjust
for variance in monitoring procedures. The maximum EWMA and DEWMA charts based on
auxiliary information are compared with sampling intervals for process mean and variance in
[7]. The EWMA charts are more sensitized to tiny fluctuations into the process mean, exceeding
ordinary X̄ charts to detect tiny shifts. The main difference is the smoothing effect resulting
from exponential weighting, which reduces the influence of outliers or random fluctuations
and emphasizes the underlying trend in the process. What distinguishes EWMA is its dynamic
mobility in adapting to process scenarios, particularly adapting promptly to fluctuations in the
mean by prioritizing recent data. This versatility is crucial in dynamic corporate environments
where procedures undergo continual alteration. The rapid detection of errors in EWMA charts
is a game changer, allowing for prompt intervention and correction before processes fall out
of control or create out-of-spec goods. EWMA charts excel at managing auto-correlated data,
outperforming traditional control charts in accurately illustrating process states by understanding
autocorrelation trends via their weighted averaging strategy. Continuous monitoring capabilities
boost EWMA’s value by allowing real-time assessment of process performance for long-term
stability. The convenience of perception adds the last feather to its gap, with expanding patterns
or departures from the midline indicating probable alterations into the process mean.
Before designing the EWMA control chart, a researcher must pick two parameters:

• The 1st parameter act as the amount of weight given to the most current rational subgroup
mean. The criteria 0 < λ ≤ 1 could be met, although determining the "proper" value is
subjective depending on specific events.

• The 2nd parameter L act as a multiple of a rational subgroup standard deviation and
specifies the control limitations. During alignment with other control charts, L is often set
at 3. However, for smaller amounts of λ, L may need to be reduced significantly.
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Instead of directly charting rational subgroup averages, the EWMA chart estimates consecutive
observations zi by analyzing the rational subgroup average, using the running average of all past
observations, zi − 1, using the carefully determined weight, λ. It states that the EWMA is

zi = λxi + (1 − λ)z(i−1); i = 1, 2, 3, . . . , n. (1)

In which Xi represents present measure value, λ represents the smoothing constant that controls
the depth of the memory EWMA, λ must fulfill 0 < λ ≤ 1, zi signifies the present EWMA
represents a EWMA statistic observed in the past measurement. (Needed the first sample at i =1)
is the procedure aim, therefore z0 = µ0. In some cases the average of preliminary information is
applied as the EWMA’s initial value, therefore z0 = x̄. To show that the EWMA zi is a weighted
average of the early sample means, we may add z(i−1) to the right side of equation (1) to get

zi = λxi + (1 − λ)[1 − λx(i−1) + (1 − λ)z(i−2)]

zi = λxi + λ(1 − λ)x(i−1) + (1 − λ)2z(i−2)

Trying to displace reclusively for z(i−j), j=1,2,3,. . . t,we get

zi = λ
i−1

∑
j=0

(1 − λ)jx(i−j) + (1 − λ)iz0 (2)

The weights λ(1 − λ)j diminishes geometrically with the age of the sample mean. Moreover, the
weights add to unity, given that

λ
i−1

∑
j=0

(1 − λ)j = λ
(1 − (1 − λ)i)

(1 − (1 − λ))
= 1 − (1 − λ)i

When the observations xi are random variables that are independent at variance (σ2), the variance
of zi

σ2
zi
= σ2

(
λ

2 − λ

)
[1 − (1 − λ)2i] (3)

As a consequence, the EWMA control chart might be generated by arranging zi against the sample
number i (or time). The EWMA control chart’s centerline and control limits are displayed below:
Control chart for EWMA:

UCL = µ0 + Lσ

√
λ

(2 − λ)
[1 − (1 − λ)2i] (4)

CL = µ0 (5)

LCL = µ0 − Lσ

√
λ

(2 − λ)
[1 − (1 − λ)2i] (6)

In equations (4) and (6), the factor L represents the breadth of the control limit and it explore the
possibility of the values L and λ subsequently. Approach unity i as gets larger, the (1 − λ)2i gets
very close to zero and the equation (4), (5) and (6) preformed as the value of (1 − λ)2i approaches
0, the equation is rearranged as follows:

UCL = µ0 + Lσ

√
λ

(2 − λ)
(7)

LCL = µ0 − Lσ

√
λ

(2 − λ)
(8)

Nonetheless, for tiny values of i and highly advise applying specific control limits in equations
(4) and (6). By doing this, the control chart’s ability to identify an off-target process as soon as the
EWMA is activated will be greatly increased.
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3. Double exponential weighted moving averages (DEWMA)

In 1994 Patrick G. Mulloy introduced the DEMA, often known as the DEWMA scheme, as an
extension of classic EWMA concepts. They demonstrated that the DEWMA scheme beats the
Shewhart scheme in tiny to moderate changes and has similar qualities for anticipating variation
into the process mean to the EWMA control scheme. The DEWMA, likewise referred to by the
Holt-Winters exponential smoothing, is widely used in forecasting, particularly in scenarios that
require adapting to changing trends. The DEWMA has evolved to accommodate many variations
and is now widely used in time series forecasting. Its applications range from banking to demand
estimation, handling inventory, and environmental monitoring, all of which require accurate
projections based on past data for decision-making. The DEWMA’s adaptability and historical
performance make it an invaluable resource for analysts & practitioners looking for reliable
forecasting tools in a variety of fields.
The DEWMA is an indicator of trend designed to decrease noise in price charts employed by
technical traders. It also tries to eliminate the lag time inherent in classic moving averages.
A DEWMA variation was presented by [16], who also showed that it worked better than the
EWMA system in detecting small mean shifts. Several researchers concluded that the DEWMA
scheme is superior to the old EWMA system. The examination of the DEWMA control chart is
presented in [11]. Using repetitive sampling, [3] develops the new DEWMA control chart. A
Comparative Analysis of the EWMA and DEWMA is developed by [5]. The New Neutrosophic
Double and Triple Exponentially Weighted Moving Average Control Charts are developed by
[15]. The DEWMA is useful in financial and time series research because it may capture trends
and produce smoother forecasts than regular moving averages. It is especially beneficial when
working with data that has non-constant volatility. The DEWMA emphasizes recent observations
by giving them larger weights, while simultaneously taking into account the trend using a second
smoothing parameter. This dual-weighting strategy increases its responsiveness to changes in the
underlying data pattern.

4. Exponential distribution

In the Poisson point process, the exponential distribution describes the probability distribution of
the time among events. The exponential distribution is considered a version of the exponential
distribution. Furthermore, the exponential distribution is the continuous equivalent of the
geometric distribution. The exponential distribution was

f (x) = λe(−λx), x ≥ 0 (9)

Here λ > 0 is a constant.
F(a) =

∫ a

0
λe(−λx), a ≥ 0 (10)

The exponential distribution is a commonly used time-to-failure model in reliability engineering.
An exponential distribution is a continuous probability distribution that is frequently used in
statistics and probability to represent the amount of time that will pass before a particular event
occurs. Events happen continuously, independently, and at a set average pace during this process.
One important property of the exponential distribution is that it requires less memory. It is
possible for the exponential random variable to have fewer large values or more small ones.
As a result, a customer’s total grocery shop spending on a single visit follows an exponential curve.

The exponential distribution is a probability distribution that defines the time between oc-
currences in a process that happens at a constant pace regardless of how long it has been since
the last event. It’s frequently utilized in process control and reliability testing. The exponential
distribution is frequently used in process control to describe the duration between successive
occurrences or failures, such as system breakdowns, manufacturing problems, or client arrivals in
a queue. A key feature of this distribution is its lack of memory, which means that the chance
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of an event occurring in the following time interval remains constant regardless of the amount
of time since the last occurrence. This Memorylessness property is especially useful in process
management since it suggests a consistent chance of failure or event occurrence in the next instant,
whatever the amount of time has passed since the previous event. The simulation settings are
shown in Table 1.

Table 1: Simulation Setting

Simulation setting Value Simulation setting Value
The size of the Sample 1000 Replication 100

Distribution Exponential Alpha level 0.95
Rate parameter (?) 0.2 Statistical Software (execution) Excel
Confidence Level 0.05 Statistical software (validation) R

The following Figure 1 depicts some shape of the exponential distribution

Figure 1: Simulation Setting

Figure 2 shows that the simulation has three steps

Figure 2: Simulation Steps
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The following Figure 3 illustrates the Monte Carlo simulation using MS-Excel in detail

Figure 3: Monte Carlo simulation with MS-Excel in detail

5. Experimental approach

In 1946 During World War II, John von Neumann and Stainlaw Ulam pioneered the Monte Carlo
simulation to aid in decision-making in unpredictable situations. Given that randomness lies
at the heart of modeling, comparable approaches, and roulette games, the name of the Monte
Carlo comes from the famous city with casinos. All the three phases of the simulation are as
follows, as seen in Figure 2. To create a sequence of EWMA statistic, a first set of random variates
is used. When creating the EWMA statistic (i.e., z1), a random number variates is pulled, and
this variate has the similar value of the variates that come from the exponential distribution (i.e.,
x1)z2 is then calculated using z1 and the second produced random variates, x2, as indicated by
equation (1). Upto until the last random variates are formed, the procedure keeps going. This
graphic is important since it explains the simulation stages and the mathematical portion of
the EWMA estimations. Table 1 explains the simulated setup. This study applies Monte Carlo
simulation using software. The exponential distribution was used to create random variates using
software. The inverse value that is cumulative density of the exponential distribution was found
using the Excel code "Exponential. INV (probability; λ)". As long as random probabilities are fed
through the code, "Exponential. INV (probability; λ)" will produce random variates based on the
given Exponential distribution. The probability distributed random probabilities must be uniform
in order to provide non-disordered results because of the Nature of probabilities, that they’re
scattered over the field [0, 1]. Thus, these are evenly distributed randomly probabilities across the
domain [0, 1] are produced using the Excel code Rand ( )". And adding "Rand ( )" in the place of
"Probability," it is possible to archive the process of feeding randomized probabilities into the
Exponential inverse code. "Exponential. INV (Rand ( ); 1)" for instance, if λ = 1. Refer to Figure
5a. It is quite helpful to assign numbers in the first column between 1 and 1 million. The first
cell at the top of that column is then used to produce a random variates from the Exponential
distribution. The next step is to Double-click on the cell’s owner the right corner or move the cell
to produce one million variations in a column with two million cells containing random variates
fitted to an exponential distribution is the end result (1). The next step after creating a column of
random variables need to create EWMA statistics in the subsequent column. The first cell in this
column is set to the exact same value (0.576775) as the top cell in the random variates columns,
and this value only occurs once. Assuming λ to be 0.2, the EWMA equation is then applied to
the second cell, as depicted in Figure.3 B, which is represented by cells x2 (the second cell in this
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column) and z1 (the first cell in the column zi). You can drag and click on this cell twice in the
lower right corner. Doing a million EWMA statistical studies on EWMA data is the third and
last step. The authors checked and validated the model. The mean and variance of the output
variables were computed for each simulation run and compared to theoretical values.

Error f raction =

∣∣∣∣Theoriticalvalue − Simulationvalue
Theoriticalvalue

∣∣∣∣ (11)

In addition, the error fraction was calculated for each simulation run, as shown in equation
(11). The error fraction for the variance and mean for all 150 simulation runs were less than
0.01. The error fraction was only 0.02. This validation of the random variable applied for the
EWMA functions was excellent. Because of this, the EWMA equation is straightforward and
this application has a lower error rate. Figure 4 illustrates how λ affects the structure of EWMA
statistics with exponential distribution

Figure 4: The influence of λ in the structure of EWMA statistics with exponential distribution
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6. Case research with sensitive analysis

The store chosen for this inquiry is a prominent business around a crowded place metropolis
of Maruthamalai, Coimbatore. The ABC store, located in the retail district serves a diverse cus-
tomer base that includes residents as well as tourists. Recognized for its products and beneficial
customer service, the company sees a continuous stream of customers throughout the day. A
systematic data collection technique it was executed for this study’s client arrival time data.
Experienced investigators was discreetly stationed across the store for a few weeks to record
customer’s exact arrival times. Data collection entailed capturing customer arrival trends. Using
real-time arrival data, the purpose is to investigate and understand how temporal dynamics flow
is happening.
Understanding customer arrival patterns is critical for managing retail operations and providing
better customer service. The case study focuses on the arrival time of customers, the busy capital
city. Using empirical observation and data analysis, it was discovered that customer arrival times
at this specific firm have an exponential distribution. The retail business at ABC Shop displays
market dynamics shaped by city-specific cultural norms and consumer behavior. Customers’
arrival timings at a store were investigated and documented throughout a certain time period.
That was the case determined to the distribution of arrival timing follows established patterns
that correspond to the exponential distribution, which is commonly used to monitor linear arrival
times. The exponential distribution is an adaptable framework to describing the variability as
well as mutual dependency of customer arrival time intervals, allowing for in-depth analysis
and comprehension of the variability and interdependence of customer arrival times, as well
as the identification of customer behavior and arrival processes at the retail shop. The first
component of arrival times is established during the store’s operating hours of 7:00 a.m. to 12:00
p.m. Table 2 displays the period between customer arrivals. The goal of the case study was to
understanding the consumer behavior and patterns of arrival in an ABC retail atmosphere. In
developing the adherence of client arrival times with the exponential distribution, retail managers
and decision-makers with ABC retail shop gained significant insights. These findings have the
potential to influence programs for workforce efficiency and queuing management enhancements,
and standard customer service enhancement, all of which are based on a better knowledge of the
elements that determine arrival times. The efficiency of EWMA and DEWMA may be assessed by
measuring conduction sensitivity and varying λ values. Please see the Tables. 3 and 4. The case
study’s customer arrival time data showed significant changes and improvements after using the
EWMA and DEWMA functions. The combination of EWMA and DEWMA resulted in smoothed
data that provided a clearer picture of underlying patterns and behaviors associated to client
arrival, enabling for a more in-depth study of the relevant dynamics involved. Furthermore,
by assigning larger weight to recent data sets, the EWMA function allows for real-time study
of arrival trends. Customer arrival time trends were quickly discovered, allowing for proactive
monitoring and response. Overall, the EWMA and DEWMA functions improved the analysis
and interpretation of arriving time data at ABC retail, resulting in better resource utilization,
operational scheduling, and outstanding customer management. Table 2 displays the period
between customer arrivals.
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Table 2: Customers’ arrival & inter-arrival times at the ABC shop

Arrival no Arrival time
Inter-arrival
time(min)

Arrival no Arrival time
Inter-arrival
time(min)

1 7.06 a.m. 6.2 16 10.04 a.m. 3.6
2 7.31 a.m. 25.2 17 10.17 a.m. 13.61
3 7.36 a.m. 4.98 18 10.23 a.m. 5.87
4 7.51 a.m. 14.55 19 10.26 a.m. 3.01
5 8.05 a.m. 14.3 20 10.39 a.m. 12.72
6 8.08 a.m. 2.99 21 10.54 a.m. 14.47
7 8.1 a.m. 2.39 22 10.55 a.m. 1.11
8 8.35 a.m. 24.9 23 10.56 a.m. 0.63
9 9.26 a.m. 51.39 24 10.57 a.m. 0.19
10 9.28 a.m. 1.74 25 11.12 a.m. 15.15
11 9.3 a.m. 2.09 26 11.16 a.m. 4.17
12 9.4 a.m. 9.57 27 11.19 a.m. 12.89
13 9.44 a.m. 3.98 28 11.31 a.m. 12.09
14 9.54 a.m. 10.39 29 11.55 a.m. 24.25
15 9.59 a.m. 4.59 30 11.58 a.m. 2.58
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Table 3 illustrates the Inter-arrival time after using EWMA with varied λ

Table 3: Inter-arrival time after using EWMA with varied λ

λ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01
Inter-arrival time

6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25
25.23 8.148 10.046 11.945 13.843 15.741 17.639 19.538 21.436 23.334 24.283 25.042
4.99 7.832 9.034 9.857 10.3 10.364 10.047 9.351 8.276 6.821 5.951 5.186

14.55 8.504 10.138 11.266 12.002 12.459 12.751 12.993 13.298 13.781 14.124 14.46
14.3 9.084 10.971 12.176 12.921 13.379 13.681 13.908 14.1 14.248 14.291 14.302
2.99 8.474 9.375 9.421 8.949 8.185 7.267 6.266 5.213 4.117 3.556 3.104
2.4 7.867 7.98 7.314 6.329 5.292 4.346 3.559 2.962 2.571 2.457 2.407

24.99 9.58 11.383 12.619 13.795 15.144 16.736 18.564 20.588 22.753 23.868 24.769
51.39 13.761 19.385 24.251 28.835 33.269 37.531 41.545 45.233 48.53 50.018 51.128
1.74 12.559 15.856 17.498 17.998 17.505 16.057 13.683 10.44 6.421 4.156 2.236
2.09 11.513 13.104 12.877 11.636 9.799 7.679 5.57 3.762 2.526 2.196 2.094
9.57 11.319 12.398 11.886 10.811 9.687 8.816 8.373 8.412 8.87 9.206 9.5
3.98 10.585 10.715 9.515 8.079 6.834 5.915 5.299 4.868 4.47 4.243 4.037
10.4 10.566 10.651 9.78 9.007 8.616 8.605 8.869 9.292 9.806 10.091 10.335
4.59 9.969 9.44 8.224 7.241 6.605 6.198 5.876 5.533 5.114 4.868 4.65
3.61 9.333 8.273 6.839 5.788 5.106 4.643 4.288 3.992 3.758 3.67 3.618

13.62 9.761 9.342 8.872 8.92 9.362 4.643 10.818 11.692 12.631 13.12 13.517
5.87 9.372 8.648 7.972 7.701 7.617 4.643 7.356 7.036 6.548 6.235 5.949
3.02 8.737 7.522 6.486 5.827 5.317 4.643 4.319 3.821 3.371 3.178 3.047

12.73 9.136 8.564 8.359 8.588 9.023 4.643 10.206 10.948 11.794 12.252 12.633
14.47 9.67 9.746 10.194 10.943 11.749 4.643 13.194 13.769 14.206 14.363 14.456
1.12 8.815 8.02 7.471 7.012 6.433 4.643 4.74 3.647 2.426 1.779 1.251
0.63 7.996 6.542 5.419 4.46 3.532 4.643 1.863 1.234 0.81 0.688 0.636
0.19 7.216 5.272 3.851 2.753 1.862 4.643 0.694 0.401 0.255 0.218 0.197

15.16 8.01 7.249 7.242 7.714 8.509 4.643 10.817 12.204 13.665 14.408 15.006
4.17 7.626 6.634 6.322 6.298 6.342 4.643 6.167 5.781 5.124 4.686 4.283
2.9 7.153 5.886 5.294 4.937 4.618 4.643 3.877 3.472 3.118 2.985 2.909
12.1 7.648 7.129 7.335 7.802 8.359 4.643 9.632 10.374 11.201 11.643 12.007

24.26 9.309 10.555 12.412 14.384 16.308 4.643 19.87 21.481 22.952 23.627 24.135
2.59 8.637 8.961 9.465 9.665 9.448 4.643 7.772 6.366 4.624 3.639 2.803
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Table 4 illustrates the Inter-arrival time after using DEWMA with varied λ.

Table 4: Inter-arrival time after using DEWMA with varied λ

0.9 0.8 0.7 0.6 0.5 0.4
Inter-arrival time

6.25 6.3 6.3 6.3 6.3 6.3 6.3
25.23 8.3 10.8 13.7 16.9 20.5 24.5
4.99 7.8 9 9.7 10.1 10 9.6

14.55 8.6 10.3 11.7 12.6 13.3 14.1
14.3 9.1 11.2 12.6 13.5 14.3 15
2.99 8.4 9.1 8.7 7.6 6 4.2
2.4 7.8 7.6 6.5 4.7 2.8 0.8

24.99 9.7 12 14 16.1 18.8 22
51.39 14.2 21.1 28.1 35.8 44.2 53.2
1.74 12.5 15.5 16.6 16.4 15.1 12.6
2.09 11.4 12.5 11.2 8.5 4.7 0.6
9.57 11.3 12.1 11.1 9.2 7.1 5.2
3.98 10.5 10.3 8.6 6.3 4.1 2
10.4 10.6 10.6 9.6 8.7 8.1 7.9
4.59 9.9 9.2 7.7 6.4 5.4 4.3
3.61 9.3 8 6.3 4.9 3.7 2.6

13.62 9.8 9.5 9.3 9.8 10.8 3.4
5.87 9.3 8.5 7.8 7.6 7.5 3.9
3.02 8.7 7.3 6 5 4.1 4.2

12.73 9.2 8.7 8.8 9.4 10.3 4.4
14.47 9.7 10 10.9 12.2 13.7 4.5
1.12 8.7 7.7 6.9 5.9 4.8 4.5
0.63 7.9 6.2 4.6 3 1.2 4.6
0.19 7.1 4.9 3.1 1.5 0.1 4.6

15.16 8.1 7.6 8 9.2 10.8 4.6
4.17 7.6 6.6 6.3 6.3 6.4 4.6
2.9 7.1 5.7 5 4.4 3.8 4.6

12.1 7.7 7.3 7.9 8.7 9.8 4.6
24.26 9.5 11.3 14.1 17.4 21 4.6
2.59 8.6 8.8 9.1 9 8.4 4.6
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Figures 5 depict the histograms for inter-arrival time, after applying EWMA and DEWMA,
respectively.

Figure 5: Histogram for inter-arrival time, after applying EWMA and DEWMA

7. Conclusion

Monte Carlo simulation methods were utilized to create exponential distribution data that was
evaluated using EWMA control chart functions to determine the value. The overall goal of
this study is to assess the impact of distribution parameters in the operation of the EWMA
control chart. Furthermore, the investigation is predicated on many key assumptions. The
study’s findings give an essential new knowledge of how distribution characteristics influence the
Effectiveness of the EWMA control charts. Overall, the EWMA and DEWMA functions enhanced
the analysis and interpretation of customer’s arrival times, leading to superior management and
better use of resources. There are a few limitations to consider while interpreting the findings
and applying them to real-world situations. More research is required to get overcome these
limitations and improve understand the situation. Additional study is needed to solve these limits
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and obtain an improved better grasp of the situation. Future research may include the creation of
new statistical methodologies, namely for improved visualization methods and machine learning
anomalies identification. In future research, this approach may be expanded to estimate the
variance parameter and used to real data with different distributions.
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Abstract

This article aims to explore a sampling strategy designed to assess the reliability of products that
exhibit lifetimes following a GIED. Considered sampling approach has been specially constructed for a
Type-II progressive censoring scheme, which includes binomial removals as part of its methodology. Its
core objectives is to find out acceptance constant and the optimum sample size. To facilitate practical
implementation, the article presents a tabulated form of the sampling plan for the selected specification,
as per the considered censoring scheme. To validate the dependability and precision of the suggested
sampling approach, we perform a Monte Carlo experiment under various scenarios.

Keyword : Generalized Inverted Exponential Distribution (GIED); OC-Curve; Reliability Sampling
Plan; Sinulation; Progressive Censoring.

1. Introduction

In life testing and reliability studies, direct observation of the exact lifetime of a specific event of
interest for all tested units is often impractical. This situation arises in various scenarios, such as
clinical trials and in engineering where individuals may remain alive or disease-free beyond the
study period. To streamline costs and time, some units may be randomly withdrawn from the
experiment, resulting in censored data. It is essential to assess the effect of censoring on reliability
and determine whether it provides meaningful information or not.

In the field of statistics, a variation of the exponential distribution, termed the one-parameter
inverse exponential or inverted exponential distribution (IED), has been advanced. This distribu-
tion exhibits an inverted bathtub hazard rate. The utilization of IED in survival analysis has been
advocated by several researchers, as exemplified by [22] and [23]. A two-parameter extension of
the inverted exponential distribution (IED), called the generalized inverted exponential distri-
bution (GIED), was proposed by [24] and demonstrated that GIED fits real datasets better than
IED, based on K-S statistics and likelihood ratio tests. Furthermore, [25] conducted a study on
reliability estimation based on progressive Type-II censored samples under the classical paradigm.
A common way to evaluate the quality of a product is to check if it meets certain specifications
related to its reliability and lifetime. Some standard sampling plans, such as MIL − STD − 414
and MIL − STD − 105 as discussed by [1], can be used to compare the results with predefined
criteria. However, these plans may not be suitable for situations where observing all failures is
too expensive or time-consuming, especially for products with high reliability. In such cases,
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censored tests are often used. Censoring is one of the main feature of lifetime study or reliability
study. Censoring desirably or undesirably occurred in the experiment. There are several type
of censoring schemes discussed by [2] and [9]. Now a days practitioners and researchers have
advocated for a versatile censoring scheme known as progressive Type-II censoring. Progressive
Type-II censoring is a method of reliability sampling that involves removing a certain number
of units that have not failed at each failure time. This method can reduce the cost and time of
testing, but it also introduces some challenges in the analysis.

The progressive Type-II censoring scheme is an extension of Type-II censoring, which incorpo-
rates the removal of units from a life-test at predetermined or random inspection times. In this
scheme, out of the initial total of (n) units simultaneously placed on a life test, only (m) units
are fully observed, while the remaining (n − m) units are withdrawn from the experiment at
different time points. Some of the researchers who have developed reliability sampling plans
with progressive Type-II censoring are [6], [8] and [7]. A reliability sampling plan by [8] focused
on the exponential distribution, while [7] considered the Log-normal and Weibull distributions.
Also, [10], [12], and [11] also studied the exponential, Weibull, and Log-normal distributions,
respectively, but with different assumptions on the number of units removed at each failure.
A comprehensive review of progressive Type-II censoring and its applications provided by [9].
Progressive Type-II censoring is a complex process that requires careful planning and analysis.

An example of the application of progressive censoring in evaluating the performance of
electronic components provided by [13]. In such cases, certain test units may require removal due
to factors like excessive heat, resulting in situations that fall under the purview of Type-II PCR.
Furthermore, [16] conducted extensive investigations into issues related to parameter estimation
and the expected duration of experiments under Type-II PCR censoring. In numerous practical
scenarios, managing removals presents a formidable challenge, rendering the assumption of
fixed and known removals impractical. In acknowledgment of this constraint, [3] advocates the
adoption of random removals, emphasizing its practical viability. Therefore, the implementation
of Type-II censoring with random removals becomes a more pragmatic choice. In this approach,
a suitable distribution, such as the binomial distribution, can be employed to model the removal
pattern. To the best of our knowledge, the utilization of reliability sampling plans for Type-II
censoring with binomial removals has not been previously documented. In current study, our
primary focus lies in the development of a reliability sampling plan for the GIED under Type-II
progressive censoring with random removals. This entails that the number of removals at each
failure is subject to a binomial distribution. In Section 2, we will introduce our proposed model
and establish the maximum likelihood estimators (MLEs) for the model parameters. In Section 3,
we present the Operating Characteristic (O.C.) curve, providing insights into the performance of
our sampling plan. Section 4 delves into an in-depth examination of the sampling plan’s design.
Finally, in Section 5, we offer our concluding remarks and provide a succinct summary of the key
findings derived from this study.

2. Methods

A generalisation of the one parameter IED is a two parameter GIED having PDF and CDF as
follows:

ξ(t) =
νη

t2 exp
(
−η

t

)(
1 − exp

(
−η

t

))ν−1
; t > 0, ν > 0, η > 0.

Ξ(t) = 1 −
(

1 − exp
(
−η

t

))ν
; t > 0, ν > 0, η > 0.

(1)

Where, ν is the shape parameter and η is the scale parameter. Let tp be the pth percentile of the
GIED, it is given by,

p = 1 −
(

1 − exp
(
− η

tp

))ν

. (2)
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On simplification, we get

tp =
−η

ln(1 − (1 − p)1/ν)
.

and median of the distribution is given by

md =
−η

ln(1 − (0.5)1/ν)
.

the reliability function is given by

S(t) =
(

1 − exp
(
−η

t

))ν
; t ≥ 0, (η, ν) > 0.

The failure rate function of the GIED(η, ν) is given by

h(t) =
f (t)
S(t)

=
νη

t2
e− η

t
1 − e− η

t
; t ≥ 0, (η, ν) > 0.

For simplicity point of view, let us make a transformation Z = ln(t).

ψ(z) = νη exp (−z − η exp(−z)) (1 − exp (−η exp(−η exp(−z))))ν−1

; z > 0, ν > 0, η > 0.
(3)

and its distribution function is given by

Ψ(z) = 1 − (1 − exp (−η exp(−z)))ν ; z > 0, ν > 0, η > 0. (4)

Let’s consider the following transformations: µ = ln ν and σ = 1
η . It simplifies our analysis

to work with the model represented by equation 3. Now, we have a set of m ordered log-failure
times, denoted as Z1 < Z2 < . . . < Zm, selected from a pool of n items. The value of m is
pre-determined, indicating the number of failures that occur before the testing concludes.

At the ith failure event, a random removal of ri items takes place from the testing pool. The
number of items removed, ri, follows a binomial distribution characterized by parameters (n − m)
and removal probability (pr). In the context of a Type II progressive censoring (Type II PCR), we
define the likelihood function as follows:

L(t; µ, σ) = L1(t; µ, σ)PR.

where,

L1(t; µ, σ) =
m

∏
i=1

ψ(zi)(1 − Ψ(zi))
ri .

and

PR = P(Rm−1 = rm−1|Rm−2 = rm−2, Rm−3 = rm−3...R1 = r1)

×P(Rm−2 = rm−2|Rm−3 = rm−3, Rm−4 = rm−4...R1 = r1)...P(R2 = r2|R1 = r1).

=
(n − m)!

∏m
i=1 ri!(n − m − ∑m−1

j=1 )!
p

∑m−1
j=1 rj

r (1 − pr)
(m−1)(n−1)−∑m−1

j=1 (m−j)rj .

Where, Ci = n − ∑i−1
j=1(rj + 1). To obtain the maximum likelihood estimators (MLEs) of µ and σ,

the likelihood have been maximized at MLEs of the parameters, for more details see [28] and [27].
In this type of censoring scheme, the number of failures is predetermined before the experiment
begins. The experiment is terminated once the desired number of failures is observed. Assuming
that the number of failures is fixed as m, we denote ti as the time at the ith removal, and ri as the
number of the random removals of the ith component.
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3. OC curve

The OC curve is a tool used to evaluate the effectiveness of a sampling plan. It does so by charting
the likelihood of accepting a lot against the proportion of non-conforming items within that lot.
This evaluation relies on the principles of asymptotic distribution theory.

In the context of this evaluation, we utilize the following equations:
First, we have:

T′ − (µ − kσ)√
AsVar[T′]

∼ N(0, 1)

The standardized variate is expressed as:

W =
(T′ − (µ − kσ))

√
n√

V

To construct the OC curve, which represents the probability of accepting a lot, denoted as
L(p), we use the following equation:

L(p) = Pr[T′ ≥ L′] = 1 − Φ

[
σ(up + k1)

√
n

√
V

]

In this equation, up stands for the quantile of the standard logistic distribution that corresponds
to the given proportion of non-conforming items, denoted as p. Φ(·) represents the standard
normal distribution function.

Therefore, to determine an optimal sampling plan for specific points on the OC curve, denoted
as (pα, 1 − α) and

(
pβ, β

)
, the following equations need to be solved for the variables k and n:

zα −
σ(upα + k1)

√
n

√
V

= 0

z1−β −
σ(upβ

+ k1)
√

n
√

V
= 0

(5)

where, upα and upβ
denote the quantiles of the standard normal distribution and zα and zβ

denotes the quantiles of the log-life distribution. Thus on solving equation (5), we get

k =
zpα u1−β − zpβ

uα

uα − u1−β
(6)

and

n =

(
uα − u1−β

zpα − zpβ

)2 (
σ2

n
(γ11(n, pr, fc)− 2kγ12(n, pr, fc) + γ22(n, pr, fc))

)
(7)

4. Layout of sampling plan

4.1. Sampling Plan

In our study, we adopt the methodology originally proposed by [17] to evaluate the acceptability
of a batch. Specifically, we concentrate on variable sampling plans with one-sided specification
limits. Let’s consider a lot of size n randomly drawn from a larger population. The log-lifetimes
of the items in this lot follow a distribution characterized by Equation (3). This distribution is
defined by a set of unknown parameters, denoted as ν and η. We seek to obtain the maximum
likelihood estimators for these parameters, denoted as ν and η.

In this context, we have a lot with a proportion of non-conforming items, denoted as p0
(where p0 ≤ pα), which is considered acceptable and should be approved with a probability of
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at least (1 − α). Here, pα represents the proportion of non-conforming items that corresponds
to the desired probability of acceptance, denoted as (1 − α) on the operating characteristic (OC)
curve. We define L′ as the quantile of the Ψ(·) given in the equation (4) that corresponds to the
proportion of non-conforming items for the chosen probability of acceptance (1 − α). This is
calculated as L′ = Ψ−1(pα). The decision to accept or reject the lot hinges on the comparison of
the estimate (µ̂ − kσ̂) with the value of L′. If (µ̂ − kσ̂) is greater than or equal to L′, the lot is
accepted; otherwise, it is rejected. The acceptance constant, denoted as k, is a pivotal factor in
making this decision.

The key focus is on specifying the optimal sample size (n) and the pertinent acceptance constant
(k) within the framework of the proposed censoring scheme. One can note that, the distribution

of the variable (µ̂− kσ̂) will be AN
(
(µ − kσ), σ2

n (γ11(n, pr, fc)− 2kγ12(n, pr, fc) + γ22(n, pr, fc))
)

.
Here, γ11(n, pr, fc), γ12(n, pr, fc), and γ22(n, pr, fc) are elements of the asymptotic dispersion
matrix. You can find detailed expressions for these in the Appendix provided by [26]. Here, pr
represents the removal probability, and fc denotes the censoring fraction. Choose two points,
(pα, 1 − α) and (pβ, β), on the OC curve suggested by [7]. To calculate these points, we use

the formulas: yτ = Ψ−1(τ) = − ln
(
− 1

η ln
(

1 − (1 − U)
1
ν

))
and uα = Φ−1(α), where Ψ(·) and

Φ(·) are the cumulative distribution functions (CDF) of the log-GIED and the standard normal
distribution, respectively. To determine the acceptance constant (k) and the sample size (n) for
a given pair of points, (pα, 1 − α) and (pβ, β), on the OC curve, along with specified censoring
fraction ( fc) and removal probability (pr), we solve equations (5).

In Tables 1 and 2, we present the results for various removal probabilities (pr = 0.1, 0.3, and
0.5) and censoring fractions ( fc = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7). The selection of values for pα and
pβ aligns with the criteria set by MIL-STD-105D. Additionally, we include results for a limit case
of standard Type-II censoring, where pr = 0.00001, allowing for a comparison with the findings
of [7]. For the computation of the terms γ11(n, pr, fc), γ12(n, pr, fc), and γ22(n, pr, fc), we employ
a Monte Carlo simulation, generating progressive Type-II censored samples initially.

Specifically, we calculate the moments based on 2000 simulations, assessing the average values
of the terms γ11(n, pr, fc), γ12(n, pr, fc), and γ22(n, pr, fc) for various values of n. The outcomes
are detailed in Table 1 and Table 2 for β = 0.05 and β = 0.10, respectively. The results reveal that,
when maintaining a constant pr, the optimum value of n decreases as fc declines, irrespective
of the acceptance constant (k). A lower fc implies lesser dropouts, resulting in fewer accurate
lifetime observations. Consequently, a larger sample size is necessary to compensate for the loss
of information when assessing lot acceptability.

On the other hand, when the censoring fraction fc is held constant, and the same acceptance
constant k is used, the sample size does not exhibit a consistent pattern with respect to the
removal probability. This discrepancy arises because removal shifts the observations toward the
tail of the lifetime distribution, improving the accuracy of lifetime parameter estimation but
leading to a loss of information due to dropouts. However, an excessive number of dropouts
early in the process diminishes this advantage. Hence, for higher values of pr, the sample size
increases as pr, such as pr = 0.5, increases. Conversely, for low to moderate values of pr, the
sample size decreases as pr increases due to the impact of a significant number of dropouts.
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Table 1: Type-II PCR reliability sampling plan for pα and pβ to match with MIL − STD − 105D for 1 − α =
0.95, β = 0.10.

n
pα pβ fr → 0.7 0.6 0.5 0.4 0.3 0.2 k

pr = 0.1
0.00041 0.01840 14 10 9 9 8 8 1.1352
0.00284 0.03110 24 19 18 17 16 16 0.9834
0.00654 0.04260 32 27 26 25 24 23 0.8981
0.01090 0.05350 40 34 33 31 30 29 0.8372
0.02090 0.07420 53 47 45 43 41 39 0.7482
0.03190 0.09420 65 58 55 53 50 48 0.6816

pr = 0.3
0.00041 0.01840 14 12 11 10 9 8 1.1352
0.00284 0.03110 26 23 21 19 18 17 0.9834
0.00654 0.04260 36 33 30 28 25 24 0.8981
0.01090 0.05350 45 41 37 35 32 30 0.8372
0.02090 0.07420 61 56 51 47 44 41 0.7482
0.03190 0.09420 74 68 63 58 54 50 0.6816

pr = 0.5
0.00041 0.01840 16 13 12 10 9 9 1.1352
0.00284 0.03110 29 26 23 20 18 17 0.9834
0.00654 0.04260 40 36 32 29 26 24 0.8981
0.01090 0.05350 50 45 40 36 33 31 0.8372
0.02090 0.07420 68 61 55 50 45 42 0.7482
0.03190 0.09420 83 75 67 61 56 51 0.6816

pr = 0.0001
0.00041 0.01840 50 15 9 8 8 7 1.1352
0.00284 0.03110 66 23 17 16 15 15 0.9834
0.00654 0.04260 75 30 24 23 23 22 0.8981
0.01090 0.05350 81 37 31 30 29 28 0.8372
0.02090 0.07420 91 49 44 42 41 39 0.7482
0.03190 0.09420 99 61 56 54 51 49 0.6816

4.2. Simulated sampling plan

It is worth noting that in the discussion of the distribution of (µ̂ − kσ̂), asymptotic distribution
theory is applied, and the derived sampling plans are based on this approximation. However,
it is essential to investigate the finite sample behavior of these sampling plans by conducting a
Monte Carlo simulations to assess the true probability of acceptance.

In this research, we employ a Monte Carlo simulation to compare the expected probability
of acceptance with the actual probability when a designed sampling plan is put into practice
within a specific censoring framework. We investigate various scenarios, incorporating removal
probabilities (pr) of 0.1, 0.3, and 0.5, as well as censoring fractions ( fc) of 0.3, 0.5, and 0.7.
Additionally, we consider fixed producer’s and consumer’s risk (ν, β) settings at (5%, 10%) and
(5%, 5%). For each combination of these parameters, we conduct 2000 Monte Carlo simulations to

provide precise estimates of the probability of acceptance, denoted as L̂(p).
To obtain estimates for the parameters k and L̂(p), we employ the bias-corrected maximum

likelihood estimators (MLEs), as detailed by [9]. The obtained results are presented in Table
3 through Table 11, covering various removal probabilities pr and diverse levels of censoring
proportions.
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Table 2: Progressive Type-II reliability sampling plan with random removals aligned with the requirements of MIL −
STD − 105D for 1 − α = 0.95 and β = 0.05.

n
pα pβ fr → 0.7 0.6 0.5 0.4 0.3 0.2 k

pr = 0.1
0.00041 0.01840 19 31 41 50 67 82 1.1664
0.00284 0.03110 13 25 35 43 60 74 1.0066
0.00654 0.04260 12 23 33 41 57 70 0.9180
0.01090 0.05350 11 22 31 40 54 67 0.8553
0.02090 0.07420 11 21 30 37 51 63 0.7641
0.03190 0.09420 10 20 28 36 49 61 0.6962

pr = 0.3
0.00041 0.01840 19 33 46 57 76 93 1.1664
0.00284 0.03110 16 29 41 52 70 86 1.0066
0.00654 0.04260 14 26 37 47 64 78 0.9180
0.01090 0.05350 13 25 35 44 60 74 0.8553
0.02090 0.07420 11 22 32 40 54 67 0.7641
0.03190 0.09420 11 21 29 37 51 63 0.6962

pr = 0.5
0.00041 0.01840 20 37 52 64 86 106 1.1664
0.00284 0.03110 17 32 45 56 76 93 1.0066
0.00654 0.04260 15 29 40 51 69 85 0.9180
0.01090 0.05350 13 26 37 46 63 77 0.8553
0.02090 0.07420 12 23 33 42 57 70 0.7641
0.03190 0.09420 11 21 30 38 52 64 0.6962

pr = 0.0001
0.00041 0.01840 79 101 112 118 128 135 1.1664
0.00284 0.03110 21 32 41 49 64 79 1.0066
0.00654 0.04260 11 21 30 39 55 71 0.9180
0.01090 0.05350 10 19 28 36 52 66 0.8553
0.02090 0.07420 10 19 28 36 51 64 0.7641
0.03190 0.09420 9 19 27 35 48 60 0.6962
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Table 3: Simulated probabilities of acceptance for GIED with pr = 0.1 and 70% censoring.

Sampling plan Probability of acceptance

pr = 0.1 n m k L̂(p)
α = 0.05, β = 0.10 15 4 1.1352 0.5278

24 7 0.9834 0.3812
32 9 0.8981 0.3025
39 11 0.8372 0.2403
52 15 0.7482 0.1518
64 19 0.6815 0.0833

α = 0.05, β = 0.05 18 5 1.1664 0.6235
30 9 1.0066 0.4398
40 12 0.9180 0.3424
49 14 0.8553 0.2751
66 19 0.7641 0.1797
81 24 0.6962 0.1083

Table 4: Simulated probabilities of acceptance for GIED with pr = 0.1 and 50% censoring. .

Sampling plan Probability of acceptance

pr = 0.1 n m k L̂(p)
α = 0.05, β = 0.10 10 5 1.1352 0.5284

19 9 0.9834 0.3869
26 13 0.8981 0.2988
33 16 0.8372 0.2393
46 23 0.7482 0.1520
57 28 0.6815 0.0842

α = 0.05, β = 0.05 12 6 1.1664 0.6150
23 11 1.0066 0.4357
33 16 0.9180 0.3416
42 21 0.8553 0.2755
58 29 0.7641 0.1803
71 35 0.6962 0.1084

In Table 3, with a constant removal probability pr, varying consumer’s risk (β) and fixed pro-
ducer’s risk (ν), and fixed censoring proportion fc, as the sample size n rises, the corresponding

value of the number of the failures m also rises. However, the probability of acceptance L̂(p)
diminishes. Similar pattern have been observed from Table 3 to Table 11 for the different values of
the censoring proportion fc. From the Table 3 and Table 4, one can study the effect of the change
of censoring proportion fc. Here, with a constant removal probability pr, consumer’s risk (β) and
fixed producer’s risk (ν), size of the sample n decreases as the censoring proportion fc decreases.
A similar patterns has been observed for the rest of the tables for different values of the censoring
fraction fc and removal probability pr, so one can conclude the same in general.

5. Conclusion

Our study has delved into the challenges and intricacies of Type-II Progressive Censoring (Type-II
PCR), a common practical scenario where the number of removals is uncertain. Our primary focus
has been the development of optimum reliability sampling plans for the GIED lifetime distribution
within the framework of Type-II PCR. We have rigorously examined a range of scenarios involving
removal probabilities and censoring fractions, shedding light on their influence on these sampling
plans.
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Table 5: Simulated probabilities of acceptance for GIED with pr = 0.1 and 30% censoring. .

Sampling plan Probability of acceptance

pr = 0.1 n m k L̂(p)
α = 0.05, β = 0.10 8 5 1.1352 0.4955

17 11 0.9834 0.3853
24 16 0.8981 0.3014
30 21 0.8372 0.2399
41 28 0.7482 0.1508
51 35 0.6815 0.0838

α = 0.05, β = 0.05 11 7 1.1664 0.6245
21 14 0.9745 0.4376
30 21 0.9180 0.3421
38 26 0.8553 0.2755
52 36 0.7641 0.1798
64 44 0.6962 0.1086

Table 6: Simulated probabilities of acceptance for GIED with pr = 0.3 and 70% censoring..

Sampling plan Probability of acceptance

pr = 0.3 n m k L̂(p)
α = 0.05, β = 0.10 14 4 1.1352 0.5104

26 7 0.9834 0.3833
36 10 0.8981 0.3012
45 13 0.8372 0.2415
60 18 0.7482 0.1513
74 22 0.6815 0.0840

α = 0.05, β = 0.05 18 5 1.1664 0.6163
33 9 1.0066 0.4396
46 13 0.9180 0.3444
56 16 0.8553 0.2750
76 22 0.7641 0.1800
93 27 0.6962 0.1089

Table 7: Simulated probabilities of acceptance for GIED with pr = 0.3 and 50% censoring. .

Sampling plan Probability of acceptance

pr = 0.3 n m k L̂(p)
α = 0.05, β = 0.10 11 5 1.1352 0.5438

21 10 0.9834 0.3973
30 15 0.8981 0.3130
37 18 0.8372 0.2485
51 25 0.7482 0.1590
63 31 0.6815 0.0907

α = 0.05, β = 0.05 14 7 1.1664 0.6225
27 13 1.0065 0.4410
38 19 0.9180 0.3436
47 23 0.8553 0.2746
65 32 0.7641 0.1803
80 40 0.6962 0.1092
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Table 8: Simulated probabilities of acceptance for GIED with pr = 0.3 and 30% censoring.

Sampling plan Probability of acceptance

pr = 0.3 n m k L̂(p)
α = 0.05, β = 0.10 9 6 1.1352 0.5106

18 12 0.9834 0.3838
25 17 0.8981 0.2983
32 22 0.8372 0.2400
44 30 0.7482 0.1518
54 37 0.6815 0.0837

α = 0.05, β = 0.05 12 8 1.1664 0.6311
23 16 1.0066 0.4418
32 22 0.9180 0.3421
40 28 0.8553 0.2742
55 38 0.7641 0.1794
68 47 0.6962 0.1087

Table 9: Simulated probabilities of acceptance for GIED with pr = 0.5 and 70% censoring..

Sampling plan Probabilities of acceptance

pr = 0.5 n m k L̂(p)
α = 0.05, β = 0.10 16 4 1.1352 0.5240

29 8 0.9834 0.3841
40 12 0.8981 0.3006
50 15 0.8372 0.2407
67 20 0.7482 0.1510
83 24 0.6815 0.0842

α = 0.05, β = 0.05 20 6 1.1664 0.6224
37 11 1.0066 0.4414
51 15 0.9180 0.3436
63 18 0.8553 0.2756
85 25 0.7641 0.1799

104 31 0.6962 0.1088

Table 10: Simulated probabilities of acceptance for GIED with pr = 0.5 and 50% censoring.

Sampling plan Probability of acceptance

pr = 0.5 n m k L̂(p)
α = 0.05, β = 0.10 12 ,6 1.1352 0.5217

23 11 0.9834 0.3845
32 16 0.8981 0.2995
41 20 0.8372 0.2415
55 27 0.7482 0.1508
68 34 0.6815 0.0836

α = 0.05, β = 0.05 15 7 1.1664 0.6213
29 14 1.0066 0.4402
41 20 0.9180 0.3434
51 25 0.8553 0.2750
70 35 0.7641 0.1800
86 43 0.6962 0.1088
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Table 11: Simulated probabilities of acceptance for GIED with pr = 0.5 and 30% censoring.

Sampling plan Probability of acceptance

pr = 0.5 n m k L̂(p)
α = 0.05, β = 0.10 10 7 1.1352 0.5259

19 13 0.9833 0.3834
27 18 0.8981 0.3010
34 23 0.8372 0.2405
46 32 0.7482 0.1507
57 39 0.6815 0.0836

α = 0.05, β = 0.05 12 8 1.1664 0.6128
24 16 1.0066 0.4396
34 23 0.9180 0.3427
43 30 0.8553 0.2759
58 40 0.7641 0.1791
72 50 0.6962 0.1088

Our key findings, as evident in the parameters of sample size (n) and the acceptance constant
(k), underscore the crucial role of an increasing censoring fraction ( fc) in necessitating a larger
sample size. Generally, the optimal sample size (n) exhibits stability across varying removal
probabilities (pr). Nonetheless, it is of paramount importance to highlight the pivotal role
played by the removal probability (pr) in shaping the overall test duration. [16] has convincingly
demonstrated that an escalation in the removal probability (pr) leads to a significant extension
of the test duration. In such cases, an increased sample size becomes imperative to effectively
mitigate the extended testing period. These insights emphasize the practical significance of our
research in addressing real-world challenges related to reliability testing under Type-II PCR.

Declaration of conflicting interest: All authors have no conflict of interests in the publication of
the manuscript.

Funding : This research received no specific grant from any funding agency in the public,
commercial, or not-for-profit sectors.

Data: No such data are provided in this manuscript. Only simulation study has been performed.

References

[1] Koyama, T., Suga, R., Yokoh, T., Ohmae, Y., Yamamoto, T., Pabst Jr, W. R. (1970). MIL-STD-
105D and the Japanese modified standard. Journal of Quality Technology, 2(2), 99–108.

[2] Pandey, A., Kaushik, A., Singh, S. K., Singh, U. (2021). On the estimation problems for
exponentiated exponential distribution under generalized progressive hybrid censoring: On
the generalised progressive hybrid censoring. Austrian Journal of Statistics, 50(1), 24-40.

[3] Kaushik, A., Singh, U., Singh, S. K. (2017). Bayesian inference for the parameters of Weibull
distribution under progressive Type-I interval censored data with beta-binomial removals.
Communications in Statistics-Simulation and Computation, 46(4), 3140-3158.

[4] Fertig, K. W., Mann, N. R. (1980). Life-test sampling plans for two-parameter Weibull
populations. Technometrics, 22(2), 165-177.

[5] Hosono, Y., Ohta, H., Kase, S. (1981). Design of single sampling plans for doubly exponential
characteristics. Frontiers in Quality Control, 94-112.

RT&A, No 3 (79) 
Volume 19, September 2024

130



S. Singh, A. Kaushik
RELIABILITY SAMPLING PLAN FOR GIED

[6] Kocherlakota, S., Balakrishnan, N. (1986). One-and two-sided sampling plans based on the
exponential distribution. Naval research logistics quarterly, 33(3), 513-522.

[7] Schneider, H. (1989). Failure-censored variables-sampling plans for lognormal and Weibull
distributions. Technometrics, 31(2), 199-206.

[8] Balasooriya, U. (1995). Failure–censored reliability sampling plans for the exponential distri-
bution. Journal of Statistical Computation and Simulation, 52(4), 337-349.

[9] Balakrishnan, N., Aggarwala, R. (2000). Progressive censoring: theory, methods, and applica-
tions. Springer Science Business Media.

[10] Balasooriya, U., Saw, S. L. (1998). Reliability sampling plans for the two-parameter exponen-
tial distribution under progressive censoring. Journal of Applied Statistics, 25(5), 707-714.

[11] Balasooriya, U., Balakrishnan, N. (2000). Reliability sampling plans for lognormal distribution,
based on progressively-censored samples. IEEE Transactions on Reliability, 49(2), 199-203.

[12] Balasooriya, U., Saw, S. L., Gadag, V. (2000). Progressively censored reliability sampling
plans for the Weibull distribution. Technometrics, 42(2), 160-167.

[13] Montanari, G. C., Cacciari, M. (1988). Progressively-censored aging tests on XLPE-insulated
cable models. IEEE Transactions on Electrical Insulation, 23(3), 365-372.

[14] Yuen, H. K., Tse, S. K. (1996). Parameters estimation for Weibull distributed lifetimes
under progressive censoring with random removeals. Journal of Statistical Computation and
Simulation, 55(1-2), 57-71.

[15] Tse, S. K., Yuen, H. K. (1998). Expected experiment times for the Weibull distribution under
progressive censoring with random removals. journal of Applied Statistics, 25(1), 75-83.

[16] Tse, S. K., Yang, C., Yuen, H. K. (2000). Statistical analysis of Weibull distributed lifetime data
under Type II progressive censoring with binomial removals. Journal of Applied Statistics,
27(8), 1033-1043.

[17] Lieberman, G. J., Resnikoff, G. J. (1955). Sampling plans for inspection by variables. Journal
of the American Statistical Association, 50(270), 457-516.

[18] Balasooriya, U., Saw, S. L. (1999). A note on approximate moments of progressively censored
order statistics. Metron, 57(1-2), 117-130.

[19] Balakrishnan, N., Sandhu, R. A. (1995). A simple simulational algorithm for generating
progressive Type-II censored samples. The American Statistician, 49(2), 229-230.

[20] Wu, S. J., Huang, S. R. (2012). Progressively first-failure censored reliability sampling plans
with cost constraint. Computational Statistics Data Analysis, 56(6), 2018-2030.

[21] Barlow, R. E., Proschan, F. (1974). Statistical theory of reliability and life testing: probability
models.

[22] Lin, C. T., Duran, B. S., Lewis, T. O. (1989). Inverted gamma as a life distribution. Microelec-
tronics Reliability, 29(4), 619-626.

[23] Singh, S. K., Singh, U., Kumar, D. (2013). Bayes estimators of the reliability function and
parameter of inverted exponential distribution using informative and non-informative priors.
Journal of Statistical computation and simulation, 83(12), 2258-2269.

[24] Abouammoh, A. M., Alshingiti, A. M. (2009). Reliability estimation of generalized inverted
exponential distribution. Journal of statistical computation and simulation, 79(11), 1301-1315.

[25] Krishna, H., Kumar, K. (2013). Reliability estimation in generalized inverted exponential
distribution with progressively type II censored sample. Journal of Statistical Computation
and Simulation, 83(6), 1007-1019.

[26] Srivastava, P. W., Sharma, D. (2014). Optimum Time?Censored Constant?Stress PALTSP for
the Burr Type XII Distribution Using Tampered Failure Rate Model. Journal of Quality and
Reliability Engineering, 2014(1), 564049.

[27] Kaushik, A., Pandey, A., Maurya, S. K., Singh, U., Singh, S. K. (2017). Estimations of
the parameters of generalised exponential distribution under progressive interval type-I
censoring scheme with random removals. Austrian Journal of Statistics, 46(2), 33-47.

[28] Kaushik, A., Singh, U., Singh, S. K. (2017). Bayesian inference for the parameters of Weibull
distribution under progressive Type-I interval censored data with beta-binomial removals.
Communications in Statistics-Simulation and Computation, 46(4), 3140-3158.

RT&A, No 3 (79) 
Volume 19, September 2024

131



B. Elina, P. Swain, S. K. Misra, S. Bhattacharjee
AGEING METRICS TO ANALYSE SURVIVAL DATA

ROLE OF AGEING METRICS TO ANALYSE THE
SURVIVAL DATA OF TONGUE CANCER PATIENTS

B. Elina
1*, Pulak Swain

2†, Satya Kr. Misra
3, Subarna Bhattacharjee

4

•
1,4 Department of Mathematics, Ravenshaw University, Cuttack-753003, Odisha, India

2 Department of Mathematics, ITER (SOA University), Bhubaneswar-751030, Odisha, India
3 Department of Mathematics, KIIT University, Bhubaneswar-751024, Odisha, India

1elina.2294@gmail.com, 2pulakswain1994@gmail.com,
3satyamisra05@gmail.com, 4subarna.bhatt@gmail.com

Abstract

The paper vividly describes the non-parametric estimation of basic quantities for right censored data
of times to death for patients with tongue cancer. Here we compare patients with two different sets of
DNA profile using several parameters like reliability function, cumulative hazard rate function, smoothed
hazard rate function and ageing intensity function. With the help of graphical representations of these
functions, we analyse which DNA profile patients have better prognosis.

Keywords: survival function, hazard rate, cumulative hazard rate, ageing intensity function.
AMS 2020 Subject Classification: Primary 60E15, Secondary 62N05, 60E05.

1. Introduction

A quantitative analysis of failure data through various reliability functions such as, survival
function, hazard (failure) rate, reversed hazard rate is known to researchers since a long time.
These failure data are usually related to mechanical or a biological systems. In recent literature
[4], [11], [5], [7], we also find the use of ageing intensity function along with other ageing metrics
as discussed above to know about the ageing phenomena underlying a given failure data.
In many biomedical applications the primary endpoint of interest is time to a certain event.
Example include: time of deaths, time it takes for a patient to respond to a therapy, time from
response until disease relapse (that is, disease returns), etc.
Two important issues arise when studying time-to-event data (we will assume the “event" to be
death):
(i) Some individuals are still alive till the end of the study or at the time of analysis. So the event
of interest, namely death, has not occurred. Therefore we have right censored data.
(ii) Length of follow-of varies due to staggered entry. So we cannot observe the event for those
individuals with insufficient times.
Suppose the events occur at D distinct times t1 < t2 < · · · < tD , and at time ti there are di
events. Let Yi be the number of individuals who are at risk at time ti. Yi is a count of the number

of individuals with a time on study of ti or more. The quantity
di
Yi

provides an estimate of the

conditional probability that an individual who survives to just prior to time ti experiences the

*The work was jointly done with the first author when she was in Ravenshaw University, Cuttack-753003, Odisha,
India.
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event at time ti.
The ageing intensity function L(t) of any system at time t > 0, with probability density function
f (t), survival function F̄(t), hazard rate h(t) = f (t)

F̄(t) , and cumulative hazard rate

H(t) =

∫ t
0 h(u)du

t
is given by [8]

L(t) =
−t f (t)

F̄(t) ln F̄(t)
, where defined,

=
th(t)∫ t

0 h(u)du

=
h(t)
H(t)

.

Works on aforementioned functions can be found in [8], [17], [2], [6], [16], [12, 13], [14], [18], [5],
[19].

In the present work, we first make a review on the notion of commonly known Kaplan-Meier
and Nelson-Aalen Estimator used in survival analysis. Further, we take up a right censored
data of times to death for patients with tongue cancer to illustrate the significance of the ageing
metrics. In particular, we examine through different ageing metrics for drawing an inference
about the distribution of the time to some event X, based on sample of right censored survival
data of “Times to Death for Patients with Tongue Cancer".

The rest of the paper is organized as follows. A brief literature on Kaplan-Meier and Nelson-
Aalen estimation is given in Section 2. Consequently, Section 3 presents the kernel based
estimation for the ageing intensity function. Further, the survival analysis of the tongue cancer
patients is done in Section 4 with the help of several ageing metrics. Finally, the concluding
remarks are provided in Section 5.

2. Variance of Kaplan-Meier and Nelson-Aalen Estimators

The standard estimator of the survival function proposed by [9] called Product limit estimators
defined as

Ŝ(t) =

 1 if t < t1

∏ti≤t
di
Yi

if t > t1
(1)

The variance of the Product-Limit estimator is estimated by Greenwood’s formula

V̂
[
Ŝ(t)

]
= (Ŝ(t))2 ∑

ti≤t

di
Yi(Yi − di)

. (2)

The standard error of the product-Limit estimator is given by
{

V̂[Ŝ(t)]
} 1

2 . An estimator of the
cumulative hazard rate, was first suggested by [15] and then rediscovered by [1] which is referred
as Nelson-Aalen estimator of the cumulative hazard, defined as

H̃(t) =

 0 if t ≤ t1

∑ti≤t
di
Yi

if t ≥ t1
(3)

The estimated variance of the Nelson-Aalen estimator is given by

σ2
H(t) = ∑

ti<t

di
(Yi)2 . (4)

The standard error of the Nelson-Aalen estimator is given by (σ2
H(t))

1
2 .
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3. Kernel Based Estimation of the Ageing Intensity

Kernel-smoothed estimators of h(t) are based on the Nelson-Aalen estimator H̃(t) and its variance
V̂[H̃(t)].
Let ∆H̃(ti) = H̃(ti)− H̃(ti−1) and ∆V̂[H̃(t)] = V̂[H̃(ti)]− V̂[H̃(ti−1)] denote the magnitude of
the jumps in H̃(ti) and V̂[H̃(ti−1)] at time ti. ∆H̃(ti) provides a crude estimator of h(t) at the
death times. The Kernel smoothed estimator of h(t) is a weighted average of these crude estimates
over event times close to t. Closeness is determined by a bandwidth b, so that event times in
the range t − b to t + b are included in the weighted average which estimate h(t). The weights
are controlled by the choice of a kernel function K(.), defined on the interval [−1, 1], which
determines how much weight is given to points at a distance from t.
The kernel used in following estimation of hazard rate is uniform kernel with

K(x) =
1
2

for − 1 ≤ x ≤ 1, if b ≤ t ≤ tD − b (5)

Kq(x) =
4(1 + q3)

(1 + q)4 +
6(1 − q)
(1 + q)3 for − 1 ≤ x ≤ q, if t ≤ b given q =

t
b

(6)

Kq(x) =
4(1 + q3)

(1 + q)4 − 6(1 − q)
(1 + q)3 for − 1 ≤ x ≤ q, if tD − b ≤ t ≤ tD given q =

(tD − t)
b

(7)

The kernel smoothed estimator of h(t) based on the kernel K() is given by

ĥ(t) = b−1
D

∑
i=1

K
(

t − ti
b

)
∆H̃(ti). (8)

The variance of ĥ(t) is estimated by the quantity

σ2[ĥ(t)] = b−2
D

∑
i=1

K
(

t − ti
b

)2
∆V̂[H̃(ti)]. (9)

Section 4 is based on the study of ageing phenomenon on the patients with cancer of the tongue.

4. Study on the Effects of Ploidy on the Prognosis of Patients with

Mouth Cancer

4.1. Background

Patients were selected who had a paraffin-embedded sample of the cancerous tissue taken at the
time of surgery. The tissue samples were examined using a flow cytometer to determine if the
tumor had an aneuploid or diploid DNA profile. The data in the Table 1 is on the patients with
tongue cancer (c.f. [10]).
Data on 79 Patients with Cancer of the Tongue:
g: Tumor DNA profile – 1: Aneuploid, 2: Diploid
T: Time (in weeks)to death or on study time
δ: Death indicator – 1: Dead, 0: Alive

4.2. Results

From the survival function graph given in Figure 1, it can be observed that the curve end at
different points as the times on study are different for two DNA group patients (i.e., 400 weeks
for aneuploid patients and 231 weeks for diploid patients). Secondly the figure suggests the
aneuploid patients have the best and diploid patients the least favourable prognosis. The disease
free survival probability are 0.2286 (SE = 0.0954) for aneuploid patients and 0.0833 (SE = 0.0716)
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Table 1: Data on 79 patients with cancer of the tongue

g T δ g T δ

1 1 1 1 93 0
1 3 1 1 93 0
1 3 1 1 101 0
1 4 1 1 104 0
1 10 1 1 108 0
1 13 1 1 109 0
1 16 1 1 131 0
1 16 1 1 150 0
1 24 1 1 231 0
1 26 1 1 240 0
1 27 1 1 400 0
1 28 1 2 1 1
1 30 1 2 3 1
1 30 1 2 4 1
1 32 1 2 5 1
1 41 1 2 5 1
1 51 1 2 8 1
1 65 1 2 12 1
1 67 1 2 13 1
1 70 1 2 18 1
1 73 1 2 26 1
1 77 1 2 27 1
1 91 1 2 30 1
1 93 1 2 42 1
1 96 1 2 56 1
1 100 1 2 62 1
1 104 1 2 69 1
1 157 1 2 104 1
1 167 1 2 104 1
1 61 0 2 112 1
1 74 0 2 129 1
1 79 0 2 181 1
1 80 0 2 8 0
1 81 0 2 67 0
1 87 0 2 76 0
1 87 0 2 104 0
1 88 0 2 176 0
1 89 0 2 231 0

for diploid patients.
We also observe from Table 2 and Table 3 that the estimated survival function at 12 months after
the transplant for aneuploid group is 0.6731 and diploid group is 0.4863 (that is, at 1 year (12
months), 67.31% of aneuploid patients were alive, whereas 48.63% of diploid patients were alive).
The extended final plateau of the graph indicates that people are being cured.
From the cumulative hazard rate graph (Figure 2), we interpreted that the estimate of the
cumulative hazard rate function is steeper for first 100-110 weeks (i.e., in first 110 weeks the
hazard rate is approximately constant). And the plot shows that the aneuploid group patients
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Table 2: Product limit estimator and its estimated variance for aneuploid group patients

ti di Yi Ŝ(t) V̂
[
Ŝ(t)

] {
V̂[Ŝ(t)]

} 1
2

1 1 52 0.980769 0.000362711 0.01904496
3 2 51 0.942308 0.00104546 0.03233357
4 1 49 0.923077 0.001365498 0.03695265
10 1 48 0.903846 0.001671313 0.0408817
13 2 47 0.865385 0.002240271 0.0473315
16 2 45 0.826923 0.002752333 0.05246268
24 1 43 0.807692 0.002987028 0.05465371
26 1 42 0.788462 0.003207499 0.05663478
27 1 41 0.769231 0.003413746 0.05842727
28 1 40 0.75 0.003605769 0.06004806
30 2 39 0.711538 0.003947144 0.0628263
32 1 37 0.692308 0.004096495 0.06400387
41 1 36 0.673077 0.004231623 0.06505092
51 1 35 0.653846 0.004352526 0.06597368
65 1 33 0.634033 0.004473413 0.06688358
67 1 32 0.614219 0.004578501 0.06766462
70 1 31 0.594406 0.00466779 0.00466779
72 1 30 0.574592 0.00474128 0.06885695
73 1 29 0.554779 0.004798971 0.06927461
77 1 27 0.534231 0.004856632 0.06968954
91 1 19 0.506114 0.005107841 0.07146916
93 1 18 0.477996 0.005302736 0.07281989
96 1 16 0.448122 0.005497328 0.07414397

100 1 14 0.416113 0.005691417 0.07544148
104 1 12 0.381437 0.005884598 0.07671114
157 1 5 0.305149 0.008421952 0.0917712
167 1 4 0.228862 0.009102169 0.09540529

have the smallest death rate and the diploid group patients have the highest death rate.
We also observe from Table 4a and Table 4b respectively that the estimated cumulative hazard
function at 12 months after the transplant for aneuploid group is 0.3892 and diplod group is
0.6999 (i.e., at 1 year (12 months), 38.92% of aneuploid patients were dead whereas 69.99% of
diploid patients were dead). Table 5a, Table 6a give a record of hazard rate and ageing intensity
of aneuploid and diplod patients respectively. One can note that Table 5b to Table 5d depict the
method to calculate hazard rate of aneuploid group at t = 4, 30, 167 respectively. On a similar
line, the values of ĥ(ti) at different tis for aneuploid group are obtained in Table 5a. Table 6b to
Table 6d reflect the computation of hazard rate of diploid group at t = 8, 27, 181 respectively. The
required values of ĥ(ti) at other ti’s for diploid group are shown in Table 6a. Thus we get a crude
estimate of hazard function.
Since Figure 2 shows a crude estimate of the hazard rate so as to provide a smoothed estimated
hazard rate we used uniform kernel estimation which is shown in Figure 3. The figure indicates
the risk of death or hazard rate decreases slowly but the initial peak is high for diploid group
patients.
From the smoothed hazard rate graphs of two DNA group patients, we compare the hazard rate
of two graphs on various subintervals. These comparisons are given in Table 7.
Let h1(t) be the hazard rate function of the aneuploid patients and h2(t) be the hazard rate
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Table 3: Product limit estimator and its estimated variance for diploid group patients

ti di Yi Ŝ(t) V̂
[
Ŝ(t)

] {
V̂[Ŝ(t)]

} 1
2

1 1 28 0.964286 0.001229956 0.035070732
3 1 27 0.928571 0.002368805 0.048670367
4 1 26 0.892857 0.003416545 0.058451221
5 2 25 0.821429 0.005238703 0.072378882
8 1 23 0.785714 0.00601312 0.077544307

12 1 21 0.748299 0.006787295 0.082385044
13 1 20 0.710884 0.00745542 0.086344773
18 1 19 0.673469 0.008017493 0.089540453
23 1 18 0.636054 0.008473514 0.092051693
26 1 17 0.598639 0.008823484 0.093933402
27 1 16 0.561224 0.009067402 0.095222909
30 1 15 0.52381 0.009205269 0.095944095
42 1 14 0.486395 0.009237085 0.096109754
56 1 13 0.44898 0.009162849 0.095722771
62 1 12 0.411565 0.008982561 0.094776375
69 1 10 0.370408 0.008800344 0.093810147

104 2 8 0.277806 0.00816587 0.090365204
112 1 5 0.222245 0.007695797 0.087725689
129 1 4 0.166684 0.006644173 0.081511795
181 1 2 0.083342 0.005133974 0.071651756

Figure 1: Comparison of survival function between aneuploid and diploid patients.

function of diploid patients.
On the basis of the above analysis we can clearly observe at interval [1, 5), [5, 13), [13, 23), [23, 41)
and [41, 42), the hazard rate for aneuploid patients is less than the diploid patients where as at
the subintervals [42, 51), the hazard rate for diploid patients is less than the aneuploid patients.
Similarly we can compare the hazard rates on remaining subintervals and on an overall we
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Table 4: Construction of the Nelson-Aalen estimator and its estimated variance for aneuploid and diploid tumor

ti H̃(ti) σ2
H(t) Standard Error

1 0.019230769 0.00036982 0.01923077
3 0.058446456 0.00113876 0.03374548
4 0.078854619 0.00155525 0.03943667

10 0.099687952 0.00198928 0.04460133
13 0.142241144 0.00289467 0.0538021
16 0.186685588 0.00388232 0.06230826
24 0.209941402 0.00442315 0.06650679
26 0.233750926 0.00499005 0.07064026
27 0.25814117 0.00558493 0.07473239
28 0.28314117 0.00620993 0.07880311
30 0.334423221 0.00752485 0.08674592
32 0.361450248 0.00825531 0.09085876
41 0.389228026 0.00902692 0.0950101
51 0.417799454 0.00984325 0.09921313
65 0.448102485 0.01076152 0.10373775
67 0.479352485 0.01173808 0.10834243
70 0.511610549 0.01277867 0.11304276
72 0.544943883 0.01388978 0.11785489
73 0.579426641 0.01507884 0.12279592
77 0.616463678 0.01645058 0.12825981
91 0.669095257 0.01922066 0.1386386
93 0.724650813 0.02230708 0.14935555
96 0.787150813 0.02621333 0.16190532
100 0.858579384 0.03131537 0.1769615
104 0.941912717 0.03825982 0.19560117
157 1.141912717 0.07825982 0.27974956
167 1.391912717 0.14075982 0.37517971

(a) Aneuploid

ti H̃(ti) σ2
H(t) Standard Error

1 0.035714286 0.00127551 0.03571429
3 0.072751323 0.002647252 0.05145146
4 0.111212861 0.004126542 0.06423817
5 0.191212861 0.007326542 0.08559522
8 0.234691122 0.009216901 0.09600469
12 0.28231017 0.011484475 0.10716564
13 0.33231017 0.013984475 0.11825597
18 0.384941749 0.016754558 0.1294394
23 0.440497304 0.019840978 0.14085801
26 0.499320834 0.023301186 0.15264726
27 0.561820834 0.027207436 0.16494677
30 0.6284875 0.03165188 0.17790975
42 0.699916072 0.036753921 0.19171312
56 0.776839149 0.042671081 0.2065698
62 0.860172482 0.049615525 0.22274543
69 0.960172482 0.059615525 0.24416291

104 1.210172482 0.090865525 0.30143909
112 1.410172482 0.130865525 0.3617534
129 1.660172482 0.193365525 0.43973347
181 2.160172482 0.443365525 0.66585699

(b) Diploid

Figure 2: Comparison of cumulative hazard rate between aneuploid and diploid patients.

can again confirm the impression that aneuploid group patients have the lowest rate of death.
From the ageing intensity graphs of two DNA group patients Figure 4, we compare the ageing
intensities of two graphs at different intervals of time. These comparisons are given in Table 8.
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Table 5: Analysis of uniform smoothed hazard rate for aneuploid group patients

ti di Yi H̃(ti) ĥ(ti) L̂(ti)
1 1 52 0.019230769 0.013989484 0.727453187
3 2 51 0.058446456 0.009881253 0.169065048
4 1 49 0.078854619 0.010365443 0.131450046

10 1 48 0.099687952 0.009334279 0.093634980
13 2 47 0.142241144 0.008372741 0.058863004
16 2 45 0.186685588 0.007744815 0.041485877
24 1 43 0.209941402 0.010960455 0.052207212
26 1 42 0.233750926 0.010960455 0.046889462
27 1 41 0.258141170 0.008738233 0.033850598
28 1 40 0.283141170 0.008738233 0.030861754
30 2 39 0.334423221 0.008738233 0.026129265
32 1 37 0.361450248 0.010127122 0.028018024
41 1 36 0.389228026 0.004168812 0.010710461
51 1 35 0.417799454 0.002817460 0.006743571
65 1 33 0.448102485 0.008081359 0.018034623
67 1 32 0.479352485 0.009933211 0.020722144
70 1 31 0.511610549 0.009933211 0.019415571
72 1 30 0.544943883 0.009933211 0.018227952
73 1 29 0.579426641 0.009933211 0.017143173
77 1 27 0.616463678 0.009933211 0.016113214
91 1 19 0.669095257 0.012105785 0.018092768
93 1 18 0.724650813 0.012105785 0.016705681
96 1 16 0.787150813 0.016272452 0.020672598
100 1 14 0.858579384 0.085857938 0.100000000
104 1 12 0.941912717 0.010863095 0.011533017
157 1 5 1.141912717 0.022500000 0.019703783
167 1 4 1.391912717 0.100000000 0.071843585

(a)

ti ∆H(ti) x Kq(x) Kq(x)∆H(ti)
1 0.019231 0.3 1.501458 0.02887419
3 0.039216 0.1 1.239067 0.048590875
4 0.020408 0 1.107872 0.022609633
10 0.020833 −0.6 0.3207 0.006681254
13 0.042553 −0.9 −0.07289 −0.003101519
16 0.044444 −1.2 0 0
24 0.023256 −2 0 0
26 0.02381 −2.2 0 0
27 0.02439 −2.3 0 0
28 0.025 −2.4 0 0
30 0.051282 −2.6 0 0
32 0.027027 −2.8 0 0
41 0.027778 −3.7 0 0
51 0.028571 −4.7 0 0
65 0.030303 −6.1 0 0
67 0.03125 −6.3 0 0
70 0.032258 −6.6 0 0
72 0.033333 −6.8 0 0
73 0.034483 −6.9 0 0
77 0.037037 −7.3 0 0
91 0.052632 −8.7 0 0
93 0.055556 −8.9 0 0
96 0.0625 −9.2 0 0

100 0.071429 −9.6 0 0
104 0.083333 −10 0 0
157 0.2 −15.3 0 0
167 0.25 −16.3 0 0

h(4) = 0.010365443

(b) At t = 4 < b(= 10), Kq(x) =
4(1 + q3)

(1 + q)4 +
6(1 − q)
(1 + q)3

x =
4 − ti

10
, ĥ(8) = (10)−1 ∑i Kq(x)∆H̃(ti)

ti ∆H(ti) x Kq(x) Kq(x)∆H(ti)
1 0.019231 2.9 0 0
3 0.039216 2.7 0 0
4 0.020408 2.6 0 0

10 0.020833 2 0 0
13 0.042553 1.7 0 0
16 0.044444 1.4 0 0
24 0.023256 0.6 0.5 0.011627907
26 0.02381 0.4 0.5 0.011904762
27 0.02439 0.3 0.5 0.012195122
28 0.025 0.2 0.5 0.0125
30 0.051282 0 0.5 0.025641026
32 0.027027 −0.2 0.5 0.013513514
41 0.027778 −1.1 0 0
51 0.028571 −2.1 0 0
65 0.030303 −3.5 0 0
67 0.03125 −3.7 0 0
70 0.032258 −4 0 0
72 0.033333 −4.2 0 0
73 0.034483 −4.3 0 0
77 0.037037 −4.7 0 0
91 0.052632 −6.1 0 0
93 0.055556 −6.3 0 0
96 0.0625 −6.6 0 0
100 0.071429 −7 0 0
104 0.083333 −7.4 0 0
157 0.2 −12.7 0 0
167 0.25 −13.7 0 0

h(30) = 0.008738233

(c) At t = 30, (10 =)b < t < tD − b(= 157), Kq(x) =
1
2

x =
30 − ti

10
, ĥ(27) = (10)−1 ∑i Kq(x)∆H̃(ti)

ti ∆H(ti) x Kq(x) Kq(x)∆H(ti)
1 0.019231 16.6 0 0
3 0.039216 16.4 0 0
4 0.020408 16.3 0 0

10 0.020833 15.7 0 0
13 0.042553 15.4 0 0
16 0.044444 15.1 0 0
24 0.023256 14.3 0 0
26 0.02381 14.1 0 0
27 0.02439 14 0 0
28 0.025 13.9 0 0
30 0.051282 13.7 0 0
32 0.027027 13.5 0 0
41 0.027778 12.6 0 0
51 0.028571 11.6 0 0
65 0.030303 10.2 0 0
67 0.03125 10 0 0
70 0.032258 9.7 0 0
72 0.033333 9.5 0 0
73 0.034483 9.4 0 0
77 0.037037 9 0 0
91 0.052632 7.6 0 0
93 0.055556 7.4 0 0
96 0.0625 7.1 0 0
100 0.071429 6.7 0 0
104 0.083333 6.3 0 0
157 0.2 1 0 0
167 0.25 0 4 1

h(167) = 0.1

(d) At t = 167, (157 =)tD − b < t < tD(= 167), Kq(x) =
4(1 + q3)

(1 + q)4 − 6(1 − q)
(1 + q)3 , x =

167 − ti

10
, ĥ(167) =

(10)−1 ∑i Kq(x)∆H̃(ti)
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Table 6: Analysis of uniform smoothed hazard rate for diploid group patients

ti di Yi H̃(ti) ĥ(ti) L̂(ti)
1 1 28 0.035714286 0.031166063 0.872649778
3 1 27 0.072751323 0.023461182 0.322484609
4 1 26 0.111212861 0.024474361 0.220067724
5 2 25 0.191212861 0.024130904 0.126199167
8 1 23 0.234691122 0.021894230 0.093289553

12 1 21 0.282310170 0.017461373 0.061851733
13 1 20 0.332310170 0.020239151 0.060904398
18 1 19 0.384941749 0.018530399 0.048138189
23 1 18 0.440497304 0.017308867 0.039293922
26 1 17 0.499320834 0.014808867 0.029658019
27 1 16 0.561820834 0.014808867 0.026358700
30 1 15 0.628487500 0.012177288 0.019375545
42 1 14 0.699916072 0.003571429 0.005102653
56 1 13 0.776839149 0.008012821 0.010314646
62 1 12 0.860172482 0.008012821 0.009315365
69 1 10 0.960172482 0.009166667 0.009546896
104 2 8 1.210172482 0.022500000 0.018592391
112 1 5 1.410172482 0.022500000 0.015955495
129 1 4 1.660172482 0.012500000 0.007529338
181 1 2 2.160172482 0.200000000 0.092585199

(a)

ti ∆H(ti) x Kq(x) Kq(x)∆H(ti)
1 0.03571429 0.7 0.720164 0.025720132
3 0.03703704 0.5 0.679012 0.025148574
4 0.03846154 0.4 0.658435 0.025324438
5 0.08000000 0.3 0.637859 0.051028744
8 0.04347826 0 0.576131 0.025049174
12 0.04761905 −0.4 0.493827 0.023515552
13 0.05000000 −0.5 0.473251 0.023662525
18 0.05263158 −1 0.37037 0.019493158
23 0.05555556 −1.5 0 0
26 0.05882353 −1.8 0 0
27 0.06250000 −1.9 0 0
30 0.06666667 −2.2 0 0
42 0.07142857 −3.4 0 0
56 0.07692308 −4.8 0 0
62 0.08333333 −5.4 0 0
69 0.10000000 −6.1 0 0

104 0.25000000 −9.6 0 0
112 0.20000000 −10.4 0 0
129 0.25000000 −12.1 0 0
181 0.50000000 −17.3 0 0

h(8) = 0.02189423

(b) At t = 8 < b(= 10), Kq(x) =
4(1 + q3)

(1 + q)4 +
6(1 − q)
(1 + q)3 ,

x =
8 − ti

10
, ĥ(8) = (10)−1 ∑i Kq(x)∆H̃(ti)

ti ∆H(ti) x Kq(x) Kq(x)∆H(ti)
1 0.03571429 2.6 0 0
3 0.03703704 2.4 0 0
4 0.03846154 2.3 0 0
5 0.08000000 2.2 0 0
8 0.04347826 1.9 0 0

12 0.04761905 1.5 0 0
13 0.05000000 1.4 0 0
18 0.05263158 0.9 0.5 0.026315789
23 0.05555556 0.4 0.5 0.027777778
26 0.05882353 0.1 0.5 0.029411765
27 0.06250000 0 0.5 0.03125
30 0.06666667 −0.3 0.5 0.033333333
42 0.07142857 −1.5 0 0
56 0.07692308 −2.9 0 0
62 0.08333333 −3.5 0 0
69 0.10000000 −4.2 0 0
104 0.25000000 −7.7 0 0
112 0.20000000 −8.5 0 0
129 0.25000000 −10.2 0 0
181 0.50000000 −15.4 0 0

h(27) = 0.014808867

(c) At t = 27, (10 =)b < t < tD − b(= 171), Kq(x) =
1
2

,

x =
27 − ti

10
, ĥ(27) = (10)−1 ∑i Kq(x)∆H̃(ti)

ti ∆H(ti) x Kq(x) Kq(x)∆H(ti)
1 0.03571429 1.8 0 0
3 0.03703704 1.78 0 0
4 0.03846154 1.77 0 0
5 0.08000000 1.76 0 0
8 0.04347826 1.73 0 0

12 0.04761905 1.69 0 0
13 0.05000000 1.68 0 0
18 0.05263158 1.63 0 0
23 0.05555556 1.58 0 0
26 0.05882353 1.55 0 0
27 0.06250000 1.54 0 0
30 0.06666667 1.51 0 0
42 0.07142857 1.39 0 0
56 0.07692308 1.25 0 0
62 0.08333333 1.19 0 0
69 0.10000000 1.12 0 0
104 0.25000000 −7.7 0.77 0
112 0.20000000 0.69 0 0
129 0.25000000 0.52 0 0
181 0.50000000 0 4 2

h(181) = 0.2

(d) At t = 181, (171 =)tD − b < t < tD(= 181), Kq(x) =
4(1 + q3)

(1 + q)4 − 6(1 − q)
(1 + q)3 , x =

181 − ti

10
, ĥ(181) =

(10)−1 ∑i Kq(x)∆H̃(ti) = 0.2

Let L1(t) be the ageing intensity of the aneuploid patients and L2(t) be the ageing intensity of
diploid patients.
From the Table 8 we get, at interval [1, 5), the ageing intensity for aneuploid patients is less
than the diploid patients where as at the subintervals [5, 13), the ageing intensity for aneuploid
patients is more than the diploid patients. But as we proceed, we observe that there is an alternate
sign for the rest of the subintervals. Thus we cannot get a concluding remark. To obtain the
desired result, we now calculate the total time for which aneuploid patients have less ageing
intensity than diploid patients and vice versa.
After calculations, we get to know that the aneuploid patients have low ageing intensity than the
diploid patients for a time of 101 weeks, whereas the diploid patients have less ageing intensity
than aneuploid patients for a time of 79 weeks.
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Figure 3: Comparison of smoothed hazard rate between aneuploid and diploid patients.

Figure 4: Comparison of ageing intensity between aneuploid and diploid patients.

On the basis of the above analysis we can clearly observe that the cancer patients with aneuploid
DNA have less ageing intensity than the patients with diploid DNA profile.

5. Conclusion

There are several factors which are the majors of prognosis for the death (failure) of a man in
case of the transplant among the patients with tongue cancer. Nonetheless, the study is confined
to the effect of ploidy on the survival of patients with tongue cancer. Based on the failure data
available for the patients with tongue cancer with aneuploid and diploid DNA profile, statistical
analyses were made and graphical interpretation was studied from the curves obtained with
several parameters like reliability function cumulative hazard rate function, smoothed hazard
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Table 7: Interval-wise comparison of hazard rates between aneuploid and diploid patients

Interval Comparison of h(t)
[1, 5) h1(t) < h2(t)
[5, 13) h1(t) < h2(t)
[13, 23) h1(t) < h2(t)
[23, 41) h1(t) < h2(t)
[41, 42) h1(t) < h2(t)
[42, 51) h1(t) > h2(t)
[51, 65) h1(t) < h2(t)
[65, 104) h1(t) > h2(t)
[104, 157) h1(t) < h2(t)
[157, 181) h1(t) > h2(t)

Table 8: Interval-wise comparison of ageing intensities between aneuploid and diploid patients

Interval Comparison of L(t)
[1, 5) L1(t) < L2(t)
[5, 13) L1(t) > L2(t)
[13, 23) L1(t) < L2(t)
[23, 41) L1(t) > L2(t)
[41, 42) L1(t) < L2(t)
[42, 51) L1(t) > L2(t)
[51, 65) L1(t) < L2(t)
[65, 104) L1(t) > L2(t)
[104, 157) L1(t) < L2(t)
[157, 181) L1(t) < L2(t)

rate function and ageing intensity. It is analysed from the graph in all the cases that patients with
aneuploid DNA profile ought to be one of the basis for prognosis for the patients with tongue
cancer. Hence it is inferred that patients with aneuploid tumors may get benefit significantly from
a prolonged tumor free period. Here we discuss about the analysis of the censored and uncensored
failure data through various measures of ageing phenomenon. Moreover, we summarize various
ageing concepts of the lifetimes that have been widely studied in the field of reliability.
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Abstract 

In this study, a modified 2-parameter skew t distribution called the transmuted skew student t 

distribution (TSStD) was presented. Some statistical and reliability properties of TSStD such as 

the quantile function, the raw moments, and the moment generating function (among others), 

were derived. Through the method of maximum likelihood, the two parameters of the model were 

estimated. The stability of the model was studied via Montecarlo simulations utilizing bias, mean 

square error, and root mean square error as metrics. The results from the stability study revealed 

that the TSStD was well-behaved. Four datasets were modeled with the transmuted skewed 

student t distribution and four other probability density models. On the basis of information 

criteria, the results revealed that the transmuted skew student t distribution provides a better fit 

for all the datasets compared to the other competing models. 

Keywords: Transmuted, Skew, Raw moments, Quantile, Reliability function, 

Hazard function 

I. Introduction

Empirical probability models, or probability distributions, are an essential aspect of parametric 

statistical investigation. Classical distributions are more susceptible to an anomaly when 

characterizing various data and data generating processes, according to a prevalent reality across a 

variety of sectors, including finance, environmental science, biological sciences, engineering, and 

others. This emphasizes the need to hybridize classical probability models in order to meet this 

complex task *1+. Owing to the applicability of distribution theory and the availability of diverse 

data in today’s world, the thirst for improved statistical distributions that might be used to 

describe and model these events have increased spontaneously *2+, *3+, *4+, *5+, and *6+. Many 

scholars have over the years help modified simple statistical methodologies in relation to 

distribution theory and these methods have been found immensely useful in statistical modeling. 

Several methods of modifying probability distributions have been proposed over the years by 

scholars to improve statistical methodology of distribution theory. Among the methods are 

Exponentiated Exponential Distribution *7+, the Sine-G family *8+, the New Sine-G Family *9+, the 

G-families using the transformed-transformer *10+, Transmuted G family by *11+, and amongst

others. Several distributions have been modified using the Transmuted G family of distributions

over the years and some of them include Transmuted Lomax and Transmuted Exponentiated

Lomax distributions *12+, Transmuted Frechet distribution *13+, Transmuted Exponentiated

Gamma distribution *14+, Transmuted additive Weibull distribution *15+, Transmuted generalized

Gompertz distribution *16+, Kumaraswamy Transmuted Exponentiated modified Weibull
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distribution *17+, Transmuted Exponential power distribution *18+, etc. Using the method of 

transmutation by *19+, this paper proposes a new probability distribution called the Transmuted 

Skew Student t Distribution (TSStD). 

II. Methods

I. The Transmuted Family of Distribution

This section presents the TSStD, some of its statistical properties, simulation study as well as 

application to real life data. The cumulative density function (CDF) and probability density

function (PDF) of the Transmuted family of distribution generator is given by;  

         
2

1 -F v G v G v (1) 

          1 - 2f v g v G v (2) 

where, α is the transmuted parameter (shape), F(v) is the CDF and f(v) is the PDF of the baseline 

distribution.  

II. The Skew Student t Distribution

Using the simplified version of the Skew Student t Distribution (SStD) with 2 degrees of freedom 

introduced by Jonson et al., *20+ whose CDF and PDF are expressed as; 

 

 
 

 
 
      

 
 

  
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

3/2
2

;

2

1
1

2 2
v

g v
v

v
G v

v  (3) 

where,  is the shape parameter. 

III. Transmuted Skew Student t Distribution (TSStD)

On substituting G(v) and g(v) in equation (3) into (1) and (2) the PDF and CDF of TSStD are 

obtained as; 

 
 

   
     
    

      

2

3 2
2 2

; , 1 - 2
22

v v
f v

vv

   (4) 

and 

   
   
      
   

2

2 2

1 v 1 v
F v;Λ,α = 1+α + -α +

2 22 Λ+v 2 Λ+v
(5)
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Figure 1: The PDF Plot of TSStD       Figure 2: The CDF Plot of TSStD 

IV. Properties of Transmuted Skew Student t Distribution

The survival *S(x)+, hazard *h(x)+, odd *O(x)+, and quantile *Q(v)+ functions, skewness, and kurtosis 

statistics are presented as well as the S(x) plot as follows 

     
2

2 2

1 1
1- 1 -

2 22 2
1S V

v v

v v
x F v  

    
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Figure 3: The S(v) Plot of TSStD for varied parameter value 

Quantile Function: the inverse of the CDF of TSStD gives the quantile function of TSStD and after 

numerous algebraic simplifications, this is expressed as; 
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 
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Skewness: the Galton measure of skewness *GSK+ which measures the presence and lack of 

symmetry of a probability distribution is presented for TSStD using Q(v) as follows;  
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Q Q Q Q
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Q Q
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Kurtosis: the kurtosis measure whether or not the probability distribution is heavy-tailed. For 

TSStD the Moor’s kurtosis measure is derived using Q(v) as follows; 
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IV. Moments, Moment Generating Function, and Characteristic Function

Moments: A random variable v with TSStD has its moment in the form; 


 
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Proof 

The rth moment of a random variable v with a valid probability distribution is given by; 

 
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r r
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Let v be a random variable following the TSStD. Then the moment is derived as follows; 
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By transformation, let 

 
1

;r ru v v u ;  -1
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1
;r

r

du
rv dv du

dv rv
. Substituting the transformations into (15) to obtain; 
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-

11

r r

r

r
r

u u
u du du

r
uu

 (17) 

Also, letting  


       
 

2
2-

2
2-

2
, , ,

2

rrr
r

r

r

u dk r
k u k u du dk

du r
u

 then by substituting for u and du in 

(17), we obtain the following; 

 

   

 

   



   
    
   

   
   
   

 
    

       

 

1 2

2 23
-
2

3 222- 2-

2 2 20 0

-
11 2 2

r r

r r

r r r r r

r r

k kr r
u dk dk

r kk k k

       


      

      
           

   

   

2 2 2- - -
2 2 22 2 2

1 3 2 3 2

2 2 20 0 0 0

- -
2 21 11 1

r r rr r r r r r

r

k k k k
u dk dk G dk H dk

k kk k

 (18) 

where,  
 




2-
22

1

2

;

rr r

G H . Therefore, the Beta function is given as; 

 





   




-1

0

,
1

p

p q

t
p q dt

t

         (19) 

Therefore, on transforming (18) into the form presented in (19), the following is obtained; 

   

 


 

 

   
 

 

 
     
     

    
 

 

2
- 1-1

1-1 2 2 22

2 2 2 2
3

- 2 -
0 02 2 2 2 2

- 2 2
- , - ,

2 2 2 2 2 2
1 1

r
r r

r
r r r r

k k r r r r r
u G dk H dk G H

k k

 (20) 

which completes the proof. 

The mean of TSStD, that is, E*v+ based on equation (20) by substituting r to be 1 is given as; 

   
   

  
          
          

         

2 2

1

1 - 1 2 1 1 2 1 1 3 1
[ ] , - , 1, - ,

2 2 2 2 2 2 2 2 2
E v u G H G H (21)

Moment Generating Function (MGF): The MGF of the random variable v with TSStD is given by: 

 




      
     

    


2

0

2- 2 2
( ) , - ,

2 2 2
.

2! 2

m

v

m

m m m m m

m
G

t
M t H (22)

Proof 
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The MGF is given by: 




  
-

( ) [ ] ( )tv tv

v
M t E e e f v d          (23) 

By McLaurin’s series expansion, 
tve is expressed as 

 




0 !

m

tv

n

tv

m
e  then equation (23) becomes 

  

 

 
        
 

 
0 0

( ) [ ]
! !

m
m

v

m m

tv mM
v

t E e E
t

E
t

m m
v  (24) 

As obtained in equation (20),    
m

m
E v u , therefore,

 




      
     

    


2

0

2- 2 2
( ) , - ,

2 2 2
.

2! 2

m

v

m

m m m m m

m
G

t
M t H (25) 

Characteristic Function *CF+: for a random variable v with TSStD, the CF is given as; 

 
 

 




      
     

    


2 2

0

- 2 2
. , - ,

! 2 2 2 2 2

c

v

c

it r r r r r
f t G H

c
 (26) 

Proof 

The CF of a valid probability distribution is expressed as; 

   




    
-

itv itv

v
f t E e e f v dv  (27) 

By Taylor’s series expansion of 
 




0 !

c

itv

i

itv
e

c
, therefore, 

 
 

 




      
     

    


2 2

0

- 2 2
, - ,

! 2 2 2 2 2

c

v

c

itv r r r r r
f t G H

c
(28) 

V. Order Statistics for TSStD

Sample values such as the smallest, largest, or middle observation from a random sample provide 

important information. Order Statistics could be used to determine the distribution of the smallest 

(minimum) order statistic and the largest (maximum) order statistic of a given distribution. Let V1, 

V2, <, Vn denote n-independent random sample from a distribution function F(v) and probability 

density function, f(v), then 1 2
, ,...,

n
v vv represent the order sample arrangement and the pdf of

( )n
v

is given by: 

 
   

      
 

--1

:

!
1-

-1 ! - !

n ii

i n

n
f v f v F v F v

i n i
 ; for 1, 2, ,    i n .  (29) 

For simplicity, [1 ( )]n iF v in (29) can be expressed using the sum of a binomial series as 

   





 
 
 


 

0

-
-1

m

l

m

F v
n i

m
. By substitution the following is obtained: 

 
   

     




 
  

 


0

1-

:

!

-1 ! - !

-
-1

m im

i n

m

n i

m

n
f v f v F v

i n i
 (30) 

Now, making the substitution of f(v) and F(v) into (30) will yield the following; 
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 
     

   

2

: 3 2
2 2

-1
2

2 2

2 2
0

!
1-

-1 ! - ! 22

1 -
-

-
2 2

1

n

m

m

i

m i

n v v
f v

i n

i

i v

n

v

v v v

m

v

v v



 






                        

            



 
   
           







 



 (31) 

Applying binomial expansion to the term   



             
           

-1
2

2 2

2 2
1 -

2 2

m i

v v v v

v v

 to get 

  





          
   




   
   
      

       


-1-
2

-1 2 2

2
0

2

-1
1 -

2 2

m i q

m i
q

q

m i v v v

vq

v

v
 and when substituted into (31), the  :i n

f v becomes; 

 
     

   



 





 


     
    

 
       
               


              

       


       
   

 

2

: 3 2
2 2

-1-
2

-1 2

0 0

2

2 2

!
1-

-1 ! - ! 22

-
-

1
1 -

-

2 2
1

q

m

m

i n

m i q

m i

q

n v v
f

i

n i

v
n i vv

m i v

m

v v v

v vq

 (32) 

Expanding the term  
   


 
   

 
 




2

2
1

2

q

v v

v

binomially yields 


   
 
 

  
 

    


 


2
-

2
0 2

q

r

q

q

r

q v

vr

v and on 

substitution into (32),  :i n
f v becomes,

 
     

   






  

 


 



 
     

  

 




      
               


     

  
  

       
 

  
0

2

: 3 2
2 2

-1-
2

-1 2
-1- -

2
0 0

!
1-

-1 ! - ! 22

-
-- 1

2
1 -

i n

m i q q

q
q

m

m q r

m i
m i q r

n v v
f

vn i

m

v
i n i vv

m i q v

vq r

 (33) 

 
     

  





 
           
                   



 
 
 
 

-1
2

2 2
-1-

: :3 2 2
2 2

!
1- -

-1 ! - ! 2 22

m i

m i r

i n i n

n v v v v
f v H

i n i v vv
 (34) 

where,  


 





     
     
     


  

1

0 0
:

0

--
-1

-1m i q
m

m q r
i n

n i

m q r

m i q
H . 

VI. Parameter Estimation Using Maximum Likelihood Estimation Technique

Let  l   be a parameter vector for the transmuted family of distributions. Consider a random 

variable  ~ ,v TSStD , then by definition, the likelihood function of v with PDF f(v) is given as;

    
 

 
 






   
       
  

     


2

3
-

2 2

2
1

-
; 2

n

i

v v
l l f v v

v
(35)
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 
 








 
 
    
 

  
 






3
-

- 21 2

2 1

1

2 1-

n

n

n n i

n

i

i

v

v

v

 (36) 

The log of  l  is as follows; 

  
 

 
 



  





  
                   

  

 



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3
21 1 2

2 1

1

-

log log - log 2
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n

n
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n

i

i

v v
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v

 (37) 

Differentiating equation (37) with respect to the parameters Λ and α will yield the estimates of the 

parameters. The differentiation w.r.t. Λ is obtained as 

      

 
   

 
   

 



                 
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 
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v

. 

The result obtained shows that the parameter Λ does not exist in a closed form. A numerical 

estimate for the parameter will be obtained using R-software. Differentiation w.r.t. α gives  

  

 

 

 
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
  

 
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 
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
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1
2 2

1

1

ˆ
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i
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v

 (38) 

VII. Measures of Goodness-of-Fit Adopted

This section presents the measures used in model selection. They include the Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), Corrected AIC (CAIC), and Hannan-Quinn 

Information Criterion (HQIC). 

  2 - 2AIC k ll  (39) 

    
10

log - 2BIC k n ll  (40) 

   
 

 


- -1 2 1

- -1

AIC n k k k
CAIC

n k
 (41) 

    
10

2 log ln - 2HQIC k n ll

 

 (42) 

where, lL is the log-likelihood value, n is the in-sample size, and k is the parameter. 

III. Results

I. Stability Study via Monte Carlo Simulations

In this section, we examined the stability of the probability model with an increase in sample size 

using simulation. The parameters were fixed at (0.6, 0.5) and (0.3, 0.7). Utilizing the quantile 

function presented in Equation (8), a random sample of sizes—30, 75, 300, 500, and 1000—was 

generated. The measures used for assessing the models were the Average Absolute Bias (AAB), 
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Mean Square Error (MSE), and Root Mean Square Error (RMSE), respectively. These measures 

were calculated using the expressions given below: 




1

-Q

q

q

u u
AAB

q
 (43) 

 

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2

1

-Q
q

q

u u
MSE

q
 (44) 

RMSE MSE (45) 

In accordance with the central limit theorem, an increase in sample sizes is expected to result in the 

reduction of estimation errors, approaching zero. Analyzing the results of the simulation as 

presented in Table 1, it becomes evident that this holds true for the new model. An increase in 

sample sizes corresponds to a decrease in bias and mean square error, as demonstrated. 

Table 1: The AAB, MSE and RMSE 

Size (n) Parameter Parameter Value MLE AAB MSE RMSE 

30  0.21 -2.929E-06 0.21000293 0.04410123 0.21000293

30  0.72 -0.3688692 1.08886921 1.18563616 1.08886921

100  0.21 0.00062679 0.20937321 0.04383714 0.20937321 

100  0.72 -0.378557 1.09855699 1.20682746 1.09855699

300  0.21 0.08369549 0.12630451 0.01595283 0.12630451 

300  0.72 0.74825993 0.02825993 0.00079862 0.02825993 

500  0.21 0.2257876 0.0157876 0.00024925 0.0157876 

500  0.72 0.57707861 0.14292139 0.02042652 0.14292139 

Figure 4: The AAB and MSE 

As illustrated in the plot of the AAB and MSE presented in Figure 4, it can be observed that the 

probability model is well-behaved. This was due to the decay in the value of the AAB and MSE. 

The larger the sizes of the sample, the better the estimates are, the smaller the error and the more 

consistent the parameters are.  

II. Application to Real-Life Data

This section provides an application of the model to real data. Other competing models were fitted 

to the data, and the goodness of fit of these models was assessed using various statistical 

information criteria. This illustration involves four data sets. The first and second datasets were 

sourced from *21+. The first dataset pertains to the duration of symptom decrease or disappearance 
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in patients with bladder cancer, measured in months for one hundred and twenty-eight patients. 

The second dataset focuses on the response time of patients to treatments, measured in minutes 

from the moment the treatment was administered. 

First data set: 0.08, 2.09, 2.73, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.22, 3.52, 4.98, 6.99, 9.02, 13.29, 

0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 

3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 

10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 

15.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 

2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 

1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.93, 8.65, 12.63, 

22.69 

Second data set: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0  

The third and fourth dataset were both sourced from *22+. The third dataset consisted of three 

hundred and forty-six measures of nicotine taken as obtained from different cigarette product 

category. The fourth data was on the windshield of an aircraft. The data comprises of one hundred 

and fifty-three measurements, of which eighty-eight were categorized as failed windshields and 

the remaining sixty-five were service times of windshields that were in good condition at the time 

of the observation. 1000h is the measuring unit. 

Third data set: 1.3, 1.0, 1.2, 0.9, 1.1, 0.8, 0.5, 1.0, 0.7, 0.5, 1.7, 1.1, 0.8, 0.5, 1.2, 0.8, 1.1, 0.9, 1.2, 0.9, 0.8, 

0.6, 0.3, 0.8, 0.6, 0.4, 1.1, 1.1, 0.2, 0.8, 0.5, 1.1, 0.1, 0.8, 1.7, 1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 0.4, 1.0, 0.2, 0.8, 

1.4, 0.8, 0.5, 1.1, 0.9, 1.3, 0.9, 0.4, 1.4, 0.9, 0.5, 1.7, 0.9, 0.8, 0.8, 1.2, 0.9, 0.8, 0.5, 1.0, 0.6, 0.1, 0.2, 0.5, 0.1, 

0.1, 0.9, 0.6, 0.9, 0.6, 1.2, 1.5, 1.1, 1.4, 1.2, 1.7, 1.4, 1.0, 0.7, 0.4, 0.9, 0.7, 0.8, 0.7, 0.4, 0.9, 0.6, 0.4, 1.2, 2.0, 

0.7, 0.5, 0.9, 0.5, 0.9, 0.7, 0.9, 0.7, 0.4, 1.0, 0.7, 0.9, 0.7, 0.5, 1.3, 0.9, 0.8, 1.0, 0.7, 0.7, 0.6, 0.8, 1.1, 0.9, 0.9, 

0.8, 0.8, 0.7, 0.7, 0.4, 0.5, 0.4, 0.9, 0.9, 0.7, 1.0, 1.0, 0.7, 1.3, 1.0, 1.1, 1.1, 0.9, 1.1, 0.8, 1.0, 0.7, 1.6, 0.8, 0.6, 

0.8, 0.6, 1.2, 0.9, 0.6, 0.8, 1.0, 0.5, 0.8, 1.0, 1.1, 0.8, 0.8, 0.5, 1.1, 0.8, 0.9, 1.1, 0.8, 1.2, 1.1, 1.2, 1.1, 1.2, 0.2, 

0.5, 0.7, 0.2, 0.5, 0.6, 0.1, 0.4, 0.6, 0.2, 0.5, 1.1, 0.8, 0.6, 1.1, 0.9, 0.6, 0.3, 0.9, 0.8, 0.8, 0.6, 0.4, 1.2, 1.3, 1.0, 

0.6, 1.2, 0.9, 1.2, 0.9, 0.5, 0.8, 1.0, 0.7, 0.9, 1.0, 0.1, 0.2, 0.1, 0.1, 1.1, 1.0, 1.1, 0.7, 1.1, 0.7, 1.8, 1.2, 0.9, 1.7, 

1.2, 1.3, 1.2, 0.9, 0.7, 0.7, 1.2, 1.0, 0.9, 1.6, 0.8, 0.8, 1.1, 1.1, 0.8, 0.6, 1.0, 0.8, 1.1, 0.8, 0.5, 1.5, 1.1, 0.8, 0.6, 

1.1, 0.8, 1.1, 0.8, 1.5, 1.1, 0.8, 0.4, 1.0, 0.8, 1.4, 0.9, 0.9, 1.0, 0.9, 1.3, 0.8, 1.0, 0.5, 1.0, 0.7, 0.5, 1.4, 1.2, 0.9, 

1.1, 0.9, 1.1, 1.0, 0.9, 1.2, 0.9, 1.2, 0.9, 0.5, 0.9, 0.7, 0.3, 1.0, 0.6, 1.0, 0.9, 1.0, 1.1, 0.8, 0.5, 1.1, 0.8, 1.2, 0.8, 

0.5, 1.5, 1.5, 1.0, 0.8, 1.0, 0.5, 1.7, 0.3, 0.6, 0.6, 0.4, 0.5, 0.5, 0.7, 0.4, 0.5, 0.8, 0.5, 1.3, 0.9, 1.3, 0.9, 0.5, 1.2, 

0.9, 1.1, 0.9, 0.5, 0.7, 0.5, 1.1, 1.1, 0.5, 0.8, 0.6, 1.2, 0.8, 0.4, 1.3, 0.8, 0.5, 1.2, 0.7, 0.5, 0.9, 1.3, 0.8, 1.2, 0.9 

Fourth data set: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 

1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 

2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 

1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 

1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 

1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 

Five models were fitted to the above four datasets using the Adequacy Model package in R *23+, 

these models include; Exponentiated Ailamujia distribution (EAD), Exponentiated Exponential 

distribution (EED), Exponentiated Weibull (EWD), the Logistic distribution (LD) and the 

transmuted skew student t distribution (TSStD) respectively. The resulting fitted models selected 

on the basis of Akaike Information Criterion, (AIC), Bayesian Information Criterion (BIC), 

Consistent Akaikes Information Criterion (AIC) and Hannan-Quinn information criterion, (HQIC). 
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Table 2: The AIC, CAIC, BIC, HQIC and MLE of the First data 

Models AIC BIC CAIC HQIC MLE Rank 

TSStD -642.6124 -636.9719 -634.9719 -627.3313
0.0006 1 

1.1348 

EED 799.7295 805.3700 799.8286 802.0208 
1.2682 3 

0.1041 

EWD 275.1219 282.4499 275.4182 278.0694 

0.4493 

1.6494 2 

1.7404 

EAD 7285.8160 7291.4570 7285.9150 7288.1080 
1.4819 5 

1.8290 

LD 1080.3360 1085.9770 1080.4350 1082.6270 
1.9978 4 

1.8904 

Table 2 to Table 5 presents the model estimates for each of the datasets.  The results revealed that 

the model with the smallest measure of the entire information criterion was the TSStD. The ranks 

for the performance of the models were based on the information criterions of each of the models. 

From the results obtained, for the five models estimated, the TSStD was the models with the best 

fit.  
Table 3: The AIC, CAIC, BIC, and HQIC of the second data 

Models AIC BIC CAIC HQIC MLE Rank 

TSStD -642.6124 -640.621 -638.621 -634.6295
9.3568e-03 1 

-7.6898e-16

EED 36.3450 38.3365 37.0509 36.7338 
54.366966 2 

2.172273

EWD 46.9561 49.9433 48.4561 47.5392 

0.6234 

1.7261 3 

1.7733 

EAD 48.3887 50.3802 49.0946 48.7775 
1.8667 4 

0.7558 

LD 1204.3680 1210.0080 1204.4670 1206.6590 
1.7387 5 

1.7264 

Table 4: The AIC, CAIC, BIC, and HQIC of the Third data 

Models AIC BIC CAIC HQIC MLE Ranks 

TSStD -642.6124 -634.9196 -632.9196 -623.2267
-0.1381 1 

1.4114

EED 325.3694 333.0623 325.4044 328.4327 
6.0022 4 

2.3477

EWD 261.0285 272.5679 261.0987 265.6235 

1.3488

1.7973 2 

1.5733

EAD 300.5637 308.2566 300.5987 303.6271 
1.9331 3 

1.5668

LD 293.6612 301.3540 293.6961 296.7245 
0.9789 5 

0.2148
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Table 5: The AIC, CAIC, BIC, and HQIC of the fourth data 

Models AIC BIC CAIC HQIC MLE Ranks 

TSStD -347.3415 -342.4562 -340.4562 -333.5709
-0.1613

1 1.1483

EED 292.3541 297.2394 292.5004 294.3191 
3.6582

4 
0.6240

EWD 275.2268 282.5548 275.5231 278.1743 

0.4305

2 1.7537

1.3413

EAD 283.6236 288.5089 283.7699 285.5886 
1.7293

3 
0.5065

LD 412.6227 417.5080 412.7690 414.5877 
0.8074

5 
1.3006

IV. Conclusion

This research paper presented a novel two-parameter distribution known as the Transmuted Skew 

Student t distribution. Some of the statistical and reliability properties for the TSStD were derived 

and they included the survival function, the rth moment, the hazard function, the mean, the 

quantile function, the moment generating function, the characteristic function and the order 

statistics. Before application to real dataset, a Monte-Carlo simulation study was conducted to 

assess the stability of the model with more sample sizes. The results revealed that the model was 

consistent with increase in the number of samples. The new PDF was applied to four different real 

datasets. Using information criterions, it was found that TSStD performs better than other 

competing models.  
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Abstract 

In this research article, we have introduced a new class of continuous probability distributions known 

as the Sine Topp-Leone Exponentiated-G family of distributions. This newly proposed family exhibits 

a higher degree of flexibility compared to some of the established distribution families. The various 

models within this family find wide-ranging applications in fields such as physics, engineering, and 

medicine. Some statistical properties of the Sine Topp-Leone Exponentiated-G family of distributions 

such as moments, moment generating function, quantile function and order statistics are derived. 

Two special models were also presented and studies. Maximum likelihood estimation method was 

used to estimate parameters of the models. The consistency of the proposed family was determine 

using simulation studies. Two real life datasets were analyzed to show the flexibility of the proposed 

model and the results of the analysis showed that, the proposed model was more efficient and best fit 

the data sets than its competitors. 

Keywords: Sine-G Family, Topp-Leone Exponentiated G, Survival Analysis, 

Survival Regression, Maximum Likelihood Estimate 

1. Introduction

The Topp-Leone Distribution is a statistical concept that finds its roots in probability theory and data 

analysis. It was developed by [1] is 2015 and it is a powerful tool in the field of statistics for modeling 

and understanding random variables with various applications across different domains. It is a 

relatively recent addition to the family of probability distributions in statistics and has gained 

prominence for its adaptability in modeling various types of data with flexibility and precision. This 

distribution offers a valuable tool for statisticians, data scientists, and researchers in diverse fields, 

enabling them to capture the underlying characteristics of data sets that may not conform to 

traditional distribution assumptions. The Topp Leone Distribution is particularly well-suited for 

modeling data with heavy tails, which means it can effectively describe observations that exhibit 

extreme values or outliers. This characteristic is especially important in fields like finance, where 

extreme events can have significant consequences, and in environmental science, where rare but 

impactful events need to be accounted for in risk assessment.  
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Recently, some researchers have developed numerous families of Topp-Leone Distribution 

which include: Topp-Leone G Family of Distribution by [2], Topp-leone Marshal Olkin G by [3], 

Transmuted Topp-Leone G by [4], Topp-Leone Exponentiated G Family by [5], Topp-Leone Odd 

Lindley G by [6], Odd Log Logistic Topp-Leone by [7], Frechet Topp-Leone G Family by [8], Topp-

Leone Odd Log Logistic Family by [9], Type II generalized Topp-Leone G Family by [10], Type II 

Exponentiated Half-Logistic Topp-Leone G by [11], Topp-Leone Marshal Olkin G by [12], Type II 

Topp-Leone G by [13], the Weibull Topp-Leone G by [14], Odd Weibull Topp-Leone G by [15], Topp 

Leone Odd Burr III G by [16], The Burr III Topp-Leone G by [17], Topp-Leone Gompertz G by [18], 

Topp-Leone Exponential G by [19] and Topp-Leone Generalized Half-Log Logistic G by [20]. 

In order hand, the Sine-G family of probability distributions is a class of continuous 

probability distributions that is often used in statistical modeling and data analysis. This family is 

characterized by its flexibility and ability to capture a wide range of data patterns, making it a 

valuable tool for statisticians and data scientists. The PDF of a Sine-G distribution is defined in terms 

of the sine function, which introduces oscillatory behavior into the distribution. This oscillatory 

behavior can be adjusted by varying the distribution's parameters, allowing it to fit data with 

different shapes and characteristics. One of the notable features of the Sine-G family is its ability to 

model data with heavy tails, which means it can effectively describe extreme or outlier values in a 

dataset. This makes it useful in fields such as finance, where extreme events can have a significant 

impact on investment portfolios and risk assessment. The Sine-G family is also capable of modeling 

data with various degrees of skewness and kurtosis, providing a versatile tool for capturing complex 

data patterns that may not conform to traditional distribution assumptions like the normal 

distribution.  

Some of the recent development of the Sine G family include: Sine Topp-Leone G by Al-[21], 

the New Sine G Family by [22], the Sine Kumaraswamy G by [23], Exponentiated Sine G by [24], 

Transmuted Sine G by [25], Sine Marshall–Olkin G by [26] and Sine Inverse Lomax G by [27]. These 

developments of flexible families of distributions through innovative transformations, as mentioned 

in this research article, reflects the dynamic nature of statistical research. Such advancements hold 

promise for improving the accuracy and applicability of statistical models in diverse domains and 

addressing the complexities of real-world data.  

2. Methods

2.1 The Sine-G Family of Probability Distribution 

Let ℎ(𝑥; 𝜉)and H(x;  ξ) be the pdf and cdf of a Univariate continuous distribution, then, the Sine-G 

family of probability distribution according to [28] is defined by:  

( ; )
2

0
( ; ) cos sin ( ; )

2

H x

F x tdt H x


 
 

 
   

 
  (1) 

with corresponding pdf given by: 

( ; ) ( ; ) cos ( ; )
2 2

f x h x H x
 
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 

  
 

 (2) 

where ( ; )H x   and ( ; )h x   are the cdf and the pdf of any baseline distribution with vector 

parameter 𝜉. 

2.2 Topp-Leone Exponentiated-G Family of Distributions 

The cdf of the Topp-Leone Exponentiated G family of distribution according to [4] is given by: 
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 
2

( ; , , ) 1 1 ( ; )F x G x


            (3) 

with corresponding pdf defined by: 

 
1

2
1( ; , , ) 2 ( ; ) ( ; ) 1 ( ; ) 1 1 ( ; )f x g x G x G x G x


         


             (4) 

where 𝛼 is a shape parameter, ( ; )g x   and ( ; )G x   are pdf and cdf of any baseline distribution

respectively and 𝜉 is a vector parameter of the baseline distribution. 

2.3 The Proposed Sine Topp-Leone Exponentiated G Family of Distributions 

The cdf of the new Sine Topp-Leone Exponentiated G Family is given by: 

 
2

( ; , , ) sin 1 1 ( ; )
2

F x G x



   

        
      (5) 

with corresponding pdf given by:

 
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( ; , , ) 2 ( ; ) ( ; ) 1 ( ; ) 1 1 ( ; )
2

cos 1 1 ( ; )
2
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


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



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        

 (6) 

The survival function S(x), hazard function h(x), reversed hazard function r(x) and the quantile 

functions Q(x) of the STLE-G are presented in equation (7) to (10). 

2

( ) 1 sin 1 1 1 1
2
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








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 (7) 
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
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  

 

 (10) 

where 𝐺−1(𝑥, 𝜉) is the quantile function of the baseline distribution 𝐺(𝑥; 𝜉). 

2.4 Expansion of Density 

The pdf and the cdf of the Sine Topp-Leone Exponentiated G family can be expanded using power 

series expansion as follows: 
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Therefore, the reduced form of the pdf is given by: 
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The cdf can also be expanded as follows: 
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Therefore, the reduced form of the cdf is given as: 
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F x G x 
  

  

  (12)
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2.5 Mathematical Properties 

2.5.1 The Moment 

Moments is used to study many important properties of distribution such as dispersion, tendency, 

skewness and kurtosis. The 𝑟𝑡ℎ moments of the Sine Type II Topp Leone G family of distribution is 

obtained as follow: 

' ( )r

r x f x dx



 

Therefore, the moment of the Sine Topp-Leone Exponentiated G is obtained as follows: 

' ( 1) 1

0
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  
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( 1) 1

0
( ) ( ) kg x G x dx


   , 

Therefore, the rth moment of the Sine Topp-Leone Exponentiated is given by: 

'
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r

i j k


  

  
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2.5.2 Moment Generating Function 

The moment generating function of a random variable X is defined as 𝐸(𝑒𝑡𝑥). 

 ( ) ( ; , )tx tx

xM t E e e f x dx 



  

We say that mgf of X exists, if there exists a positive constant a such that 𝑀𝑡(𝑥) is finite for all s ∈

[−a, a]. The moment generating function of the Sine Topp-Leone Exponentiated G family of 

Distributions is given by: 
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Therefore, the moment generating function of the Sine Topp-Leone Exponentiated G is given by: 
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2.5.3 Entropy 

Entropy is used as a measure of information or uncertainty, which present in a random observation 

of its actual population. There will be the greater uncertainty in the data if the value of entropy is 

large. For some probability distributions expression, the differential entropy is considered mostly 

effective. It can be derived using the formula: 

1
( ) log ( )

1
I x f x dx









 

The entropy for the Sine Topp-Leone Exponentiated G family of distributions is given by: 
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Therefore, the entropy is given as: 
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2.5.6 Order Statistics 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size n from a continuous population having a pdf f(x) and 

cdf F(x), Let 𝑋1:𝑛 ≤ 𝑋 ≤ 𝑋𝑛:𝑛 be the corresponding order statistics (OS). [29] defined the pdf of 𝑋1:𝑛 

that is the 𝑖𝑡ℎ order statistics by: 
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The order statistics of the Sine Topp-Leone Exponentiated G is given by: 
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2.6 Parameter Estimation 

2.6.1 Maximum Likelihood Estimate 

Let 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 be a random sample of size 𝑛 from the Sine Type II Topp-Leone G family of 

distribution. Then, the likelihood function of the Sine Type II Topp-Leone G family is derived as 

follows: 
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Differentiating the likelihood function in equation (17) with respect to 𝛼 gives the following 

expression: 
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Differentiating the likelihood function in equation (17) with respect to 𝜃 gives: 
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Differentiating the likelihood function in equation (17) with respect to 𝜉 gives: 

 
 

 

11

2
0 0 0 0

2 ( ) ( ) 1 ( )'( ) ( ) ( ) ( )
( 1) ( 1)

( ) ( ) 1 ( ) 1 1 ( )

n n n n

i i i i

g x G x G xg x g x g x G x

g x G x G x G x

 





 





   


     

    
  

   

     
1

2 2
1

0

( ) ( ) 1 ( ) 1 1 ( ) tan 1 1 ( )
2

n

i

g x G x G x G x G x
 

   







                 
 (20)

The expression in equation (18), (19) and (20) are the maximum likelihood estimates of the 

parameters 𝛼, 𝜃 and the vector parameter 𝜉. 

2.7 Special Models of STLE-G Family 

Here, we consider two special models of the STLE-G family along with the plots of their density and 

hazard rate function. 

2.7.1 Sine Topp-Leone Exponentiated Lomax (STLE-L) Distribution 

Let the Lomax distribution be the baseline distribution with cdf and pdf defined by: 

( ) 1 1
x

F x
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And 
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where 𝛾 is a shape parameter and 𝜆 is a scale parameter, the cdf and pdf of the STLE-L distribution 

are respectively given by: 
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Figure 1: pdf plot of STLE-Lomax distribution Figure 2: plot of the hrf of the STLE-L distribution 

The survival function, hazard function, reverse hazard function and quantile function of the 

proposed STLE-Lomax distribution is presented below: 
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2.7.2 Sine Topp-Leone Exponentiated Weibull (STLE-W) Distribution 

Let the Weibull distribution be the baseline distribution with cdf and pdf defined by: 
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where 𝛾 is a shape parameter and 𝜆 is a scale parameter, the cdf and pdf of the STLE-L distribution 

are respectively given by: 
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Figure 3: pdf plot of STLE-W distribution  Figure 4: Plot of the hrf of the STLE-W 

 Distribution 

The survival function, hazard function, reverse hazard function and quantile function of the 

proposed STLE-Weibull distribution is presented below. 
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3. Results

3.1 Assessing the Consistency of the Parameter Estimates of the New Family 

To evaluate the performance of the recently introduced Sine Tope Leone Exponentiated Lomax 

distribution, we conducted a Monte Carlo Simulation method. The aim of the simulation is to 

compute the mean, bias, and root mean square error of the estimated parameters obtained through 

maximum likelihood estimation. The simulated data was generated using the quantile function of 

STLE-Lomax distribution for various sample sizes, specifically: n=20, 50, 100, 150, 200, and 250, with 

1000 replications for each sample size. Throughout these simulations, we set the parameters to 𝛼 =

1.72, θ=1.2, θ = 0.05 and γ = 0.99. The results of the parameter estimates, bias, and root mean square 

error from the new distribution are summarized in Table 1 

Table 1: Estimate, Bias and RMSE of the new STLE-Lomax Distribution 

N Properties 𝛼 = 1.72 𝜆 = 1.2 𝜃 = 0.05 𝛾 = 0.99 

Est. 1.8431 1.3277 0.0562 1.1256 

20 Bias 0.1231 0.1277 0.0062 0.1356 

RMSE 0.3805 0.4730 0.0164 0.5804 

Est. 1.7846 1.2416 0.0525 1.0996 

50 Bias 0.0646 0.0416 0.0025 0.1096 

RMSE 0.2661 0.2967 0.0093 0.5034 

Est. 1.7541 1.2241 0.0512 1.0692 

100 Bias 0.0341 0.0241 0.0012 0.0792 

RMSE 0.2148 0.2022 0.0063 0.4446 

Est. 1.7488 1.2086 0.0507 1.0646 

150 Bias 0.0288 0.0086 0.0007 0.0746 

RMSE 0.1836 0.1693 0.0051 0.4603 

Est. 1.7480 1.2024 0.0506 1.0535 

200 Bias 0.0280 0.0024 0.0006 0.0635 

RMSE 0.1561 0.1397 0.0044 0.4229 

Est. 1.7488 1.1957 0.0504 1.0575 

250 Bias 0.0288 -0.0043 0.0004 0.0675 

RMSE 0.1521 0.1250 0.0040 0.4147 

The results of the Monte Carlo Simulations are shown in table 1 above. The values of biases and 

RMSEs tend to zero as shown in Table 1 and the estimates tend to the true parameter values as the 

sample size increases, indicating that the estimates are efficient and consistent. 
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3.2 Application 

Two datasets were considered for illustrative purposes and comparison with the baseline 

distribution [30] and other extensions of the Lomax distribution such as: Tope-Leone Exponentiated 

Lomax distribution by [31], Type II Topp-Leone Lomax by [32], Half Logistic-Lomax distribution 

developed by [33], Weibull Lomax distribution by [34] and Gompertz Lomax distribution by [35]. 

For each data set, we estimated the unknown parameters of each distribution by the maximum-

likelihood method and also obtained the values of the Akaike information criterion (AIC) for the 

proposed model and the competitors. 

The pdf of Lomax developed by [30] is given by: 
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The pdf of TLE-Lm as developed by [31] has pdf defined by: 
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The pdf of TIITL-Lm developed by [32] is defined by: 
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The pdf of HL-Lm developed by [33] is defined by: 
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The pdf of W-Lm distribution by [34] is defined by:
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The pdf of GoLm distribution by [35] is defined by: 

1( ) (1 ) exp 1 (1 )f x x x 
  



  
      

 
 (38) 

3.2.1 First Data Set 

The first data set as listed below represents the COVID-19 positive cases record in Pakistan from 

March 24 to April 28, 2020, previously used by [36] and [37]: 2, 2, 3, 4, 26, 24, 25, 19, 4, 40, 87, 172, 38, 

105, 155, 35, 264, 69, 283, 68, 199, 120, 67, 36, 102, 96, 90, 181, 190, 228, 111, 163, 204, 192, 627, 263. 

3.2.2 Second Dataset 

The second data set represents the failure times of the air conditioning system of an airplane. The 

data set was given by [38], it has been used by [39], and also by [4]. The data set is presented below: 
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23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 

95. 

Figure 5: Density plot of the STLE-Lomax distribution 

for the first data sets 

Figure 6: Density plot for the STLE-Lomax distribution for 

the second data set 

Table 2 and table 3 gives the summary statistics of the two data sets such as the mean, the median, 

the first and third quartile, the minimum and the maximum values. 

Table 2: Summary Statistics of the two data sets 

Data Minimum 𝑄1 Median Mean 𝑄3 Maximum 

Dataset I 2.00 32.75 93.00 119.28 183.25 627.0 

Dataset II 1.00 12.50 22.00 59.60 83.00 261.0 

Table 3: Estimate, Bias and RMSE of the new STLE-Lomax Distribution 

Data set I α λ θ γ LL AIC 

STLE-Lm 1.03323 0.11602 0.40035 2.56160 -189.4279 386.8558 

TIITL-Lm 0.18430 24.5957 14.4732 - -213.8879 433.7758 

Lm 0.41228 6.73500 - - -224.5627 453.1253 

HL-Lm 7.14437 0.00191 - - -208.3690 420.7379 

W-Lm 0.01813 0.84166 1.12087 1.67046 -207.9697 423.9394 

Go-Lm 7.96169 2.14265 47.014355 - -209.7675 425.5349 

Dataset II α λ θ γ LL AIC 

STLE-Lm 1.77323 0.13691 0.64458 1.70984 -131.7712 271.5425 

TIITL-Lm 34.2579 2.67719 0.06294 - -167.6184 341.2368 

Lm 17.1694 27.7386 - - -153.0699 310.1398 

HL-Lm 0.05118 0.00178 - - -134.2354 272.4707 

W-Lm 5.54118 5.62194 0.23070 0.18368 -183.2427 274.4856 

Go-Lm 0.03744 0.01936 0.00819 - -186.4186 378.8372 
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Table 3 presents the results of the two datasets. The analysis compared the performance of the Sine-

Topp-Leone Exponentiated Lomax distribution against several other distributions, namely the Type 

II Topp Leone Lomax distribution, Lomax distribution, Half-Logistic-Lomax distribution, Weibull-

Lomax distribution, and Gompertz-Lomax distribution. The results indicated that the proposed Sine 

Topp-Leone Exponentiated Lomax distribution outperformed some competing distributions, as it 

exhibits the lowest AIC value. 

The visual assessment of the goodness of fit, as depicted in Figures 5 and 6, further validates the 

superiority of the proposed distribution when compared to other competing distributions. 

Therefore, it can be concluded that the proposed family of distributions is the most suitable choice 

for modeling both the COVID-19 and failure times of the air conditioning system of an airplane 

datasets. 

4. Discussion

In this research, we introduced a new family of lifetime distributions by applying a Sine 

Transformation. Two special distributions were derived from the family by considering Lomax and 

Weibull distributions. Numerical analysis of fitting two real live data sets was presented using a 

maximum likelihood technique and density plots were provided to visually assess the outcomes. 
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Abstract 

This article is devoted to the analysis of the reliability of typical power supply circuits. The question 

of what factors have the greatest impact on the reliability of power supply circuits, as well as what 

methods and tools are used to analyze and improve their reliability is considered. Particular 

attention is paid to the comparative analysis of various types of power supply schemes and the 

determination of their advantages and disadvantages in terms of reliability. The article also 

discusses current trends and developments in the field of increasing the reliability of power supply 

and possible ways to optimize existing circuits. The results obtained can be useful for specialists in 

the field of power engineering and electrical engineering in the design, maintenance and 

modernization of power supply systems. 

Keywords: electrical power systems, reliability indicators, cross-section classes, 

typical circuits. 

I. Introduction

In the modern world, electricity supply is a key aspect of ensuring the life of society and the 

functioning of its economy. The performance of industrial enterprises, the safety of residential 

complexes, the efficiency of vehicles and much more depend on the reliability of power supply 

systems. In this regard, analysis and improvement of the reliability of standard power supply 

circuits is a relevant and important task for specialists in the field of electrical engineering and 

power engineering. 

The purpose of this article is to study the factors affecting the reliability of power supply 

circuits, as well as to develop methods and tools for their analysis and improvement. It is proposed 

to consider various types of power supply schemes, analyze their advantages and disadvantages 

from a reliability point of view, and also consider current trends and developments in the field of 

increasing the reliability of power supply. 

It is important to note that the efficient operation of modern power supply systems requires not 

only technical competence, but also consideration of various factors such as climatic conditions, 

technological changes and energy efficiency requirements. Therefore, analysis of the reliability of 

typical power supply schemes has many practical applications and can become the basis for 

optimizing existing power supply systems and developing new, more reliable solutions. 

II. Formulation of the problem

Determining reliability indicators for modern electric power systems is impossible without the 

use of appropriate software systems. In our country and abroad today, the following software 
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systems are most widely used, allowing one to model and calculate probabilistic reliability 

indicators of electric power systems: 

1. Software systems “RISK SPECTRUM” (Sweden); "SAPHIRE" (USA), using "fault trees" and

"event trees" as initial data. 

2. Software package “WINDCHILL RBD” (USA), using a special block diagram of system

performance. 

3. Domestic software complex "ARBITR" ("ASM SZMA"), using the logical-probabilistic

method. 

4. Software systems for modeling energy systems: “MATLAB”, a software environment that

allows you to simulate energy facilities and develop control systems; "ETAR SYSTEMS" (USA), 

software for electrical power systems, allowing for the design, analysis, and maintenance of 

electrical power systems; "PSCAD" (Canada), a software package that allows you to simulate the 

operation of power systems. 

The main disadvantage of foreign-made software systems is the high cost and complexity of 

training personnel to study specialized software systems. 

The use of complex and expensive specialized software systems is justified only in those 

industries where equipment failure can cause catastrophic consequences, for example, in nuclear 

energy. For projects in which equipment failure does not entail such serious consequences, it is 

possible to use proprietary software products, for example [1, 6, 8], the cost of which is not 

comparable with specialized ones, and the limited set of functionality is compensated by the ease 

of development. 

III. Problem solution

Most of the main step-down substations currently being built have a simplified circuit with 

separators and short circuiters on the high voltage side. Refusal to install an oil or air circuit 

breaker saves capital and operating costs and reduces the construction time of a substation (Figure 

1). Jumpers on the high voltage side increase the maneuverability of switching of dead-end 

substations, especially if they are equipped with a separator with a double-acting drive. At dead-

end substations made in the form of a “radial line – transformer” block, separators need not be 

installed. 

Figure 1: Comparison of typical external power supply schemes 

During the operation of simplified substations, significant shortcomings were identified in 

the operation of open-type separators and short circuiters. The high response time of these devices 
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makes it difficult to automatically reclose the main switch and contributes to the development of 

damage that occurs in the transformer. In addition, turning on the short circuit causes a sharp 

decrease in voltage at the supply substation. If an air circuit breaker with a voltage of 110–220 kV is 

used as a main switch, installing a short circuit in a zone of 0.5–6 km is unacceptable due to the 

kilometer effect. In this zone, the short-circuiter is replaced by various teletrip pulse systems while 

maintaining the backup function of the short-circuiter. The use of a tele-breaking pulse also avoids 

the reduction in voltage caused by the activation of the short circuit. 

Table 1 shows reliability indicators for the circuits presented in Figure 1. 

Table 1: reliability indicators for the circuits presented in Figure 1. 

Scheme , year-1 n, year-1 T rec., hour K rec., p.u. Conclusion 

1 0.401 0.3048 12.5 5.710-4 Best by ωΣ 

2 0.793 0.1160 14.4 1.810-4 - 

3 0.802 0.0154 12.0 0.2110-4 Best by n 

4 0.804 0.0164 10.3 0.1910-4 - 

5 0.823 0.1660 11.6 0.2210-4 - 

6 0.758 0.0250 5.6 0.1610-4 Best by T rec. and K rec. 

Analysis of Table 1 allows us to draw the following conclusions. As the number of 

equipment in the circuit increases, the total failure flow parameter ωΣ increases. From the point of 

view of uninterrupted power supply (number of outages n), the most effective is scheme 3. Scheme 

6 turns out to be the best in terms of recovery time and emergency downtime coefficient, however, 

it is approximately 10 times more expensive than the most complex of the simplified schemes - 

scheme 5. Dead-end substations made according to schemes 3, 4 and 5, are close to the optimal 

solution both from the point of view of uninterruption and efficiency. 

Taking reliability into account when planning the development of power supply systems 

(PSS) of industrial enterprises (IEs) and when designing its individual links, as well as in operating 

conditions, is to ensure optimal reliability of power supply to consumers, taking into account the 

known reliability of system elements. 

The main directions for increasing the reliability of power supply to consumers include: 

− Creation of rational power supply schemes with an increased degree of reliability.

− Increasing the reliability of PSS elements.

− Improvement or implementation of electrical automation devices and the use of

telemechanics.

− Improving the operational maintenance of solar power plants.

− Application of monitoring the technical condition of solar power plant equipment.

In addition to the listed areas, the reliability of PSS is influenced by the following factors:

− Quality of electrical energy.

− Correct choice of neutral mode of electrical networks.

− Optimization of short circuit currents.

Development of rational power supply schemes

The development of efficient power supply schemes is a critical aspect in the planning and

operation of energy systems. Optimization of these schemes is aimed at ensuring an uninterrupted 

and reliable supply of electrical energy to consumers while minimizing economic costs and 

maximizing operational efficiency. The main parameters that are taken into account when 

developing circuits are the reliability of system elements, their interaction, as well as possible 

operating modes in emergency situations. 

A critical step in developing sustainable power supply designs is risk assessment and failure 

analysis of system components. The use of modern modeling and simulation methods makes it 
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possible to predict the behavior of the system in various operational scenarios and minimize the 

likelihood of failures. This takes into account statistical data on the reliability of components, test 

and operation results of similar systems, as well as requirements for the quality of power supply. 

One of the key areas for optimizing power supply schemes is increasing the degree of 

redundancy and introducing fault-tolerant technologies. This includes the use of backup lines, 

automatic transfer switches and intelligent control systems that ensure rapid restoration of power 

in the event of a major equipment failure. In addition, the use of telemechanical systems and 

electrical automation devices makes it possible to quickly identify and eliminate faults, which 

significantly reduces downtime and increases the overall reliability of the system. 

Sustainable electricity supply schemes must also take into account economic aspects. This 

involves analyzing the costs of installing and maintaining equipment, as well as assessing the cost-

effectiveness of various circuit options. An important factor is the selection of equipment with an 

optimal balance of cost and reliability, which allows for a high level of power supply at an 

acceptable cost. 

Increasing the reliability of PSS elements 

Increasing the reliability of elements of power supply systems (PSS) is one of the key tasks in 

the planning and operation of energy systems. The high reliability of individual components can 

significantly reduce the frequency of emergency situations and ensure a stable power supply to 

consumers. 

One of the main approaches to increasing the reliability of SES elements is the use of high-

quality equipment with high performance characteristics. This includes selecting equipment from 

trusted manufacturers, undergoing rigorous testing and certification, and regularly updating and 

upgrading obsolete components. The use of innovative materials and technologies, such as 

intelligent control and monitoring systems, also helps improve reliability indicators. 

Regular maintenance and preventive measures play an important role in maintaining the 

reliability of PSS elements. Routine inspections, diagnostics and replacement of worn parts allow 

potential problems to be identified and corrected before they develop into serious accidents. The 

introduction of systems for monitoring the technical condition of equipment, such as vibration 

sensors, temperature sensors and other parameters, allows you to quickly obtain data on the 

condition of elements and take measures to maintain them. 

Another important aspect is the advanced training and training of personnel responsible for 

the operation and maintenance of solar power plants. Qualified specialists are able to quickly 

respond to emerging problems, carry out necessary repairs and ensure correct operation of the 

equipment. Organizing regular trainings, seminars and advanced training courses helps improve 

the professional skills and knowledge of employees. 

The development of normative and methodological documents regulating the operation and 

maintenance of solar power plant elements is also important. Standardization of procedures, 

compliance with technical regulations and recommendations for the operation of equipment make 

it possible to ensure a uniform level of quality and reliability in all parts of the power supply 

system. 

Application of relay protection and automation devices 

The use of relay protection and automation devices plays a key role in modern power 

supply systems, ensuring the reliability, safety and efficiency of their operation. These technologies 

are designed to quickly identify and isolate faults in electrical networks, minimize downtime and 

prevent possible equipment damage. Relay protection provides protection against overloads, short 

circuits and other anomalies, automatically disconnecting damaged sections of the network to 

prevent the spread of emergency situations. 

Automation devices, in turn, carry out automatic control of power supply, including 

automatic restart after short-term outages (AR) and automatic switching to backup power supplies 

Sona Rzayeva,Najiba Piriyeva, Ilduza Guseynova 
ANALYSIS OF RELIABILITY OF TYPICAL POWER SUPPLY CIRCUITS 

RT&A, No 3 (79) 
Volume 19, September 2024

176



(APS) in the event of failure of the main equipment. This significantly reduces downtime and 

ensures continuity of power supply for consumers. 

Integration of relay protection and automation into power supply control systems allows not 

only to increase its reliability, but also to significantly improve controllability and operational 

safety. The use of modern technologies in this area is a prerequisite for the efficient functioning of 

modern energy systems, where every minute of downtime can have significant economic and 

social consequences. 

Factors influencing the reliability of power supply systems (PSS) 

The reliability of power supply systems (PSS) is determined by many factors that affect their 

ability to provide uninterrupted power supply to consumers. The main aspects affecting the 

reliability of solar power systems include technical, operational, organizational and economic 

factors. 

Among the technical aspects, the quality and condition of the equipment plays a key role. 

The choice of modern and reliable technologies, the correct power supply scheme and the use of 

modern protective devices and automation significantly influence the degree of protection of the 

system from emergency situations. Regular maintenance and condition checks of equipment also 

play an important role in preventing possible failures. 

Operational aspects include operating mode management, technical condition monitoring 

and personnel qualifications. Trained and qualified personnel are able to effectively manage the 

system and quickly respond to possible problems. 

Organizational aspects include compliance with standards, risk management and 

optimization of management and operational processes. Economic factors also play a role: 

investments in modernization and renewal of equipment help to increase the reliability of solar 

power plants while optimizing operating costs. 

All these aspects are interconnected and require an integrated approach to achieve high 

reliability indicators. Only systematic management of all factors can ensure stable and efficient 

operation of power supply systems in the context of modern technological and economic 

challenges. 

IV. Conclusions

Electrical power systems are vital infrastructure that ensures the continued functioning of 

industrial plants, commercial properties and residential areas. The reliability of these systems 

plays a critical role in ensuring the stability and security of energy supply for millions of 

consumers. 

An optimal power supply scheme, the use of modern relay protection and automation 

technologies, as well as an integrated approach to the management and operation of equipment 

significantly affect the reliability of the system. Effective operating mode management, regular 

maintenance and qualified personnel are key to minimizing risks and preventing downtime. 

Uninterrupted power supply is necessary not only for economic stability, but also to ensure 

the comfort and safety of people's lives. Investments in modern technologies and continuous 

improvement of electricity supply systems are strategic priorities that contribute to improving the 

quality of life and sustainable development of society. 

Only an integrated approach to the management, maintenance and modernization of power 

supply systems allows us to achieve high standards of reliability and ensure sustainable operation 

in the conditions of modern dynamic economy and technological challenges.. 
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Abstract 

In this research, a new approach using fuzzy logic and reliability block diagram (RBD) techniques is 

used to ensure the reliability of patient health monitoring systems. This technique handles 

uncertainties in health information, while RBD assesses system reliability by displaying factor 

relations. The RBD model construct for system components and measure reliability using 

probabilistic models. Fuzzy logic identifies the effect of uncertainties on overall reliability. Using this 

approach in a simulated health monitoring scenario, using R, we demonstrate its effectiveness and 

potential to increase reliable health monitoring for improved patient outcomes and healthcare 

efficiency. Furthermore, the awareness gained from this study can be directed beyond healthcare such 

as modern process control and environmental sensing.   

Keywords: Fuzzy logic, reliability block diagram, health care, efficiency, R 

programming, membership function. 

I. Introduction

The engineering of reliability is essential to the effectiveness, safety, and economic viability of 

technologies across various sectors. However, reliability models tend to minimize the complexity 

and unpredictability that characterize modern technology. Fuzzy logic highlights the potential for 

this new model with a framework to deal with the fundamental inaccuracy and uncertainty 

observed in the real-world process of decision-making. By providing the interpretation of qualitative 

and fuzzy models, fuzzy logic simulates human logic and allows challenging decision-making in 

uncertain situations. This adaptability and quickness provide a perfect model for improving 

conventional reliability engineering techniques.  

Fuzzy logic and artificial intelligence together indicate the most significant development in 

analysis of reliability. The application of AI methods like artificial neural networks and algorithm 

development permits applications using fuzzy logic to keep evolving. Since the outcome, by 

gradually understanding using data, clients will improve their methods for making decisions. The 

ability of fuzzy inference systems to evolve and prosper in difficult and unexpectedly shifting 
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environments could be increased through this combination of factors. Reliability block diagrams 

(RBDs) are needed for evaluating the system's reliability to highlight the relationships between 

components and their influence on the general effectiveness of the entire system. Even though 

systems sometimes fail to prepare for the inherent uncertainty of real-world systems, conventional 

RBDs are effective at predicting dependent scenarios. 

This paper provides an approach for integrating fuzzy logic with health information from 

patients. To provide an understanding of a person's medical scenario, the approach evaluates the 

possibility related to each risk factor and takes into factor the person's family history, lifestyles, prior 

medical history, and factors in the environment. Fuzzy logic, FALCON, and BP in combination 

might improve the diagnostic rate of MSSA patients, according to study findings of Modai, I et al. 

[1]. The ecological relevance of Asian tiger mosquitoes for infectious diseases has been evaluated by 

Proestos, Y et al. [2] using fuzzy logic. Fuzzy logic plays an essential function in evaluating human 

resources performance, as Sadegh Amalnick, M et al. [3] indicate. In their idea, Davoodi, R et al. [4] 

had higher accuracy than conventional algorithms for forecasting ICU patient mortality using the 

Deep Rule-Based Fuzzy System (DRBFS). A fuzzy-based Bayesian model has been developed by 

Rallapalli, S.et al. [5] in the campaign over COVID-19 to help quickly isolate SARS-CoV-2 RNA by 

determining the most effective sets for wastewater sampling.  

Li, S et al. [6] improved performance in the context of interference challenges by providing a 

network of sensors health forecasting framework using a system base model with attribute reliability 

(BRB-r). Reliability is essential for the implementation of blockchain technology in medical care, 

based on Du, X et al. [7]. Dovc, K et al. [8] studied the performance of AHCL and HCL methods for 

controlling glucose levels to an intermittent baseline of 150 mg/dL as implementing fuzzy logic in 

the FLAIR learning. Abd Rahman, N H  et al. [9] addressed an observation on the centrality of the 

healthcare system's accuracy. The medical information research studies done by Sebastian, L et al. 

[10],  Vijayan, K et al. [11], and Vennila, J et al. [12], [13] mainly using R programming. 

II. Methods

This study's primary objective is to show how the fuzzy logic idea and reliability block design can 

be used effectively in a simulated health observation situation to increase reliability, which in turn 

can lead to better patient outcomes and more efficient healthcare delivery. The following steps were 

used in methodological parts. 

• Step 1: Construction of RBD model

• Step 2: Integration with fuzzy logic concept

• Step 3: Simulation in R

• Step 4: Evaluating the results.

III. Case Scenarios
Based on the above methodological concept, we consider few examples and demonstrate the 

effectiveness of using fuzzy logic concept and the results obtained are discussed below: 

I. Case Scenario One

In this scenario, fuzzy logic and reliability are incorporated to evaluate the overall reliability level of 

a system composed of two components based on their individual reliabilities and predefined 

thresholds. Let the predefine thresholds be as follows: high is 0.65, average is 0.39 and low is 0.21; 

and let the individual reliability for two components follow U (0,1). The system accuracy can be 

classified to be high, average, or low according to this inference outcome. 
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II. Case Scenario Two

This scenario includes a health assessment system that evaluates the health status of patients as per 

their blood pressure, cholesterol, and Body Mass Index (BMI). Applying predefined membership 

functions, the system classifies “healthy” or “unhealthy” based on the vital statistics of health status 

of patients. The case studies reveal that, how the system assesses each patient data to measure their 

overall health status, providing valuable awareness for healthcare filed to constitute notified 

findings and interventions. 

II. Case Scenario Three

In this scenario, a patient's health evaluation status, based on variables such as age, body mass index 

(BMI), heart rate, cholesterol and blood pressure, can be obtained using the code in concern. The 

information has been organized into various health status groups for each evidence. 

IV. Results and Discussion

I. Output for Case Scenario One

For case scenario one, on executing the R coding a bar diagram is obtained, note that here the 

programme has been executed thrice to depictive 3 different types of output, also to ensure the 

randomness of the reliability for the components A and B, they are randomly assigned a value from 

Uniform (0,1) distribution. The outputs are as shown in  figure 1, figure 2 and figure 3. 

From figure1, observe that when the when the reliability of Component A= 0.0884 and of 

component B = 0.2487 the overall system reliability fuzzy logic  is Low. It can be observed from figure 

2 that when the reliability of Component A= 0.4799 and of component B= 0.3713 the overall system 

reliability based on fuzzy logic is Medium. From figure 3 we notice that when the reliability of 

Component A= 0.7317 and of component B= 0.5334, the overall system reliability based on fuzzy 

logic is High. 

Figure 1:  Low system reliability when A=0.0884; B=0.2487 
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Figure 2: Medium system reliability when A=0.4799; B=0.3713 

Figure 3: High system reliability when A=0.7317; B=0.5334 

Thus, by considering the individual reliability of component, A and B, the code in R determines 

the overall reliability of the system.  It identifies high, medium, and low reliability levels and gives 

results based on fuzzy.  This approach permits screening variables based on changes in component 

reliability. The findings obtained are useful for decision-making on efficiency, baseline, and 

improvements to system designs. Based on predetermined requirements, the fuzzy inference 

evaluates components A and B and demonstrates its validity. Furthermore, in practical applications, 

reliability evaluation would need to consider additional variables such as factor mutuality and the 

active using environment. 

II. Output for Case Scenario Two

For case scenario two, the R coding ensures that based on the varying random inputs regarding the 

vital statistics of blood pressure (BP), Cholesterol and BMI for the patient list provided, the output 

gives an accurate prediction on the health status of these individuals using fuzzy membership 

function. A patient is termed “healthy” if either one of the two conditions are met. 

• Condition 1: BP is between 120 and 140, Cholesterol is between 100 and 240 and

BMI is between 18.5 and 25. 

• Condition 2: BP is less than or equal to 120, Cholesterol is less than or equal to 200
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and BMI is between 18.5 and 25. The output for case scenario 2 is shown in Table 1. 

Table 1: Output table for case scenario 2 

Patient “ABC”. with BP 92 & Chol 245 & BMI 23 Health Status: unhealthy 

Patient “PQR” with BP 127 & Chol 185 & BMI 21 Health Status: healthy 

Patient “XYZ” with BP 171 & Chol 300 & BMI 33 Health Status: unhealthy 

From the above table we draw the following inference, for patient “ABC” although BMI of 23 

is within the specified range (18.5, 25), BP of 92 is less than the specified range , and cholesterol level 

of 245 is above specified range with respect to condition 1 and hence the patient is labeled 

“unhealthy”;  on verifying these vital statistics as per condition 2 , we notice that although BMI of 

23 is within the specified range (18.5, 25) and BP of 92 is less than 120 but  the cholesterol level of 245 

is above specified range and hence the patient is labeled “unhealthy”. Since neither of the two 

conditions are met the overall health status is “unhealthy” 

For patient “PQR”, BP of 127 is within the specified range (120, 140), cholesterol level of 185 

within the specified range (100, 240) and BMI of 21 is within the specified range (18.5, 25) with respect 

to condition 1 and hence the patient’s overall health status is “healthy”. 

For patient “XYZ”, BP is 171, Cholesterol is 300 and BMI is 33; all these vital statistics are above 

the permissible range with respect to condition 1 and hence the patient’s overall health status is 

“unhealthy”. 

Since the vital statistics of patients are unique to every individual, the coding has been framed 

in a manner so as to incorporate the fuzzy nature of vital statistics namely Blood pressure, 

Cholesterol and BMI and gives an assured reliability of the health status of individuals. The fuzzy 

membership functions for Blood pressure, Cholesterol and BMI are depicted in figure 4. 

Figure 4: Fuzzy membership functions for Blood pressure, Cholesterol and BMI generate using R coding 

From the above result for case scenario 2, observe that the health assessment system shown is 

a significant tool in healthcare practice, supporting clinicians in managing notified results and 
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upgrading patient outcomes through directed interventions and monitoring. 

III. Output for Case Scenario Three

For case scenario three, the R coding is done in such a manner that each time we run the code the 

parameters of the vital statistics taken on random uniform nos. within a specific range as mentioned 

in the code and accurately determines the inference with respect to each of the varying vital statistics. 

of a patient. Given below in table 2 are three randomly generated outputs along with their accurate 

inference 

Table 2: Output table for case scenario 3 

Patient 1: 

   Age  BMI Heart Rate Cholesterol  BP 

    40  25      97  179  95 

   age_inference bmi_inference hr_inference chol_inference bp_inference 

    Medium  Medium  Medium  Low   Low 

Patient 2: 

    Age  BMI Heart Rate Cholesterol  BP 

    19  26  88  297  132 

    age_inference bmi_inference hr_inference chol_inference bp_inference 

     Low   Medium  Medium  High  Medium 

Patient 3: 

     Age  BMI Heart Rate Cholesterol  BP 

 60  27       70         222  67 

     age_inference bmi_inference hr_inference chol_inference bp_inference 

 High  Medium  Low   High  Low 

Observe in Table 2; based on the predefined thresholds; for patient 1, Age (40), BMI (25), 

Heart Rate (97) are categorized as ‘Medium’; Cholesterol (179), BP (95) are categorized as ‘Low’. 

Similarly, for Patient 2, Age (19) is categorized as ‘Low’; BMI (26), Heart Rate (88), BP (132) are 

categorized as ‘Medium’; and Cholesterol (297) is categorized as ‘High’ and for Patient 3, Age (60), 

Cholesterol (179) are categorized as ‘High’; BMI (27) is categorized as ‘Medium’; Heart Rate (70), BP 

(67) are categorized as ‘Low’.

The given R code generates random values for a patients Age, BMI, Heart Rate, Cholesterol 

and BP, and then classify each of these values into categories (High, Medium and Low) based on 

predefined thresholds. Thus, a thorough assessment of the health of an individual along a number 

of factors can be executed, permitting focus to be given to medication prescribed along with specific 

diseases. 

V. Conclusion

This study gives the combination of fuzzy logic and machine learning with reliability block 

diagrams. It represents a capable boundary in reliability engineering. This method gives a complete 

procedure for measuring a patient's health status over observing many health parameters. It gives a 

meaningful valuation of the patient's complete health status. But it is worthwhile to notice that while 

fuzzy logic provides a useful framework for health evaluation, clinical decision and skill must also 

be measured when interpreting the findings and making healthcare assessments. Fuzzy logic with 

reliability block diagram recommends a great structure for evaluating the reliability of health 
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systems. This gives to improvements in diagnostic accuracy, patient care, and healthcare outcomes. 

The health evaluation gives actionable awareness for patients and their healthcare providers, 

highlighting the significance of active health controlling and aimed interventions to maintain ideal 

health and well-being. 
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Abstract

In today’s security landscape, the proliferation of unauthorized drones in restricted airspace has emerged
as a significant threat. These drones pose various risks, from potential surveillance and espionage to
more sinister possibilities such as physical attacks. Consequently, the development of effective anti-drone
laser systems has become increasingly vital. Our study focuses on three main objectives: modeling
internal reliability, identifying critical components, and studying the factors affecting the reliability of
anti-drone systems. We aim to enhance the overall performance and effectiveness of anti-drone laser
systems by analyzing the reliability of critical components and understanding how system parameters
influence system reliability. To this end, reliability block diagram (RBD) methodology has been employed
to compute the reliability of the laser subsystem in the anti-drone system. Additionally, we conduct
a comprehensive review of component-wise reliability to identify vulnerable points within the system,
thus enabling targeted improvements and optimizations. To capture the realistic scenario of system
failure behavior, different distributions have been used to compute the reliability of the system, ensuring a
thorough understanding of its operational reliability in diverse conditions. Finally, the energy values and
probability of hitting are obtained for the anti-drone laser system to effectively mitigate environmental
challenges.

Keywords: Reliability Block Diagram, Laser Source Subsystem, Weibull Distribution, Mean Time
to Failure (MTTF), Rayleigh Distribution, Exponential Distribution, Environmental Factors.

1. INTRODUCTION

Drones have swiftly become an integral part of modern life, finding widespread use across
various sectors. While initially linked mainly to military operations, drones now play vital roles
in civilian domains. Their applications are diverse, spanning entertainment (aerial photography,
videography), geology (mapping, surveying), transportation (traffic monitoring), security (search
and rescue, crowd monitoring, disaster relief), shipping (parcel delivery), agriculture (crop
monitoring, spraying), and communication (emergency infrastructure). These innovative uses
mark a significant shift towards a more autonomous society, with drones poised to revolutionize
various aspects of daily life.
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In today’s security landscape, the threat posed by unauthorized drones operating in restricted
airspace is a growing concern. These drones can be utilized for various malicious activities,
including surveillance, espionage, and even physical attacks. To address this threat effectively,
the development of robust anti-drone laser systems has become imperative. Figure 1 represents
the laser implemented anti-drone systems.

An anti-drone laser system serves as a critical security technology designed to detect, track,
and neutralize unauthorized drones operating in restricted airspace. By employing advanced
detection mechanisms, precise tracking capabilities, and effective neutralization methods, these
systems aim to safeguard sensitive areas from the potential risks posed by rogue drones. Laser
weapons are emerging as a potent solution for countering the escalating threat posed by drones,
leveraging their rapid light-speed engagement, pinpoint accuracy in beam targeting, and cost-
effectiveness per shot [19]. In order to analyze the strike capability of laser to drone engine,
a comprehensive assessment method for the vulnerability of target to laser is studied in [16].
In [24], Ball suggested that assessing a target’s vulnerability to lasers parallels evaluating how
non-explosive penetrating objects cause damage when striking a target, although a detailed
method was not explicitly outlined.

Figure 1: Anti-Drone Laser System

1.1. Literature Review

Drones are poised to become a significant factor in future warfare, driven by advancements in
artificial intelligence (AI) and information technology. Simultaneously, drones pose a significant
challenge to conventional air defense systems. Concerning this practical point of view anti-drone
systems are designed and developed. Presently, the majority of anti-drone systems utilize military-
grade components to ensure the definitive destruction of hostile drones. Military anti-drone
measures commonly employ jamming systems to disrupt the control channel of the target drone
[36]. However, in non-military contexts, using RF jamming to thwart fast-moving drones poses
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the risk of temporarily disabling existing wireless network systems, such as mobile access or
wireless sensor networks [1], [2]. Therefore, the majority of national regulations prohibit the
non-military deployment of jamming systems, compelling civilian anti-drone systems to explore
alternative methods to halt illegal or unauthorized drones. To destroy or neutralize the illegal
drone, different destructive technology is studied. Out of all destructive technology, the most
useful technologies are laser, killer drone and anti-aircraft weapons.

Killer drones are referred to as legally operated drone designed to track and neutralize target
drones by inflicting damage upon them [18]. Killer drones are remotely operated aircraft equipped
with weaponry designed to engage and neutralize targets. These drones have gained significant
attention due to their role in modern warfare, intelligence gathering, and targeted strikes. The
development of killer drones represents a paradigm shift in military tactics, providing armed
forces with unprecedented capabilities in surveillance, reconnaissance, and precision strikes. The
legal and ethical considerations surrounding the use of killer drones, also known as armed drones,
are complex and multifaceted [23].

Another useful destructive neutralization technology for an anti-drone system is a laser power
transmitter. Laser power in anti-drone systems plays a pivotal role in countering the proliferation
of drones and protecting critical infrastructure, military installations, and public events from
potential threats posed by unauthorized drones. Laser based anti-drone systems utilize directed
energy technology to disable or destroy hostile drones through the focused emission of high-
energy laser beams. In [15], Huang et al. designed and developed laser integrated anti-drone
system. Laser integrated anti-drone system combines cutting-edge laser technology with advanced
sensors, tracking systems, and command-and-control interfaces to provide a comprehensive and
effective defense against hostile drones.
The key components and capabilities of a laser integrated anti-drone system are:
High-Energy Laser Weapons: Compared to traditional projectile weapons, high-energy laser
weapons are particularly well-suited for countering such threats due to their precise and scalable
effects, with minimal collateral damage [38]. In [17], Lyu and Zhan made a comprehensive
overview of the current state of high-energy laser weapons on a global scale. High energy laser
weapons nowadays are most useful in military application to protect the country from the evil.
The overview of different technologies in high-energy laser systems encompasses both strategic
and tactical roles for high-energy laser weapons on the modern battlefield. It delves into the
current performance limitations of weapon system components, including various types of laser
devices, beam control systems, atmospheric propagation, and issues related to targetting the
killing power [21].
Detection system: Laser integrated anti-drone system incorporates a sophisticated sensor system
comprising radar systems, electro-optical/infrared cameras, and radio frequency (RF) detectors.
These detectors provide comprehensive situational awareness, enabling operators to detect, track,
and classify incoming drones with precision. By integrating data from multiple sensors, laser
integrated anti-drone system enhances its ability to identify threats and mitigate false alarms.
In [3], Abunada et al. discussed a drone detection mechanism utilizing the RF control signal
exchanged between the drone and its remote controller. Wang et al. [37] studied the problems and
difficulties of existing radar detection technology for small drone detection and provided better
outlook on the development of detection technology. The laser can serve as a supplementary
sensor, complementing others such as radar to detect, recognize, and track the drone. Additionally
it can dazzle and destroy the drone’s optical sensors, enhancing its defensive capabilities. In [32],
Steinvall examined diverse laser functionalities and their significance in detecting, identifying,
tracking, and countering a drone.
Tracking System: A robust tracking and targeting system forms an integral part of laser integrated
anti-drone system, allowing operators to accurately track the movement of hostile drones and
maintain a precise lock on the target throughout engagement. This system utilizes advanced
algorithms and predictive modeling to compensate for factors such as target motion, atmospheric
conditions, and platform dynamics, ensuring optimal laser beam placement for effective engage-
ment. In [33], Steinvall explored the impact of atmospheric conditions and beam jitter resulting
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from tracking and platform pointing errors on the effectiveness of the laser, whether employed as
a sensor, countermeasure, or weapon.
Control Unit: Laser integrated anti-drone system features a user-friendly control unit that enables
operators to monitor system status, analyze threat data, and execute engagement protocols with
ease. The unit provides real-time feedback on target tracking, laser engagement, and system
performance, allowing operators to make informed decisions and adjust tactics as necessary. In
[8], Chen et al. presented the design, simulation, control scheme, and implementation of a capture
mechanism. A high-power laser is chosen to control the motor motion, ensuring synchronous
operation of the surrounding six launch mechanisms. Abunada et al. [3] have proposed a study
aimed at devising a systematic design for a drone detection mechanism utilizing the RF control
signal exchanged between the drone and its remote controller. The proposed system entails the
generation of a high-power jamming signal transmitted over the identical carrier frequency and
band of the detected drone. This jamming signal is then directed toward the drone’s location with
the intent of disconnecting it from its controller, thereby facilitating a safe landing or activating a
mechanism to prompt its return to home. However To destroy the illegal drones, Shi et al. [29]
conducted a comprehensive review of the technologies employed in drone surveillance as well as
the current anti-drone systems.
Communication system: The communication system facilitates real-time data exchange and
coordination between different subsystems of the laser integrated anti-drone system, including
sensors, tracking systems, laser emitters, command centers, and operator interfaces. This enables
synchronized operation and response to detected threats. Laser beam steering plays a critical role
in a wide array of applications, including military targeting and surveillance, space communica-
tion, optical data storage, and diverse medical procedures. In [6], Chaudhay et al. provided an
extensive literature review on the multifaceted aspects of laser beam pointing and stabilization
through the utilization of a fast steering mirror.

In the previous research work, very few authors developed the mathematical model of an
anti-drone system. Among them, Garcia et al. [12] studied a simulation model for visual based
anti-drone system to detect a UAV. The network’s accuracy is 93.40% and it has successfully
detected the UAVs. In [39], Zheng et al. developed a simulation model to find the accuracy of
visual detection anti-drone system. Chen et al. [9] studied a dynamical modelling and simulation
for a capture technology based anti-drone system. To get a brief idea about the comparison of
our work with some existing works, Table 1 is provided.

In the literature, no work has been recorded for the reliability analysis of an anti-drone laser
system. This motivates us to study the reliability analysis of an anti-drone laser system. The
proposed work is the first one to analyse the reliability of an anti-drone laser system. To assess
the reliability of an anti-drone laser system, a stochastic model has been constructed. For the
model analysis, the reliability block diagram (RBD) is proposed. In [11], Fesenko et al. presented
an RBD model to find the reliability of drone systems. The analytical results of reliability are
verified using the simulation approach.

Significant research has been dedicated to assessing the reliability of diverse communication
systems, including drones and high-altitude platforms. Vishnevsky et al. [35] provided a compre-
hensive overview of recent advancements in k-out-of-n system theory, particularly applicable to
reliability evaluations of high-altitude unmanned platforms. Similarly, Selvamuthu et al. ([27]
developed a Markov model to analyze tether reliability in high-altitude platforms. Chen et al. [7]
focused on reliability modeling of the NASA Remote Exploration and Experimentation system,
employing fault trees and stochastic reward nets. Vishnevsky et al. [34] examined the reliability of
tethered high-altitude telecommunication platform modules using k-out-of-n:F models. Gautam
and Dharmaraja [13] proposed hierarchical models for LTE-A networks, while the studies [26, 28]
explored reliability in UMTS and VANET, respectively. However Feng et al. [10] discussed the
optimization model to maximize the mission reliability by changing anti-drone number.
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Table 1: Comparisons with the related works

Related works Anti-Drone Detection Neutralization Purpose Mathema-
technology technology tical

Models
Korsoveczki et al.

√
Radar - Detection in

[14] hovering and Simulation
maneuvering
circumstances

Multerer et al.
√

Radar Jamming Detect and -
[20] jamming the signal
[15]

√
- Laser In long rang -

confirmatory
destruction

Pisa et al.
√

Radar - Evaluation of Simulation
[22] mono-static Radar

cross section
Shin et al.

√
Position - To detect and Simulation

[30] tracking track drones
Zhou et al.

√
Fast steering Laser To detect and Simulation

[40] mirror track drones
Mohamed and

√
optical Laser To detect and Simulation

Somaya[5] focusing destroy the
system rogue drones

Steinvall
√

Video Laser To detect and -
[31] Sensor destroy drones

1.2. Contribution

Our study encompasses three primary objectives.

1. Firstly, we aim to delve into the internal reliability of anti-drone Laser systems through a
comprehensive component-wise analysis. This involves a meticulous examination of each
component to identify and assess its reliability. By doing so, we strive to enhance the overall
performance and effectiveness of the anti-drone laser system.

2. Secondly, we endeavor to identify the critical components within the anti-drone Laser
system. This will be achieved by utilizing statistical distributions for reliability analysis.
Understanding the reliability of these critical components is paramount as it enables us to
prioritize maintenance efforts and ensure uninterrupted operation of the system.

3. Lastly, we seek to determine the optimal number of lasers required in the anti-drone
Laser system and analyze the contributing factors influencing this decision. By leveraging
statistical analysis and considering various operational scenarios, we aim to optimize the
system configuration to achieve maximum efficiency and effectiveness in neutralizing
unauthorized drones.

This work is arranged into five sections. In Section 2, a model for the calculation of reliability
has been introduced. Section 3 describes the reliability analysis of the laser source subsystem
with the numerical illustration. Further, by considering environmental factors, the energy values
and probability of hitting of the laser anti-drone system are obtained in Section 4. Finally, the
underlying model is concluded with insight for future works in Section 5.

2. RELIABILITY BLOCK DIAGRAMS

RBDs depict system reliability by illustrating the interconnection of components and their potential
failure modes. In constructing RBDs, three fundamental patterns of component connections are
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employed: (i) Series connection, where components are arranged linearly, rendering the system
susceptible to failure if any component fails; (ii) Active Redundancy, involving the simultaneous
activation of identical components to ensure system functionality despite failures; and (iii) Standby
Redundancy, exemplified by the k-out-of-n configuration, where only a subset of components is
active, with others serving as backups, ready to be deployed if necessary. These methods offer
diverse approaches to enhancing system reliability and resilience within the framework of RBD
analysis.

2.1. Components of an Anti-Drone Laser System

1. Power Supply: Provides electrical power to the entire anti-drone system, ensuring continu-
ous and stable power for all the components.

2. Detection System: Utilizes sensors technology and triggering mechanism to detect the
presence of drones.

3. Tracking System: Tracks the movements of detected drones and provides precise targeting
information to the laser anti-drone system.

4. Laser System: Emits a laser beam to disable and neutralize the targeted drone. Combination
of laser diode, focusing lenses, adjustable lenses and, water cooling system.

5. Control Unit: Manages and coordinates the overall operation of the anti-drone laser system.
Controls the activation and deactivation of the anti-drone laser system based on tracking
information.

6. Communication System: Facilitates communication between the anti-drone laser system
and external command/control centers. Enables the system to receive commands and
transmit status updates.

7. Environment: Environmental factors significantly impact the performance and reliability of
the anti-drone laser system. Variables such as temperature, humidity, wind, and visibility
can influence the effectiveness of the laser beam in neutralizing drones.

In Figure 2, all seven components are arranged in series, implying that if one component fails,
the failure will cascade throughout the entire mission, ultimately leading to mission failure. Our
focus will be on addressing the two most critical components: the laser system and the environ-
ment. For simplicity, we assume a reliability value of 1 for all other components, emphasizing the
critical importance of addressing issues related to the laser system and environmental factors.

2.2. Components of a Laser System

1. DC-DC Step Down Converter Voltage Regulator: Regulates the voltage supplied to the
laser diode for optimal performance. This device converts one DC voltage level to another.
In the case of a step-down converter, it reduces the input DC voltage level to a lower output
DC voltage level. This conversion process is achieved through electronic components such
as transistors, diodes, and capacitors.

2. Laser Diode: Emits the laser beam for targeting and disabling drones.

3. Focusing Lenses and Adjustable Lenses: Focusing Lenses concentrate the laser beam for
precise targeting. Adjustable Lenses fine-tune the focus and direction of the laser beam.

4. Water Cooling System: Prevents overheating of the laser diode during prolonged use.
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Figure 2: Block Diagram of Anti-Drone Laser System

In Figure 3, all components are indeed interconnected in series, with the exception of both
lenses, as they constitute integral parts of a single component to adjust and focus the laser beam.

3. RELIABILITY ANALYSIS OF LASER SOURCE SUBSYSTEM

3.1. Assumption

1. We assume the reliability of power supply, detection system, tracking, control unit, commu-
nication unit to be 1 that is, they are completely reliable.

2. Under the laser system inside the anti drone system, we specifically consider the most
critical subsystem which is the laser source subsystem.

3. The other subsystems- focusing lenses, cooling system and voltage regulator are expected
to withstand for longer intervals.

3.2. Reliability Analysis

In this section, the reliability analysis of the laser source subsystem will be performed using
different distributions.

3.2.1 Weibull Distribution

To create a mathematical model for reliability analysis of the laser source, we’ll consider the
failure behavior of the laser source over time. Since failure rates may vary over time and the
failure behavior of electronic components often follows the bathtub curve (initial high failure
rate, followed by a period of low failure rate, and then an increase in failure rate over time), the
Weibull distribution is used for reliability modeling.
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Figure 3: Block Diagram of Laser System

1. Mathematical model

The Weibull distribution has the probability density function (PDF) given by:

f (t) =
k
λ

(
t
λ

)k−1
e−(t/λ)k

, t ≥ 0

where:

• t is the time variable.

• k is the shape parameter (reflects the failure behavior: k < 1 for decreasing failure rate,
k = 1 for constant failure rate, k > 1 for increasing failure rate).

• λ is the scale parameter (reflects the characteristic life or scale of the distribution).

The reliability function R(t), which represents the probability that the laser source will
function without failure up to time t, is the complement of the cumulative distribution
function (CDF) of the Weibull distribution:

R(t) = 1 − F(t)

where the CDF F(t) is given by:

F(t) = 1 − e−(t/λ)k
.

The reliability function R(t) for the Weibull distribution is given by [4]:

R(t) = e−(
t
λ )

k
.

2. Analysis:

(a) Scale Parameter (λ) Estimation: The estimated scale parameter λ represents the
characteristic life of the laser source. The range of mean time to failure (MTTF)
[25]values have been taken and corresponding lambda values as listed in table 1 have
been calculated using the stated equation

MTTF = λΓ
(

1 +
1
k

)
. (1)
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Table 2: MTTF for Different Values of λ and k

MTTF λ (k = 0.8) λ (k = 1) λ (k = 1.2)
500 442 500 532

1500 1327 1500 1595
2500 2212 2500 2658
3500 3097 3500 3721
4500 3982 4500 4784

Figure 4: Reliability of laser subsystem for Weibull distribution (k = 0.8)

(b) Shape Parameter (k) Estimation: The estimated shape parameter k reflects the failure
behavior of the laser source.

• A shape parameter k < 1 suggests that the laser source is prone to early-life
failures. This means the failure rate decreases over time, indicating a “burn-in"
period where defective units fail early.

• If k = 1, it indicates that the failure rate is constant over time, implying a constant
hazard rate or “random failures" occurring independent of time.

• When k > 1, it suggests that the laser source experiences wear-out failures, where
the failure rate increases over time due to aging or degradation of components.
This is the most relevant case for the laser source subsystem as more failures are
observed in later stages.
In Table 2 values of λ have been calculated for listed MTTF values and assumed k
values. The corresponding λ values for k = 0.8 have been then used to plot the
reliability time graph (Figure 4) for the first 200 working hours of laser subsystem
assumed to follow a Weibull distribution. Figure 5 represents the reliability time
plots for k = 1 that is constant failure rates and λ values as calculated in Table 2
for k = 1. Figure 6 shows the reliability time plots for k = 1.2 and corresponding
λ values as obtained from Table 2. The k = 1.2 that is the increasing failure rate
case is the relevant case for laser subsystem. For the laser subsystem with MTTF
values above 2500 hours the reliability is greater than 0.95 for the observed period
of 200 hours.
CDF F(t) when we have n number of lasers in the system is given by:

F(t) =
(

1 − e−(t/λ)k
)n

.
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Figure 5: Reliability of laser subsystem for Weibull distribution (k = 1)

Figure 6: Reliability of laser subsystem for Weibull distribution (k = 1.2)

The reliability function R(t) for the Weibull distribution is given by:

R(t) = 1 −
(

1 − e−(t/λ)k
)n

.

Figure 7 represents the reliability time plots for system with number of lasers
= 2, 4, 6 and 8. The failure rate of each of these lasers is assumed to follow the
Weibull distribution (k = 1.2) with mean time to failure taken as 4000 hours.

3.2.2 Rayleigh Distribution

The Rayleigh distribution is often used to model the time-to-failure of systems where failure
events are influenced by the accumulation of random factors. It can model a wide range of failure
patterns, from early-life failures to wear-out failures.

1. Mathematical Model
Notations:

• T: Time-to-failure of the laser source subsystem, which follows a Rayleigh distribution.

• σ: Scale parameter of the Rayleigh distribution, representing the characteristic life of
the laser source subsystem.
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Figure 7: Reliability of laser subsystem (Weibull distribution) for different number of lasers

PDF

f (t; σ) =
t

σ2 e−
t2

2σ2 , t ≥ 0.

Reliability Function
R(t; σ) = 1 − F(t; σ)

where CDF F(t; σ) is given by:

F(t; σ) = 1 − e−
t2

2σ2 .

2. Analysis

A larger value of σ indicates a longer characteristic life of the laser source subsystem, while
a smaller value suggests a shorter characteristic life. In Table 3 corresponding σ values are
calculated for the MTTF values. Figure 8 represents reliability time plots for these σ values
obtained.

Table 3: MTTF vs σ

MTTF σ

500 399
1500 1197
2500 1995
3500 2793
4500 3591

CDF F(t) when we have n number of lasers in the system is given by:

F(t; σ) =

(
1 − e−

t2

2σ2

)n

.

The reliability function R(t) for the rayleigh distribution is given by:

R(t) = 1 −
(

1 − e−
t2

2σ2

)n

.
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Figure 8: Reliability of laser subsystem for Rayleigh distribution

Figure 9: Reliability of laser subsystem ( Rayleigh distribution ) for different number of lasers

Figure 9 represents the reliability time plots for system with number of lasers= 2,4,6 and 8.
The failure rate of each of these lasers is assumed to follow rayleigh distribution with mean
time to failure taken as 4000 hours.

3.2.3 Exponential Distribution

The exponential distribution is commonly used to model the time between events in a Poisson
process, where events occur continuously and independently at a constant average rate [4]. It is
characterized by a single parameter, the failure rate λ.

1. Mathematical Model
Notations:

• T: Time-to-failure of the laser source subsystem, which follows an exponential distri-
bution.

• λ: Failure rate of the exponential distribution, representing the average number of
failures per unit time.
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The PDF is given as follows
f (t; λ) = λe−λt, t ≥ 0.

The Reliability function is given as follows.

R(t; λ) = e−λt.

2. Analysis

The MTTF for an exponential distribution is the reciprocal of the failure rate λ, given by:

MTTF =
1
λ

.

Table 4: MTTF for Different Values of λ

MTTF λ

500 0.00200
1500 0.00067
2500 0.00040
3500 0.00029
4500 0.00022

Figure 10: Reliability of laser subsystem for Exponential distribution

Once λ is estimated, it can be interpreted in the context of the laser source subsystem’s
reliability. A larger value of λ indicates a higher failure rate, meaning shorter time-to-failure,
while a smaller value suggests a lower failure rate and longer time-to-failure. The Table 4
maps the corresponding λ values according to the MTTF values obtained using the MTTF
formula. Figure 10 represents the plots of laser subsystems with obtained λ values assumed
to follow exponential distribution.

CDF F(t) when we have n number of lasers in the system is given by:

F(t) = (1 − e−λt)n.

The reliability function R(t) for the exponential distribution is given by:

R(t) = 1 − (1 − e−λt)n.

Figure 11 represents the reliability time plots for system with number of lasers= 2,4,6 and 8.
The failure rate of each of these lasers is assumed to follow exponential distribution with
mean time to failure taken as 4000 hours.
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Figure 11: Reliability of laser subsystem ( Exponential distribution ) for different number of lasers

Figure 12: Reliability comparison for different distributions (MTTF = 4000 hours)

Figure 12 represents the reliability time curves assuming the laser subsystem follows the
three distributions: Weibull (k = 1.2), Rayleigh and exponential with MTTF of 4000 hours.
This depicts the reliability values comparison over time with Rayleigh distribution depicting
the highest reliability.

Figure 13 represents the reliability time curves assuming the laser subsystem follows the
three distributions: Weibull (k = 1.2), Rayleigh and exponential with MTTF of 4000 hours
for six number of lasers. This depicts the reliability values comparison over time with
Rayleigh distribution depicting the highest reliability. The reliability is better than 0.995 (the
desirable range) for the first 2000 hours of operation for all three distributions for n = 6.

4. ENVIRONMENTAL FACTORS

The effectiveness of laser-based anti-drone systems is significantly influenced by environmental
conditions encountered during operation. Environmental factors such as wind, fog, snow, and
atmospheric turbulence vary spatially and temporally, posing challenges to the performance and
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Figure 13: Reliability comparison for different distributions (MTTF = 4000 hours, n=6)

accuracy of the system. These conditions directly impact parameters crucial for laser propagation,
such as diffraction and turbulence, ultimately affecting the beam quality (effectiveness in damag-
ing drones) and targeting precision of the anti-drone system.
Contributing factors: The propagation of laser beams in the atmosphere is subject to the effects
of diffraction and turbulence, which can significantly impact their trajectory and intensity. These
effects can be quantified using mathematical formulations that consider various environmental
parameters.
The spreading angle of laser beam due to diffraction and beam quality (θdiff&qual) are determined
by the wavelength of the laser beam (λ), the diameter of its emitting aperture (D), and beam
quality factor (M2):

θdiff&qual = M2 Cλ

D
(2)

where, C is a constant, usually set to be 1.22.
The spreading angle resulting from atmospheric turbulence (θturb) is calculated based on the
Fried parameter (r0), which is influenced by the wavelength (λ), path length of laser beam (target
distance, L) and the refractive index structure constant (C2

n):

θturb =
1.6λ

πr0
(3)

where,

r0 = 0.184
(

λ2

C2
nL

)3/5

. (4)

The dependency of these parameters on environmental conditions such as humidity and
temperature is crucial for understanding their impact on laser beam propagation. Specifically, the
refractive index structure constant (C2

n) is essential for characterizing atmospheric turbulence and
is influenced by the potential refractive index gradient, denoted by M:

C2
n = a2 AL

4
3
0 M2 (5)

where a2 is a dimensionless constant, most commonly used at a value of 2.8, equal to unity. L0 is
the outer scale of turbulence, which can be set equal to the resolution of the radiosonde data (e.g.,
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10 m).

M = −77.6 × 10−6

T
· p · ∂ ln θ

∂z
·

1 +
15500 · q

T
− 15500

2 · T
·

(
dq
dz

)
(

∂ ln θ
∂z

)


where p is average pressure for a layer. ∂z is thickness of layer. T is absolute average temperature.
θ is potential temperature. q is specific humidity.

We can vary the refractive index structure constant (C2
n) with time (i.e., changing temperature,

pressure, and humidity with time). To obtain an overall measure of the spreading angle (θtotal) of
the laser beam considering both diffraction and turbulence effects, we can compute the root mean
square (RMS) of the individual spreading angles:

θtotal =
√

θ2
diff + θ2

turb. (6)

In the context of our mission, the success criterion is met when the energy per unit area
reaching the target drone surpasses a predefined threshold energy value. This threshold energy
level, denoted as eth, represents the minimum energy required to effectively neutralize the drone.
Upon meeting this condition, the drone is effectively destroyed.

To quantify this condition, we employ the concept of the brightness (B) of our laser weapon
system. This brightness must exceed the ratio of the square of the target distance (L2) to the
threshold energy (eth) multiplied by the dwell time of the laser beam (τ).

Mathematically, this relationship is represented as:

B =
P0 · (1 − α)L

πθ2
total

>
L2 · eth

τ
. (7)

Here, P0 denotes the total output beam power, α represents the atmospheric attenuation ratio
of the laser beam, L signifies the target distance measured in kilometers, θ represents the root
mean square of both the diffraction and quality of the laser beam, as well as the atmospheric
turbulence, and τ denotes the dwell time of the laser beam irradiated on the target.

Energy_on_target =
P0 · τ · (1 − e−η·L)L

π · θ2
total · L2

. (8)

We are utilizing the fixed laser system with the following parameter values and is shown is Table
5.

Table 5: Parameters Values

Parameters Values
Beam quality (M) 1.5

Power Output 150KW
Aperture Diameter 50cm

Wavelength 1.045 micro-meter
Target Range 17km

Alpha 0.2
Threshold energy 50KJ

By assuming the parameter values mentioned in Table 5, we have obtained the energy values
and probability of hitting which is mentioned in Table 6.

Probability of hitting = 1 − e−
Energy_on_target

eth . (9)

From Figure 14, it is noticed that as the turbulence increases the reliability of the system decreases.
This depicts that environmental turbulence can affects the system reliability. This is happen
because higher levels of turbulence may introduce more variability or unpredictability into
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the system, leading to disruptions or failures. For instance, increased turbulence might cause
misalignment or disturbances in the laser beam, impacting its effectiveness or stability.

Therefore, the relationship depicted in Figure 14 suggests that environmental turbulence
has a significant impact on the reliability of the system. This underscores the importance of
considering environmental factors when designing or operating the system to ensure its consistent
and dependable performance.

Figure 14: Reliability values at different turbulence levels

Table 6: Energy Values and Probability of Hitting

Turbulence (in 10−14 m− 2
3 ) Energy (KJ) Probability of hitting

1 257.1968 0.9946
1.5 158.66 0.9593
2 112.53 0.8937

2.5 86 0.8317
3 69.28 0.7838

3.5 57 0.7296
4 49.09 0.6763

4.5 42 0.6252
5 37.57 0.5804

5.5 33.51 0.5416
6 30.1995 0.5070

6.5 27.43 0.4766
7 25.1039 0.4497

7.5 23.11 0.4256

5. CONCLUSIONS AND FUTURE DIRECTION

The proposed study present reliability analysis of laser subsystem in anti-drone system using RBD
methodology. To represent the failure behaviour of the reliability blocks, Weibull and Rayleigh
distribution have been used. Numerical results are presented to demonstrate the behaviour of
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reliability of the system with respect to several parameters of the system. Further, the study focus
on investigating and modeling the environmental factors that impact the reliability of anti-drone
laser systems. Factors such as temperature, humidity, wind, and visibility can significantly affect
the system’s performance. By gaining a comprehensive understanding of these environmental
variables, we obtain the energy values and probability of hitting of the anti-drone laser system to
effectively mitigate environmental challenges.

The parameters involved in the reliability analysis of the anti-drone system will be estimated
in future work. Furthermore, various stochastic models, such as Markov model, semi-Markov
model, etc., will be constructed to evaluate the reliability of the anti-drone system. To verify the
validity of the obtained results, simulation analysis will be conducted.
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Abstract 

It is a typical occurrence to replace some industrial equipment or components, such as 

electronic chips, bulbs, etc. It deals with the ideas of dependability theory, in which the likelihood of 

an equipment malfunctioning instantly is calculated assuming that it has operated normally for a 

given amount of time, 't'. In reliability, it's known as the hazard rate. The rate of hazard may be 

rising, falling, or staying the same. However, replacement tactics are employed to maintain output. 

Basically, two distinct approaches are employed. 1. Replacing a broken item; 2. Replacing items on 

a regular basis. Since it is a preventive measure to maintain production, the effective administration 

of maintaining system functionality depends on the application of both reliability concepts in 

addition to replacement theory. One may envision a similar issue with the personnel system as well. 

To determine the best manpower policies in this situation, replacement methods and dependability 

theory can also be coupled. This theory's application to labor systems is examined, and appropriate 

methods for employee replacement and advancement are covered in order to ensure the system's 

successful upkeep. In order to obtain the best fit, manpower planning is a dynamic process that 

controls the movement of workers into, through, and out of the organization. In order to determine 

appropriate manpower replacement policies for promotion and replacement of personnel for the 

successful maintenance of the system, this study discusses the application of dependability theory 

and the renewal process.  

Keywords: Degradation problem, Life time, Replacing, Reliability model, Normal 

Distribution, Hazard Rate. 

I. Introduction

Manpower planning evaluates the organization's present staffing and skill levels, connects these 

factors to the market demand for its goods, and offers options to align manpower resources with 

projected demand. It is a dynamic process that controls the movement of workers into, through, 

and out of the company in order to find the best fit. The methodical process of using available 

labour in accordance with the demands of the nation's many industries is known as manpower 

planning. As a result, manpower models are created while accounting for the diverse real-world 

scenarios. Manpower refers to a group of individuals who have obtained a specific ability or 
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expertise to perform a specific kind of work. Developing appropriate economic policies and 

applying scientific approaches to economic problems are crucial components of effective 

administration. To determine the best workforce policy, replacement strategies and reliability 

theory can be coupled. This theory's applicability to labour systems is examined, and appropriate 

methods for employee replacement and advancement are covered in order to ensure the system's 

continued viability. Robinson [18] has examined the application of replacement techniques to 

workforce planning. 

The grade I, also known as the training grade, and the grade II, also known as the grade in 

the organization, are conceptualized as the two divisions that are taken into consideration in this 

study. In stage I, the cost of an individual replacement is higher than in step II. When an individual 

in stage II departs the organization, the void is filled by someone in stage I. If any wastage in stage 

I as a result of exits and transfers from stage I to stage II, after which training grade recruiting is 

completed.   Planning for manpower must take into account the overall business strategy as well as 

factors that affect employment, such as technology, competition, government laws and regulations, 

and shifting social norms and expectations. Plans that guarantee important concerns are 

addressed, suitable measures are performed, and the process is maintained will be effective; this 

will give the plan credibility and instill a feeling of pride in those who carry it out. When analyzing 

the planning of human resources, statistical techniques are a vital resource. Predicting demand 

may involve looking at productivity changes, technological changes, market forces and trends and 

the corporate strategies.  Predicting supply involves knowledge of the current manpower stocks 

and looking at future recruitment, wastage, working conditions, promotion policies and labour 

market trends. Closing the gap means examining training, remuneration career planning, 

redundancies and further consideration of all the factors under the other headings. 

II. Methods

I. Model

The current model is designed with two compartments: Grade I, sometimes known as the 

training grade, and Grade II, which denotes a specific working location or formal hierarchy 

position. In stage I, the cost of an individual replacement is higher than in step II. When an 

individual in stage II departs the organization, the void is filled by someone in stage I. Recruitment 

for training grade is carried out if there is any waste in stage I as a result of exit and transfer from 

stage I to stage II. It can be seen that the force of separation, sometimes referred to as the hazard 

rate, is dependent on the total period of service.  It may be observed that the force of separation or 

the propensity of the individual to leave the organization depends upon completed length of 

service and it is defined as the probability that a person leaves in a small time interval (𝜉, 𝜉+𝜉) 

having served a period of t and 𝜆(𝜉) =
𝑓(𝜉)

𝐺(𝜉)
   Under these assumptions it is proposed to determine

the size of grade I or the number of persons in the training grade. The mean time to promotion is 

also to be determined.  

In any organization there is loss of manpower, which arises due to the leaving of the 

personnel from the organization. The rate at which the loss of manpower arises due to the leaving 

process is very important. If the rate of leaving can be accurately measured then the appropriate 

policies for the number of persons to be recruited at various time points in the future can be 

decided. In the study of leaving process the completed length of service (CLS) distribution plays an 

important role. Hence an appropriate statistical model assuming different probability distributions 

of the random variable should be fitted to the data obtained from any organization. Several 

distributions have been suggested for this purpose. Lawless [15] have suggested a model for the 
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CLS distribution Chien-Yu Peng [11] has suggested a model for the CLS distribution. Initially 

exponential distribution has been suggested for the CLS distribution. The density function is  

𝑓(𝜉) = 𝜆𝑒 − 𝜆𝜉 where  is called the loss intensity. Tweedie [17] has suggested that the parameter 

of the distribution  be treated as a random variable whose distribution is 𝐻(𝜆). Therefore the CLS 

distribution in the Silcock form is given by 

𝑓(𝜉) = ∫ 𝜆𝑒−𝜆𝜉𝑑𝐻(𝜆),    (𝜉 ≥ 0) 

The mixed exponential distribution has been used by Bartholomew and Forbes [2]. The 

concept of change of distribution is discussed in Chien-Yu Peng [11]. Meeker [16] has used this 

concept in shock model and cumulative damage process, to estimate the expected time to cross the 

threshold, where the threshold random variable Y undergoes a change in the distribution itself.  In 

inventory theory, the probabilistic demand can undergo change in the very distribution itself after 

a change point. This concept is used in manpower planning problems. Assuming that the wastages 

in successive decision epochs are correlated random variables, the expected time to recruitment is 

derived and in doing so the results of Gurland [8] are used. In addition to this assumption it is also 

assumed that the random variable which denotes the threshold level for wastages is one which 

satisfies the so called Setting the Clock Back to Zero (SCBZ) property, due to Jerry Lawless [14]. 

The expression for mean and variance of the expected time to recruitment are derived using the 

shock model approach by Esary Marshall and Proschan [12]. 

The term “Manpower planning” defined by Walker [9], “Manpower planning refers to the 

rather complex task of forecasting and planning for the right numbers and at the right kinds of 

people at the right places and the right times to perform activities that will benefit both the 

organization and the individuals in it”. According to Bartholomew [1], “Manpower planning is 

concerned, in aggregate terms, with matching jobs to people.  In the broadest sense, manpower 

planning is concerned with matching the supply of people available for employment with the jobs 

available”. According to Grinold and Marshall [8 & 12], Manpower planning must be an ancient 

art, since manpower problems have existed for centuries.  People, jobs, time and money are the 

basic ingredients of a manpower system. A decision-maker must be aware of the interactions 

among these four ingredients in order to formulate and evaluate manpower policy. Manpower 

planning within an organization has the basic purpose of producing the correct numbers of correct 

type of people in the correct jobs at appropriate times. System constraints do not often allow for 

perfect matching of the people to jobs. A more realistic view of manpower planning is that it 

avoids having too many of the wrong types of people in the wrong jobs too frequently. For a 

detailed study of the subject in this direction can be seen in Bartholomew [4], Bartholomew and 

Forbes [6], Nikulin et al. [10], Butler [7].   

The reliability 𝑅(𝜉) of the device is given by 

𝑅(𝜉) = ∑ 𝑃𝑘𝑉𝑘(𝜉)

∞

𝑘=0

 

where 𝑉𝑘(𝜉) is the probability that k damages are caused during (0, t]. The above model has been

considered by Esary, Marshall and Proschan [12] with the underlying process generating the 

shocks as Poisson.  Gurland [8] has shown that the characteristic function (1,2…n) of the joint 

distribution of any n random variables from a sequence {Xn} of constantly correlated, exchangeable 

random variables each following the exponential distribution  with p.d.f 𝑓(𝑥) = (
1

𝑎
) 𝑒 −

𝑥

𝑎
,    𝑎 >

0,   0 < 𝑥 < ∞) such that  the correlation coefficient R between any Xi and Xj, ij (independent of    i 

and j ) is given by  

We suppose that all individuals have the same completed length of service (CLS) 

distribution, with density function f(𝜉), where t denotes the time which has elapsed since the 
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person in question joined the organization. Thus f(𝜉) t is the probability that a man leaves with t 

period of service in (𝜉, 𝜉 + 𝜉). The survivor function G(𝜉) gives the probability that a person 

remains in the organization for at least time t.  

Hence 

𝐺(𝑥) = ∫ 𝑓(𝜔)𝑑𝜔
∞

𝜉
  (1) 

We define the further quantity ( 𝜉), known as the ‘force of separation at length of service 

𝜉’, as follows. ( 𝜉)  𝜉 is the probability that an individual  who has been in the organization  for a 

length of time ‘𝜉’, leaves in the interval (𝜉, 𝜉 + 𝜉). It is easily shown that   

𝜆(𝜉) =
𝑓(𝜉)

𝐺(𝜉)
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉 ≥ 0  (2) 

Since the input and output of each grade must balance, we have for Grade II 

𝑁1𝑃 = 𝑁2𝑊𝑊2  (3) 

Moreover, in equilibrium the expected input to the system over unit time is N/, where  

the mean length of completed service. Thus for grade I, we have, 

𝑁

𝜇
= 𝑁1(𝑃 + 𝑊1) = 𝑁1𝑊1 + 𝑁2𝑊2  (4) 

In general W1, W2 and P are functions of time. It shows that P, W1, W2 tend to equilibrium 

values which are independent of the age of the system. Let 1 be the average time spent in Grade I. 

Then in equilibrium the expected number of vacancies occurring per unit time in this Grade is 

N1/1. These can be caused either by promotion or losses, and hence  

𝑁1

𝜇1
= 𝑁1(𝑃 + 𝑊1)  (5) 

1

𝜇1
= 𝑃 + 𝑊1       (6) 

It follows that equation (4) and equation (6) that 

𝑁

𝜇1
=

𝑁1

𝜇1
 (7) 

II. Promotion by Seniority

Let 𝑎(𝜉/𝑇) denote the age distribution of the system at time T given that the system was 

established at (𝑇 = 0). Thus 𝑎(𝜉/𝑇)𝛿𝑇 is the probability that an individual chosen at random at 

time T has length of service in (𝜉, 𝜉 + 𝛿𝜉). Thus  

𝑎(𝜉/𝑇)𝛿𝑇 = P{ individual joined in (𝑇 − 𝜉, 𝑇 − 𝜉 + 𝛿𝜉) and remained for time t} 

= ℎ(𝜉 − 𝑇)𝛿𝑇 𝐺(𝜉) 

Where h(𝜉) is the renewal density for the whole system, i.e. h(𝜉) 𝜉 is the probability of loss in (𝜉, 𝜉 

+ 𝜉).   Hence 𝑎 (
𝜉

𝑇
) = ℎ(𝑇 − 𝜉)ℎ(𝜉). This is true for 𝜉 <T, when 𝜉 =T, We have

a(T/T)  = P{Original member of organization is still there at time T} 

 = G (T) 

Now, 

ℎ(𝑇) = 1/𝜇𝑇→∞
𝑙𝑖𝑚  (8)
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Whatever the form of the  CLS distribution. 

Also   

𝐺(𝑇) = 0𝑇→∞
𝑙𝑖𝑚   (9) 

. 

Thus 

𝑎 (
𝑇

𝑇
) = 𝐺(𝜉)/𝜇𝑇→∞

𝑙𝑖𝑚   (10) 

Now, since a loss from Grade II is replaced by the most senior member of Grade I, it follows that at 

any time every individual in Grade II has length of service at least as long as any individual in 

Grade I and hence that there exists some threshold value ti such that all individuals with length of 

service less than t1 are in Grade I, where t1 is a random variable. But if the grade sizes are large 

their expected value can be found from the approximate formula, 

∫ 𝑎(𝜉)𝑑𝜉 = 𝑁2/(𝑁1 + 𝑁2)
∞

𝑡1
  (11) 

The expected number of promotions per unit time will be the proportion of new recruits whose 

services to the threshold length of service t1  is  

𝑁1𝑃 = 𝐺(𝜉
1

)𝑁/𝜇  (12) 

III. Promotion at Random

Let 𝐹1(𝜉) be the probability that an individual remains in the system for a time t without being 

promoted.  Let 𝑛𝜉 be the number of promotions in (0, 𝜉), then 

𝐹1(𝜉) = Prob{Individual not promoted in (0, 𝜉) / doesn’t 

 leave in (0, 𝜉)} .  Prob {doesn’t leave in (0, 𝜉)} 

= (1 −
1

𝑁1

)
𝑛𝜉

𝐺(𝜉) 

Now expected value of n 𝜉 is N1P1. Thus, as a first approximation we can take 

𝐹1(𝜉) = 𝐺(𝜉)
(1−

1

𝑁1
)

𝑁𝜉𝑃𝜉

𝑎𝑠   𝑁1 → ∞, 𝑤𝑒 ℎ𝑎𝑣𝑒 

𝐹1(𝜉) = 𝐺(𝜉)𝑒−𝑃𝜉

It follows that the average time spent in Grade I 

𝜇1 = ∫ 𝐹1(𝜉)𝑑𝜉 = ∫ 𝐺(𝜉)𝑒−𝑃𝜉

∞

0

𝑑𝜉
∞

0

 

 But from (7), 𝜇1 = 𝑁1𝜇/𝑁, Thus 

1/𝜇 ∫ 𝐺(𝜉)𝑒−𝑃𝜉𝑑𝜉 = 𝑁1/𝑁
∞

0
 (13) 

IV. The Mean Time to Promotion

Let 𝜇𝐿 be the average length of time spent in Grade I, and let 𝜇𝑃 be the average length of time spent 

in Grade I by those who are eventually promoted to Grade II. As before, let 𝜇1 be the average 

sojourn time in Grade I. (This can be terminated by promotion on leaving). Let us consider the 

problem of choosing N1 so that p has some predetermined value. The two promotion rules are 

considered separately. 
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V. Promotion by Seniority

In this case p is equivalent to the average value of 𝜉 1 introduced earlier, and hence equations (11) 

and (12) hold. 

Thus we have 

∫ 𝑎(𝜉)𝑑𝜉 = 𝑁2/𝑁
∞

𝜇𝑃
  (14) 

1/𝜇 ∫ 𝐺(𝜉)𝑑𝜉 = 𝑁2/𝑁
∞

𝜇𝑃
  (15) 

Also 𝑁1𝑃 = 𝐺(𝜇𝑃)
𝑁

𝜇
 Equation (15) gives 𝑅 = 𝑁1/𝑁2 as a function of 𝜇𝑝 and hence knowing the size 

N2 of the organization, we can determine N1 for any specified value of p. 

III. Results

I. Numerical Study

Case (i) 

CLS is taken to be a exponential distribution, 

𝑓(𝜉) = 𝜆𝑒−𝜆𝜉;   𝜆 > 0, 𝜉 > 0 

Then 𝐺(𝜉) = 𝑒−𝜆𝜉  and 𝜇 = 1/𝜆  

From equation (15) implies 

1

𝜆(1+𝑅)
= ∫ 𝑒−𝜆𝜉∞

𝜇𝑝
𝑑𝑡 , then 

𝑅 = (𝑒−𝜆𝜇𝑝 − 1)       (16) 

The values of R for various values of p and  are given in Table 1. 

 Case (ii) 

 CLS is taken to be mixed exponential distribution 

𝑓(𝜉) = 𝑥𝜆𝑒−𝜆𝑡𝜉 + (1 − 𝑥)𝜆2𝑒−𝜆2𝜉;   0 < 𝑥 < 1; 𝜆1, 𝜆2 > 0 ; 𝜉 ≥ 0

Then 

𝐺(𝑡) = 𝑥𝑒−𝜆1𝜉 + (1 − 𝑥)𝑒−𝜆2𝜉 

𝜇 =
𝑥

𝜆1
+ (1 − 𝑥)/𝜆2  (17) 

From equation (15) implies 

𝑅 =

𝑥(1−𝑒
𝜆1𝜇𝑝)

𝜆1
+((1−𝑥)(1−𝑒𝜆2𝜇𝑝))/𝜆2

𝑥(𝑒
−𝜆1𝜇𝑝)

𝜆1
+

(1−𝑥)(1−𝑒
𝜆2𝜇𝑝)

𝜆2

 (18) 

The values of R corresponding to various values of  𝜇𝑝 for the mixed Exponential CLS distribution 

with parameters 𝑥 = 0.4, 𝜆1 = 0.2 𝑎𝑛𝑑 𝜆2 = 2.0   so that 𝜇 = 2.3  are given in table .2. 

Case (iii) 

Now the CLS taken to be a Pearsonian Type XI distribution (Silcock’s form) and the behavior of R 

with respect to 𝜇𝑝 , 𝛾 and 𝑐 is studied. 

𝑓(𝑡) =
𝛾

𝑐
(1 +

𝜉

𝑐
)

−(𝛾−1)

(19)
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𝐺(𝑡) = (1 +
𝜉

𝑐
)−𝛾;   𝜉 ≥ 0, 𝛾 > 1, 𝑐 > 0  (20) 

𝜇 =
𝑐

𝛾 − 1

From equation (15) implies 

𝑁2

𝑁
=

1

𝜇
𝜉  (21) 

𝑁2

𝑁
=

1

𝜇
∫ (1 + 𝜉/𝑐)−𝛾𝑑𝜉

∞

𝜇0
  (22) 

𝑅 = [(
𝑐

𝜇𝑝+𝑐
)

1−𝛾

− 1]  (23) 

Then, the value of R for the various values of𝜇𝑝 , 𝛾 and 𝑐 = 3 is given in Table 3. 

Table 1:  CLS as Exponential Distribution 

 𝜇𝑝 

𝜆 
0.5 1.0 1.5 2.0 2.5 3.0 

0.2 0.111 0.212 0.315 0.492 0.651 0.821 

0.4 0.221 0.491 0.822 1.232 1.722 2.322 

0.8 0.351 0.823 1.453 2.331 3.483 5.053 

1.0 0.451 1.231 2.322 3.952 6.381 10.023 

1.2 0.652 1.723 3.482 6.391 11.182 19.092 

1.4 0.823 2.322 5.051 10.022 19.081 35.601 

1.6 1.011 3.064 7.172 15.442 32.122 65.693 

1.8 1.232 3.951 10.021 23.533 53.592 120.511 

1.9 1.461 5.052 13.882 35.601 89.021 220.412 

2.0 1.721 6.392 19.092 53.602 147.412 402.432 

Table 2: CLS as Mixed Exponential Distribution 

𝜇𝑝 0.5 1.0 1.5 2.0 2.5 3.0 

𝑅 0.1196 0.3919 0.6109 0.8128 1.0519 1.3016 
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Table 3: CLS as Pearsonian Type XI Distribution 

 

 
1.5 2.0 2.5 3.0 3.5 

2 0.29109 0.66667 1.15117 1.77718 2.58611 

4 0.52175 1.33333 2.56412 4.44444 7.31615 

6 0.71321 2.00010 4.19612 7.99999 14.58815 

8 0.91148 2.66677 6.02111 12.44444 24.74412 

10 1.08116 3.33333 8.02015 17.77718 38.08911 

It is discovered that in the case of the mixed exponential distribution, it is preferable to have fewer 

recruits at the training grade in order to get promoted sooner. Since a tiny percentage of trainees 

would survive to be promoted in the case of CLS as a Pearsonian Type XI distribution, a high 

training grade would be necessary. The analysis of data pertaining to completed length of service 

will be helpful in large organizations with different hierarchical grades to predict the size or 

number of individuals to be trained at each grade, ensuring that the organization's regular 

operations are not disrupted by the waste of personnel in the various grades. This is because it is 

feasible to anticipate the amount of leavers for varying CLS lengths. 

IV. Discussion

Table 1 shows values of 𝑅 calculated for various values of 𝜆 and p. The values of 𝑅 required 

becomes large when 𝜆𝜇𝑝 > 1, and then increases rapidly as (𝜆𝜇𝑝) increases. This is what one 

would intuitively expect, since 𝜆𝜇𝑝 > 1 implies that 𝜇𝑝 > 1/𝜆, i.e. the average time to promotion is 

greater than the overall mean length of completed service. Thus only a very small proportion of 

trainees would survive to promotion and hence a large training grade would be required. Table 2 

shows the values of 𝑅 corresponding to various values of 𝜇𝑝 and the particular distribution is fitted 

to manpower data, it is normally found that x takes a value near ½ and that 2 is about ten times 

the value of 1, and hence producing a fairly skew distribution. Then the mixed exponential CLS 

distribution with parameters 1 = 0.2, 1 = 2.0, x = 0.4, so that  = 2.3. 

Table 3 shows values of R calculated for various values of  and p. The values of R 

becomes large when , p increase. The average time to promotion is greater than the overall mean 

length of completed service. Thus only a very small proportion of trainees would survive to 

promotion and hence a large training grade would be required. The mean duration of finished 

services is less than the average time to promotion. Because of the extremely low rate of trainee 

survival and promotion, a high training grade would be necessary. 
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Abstract

In this article, a working vacation policy-based on bulk arrival feedback retrial queueing system with
variable server capacity has been analyzed. The server can serve a minimum of one customer and a
maximum of B customers in a batch in accordance with the variable server capacity bulk service rule.
As soon as the orbit becomes empty at the time of service completion, the server goes for a working
vacation. The server works at a lower speed during a working vacation period. In addition, the steady
state probability generating function for system size and orbit size is generated by incorporating the
supplementary variables technique (SVT). Further, the conditional decomposition law is shown for this
retrial queueing system. Moreover, system performance metrics, and significant special instances are
discussed. Finally, the effects of various parameters on the system performance are analyzed numerically.

Keywords: Retrial queue, variable server capacity, working vacation, supplementary variable
technique.

1. Introduction

The study of vacation queues (VQs) and retrial queues (RQs) in queueing theory has been going
on for a while. When a consumer arrives and discovers the server is busy, they are directed to
depart the service area and join a retry line called “orbit." In a RQ system, this is referred to as a
RQ with repeated tries. The orbiting consumers may attempt their service request again when
some time has passed. Additionally, the consumers in the orbit are allowed to request the same
service repeatedly without affecting the other consumers. Modified models can be explored in
RQs from Artalejo and Gomez Corral [1] and in VQs from Ke et al. [10]. The application of these
queues in computer and communication systems is distinct.

In a VQ system, the server serves consumers at a slower rate speed during the working
vacation (WV) period but fully discontinues service during the regular vacation period. Major
uses for this queueing system (QS) include delivering network service, online service, file transfer
service, and mail service, among others. Gautam Choudhury [7] probed a bulk arrival queue with
a vacation period under single vacation strategy. Shan Gao [20] discussed a batch arrival queue
with delayed single WV. A concise explanation of WV queueing systems was given in recent years
by Chandrasekaran et al.[4]. Rajadurai [17] developed a unique form of the RQ model, which
contained WV and breaks. An exponentially distributed multiple WV and a bulk arrival RQ with
feedback were both studied by Pazhani Bala Murugan and Vijaykrishnaraj [16]. Madhu Jain and
Anshul Kumar [12] analysed the M[X]/G/1 model with WV, balking, unreliable server.

One of the most important aspects of communication systems is the feedback phenomena.
If the service provided to a consumer is unsatisfactory, it may be tried again until it is. Mara-
gathasundari and Balamurugan [14] studied the M[X]/G/1 feedback queue with two stages of
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repair times, general delay times. Madhu Jain and Anshul Kumar [13] discovered the bulk arrival
general service RQ subject to balking, feedback and vacation interruption under multiple WV
policy.

In real-world circumstances like elevators, freight loading and unloading, big wheels, chemical
industrial processes, communication networks, tourism, etc., bulk QS are frequently used. Bailey
[2] invented batch service queueing techniques. Batch service queueing system have been
researched by Sasikala and Indhira [18]. Jaiswal [9] is the source of the original research on the
variable server capacity bulk service rule. Banerjee et al. [3] have thought about queueing models
with a variable server capacity and bulk service rule. Recently, Sasikala et al. [19] discovered
the bulk RQ system with Bernoulli vacation schedule and variable server capacity. In the WV
queue for bulk arrival feedback, no work is being done. Therefore, we concentrated on batch
arrival using a batch service feedback RQ system with variable server capacity while working on
vacation.

The purpose of this research is to ascertain the queue length and orbit length distributions,
which will be used to ascertain the system’s other behaviour metrics. The structure of our
article is as follows: We offer a detailed description of the queueing model in section 2 once the
prerequisites have been met. In section 3, it has been clearly determined how the system behaves
in steady-state (SS) conditions and what the probability generating function (PGF) of the queue
size is at a random epoch. There are various important system behaviour indicators in section 4.
Stochastic decomposition and some important specific occurrences are mentioned in section 5.
There are both numerical and pictorial findings in section 6. Finally, the paper’s key ideas are
summarized in section 7.

2. Description of the model and its implementation in real world

Under WVs policy, we provide a M[X]/GB/1 feedback RQ . The precise justification of our model
is as follows:
The arrival process: According to the Poisson process, consumers are arriving for service at the
rate α. where F is the batch size random variable with probability mass function P{F = n} = fn,
n = 1, 2, 3, ... probability generating function (PGF) F (ζ̌) = ∑∞

n=0 ζ̌n fn and mean batch size E(I).
The retrial process: If arriving consumers not getting service immediately due to some reasons,
they gather together, and this is known as an “orbit". After a certain random amount of time,
customers will retry for service. Inter retrial times have a random dist., H(ϖ) with corresponding
“Laplace-Stieltijes Transform" (LST) H∗(δ)
The regular service process: Based on the variable server capacity bulk service regulation, the
server will transmit the consumers. According to the variable server capacity batch service rule,
the server will serve either fixed size, like a “B”, or all of the consumers from the orbit, depending
on which is lower. If there are more than or equal to “B” consumers in the orbit after the group
of consumers has been transmitted, the server will proceed to transmit “B” packets in a batch. If
less than “B” packets remain in the orbit after transmission, the server will take whole consumers
to send in a batch. After the service has begun, late entrants are not permitted to participate in
the ongoing service, even if the batch size is smaller than “B”. The service period represents a
general dist. and it is marked by the arbitrary variable D with dist. function D(ϖ) having LST
D∗(δ).
Feedback rule: Unsatisfied consumers have the option to re-enter the orbit as feedback consumers
once their normal service is complete in order to maybe receive another service with prob., β
(0 ≤ β ≤ 1) will exit the system with prob., β̄ = (1 − β).
The working vacation policy: When the orbit is free, the server periodically takes a WV. The
vacation period takes an exponential dist. with variable ω. If a consumer enters during a vacation
time, the server keeps running at a reduced rate. During the WV time, tasks are carried out at a
slower pace. If any consumers are in the orbit at a slower service completion moment during the
vacation period, the server will end the vacation and return to the normal busy time, interrupting
the vacation. If not, the vacation, keeps going. When the vacation gets over, the server restores
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normal operations if there are still customers in the orbit. During the WV period, the service
period is assessed by a random variable Dv with dist. function Dv(ϖ) and LST D∗

v(δ).
The system’s stochastic processes are considered to be independent of one another.

2.1. Practical application of the model

As an example of the proposed paradigm in action, consider that telephone consultations are
a significant component of medical care delivery systems, which illustrates how the suggested
paradigm is used in real-life scenarios. We take into consideration a telephone consultation system
with a primary server (the chief physician) and a physician assistant (the working breakdown
server). Patients attempt to schedule appointments for treatment over the phone, but there is
a restriction on the no.of appointments (variable server capacity) that may be made each day
for treatment. The physician assistant provides service only when the primary physician is
unavailable, and it is noted that the assistant’s service delivery is frequently slower than that of
the primary physician. Furthermore, when each patient’s regular service is completed (feedback),
the dissatisfied patient may re-enter the orbit.

In order to schedule the appointments, a phone operator will be available, who usually
manages the patients and doctors. If the phone line is busy when a patient calls, he must wait
and try again later (retrial); if not, he will be given an appointment right away to see the head
physician or the physician assistant for treatment. However, the phone operator will call (or
search for) the FCFS customers in orbit as soon as the service is finished. It is predicted that the
search time will be evenly divided, which is in line with the general retry time policy.

3. Overview of steady state probabilities

This division first develops the steady-state (SS) equations for the RQ system by considering
the elapsed retrial period, the elapsed service time and the elapsed lower-speed service times as
supplementary variable (SV). The PGF of the no. of consumers in the orbit and system, as well as
the orbit length generating functions for numerous server states, are computed.

3.1. Probabilities and Notations

It is assumed in SS that H(0) = 0, H(∞) = 1, D(0) = 0, D(∞) = 1 and Dv(0) = 0, Dv(∞) = 1
are cont., at ϖ = 0. So that the func. χ(ϖ), η(ϖ), ηv(ϖ), are the hazard rates (HR) for retrial,
service and slower pace service respectively.

Further, the subsequent notations and probabilities were defined:

χ(ϖ) - HR for retrial (i.e.,) χ(ϖ)dϖ = dH(ϖ)
1−H(ϖ)

η(ϖ) - HR for service (i.e.,) η(ϖ)dϖ = dD(ϖ)
1−D(ϖ)

ηv(ϖ) - HR for slower pace service (i.e.,) ηv(ϖ)dϖ = dDv(ϖ)
1−Dv(ϖ)

Y(τ̌) - no.of consumers in the orbit
H0(τ̌) - elapsed retrial time
D0(τ̌) - elapsed service time
D0

v(τ̌) - elapsed WV times
Υn(ϖ, τ̌) - Prob. that at time τ̌ there are precisely n consumers in the

orbit with the consumer going through a retrial having
served their whole service period is ϖ.

Ωn(ϖ, τ̌) - Prob. that at time τ̌ there are precisely n consumers in
the orbit with the consumer going through normal service
having served their whole service period is ϖ.
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Ψv,n(ϖ, τ̌) - Prob. that at time τ̌ there are precisely n consumers in the
orbit with the consumer going through slower pace service
having served their whole service period is ϖ.

Apart from it, let H0(τ̌),D0(τ̌) and D0
v(τ̌) be the elapsed retrial period, the elapsed period of

normal service and the elapsed slower-rate service period respectively at time τ̌. Additionally,
generate the random variable,

Θ(τ̌) =


0, if the server is available and in WV time
1, if the server is available and in normal service time
2, if the server is unavailable and in normal service at time τ̌

3, if the server is unavailable and in lower speed rate at time τ̌

Here, we highlight the usage of bivariate Markov process to describe the system’s state at time
{Θ(τ̌), Y(τ̌); τ̌ ≥ 0}, where Θ(τ̌) signifies the server state (0, 1, 2, 3) depending on whether the
server is free or busy on both normal service and WV periods. Y(τ̌) denotes the no. of consumers
in the orbit. If Θ(τ̌) = 1 and Y(τ̌) > 0, then H0(τ̌) is equivalent to the elapsed retrial time. If
Θ(τ̌) = 2 and Y(τ̌) ≥ 0, then D0(τ̌) is equivalent to the elapsed time of the consumer served in
normal busy period. If Θ(τ̌) = 3 and Y(τ̌) ≥ 0, then D0

v(τ̌) is equivalent to the elapsed time of
the consumer being served in lower rate service period.

3.2. Ergodicity analysis of the model

We examine the embedded Markov chain’s ergodicity during the departure and vacation epochs.
Let {τ̌n; n = 1, 2, ...} be the series of epochs where either a service period completion or a shorter
service period happens. Gn = {Θ(τ̌n+),Y(τ̌n+)} sequence of random vectors. The Markov
chain formed by embedded in the RQ system. It follows from Appendix A that is the embedded
Markov chain {Gm; mϵM} is ergodic iff Λ < B for our system will be stable.

For the method {Y(τ̌), τ̌ ≥ 0}, we specify the probabilities Q0(τ̌) = P{Λ(τ̌) = 0,Y(τ̌) = 0}
and the prob. densities are
Υn(ϖ, τ̌)dϖ = P{Λ(τ̌) = 1,Y(τ̌) = n, ϖ ≤ H0(τ̌) < ϖ + dϖ},

for τ̌ ≥ 0, ϖ ≥ 0 and n ≥ 1.
Ωn(ϖ, τ̌)dϖ = P{Λ(τ̌) = 2,Y(τ̌) = n, ϖ ≤ D0(τ̌) < ϖ + dϖ},

for τ̌ ≥ 0, ϖ ≥ 0 and n ≥ 0.
Ψv,n(ϖ, τ̌)dϖ = P{Λ(τ̌) = 3,Y(τ̌) = n, ϖ ≤ D0

v(τ̌) < ϖ + dϖ},
for τ̌ ≥ 0, ϖ ≥ 0 and n ≥ 0.

We presume that the stability requirement is satisfied in the sequel, so we may assign Q0 =
limτ̌→∞Q0(τ̌) and limiting densities are
Υn(ϖ) = limτ̌→∞Υn(ϖ, τ̌); Ωn(ϖ) = limτ̌→∞Ωn(ϖ, τ̌);
Ψv,n(ϖ) = limτ̌→∞Ψv,n(ϖ, τ̌);
Using the supplementary variable method, we build the following system of equations.

αQ0 = β̄
∫ ∞

0
Ω0(ϖ)η(ϖ)dϖ + β̄

∫ ∞

0
Ψv,0(ϖ)ηv(ϖ)dϖ (1)

+ α
∫ ∞

0
Ωn(ϖ)dϖ, n ≥ 0
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d
dϖ

Υn(ϖ) + (α + χ(ϖ))Υn(ϖ) = 0, n ≥ 1 (2)

d
dϖ

Ω0(ϖ) + (α + η(ϖ))Ω0(ϖ) = 0, n = 0 (3)

d
dϖ

Ωn(ϖ) + (α + η(ϖ))Ωn(ϖ) = α
n

∑
k=1

Ωn−k fk(ϖ), n ≥ 1 (4)

d
dϖ

Ψv,0(ϖ) + (α + ω + ηv(ϖ))Ψv,0(ϖ) = 0, n = 0 (5)

d
dϖ

Ψv,n(ϖ) + (α + ω + ηv(ϖ))Ψv,n(ϖ) = α
n

∑
k=1

Ψv,n−k fk(ϖ), n ≥ 0 (6)

At ϖ = 0 the SS boundary criteria are as follows:

Υn(0) = β
∫ ∞

0
Ωn(ϖ)η(ϖ)dϖ + β̄

∫ ∞

0
Ωn−1(ϖ)η(ϖ)dϖ (7)

+ β
∫ ∞

0
Ψv,n(ϖ)ηv(ϖ)dϖ + β̄

∫ ∞

0
Ψv,n−1(ϖ)ηv(ϖ)dϖ, n ≥ 1

Ωn(0) =
∫ ∞

0
Υn+B(ϖ)χ(ϖ)dϖ + α

∫ ∞

0

∞

∑
k=1

fkΥn−k+B(ϖ)dϖ

+ ω
∫ ∞

0
Ψv,n(ϖ)dϖ, n ≥ 1 (8)

Ω0(0) =
∫ ∞

0

B
∑
n=1

Υn(ϖ)χ(ϖ)dϖ + α
B
∑
k=1

fkΥ0 + ω
∫ ∞

0
Ψv,0(ϖ)dϖ, n = 0 (9)

Ψw,n(0) =

{
αQ0, n = 0
0, n ≥ 1

(10)

The normalizing criteria is

Q0 +
∞

∑
n=1

∫ ∞

0
Υn(ϖ)dϖ +

∞

∑
n=0

(∫ ∞

0
Ωn(ϖ)dϖ +

∫ ∞

0
Ψv,n(ϖ)dϖ

)
= 1 (11)

3.3. The steady state solution

The GFs for | ζ̌ |< 1 in order to solve the aforementioned equations, are expressed in the form.

Υ(ϖ, ζ̌) =
∞

∑
n=1

Υn(ϖ)ζ̌n; Υ(0, ζ̌) =
∞

∑
n=1

Υn(0)ζ̌n;

Ω(ϖ, ζ̌) =
∞

∑
n=0

Ωn(ϖ)ζ̌n; Ω(0, ζ̌) =
∞

∑
n=0

Ωn(0)ζ̌n;

Ψv(ϖ, ζ̌) =
∞

∑
n=0

Ψv,n(ϖ)ζ̌n; Ψv(0, ζ̌) =
∞

∑
n=0

Ψv,n(0)ζ̌n;

Now multiply the SS equation and SS boundary criteria from (2) to (10) by ζ̌n and summing over
n, (n = 0, 1, 2, ...)

∂

∂ϖ
Υ(ϖ, ζ̌) + (α + χ(ϖ))Υ(ϖ, ζ̌) = 0 (12)

∂

∂ϖ
Ω(ϖ, ζ̌) + (α(1 −F (ζ̌)) + η(ϖ))Ω(ϖ, ζ̌) = 0 (13)

∂

∂ϖ
Ψv(ϖ, ζ̌) + (α(1 −F (ζ̌)) + ω + ηv(ϖ))Ψv(ϖ, ζ̌) = 0 (14)
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Υ(0, ζ̌) = (β + β̄ζ̌)
∫ ∞

0
Ω(ϖ, ζ̌)η(ϖ)dϖ + (β + β̄ζ̌)

∫ ∞

0
Ψv(ϖ, ζ̌)ηv(ϖ)dϖ − αQ0 (15)

Ω(0, ζ̌) =
1

ζ̌B

∫ ∞

0
Υ(ϖ, ζ̌)χ(ϖ)dϖ +

αF (z)
ζ̌B

∫ ∞

0
Υ(ϖ, ζ̌)dϖ + ω

∫ ∞

0
Ψv(ϖ, ζ̌)dϖ (16)

Ψv(0, ζ̌) = αQ0 (17)

Solving the partial differential eqns. (12) to (14), we obtain

Υ(ϖ, ζ̌) = Υ(0, ζ̌)[1 −H(ϖ)]e−αϖ (18)

Ω(ϖ, ζ̌) = Ω(0, ζ̌)[1 −D(ϖ)]e−S(ζ̌)ϖ (19)

Ψv(ϖ, ζ̌) = Ψv(0, ζ̌)[1 −Aw(ϖ)]e−Sv(ζ̌)ϖ (20)

where S(ζ̌) = α(1 −F (ζ̌)), and Sv(ζ̌) = ω + α(1 −F (ζ̌))
Inserting the eqns. (17) to (20) in (8) after some computation, we eventually arrive to,

Ω(0, ζ̌) =
Υ(0, ζ̌)

ζ̌B
{H∗(α) +F (ζ̌)[1 −H∗(α)]}+ αQ0V(ζ̌) (21)

where V(ζ̌) = ω
ω+α(1−F (ζ̌))

(1 −D∗
v(Sv(ζ̌))),

Υ(0, ζ̌) = (β + β̄ζ̌)Ω(0, ζ̌)D∗(S(ζ̌)) + (β + β̄ζ̌)Ψv(0, ζ̌)D∗
v(Sv(ζ̌))− αQ0 (22)

Combining (10) and (21) in (22), we get

Ω(0, ζ̌){ζ̌B − (β + β̄ζ̌)[H∗(α) +F (ζ̌)(1 −H∗(α))]D∗(S(ζ̌))} (23)

= αQ0{ζ̌BV(ζ̌) + [(β + β̄ζ̌)D∗
v(Sv(ζ̌))− 1][H∗(α) +F (ζ̌)(1 −H∗(α))]}

In the following theorem, we are willing to exploring the marginal orbit size distributions caused
by the server’s system state.

Theorem 1. Under the stability requirement, Λ < B provides the stationary dist., of the no. of
customers in the orbit when the server is available, busy, reduced rate service, and the prob., that
the server is available given by,

Υ(ζ̌) =
Ne(ζ̌)
De(ζ̌)

(24)

Ne(ζ̌) =ζ̌BQ0(1 −H∗(α)){(β + β̄ζ̌)[D∗(S(ζ̌))V(ζ̌) +D∗
v(Sv(z))]− 1}

De(ζ̌) =ζ̌B − (β + β̄ζ̌){H∗(α) +F (ζ̌)[1 −H∗(α)]}D∗(S(ζ̌))

Ω(ζ̌) =
αQ0(1 −D∗(S(ζ̌)))

S(ζ̌)De(ζ̌)
{ζ̌BV(ζ̌) + [(β + β̄ζ̌)D∗

v(Sv(ζ̌))− 1][H∗(α) +F (ζ̌)[1 −H∗(α)]]}

(25)

Ψv(ζ̌) =
αQ0

ω
V(ζ̌) (26)

where

Q0 =
B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}

αE(I)E(D){ 2α
ω (1 −D∗

v(ω))− 2D∗
v(ω)H∗(α) +D∗

v(ω) +H∗(α) + 1}
− E(I)(1 −H∗(α))[1 + αE(Dv)]− αE(D)[1 + B(1 −D∗

v(ω))] + B(1 + α
ω (1 −D∗

v(ω)))

(27)
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Proof. Taking the eqns. (18)-(20) and integrate with respect to ϖ and compute the PG Υ(ζ̌) =∫ ∞
0 Υ(ϖ, ζ̌)dϖ, Ω(ζ̌) =

∫ ∞
0 Ω(ϖ, ζ̌)dϖ, Ψw(ζ̌) =

∫ ∞
0 Ψw(ϖ, ζ̌)dϖ. We calculate the prob. that the

server is empty using the normalization condition (Q0) by establishing functions as, when there
is no consumer in the orbit ζ̌ = 1 in (24)-(26) and whenever the condition of L’Hospital is needed,
we get Q0 + Υ(1) + Ω(1) + Ψw(1) = 1. ■

Theorem 2. Utilizing the PGF function, the no. of consumers in the system and the orbit size dist.
at a stationary point of period are calculated under the stability constraint Λ < B,

Ks(ζ̌) =
Nes(ζ̌)

Des(ζ̌)
(28)

Nes(ζ̌) =Q0{S(ζ̌){ζ̌B − (β + β̄ζ̌){H∗(α) +F (ζ̌)[1 −H∗(α)]}D∗(S(ζ̌))}

[1 +
α

ω
ζ̌V(ζ̌)]}+ ζ̌BS(ζ̌)(1 −H∗(α)){(β + β̄ζ̌)[D∗(S(ζ̌))V(ζ̌) +D∗

v(Sv(z))]− 1}

+ ζ̌α(1 −D∗(α(1 −F (ζ̌)))){ζ̌BV(ζ̌) + [(β + β̄ζ̌)D∗
v(Sv(ζ̌))− 1]

[H∗(α) +F (ζ̌)[1 −H∗(α)]]}}
Des(ζ̌) =S(ζ̌){ζ̌B − (β + β̄ζ̌){H∗(α) +F (ζ̌)[1 −H∗(α)]}D∗(S(ζ̌))}

K0(ζ̌) =
Ne0(ζ̌)

Des(ζ̌)
(29)

Ne0(ζ̌) =Q0{S(ζ̌){ζ̌B − (β + β̄ζ̌){H∗(α) +F (ζ̌)[1 −H∗(α)]}D∗(S(ζ̌))}

[1 +
α

ω
V(ζ̌)]}+ ζ̌BS(ζ̌)(1 −H∗(α)){(β + β̄ζ̌)[D∗(S(ζ̌))V(ζ̌) +D∗

v(Sv(z))]− 1}

+ α(1 −D∗(α(1 −F (ζ̌)))){ζ̌BV(ζ̌) + [(β + β̄ζ̌)D∗
v(Sv(ζ̌))− 1]

[H∗(α) +F (ζ̌)[1 −H∗(α)]]}

where Q0 is denoted by eqn. (27). Proof. The PGF of the no. of consumer in the system (Ks(ζ̌))
and in the orbit (K0(ζ̌)) is calculated by using Ks(ζ̌) = Q0 +Υ(ζ̌) +Ω(ζ̌) +Ψw(ζ̌). The eqns. (28)
and (29) may be derived directly when the eqns. (24)-(27) are substituted in the earlier results. ■

4. System performance measures

In this section, different system states are used to derive a number of pertinent system probabilities,
system efficiency metrics, and the model’s mean busy time and mean busy cycle.

4.1. Probabilities of system states

Utilizing eqns, (24)-(26) we obtain the findings shown below, giving ζ̌ → 1 and, if feasible, using
L’Hospital’s rule.
(i) Let Υ be the SS prob. of the server is available during the retrial,

Υ = Υ(1) = Q0(1 −H∗(α))

{
β̄ + αE(I)[E(D)D∗

v(ω) + 1
ω (1 −D∗

v(ω))− E(Dv)]

B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}

}
(30)

(ii) Let Ω be the SS prob. that the server is full,

Ω = Ω(1) = αE(D)Q0

{E(I)(1 −D∗
v(ω))[H∗(α) + α

ω ] + (β̄ −B)D∗
v(ω) + B − 1

B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}

}
(31)
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(iii) Let Ψw be the SS prob. that the server is on WV,

Ψv = Ψv(1) =
αQ0

ω
[1 −D∗

v(ω)] (32)

(iv) Let Υ f be the SS prob. that the server is failure,

Υ f = α × Ω(1) = α2E(D)Q0

{E(I)(1 −D∗
v(ω))[H∗(α) + α

ω ] + (β̄ −B)D∗
v(ω) + B − 1

B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}

}
(33)

4.2. Mean size of a system and orbit

When the system is in a steady state,
(i) With respect to ζ̌, (29) and providing ζ̌ = 1 yields the mean no. of consumers in the orbit (Lq)

Lq = K′
0(1) = lim

ζ̌→1

d
dζ̌

K0(ζ̌) = Q0

[
N ′′′

q (1)D′′
q (1)−D′′′

q (1)N
′′
q (1)

3(D′′
q (1))2

]
(34)

N ′′
q (1) =− 2αE(I){[1 + α

ω
(1 −D∗

v(ω))][B − β̄ + αE(I)E(D)− E(I)(1 −H∗(α))]

+ (1 −H∗(α)){β̄ + αE(I)[E(D)D∗
v(ω) +

1
ω
(1 −D∗

v(ω))− E(Dv)]}

− αE(D){E(I)(1 −D∗
v(ω))[H∗(α) +

α

ω
] + (β̄ −B)D∗

v(ω) + B − 1}}

D′′
q (1) =− 2αE(I){B + β̄ − E(I)(1 −H∗(α)) + αE(I)E(D)}

N ′′′
q (1) =− 6αE(I)[B − β̄ + αE(I)E(D)− E(I)(1 −H∗(α))]{ α

ω
E(I)(1 + ωE(D)

−D∗
v(ω))}+D′′′

q (1)[1 +
α

ω
(1 −D∗

v(ω))]− 3αE(I)(1 −H∗(α))

{β̄ + αE(I)(1 + B)[ 1
ω
(1 −D∗

v(ω)) + E(D)D∗
v(ω)− E(Dv)]

+ 2β̄{[ α

ω
E(I)(1 + ωE(Dv)−D∗

v(ω))]− αE(I)E(D)(1 −D∗
v(ω))

− αE(I)E(Dv)} − 2αE(I)E(D)[
α

ω
E(I)(1 + ωE(D)−D∗

v(ω))] + (1 −D∗
v(ω))

[α2E(I)E2(D)− αE(I(I − 1))E(D)]− αE(I(I − 1))E(Dv)− α2E(I)E2(Dv)

+ V ′′
(1) + 3α{αE(I)E(D){B(B − 1)(1 −D∗

v(ω)) + (B + 1)[
α

ω
E(I)

(1 + ωE(D)−D∗
v(ω))] + 2αE(I)(1 −H∗(α))[β̄ − αE(I)E(Dv)]

− 2β̄αE(I)E(Dv) + α2E(I)E2(Dv)− αE(I(I − 1))E(Dv) + V ′′
(1)}

+ α[E(I(I − 1))E(D)− αE(I)E2(D)]{β̄ + αE(I)[E(D)D∗
v(ω)

+
1
ω
(1 −D∗

v(ω))− E(Dv)]}}}

D′′′
q (1) =− 3αE(I){B(B − 1)− E(I(I − 1))(1 −H∗(α)) + 2{αβ̄E(I)E(D)

+ αE(I(I − 1))E(D) + E(I)(1 −H∗(α))[αE(I)E(D) + β̄]}}

where V ′′
(1) = α

ωE(I(I − 1))[1+ωE(Dv)−D∗
v(ω)]+ E(I)

ω3 {ω2E2(Dv)− 2αωE(I)E(Dv)+ αE(I)E(Dv)}+
αE(I)(1 −D∗

v(ω))
(ii) With regard to ζ̌, (28) and providing ζ̌ = 1 yields the mean no. of consumers in the system
(Ls)

Ls = K
′
s(1) = lim

ζ̌→1

d
dζ̌

Ks(ζ̌) = Q0

[
N ′′′

s (1)D′′
q (1)−D′′′

q (1)N
′′
q (1)

3(D′′
q (1))2

]
(35)
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N ′′′
s (1) =N ′′′

q (1) + 6αE(I){E(D){E(I)(1 −D∗
v(ω))[H∗(α) +

α

ω
] + (β̄ −B)D∗

v(ω)

+ B − 1} − α

ω
[1 −D∗

v(ω)]{B − β̄ + αE(I)E(D)− (1 −H∗(α))}}

(iii) The mean period of the consumers in the system (Ws) and the mean period of the consumers
in the queue (Wq) are estimated utilizing Little’s method. Ws = Ls

αE(I) and Wq =
Lq

αE(I) ,
respectively.

4.3. Mean busy period and the busy cycle

Under SS circumstances, let the projected lengths of the busy period and busy cycle be A(Ty)
and A(Tζ̌), respectively. The conclusions are directly obtained from the analysis of an alternate
renewal process [6], which leads to

Q0 =
A(T0)

A(Ty) +A(T0)
;A(Ty) =

1
α

(
1
Q0

− 1
)

;A(Tζ̌) =
1

αQ0
= A(T0) +A(Ty). (36)

where T0 amount of time the system was in its empty condition. As the duration between the
arrivals of two consumers differs exponentially. We have the equation A(T0) = (1/α). with
variable α. We may recover (27) by applying (36) the previously discovered results,

A(Ty) =
1
α

×



αE(I)E(D){ 2α
ω (1 −D∗

v(ω))− 2D∗
v(ω)H∗(α) +D∗

v(ω) +H∗(α) + 1}
−E(I)(1 −H∗(α))[1 + αE(Dv)]− αE(D)[1 + B(1 −D∗

v(ω))]
+ B(1 + α

ω (1 −D∗
v(ω)))

B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}
− 1


(37)

A(Tž) =
1
α

×



αE(I)E(D){ 2α
ω (1 −D∗

v(ω))− 2D∗
v(ω)H∗(α) +D∗

v(ω) +H∗(α) + 1}
−E(I)(1 −H∗(α))[1 + αE(Dv)]− αE(D)[1 + B(1 −D∗

v(ω))]
+ B(1 + α

ω (1 −D∗
v(ω)))

B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}


(38)

5. Stochastic Decomposition and Special cases

Here, the stochastic decomposition aspect of the system size distribution is examined. In M/G/1
queueing models with server vacations, stochastic decomposition has been extensively explored
by Fuhrman and Cooper [5]. The no. of consumers in the system at SS at a random point in
period is distributed as the sum of two independent RVs, one of which is the no. of consumers
in the corresponding standard QS at a random point in time without vacations, and the other
of which may have different probabilistic interpretations depending on the scheduling of the
vacations. Furthermore, it has been discovered by Krishnakumar and Arivudainambi[11] that
stochastic decomposition is valid for a no. of M/G/1 RQ models.

Theorem 3. The PGF of no.of consumers in the system (Ks(ζ̌)) can be executed as convolution of
two independent RVs like, i.e.,Ks(ζ̌) = Ma(ζ̌).Mb(ζ̌),
(i) The PGF of no.of consumers ψ(ζ̌) in the M[X]/GB/1 feedback RQ with variable server capacity
under WV policy.
(ii) The PGF of no.of consumers in the orbit given that the server is idle Mb(ζ̌). Proof. The PGF
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of the system length can be decomposed as derived:
The stochastic decomposition law formulation is Ks(ζ̌) = Ma(ζ̌).Mb(ζ̌),
(i) The system size distribution of the M[X]/GB/1 feedback RQ with variable server capacity
under WV is ψ(ζ̌) and its distribution can be assigned by H∗(α) → 1 in the eqn., (28).

ψ(ζ̌) = Q0


(1 −F (ζ̌)){ζ̌B − (β + β̄ζ̌)D∗(S(ζ̌))}[1 + α

ω ζ̌V(ζ̌)] + ζ̌(1 −D∗(α(1 −F (ζ̌))))

{ζ̌BV(ζ̌) + [(β + β̄ζ̌)D∗
v(Sv(ζ̌))− 1]}

(1 −F (ζ̌)){ζ̌B − (β + β̄ζ̌)D∗(S(ζ̌))}


(ii) The conditional distribution of the no.of consumers in the system at random point in period
given the server is empty Mb(ζ̌).

Mb(ζ̌) =
Q0 +Q(ζ̌) + Ψv(ζ̌)

Q0 +Q(1) + Ψv(1)

Mb(ζ̌) =


{B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}

De(ζ̌){B − {β̄ − αE(I)E(D) + E(I)(1 −H∗(α))}+ (1 −H∗(α))
{β̄ + αE(I)[E(D)D∗

v(ω) + 1
ω (1 −D∗

v(ω))− E(Dv)]}+ α
ω (1 −D∗

v(ω))}


×{[ζ̌B − (β + β̄ζ̌){H∗(α) +F (ζ̌)[1 −H∗(α)]}D∗(S(ζ̌))] + ζ̌BQ0(1 −H∗(α))

{(β + β̄ζ̌)[D∗(S(ζ̌))V(ζ̌) +D∗
v(Sv(z))]− 1}+ α

ω
V(ζ̌)}

From the aforementioned stochastic decomposition law, we see that Ks(ζ̌) = Ma(ζ̌).Mb(ζ̌),
which is consistent with the decomposition results of Geo et al. [6], are also applicable for this
particular vacation system. ■

5.1. Special cases

In this section, we examine a few real-world examples of our strategy that are consistent with
recent literature.
Case (i):
Let Pr[F = 1] = 1, B = 1, ω, β̄ = 0 and H∗(α) → 1. Our model can be simplified to a M/G/1
queue. The results agree with Takagi [21].

Ks(ζ̌) = Q0

{
N es(ζ̌)

Des(ζ̌)

}
(39)

N es(ζ̌) =(1 − ζ̌){ζ̌ −D∗(α(1 − ζ̌))}+ ζ̌(1 −D∗(α(1 − ζ̌))){D∗
v(α(1 − ζ̌))}

Des(ζ̌) =(1 − ζ̌){ζ̌ −D∗(α(1 − ζ̌))}

where, Q0 =
1 + αE(I)E(D)

αE(I)E(D)− αE(D)

Case (ii):
Let Pr[F = 1] = 1, B = 1, and ω, β̄ = 0. Our model simplified to an M/G/1 RQ. Here are the
results agree with Gao and Wang [6].

Ks(ž) = Q0

{
N es(ž)
Des(ž)

}
(40)
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N es(ž) =(1 − ž){ž − [H∗(α) + ž(1 −H∗(α))]D∗(α(1 − ž))}+ žα(1 − ž)[1 −H∗(α)]

(D∗
v(α(1 − ž)− 1)) + αž[1 −D∗(α(1 − ž))]{D∗

v(α(1 − ž)− 1)

[H∗(α) + ž(1 −H∗(α))]}
Des(ž) =α(1 − ž){ž − [H∗(α) + ž(1 −H∗(α))]D∗(α(1 − ž))}

where, Q0 =
1 + αE(I)E(D) + E(I)(1 −H∗(α))

αE(I)E(D){1 −H∗(α)} − αE(D)− E(I)(1 −H∗(α))[1 + αE(Dv)] + B

Case (iii):
Let Pr[F = 1] = 1, B = 1, and β̄ = 0. our model simplified to an M/G/1 queue with WVs. Here
are the results agree with Zhang and Hou [23].

Ks(ž) = Q0

{
N es(ž)
Des(ž)

}
(41)

N es(ž) =(1 − ž){ž − [H∗(α) + ž(1 −H∗(α))]D∗(α(1 − ž))}+ žα(1 − ž)[1 −H∗(α)]

(D∗
v(α(1 − ž)− 1)) + αž[1 −D∗(α(1 − ž))]{D∗

v(α(1 − ž)− 1)

[H∗(α) + ž(1 −H∗(α))]}
Des(ž) =α(1 − ž){ž − [H∗(α) + ž(1 −H∗(α))]D∗(α(1 − ž))}

6. Numerical results

The various effects on system performance measurements are demonstrated using MATLAB in
this section. We examine exponentially distributed retrial times, service times, and slower service
times. The numerical measurements that satisfy the stability condition are chosen at random.

Table 2 clearly displays that arrival rate (α) escalates, Lq, Ls, Ψv are increases. Table 3 displays
that feedback rate β escalates, Lq, Ls, are increases and Q0 decreases. Table 4 displays that lower
service rate ηv escalates, Lq, Ls, Ψv and Q0 decreases.

With the impact of the parameters B, α, β, ω, χ(ϖ), η(ϖ), ηv(ϖ), Fig. 1 illustrate the

Table 2: Q0 and Lq for different arrival rate (α) for the values of B = 30, β = 0.5, ω = 2, χ(ϖ) = 6, η(ϖ) = 0.6,
ηv(ϖ) = 0.7

Arrival rate (α) Q0 Lq Ls Ψv Wq

1 0.8495 0.0120 0.0005 0.1274 0.0840
2 0.8606 0.0131 0.0015 0.2582 0.0459
3 0.8704 0.0142 0.0026 0.3917 0.3341
4 0.8789 0.0156 0.0036 0.5273 0.0272
5 0.8859 0.0168 0.0047 0.6644 0.0235
6 0.8914 0.0180 0.0058 0.8023 0.0210
7 0.8954 0.0192 0.0068 0.9402 0.0192

two-dimensional plot that depict the system performance measures. In Fig. 1(a), displays the
escalation of the arrival rate (α), (Lq) and (Wq) increases. In Fig. 1(b), we found that (Ls)
increases while diminishing the feedback rate β and (Ψv).

The three-dimensional graph representing the system performance metrics is shown in Fig.
2. In Fig. 2(a), the surface displays the elevation the (b), we found that (Wq) diminishes while
increasing the feedback rate (β), (Ls). In Fig. 2(c), we found that (Q0) and (Ψv) diminishes
while increasing the lower service rate ηv.

The numerical findings above may be used to determine the impact of attributes on the
system’s assessment criteria, and we can be sure that the results are representative of actual
conditions.
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(a) Q0, Lq, Wq vs arrival rate α (b) Q0, Ls, Ψv vs feedback rate β

Figure 1: 2D visualization of α and β

(a) Lq, Wq vs arrival rate α (b) Q0, Ls vs feedback rate β

(c) Q0, Ψv vs lower service rate ηv

Figure 2: 3D visualization of α, β, and ηv
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Table 3: Q0 and Lq for different arrival rate (α) for the values of B = 30, α = 5, ω = 4, χ(ϖ) = 6, η(ϖ) = 0.6,
ηv(ϖ) = 0.5

Feedback rate (β) Q0 Lq Ls Ψv Wq

2 4.8675 0.0205 0.0082 3.0421 0.0286
3 4.6988 0.0322 0.0189 2.9367 0.0450
4 4.5301 0.0431 0.0287 2.8313 0.0603
5 4.3614 0.0531 0.0377 2.7259 0.0743
6 4.1928 0.0623 0.0407 2.6205 0.0872
7 4.0209 0.0706 0.0536 2.5150 0.0989
8 3.8554 0.0781 0.0603 2.4096 0.0109

Table 4: Q0 and Lq for different lower service rate (ηv) for the values of B = 30, α = 1, ω = 4, χ(ϖ) = 4,
η(ϖ) = 0.6, β = 0.7

Lower service rate
(ηv)

Q0 Lq Ls Ψv Wq

0.1 1.0937 0.0430 0.0030 0.2461 0.0998
0.2 1.0457 0.0138 0.0026 0.2091 0.0968
0.3 1.0018 0.0134 0.0021 0.1753 0.0941
0.4 0.9614 0.0131 0.0018 0.1442 0.0916
0.5 0.9242 0.0128 0.0015 0.1155 0.0893
0.6 0.8897 0.0124 0.0012 0.0889 0.0871
0.7 0.8577 0.0122 0.0009 0.0643 0.0851

7. Conclusion

We examined the M[X]/GB/1 feedback retrial queueing system with variable server capacity
under working vacation in this article. If all essential and appropriate conditions are met, the
system can be stabilized. When it is ideal, normally busy, and on lower rate service, the PGF
of the no. of system consumers and its orbit are calculated using the PGF approach and the
supplementary variable technique. Eventually, a wide range of numerical findings are presented
to examine the impact of system parameters. The results of this study may be used in the design
of different computer communication systems, packet switching networks, manufacturing lines,
and postal systems by network and software engineers. Lastly, a study of a bulk service queueing
system with priority consumers under working vacation could enhance this work. Additionally,
it may be worthwhile to investigate in the future of transient solution for bulk service under a
working vacation.
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Appendix A

Theorem 4. The embedded Markov chain {Gm; mϵM} is ergodic iff Λ < B for our system will be
stable, where Λ = β̄ − αE(I)E(D) + E(I)(1 −H∗(α)).
Proof. Foster’s [15] criteria, which claim that the chain {Gm; m ∈ M} is an irreducible and
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aperiodic chain, may be used to easily confirm the required condition of ergodicity. Assuming
a non-negative measure e(r), r ∈ M and δ > 0, the Markov chain is ergodic, and mean drift
νr = E [e(um+1)− e(um)/vm = r] with a limited exception r′s, r ∈ M and νr ≤ −δ ∀ r ∈ M,. In
this case, we’re focusing on the function e(r) = r. Next, we obtain

νr =

{
β̄ − αE(I)E(D)−B, if r=0
β̄ − αE(I)E(D) + E(I)(1 −H∗(α))−B, if r=1,2,...

In this case, β̄ − αE(I)E(D) + E(I)(1 −H∗(α)) < B is undoubtedly a prerequisite for ergodicity.
As said by Humblett et al. [8], if the Markov chain {Gm; mϵM} matches Kaplan’s status,

specifically νr < ∞ ∀ r ≥ 0 and ∃ r0 ∈ M such that νr ≥ 0 for r ≥ r0, the necessary condition is
satisfied. V = (vqr) is the the unit-step transition matrix of {Gm; m ∈ M} for r < q − j and q > 0.
The Markov chain’s non-ergodicity is suggested by Λ ≥ B. ■
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Abstract 

The current paper analyzes the performance behavior concerning the performability of the Veneer 

layup system in a plywood industry. A Markovian Approach is utilized to develop a process model 

for the system and enhance to evaluate system performability i.e. the function of system availability. 

The study investigates the impact of varying failure and repair rates on the availability of system, 

variation in the availability is also determined by varying available repair facilities, using a licensed 

software package. Particle Swarm Optimization (PSO) method has been employed to optimize the 

results. Additionally, a Decision Support System (DSS) has been proposed for making strategic 

decisions regarding financial investments and maintenance order priorities. The findings of the 

paper will aid the practitioners in deciding the maintenance order priorities among various 

subsystems. 

Keywords:, Performability, Markov Chain, Decision Support System, Particle 

Swarm Availability Optimization 

I. Introduction

The manufacturing process of plywood involves several intricate stages, including veneer cutting, 

placing up and gluing operations, pressing, and finishing processes. As market competition 

intensifies, manufacturers must continually enhance the performance of production processes. The 

utilization of human labor offers flexibility, yet the need for varying sizes of the final product often 

disrupts the layup stage, a critical phase. This condition has adversely affected factors such as 

availability, production costs, quality, and in some cases, operator safety. However, modern 

business communities within these sectors have turned this challenge into a learning opportunity. 

Industrialists are fervently engaged in operating process plants and industries continuously, 

aiming to minimize the breakdowns in this competitive era. This endeavor is essential for 

maintaining maximum productivity and ensuring the highest profits to ensure the survival of the 

industry concerned.  

The performance of a system is enhanced through proper design and maintenance throughout 

its service life. Through a case study analysis, the paper demonstrates how Markov techniques can 

provide insights into system performance to identify bottlenecks and suggest strategies for 
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improving production efficiency and product quality. The findings underscore the potential of 

Markov models as valuable tools for decision-making and process optimization in the plywood 

industry. Tewari and Khan [11] discussed by using quasi-independence Markov chain and entropy 

methods, demonstrate a predictable sequence of sedimentary structures, reflecting typical fluvial 

channel processes. Malik and Tewari [6] dealt with the performance modeling and maintenance 

order priorities for the Feed Water System in a thermal power plant based on coal and also 

analyzed the system process by using Chapman-Kolmogorov equations and Markov approaches. 

Abedi, Yoon, and Kwon [1] discussed a cyclic time-dependent Markov process and reinforcement 

learning for a battery energy storage control system. Wu and Hoa [12] optimized feature mappings 

and Markovian models using the Koopman operator's top singular components and introduces 

score functions for model optimization. Khan and Tewari [3] introduced the Kolmogorov criterion 

for analyzing transition matrices of reversible Markov processes.  

Malik [5] developed a performability model for the Coal Ash Handling System (CAHS) in a 

thermal power plant operating at subcritical conditions. This model is constructed by aggregating 

state probabilities using a normalizing condition. Parkash [8] designed Performance Modeling and 

proposed a DSS to prioritize repairs tasks for an assembly line system. Kumar [4] proposed a 

Decision Support Priorities (DSP) framework, highlighting the criticality of different useful units. 

Singh and Tewari [9], Sheikh and Tewari [10] discussed the applications of Reliability, Availability, 

Maintainability and Safety (RAMS) concepts in various process industries for enhancement of 

performability. Stochastic processes deal with randomness in systems, like how things change over 

time in unpredictable ways. Performability analysis facilitates the performance behavior of the 

system concerned. This helps us make smarter choices about how to design and run systems to 

make them more reliable and effective. 

The Markovian approach analyzes systems based on present states, regardless of past events. 

It's useful for systems with discrete states and helps prioritize maintenance in assembly lines by 

modeling subsystem performance. Hale et. al. [2] explored the use of quantitative or conceptual 

methods to create the Markov chain model of particular industrial unit. Marcozzi and Mostarda [7] 

discussed stochastic processes for Byzantine Fault Tolerant performance evaluation. 

Particle Swarm Optimization (PSO) is a computational optimization method inspired by the 

collective behavior of birds or fish in search of their food. In PSO, a group of potential solutions, 

called particles, navigates the search space to locate the optimal solution. Through iterative 

adjustments, PSO effectively converges towards the optimal solution. A DSS is a high-tech tool 

that helps decision-makers to analyze the data, generate the reports, and evaluate the alternatives 

to make the right decisions quickly and effectively. 

II. System Description

In the plywood industry, there are typically nine primary steps involved in the production process. 

These include (a) log collection, (b) debarking, (c) steaming blocks, (d) peeling blocks and veneer 

cutting machine, (e) drying veneers, (f) gluing and stacking the veneers on top of each other, (g) 

pressing the veneers in hot and cold presses, (h) trimming the plywood, and (i) super finishing and 

grade stamping, as illustrated in Figure 1. In plywood industry veneer production system is 

accounts for approximately 37 to 42% of the total plant output. The system is being studied as 

plywood industry and base material used as poplar and eucalyptus wood, situated within the 

Ganga basin of Northern India, this area encompasses several subsystems. These subsystems 

include: 

 Debarking Machine: Debarking machine removes bark from logs before to

turned into plywood sheets. Logs go in, bark comes off using rotary cutters or water jets,

and clean logs come out for further processing. This step ensures high-quality veneer or

RT&A, No 3 (79) 
Volume 19, September 2024

231



Mr. Amit Kumar Singh, Dr. P.C. Tewari 
SM AND PA OF RS OF A PLYWOOD INDUSTRY 

chips free from bark-related defects and contaminants, extending the life of subsequent 

machinery. 

 Veneer Cutting Machine: Veneer cutting machines are vital in woodworking and

plywood manufacturing, turning logs into thin, even veneer sheets. Then use rotating

blades or drums to slice layers from logs, ensuring consistent thickness and quality. These

machines vary in design and features, customized for different wood types and

production needs, with some equipped with automation for improved efficiency.

 Veneer Drier: A veneer dryer is a specialized subsystem in plywood production,

extracting moisture from freshly cut veneer sheets to achieve the desired moisture content

for further processing and storage. Through controlled heat and airflow, it prevents

defects like warping or cracking. Techniques like hot air circulation or infrared radiation

may be used depending on the dryer's design. Efficient moisture removal is vital for

producing high-quality plywood sheets with uniform thickness and strength.

 Gluing and Pasting: Gluing and pasting are key processes in plywood

production. Veneer surfaces are prepared and coated with adhesive before being stacked

and pressed to create strong bonds. Curing ensures structural integrity, followed by

trimming and finishing for precise dimensions and surface quality. This results in resilient

plywood panels used in construction and furniture.

Figure 1: Flow Diagram of Plywood Manufacturing Process 

The plywood - making process involves preparing veneer sheets from logs, sorting and 

grading them, sanding or cleaning for adhesion, applying adhesive, stacking with perpendicular 

grain orientations, pressing to activate the adhesive, curing, and finally trimming and finishing for 

precise dimensions and quality. 

III. Assumptions and Notations

Markov chains rely on several assumptions to effectively model systems. Firstly, to assume 

stationary, meaning that transition probabilities between states remain consistent over time. This 

assumption is vital for the stability of the model, allowing us to make reliable predictions about 

future states based on current probabilities. In other term the probability of transitioning to the 

next state depends solely on the current state and is unaffected by the history of previous states.  
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This simplifies the model and makes computations more manageable. The most 

important assumption is a finite state space, implying that the set of possible states the system can 

occupy is finite and well-defined. To construct a transition matrix that encapsulates all possible 

state transitions. Furthermore, assume homogeneity, meaning that transition probabilities are 

consistent across different time periods. This assumption is essential for making long-term 

predictions about the system's behavior without being influenced by short-term fluctuations.   

Notifications play a vital role in keeping all involved informed about the system's 

dynamics and relevant updates. Hence to encompass alerts concerning state transitions, providing 

clear insights into the current state and the probabilities associated with transitioning to 

subsequent states. Regular updates on state probabilities, derived from observed transitions, 

enable continuous tracking of the system's behavior over time. The performance modeling of the 

system relies on certain assumptions and notations, which are as follows: 

a) Assumptions:

 Failure and Repair rates are constant over time and statistically independent.

 The system has the potential to operate at a reduced capacity.

 The standby systems exhibit similar characteristics to the active system.

 Service encompasses both repair and replacement of components.

 Simultaneous failures do not take place.

 A subsystem that undergoes repair is considered to be in a condition equivalent to

new for a specified period.

 Adequate repair facilities are available to commence repairs promptly, without

any delay.

b) Notations:

      : Denotes the system concerned is working at its full capacity state. 

   : Denotes the system concerned is working at reduced capacity state. 

  : Denotes the system concerned is working at failed state. 

 A, Bi, C, D: Indicate that the subsystems are in a fully functioning condition.

 a, b, c, d: Denotes that subsystems A, Bi, C, and D are in a state of failure.

 P0(t): Probability of the system operating at full capacity at time t.

 P1(t) – P5(t): Probabilities associated with the system operating in a state of reduced

capacity.

 P6(t) – P29(t): Probabilities of the system in failed state.

 ρi,i=1-4: Average failure rates for subsystems A, Bi, C, and D, respectively.

 μi, i=1-4: Average repair rates for subsystems A, Bi, C, and D, respectively.

 d/dt : Characterizes derivative with respect to time (t).

The diagram illustrating the transitions between states of Veneer Layup System is given 

in Figure 1. In which state 0 denotes the working of system with full capacity, states 1,2,3,4 and 5 

are working of systems with reduced capacity and states 6 – 29 have failed. 
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IV. Performance Modeling of System

The performance modeling for Veneer Layup System is carried out by Markov Birth-Death Process 

using a probabilistic approach and a differential equation related to the transition diagram. In 

performance modeling using Markov analysis, systems are depicted as transitioning between 

various states based on predefined probabilities. Initially, states representing different 

configurations or conditions of the system are identified.  

These transitions are quantified through transition probabilities, reflecting the likelihood 

of moving from one state to another within a defined timeframe. Constructing a transition matrix 

encapsulates these probabilities, facilitating analysis of system behavior. Through this model, 

metrics like steady-state probabilities or mean time to absorption can be calculated, offering 

insights into system performance. These equations are determined to describe the steady-state 

performability of the system. 

Figure 2: Performance Model of Veneer Cutting System of Plywood Industry 
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V. Performance Analysis

A system's first-order differential equations associated to the transition diagram (Figure 2) at time 

(t+∆t), can be expressed as follows using the mnemonic rule:  

P0(t+∆t) - P0(t) = [-ρ1∆t - 2ρ2∆t -  2ρ3∆t - ρ4∆t]P0(t) + μ2P1(t)∆t + μ2P2(t)∆t + μ3P3(t)∆t + μ2P4(t)∆t 

+μ2P5(t)∆t + μ1P6(t)∆t + μ2P7(t)∆t + μ3P8(t)∆t + μ4P9(t)∆t + μ2P11(t)∆t + μ2P15(t)∆t + μ2P20(t)∆t + μ3P24(t)∆t

+ μ2P27(t)∆t + μ3P28(t)∆t                   (1)

After dividing both sides by ∆t, the outcome is:

[P0(t+∆t) - P0(t)+/∆t = *-ρ1-2ρ2-2ρ3-ρ4]P0(t) + μ2P1(t) + μ2P2(t) + μ3P3(t) + μ2P4(t) + μ2P5(t) + μ1P6(t) +

μ2P7(t) + μ3P8(t) + μ4P9(t) + μ2P11(t)+μ2P15(t)+ μ2P20(t)+ μ3P24(t)+ μ2P27(t) +μ3P28(t)                (2)

After assuming that ∆t→0 is the limit, this can be found as:

P’0(t)= -X0P0(t) + μ2P1(t) + μ2P2(t) + μ3P3(t) + μ2P4(t) + μ2P5(t) + μ1P6(t) + μ2P7(t) + μ3P8(t) + μ4P9(t) +

μ2P11(t) + μ2P15(t) + μ2P20(t) + μ3P24(t) + μ2P27(t) + μ3P28(t)

or

P’0(t) + X0P0(t) = μ2P1(t) + μ2P2(t) + μ3P3(t) + μ2P4(t) + μ2P5(t) + μ1P6(t) + μ2P7(t) + μ3P8(t) + μ4P9(t) +

μ2P11(t) + μ2P15(t) + μ2P20(t) + μ3P24(t) + μ2P27(t) + μ3P28(t)                  (3)

Similarly

P’1(t) + X1P1(t) = ρ2P0(t) + μ1P10(t) + μ3P12(t) + μ4P13(t)    (4) 

P’2(t) + X2P2(t) = ρ2P1(t) + μ1P14(t) + μ3P16(t) + μ4P17(t)    (5) 

P’3(t) + X3P3(t) = ρ3P0(t) + μ1P18(t) + μ2P19(t) + μ4P21(t)    (6) 

P’4(t) + X4P4(t) = ρ2P3(t) + μ1P22(t) + μ4P25(t)     (7) 

P’5(t) + X5P5(t) = ρ2P4(t) + μ1P26(t) + μ4P29(t)     (8) 

Where 

X0 = ρ1+2ρ2+2ρ3+ρ4 

X1 = ρ1+2ρ2+ρ3+ρ4+μ2 

X2 = ρ1+ρ2+ρ3+ρ4+μ2

X3 = ρ1+2ρ2+ρ3+ρ4+μ3 

X4 = ρ1+2ρ2+ρ3+ρ4+μ2 

X5 = ρ1+ρ2+ρ3+ρ4+μ2 

P’6(t) +μ1P6(t) = ρ1P0(t)    (9) 

P’7(t) + μ2P7(t) = ρ2P0(t)  (10) 

P’8(t) + μ3P8(t) = ρ3P0(t)  (11) 

P’9(t) + μ4P9(t) = ρ4P0(t)  (12) 

P’10(t) + μ1P10(t) = ρ1P1(t)  (13) 

P’11(t) + μ2P11(t) = ρ2P1(t)  (14) 

P’12(t) + μ3P12(t) = ρ3P1(t)  (15) 

P’13(t) + μ4P13(t) = ρ4P1(t)  (16) 

P’14(t) + μ1P14(t) = ρ1P2(t)  (17) 

P’15(t) + μ2P15(t) = ρ2P2(t)  (18) 

P’16(t) + μ3P16(t) = ρ3P2(t)  (19) 

P’17(t) + μ4P17(t) = ρ4P2(t)  (20) 

P’18(t) + μ1P18(t) = ρ1P3(t)  (21) 

P’19(t) + μ2P19(t) = ρ2P3(t)  (22) 

P’20(t) + μ3P20(t) = ρ3P3(t)  (23) 

P’21(t) + μ4P21(t) = ρ4P3(t)  (24) 

P’22(t) + μ1P22(t) = ρ1P4(t)  (25) 

P’23(t) + μ2P23(t) = ρ2P4(t)  (26) 

P’24(t) + μ3P24(t) = ρ3P4(t)  (27) 

P’25(t) + μ4P25(t) = ρ4P4(t)  (28) 

P’26(t) + μ1P26(t) = ρ1P5(t)  (29) 

P’27(t) + μ2P27(t) = ρ2P5(t) (30)
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P’28(t) + μ3P28(t) = ρ3P5(t)  (31) 

P’29(t) + μ4P29(t) = ρ4P5(t)  (32) 

It is a complex system, and every system must be accessible for a long time to achieve the 

maximum output. The steady-state behavior of the plywood plant can be investigated by finding 

t→∞,  →0. 

With this, equations from (01) to (32) reduced to  

X0P0(t) = μ2P1(t) + μ2P2(t) + μ3P3(t) + μ2P4(t) + μ2P5(t) + μ1P6(t) + μ2P7(t) + μ3P8(t) + μ4P9(t) +μ2P11(t) + 

μ2P15(t) + μ2P20(t) + μ3P24(t) + μ2P27(t) + μ3P28(t)                (33) 

Similarly 

X1P1(t) = ρ2P0(t) + μ1P10(t) + μ3P12(t) + μ4P13(t)  (34) 

X2P2(t) = ρ2P1(t) + μ1P14(t) + μ3P16(t) + μ4P17(t)  (35) 

X3P3(t) = ρ3P0(t) + μ1P18(t) + μ2P19(t) + μ4P21(t)  (36) 

X4P4(t) = ρ2P3(t) + μ1P22(t) + μ4P25(t)   (37) 

X5P5(t) = ρ2P4(t) + μ1P26(t) + μ4P29(t)   (38) 

μiPj(t) = ρiP0(t), where, i=1,2,3,4; j= 6,7,8,9   (39) 

μiPj(t) = ρiP1(t), where, i=1,2,3,4; j= 10,11,12,13  (40) 

μiPj(t) = ρiP2(t), where, i=1,2,3,4; j= 14,15,16,17  (41) 

μiPj(t) = ρiP3(t), where, i=1,2,3,4; j= 18,19,20,21  (42) 

μiPj(t) = ρiP4(t), where, i=1,2,3,4; j= 22,23,24,25  (43) 

μiPj(t) = ρiP5(t), where, i=1,2,3,4; j= 26,27,28,29  (44) 

By solving these equations as: 

Taking K as a constant, which is the ratio of failure rate to repair rate, 

K = 

K1 ,  K2 ,     K3 , K4 ,  K5 = ,      K6 = , 

K7= ,   K8= ,      K9=

P1 = K8 P0  (45) 

P2 = K8K9 P0  (46) 

P3= K5P0   (47) 

P4 = K5K6 P0  (48) 

P5 = K5K6 K7P0  (49) 

P6 = K1 P0  (50) 

P7 = K2 P0  (51) 

P8 = K3 P0  (52) 

P9 = K4 P0  (53) 

P10 = K1K8 P0  (54) 

P11= K2K8 P0  (55) 

P12= K3K8 P0  (56) 

P13= K4K8 P0  (57) 

P14= K1K8K9P0  (58) 

P15= K2K8K9P0  (59) 

P16= K3K8K9P0  (60) 

P17= K4K8K9P0  (61) 

P18= K1K5P0  (62) 

P19= K2K5P0  (63) 

P20= K3K5P0  (64) 

P21= K4K5P0  (65) 

P22= K1K5K6P0  (66)
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P23= K2K5K6P0  (67) 

P24= K3K5K6P0  (68) 

P25= K4K5K6P0  (69) 

P26= K1K5K6K7P0  (70) 

P27= K2K5K6K7P0 (71) 

P28= K3K5K6K7P0  (72) 

P29= K4K5K6K7P0  (73) 

In accordance with the normalization principle, the sum of collective probabilities of all events 

should be equal to one that is: 

 (74) 

P0+P1+P2+ ……………………………………………….. + P29 = 1  (75) 

P0[1+(K8+K8K9+K5+K5K6+K5K6K7+K1+K2+K3+K4+K1K8+K2K8+K3K8+K4K8+K1K8K9+K2K8K9+K3K8K9+K4K8

K9+K1K5+K2K5+K3K5+K4K5+K1K5K6+K2K5K6+K3K5K6+K4K5K6+K1K5K6K7+K2K5K6K7+    

K3K5K6K7+K4K5K6K7)]= 1 

or 

P0=1/[1+(K8+K8K9+K5+K5K6+K5K6K7+K1+K2+K3+K4+K1K8+K2K8+K3K8+K4K8+K1K8K9+ 

K2K8K9+K3K8K9+K4K8K9+K1K5+K2K5+K3K5+K4K5+K1K5K6+K2K5K6+K3K5K6+K4K5K6+ 

K1K5K6K7+K2K5K6K7+K3K5K6K7+K4K5K6K7)]  (76) 

Now, the system availability A(∞) can be found by using: 

A(∞) = P0+P1+P2+P3+P4+P5 

 = [1+K8+K8K9+K5+K5K6+K5K6K7]P0  (77) 

Using equation 77, the long-term availability for a range of permissible combinations of veneer 

manufacturing systems' failure and repair rates in a steady state can be ascertained. Table 1 

providesan overview of how failure and repair rates affect the availability of the system. 

Availability impacts system performance by ensuring that each part of the system is ready to work 

when desired. 

Table 1: Failure and Repair Rates of Veneer System 

Sub-System’s Name Mean Failure Rate (ρi) Mean Repair  Rate (μi) 

Debarking Machine (A) 0.013 (ρ1) 0.15 (μ1) 

Veneer Cutting Machine (B) 0.004 (ρ2) 0.2 (μ2) 

Veneer Drier (C) 0.0024 (ρ3) 0.126 (μ3) 

Gluing and Pasting (D) 0.005 (ρ4) 0.19 (μ4) 

Table 2 and Figure 3 describe the effect of different failure and repair rates of a debarking machine 

on system performance, in terms of availability. It is observed that as the failure rate increases from 

0.003 to 0.043, the system's performability declines from 0.8886 to 0.5194, marking a decrease of 

41.5%. Likewise, with the repair rate increasing from 0.05 to 0.45, the system's performability 

improves from 0.8886 to 0.9328, reflecting a 4.7% increase. 

ΣPi = 1 
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Table 2: Effect of the Failure and Repair Rates of Debarking Machine subsystem on system Performability(%) 

Failure 

Rates (ρ1) 

Repair Rates of Debarking Machine (μ1) Constant 

Parameters 0.05 0.15 0.25 0.35 0.45 

0.003 0.8886 0.9214 0.9282 0.9312 0.9328 ρ2 = 0.004, 

μ2 = 0.2, 

ρ3 = 0.0024, 

μ3 = 0.126, 

ρ4 = 0.005, 

μ4 = 0.19 

0.013 0.7545 0.8680 0.8950 0.9070 0.9139 

0.023 0.6556 0.8205 0.8640 0.8841 0.8957 

0.033 0.5796 0.7780 0.8352 0.8623 0.8782 

0.043 0.5194 0.7396 0.8082 0.8416 0.8614 

Figure 3: Performability Variation with respect to Failure and Repair Rates of Debarking Machine Subsystem 

Similarly, in Table 3 and Figure 4 for the Veneer Cutting Machine subsystem, the performance of 

the subsystem in terms of availability varies between 3.35% and 1.175% for the respective failure 

(ρ2) and repair rates (μ2) when all other factors stay the same. 

Table 3: Effect of the Failure and Repair Rates of Veneer Cutting Machine Subsystem on System Performability (%) 

Failure 

Rates (ρ2) 

Repair Rates of Veneer Cutting Machine (μ2) Constant 

Parameters 0.1 0.15 0.2 0.25 0.3 

0.002 0.8680 0.8731 0.8756 0.8772 0.8782 ρ1 = 0.013, 

μ1 = 0.15, 

ρ3 = 0.0024, 

μ3 = 0.126, 

ρ4 = 0.005, 

μ4 = 0.19 

0.003 0.8606 0.8680 0.8718 0.8741 0.8756 

0.004 0.8532 0.8630 0.8680 0.8711 0.8731 

0.005 0.8460 0.8581 0.8643 0.8680 0.8706 

0.006 0.8389 0.8532 0.8606 0.8650 0.8680 
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Figure 4: Performability Variation with respect to Failure and Repair Rates of Veneer Cutting Machine Subsystem 

Table 4 and Figure 5 illustrate the impact of repair and failure rates of the Veneer Drier subsystem 

on its performability. It is observed that the known values of failure rate (ρ3) and repair rate (μ3) of 

Veneer drier, as the failure rate increases from 0.0012 to 0.0036, and the performability of the 

system decreases quickly from 0.8739 to 0.8569, i.e., 1.945%. Also, as the repair rate (ρ3) increases 

from 0.106 to 0.146, the performability of the system increases considerably from 0.8739 to 0.8763, 

i.e., 0.28%.

Table 4: Effect of the Failure and Repair Rates for Veneer Drier Subsystem on System Performability(%) 

Failure 

Rates (ρ3) 

Repair Rates of Veneer Drier (μ3) Constant 

Parameters 0.106 0.116 0.126 0.136 0.146 

0.0012 0.8739 0.8746 0.8753 0.8758 0.8763 ρ1 = 0.013, 

μ1 = 0.15, 

ρ2 = 0.004, 

μ2 = 0.2, 

ρ4 = 0.005, 

μ4 = 0.19 

0.0018 0.8696 0.8707 0.8716 0.8724 0.8731 

0.0024 0.8653 0.8668 0.8680 0.8691 0.8700 

0.0030 0.8611 0.8629 0.8645 0.8658 0.8669 

0.0036 0.8569 0.8591 0.8609 0.8625 0.8638 

Figure 5: Performability Variation with respect to Failure and Repair Rates of Veneer Driers Subsystem 
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In the Table 5 and Figure 6 describe various combinations of repair and failure rates for gluing and 

pasting subsystem that influence their performability. It’s clearly shown that for distinct values of 

failure rate (ρ4) and repair rate (μ4), when the failure rate increases from 0.001 to 0.009, then 

performability decreases from 0.8729 to 0.7659 i.e. 12.26%. In the same way as the repair rate 

increases from 0.05 to 0.33, gluing and pasting performability increases drastically from 0.8729 to 

0.8859 i.e. (1.49%). 

Table 5: Effect of the Failure and Repair Rates of Gluing and Pasting Subsystem on System Performability(%) 

Failure 

Rates 

Repair Rates of Gluing and Pasting Constant 

Parameters 0.05 0.12 0.19 0.26 0.33 

0.001 0.8729 0.8818 0.8842 0.8853 0.8859 ρ1 = 0.013, 

μ1 = 0.15, 

ρ2 = 0.004, 

μ2 = 0.2, 

ρ3 = 0.0024, 

μ3 = 0.126 

0.003 0.8434 0.8690 0.8760 0.8793 0.8812 

0.005 0.8159 0.8566 0.8680 0.8734 0.8765 

0.007 0.7901 0.8446 0.8602 0.8676 0.8719 

0.009 0.7659 0.8328 0.8525 0.8618 0.8673 

Figure 6: Performability Variation with respect to Failure and Repair Rates of Gluing and Pasting Subsystem 

VI. Results

This paper explores the application of Markov techniques to evaluate the performance of 

production system in the plywood industry by providing DSS regarding maintainability order. 

According to Table 6, the study indicates that the Veneer Drier subsystem contributes the least to 

the system's performance, while the Debarking Machine subsystem is the most critical subsystem 

of the assembly line system. 

Table 6: Effect of Subsystems Failure and Repair Rates Deviation on System Performance 

Name of Sub-System 

Variation in 

Failure Rates ρi,           

(Repair Rates μi) 

Impact of Variation on 

System Performance (%) 

Proposed 

Maintenan

ce Priority 

Debarking Machine (A) 0.003-0.043, (0.05-0.45) 0.9328-0.5194 (44.318%) I 

Gluing and Pasting (D) 0.00-0.009, (0.05-0.33) 0.8859-0.7659 (13.546%) II 

Veneer Cutting Machine (B) 0.002-0.006, (0.1-0.3) 0.8782-0.8389 (4.475%) III 

Veneer Drier (C) 0.0012-0.0036, (0.106-0.146) 0.8763-0.8569 (2.214%) IV 

RT&A, No 3 (79) 
Volume 19, September 2024

240



Mr. Amit Kumar Singh, Dr. P.C. Tewari 
SM AND PA OF RS OF A PLYWOOD INDUSTRY 

The Markov approach is used to analyze the performance in terms of availability. If there is a need 

to increase the performability of such systems, it should be recommended to enhance the system 

performance using optimization techniques like Ant Colony Algorithm, PSO and Teacher Learning 

Based Optimization etc. 
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Abstract

In this research paper, we presents the expected Bayesian (E-Bayesian) estimation of bathtub-shaped
lifetime (BSL) distribution for scale parameter based on upper record values (URV) using a conjugate
prior distribution. Also, we are considered different prior distributions for the E-Bayesian estimators.
Some properties of the E-Bayesian estimators are discussed. A simulation study is given to compare
the performance of the E-Bayesian estimators with Bayesian estimator. we notice that the E-Bayesian
estimators are perform better than the Bayesian estimators. Moreover, the performance of the Bayesian
estimators and E-Bayesian estimators for Prior II are better than Prior I. Also, we observe that if we
increase the sample size n then the estimators are showing lesser mean square error (MSE).

Keywords: Bathtub-shaped lifetime distribution, Bayes estimation, E-Bayes estimation, Upper
Record values.

1. Introduction

Suppose that X1, X2, ... is a sequence of independent and identically distributed (iid) random
variables with a cumulative distribution function (cdf ) F(x) and a probability density function
(pdf ) f (x). Let Ym = max(min) {X1, X2, ...Xm} for m ≥ 1. We say Xj is an URV or LRV (lower) of
this sequence {Xm, m ≥ 1} if Yj > (<)Yj−1, j ≥ 2. By definition, X1 is URV as well as a LRV. One
can transform the upper records to lower records by replacing the original sequence {Xj; j ≥ 1}
by {−Xj; j ≥ 1} or Pr(Xi > 0) = 1 if for all i by

{
1

Xi
, i ≥ 1

}
, the LRV of this sequence will

correspond to the URV of the original sequence, (Ahsanullah, 2004) [1].
The BSL distribution was introduced by Chen (2000) [2]. The probability density function (pdf ) of
the BSL distribution with parameters α and β (Chen(α, β)) is

f (x; α, β) = αβxβ−1exp[α(1 − exβ
) + xβ], x > 0, α, β > 0 (1)

with corresponding cumulative distribution function (cdf ) as

F(x; α, β) = 1 − exp[α(1 − exβ
)], x > 0, α, β > 0. (2)

The E-Bayesian method was introduced by Han (1997) [3]. In recent years, there has been a
growing interest in the study of E-Bayesian estimation. E-Bayesian estimate and its properties
were considered by Han (2007) [4], Han (2011) [6] and Han (2011) [7] for the case of one and two
hyperparameters. E-Bayesian estimate for the parameters of the geometric distribution based on
URV and their relations were obtained by Okasha and Wang (2016) [14]. Han (2009) [5] discussed
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the properties of E-Bayes estimate with three different prior distributions of hyperparameters.
Jaheen and Okasha (2011) [8] studied the E-Bayesian estimation for the Burr type XII distribution
based on the type-II censoring. Okasha (2012) [11] discussed the E-Bayesian method for computing
estimates for the unknown parameters of the Weibull distribution based on type-II-censored
samples. Okasha (2014) [12] studied that E-Bayesian methods for estimating the parameters of
Lomax distribution under the balanced squared error loss function based on type-II censored
data. Okasha (2019) [13] used the Burr XII model for type-II censored data. He observed that
the E-Bayes estimates performs better than the Bayes estimates. For more details, see, Kizilaslan
(2017) [9], Kizilaslan (2019) [10] and Piriaei et al. (2020) [15].
The main object of this article is to discuss the E-Bayesian estimation of the BSL distribution based
on URV. Bayesian estimators of the BSL distribution are given in Section 2. E-Bayesian estimation
based on three different distributions to the hyperparameters is derived in Section 3. Properties
of the E-Bayesian estimators based on squared error loss (SEL) function are discussed in Section
4. Simulation study is given in Section 5. Finally, the conclusion of this article is discussed in
Section 6.

2. Bayesian Estimation

We consider m URV XU(1) = x1, XU(2) = x2, ..., XU(m) = xm, from Chen(a, b), with pdf (1). In this
case, Ahsanullah (2004) [1] gives the likelihood function as

l(α, β|x) = f (xU(m); α, β)
m−1

∏
i=1

f (xU(i); α, β)

1 − F(xU(i); α, β)
. (3)

Using (1), (2) and (3), we get

l(α, β|x) = αmψ(β, x)e−αL, (4)

where

x = (x1, x2, ....xm), ψ(β, x) = βm
m

∏
i=1

xβ−1
i exβ

i

and
L = exβ

m − 1.

When β is known in the two-parameter BSL distribution , the maximum likelihood estimator
(MLE) of the scale parameter α, can be written as

α̂MLE =
m
L

. (5)

The gamma conjugate prior density of the parameter α can be expressed as

h(α) =
γλ

Γλ
αλ−1e−αγ, α > 0. (6)

Using (4) and (6), we get posterior density of α, i.e.

q(α|x) = A∗αm+β−1e−α(L+γ), α > 0, β > 0 (7)

where

A∗ =
(L + γ)m+λ

Γ(m + λ)
.

The Bayes estimate of α based on the SEL function can be expressed as

α̂BE(λ, γ) =
(m + λ)

(L + γ)
. (8)
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3. E-Bayesian Estimation

According to Han (1997) [3], the prior parameters λ and γ should be selected to guarantee that
the prior h(α|λ, γ) in (6) is a decreasing function of α. The derivative of h(α|λ, γ) with respect to
α is

dh(α)
α

=
γλ

Γλ
αλ−2e−αγ[(λ − 1)− αγ]. (9)

Thus, for 0 < λ < 1, γ > 0 and α > 0, the prior h(α|λ, γ) is a decreasing function of α. Assuming
that the prior parameters λ and γ are independent random variables and their density functions
are π1(λ) and π2(γ) respectively. Then the joint density function of λ and γ is

π(λ, γ) = π1(λ)π2(γ). (10)

The E-Bayesian estimate of α can be written as

α̂EBE = E(α|x) =
∫ ∫

D
α̂BE(λ, γ)π(λ, γ)dλdγ, (11)

where D is the domain of λ and γ for which the prior density is decreasing in α. α̂BE(λ, γ) is the
Bayes estimate of α as given in (8).

3.1. E-Bayesian Estimation of α under SEL function

In order to obtain E-Bayesian estimation of α, the following distributions of the hyperparameters
λ and γ are used

π1(λ, γ) = 1
kB(s,g)λs−1(1 − λ)d−1, 0 < λ < 1, 0 < γ < k,

π2(λ, γ) = 2
k2B(s,g) (k − γ)λs−1(1 − λ)d−1, 0 < λ < 1, 0 < γ < k,

π3(λ, γ) = 2γ
k2B(s,g)λs−1(1 − λ)d−1, 0 < λ < 1, 0 < γ < k.

(12)

The E-Bayesian estimates of the parameter α based on SEL function is obtained by using (8), (11)
and (12) as

α̂EBE1 =
∫ ∫

D
α̂BE(λ, γ)π1(λ, γ)dλdγ =

1
kB(s, g)

∫ 1

0

∫ c

0

(
m + λ

L + γ

)
λs−1(1−λ)d−1dγdλ,

=
1
k

(
m +

s
s + g

)
ln
(

L + k
L

)
, (13)

α̂EBE2 =
2
k

(
m +

s
s + g

) [
L + k

k
ln
(

L + k
L

)
− 1
]

(14)

and

α̂EBE3 =
2
k

(
m +

s
s + g

) [
1 − L

k
ln
(

L + k
L

)]
. (15)

4. Properties of E-Bayesian Estimation based on SEL function

In this section, we presents the relations among α̂EBE1, α̂EBE2 and α̂EBE3 .
Lemma. Let 0 < k < L, s > 0, g > 0 and α̂EBEi(i = 1, 2, 3) be given by (13), (14) and (15). Then
the following inequalities are:
(i) α̂EBE2 < α̂EBE1 < α̂EBE3.
(ii) limL→∞α̂EBE1 = limL→∞α̂EBE2 = limL→∞α̂EBE3.
Proof. (i) From (13), (14) and (15), we have

α̂EBE2 − α̂EBE1 = α̂EBE1 − α̂EBE3 =
1
k

(
m +

s
s + g

) [
k + 2L

k
ln
(

L + k
L

)
− 2
]

. (4.1)
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For −1 < t < 1, we have: ln(1 + t) = t − t2

2 + t3

3 − t4

4 + .... = ∑∞
p=1(−1)p−1 tp

p .

Let t = k
L , when 0 < k < L and 0 < k

L < 1, we get:[
k + 2L

k
ln
(

L + k
L

)
− 2
]

=
k + 2L

k

[(
k
L

)
− 1

2

(
k
L

)2
+

1
3

(
k
L

)3
− 1

4

(
k
L

)4
+

1
5

(
k
L

)5
− ...

]
− 2

=

[(
k
L

)
− 1

2

(
k
L

)2
+

1
3

(
k
L

)3
− 1

4

(
k
L

)4
+

1
5

(
k
L

)5
− ...

]
− 2

+

(
2 −

(
k
L

)
+

2
3

(
k
L

)2
− 2

4

(
k
L

)3
+

2
5

(
k
L

)4
− ...

)

=

(
k2

6L2 − k3

6L3

)
+

(
3k4

20L4 − 2k5

15L5

)
+ ...

=
k2

6L2

(
1 − k

L

)
+

k4

60L4

(
9 − 8k

L

)
+ ... > 0. (4.2)

According to (4.1) and (4.2), we have

α̂EBE2 − α̂EBE1 = α̂EBE1 − α̂EBE3 > 0,

that is
α̂EBE2 < α̂EBE1 < α̂EBE3.

(ii) From (4.1) and (4.2), we get

limL→∞

(
α̂EBE2 − α̂EBE1

)
= limL→∞

(
α̂EBE1 − α̂EBE3

)
=

1
c

(
m +

s
s + g

)
limL→∞{ c2

6L2

(
1 − c

L

)
+

c4

60L4

(
9 − 8c

L

)
+ ...}

= 0.
That is, limL→∞α̂EBE1 = limL→∞α̂EBE2 = limL→∞α̂EBE3.
Thus, the proof is complete.

5. Simulation Study

This section presents, a simulation study for a comparison of Bayes and E-Bayes methods of
estimation .
The steps of the simulation are:
1. Sample sizes n = 20, 30, 40, 50, no. of records m = 8 and for the each case the parameters
(α, β) = (1, 2).
2. (s, g) = (0.5, 0.5) and k = 12.
3. Estimates are calculated by two types of priors:

• for prior I, hyperparameter values, (λ, γ) = (0.2, 2.5).

• for prior II, hyperparameter values, (λ, γ) = (0.5, 3).

4. The URV are generated from Chen(α, β), by using X = [log{1 − log(1−U)
α }]

1
β , where U is

uniform (0, 1).
5. The estimates α̂BE and α̂EBEi, i = 1, 2, 3 under the SEL function are computed from (8) and
(14)-(16).
6. Repeat the above steps for 10, 000 times. The average of all 10, 000 estimated values are,
respectively, calculated and summarized.
7. The computational results are displayed in Table 1. All computations were performed using R
Software.
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Table 1: Bayesian and E-Bayesian estimates of α (first row), average bias (second row) and mean square error (third
row)

Prior I Prior II
n Par BE EBE1 EBE2 EBE3 BE EBE1 EBE2 EBE3
20 α 1.3940 1.0751 1.3433 0.8068 1.3331 1.0789 1.3491 0.8087

AB 0.3940 0.0751 0.3433 −0.1932 0.3331 0.0789 0.3491 −0.1913
MSE 0.2229 0.0389 0.1901 0.0467 0.1646 0.0404 0.1961 0.0461

30 α 1.3086 1.0151 1.2545 0.7757 1.2530 1.0148 1.2543 0.7753
AB 0.3086 0.0151 0.2545 −0.2243 0.2530 0.0148 0.2543 −0.2247
MSE 0.1478 0.0255 0.1178 0.0581 0.1075 0.0268 0.1204 0.0586

40 α 1.2505 0.9748 1.1958 0.7537 1.1995 0.9726 1.1927 0.7526
AB 0.2505 −0.0252 0.1958 −0.2463 0.19951 −0.0274 0.1927 −0.2474
MSE 0.1079 0.0222 0.0826 0.0677 0.0755 0.0219 0.0806 0.0682

50 α 1.2088 0.9459 1.1542 0.7376 1.1631 0.9445 1.1521 0.7367
AB 0.2088 −0.0541 0.1542 −0.2625 0.1631 −0.0556 0.1521 −0.2632
MSE 0.0839 0.0222 0.0626 0.0754 0.0591 0.0222 0.0617 0.0758

6. Conclusion

In this paper, Bayes and E-Bayes methods are considered for estimating the unknown scale
parameter of the BSL distribution based on URV. Under SEL function and three distributions
of the hyperparameters, the E-Bayesian estimators are introduced. Properties of E-Bayesian
Estimation based on SEL function are derived. A comparison of Bayes and E-Bayes estimates
of scale parameter is performed through a simulation study. From Table [1], we observed that
the performance of the E-Bayesian estimators are better than the Bayesian estimators. Moreover,
Bayesian estimators and E-Bayesian estimators for Prior II are better than Prior I. Also, from Table
[1], we observe that estimators are showing lesser MSEs, as increase the sample size n.
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Abstract

In order to improve upon the efficiency of an estimate in double sampling for estimating population
mean of character under study using an auxiliary variable, a part of survey resources are used to collect
the information on auxiliary variable. Some authors have suggested exponential-type estimators and
some others advocated for log-type estimators. But combination of such is required for specific situation.
This paper presents a class of logarithmic-cum-exponential ratio estimators in double sampling setup.
The expressions for the mean squared error and bias of the proposed class of estimators are derived for
two different cases(sub-sample and independent sample). Sometimes the persons involved in the sample
survey have to undergo for risk on life. For example, data collection in naxalites area, working in intense
forest, interview during spread of epidemic or data collection in politically disturbed region. Such risk
may affect the accuracy, efficiency of estimation. A linear Risk function is used for the proposed class
of estimators. Two cases of double sampling are compared in terms of relative efficiency in view to risk
aspect.It is found that the proposed class of estimators has a lower mean squared error than the simple
mean estimator, usual ratio, usual exponential, usual log estimators in the double sampling setup. In
addition, these theoretical results are supported by a numerical example. Risk function based simulated
study is performed for the support of findings of the content. Optimal sample sizes under risk are derived
and compared under two cases.

Keywords: Exponential estimator, Logarithmic estimator, Mean squared error, Bias, Risk function,
Risk Analysis, Survey sampling, Double sampling, Simple random sampling without replace-
ment(SRSWOR).

1. Introduction

In double sampling, some part of the resources available for the survey are used to collect data for
auxiliary variable. It is because the population mean of auxiliary variable is assumed unknown.
Such are collected through sample at the preliminary level and then used to estimate population
mean (or population total).

In recent study on the estimators in the double sampling Sahoo et al.[9] discussed the approach
of estimating the population mean using regression-type estimator. It boosted the analytical
approach of estimation for dealing with double sampling scheme. Bahal and Tuteja[2] developed
exponential-type ratio and product estimator for the SRSWOR setup which later extended by
the many authors in verity of other sampling schemes. Shashi Bhushan et al.[5] suggested
double sampling ratio type estimator using two auxiliary variables. Authors discussed asymptotic
properties of the estimators with bias and mean squared error. Shabbir and Sat Gupta[14]
suggested exponential ratio-type estimator for estimating the population mean in the setup of
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stratified sampling. Such proposal is found to perform better than the usual mean, usual ratio,
usual exponential ratio, traditional regression estimators.

Zahoor et. al.[17] suggested regression estimator in double sampling using multi-auxiliary
information in the presence of non-response and measurement error in the second phase sample.
Such an extension of Azeem[8] who suggested ratio and ratio-cum-exponential estimators in
double sampling for population mean incorporating the possibility of non-response and mea-
surement error. The Wu and Luan[6] marked that major advantages of double sampling are the
gain in high precision without much substantial increase in cost. Sanaullah et al.[10] suggested
generalized exponential-type estimators for the stratified double sampling setup. Sanaullah
et al.[12] developed the generalized exponential type estimators for estimating the population
variance in double sampling with the help of two auxiliary variables. Zaman and Kadilar[18]
proposed exponential ratio-type estimation procedures in the stratified two phase sampling
setup. Shukla and Alim[1] proposed parameter estimation approach based an double sampling
showing on application in big-data environment. Bhusan and Gupta[3] discussed some log-type
estimators using attribute. In another useful contribution Bhushan and Kumar[4] proposed
log-type estimators for population mean under the setup of ranked set sampling.

1.1. Risk in data collection

While the conduct of sample survey, using the personal interview method, some areas may be
politically disturbed, some may dangerous due to being forest area, some may risky because of
naxalites movement and few may under the risk of intense epidemic spread (like Covid-19). Such
exposure of risk may possible on the life of field workers involved in data collection. Consider an
example where area of a district exposed under risk are identified as A, B, C, D and each having
different zones z1, z2, z3, z4, z5 with percentage of risk varying over zones.

Table 1: Risk distribution as per area and zones

Zones with risk (ri)

Area of District z1 z2 z3 z4 z5 Overhead Risk(r′)

A 25% 10% 20% 30% 7% 8%
B 15% 13% 28% 12% 22% 10%
C 35% 14% 5% 25% 10% 11%
D 16% 11% 18% 19% 23% 13%

Risk per units (ri) belongs to zones and overhead risk r′ belong to the geographical areas of a
district.

Deriving motivational idea and scientific approach from above contributions, this paper
consider the development of new class of estimators under the risk of life of surveyor during data
collection using double sampling.

1.2. Symbols used for population

Let a population of finite size N, D be the variable of main interest and A is an auxiliary variable
correlated to D. The pair (Di, Ai), i = 1, 2, 3, ..., N represents population values such that

D̄ =
1
N

N

∑
i=1

Di, Ā =
1
N

N

∑
i=1

Ai (1.1)
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S2
d =

1
N − 1

N

∑
i=1

(Di − D̄)2, S2
a =

1
N − 1

N

∑
i=1

(Ai − Ā)2 (1.2)

Sda =
1

N − 1

N

∑
i=1

(Di − D̄)(Ai − Ā), Cda =
SDA

(D̄Ā)
(1.3)

Cd =
Sd
D̄

, Ca =
Sa

Ā
, ρ =

Sda
SdSa

, M = ρ
Cd
Ca

(1.4)

where Cd and Ca denote coefficient of variations, ρ correlation coefficient.

1.3. Notations in SRSWOR Setup:

Assumed that information about variable of main interest D is not available, so a simple random
sampling is used, using sample of size n(n < N), to predict about that. Further, in usual practice
such assumes population mean of auxiliary variable Ā available. All possible samples are (N

n ).

Figure 1: Population and Sample

Let values of random sample by SRSWOR are (di, ai), i = 1, 2, 3, ..., n then one can define sample
statistics as:

d̄ =
1
n

N

∑
i=1

di, ā =
1
n

N

∑
i=1

ai (1.5)

s2
d =

1
n − 1

n

∑
i=1

(di − d̄)2, s2
a =

1
n − 1

n

∑
i=1

(ai − ā)2 (1.6)

sda =
1

n − 1

n

∑
i=1

(di − d̄)(ai − ā), M̂ =
sda
s2

a
(1.7)

1.4. Some usual estimators in SRSWOR

(a) Usual Ratio Estimator: ˆ̄DR =
d̄
ā

Ā

(b) Usual Product Estimator: ˆ̄DP =
d̄ā
Ā

(c) Usual Regression Estimator: ˆ̄DRe = d̄ + M̂(Ā − ā)

(d) Usual Log Estimator: ˆ̄DL = d̄
[

1 + log
(

Ā
ā

)]

(e) Usual Exponential Estimator: ˆ̄DEx = d̄
[

exp
(

Ā − ā
Ā + ā

)]
Some useful symbols are:

Vqs =
E{(d̄ − D̄)q(ā − Ā)s}

D̄q Ās , V′
qs =

E{(d̄ − D̄)q(ā′ − Ā)s}
D̄q Ās ; q, s = 0, 1, 2
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V20 =

(
1
n
− 1

N

)
C2

d , V02 =

(
1
n
− 1

N

)
C2

a , V′
02 =

(
1
n′ −

1
N

)
C2

a

V11 =

(
1
n
− 1

N

)
ρCdCa, V′

11 =

(
1
n′ −

1
N

)
ρCdCa

Symbols have their usual meaning as adopted by the survey practitioners in the concerned
literature. The Bias Bias(·) and Mean Squared Error MSE(·) of above existing estimators under
SRSWOR are expressed as under:

Bias( ˆ̄DR) = D̄ [V02 − V11] , MSE( ˆ̄DR) = D̄2 [V20 − 2V11 + V02] (1.8)

Bias( ˆ̄DP) = D̄ [V02 + V11] , MSE( ˆ̄DP) = D̄2 [V20 + 2V11 + V02] (1.9)

Bias( ˆ̄DRe) = D̄
[
V02 − β̂V11

]
, MSE( ˆ̄DRe) = D̄2

[
V20 − 2β̂V11 + β̂2V02

]
(1.10)

Bias( ˆ̄DL) = D̄ [V02 − V11] , MSE( ˆ̄DL) = D̄2 [V20 − 2V11 + V02] (1.11)

Bias( ˆ̄DEx) = D̄
[

3
8

V02 −
1
2

V11

]
, MSE( ˆ̄DEx) = D̄2

[
V20 +

1
4

V02 − V11

]
(1.12)

2. Double Sampling Approach

When the information about population mean of variable is not available then during sample
survey with the extra risk and efforts, the sample could be obtained using two different strategies.

Assume n′ be the size of first sample with values (a′1, a′2, ..., a′n′) and ā′ =
1
n′ ∑i=1 a′i

• Case I: When the second-phase sample of size n is a sub-sample of the first-phase sample
of size n′

Figure 2: Sampling strategy under case I

• Case II: When the second-phase sample of size n is drawn independently of the first-phase
sample of size n′.

Figure 3: Sampling strategy under case II
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2.1. Some existing estimators in double sampling

In Double sampling setup, the existing estimators with their respective bias Bias(·)I ,Bias(·)I I and
mean squared error MSE(·)I & MSE(·)I I under case I and case II are as below.

(a) Simple Random sample mean estimator:

ˆ̄D =
1
n

n

∑
i=1

di (2.1)

V( ˆ̄D) = D̄2V20 (2.2)

where V(·) denotes variance of estimators.

(b) Usual Ratio Estimator:

ˆ̄DRd = d̄
(

ā′

ā

)
(2.3)

Bias( ˆ̄DRd)I = D̄[(V02 − V′
02)− (V11 − V′

11)] (2.4)

Bias( ˆ̄DRd)I I = D̄[(V02 + V′
02)− V11] (2.5)

MSE( ˆ̄DRd)I = D̄2[V20 + (V02 − V′
02)− 2(V11 − V′

11)] (2.6)

MSE( ˆ̄DRd)I I = D̄2[V20 + (V02 + V′
02)− 2V11] (2.7)

(c) Usual Exponential Ratio Estimator:

ˆ̄DExd = d̄ exp
(

ā′ − ā
ā′ + ā

)
(2.8)

Bias( ˆ̄DExd)I = D̄[
3
8
(V02 − V′

02)−
1
2
(V11 − V′

11)] (2.9)

Bias( ˆ̄DExd)I I = D̄[
1
8
(3V02 − V′

02)−
1
2

V11] (2.10)

MSE( ˆ̄DExd)I = D̄2[V20 +
1
4
(V02 − V′

02)− (V11 − V′
11)] (2.11)

MSE( ˆ̄DExd)I I = D̄2[V20 +
1
4
(V02 + V′

02)− V11] (2.12)

(d) Usual Log Ratio Estimator:

ˆ̄DLod = d̄
[

1 + log
(

ā′

ā

)]
(2.13)

Bias( ˆ̄DLod)I = D̄[2(V02 − V′
02)− (V11 − V′

11)] (2.14)

Bias( ˆ̄DLod)I I = D̄[2V02 + V′
02 − V11] (2.15)

MSE( ˆ̄DLod)I = D̄2[V20 + (V02 − V′
02)− 2(V11 − V′

11)] (2.16)

MSE( ˆ̄DLod)I I = D̄2[V20 + (V02 + V′
02)− 2V11] (2.17)

(e) Usual Regression Estimators:

ˆ̄DRed = d̄ + M̂(ā′ − ā) (2.18)

Bias( ˆ̄DRed)I = D̄[(V02 − V′
02)− (V11 − V′

11)] (2.19)

Bias( ˆ̄DRed)I I = D̄[V02 + V′
02 − V11] (2.20)

MSE( ˆ̄DRed)I = Ȳ2[V20 + M̂2(V02 − V′
02)− 2M̂(V11 − V′

11)] (2.21)

MSE( ˆ̄DRed)I I = Ȳ2[V20 + M̂2(V02 + V′
02)− 2M̂V11] (2.22)

where M̂ is the regression coefficient.
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2.2. Motivation

Estimators suggested in simple random sampling, double sampling, stratified sampling may
usual type or exponential type or log-type. Sometime the data may follow the pattern different
that of exponential or log-type. It may be a mixture of log and exponential type (Fig4c). This
motivates to look for a new combined class of log-cum-exponential type estimators. This paper
considers the same in the setup of double sampling. Several authors have suggested estimators

(a) D = log(A) Log type graph (b) D = eA Exponential type graph
(c) D = log(A)eA log-exponential type

graph

Figure 4: Graphical pattern of relationship

for relationship between D and A variables as shown in Fig(4a) and Fig (4b). But for relationship
of type as in Fig (4c) yet needs to be explored. This paper is focused on proposing estimation
methodologies with respect to mutual relation shown in fig 4c under the double sampling setup.

3. Proposed class of Logarithmic-Exponential Type Estimators

A family of estimators under the double sampling is proposed, to estimate the unknown popula-
tion mean of the study variable D assuming the presence of auxiliary information A:

ˆ̄DLEd = d̄

[
exp

{(
1 −

(
ā′

ā

)α
)(

1 + log
(

ā′

ā

)β
)}]

(3.1)

assuming expo-log type relationship between D and A(fig4c), where α, β are constants may
positive or negative real numbers.

Theorem 1. The bias of the proposed class of estimator for the sub-sample(Case I) and indepen-
dent sample(Case II) respectively are:

Bias( ˆ̄DLEd)I = αD̄((V11 − V′
11)− β(V02 − V′

02)) (3.2)

Bias( ˆ̄DLEd)I I = αD̄(V11 − β(V02 + V′
02)) (3.3)

where Bias(·)I , Bias(·)I I are for case I and case II strategies respectively.

Proof. For large sample approximation, define some quantities ϵ0, ϵ1, ϵ2 with |ϵ0| < 1, |ϵ1| <
1, |ϵ2| < 1 such that

d̄ = D̄(1 + ϵ0), ā = Ā(1 + ϵ1), ā′ = Ā(1 + ϵ2)

where ā′ =
1
n′ (∑

n′
i=1 a′i) and (a′1, a′2, ..., a′n) is first phase sample of size n′.

E(ϵ0) = E(ϵ1) = E(ϵ2) = 0

Moreover,

E(ϵ2
0) =

(
1
n
− 1

N

)
C2

d , E(ϵ2
1) =

(
1
n
− 1

N

)
C2

a , E(ϵ2
2) =

(
1
n′ −

1
N

)
C2

a
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E(ϵ0ϵ1) =

(
1
n
− 1

N

)
ρCdCa, E(ϵ0ϵ2) =

(
1
n′ −

1
N

)
ρCdCa, E(ϵ1ϵ2) =

(
1
n′ −

1
N

)
C2

a

General expression for bias for D̂LEd is

Bias( ˆ̄DLEd) = [E( ˆ̄DLEd)− D̄]

Under large sampling approximation, upto first order ,

ˆ̄DLEd = D̄(1 + ϵ0)
[
exp

{
(1 − (1 + ϵ2)

α(1 + ϵ1)
−α)(1 + β log(1 + ϵ2)(1 + ϵ1)

−1)
}]

Since |ϵ0| < 1, |ϵ1| < 1 and |ϵ2| < 1, using Taylor series expansion upto the first order approxima-
tion, ignoring terms of higher order (ϵi

0, ϵ
j
1, ϵk

2) for i > 2, j > 2, k > 2, (i + j + k) > 2,

ˆ̄DLEd = D̄
[
1 + ϵ0 + α(ϵ1 − ϵ2) + αϵ0(ϵ1 − ϵ2) + βα(ϵ2

1 + ϵ2
2 − 2ϵ1ϵ2)

]
Using expectation E(ϵ0)=E(ϵ1)=E(ϵ2)=0, which leads to bias of proposed class of estimator,

Bias( ˆ̄DLEd)I = αD̄[(V11 − V′
11)− β(V02 − V′

02)] (3.4)

Bias( ˆ̄DLEd)I I = αD̄[V11 − β(V02 + V′
02)] (3.5)

Since E(ϵ0ϵ2)=V′
11=0 for case II because of sample n′ being independent to n. ■

Theorem 2. The mean squared error of the proposed class of estimator for the sub-sample(Case I)
and independent sample(Case II) respectively are

MSE( ˆ̄DLEd)I = D̄2
[
V20 + 2α(V11 − V′

11) + α2(V02 − V′
02)
]

(3.6)

MSE( ˆ̄DLEd)I I = D̄2
[
V20 + 2αV11 + α2(V02 + V′

02)
]

(3.7)

Proof. The proposed class in double sampling is,

ˆ̄DLEd = d̄

[
exp

{(
1 −

(
ā′

ā

)α
)(

1 + log
(

ā′

ā

)β
)}]

and above in terms of large sample approximation is,

ˆ̄DLEd = d̄
[
exp

{
(1 − (1 + ϵ2)

α(1 + ϵ1)
−α)(1 + β log(1 + ϵ2)(1 + ϵ1)

−1)
}]

Using |ϵ0| < 1, |ϵ1| < 1 and |ϵ2| < 1 and Taylor series expansion upto the first order of approxi-
mation, one can get

ˆ̄DLEd = D̄ [1 + ϵ0 + α(ϵ1 − ϵ2)]

by ignoring terms of higher order (ϵi
0, ϵ

j
1, ϵk

2) for i > 1, j > 1, k > 1, (i + j + k) > 1, i,j,k=0,1,2...
Subtracting D̄ and squaring both sides one can get,

( ˆ̄DLEd − D̄)2 = D̄2
[
ϵ2

0 + 2αϵ0(ϵ1 − ϵ2) + α2(ϵ1 − ϵ2)
2
]

By taking expectation both sides,

E( ˆ̄DLEd − D̄)2 = D̄2E
[
ϵ2

0 + 2αϵ0(ϵ1 − ϵ2) + α2(ϵ1 − ϵ2)
2
]

So the mean squared error is for Case I and Case II are:

MSE( ˆ̄DLEd))I = D̄2
[
V20 + 2α(V11 − V′

11) + α2(V02 − V′
02)
]

(3.8)
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and

MSE( ˆ̄DLEd))I I = D̄2
[
V20 + 2αV11 + α2(V02 + V′

02)
]

(3.9)

Since E(ϵ0ϵ2) = V′
11 = 0 for case II. ■

Remark 1: Gain in precision under case I and case II[
MSE( ˆ̄DLEd)I − MSE( ˆ̄DLEd)I I

]
= −2D̄2(α2V′

02 + αV′
11) (3.10)

The gain in precision depends on the sign of V′
11. In general, case I is better, but if (αV′

02 < V11)

then case II of double sampling is better than case I. It provides range when 0< α <
(

V11
V′

02

)
then

case II is more efficient than case I.
Remark 2: Some particular estimators in the proposed class are in table6:

Table 2: Estimators as member of proposed class.

Estimators α β

ˆ̄D1 = d̄
[
exp

{(
1 −

(
ā
ā′

)) (
1 + log

(
ā
ā′

))}]
-1 -1

ˆ̄D2 = d̄
[
exp

{(
1 −

(
ā
ā′

))}]
-1 0

ˆ̄D3 = d̄
[
exp

{(
1 −

(
ā
ā′

)) (
1 + log

(
ā′
ā

))}]
-1 1

ˆ̄D4 = d̄ 0 -1
ˆ̄D5 = d̄ 0 0
ˆ̄D6 = d̄ 0 1
ˆ̄D7 = d̄

[
exp

{(
1 −

(
ā′
ā

)) (
1 + log

(
ā
ā′

))}]
1 -1

ˆ̄D8 = d̄
[
exp

{(
1 −

(
ā′
ā

))}]
1 0

ˆ̄D9 = d̄
[
exp

{(
1 −

(
ā′
ā

)) (
1 + log

(
ā′
ā

))}]
1 1

Table 3: Mean Squared Error of Estimators under case I as members of proposed class

Mean Squared Error α β

MSE( ˆ̄D1)I = D̄2 [V20 − 2(V11 − V′
11) + (V02 − V′

02)
]

-1 -1
MSE( ˆ̄D2)I = D̄2 [V20 − 2(V11 − V′

11) + (V02 − V′
02)
]

-1 0
MSE( ˆ̄D3)I = D̄2 [V20 − 2(V11 − V′

11) + (V02 − V′
02)
]

-1 1
V( ˆ̄D4) = D̄2V20 0 -1
V( ˆ̄D5) = D̄2V20 0 0
V( ˆ̄D6) = D̄2V20 0 1
MSE( ˆ̄D7)I = D̄2 [V20 + 2(V11 − V′

11) + (V02 − V′
02)
]

1 -1
MSE( ˆ̄D8)I = D̄2 [V20 + 2(V11 − V′

11) + (V02 − V′
02)
]

1 0
MSE( ˆ̄D9)I = D̄2 [V20 + 2(V11 − V′

11) + (V02 − V′
02)
]

1 1

3.1. Optimal sub-class of estimators

Differentiating MSE(·) with respect to α, one can obtain optimum value of α as
Case I

α̂ =
(V11 − V′

11)

(V02 − V′
02)

=

(
−ρ

Cd
Ca

)
= (−M) (3.11)
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Table 4: Mean Squared Error of Estimators under case II as members of proposed class

Mean Squared Error α β

MSE( ˆ̄D1)I I = D̄2 [V20 − 2V11 + (V02 + V′
02)] -1 -1

MSE( ˆ̄D2)I I = D̄2 [V20 − 2V11 + (V02 + V′
02)] -1 0

MSE( ˆ̄D3)I I = D̄2 [V20 − 2V11 + (V02 + V′
02)] -1 1

V( ˆ̄D4) = D̄2V20 0 -1
V( ˆ̄D5) = D̄2V20 0 0
V( ˆ̄D6) = D̄2V20 0 1
MSE( ˆ̄D7)I I = D̄2 [V20 + 2V11 + (V02 + V′

02)] 1 -1
MSE( ˆ̄D8)I I = D̄2 [V20 + 2V11 + (V02 + V′

02)] 1 0
MSE( ˆ̄D9)I I = D̄2 [V20 + 2V11 + (V02 + V′

02)] 1 1

Table 5: Bias of Estimators under case I as members of proposed class

Bias α β

Bias( ˆ̄D1)I = −D̄
[
(V11 − V′

11) + (V02 − V′
02)
]

-1 -1
Bias( ˆ̄D2)I = −D̄(V11 − V′

11) -1 0
Bias( ˆ̄D3)I = −D̄

[
(V11 − V′

11)− (V02 − V′
02)
]

-1 1
Bias( ˆ̄D4) = 0 0 -1
Bias( ˆ̄D5) = 0 0 0
Bias( ˆ̄D6) = 0 0 1
Bias( ˆ̄D7)I = D̄

[
(V11 − V′

11)− (V02 − V′
02)
]

1 -1
Bias( ˆ̄D8)I = D̄(V11 − V′

11) 1 0
Bias( ˆ̄D9)I = D̄

[
(V11 − V′

11) + (V02 − V′
02)
]

1 1

Table 6: Bias of Estimators under case II as members of proposed class

Bias α β

Bias( ˆ̄D1)I I = −D̄ [V11 + (V02 + V′
02)] -1 -1

Bias( ˆ̄D2)I I = −D̄ [V11] -1 0
Bias( ˆ̄D3)I I = −D̄ [V11 − (V02 + V′

02)] -1 1
Bias( ˆ̄D4) = 0 0 -1
Bias( ˆ̄D5) = 0 0 0
Bias( ˆ̄D6) = 0 0 1
Bias( ˆ̄D7)I I = D̄ [V11 − (V02 + V′

02)] 1 -1
Bias( ˆ̄D8)I I = D̄V11 1 0
Bias( ˆ̄D9)I I = D̄ [V11 − (V02 + V′

02)] 1 1

Case II

α̂ =

[
V11

V02 + V′
02

]
= −

[
1

(1 + δ)

(
ρ

Cd
Ca

)]
= −

[
M

(1 + δ)

]
(3.12)

where, δ =

(
1
n′ − 1

N

)
(

1
n − 1

N

)
The mean squared error under the optimum value of α = α̂ [as per (3.8), (3.9)] are
Case I

[MSE( ˆ̄DLEd)I ]opt = D̄2C2
d

{(
1
n
− 1

N

)
−
(

1
n
− 1

n′

)
ρ2
}

(3.13)
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Case II

[MSE( ˆ̄DLEd)I I ]opt = D̄2C2
d

{(
1
n
− 1

N

)
−
(

1
n
− 1

n′

)(
ρ2

1 + δ

)}
(3.14)

4. Comparison with existing estimators

The existing estimators will be less efficient to the proposed estimators for case I and case II
respectively under the following conditions:

(1) Simple random sample mean estimator (d̄):

Case I: α ≤
−2(V11 − V′

11)

(V02 − V′
02)

, Case II: α ≤ −2V11

(V02 + V′
02)

(2) Usual Ratio Estimator ( ˆ̄DRd)[eq(2.3)]

Case I: α ≤
[

1 − 2
(

ρ
Cd
Ca

)]
, Case II: α ≤

[
1 − 2

(1 + δ)

(
ρ

Cd
Ca

)]

(3) Usual Exponential Ratio estimator ( ˆ̄DEd)[eq(2.8)]

Case I: α ≤ 1
2

[
1 − 4ρ

Cd
Ca

]
, Case II: α ≤ 1

2

[
1 − 4

(1 + δ)

(
ρ

Cd
Ca

)]

(4) Usual Log Ratio Estimator ( ˆ̄DLd)[eq(2.13)]

Case I: α ≤
[

1 − 2
(

ρ
Cd
Ca

)]
, Case II: α ≤

[
1 − 2

(1 + δ)

(
ρ

Cd
Ca

)]

(5) Usual Regression Estimator ( ˆ̄DRed)[eq(2.18)]

Case I: α ≤ −2
(

ρ
Cd
Ca

)
, Case II: α ≤

(
1 − 2

(1 + δ)

)(
ρ

Cd
Ca

)

5. Risk function and the Proposed estimator

The risk in data collection for dangerous area while implementing a sampling procedure is
defined as

(a) Total Risk

(b) Per unit respondent contact risk (infection, injury, life risk)

(c) General risk (area dependent risk)

Risk is associated to various ground conditions like risk in hilly area during data collection, risk
of reaching to the household, risk of non-response, risk of dangerous situations, risk of attack on
the life of surveyor, risk of epidemic etc.
Let us use symbols for risk as:
r′: Overhead risk
r0 : Total risk
r1 : Risk per unit for information collection on variable D and A using second sample n.
r2 : Risk per unit for first sample for collecting information on auxiliary variable A.

Linear risk function for collecting information is:
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r0 = r′ + r1n + r2n′

It is matter of interest to determine the n and n′ for a given risk r0 at the situation when MSE of
ˆ̄DLEd is minimum. To minimize risk function under risk constraint ϕ and optimum MSE, one can

get,

Case I

ϕ = [MSE( ˆ̄DLEd)I ]opt + λ(r′ + r1n + r2n′ − r0)

where λ is a Lagrange’s multiplier. Differentiating with respect to n and n′, equating it to
zero, the optimum values of n and n′ are

nopt =
(r0 − r′)

√
r1R

r1M1
, n′

opt =
(r0 − r′)

√
−r2(R − C2

d)

r2M1
(5.1)

where

M1 = [
√

r1R +
√
−r2(R − C2

d)], R = [C2
d + 2αCda + α2C2

a ]

Case II

ϕ = [MSE( ˆ̄DLEd)I I ]opt + λ(r′ + r1n + r2n′ − r0)

where λ is a Lagrange’s multiplier. Now differentiating with respect to n and n′, equating it
to zero, the optimum values of n and n′ under case II are

nopt =
(r0 − r′)

√
r1R

r1M2
, n′

opt =
(r0 − r′)αCa

√
r2

r2M2
(5.2)

where

M2 = [
√

r1R +
√

r2(α2C2
a)], R = [C2

d + 2αCda + α2C2
a ]

The ratio of optimal selection of n and n′ under fixed risk c0 is
Case I (

nopt

n′
opt

)
=

r2(
√

r1R)

r1(
√
−r2(R − C2

d)

Case II (
nopt

n′
opt

)
=

r2(
√

r1R)
r1αCa

√
r2

6. Empirical risk based Study

Consider a positively correlated population with two variables D and A(Data source -6th Minor
Irrigation Census - Village Schedule - Assam)[19] with N=100.
The values of variable D and A are shown in Table 7, where A represents geographical area and
D represents the net shown area in hectares.
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Table 7: Population Undertaken.

Di 152 98 75 68 60 295 72 125 16 260
Ai 165 111 80 79 78 319 86 189 26 380
Di 62 95 210 95 175 180 100 37 87 96
Ai 74 123 220 123 185 197 120 48 105 109
Di 80 148 85 98 38 95 200 84 18 38
Ai 110 158 121 108 40 110 350 95 28 46
Di 53 69 30 55 29 75 78 48 81 75
Ai 71 81 45 63 45 89 110 59 95 92
Di 103 97 82 25 76 70 57 182 55 85
Ai 113 105 96 35 94 81 70 192 65 122
Di 70 24 190 53 190 158 80 93 176 81
Ai 75 34 200 67 232 169 100 103 186 89

Moreover, population parameters are in the Table 8.

Table 8: Population Parameters

D̄ = 135 S2
d = 82327 C2

d = 4.534 Sad = 96274.91
Ā = 161 S2

a = 113076.5 C2
a = 4.356 Cad = 4.43

Table 9: PREs of different estimators with respect to proposed estimator in double sampling

PRE

Estimators Case I Case II

Simple Random sampling ( ˆ̄D) 22.13% 56.083%
Ratio Estimator ( ˆ̄DRd) 0.009% 41.493%
Exponential ratio estimator ( ˆ̄DExd) 6.856% 2.011%
Log ratio Estimator ( ˆ̄DLod) 0.009% 41.493%

where PRE is Percentage Relative Efficiency defined as:

(PRE)I,I I =
MSE(T)I,I I − (MSE( ˆ̄DLEd)I,I I)opt

MSE(T)
× 100 (6.1)

and T represents estiamtors like usual ratio, usual expo-ratio, usual log- ratio estimators.
It is observed that in case I, at the αopt, the proposed is 22.13% efficient over sample mean
estimator, 6.85% better over exponential ratio estimator and same to the usual ratio usual log
ratio estimator. Moreover, in case II, at value αopt, the proposed is 56% efficient to sample mean
estimator, 41.4% efficient over ratio estimator, 2% efficient over to exponential estimator and 41.4%
over log-ratio estimator.

In Figure 5, while general variation of α values, the case I bears lower MSE then case II. But
while reaching to αopt, both cases achieve the same MSE level equivalent to that of Regression
estimator in double sampling.
Figure 6, reveals the variation of total risk r0 over the optimum sample sizes (nopt & n′

opt). It is
observed that increasing fixed risk r0 leads to larger n′

opt (first sample) in comparison to second
sample optimum nopt. Low level risk indicates for equal(but small) n and n′ to be used by the
survey practitioners.
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Figure 5: Comparison between MSE’s of the proposed class under case I and case II over variation of α

Figure 6: nopt and n′
opt for case I over change to total risk r0

Figure 7, depicts similar pattern among n′
opt and nopt while considering variation of total risk r0.

But interesting is that with the increment in total risk r0, the case II needs smaller optimum first
phase (preliminary) sample than case I.

The Figure 8, reveals some interesting features of two cases I and II as when ratio
(

nopt
n′

opt

)
than

case I. This feature confirms that if r2 increases over fixed r1 then nopt increases over fixed n′
opt.

But such increment is high in case II rather than case I.
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Figure 7: Variation of nopt and n′
opt for case II over change to total risk r0

Figure 8:
(

nopt
n′

opt

)
with respect to ratio of

(
r2
r1

)

7. Conclusion

On recapitulation, this paper presents a new class of estimators for estimating the unknown
population mean in double sampling in the presence of auxiliary information. Some authors in
literature have proposed exponential-type and some others proposed log-type estimators. The
suggested estimation procedure is a combo-type class of estimators incorporating both expo and
log-type structure. Its properties are discussed and compared in the set up of double sampling,
under case I and case II sampling strategies. The proposed is found conditional efficient over
usual expo-type and usual log-type estimators (Table 9). Moreover, a linear risk function is used
in the paper with three risks parameters r0, r1, r2 and expressions for optimal sample sizes nopt
and n′

opt are derived. Risk based simulation study reveals that increasing the fixed risk r0 leads to
larger nopt (first sample) in comparison to equal (but small) n and n′ to be used by the survey
practitioner over incrementing r0. Case II needs smaller preliminary sample size in comparison
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to case I. While considering variation of optimum ratio of sample sizes (nopt/n′
opt) with respect

to the risk ratio (r2/r1) variation, the case I graph of such ratio constantly reveals lower than the
case II, graph indicating lesser need of comparative optimum sample ratio in double sampling
using the suggested expo-log estimator at α = αopt choice.
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Abstract 

In this study, we investigated the impact of two different humid levels on the reliability measures of 

a stochastic model for a gas turbine system composed of a gas turbine and a steam turbine. To enhance 

the system’s overall performance, we prioritize gas turbine repair over steam turbine repair in 

addition to a combined inspection and preventative maintenance approach. To find some reliability 

measures, such as the mean time to system failure, availability, etc., semi-Markov process and 

regenerating point technique are utilized. These measures are analysed graphically based on the data 

obtained from a gas turbine power plant in Delhi, India. 

Keywords: Gas Turbine, Steam Turbine; Reliability; Cost-Benefit; Maintenance; 

1. Introduction

The growing global demand for electrical energy, driven by factors such as rapid 

industrialization, urbanization and the increasing number of electronic gadgets has put 

significant pressure on our existing power generation systems. Researchers from all around the 

world have conducted substantial research into the complex dynamics of energy supply, 

demand, and security in both developed and emerging economies [1-3]. The nation of India, 

which has to cope with its own unique issues and potential is the focus of in-depth research on 

electricity demand [4]. The study made by Zhang et al. goes beyond typical clustering 

algorithms to investigate novel approaches to analyse electricity usage trends [5]. Optimizing 

demand response initiatives within smart grids is studied by Derakhshan et al. using TBLO and 

SFL algorithms [6]. Furthermore, [7] points out the impact of these demand patterns on both 

power system costs and supply sufficiency. These research articles provide a comprehensive 

understanding of the complicated relationship between power demand and supply, as well as 

the issues created by shifting consumption patterns.  

To address these issues, researchers and policymakers need to design and improve power 

generation systems that can satisfy the rising energy demands profitably and ensuring 

sustainability. Though, there are various ways to generate electricity, such as using water, 

sunlight, thermal energy from sources like coal, and harnessing nuclear reactions, leading to 

different types of power plants. In today's competitive energy markets, a new approach called 

the "Risk-Based Approach" is gaining attention for managing Virtual Power Plants. This 

approach is all about figuring out smart and efficient ways to schedule the activities of these 
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virtual power plants [8]. Operating power generating systems in demanding environments 

indeed presents several challenges [9]. The performance of a system inevitably deteriorates 

when operated over lengthy periods of time under adverse conditions. When this degradation 

exceeds a certain threshold, it may lead components or subsystems to fail, compromising the 

overall safety of the system. As a result, one of the key objectives of engineering systems is to 

provide timely maintenance. Preventive maintenance and corrective maintenance are two 

essential approaches for maintaining and managing equipment and systems in various 

industries [10]. The primary objective of any maintenance strategy is to uphold the 

system functionality to the greatest extent possible while striking a balance between downtime 

and maintenance expenses, thereby avoiding catastrophic breakdowns. Zaho et al. studied the 

preventive maintenance scheduling on gas turbine power plant through a sequential approach 

[11]. 

The key objective of this research paper is to develop a comprehensive operational stochastic 

model for a combined cycle power plant. Gas turbines, a crucial part of combined cycle power 

plant, are responsible for this decision since they have amazing qualities including great 

efficiency, adaptability, and quick start-up times. The significance of our research lies in 

addressing a previously unexplored aspect of the literature. Although there is a lot of 

information on the reliability of combined cycle power plants, none of the existing studies have 

considered the impact of humidity with priority and random inspection within a stochastic 

model using the semi-Markov approach. Recognizing the importance of humidity in power 

plant management, we have addressed a research gap by incorporating this critical aspect into 

our analysis. 

Statistical methods play a fundamental role in the development of reliability/stochastic models, 

offering valuable insights that can inform maintenance and repair planning for technical 

systems. These reliability criteria are used to measure the system's potential for maintenance 

and repair. Table 1 provides a comprehensive summary of the foundational statistical 

techniques employed during the creation of reliability/stochastic models for various gas turbine 

and combined cycle power plants within the domains of the energy sector in recent years. Many 

researchers in Table 1 studied the reliability models for gas turbine systems under different 

conditions using different methods but none of the existing studies have considered the impact 

of humidity with priority and random inspection within a stochastic model using the semi-

Markov approach. Reliability models assist in figuring out how reliable a system is, how 

frequently it may fail, and how quickly it may recover from those failures. Creating such models 

for gas turbine power plants allows engineers and researchers to foresee future faults, develop 

effective maintenance procedures, and maximize the overall performance and operating 

efficiency of these systems. 

This study aims to conduct a thorough investigation into the effects of two distinct humidity 

levels (i.e., humidity less than or equal to 50% and humidity greater than 50%) on the reliability 

measures of a stochastic model for a gas turbine system. The system comprises a gas turbine 

and a steam turbine and has been developed under specific assumptions that have not been 

addressed in the existing literature. Through a comprehensive investigation into the impact of 

humidity variations on the reliability measures of gas turbine systems, we aim to deepen our 

understanding and provide invaluable insights in this field. Thus it will provide a 

comprehensive analysis of our research methodology, the experimental setup, data collection, 

and, ultimately, the results and implications of our findings. By doing so, we aim to promote 

the efficient and reliable utilization of gas turbine systems, thus furthering the cause of 

sustainable energy generation and contributing to the broader goals of the industry. 
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Table 1: Summary of literature review in recent years 

Methods Model Structure Characteristic of Study References 

Statistical 

Methods 

Mathematical 

modeling 

Impact of ambient conditions on 

CCPP in Syria 

[12] 

AI-coherent modeling Data-driven forecasting for a 

CCPP using BFGS algorithm 

[13] 

Thermodynamic 

modelling 

Effect of temperature and relative 

humidity on gas turbine 

[14] 

Mathematical 

modeling 

Effects of the intake air humidity 

on the gas turbine 

[15] 

Monte Carlo and 

MLE method 

Stochastic modeling CCPP study under temperature 

fluctuations in Tehran  

[16] 

PJM method Four-state reliability 

model 

Combined heat and power plants [17] 

Semi-Markov 

Process and 

RGT 

Reliability modeling CCPP with schedule inspection [18] 

Reliability modeling CCPP with random inspection [19] 

Three-unit CCPP 

reliability modeling 

Effect of ambient temperature 

with FCFS repair pattern on CCPP 

[20] 

Reliability modeling Effect of humidity on CCPP in 

Delhi 

[21] 

2. Modeling of System

In this paper, we discuss the impact of two different humid levels (i.e., humidity less than or equal 

to 50% and humidity greater than 50%) on the reliability measures of a stochastic model for a gas 

turbine system composed of a gas turbine and a steam turbine. To enhance the system’s overall 

performance, we prioritize gas turbine repair over steam turbine repair in addition to a combined 

inspection and preventative maintenance approach as shown in Figure 1. To find some reliability 

measures, such as the mean time to system failure, availability, etc., we employ the semi-Markov 

process and regenerating point technique, which are well-suited for this type of analysis. At initial 

stage, both units, the gas turbine and the steam turbine are up and completely operational, operating 

together in a combined cycle. Steam turbine failure keeps the system in upstate mode with partially 

working and termed as single cycle. However, if the gas turbine fails, the system transitions to a 

downstate mode. 

 The following reasonable assumptions are used to create the model: 

 The failure time distribution is presumed to be exponential, whereas the

repair/maintenance time distribution is arbitrary.

 After each maintenance/repair activity, the unit is stated to be as satisfactory as new.

 The system's repair sequence adheres to a first come, first serve basis, except in cases

of complete system failure, where priority is given to gas turbine repair over steam

turbine repair.

 System failure is asserted when both units fail.
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.             Figure 1: State Transition Diagram of the System 

Description of the states in Figure 1: 

S0/S1 : Both units are operational when humidity is ≤ 50% / > 50%. 

S2/S3 : System is down due to inspection when humidity is ≤ 50% / > 50%. 

S4/S5 : System is operational with the gas turbine running and the steam turbine under repair when 

humidity is ≤ 50% / > 50%. 

S6/S7 : System is down with the gas turbine under repair and the steam turbine also down when 

humidity is ≤ 50% / > 50%. 

S8/S9 : System has failed, with the gas turbine under repair and the steam turbine awaiting repair 

when humidity is ≤ 50% / > 50%. 

S10/S12 : System is operational with the gas turbine running and the steam turbine under maintenance 

when humidity is ≤ 50% / > 50%. 

S11/S13 : System is down with the gas turbine under repair and the steam turbine also down when 

humidity is ≤ 50% / > 50%. 

2.1 Notations 

θ1/θ2                 : rate of gas turbine failure when humidity is ≤/> 50%. 

λ1/λ2                  : rate of steam turbine failure when humidity is ≤/> 50%. 

BHi
1(t)/BHi

2(t)  : server is busy at a particular time t when the humidity is ≤/> 50%.

DHi
1(t)/DHi

2(t)  : system is in a down state at specific time t when the humidity is ≤/> 50%.

h1(t)/H1(t)        : pdf/cdf of time changing humidity from ≤ 50% to > 50%. 
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h2(t)/H2(t)        : pdf/cdf of time changing humidity from > 50% to ≤ 50%. 

i(t)/I(t)              : pdf/cdf of the examination to identify the type of maintenance required. 

IHi
1(t)/IHi

2(t)     : system is under inspection at a particular time t when the humidity is ≤/> 50%. 

m1(t)/M1(t)       : pdf/cdf of gas turbine maintenance. 

m2(t)/M2(t)       : pdf/cdf of steam turbine maintenance. 

p1
1/p1

2  : probability that an inspection will indicate the need for gas turbine maintenance 

when humidity is ≤/> 50%. 

p2
1/p2

2   : probability that an inspection will indicate the need for steam turbine maintenance 

when humidity is ≤/> 50%. 

qij(t)/Qij(t)        : pdf/cdf of the first-passage time without visiting any other regenerative state from 

regenerative state i to a regenerative state j or a failed state j in (0, t). 

qij
(k)

/Qij
(k)

(t)  : pdf/cdf of first-passage time from regenerative state i to a regenerative state j, 

visiting state k one time in (0, t] 

r1(t)/R1(t)          : time for gas turbine repair in pdf/cdf respectively. 

r2(t)/R2(t)          : time for steam turbine repair in pdf/cdf respectively. 

ui(t)/Ui(t)   : time required to inspect the system in pdf/cdf. 

VHi
1(t)/VHi

2(t) : server’s expected number of visits when humidity is ≤/> 50%.

©/ⓢ  : Laplace convolution/ Laplace Stieltjes convolution  

3. State Transition Probabilities and Mean Sojourn Time

The expression 𝑑𝑄𝑖𝑗(𝑡) for all essential combinations of i and j is generated based on state transition 

diagram and the transition probabilities 𝑝𝑖𝑗  are computed by applying Laplace transform  and 

utilizing  p
ij
= lim

s→0
q

ij
* (s) .

Table 2: State Transition Probabilities 

dQ01 =  e−(θ1+λ1)tF1 dQ02 =  e−(θ1+λ1)tF2 dQ04 =  λ1e−(θ1+λ1)tF4

dQ06 =  θ1e−(θ1+λ1)tF4 dQ10 =  e−(θ2+λ2)tF0 dQ13 =  e−(θ2+λ2)tF3,

dQ15 =  λ2e−(θ2+λ2)tF5 dQ17 =  θ2e−(θ2+λ2)tF5 dQ2,10 =  p1
1i(t) 

dQ2,11 =  p2
1i(t) dQ3,12 =  p1

2i(t) dQ3,13 =  p2
2i(t) 

dQ40 =  e−θ1(t)r2(t) dQ48 =  θ1e−θ1(t)R2(t)̅̅ ̅̅ ̅̅ ̅ dQ51 =  e−θ2(t)r2(t)

dQ59 =  θ2e−θ2(t)R2(t)̅̅ ̅̅ ̅̅ ̅ dQ60 =  r1(t) dQ71 =  r1(t) 

dQ84 =  r1(t) dQ95 =  r1(t) dQ10,0 =  m2(t) 

dQ11,0 =  m1(t) dQ12,1 =  m2(t) dQ13,1 =  m1(t) 

where, 𝐹0 =  ℎ2(𝑡)𝑈𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅,  𝐹1 =  ℎ1(𝑡)𝑈𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅,  𝐹2 =  𝑢𝑖(𝑡)𝐻1(𝑡)̅̅ ̅̅ ̅̅ ̅,  𝐹3 =  𝑢𝑖(𝑡)𝐻2(𝑡)̅̅ ̅̅ ̅̅ ̅

𝐹4 =  𝐻1(𝑡)̅̅ ̅̅ ̅̅ ̅𝑈𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅,  𝐹5 =  𝐻2(𝑡)̅̅ ̅̅ ̅̅ ̅𝑈𝑖(𝑡)̅̅ ̅̅ ̅̅ ̅ 

Mean Sojourn Time (μ
i
) is the time the system expects to spend in state i. The expressions for  μ

i
   are

produced by using μ
i
= ∫ P[Ti>t]dt

∞

0
  where Ti denotes the system's stay time in state i. 
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Table 3: Mean Sojourn Time 

𝝁𝟎 =  𝑭𝟒
∗ (𝜽𝟏 + 𝝀𝟏) 𝛍𝟏 =  𝐅𝟓

∗(𝛉𝟐 + 𝛌𝟐)
𝛍𝟐 = ∫ 𝐈(𝐭)̅̅ ̅̅ ̅

∞

𝟎

𝐝𝐭 = 𝛍𝟑 

𝝁𝟒 =  
𝟏

𝜽𝟏

[𝟏 − 𝒓𝟐
∗ (𝜽𝟏)] μ5 =  

1

θ2

[1 − r2
∗(θ2)] μ6 = ∫ R1(t)̅̅ ̅̅ ̅̅ ̅

∞

0

dt = μ7 

𝛍𝟏𝟎 = ∫ 𝐌𝟐(𝐭)̅̅ ̅̅ ̅̅ ̅̅
∞

𝟎

𝐝 = 𝛍𝟏𝟐 μ11 = ∫ M1(t)̅̅ ̅̅ ̅̅ ̅
∞

0

d = μ13 

4. Reliability Measures

4.1 Mean Time to System Failure (MTSF)

Assuming that ɸ𝑖(𝑡) represents the cumulative distribution function of the initial-passage time from 

a failed state to a regenerative state i. The recursive relations listed below are employed to compute 

the system's mean time to failure. 

ɸ0(t) = Q01(t)ⓢɸ1(t) + Q02(t)ⓢɸ2(t)+Q04(t)ⓢɸ4(t) + Q06(t)ⓢɸ6(t) (1) 

ɸ1(t) = Q10(t)ⓢɸ0(t) + Q13(t)ⓢɸ3(t)+Q15(t)ⓢɸ5(t) + Q17(t)ⓢɸ7(t)          (2) 

ɸ2(t) = Q2,10(t)ⓢɸ10(t) + Q2,11(t)ⓢɸ11(t)  (3) 

ɸ3(t) = Q3,12(t)ⓢɸ12(t) + Q3,13(t)ⓢɸ13(t)  (4) 

ɸ4(t) = Q40(t)ⓢɸ0(t) + Q48(t)  (5) 

ɸ5(t) = Q51(t)ⓢɸ1(t) + Q59(t)  (6) 

ɸ6(t) = Q60(t)ⓢɸ0(t)  (7) 

ɸ7(t) = Q71(t)ⓢɸ1(t)  (8) 

ɸ10(t) = Q10,0(t)ⓢɸ0(t)          (9) 

ɸ11(t) = Q11,0(t)ⓢɸ0(t)  (10) 

ɸ12(t) = Q12,1(t)ⓢɸ1(t)  (11) 

ɸ13(t) = Q13,1(t)ⓢɸ1(t)  (12) 

Using Laplace Stieltjes Transform on both sides of aforementioned relations and Cramer's Rule to 

solve them, we get 

MTSF = lim
s→0

1-ɸ0
**(s)

s
= 

N

D
  (13) 

where, N = (p10 + p15p59)(μ0 + p02μ2 + p04μ4) + p01p13μ3 + p01μ1 + p15μ5(p01 + p04p48) 

    D = p15p59(p01 + p04p48) + p04p10p48 

4.2 Steady State Availability 

𝐴𝐻𝑖
1(𝑡)/𝐴𝐻𝑖

1𝑠(𝑡) 𝑎𝑛𝑑 𝐴𝐻𝑖
2(𝑡)/𝐴𝐻𝑖

2𝑠(𝑡) indicates how likely it is that the system will be in a combined

cycle or single cycle at any given time t, assuming that it was in a regenerative condition at time t=0 

when the humidity is ≤ and > 50%. We obtain the equations for availability in both combined and 

single cycles by studying empirical argumentation and solving the resulting equations by using the 

Laplace Transform, we get 
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V1 =

|

|

|

|

1 −p01 −p02 0 −p04 0 −p06 0 0 0 0 0 0 0
−p10 1 0 −p13 0 −p15 0 −p17 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 −p2,10−p2,11 0 0

0 0 0 1 0 0 0 0 0 0 0 0 −p3,12−p3,13

−p40 0 0 0 1 0 0 0 −p48 0 0 0 0 0
0 −p51 0 0 0 1 0 0 0 −p59 0 0 0 0

−p60 0 0 0 0 0 1 0 0 0 0 0 0 0
0 −p71 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 −p84 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −p95 0 0 0 1 0 0 0 0

−p10,0 0 0 0 0 0 0 0 0 0 1 0 0 0

−p11,0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 −p12,1 0 0 0 0 0 0 0 0 0 0 1 0

0 −p13,1 0 0 0 0 0 0 0 0 0 0 0 1

|

|

|

|

Or   𝑉1 = |𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11 𝐶12 𝐶13 𝐶14| 

where 𝐶𝑖 (1 ≤ i ≤ 14), represents the 𝑖𝑡ℎ column of the 𝑉1.

𝑈1 = |𝐶1
𝑛1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11 𝐶12 𝐶13 𝐶14| 

𝐶1
𝑛1 = [𝜇0 0 0 0 0 0 0 0 0 0 0 0 0 0]

𝐴𝐻0
1(𝑡) =

𝑈1

𝑉
, where V = 𝑉1

′

Similarly,  𝐴𝐻0
2(𝑡) =

𝑈2

𝑉
 , 𝐴𝐻0

1𝑠(𝑡) =
𝑈3

𝑉
 ,     𝐴𝐻0

2𝑠(𝑡) =
𝑈4

𝑉
 (14) 

where, 𝑈𝑗 = |𝐶1
𝑛𝑗

𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11 𝐶12 𝐶13 𝐶14| 

and (2 ≤ j ≤ 4) 
𝐶1

𝑛2 = [0 𝜇1 0 0 0 0 0 0 0 0 0 0 0 0]
𝐶1

𝑛3 = [0 0 0 0 𝜇4 0 0 0 0 0 𝜇10 0 0 0]

𝐶1
𝑛4 = [0 0 0 0 0 𝜇5 0 0 0 0 0 0 𝜇10 0]

4.3   Other Performance Measures 

𝐷𝐻0
1(𝑡) =

𝑈5

𝑉
 , 𝐷𝐻0

2(𝑡) =
𝑈6

𝑉
 , 𝐼𝐻0

1(𝑡) =
𝑈7

𝑉
, 𝐼𝐻0

2(𝑡) =
𝑈8

𝑉
 , 𝐵𝐻0

1(𝑡) =
𝑈9

𝑉
, 𝐵𝐻0

2(𝑡) =
𝑈10

𝑉

𝑉𝐻0
1(𝑡) =

𝑈11

𝑉
 , 𝑉𝐻0

2(𝑡) =
𝑈12

𝑉
     (15) 

where, (5 ≤ j ≤ 12) 

𝑈𝑗 = |𝐶1
𝑛𝑗

𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11 𝐶12 𝐶13 𝐶14|

𝐶1
𝑛5 = [0 0 𝜇2 0 0 0 𝜇6 0 0 0 0 𝜇11 0 0]

𝐶1
𝑛6 = [0 0 0 𝜇3 0 0 0 𝜇6 0 0 0 0 0 𝜇11]

𝐶1
𝑛7 = [0 0 𝜇2 0 0 0 0 0 0 0 0 0 0 0]

𝐶1
𝑛8 = [0 0 0 𝜇2 0 0 0 0 0 0 0 0 0 0]

𝐶1
𝑛9 = [0 0 0 0 𝜇4 0 𝜇6 0 0 0 𝜇10 𝜇11 0 0]

𝐶1
𝑛10 = [0 0 0 0 0 𝜇5 0 𝜇6 0 0 0 0 𝜇10 𝜇11]

𝐶1
𝑛11 = [𝑝02 + 𝑝04 + 𝑝06 0 0 𝜇2 0 0 0 0 0 0 0 0 0 0]

𝐶1
𝑛12 = [0 𝑝13 + 𝑝15 + 𝑝17 0 0 0 0 0 0 0 0 0 0 0 0]

4.4 Profit of the System 

P = C1 ∗ AH0
1 + C2 ∗ AH0

2 + C3 ∗ AH0
1s + C4 ∗ AH0

2s − C5 ∗ BH0
1 − C6 ∗ BH0

2 − C7 ∗ VH0
1 − C8 ∗ VH0  

2 − PE

C1/C2  : Revenue earned per unit when system works in combined cycle for humidity ≤/> 50% 

C3/C4 : Revenue earned per unit when system works in single cycle for humidity ≤/> 50%  

C5/C6 : Expense per unit time when server is busy for humidity ≤/> 50% 

C7/C8 : Cost per visit by server when humidity is ≤/> 50%  

PE      : Additional expenses of Plant 
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5. Results and Discussion

For numerical calculations, we study the specific situation, in which all temporal distributions are 

assumed to be exponential which are best fitted over real time data, as established by Singh [22]. We 

examined one-year real-time data from a gas turbine power plant in Delhi, India, restricted the 

temperature range to up to 25°C, and the methodology used to obtain the values of all the parameters 

is provided in appendix, which are used to assess the graphical behaviour of reliability measures. 

The following distributions have been assumed for various times. 

𝑖(𝑡) = 𝛾𝑒−𝛾(𝑡), 𝑟1(𝑡) = 𝛼1𝑒−𝛼1(𝑡), 𝑟2(𝑡) = 𝛼2𝑒−𝛼2(𝑡), 𝑚1(𝑡) = 𝛼𝑒−𝛼(𝑡), 𝑚2(𝑡) = 𝛽𝑒−𝛽(𝑡)

ℎ1(𝑡) = 𝛽1𝑒−𝛽1(𝑡), ℎ2(𝑡) = 𝛽2𝑒−𝛽2(𝑡), 𝑢𝑖(𝑡) = 𝜃𝑒−𝜃(𝑡)

5.1 MTSF V/s Failure rate 𝜆1 for different values of 𝜃2 

Figure 2 illustrate the behaviour of mean time to system failure v/s failure rate of steam turbine 𝜆1for 

different values of 𝜃2. MTSF decreases with increase in any one of the failure rate 𝜆1, 𝜃1, 𝜆2and 𝜃2. 

Figure 2: MTSF Vs Failure rates θ1, θ2,λ1,λ2 

5.2 Availability in Steady State 

Figure 3 demonstrates the availability in combined cycle when humidity is ≤ 50% and when 

humidity is > 50% 

• Both availabilities (when humidity is ≤/> 50%) of combined cycle decreases as we increase

any one of the failure rates.

• Availability in combined cycle when humidity is > 50% is higher than availability in

combined cycle when humidity is ≤ 50%.

Figure 4 demonstrates the availability in single cycle when humidity is ≤ 50% and when humidity is 

> 50%

• Availability when humidity is ≤ 50%/> 50% of single cycle increases with increase in failure

rate 𝜆1/𝜆2 respectively.

RT&A, No 3 (79) 
Volume 19, September 2024

270



Pinki, Vijeta Kumari and Dalip Singh 
STOCHASTIC ANALYSIS OF A GAS TURBINE SYSTEM 

• Availability in single cycle (when humidity is > 50%) decreases smoothly with increase in

failure rate 𝜆1.

Figure 3: Availability in Combined Cycle Vs Failure rates θ1, θ2, λ1 and λ2

Figure 4: Availability in Single Cycle Vs Failure rates θ1, θ2, λ1 𝑎𝑛𝑑 λ2 
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5.3 Profit V/s Plant Expenses (PE) for different values of Price of Electricity (P) 

Figure 5: Profit Vs Plant Expenses for different P Values 

Figure 5  illustrates the behavior of Profit of plant with respect to Plant Expenses. 

• Profit increases with decrease in plant expenses.

• Profit increases with increase in values of P.

Table 4: Cut-off Values of PE for different values of α1 and α2 

Price Per Unit 𝛼2 = 0.0317 𝛼2 = 0.0517 

𝛼1 = 0.0317 𝛼1 = 0.0517 𝛼1 = 0.0317 𝛼1 = 0.0517 

P=3 INR 839173.20 842787.19 849834.18 853495.72 

P=3.5 INR 979100.50 983291.64 991540.49 995786.31 

P=4 INR 1119027.81 1123796.09 1133246.81 1138076.91 

Table 4 shows threshold points of plant expenses at particular price of electricity to achieve profit. 

6. Conclusion

For two different humidity conditions (i.e., humidity less than or equal to 50% and humidity greater 

than 50%), a stochastic model of a gas turbine system composed of one gas turbine and one steam 

turbine is developed by prioritizing repair of gas turbine over steam turbine and applying random 

inspection and maintenance policy of a system using single service facility. Various reliability 

measures like system’s mean time to failure, availability for steady state, etc. have been obtained and 

the graphical analysis of the effects of failure rates of steam turbines when humidity is ≤/> 50%. 

Finding shows that mean time to system failure declines as failure rate increases. Trends in 
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availability for both cycles and varied humidity levels, i.e. when humidity is ≤/> 50%, have been 

depicted with respect to steam turbine failure rate, and many interesting results about availability 

have been found. Profit for the plant is shown, which declines as the price of electricity decreases. 

Furthermore, a thorough study of gas turbine systems may be beneficial to people involved in the 

industry of electricity generation. 
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Abstract 

Acceptance sampling is used in Statistical Quality Control (SQC) to conduct lot quality 

evaluations through sample inspections which involve probability theory and fuzzy sets. It aims to 

optimize quality, costs, and productivity, frequently applying linguistic variables when accurate 

parameter values are not good enough which is handled using fuzzy set theory. This research 

analyses single sampling plans (SSP) in the presence of fuzzy number non-conformities, modelling 

them with the Zero-inflated Poisson (ZIP) distribution structure. This study presents a unique 

method to single sampling plans (SSP) inside the Zero-inflated Poisson (ZIP) distribution 

framework that makes use of fuzzy logic approaches. In addition, we show how to apply this method 

using a Python programme, providing practical suggestions for real-world quality control 

complications. 

Keywords: Acceptance sampling plan, Single sampling plan (SSP), ZIP distribution, OC functions, 

Fuzzy Parameter. 

I. Introduction

Acceptance sampling, which is critical in industrial sectors, maintains product quality while 

balancing time and cost restrictions. It categorizes features and variables, including single, 

double, and sequential sample plans, which are critical for raw material and product inspections. 

Designing single sampling plans (SSP) requires balancing producer and consumer interests using 

criteria such as lot size, sample size, and acceptance rates.  

Stephens [16] and Schilling &Neubauer [15] provide details on SSP determination, while 

Duncan [4] and Schilling &Neubauer [15] expound on approaches based on the Poisson 

distribution. Technological developments seek towards zero defects, yet random fluctuations 

require models such as the zero-inflated Poisson (ZIP) distribution, which is a hybrid of the zero-

inflated and Poisson distributions. ZIP finds applications across disciplines, from agriculture to 

manufacturing, detailed in Bohning et.al., [1], Lambert [10], Naya et al. [13], and Ridout et al. [14]. 

Under the assumption of a zero-inflated Poisson distribution, Loganathan and Shalini [11] created 

single sample plans based on characteristics. Xie et al. [18] address the construction of control 

charts using the ZIP distribution. In McLachlan and Peel [12], several theoretical elements of ZIP 

distributions are discussed. The ZIP (ω, λ) distribution's probability mass function (p.m.f.) may be 

found in Lambert [10] and McLachlan and Peel [12]. Kavithanjali and Sheik Abdullah [8] review a 

various sampling plans. 

Lotfi A. Zadeh [9] invented fuzzy set theory. Many authors, including Tamaki, Kanagawa 

and Ohta [17], Grzegorzewski [6], Hrniewicz [7], Chakraborty [3], Buckley [2], EzzatallahBaloui et 

al. [5], have developed fuzzy statistical theory and statistical applications-based challenges in 
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recent years. In the ensuing sections, will take a look at the methods used, show the final results 

of the study, and explain the relevance of our findings for quality control professionals. We are 

optimistic that our research will contribute considerably to the developing spectrum of statistical 

approaches designed to address the problems posed by challenging distributions in industrial 

scenarios. This work investigates finding SSPs based on characteristics within ZIP distribution 

conditions. Section 2 introduces the approach and terminology. Section 3 describes how to design 

SSPs fuzzy OC functions and a Python script. Section 4 displays how to pick sample plans, FOC 

bands, and conclusions, which highlight the study's findings regarding SSP determination. 

II. Methodology

2.1 Basic Definitions: 

2.1.1  Fuzzy Number: If and only if (i) N
~

is normal (ii) N
~

is fuzzy convex (iii) Nμ is upper semi

continuous (iv) Supp ( N
~

) is bounded, the fuzzy subset N
~

 of the real line R with the membership 

function  0,1R:Nμ  is a fuzzy number.

2.1.2 Triangular Fuzzy: A triangular fuzzy number is a fuzzy number N
~

with a membership 

function given by three numbers dca  , with the interval [a, b] as the base and x=c as the 

vertex. 

2.1.3 Fuzzy α  Cut: The α -cut of a fuzzy integer N
~

is defined as 𝑁[𝛼] = {𝑋𝜖𝑅; 𝜇𝑁(𝑥) ≥ 𝛼} in a non-

fuzzy set. Consequently, we have      ]α
U

N,α
L

[NαN 
~

Where 𝑁𝐿[𝛼] = 𝑖𝑛𝑓{𝑋𝜖𝑅; 𝜇𝑁(𝑥) ≥ 𝛼} (Infimum of lower limit α -cut)

𝑁𝑈[𝛼] = 𝑠𝑢𝑝{𝑋𝜖𝑅; 𝜇𝑁(𝑥) ≥ 𝛼} (supremum   of lower limit α -cut)

2.1.4 ZIP Distribution: The ZIP (φ, λ) distribution's probability mass function (p.m.f.) found in 

Lambert [9] and McLachlan and Peel [11]. ,λ)|d)P(X(1f(d)λ),|dP(X    

where 𝑓(𝑑) = {
1  𝑖𝑓  𝑑 = 0
0  𝑖𝑓      𝑑 ≠ 0

and  𝑃(𝑋 = 𝑑/𝜆) = {
𝑒−𝜆𝜆𝑑

𝑑!
 𝑖𝑓  𝑑 = 0,1,2 … , 𝑎𝑛𝑑 𝜆 > 0

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
 

Given the ZIP (φ,λ) distribution, the probability mass function of the distribution can be 

written as 

𝑃̃(𝑋 = 𝑑 / 𝜑, 𝜆) = 𝑃̃(𝑑) = {

𝜑 + (1 − 𝜑)𝑒−𝜆  𝑊ℎ𝑒𝑛𝑑 = 0      

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
  𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

To obtain the fuzzy ZIP probability mass function, replace λ  with the fuzzy number 

0λ 
~

. Let  dP
~

 be the approximate probability that D equals d. Next, we get this fuzzy

number's α -cut as 

𝑃̃(𝑋 = 𝑑 / 𝜑, 𝜆) = 𝑃̃(𝑑)[𝛼] = {
𝜑 + (1 − 𝜑)𝑒−𝜆   𝑊ℎ𝑒𝑛𝑑 = 0      

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
 𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

  |𝜆𝜖𝜆(𝛼) 

For every  1,0 So that  αp~ . The fuzzy parameter   dp~ has been supplanted by 

  αba,P
~

. 

𝑃̃[𝑎, 𝑏][𝛼] = {
𝜑 + (1 − 𝜑)𝑒−𝜆  𝑊ℎ𝑒𝑛𝑑 = 0 

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
 𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

 |𝜆𝜖𝑛 𝑝(𝛼) 

The ZIP (φ, λ) has a mean of (1− φ) and a variance of (1− φ)(1+𝜆 φ). 

III. OC function of SSP in ZIP distribution conditions

A Single Sampling Plan (SSP) with characteristics is defined by three parameters N, n, and c. A 

random sample of size n is taken from a large number of N units, and the number of 

RT&A, No 3 (79) 
Volume 19, September 2024

276



Kavithanjali S, Sheik Abdullah A 
PYTHON IMPLEMENTATION OF FUZZY LOGIC FOR ZIP SSP 

nonconforming units, X = d, is counted. If d < c, the lot is accepted, otherwise it is rejected. 

Evaluating the performance of a sample plan entails examining its Operating Characteristic (OC) 

function, which indicates its ability to discern acceptable from non-acceptable lots based on certain 

criteria.    cXpaP 
~

Using the Zero-Inflated Poisson model, the probability mass function of the number of 

defects in the lot is given by 

𝑃̃(𝑋 = 𝑑 / 𝜑, 𝜆) = 𝑃̃(𝑑) = {

𝜑 + (1 − 𝜑)𝑒−𝜆  𝑊ℎ𝑒𝑛𝑑 = 0      

(1 − 𝜑)
𝑒−𝜆𝜆𝑑

𝑑!
  𝑊ℎ𝑒𝑛 𝑑 = 1,2, … ,0 < 𝜑 < 1, 𝜆 > 0

Given a sample size of n, the probability of finding no deficiencies will be 

𝑃̃(𝑋 = 0) = 𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 (1)

This is the single sample plan's OC function when c=1. Then equation becomes    

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 (1 + 𝑛 𝑝) (2)

Which is the single sampling plan's OC function for c=1 

3.1 Python Programming 

Python programming was used in this study on statistical quality control to create the Fuzzy OC 

Band table's upper and lower bounds. The Fuzzy Operating Characteristic (OC) and Fuzzy 

Probability of Acceptance curves were also drawn using Python. Python's extensive numerical 

calculation capabilities and flexible modules made it easy to use these statistical approaches inside 

the study framework. 

Illustration 1: According to the company’s experience, 0.5 percent of packages are empty. A 

department store has 60 items of this product on hand, and many customers select and browse 

asking if they can buy that item If our search shows that this sample has only one mismatch, the 

customer gets away buy every item in the store, otherwise, The fuzzy number where the customer 

can choose not to buy that product can be taken as P
~

= (0,0.005,0.01). Consequently, the probability 

of purchase is similar to that to be described. 

n=60, c=1, P
~

=(0,0.005,0.01), npλ 
~

 , 0.0001  

λ
~

=[0,0.3,0.6],    0.3α0.6,0.3ααλ 
~

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 + (1 − 𝜑)𝑒−𝑛 𝑝 (𝑛 𝑝)    |𝑛 𝑝 𝜖𝜆̃(𝛼)

Therefore, the  𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝 (1 + 𝑛 𝑝)decreasing, then 

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−(0.6−0.3𝛼) (1 + (0.6 − 0.3𝛼)), 𝜑 + (1 − 𝜑)𝑒−(0.3𝛼) (1 + 0.3𝛼)

Under 0.01,0.0050,α   discover        0.99990.8790,,0.99990.87860, ,0.8781,1paP 
~

In 

Figure1 it shows is expected that 88 to 100 lots out of every 100 lots in this process will be accepted.

Figure 1: Fuzzy Probability of acceptance with P
~

=(0,0.005,0.01) 
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IV. FOC band

The SSP operational characteristic curve is built using fuzzy parameters. The operational 

characteristic curve represents both the proportion of defective p and the probability of acceptance 

(Pa(p)). The sampling plan's operational characteristic curve can be utilized to identify excellent 

and challenging lots. When a consumer rejects a product that meets the established conditions (i.e., 

the product quality is good), this risk is referred to as producer’s risk; when a consumer accepts a 

product that does not meet the conditions (i.e., the product quality is bad), this risk is referred to as 

consumer’s risk. An upper and lower band fuzzy parameter may be used to calculate the 

proportion defective, if the values of the upper and lower band are equal, this is referred to as 

superior state. 

In firm related to example we had n=60 0001.0 , P
~

=(0,0.005,0.01)

00.01,
3

a0.005,
2

a1,c       0.99k,00.01nnknk,0λ 
~

From equation (2) 𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−(𝜆2𝛼)  (1 + (𝜆̃2𝛼)) , 𝜑 + (1 − 𝜑)𝑒−(𝜆1𝛼)  (1 + (𝜆̃1𝛼))

= 𝜑 + (1 − 𝜑)𝑒−(𝑛𝑘+0.01𝑛) (1 + 𝑛𝑘 + 0.01𝑛), 𝜑 + (1 − 𝜑)𝑒−(𝑛𝑘) (1 + 𝑛𝑘) 

Table 1: Fuzzy Probability of Acceptance 0.0001 , c=1, n=60 

Example 1. Table 1 and Figure 2 illustrate the OC curve. This graphic shows how process quality 

will drop from extremely good to moderate, while the OC curve will expand. 

Figure 2:  OC Curve for SSP with Fuzzy Parameter of c=1, n=60 

Illustration 2: Had 0.0001 , c=0  and a2=0.005, a3=0.01, 0.99k0.2],0[20k[0]λ 
~

, 

k  paP
~

0 0.878111,  1.000000 

0.01 0.662661,  0.878111 

0.02 0.462891,  0.662661 

0.03 0.308510,  0.462891 

0.04 0.199228,  0.308510 

0.05 0.125777,  0.199228 

0.06 0.078069,  0.125777 

0.07 0.047828,  0.078069 

0.08 0.029003,  0.047828 

0.09 0.017450,  0.029003 

0.1 0.010438,  0.017450 
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leading to OC curve in terms of fuzzy ZIP distribution. From equation (1), 

𝑃̃𝑎(𝑝) = 𝜑 + (1 − 𝜑)𝑒−𝑛 𝑝  |𝜆𝜖𝜆(0) = 𝜑 + (1 − 𝜑)𝑒−(0.01𝑛+𝑛𝑘), 𝜑 + (1 − 𝜑)𝑒−(𝑛𝑘)

= 𝜑 + (1 − 𝜑)𝑒−(0.2+20𝑘), 𝜑 + (1 − 𝜑)𝑒−(20𝑘) 

Figure 3: OC Curve for a SSP with fuzzy parameter of c=0 

Table 2: Fuzzy Probability of Acceptance 0.0001 , c=0 with different sample size(n) 

n=10 n=20 n=30 n=40 

K Pa(p) k Pa(p) k Pa(p) k Pa(p) 

0 0.9048, 1.0000 0 0.8187,  1.0000 0 0.7408,1.0000 0 0.6704,1.0000 

0.01 0.8187,0.9048 0.01 0.6704,0.8187 0.01 0.5489,0.7408 0.01 0.4494,0.6704 

0.02 0.7408,0.8187 0.02 0.5489, 0.6704 0.02 0.4066,0.5489 0.02 0.3013,0.4494 

0.03 0.6704,0.7408 0.03 0.4494,0.5489 0.03 0.3013,0.4066 0.03 0.2020,0.3013 

0.04 0.6066,0.6704 0.04 .3679, 0.4494 0.04 0.2232,0.3013 0.04 0.1354,0.2020 

0.05 0.5489,0.6066 0.05 0.3013,0.3679 0.05 0.1654,0.2232 0.05 0.0908,0.1354 

0.06 0.4966,0.5489 0.06 0.2467,0.3013 0.06 0.1225,0.1654 0.06 0.0609,0.0908 

0.07 0.4494,0.4966 0.07 0.2020,0.2467 0.07 0.0908,0.1225 0.07 0.0409,0.0609 

0.08 0.4066,0.4494 0.08 0.1654,0.2020 0.08 0.0673,0.0908 0.08 0.0274,0.0409 

0.09 0.3679,0.4066 0.09 0.1354,0.1654 0.09 0.0499,0.0673 0.09 0.0184,0.0274 

0.1 0.3329,0.3679 0.1 0.1109,0.1354 0.1 0.0370,0.0499 0.1 0.0124,0.0184 

n=60 n=80 n=100 n=120 

K Pa(p) k Pa(p) k Pa(p) k Pa(p) 

0 0.5489,1.0000 0 0.4494,1.0000 0 0.3679,1.0000 0 0.3013,1.0000 

0.01 0.3013,0.5489 0.01 0.2020,0.4494 0.01 0.1354,0.3679 0.01 0.0908,0.3013 

0.02 0.1654,0.3013 0.02 0.0908,0.2020 0.02 0.0499,0.1354 0.02 0.0274,0.0908 

0.03 0.0908,0.1654 0.03 0.0409,0.0908 0.03 0.0184,0.0499 0.03 0.0083,0.0274 

0.04 0.0499,0.0908 0.04 0.0184,0.0409 0.04 0.0068,0.0184 0.04 0.0026,0.0083 

0.05 0.0274,0.0499 0.05 0.0083,0.0184 0.05 0.0026,0.0068 0.05 0.0008,0.0026 

0.06 0.0151,0.0274 0.06 0.0038,0.0083 0.06 0.0010,0.0026 0.06 0.0003,0.0008 

0.07 0.0083,0.0151 0.07 0.0018,0.0038 0.07 0.0004,0.0010 0.07 0.0002,0.0003 

0.08 0.0046,0.0083 0.08 0.0008,0.0018 0.08 0.0002,0.0004 0.08 0.0001,0.0002 

0.09 0.0026,0.0046 0.09 0.0004,0.0008 0.09 0.0001,0.0002 0.09 0.0001,0.0001 

0.1 0.0015,0.0026 0.1 0.0003,0.0004 0.1 0.0001,0.0001 0.1 0.0001,0.0001 

n=140 n=160 n=180 n=200 

K Pa(p) k Pa(p) k Pa(p) k Pa(p) 
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0 0.2467,1.0000 0 0.2020,1.0000 0 0.1654,1.0000 0 0.1354,1.0000 

0.01 0.0609,0.2467 0.01 0.0409,0.2020 0.01 0.0274,0.1654 0.01 0.0184,0.1354 

0.02 0.0151,0.0609 0.02 0.0083,0.0409 0.02 0.0046,0.0274 0.02 0.0026,0.0184 

0.03 0.0038,0.0151 0.03 0.0018,0.0083 0.03 0.0008,0.0046 0.03 0.0004,0.0026 

0.04 0.0010,0.0038 0.04 0.0004,0.0018 0.04 0.0002,0.0008 0.04 0.0001,0.0004 

0.05 0.0003,0.0010 0.05 0.0002,0.0004 0.05 0.0001,0.0002 0.05 0.0001,0.0001 

0.06 0.0002,0.0003 0.06 0.0001,0.0002 0.06 0.0001,0.0001 0.06 0.0001,0.0001 

0.07 0.0001,0.0002 0.07 0.0001,0.0001 0.07 0.0001,0.0001 0.07 0.0001,0.0001 

0.08 0.0001,0.0001 0.08 0.0001,0.0001 0.08 0.0001,0.0001 0.08 0.0001,0.0001 

0.09 0.0001,0.0001 0.09 0.0001,0.0001 0.09 0.0001,0.0001 0.09 0.0001,0.0001 

0.1 0.0001,0.0001 0.1 0.0001,0.0001 0.1 0.0001,0.0001 0.1 0.0001,0.0001 

Table 2 and Figure 3 show that separate curves in the plot indicate sample sizes ranging from 

10 to 200.Each curve represents a unique sample size and indicates how the probability of 

accepting the null assumption varies with effect size (k) for different sample sizes. 

 The probability of rejecting the null hypothesis rises with an increase in effect size, k.

 smaller sample sizes (lower (n )) typically have lesser (k ) discriminative powers to identify

differences, which raises the likelihood of adopting the null hypothesis.

 With larger sample sizes, the ability to detect differences improves and the null theory is

less likely to be accepted.

 The OC curve, in essence, represents the relationship between sample size, effect

magnitude, and the chance of not rejecting the hypothesis. As a result of this, statisticians 

can evaluate their assumptions and make choices with greater certainty. 

 Finally, the fuzzy ZIP distribution can be used to approximate the OC curve. In

this regard, a plan of this such can be created using the OC fuzzy ZIP distribution. The OC 

curve shows that zero convergences with the acceptance number (c), which causes a rapid 

fall in the fuzzy probability of accepting the proportion of faulty goods with small fuzzy 

numbers. This is why there is the increase in n. 

V. Conclusions

In this research introduces a new way to design SSP by combining fuzzy logic with the ZIP 

distribution. This improves how we control quality. In this method manages risks for both 

producers and consumers well. Importantly, In this plans work smoothly alongside traditional 

ones when damage is rare, making them adaptable. The suggested OC curves have clear 

restrictions, no acceptance values, and are simple to interpret, making them extremely helpful. 

This new approach improves the way we choose samples in quality control, particularly when 

dealing with complex distribution patterns. We seek to improve our goods and make users better 

through using fuzzy logic and ZIP distribution, particularly in competitive marketplaces. 
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Abstract

Priority and ordinary customers arrive according to Poisson processes, and their service time based
on the general distribution. The server constantly offers a single service for both priority and ordinary
customers. We compute the Laplace transforms of the time-dependent probabilities of system states using
the probability generating function and supplementary variable technique. Numerical results are obtained
which are also examined to facilitate the sensitivity analysis of system descriptions.

Keywords: Batch Arrivals; Priority Queues; Immediate Feedback; Push out; Differentiated
Breakdowns; Delayed Repair; Randomized Vacation.
AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

We see several queueing situations every day where customers must wait for service and there is
a delay in providing it. Retrial queues in queueing theory have been the topic of a lot of exciting
research over the last two decades. The concept of retrial queues has attracted the attention of
numerous scholars and received important contributions from them. An M/M/1 retrial queueing
system with Poisson arrival flows, impatient customers, breakdown, collisions was studied by
Danilyuk et al. [9]. Nazarov et al. [16] investigated how, depending on whether the server is
busy or idle, it is dependent on random failures and repairs in a retry queuing system with a
finite number of sources and customer collision. For the aggregation of the customers and their
group service, D’Arienzo et al. [10] created a single-server retrial queue with a MAP flow, PH
service times, and a finite capacity. Ahuja et al. [1] explored the retrial queueing system with an
optional service and finite population subject to balking. Pavai Madheswari et al. [17] analysed at
an M/G/1 retrial queueing system with two service phases, the second of which is optional, and
a server working on a Bernoulli vacation schedule. Innovative applications for performance study
of various systems in telecommunications, data split networks, traffic management on high-speed
networks, and production engineering make use of these queueing models.

The literature on retrial queueing has extensively researched retrial queues with various
customer categories. An important component of priority discipline is preemptive and non-
preemptive priorities. D’Apice et al. [11] considered a priority queueing model with many
types of requests and restricted processor sharing. Ayyappan and Thilgavathy [3] determined
priority queueing system with breakdown, repair, discouragement, single vacation, standby server,
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negative arrival and impatient customers. Li et al. [15] investigate equilibrium queueing strategies
in an unobservable non-preemptive priority queue with homogeneous customers. Ammar and
Rajadurai [2] introduced preemptive priority retrial queueing system with disaster under working
breakdown services.

Most of the time, while discussing queueing, it is generally thought that the server is always
accessible. However, server failure made the significant impact in queueing system. Therefore, in
order to establish retrial queueing models, it is essential to carry out investigation on the retrial
queue with breakdowns. Choudhury and Kalita [8] described a non-Markovian queueing system
with breakdown, delayed repair and two general heterogeneous service, optional service. Krishna
Kumar et al. [14] examined a Markovian retrial queue where the server is subject to breakdowns
and repairs. Gao et al. [12] studied an M/G/1 retrial queue with two types of breakdowns.
Ayyappan and Gowthami [5] researched the single server classical queueing system MAP/PH/1
with breakdown, repair, Bernoulli vacation and setup time. Begum and Choudhry[7] investigated
a M/(G1, G2)/1 queue with service interruption consisting of a definite repairability.

Customers may be serviced more than once for particular reasons in several queueing situ-
ations. Customers have to re-join the queue and wait in queue after the service is completed.
Optional re-service is a concept that can be considered as immediate feedback in this regard. The
customer receives their service in the first step, and if there is any issue with it or they need it
again, they will receive it immediately without having to wait in queue. Re-service has several
practical applications in places like bank desks, functioning ATMs, large supermarkets, and
medical facilities etc., The idea of immediate feedback (re-service) has been addressed by some
authors, including Azhagappan and Deepa [6], Ayyappan and Deepa [4] and Jose and Deepthi
[13]. According to the previously mentioned literature, a customer who wants to receive more
service must visit the server once more at that moment.

The interesting parameter in this chapter is the randomized vacation policy. It is described as
follows: After the vacation completion, if there is at least one unit present in the system, then
the server immediately commence the service. Otherwise, the server will decide either remains
idle or go for another vacation, if no units present in the system. The concept of variant vacation
policy was proposed by Takagi [18], which is a generalization of the single and multiple vacation
for the M/G/1 queueing system. Ke et al. [19] studied an MX/G/1 queueing system with a
randomized vacation policy and at most J vacations. Geo and Yao [20] developed this vacation
policy for an MX/G/1 queueing system, in which the server takes randomized vacation policy
and at most J working vacations.

There are many papers dealing with unit’s abandoned behaviour. Recently, Gao et al. [21]
studied an M/G/1 retrial queue with abandoned customers and multi-optional vacations. Kr-
ishnamoorthy et al. [22] presented an M1, M2/PH/1 retrial queueing system with pre-emptive
priority service, orbital search and abandoned units in which the retrial is failed, then the failed
units abandoned the system with certain probabilities. In this model, the arriving ordinary unit
may remove the ordinary unit, who is getting service from the system. Here, the interrupting
ordinary unit is referred as the abandoned unit.

We consider non-Markovian batch arrival retrial queue with priority services, discouragement,
re-service, differentiate breakdown, restoration and delayed vacation. Priority customers and
ordinary customers arrive according to Poisson processes, and their service time based on the
general distribution. The server consistently provides a single service for both priority customers
and ordinary customers. In the event of the server being unavailable, ordinary customers may
choose to balk the system. Server failure may happen at any time during normal engaged period.
The two types of system failure are hard and soft failures. Hard failure can be characterised as
an equipment breakdown which demands the availability of a skilled repair person, which is an
extensive process. Soft failure is described as breakdown based on by circumstances as instead of
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mechanical components, and it can be generally resolved by restarting the system. Customer may
re-enter the system as a feedback customer for receiving normal service due to inadequate quality
of service after every priority service is completed. The server goes on vacation after priority
services are completed; the time it takes the server to go on vacation is known as delay time.

The article’s remaining content is formatted as follows: In Section 2, the mathematical model
is presented. and the distribution of queue sizes is analysed in Section 3. Section 4 contains
the exact expression for the governing equation. Section 5 of this article discusses steady state
analysis. Section 6 lists stability condition. Section 7 provides an illustration of how system
performance measures have an impact. Section 8 exhibits particular cases. In Sections 9 and 10,
conclusions are drawn after deriving numerical and graphical results.

1.1. Integrating the Model into Real-life Situations

In the online food delivery network, independent contractors are responsible for delivering food
orders to customers in their designated service areas. These contractors are self-employed indi-
viduals who have chosen to work with the food delivery platform, offering their transportation
services to ensure that customers receive their meals promptly and efficiently. The nature of the
food delivery business can sometimes lead to fluctuations in the availability of delivery orders
within a specific area. This could be due to various factors, such as changes in customer demand,
local events, or even the time of day. When independent contractors find that there are no orders
available in their assigned service area, they may face a few challenges and considerations. To
maintain their income and professional engagement during periods of low order availability,
these contractors might choose to take a break from their work or explore other temporary job
opportunities. By doing so, they can keep themselves occupied and ensure a steady income while
waiting for orders to become available in their area again. This approach allows them to manage
their workload and personal commitments more effectively.

Once the independent contractors have completed their temporary work or vacation, they can
return to the online food delivery network and resume their services when orders are available in
their area. This flexibility is crucial for contractors, as it enables them to balance their professional
and personal lives while staying connected to the platform and being ready to serve customers
when needed. In conclusion, the online food delivery networks independent contractors operate
within separate service areas, and when delivery orders are scarce in their region, they may opt
for vacations or other work to maintain their income and professional engagement. Upon the
return of available orders, these contractors can resume their food delivery services, ensuring a
balance between their work and personal lives. This flexibility helps them adapt to the dynamic
nature of the food delivery business and maintain a sustainable work arrangement.

2. Mathematical Description

• Arrival Process :
Two distinct customer arrive in batches through separate Poisson compound processes.
λp, λo > 0 are used to indicate, for PC and OC, the respective arrival rates. Assume the
initial order probability for both priority and ordinary customers λpcidt (i = 1, 2, 3, ...) and
λocjdt (j = 1, 2, 3, ...)respectively. The system has iand j batch size customers enters within
a short period of time (t, t + dt). Here, 0 ≤ ci, cj ≤ 1, ∑∞

i/j=1 ci/j = 1.
• Retrial Service Process :

Customers who are on retrial are treated the same as ordinary customers. Customers on a
retrial are regular consumers. These customers will eventually return to orbit and seek their
services again if the server is engaged or unavailable. Retrial service time is characterised by
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Figure 1: Schematic representation

a rate of β(u), which is defined by the probability density function m(u) and the probability
distribution function M(u). This rate follows a general distribution.

• Regular Service Process :
Customers with different queues are served in batches, including priority and ordinary
customers. The server offers a single service at rates of µi(u), i = 1, 2 and service rates are
distributed generally, characterized by probability distribution function Bi(s) and probability
density function bi(s), where i = 1, 2. If the priority queue is empty, ordinary customers
can begin receiving service.

• Immediate Feedback:
Only customers with a priority are offered the feedback service. Once every customer in
the priority queue have received their services, if customers are dissatisfied with the service
they received. Customers could either abandon the system with probability (1 − r) or they
could get a re-service with probability ‘r’ without joining in queue.

• Push Out:
When the server is attending to an ordinary customers, a newly arriving ordinary customers
has the potential to disrupt the ongoing service. It can either immediately take over the
service area with probability ‘q’ or joins the orbit with probability ‘q’ (= 1 − q).

• Differentiate Breakdown:
The service channel is susceptible to failure at any moment, even when the server is
operating at its usual engaged pace during any phase of service. Consequently, the server
will be inaccessible for a brief duration. Both hard and soft failure rates follow exponential
distributions, with rates denoted by α1 & α2 respectively.

• Delayed repair and Repair :
The server is subject to hard failure. The breakdown server does not send for repair instantly.
There exists a delay period before the repair process initiates. Following this delay, the
repair process commences to restore functionality. The probability distribution function
D(s) and R(2)(s), along with the probability density function d(s) and r(2)(s) are employed
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to characterize the delay time and the duration of hard failure repairs, respectively. Let ξ(u)
and η2(u) be the completion rate for delay repair time and hard failure repair time. Soft
failure repair time distributed exponentially with rate η1.

• Randomized Vacation:
When the server determines that the system is empty upon completing a service, it opts
for a vacation. Upon concluding the vacation, if the server observes an empty system
again it decides whether to embark on another vacation with prob. ‘p’ or to remain idle
with a probability of ‘(1-p)’. The duration of the vacation adheres to a general distribution
characterized by a rate of γ(u). The time spent on vacation follows a probability distribution
function V(s), accompanied by its corresponding probability density function v(s).

3. Analysis of queue size distribution

The formation of governing equations is the main focus of this section. This model has been
solved using the probability generating function and supplementary variable technique with
respect to the non-Markovian queueing system.

Assuming that M(0) = 0, M(∞) = 1, Bi(0) = 0, Bi(∞) = 1, V(0) = 0, V(∞) = 1, D(0) = 0,
D(∞) = 1, and R(2)(0) = 0, R(2)(∞) = 1 are continuous at u = 0 for i = 1, 2. So that the function
β(u), µ1(u), µ2(u), γ(u), ξ(u) and η2(u) are the conditional completion rates for retrial, priority
and ordinary customers service rate, vacation and delay time to hard failure repair, hard failure
repair respectively.

Also, β(u) = dM(u)
1−M(u) , µi(u) =

dBi(u)
1−Bi(u)

, γ(u) = dV(u)
1−V(u) ξ(u) = dD(u)

1−D(u) and

η2(u) =
dR(2)(u)

1−R(2)(u)
; i = 1, 2. are the hazard rate functions of M(.), Bi(.) for i = 1, 2, V(.), D(.) and

R(2)(.) respectively.

Markov process for the given model is {Np(t), No(t), Y(t), M0(t), B0
1(t), B0

2(t), (V)0(t),
(D)0(t), (R(2))0(t)}, where Np(t) and No(t) denote the number of customers in the priority
queue and ordinary queue respectively. M0(t), B0

1(t), B0
2(t), (V)0(t), (D)0(t), (R(2))0(t)} are the

elapsed retrial, service, vacation, delay time to hard failure repair and hard failure repair time of
the server at time ‘t’.

Y(t) represents the server state. Here Y(t) = (0, 1, 2, 3, 4, 5, 6), denotes: 0, the server is idle; 1,
retrial state; 2, engaged with PC; 3, engaged with OC; 4, on vacation ; 5, delayed to hard failure
repair, and 6, hard failure repair.

Let’s represent the probability as I0,n2(t), indicating the probability that at time t, I0,n2(t)
equals the event that Np(t) = 0, No(t) = 0, and Y(t) = 0, where t > 0. We consider probability
densities for this scenario.

I0,n2(u, t)du = Pr{Np(t) = 0, No(t) = n2, Y(t) = 1; u ≤ I0(t) ≤ u + du}, n2 ≥ 1

P(1)
n1,n2(u, t)du = Pr{Np(t) = n1, No(t) = n2, Y(t) = 2; u ≤ B0

1(t) ≤ u + du},

P(2)
n1,n2(u, t)du = Pr{Np(t) = n1, No(t) = n2, Y(t) = 3; u ≤ B0

2(t) ≤ u + du},

Vn1,n2(u, t)du = Pr{Np(t) = n1, No(t) = n2, Y(t) = 4; u ≤ V0(t) ≤ u + du},

Dn1,n2(u, t)du = Pr{Np(t) = n1, No(t) = n2, Y(t) = 5; u ≤ D0(t) ≤ u + du},

R(2)
n1,n2(u, t)du = Pr{Np(t) = n1, No(t) = n2, Y(t) = 6; u ≤ R0(t) ≤ u + du},

for u ≥ 0, t ≥ 0, n1 ≥ 0 andn2 ≥ 0.
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4. Equation Governing the System

d
dt

I0,0(t) = −(λp + λo)I0,0(t) + (1 − p)
∫ ∞

0
V0,0(u, t)γ(u)du, (1)

∂

∂t
I0,n(u, t) +

∂

∂u
I0,n(u, t) = −(λp + λo + β(u))I0,n(u, t), (2)

∂

∂t
P(1)

n1,n2(u, t) +
∂

∂u
P(1)

n1,n2(u, t) = −(λp + λo + α1 + α2 + µ1(u))P(1)
n1,n2(u, t)

+ λp(1 − δ0n1)
n1

∑
i=1

ciP
(1)
n1−i,n2

(u, t) + λo(1 − δ0n2)
n2

∑
j=1

cjP
(1)
n1,n2−j(u, t), (3)

∂

∂t
P(2)

n1,n2(u, t) +
∂

∂u
P(2)

n1,n2(u, t) = −(λp + bλo + α1 + α2 + µ1(u))P(2)
n1,n2(u, t)

+ λp(1 − δ0n1)
n1

∑
i=1

ciP
(2)
n1−i,n2

(u, t) + λo(1 − δ0n2)
n2

∑
j=1

cjP
(2)
n1,n2−j(u, t), (4)

d
dt

R(1)
n1,n2(u, t) +

d
du

R(1)
n1,n2(u, t) = −(λp + bλo + η1)R(1)

n1,n2(t) + λp(1 − δ0n1)
n1

∑
i=1

ciR
(1)
n1−i,n2

(t)

+ α1

∫ ∞

0
(P(1)

n1,n2(u, t) + P(2)
n1,n2(u, t))du + λp(1 − δ0n2)

n2

∑
j=1

cjR
(1)
n1,n2−i(t), (5)

∂

∂t
Dn1,n2(u, t) +

∂

∂u
Dn1,n2(u, t) = −(λp + bλo + ξ(u))Dn1,n2(u, t)

+ λp(1 − δ0n1)
n1

∑
i=1

ciDn1−i,n2(u, t) + λo(1 − δ0n2)
n2

∑
j=1

cjDn1,n2−i(u, t), (6)

∂

∂t
R(2)

n1,n2(u, t) +
∂

∂u
R(2)

n1,n2(u, t) = −(λp + bλo + η2(u))R(2)
n1,n2(u, t)

+ λp(1 − δ0n1)
n1

∑
i=1

ciR
(2)
n1−i,n2

(u, t) + λo(1 − δ0n2)
n2

∑
j=1

cjR
(2)
n1,n2−i(u, t), (7)

∂

∂t
Vn1,n2(u, t) +

∂

∂u
Vn1,n2(u, t) = −(λp + bλo + γ(u))Vn1,n2(u, t)

+ λp(1 − δ0n1)
n1

∑
i=1

ciVn1−i,n2(u, t) + λo(1 − δ0n2)
n2

∑
j=1

cjVn1,n2−j(u, t). (8)

The preceding set of equations must be solved under the following boundary conditions at u = 0,

P(1)
n1,n2(0, t) = (1 − r)

∫ ∞

0
P(1)

n1+1,n2
(u, t)µ1(u)du + r

∫ ∞

0
P(1)

n1,n2(u, t)µ1(u)du

+
∫ ∞

0
P(2)

n1+1,n2
(u, t)µ2(u)du + R(1)

n1+1,n2
(t)η1 + λpcn1+1 I0,n2(t)

+
∫ ∞

0
Vn1+1,n2(u, t)γ(u)du +

∫ ∞

0
R(2)

n1+1,n2
(u, t)η(u)du, (9)

P(2)
0,n2

(0, t) = λocn2+1 I0,0(t) +
∫ ∞

0
I0,n2+1(u, t)β(u)du +

n2

∑
i=1

λoCi(u, t)

+
∫ ∞

0
I0,n2+1−i(u, t)du + λoq

∫ ∞

0
P(2)

0,n2
(u, t)µ2(u)du, (10)
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R(2)
n1,n2(0, t) =

∫ ∞

0
Dn1,n2(u, t)du, (11)

Dn1,n2(0, t) = α2

∫ ∞

0
P(1)

n1−1,n2
(u, t)du + α2

∫ ∞

0
P(2)

n1,n2(u, t)du, (12)

V0,0(0, t) = (1 − r)
∫ ∞

0
P(1)

0,0 (u, t)µ1(u)du +
∫ ∞

0
P(2)

0,0 µ2(u)(u, t)du

+
∫ ∞

0
R(2)

0,0 (u, t)η2(u)du + R(1)
0,n2

(t)η1 + p
∫ ∞

0
V0,0(u, t)γ(u)du, (13)

Vn1,n2(0, t) = 0, (14)

I0,n2(0, t) = (1 − r)
∫ ∞

0
P(1)

0,n2
(u, t)µ1(u)du +

∫ ∞

0
P(2)

0,n2
µ2(u)(u, t)du

+
∫ ∞

0
R(2)

0,n2
(u, t)η2(u)du + R(1)

0,n2
(t)η1

∫ ∞

0
V0,n2(u, t)γ(u)du. (15)

P(1)
n1,n2(0) = P(2)

n1,n2(0) = Dn1,n2(0) = Vn1,n2(0) = R(1)
n1,n2(0) = R(2)

n1,n2(0) = 0,

I0,0 = 1, I0,n2(0) = 0, for n2 ≥ 1 are the initial conditions. (16)

The PGF defined as,

I(u, t, zo) =
∞

∑
n2=1

zn2
p I0,n2(u, t); A(u, t, zp, zo) =

∞

∑
n1=0

∞

∑
n2=0

zn1
o zn

p An1,n2(u, t);

A(u, t, zp) =
∞

∑
n1=0

zn1
p An1(u, t); A(u, t, zp) =

∞

∑
n2=0

zn2
o An2(u, t); (17)

here A = P(1), P(2), D, V, R(1), R(2).
We derive the following equations by applying Laplace transforms to equations (1) to (15) along
with (16) and (17).

I0(u, s, zo) = I0(0, s, zo)e−(s+λp+λo)u−
∫ u

0 β(t)dt, (18)

P(1)
(u, s, zp, zo) = P(1)

(0, s, zp, zo)e−ϕ1(s,z)u−
∫ u

0 µ1(t)dt, (19)

P(2)
(u, s, zp, zo) = P(2)

(0, s, zp, zo)e−ϕ2(s,z)u−
∫ u

0 µ2(t)dt, (20)

V(u, s, zp, zo) = V(0, s, zp, zo)e−ϕ2(s,z)u−
∫ u

0 γ(t)dt, (21)

D(u, s, zp, zo) = D(0, s, zp, zo)e−ϕ2(s,z)u−
∫ u

0 ξ(t)dt, (22)

R(2)
(u, s, zp, zo) = R(2)

(0, s, zp, zo)e−ϕ2(s,z)u−
∫ u

0 η2(t)dt. (23)

where,

ψ1(s, z) = s + λp + λo(1 − C(zo)) + α1 + α2,

ψ2(s, z) = s + λp + λo(1 − C(zo)),

ψ3(s, z) = s + λp + λo(1 − C(zo)) + η1,

ϕ1(s, z) = s + λp(1 − C(zp)) + λo(1 − C(zo)) + α1 + α2,

ϕ2(s, z) = s + λp(1 − C(zp)
′′0 + λo(1 − C(zo)),

ϕ3(s, z) = s + λp(1 − C(zp)) + λo(1 − C(zo)) + η1,

σ1(s, z) = s + λp(1 − C(g(zo))) + λo(1 − C(zo)) + α1 + α2,

σ2(s, z) = s + λp(1 − C(g(zo))) + λo(1 − C(zo)),

σ3(s, z) = s + λp(1 − C(g(zo))) + λo(1 − C(zo)) + η1.
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I0(0, s, zo) =


[(1 − V(σ2(s, z)))V0,0 + (s + λp + λo)I0,0 − 1]

P(2)
(0, s, zo)[B2(σ1(s, z)) +

[
α2R(2)

(σ2(s, z))D(σ2(s, z))

+
α1η1

σ3(s, z)

][1 − B2(σ1(s, z))
σ1(s, z)

]
]

{
[(1 − C(g(zo)))λp

[1 − M(s + λp + λo)

s + λp + λo

]
]

} ,

P(2)
(0, s, zo) =



λoC(zo)I0,0(s)1 − λpC(g(zo))
[1 − M(s + λp + λo)

s + λp + λo

]
]

− [I0,0(s)(s + λp + λo)− 1 + [(1 − V(σ2(s, z)))V0,0]]

[M(s + λp + λo) + C(zo)λo

[1 − M(s + λp + λo)

s + λp + λo

]
]



(zo − λpqzo)
[1 − B2(ψ1(s, z))

ψ1(s, z)

]
][(1 − C(g(zo)))λp[1 − M(s + λp + λo)

s + λp + λo

]
]− [M(s + λp + λo) + C(zo)λo[1 − M(s + λp + λo)

s + λp + λo

]
][B2(σ1(s, z))

[
α2R(2)

(σ2(s, z))D(σ2(s, z))

+
α1η1

σ3(s, z)

][1 − B2(σ1(s, z))
σ1(s, z)

]
]



, (24)

P(1)
(0, s, zp, zo) =



λp[C(zp)− C(g(zo))]
[1 − M(s + λp + λo)

s + λp + λo

]
I0(0, s, zo)(V(ϕ2(s, z))

− V(σ2(s, z)))V0,0 + P(2)
(0, s, zo) + [B2(ϕ1(s, z))− B2(σ1(s, z))

+
[
α2R(2)

(ϕ2(s, z))D(ϕ2(s, z)) +
α1η1

ϕ3(s, z)

][1 − B2(σ1(s, z))
σ1(s, z)

]
−

[
α2R(2)

(σ2(s, z))D(σ2(s, z)) +
α1η1

σ3(s, z)

][1 − B2(σ1(s, z))
σ1(s, z)

]
]


[zp − ((rzp + (1 − r))B1(ϕ1(s, z)) + (zpα2R(2)

(ϕ2(s, z))

D(ϕ2(s, z)) +
α1η1

ϕ3(s, z)

[1 − B1(ϕ1(s, z))
ϕ1(s, z)

]
)]


. (25)

Theorem.1 When the system is operating normally, experiencing a breakdown, going on a
randomized vacation, delay time to repair, or being repair, the probability generating function of
the number of customers in the relevant queue will be provided using Laplace transforms.

I0(s, zo) = I0(0, s, zo)
[1 − M(s + λp + λo)

s + λp + λo

]
, (26)

P(1)
(s, zp, zo) = P(1)

(0, s, zp, zo)
[1 − B1(ϕ1(s, z))

ϕ1(s, z)

]
, (27)

P(2)
(s, zp, zo) = P(2)

(0, s, zo)
[1 − B2(ϕ1(s, z))

ϕ1(s, z)

]
, (28)
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V(s, zp, zo) = V(0, s, zo)
[1 − V(ϕ2(s, z))

ϕ2(s, z)

]
, (29)

D(s, zp, zo) = D(0, s, zo)
[1 − D(ϕ2(s, z))

ϕ2(s, z)

]
, (30)

R(2)
(s, zp, zo) = R(2)

(0, s, zp, zo)
[1 − R(2)

(ϕ2(s, z))
ϕ2(s, z)

]
. (31)

Proof: The following result is reached by applying the renewal theory’s solution and solving the
previous equations (26) to (31) with respect to u through integration.

∫ ∞

0

[
1 − H(u)

]
e−sudu =

1 − h(s)
s

. (32)

The LST of the H(u) distribution function of a random variable is expressed by h(s) . The follow-

ing states’ precise probability generating function results are as follows: I0(s, zo), P(1)
(s, zp, zo),

P(2)
(s, zp, zo), D(s, zp, zo), V(s, zp, zo) and R(2)

(s, zp, zo) are obtained by using equation (26) to
(31).

5. Steady State Analysis

Steady state analysis refers to the examination of a system’s behavior once it has reached a stable
condition where its key parameters remain relatively constant over time. In this state, the system’s
inputs and outputs balance out, resulting in a consistent and unchanging pattern of behavior.
Steady state analysis is often used in various fields such as engineering, economics and physics
to understand long-term behavior and performance characteristics of systems.

According to Tauberian property,

lim
s→0

s f (s) = lim
t→∞

f (t).

The queue size’s PGF is as follows, in spite of the system’s current state:

Wq(zp, zo) =
Nr(zp, zo)

Dr(zp, zo)
, (33)

Nr(zp, zo) = N1(z)D2(z)D3(z)ϕ1(z)ϕ2(z)ϕ3(z)
[1 − M(λ1 + λ2)

λ1 + λ2

]
+ N2(z)D1(z)D3(z)

f1(z)(1 − B2ϕ1(z)) +
[1 − M(s + λ1 + λ2)

s + λ1 + λ2

]
N3(z)D1D2(1 − B2ϕ1(z)) f1(z),

Dr(zp, zo) = D1(z)D2(z)D3(z)D4(z)ϕ1(z)ϕ2(z)ϕ3(z),
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where,

N1(z) = V00[Vσ2(z)− 1]− (λp + λo)I00 + [B2σ1(z) + (α2R(2)
σ2(z)Dσ2(z) +

α1

σ3(z)
)
[1 − B2σ1(z)

σ1(z)

]
],

D1(z) = 1 − C(g(zo))λp

[1M(λp + λo)

λp + λo

]
,

N2(z) = λoC(zo))I00[1 − C(g(zo))λp

[1 − M(λp + λo)

λp + λo

]
] + [1 − (λp + λo)I00

V00[Vσ2(z)− 1]][M(λp + λo)− λoC(zo)
[1M(λp + λo)

λp + λo

]
],

D2(z) = [zo − λoqzo

[1 − B2ψ1(z)
ψ1(z)

]
][1 − C(g(zo))λp

[1M(λp + λo)

λp + λo

]
][[B2σ1(z)

+ (α2R(2)
σ2(z)Dσ2(z) +

α1

σ3(z)
)
[1 − B2σ1(z)

σ1(z)

]
]]

[M(λp + λo)− λoC(zo)
[1M(λp + λo)

λp + λo

]
],

N3(z) = λp[C(zp)− C(g(zo))]
[1 − M(λp + λo)

λp + λo

]
I0(0, zo) + V00[Vϕ2(z)− Vσ2(z)]

[B2ϕ1(z)− B2σ1(z)(α2R(2)
ϕ2(z)Dϕ2(z) +

α1

ϕ3(z)
)
[1 − B2ϕ1(z)

ϕ1(z)

]
− (α2R(2)

σ2(z)Dσ2(z) +
α1

σ3(z)
)
[1 − B2σ1(z)

σ1(z)

]
]P(2)

(0, z0),

D3(z) = zp − [((1 − r) + rzp)B1ϕ1(z) + (α2R(2)
ϕ2(z)Dϕ2(z) +

α1

ϕ3(z)
)
[1 − B1ϕ1(z)

ϕ1(z)

]
]

ψ1(z) = λp + λo(1 − C(zo)) + α1 + α2,

ψ2(z) = λp + λo(1 − C(zo)),

ψ3(z) = λp + λo(1 − C(zo)) + η1,

ϕ1(z) = λp(1 − C(zp)) + λo(1 − C(zo)) + α1 + α2,

ϕ2(z) = λp(1 − C(zp)) + λo(1 − C(zo)),

ϕ3(z) = λp(1 − C(zp)) + λo(1 − C(zo)) + η1,

σ1(z) = λp(1 − C(g(zo))) + λo(1 − C(zo)) + α1 + α2,

σ2(z) = λp(1 − C(g(zo))) + λo(1 − C(zo)),

σ3(z) = λp(1 − C(g(zo))) + λo(1 − C(zo)) + η1.

6. Stability condition

The stability requirement is a criterion that establishes whether a QS can manage incoming traffic
without increasing indefinitely over time. A stable QS maintains consistent queue length and
performance measurements over time, even with changing arrival rates.

We apply the normalising condition to determine I0,0.

I0,0 + I0 I + P(1)(1, 1) + PI I(1, 1) + V(1, 1) + RI(1, 1) + D(1, 1) + R(2)(1, 1) = 1. (34)
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I0,0 =



[D1(1, 1)D2(1, 1)D
′
3(1, 1)(α1 + α2)η1(λp + λo)(−E(X))]

− [
[1 − M(λp + λo)

λp + λo

]
N1(1, 1)D

′
3(1, 1)D2(1, 1)

(α1 + α2)(λp + λo)(−E(X))η1

(λp + λo)(−E(X)) + N2(1, 1)D
′
3(1, 1)D1(1, 1) f ′1(1, 1)

(1 − B2(α1 + α2)) + N
′
3(1, 1)D1(1, 1)D2(1, 1)

f
′
1(1, 1)D3(1, 1)(1 − B1(α1 + α2))]

{
D1(1, 1)D2(1, 1)D

′
3(1, 1)(α1 + α2)η1(λp + λo)(−E(X))

} , (35)

and the utilization factor is given by

ρ =



[
[1 − M(λp + λo)

λp + λo

]
N1(1, 1)D

′
3(1, 1)D2(1, 1)

(α1 + α2)(λp + λo)(−E(X))η1

(λp + λo)(−E(X)) + N2(1, 1)D
′
3(1, 1)D1(1, 1) f ′1(1, 1)

(1 − B2(α1 + α2)) + N
′
3(1, 1)D1(1, 1)D2(1, 1)

f
′
1(1, 1)D3(1, 1)(1 − B1(α1 + α2))]

{
D1(1, 1)D2(1, 1)D

′
3(1, 1)(α1 + α2)η1(λp + λo)(−E(X))

} . (36)

The steady state stability requirement for the model is ρ < 1.

where,

N
′
3(1) = λp

[1M(λp + λo)

λp + λo

]
I0(0, 1)[1 − E(X1)]E(X),

D
′
3(1) = 1 − [rB2(λ1 + λ2) + (α2(E(R(2)) + E(D))− α1

η1
− 1)

[1 − B1(α1 + α2)

(α1 + α2)

]
],

f
′
1(1) = [η1 + α1 − α2η1(E(R(2)) + E(D))][−(λp + λo)E(X)],

7. Performance Assessments

Performance measures in QS are metrics used to evaluate and quantify various aspects of system
behavior, efficiency and effectiveness. These measures help assess how well a QS is performing
and provide insights into its operational characteristics.

The following is the expected queue size for PC and orbit size for OC

Lq1 =
d

dzp
Wq(zp, 1)|zp=1, (37)

Lq2 =
d

dzo
Wq(1, zo)|zo=1. (38)

Where,

Lq1 =
Dr

′′
1(1)Nr

′′′
1 (1)− Dr

′′′
1 (1)Nr

′′
1(1)

3(Dr′′1(1))
2

, (39)

Lq2 =
Dr

′′
2(1)Nr

′′′
2 (1)− Dr

′′′
2 (1)Nr

′′
2(1)

3(Dr′′2(1))
2

, (40)
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The following is the expected waiting time for priority queue:

Wq1 =
Lq1

λp
(41)

The following is the expected waiting time for orbit:

Wq2 =
Lq2

λo
. (42)

8. Particular Cases

Case 1: In the absence of priority queue, ordinary customers arrive individually without retrials,
breakdowns, or push-out mechanisms. In this scenario, the model can be simplified of queue
type M/G/1 with a general randomized vacation policy.

PI I(z) =
I0,0[1 − B2(λo(1 − zo))]

{
V(λo(1 − zo))− (1 − zo)(1 − p)V(λo)− 1

}
(1 − zo)(1 − p)V(λo)

{
z − B2(λo(1 − zo))

} ,

V(zo) =
I0,0[1 − V(λo(1 − zo))]

(1 − p)(1 − zo)V(λo)
.

The aforementioned outcome bears resemblance to the findings of Chen et al. [23] albeit without
the inclusion of a second optional service.

Case 2: In the absence of priority queue, ordinary customers arrive individually without any
breakdowns or vacations. In such a scenario, this model can be simplified a RQ of type M/G/1
with abandoned customers.

I0(z) =
I0,0z(1 − zo)[1 − B2(λp(1 − zo) + λoqzo)][1 − M(λo)]

D(zo)
,

PI I(z) =
I0,0M(λo)(1 − zo)[1 − B2(λo(1 − zo) + λoqzo)]

D(zo)
,

where,

D(z) = B2(λo(1 − zo) + λoqzo)
{
(1 − zo + qzo)(zo + (1 − zo)M(λo))− z2

oq
}
− zo(1 − zo).

These findings align with the results reported by Krishna Kumar et al. [24].

9. Numerical Results

The numerical and graphical analyses of this model are covered in this section. We assumed that
the distribution of service period, failure, repair and vacation period are all exponential.

Table 1: The impact of the priority arrival rate (λp)

λp I0 ρ Lq1 Wq1 Lq2 Wq2

0.5 0.9096 0.0904 3.3151 4.2339 1.3073 0.6535
0.6 0.8464 0.1536 3.6657 4.4002 1.4388 0.7194
0.7 0.7722 0.2278 4.0216 4.5624 1.5698 0.7849
0.8 0.6847 0.3153 4.3764 4.7233 1.6996 0.8498
0.9 0.5809 0.4191 4.7243 4.8869 1.8275 0.9138
1.0 0.4573 0.5427 5.0592 5.0592 1.9526 0.9763
1.1 0.3090 0.6910 5.3756 5.2492 2.0737 1.0368
1.2 0.1299 0.8701 5.6679 5.4705 2.1890 1.0945
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Table 1 exhibit that when an arrival rate (λp) for PQ escalates, then (Lq1 /Lq2) and (Wq1 /Wq2)
also rises at λo = 2, α1 = 2, α2 = 3, µ = 4, η1 = 5, η2 = 8, γ = 20, p = 0.3, ξ = 15, β = 8, q = 0.4,
r = 0.1 and λp = 0.5 to 1.3.

Table 2: Impact of hard failure repair rate (η2)

η2 I0 ρ Lq1 Wq1 Lq2 Wq2

5.0 0.0435 0.9565 3.2910 3.2910 1.6708 0.8354
5.5 0.1807 0.8193 3.0328 3.0328 1.6612 0.8306
6.0 0.2742 0.7258 2.8290 2.8290 1.6507 0.8253
6.5 0.3421 0.6579 2.6642 2.6642 1.6392 0.8196
7.0 0.3937 0.6063 2.5283 2.5283 1.6267 0.8133
7.5 0.4344 0.5656 2.4145 2.4145 1.6128 0.8064
8.0 0.4673 0.5327 2.3177 2.3177 1.5975 0.7987
8.5 0.4944 0.5056 2.2346 2.2346 1.5804 0.7902
9.0 0.5173 0.4827 2.1623 2.1623 1.5612 0.7806

Table 2 exhibit that when an hard failure repair rate (η2) escalates, then (Lq1 /Lq2) and
(Wq1 /Wq2 ) also decreases at λp = 1, λo = 2, α1 = 1, α2 = 5, µ = 4, η1 = 4, γ = 15, p = 0.4, ξ = 10,
β = 12, q = 0.3, r = 0.1 and η2 = 5.0 to 10.0.

Table 3: Impact of ordinary arrival rate (λo)

λo I0 ρ Lq1 Wq1 Lq2 Wq2

1.0 0.8423 0.1577 1.6669 3.3339 0.1541 0.1541
1.1 0.8402 0.1598 1.7448 3.4896 0.1954 0.1777
1.2 0.8371 0.1629 1.8228 3.6455 0.2440 0.2034
1.3 0.8329 0.1671 1.9008 3.8016 0.3005 0.2311
1.4 0.8275 0.1725 1.9790 3.9579 0.3655 0.2610
1.5 0.8204 0.1796 2.0572 4.1144 0.4396 0.2931
1.6 0.8116 0.1884 2.1355 4.2710 0.5237 0.3273
1.7 0.8004 0.1996 2.2139 4.4277 0.6182 0.3636

Table 3 exhibit that when an ordinary arrival rate (λo) for PQ escalates, then the (Lq1 /Lq2 ) and
the (Wq1 /Wq2) also rises at λp = 0.5, α1 = 0.8, α2 = 4, µ = 3, η1 = 3, γ = 17, p = 0.3, ξ = 10,
β = 12, q = 0.2, r = 0.2, η2 = 7 and λo = 1.0 to 2.0.

We obviously follow the exponential distribution for service time, breakdown, repair and
vacation time in graphical representations. Figures 2 - 4 illustrate the 2D graphs. (Lq1 , Lq2)
increases when the priority arrival rate (λp) increases, as demonstrates in Figure 2. Figure 3
demonstrates the behaviour of the queue sizes (Lq1 , Lq2 ), which depends on the hard failure repair
rate (η2). The length of the queue grows as the soft failure rate improves. Figure 4 depicts the
behaviour of the queue sizes (Lq1 , Lq2 ), which is affected by the average customer arrival rate (λo).
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10. Conclusion

In this research, we examined a single server retrial queueing system with non-preemptive priority
service, immediate feedback, push out, differentiated breakdowns, delayed repair, randomized
vacation. The analytical findings that are supported by numerical examples can be used to a wide
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range of real-world situations to produce results. The supplementary variable technique is used
to determine the PGFs for the number of users in the system when it is free, busy, and under
repair. The system’s and orbit’s average queue lengths contain many expressions. The mean
busy period and other significant system performance measures are obtained. The conditional
decomposition law is finally demonstrated to be effective for this retrial queueing system.In
real-world queueing scenarios, our queueing system is more flexible when dealing with real-time
systems used by many industries.
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Abstract 

In recent years, there have been considerable improvements in how we keep track of mental health, especially 

with devices you can wear, which give us a better chance of spotting and dealing with problems like stress 

before they become serious. This research paper presents an innovative approach. Experimental validation 

uses a comprehensive dataset of 15 subjects working as multinational company employees. Heart Rate 

Variability(HRV) was obtained from wearable sensors using Apple Watch during working hours. We have 

calculated time, frequency and non-linear domains as well and added personalized features like a person's 

age, height, weight, etc. Recurrent Neural Network( RNN )and Long Short-Term Memory ( LSTM )models 

are applied and get an accuracy of 87% and 90%, respectively. To enhance stress detection accuracy by 

optimizing hyperparameters using a genetic algorithm (GA) explicitly targeting the configuration of LSTM 

models. Key hyperparameters, including the number of units in the LSTM layer and the number of training 

epochs, are optimized to maximize stress detection accuracy. Model Through 5 generations of evolution, the 

GA identifies optimal hyperparameter settings of  45 units in the LSTM layer 49 epochs, significantly 

improving stress detection accuracy compared to baseline configurations. It gives 92 % accuracy with 

optimized hyperparameters. Analyzing recorded data, we observe that the time per training step decreases 

gradually, indicating efficient convergence during optimization. Simultaneously, stress detection accuracy 

steadily improves over epochs, showcasing the model's effectiveness in learning patterns from physiological 

data. So, This study provides insights into the practical application of genetic algorithms for hyperparameter 

optimization in healthcare contexts, contributing to advancements in personalized monitoring and 

intervention strategies for mental well-being. 

Keywords:  Genetic Algorithm, HRV, Hyperparameters, LSTM, Personalised Features, Stress 

Detection  

I. Introduction

Stress is the feeling of being unable to handle a lot of mental or emotional pressure. Some things that cause 

stress are worrying about your career, meeting tight deadlines, feeling pressure from your peers, making 

bad choices, job demands, work pressure, health worries, etc. Acute stress is the most common type of 

stress. All the challenges usually cause it and demand everyone to deal with it constantly. Some clear signs 

are excessive sweating, headaches, trouble focusing, changes in hunger, a weakened immune system, 

difficulty sleeping, etc. Stress can have effects that last for a long time. Long-term worry can lead to health 

problems like high blood pressure, heart disease, and memory loss. Many trackers like the Empatica E4, 

the Apple Watch, the FitBit, and others are on the market. The suggested way to find stress for working 

employees is to create a wristband that predicts stress based on constant, real-time data from physiological 

sensors. The role of stress management systems in identifying the levels of tension that disrupt our 

socioeconomic lifestyle is crucial. According to the World Health Organization (WHO), one in every four 
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citizens is afflicted with stress, which is a mental health issue [1]. Human stress gives rise to psychological 

and socio-financial complications, impaired task performance, and unclear thinking. 

Relationship difficulties, melancholy, and, in extreme cases, suicide. This requires counselling to assist 

overwhelmed individuals in managing their stress. Although stress avoidance is unattainable, taking 

preventative measures can help to surmount it [2]. At this time, distressing states of depression (such as 

tension) can only be identified by medical and physiological specialists. One of the conventional 

approaches to stress detection involves using questionnaires [3]. This method depends entirely on the 

responses provided by the participants; individuals may exhibit trepidation when asked whether they are 

experiencing tension or feeling it every day. Automated stress detection reduces the likelihood of health 

complications and enhances societal welfare. This creates the conditions for developing a scientific 

instrument that automates the detection of stress levels in individuals via physiological signals. 

Stress is also known as the flight-or-fight response, as it evolves as a survival mechanism, enabling people 

to react speedily to life-threatening or challenging situations. When met with a threat or challenge, an 

individual's body activates resources for self-protection. These resources either help face the situation or 

provide an expedited escape route. This flight-or-fight response is the reaction of the body's sympathetic 

nervous system that reacts to a stressor by producing larger quantities of chemicals like cortisol, adrenaline, 

and noradrenaline[4]. When you feel scared or threatened, your body enters an emergency mode. Your 

heart beats faster, your muscles tense up, your breathing gets faster, and your senses become sharper. This 

helps you react quickly in dangerous situations. It gives you more strength, energy, and focus to decide 

whether to fight or run away faster. It's like your body's way of helping you stay safe when you're in 

trouble. 

The structure of this document is as follows. Section II provides an overview of the field's current state of 

the art. Section III provides an account of the research conducted in this study. Section IV presents the 

findings from the analysis of the Apple Watch dataset. The conclusions can be found in section V.  

II. Related Work

Smartwatches have emerged as tools for stress detection and management [5] by measuring heart rate, 

heart rate variability (HRV), sleep quality, physical activity, and other stress-related variables. Real-time 

stress monitoring may provide immediate biofeedback to individuals and allow for early self-intervention 

[6]. How pervasive are smartwatches with stress detection among undergraduates? How effective are they 

as an unobtrusive way of providing biofeedback to students about their stress levels to lower their anxiety 

and increase their stress-management skills to be more effective in their Learning. 

This exploratory pilot study examined the effect of smartwatches equipped with HRV sensors for stress 

detection on undergraduate students' anxiety. The study's research question was the following: Are 

smartwatches with stress detection sensors effective for supporting students in reducing their anxiety? A 

quasi-experimental pre-test post-test control group design was used. Thirteen students of an experimental 

group, who were self-selected, used the same commercially available smartwatch over 3-4 weeks and had 

access to their measured stress on a 24/7 basis. Nineteen students of a control group did not have access to 

smartwatches and used other means of stress management over the same period. Students' anxiety before 

and after the experiment was measured using a standardized instrument (GAD-7), which is based on 

participants' recollections of the frequency of experiencing specific anxiety symptoms over the last two 

weeks. GAD-7 scores range from 0 (no anxiety) to 21 (severe anxiety). The experimental group (M=6.00/21, 

SD=6.58) and the control group (M=8.18/21, SD=5.67) had "mild" anxiety levels before the study, based on 

GAD-7. An independent samples t-test compared students' anxiety before the experiment and established 

that the two groups were equivalent (t27=-0.97, p=0.341). A slight, non-significant decrease in anxiety was 

observed in the experimental group from the pre-test (M= 6.00, SD= 6.57) to the post-test (M=5.67 SD= 3.26). 

On the contrary, the control group's anxiety increased from the pre-test (M= 7.84, SD= 5.43) to the post-test 

(M= 10.11, SD= 5.24), indicating a "moderate" level of anxiety post-intervention. An independent samples 

t-test (t27=-2.5, p=0.019) for a comparison of students' post-test anxiety scores showed that the experimental
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group had significantly lower anxiety (M=5.67, SD=3.26) compared to the control group (M=10.06, 

SD=5.41)[8]. 

Authors[9]  propose a novel approach for predicting stress severity by measuring sleep phasic heart rate 

variability (HRV) using a smart device. This device can potentially be applied for stress self-screening in 

large populations. Using a Holter electrocardiogram (ECG) and a Huawei smart device, we conducted 24-

h dual recordings of 159 medical workers working regular shifts. Based on photoplethysmography (PPG) 

and accelerometer signals acquired by the Huawei smart device, we sorted episodes of cyclic alternating 

pattern (CAP; unstable sleep), non-cyclic alternating pattern (NCAP; stable sleep), wakefulness, and rapid 

eye movement (REM) sleep based on cardiopulmonary coupling (CPC) algorithms. We further calculated 

the HRV indices during NCAP, CAP and REM sleep episodes using the Holter ECG and smart-device PPG 

signals. This exploratory pilot[10]  study showed that smartwatches with stress detection sensors are 

somewhat effective in helping students reduce their anxiety. Without any structured intervention for stress 

management, students' anxiety may increase over time. The sample size and duration of the study were 

too small to allow for the generalizability of findings. More research is needed on how smartwatches that 

detect stress can be used either in conjunction with stress management interventions, such as mobile apps 

for supporting resilience, to maximize their effectiveness, or as additional ways of measuring stress, 

complimenting self-reported data in interventions that target stress management, to optimize Learning. 

The author developed a machine learning model to predict stress severity based only on the smart device 

data obtained from the participants and a clinical evaluation of emotion and stress conditions. Sleep phasic 

HRV indices predict individual stress severity with better CAP or REM sleep performance than in NCAP. 

Using the smart device data only, the optimal machine learning-based stress prediction model exhibited 

an accuracy of 80.3 %, sensitivity of 87.2 %, and 63.9 % for specificity. Sleep phasic heart rate variability can 

be accurately evaluated using a smart device and subsequently used for stress prediction. 

Driving in urban areas can be challenging, and one can encounter acute stress. Collecting data on real roads 

without interfering with the driver is preferred to detect driver stress. A smartphone-based data collection 

protocol was developed to support a naturalistic driving study. Sixty-one participants drove on 

predetermined actual road routes, and driving information and physiological, psychological, and facial 

data were collected. The algorithm identified potentially stressful events based on the collected data. 

Participants classified these events as low, medium, or highly stressful by watching recorded videos after 

the experiment. These events were then used to train prediction models. The best model achieved an 

accuracy of 92.5% in classifying low/medium/highly stressful events. The contribution of physiological, 

psychological, and facial expression indices and individual profile information was evaluated. The method 

can be applied to visualize the geographical distribution of stressors, monitor driver behaviour, and help 

drivers regulate their driving habits [11]. 

III. Proposed Approach

We have prepared a data set using an optical heart sensor in the Apple Watch SE, which measures 

your heart rate and heart rhythm. Utilize the Breath application to calculate your stress with maximum 

precision. The Apple Watch has numerous capabilities that can be used to track stress levels. For instance, 

it features a heart rate monitor that can detect variations in the wearer's heart rate and heart rate 

variability, which can signal stress levels. A breathing app for the Watch also leads users through 

breathing exercises to lower stress. The gadget also monitors sleep patterns, physical activity levels, and 

other health indicators that may assist in pinpointing stress origins and offer insights into general well-

being. It's crucial to remember that these features shouldn't be used to diagnose or treat any medical 

conditions and aren't intended to replace expert medical advice. 

The study involved 15 employees from a multinational company working as developers, who were 

observed over ten working days. Raw data was collected using Apple Watch SE devices worn on the 

participants' non-dominant wrists. Participants performed a specific gesture (double tapping) with their 

non-dominant hand to ensure accurate data collection, generating a characteristic pattern in the 
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acceleration signal for data synchronization. The Apple Watch SE offers various health monitoring features 

suitable for the study to analyze Heart Rate under three distinct mental health conditions: 

 Stress condition: During company meetings or instances of sudden extra work.

 Daily work condition: Routine work activities during regular working hours.

 No stress condition: Periods of relaxation or when no work-related tasks were being performed.

By examining Heart Rates across these conditions, the study aimed to understand how stress impacts 

physiological responses during work, contributing to a deeper understanding of employee well-being in 

multinational workplace settings. 

It mainly focuses on how stress impacts employees' physiological responses during work hours, 

contributing to understanding employee well-being in workplace environments. 

The raw data collected for Heart Rate Bit per minute, initially in XML format, was converted into CSV 

format for analysis. Gathering data in real-life contexts remains uncommon due to challenges such as 

limited context and reliance on self-reported information. Real-world data collection possesses both 

advantages and challenges. While it maintains ethical constraints and context awareness, it lacks a clear 

ground truth and introduces noisy data. Investigated HRV in real-world scenarios and highlighted its 

small relationship with stress compared to controlled lab settings[12]. The heart rate is extracted using The 

Apple Watch and the Health application on your paired iPhone. It can accurately measure your heart rate. 

3.1. Feature selection 

Core functionality involves iterating through XML files from an Apple Health export, identifying and 

extracting heart rate data within a specified date range. Each 'Record' element is examined to isolate valid 

heart rate measurements by cross-referencing their timestamps. From these values, RR intervals—the 

temporal gaps between consecutive heartbeats—are calculated. These intervals serve as the foundation for 

HRV analysis, which includes addressing missing values and performing both frequency and time domain 

analyses using an HRV analysis library. The process uses the xml.etree.ElementTree module for XML 

parsing, and incorporates the Malik rule[13] via the hrvanalysis.remove_ectopic_beats function to clean 

the RR interval data of ectopic beats. 

Time domain features quantify RR interval variability, revealing insights into heart rate fluctuations over 

specific time spans. The Mean NN Interval (Mean NNI) portrays the average duration between successive 

normal heartbeats [14]. The Standard Deviation of NN Intervals (SDNN) characterizes overall RR interval 

variability, indicative of autonomic modulation. The Root Mean Square of Successive Differences (RMSSD) 

reflects short-term variability with parasympathetic sensitivity [15]. The Percentage of NN50 Intervals 

(pNN50) gauges parasympathetic influence by identifying RR intervals differing by over 50 ms. Frequency 

domain analysis dissects HRV into frequency bands. Low Frequency (LF) power signifies both sympathetic 

and parasympathetic activity, whereas High Frequency (HF) power primarily denotes parasympathetic 

modulation [16]. The LF/HF ratio quantifies sympathetic-parasympathetic balance [17]. 

The non-linear analysis captures intricate patterns. Sample Entropy (SampEn) gauges HRV complexity 

based on pattern repetition. Poincaré plots visually explore RR interval relationships, providing insights 

into autonomic dynamics [18]. 

Additional PhysioBank, PhysioToolkit, and PhysioNet furnish resources for physiological signal access 

and analysis. Advanced HRV analysis methods are exhaustively covered, offering insights into diverse 

techniques [19]. 

So, Time-frequency, Frequency Domain and Non-linear domain features are calculated to understand 

physiological responses to stress. These features can provide additional insights into the dynamics and 

patterns of the stress response, enabling more accurate and personalized stress detection algorithms and 

systems. We divided all experimental data into 60-second windows and independently calculated each 
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window's accuracy. We selected eight features because they are the most relevant Features. Twenty-two 

features have been extracted from 149,000 records collected from 15 subjects. These features encompass 

various aspects of heart rate variability (HRV). 

IV. Experimental Results and Discussion

We Have used the architecture of the LSTM model [20] using the Keras API provided by TensorFlow[21]. 

The model consists of an LSTM layer with 128 units, a fully connected (Dense) layer with three output 

units (matching the number of classes) and a softmax activation function. The model is compiled with the 

Adam optimizer and categorical cross-entropy loss function, which is suitable for multiclass classification. 

The experimental result is presented in Figure 1, where we compare our proposed LSTM model with 

existing approaches in stress detection studies. In our experimental setup, we achieved an overall accuracy 

of 88% by applying the LSTM model, considering the time-series property inherent in the data. Notably, 

neither of the previously referenced authors leveraged the time-series property to obtain their results. 

Figure 1: Epochwise Accuracy Plot 

4.1. Personalized Features 

As different users have relatively different responses to stress conditions, examining the individuals' heart 

rate variability ranges, the dataset and machine learning model should be designed carefully. We have 

added personalized features as defined in Figure 2, like a person's gender, age, country, height, body mass, 

resting heart rate, VO2MaxmL/minÂ·kg measures the maximum amount of oxygen a person can use 

during intense exercise, relative to body weight. It's expressed in millilitres per minute per kilogram and  

Figure 2: Personalized Features 
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It is a key indicator of cardiovascular fitness and aerobic endurance. Walking Heart Rate Average refers to 

the average heart rate observed during walking activities. It helps assess cardiovascular health at a  

moderate intensity, with lower averages suggesting better fitness and heart efficiency. So, eight 

personalized features and other 22-time domain, frequency domain and non-linear features are added. 

Figure 3: Features According to PCA 

Figure 3 indicates the most influential features by examining the Aggregate values associated with each 

principal component. These ratios indicate the proportion of total variance in each component's dataset. A 

heatmap of the correlation matrix is created to visualize the relationships and dependencies between these 

features. 

This heatmap illustrates in figure 4 the strength and direction of linear relationships between each pair of 

features. Correlation values range from -1 to 1, where 1 indicates a perfect positive correlation, -1 indicates 

a perfect negative correlation, and 0 indicates no linear correlation. By examining the heatmap, we can 

identify which features are strongly correlated, either positively or negatively, which can provide insights 

into potential redundancies or synergies among the features. Personalized features are tailored to 

individual characteristics or behaviours, while time domain features typically involve statistical measures 

like mean, variance, and standard deviation calculated over time-series data. Frequency domain features 

RT&A, No 3 (79) 
Volume 19, September 2024

303



Jigna  Jadav, Uttam Chauhan 

HYPERPARAMETER TUNING FOR STRESS DETECTION 

involve transformations like Fourier transforms to analyze the frequency components of the data. Non-

linear features capture more complex, non-linear relationships in the data that are not apparent through 

linear analysis alone. 

Figure 4: Heatmap of Correlation of Features 

The indices of the most impactful features are identified by sorting these ratios in descending order. The 

actual feature names are then extracted from the original dataset columns. 

The Long Short-Term Memory (LSTM) network, a type of recurrent neural network (RNN), was 

introduced by [22] in 1997 to address real-world time-series problems. LSTM networks have been shown 

to effectively learn long-term dependencies and overcome issues such as vanishing and exploding 

gradients [23]. The analysis involving LSTM (Long Short-Term Memory) and RNN (Recurrent Neural 

Network) models on a dataset of heart rate variability (HRV) data from an Apple Watch effectively 

preprocesses, trains, and evaluates both models. After preprocessing steps that include label encoding, 
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one-hot encoding, and standardizing the data, the models are reshaped for LSTM and RNN inputs. Two 

distinct neural network architectures are employed: an LSTM model and an RNN model, each designed 

with a recurrent layer comprising 128 units followed by a dense output layer with softmax activation to 

handle multiclass classification. Both models are compiled using the Adam optimizer and categorical cross-

entropy loss, emphasizing their suitability for sequence data processing. The models are trained using a 

StratifiedShuffleSplit approach, ensuring balanced class distribution in both training and testing datasets. 

This setup allows for robust training over 32 epochs with a batch size of 32. Upon evaluation, the LSTM 

model demonstrates a superior performance with an accuracy of 90%, compared to the RNN model, which 

achieves 87% accuracy. Figure 5 presents the training and validation accuracy of LSTM and RNN models 

over a series of epochs. The plot is designed to illustrate how well each model learns from the training data 

and generalizes it to the validation data. 

Figure 5: LSTM & RNN Training and Validation Accuracy

Visual analysis through various plots—accuracy and loss graphs over epochs and confusion matrices—

provides deeper insights into each model's performance. The accuracy plots confirm the LSTM's slightly 

better capability than RNN in capturing and leveraging long-term dependencies, which is crucial for the 

temporal dynamics inherent in HRV data from wearable devices, as shown in figure 6. These detailed 

evaluations and visual representations are critical for understanding the model. Dynamics, guiding further 

improvements in model architecture or training strategies for enhanced performance in medical data 

analysis tasks. 

Figure 6: Comparison of LSTM & RNN 
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4.2. Genetic Algorithm 

The genetic algorithm (GA) operates on the principle of evolution, where individuals with superior traits 

have a higher chance of survival and pass on their characteristics to the next generation. Each individual 

in the population represents a set of hyperparameters, with its genetic makeup determining the specific 

values of these parameters. The algorithm seeks to optimize these hyperparameters for a given problem 

through selection, crossover, and mutation. GA continually refines the population through these 

mechanisms, gradually converging towards optimal hyperparameter values. By iteratively selecting, 

recombining, and mutating individuals, the algorithm explores the hyperparameter space to discover 

configurations that maximize performance. Recent studies have shown the effectiveness of GA for 

optimizing LSTM hyperparameters in various applications, such as COVID-19 dataset classification [24]. 

In GA-based hyperparameter optimization, each hyperparameter is analogous to a gene within an 

individual's chromosome. The population encompasses a range of potential parameter values, and the 

fitness function evaluates how well a set of parameters performs. By selecting individuals with high fitness 

values, the algorithm ensures that favourable traits are carried over to subsequent generations for sepsis 

prediction [25]. Researchers [26] introduce a straightforward genetic algorithm method for hyperparameter 

tuning in a standard language model. This approach efficiently optimizes the parameters without relying 

on exhaustive search techniques.GA continually refines the population through these mechanisms, 

gradually converging towards optimal hyperparameter values. By iteratively selecting, recombining, and 

mutating individuals, the algorithm explores the hyperparameter space to discover configurations that 

maximize performance and also provides a robust mechanism for handling the complex hyperparameter 

space. 

GA-based hyperparameter optimization, each hyperparameter is analogous to a gene within an 

individual's chromosome. The population encompasses a range of potential parameter values, and the 

fitness function evaluates how well a set of parameters performs. By selecting individuals with high fitness 

values, the algorithm ensures that favourable traits are carried over to subsequent generations. Crossover 

involves combining genetic material from two individuals to create offspring with a mix of their traits, 

while mutation introduces random changes to individual genes, promoting diversity in the population.GA 

continually refines the population through these mechanisms, gradually converging towards optimal 

hyperparameter values. By iteratively selecting, recombining, and mutating individuals, the algorithm 

explores the hyperparameter space to discover configurations that maximize performance. 

Figure 7: Flow of Hyperparameter tunning With GA 
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Figure 7 shows a flowchart of a process involving a genetic algorithm to optimize hyperparameters in a 

sequence model that is LSTM. The data that is relevant to the model should be collected or aggregated. 

After that, feature selection, which means feature selection, should be done from the data that will be input 

into the LSTM model learning. A genetic algorithm is applied to learn the optimal hyperparameters. From 

the genetic algorithm, an evaluating function judges the fitness of each approach in its ability to solve a 

problem; each individual, usually referred to with a hyperparameter set, is referred to as an individual. 

The result of the evaluating functions is used to adjust the hyperparameters using GA. The GA optimizes 

the hyperparameters to maximize the fitness function, which is done iteratively and without reinvention 

by simulating the process of natural selection. The Individual over the Generation: It says the best 

individual is used to highlight the best hyperparameter set found over all the generations. With the results 

of the best hyperparameters, the LSTM model is finalized and evaluated, and this has been done on a test 

dataset to check accuracy. So, this flowchart describes the whole process, from preparing the data to 

hyperparameter tuning, and then outputs are produced. The interesting aspect is the close relationship 

between the output and the final model to be evaluated.  

Figure 8. Hyperparameter Tunning setting 

Figure 8 shows hyperparameter tunning in that the left plot shows each training step's time (in seconds). 

The times appear to vary significantly, ranging from as low as 1 second to as high as 14 seconds per step. 

There is no clear trend in the data, indicating that the variation in step times may be due to different 

computational demands at each step or other varying factors during the training process. The right plot 

shows the accuracy of the model over several epochs, plotted in orange. The accuracy starts at around 60% 

and steadily increases, reaching above 90% in later epochs. The plot shows a typical learning curve where 

the model initially improves rapidly before the gains in accuracy begin to diminish, suggesting that the 

model is approaching its performance limit. So, after setting the hyperparameter at epoch 49, we get 92 % 

accuracy. 
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V. Conclusion and Future Work

By employing HRV data from Apple Watches worn by employees during work, the study bridges the gap 

between controlled laboratory conditions and the variability in everyday environments. This approach 

enhances the model's applicability in real-life scenarios, providing insights into its practical deployment. 

The study's focus on feature selection and incorporating personalized features such as age, gender, and 

physical metrics further tailors stress detection to individual profiles, potentially increasing the model's 

sensitivity and accuracy in diverse populations. We presented an innovative approach to enhancing stress 

detection accuracy using wearable devices, focusing on optimizing LSTM models with GA. By employing 

a comprehensive dataset from 15 multinational company employees, we gathered HRV data through 

Apple Watches during working hours and calculated time, frequency, and non-linear domain features, 

supplemented by personalized characteristics such as age, height, and weight. The application of RNN and 

LSTM models yielded accuracy rates of 87% and 90%, respectively. Through GA optimization, we targeted 

key hyperparameters, including the number of units in the LSTM layer and the number of training epochs. 

The GA identified optimal settings of 45 units in the LSTM layer and 49 epochs, achieving a significant 

improvement in stress detection accuracy, reaching 92%. Our analysis indicated that the training time per 

step decreased, suggesting efficient convergence, while stress detection accuracy improved steadily over 

epochs, demonstrating the model's effectiveness in learning from physiological data. These findings 

underscore the potential of genetic algorithms in optimizing hyperparameters for LSTM models, 

contributing to advancements in personalized mental health monitoring and intervention strategies.As 

Future work remedies can be suggested, and a wider population can be used for real-life experiments. 

Incorporating additional physiological and environmental data sources, such as skin conductance, body 

temperature, and ambient noise levels, could improve the robustness and accuracy of stress detection. 
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Abstract

The suggested queueing model describes a single-server feedback retrial queueing system with starting
failure, Bernoulli working vacation and vacation interruptions. The server departs on a working vacation
as soon as orbit is empty. During the working vacation period, the server provides a slower level of service.
The supplementary variable method was utilized to determine the steady-state probability-generating
functions for the system and its orbit. If there are consumers in the system at the end of each vacation,
the server becomes idle and ready to serve new customers. The average busy time and the average busy
cycle are presented as important system performance indicators. Additionally, the adaptive neuro-fuzzy
interface system has compared the numerical results with the neuro-fuzzy results. Finally, particle swarm
optimization (PSO) were utilized to obtain the best (optimal) cost for the system in this study. We have
examined the convergence of these optimization strategies.

Keywords: Retrial queues, Feedback, Supplementary variable technique, Starting Failure and
Working Vacation,ANFIS.

1. Introduction

In a queueing system (QS), queues involving continuous tries occur when a consumer comes
and identify the server is occupied. The client is instructed to leave the service region and join
a virtual area referred to as the ’orbit’. Subsequently, the customer within the orbit can make a
service request after a period of time. In a vacation periods, the server halts its service entirely,
becoming unavailable to the primary clients for a short duration, which is termed a "vacation."
However, during the working vacation (WV) period, the server provides services to consumers,
albeit at a reduced service rate. Also, the server’s vacation may be ignored if customers arrive
during the vacation period, and the server may resume operation in its regularly scheduled
manner. It is known as the vacation interruption(VI) strategy. Major uses for this QS include
delivering network services, online services, file transfer services, mail services and so on. A more
realistic RQ with feedback happens in many real-world scenarios; for instance, in multiple-access
telecommunications systems, where data returned as failures is forwarded again, it may be treated
as a retrial queue with feedback.

1.1. Survey of Literature

In an M/G/1 retrial queue (RQ) with general retrial times, consumers who find the server
busy join the orbit according to the first-come,first-served (FCFS) principle as studied by Gomez-
Corral [1]. Such an instance occurs in certain communication protocols, in production lines at
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stores, etc. The RQ has been extensively studied by Falin and Templeton [2], Artalejo and Corral
[3], Artalejo [4], etc. Many authors have investigated a single server retrial queue (SSRQ) with
WVs and VIs,including Zhang and Hou [16], Gao and Liu [6], Gao et al. [5], Zhang and Liu [22],
and Rajadurai et al. ([7], [8], [9]). Mokaddis et al.[10] explored the M/G/1 retrial queue with
Bernoulli feedback,Starting Failure (SF) and a single vacation (SV). Clients in orbit connect to the
server via FCFS discipline, and an arbitrary distribution is assumed for the retry time. The server
goes on vacation when there are no clients on the system. If the server comes back from vacation
and there are no consumers, it waits for the first client to arrive on the system from the outside.

Krishna Kumar et al.[11] researched a RQ with feedback and a server exposed to SF, as well as
a general stochastic decomposition rule for M/G/1 vacation models. Rajadurai [12] investigated
a single server preemptive priority RQ based on Bernoulli working vacation (BWV) and VIs.
Rajadurai et al.[13] explored a SSRQ system with BWV and VI. Performance indicators and
analytical illustrations are provided. Jain and Kumar [26] analyzed bulk arrival general service
RQ subject to balking, feedback and vacation interruption under multiple WV policy. Pazhani
Bala Murugan and Keerthana [27] investigated an M/G/1 feedback RQ with WV and a waiting
server. Keerthiga and Indhira [28] examined SSRQ with two phases of service for retrial customers.
Agarwal et al. [29] discussed detection of optimal WV service rate for retrial priority G-queue
with immediate Bernoulli feedback. Rachita Sethi et al.[17] researched a threshold-based repair
facility for machining systems with a WV approach. WV was established to allow repairmen
to offer service at a reduced rate as opposed to entirely discontinuing operations. The idea of
F-policy is used to govern its arrival in the system. The implementation of a threshold N-policy
to start the repair reduces the system’s cost. Performance measurements are computed utilizing
the 4th-order Runge-Kutta approach, and the numerical findings obtained are compared to the
adaptive neuro fuzzy inference system (ANFIS).

Charu Bhargava and Madhu Jain [18] studied the “Modelling and Analysis of a Markovian
multi server queue with an (e,d) SV procedure, server failures and repairs". Some stationary
performance indicators are established after service completion using the matrix geometric
technique. Additionally,the direct search method is utilised to estimate the best no. of idle,
vacationing, and total no. of servers at the most affordable price. Also, the acquired numerical
outcomes have been compared using a soft computing technique (SCT) based on an ANFIS.
Radhika Agarwal et al.[19] analyzed the performance metrics that are used in improving service
standards using the SVT and compared the analytical outcomes to the neuro fuzzy outcomes
via the ANFIS (SCT). In addition, single and bi-objective minimization issues are explored with
minimum attained via “PSO and a multi-objective GA" respectively.

In this research, we have extended the work of Rajadurai et al. [13] by including the ideas
of feedback and SF. By using PSO, we have also performed a cost analysis of the model under
consideration. Because the suggested solution improves repeatedly and the system gives us the
best option that is feasible, this approach has gained a lot of reputation in recent years. When it
comes to queueing analysis, this technique may be used to get productive outcomes, whether
the goal is to save overall costs or maximize performance metrics. This framework aids in our
analysis of various real-world queuing scenarios, allowing us to enhance the customer experience.
To that extent, this article contributes. In areas with heavy traffic and congestion, this kind of
project is highly pertinent and beneficial.

To the best of author’s knowledge, there has been no previous research that has examined in
this work. Therefore, to fill up this gap, in this article, we consider the feedback RQ with WV and
VI subjected to server breakdown and repair. SVT has been used, and for some of the variables,
a 3D graphical representation has also been provided. To attain optimal operating conditions,
minimize expected costs, and maximize economic performance PSO a well-known meta-heuristic
technique are applied. The aforementioned framework may be used in a wide variety of situations,
including but not limited to: telephone switching, telecommunications, computer networks, online
ticket booking centers, aviation traffic control, quality control procedures, and inspection testing
of items. The purpose of this investigation is to estimate the queue length and orbit size dist.,
which will be implemented to calculate the system’s performance metrics.
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The following is an overview of our article: Section 2 provides a detailed discussion of the
queueing paradigm. Section 3 specifically determines the system’s steady state (SS) behavior
and the queue length’s PGF at a random epoch. Section 4 includes various substantial indicators
of system behavior. Section 5 discussed particular cases. Sections 6 and 7 provide numerical
outcomes and cost optimization. Finally, Section 8 provides a conclusion and overview of the
study.

2. Model description

A comprehensive explanation of this framework is given below:

The arrival process: New customers join the system from the outside, according to a Pois-
son process (PP), at a rate of µ.

The retrial process: According to FCFS discipline, when a customer visits while the server
is occupied or unavailable, the consumer departs the service area and joins a group of blocked
clients known as “orbit." The server appears to be accessible to the clients at the front of the
orbit queue. Every customer’s successive inter-retrial duration’s are determined by an arbitrary
probability distribution function (PDF) B(x), with an associated density function (df) b(x) and the
“Laplace-Stieltjes transform" (LST) β∗(θ).

The service process: When a new or repeated consumers enters at the server while it’s idle,
the server promptly begins its regular service for the incoming customers. The service time fol-
lows a general dist., and PDF C(x), a df c(x), a LST α∗(θ) & the 1st and 2nd moments are C1 and C2.

The Bernoulli working vacation process: The server goes on a WV whenever the orbit is
empty, and the duration of this vacation follows an exponential dist., with a specified parameter
γ. If a consumer visits during vacation time, the server will continue to operate at a slower
service rate. The WV time is a slower-paced operating period. In the event that any clients in the
orbit reach the instant of service completion during the vacation time, the server will end the
vacation and return to its normally busy state, which is known as VI. On the other hand, if there
are no clients in the system at the completion of the vacation, the server rejoins the system and
waits to serve a new client with prob.r1 (SWV) or makes for another WV with prob. r2 = 1 − r1
(MWV). When a vacation is over and there are still consumers in its orbit, the server resumes
usual operation. During the WV period, the service time is determined by a general random
variable Hv with a dist., function Hv(t), LST H∗

v (φ) & the 1st and 2nd moments are h1 and h2,
respectively.

Feedback Procedure: After getting their normal services, dissatisfied customers have two options:
they may either exit the system with probability ω̄ = (1 − ω) or they can return to the orbit as
unsatisfied clients and get a service again with probability ω .

Starting Failure: The customer will almost definitely start receiving service right away if the
server is successfully activated. If the server is unable to start the service, the consumer exits the
service area, enters the orbit, and repeats the request for the service after some time. The server
is instantly repaired if a failure occurs. SF happens with prob. λ̄ and successful service begins
with prob.λ.

Repair Process: If the server fails to start, the repair process begins immediately. During
the repair process, the server refuses to serve external or repeat consumers. Repair times have a
distribution function I(x) and a corresponding density function i(x), and the first two moments
are I1 and I2, respectively.
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The system’s stochastic processes are considered to be independent of each other.

2.1. Practical justification of the recommended paradigm

The suggested scenario has beneficial applications in a telecommunications. For example,
we investigate a communication system designed for making reservations at restaurants. Let
us consider a scenario in which a restaurant uses a phone system to accept reservations and
provide a range of other services. client can use this system to reserve a table for themselves.
The supervisor who answers all calls is in charge of this phone system. The consumer is able to
pick up the phone (leave the system) or inquire regarding event reservations, purchase tickets
for an upcoming musical performance, etc. after reserving a table. A caller must reaffirm their
reservations if there is a possibility of a misinterpretation stemming from an unclear network
or other related difficulties (feedback). When the manager is occupied overseeing other areas of
the restaurant, he is unable to answer calls (vacation mode). In these circumstances, the junior
manager often serves, albeit somewhat more slowly (WV).In this stage, the supervisor returns
right away (i.e., a vacation interruption happens) if there are any calls in the system after the
phone call is over (at service completion). However, the supervisor continues to take care of
other restaurant-related matters if no calls come in after completing his secondary work (vacation
mode). It is likely that when a consumer calls, the line is busy and that the client will call back
after some period of time (retrial). It is possible that during a phone conversation, a bad signal,
inadequate network coverage, or a virus attack (SF) might occur, causing the client to lose service.
Once the communication system’s signal is repaired, it functions flawlessly.

3. Scrutiny of the steady state probabilities

In steady state (SS), we presume that B(0) = 0, B(∞) = 1, C(0) = 0, C(∞) = 1, and Hv(0) = 0,
Hv(∞) = 1, I(0) = 0,I(∞) = 1, are continuous at φ̃ = 0. So that the function η(φ̃), ζ(φ̃), κ(φ̃),
and υ(φ̃), are the hazard rates of the conditions (retrial, normal service,vacation and repair) are

η(φ̃)dφ̃ =
dB(φ̃)

1 −B(φ̃)

ζ(φ̃)dφ̃ =
dC(φ̃)

1 − C(φ̃)

κ(φ̃)dφ̃ =
dHv(φ̃)

1 −Hv(φ̃)

υ(φ̃)dφ̃ =
dI(φ̃)

1 − I(φ̃)

L(ξ) =


0, if the server is free
1, if the server is active period
2, if the server is operative mode on WV period
3, if the server is on repair

Thus, the state of the system B0(ξ),C0(ξ), H0
v(ξ), and I0(ξ) are required to construct a

bivariate Markov process {N(ξ); ξ ≥ 0 }, where L(ξ) belongs to the server stage (0, 1, 2, 3) based
on if the server is idle, typical operative period,slow service and repair time.

3.1. Ergodicity Condition

Let {ξσ; σ = 1, 2, ...} represent a series of epochs in which either a service time is reduced or
completed. Uσ = {L(ξσ+), X(ξσ+)} is a random vector sequence. The embedded Markov chain
generated by the RQ system. Its state space is S={0,1,2,3} x N.
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3.2. Theorem

The embedded Markov chain {Uσ; σϵN} is ergodic iff ρ < B̄(µ) for our system to be stable, where
ρ = λµC1 + λ̄(1 + µI1) + λω.

3.3. System of governing equations

For the procedure {N(ξ), ξ ≥ 0}, we specify the prob., ϕ0(ξ) = P{L(ξ) = 0, X(ξ) = 0} and
χ0(ξ) = P{L(ξ) = 1, X(ξ) = 0} the probability densities,
χσ(φ̃, ξ)dφ̃ = P{L(ξ) = 1, X(ξ) = σ, φ̃ ≤ B0(ξ) < φ̃ + dφ̃},

for ξ ≥ 0, φ̃ ≥ 0 and σ ≥ 1.
Ψσ(φ̃, ξ)dφ̃ = P{L(ξ) = 2, X(ξ) = σ, φ̃ ≤ C0(ξ) < φ̃ + dφ̃},

for ξ ≥ 0, φ̃ ≥ 0, σ ≥ 0.
Λv,σ(φ̃, ξ)dφ̃ = P{L(ξ) = 3, X(ξ) = σ, φ̃ ≤ H0

v(ξ) < φ̃ + dφ̃},
for ξ ≥ 0, φ̃ ≥ 0 and σ ≥ 0.

Πσ(φ̃, ξ)dφ̃ = P{L(ξ) = 4, X(ξ) = σ, φ̃ ≤ I0(ξ) < φ̃ + dφ̃},
for ξ ≥ 0, φ̃ ≥ 0, σ ≥ 1.

In subsequent parts, the following probabilities are applied:

1. The prob., of the server being idle and on WV at time ξ is denoted by ϕ0(ξ).

2. The prob., of the server being idle and on typical active period at time ξ is denoted by χ0(ξ).

3. If there are accurately σ clients in the orbit at time ξ and the elapsed retrial time of the test
clients undergoing retrial is between φ̃ and φ̃ + dφ̃, then the prob., that this is the case is
χσ(φ̃, ξ).

4. When there are σ consumers in the orbit, the prob., of the test customer’s elapsed regular
service time ranging between φ̃ and φ̃ + dφ̃ is Ψσ(φ̃, ξ).

5. Λv,σ(φ̃, ξ)dφ̃ and Πσ(φ̃, ξ)dφ̃ is the prob., that there are precisely σ patrons in the orbit,
with the elapsed (reduced service time and repair time) of the test patron being between φ̃
and φ̃ + dφ̃ at time ξ.

Suppose that the sequel fulfills the stability condition, thus we can provide χ0 = limξ→∞χ0(ξ)
and limiting densities are
χσ(φ̃) = limξ→∞χσ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 1.
Ψσ(φ̃) = limξ→∞Ψσ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 0.
Λv,σ(φ̃) = limξ→∞Λv,σ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 0.
Πσ(φ̃) = limξ→∞Πσ(φ̃, ξ) for φ̃ ≥ 0 and σ ≥ 1.

Applying the SVT, we create the following system of equations.
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µχ0 = γr1ϕ0 (1)

(µ + γ)ϕ0 = γr2ϕ0

∫ ∞

0
Λv,0(φ̃)κ(φ̃)dφ̃ +

∫ ∞

0
Ψσ(φ̃)ζ(φ̃)dφ̃ (2)

d
dφ̃

χσ(φ̃) + (µ + η(φ̃))χσ(φ̃) = 0, σ ≥ 1 (3)

d
dφ̃

Ψ0(φ̃) + (µ + ζ(φ̃))Ψ0(φ̃) = 0, σ = 0. (4)

d
dφ̃

Ψσ(φ̃) + (µ + ζ(φ̃))Ψσ(φ̃) = µΨσ−1(φ̃), σ ≥ 1 (5)

d
dφ̃

Λ0,v(φ̃) + (µ + γ + κ(φ̃))Λ0,v(φ̃) = 0, σ = 0. (6)

d
dφ̃

Λσ,v(φ̃) + (µ + γ + κ(φ̃))Λσ,v(φ̃) = µΛv,σ−1(φ̃), σ ≥ 1. (7)

d
dφ̃

Π0(φ̃) + (µ + υ(φ̃))Π0(φ̃) = 0, σ = 0. (8)

d
dφ̃

Πσ(φ̃) + (µ + υ(φ̃))Πσ(φ̃) = µΠσ−1(φ̃), σ ≥ 1. (9)

At φ̃ = 0 the steady state boundary conditions are as follows:

χσ(0) = ω̄
∫ ∞

0
Ψσ(φ̃)ζ(φ̃)dφ̃ + ω

∫ ∞

0
Ψσ−1(φ̃)ζ(φ̃)dφ̃ + ω̄

∫ ∞

0
Λv,σ(φ̃)κ(φ̃)dφ̃

+ ω
∫ ∞

0
Λv,σ−1(φ̃)κ(φ̃)dφ̃ +

∫ ∞

0
Πσ(φ̃)υ(φ̃)dφ̃ (10)

Ψ0(0) = λ
∫ ∞

0
χ1(φ̃)η(φ̃)dφ̃ + λµ̄χ0 + γ

∫ ∞

0
Λ0,v(φ̃)dφ̃, σ = 0 (11)

Ψσ(0) = λ
∫ ∞

0
χσ+1(φ̃)η(φ̃)dφ̃ + λµ

∫ ∞

0
Ψσ(φ̃)dφ̃ + γ

∫ ∞

0
Λσ,v(φ̃)dφ̃, σ ≥ 1 (12)

Λv,σ(0) =

{
µϕ0, σ = 0
0, σ ≥ 1

(13)

Π1(0) = λ̄
∫ ∞

0
χ1(φ̃)η(φ̃)dφ̃ + λ̄µχ0 (14)

Πσ(0) = λ̄
∫ ∞

0
χσ(φ̃)η(φ̃)dφ̃ + λ̄µ

∫ ∞

0
χn−1(φ̃)dφ̃, σ ≥ 2 (15)

The normalizing condition is

χ0 + ϕ0 +
∞

∑
σ=1

∫ ∞

0
χσ(φ̃)dφ̃ +

∞

∑
σ=0

∫ ∞

0
Ψσ(φ̃)dφ̃ +

∞

∑
σ=0

∫ ∞

0
Λσ,v(φ̃)dφ̃ (16)

+
∞

∑
σ=1

∫ ∞

0
Πσ(φ̃)dφ̃ = 1
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3.4. The steady state solution

The PGF is used to compute the steady state solution for the RQ model. To solve the aforemen-
tioned equations, the generating functions for |ϑ| < 1 are described as below:

χ(φ̃, ϑ) =
∞

∑
σ=1

χσ(φ̃)ϑσ; χ(0, ϑ) =
∞

∑
σ=1

χσ(0)ϑσ;

Ψ(φ̃, ϑ) =
∞

∑
σ=0

Ψσ(φ̃)ϑσ; Ψ(0, ϑ) =
∞

∑
n=0

Ψ0(0)ϑσ; i = 1, 2

Λv(φ̃, ϑ) =
∞

∑
σ=0

Λv,σ(φ̃)ϑσ; Λv(0, ϑ) =
∞

∑
σ=0

Λv,σ(0)ϑσ;

Π(φ̃, ϑ) =
∞

∑
σ=1

Πσ(φ̃)ϑσ; Π(0, ϑ) =
∞

∑
σ=1

Πσ(0)ϑσ

Next multiply the SS eqn. and SS boundary conditions from (3) to (15) by ϑσ and adding over σ,
(σ = 0, 1, 2, ...)

∂

∂φ̃
χ(φ̃, ϑ) + [µ + η(φ̃)]χ(φ̃, ϑ) = 0 (17)

∂

∂φ̃
Ψ(φ̃, ϑ) + [µ(1 − ϑ) + ζ(φ̃)]Ψ(φ̃, ϑ) = 0 (18)

∂

∂φ̃
Λv(φ̃, ϑ) + [γ + µ(1 − ϑ) + κ(φ̃)]Λv(φ̃, ϑ) = 0 (19)

∂

∂φ̃
Π(φ̃, ϑ) + [µ(1 − ϑ) + υ(φ̃)]Π(φ̃, ϑ) = 0 (20)

Solving the partial differential eqns. (17) to (20), we obtain

χ(φ̃, ϑ) = χ(0, ϑ)[1 −B(φ̃)]e−µφ̃ (21)

Ψ(φ̃, ϑ) = Ψ(0, ϑ)[1 − C(φ̃)]e−F (ϑ)φ̃ (22)

Λv(φ̃, ϑ) = Λv(0, ϑ)[1 −Hv(φ̃)]e−Fv(ϑ)φ̃ (23)

Π(φ̃, ϑ) = Π(0, ϑ)[1 − I(φ̃)]e−F (ϑ)φ̃ (24)

where F (ϑ) = µ(1 − ϑ), Fv(ϑ) = γ + µ(1 − ϑ)

Multiplying equation (10) and (12,13,15) by appropriate powers of ϑ, adding over n with few
mathematical manipulations, we obtain

χ(0, ϑ) = (ω̄ + ωϑ)
∫ ∞

0
Ψ(φ̃, ϑ)ζ(φ̃)dφ̃ + (ω̄ + ωϑ)

∫ ∞

0
Λv(φ̃, ϑ)κ(φ̃)dφ̃ (25)

+
∫ ∞

0
Π(φ̃, ϑ)υ(φ̃)dφ̃ − (µ + γr1)ϕ0

Ψ(0, ϑ) =
λ

ϑ

∫ ∞

0
χ(φ̃, ϑ)η(φ̃)dφ̃ + λµ

∫ ∞

0
χ(φ̃, ϑ)dφ̃ + γ

∫ ∞

0
Λv(φ̃, ϑ)dφ̃ + λµχ0 (26)

Λv(0, ϑ) = µϕ0 (27)

Π(0, ϑ) = λ̄ϑµ
∫ ∞

0
χ(φ̃, ϑ)dφ̃ + λ̄

∫ ∞

0
χ(φ̃, ϑ)η(φ̃)dφ̃ + ϑµλ̄χ0 (28)

Using eqn (21,23 and 27) in eqn (26)

Ψ(0, ϑ) = λχ(0, ϑ)

[
ϑ + (1 − ϑ)B̄(µ)

ϑ

]
+ µϕ0V(ϑ) + λγr1ϕ0 (29)
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Similarly using equation (21) in (28)

Π(0, ϑ) = ϑγr1λ̄χ0 + λ̄χ(0, ϑ)[ϑ + (1 − ϑ)B̄(µ)] (30)

Substituting equations (22),(23) and (24) in (25), we obtain

χ(0, ϑ) = (ω̄ + ωϑ)Ψ(0, ϑ)C̄(F (ϑ)) + (ω̄ + ωϑ)Λv(0, ϑ)H̄v(Fv(ϑ)) + Π(0, ϑ)Ī(F (ϑ))− µϕ0 − γr1ϕ0
(31)

Using equations (27),(29) and (30) in equation (31)

χ(0, ϑ) = ϑ


(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (32)

substituting equation (32) in (29) and (30),we obtain

Ψ(0, ϑ) =


λ[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0][ϑ + (1 − ϑ)B̄(µ)] + µϕ0V(ϑ) + λγr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]


(33)

Π(0, ϑ) =


λ̄[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0] + ϑλ̄γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (34)

Substituting equations (27) and (32) to (34) in (21) to (24)

χ(φ̃, ϑ) = ϑ


(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (35)

× [1 −B(φ̃)]e−µφ̃

Ψ(φ̃, ϑ) =


λ[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0][ϑ + (1 − ϑ)B̄(µ)] + µϕ0V(ϑ) + λγr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]


(36)

× [1 − C(φ̃)]e−F (ϑ)φ̃

Λv(φ̃, ϑ) = µϕ0[1 −Hv(φ̃)]e−Fv(ϑ)φ̃ (37)

Π(φ̃, ϑ) =


λ̄[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0] + ϑλ̄γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (38)

× [1 − I(φ̃)]e−F (ϑ)φ̃

RT&A, No 3 (79) 
Volume 19, September 2024

317



Keerthiga S,Indhira K
ANALYSIS OF SINGLE SERVER FEEDBACK RETRIAL QUEUE WITH
BERNOULLI WORKING VACATION AND STARTING FAILURE

3.5. Theorem

The stationary dist. of the no. of clients in the orbit while the server is free,normal operative
service, slow service and the prob. that the server is idle is described by ρ < B̄(µ) under the
stability condition

χ(ϑ) = ϑ



(ω̄ + ωϑ)ϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ) λ
µ γr1ϕ0C̄(F (ϑ))

+ ϑ λ̄
µ γr1ϕ0Ī(F (ϑ))− ϕ0 − γr1

µ ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]


(39)

× [1 − B̄(µ)]

Ψ(ϑ) =


λ[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0][ϑ + (1 − ϑ)B̄(µ)] + µϕ0V(ϑ) + λγr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (40)

× [1 − C̄(F (ϑ))]

µ(1 − ϑ)

Λv(ϑ) =
µϕ0V(ϑ)

γ
(41)

Π(ϑ) =


λ̄[(ω̄ + ωϑ)µϕ0[H̄v(Fv(ϑ)) + V(ϑ)C̄(F (ϑ))] + (ω̄ + ωϑ)λγr1ϕ0C̄(F (ϑ))

+ ϑλ̄γr1ϕ0Ī(F (ϑ))− µϕ0 − γr1ϕ0] + ϑλ̄γr1ϕ0

ϑ − [(ω̄ + ωϑ)λC̄(F (ϑ)) + ϑλ̄Ī(F (ϑ))][ϑ + (1 − ϑ)B̄(µ)]

 (42)

× [1 − Ī(F (ϑ))]

µ(1 − ϑ)

Proof. Taking the equations. (35) − (38) and integrating them with regard to φ̃ and ob-
tain the partial PGF’s χ(ϑ) =

∫ ∞
0 χ(φ̃, ϑ)dφ̃, Ψ(ϑ) =

∫ ∞
0 Ψ(φ̃, ϑ)dφ̃, Λv(ϑ) =

∫ ∞
0 Λv(φ̃, ϑ)dφ̃,

Π(ϑ) =
∫ ∞

0 Π(φ̃, ϑ)dφ̃,.

We can find the prob. that the server is free by using the normalisation condition (χ0) and (ϕ0)
by establishing functions as, when there is no consumer in the orbit ϑ = 1 in (3.39)− (3.42) and
using the “L’Hospital rule" if it is required, we examine χ0 + ϕ0 + χ(1) + Ψ(1) + Λv(1) + Π(1) =
1. ■

3.6. Theorem

The stability constraint ρ < B̄(µ) used to determine the PGF of the no. of clients in the system
and the orbit size dist. at a stationary point in time is given by

Hs(ϑ) =
Nes(ϑ)

Des(ϑ)
(43)

H0(ϑ) =
Ne0(ϑ)

Des(ϑ)
(44)

Proof. The “PGF of the no.of consumer in the system (Hs(ϑ)) and in the orbit (H0(ϑ))" is
calculated by applying Hs(ϑ) = χ0 + ϕ0 + χ(ϑ) + ϑ{Ψ(ϑ) + Λv(ϑ)}+ Π(ϑ). and H0(ϑ) = χ0 +
ϕ0 + χ(ϑ) + {Ψ(ϑ) + Λv(ϑ)}+ Π(ϑ). Insert the eqns. (39)− (42) in the earlier results,then the
eqns. (43) and (44) may be computed immediately. ■
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4. Measures of system performance

This part calculates many appropriate system prob., system efficiency metrics, and signifies the
mean busy period and cycle that occur while the system is in various phases.

4.1. System state probabilities

By putting ϑ → 1 in equations. (39)− (42) and applying “L Hospital’s rule" wherever possible.
we obtain the following findings.
(i)Pr(The server being available for the duration of the retrial)

χ(1) = ϕ0[1 − B̄(µ)]



[[ µ
γ [1 − H̄v(γ)]− µC1[1 − H̄v(γ)]]− λ

µ γr1[ω + µC1]

+ λ̄
µ γr1[1 − µI1]

B̄(µ) + λω − λµC1 − λ̄(1 + µI1)


(45)

(ii)Pr(The server is operative on usual service period)

Ψ(1) =


ϕ0λC1[[[

µ
γ [1 − H̄v(γ)]− µC1[1 − H̄v(γ)]]]− λγr1[ω + µC1

+ λ̄γr1[1 − µI1] + µ[µH1 +
µ
γ [1 − H̄v(γ)]]]

B̄(µ) + λω − λµC1 − λ̄(1 + µI1)

 (46)

(iii)Pr(The server is on WV)

Λv(1) =
ϕ0µ[1 − H̄v(γ)]

γ
(47)

(iv)Pr(The server is under repair time during usual active period)

Π = Π(1) =


ϕ0λ̄I1[[[

µ
γ [1 − H̄v(γ)]− µC1[1 − H̄v(γ)]]]− λγr1[ω + µC1]

+ λ̄γr1[1 − µI1] + λ̄γr1]

B̄(µ) + λω − λµC1 − λ̄(1 + µI1)

 (48)

4.2. Average system size and its orbit

In a steady state, the system,
(i) Differentiating the equation (44) and the predicted no. of clients in the orbit (Lq) is established
with regard to ϑ and ϑ = 1.

Lq = H
′
o(1) = lim

ϑ→1

d
dϑ

Ho(ϑ) = ϕ0

[
Ne

′′′
q (1)De

′′
q (1)− De

′′′
q (1)Ne

′′
q (1)

3(De′′q (1))2

]
(49)

(ii) The predicted no. of clients in the system (Ls) is determined by differentiating the eqn. (43)
with regard to ϑ and giving ϑ = 1 yields.

Ls = H
′
s(1) = lim

ϑ→1

d
dϑ

Hs(ϑ) = ϕ0

[
Ne

′′′
s (1)De

′′
q (1)− De

′′′
q (1)Ne

′′
q (1)

3(De′′q (1))2

]
(50)

(iii) The mean waiting time of consumers in the system and queue [Ws and Wq] are computed

utilizing “Little’s method" Ws =
Ls
µ and Wq =

Lq
µ respectively.

RT&A, No 3 (79) 
Volume 19, September 2024

319



Keerthiga S,Indhira K
ANALYSIS OF SINGLE SERVER FEEDBACK RETRIAL QUEUE WITH
BERNOULLI WORKING VACATION AND STARTING FAILURE

4.3. Mean busy period and the busy cycle

Let A(Tb) and A(Tc) be the predicted sizes of the busy period and cycle, respectively under
steady state conditions. The outcomes are derived directly from the justification of a different
renewal procedure [5] , which concludes in

ϕ0 =
A(T0)

A(Tb) + A(T0)
; A(Tb) =

1
µ

(
1
ϕ0

− 1
)

; A(Tc) =
1

µϕ0
= A(T0) + A(Tb). (51)

where T0 is the period of time spent in the system’s null state. Because there is an exponential
difference in time between the arrivals of two customers and A(T0) = (1/µ) with the parameter
µ.

5. Particular Cases

We examine a few real-world examples of our technique that are consistent with the existing
research in this area.
Case (i): No feedback,No VI and No SF
If ω = 1,λ = 1, and γ = 0. The model may be lowered to a M/G/1 RQ with WV and the findings
match those of Arivudainambi et.al.[14]
Case (ii): No retrial, No feedback and No starting failure.
Let r2 = 0,ω = 1, λ = 1 and B̄(µ) → 1. our framework has been simplified to an “M/G/1 queue
with WVs and VI". Our results agree with Zhang and Hou [15].

6. Numerical Analysis

This section will demonstrate the different settings for system performance measures by using
MATLAB. We investigate exponentially distributed retrial, service, slower pace service, vacation
and repair periods. Numerical measurements are selected at random in order to fulfil the stability
criteria. Tables 1 to 3 provides assessed outcomes of the idle prob., χ0, ϕ0 the “mean queue size
(Lq), mean waiting time in the queue (Wq)" in our QM.
Table 1 shows that the retrial rate (η) escalates,χ0 escalates, but Lq, Wq decreases for the value of
ω = 0.19, µ = 0.9, λ = 0.8, γ = 3, H̄v(γ) = 0.9, r1 = 0.5.
Table 2 demonstrates that the vacation rate (γ) mounts,ϕ0 increases,Lq, Wq subsides for the value
of ω = 0.19, µ = 1.5, λ = 0.19, H̄v(γ) = 0.9, r1 = 0.9.
Table 3 clearly displays that feedback rate (ω) mounts, χ0, Lq, Wq diminshes for the value of
µ = 0.9, λ = 0.10, H̄v(γ) = 0.9, r1 = 0.19, γ = 0.9.

Table 1: The impact of Retrial rate (η) on χ0, Lq, Wq

Retrial rate (η) χ0 Lq Wq

2.0 2.0718 0.0883 0.0982
2.5 2.2132 0.0885 0.0984
3.0 2.3172 0.0821 0.0912
3.5 2.3969 0.0728 0.0809
4.0 2.4599 0.0621 0.0690
4.5 2.5110 0.0507 0.0564
5.0 2.5532 0.0391 0.0434

The Figure 1 (a) indicates that retrial rate (η) escalates, (Lq) and (Wq) increases. The
Figure 1 (b) displays that vacation rate (γ) escalates, (Lq) and (Wq) decreases. The Figure 1 (c)
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Table 2: The impact of Vacation rate (γ) on ϕ0, Lq, Wq

Vacation rate
(γ)

ϕ0 Lq Wq

0.31 0.3724 0.6878 1.3756
0.32 0.3756 0.4931 0.9863
0.33 0.3785 0.3460 0.6921
0.34 0.3811 0.2890 0.4780
0.35 0.3835 0.1658 0.3316
0.36 0.3857 0.1211 0.2422
0.37 0.3878 0.1005 0.2010

Table 3: The impact of Feedback rate (ω) on χ0, Lq, Wq

Feedback rate
(ω)

χ0 Lq Wq

0.10 0.8306 0.2211 0.2457
0.20 0.8269 0.2008 0.2231
0.30 0.8233 0.1812 0.2013
0.40 0.8197 0.1623 0.1804
0.50 0.8161 0.1443 0.1603
0.60 0.8125 0.1270 0.1411
0.70 0.8090 0.1105 0.1227

(a) Retrial rate η Vs Lq, Wq (b) Vacation rate γ Vs Lq, Wq.

(c) Feedback rate ω Vs Lq, Wq.

Figure 1: Effects of a few parameters on 3D representation.

demonstrates that feedback rate (ω) increases, (Lq) and (Wq) diminshes.
We may use the numerical findings above to determine the influence of features on the
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system’s assessment criteria with certainty, the outcomes correspond to actual circumstances.

6.1. ANFIS Computing

Using the fuzzy toolbox of MATLAB software, an ANFIS network can be executed to compare
outcomes from analyses. ANFIS, a soft computing approach, is an effective tool for identifying
important results that are useful in busy everyday environments. This approach aids in the iden-
tification of approximate solutions for measurements whose definite outcomes would otherwise
be difficult to determine.

In our framework, a neuro-fuzzy technique is used to compute the expected no. of consumers
in the queue (Wq) by changing the retrial rate (η), vacation rate (γ) and feedback rate (ω)),
as shown in the numerical results in Figure 2 (a − c). We consider the parameters (η, γ and
ω) as linguistic variables (LV) that are performed for four epochs each. The analytic (ANFIS)
outcomes are exhibited by the solid (dashed) lines. In the context of fuzzy systems, these factors
are regarded as LV and are used as input variables in ANFIS networks.

The Gaussian function provides the membership functions for each of these input variables.
The following are the linguistic values for each parameter: low, average, high, and excessive. The
diagrams demonstrate agreement between the analytical findings for the paradigm and the neuro
fuzzy results achieved through the ANFIS approach.

(a) Retrial rate η Vs Wq (b) vacation rate γ Vs Wq

(c) Feedback rate ω Vs Wq

Figure 2: Effects of a few parameters on 2D representation.(ANFIS)

7. Cost Optimization

Our research aims to maintain system accessibility while optimizing system costs. Con-
sequently, we establish the predicted cost function for system performance metrics and then
accomplish a numerical analysis of the machining system under study. In order to calculate the
best average cost per unit of time (TC), the parameters must be determined. This section discusses
the best cost construct for the suggested approach using the standard cost notation form, and it
provides the estimated total cost per unit of time as follows:
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ETC = ShLs + SbΨ + SvΛ + SrΠ + S1ζ + S2κ (52)

where,

• Sh = Holding cost per unit consumer.

• Sb = Cost per unit time while the server provides service during a usual busy period.

• Sv = Cost per unit time in the system when the server is on vacation.

• Sr = Cost per unit time for providing repair to the failed server.

• S1 = Cost per unit time consumer served by the mean service rate ζ.

• S2 = Cost per unit time consumer served by the mean vacation rate κ.

Equation (52) has an estimated total cost function that is multivariate and nonlinear. Therefore,
developing an analytical solution for optimal parameter values say ζ∗ and κ∗ is problematic.
In order to determine the most suitable numerical value for the decision parameters, the well-
recognised meta heuristic technique: The optimization approach used is called Particle Swarm
Optimization (PSO).

Choosing at random the present values for the cost element and the parameters are : µ = 0.05,
B̄(µ) = 4.5, λ̄ = 5.9, H̄v(γ) = 0.75, (ζ∗ = 0.3670, κ∗ = 0.3900).
Our goal is to identify the best values that will allow us to minimise the cost function. The five
sets of cost factors that we have chosen are listed below.

Table 4: Cost Sets values for different cost aspects

Cost sets Sh Sb Sv S1 S2 Sr
Set 1 $15 $75 $20 $19 $12 $10
Set 2 $20 $85 $25 $17 $19 $23
Set 3 $25 $95 $30 $15 $15 $29

Applying the PSO algorithm using MATLAB software to the previously specified cost factors.
In this research, we have 100 candidates, 500 iterations throughout, and a range of parameters
between 0.006 and 0.65 for the lower and upper bounds.
Tables 5 demonstrates that the effects of µ, ω, γ on TEC∗ using PSO.

Table 5: The PSO approach is executed by changing µ, ω and γ to determine the minimal cost for different cost sets.

Parameters (TEC∗)
Cost set 1 Cost set 2 Cost set 3

0.20 $75.1471 $59.7276 $66.7365
µ 0.25 $115.1554 $87.6434 $92.1116

0.30 $151.7660 $114.6657 $119.3708
1.00 $73.5533 $58.6272 $65.7761

ω 1.15 $74.5054 $59.2872 $66.3535
1.20 $74.8255 $59.5074 $66.5452
1.25 $78.6575 $61.4278 $67.9418

γ 1.30 $76.0953 $60.0313 $66.8629
1.35 $73.5533 $58.6272 $65.7761

By changing a few of the variables, we were able to determine the entire system’s cost, and we
found that for µ = 1.00, γ = 1.35 and (ζ∗ = 0.3670, κ∗ = 0.3900) the lowest cost was $58.6272.
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7.1. Particle Swarm Optimization

A precise evaluation of the QM is highly essential to offer adequate service and decrease
congestion with the increasing expansion of computer networking and communications. If the
greatest number of consumers can access an affordable system, then this is feasible. As a result,
solutions that incorporate cost optimisation are very beneficial and advised. Jain et al. [25]
and Jain and Meena [24] presented a cost investigation of a queueing model that includes an
unreliable server and vacation periods. Utilizing the particle swarm optimization (PSO) approach,
we have attempted to deal with the cost constraints in networking systems. This approach may
sort through a very vast number of possible solutions to identify the most appropriate one. PSO
has an additional benefit over a variety of optimisation strategies in that it does not require the
objective function to be possible to differentiate.

Using this procedure, we first initiate a given population consisting of several particles or
candidates. These candidates are then forced to travel inside the search space while adhering to
the specified parameters and the goal function over their location and velocity. Every particle’s
fitness value is computed and to assess the values of the global best (gbest) and personal best
(pbest) in more detail. The new gbest value is the particle whose pbest value is greater than gbest.
This technique keeps on going until the predetermined number of iterations is reached. The
algorithmic rule for PSO was first proposed by Kennedy and Eberhart [20]. The price optimization
of a discrete-time RQ with SF utilizing this method has been examined by Upadhyaya [21]. Zhang
et al.[22] examined set up cost and numerical answers for a single server recurrent model with
state-dependent service using the PSO algorithmic approach. We have cited Malik et al.[23]
investigation as it pertains to the operation of the PSO and GA algorithm.

(a) Convergence in PSO (b) Expected Total Cost

Figure 3: (a)2D and 3D visualization of PSO optimization

7.2. Convergence in PSO

Convergence holds significant importance within meta-heuristic optimization algorithms,
representing the gradual improvement of potential solutions towards an optimal or near-optimal
solution. The convergence pattern of an algorithm reflects its efficacy in exploring the solution
space adeptly and moving closer to the global optimum. The findings from these figures suggest
that employing the concept of a working vacation enhances the system’s stability and reliability.
This is due to the consistent availability of the server during this period. When a machine fails,
the server responds quickly to the problem, but it provides a slower rate of service than when the
machine is operating normally. Within PSO, particles converge toward the most optimal solution
they are aware of, coming together as their movements become restricted and the finest solution
steadies. Fig 3(a) Demonstrates that PSO achieves convergence towards the optimal cost. Fig
3(b)Displays the convexity and optimality of the cost function concerning the cost sets utilized in
the optimization analysis.
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8. Conclusion

In this research, a single server feedback retrial queueing system with starting failures,
Bernoulli working vacations, and vacation interruptions was investigated. The number of
customers in the system and its orbit are used to find the PGFs. This is done by using the
“supplementary variable method". The average orbital queue length and the system average
queue length have precise expressions. Numerical examples are used to verify the analytical
conclusions. The mean busy period as well as other significant system performance indicators
are determined. Also,numerical outcomes are compared to ANFIS. We have demonstrated
how to optimize the functioning of a real-world service system using the PSO meta-heuristic
algorithm. This suggested paradigm may be used in communication networks, supermarkets,
management and production industries, etc. Basically, it is nearly impossible to construct a
paradigm in which the server never defects or deactivates in any of these enormous sectors. As a
result, this analysis is pertinent and in favour of scenarios in which a server can remain idle to
maximise the consumption of resources. This model’s construction helps to prevent the regular
overcrowding issues that networking and communication systems suffer. The suggested model
may be expanded in the future to incorporate other factors, such as modified vacation policy,
randomized policy, consumer impatience , priorities, and setup times.
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Abstract 

This research presents a solution in Multiple Input Multiple Output (MIMO) wireless systems to 

meet the growing demand for high data rates in cellular networks. Although MIMO systems offer 

greater capacity, the higher frequencies used have caused interference problems, especially for 

mobile User Equipment (UE). This research aims to reduce interference problems in the downlink of 

Multi-user MIMO (MU-MIMO) systems, with a specific focus on improving Quality of Service 

(QoS) metrics, such as outage probability and Signal-to-Interference plus Noise Ratio (SINR). 

Existing solutions to these challenges are complex due to the dynamic nature of the factors involved 

in modelling real-world scenarios. As such, an Improved Downlink MU-MIMO (ID-MU-MIMO) 

algorithm is developed as a solution to these problems. The ID-MU-MIMO method employs both 

single antenna users and multiple transmitter antennas. The performance of the suggested 

algorithm is compared to the IEEE 802.11ax standard specification and a previous research work for 

validation and evaluation. Performance measures considered to aid validation included outage 

probability, spectrum efficiency, and communication connection reliability. On this premise, the 

outcomes showed that the proposed ID-MU-MIMO scheme outperforms both the IEEE 802.11ax 

standard and current MD-MU-MIMO systems. In particular, compared to IEEE 802.11ax, the ID-

MU-MIMO technique achieved a 7.71% reduction in interference. When compared to the 

performance of the random and uniform MD-MU-MIMO algorithms, the proposed ID-MU-

MIMO scheme showed a reduction in interference in percentages of 8.90% and 2.28%, 

respectively. The ID-MU-MIMO scheme outpermed the random and uniform MD-MU-MIMO 

algorithms in terms of Signal-to-Interference Noise Ratio (SINR), outperforming them by 4.27% 

and 2.75%, respectively, and resource block use, outperforming them by 20.05% and 3.89%, 

respectively.  

Keywords: ID-MU-MIMO, Interference, MU-MIMO, Resource Utilization, SINR 
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I. Introduction

The growing demand for wireless data, driven by the pervasive adoption of smart devices and 

mobile internet applications, is mirroring the exponential growth predicted by Martin Cooper's 

Law [1]. This law forecasts a doubling of wireless data usage every 2.5 years, a trend expected to 

accelerate in the coming years, with data rate requirements projected to surge by a staggering 

5,000-fold by 2030 [2]. To address this growing demand, Fifth Generation (5G) technology emerged 

as a game-changer, surpassing the capabilities of its predecessor, Fourth Generation (4G), to meet 

the escalating needs [3]. One of its primary objective, as outlined in [4], is to achieve near-

ubiquitous coverage while minimizing the likelihood of outages. This necessitates the 

development of innovative approaches that enhance spectral efficiency without compromising 

energy and bandwidth requirements [5]. Prominent standardization bodies, like the 3GPP and its 

affiliated groups, actively strive to establish standards that meet these objectives. These standards 

are designed to provide adaptable, easily accessible, and user-centric wireless data services, 

fulfilling the aforementioned commitments while adapting to evolving user requirements [6]. 

Consequently, technologies such as NOMA, massive MIMO, hybrid precoding, mm-wave, OFDM, 

beamforming, and D2D are utilized to enhance performance after data transmission [4], [7]. Since 

its inception in the era of 3G wireless networks, MIMO technology has continuously 

revolutionized the performance of wireless transceivers, enabling unprecedented data rates and 

spectral efficiency [8]. In cellular networks, base stations are categorized based on their ability to 

serve multiple User Equipment (UE) simultaneously, giving rise to SU-MIMO and MU-MIMO 

systems [9]. In SU-MIMO, the base station (BS) communicates with a single UE, transmitting one 

or more data streams using its antenna array. In contrast, MU-MIMO systems harness the power of 

BS antenna arrays to simultaneously broadcast multiple data streams to different UEs in distinct 

beams, sharing the same frequency resource without interference. mMIMO, a cutting-edge 

advancement of MIMO technology, leverages MU-MIMO principles to significantly enhance 

network capacity and user experience [10]. 

Recent research has delved into the downlink performance of MU-MIMO systems in 5G 

networks [11]. On this premise, this study focuses on improving downlink performance by 

analyzing MU-MIMO data transmission [12]. The categorization of user UE reception behavior 

based on inter-beam interference and the number of interference beams received is employed to 

achieve this improvement. Additionally, the network architecture is considered, and different 

scenarios within a specific time frame similar to the work of [13] are taken into account. These 

scenarios are influenced by users' mobility or stationariness relative to their sending and receiving 

devices. Although, several researcher have employed several systems to improve the downlink 

MU-MIMO systems, most of them are computationally complex. This complexity arises from the 

necessity of incorporating real-world factors such as interference, outages, consumption of energy, 

security, link reliability, and capacity limitations. Some of these factors stem from the shared 

utilization of the same frequency band by diverse technologies, including Bluetooth, Zigbee, and 

other WLAN systems [14]. To address these complexities, many studies have opted to trade-off 

computational complexity for in-depth analysis [10], [12], [15], or simplified factors like UE 

mobility to reduce complexity and focus on downlink Mu-MIMO [7]. To effectively serve the 

maximum number of UEs while considering their demands, locations, and mobility conditions, it 

is crucial to evaluate the available bandwidth, potential interference, and outage probability. This 

research, therefore, focuses on improving a downlink MU-MIMO technique for 5G networks that 

accounts for outage odds, enhances spectral efficiency, and strengthens link reliability. The rest of 

the paper discusses the followings: section 2 discusses literature that are related to the study. 

Section 3 delineates the methodology adopted in carrying out this research. Section 4 discusses the 

results obtained utilizing the ID-MU-MIMO algorithm. Section 5 concludes this paper. 
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II. Related Literature

This section reviews a few studies that have been shown to be helpful in enhancing Mu-MIMO's 

spectrum efficiency. Additionally, a summary of the methods employed by the assessed works to 

increase spectral efficiency, with a particular emphasis on Mu-MIMO outage mitigation, is 

discussed. With the knowledge gained from these works, this research was able to model an 

effective mechanism for MU-MIMO wireless communication system to limit outages in 5G and 

beyond wireless communications. 

The energy efficiency of mmWave large MIMO systems was demonstrated through authors 

[4] evaluation of achievable sum-rate. Compared to traditional digital precoding techniques that

assume a dedicated RF chain for each antenna and employ streamlined beamforming algorithms

like ZF and MRC, mmWave large MIMO systems exhibited significant sum-rate and power

reductions. The extended SOMP algorithm was proposed as a practical solution for hybrid

precoding optimization, and its performance was shown to be near-optimal compared to standard

MIMO. Massive MIMO technology has been found to significantly enhance system throughput

when combined with basic signal processing techniques. The BER performance of SM and SSK

schemes was analyzed, revealing that SM offers higher data rates but requires complex decoders

and is more susceptible to errors, while SSK offers lower data rates but requires simpler decoders

and exhibits lower BER. However, the impact of inter-beam interference was not considered in this

study, which could potentially limit the effectiveness of strategies aimed at improving spectral

efficiency.

The work of [15] explored the simultaneous alignment of Hermitian matrices representing 

desired signals and co-channel interference. Their approach simplified the analysis of critical 

performance measures like probability of outage, ergodic capacity, and spectral efficiency by 

leveraging joint unitary eigenvectors and their corresponding eigenvalues. These authors 

integrated digital baseband beamforming vectors into transmitter-side channel weight matrices, 

facilitating the representation of SINR in a standard quadratic form. Moreover, they devised a real 

scalar objective function to quantify the correlation loss linked with joint-diagonalization. 

Acknowledging the hardware limitations of mmWave systems, they employed baseband 

beamforming to optimize the objective function. The results delineated from the simulation 

showed that the proposed beamforming algorithm outperformed various nonlinear optimization 

methods in terms of time complexity and correlation assessment, surpassing, notably 

demonstrating efficiency in the "active-set" approach. While the targeted signal and co-channel 

interference were considered, inter-beam interference remained unaddressed. Moreover, the 

computational complexity was relatively substantial, potentially affecting the communication 

link's reliability. 

The increasing number of transmit antennas and planned users on the same frequency 

response led to a significant rise in the computing complexity of outage probability and coverage 

probability calculations, as observed by [12]. To assess the coverage performance of downlink 

cellular MU-MIMO networks, the authors proposed combining exponential functions to 

approximate the complementary cumulative distribution function of received signal gain. Prony's 

technique was employed to simplify the calculation of expectations related to intra-cell and inter-

cell interference. Simulation results based on this method indicated that downlink coverage 

probability remained unaffected by an increase in the number of base stations. While a key 

objective was to reduce the computational complexity of coverage probability determination, the 

method did not consider the SIR values of users connected to the same cell. These shortcomings 

are likely to hinder the method's performance in real-world scenarios. 

Digital federated learning and over-the-air compression techniques were employed in [16] to 

enhance signal processing optimization. The authors formulated problems tailored to user 
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demands while minimizing Mean Square Error (MSE) of parameter vectors. These problems were 

addressed using block coordinated descent-based iterative methods. Moreover, the authors 

optimized the precoding matrices of the over-the-air compression system. The proposed 

methodology demonstrated superior performance compared to the standalone digital federated 

learning scheme, particularly with increasing user participation. However, a drawback of this 

approach was its heightened computational complexity, which could potentially jeopardize the 

communication link's reliability. 

To enhance spectral efficiency and communication link reliability in MU-MIMO for 5G and 

future wireless systems [7], a mechanism was developed. Despite user demands, the system was 

designed to handle MU-MIMO in downlink with multiple antenna users, delivering optimal QoS 

to all the devices that are connected. Three user allocation scenarios were considered: random, 

uniform, and default allocation for antennas serving multiple users. The uplink and downlink 

were influenced by the random demand on these scenarios. Throughput utilization, network 

capacity, data rate for each device and the network, distances between users and antennas and 

from other devices, path loss, channel gain, and interference were additional variables estimated to 

model these scenarios. The uniform allocation algorithm outperformed default and random 

allocation algorithms in most trials, surpassing all three scenarios. In other words, RB utilization 

and SINR were more effective with uniform allocation. The authors did not consider user mobility, 

which could negatively impact communication link reliability in real-world scenarios. 

In their work [11], the authors introduced an innovative, low-complexity approach combining 

multi-beamforming and Maximal Likelihood-Multi-User Detection (ML-MUD). They utilized a 

Radix Factorization-based FFT (RF-FFT) and integrated sub-detector systems to significantly 

reduce complexity without compromising error rate performance. The proposed architecture, 

known as RF-FFT - Multi-Beamforming (RF-FFT-MBF), holds immense promise in mitigating 

hardware complexity, energy consumption, and fulfil the throughput needs of 5G devices. To 

showcase the efficiency of the scaled ML-sub detector system on the downlink, simulation results 

of this detector were compared against conventional ML detectors. The outcomes delineated that 

the proposed detector outperformed the conventional ML detectors in terms of hardware and 

energy efficiency, boasting minimal performance. 

Extensive research on downlink MU-MIMO systems has predominantly focused on ad hoc 

network topologies, with limited attention given to cellular networks and UE mobility. While some 

studies have explored cellular networks, they either disregard UE mobility or employ 

computationally demanding approaches. Despite significant efforts to address interference, 

throughput, SINR, outage probability, spectral efficiency, and link communication reliability, 

challenges like interference and high computational complexity persist. This research presents an 

improved MU-MIMO Downlink mechanism for 5G and beyond wireless cellular networks, 

leveraging on the work of [12]. The proposed mechanism is expected to enhance spectral 

efficiency, link communication reliability, as well as reduce the probability of outage in 

comparison to existing systems. Section 3 outlines the methods and system model designed to 

achieve these goals. 

III. Methodology

The development process for the Improved Downlink MU-MIMO Downlink (ID-MU-MIMO) 

scheme is described in this section. The methods used for developing the system model for the ID-

MU-MIMO algorithm are explained in subsections I to V. 
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I. ID-MU-MIMO Algorithm
Building upon the foundations established in [7] and [12], this work adopts a hybrid approach that 

merges techniques from both works to address the limitations of [7], namely its overlook for UE 

mobility, while simultaneously reducing computational complexity. The proposed ID-MU-MIMO 

algorithm is the culmination of these considerations. To achieve these objectives, this work 

expands the network scenarios for UEs beyond those presented in [7] by introducing two 

additional network case scenarios, which are represented in the steps outlined below. 

II. Defining the Mobile and Stationary Events of UEs at the Start of Each Time

Frame
In a real-world setting, it is assumed that UE distribution throughout a coverage region is random. 

Inter-beam interference and the quantity of received interference in a MU-MIMO broadcast are 

both impacted by the mobility status of the UEs within the coverage area. According to published 

findings, measuring the state of a channel continuously would probably be computationally 

challenging because the channel's state, the power delivered, etc., are all dynamic. As such, the 

data transfer to UEs is taken into account within a time frame to reduce this complexity. It is 

assumed, based on the literature, that the channel's condition and transmitted power will remain 

constant over this time. In this work, certain premises are adopted. It is simpler to look into co-

channel and inter-beam interference at this specific time. A closed form outage probability 

assessment of an instantaneous MU-MIMO transmission is also permitted by this consideration. In 

light of the aforementioned, this work considers the placement of UEs in a coverage area to be 

randomly allocated according to Spatial Poisson Point Process (SPPP) with intensity (ϰ). The set of 

BS are represented as S(ϰ) = {Bi}, where Bi is the position of the BS, at an instant in time, i. 

The received signal of the receiving UE, k, in the MU-MIMO data transmission phase is 

mathematically stated as follows [14, 17]: 
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 Where 𝑦𝑘 represents the received signal by UE, k, 𝑃𝑡 denotes the power transmitted by k, 𝑇𝑘 

denotes the BS, 𝒉𝑘𝜖ℂ𝑁𝑡×1 represents the channel gain vector between the k and 𝑇𝑘, 𝒈𝜏,𝑘𝜖ℂ1×1

represents the channel gain vector between the k and 𝜏, 𝑺𝑘𝜖ℂ𝐾×1 signifies the transmitted symbol

from the BS, 𝑛𝑘 denotes the AWGN with zero mean and variance of 𝜎2, √
𝑃𝑡

𝐾
𝐷𝑘

−𝛽
𝒉𝑘

𝐻𝒘𝑘𝒔𝑘 denotes

the desired signal, ∑ √
𝑃𝑡

𝐾
𝐷𝑘

−𝛽
ℎ𝑘

𝐻𝒘𝑗𝒔𝑗𝑗𝜖𝐾,𝑗≠𝑘 denotes the inter-beam interference signal, 

∑ √𝑃𝑡|𝑍𝜏|−𝛽𝑔𝜏𝑘𝑠𝜏𝜏𝜖𝛷 𝑇𝑘⁄  depicts the co-channel interference signal.

 The presence or absence of inter-beam interference for a receiving UE, k, is subject to the 

variations, that is, the change or stationariness the channels of the wireless experiences with 

respect to the location of the BS during the time period. In the case of stationary UEs, the 

orthogonality of the beams ensures the elimination of inter-beam interference. However, for 

moving UEs, their own beams interfere with other beams, and the beams of stationary UEs 

interfere with the beams of moving UEs. To evaluate the performance of MU-MIMO transmission, 

we characterize the UE behaviour based on the occurrence and intensity of inter-beam interference. 

By defining a set of events that represent different UE behaviours, we simplify calculations and 

gain insight into the impact of inter-beam interference on MU-MIMO performance. The beam of a 

motionless UE interferes with the beams for M moving UEs when the event ℋ2 with 0<M<K 

occurs, but the beam of a moving UE interferes with the beams for K-1 UEs. In light of this, the 
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proposed measurement of the instantaneous received SINR for stationary and moving UEs is 

denoted as event ℋ2
𝑠 and ℋ2

𝑚, respectively [12].

Case One 

 In this case, which is referred to as ℋ1 both the UEs in the MIMO system are stationary during 

the considered time frame. 

Case Two 

Event ℋ2 refers to a circumstance in which the UEs are mobile within the time period. For this 

event 𝑀(1 < 𝑀 ≤ 𝐾). Since a mobile user was present at every time point in the study period, 𝑀 ≥

0 in this instance. The probability that the instantaneous received SINR falls below the required 

SINR threshold is called the outage probability of a MU-MIMO transmission. The predicted 

probability of outage is given as in (2) as delineated in the work of [12]. 
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where ℘(ℋi) denotes the likelihood of the event ℋi occurring and 𝜉𝑘,ℋ𝑖
𝑠

𝑖𝑛𝑠  signifies the

instantaneous SINR received by k at the time of the event  ℋi. However, an event when both the 

UE and the BS station are mobile is not taken into account in this work's total of the outage 

probability weighted by the likelihood of defined occurrences. As a result, only a total of  ℋ2 

events, as identified in cases one and two, can be accommodated by the probability of weighted 

events ℋi, which is decreased (i-1) as a result. The requirements as they apply to scenario one take 

into account the likelihood that the UE and the gNB are stationary, and as a result M=0. The second 

event, on the other hand, takes into account a scenario in which the UE is mobile and the gNB is 

stationary. In this case, 𝑀 ≥ 0 since a UE is always mobile at any point in the time fame 

considered. 

 When the two aforementioned events are taken into account and applied to the system chosen 

for this study, the events reduce from ℋ3 to ℋ2, and the influence on the outage probability sum 

multiplied by the probabilities of the defined events in (2) results in (3). 

2 2

2exp

, ,1

2 2, ,

( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( )

)
i

S m

ins ins

k thres i k thre i Ki

ins m ins

thres thresK H K H

thres
P H H

H H

 
   

   


      

      
 


   (3) 

The implications of the lower weighted sum affect both the performance factors that are examined 

and the probability of events. 

III. System Model
To model the occurrences ℋ1 and Η2

𝑀, it is crucial for this study to first replicate the MD-MU-

MIMO scheme model before modifying it to take the mobility of the UEs into account. When 

taking into account the UEs' mobility, care must be given to elements that could raise the 

likelihood that a UE would suffer a loss of signal quality or be unable to establish a trustworthy 

connection because of elements like interference, fading, and channel circumstances. The term 

"outage probability" is used to describe this likelihood. When simulating the MD-MU-MIMO 

scheme, it is crucial to keep in mind that Mu-MIMO gives a great capacity boost by utilizing 

multiple antennas and supporting single-antenna users without the need to increase network 
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bandwidth. Literature studied earlier reveal that the integration of multiple antennas at the 

communication terminals significantly enhances the communication system's spectral efficiency 

and ensures a more reliable communication link. A MIMO system typically uses several broadcast 

and receive antennas. Each antenna, while intended to receive specific components of the signal, 

also captures indirect components intended for other antennas on the same channel. To maximize 

system performance, data intended for transmission is divided into separate, independent data 

streams, a number that is typically equal to or less than the number of available antennas. This 

design results in a linear increase in system capacity as the number of flows grows, aligning with 

the principles described in the Shannon-Hartley theorem for MIMO, denoted as (4) [7]. 

2
log 1

S
C MB

N
 

 
 
 

     (4) 

where C is the channel capacity in bps, B is the bandwidth in Hz, S is the average received signal 

power in Watts, and N is the average power of the noise in Watts. The maximum feasible data rate 

of a system is obtained by multiplying the number of pulse levels (M) by the system bandwidth 

and the base 2 logarithm of the SNR + 1 [7]. 

 2
log 1

S
MaxDR B

N
     (5) 

In contrast, the Maximum Data Rate (MaxDR) rises roughly linearly when the SNR is low. 

Although, simply aiming for a high SNR is not very effective; a better strategy involves dividing 

the SNR throughout the streams, which multiplies the maximum data rate that can be transmitted. 

One method to achieve this distribution is through spread spectrum techniques like Code Division 

Multiple Access (CDMA), which spread the signal over a broader bandwidth. MU-MIMO 

technology enhances system capacity and communication reliability. MU-MIMO is particularly 

advantageous for the uplink since UE employs just a single antenna for transmission, reducing 

complexity. This work aims to leverage multiple antennas at both the user and base station (BS) 

ends of the communication link to enhance the achievable spectral efficiency and overall reliability 

of the communication system and link. Spectral efficiency (SE) refers to the total amount of data 

transmissions that can occur over a given bandwidth within a cell of a cellular network. The cell 

throughput, expressed in bit/s/Hz, is obtained by multiplying the SE by the bandwidth. Since the 

bandwidth is fixed, increasing cell throughput is the preferable solution. For the system to 

simultaneously support the maximum number of UEs within a cell while maintaining the same 

bandwidth, it is crucial to achieve higher spectral efficiency. The spectral efficiency of 5G New 

Radio (NR) (bits/sec/Hz) can be approximated as follows [7]: 

( )

( )

Throughput bps
SE

Channel Bandwidth Hz
    (6) 

 It is essential to follow the 3GPP standard suggestion in order to get accurate results from the 

computed spectral efficiency in a network. This involves doing an extensive throughput 

calculation that takes into account a variety of factors, including the bandwidth, number of MIMO 

layers, modulation type, and frequency range. Only one aggregated component carrier is required 

in order to guarantee reliable results. Following that, the channel bandwidth must be divided by 

the throughput. A variable number of users are served by 25 antennas that make up the ID-MU-

MIMO architecture. The 5G NR Frequency Radio 2 (FR2) type's user count varies depending on the 

deployment environment. As a result of the proposed topology's consideration of both micro cells 

and metro cells, micro cells can accommodate a maximum of 256 users, whilst metro cells can 

accommodate more than 250 people. The objective of this ID-MU-MIMO technique is to determine 
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the optimal number of UEs that should be scheduled and served per cell within the network to 

maximize spectral efficiency. However, multi-cell systems create difficulties that require a variety 

of criteria and parameters for validation of results. The simulation takes into account several 

different variables, including pilot allocation, hardware, hardware configuration, and block 

lengths. In the simulated network design, the UL and DL transmission modes have a substantial 

impact on UE performance. 

In an MU-MIMO system, UE equipped with 𝑀𝑎 single antennas is connected to the BS using N

antennas during the downlink. Different processing strategies are taken into consideration, 

including Zero-Forcing (ZF), Maximum Ratio (MR) combining/transmission, and full-Pilot ZF (P-

ZF) strategy. In a fully distributed coordinated beamforming system, the P-ZF actively suppresses 

inter-cell interference. The usage of the same matrix for scheduled users who are in the waiting list 

is made possible by the assumption that each scheduled user's precoding matrix is almost similar. 

Additionally, every UE engages in single-user identification, and its bit rate is determined by its 

bandwidth and Signal-to-Noise Ratio (SNR), where 𝑓𝑙  is essentially a function that characterizes

the performance of the link [7]. 

( )
b l

R B F SNR     (7) 

 This work addresses the complexities of multi-cell systems and considers various features and 

processing algorithms in the simulated network topology, with the ultimate goal of optimizing 

network performance. The SINR(x) function allows the definition of SINR based on the user's 

location. Spectral efficiency at a UE location is determined by the relationship between the bit rate 

and the user bandwidth at that location. Each BS serving a cell allocates subcarriers of the total 

bandwidth to individual users based on the methodology described above. This assignment 

ensures that different users within the same cell, served by the same BS, receive different subsets of 

subcarriers. Consequently, since each BS transmits at a constant power, users within the cell 

experience interference from their respective base stations. 

Modifying the above equations to consider events (ℋ2
𝑀) that take into account the mobility of

the UEs 

𝐶 ≤ 𝑀𝑎𝐵 log2 (1 + 𝜉𝑘,ℋ2
𝑚

𝑖𝑛𝑠 )    (8) 

where 𝜉𝑘,ℋ2
𝑚

𝑖𝑛𝑠  is defined as Eq. 8 
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where 𝑃𝑡 𝐾⁄ 𝐷𝑘
−𝛽

 represents desired signal power, |𝒉𝑘
𝐻𝒘𝑘|2 denotes the squared magnitude of the

channel coefficient between the transmitter and the intended receiver, multiplied by the squared 

magnitude of the weight vector for the intended user, 𝜎2 represents noise power, 

𝜙 ∑ (𝑃𝑡 𝐾⁄ )𝐷𝑘
−𝛽

|𝒉𝑘
𝐻𝒘𝑗|

2
𝑗𝜖𝑈 represents the interference caused by other users in the system, and 

∑ 𝑃𝑡|𝑍𝜏|−𝛽|𝑔𝜑,𝑘|
2

𝜏𝜖𝛷 𝑇𝑘⁄  represents the interference caused by other cells in the system, particularly 

focusing on the antennas in those cells that interfere with the intended receiver. 

As such, the MaxDR computed is defined as in Eq. 10 

𝑀𝑎𝑥𝐷𝑅 = 𝐵 log2 (1 + 𝜉𝑘,ℋ2
𝑚

𝑖𝑛𝑠 )  (10) 

Furthermore, the definition of spectral efficiency (SE) is as follows: 
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exp

( )

tot
iTh

SE
Channel Bandwidth Hz

  (11) 

Since the proposed expected throughput  exp

totiTh  proposed is denoted in Eq. 12 as: 

𝑖𝑇ℎ𝑟𝑡𝑜𝑡
𝑒𝑥𝑝

= ∑ (℘(ℋ1)𝑇ℎ𝑟𝑘,ℋ1

𝑒𝑥𝑝 + ℘(ℋ2)(℘(ℋ2
𝑠)𝑇ℎ𝑟

𝑘,ℋ2
𝑠

𝑒𝑥𝑝 + ℘(ℋ2
𝑚)𝑇ℎ𝑟

𝑘,ℋ2
𝑠

𝑒𝑥𝑝 ))𝐾
𝑘=1    (12) 

As such, substituting (12) into (11) yields: 

         
 

1 2 2

exp exp e

1

xp

, 2,
1

2 ,2 s m

K

k k k

s

k

m
Thr Thr Thr

SE
Channel Bandwidth Hz



   




 (13) 

While the resource block usage is given in Eq. 14 as: 

𝑅𝑏 = 𝐵 × 𝐹𝑙 (𝜉𝑘,ℋ2
𝑚

𝑖𝑛𝑠 )  (14) 

Equation (8) to (14) form some of the fundamental algorithms used to model the ID-MU-MIMO 

algorithm. 

 Equation (15) provides the estimated probability of outage for the instantaneous MU-MIMO 

transmission. The average of the outage probabilities for the cases of the UEs’ events is known as 

the expected outage probability. 

2 2

2exp

, ,1

2 2, ,

( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( )

)
i

S m

ins ins

k thres i k thre i Ki

ins m ins

thres thresK H K H

thres
P H H

H H

    

   


      

      
 


 (15) 

Where 𝑃𝑘
𝑒𝑥𝑝

(𝜉𝑡ℎ𝑟𝑒𝑠) is the outage probability (𝑃𝑜𝑢𝑡𝑎𝑔𝑒) based on a given threshold (𝜉𝑡ℎ𝑟𝑒𝑠),

℘(ℋi) represents the probability of event ℋi  given as 𝑃(𝑀) and 𝜉𝑘,ℋ𝑖
𝑠

𝑖𝑛𝑠 depicts the 

instantaneous received SINR of the receiving node (k) when the event ℋi occurs given as 

𝑃((𝑆𝐼𝑁𝑅 <  𝜉𝑡ℎ𝑟𝑒𝑠) | 𝑀). 

The ramifications of the reduced weighted sum impact the probability of events and the 

performance factors measured. Outage probability represents the probability that a wireless 

communication link will fail due to various factors, including interference and signal quality. 

Equations (16) and (17) evaluate the PDF on event ℋ𝑖  using equations (16) and (17). 

   
1

1

frame

K
T

state
P e





          (16) 

Where ℘(ℋ1) represents the outage for ℋ1, 𝑃𝑠𝑡𝑎𝑡𝑒  is a parameter denoting the probability that a 

specific state (e.g., a certain channel state or interference level) occurs during the communication. 

𝑒−𝜃𝑇𝑓𝑟𝑎𝑚𝑒  denotes the exponential function where 𝑇𝑓𝑟𝑎𝑚𝑒  represents the duration of time for which

the communication is observed. And 𝐾 + 1 is the exponent that models the outage probability for 

K+1 receiving users. 
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     
1

2 1frame frame
K M M

T T

state stateP e P e
 

 
 

           (17) 

Equation (17) models the outage probability for a more complex scenario where there are K+1 

users in the MU-MIMO system, and it depends on the probability of a specific state (𝑃𝑠𝑡𝑎𝑡𝑒), the 

time duration (𝑇𝑓𝑟𝑎𝑚𝑒), the number of users (K+1), and the Mobile UEs. These equations are crucial 

for assessing the system's performance and understanding the probability of outage in complex 

wireless scenarios. 

These equations are the equations for the PDFs on event ℋ𝑖 . The PDFs are the probabilities that the 

UEs are in good or bad channel condition, given that the UEs are in event ℋ𝑖 . The outage 

probability of instantaneous MU-MIMO transmission using the appropriate equation, depending 

on the value of ϕ. If ϕ = 0, then the outage probability is obtained using equations (18). 

 
   

 ,

0

1
! K CCI

t
m mN K

ins

k thres m
m

I

d
P

m d 











    (18) 

Where ℒ𝜌𝐼𝑘,𝐼𝐵𝐼
(𝜔) signifies the Laplace transform of the interference seen by user K due to Inter

Block Interference (IBI), scaled by 𝜌. Equation (16) combines both IBI and ICI to compute the 

outage probability for 𝜉𝑡ℎ𝑟𝑒𝑠. It quantified the probability that 𝜉𝑡ℎ𝑟𝑒𝑠 experiences by the k-th user 

when it falls below the defined 𝜉𝑡ℎ𝑟𝑒𝑠 due to interference. 

To enhance the pragmatism of the simulation studies, additional complex channel models that 

account for realistic propagation conditions, including Non-Line-of-Sight (NLOS) components and 

variable mobility patterns were considered by further modifying the Laplace transforms ℒ𝜌𝐼𝑘,𝐼𝐵𝐼
(𝜔)

and ℒ𝐼𝑘,𝐶𝐶𝐼
(𝜔). As such, the parameter 𝜌𝑁𝐿𝑂𝑆 was introduced to capture the effects of NLOS

components and 𝑓𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) was introduced to represent the mobility patterns of users over time 

(t). Hence, the redefined Laplace are: 

    
, ,

.
K IBILOS I K IBI

LOS I t


   (19) 

      , ,
, .

K CCI K CCI mobility
t I t f t   (20) 

Hence, equation (18) is redefined as: 

 
   

       
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. .1
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m mN K
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m

K IBI
NLOS I I t f t

d
P

m d
t











    (21) 

IV. Algorithm of the ID-MU-MIMO Scheme
The ID-MU-MIMO algorithm is defined in Algorithm 1. The network design in the algorithm takes 

into account the mobility states of the user equipment. The MU-MIMO system's overall 

performance in a realistic environmental context is significantly influenced by the movement of the 

user equipment. Consequently, the suggested network model regards UEs as being distributed at 

random over the BS's coverage area. Both of the ID-MU-MIMO algorithm's cases are delineated in 

Algorithm 1. The first event denoted as ℋ1 indicates that the UEs are immobile at the start of a set 

time frame and do not move during the duration not less than 𝑇𝐹𝑟𝑎𝑚𝑒 . The second scenario, ℋ2 
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considers the movement of the UE during 𝑇𝐹𝑟𝑎𝑚𝑒 . The input parameters required to simulate and 

model the network topology of the wireless cellular network encompass the variables associated 

with mobility events. In the case of UEs linked to the gNB, the work assesses the mobility state of 

these events prior to calculating the resource block of each user. Concerning the two states, the 

resources are computed for one in which the effects of interference are removed, that is, where 𝜙 =

0 and another in which the interference is considered, that is, 𝜙 = 1. Whether inter-beam 

interference is taken into account or not, the goal of this modification is to reduce processing time. 

An outage in the network would be less likely using the suggested ID-MU-MIMO mechanism. 

Algorithm 1 ID-MU-MIMO algorithm 

Input ℋ𝑖 , 𝑇𝐹𝑟𝑎𝑚𝑒 , i,  ℋ2
𝑠 and ℋ2

𝑚

Input Modulation type, bandwidth, Number of MIMO layers, Bandwidth, frequency range 

Output Outage probabilities, spectral efficiency 

1: For spatial distribution of users at time instant, 𝑈𝑖 in the simulated network topology are 

uniformly or randomly distributed 

2:     For each 𝑈𝑖 

3         If i is connected 

4    For each 𝑈𝑖 trying to connect 

5  Utilizing Eq. (6) and Eq. (12), determine the maximum data rate the UE is capable 

of achieving 

6   i ++ 

7    End for 

8         Else 

9    i ++ 

10    Evaluate the expected outage probability using equation Eq. (3) 

11    Compute PDF on events ℋ𝑖  

12          If 𝜙 = 0 

13     Compute outage probability 

14     Determine the RB’s for each user using Eq. (6) 

15         Else 

16         If 𝜙 = 1 and 0 < M < K 

17    Compute outage probability 

18   Compute each user’s RB using Eq. (12) 

19         End if 

20         End if 

21       End if 

22 End for 

23 For each cell topology 

24     Calculate BSs power allocated to the connected users 

25     Contrast performance with existing approach 

26     K++ 

27     End for 

28 End for 

V. Simulation Parameters
The simulation parameters adopted for the ID-MU-MIMO mechanism are presented in Table 1. 

These values are used to evaluate the performance of the conventional IEEE 802.11ax approach, the 

mechanism for downlink MU-MIMO, and the modified ID-MU-MIMO mechanism adopted in this 

research. 
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Table 1: Extracted Parameters [7, 12] 

Parameters Values 

Bandwidth, B 160MHz 

Capacity speed, 𝑉𝑐 3.39 Gb/s 

Carrier bandwidth, 𝐵𝑐 400MHz 

Downlink rates 20Gbps 

Link rate 867Mbps 

Path loss exponent 4 

Mobile receiving nodes 1, K/2, K 

Receiver noise power -32dBm

Resource block frames, DL 275 

Resource block frames, UL 275 

Number of discrete rates 4 

Average time interval 1s 

Scenario 4 antennas AP 

SINR threshold -30dB

Sub Carrier Spacing 120KHz 

Users for each scenarios 200, 250, 300 

Distance between Tx and Rx, 𝑅𝑥 100m 

IV. Results and Discussion

A thorough overview of the study's results is provided in this section by the presenting findings 

and their impacts. 

I. Interference vs Users
Figure 1 represents the effect of interference as it affects the performance of the UEs in the MU-

MIMO system. The events considered to weigh the impact are  
1

1 M K   and 
2

M
 at 

(0 )M M K  where 
1

 represents the event where the UEs are stationary and
2

M
 represents

the events where some or all of the receiving UEs (K) are mobile. The impact of this event as 

applied in the developed scheme, the IEEE 802.11ax scheme, the random MD-MU-MIMO scheme 

and the uniform MD-MU-MIMO scheme are represented in Figure 1. In all schemes, both the BS 

and UEs deployed are considered to be stationary. For the receiving UEs, inter-beam interference is 

present or absent depending on whether the wireless channel changes with the UE’s locations 

overs the predetermined time period. Orthogonality of beams and the elimination of inter-beam 

interference are both possible because all nodes are kept fixed throughput the time period. Since 

the ID-MU-MIMO algorithm takes the mobility of the UEs into consideration, it examines the 

event 
2

M
 where some nodes can be fixed and others mobile. Here, 0<M<K is appropriate.

Therefore, K-1 UEs in the system could cause inter-beam interference with mobile UE (M). For 

both IEEE 802.11ax and the MD-MU-MIMO system, user deployment of 200, 250, and 300 are 

taken into account consistently. For the ID-MU-MIMO algorithm, the UEs are randomly deployed 

and this is also considered for one of the deployment scenarios for the MD-MU-MIMO scheme. 
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Figure 1: Interference vs Users 

The performance of the designed ID-MU-MIMO scheme is shown in Figure 1, and it takes into 

account the aforementioned deployment situations as well as the UEs’ mobility in order to model 

the system to actual environmental settings. The IEEE802.11ax algorithm and the existing MD-MU-

MIMO algorithm did not take the UE’s mobility into account. Figure 1 shows that, for the existing 

random MD-MU-MIMO algorithm, interference values decreased from 14.4% to 13.5% between 

the use cases distributions of users from 200 to 250, and for the IEEE 802.11ax values, interference 

values decreased from 13.5% to 13.1%. The source of this behaviour is a change in the measured 

distances between users placed in the network due to the random spatial deployment of users. As 

a result, there will inevitably be fluctuating channel conditions that could either raise or decrease 

interference for network users, as evidenced by the work's random reduction of interference. 

However, it is typically noted that when the number of users deployed in the system increases, 

interference of the system within the provided time frame generally increases for the system. In 

comparison to the IEEE 802.11ax protocol, the percentage gains in interference for the random and 

uniform distributions of users, respectively, were found to be 4.98% and 5.55% from the results 

obtained per use case scenario taken into account for the users. Additionally, comparing the ID-

MU-MIMO method to the IEEE 802.11ax scheme, interference was also improved by 7.71%. The 

percentage reductions obtained for the designed and existing schemes both demonstrated that they 

outperform the current IEEE 802.11ax system. When compared to the results of the random and 

uniform MD-MU-MIMO algorithms, the created ID-MU-MIMO scheme demonstrated interference 

reduction in percentages of 8.90% and 2.28%, respectively. 
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II. SINR vs Users

Figure 2: SINR vs Users 

In maintaining the conditions for 𝐻1 and 𝐻2
𝑚, Figure 2, illustrates the change in SINR, which

revealed a considerable increase in SINR percentages from 11.0% to 14.9% in the IEEE 802.11ax 

values between the use case distributions of users from 200 to 250. This is probably caused by the 

low SINR. As a result, the maximum data rate rises approximately linearly. However, focusing just 

on high SINR percentages is ineffective because there is a greater likelihood of signal overlap and 

interference when more users broadcast at the same time while using the same time and frequency 

resources. Additionally, it was found that the performance of the random user deployment over a 

rising user count remained steady in this iteration of the SINR performance for the MD-MU-MIMO 

scheme. The interference as seen in this iteration of the simulation is probably low relative to the 

noise, which is the likely explanation for this stability as the focus is on the receiving UEs rather 

than the transmitting BS. As a result, the noise power and channel gain, which are unaffected by 

the user count, dictate the SINR. In comparison to the IEEE 802.11ax method, percentage gains in 

SINR of 23.45% and 27.43% for the random and uniform distribution of users, respectively, were 

seen from the findings produced per use case scenario taken into account for the users. 

Additionally, as compared to the IEEE 802.11ax system, the ID-MU-MIMO technique 

demonstrated a SINR improvement of 22.55%. The percentage reductions obtained for the 

designed and existing schemes both demonstrated that they outperform the current IEEE 802.11ax 

system. When the performance of the new ID-MU-MIMO scheme was compared to that of the 

random and uniform MD-MU-MIMO algorithms, the SINR was reduced by percentages of 4.27% 

and 2.75%, respectively. 
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III. Resource Block Usage vs Users

Figure 3: Resource Block Usage vs Users 

In Figure 3, the results obtained per use case scenario considered for users, percentage 

improvements of 11.65% and 28.63% were observed in the use of resource blocks for random and 

uniform distribution of users respectively, compared to the IEEE 802.11ax scheme. Furthermore, 

the ID-MU-MIMO scheme showed a 25.87% improvement in interference compared to the IEEE 

802.11ax scheme. The percentage reduction obtained from the existing and developed scheme 

showed that both improve over the existing IEEE 802.11ax scheme. The developed ID-MU-MIMO 

scheme showed a reduction in resource usage of 20.05% and 3.89% compared to the performance 

of the random and uniform MD-MU-MIMO algorithm, respectively. 

V. Conclusion
Using a closed-form outage probability of a discrete time frame of MU-MIMO transmission, this 

work presented an effective mechanism for downlink MU-MIMO for 5G networks. This work 

examined the interference, SINR, and resource block usage over a specified time period, the outage 

probability of the receiving UEs in a specified area, and spectral efficiency in a modified MU-

MIMO system to confirm the model's performance. The outcomes showed that the proposed ID-

MU-MIMO scheme outperforms both the IEEE 802.11ax standard and current MD-MU-MIMO 

systems. In particular, compared to IEEE 802.11ax, the ID-MU-MIMO technique achieved a 7.71% 

reduction in interference. When compared to the performance of the random and uniform MD-

MU-MIMO algorithms, the proposed ID-MU-MIMO scheme showed a reduction in interference in 

percentages of 8.90% and 2.28%, respectively. The ID-MU-MIMO scheme outpermed the random 

and uniform MD-MU-MIMO algorithms in terms of SINR, outperforming them by 4.27% and 

2.75%, respectively, and resource block use, outperforming them by 20.05% and 3.89%, 

respectively. Future work is recommended to examine how a use case scenario of increasing the 

number of receiving UEs (K) can impact the probability of outage over a defined time frame and 

over a defined area, as well as determining the spectral efficiency under the conditions considered 

for a higher number of receiving UEs. Additionally, Machine Learning (ML) approaches can be 

adopted to modify the ID-MU-MIMO algorithm to dynamically adjust to varying network 

conditions and UE densities in real time to maximize performance under varying conditions. 
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Abstract 

Process capability analysis is a valuable tool in quality assurance, but deviations from normal 

distribution necessitate adjustments to basic process capability indices. Process control literature 

offers solutions for non-normality, with data transformation being a common approach. The Box-

Cox transformation (BCT) is often used to normalize non-normal data, relying on maximum 

likelihood estimation (MLE) to determine the transformation parameter, lambda. Alternative 

methods exist for estimating the single transformation parameter lamda, employing goodness-of-fit 

tests instead of the MLE method. This study explores two expressions within the Box-Cox 

transformation (BCT), encompassing both optimal and rounded values of lambda. The primary goal 

is to identify an effective method for transforming non-normal data into a distribution closer to 

normality through goodness-of-fit tests, aiming to obtain accurate estimates for process capability 

analysis in alignment with six sigma standards. Furthermore, this study focuses on the influence of 

utilizing both optimal and rounded values of lambda when transforming non-normal data to 

normal, and how these lambda values impact the estimates of process capability analysis. The 

findings reveal that methods such as Shapiro-Wilk's (SW) and Artificial Covariate (AC) 

outperform the MLE method. Moreover, employing the optimal lambda value during data 

transformation leads to improved estimates of process capability. Data simulation and analysis were 

conducted using Minitab software and the R programming language. 

Keywords: Goodness of fit tests, Box-Cox Transformation, Asymmetric, MLE, 

Lognormal distribution, Six sigma. 

I. Introduction

Process capability indices (PCIs) are essential tools in quality control, commonly utilized across 

manufacturing industries to ensure processes meet required standards. Process capability analysis 

(PCA) evaluates how effectively a manufacturing process adheres to specified targets. However, 

traditional PCIs assume a normal distribution, which may inaccurately assess non-normal 

processes. Kane (1986) suggests that transforming data to preserve a somewhat normal 

distribution improves the accuracy of process capability analysis [5]. Empirical studies have shown 

that transformed data yields superior results compared to original data [4]. Based on many 

literature surveys transformation methods, especially for non-normal distributions like Lognormal 

and Weibull, consistently outperform Non-Transformation (NT) methods. NT methods are 

inadequate for assessing process capability when distributions deviate significantly from normal 

[15]. Hence, transformation methods are preferred, as they provide more reliable assessments, 
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even for distributions distanced from normality. 

In process capability analysis (PCA), the variability of a process is measured using the 

standard deviation. This variability can be divided into short-term and long-term variations. Short-

term variability is determined by the estimated standard deviation obtained from random sample 

observations, which is then used in calculating process capability indices. On the other hand, long-

term variability is assessed for computing process performance indices. Consequently, capability 

indices are computed using short-term variation, while performance indices utilize all data points, 

considering long-term variation. The commonly used capability indices are denoted as Cp and 

Cpk, while the respective performance indices are represented as Pp and Ppk. Various methods for 

handling non-normality in calculating process capability indices are discussed in [13]. Among 

these, the most widely applied indices in the manufacturing industry are the process capability 

index Cp and process capability ratio Cpk, as shown in Table 1 below, along with their respective 

performance indices. Here, 𝑥  denotes the sample mean, USL refers to the upper specification limit, 

and LSL indicates the lower specification limit. 

Table 1: Process Capability and Process Performance Indices 

Process capability indices Process performance indices 

Cp =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎𝑊

Cpk = min (CPU, CPL) 

𝐶𝑃𝑈 =
𝑈𝑆𝐿− 𝑥 

3𝜎𝑊
,    𝐶𝑃𝐿 =

 𝑥 − 𝐿𝑆𝐿

3𝜎𝑊

Pp =
𝑈𝑆𝐿−𝐿𝑆𝐿

6𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙

Ppk = min (CPU, CPL) 

𝑃𝑃𝑈 =
𝑈𝑆𝐿− 𝑥 

3𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙
,  𝑃𝑃𝐿 =  

 𝑥 − 𝐿𝑆𝐿

3𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙

In [2], researchers employed the method of maximum likelihood estimation (MLE) to 

determine the optimal parameter λ in the Box-Cox transformation. Other approaches to the MLE 

methods, which rely on goodness of fit tests (specifically normality tests), were developed in [1], 

[3], [9], [10] and [14]. Through an examination of the impact of transforming non-normal data into 

normal data using different goodness of fit tests, [3] illustrated that the MLE method for estimating 

the λ parameter in BCT could be biased and inefficient. Furthermore, as indicated in [18] 

employing various goodness of fit tests instead of the MLE method for estimating the BCT 

parameter λ leads to improved estimates of process capability and process performance for non-

normal data. The effectiveness of different goodness of fit tests was also assessed in [3] using 

various error measures, estimates of process capability and process performance indices, and 

defective parts per million (PPM) products. The results of different goodness of fits tests are 

recorded and presented to help the practitioner to choose the method which will produce the 

improvised results in various asymmetric situations, viz., low, moderate and high. Thus, the 

objectives of this paper is to examine the effectiveness of the different goodness of fit tests 

involving transformation of non-normal data into normal data using BCT and to recommend a 

superior test that will produce higher values of process capability with minimum of error and PPM 

values particularly, for lognormal distribution. Additionally this paper focuses on the impact of 

optimal and rounded value of transforming parameter λ in BCT. It also verifies whether the 

proposed method produce the results within the standard of six sigma level.  

II. Methodology

Converting non-normal data into a normal distribution is a common practice when observed data 

fail to meet normality assumptions. Several methods are employed for this purpose in practical 

applications, including Johnson’s system of transformation (JST), Box-Cox transformation (BCT), 

and Rosenblatt transformation (RT). While both JST and BCT approaches are effective, BCT is 

generally preferred over JST, particularly in situations where computer-assisted analysis is 
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available, as it tends to outperform other methods [12]. Additionally, BCT is noted for its superior 

accuracy and precision compared to the JST method. BCT offers a range of power transformations 

designed to optimally normalize specific variables. According to [2], the BCT method transforms 

non-normal data into normal data for positive response variable x, as expressed below: 

𝑥𝜆 =  
𝑥𝜆− 1

𝜆
, 𝑓𝑜𝑟 𝜆 ≠ 0

log 𝑥, 𝑓𝑜𝑟 𝜆 = 0

    (1) 

It may be noted that since an analysis of variance is unchanged by a linear transformation, the 

expressions given (1) is equivalent to 

𝑥𝜆 =  
𝑥𝜆 , 𝑓𝑜𝑟 𝜆 ≠ 0

log 𝑥, 𝑓𝑜𝑟 𝜆 = 0
    (2) 

The form (1) is slightly preferable for theoretical analysis because it is continuous at λ = 0, 

refer [2]. The major effort in Box-Cox transformation is connected to the transformation X to Xλ, 

with the parameter λ possibly a vector describing a specific transformation. A single transforming 

parameter λ is the main source of dependence for this family of transformations, and its value is 

determined using maximum likelihood estimation [2].  

The results of the earlier studies presented in the literature, particularly in [1], [6], [9], [10], 

[13], [14], [15] and [17] would be useful to understand the significance of tests of goodness of fit 

while transforming non-normal data into normal data. The estimation of λ is done through various 

goodness of tests for normality, that are available in the literature, which includes tests, such as 

Shapiro - Wilk (SW), Anderson Darling (AD), Cramer Von Mises (CVM), Pearson Chi-square (PC), 

Shapiro - Francia (SF), Lillefors (Kolmogorov - Simirnov) (LT / KS), Jarque - Bera (JB), and artificial 

covariate method (AC). Additionally, Minitab Transformation (M_T) is included in the evaluation, 

which employs a rounded value of λ compared to the optimal value of λ used in goodness-of-fit 

tests. Since, the choice of the value for lambda (λ) in a Box-Cox transformation might have a 

significant impact on the result of process capability or process performance analysis. [9] Shows 

that the test based on SW statistic is a powerful test of normality for a variety of non-normal 

distributions, the SW statistic is reliable for small samples and in regression applications, the 

statistic would yield higher R2. It is asserted in [6] that the test based on SW statistic is the most 

powerful test for non-normal distributions. According to [18], the current MLE technique could be 

effectively substituted by using goodness of fits tests in Box-Cox transformation to get data close to 

normal as possible and achieving desired results in estimating process capability analysis. 

III. Lognormal Distribution

The log-normal distribution is a probability distribution of a random variable whose logarithm is 

normally distributed. When the logarithm of a log-normal distributed variable is taken, it results in 

a normal distribution. However, when looking at the original data itself, it doesn't follow a normal 

distribution. It typically exhibits skewness and can have a long tail on one side. It's often used to 

model phenomena where the logarithm of the variable is normally distributed, such as stock 

prices, incomes, and certain biological measurements. 

f  x  μ, σ) =  
1

xσ 2x
e− (In x − μ)2  /(2σ)2

   (3) 

Where, 

x>0 is the value of the random variable.

µ is the mean of the natural logarithm of the variable.

σ is the standard deviation of the natural logarithm of the variable.
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The mean and variance of the log-normal distribution is given by 

E(x) =  eµ+ 
σ2

2    (4) 

V(x) =  eσ2
−  1 . e2μ+ σ2

 (5) 

The lognormal distribution was examined at various asymmetric levels, characterized by 

different mean and standard deviation pairs: (0, 0.25), (0, 0.50), and (0, 1). These parameter sets 

were grouped to evaluate the impact of low, moderate and high asymmetry in transforming non-

normal data to normal data and conducting process capability analysis. Figure 1 illustrates the 

shape of the density function for each parameter set. 

Figure 1: The asymmetric behavior of lognormal distribution used for simulation study 

IV. Numerical Illustrations

The log normal distribution is applicable to a wide range of non-normal processes because it is 

capable of generating a variety of distinct curves based on its parameters. A log-normally 

distributed random variable only accepts positive real values. It is an easy-to-use model that can be 

applied to measurements in the exact sciences, engineering, medicine, economics, and other fields 

(such as energies, concentrations, lengths, prices of financial instruments, and other metrics). For 

simulation set-up, the data set of the size is taken as 100 and generated using different asymmetric 

levels of lognormal distribution. The lower and upper specification limits were taken as 0.01 and 

10. The defined specification limit in this study of process capability analysis might be appropriate

in certain situations where the process parameter being analyzed is bounded by very low values

and 0.01 represents a meaningful lower limit for the process output. Here are some scenarios

where these specification limits could be reasonable such as chemical concentrations, precision

engineering, analytical instruments, environmental monitoring, biomedical applications and so on.

The study evaluates the effectiveness of the method using a combination of box plots, 

descriptive statistics, measures of errors (Bias, Percentage Bias, Median Absolute Error (MdAE), 

Root Mean Square Error (RMSE)), and radar charts. Due to space limitations, only error measures 

and radar plots are included. Bias, MdAE, and RMSE serve as error metrics for transforming non-

normal data into normal data using various goodness-of-fit tests in Box Cox transformation. After 

transformation, the data are utilized to estimate process capability and performance index, aiding 

in the selection of the most effective approach among different goodness-of-fit tests.  

A process is considered to be under six sigma controls if both process capability and 

performance indices such as Cp and Cpk and Pp and Ppk are greater than or equal to 2 and 1.5, 

respectively. In the automotive industry, a Cpk value of 1.33 is used as a benchmark for assessing 

process capability.  According to Pearn W.L. and Chen K.S. (2002), a process is considered 
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inadequate if its process capability index (PCI) is less than 1.00, capable if PCI is between 1.00 and 

1.33, satisfactory if PCI is between 1.33 and 1.50, excellent if PCI is between 1.50 and 2.00, and 

super if PCI is equal to or greater than 2.00 [7]. As outlined by Sibalija TV and Majstorovic VD 

(2010), the primary objective for quality and industry practitioners is to achieve 6σ limits, with a 

corresponding defect rate of 3.4 PPM associated with the process [11]. One may refer to [8] and [16] 

for the details on the concepts of six-sigma tools and process capability analysis for non-normal 

data, respectively. Table 2 displays the process fallout in defective parts per million products 

alongside the proportion of good items and PPM values for different sigma levels. 

Table 2: Process fallout in defective parts per million with respect to different sigma levels 

Sigma Level Percentage PPM Values 

6 99.9997% 3.4 

5 99.98% 233 

4 99.4% 6,210 

3 93.3% 66,807 

2 69.1% 308,537 

1 30.9% 691,462 

I. Low Asymmetric Distribution

The simulation study focuses on utilizing a low asymmetric lognormal distribution with a 

skewness of 0.36 and 0.63, where the mean and standard deviation are 0 and 0.25, respectively. To 

assess the effectiveness of various methods in transforming non-normal data into a normal 

distribution, two sets of data are analyzed. One with a Skewness (Sk) of 0.36 and another with a 

skewness of 0.63. For the dataset with ln(0, 0.25)(1), methods like M_T, PT, LT, and JB transforms 

data more like a normal distribution with fewer errors. Likewise, for the dataset with ln(0, 0.25)(2), 

methods such as SF, JB, SW, AC, and MLE are transforms data getting closer to a normal with 

fewer errors. For further details, refer to Table 3 and Figure 2. Subsequently, the transformed data 

from different goodness-of-fit tests are used to estimate process capability/performance. This 

analysis helps identify the most effective method for handling non-normal, low asymmetric 

distributions.  

Table 3: Various measures of error values for low asymmetric data after the data transformation 

All the methods of data transformation used in this study results within the standard of six 

sigma but the only few methods produces better estimates of Pp/Cp and Ppk/Cpk, such methods 

are CVM, AC, MLE, SF, SW and AD for data set ln(0, 0.25)(1) and SF, JB, SW, AC and MLE for data 

set ln(0, 0.25)(2). Though only the tests SF, SW, AC, and MLE were considered appropriate 

Goodness 

of fit tests 

Low Asymmetry (Sk=0.36) 

Lognormal distribution (µ=0,  σ =0.25) 

Low Asymmetry (Sk=0.63) 

Lognormal distribution (µ=0, σ=0.25) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.0156 1.0068 1.0158 1.0231 1.0104 1.0236 

AD 1.0156 1.0068 1.0158 1.0373 1.0168 1.0388 

CVM 1.0180 1.0078 1.0182 1.0423 1.0191 1.0442 

PT 0.9916 0.9962 0.9916 1.0484 1.0218 1.0510 

SF 1.0159 1.0069 1.0161 1.0223 1.0100 1.0228 

LT 1.0147 1.0065 1.0149 1.0355 1.0160 1.0368 

JB 1.0152 1.0067 1.0153 1.0228 1.0102 1.0233 

AC 1.0161 1.0071 1.0163 1.0245 1.0110 1.0251 

MLE 1.0161 1.0070 1.0163 1.0246 1.0111 1.0252 

M_T -0.0008 0.0735 0.1049 1.0262 1.0118 1.0269 
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procedures to deal non-normal low asymmetric distributions in order to obtain desirable results 

with less errors, better estimates, and PPM values within the six sigma limits. For more 

information see the table 2, 4 and 5. 

Radar chart for ln(0, 0.25)(1) Radar chart for ln(0, 0.25)(2) 

Figure 2: Radar chart for various measures of errors after the normalization of low asymmetric distribution 

Table 4: Estimates of process capability and process performance indices for ln(0, 0.25)(1) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI   (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.25)(1) - 0.01 10 7.62 1.49 3.87 7.893 1.544 1.81 

SW 0.31 -2.45 3.36 4.38 3.65 0.00 4.54 3.79 0.00 

AD 0.31 -2.45 3.36 4.38 3.65 0.00 4.54 3.79 0.00 

CVM 0.21 -2.95 2.96 4.44 4.39 0.00 4.6 4.55 0.00 

PT 1.38 -0.72 16.66 13.2 1.09 5.64 13.7 1.12 373 

SF 0.3 -2.50 3.32 4.39 3.73 0.00 4.55 3.86 0.00 

LT 0.35 -2.29 3.54 4.40 3.42 0.00 4.57 3.54 0.00 

JB 0.33 -2.37 3.45 4.39 3.54 0.00 4.55 3.67 0.00 

AC 0.29 -2.54 3.27 4.38 3.79 0.00 4.54 3.92 0.00 

MLE 0.29 -2.54 3.28 4.39 3.79 0.00 4.55 3.92 0.00 

M_T 0.5 0.100 3.16 4.65 2.69 0.00 4.82 2.79 0.00 

Table 5: Estimates of process capability and process performance indices for ln(0, 0.25)(2) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI   (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.25)(2) - 0.01 10 7.041 1.436 8.25 7.020 1.432 8.73 

SW 0.12 -3.54 2.65 4.55 3.89 0.00 4.51 3.86 0.00 

AD -0.43 -14.5 1.46 11.68 2.15 0.00 11.55 2.12 0.00 

CVM -0.62 -26.4 1.23 20.03 1.80 0.00 19.78 1.78 0.00 

PT -0.85 -57.7 1.01 41.93 1.47 5.27 41.37 1.45 6.90 

SF 0.15 -3.33 2.75 4.47 4.03 0.00 4.43 4 0.00 

LT -0.36 -11.8 1.57 9.80 2.31 0.00 9.69 2.28 0.00 

JB 0.13 -3.47 2.68 4.52 3.92 0.00 4.48 3.9 0.00 

AC 0.065 -3.98 2.48 4.75 3.64 0.00 4.71 3.61 0.00 

MLE 0.06 -4.02 2.47 4.78 3.63 6.10 4.73 3.6 0.00 

M_T 0.0 -4.61 2.31 5.086 3.387 0.00 5.039 3.356 0.00 
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II. Moderate Asymmetric Distribution

The lognormal distribution, characterized by parameters µ = 0 and σ = 0.50, offers a means to 

generate moderately asymmetric data with respective skewness values of 0.96 and 1.32. Through a 

simulation study, it is confirmed that for data set ln(0, 0.5)(1) the LT, AD, SW, SF, CVM and JB and 

for data set ln(0, 0.5)(2), the M_T, LT, AC, MLE, SF and SW methods of goodness of fit tests 

effectively transform the non-normal data into normal distributions with minimal errors. 

Consequently, the transformed datasets are subjected to further examination to evaluate their 

efficiency in estimating process capability/performance for moderately asymmetric distributions. 

See the table 6 and figure 3. 

Table 6: Various measures of error values for moderate asymmetric data after the data transformation 

Radar chart for ln(0, 0.5)(1) Radar chart for ln(0, 0.5)(2) 

Figure 3: Radar chart for various measures of errors after the normalization of moderate asymmetric distribution 

In the simulation study, transformed data yields improved estimates of Pp/Cp and Ppk/Cpk 

using methods such as AC, PT, MLE, JB, CVM, SW, and SF for dataset ln(0, 0.5)(1), and AC, MLE, 

SF, and SW for dataset ln(0, 0.5)(2). Furthermore, the PPM values indicate that for dataset ln(0, 

0.5)(1), the results fall within the standard six sigma limits, while for dataset ln(0, 0.5)(2), PPM 

values range between 5σ and 6σ limits (with recorded values ranging from 17 to 128, against 

benchmark values of 233 for 5σ and 3.4 for 6σ, as detailed in Table 2). This close alignment with the 

six sigma standard is promising. Upon considering various measures of errors, process 

capability/performance indices, and associated PPM values, it becomes evident that the AC, MLE, 

SW, and SF approaches outshine other methods, as depicted in Tables 2, 7, and 8. 

Goodness 

of fit tests 

Moderate Asymmetry (Sk=0.96) 

Lognormal distribution (µ=0,  σ=0.5) 

Moderate Asymmetry (Sk=1.32) 

Lognormal distribution  (µ=0,  σ=0.5) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.1050 1.0392 1.1141 1.1634 1.0599 1.1856 

AD 1.1036 1.0386 1.1124 1.1703 1.0627 1.1938 

CVM 1.1065 1.0397 1.1158 1.1648 1.0605 1.1873 

PT 1.1079 1.0403 1.1174 1.1648 1.0605 1.1873 

SF 1.1050 1.0392 1.1141 1.1621 1.0594 1.1840 

LT 1.1007 1.0375 1.1091 1.1538 1.0561 1.1741 

JB 1.1065 1.0397 1.1158 1.1675 1.0616 1.1905 

AC 1.1086 1.0406 1.1182 1.1608 1.0589 1.1825 

MLE 1.1079 1.0403 1.1174 1.1607 1.0588 1.1823 

M_T 0.1071 0.1667 0.3422 1.1483 1.0539 1.1675 
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Table 7: Estimates of process capability and process performance indices for ln(0, 0.5)(1) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.5)(1) - 0.01 10 2.85 0.64 22623 2.81 0.64 28271 

SW 0.29 -2.54 3.28 1.80 1.59 0.88 1.80 1.59 0.95 

AD 0.3 -2.50 3.32 1.80 1.57 1.24 1.80 1.56 1.34 

CVM 0.28 -2.59 3.23 1.80 1.62 0.56 1.80 1.62 0.60 

PT 0.27 -2.64 3.19 1.80 1.65 0.36 1.80 1.65 0.38 

SF 0.29 -2.54 3.28 1.80 1.59 0.88 1.80 1.59 0.95 

LT 0.32 -2.41 3.40 1.80 1.52 2.71 1.79 1.51 2.93 

JB 0.28 -2.59 3.23 1.80 1.62 0.56 1.80 1.62 0.60 

AC 0.27 -2.66 3.17 1.80 1.66 0.300 1.80 1.66 0.32 

MLE 0.27 -2.64 3.19 1.80 1.65 0.36 1.80 1.65 0.38 

M_T 0.5 0.10 3.16 1.88 1.15 285 1.87 1.14 310 

Table 8: Estimates of process capability and process performance indices for ln(0, 0.5)(2) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 0.5)(2) - 0.01 10 2.59 0.59 38718 2.60 0.59 37847 

SW -0.11 -6.00 2.03 2.51 1.28 62.67 2.54 1.30 49.46 

AD -0.16 -6.81 1.93 2.72 1.22 127.9 2.77 1.24 102.4 

CVM -0.12 -6.15 2.01 2.55 1.27 72.39 2.59 1.29 57.30 

PT -0.12 -6.15 2.01 2.55 1.27 72.39 2.59 1.29 57.30 

SF -0.1 -5.85 2.06 2.47 1.30 50.39 2.51 1.32 39.42 

LT -0.04 -5.06 2.20 2.27 1.38 17.58 2.30 1.40 13.52 

JB -0.14 -6.47 1.97 2.63 1.24 93.68 2.67 1.26 76.73 

AC -0.091 -5.72 2.08 2.44 1.31 43.33 2.47 1.33 33.92 

MLE -0.09 -5.71 2.08 2.43 1.31 43.33 2.47 1.33 33.96 

M_T 0.0 -4.61 2.30 2.16 1.44 8.00 2.19 1.46 6.00 

III. High Asymmetric Distribution

The lognormal distribution, with parameters µ = 0 and σ = 1, can lead to highly skewed 

distributions. Through numerical examples, it's clear that methods like SF, AC, SW, MLE, and JB 

effectively transform non-normal data into normal distributions with minimal errors for dataset 

ln(0, 1)(1), and methods M_T, SF, AC, MLE, and SW do the same for dataset ln(0, 1)(2). Refer to 

Table 9 and Figure 4 for more details. In terms of producing accurate estimates of Pp/Cp and 

Ppk/Cpk, methods like SF, AC, JB, SW, and MLE perform well for dataset ln(0, 1)(1), and SW, SF, 

AC, and MLE perform well for dataset ln(0, 1)(2). Considering various error measures, estimates of 

process capability/performance indices, and corresponding PPM values, it's evident that methods 

like AC, MLE, SW, and SF perform better than others. The estimates and their PPM values in this 

study fall within the standard 4σ and 5σ limits. For dataset ln(0, 1)(1), values range from a 

minimum of 424 to a maximum of 495, while for dataset ln(0, 1)(2), values range from a minimum 

of 5664 to a maximum of 6230. The standard PPM value for 4σ limits is 6210, and for 5σ limits is 
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233. These values closely approach the standard of 5σ limits for highly asymmetric distributions.

Refer to Tables 2, 10, and 11 for further details.

Table 9: Various measures of error values for high symmetric data after the data transformation 

Radar chart for ln(0, 1)(1) Radar chart for ln(0, 1)(2) 

Figure 4: Radar chart for various measures of errors after the normalization of high asymmetric distribution 

Table 10: Estimates of process capability and process performance indices for ln(0, 1)(1) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 1)(1) - 0.01 10 1.143 0.324 165823 1.17 0.33 161042 

SW 0.13 -3.47 2.68 1.25 1.10 492.37 1.28 1.13 355.35 

AD 0.05 -4.11 2.44 1.31 1.00 1325.51 1.35 1.03 1016.34 

CVM 0 - - - - - - - - 

PT -0.07 -5.43 2.13 1.47 0.86 4947.72 1.50 0.88 4127.10 

SF 0.14 -3.39 2.72 1.24 1.12 424.31 1.27 1.15 302.77 

LT 0.04 -4.21 2.41 1.33 0.99 1548.60 1.36 1.01 1206.37 

JB 0.13 -3.47 2.68 1.25 1.10 488.93 1.28 1.13 352.46 

AC 0.13 -3.46 2.69 1.25 1.10 475.10 1.28 1.13 342.26 

MLE 0.13 -3.47 2.68 1.25 1.10 494.90 1.28 1.13 357.47 

Minitab 0.0 -4.61 2.30 1.096 0.766 10808 1.12 0.780 9660 

Goodness 

of fit tests 

High Asymmetry (Sk=1.81) 

Lognormal distribution  (µ=0,  σ=1) 

High Asymmetry (Sk=2.45) 

Lognormal distribution (µ=0,  σ=1) 

Bias MdAE RMSE Bias MdAE RMSE 

SW 1.4662 1.1958 1.6223 1.6526 1.3108 1.9611 

AD 1.5072 1.2156 1.6798 1.6903 1.3319 2.0109 

CVM 1.5335 1.2301 1.7174 1.7012 1.3379 2.0253 

PT 1.5715 1.2509 1.7729 1.7514 1.3655 2.0912 

SF 1.4612 1.1935 1.6153 1.6472 1.3072 1.9540 

LT 1.5124 1.2185 1.6872 1.6848 1.3288 2.0038 

JB 1.4662 1.1958 1.6223 1.6686 1.3198 1.9824 

AC 1.4657 1.1956 1.6216 1.6506 1.3096 1.9585 

MLE 1.4662 1.1958 1.6223 1.6526 1.3108 1.9611 

M_T 1.5335 1.2301 1.7174 1.6102 1.2810 1.9043 
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Table 11: Estimates of process capability and process performance indices for ln(0, 1)(2) data after 

normalization via goodness of fit tests 

Goodness of 

fit tests 
λ Value LSL USL 

PCI (Within 

Capability) 

PPI (Overall 

Capability) 

Cp Cpk PPM Pp Ppk PPM 

ln(0, 1)(2) - 0.01 10 0.970 0.284 196712 0.953 0.83 200849 

SW -0.08 -5.57 2.10 1.47 0.83 6211.92 1.44 0.82 6896.12 

AD -0.15 -6.64 1.95 1.62 0.78 9864.76 1.60 0.77 10845.7 

CVM -0.17 -6.99 1.91 1.66 0.76 11394.4 1.64 0.75 12448.9 

PT -0.26 -8.89 1.73 1.94 0.68 19977.2 1.90 0.67 21670.8 

SF -0.07 -5.43 2.13 1.45 0.84 5663.84 1.43 0.83 6298.88 

LT -0.14 -6.47 1.97 1.59 0.78 9466.45 1.57 0.77 10412.8 

JB -0.11 -6.00 2.03 1.53 0.81 7697.25 1.51 0.79 8552.19 

AC -0.08 -5.52 2.11 1.46 0.84 6036.33 1.44 0.82 6704.05 

MLE -0.08 -5.57 2.10 1.47 0.83 6230.13 1.44 0.82 6918.05 

Minitab 0.0 -4.61 2.30 1.189 0.839 5916 1.13 0.80 8528 

V. Result and Discussion

This study investigates two main areas, focusing on data transformation and the estimation of 

process capability analysis. The effectiveness of different goodness-of-fit tests is evaluated based 

on various error measures, estimates of process capability/performance, and PPM values that 

closely adhere to the six sigma standard. It also explores the impact of optimal and rounded values 

of lambda when transforming non-normal data into normal data for estimating process capability 

analysis. To achieve desired outcomes, it is essential that the transformed data closely resemble a 

normal distribution with minimal errors. Additionally, consistency in producing standard 

estimates and lower PPM values from the extended transformed data serves as evidence that the 

methodology employed in this study yields the desired results.  

In each of the three distinct asymmetric scenarios examined a range of goodness-of-fit tests, 

notably SW, SF, AC, and MLE, exhibit proficiency in converting non-normal datasets into normal 

distributions with minimal error values, the estimated values of Pp/Cp and Ppk/Cpk meet or 

exceed benchmark standards. The corresponding PPM values fall within or near the 6σ limits, only 

when low and moderate asymmetric distributions. For highly asymmetric distributions, the 

transformed dataset demonstrates reduced errors, yet the estimates of Pp/Cp and Ppk/Cpk deviate 

from standard results, and the corresponding PPM values do not align with the 6σ benchmark. It is 

noteworthy that across all asymmetric scenarios, error values are minimized for the JB, M_T, LT, 

and PT methods of goodness-of-fit tests. However, the associated estimates and PPM values do not 

correspond with the desired outcomes. 

The primary objective of this paper is to obtain improved estimates of process capability or 

process performance indices using Box-Cox Transformation (BCT) through goodness-of-fit tests. 

When applying BCT to convert non-normal data into a normal distribution, selecting the 

transformation parameter λ becomes crucial. BCT provides an optimal and rounded value of 

lambda for data transformation. In this study, goodness-of-fit tests utilize the optimal value of λ, 

whereas M_T employs the rounded value of λ. Based on the numerical illustrations, it is observed 

that the PPM values estimated in this study using the optimal value of λ are higher than those 

estimated using other methods. Notably, for moderately asymmetric distributions, employing the 

M_T method results in higher PPM values compared to methods utilizing the optimal value of 

lambda for ln(0, 0.5)(1). However, for ln(0, 0.5)(2), PPM values of minimum compared to goodness 

of fit tests but results in lesser values of Pp/Cp and Ppk/Cpk compared to benchmark standards. 
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Similarly, for highly asymmetric distributions, the M_T method produces higher PPM values 

compared to methods utilizing the optimal value of λ for ln(0, 1)(1). Nonetheless, for ln(0, 1)(2) 

PPM values are minimum compared to goodness of fit tests but results in lesser values of Pp/Cp 

and Ppk/Cpk compared to benchmark standards.  

Table 12: Efficiency comparison over different goodness of fit tests in data transformation and estimation of process 

capability and process performance indices for lognormal distribution 

Goodness 

of fit tests 

Efficiency in data transformation Efficiency in estimation of PCI 

Low 

Asymmetric 

Moderate 

Asymmetric 

High 

Asymmetric 

Low 

Asymmetric 

Moderate 

Asymmetric 

High 

Asymmetric 

Skewness 0.36 0.63 0.96 1.32 1.81 2.45 0.36 0.63 0.96 1.32 1.81 2.45 

SW       * * * * * *

AD   

CVM  $ 

PT  $ 

SF       * * * * *

LT    

JB        * *

AC     $ * $ * * *

MLE     $ * $ * * *

M_T      $

DME 

DME – Direct Minitab Estimation | - Less Error and/or Better Estimate | * - Better Estimate with less error and lesser 

PPM values | $ - Better Estimates with less PPM and higher error values. 

This is clearly indicates that using rounded values of λ is somewhat less efficient in 

transforming non-normal data into normal data, resulting in corresponding estimates of process 

capability/performance that do not meet the benchmark standards compared to the results 

obtained from methods utilizing the optimal value of λ. This discrepancy arises because the use of 

rounded value of λ does not accurately reflect the transforming pattern needed to achieve a close 

approximation to a normal distribution, as opposed to the optimal value of λ. Therefore, it is 

evident that opting for the optimal value of λ to attain improved estimates in process capability 

analysis would be the superior choice. One may refer table 4, 5, 7, 8, 10 and 11. A table of data is 

formed for the better understanding of the efficiency of different normality tests under various 

asymmetric behaviors of lognormal distribution based on the numerical example, result and 

discussion. See table 12 for more information. 

V. Conclusion

The core objective of this research work is to analyze the impact of the transformation parameter 

lambda on enhancing the process capability assessment for lognormal distribution. A test that 

satisfies all the requirements including data closely adhering to a normal distribution with less 

error, enhanced estimates of process capability/performance and reduced PPM values, to achieve 

the desired result is looked at utilizing low, moderate, and high asymmetric log normal 

distribution. Accordingly, based on the findings, result and discussion, SW, SF, AC, and MLE 

methodologies of goodness of fit tests have more intense power to estimate process 

capability/performance indices with smaller PPM values and also have higher accuracy in data 
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transformation. The SW test performs better than the other approaches in every way to produce 

enhanced estimates of process capability analysis. However, other test methods, like the SF, AC, 

and MLE methods, position themselves subsequent places for dealing with non-normal quality 

characteristics, particularly lognormal distribution and delivering remarkably good results.  

M_T (Minitab Transformation) utilizes the rounded value of λ instead of the optimal value to 

ascertain the transforming parameter. Optimal λ is typically required for superior results as it 

accurately reflects the transforming pattern, unlike a rounded value. This approach ensures that all 

values are brought as close to normal as possible. Based on the numerical illustrations, this study 

produces large amount of error values while using rounded value of λ, except in low asymmetry 

situations, resulting in the transformed data not close enough to normal distribution and less 

efficient estimates when compared to methods that are utilizing an ideal value of λ during data 

transformation and estimation. Furthermore, it is concluded and recommended that when dealing 

with non-normal data specifically lognormal distribution, utilizing an optimum value of λ is 

typically required for better results and Shapiro Wilk’s (SW) test is one such method among the 

different goodness of fit tests to transform non normal data into normal and estimating process 

capability/ performance in order to get enhanced results. 
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Abstract 

There are many real-life situations, where data require probability distribution function which have 

decreasing or upside-down bathtub (UBT) shaped failure rate function. The inverse power burr hatke 

distribution consists both decreasing and UBT shaped failure rate functions. Here, we address the 

different estimation methods of the parameter and reliability characteristics of the inverse Pareto 

distribution from both classical and Bayesian approaches. We consider classical estimation procedures 

to estimate the unknown parameter of inverse power burr-hatke distribution, such as maximum 

likelihood. Also, we consider Bayesian estimation using squared error loss function based joint priors. 

The Monte Carlo simulations are performed to compare the performances of the obtained estimators 

in mean square error sense. Finally, the flexibility of the proposed distribution is illustrated 

empirically using one real-life datasets. The analyzed data shows that the introduced distribution 

provides a superior fit than some important competing distributions such as the Weibull, inverse 

Pareto and Burr-Hatke distributions.  

Keywords: Burr-Hatke Distribution, Inverse Power Burr- Hatke Distribution, 

Type II censoring, Bayesian estimation, Lindley’s Approximation technique. 

I. Introduction

Statistical distributions can be used to model many real-life scenarios, such as reliability, actuarial 

science, survival analysis and lifetime data. Different lifetime distributions have been introduced in 

the statistical literature to provide greater flexibility in modelling data in these applied sciences. One 

of the important features of generalized distributions is their capability for providing superior fit for 

various life-time data encountered in the applied fields. Hence, the statisticians have been interested 

in constructing new families of distributions to model such data. Recently, several new distributions 

and regression models to provide inferences on these distributions have been developed for 

modeling health and biomedical data, among other fields. Some distributions and classes of 

distributions developed include exponentiated Burr XII Poisson distribution by da Silva et al. [1], 

Weibull Burr XII (WBXII) distribution by Afify et al. [2], odd log logistic Topp–Leone G family of 

distributions by Alizadeh et al. [3], Burr-Hatke exponential (BHE) distribution by Abouelmagd [4] 

and  Yadav et al. [5], odd generalized gamma-G family of distributions by Nasir et al. [6], Chen-G 

family of distributions by Anzagra et al. [7], inverse-power Burr-Hatke distribution by Afify et al. 

[8], harmonic mixture Weibull-G family of distributions  by Zamanah et al.  [9], harmonic mixture G 

family of distributions by Kharazmi et al. [10] and Alshenawy R. [11] studied Progressive Type-II 

Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in 
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Medicine and Engineering. Ahmed et. al. [12] studied Bayesian and Classical Inference under Type-

II Censored Samples of the Extended Inverse Gompertz Distribution with Engineering Applications. 

Hassan [13] studied Statistical Inference of Chen distribution Based on Two Progressive Type-II 

Censoring Schemes. Burr Hatke model provides only a decreasing hazard rate (HR) shape; hence, 

its use will be limited to modelling the data that exhibits only increasing failure rate. IPBH model 

can accommodate right-skewed shape, symmetrical shape, reversed J shape and left-skewed shape 

densities. Its hazard rate (HR) can be an increasing shape, a unimodal shape, or a decreasing shape. 

IPBH distribution provides more accuracy and flexibility in fitting engineering and medicine data. 

The IPBH distribution was constructed using the inverse-power (IP) transformation. The aim of this 

article is to develop the classical and Bayesian estimation procedures for the parameters of the IPBH. 

The rest of the article is organized as follows: IPBH is discussed in Section 2. Also, mathematical 

formulation is given for type II censoring with failure and censoring time distributions in this 

section. Section 3 deals with the maximum likelihood estimation and asymptotic confidence 

intervals of the parameters. Section 4 describes asymptotic confidence interval. Sections 5 describe 

the formulation of Bayes estimation procedure using Markov chain Monte Carlo (MCMC) methods 

under SELF loss function using gamma informative priors. Section 6 deals with a Monte Carlo 

simulation study to explore the properties of various estimates developed in this article.  Real life 

dataset is analyzed for illustration purposes in Section 7. Finally, conclusive remarks are given in 

section 8. Also, it is essential to mention that the statistical software R 3.5.2, [R Core Team (2018)] is 

used for computation purposes throughout the article. 

II. The Model

If a random variable X follows IPBH with parameter (λ, θ) the cdf is given by: 

𝐹(𝑥: 𝜆, 𝜃) =  
exp(−𝜆 𝑥−𝜃)

𝑥−𝜃+1
,    𝜆, 𝜃 > 0  (2.1)        

Therefore, the corresponding probability density function is given by 

𝑓(𝑥: 𝜃, 𝜆) =
𝜃 𝑒𝑥𝑝(−𝜆𝑥−𝜃)[𝜆 + (1 + 𝜆)]𝑥−𝜃

𝑥(𝑥𝜃 + 1)2
 ,   𝜆, 𝜃 > 0  (2.2) 

Where θ and λ are shape parameters, respectively. 

Figure 1. Possible density shapes of the IPBH distribution for several values of λ and θ. 
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The survival function (SF) and HR function of the IPBH distribution take the following forms, 

respectively: 

𝑆(𝑥: 𝜆, 𝜃) = 1 −
𝑥𝜃 exp(−𝜆 𝑥𝜃)

𝑥−𝜃+1
 (2.3) 

ℎ(𝑥: 𝜆, 𝜃) =
𝜃[𝜆 + (𝜆 + 1)𝑥−𝜃]

𝑥(𝑥𝜃 + 1)[(𝑥𝜃 + 1) exp(−𝜆𝑥−𝜃) − 𝑥𝜃]
 (2.4) 

Figure 2. Possible failure rate shape of the IPBH distribution for  values of λ =0.75 and θ = 3 

Figure 3. Possible failure rate shape of the IPBH distribution for  values of λ =0.5 and θ = 0.25 

Figure 4. Possible failure rate shape of the IPBH distribution for  values of λ = 10 and θ = 0.75 
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III. Maximum Likelihood Estimation

In the literature, Several censoring schemes have been discussed. Even though, Type-I and Type- II 

censoring schemes are most popular censoring.Consider a life test where n independent units taken 

from a IPBH distribution are placed under observation and failure time of each unit is 

recorded.Suppose that the test is terminated when rth, (1 ≤ r ≤ n), r is prefixed unit fails.These 

observed failure times, say (𝒙𝟏, 𝒙𝟐, … . . , 𝒙𝒓) is a Type-II censored sample of size r. In this censoring 

scheme n-r units remain unobserved and survive beyond the time of termination.In Type-II 

censoring the time of termination is a random variable nad the likelihood function based on 

(𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒓) is given by Cohen [14]. 

 𝐿(𝜆, 𝜃|𝑥) =
𝑛

(𝑛 − 𝑟)
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟
𝑟

𝑖=0
 (2.5) 

Assume that n independent observed values taken of IPBH distribution as presented in (2) are put 

on a test.Using the Type-II censoring, we obtained the ordered r failures. If the ordered r failures are 

then (𝐱𝟏, 𝐱𝟐, … . . , 𝐱𝐫)  the likelihood function of (λ,θ) under Type-II censored data drawn of an IPBD 

distribution, is obtained as follows: 

𝐿(𝜆, 𝜃|𝑥) =
𝑛

(𝑛 − 𝑟)
∏ 𝑓(𝑥𝑖)[1 − 𝐹(𝑥(𝑟))]

𝑛−𝑟𝑟

𝑖=0

𝐿(𝜆, 𝜃|𝑥) = 𝑟𝑙𝑜𝑔(𝜃) − 𝜆 ∑ 𝑥𝑖
−𝜃 + ∑ log[𝜆 + (𝜆 + 1)𝑥𝑖

𝜃] − 2 ∑ log(𝑥𝑖
𝜃 + 1) − ∑ log(𝑥𝑖) − 𝜂

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

MLEs of λ and θ is a solution of equation (2.5) accomplished by addressing the first partial 

derivatives of the total log-likelihood to be zero.So,we consider the equation as follows, 

𝑑𝑙𝑜𝑔𝐿

𝑑𝜆
= ∑

𝑥𝑖
𝜃 + 1

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

𝑟

𝑖=1

+ ∑ 𝑥𝑖
𝜃 +

(𝑛 − 𝑟)

(𝑥(𝑟)
𝜃 + 1)𝑒𝜆𝑥(𝑟)

−𝜃

− 𝑥(𝑟)
𝜃

𝑟

𝑖=1

𝑑𝑙𝑜𝑔𝐿

𝑑𝜃
= −𝜆 ∑ 𝑥𝑖

−𝜃 𝑙𝑜𝑔(𝑥𝑖) + ∑
(𝜆 + 1)𝑥𝑖

𝜃log (𝑥𝑖)

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

− 2 ∑
𝑥𝑖

𝜃log (𝑥𝑖)

𝑥𝑖
𝜃 + 1

+ 𝜂1(𝑥)

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

The closed form solutions to the nonlinear Equations are difficult to reach and a numerical method 

must be applied to solve these simultaneous equation for obtaining the MLE of λ and θ. 

IV. Asymptotic Confidence Intervals

The maximum likelihood estimators of the unknown parameters are not in closed form, it is not easy 

to drive the exact distributions of the MLEs. Thus, we use the asymptotic distribution of MLEs for 

the constructions of asymptotic confidence intervals of the parameters based on observed Fisher 

information matrix. Let 𝛼̂= ( 𝜆̂, 𝜃̂), be the MLE of 𝛼 = (𝜆, 𝜃).The observed Fisher information matrix 

is given by: 

𝐼(𝛼) = [

∂lnL(θ, λ)

∂λ2

∂lnL(θ, λ)

∂λ ∂θ
∂lnL(θ, λ)

∂θ ∂λ

∂lnL(θ, λ)

∂θ2

] 

∂lnL(θ, λ)

∂λ2
= ∑

(𝑥𝑖
𝜃 + 1)

2

((𝜆 + (𝜆 + 1)𝑥𝑖
𝜃))

2 +
(𝑛 − 𝑟)(𝑥(𝑟)

𝜃 + 1)𝑥(𝑟)
𝜃 𝑒𝜆𝑥(𝑟)

−𝜃

(𝑥(𝑟)
𝜃 − (𝑥(𝑟)

𝜃 + 1)𝑒𝜆𝑥(𝑟)
−𝜃

)
2

𝑟

𝑖=1

∂lnL(θ, λ)

∂θ ∂λ
= ∑ (

𝑥𝑖
−𝜃log (𝑥𝑖)

𝜆 + (𝜆 + 1)𝑥𝑖
𝜃

−
(𝜆 + 1)𝑥𝑖

𝜃(𝑥𝑖
𝜃 + 1)log (𝑥𝑖)

(𝜆 + (𝜆 + 1)𝑥𝑖
𝜃)

2 )

𝑟

𝑖=1

− ∑ 𝑥𝑖
−𝜃(− log(𝑥𝑖))

𝑟

𝑖=1

Thus, the observed variance-covariance matrix becomes 𝐼−(𝛼̂).The asymptotic distribution of MLE 

𝛼̂ is a bivariate normal distribution as 𝛼̂N (0, 𝐼−(𝛼̂)). Consequently, two sided equal tailed 100(1−η) 
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asymptotic confidence intervals for the parameters λ and θ are given by [𝜆̂ + 𝑍𝜂

2

√𝑣𝑎𝑟(𝜆̂)] and

[𝜃̂ + 𝑍𝜂

2

√𝑣𝑎𝑟(𝜃̂)] respectively. Here, Var (𝜆̂) and Var (𝜃̂) are diagonal elements of the observed

variance-covariance matrix  𝐼−(𝛼̂) and 𝑍𝜂

2
  is the upper (𝑍𝜂

2
)

𝑡ℎ

percentile of the standard normal 

distribution. 

V. The Bayesian Estimation

In this section, we discuss the Bayes estimators of the unknown parameters of the model in (2) under 

square error loss function (SELF). In order to select the best decision in decision theory, an 

appropriate loss function must be specified. SELF is generally used for this purpose. The use of the 

SELF is well justified when over estimation and under estimation of equal magnitude has the same 

consequences. When the true loss is not symmetric with respect to over estimation and under 

estimation, asymmetric loss functions are used to represent the consequences of different errors. If all 

parameters of the model are unknown, a joint conjugate prior for the parameters does not exist. In 

such conditions there are numerous ways to choose the priors. Hence, we choose to consider the 

piecewise independent priors. The proposed priors for the parameters λ and θ may be taken as: 

𝑔1(𝜆) = 𝜆𝑎1−1𝑒−𝜆𝑏1 ,  𝑎1, 𝑏1 > 0 

𝑔2(𝜃) = 𝜆𝑎1−1𝑒−𝜆𝑏1 ,  𝑎2, 𝑏2 > 0 

Thus, the joint prior distribution of λ and θ can be written as: 

       𝑔(𝜆, 𝜃) = 𝜆𝑎1−1𝜃𝑎1−1 𝑒−(𝜆𝑏1+𝜃𝑏1)                                                                  (4.1) 

Now we derive the Bayes estimators for the unknown parameters λ and θ under squared error loss 

function. If μ is the parameter to be estimated by an estimator 𝜇̂ then the squared error loss function 

is defined as 𝐿𝑠(μ, 𝜇̂ ) =(μ − 𝜇̂)2. The joint posterior distribution of λ and θ after simplification is:

Π(𝜆, 𝜃|𝑥) =

𝑛
(𝑛 − 𝑟)

𝜆𝑎1−1𝜃𝑎2−1𝑒(𝜆𝑏1 + 𝜃𝑏2) ∏ 𝑓(𝑥𝑖)(1 − 𝐹(𝑥))𝑛−𝑟𝑟
𝑖=0

∫ ∫
𝑛

(𝑛 − 𝑟)
𝜆𝑎1−1𝜃𝑎2−1𝑒(𝜆𝑏1 + 𝜃𝑏2) ∏ 𝑓(𝑥𝑖)(1 − 𝐹(𝑥))𝑛−𝑟𝑟

𝑖=0 𝜕𝜆𝜕𝜃
∞

0

∞

0

 (4.2) 

Therefore, the Bayes estimator of any function of  𝜆 and 𝜃, say 𝛼(𝜆̂,𝜃̂ ) under squared error loss 

function is. 

I. Subsection One
Lindley’s Approximation 

It is difficult to compute Eq. (4.2) analytically. Lindley’s [15] approximation is used to compute the 

ratio of integrals of the form Eq. (4.3). Based on Lindley’s approximation, the approximate Bayes 

estimator of λ under the squared error loss function is: 

 λ̂lindley = λ̂ +
1

2
[μ1(2ρ1σ11 + 2ρ2σ21 + σ11

2 L111 + 2σ12σ21L111 + σ11σ22L211 + σ12σ22L222)]      (4.4)         

θ̂lindley = θ̂ +
1

2
[μ2(2ρ2σ22 + 2ρ1σ21 + σ22

2 L222 + 2σ12σ11L111 + 3σ12σ22L122)]  (4.5) 

Here L(𝜆, 𝜃) is the log-likelihood and 𝜌(𝜆, 𝜃) is the log of prior distribution 𝜋(𝜆, 𝜃), 𝜆̂ and 𝜃̂ are the 

MLEs of λ and θ respectively. 

VI. Simulation Study

This section deals with a Monte Carlo simulation study. Here, we compare various estimators 

developed in the previous sections with the help of Monte Carlo simulation study. Six different 

sample sizes n = 50, 60, 70, 80 and 90 are considered in the simulation study. Following combination 

of the true values of the parameters (λ, θ) = (0.5, 1) and (λ, θ) = (1.5, 1) are taken. In each case the ML 
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and Bayes estimates of the unknown parameters are computed. The whole process is simulated 1000 

times. Tables 1–2 report the simulation results including Average Estimate (AE), MSE of the IPBH 

parameters. 

Table 1: Bayes estimate of the parameter λ and θ when θ = 1 and λ = 0.5 

n r Prior1 Prior2 Prior1 Prior2 

𝛌̂ 𝛉̂

AE MSE AE MSE AE MSE AE MSE 

50 46 0.5332 0.018 0.5714 0.0152 1.0862 0.0082 1.0778 0.2459 

50 48 0.5321 0.0137 0.5318 0.0142 1.0571 0.0715 1.0754 0.0821 

60 56 0.5263 0.0124 0.5268 0.0122 1.0655 0.00615 1.0553 0.00567 

60 58 0.5195 0.0102 0.5257 0.0099 1.0525 0.0516 1.0529 0.0588 

70 66 0.5173 0.0089 0.5224 0.0091 1.0491 0.0506 1.0551 0.0511 

70 68 0.5171 0.0084 0.5223 0.0092 1.0468 0.0485 1.0492 0.0492 

80 76 0.5168 0.0071 0.5152 0.007 1.0423 0.0447 1.0468 0.0429 

80 78 0.5156 0.0061 0.5187 0.0074 1.0387 0.0394 1.0271 0.0366 

90 86 0.5078 0.0054 0.5162 0.0063 1.0311 0.0343 1.0327 0.0364 

90 88 0.5115 0.0049 0.511 0.0053 1.0296 0.0316 1.0329 0.0349 

Table 2: Bayes estimate of the parameter λ and θ when θ = 1 and λ = 1.5 

n r  Prior1 Prior2 Prior1 Prior2 

𝛌̂ 𝛉̂

AE MSE AE MSE AE MSE AE MSE 

50 46 1.7311 0.464 1.7088 0.394 1.0504 0.0528 1.0498 0.0492 

50 48 1.6536 0.2447 1.6543 0.2456 1.0369 0.0407 1.0439 0.0423 

60 56 1.6038 0.1654 1.6382 0.1643 1.0295 0.0313 1.0453 0.0338 

60 58 1.5855 0.1197 1.5290 0.1250 1.0244 0.0286 1.0306 0.0298 

70 66 1.5841 0.1195 1.5771 0.1181 1.0258 0.0248 1.0221 0.0258 

70 68 1.5723 0.0956 0.1181 0.0922 1.0243 0.0244 1.0202 0.0231 

80 76 1.5636 0.0958 1.5771 0.1127 1.0143 0.0199 1.0285 0.0237 

80 78 1.573 0.0856 1.5639 0.0827 1.0228 0.0198 1.0191 0.002 

90 86 1.5614 0.0821 1.5587 0.0792 1.0186 0.0182 1.0162 0.0198 

90 88 1.5534 0.0712 1.5489 0.0710 1.0199 0.0171 1.0276 0.0175 

VII. Real-Life Applications

In this section, we illustrate estimation procedures discussed in the previous sections with the help 

of one real datasets. Here, we consider a real dataset namely the strengths of glass fibres The Data I, 

respectively are given below: 

Data set: 

This dataset consists of 63 observations which are generated to simulate the strengths of glass fibres 

[18].The 63 observations of the dataset are as follows: “1.014, 1.081, 1.082, 1.185, 1.223, 1.248, 1.267, 

1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 

1.459, 1.460, 1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 

1.602, 1.666, 1.670, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 
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1.910, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, and 4.121”. 

We calculate MLEs of the unknown parameters together with some useful measure of goodness-of 

fit tests for one dataset, namely, the negative log likelihood function −lnL, the Akaike information 

criterion denoted by AIC = 2k–2lnL, proposed by Akaike [16] and Bayesian information criterion 

denoted by BIC = kln(n)–2lnL, proposed by Schwarz [17], where k is the number of parameters in 

the model, n is the number of observations in the given datasets, L is the maximized value of the 

likelihood function for the estimated model and Kolmogorov-Smirnov (K-S) statistic with its p-

value. The best distribution corresponds to the lowest –lnL, AIC, BIC and K-S statistic and the 

highest p values. The K-S statistic with its p-value is obtained using ks test function in statistical 

software R. The results of the MLEs and measures of goodness-of-fit tests are reported in Tables 3 

and 4, respectively. These results show that IPBH distribution is the best choice for the considered 

datasets. However, for Data I, according to K-S test IPBH is better than the BH. 

Table 3: Data Summary for the Data Set 

Table 4: Goodness of Fit criterions on the data set 

VIII. Conclusion

This article deals with the classical and Bayesian estimation procedures for parameters of inverse 

power Burr-Hatke distribution using second type censoring. The maximum likelihood estimators 

and corresponding asymptotic confidence intervals based on observed Fisher information matrix of 

the unknown parameters were derived. The Bayes estimates of the parameters under square error 

loss function were approximated using Lindley’s approximation. The performance of these 

estimators was examined by extensive Monte Carlo simulation study, which indicated that the MLEs 

can be obtained easily and quickly with satisfactory estimates. For more efficient estimators, Bayes 

estimation method with available prior information or convenient non-informative priors in the 

absence of prior information is recommended. 

References 
[1] Da Silva, R. V., Gomes-Silva, F., Ramos, M. W. A., & Cordeiro, G. M. (2015). The

exponentiated Burr XII Poisson distribution with application to lifetime data. International Journal of 

Statistics and Probability, 4(4): 112-131.  

[2] Afify, A. Z., Cordeiro, G. M., Ortega, E. M., Yousof, H. M. and Butt, N. S. (2018). The four

parameter Burr XII distribution: properties, regression model, and applications. Communications in 

Min  1st Qu.  Median  mean  3rd Qu.  Max 

1.014  1.305  1.526  1.616  1.741  4.121 

Distribution Estimates -logL AIC BIC K-S (stat) P-value

IPBD 𝜽 ̂= 5.7408 

𝝀 ̂=6.03415

15.403 26.8066 39.0929 0.08507 0.7197 

BR 𝜽 ̂=0.2325

0 

113.364 222.7286 235.0148 0.77052 < 0.001 

Weibull 𝜽 ̂= 3.0521 

𝝀 ̂=1.7873

43.254 96.7345 101.12 0.2051 0.009 

Exponential 𝝀 ̂=0.6189 93.222 187.432 190.523 0.4721 < 0.001 

RT&A, No 3 (79) 
Volume 19, September 2024

362



Pavitra Kumari, Vinay Kumar 
INFERENCE ON THE INVERSE POWER BURR-HATKE 
DISTRIBUTION UNDER TYPE II CENSORING 

Statistics-Theory and Methods, 47(11): 2605–2624. 

[3] Alizadeh, M., Lak, F., Rasekhi, M., Ramires, T. G., Yousof, H. M., and Altun, E. (2018). The

odd log-logistic Topp–Leone G family of distributions: heteroscedastic regression models and 

applications. Computational Statistics, 33(3): 1217-1244.  

[4] Abouelmagd, T. H. M. (2018). The Logarithmic Burr-Hatke Exponential Distribution for

Modeling Reliability and Medical Data. International Journal of Statistics and Probability, 7(5): 73-85. 

[5] Yadav, A. S., Altun, E. and Yousof, H. M. (2021). Burr–Hatke Exponential Distribution: A

Decreasing Failure Rate Model, Statistical Inference and Applications. Annals of Data Science, 8(2): 

241–260.  

[6] Nasir, M. A., Tahir, M. H., Chesneau, C., Jamal, F., and Shah, M. A. A. (2020). The odds

generalized gamma-G family of distributions: Properties, regressions and applications. Statistica, 

80(1): 3-38. 

[7] Anzagra, L., Sarpong, S., and Nasiru, S. (2020). Chen-G class of distributions. Cogent

Mathematics and Statistics, 7(2):1721. 

[8] Afify, A. Z., Aljohani, H. M., Alghamdi, A. S., Gemeay, A. M. and Sarg, A. M. (2021). A new

two-parameter burr-hatke distribution: properties and bayesian and non-bayesian inference with 

applications. Journal of Mathematics. 2021: 16. 

[9] Zamanah, E., Nasiru, S., and Luguterah, A. (2022). Harmonic Mixture Weibull-G Family of

Distributions: Properties, Regression and Applications to Medical Data. Computational and

Mathematical Methods, 2022: 24.

[10] Khaazmi, O., Nik, A. S., Hamedani, G. G., and Altun, E. (2022). Harmonic Mixture-G Family

of Distributions: Survival Regression, Simulation by Likelihood, Bootstrap and Bayesian Discussion 

with MCMC Algorithm. Austrian Journal of Statistics, 51(2): 1-27. 

[11] Altun, E., Alizadeh, M., & Yousof, H. M. (2022). The Odd Log-Logistic Weibull-G Family

of Distributions with Regression and Financial Risk Models. Journal of the Operations Research Society 

of China, 10(1): 133-158. 

[12] Ahmed, E., Hassan M. A. and Ahmed, Z. A. (2021).  Bayesian and Classical Inference under

Type-II Censored Samples of the Extended Inverse Gompertz Distribution with Engineering 

Applications. Entropy, 23: 1578. 

[13] Hassan, M. A. (2021).  Statistical inference of chen distribution based on two progressive

type-ii censoring schemes. Computers, Materials & Continua, 66: 2797–2814. 

[14] Cohen, A. C. (1965). Maximum Likelihood Estimation in the Weibull Distribution Based on

Complete and Censored Samples. Technometrics, 7:  579–588. 

[15] Lindley, D. V. (1980). Approximate Bayesian methods (with discussions), Trabajos de

Estadistica. 31:  232–245. 

[16] Akaike, H. A. (1974).  New look at the statistical model identification. IEEE Transactions on

Automatic Control, 19: 716-723. 

[17] Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6: 461-464.

RT&A, No 3 (79) 
Volume 19, September 2024

363



Poonam Sharma, Pawan Kumar
ANALYSIS OF TWO NON-IDENTICAL...

ANALYSIS OF TWO NON-IDENTICAL UNIT SYSTEM
HAVING SAFE AND UNSAFE FAILURES WITH

REBOOTING AND PARAMETRIC ESTIMATION IN
CLASSICAL AND BAYESIAN PARADIGMS

Poonam Sharma and Pawan Kumar

•
Department of Statistics, University of Jammu, J&K

sharmapoonam1038@gmail.com, pkk_skumar@yahoo.co.in

Abstract

The present paper aims at the study of a two non-identical system model having safe and unsafe failures
and rebooting. The focus centers on the analysis w.r.t important reliability measures and estimation of
parameters in Classical and Bayesian paradigms. At first one of the units is operational whereas other
one is confined to standby mode. Any unit may suffer safe or unsafe failure. A safe failure is immediately
taken up for remedial action by a repairman available with the system all the time, while the case of unsafe
failure cannot be dealt directly but first rebooting is performed to convert the unsafe failure to safe failure
mode so as to start repair normally. A switching device is used to make the repaired and standby units
operational. The lifetime of both the units and switching device are taken to be exponentially distributed
random variables whereas the distribution of repair times are assumed to be general. Regenerative point
technique is employed to derive assosciated measures of effectiveness. To make the study more elaborative
and visually attractive, some of the derived characteristics have been studied graphically too. A simulation
study has also been undertaken to exhibit the behaviour of obtained characteristics in Classical and
Bayesian setup. Valuable inferences about MLE and Bayes estimates have been drawn from the tables and
graphs for varying values of failure and repair parameters.

Keywords: Reliability, Availability, Mean Time to System Failure, Regenerative Point Technique,
Rebooting, Coverage Proabability, Bayesian Estimation, Maximum Likelihood Estimation.

1. Introduction

Reliability is a fundamental concept that underpins the dependability and consistency of systems,
processes, products, or services. It is the assurance that something will perform its purposeful
function or deliver expected outcomes consistently and without failure over a specified period or
under specific conditions. In a world where technological advancements and complex interde-
pendencies are ever-increasing, reliability has become a critical factor in determining the success,
safety, and satisfaction of individuals, businesses, and societies at large. We observe that machine
failure, which results in significant losses, frequently follows unit failure. The incorporation of
standby units is one strategy for enhancing reliability. Also, there are cases where the root cause
of a unit failure is not immediately identified, leading to inadequate coverage that must be fixed
by rebooting. Depending on the complexity, the length of the reboot time varies from system
to system. Recent times have seen extensive and rigorous research on reliability, availability,
standby systems, inadequate coverage, reboot, etc. Sharma & Kumar[1] examined the concept of
two similar units with one switching device and imperfect coverage. In case of unsafe failure,
repair cannot begin immediately but first rebooting is done which transforms the unsafe failure

RT&A, No 3 (79) 
Volume 19, September 2024

364



Poonam Sharma, Pawan Kumar
ANALYSIS OF TWO NON-IDENTICAL...

to safe failure and then repair is carried out. Trivedi[2] gave the concept of reboot in his work
"Probability & Statistics With Reliability, Queuing and Computer Science Applications" Gupta
et al.[3] carried a study about two dissimilar unit parallel system accompanied by correlated
lifetimes. The system stops functioning when both of the units fail. Wang & Chen [4] provided a
comparative analysis by computing the availability of three systems with General Repair times
and Reboot delay. Pham [5] performed analysis of reliability of a system with high voltage
having dependent failures and insufficient coverage. A high voltage (HV) system that consists
of a power supply and two transmitters is considered. Also a model of the HV system and a
detailed development of the reliability function are presented. Ke et al. [6] examined a resolvable
system with insufficient coverage and reboot. As a unit fails, it can be immediately detected,
and replaced with a coverage probability c. Kumar P & Jain M [7] proposed the machine having
multi-components with service interruption, imperfect coverage, and reboot .Kadyan & Malik
[8] performed a stochastic study on non-identical units with cold standby units operating at the
same time. The idea of Classical and Bayesian estimation in a two non-identical unit parallel
system is given by Saxena et.al[9], where the Bayesian estimates are calculated by taking different
priors. Also, a comparative study is done to determine the performance of Maximum likelihood
estimation and Bayesian estimation methods. Kishan & Jain [10] put forth the idea of study
of system model both in classical and Bayesian perspectives and some important measures of
reliability characteristics of a two nonidentical unit standby system model with repair, inspection
and post repair are obtained using regenerative point technique.
Keeping above ideas in mind, this paper deals with the performance measures and estimation of
parameters of a two non-identical units system with switching device and rebooting having safe
and unsafe failures. Switch is used to turn on the unit from standby to operational mode and
initially is assumed to be in good condition. Unsafe failures occur when the cause of any of the
breakdowns is unknown and can be resolved by rebooting. Reboot delay times and failure times
for both units and switch are assumed to be exponentially distributed, whereas the repair time
distributions are taken to be general in nature. Other measures, such as mean time to system
failure, reliability, availability, and expected number of repairs, have been calculated using the
regenerating point technique. Furthermore, a simulation study is carried out to examine the
given system model in both the Classical and Bayesian setups. Finally, numerous noteworthy
conclusions are drawn from the tables and graphs.

2. System Description and Assumptions

• The system is composed of two non-identical units, A and B, coupled by a switch, S.
• Initially, one of the units is functioning, while the other remains in standby mode. A switch
assists to turn on the repaired and standby components. During the early stage, switch is
supposed to be in operable condition.
• There may be both safe and unsafe failures among the units but only a regular switch failure. If
any of the unit fails safely, it can be identified with coverage probability c, and repaired instantly
if the repairman is present.
• In the event of an unsafe failure, repair can’t begin instantly; instead, a reboot is first performed
to convert the unsafe failure to a safe failure, followed by a usual normal repair. Reboot delay
periods are taken as exponentially distributed random variables with varying parameters.
• The system has a dedicated repair facility and is constantly accessible to repair and reboot
failed items. Switch repair has priority over failed items in the system.
• The failure times of the units and switch follow an exponential distribution, whereas the repair
time distributions are general.
• A repaired item functions as new.

RT&A, No 3 (79) 
Volume 19, September 2024

365



Poonam Sharma, Pawan Kumar
ANALYSIS OF TWO NON-IDENTICAL...

3. Notations and Symbols

α1: Failure rate of Unit A F1(.): Repair rate of unit A
α2: Failure rate of Unit B F2(.): Repair rate of Unit B
α3: Failure rate of Switch F3(.): Repair rate of Switch
c: Coverage probability
γ1: Rebooting delay rate for unsafe failure of Unit A
γ2: Rebooting delay rate for unsafe failure of Unit B.

3.1. SYMBOLS FOR THE STATES OF THE SYSTEM

A0/B0 :Units in operative mode Sg/Sr :Switch under good/repair condition
Ar/Br :Units under repair Awr/Bwr :Units waiting for repair
As/Bs :Units in standby mode Aus f /Bus f :Units having unsafe failure
Using the symbols provided above, the achievable states of the system are:
S0 = [A0, Bs, Sg] S1 = [Ar, B0, Sg] S2 = [Aus f , Bg, Sg]
S3 = [A0, Bs, Sr] S4 = [Aus f , Bg, Swr] S5 = [Awr, B0, Sr]
S6 = [Awr, Bus f , Swr] S7 = [Awr, Bwr, Sr] S8 = [Awr, Bus f , Sg]
S9 = [Ar, Bwr, Sg] S10 = [A0, Br, Sg] S11 = [Aus f , Bwr, Sg]
S12 = [Ag, Bwr, Sr] S13 = [Awr, Bg, Sr]
The transition diagram of the model is shown in Figure 1.

Figure 1: Transition Diagram
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4. Transition Probabilities and Sojourn Times

The long-run or of the steady state probabilities are obtained as under,

pij = lim
t→∞

Qij(t) =
∫

qij(t)dt p
(k)
ij = lim

t→∞
Q

(k)
ij (t) and p(k,l)

ij = lim
t→∞

Qk,l
ij (t).

In particular we have

p01(t) =
∫

α1ce−α1cte−α1(1−c)te−α3tdt =
α1c

(α1 + α3)

Similarly,
p02 = α1(1−c)

α1+α3

p15 = α3
α2+α3

[1 −
∼
F1(α2 + α3)]

p10 =
∼
F1(α2 + α3)

p30 =
∼
F3(α1)

p(13)
31 = c(1 −

∼
F3(α1))

p56 = (1 − c)[1 −
∼
F3(α2)]

p10,11 = α1(1−c)
α1+α3

[1 −
∼
F2(α1 + α2)]

p10,12 = α3
α1+α3

[1 −
∼
F2(α1 + α3)]

p03 = α3
α1+α3

p18 = α2(1−c)
α2+α3

[1 −
∼
F1(α2 + α3)]

p(9)1,10 = α2c
α2+α3

[1 −
∼
F1(α2 + α3)]

p34 = (1 − c)(1 −
∼
F3(α1))

p51 =
∼
F3(α2)

p(7)59 = c[1 −
∼
F3 (α2)]

p10,9 = α1c
α1+α3

[1 −
∼
F2(α1 + α3)]

Thus, the following relationships can be established
p01 + p02 + p03 = 1

p15 + p18 + p10 + p
(9)
1,10 = 1

p10,0 + p10,9 + p10,11 + p10,12 = 1

p30 + p34 + p
(13)
31 = 1

p51 + p56 + p
(7)
59 = 1

p67 = p79 = p89 = p13,1 = p4,13 = p11,9 = p21 = p12,10 = p9,10 = 1

4.1. Mean Sojourn times

In reliability, Mean Sojourn time ψi, is the expected length of time a system spends in a certain
state before moving to another. There is never any transition from Si to any other state, as long as
the system is in state Si. We utilize this knowledge to determine ψi for state Si. Given Ti as the
sojourn time in state Si, the mean sojourn time ψi is as follows.

ψi = E[Ti] =
∫

P(Ti > t)dt

Hence, using the above formula following values for mean sojourn time are obtained:

ψ0 = 1
(α1+α3)

ψ3 = 1
α1
[1 −

∼
F3(α1)]

ψ2 = ψ4 = ψ11 = 1
γ1

ψ9 =
∫

F̄1(t)dt

ψ1 = 1
(α2+α3)

[1 −
∼
F1(α2 + α3)]

ψ5 = 1
α2
[1 −

∼
F3(α1)]

ψ6 = ψ8 = 1
γ2

ψ10 = 1
(α1+α3)

[1 −
∼
F2(α1 + α3)]

ψ7 = ψ12 = ψ13 =
∫

F̄3(t)dt

5. Analysis of Reliability and MTSF

Let random variable Ti represents the life time of system when it initiate from state Si ∈ Ei, the
system’s reliability is determined by:

Ri(t) = P[Ti > t]
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To calculate Ri(t), we treat failed states as absorbing states.
The recursive relations between Ri(t) can be established using probabilistic arguments by referring
to the state transition diagram. Using the Laplace transform and determining the set of equations
for R∗

0(s), we get

R∗
0(s) =

N1(s)
D1(s)

(1)

1 where,

N1(s) = Z∗
0 + Z∗

3q ∗
03 + Z∗

5q ∗
01q ∗

15 − Z∗
0q ∗

15q ∗
51 − Z∗

3q ∗
03q ∗

15q ∗
51

D1(s) = 1 − q ∗
01q ∗

10 − q ∗
15q ∗

51 − q ∗
03q ∗

30 + q ∗
03q ∗

15q ∗
30q ∗

51

We obtain the system’s reliability by taking the inverse Laplace transform of (1).
To obtain MTSF, we use the given formula

E(T0) =
∫

R0(t)dt = lim
s→0

R∗
0(s) =

N1(0)
D1(0)

(2)

where,

N1(0) = ψ0 + ψ1 p01 + ψ5 p01 p15 − ψ0 p15 p51 − ψ3 p03 p15 p51

and

D1(0) = 1 − p01 p10 − p15 p51 − p03 p30 + p03 p15 p30 p51

Since we’ve q∗ij(0) = pij and lim
s→0

Z∗
i (s) =

∫
Zi(t)dt = ψi

6. Availability Analysis

The probability that a system is able to perform its intended task at time ’t’ if it initiates from
Si ∈ Ei is known as Availability. Point wise availability refers to a system’s availability at a
specified time. It is a measure of system performance that reflects whether a system is potentially
operational and able to provide the expected service at a given time. Using stochastic reasoning,
recurrence relations between different point-wise availabilities are established. Using the Laplace
transformations and solving the equations for A∗

0(s), we obtain

A∗
0(s) =

N2(s)
D2(s)

where,

N2(s) = Z∗
0q ∗

15q ∗
51b1 + Z∗

3(q
∗

02 − q ∗
03b1)− (Z∗

0 + Z∗
1Y1 + Z∗

5Y3)(q
∗

10,9q ∗
9,10) + Z ∗

10q
(9)∗
1,10Y1 − (Z∗

0 + Z∗
1Y1)

(q ∗
10,12q ∗

12,10)− Z∗
3q ∗

03 + Z∗
5Y1 + (Z∗

1 + Z∗
5q ∗

15)q
∗

03q(13)∗
31 q ∗

11,9q ∗
10,11q ∗

9,10 + Z ∗
10q ∗

9,10b3(Z∗
1 + Z∗

5q ∗
15)

(Z∗
0 + Z∗

1Y2)q
∗

11,9q ∗
10,11q ∗

9,10 + Z ∗
10q ∗

18q ∗
89q ∗

9,10Y1 + q ∗
03q ∗

34q ∗
131q ∗

4,13b2 + q ∗
15q ∗

9,10Z ∗
10b4 + (Z∗

1 + Z∗
3)

q ∗
03 + Z∗

5q ∗
01q ∗

15

Here,
1Limits of integeration whenever they are 0 to ∞ are not mentioned.
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Y1 = q ∗
01 + q ∗

02q ∗
21+ q ∗

03q(13)∗
31 + q ∗

34q ∗
13,1q ∗

4,13)

Y2 = q ∗
01 + q ∗

02q ∗
21 q ∗

03q ∗
34q ∗

131q ∗
4,13

Y3 = q ∗
02q ∗

15q ∗
21 +q ∗

03q ∗
15q(13)∗

31 q ∗
03q ∗

15q ∗
34 q ∗

13,1q ∗
4,13

b1 = 1 − q ∗
10,9q ∗

9,10− q ∗
10,12 q ∗

12,10− q ∗
11,9q ∗

9,10q ∗
10,11

b2 = Z∗
1q ∗

15Z∗
5 +q ∗

15(q
(7)∗
59 q ∗

9,10 Z ∗
10 + q ∗

56 q67q ∗
9,10Z ∗

10)

b3 = q ∗
18q ∗

89 + q ∗
15 (q

(7)∗
59 + q ∗

56q ∗
67)

b4 = (q
(7)∗
59 (q ∗

01 + q ∗
02 q ∗

21)+ q ∗
01q ∗

56q ∗
67)

and,

D2(s) = q ∗
10,0 − q ∗

10q ∗
10,0 + q ∗

01q ∗
15q ∗

10,0 − (q ∗
56 + q

(7)∗
59 )[−q ∗

15q ∗
10,0(q

∗
01 + q ∗

02 + q ∗
03(q

(13)∗
31 + q ∗

34))− q ∗
02q ∗

10,0]

−q ∗
03q ∗

10,0(q
∗

30 − q ∗
30q ∗

13q ∗
51 + q ∗

10q
(13)∗

31 + q ∗
10q ∗

34)− q ∗
15q ∗

51q ∗
10,0 − q ∗

10,0(q
∗

34 + q
(13)∗

31 )(q ∗
03(q

(9)∗
1,10 + q ∗

18))
(3)

The steady state availability is given as under

A0 = lim
t→∞

A0(t) = lim
s→0

sA∗
0(s) =

N2(0)
D2(0)

Furthermore, its a well known fact that qij(t) is the pdf of the time of transition from state Si to Sj
and qij(t) is the probability of a transition from state Si to state Sj during the interval (t, t + dt) ,
thus

q∗ij(s)|s = 0 = q∗ij(0) = pij

We also know that

lim
s→0

Z∗
i (s) =

∫
Zi(t)dt = ψi

Therefore,

N2(0) = ψ0 p15 p51b1 + ψ3(p02 − p03b1)− (ψ0 + ψ1Y1 + ψ5Y3)(p10,9 p9,10) + ψ10 p(9)1,10Y1 − (ψ0 + ψ1Y1)

(p10,12 p12,10)− ψ3 p03 + ψ5Y1 + (ψ1 + ψ5 p15)p03 p(13)
31 p11,9 p10,11 p9,10 + ψ10 p9,10b3(ψ1 + ψ5 p15)

(ψ0 + ψ1Y2)p11,9 p10,11 p9,10 + ψ10 p18 p89 p9,10Y1 + p03 p34 p13,1 p4,13b2 + p15 p9,10ψ10b4 + (ψ1 + ψ3)

p03 + ψ5 p01 p15

Here,

Y1 = p01 + p02 p21+ p03(
(13)
p31+ p34 p13,1 p4,13)

Y2 = p01 + p02 p21 p03 p34 p13,1 p4,13

Y3 = p02 p15 p21 +p03 p15
(13)
p31 p03 p15 p34 p13,1 p4,13

b1 = 1 − p10,9 p9,10− p10,12 p12,10− p11,9 p9,10 p10,11

b2 = ψ1 p15ψ5 +p15(
(7)
p59 p9,10 ψ10 + p56 p67 p9,10ψ10)
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b3 = p18 p89 + p15 (
(7)
p59 + p56 p67)

b4 = (
(7)
p59(p01 + p02 p21)+ p01 p56 p67)

D2(0) = p10,0 − p01 p10,0 + p01 p15 p10,0 − (p56 +
(7)
p59)[−p15 p10,0(p01 + p02 + p03(

(13)
p31 + p34))− p02 p10,0]

−p03 p10,0(p30 − p30 p13 p51 + p10
(13)
p31 + p10 p34)− p15 p51 p10,0 − p10,0(p34 +

(13)
p31)(p03(

(9)
p1,10 + p18))

For a given system, the steady-state probability of its long-term operation is given by

A0 = lim
t→∞

A0(t) = lim
s→0

sA∗
0(s)

lim
s→0

sN2(s)
D2(s)

= lim
s→0

N2(s)lim
s→0

s
D2(s)

Since as s → 0, D2(s) becomes zero. Therefore, applying L’Hospital’s rule, A0 becomes

A0 =
N2(0)
D′

2(0)
(4)

where,

D
′
2(0) = p10,0(ψ0 + ψ1)− p10,0 p03[(ψ3)(1 − p15 p51) + p30(ψ1 + p15ψ5)− p34 + p34 p15 p51(ψ4 + ψ13)

+ p18 p30ψ8 + ψ9(p10(1 − p30)− p30 p15)− p15 p10,0[(p51ψ0 − ψ5 − ψ6(p56(1 − p03 p30))) + ψ9

(1 − p51) + p02 p51ψ2]− p15 p51[(1 − p03 p30)(ψ10 + ψ11 p10,11)− ψ4] + p10,12ψ12 + ψ9(p10,9+

p10,11 − p03 p30[(1 − p10)(ψ10 + ψ11 p10,11) + ψ12 p10,12(1 − p15 p51) + ψ9(p10,9 + p10,11 − p10(1−
p10,12) + p18 p10,0)]− p10(ψ10 + ψ11 p10,11) + ψ12(p10,12)(1 − p34) + ψ9[(1 − p03)(p10,9 + p10,11)

+ p03(1 − p10,12 + p34)] + p10,0[(p02ψ2 + p18(ψ8 + ψ9))] + p10,11(ψ11 + ψ9) + p10,12ψ12 + ψ10

(5)

Using N2(0) and D
′
2(0) in equation[4], the expression for A0 can be determined. The system’s

expected uptime for (0,t] is provided by

µup(t) =
∫ t

0
A0(u)du

So that,

µ∗
up(s) =

A∗
0(s)
s

7. Busy Period Analysis

Bi(t) is defined as the probability that, at time t=0, the system, which begins in the regenerative
state Si∈ E, is undergoing repair as a result of a unit failure. To estimate these probabilities, we
utilize simple probabilistic logics, on taking Laplace transformation and solving the consequent
set of equations for B∗

0(s), we have

B∗
0(s) =

N3(s)
D2(s)
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N3(s) = q ∗
03q ∗

34[ψ4 − q ∗
15q ∗

51b1 − q ∗
10,9q ∗

9,10b5 − q ∗
10,12q ∗

12,10b6 + q ∗
13,1q ∗

4,13b7 + q
(9)∗
1,10(ψ10

+ q ∗
10,9ψ9 + q ∗

10,11ψ11 + q ∗
11,9q ∗

10,11ψ9) + q ∗
15q ∗

56b8 + q ∗
15q

(7)∗
59 (ψ9 + q ∗

9,10ψ10

+ q ∗
9,10q ∗

10,11ψ11) + ψ1(1 − q ∗
11,9q ∗

9,10q ∗
10,11)] + ψ4(1 − q ∗

11,9q ∗
9,10q ∗

10,11) + q
(9)∗
1,10q ∗

01b9

+ q ∗
02q ∗

21b9 + q ∗
03q

(13)∗
31 b9 + q

(13)∗
31 [q ∗

03q ∗
18(ψ8b1)] + q ∗

15q ∗
56[q

∗
03ψ6b1 + q ∗

03q ∗
67q ∗

9,10(ψ10

+ q ∗
10,11ψ11)] + q ∗

15q
(7)∗
59 (q ∗

03q ∗
9,10(ψ10 + q ∗

10,11ψ11)− q ∗
03q ∗

10,12q ∗
12,10ψ9) + q ∗

03ψ1b1

+ q ∗
18[q

∗
02q ∗

21(ψ8b1) + q ∗
89q ∗

9,10(ψ10 + q ∗
10,11ψ11)] + q ∗

01ψ8b1 + q ∗
15[q

∗
01q ∗

56(ψ6b1

+ q ∗
67)ψ9(1 − q ∗

10,12q ∗
12,10) + q ∗

67q ∗
9,10(ψ10 + q ∗

10,11ψ11)] + q ∗
01q

(7)∗
59 (ψ9(1 − q ∗

10,12q ∗
12,10)

+ q ∗
9,10ψ10) + q ∗

02q ∗
21[ψ6(q

∗
51 − q ∗

56b1)] + q
(7)∗
59 ψ9(1 − q ∗

10,12q ∗
12,10) + q ∗

56q ∗
67b10

+ q ∗
02q ∗

51(−ψ2b1 + q ∗
03q

(7)∗
59 q

(13)∗
31 ψ9) + q ∗

9,10b11 − q ∗
02(q

∗
10,9 + q ∗

11,9q ∗
10,11)(ψ2 + ψ1q ∗

21)

+ q ∗
01ψ1 + q ∗

02(ψ2 + q ∗
21ψ1)(1 − q ∗

10,12q ∗
12,10)

here,

b1 = 1 − q ∗
10,9q ∗

9,10 − q ∗
10,12q ∗

12,10 − q ∗
11,9q ∗

9,10q ∗
10,11

b5 = ψ4 − q ∗
13,1q ∗

4,13(ψ1 + q ∗
18ψ8 + q ∗

15q ∗
56ψ6)

b6 = ψ4 − q ∗
13,1q ∗

4,13(ψ1q ∗
18ψ8 + q ∗

18q ∗
89ψ9 + q ∗

15q
(7)∗
59 ψ9 + q ∗

15q ∗
56q ∗

67ψ9)

b7 = q ∗
18(ψ8 + q ∗

89ψ9 + q ∗
89q ∗

9,10ψ10 + q ∗
89q ∗

9,10q ∗
10,11ψ11 − q ∗

11,9q ∗
9,10q ∗

10,11ψ8)

b8 = ψ6 + q ∗
67ψ9 + q ∗

67q ∗
9,10ψ10 − q ∗

10,12q ∗
12,10ψ6 − q ∗

11,9q ∗
9,10q ∗

10,11ψ6 + q ∗
67q ∗

9,10q ∗
10,11ψ11

b9 = ψ10 + ψ9q ∗
10,9 + q ∗

10,11(ψ11 + q ∗
11,9ψ9)

b10 = ψ9 + q ∗
9,10ψ10 + q ∗

9,10q ∗
10,11ψ11 − q ∗

10,12q ∗
12,10ψ9

b11 = q ∗
01(ψ1(q

∗
10,9 + q ∗

11,9q ∗
10,11)) + q ∗

15q
(7)∗
59 q ∗

10,11ψ11

and, D2(s) is same as given in equation [3].
The probability that the repairman will be busy in the long run is as follows:

B0 = lim
t→∞

B0(t) = lim
s→0

sB∗
0(s) =

N3(0)

D
′
2(0)

where,

N3(0) = p03 p34[ψ4 − p15 p51b1 − p10,9 p9,10b5 − p10,12 p12,10b6 + p13,1 p4,13b7 + p
(9)
1,10(ψ10

+ p10,9ψ9 + p10,11ψ11 + p11,9 p10,11ψ9) + p15 p56b8 + p15 p
(7)
59 (ψ9 + p9,10ψ10

+ p9,10 p10,11ψ11) + ψ1(1 − p11,9 p9,10 p10,11)] + ψ4(1 − p11,9 p9,10 p10,11) + p
(9)
1,10 p01b9

+ p02 p21b9 + p03 p
(13)
31 b9 + q

(13)
31 [p03 p18(ψ8b1)] + p15 p56[p03ψ6b1 + p03 p67 p9,10(ψ10

+ p10,11ψ11)] + p15 p
(7)
59 (p03 p9,10(ψ10 + p10,11ψ11)− p03 p10,12 p12,10ψ9) + p03ψ1b1

+ p18[p02 p21(ψ8b1) + p89 p9,10(ψ10 + p10,11ψ11)] + p01ψ8b1 + p15[p01 p56(ψ6b1

+ p67)ψ9(1 − p10,12 p12,10) + p67 p9,10(ψ10 + p10,11ψ11)] + p01 p
(7)
59 (ψ9(1 − p10,12 p12,10)

+ p9,10ψ10) + p02 p21[ψ6(p51 − p56b1)] + p
(7)
59 ψ9(1 − p10,12 p12,10) + p56 p67b10

+ p02 p51(−ψ2b1 + p03 p
(7)
59 p

(13)
31 ψ9) + p9,10b11 − p02(p10,9 + p11,9 p10,11)(ψ2 + ψ1 p21)

+ p01ψ1 + p02(ψ2 + p21ψ1)(1 − p10,12 p12,10)

here,
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b1 = 1 − p10,9 p9,10 − p10,12 p12,10 − p11,9 p9,10 p10,11

b5 = ψ4 − p13,1 p4,13(ψ1 + p18ψ8 + p15 p56ψ6)

b6 = ψ4 − p13,1 p4,13(ψ1 p18ψ8 + p18 p89ψ9 + p15 p
(7)
59 ψ9 + p15 p56 p67ψ9)

b7 = p18(ψ8 + p89ψ9 + p89 p9,10ψ10 + p89 p9,10 p10,11ψ11 − p11,9 p9,10 p10,11ψ8)

b8 = ψ6 + p67ψ9 + p67 p9,10ψ10 − p10,12 p12,10ψ6 − p11,9 p9,10 p10,11ψ6 + p67 p9,10 p10,11ψ11

b9 = ψ10 + ψ9 p10,9 + p10,11(ψ11 + p11,9ψ9)

b10 = ψ9 + p9,10ψ10 + p9,10 p10,11ψ11 − p10,12 p12,10ψ9

b11 = p01(ψ1(p10,9 + p11,9 p10,11)) + p15 p
(7)
59 p10,11ψ11

and D
′
2(0) is same as obtained in [5].

During (0,t], the repairman’s expected busy time is given by

µb(t) =
∫ t

0
B0(u)du

So that,

µ∗
b(s) =

B∗
0 (s)
s

8. Expected Number of Repairs

When the system begins from regenerative state Si, Vi(t) is described as the expected number of
repairs over the time range (0,t] of the failed units. Furthermore, given the definition of Vi(t), the
recurrence relations can be framed easily and, taking their Laplace- Stieltjes transformations and

solving the consequent set of equations for
∼
V0(s), we get

∼
V0(s) = N4(s)/D3(s)
where,

N4(s) =
∼
Q02

∼
Q21[−

∼
Q10b2 −

∼
Q

(9)
1,10b2

∼
Q18

∼
Q89

∼
Q9,10b2 −

∼
Q15

∼
Q

(7)
59

∼
Q9,10b2 −

∼
Q15

∼
Q56

∼
Q67

∼
Q9,10b2]

+
∼
Q03

∼
Q34[

∼
Q13,1

∼
Q4,13b1 −

∼
Q10b1 −

∼
Q

(9)
1,10b2 +

∼
Q15

∼
Q51b1 −

∼
Q18

∼
Q89

∼
Q9,10b2 −

∼
Q15

∼
Q56

∼
Q67

∼
Q9,10b2 −

∼
Q15

∼
Q

(7)
59

∼
Q9,10b2] +

∼
Q18

∼
Q89[−

∼
Q01

∼
Q9,10b2 −

∼
Q03

∼
Q9,10

∼
Q

(13)
31 b2]

∼
Q15

[−
∼
Q01

∼
Q

(7)
59

∼
Q9,10b2 −

∼
Q01

∼
Q56

∼
Q67

∼
Q9,10b2]−

∼
Q01

∼
Q10b1

here,

b1 = 1 −
∼
Q10,9

∼
Q9,10−

∼
Q10,12

∼
Q12,10−

∼
Q11,9

∼
Q9,10

∼
Q10,11

b2 = 1 −
∼
Q10,0 −

∼
Q10,12

∼
Q12,10

and D3(s) is written by replacing
∗

qij and q
(k)∗

ij by
∼
Qij and

∼
Q

(k)
ij respectively in equation[3].

The expected number of repairs per unit over time in the steady state is represented as

RT&A, No 3 (79) 
Volume 19, September 2024

372



Poonam Sharma, Pawan Kumar
ANALYSIS OF TWO NON-IDENTICAL...

V0 = lim
t→∞

V0(t) = lim
s→0

s
∼
V0(s) =

N4(0)

D
′
2(0)

where,

N4(0) = p02 p21[p10b2 −
(9)

p1,10b2 − p18 p89 p9,10b2 − p15
(7)
p59 p9,10b2 − p15 p56 p67 p9,10b2] + p03 p34

[p13,1 p4,13b1 − p10b1 −
(9)

p1,10b2 + p15 p51b1 − p18 p89 p9,10b2 − p15 p56 p67 p9,10b2 − p15
(7)
p59

p9,10b2] + p18 p89[p01 p9,10b2 − p03 p9,10
(13)
p31b2]p15[−p01

(7)
p59 p9,10b2 − p01 p56 p67 p9,10b2]− p01 p10b1)

here,

b1 = 1 − p10,9 p9,10 − p10,12 p12,10 − p11,9 p9,10 p10,11

b2 = 1 − p10,0 − p10,12 p12,10

9. Profit Function Analysis

Having determined the reliability charateristics, the profit function P(t) can be calculated. Profit
is defined as excess of revenue over the cost, hence the expected total profit made during(0,t] is
expressed as :
P(t) = Expected total revenue in(0,t] - Expected total expenditure in(0,t]

= K0µup(t)− K1µb(t)− K2V0(t)

where,
K0 = revenue per unit up time of the system.
K1 = The cost per unit during which the repairman is engaged to fix the failed unit.
K2 = Cost of repair of each unit.
The expected total gain per unit of time in steady state is provided by:

P = lim
t→∞

P(t)
t

= lim
s→0

s2
∗

P(s)

Therefore, we have

P = K0 A0 − K1B0 − K2V0 (6)

10. Estimation of the Parameters, MTSF, And Profit Function

10.1. Classical Estimation

10.1.1 ML Estimation

Let us take
X1
∼

= (x11, x12, ..., x1n1), X2
∼

= (x21, x22, ...x2n2), X3
∼

= (x31, x32, ..., x3n3),

X4
∼

= (x41 , x42, ..., x4n4), X5
∼

= (x51, x52, ..., x5n5), X6
∼

= (x61, x62, ..., x6n6),

X7
∼

= (x71, x72, ..., x7n7) and X8
∼

= (x81, x82, ..., x8n8)

Therefore, Likelihood function of combined sample is :

L =(X1, X2, X3, X4, X5, X6, X7, X8|α1, α2, α3, λ1, λ2, λ3, γ1, γ2)

The pdf of exponential distribution is f (x, λ) = λ exp(−λx), x > 0 , λ>0

L =α1
n1 α2

n2 α3
n3 λ1

n4 λ2
n5 λ3

n6 γ1
n7 γ2

n8 exp−(α1W1 + α2W2 + α3W3 + λ1W4 + λ2W5

+ λ3W6 + γ1W7 + γ2W8)
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Here, Wi = ∑ni
n=1 xij ; i = 1,2,3,4,5,6,7,8

On solving, we get

logL = n1logα1 + n2logα2 + n3logα3 + n4logλ1 + n5logλ2 + n6logλ3 + n7logγ1 + n8logγ2 (7)

−(α1W1 + α2W2 + α3W3 + λ1W4 + λ2W5 + λ3W5 + γ1W6 + γ2W8)

The, MLE (α̂1, α̂2, α̂3 , λ̂1, λ̂2, λ̂3, γ̂1 , γ̂2) of the parameters
(α1, α2, α3, λ1, λ2, λ3, γ1, γ2) are as under

α̂1 = n1
W1

, α̂2 = n2
W2

α̂3 = n3
W3

, λ̂1 = n4
W4

λ̂2 = n5
W5

, λ̂3 = n6
W6

γ̂1 = n7
W7

, γ̂2 = n8
W8

The asymptotic distribution of(α̂1 − α1, α̂2 − α2, α̂3 − α3, λ̂1 −λ1, λ̂2 − λ2, λ̂3 − λ3, γ̂1 − γ1, γ̂2 −
γ2) ∼ N8(0, I−1), where I is the Fisher Information matrix with diagonal elements as

I11 = n1
α2

1
, I22 = n2

α2
2
, I33 = n3

α2
3
, I44 = n4

λ2
1
, I55 = n5

λ2
2
, I66 = n6

λ2
3
, I77 = n7

γ2
1
, I88 = n8

γ2
2

and all non-diagonal elements are zero. Using MLE’s invariance property, we can extract The MLE
M̂ & P̂ of MTSF and Profit function. Also, asymptotic distribution of (M̂ − M)isN(0, A′ I−1 A) &
that of (P̂ − P)isN(0, B′ I−1B), where

A′ = ( δM
δα1

, δM
δα2

, δM
δα3

, δM
δα2

, δM
δλ2

, δM
δλ3

, δM
δγ1

, δM
δγ2

)

B′ = ( δP
δα1

, δP
δα2

, δP
δα3

, δP
δλ1

, δP
δλ2

, δP
δλ3

, δP
δγ1

, δP
δγ2

)

10.2. Bayesian Estimation

Bayesian estimation is a statistical approach which is utilized to determine the impact of prior
knowledge as well as the sample information on prior distributions of the parameters under study.
The parameters involved in the model are taken to be random variables having independent
Gamma prior distribution. Here, we estimate the unknown parameters taking into account the
gamma prior distribution and the corresponding PDFs as

α1 ∼ Gamma(a1, b1) (α1, a1, b1) > 0, (8)

α2 ∼ Gamma(a2, b2) (α2, a2, b2) > 0, (9)

α3 ∼ Gamma(a3, b3) (α3, a3, b3) > 0, (10)

λ1 ∼ Gamma(a4, b4) (λ1, a4, b4) > 0, (11)

λ2 ∼ Gamma(a5, b5) (λ2, a5, b5) > 0, (12)

λ3 ∼ Gamma(a6, b6) (λ3, a6, b6) > 0, (13)

γ1 ∼ Gamma(a7, b7) (γ1, a7, b7) > 0, (14)

γ2 ∼ Gamma(a8, b8) (γ2, a8, b8) > 0, (15)

Here,ai and bi (i = 1,2,3,4,5,6,7,8) denotes the shape and scale parameters
Now using likelihood function and taking prior distributions, the posterior distributions of these
parameters are calculated as given below:

α1|X1
∼

∼ Gamma(n1 + a1, b1 + W1) (16)

α2|X2
∼

∼ Gamma(n2 + a2, b2 + W2) (17)

RT&A, No 3 (79) 
Volume 19, September 2024

374



Poonam Sharma, Pawan Kumar
ANALYSIS OF TWO NON-IDENTICAL...

α3|X3
∼

∼ Gamma(n3 + a3, b3 + W3) (18)

λ1|X4
∼

∼ Gamma(n4 + a4, b4 + W4) (19)

λ2|X5
∼

∼ Gamma(n5 + a5, b5 + W5) (20)

λ3|X6
∼

∼ Gamma(n6 + a6, b6 + W6) (21)

γ1|X7
∼

∼ Gamma(n7 + a7, b7 + W7) (22)

γ2|X8
∼

∼ Gamma(n8 + a8, b8 + W8) (23)

To derive width of HPD intervals and Bayes estimates for parameters, we generate observations
from the posterior distributions listed above. To obtain Bayesian estimation of MTSF and profit
function, the above draws are put directly into the equations [2] & [6]. Using a squared error loss
function, Bayesian estimates of parameters and reliability characteristics are derived from the
sample means of the relevant drawings.

11. Simulation Study

To explore the behaviour of parameters, estimates and reliability aspects, a simulation study is
carried out. The values of the Standard Error (SE)/Posterior Standard Error (PSE) and the width
of confidence/HPD intervals are shown in table 1-6. Samples of sizes n1 = n2 = n3 = n4 = n5 =
n6 = n7 = n8 = 100 were taken from the six investigated distributions while presuming various
parameter values as shown in Tables 1-6. The number of iterations used is 10000. R software is
used for the computations purpose.

Table 1: MTSF values for fixed λ1 = 0.05 and varying α1

α1 True MTSF MLE.MTSF SE C.I Bayes MTSF PSE HPD Interval
0.1 13.438 10.101 0.0107 0.0078 10.024 0.00070 0.00051
0.2 5.188 5.075 0.0099 0.0074 5.021 0.00063 0.00046
0.3 3.689 3.420 0.0100 0.0073 3.353 0.00062 0.00046
0.4 2.986 2.565 0.0099 0.0074 2.520 0.00061 0.00044
0.5 2.565 2.091 0.0102 0.0074 2.020 0.00061 0.00044
0.6 2.281 1.756 0.0104 0.0078 1.686 0.00061 0.00045
0.7 2.075 1.518 0.0106 0.0078 1.448 0.00059 0.00044
0.8 1.918 1.343 0.0109 0.0079 1.269 0.00061 0.00045
0.9 1.795 1.204 0.0111 0.0082 1.131 0.00062 0.00045
1 1.696 1.123 0.0111 0.0083 1.020 0.00046 0.00044
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Table 2: MTSF values for fixed λ1=0.45 and varying α1

α1 True MTSF MLE.MTSF SE C.I Bayes MTSF PSE HPD Interval
0.1 16.785 10.257 0.0023 0.017 10.063 0.0016 0.0012
0.2 5.934 5.178 0.0016 0.011 5.043 0.0011 0.00082
0.3 4.163 3.477 0.0013 0.010 3.368 0.0094 0.00069
0.4 3.341 2.626 0.0012 0.0093 2.531 0.00085 0.00062
0.5 2.846 2.111 0.0012 0.0089 2.028 0.00078 0.00058
0.6 2.511 1.76 0.0011 0.0086 1.693 0.00076 0.00056
0.7 2.268 1.528 0.0011 0.0086 1.454 0.00074 0.00053
0.8 1.082 1.354 0.0011 0.0086 1.275 0.00072 0.00053
0.9 1.936 1.230 0.0011 0.0081 1.135 0.00070 0.00052
1 1.817 1.114 0.0011 0.0086 1.024 0.00071 0.00051

Table 3: MTSF values for fixed λ1=0.85 and varying α1

α1 True MTSF MLE.MTSF SE C.I Bayes MTSF PSE HPD Interval
0.1 19.686 10.359 0.032 0.024 10.111 0.0026 0.0019
0.2 6.500 5.219 0.020 0.015 5.064 0.0016 0.0011
0.3 4.524 3.479 0.016 0.012 3.382 0.0012 0.00091
0.4 3.612 2.661 0.014 0.010 2.541 0.0010 0.00078
0.5 3.063 2.135 0.013 0.0098 2.037 0.00095 0.00071
0.6 2.691 1.804 0.012 0.0093 1.700 0.00091 0.00066
0.7 2.419 1.548 0.012 0.0091 1.460 0.00085 0.00062
0.8 2.211 1.377 0.011 0.0088 1.280 0.00081 0.00060
0.9 2.047 1.219 0.011 0.0088 1.140 0.00080 0.00059
1 1.913 1.104 0.011 0.0087 1.028 0.00077 0.00057

Table 4: Profit values for fixed λ1=0.05 and varying α1

α1 True profit MLE.Profit SE C.I Bayes Profit PSE HPD Interval
0.1 824.23 119.48 1.43 2.09 43.20 1.34 0.99
0.2 593.60 114.18 1.37 1.99 42.37 1.31 0.80
0.3 496.60 104.81 1.30 1.99 41.14 1.17 0.74
0.4 429.96 100.09 1.26 1.82 39.83 1.13 0.73
0.5 377.55 95.95 1.17 1.76 38.73 1.07 0.80
0.6 334.00 87.59 1.12 1.66 37.80 0.88 0.72
0.7 296.75 83.67 1.07 1.59 36.66 1.06 0.98
0.8 264.30 80.17 1.05 1.51 35.84 0.93 0.87
0.9 235.69 85.81 0.99 1.46 34.96 0.96 0.85
1 210.22 83.14 0.96 1.40 33.76 0.93 0.86
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Table 5: Profit values for fixed λ1=0.45 and varying α1

α1 True profit MLE.Profit SE C.I Bayes Profit PSE HPD Interval
0.1 852.97 121.30 1.47 2.12 43.42 1.41 1.02
0.2 638.57 115.93 1.40 2.04 42.23 1.34 1.09
0.3 539.29 110.87 1.33 1.98 41.41 1.09 0.96
0.4 469.04 106.09 1.29 1.84 39.97 1.19 0.95
0.5 413.21 101.62 1.21 1.76 39.12 1.03 0.82
0.6 366.64 97.00 1.16 1.69 37.91 0.93 0.98
0.7 326.78 92.87 1.11 1.62 36.84 0.99 0.70
0.8 292.10 89.00 1.06 1.54 35.87 1.01 0.96
0.9 261.57 84.73 1.01 1.50 34.84 0.77 0.85
1 210.22 81.18 0.97 1.44 33.90 0.79 0.83

Table 6: Profit values for fixed λ1 = 0.85 and varying α1

α1 True profit MLE.Profit SE C.I Bayes Profit PSE HPD Interval
0.1 871.88 123.18 1.49 2.20 43.45 1.32 0.99
0.2 671.99 117.34 1.45 2.10 42.33 1.26 0.75
0.3 572.73 112.39 1.35 2.02 41.31 1.05 0.90
0.4 500.62 107.48 1.29 1.93 40.07 1.18 0.90
0.5 442.57 103.13 1.24 1.82 39.12 1.009 0.82
0.6 393.82 98.24 1.19 1.74 38.12 1.008 0.77
0.7 351.93 94.19 1.13 1.66 36.93 1.06 0.87
0.8 215.41 89.78 1.07 1.60 35.84 1.05 0.74
0.9 283.24 85.91 1.03 1.53 35.26 0.87 0.70
1 254.65 82.00 0.96 1.45 34.02 0.85 0.84

12. Graphical Study

A graphical analysis of the system model provides a more insightful and vivid representation of
system behaviour. So for more concrete study, we plot MTSF and Profit function wrt α1 failure
rate of unit A for different values of λ1 repair rate of unit A as 0.05, 0.45 and 0.85. Here all other
parameters are fixed α2= 0.9, α3= 0.15, λ2=0.35, λ3=0.45, c=0.7, γ1=0.6 and γ2=0.8.

Figure 2: (a)Behaviour of MTSF wrt to α1 for different values of λ1 and (b)Behaviour of P1&P2 wrt to α1 for different
values of λ1
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Figure 3: (a)Behaviour of True MTSF, MLE MTSF & Bayes MTSF wrt to α1 for λ1= 0.05 and (b) Behaviour of True
MTSF, MLE MTSF & Bayes MTSF wrt to α1 for λ1= 0.45

Figure 4: (a) Behaviour of True MTSF, MLE MTSF & Bayes MTSF wrt to α1 for λ1= 0.85 and (b) Behaviour of True
Profit, MLE Profit & Bayes Profit wrt to α1 for λ1= 0.05

Figure 5: (a)Behaviour of True Profit, MLE Profit & Bayes Profit wrt to α1 for λ1= 0.45 and (b) Behaviour of True
Profit, MLE Profit & Bayes Profit wrt to α1 for λ1= 0.85

13. Discussion and Conclusion

1. Tables and figures exhibits that MTSF decreases as the failure rate α1 increases, but increases as
the repair rate λ1 increases. The same trend is followed for the profit function.
2. Tables 1-6 indicate that for fixed and variable parameters, Bayes estimates of the MTSF and
profit function perform better than MLEs in terms of SE as well as in terms of the width of the
confidence intervals as they have lower PSE and the width of HPD intervals.
3. Based on the above discussions, we conclude that for estimating the MTSF and Profit function
of the analyzed model, Bayes approach outperforms the Classical approach.
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Abstract

In the reliability estimation of stress-strength models, external factors such as temperature, humidity,
etc. may influence the distribution of stress and strength random variables. In traditional reliability
analysis, these external factors are accounted for by introducing a real-valued distortion function, which
replaces the original distribution with a distorted one. However, it’s important to note that the effect of
these external factors is not always adequately represented by a single real-valued function. To address
this issue, we propose the use of fuzzy numbers within the distortion function. In this paper, we introduce
the concept of a "fuzzy distortion function" to incorporate the uncertainty stemming from external
factors when estimating the reliability of stress-strength relationships. We present a methodology for
estimating fuzzy reliability by employing this fuzzy distortion function. Through an illustrative example,
we demonstrate how this approach to estimating fuzzy reliability offers a wider range of possibilities for
system reliability and provides more comprehensive insights into the system’s behaviour. Throughout
our exploration, we have delved into the diverse properties inherent in fuzzy distortion functions. These
properties highlight the versatility and adaptability of such functions in capturing uncertainty within
data sets. Moreover, we have scrutinized several methods for constructing fuzzy distortion functions
from pre-existing ones. By examining these methods, we gain valuable insights into how fuzzy distortion
functions can be tailored to specific contexts and applications, thereby enhancing the accuracy and
robustness of reliability analysis in complex systems. Additionally, in the conventional stress-strength
model, reliability is determined without considering the uncertainty in the parameters of the distribution
function. The drawback of existing methods in the literature is that they do not consider the uncertainty
or fuzziness in the parameters of the distribution. Therefore, we estimate the system reliability in the
presence of fuzzy parameters in the distribution function of corresponding random variables. The method
we discuss in this paper provides a reliability estimate of the given system under realistic situations.
A sensitivity analysis study is carried out to examine the behaviour of mean square errors (MSE) of
estimated system reliability under various scenarios. It is observed that MSE can be significantly reduced
by a suitable choice of parameters in the membership function of fuzzy parameters.

Keywords: Reliability, Fuzzy reliability, Distortion function, Fuzzy triangular number

1. Introduction

An et al. [1] used the universal generating function (UGF) approach to develop a discrete SSI
model. And they handled strength and stress as discrete random variables. Considering a
unilateral dependence of strength on stress found in some real-world circumstances. Huang et
al. [2] provide a discrete SSI model with SDS based on a UGF approach. This model treats a
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structure’s SDS as a discrete random variable that, depending on the amplitude of the applied
stress, has a different conditional probability mass function (pmf). In his study of reliability of
stress-strength for a general coherent system, Eryilmaz [3] offered the exact formula as well as ap-
proximations and limitations. The estimation process for exponential stress-strength distributions
was further illustrated by the author. In order to estimate the reliability of stress-strength model
with multicomponent, Rao et al. [4] showed that the BLUE method of estimation shows the least
MSE when compared to exact MLE, Method of Moments and TMMLE.
Kizilaslan [5] considered the system of multi-component with k statistically identical and inde-
pendently distributed components of strength and each component subjected to a shared random
stress. In order to determine the system’s reliability in both known and unknown instances for the
common second parameter λ, he used both classical and Bayesian methodologies. The system of
multicomponent with k uniformly distributed and statistically independent strength components
was explored by Kizilaslam [6]. Each element in the system was exposed to a common random
stress. When the common scale parameter λ is known in some situations but not in others, the
reliability of the system can be further assessed using frequentist and Bayesian approaches.
Dey et al. [7] compared the reliability of Bayes estimators and MLEs with respect to the mean
squared errors and the average biases in their study of reliability of the stress-strength model
of multicomponent for 238 two parameter Kumaraswamy distribution, then the distribution of
strength and stress is the same. When both the stress and strength variations follow the same
population, Rao et al. [8] investigated the reliability of stress-strength model with multicompo-
nent for exponentiated Weibull distribution. Additionally, the predicted asymptotic confidence
interval for the reliability of several components under stress. For the investigation of structural
dependability using Copulas, Zhang et al. [9] presented a stress-strength time-varying correlation
interference model.

By assuming that both the strength and stress variables follow a Chen distribution with a
common shape parameter that may or may not be known, Tanmay et al. [10] obtained point and
interval estimates of reliability of the multi-component stress-strength model of a s-out-of-j system
using both Bayesian and classical approaches. The multi-component stress-strength reliability was
evaluated by Amal et al. [11] based on the recorded data. When the stress and strength variables
follow separate Weibull distributions with distinct scale parameters, the system’s dependability is
established. When samples are taken from distributions of stress and strength, and measurements
are made in terms of upper record values, the reliability in MSS is evaluated using the maximum
likelihood and Bayesian techniques of estimation. Amer et al. [12] assessed the reliability
when the variables strength and stress are independent and follow the exponentiated Pareto
distribution. The simple random sampling (SRS), median ranked set sampling (MRSS) and
ranked set sampling (RSS) methods are used to calculate the maximum likelihood estimators
in R. In four separate circumstances, the dependability estimate based on MRSS is taken into
consideration. When the strength and stress variables are modeled by two separate but not
identically distributed random variables from the generalized inverted exponential distributions,
Amal et al. [13] assessed reliability of the stress-strength model. When evaluating the stress
strength reliability estimator, MRSS is primarily used as opposed to RSS and SRS. A fresh addition
to stress-strength models was made by Saber et al. [14]. The extended exponential distribution
is used to apply the new model. The asymptotic distribution, the Bayesian estimation and the
maximum likelihood estimator are derived. Shubham et al. [15] investigated both conventional
and Bayesian techniques of reliability estimation of stress-strength model with multi-component
and arrived at a maximum likelihood estimate of dependability. Additionally, the confidence
intervals for asymptotic, boot-p, and boot-t data were built. Zhang et al. [16] investigated how
well the multi-component stress-strength model, which includes one stress and two associated
strength components from a parallel system, could predict dependability.

The rest of the paper is organized as follows. Section 2 gives basic definitions connected with
fuzzy numbers and distortion functions. Section 3 introduces the concept of fuzzy distortion
function. Section 3.1 describes with the estimation of the fuzzy reliability using fuzzy distortion
function and a numerical illustration of this method is presented. Section 3.2 deals with some
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interesting properties of distortion function. Section 3.3 deals with some basic methods for the
construction of distortion function. Section 4 deals with the estimation of reliability of the stress
strength model using weighted distributions. In Section 5, we present a sensitivity analysis study
to check the behaviour of MSE of reliability estimate.Section 6 concludes with presenting the
findings of this study.

2. Some basic definitions

In this section, we now provide some key definitions that are necessary to comprehend the
findings in the sections that follow.

Definition 1. (see [17]) A fuzzy set D defined on a set S is a mapping from S to the unit interval
[0, 1], denoted by

D = {(x, µD(x)) ; x ∈ S}
or

D = {x, µD(x)} ,

where µD(x) is the membership function of the set D.

Definition 2. (see [17]) A fuzzy set D defined on the real line ℜ is convex if and only if
∀ x1 ∈ S, ∀ x2 ∈ S and ∀ λ ∈ [0, 1], there holds

µD (λx1 + (1 − λ)x2) ≥ min (µD (x1) , µD (x2)) ,

or equivalently, a fuzzy set is said to be convex if all of its cut sets are convex. If the ≥ sign is
replaced by > sign, then we say that the fuzzy set is strictly convex.

Definition 3. (see [17]) For any α ∈ [0, 1], an α -cut set of D, denoted by Dα, is a classic set defined
by

Dα = {x ∈ S, µD(x) ≥ α} .

Obviously, Dα1 ⊆ Dα2 if α1 ≥ α2.

Definition 4. (see [17]) If the membership function of fuzzy number D is determined by

µD(x) =


0 ; x ≤ a1,
(x − a1) / (a2 − a1) ; a1 ≤ x ≤ a2,
(a3 − x) / (a3 − a2) ; a2 ≤ x ≤ a3,
0 ; x ≥ a3.

x, a1, a2, a3,∈ ℜ,

then D is referred to as a triangular fuzzy number, denoted D = (a1, a2, a3).
Suppose D = (a1, a2, a3) . Then

Da = [a1 + α (a2 − a1) , a3 − α (a3 − a2)] .

Definition 5. (see [18]) A function ν(u) is called a distortion function if the following conditions
hold:
(i) ν(u) is a non-decreasing function on the interval [0, 1],
(ii) ν(0) = 0 and ν(1) = 1,
(iii) except a finite number of points, φ(u) = d

du ν(u) exists on the interval [0, 1].

Definition 6. (see [19]) Let V denote the strength random variable of the system and W denote
the stress random variable. If V and W are independent with respective distribution functions G
and F, then the traditional stress-strength reliability can be estimated as

R = P{V > W} =
∫∫

v>w
dF(w)dG(v). (1)
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3. The concept of fuzzy distortion function

In traditional stress-strength model, we are not incorporating the uncertainty in the external factor.
So it is necessary to incorporate the uncertainty in the external factor. Consider a traditional
stress-strength model, where system reliability is estimated by using a stress-strength relation. The
system’s stress is represented by the random variable W, which has the cumulative distribution
function F. With a cumulative distribution function of G, the random variable V represents the
system’s strength. Then, the reliability P of the stress-strength model of the system is given by
P = P(W < V). The drawback of this model is that the reliability estimate is unrealistic, since the
normal working condition of the system is not considered. In other words, the uncertainty in the
external factors is not considered. In general, reliability of the system is affected by environmental
factors. To make it more clear, let us consider an example: think about creating a bridge in a
city. Let W denote the weight stress of the bridge with a distribution of F and V represent the
leg strength of a bridge with a distribution of G. With time, environmental elements including
vibration, humidity, and high temperatures are exposed to the random strength and random
stress. Now it is to be observed that the effect of external factor modelled by distortion function
ν(.) need not be a simple real valued function. In other words, the distortion force can not be
considered as a constant force acting on the system at any given time. Hence, one may not obtain
the realistic results. Hence, it is necessary to incorporate this vagueness in the external factors. It
is not possible to represent the uncertainty in the external factor by a single real valued distortion
function. Therefore, we let the distortion function can take fuzzy value also. In that concern we
introduce the concept of fuzzy distortion function, which is more practicable.
We are defining the fuzzy distortion function as follows,

Fuzzy distortion function
A function ν from [0, 1] to set of fuzzy numbers in [0, 1], is called fuzzy distortion function if the
following conditions hold:
1. For fixed α ∈ [0, 1], the functions Aα(u) and Bα(u) are non decreasing where Aα and Bα are
end points of the α-cut να(u) = [Aα(u), Bα(u)],
2. ν(0) is a fuzzy number with 0 having only membership value 1,
3. ν(1) is a fuzzy number with 1 having only membership value 1,
4. For fixed α ∈ [0, 1], the functions Aα(u) and Bα(u) are differentiable except a finite number of
points on the interval [0, 1].

Then we can have some interesting result for these fuzzy distortion functions.
Theorem The end points of α−cuts of fuzzy distortion functions are real distortion function. That
is, for fixed α ∈ [0, 1], the above functions Aα(u) and Bα(u) are real distortion functions
Proof: For Fixed α ∈ [0, 1], the function Aα(u) is non decreasing. Since ν(0) is a fuzzy number
with 0 having only membership value 1, it shows that Aα(0) = 0. Similarly ν(1) is a fuzzy
number with 1 having only membership value, shows that Aα(1) = 1. Finally from the definition
of fuzzy distortion function, it is clear that Aα(u) is differentiable With the exception of a few
points on the range [0, 1]. Hence Aα(u) satisfy all the conditions for distortion function.
Similarly one can prove that Bα(u) is a distortion function. Since ν(0) is a fuzzy number with
0 having only membership value 1, it shows that Bα(0) = 0. Similarly ν(1) is a fuzzy number
with 1 having only membership value, shows that Bα(1) = 1. Finally from the definition of fuzzy
distortion function, it is clear that Bα(u) is differentiable with the exception of a few points on the
range [0, 1]. Hence Bα(u) satisfy all the conditions for distortion function.

3.1. Estimation of fuzzy reliability using fuzzy distortion function

In traditional stress-strength model, we are not incorporating the uncertainty in the external
factor. So it is necessary to incorporate the uncertainty in the external factor. It is not possible to
represent the uncertainty in the external factor by a single real valued distortion function. In that
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concern we are defining the fuzzy distortion function as follows, which is more reliable.
Let the random variables V and W stand in for the system’s strength with a cumulative distribution
function of G and stress with a cumulative distribution function of F, respectively. Let ν(.) be a
fuzzy distortion function. Then fuzzy reliability of the system can be estimated as follows.
For fixed α ∈ [0, 1], we get two real valued function Aα(u) and Bα(u). Since both Aα(u) and
Bα(u) are real distortion function.
Consider the function Aα(u), then we can estimate the system reliability using the distortion
function Aα(u). Let Rα,a denote the reliability estimated using the function Aα(u) and is given by

Rα,a =
∫ 1

0
Aα

(
F
(

G−1(u)
))

dAα(u). (2)

Let Rα,b denote the reliability estimated using the function Bα(u) and is given by

Rα,b =
∫ 1

0
Bα

(
F
(

G−1(u)
))

dBα(u). (3)

We can estimate the α− cuts of fuzzy reliability of the system as follows

Rα = [Rα,a, Rα,b]. (4)

Similarly for each α ∈ [0, 1], we can estimate the α−cut of R.

3.1.1 Illustration

Let the strength of a bridge leg be represented by the random variable V with distribution G.
The bridge’s tension and weight are represented by the random variable W with distribution F.
As time goes on, the random strength and stress are subjected to temperature-related external
conditions. Suppose u3,u2 and V are the distortion function corresponding to the varying
temperature. Let ν(u) = [u3, u2, u] be the distortion function. Then Aα(u) and Bα(u) can be
estimated as follows

Aα = u3 + α
[
u2 − u3

]
(5)

and
Bα = u − α

[
u − u2

]
. (6)

The system’s stress is represented by the random variable W, which has the cumulative
distribution function F(x) = 1 − e−λ1x. With a cumulative distribution function of G(y) =
1 − e−λ2y, the random variable V represents the system’s strength.

Then Aα,a and Bα,a can be estimated as follows

Aα,a =
∫ 1

0

(
(1 − α)

(
1 − (1 − u)λ1/λ2

)3
+ α

(
1 − (1 − u)λ1/λ2

)2
)(

3(1 − α)u2 + 2αu
)

du (7)

and

Bα,b =
∫ 1

0

(
(1 − α)

[
1 − (1 − u)λ1/λ2

]
+ α

[
1 − (1 − u)λ1/λ2

]2
)
((1 − α) + 2αu) du. (8)

For each α, we can estimate the α-cut of R as

Rα = [Aα,a, Bα,b]. (9)
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Figure 1: Fuzzy system reliability of for various values of α- cuts when λ1 = 0.33724 and λ2 = 0.02628.

3.2. Characterization and some properties of fuzzy distortion function

Result 1: The average of two distortion functions is again a distortion function.
Proof : Let ν1(t) and ν2(t) be two distortion function.
Define f (t) = ν1(t)+ν2(t)

2 . Since both ν1(t) and ν2(t) are non-decreasing functions. Clearly f (t) is
a non-decreasing function.
Since ν1(0) = 0 and ν2(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1 and ν2(1) = 1, shows
that f (1) = 1.
Since both ν1(t) and ν2(t) are differentiable with the exception of a few points, it holds for f (t)
also.

Result 2: The average of finite number of distortion functions is again a distortion function.
Proof: Let ν1(t), ν2(t), ..., νn(t) be n distortion functions.
Define f (t) = ν1(t)+ν2(t)+...+νn(t)

n . We have ν1(t), ν2(t), ..., νn(t) are non-decreasing functions. Then
f (t) is also a non-decreasing function.
We have ν1(0) = 0, ν2(0) = 0, ..., νn(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1, ν2(1) =
1, ..., νn(1) = 1, imply f (1) = 1.
Since all the functions ν1(t), ν2(t), ..., νn(t) are differentiable with the exception of a limited num-
ber of points, then the function f (t) is also differentiable with the exception of a few points.

Result 3: The product of two distortion functions is again a distortion function.
Proof : Let ν1(t) and ν2(t) be two distortion function.
Define f (t) = ν1(t).ν2(t). Since both ν1(t) and ν2(t) are non-decreasing functions. Clearly f (t) is
a non-decreasing function.
Since ν1(0) = 0 and ν2(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1 and ν2(1) = 1, imply
f (1) = 1.
Since both ν1(t) and ν2(t) are differentiable with the exception of a few points, it holds for f (t)
also.
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Result 4: The product of finite number distortion functions is again a distortion function.
Proof: Let ν1(t), ν2(t), ..., νn(t) be n distortion functions.
Define f (t) = ν1(t).ν2(t)...νn(t). We have ν1(t), ν2(t), ..., νn(t) are non-decreasing functions. Then
f (t) is also a non-decreasing function.
We have ν1(0) = 0, ν2(0) = 0, ..., νn(0) = 0, so we have f (0) = 0. Similarly ν1(1) = 1, ν2(1) =
1, ..., νn(1) = 1, imply f (1) = 1.
Since all the functions ν1(t), ν2(t), ..., νn(t) are differentiable with the exception of a limited num-
ber of points, hence it holds for f (t) also.

3.3. Methods for construction of fuzzy distortion function

Result 1 Let ν1(t), ν2(t) and ν3(t) are three distortion function with ν1(t) ≤ ν2(t) ≤ ν3(t). Then
ν(t) defined by ν(t) = [ν1(t), ν2(t), ν3(t)] is a fuzzy distortion function.
Proof: Define ν(t) = [ν1(t), ν2(t), ν3(t)]. Then

Aα(t) = ν1(t) + α(ν2(t)− ν1(t)) (10)

and
Bα(t) = ν3(t)− α(ν3(t)− ν2(t)). (11)

First we have to prove that Aα(t) and Bα(t) are non-decreasing. For that we made a rearrange as
Aα(t) = (1 − α)ν1(t) + αν2(t) and Bα(t) = (1 − α)ν2(t) + αν3(t).
Since ν1(t), ν2(t) and ν3(t) are non-decreasing functions and 1 − α > 0. Both Aα(t) and Bα(t) are
non-decreasing.
We have ν1(0) = 0, ν2(0) = 0 and ν3(0) = 0.
Then

Aα(0) = (1 − α)ν1(0) + α(ν2(0) = (1 − α)0 + α0 = 0, (12)

and
Bα(0) = (1 − α)ν2(0) + α(ν3(0) = (1 − α)0 + α0 = 0. (13)

Similarly ν1(1) = 1, ν2(1) = 1 and ν3(1) = 1.
Then

Aα(1) = (1 − α)ν1(1) + α(ν2(1) = (1 − α)1 + α1 = 1 (14)

and
Bα(1) = (1 − α)ν2(1) + α(ν3(1) = (1 − α)1 + α1 = 1. (15)

Since the three functions ν1(t), ν2(t) and ν3(t) are differentiable with the exception of a limited
number of points, Aα(t) and Bα(t) are also differentiable with with the exception of a few points.
Hence the function ν(t) satisfy all the conditions for fuzzy distortion function.

Result 2 Let ν1(t), ν2(t), ν3(t) and ν4(t) are four distortion function with ν1(t) ≤ ν2(t) ≤
ν3(t) ≤ ν4(t). Then ν(t) defined by ν(t) = [ν1(t), ν2(t), ν3(t), ν4(t)] is a fuzzy distortion function

Proof: Define ν(t) = [ν1(t), ν2(t), ν3(t), ν4(t)]. Then

Aα(t) = ν1(t) + α(ν2(t)− ν1(t)) (16)

and
Bα(t) = ν4(t)− α(ν4(t)− ν3(t)). (17)

First we will prove that Aα(t) and Bα(t) are non-decreasing. For that we made a rearrange as
Aα(t) = (1 − α)ν1(t) + α(ν2(t) and Bα(t) = (1 − α)ν4(t) + αν3(t).
Since ν1(t), ν2(t), ν3(t) and ν4(t) are non-decreasing functions and 1 − α > 0. Both Aα(t) and
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Bα(t) are non-decreasing.
We have ν1(0) = 0, ν2(0) = 0,ν3(0) = 0 and ν4(0) = 0,
Then

Aα(0) = (1 − α)ν1(0) + α(ν2(0) = (1 − α)0 + α0 = 0, (18)

and
Bα(0) = (1 − α)ν4(0) + αν3(0) = (1 − α)0 + α0 = 0. (19)

Similarly ν1(1) = 1, ν2(1) = 1, ν3(1) = 1 and ν4(1) = 1.
Then

Aα(1) = (1 − α)ν1(1) + α(ν2(1) = (1 − α)1 + α1 = 1 (20)

and
Bα(1) = (1 − α)ν4(1) + αν3(1) = (1 − α)1 + α1 = 1. (21)

Since the four functions ν1(t), ν2(t), ν3(t) and ν4(t) are differentiable except a finite number of
points, Aα(t) and Bα(t) are also differentiable with the exception of a few points.
It is proved that the function ν(t) satisfy all the conditions for fuzzy distortion function.

4. Estimation of stress-strength reliability using the weighted

probability density function

Consider a traditional stress-strength model, where system reliability is estimated by using a
stress-strength relation. Let the random variable Y represent the strength of the system with
cumulative distribution function G and the random variable X represent the stress of the system
with cumulative distribution function F. Then, the stress-strength reliability P of the system is
given by P = P(X < Y). The drawback of this model is that the reliability estimate is unrealistic,
since the normal working condition of the system is not considered. In other words, the fuzziness
of parameters of the distribution is not taken into account, whereas, on the other hand, state of
the system is highly dependent on the state of the parameters in the lifetime distribution. This is
due to the fact that there exists an uncertainty in the parameters of distribution function. Hence,
we incorporate this uncertainty factor by suitably modifying the density function and obtain the
weighted probability density function and which can be used to get reliability estimate of the
given system. Hence, we proceed as follows:

Let the random variable X have the probability density function f (x, θ). For the function H(θ),
θ ∈ Θ, where Θ is the domain of definition of the parameter θ, the weighted probability density
function of X is defined by

f (x) =
∫

Θ
H∗(θ) f (x, θ)dθ, (22)

where H∗(θ) is called the pseudo-membership function and is defined by

H∗(θ) =
H(θ)∫

Θ H(θ)dθ
. (23)

The definition and construction of above membership function is explained in detail by authors
in [20].
Now let X be the stress random variable having the probability density function f (x, θ1), θ1 ∈ Θ1,
where Θ1 is the domain of definition of the parameter θ1. Then the weighted probability density
function (wpdf) of X (see, [20] for further information) is given by

f ∗(x) =
∫

θ1∈Θ1

H∗(θ1) · f (x, θ1)dθ1 (24)

Let Y be the strength random variable having the probability density function g(x, θ2), θ2 ∈ Θ2,
where Θ2 is the domain of definition of the parameter θ2. Then the weighted probability density
function of Y, similar to the definition of wpdf of X, is given by

g∗(x) =
∫

θ2∈Θ2

H∗(θ2) · g(x, θ2)dθ2 (25)
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Let X and Y have exponential distribution with parameters θ1 and θ2 respectively. Then the stress
random variable X has probability density function f (x) = θ1e−θ1x, θ1 > 0 and the strength
random variable Y has probability density function g(y) = θ2e−θ2y, θ2 > 0.
Let H1 (θ1) and H2 (θ2) represent the membership function for the parameters θ1 and θ2 respec-
tively. Then we may write (See, [21])

H1 (θ1) =

{
1+cos[aπ(θ1− 1

b )]
2 if 1

b −
1
a ≤ θ1 ≤ 1

b +
1
a

0, otherwise
(26)

H2 (θ2) =

{
1+cos[cß(θ2− 1

d )]
2 if 1

d − 1
c ≤ θ2 ≤ 1

d + 1
c

0, otherwise
(27)

It is easy to check from the definition of pseudo-membership function given in equation (23) that

H∗
1 (θ1) =

a
2

{
1+cos[aß(θ1− 1

b )]
2 if 1

b −
1
a ≤ θ1 ≤ 1

b +
1
a

0, otherwise
(28)

H∗
2 (θ2) =

c
2

{
1+cos[cß(θ2− 1

d )]
2 if 1

d − 1
c ≤ θ2 ≤ 1

d + 1
c

0, otherwise
(29)

Then reliability of the system under stress-strength model is given by

R∗ = P(X∗ < Y∗)

=
∫∫

x<y
f ∗(x)g∗(y)dxdy

=
∫ ∞

0

∫ y

0
f ∗(x)g∗(y)dxdy

=
∫ ∞

0

∫ y

0

[∫
θ1∈Θ1

H∗
1 (θ1) f (x, θ1) dθ1

∫
θ2∈Θ2

H∗
2 (θ2) g (y, θ2) dθ2 dxdy

=
∫

θ1∈Θ1

∫
θ2∈Θ2

H∗
1 (θ1) H∗

2 (θ2)

[∫ ∞

0

∫ y

0
f (x, θ1) g (y, θ2) dxdy

]
dθ2dθ1

=
∫

θ1∈Θ1

∫
θ2∈Θ2

ac
4

[
1 + cos

(
aπ

(
θ1 −

1
b

))] [
1 + cos

(
cπ

(
θ2 −

1
d

))]
θ1

θ1 + θ2
dθ2dθ1,

(30)

where the parameters θ1 and θ2 are non-negative. Since the closed form expression for indefinite
integrals do not exit in (30), we resort to evaluate the integrals using numerical integration.
The integrals are computed using two-dimensional quadrature method with the help of the
operator quad2d in MATLAB for numerical integration. The following section gives the details of
numerical results.

4.1. Numerical Results

In this section, we present some numerical results to illustrate the reliability of the system via
equation (30) for various choices of the parameters, namely, a, b, c, and d in equation (28) and
(29), which are the part of the integral in (30). The Table 1 illustrates the results obtained in
Section 4.

Table 1 Reliability estimation using the weighted probability density function
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a b c d Reliability
9.5 9.3 450.0 444.0 0.9758
9.6 9.0 452.0 451.0 0.9774
12.0 10.0 456.0 450.0 0.9759
11.0 9.0 456.0 454.0 0.9785
10.0 8.0 457.0 454.0 0.9810
11.0 7.0 456.0 455.0 0.9840
19.0 9.0 456.0 455.0 0.9816
10.0 8.0 456.0 454.0 0.9810

It is observed from the computational experience that for the exponential lifetime distribution of
the system, the fuzziness of the parameters modelled using membership function has significant
advantage in describing the vagueness in the system parameters. Note that the above results are
obtained from reliability equation given in (30), where the closed form expression of reliability
does not exist, and a numerical integration is carried out. Hence, the choice of membership
function works well under the situation that the exact expression for reliability is not possible to
compute. This is evident from the examples computed in the above Table 1, where the minimum
reliability obtained is about 97%. The reliability of the system without using the weighted
probability density function with θ1 = 0.00227 and θ2 = 0.00447 is estimated as 0.3368. But from
Table 1, it is observed that when we use weighted probability density function with parameters
a = 9.5, b = 9.3, c = 450.0 and d = 444.0, the reliability of the system is estimated as 0.9758. It
is observed that, when we use the weighted probability density function, the reliability of the
system is increased by 60%.

5. Sensitivity analysis

In previous sections, several reliability estimates developed by incorporating the fuzziness in
the data involve number of parameters which come from either membership functions or from
distortion functions applied for estimating the stress-strength reliability of the system under
consideration. Therefore it is necessary to study the worthiness of these reliabilities estimated
in terms of their mean square errors (MSE). Hence this section discuss MSE of the reliability
estimate developed in Section 4.
We study via numerical computation, how MSE is sensitive to changes in the parameters
a, b, c and d of the membership function of parameters of distribution functions. For illus-
tration, we let θ1 = 0.2128 and θ2 = 0.0045. First, we vary one parameter keeping the remaining
parameters fixed. There will be four different cases. Figure 2 shows the variation of MSE
when one of the parameters is varied while keeping other parameters fixed. In Figure 2, for
the fixed combination b = 1, c = 30, d = 10 (see, Graph (i)), and varying the parameter a, it
can be observed that there is a sudden decrease in MSE. Similar observation is true for set of
a = 10, b = 9, c = 450 and for varying d (see, graph (iv)). Note that from Graph (ii) and (iii) we
see that the MSE is showing increasing trend.
Next, study the changes in MSE by varying two parameters while keeping any two of the four
remaining parameters held fixed. Figure 3 illustrate one such case for the fixed combination of
b = 10, c = 60 while varying the remaining parameters. It is observed that there is a gradual
decrease in MSE.
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Graph(i) Graph(ii)

Graph(iii) Graph(iv)

Figure 2: MSE of reliability estimator under membership function, when one parameter is
varied and remaining parameters are held fixed.

Figure 3 MSE of reliability using membership function when b and c are fixed.

Finally, from this sensitivity analysis study, it is noted that the accuracy of reliability estimate
depends upon the choice of the parameters in the membership function, which can again depends
upon availability of the type of data. Further, observe that the reliability estimates obtained are
based upon numerical integration, since the closed form of expression does not exist. However,
we strongly believe that the choice of membership in modelling vagueness play very important
role in obtaining fuzzy reliability estimate.
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6. Conclusions

In the conventional stress-strength model, reliability is determined without considering the
variability in environmental factors. In our research, we introduced the notion of a fuzzy
distortion function to account for the uncertainty in these environmental factors. Our approach
involved assessing the reliability of the stress-strength model by employing the fuzzy distortion
function. We illustrated this method with an example and also examined various characteristics
of the distortion function. Additionally, we derived techniques for constructing a fuzzy distortion
function based on existing actual distortion functions. The drawbacks of existing methods in
the literature are that it does not consider the uncertainty or fuzziness in data and nature to
estimate the system reliability under realistic situations. But in this work system reliability is
estimated using the weighted probability density function by incorporating the fuzziness in data,
which is practical and realistic. Finally, a sensitivity analysis study of MSE of reliability estimate
obtained using cosine membership function is presented. It is observed that MSE as a function
of parameters of membership function of a fuzzy parameter, can be minimized significantly by
careful choice of parameters of membership functions.
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Abstract

A multi-server queueing system with synchronous differentiated working vacation policy, Bernoulli
schedule vacation interruption, and customer impatience (balking and reneging) is studied. The system
consists of c servers and a finite capacity N, where customers arrive according to a Poisson process and
are served in the chronological order of their arrival. When the system becomes empty, servers wait for a
random duration before entering a type-1 working vacation, during which service is provided at a reduced
rate. If customers are present in the system at the moment of service achievement during this period, the
vacation is interrupted. With a certain probability, servers return to the regular busy period; otherwise,
they continue the working vacation. Upon completion of the working vacation, if the system is still
empty, servers can take another working vacation of shorter duration, named type-2 working vacation;
otherwise, they switch to the regular busy period. Customer impatience is considered during both the
normal busy period and working vacations. A recursive analysis method is used to find the steady-state
probabilities of the system. Then, some important performance measures are obtained. Furthermore, an
optimal operational policy for the model is developed to minimize the total expected cost. The Grey Wolf
Optimization (GWO) meta-heuristic approach is employed to determine the optimal service rates for both
working vacations and normal busy periods. Finally, several numerical examples are provided to validate
and support the theoretical findings.

Keywords: Multi-ser ver queue, dif ferentiated vacations, impatience, GWO algorithm, cost opti-
mization.

1. Introduction

Queueing models have gained considerable attention due to their significance in shaping and
evaluating telecommunication systems, computer systems, and production management [8, 22,
23].

The concept of a ser ver vacation queue has gar nered extensiv e resear ch attention, primarily
due to its unique characteristic of allo wing the ser ver to utilize idle time for various tasks, such as
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maintenance, ser vice industries, production and manufacturing systems, or just taking a break [7].
For example, the growing utilization of wir eless cellular netw orks has led to a substantial sur ge
in ener gy consumption. To addr ess this issue and promote the de velopment of ener gy-ef ficient
wir eless cellular netw orks, resear chers have introduced the concept of hiber nation or sleeping for
base stations (BS) during periods of inactivity . This appr oach is akin to the concept of a ser ver
going on vacation, wher e the BS temporarily reduces its power consumption when ther e are no
activ e users in the netw ork. In the classical ser ver vacation queue, a ser ver temporarily ceases its
ser vice during a designated vacation period [9, 10, 21]. It is important to note that some systems
are designed with the presence of an alter nate ser ver that operates at a dif ferent, often lower,
ser vice rate when the primar y ser ver takes a vacation. Such a system is commonly referr ed to as
a working vacation queue. In most working vacation policies, the ser ver typically retur ns to its
regular ser vice rate after the vacation period ends, but only if ther e are customers w aiting in the
system. The idea of a working vacation w as initially introduced by [24], wher e they proposed
that the ser ver does not entir ely cease its operations during a vacation but continues providing
ser vice to the queueing system at a reduced rate. This concept has paved the w ay for various
working vacation policies, enhancing the flexibility and efficiency of queueing system designs.
These models have been discussed by dif ferent authors [3, 4, 12, 16, 26].

In numer ous practical scenarios inv olving congestion, ther e are occasions when urgent events
take place during vacation. As a result, the ser vers must interrupt their vacation and resume work
instead of utilizing the remaining vacation time. Other wise, such a situation incurs a substantial
cost in ter ms of w aiting customers. The concept of vacation interruption w as initially introduced
by [14]. Subsequently , [15] conducted a study on a GI/ M/ 1 queue utilizing a supplementar y
variable method. Further discussions on an M/ PH/ 1 queue, considering working vacations
and vacation interruption, can be found in [2]. For mor e in-depth studies, additional refer ences
include [11, 13, 17, 18], and refer ences ther ein.

In the past tw o decades, ther e has been a significant focus on the subject of impatient
customers within queueing theor y. This resear ch area has proven to be intriguing and challenging,
particularly in the context of globalization, hospital emer gency rooms handling critical patients,
and other rele vant dom ains. As a result, the topic of queueing models with ser ver vacations and
impatient customers has gar nered significant attention in the literatur e [1, 5, 8, 20, 25].

The main aim of this work is to conduct an analytical and optimization analysis of a finite
capacity queue with multi-ser ver and impatient customers (balking and reneging beha viors), in-
corporating vacation interruption and dif ferentiated working vacations. The suggested queueing
model presents promising applications across div erse sectors, including call centers, telecommu-
nications and manufacturing, wher e ser vers can experience periods of downtime. In this resear ch,
the steady-state probabilities of queue length when ser vers are in working vacations period (type-1
and type-2), and in normal busy period are inv estigated using the recursiv e analysis ap proach.
Several important perfor mance measur es are deriv ed from these probabilities. Optimization in
queueing systems is crucial in practical applications. In this study , the optimization problem
tackled is complex and challenging, as the objectiv e function is nonli near on the ser vice rates. To
addr ess this issue, the GWO algorithm is emplo yed to deter mine the optimal ser vice rates for
both working vacations and normal busy periods, aiming to minimize the expected total cost.
The GWO algorithm is known for its high perfor mance in both unconstrained and constrained
problems [19]. It has shown competitiv e results compar ed to well-established heuristics in sw arm
intelligence. Notably , the application of the GWO algorithm in queueing theor y is relativ ely scar ce
in the existing literatur e. The present work can be consider ed as an extension to the resear ch in
reported [6], wher e the steady-state distributions were inv estigated in the case of a single ser ver.
By applying the GWO algorithm and considering the multi-ser ver case, this paper contributes
to the understanding and analysis of the consider ed model. Finally , numerical examples are
presented to evaluate the beha vior and perfor mance of the proposed queueing system. These
numerical results provide insights and support our findings.

The structur e of the paper is as follo ws: Section 2 provides a detailed description of the
queueing model being studied. In Section 3, we deriv e the steady-state distributions of queue
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sizes during dif ferent ser ver periods, including working vacation and normal busy periods.
Section 4 giv es explicit for mulas for dif ferent perfor mance measur es of the queueing model.
Moving on to Section 5, we analyze the effect of various system parameters on the perfor mance
measur es through graphics. In Section 6, we addr ess an optimization problem related to ser vice
rates using the GWO algorithm and present numerical results. Finally , section 7 giv es a general
conclusion and perspectiv es.

2. Overview and analysis of the proposed framework

We inv estigate an M/ M/ c/ K queue with impatience, operating under the dif ferentiated working
vacations along with vacation interruption. The fundamental assumptions under pinning this
queueing system are outlined as:

• Customers enter the system in line with a Poisson process characterized by a rate of α.
• The time during a normal busy period of each ser ver follo ws an exponential distribution

and is denoted by ser vice rate µ1.
• Customers are ser ved in accor dance with FCFS (First-Come-First-S erved) discipline and the

capacity of the system is consider ed to be finite, say K.
• The time during working vacations of each ser ver follo ws an exponential distribution and is

denoted by ser vice rate µ2 (µ2 < µ1).
• The queueing system under consideration inv olv es multiple ser vers, denoted by c, when

the system has no customers the ser vers w ait for a random duration of time befor e lea ving
collectiv ely for type-1 work ing vacation. Subsequently , When the ser vers retur n from their
working vacation and find the system non-empty , they change their ser vice rate from µ2
to µ1 and a normal busy period starts. If the ser vers retur n to find an empty queue, they
immediately lea ve for another working vacation.

• The w aiting time for the ser vers follo ws an exponential distribution with rate ∆.
• Follo wing the completion of the w aiting time duration, they begin an initial type-1 working

vacation exponentially distribute d with parameter Φ1. Once they retur n from the initial type-
1 working vacation, if ther e are no customers in the queue, they transition to type-2 vacation
which follo ws an exponential distributions characterized by parameter Φ2. Other wise, they
retur n to the normal busy period and start ser ving customers in the queue.

• Upon a customer ’s arriv al during the vacation period, within this phase. Upon completing
a ser vice, if ther e are customers in the queue, the ser vers follo w the Ber noulli distribution.
They may opt to interrupt the vacation and move to the normal busy period, a choice
deter mined by the probability denoted as β′. Alter nativ ely, the ser vers may choose to
continue the vacation, a decision made with the complementar y probability β = 1 − β′. It is
crucial to note that the vacation ser vice rate exclusiv ely applies to the first arriving customer
during the working vacation period.

• Upon customer arriv al, a decision is made based on the follo wing probabilities: The
customer opts to either join the queue with a probability denoted as ψk or decide not to and
balk, with the complementar y probability expr essed as ψ

′
k = 1 − ψk. This decision-making

process occurs when ther e are alr eady k customers ahead in the queue, wher e c ≤ k ≤ K.
It is important to note that the probabilities ψk satisfy the conditions 0 ≤ ψk+1 ≤ ψk ≤ 1,
c ≤ k ≤ K − 1, ψ0 = 1, ..., ψc−1 = 1, and ψK = 0.

• During the normal busy period or either type-1 or type-2 working vacations, customers are
governed by impatience timers: T0, T1, or T2, respectiv ely. These timers follo w exponential
distributions with parameters ξ0, ξ1, and ξ2. In practical ter ms, if a customer ’s ser vice
doesn’t commence befor e the timer expir es, they will abandon the queue (renege), and their
retur n is not anticipated.

The variables introduced are mutually independent.

RT&A, No 3 (79) 
Volume 19, September 2024

395



A. Dehimi, M. Boualem, A.A. Bouchentouf, S. Ziani, L. Berdjoudj
ANAL YSIS OF A FINITE-SP ACE MULTI-SERVER QUEUE

2.1. Real-w orld implementation of the model

The consider ed queueing system finds practical application in technical softw are product support
centers. Customers seeking assistance with technical issues contact the support center , arriving
randomly over time accor ding to a Poisson process (α). During regular operating hours, support
agents attend to customers, wi th ser vice times follo wing an exponential distribution at rate µ1.
when ther e is no call in the system, the support agents are allo wed to remain in an inactiv e state
for a random period (waiting time). After that, support agents enter type-1 working vacation,
wher e ser vice capacity decr eases to µ2. Upon retur n from a working vacation, if ther e are non-
calls, agents transition to a type-2 working vacation. At the time during both type-1 and type-2
working vacation modes, if some calls are present in the system, the support agents can continue
operating with proba bility β or they will switch to the normal busy period with probability
β
′
= 1 − β and be processed immediately (working vacation interruption). Calls decide whether

to join the queue with probability ψk and 1 − ψk denotes the probability that they decide to balk
when ther e are n ≥ c incoming calls in front of them in the system. Additionally , during various
operational phases, customers are subject to impatience timers (T0, T1, T2), abandoning the queue
if ser vice doesn’t commence befor e timer expiration (reneging).

3. Examination of the probabilities in a steady-state

We consider the bi-v ariate process (S(t), L(t))(t≥0), wher e L(t) is the number of customers in the
system at time t, and S(t) defines the state of the ser vers at time t and takes one of three values,
such as S(t) = 0 : when the ser vers are in normal busy period at time t, and S(t) = 1 (resp.
S(t) = 2): when the ser vers are in type-1 (resp. in type-2) working vacation period at time t.

The joint probability Pj,k = lim
t→∞

P{S(t) = j, L(t) = k, (j, k) ∈ Ω}, denote the steady-
state probabilities of the system. Figur e 1 sho ws the transition diagram of the consider ed
model. Next, to avoid overloading mathematical expr essions, the follo wing notations are used:

ςk =


0, k = 0, 1,
kβ

′
µ2, 2 ≤ k ≤ c − 1,

cβ
′
µ2, k ≥ c,

φ0,k =


µ1, k = 1,
kµ1 + (k − 1)ξ0, 2 ≤ k ≤ c,
cµ1 + (k − 1)ξ0, k ≥ c + 1,

ζ j,k =


µ2, k = 1,
kβµ2j + (k − 1)ξ j, 2 ≤ k ≤ c − 1,
cβµ2j + (k − 1)ξ j, k ≥ c.

Using the principle of balance equations

(α + ∆)P0,0 = µ1P0,1 , k = 0, (1)

(α + kµ1 + (k − 1)ξ0)P0,k = αP0,k−1 + ((k + 1)µ1 + kξ0)P0,k+1 + Φ1P1,k
+(k + 1)β′µ2P1,k+1 + Φ2P2,k, 1 ≤ k ≤ c − 1, (2)

(αψc + cµ1 + (c − 1)ξ0)P0,c = (cµ1 + cξ0)P0,c+1 + αP0,c−1 + Φ1P1,c
+cβ′µ2P1,c+1 + Φ2P2,c + cβ′µ2P2,c+1, (3)

(αψk + cµ1 + (k − 1)ξ0)P0,k = αψk−1P0,k−1 + (cµ1 + kξ0)P0,k+1 + Φ1P1,k
+cβ′µ2P1,k+1 + Φ2P2,k + cβ′µ2P2,k+1, c + 1 ≤ k ≤ K − 1, (4)

(cµ1 + (K − 1)ξ0)P0,K = αψK−1P0,K−1 + Φ1P1,K + Φ2P2,K , (5)

(α + Φ1)P1,0 = ∆P0,0 + µ2P1,1 , k = 0, (6)

(α + kµ2 + (k − 1)ξ1 + Φ1)P1,k = αP1,k−1 + ((k + 1)βµ2 + kξ1)P1,k+1, 1 ≤ k ≤ c − 1, (7)

(αψc + cµ2 + (c − 1)ξ1 + Φ1)P1,c = αP1,c−1 + (cβµ2 + cξ1)P1,c+1, (8)

(αψk + cµ2 + (k − 1)ξ1 + Φ1)P1,k = αψk−1P1,k−1 + (cβµ2 + kξ1)P1,k+1, c + 1 ≤ k ≤ K − 1, (9)
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Figure 1: State transition rate diagram

(cµ2 + (K − 1)ξ1) + Φ1)P1,K = αψK−1P1,K−1, (10)

αP2,0 = Φ1P1,0 + µ2P2,1 , k = 0, (11)

(α + kµ2 + (k − 1)ξ2 + Φ2)P2,k = λP2,k−1 + ((k + 1)βµ2 + kξ2)P2,k+1, 1 ≤ k ≤ c − 1, (12)

(αψc + cµ2 + (c − 1)ξ2) + Φ2)P2,c = αP2,c−1 + (cβµ2 + cξ2)P2,c+1, (13)

(αψk + cµ2 + (k − 1)ξ2) + Φ2)P2,k = αψk−1P2,k−1 + (cβµ2 + kξ2)P2,k+1, c + 1 ≤ k ≤ K − 1,
(14)

(cµ2 + (K − 1)ξ2 + Φ2)P2,K = αψK−1P2,K−1, (15)

The normalizing condition is

K

∑
k=0

(P0,k + P1,k + P2,k) = 1. (16)

Now, we present the solution of the equations abo ve in the follo wing theor em.

Theorem 1. The probabilities describing the system size in dif ferent operational periods, namely
the type-2 working vacation period (P2,k), type-1 working vacation period (P1,k), and normal busy
period (P0,k), in the steady-state are respectiv ely expr essed as follo ws:

P2,k = θkP2,K = θk

(
K

∑
k=0

(θk + Θ1δk + Θ2ωk − Γk)

)−1

, k = 0, 1, 2, ..., K. (17)
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P1,k = Θ1δkP2,K . (18)

P0,k = (Θ2ωk − Γk)P2,K , (19)

wher e

θk =



1, k = K,

cµ2+(K−1)ξ2+Φ2
αψK−1

, k = K − 1,

αψk+1+cµ2+Φ2+kξ2
αψk

θk+1 −
(cβµ2+(k+1)ξ2)

αψk
θk+2, c ≤ k < K − 1,

αψk+1+(k+1)µ2+Φ2+kξ2
α θk+1 −

((k+1)βµ2+(k+1)ξ2)
α θk+2, k = c − 1,

α+(k+1)µ2+Φ2+kξ2
α θk+1 −

((k+2)βµ2+(k+1)ξ2)
α θk+2, 0 ≤ k ≤ c − 2,

(20)

δk =



1, k = K,

cµ2+(K−1)ξ1+Φ1
αψK−1

, k = k − 1,

αψk+1+cµ2+Φ1+kξ1
αψk

δk+1 −
(cβµ2+(k+1)ξ1)

αψk
δK+2, c ≤ k < K − 1,

αψk+1+(k+1)µ2+Φ1+kξ1
α δk+1 −

((k+1)βµ2+(k+1)ξ1)
α δk+2, k = c − 1,

α+(k+1)µ2+kξ1+Φ1
α

δk+1 −
((k+2)βµ2+(k+1)ξ1)

α δk+2, 0 ≤ k ≤ c − 2,

(21)

Θ1 =
αθ0 − µ2θ1

Φ1δ0
. (22)

ωk =



1, k = K,

cµ1+(K−1)ξ0
αψK−1

, k = K − 1,

αψk+1+cµ1+kξ0
αψk

ωk+1 −
(cµ1+(k+1)ξ0)

αψk
ωk+2, c ≤ k < K − 1,

αψk+1+(k+1)µ1+kξ0
α ωk+1 −

((k+1)µ1+(k+1)ξ0)
α ωk+2, k = c − 1,

α+(k+1)µ1+kξ0
α ωk+1 −

((k+2)µ1+(k+1)ξ0)
α ωk+2, 0 ≤ k ≤ c − 2,

Γk =



0, k = K,

Φ1Θ1+Φ2
αψK−1

, k = K − 1,

Θ1(Φ1δk+1+cβ
′
µ1δk+2)+(Φ2θk+1+cβ

′
µ2θk+2)

αψk
, c ≤ k < K − 1,

Θ1(Φ1δk+1+(k+1)β
′
µ1δk+2)+(Φ2θk+1+(k+1)β

′
µ2θk+2)

α , k = c − 1,

Θ1(Φ1δk+1+(k+2)β
′
µ2δk+2)+(Φ2θk+1+(k+2)β

′
µ2θk+2)

α , 0 ≤ k ≤ c − 2,

Θ2 =
Θ1(α + Φ1)δ0 − Θ1µ1δ1 + ∆Γ0

∆ω0
, (23)
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and

P2,K =

(
K

∑
k=0

(θk + Θ1δk + Θ2ωk − Γk)

)−1

. (24)

Proof. The stationar y probabilities, denoted as P2,k, P1,k, and P0,k, are deter mined using
equations (1) – (15), expr essed in ter ms of P2,K . To calculate P2,k, we use a recursiv e appr oach to
solv e equations (12) – (15). This leads us to deriv e expr essions (17) and (20).

For P1,k, we find it to be equal to Θ1δkP1,K , with δk defined by (21). Utilizing equation (11), we
obtain equations (18) and (22).

By solving equations (2) – (5), we can expr ess P0,k in ter ms of both P0,K and P2,K . Further , with
the assistance of equation (6), we deduce P0,k as a function of P2,K , as giv en in (19).

Finally , we ensur e that these probabilities satisfy the normalization condition (see equation
(16)), which leads us to equation (24). ■

4. Metrics of system performance

▷ The probabilities associated with dif ferent ser ver states–nor mal busy period, type-1 working
vacation, and type-2 working vacation–ar e defined as follo ws:

Pbn = P2,K

K

∑
k=0

(Θ2ωk − Γk), Pwv1 = Θ1P2,K

K

∑
k=0

δk, Pwv2 = P2,K

K

∑
k=0

θk.

▷ The probabilities of the ser vers being idle during the busy period (Pid) and activ ely working
during the normal busy period (Pwn) are expr essed as follo ws:

Pid = (Θ2ω0 − Γ0)P2,K .

Pwn = 1 −
[

P2,K

(
(Θ2ω0 − Γ0) + Θ1

K

∑
k=0

δk +
K

∑
k=0

θk

)]
. (25)

▷ The expr essions for the expected number of customers in the system (Ls) and in the queue
(Lq) are defined as follo ws:

Ls = P2,K

[
K

∑
k=0

(Θ2kωk − kΓk + Θ1kδk + kθk)

]
. (26)

Lq = P2,K

[
K

∑
k=c

(Θ2(k − c)ωk − (k − c)Γk + Θ1(k − c)δk + (k − c)θk)

]
. (27)

▷ The expr ession for Ecs (expected number of customers ser ved per time unit) is giv en by:

Ecs = P2,K

[
µ1Θ2

c−1

∑
k=1

kωk − µ1

c−1

∑
k=1

kΓk + cµ1Θ2

K

∑
n=c

ωk − cµ1

K

∑
k=c

Γk

]

+P2,K

[
µ2Θ1

c−1

∑
k=1

kδk + µ2

c−1

∑
k=1

kθk + cµ2Θ1

K

∑
k=c

δk + cµ2

K

∑
k=c

θk

]
.

(28)

▷ The expr essions for the expected w aiting time of customers in the system (Ws) and in the
queue (Wq) are giv en by:

Ws =
Ls

λ
′ , and Wq =

Lq

λ
′ , wher e λ

′
= λ − Br. (29)

▷ The expected reneging rate:

Rr = P2,K

[
K

∑
k=1

(ξ0Θ2(k − 1)ωk − ξ0(k − 1)Γk + ξ1Θ1(k − 1)δk) + ξ2

K

∑
k=1

(k − 1)θk

]
. (30)

▷ The expected balking rate:

Br = αP2,K

[
K

∑
k=c

(Θ2ψ
′
kωk − ψ

′
kΓk + Θ1ψ

′
kδk + ψ

′
kθk)

]
. (31)
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5. Numerical results

This section presents various numerical examples to illustrate the influence of dif ferent parameters,
including α,Φ1, ξ0, Φ2, c, ξ1, K, ξ2, on the perfor mance metrics of the queueing model (Pwv1, Pwv2,
Pwn, Pid, Br, Rr, Ecs, Ls, Lq, Ws, λ

′ ). To do this, we use the probability of non-balking defined as:
ψk = 1 − k

K .

• Scenario 1: We fix α = 0.01 : .01 : 5, β
′
= 0.3, Φ1 = 1.15, Φ2 = 1.8, ξ0 = 0.7, ξ1 = 1.1, ξ2 = 1.5.

We consider the follo wing cases:

− Case 1: µ1 = 2.5, µ2 = 1, ∆ = 0.3, c = [1; 2; 3; 4], K = 10.

− Case 2: µ1 = 2.5, µ2 = 1, ∆ = 0.3, c = 3, K = [10; 15; 20; 25].

• Scenario 2: We fix Φ1 = 0.01 : .01 : 2.5, α = 2, µ1 = 2.5, µ2 = 1, ∆ = 0.3, Φ2 = 1.8, c = 3,
K = 10. We study the follo wing cases :

− Case 1: ξ0 = [0.6; 0.9; 1.2; 1.5], ξ1 = 1.1, ξ2 = 1.5, β
′
= 0.3.

− Case 2: ξ0 = 0.7, ξ1 = [0.8; 1.1; 1.4; 1.7], ξ2 = 1.5, β
′
= 0.3.

− Case 3: ξ0 = 0.7, ξ1 = 1.1, ξ2 = [1.5; 1.8; 2.1; 2.4], β
′
= 0.3.

• Scenario 3: We fix Φ2 = 0.01 : .01 : 3, α = 2, µ1 = 2.5, µ2 = 1, ∆ = 0.3, Φ = 1.15, c = 3, K = 10.
We study the follo wing cases :

− Case 1: ξ0 = [0.6; 0.9; 1.2; 1.5], ξ1 = 1.1, ξ2 = 1.5, β
′
= 0.3.

− Case 2: ξ0 = 0.7, ξ1 = [0.8; 1.1; 1.4; 1.7], ξ2 = 1.5, β
′
= 0.3.

− Case 3: ξ0 = 0.7, ξ1 = 1.1, ξ2 = [1.5; 1.8; 2.1; 2.4], β
′
= 0.3.
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Figure 2: Br and Ecs vs. α for different values of c

Discussion of Results

▷ Effect of α (arriv al rate): Along with the increasing value of α, several factors are significantly
affected. The system size increases, leading to an augmentation in the probability of working
during the normal busy period Pwn. Additionally , the average balking Br (see Figur es 2a
and 3a), mean number of ser ved customer Ecs (see Figur e 2b), mean number of customers
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Figure 3: Br and Lq vs. α for different values of K
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Figure 4: Br and Pwn vs. Φ1 for different values of ξ0
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Figure 5: Rr and λ
′

vs. Φ1 for different values of ξ1

in the queue Lq (see Figur e 3b) all increase. Conv ersely , the probabilities Pwv1, Pwv2 and Pid
decr ease As a result, the average w aiting time of a customers in the system decr eases. This
can be attributed to the effectiv e arriv al rate λ

′ increasing faster than the mean number of
customers in the system (Ls).

▷ Effect of c (number of ser vers): Ther e is clear evidence that as the parameter c increases, the
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Figure 6: Rr and Ecs vs. Φ1 for different values of ξ2
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Figure 7: Br and Ws vs. Φ2 for different values of ξ0
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Figure 8: Rr and Lq vs. Φ2 for different values of ξ1

quantity Lq decr eases. Moreover, a larger number of ser vers leads to a higher number of
customers being ser ved (see Figur e 2b), ther e by resulting in a reduced average balking rate
(cf. Figur e 2a).

▷ Effect of K (system capacity): The system’s large capacity of the parameter K encourages mor e
customers to join the queue, hoping to be ser ved, which leads to a decr ease in the average
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Figure 9: Rr and λ
′

vs. Φ2 for different values of ξ2

value Br (see Figur e 3a). Further mor e, as the systems capacity increases, the average number
of customers in the queue also increases (cf. Figur e 3b). Thus, ther e is a significant increase
in the mean w aiting time for customers.

▷ Effect of working vacation rates (Φi): By increasing the working vacations rates ϕi, (i = 1, 2),
the system tends to transition quickly to the normal busy period (see Figur e 4b) wher e
customers are ser ved much faster (see Figur e 6b). This leads to a decr ease in the mean
w aiting time of the customers (cf. Figur e 7b). Then, the system becomes rapidly empty .
Consequently , the average value Br decr eases (see Figur es 4a and 7a), which implies a
growth in effectiv e arriv als (cf. Figur es 5b, and 9b). Moreover, higher working vacation rates
correspond to, lower average reneging rate (see Figur es 5a, 6a, 8a, 9a, and 9b), resulting in
smaller mean number of customers in the queue Lq (cf. Figur e 8b).

▷ Effect of parameters ξ0, ξ1, and ξ2 (impatience rates) : Increasing impatience rates, whether
during busy normal period or worki ng vacations period, results in increased average value
Rr (see Figur es 5a, 6a, 8a, and 9a) as well as increased mean number Ecs (cf. Figur e 6b).
Additionally , higher impatien ce rates lead to, a decr ease in the average value Ws (see Figur e
7b). Consequently , due to this impatience, ther e is a decr ease in the number of customers
both Ls and Lq (cf. Figur e 8b). This results in a reduced average balking rate and an
increased effectiv e arriv al rate (see Figur es 4a, 7a, 5b, and 9b).

6. Cost optimization

6.1. Cost model

In this section, we propose a model for the costs incurr ed in our queueing model. In this context,
we start by defining the total expected cost per unit of time of the system as:

Υ(µ1, µ2) = CwnPwn + CidPid + Cwv(Pwv1 + Pwv2) + CqLq + CrRr + CbBr + cµ1Cµ1 + cµ2Cµ2 ,

wher e,

• Cwn (resp. Cid) denotes the cost per unit time when the ser vers are working (resp. idle)
during normal busy period,

• Cwv (resp. Cq) is the cost per unit time when the ser vers are on type-1 or type-2 working
vacation period (resp. when a customer joins the queue and w aits for ser vice),

• Cr (resp. Cb) is the cost per unit time when a customer reneges (resp. balks),
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• Cµ1 (resp. Cµ2 ) denotes the cost per ser vice per unit time during normal busy period (resp.
during type-1 or type-2 working vacation period).

6.2. Grey Wolf Optimizer

The GWO algorithm is one of the recent adv ancements in sw arm intelligence optimization (see
[19]). Is inspir ed by grey wolv es in natur e, which sear ch for the optimal w ay to hunt prey. The
GWO algorithm uses the same mechanism found in natur e, wher e it follo ws the hierar chy of the
pack to organize the dif ferent roles in the pack of wolv es. In addition, the GWO algorithm is
promising for complex optimization problems. This meta-heuristic algorithm efficiently explor es
the sear ch space and conv erges to the optimal solution by simulating the hunting beha vior of grey
wolv es. Its simplicity , versatility and proven success make it an inv aluable tool for resear chers
in a variety of fields. We use this novel technique to globally sear ch (µ1, µ2) until the minimum
value of Υ(µ1, µ2) is achie ved.

6.3. Numerical Cost Optimum

The main goal is to identify optimal ser vice rates µ1 and µ2 in order to minimize the expected cost
function. Because optimization problems are complex and highly non-linear , they are challenging
to solv e analytically . However, we can utilize appr opriate nonlinear optimization techniques to
deter mine the optimal solutions in the cost model. In this case, we fix the parameters and emplo y
the grey wolf optimization algorithm to sear ch for the optimal values (u∗

1 , u∗
2) for the ser vice rates.

The optimization problem can be written as:

min
µ1 ,µ2

Υ(µ1, µ2)

s.t


µ1 − µ2 > 0,
µ2 > 0,
(µ1, µ2) ∈ R2

+.

The objectiv e is to evaluate the cost function Υ in accor dance to parameters µ1 and µ2 to
minimize the total expected cost incurr ed by the system using Grey Wolf Optimizer .

150

4

200

3 2

250

Υ
(
µ
1
,
µ
2
)

1.5

300

µ1

2

µ2

350

1
1

0.5

0 0

Figure 10: Υ(µ1, µ2) vs. µ1 and µ2
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Figur e 10 effectiv ely visualizes the conv exity of the objectiv e function Υ accor ding to ser vice rates
µ1 and µ2.

Then, in what follo ws, the optimal solutions are giv en by applying the GWO meta-heuristic
for various system parameters. To do this, we fix the parameters as: Cs = 45, Cid = 20, Cwv = 30,
Cq = 40, Cr = 35, Cb = 25, Cµ1 = 10, Cµ2 = 5.

Table 1: The optimal (µ∗
1 , µ∗

2) and Υ∗(µ∗
1 , µ∗

2) for various values of α and K, when α = 8 : 1 : 10, ∆ = 0.5,
β
′
= 0.5, Φ1 = 0.4, Φ2 = 0.8, K = [20; 24; 28], c = 3, ξ0 = 0.6, ξ1 = 0.9, ξ2 = 1.4.

K α µ∗
1 µ∗

2 Υ∗(µ∗
1 , µ∗

2)
8 3.2914 0.4088 214.5547

20 9 3.6627 0.4387 232.1802
10 4.0280 0.4648 249.4850
8 3.3526 0.4278 215.1095

24 9 3.7278 0.4581 232.7175
10 4.0999 0.4857 249.9891
8 3.3939 0.4384 216.5381

28 9 3.7759 0.4713 233.1391
10 4.1548 0.5005 250.3924

Table 2: The optimal (µ∗
1 , µ∗

2) and Υ∗(µ∗
1 , µ∗

2) for various values of ∆ when α = 9, ∆ = 0.2 : 0.2 :
0.8, β

′
= 0.4, Φ1 = 0.4, Φ2 = 0.8, K = 24, c = 3, ξ0 = 0.6, ξ1 = 0.9, ξ2 = 1.4.

∆ µ∗
1 µ∗

2 Υ∗(µ∗
1 , µ∗

2)
0.2 3.7858 0.2393 228.1624
0.4 3.7433 0.3986 231.5360
0.6 3.7129 0.5071 233.7100
0.8 3.6941 0.5948 235.3126

Table 3: The optimal (µ∗
1 , µ∗

2) and Υ∗(µ∗
1 , µ∗

2) for various values of β
′ , when α = 9, ∆ = 0.5, β

′
= 0.3 :

0.2 : 0.9, Φ1 = 0.4, Φ2 = 0.8, K = 24, c = 3, ξ0 = 0.6, ξ1 = 0.9, ξ2 = 1.4.

β
′

µ∗
1 µ∗

2 Υ∗(µ∗
1 , µ∗

2)
0.3 3.6668 0.5143 235.5446
0.5 3.7264 0.4575 232.7175
0.7 3.7621 0.4140 230.9342
0.9 3.7850 0.3798 229.6789

- From Table 1, it can be clearly seen that the optimum expected cost Υ∗(µ∗
1 , µ∗

2) exhibits a
significant increase as the values of the arriv al rate α and finite capacity K increases.

- From Table 2, can be obser ved that as ∆, value increases, the minimum expected cost increases.
This obser vation clearly indicates that increasing the w aiting rate of ser vers is an expensiv e
endea vor.

- From Table 3, when interruption probability (β′ ) increases, the minimum expected cost decr eases.
So, a higher interruption probability positiv ely affects the overall expected cost of the system.
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7. Conclusion

This paper focused on the analysis of a finite-space multi-ser ver queue wher e customers exhibit
impatience under a synchr onous dif ferentiated working vacation policy . Specifically , the customers
are assumed to be impatient during the normal busy period, as well as during type-1 and type-2
working vacations. The main goal of the analysis is to deter mine the steady-state probabilities of
the system size under dif ferent ser ver states, including the normal busy period and the working
vacations (type-1 and type-2). This is achie ved through the application of recursiv e analysis
techniques. We deriv ed important system perfor mance measur es that provide valuable insights
into the beha vior and efficiency of the consider ed multi-ser ver queueing system.

A GWO algorithm is perfor med to deter mine the optimal ser vice rates for both working
vacations and normal busy periods aiming to minimize the expected total cost. The problem at
hand is formulated as a nonlinear optimization problem, and several numerical examples are
provided to illustrate the effectiv eness of the proposed appr oach. The focus of the analysis is on
conducting a cost optimization study , wher e the effect of dif ferent system parameters and cost
elements is inv estigated. The numerical examples and cost optimization analysis presented in
this study shed light on the significance of system parameters and cost elements in queueing
systems. Overall, this study contributes to the understan ding and optimization of queueing
systems, highlighting the potential adv antages of cost optimization techniques in various real-life
and industrial settings.

The model discussed in the paper can be extended to handle mor e complex scenarios,
such as an unr eliable multi-ser ver queue with heter ogeneous customers, which introduces
additional complexity to the problem. While this extension increases the dimension of the
problem significantly . It is also possible to relax the exponential assumptions by considering
phase-type distributions for ser vice times.
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Abstract 

Trigonometric distributions have recently been emphasized due to it applicability and relevance for 

modeling different phenomena. This article contributes to the existing literature on trigonometric 

family by introducing and investigating new trigonometric family of distribution which is 

developed by compounding the cosine family of distribution with Marshall-olkin family of 

distribution to form a new Cosine Marshall-Olkin family of distribution (CMO). Graphical, 

numerical and analytical approach was explored to study the properties and applicability of the new 

CMO family of distribution. Special representations and important reliability properties and other 

statistical properties were defined. Simulation study was conducted in order to have an insight on 

the estimates of the three parameters model using maximum products of spacing (MPS). Emphases 

on the greater flexibility of the new CMO family of distribution beyond the cosine-G family and 

other top models of the Cosine related family was made through Weibull distribution. The results 

revealed the superiority of the Cosine Marshall-Olkin Weibull model (CMO-W) over others via two 

data sets.   

Keywords: Cosine-G family, Marshall-Olkin-G family, Maximum Products of 

Spacing, Hazard function, Survival function. 

I. Introduction

Recently, many authors have introduced various approaches to develop flexible continuous 

distributions from classical continuous distributions. The statisticians’ attentions have been drawn 

to various applications of these continuous distributions in environment, physics, medicine, 

biology, finance, insurance, engineering and economy to mention few. The classical distributions 

are induced by adding parameter(s) to enhance the asymmetry, kurtosis, tails properties, central 

and dispersion parameters. This idea is considered as generalization of the classical distributions. 

These generalized distributions belong to particular families defined by transformation of the 

baseline cumulative distribution function (cdf). The values of the newly introduced parameter(s) 

can enhance the statistical capacities of the baseline distribution. for instance, families such as 

Weibull-G [1], Exp-G [2], Topp-Leone generated (TL-G) [3] Type I Half Logistic-G [4], new power 
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TL-G [5],  Type II half Logistic-G [6],  truncated inverted Kumaraswamy-G [7], a new alpha power 

transformed-G [8], a new extended alpha power transformed-G [9], type II power TL-G [10], Odd 

Beta prime-G [11]. 

A recent approach involves defining families of distributions by using the trigonometric 

transformation, be it parametric or not. Kumar et al. [12] and Souza [13] launched this 

trigonometric family exploring the use of the sine function, resulting to the sine-G family. The [14] 

and [15] extended the exponential and weibull distribution through sine-G family. The non 

trigonometric compounding families of distributions seen in the literature include but not limited 

to [16], [17], it extension is found in [18], [19]. The trigonometric compounded families include [20], 

[21], [22], [23], [24], [25] [26], [27], [28], [29], [30], [31], [32], [33]. 

The Marshall-olkin-G family of distribution was proposed by [34] and it was used to 

extended flexibility of Exponential and weibull distribution The Cosine –G family of distribution 

was proposed by [35]. Now, this article intends to compound the two families to form a new 

family of distribution called Cosine Marshall-olkin-G family of distribution.   

The motivations behind CMO-G family are to develop models with improved shapes for 

the pdf and hazard function, improve symmetrical and asymmetrical distributions, construct 

heavy-tailed distributions, improve the flexibility of the baseline model through skewness, 

kurtosis, mean and variance, provide better fits than other Cosine family of distribution with the 

same baseline distribution and possibly with the same number of parameters and more 

complexity. 

II. Methods

2.1 The Marshal-Olkin-G Family of Distribution 

Definition 1: Suppose   ; ,X MO x    with corresponding cdf and pdf given by:

 
 

   

;
; , 

1 ;
MO

G x
H x

G x


 

  


 
 (1) 

and 

 
 

    
2

;
; ,   

1 ;
MO

g x
h x x

G x

 
 

  

   

 

where 0  , and it is a shape parameter    (2) 

2.2 The Cosine-G Family of Probability Distribution 

Definition 2: Suppose    ;X COS x  with corresponding cdf and pdf given by:

   ;Ψ 1 cos
2

F x H x
 

   
 

 (3) 

and 

     ;Ψ
2 2

f x h x sin H x
  

  
 

(4)
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2.3 The proposed Cosine Marshal Olkin-G family of distribution 

Definition 3:  Suppose  ; ,X CMO x    with cdf expressed below, where 0   and   is a shape

parameter and   is a baseline vector parameter is defined as the Cosine Marshal-Olkin-G Family  

 
 

   
; 1 cos

2 1
CMO

G x
F x

G x




 

  
   

   
      (5) 

It is important to note that for any baseline distribution, signified as  G x , CMO cdf satisfy the

following; 

a.  
 dG x

g x
dx



b.  
0

1g x dx




c. The survival function  1 G x  

Definition 4: Suppose    ; ,X CMO x    with pdf expressed below, where 0   and    is a shape

parameter and   is a baseline vector parameter is defined as the Cosine Marshal-Olkin-G Family 

 
 

    

 
   2

;
2 2 11

CMO

g x G x
f x sin

G xG x

 


  

  
  

       

 (6)

2.4 Special Representation 

The pdf of the proposed Cosine Marshall-olkinG family can be expanded using the tailor series 

and binomial expansion; thus   

 
 

    

 
   2

;
2 2 11

CMO

g x G x
f x sin

G xG x

 


  

  
  

       

 
   

 
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2 1 22

2 1
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G x i

 
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 

 






   
     

    
  


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    

2

1
i

G x 


 
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    
2

1 G x 


 

    
 

 
 

   
2 1 2

0

2 1 1

1 1 1
i j j ijj

j

i j

jG x G x   


 



   
 
     
 
 
 



 
 
 
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2 2
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2 2
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2 1 1
1

; 1
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i j
i

j ijj

CMO i
i j

i j

jf x g x G x
i


  


 







   
 
  

  
 
 



Hence the expansion of the pdf is expressed as 
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     
2

,

, 0

; Ψ  
ij

CMO i j
i j

f x g x G x




 
 (7) 

Where 

 
 

 
 

2 2
1

, 2 2

2 1 1
1

Ψ 1
22 1 !

i j
i

jj

i j i

i j

j
i


 








   
 
  

  
 
 

The cdf can also be expanded as follows: 

 
 

   
 
 

 
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2 21 2 ! 1
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 
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   
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
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2
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


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2
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1
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k
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




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 
   
 
 
 



Therefore, 

   
2

,

, 0

; , 1 Φ
k l

CMO k l
k l

F x G x 






  
 (8) 

Where 

 
 

 
 

2

, 2

2 1 1
1

Φ 1
22 !

k l
k

ll

k l k

k l

l
k


 


   
 
  
 
 
 

Definition 5: Suppose  ; ,X CMO x    with cdf and pdf well defined, where 0   and is a

shape parameter and   is a baseline vector parameter. Then the survival function of X, signified by 

   ; , 1 ;
CMO CMO

SF x F x    , the survival function for the CMO family of distribution, can be 

represented by  
 

   
; , cos

2 1
CMO

G x
SF x

G x


 

 

  
  

   
  

Definition 6: Suppose   ; ,X CMO x    with cdf and pdf well defined, where 0  and

 is a shape parameter and   is a baseline vector parameter. Then the hazard rate function of

X, signified by      ; , ; , / ;
CMO CMO CMO

HRF x f x SF x     , the hazard rate function for the 

CMO family of distribution, can be represented by 

 
 

    

 
   2

; , tan
2 2 11

CMO

g x G x
HRF x

G xG x

 
 

  

  
  

       

(10)
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Definition 7: Suppose   ; ,X CMO x    with cdf and pdf well defined, where 0  and

 is a shape parameter and  is a baseline vector parameter. Then the Qunatile function of X,

signified by 

   1; , ; ,
CMO CMO

QF x F x    , the Qunatile function for the CMO family of distribution can be 

obtained as follows: 

 
   

 u 1 cos  , 0,1
2 1

G x
u

G x



 

  
    

   
  

, 

 
 

   

1

1

1

  cos 1
Φ u G  

1 cos 1
2

u

u




 







 
  

  
   
  

 (11) 

Definition 8: Suppose   ; ,X CMO x    with cdf and pdf well defined, where 0  and   is a

shape parameter and  is a baseline vector parameter. Then the 
thr Moments of X can be 

obtained as follow 

 ' r

r
x f x dx




 

   
2'

i ,j 0
, 0

Ψ
ijr

r
x g x G x dx








  
i j

'

i ,j

, 0

Ψ  Φ
r






 
i j

 (12) 

where 

   
2

0
Φ

ijrx g x G x dx


 
Definition 9: Suppose  ; ,X CMO x    with cdf and pdf well defined, where 0  and   is a

shape parameter and  is a baseline vector parameter. The 
thr Moment generating function of

X is obtained through  

     tx tx

x
M t E e e f x dx




  

Thus, the moment generating function of the Cosine Marshall-olkin-G family of distribution is 

given by: 

     
2

i,j 0
, 0

Ψ      
ijtx

x
M t e g x G x dx






  
i j

  i ,j

, 0

Ψ  Υ
x

M t




 
i j

 (13) 

where 

   
2

0
Υ    

ijtxe g x G x dx


 
Definition 10: Suppose  ; ,X CMO x    with cdf and pdf well defined, where 0  and   is a

shape parameter and  is a baseline vector parameter. The entropy is obtained as given below  

   
0

1
log    

1
I x f x dx



 




 

     
2

,

, 0

Ψ  
ij

i j
i j

f x g x G x








 
  
 
 

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2.5 Cosine Marshall-olkinWeibull Distribution 
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Where   is a shape parameter and   is a scale parameter, then the cumulative distribution, 

probability distribution, hazard and survival function of the Cosine Marshall-olkinWeibull 
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and the associated pdf is given as: 
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Figure 1: Plots of pdf  and cdf of CMO-W distribution 

The figure 1 above reveals left skewness, right skewness and approximately symmetric pdf shapes. 

The cdf shape converges to one, validating the CMO-W distribution.    

The Hazard and reliability function of the CMO-W distribution is obtained as: 
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Figure 2: Plots of hazard and reliability function of CMO-W distribution 

The figure 2 above reveals the shapes of the hazard and reliability function the hazard shapes 

obviously shows increasing and decreasing failure rate, and the reliability shapes shows a drop 

from one to zero with varying values of parameters 
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III. Results

3.1     Simulation study 

In this section, we provide, we provides the simulation of parameters of the CMO-W distribution 

using Maximum products of spacing estimation method. Random numbers were systematically 

generated from fixed values of the parameters 0.5, 2, 1     , 0.7, 2.2, 1      and

0.6, 2.3, 1     and 0.8, 2.1, 1     based on 10,000 replications. The sample sizes (n)

considered are 20, 50, 100, 250, 500 and1000. The result is displayed in Table 1 and Table 2 

Table 1: The MPSs parameter estimates (Est. value), Biases and RMSEs of various parameters values 

n Parameters Est. value  Bias RMSE Est. value  Bias     MSE 

20 



0.6195 

2.1325 

0.9536 

0.1195 

0.1325 

-0.0464

0.4675 

0.8886 

0.2357 

0.8346 

2.3199 

0.9563 

 0.1346 

0.1199 

-0.0437

0.5855 

0.9108 

0.2327 

50 



0.5984 

2.0474 

0.9581 

0.0984

0.0474

-0.0419

0.3570 

0.7208 

0.1652 

0.8354 

2.2352 

0.9608 

0.1354

0.0352

-0.0392

0.5037 

0.7881 

0.1722 

100 



0.5719 

2.0375 

0.9703 

0.0719

0.0375

-0.0297

0.2906 

0.6079 

0.1247 

0.7981 

2.2232 

0.9712 

0.0981

0.0232

-0.0288

0.3977 

0.6503 

0.1281 

250 



0.5572 

2.0014 

0.9786 

0.0572

0.0014

-0.0214

0.2226 

0.4941 

0.0970 

0.7788 

2.2114 

0.9787 

0.0788

0.0114

-0.0213

0.3004 

0.5370 

0.1010 

500 



0.5318 

2.0092 

0.9873 

0.0318

0.0092

-0.0127

0.1674 

0.3890 

0.0745 

0.7592 

2.2032 

0.9832 

0.0592

0.0032

-0.0168

0.2422 

0.4317 

0.0801 

1000 



0.5197 

2.0041 

0.9918 

0.0197

0.0041

-0.0082

0.1254 

0.2914 

0.0547 

0.7326 

2.2011 

0.9904 

0.0326

0.0010

-0.0096

0.1810 

0.3362 

0.0608 
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Table 2: The MPSs parameter estimates (Est. value), Biases and RMSEs of various parameters values 

n Parameters Est. value    Bias RMSE Est. value  Bias RMSE 

20 



0.7259 

2.4416 

0.9567 

0.1259 

0.1416 

-0.0433

0.5302 

0.9796 

0.2366 

0.9459 

2.2125 

0.9607 

 0.1459 

 0.1125 

-0.0393

0.6535 

0.8606 

0.2402 

50 



0.7174 

2.3376 

0.9593 

0.1174

0.0376

-0.0407

0.4218 

0.8233 

0.1690 

0.9525 

2.1128 

0.9588 

0.1525

0.0128

-0.0412

0.5519 

0.7333 

0.1711 

100 



0.6863 

2.3231 

0.9703 

0.0863

0.0231

-0.0297

0.3426 

0.6725 

0.1253 

0.9240 

2.1063 

0.9698 

0.0981

0.0232

-0.0288

0.1240 

0.0063 

-0.0302

250 



0.0722 

-0.0181

-0.0226

0.0722

-0.0181

-0.0226

0.0722 

-0.0181

-0.0226

0.9008 

2.0640 

0.9752 

0.1008 

-0.0360 -

0.0248

0.3486 

0.4893 

0.1006 

500 



0.6444 

2.2928 

0.9851 

0.0444

-0.0072

-0.0149

0.2047 

0.4473 

0.0772 

0.8628 

2.0824 

0.9840 

 0.0628 

-0.0176

-0.0160

0.2716 

0.4125 

0.0808 

1000 



0.6300 

2.2845 

0.9897 

0.0300

-0.0155

-0.0103

0.1558 

0.3418 

0.0585 

0.8433 

2.0783 

0.9886 

0.0433

-0.0217

-0.0114

0.2073 

0.3206 

0.0624 

3.2       Applications 

Application of the CMO-W distribution to two real life data sets are provided and revealing it 

applicability in practice along with comparison with its comparators. The proposed Cosine 

Marshall-olkin-Weibull distribution (CMO-W) is compared with four other Cosine extended 

Weibull distributions, namely: Cosine Topp–Leone Weibull (CTL-W) distribution [36], Extended 

Cosine Weibull (ECS-W) distribution [37], New Alpha Power Cosine-Weibull (NACos-W) 

distribution [38] and Cosine Weibull (C-W) distribution [39]. 

The information criteria explored to investigate the goodness-of- fit of the distribution 

appropriate for the data are Akaike's Information Criterion (AIC), Consistent Akaike's Information 

Criterion (CAIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion 

(HQIC). The computation can be seen as follows 

 AIC = 2 2p ,  

  
 

CAIC
2

2
1

np

n p ,  

  2 log( )BIC p n ,  

 HQIC 2 2 log(log( ))p n ,  

where  is the maximized log likelihood of the parameter vector     ( , , ) , p is the number of 

estimated parameters and n is the number of observations. The best fitted model is selected based 

on minimum value obtained through the information criteria measures.  
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Dataset 1:  

“The data set shown below represents the civil engineering data with 85 hailing times, previously 

used by Kotz and Dorp (2004):"   
4.79, 4.75, 5.40, 4.70, 6.50, 5.30, 6.00, 5.90, 4.80, 6.70, 6.00, 4.95, 7.90, 5.40, 3.50, 4.54, 6.90, 5.80, 5.40, 5.70, 8.00,  

5.40, 5.60, 7.50, 7.00, 4.60, 3.20, 3.90, 5.90, 3.40, 5.20, 5.90, 4.40, 5.20, 7.40, 5.70, 6.00, 3.60, 6.20, 5.70, 5.80, 5.90, 

6.00, 5.15, 6.00, 4.82, 5.90, 6.00, 7.30, 7.10, 4.73, 5.90, 3.60, 6.30, 7.00, 5.10, 6.00, 6.60, 4.40, 6.80, 5.60, 5.90, 5.90,  

8.60, 6.00, 5.80, 5.40, 6.50, 4.80, 6.40, 4.15, 4.90, 6.50, 8.20, 7.00, 8.50, 5.90, 4.40, 5.80, 4.30, 5.10, 5.90, 4.70, 3.50, 

6.80. 

Figure 3: The boxplot and kernel density of the data set 1 

Dataset 2:   

“The data set shown below represents the strength of carbon fibers tested under tension at gauge lengths of 

10mm, previously used Bi and Gui (2017):" 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 

2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 

3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 

3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 
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Figure 4: The boxplot and kernel density of the data set 2 

Figure 5: The TTT plot of  data set 1 and 2 
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Table 3: MPSs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 1 

Distributions     LL AIC CAIC BIC HQIC 

CMO-W 3.9229 2.2488 2.8840 -110.2788 226.5576 226.8539 233.8856 229.5051 

274.8219 CTL-W 0.0026 1.3745 3.2049 -132.9372 271.8744 272.1707 279.2024

ECS-W 3.8988 0.0382 0.7231 -258.3757 522.7514 523.0477 530.0794 525.6989 

NACos-W 4.8815 3.1622 0.0026 -193.4512 392.9024 393.1987 400.2304 395.8499 

C-W 2.8953 0.0094 0.1471 -138.7963 283.5926 283.8889 290.9206 286.5401 

Table 4: MPSs, Log-likelihoods and Goodness of Fits Statistics for the Data Set 2 

Distributions     LL AIC CAIC BIC HQIC 

MO-W 4.4779 6.1830 0.0415 -82.1587 170.3174 170.7242 176.7468 172.8461 

CTL-W 0.3398 12.5851 1.4887 -86.6096 179.2192 179.6260 185.6486 181.7479 

ECS-W 0.0027 0.9870 4.4644 -84.5562 175.1124 175.5192 181.5418 177.6411 

NACos-W 8.1270 0.0128 2.6986 -85.2837 176.5674 176.9742 182.9968 179.0961 

C-W 0.5119 6.9721 0.0020 -86.0652 178.1304 178.5372 184.5598 180.6591 

IV. Discussion

We introduce a novel Cosine Marshall-Olkin family of distribution and its properties, therein, we 

extended the Weibull distribution to form a new sub-model known as Cosine Marshall-Olkin 

Weibull distribution. We conducted a comprehensive study of the new Cosine Marshall-Olkin 

Weibull distribution properties. Furthermore, we investigate the consistency and efficiency of the 

estimates obtained from the parameters of the novel distribution. We employ the maximum 

products of spacing estimation technique, which enabled us to access the values of the parameters 

effectively. To demonstrate the applicability of the proposed distribution, we provide insights on 

its performance using two real-life datasets. The analysis reveals that the new model outperforms 

other trigonometric family of distribution with the same baseline. 
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Abstract

This paper analyzes preemptive priority inventory retrial queueing system with a single vacation, working
breakdown, repair, and closedown. We assume that an arrival follows the Marked Markovian arrival
process and that the server will provide them with phase-type services. The (s, S) policy to replenish
the items and the replenishing duration follow an exponential distribution. In this paper, we consider
two types of customers: high-priority(HP) customers and low-priority(LP) customers. Arriving HP
customers should get the service if the server is idle and has a positive inventory level; otherwise, they
should wait in front of the service station. Arriving LP customers get service only if there is a positive
inventory level and there are no high-priority customers in the system; otherwise, go for the finite capacity
size of the orbit. After the completion of service, if no one is present in the high-priority queue and orbit,
the server will close down the system and then go on a single vacation. The server is idle when the
vacation period ends. When the server breaks down, it only serves the present customer and operates in
slow mode while it is being repaired. The number of high-priority customers in the system, the number
of low-priority customers in the orbit, the inventory level, and server status may all be determined in a
steady state. Numerous key performance indicators are defined, and a cost analysis is obtained. To make
our mathematical concept clearer, a few numerical examples are provided.

Keywords: Queueing-inv entor y, (s, S) policy , Retrial, Preemptiv e Priority , Single Vacation, Work-
ing Breakdo wn, Repair , Closedo wn, Marko vian Arriv al Process, Phase-type distribution, Matrix
Analytic Method.

AMS Subject Classification (2010): 60K30, 68M20, 90B05.

1. Introduction

The field of inv entor y retrial queueing systems has seen a rise in popularity in recent years due
to de velopments in computer netw orking and communications technologies. In a queueing-
inv entor y model, each client receiv es a product from the inv entor y upon completion of the ser vice.
Neuts [19] presented the modified Marko vian point process for the first time. A number of
well-kno wn techniques fall under the large categor y of point processes known as MAP, including
PH-rene w al, Marko v-modulated Poissons, and Poisson. The Marko vian arriv al process with
several correlated and non-corr elated arriv al types, as well as the phase-type distribution, were
both extensiv ely clarified by Chakra varthy [8]. Neuts [20] inv estigated the methods used in
matrix-analytic queueing theor y.

Reor dering products in a queueing order -demand inv entor y system is best done using the
techniques described by Meliko v and Molchano v [16]. A study by Ber man et al. [6] examined a
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system for inv entor y contr ol for a ser vice center that uses one inv entor y item for each ser vice
render ed. Accor ding to their assumptions, ther e must alw ays be a shortage of items for the queue
to for m, and demand and ser vice rates are predictable and steady . Ber man and Kim [7] de veloped
tw o types of queuing-inv entor y models with ser vice facilities. The first had an infinite one, while
the other had a finite capacity for queuing. In their evaluation, Yada valli et al. [25] made the
assumption that reorders are readily available and that requests belong to a rene w al process.
The inv entor y system included a ser vice station and an indefinite w aiting area. Amirthakodi
and Siv akumar [2] looked at retrial inv entor y queuing, in which ther e is a finite orbit size, a
single ser ver, and customer feedback. Sanjukta and Nabendu [21] looked into a carbon tax and
an inv entor y queueing system with a partial replenishment strategy and a limited shelf life for
perishable commodities.

Most of the time, it is belie ved that inv entor y and queueing models have not failed at
ser vice stations. In actuality , we regularly come across circumstances wher e ser vice station
malfunctions could occur . A ser ver interruption inv entor y retr y queueing system w as covered by
Krishnamoorthy et al. [11]. In their model, they took into consideration a (s, S) replenishment
policy wher e the lead time and ser vice time follo w an exponential distribution, while the arriv al
follo ws a Poisson distribution. The retrial inv entor y queuing system with ser ver failur e w as
examined by Ushakumari [24]. When the ser ver is processing requests or is idle, it could
malfunction. If a ser ver failur e results in ser vice disruption, users are placed into an infinitely
long orbit, obliged to retr y ser vice after an arbitrar y period, and so on unless the ser ver is
render ed inoperable.

The ser ver could simply quit w aiting for customers and remain unr eachable in a variety of
situations. It might also be completing other duties, such as maintenance or ser vicing mor e
clients. Krishnamoorthy and Nara yanan [12] consider ed a manufacturing inv entor y system
including ser ver vacations. They held that the manufacturing process adher ed to the Marko vian
manufacturing method and that the ser vice times for each customer were dispersed in a phase-
type manner . The inv entor y queue for retrials with several vacations w as analyzed by Sugany a
and Siv akumar [23]. They took into account a pair of ser vers and a limited orbit size capacity in
their model. The retrial queueing system incor porating a single ser ver, Ber noulli feedback, and
vacation has been examined by Ayy appan and Gowthami [4]. They took into account both the
client’s arriv al based on MAP and the ser ver ’s ser vice deliv ery based on PH distribution. Meliko v
et al. [17] examined the retrial queueing system that incor porates Poisson arriv al, exponential
ser vice time, and dela yed feedback. For their inv estigation, they emplo yed both the (s, S) and
(s, Q) replenishing policies.

An inv entor y queueing appr oach with MAP arriv als, PH offerings, and perishable goods
w as examined by Manuel et al. [15]. Additionally , they take into account their model, in which
a positiv e customer adv ances one regular customer to the front of the line while a negativ e
customer pushes one regular customer back. An inv entor y retrial queueing system inv olving
tw o commodities w as presented by Anbazhagan and Jeganathan [3]. They think of their model
as having a core item and a supplement item. Jeganathan and Selv akumar [9] examined a
queueing system for inv entor y that emplo yed a traditional retr y rate. In their work, they present
an optional oscillator y client arriv al procedur e that is subject to Ber noulli testing and can pass
through a w aiting room or an infinite orbit. A tw o-component demand inv entor y retrial queueing
system w as examined by Abdul Reiy as and Jeganathan [1]. They took into account the (s, Q)
replenishment policy while placing the order. The retrial inv entor y queueing model w as examined
by Jeganathan et al. [10] with tw o dif ferent kinds of clients. Mustapha and Majid [18] de veloped
a tw o-phase production period production inv entor y model for non-immediately degrading
products. For mixed demand with trade credit programs, Manisha et al. [14] have created the
ideal replacement and conser vation inv estment strategy . Ayy appan and Archana [5] discussed
the non-pr eemptiv e priority queueing model with optional ser vice and single vacation.
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2. Description of the model

We take into consideration a single ser ver with the preemptiv e priority inv entor y retrial queueing
system, featuring inv entor y with maximum storage capacity of S units. Customers arriv e via
the Marked Marko vian Arriv al Process (MMAP) with depictions (D0, D1, D2) with order size
k, wher e the matrix D = D0 + D1 + D2. In the system, no arriv al is governed by the squar e
matrix D0, the arriv al of high priority customers is governed by the squar e matrix D1 and the
arriv al of low priority customers is governed by the squar e matrix D2. With π repr esenting the
probability vector of D, the mean arriv al rate of HP customers is λ1 = πD1ek and the mean
arriv al rate of LP customers is λ2 = πD2ek. The ser ver provides high priority(HP) and low
priority(LP) ser vices that both follo w a PH-distribution with depictions (γ, P) and (ν, M) of orders
l1 and l2, respectiv ely. For HP and LP customers mean ser vice rate is ζ1 = [γ(−P)−1el1 ]

−1 and
ζ2 = [ν(−M)−1el2 ]

−1.

Figure 1: A pictorial illustration of the model

If the ser ver breaks down while ser ving HP or LP customers, it will first offer a slow ser vice
mode to the impacted customers befor e beginning the repair procedur e. The PH-distribution
is follo wed by the slower ser vice for HP and LP customers, together with a repr esentation of
order l1 and l2, respectiv ely, repr esented by (γ1, θP) and (ν1, θM). The breakdo wn time has an
exponential distribution with parameter σ, and the repair process has a PH-distribution with a
depiction (α, U) of order m2. When HP customers arriv e, they only interrupt their regular ser vice
if LP customer ser vices are still in progr ess, and the ser ver ser ves HP clients. In the event that
ther e are no pending requests in the HP queue, the ser ver will ser ve LP customers. Arriving HP
customers should get the ser vice if the ser ver is idle and has a positiv e inv entor y level; other wise,
they should w ait in front of the ser vice station. Arriving LP customers get ser vice only if ther e
is a positiv e inv entor y level and ther e are no high-priority customers in the system; other wise,
go for the finite capacity size of the orbit, say N. After the completion of ser vice, if no one is
present in the high-priority queue and orbit, the ser ver will close down the system and then
go on a single vacation. After the completion of the vacation period, the ser ver is idle. The
closedo wn times follo w an exponential distribution with parameter δ. The Vacation times follo w
the PH-distribution with depiction (β, W) of order m1. The LP customers retr ying for their ser vice
after the fixed times, the constant retrial rate follo w an exponential distribution with parameter χ.
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The average rate of repair and vacation is giv en by η and ψ respectiv ely.

3. The Quasi Birth and Death Process for the Matrix Generations

We are going to discuss this part, which comprises the notation that for ms the basis of the
Quasi Birth and Death (QBD) process in our model.

• ⊗ - Any tw o dif ferent order matrices can be multiplied to create a Kronecker product, and
this can be founded on the resear ch of Steeb and Har dy [22].

• ⊕ - The Kronecker sum is the sum of any tw o of the dif ferent orders of matrices.
• Ik - The identity matrix has k dimensions.
• e - The column vector ’s appr opriate dimension for each of its elements is 1.
• ek - For every k elements in a column vector, the value is 1.
• ek(L) - The column vector with dimension L, wher e the kth element is 1 and remaining

elements are 0.
• e′k(L) - The transpose of ek(L).
• The arriv al rate of HP and LP customers is repr esented by λi and described as λi = πDiek,

wher e i=1,2 respectiv ely.
• The ser vice rate for HP customers is repr esented by ζ1 and described as ζ1 = [γ(−P)−1el1 ]

−1.
• The ser vice rate for LP customers is repr esented by ζ2 and described as ζ2 = [ν(−M)−1el2 ]

−1.
• The vacation rate of the ser ver is repr esented by ψ and described as

ψ = [β(−W)−1em1 ]
−1.

• The ser ver ’s rate of repair is repr esented by η and described as η = [α(−U)−1em2 ]
−1.

• The number of HP customers in the system at time t can be repr esented by N1(t).
• The number of LP customers in the orbit at time t can be repr esented by N2(t).
• Let V(t) be the state of the ser ver at time t.

V(t) =



0, the vacation state of the ser ver,
1, the idle state of the ser ver,
2, the ser ver is offering ser vice for HP customers,
3, the ser ver is offering ser vice for LP customers,
4, the ser ver is offering slow ser vice for HP customers,
5, the ser ver is offering slow ser vice for LP customers,
6, the ser ver is under repair ,
7, the ser ver is under closedo wn process.

• Let I(t) be the level of inv entor y items at time t.
• J1(t) denotes the phases of the vacation process.
• J2(t) denotes the phases of the repair process.
• S(t) denotes the phases of the ser vice process.
• M(t) denotes the phases of the arriv al process.

Let { N1(t), N2(t), V(t), I(t), J1(t), J2(t), S(t), M(t) : t ≥ 0} indicate the Continuous Time
Marko v Chain (CTMC) with state-le vel independent QBD processes. The state space is as follo ws:

Φ = l(0) ∪∞
u1=1 l(u1),

wher e
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l(0) ={(0, u2, 0, j, a1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a1 ≤ m1, 1 ≤ c ≤ k}
∪ {(0, u2, 1, j, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ c ≤ k}
∪ {(0, u2, 3, j, d2, c) : 0 ≤ u2 ≤ N, 1 ≤ j ≤ S, 1 ≤ d2 ≤ l2, 1 ≤ c ≤ k}
∪ {(0, u2, 5, j, d2, c) : 0 ≤ u2 ≤ N, 1 ≤ j ≤ S, 1 ≤ d2 ≤ l2, 1 ≤ c ≤ k}
∪ {(0, u2, 6, j, a2, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a2 ≤ m2, 1 ≤ c ≤ k}
∪ {(0, u2, 7, j, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ c ≤ k},

for u1 ≥ 1,

l(u1) ={(u1, u2, 0, j, a1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a1 ≤ m1, 1 ≤ c ≤ k}
∪ {(u1, u2, 1, 0, c) : 0 ≤ u2 ≤ N, 1 ≤ c ≤ k}
∪ {(u1, u2, 2, j, d1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ d1 ≤ l1, 1 ≤ c ≤ k}
∪ {(u1, u2, 4, j, d1, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ d1 ≤ l1, 1 ≤ c ≤ k}
∪ {(u1, u2, 5, j, d2, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ d2 ≤ l2, 1 ≤ c ≤ k}
∪ {(u1, u2, 6, j, a2, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ a2 ≤ m2, 1 ≤ c ≤ k}
∪ {(u1, u2, 7, j, c) : 0 ≤ u2 ≤ N, 0 ≤ j ≤ S, 1 ≤ c ≤ k}.

The QBD procedur e generates an infinitesimal matrix, as provided by

Q =



B00 B01 0 0 0 0 . . .
B10 A1 A0 0 0 0 . . .
0 A2 A1 A0 0 0 . . .
0 0 A2 A1 A0 0 . . .
...

...
...

. . . . . . . . .
...

...
...

...
...

. . . . . . . . .


.

The entries in Q’s block matrices are specified as follo ws:

B00 =



B00
11 B00

12 0 0 0 0
0 B00

22 B00
23 0 0 0

0 B00
32 B00

33 B00
34 0 B00

36

0 0 0 B00
44 B00

45 0
0 B00

52 0 0 B00
55 0

B00
61 0 0 0 0 B00

66


,

wher e

B00
11 =



C001 C002 0 . . . 0 0
0 C001 C002 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C001 C002
0 0 0 . . . 0 C001 + C002


,

C001 =



J1 0 . . . 0 0 . . . J3
0 J1 . . . 0 0 . . . J3
...

...
. . .

...
...

...
...

0 0 . . . J1 0 . . . J3
0 0 . . . 0 J2 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J2


, C002 = IS+1 ⊗ Im1 ⊗ D2,
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B00
12 = IN+1 ⊗ IS+1 ⊗ W0 ⊗ Ik,

wher e J1 = W ⊕ D0 − τ Im1k, J2 = W ⊕ D0, J3 = τ Im1k,

B00
22 =



C003 C004 0 . . . 0 0
0 C005 C004 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C005 C004
0 0 0 . . . 0 C006


,

C003 =



J4 0 . . . 0 0 . . . J6
0 J4 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J4 0 . . . J6
0 0 . . . 0 J5 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J5


,

C005 =



J4 0 . . . 0 0 . . . J6
0 J7 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J7 0 . . . J6
0 0 . . . 0 J8 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J8


,

C006 =



J9 0 . . . 0 0 . . . J6
0 J10 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J10 0 . . . J6
0 0 . . . 0 J11 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J11


,

C004 =

[
e′1(S + 1)⊗ D2

0

]
,

wher e J4 = D0 − τ Ik, J5 = D0, J6 = τ Ik, J7 = D0 − (χ + τ)Ik, J8 = D0 − χIk,

J9 = (D0 + D2)− τ Ik, J10 = (D0 + D2)− (χ + τ)Ik, J11 = (D0 + D2)− χIk,

B00
23 =



C007 0 . . . 0 0 0
C008 C007 . . . 0 0 0

...
. . . . . .

...
...

...
...

...
. . . . . .

...
...

0 0 . . . C008 C007 0
0 0 . . . 0 C008 0


,

C007 =

[
0

IS ⊗ ν ⊗ D2

]
, C008 =

[
0

IS ⊗ ν ⊗ χIm

]
,
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B00
33 =



C009 C0010 0 . . . 0 0
0 C009 C0010 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C009 C0010
0 0 0 . . . 0 C009 + C0010


,

C009 =



J12 0 . . . 0 0 . . . J14
0 J12 . . . 0 0 . . . J14
...

...
. . .

...
...

...
...

0 0 . . . J12 0 . . . J14
0 0 . . . 0 J13 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J13


, C0010 = IS ⊗ Il2 ⊗ D2,

wher e J12 = M ⊕ D0 − (σ + τ)Il2k, J13 = M ⊕ D0 − σIl2k, J14 = τ Il2k,

B00
34 = IN+1 ⊗ IS ⊗ el2 ⊗ ν1σIk, B00

32 =

[
0 0
0 IN ⊗ C0011

]
,

B00
36 =

[
e1(N + 1)⊗ C0011 0

]
, C0011 =

[
IS ⊗ M0 ⊗ Ik 0

]
,

B00
44 =



C0012 C0010 0 . . . 0 0
0 C0012 C0010 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C0012 C0010
0 0 0 . . . 0 C0012 + C0010


,

C0012 =



J15 0 . . . 0 0 . . . J14
0 J15 . . . 0 0 . . . J14
...

...
. . .

...
...

...
...

0 0 . . . J15 0 . . . J14
0 0 . . . 0 J16 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J16


,

wher e J15 = θM ⊕ D0 − τ Il2k, J16 = θM ⊕ D0,

B00
45 = IN+1 ⊗ C0013 , C0013 =

[
IS ⊗ θM0α ⊗ Ik 0

]
,

B00
55 =



C0014 C0015 0 . . . 0 0
0 C0014 C0015 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C0014 C0015
0 0 0 . . . 0 C0014 + C0015


,

B00
52 = IN+1 ⊗ IS+1 ⊗ U0 ⊗ Ik,

RT&A, No 3 (79) 
Volume 19, September 2024

429



G. Ayy appan, S. Meena
ANAL YSIS OF MMAP/PH1,PH2/1 PREEMPTIVE PRIORITY INVENT ORY...

C0014 =



J17 0 . . . 0 0 . . . J19
0 J17 . . . 0 0 . . . J19
...

...
. . .

...
...

...
...

0 0 . . . J17 0 . . . J19
0 0 . . . 0 J18 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J18


, C0015 = IS+1 ⊗ Im2 ⊗ D2,

wher e J17 = U ⊕ D0 − τ Im2k, J18 = U ⊕ D0, J19 = τ Im2k,

B00
66 =



C0016 C0017 0 . . . 0 0
0 C0016 C0017 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C0016 C0017
0 0 0 . . . 0 C0016 + C0017


,

B00
61 = IN+1 ⊗ IS+1 ⊗ β ⊗ δIk,

C0016 =



J20 0 . . . 0 0 . . . J6
0 J20 . . . 0 0 . . . J6
...

...
. . .

...
...

...
...

0 0 . . . J20 0 . . . J6
0 0 . . . 0 J21 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J21


, C0017 = IS+1 ⊗ D2,

wher e J20 = D0 − (δ + τ)Ik, J21 = D0 − δIk,

B01 =



B01
11 0 0 0 0 0 0

0 B01
22 B01

23 0 0 0 0
0 0 B01

33 0 0 0 0
0 0 0 0 B01

45 0 0
0 0 0 0 0 B01

56 0
0 0 0 0 0 0 B01

67


,

wher e

B01
11 = IN+1 ⊗ IS+1 ⊗ Im1 ⊗ D1, B01

22 = IN+1 ⊗ e1(S + 1)⊗ D1,

B01
23 = IN+1 ⊗ C011 , C011 =

[
0

IS ⊗ γ ⊗ D1

]
,

B01
33 = IN+1 ⊗ IS ⊗ el2 ⊗ γ ⊗ D1, B01

45 = IN+1 ⊗ IS ⊗ Il2 ⊗ D1,

B01
56 = IN+1 ⊗ IS+1 ⊗ Im2 ⊗ D1, B01

67 = IN+1 ⊗ IS+1 ⊗ D1,

B10 =



0 0 0 0 0 0
0 0 0 0 0 0
0 B10

32 0 0 0 B10
36

0 0 0 0 B10
45 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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wher e

B10
32 =

[
0 0
0 IN ⊗ C101

]
, B10

36 =

[
C101 0

0 0

]
, C101 =

[
IS ⊗ P0 ⊗ Ik 0

]
,

B10
45 = IN+1 ⊗ C102 , C102 =

[
IS ⊗ θP0α ⊗ Ik 0

]
,

A1 =



A1
11 A1

12 A1
13 0 0 0 0

0 A1
22 A1

23 0 0 0 0
0 0 A1

33 A1
34 0 0 0

0 0 0 A1
44 0 0 0

0 0 0 0 A1
55 A1

56 0
0 A1

62 A1
63 0 0 A1

66 0
A1

71 0 0 0 0 0 A1
77


,

wher e

A1
11 = B00

11 , A1
12 = IN+1 ⊗ e1(S + 1)⊗ W0 ⊗ Ik,

A1
13 = IN+1 ⊗ C111 , C111 =

[
0

IS ⊗ W0γ ⊗ Ik

]
,

A1
22 =



D0 − τ Ik D2 0 . . . 0 0
0 D0 − τ Ik D2 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . D0 − τ Ik D2
0 0 0 . . . 0 (D0 + D2)− τ Ik


,

A1
23 = IN+1 ⊗ e′S(S)⊗ γ ⊗ τ Ik, A1

34 = IN+1 ⊗ IS ⊗ el1 ⊗ γ1 ⊗ σIk,

A1
33 =



C112 C113 0 . . . 0 0
0 C112 C113 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C112 C113
0 0 0 . . . 0 C112 + C113


, C113 = IS ⊗ Il1 ⊗ D2,

C112 =



J22 0 . . . 0 0 . . . J24
0 J22 . . . 0 0 . . . J24
...

...
. . .

...
...

...
...

0 0 . . . J22 0 . . . J24
0 0 . . . 0 J23 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J23


,

wher e J22 = P ⊕ D0 − (σ + τ)Il1k, J23 = P ⊕ D0 − σIl1k, J24 = τ Il1k,

A1
44 =



C114 C113 0 . . . 0 0
0 C114 C113 . . . 0 0
...

...
. . . . . .

...
...

...
...

...
. . . . . .

...
0 0 0 . . . C114 C113
0 0 0 . . . 0 C114 + C113


,
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C114 =



J25 0 . . . 0 0 . . . J24
0 J25 . . . 0 0 . . . J24
...

...
. . .

...
...

...
...

0 0 . . . J25 0 . . . J24
0 0 . . . 0 J26 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 . . . J26


,

wher e J25 = θP ⊕ D0 − τ Il1k, J26 = θP ⊕ D0,

A1
55 = B00

44 , A1
56 = B00

45 , A1
66 = B00

55 ,

A1
62 = IN+1 ⊗ e1(S + 1)⊗ U0 ⊗ Ik, A1

63 = IN+1 ⊗ C115 ,

C115 =

[
0

IS ⊗ U0γ ⊗ Ik

]
,

A1
77 = B00

66 , A1
71 = B00

61 ,

A0 =



A0
11 0 0 0 0 0 0

0 A0
22 0 0 0 0 0

0 0 A0
33 0 0 0 0

0 0 0 A0
44 0 0 0

0 0 0 0 A0
55 0 0

0 0 0 0 0 A0
66 0

0 0 0 0 0 0 A0
77


,

wher e A0
11 = B01

11 , A0
22 = IN+1 ⊗ D1, A0

33 = IN+1 ⊗ IS ⊗ Il1 ⊗ D1,

A0
44 = A0

33 , A0
55 = B01

45 , A0
66 = B01

56 , A0
77 = B01

67 ,

A2 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 A2

32 A2
33 0 0 0 0

0 0 0 0 0 A2
46 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

wher e A2
32 = IN+1 ⊗ e1(S)⊗ P0 ⊗ Ik, A2

33 = IN+1 ⊗ C211 ,

C211 =

[
0 0

IS−1 ⊗ P0γ ⊗ Ik 0

]
, A2

46 = B10
45 .

4. Stationary Analysis

We analyze our model in a few consistent system configurations.

4.1. Criteria for stability

Let us define the matrix A as follo ws: A = A0 + A1 + A2, signifying that it is an irreducible in-
finitesimal generator matrix with dimensions of ((N + 1)(S + 1)m1k + (N + 1)k + 2(N + 1)Sl1k +
(N + 1)Sl2k + (N + 1)(S + 1)m2k + (N + 1)(S + 1)k).

RT&A, No 3 (79) 
Volume 19, September 2024

432



G. Ayy appan, S. Meena
ANAL YSIS OF MMAP/PH1,PH2/1 PREEMPTIVE PRIORITY INVENT ORY...

The vector κ repr esents the stationar y probability vector of A that achie ving the criteria
κA = 0 and κe = 1. The vector κ is divided by κ = (κ0, κ1, κ2, κ3, κ4, κ5, κ6) = (κ000 , κ001 ,
. . . , κ00S, κ010 , κ011 , . . . , κ01S, . . . , κ0N0, κ0N1, . . . , κ0NS, κ100 , κ110 , . . . , κ0N0, κ201 , . . . , κ20S,
κ211 , . . . , κ21S, . . . , κ2N1, . . . , κ2NS, κ301 , . . . , κ30S, κ311 , . . . , κ31S, . . . , κ3N1, . . . , κ3NS, κ401 , . . . ,
κ40S, κ411 , . . . , κ41S, . . . , κ4N1, . . . , κ4NS, κ500 , κ501 , . . . , κ50S, κ510 , κ511 , . . . , κ51S, . . . , κ5N0,
κ5N1, . . . , κ5NS, κ600 , κ601 , . . . , κ60S, κ610 , κ611 , . . . , κ61S, . . . , κ6N0, κ6N1, . . . , κ6NS), wher e κ0
has a dimension of (N + 1)(S + 1)m1k, κ1 has a dimension of (N + 1)k, κ2 has a dimension of
(N + 1)Sl1k, κ3 has a dimension of (N + 1)Sl1k, κ4 has a dimension of (N + 1)Sl2k, κ5 has a
dimension of (N + 1)(S+ 1)m2k and κ6 has a dimension of (N + 1)(S+ 1)k. When examining the
Marko v process within the frame work of QBD, our model’s stability should satisfy the essential
and suf ficient requir ements of κA0e < κA2e. Upon perfor ming certain algebraic reductions, the
stability condition κA0e < κA2e is deter mined to be

N

∑
u2=0

S

∑
j=0

κ0u2 j(em1 ⊗ D1ek) +
N

∑
u2=0

κ1u20(D1ek) +
N

∑
u2=0

S

∑
j=1

κ2u2 j(el1 ⊗ D1ek)

+
N

∑
u2=0

S

∑
j=1

κ3u2 j(el1 ⊗ D1ek) +
N

∑
u2=0

S

∑
j=1

κ4u2 j(el2 ⊗ D1ek) +
N

∑
u2=0

S

∑
j=0

κ5u2 j(em2 ⊗ D1ek)

+
N

∑
u2=0

S

∑
j=0

κ6u2 j(D1ek) <
N

∑
u2=0

N

∑
j=1

κ2u2 j(P0 ⊗ ek) +
N

∑
u2=0

N

∑
j=1

κ3u2 j(θP0 ⊗ ek).

4.2. Analysis of Stationar y Probability Vector

Let ϕ repr esent the stationar y probability vector for Q, and this is divided as ϕ = (ϕ0, ϕ1, ϕ2, . . . ).
Mention that ϕ0 has a dimension of (N + 1)(S + 1)m1k + 2(N + 1)(S + 1)k + 2(N + 1)Sl2k + (N +
1)(S + 1)m2k and ϕ1, ϕ2, . . . have a dimension of (N + 1)(S + 1)m1k + (N + 1)k + 2(N + 1)Sl1k +
(N + 1)Sl2k + (N + 1)(S + 1)m2k + (N + 1)(S + 1)k and the vector ϕ satisfies ϕQ = 0 and ϕe = 1.

Additionally , after the stability requir ement of the model is met, the stationar y probability
vector ϕ can be obtained by applying the follo wing equation:

ϕu1 = ϕ1Ru1−1, u1 ≥ 1.

The matrix quadratic equation R2 A2 + RA1 + A0 = 0 is satisfied by the minimal non-negativ e
solution R based on Neuts [20]. The matrix quadratic equation yields the rate matrix. The order
of the rate matrix R is giv en by ((N + 1)(S + 1)m1k + (N + 1)k + 2(N + 1)Sl1k + (N + 1)Sl2k +
(N + 1)(S + 1)m2k + (N + 1)(S + 1)k) and it fulfills the condition RA2e = A0e.

By solving the follo wing equations, the sub vectors ϕ0 and ϕ1 can be deter mined.

ϕ0B00 + ϕ1B10 = 0,

ϕ0B01 + ϕ1(A1 + RA2) = 0,

Subject to the normalizing condition

ϕ0e0 + ϕ1(I − R)−1e1 = 1,

wher e e0 = e(N+1)(S+1)m1k+2(N+1)(S+1)k+2(N+1)Sl2k+(N+1)(S+1)m2k and
e1 = e(N+1)(S+1)m1k+(N+1)k+2(N+1)Sl1k+(N+1)Sl2k+(N+1)(S+1)m2k+(N+1)(S+1)k.

Accor ding to Latouche and Ramasw ami [13], by utilizing important stages in the logarithmic
reduction process, the R matrix can be produced analytically .
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5. Measures of System Performance

• Average size of the HP customers in the system

Esys =
∞

∑
u1=1

u1ϕu1 e.

• Average size of the LP customers in the orbit

Eorb =
∞

∑
u1=0

N

∑
u2=1

S

∑
j=0

m1

∑
a1=1

k

∑
c=1

u2ϕu1u20ja1c +
N

∑
u2=1

S

∑
j=0

k

∑
c=1

u2ϕ0u21jc

+
∞

∑
u1=1

N

∑
u2=1

k

∑
c=1

u2ϕu1u210c +
∞

∑
u1=1

N

∑
u2=1

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

u2ϕu1u22jd1c

+
N

∑
u2=1

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

u2ϕ0u23jd2c +
∞

∑
u1=1

N

∑
u2=1

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

u2ϕu1u24jd1c

+
∞

∑
u1=0

N

∑
u2=1

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

u2ϕu1u25jd2c +
∞

∑
u1=0

N

∑
u2=1

S

∑
j=0

m2

∑
a2=1

k

∑
c=1

u2ϕu1u26ja2c

+
∞

∑
u1=0

N

∑
u2=1

S

∑
j=0

k

∑
c=1

u2ϕu1u27jc.

• Expected size of the inv entor y items

Einv =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

m1

∑
a1=1

k

∑
c=1

jϕu1u20ja1c +
N

∑
u2=0

S

∑
j=1

k

∑
c=1

jϕ0u21jc

+
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

jϕu1u22jd1c +
N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

jϕ0u23jd2c

+
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

jϕu1u24jd1c +
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

jϕu1u25jd2c

+
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

m2

∑
a2=1

k

∑
c=1

jϕu1u26ja2c +
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

k

∑
c=1

jϕu1u27jc.

• Expected reorder rate

ER =
N

∑
u2=0

l2

∑
d2=1

k

∑
c=1

ϕ0u23(s+1)d2 c(M0 ⊗ Ik)e +
∞

∑
u1=0

N

∑
u2=0

l2

∑
d2=1

ϕu1 u25(s+1)d2 c(θM0α ⊗ Ik)e

+
N

∑
u2=0

l1

∑
d1=1

k

∑
c=1

ϕ1u22(s+1)d1 c(P0 ⊗ Ik)e +
∞

∑
u1=2

N

∑
u2=0

l1

∑
d1=1

k

∑
c=1

ϕu1 u22(s+1)d1 c(P0γ ⊗ Ik)e

+
∞

∑
u1=1

N

∑
u2=0

l1

∑
d1=1

k

∑
c=1

ϕu1 u22(s+1)d1 c(θP0α ⊗ Ik)e.

• Probability for the vacation state of the ser ver

Pvac =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=0

m1

∑
a1=1

k

∑
c=1

ϕu1u20ja1c.

• Probability for the idle state of the ser ver

Pidle =
N

∑
u2=0

S

∑
j=0

k

∑
c=1

ϕ0u21jc +
∞

∑
u1=1

N

∑
u2=0

k

∑
c=1

ϕu1u210c.
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• The probability that HP customers receiv e normal mode ser vice from the ser ver

PHNB =
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

ϕu1u22jd1c.

• The probability that LP customers receiv e normal mode ser vice from the ser ver

PLNB =
N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

ϕ0u23jd2c.

• The probability that HP customers receiv e slow mode ser vice from the ser ver

PHSB =
∞

∑
u1=1

N

∑
u2=0

S

∑
j=1

l1

∑
d1=1

k

∑
c=1

ϕu1u24jd1c.

• The probability that LP customers receiv e slow mode ser vice from the ser ver

PLSB =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=1

l2

∑
d2=1

k

∑
c=1

ϕu1u25jd2c.

• Probability of the ser ver is in repair process

Prep =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=0

m2

∑
a2=1

k

∑
c=1

ϕu1u26ja2c.

• Probability of the ser ver is in closedo wn process

Pcd =
∞

∑
u1=0

N

∑
u2=0

S

∑
j=0

k

∑
c=1

ϕu1u27jc.

• The rate of effectiv e retrials

R = χ
N

∑
u2=1

S

∑
j=1

k

∑
c=1

ϕ0u21jc

6. Analysis of Cost function

We have assumed that every cost factor (per unit of time) correlates to a distinct system
measur e while de veloping the expense function for our model.

• EI - The cost of inv entor y for retaining each unit of goods.
• EH1 - Keeping a HP customer ’s cost in the system for each unit of time.
• EH2 - Keeping a LP customer ’s cost in the system for each unit of time.
• ES - Initial costs for each order.

TC(s, S) = EI Einv + EH1 Esys + EH2 Eorb + ESER

7. Numerical Results

Using both numerical and graphical illustrations, we will be studying the beha vior of the
models in the section that follo ws. The next three are various MAP repr esentations with the same
mean value of 1 across all arriv al processes. Chakra varthy [8] used these three arriv al value sets
as input data in their literatur e.

• A-ER(Arrival in Erlang):
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D0 =

[
−2 2
0 −2

]
D1 =

[
0 0

1.2 0

]
, D2 =

[
0 0

0.8 0

]
.

• A-EX(Arrival in Exponential):
D0 =

[
−1

]
, D1 =

[
0.6

]
, D2 =

[
0.4

]
.

• A-HE(Arrival in Hyper-exponential):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.026 0.114

0.1026 0.0114

]
, D2 =

[
0.684 0.076

0.0684 0.0076

]
.

The ser vice, vacation, and repair processes each have three distinct phase-type distributions that
we should take into consideration. We will use the notations X-ER, X-EX and X-HE respectiv ely
for Erlang, exponential and hyper -exponential cases dealing with X-type distribution wher e
X = S, V, R depending on whether the ser vices, vacations or repairs are under consideration.

• X-ER(Erlang):

γ = ν = β = α = (1, 0), P = M = W = U =

[
−2 2
0 −2

]
.

• X-EX(Exponential):

γ = ν = β = α = [1], P = M = W = U = [1].

• X-HE(Hyper-exponential):

γ = ν = β = α = (0.8, 0.2), P = M = W = U ==

[
−2.8 0

0 −0.28

]
.

7.1. Illustrativ e Example 1

We explor ed the effects of repair rate (η) versus the average size of HP customers in the
system( Esys). In order to attain system stability , we fix λ = 1, ζ1 = 10, ζ2 = 8, ψ = 8, σ = 1, τ = 5,
χ = 4, δ = 4, θ = 0.6, s = 3, S = 6, N = 5.

• We combine the arriv al and ser vice time categories in Tables 1 through 3 to inv estigate the
repair rate versus the average size of HP customers in the system.

• When the repair rate (η) rises, the corresponding the average size of HP customers in the
system( Esys) reduces.

• When comparing arriv al times to all other arriv als, the Esys drops quickly for hyper -
exponential arriv als, and slowly for Erlang arriv als. Similarly , for ser vice durations, the Esys
decr eases mor e slowly in Erlang ser vices than it does with hyper -exponential ser vices.

7.2. Illustrativ e Example 2

We explor ed the effects of HP ser vice rate (ζ1) versus the Total Cost(TC) of the system. In order
to attain system stability , we fix λ = 1, ζ2 = 8, ψ = 8, η = 6, σ = 1, τ = 5, χ = 4, δ = 4, θ = 0.6,
s = 3, S = 6, N = 5, EI = 50, EH1 = 200, EH2 = 180, ER = 220.

• We combine the arriv al and ser vice time categories in Tables 4 through 6 to inv estigate the
HP ser vice rate versus the total cost of the system

• When the HP ser vice rate (ζ1) rises, the corresponding the total cost of the system( TC)
reduces.

• When comparing arriv al times to all other arriv als, the TC drops quickly for hyper -
exponential arriv als, and slowly for Erlang arriv als. Similarly , for ser vice durations, the TC
decr eases mor e slowly in Erlang ser vices than it does with hyper -exponential ser vices.

7.3. Illustrativ e Example 3

We explor ed the effects of retrial rate (χ) versus the average size of LP customers in the orbit( Eorb).
In order to attain system stability , we fix λ = 1, ζ1 = 10, ζ2 = 8, ψ = 8, σ = 1, τ = 5, η = 6, δ = 4,
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θ = 0.6, s = 3, S = 6, N = 5.
• We combine the arriv al and ser vice time categories to inv estigate the rate of retrial versus

the average size of LP customers in the orbit, using Figur es 2 through 4.
• When the retrial rate (χ) rises, the corresponding average size of LP customers in the

orbit( Eorb) reduces.
• When comparing arriv al times to all other arriv als, the Eorbit drops quickly for hyper -

exponential arriv als, and slowly for Erlang arriv als.

Table 1: Repair rate(η) vs Esys - X-ER

X-ER
η A-ER A-EX A-HE

6.0 0.10813513 0.12190924 0.14286803
6.5 0.10786026 0.12152199 0.14226519
7.0 0.10763579 0.12120252 0.14176864
7.5 0.10744949 0.12093492 0.14135332
8.0 0.10729269 0.12070781 0.14100134
8.5 0.10715912 0.12051288 0.14069960
9.0 0.10704411 0.12034388 0.14043834
9.5 0.10694416 0.12019608 0.14021010

10.0 0.10685657 0.12006582 0.14000914
10.5 0.10677924 0.11995019 0.13983096

Table 2: Repair rate(η) vs Esys - X-EX

X-EX
η A-ER A-EX A-HE

6.0 0.10901178 0.12413720 0.14698476
6.5 0.10867336 0.12369032 0.14629182
7.0 0.10839815 0.12332339 0.14572339
7.5 0.10817062 0.12301736 0.14524978
8.0 0.10797985 0.12275870 0.14484984
8.5 0.10781790 0.12253750 0.14450816
9.0 0.10767894 0.12234641 0.14421327
9.5 0.10755857 0.12217984 0.14395643

10.0 0.10745340 0.12203347 0.14373094
10.5 0.10736082 0.12190393 0.14353155

4 5 6 7 8
4
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8

·10−2

χ

E o
rb

A-ER

Ek / Ek , Ek / 1

Ek / M, M/ 1

Ek / Hk , Hk / 1

Figure 2: Retrial rate(χ) vs Eorb - A-ER
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Figure 3: Retrial rate(χ) vs Eorb - A-EX
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Table 3: Repair rate(η) vs Esys - X-HE

X-HE
η A-ER A-EX A-HE

6.0 0.11918175 0.13742625 0.16861900
6.5 0.11850292 0.13665603 0.16748394
7.0 0.11795708 0.13603251 0.16656203
7.5 0.11751074 0.13551942 0.16580136
8.0 0.11714044 0.13509118 0.16516511
8.5 0.11682931 0.13472934 0.16462655
9.0 0.11656496 0.13442027 0.16416588
9.5 0.11633814 0.13415374 0.16376814

10.0 0.11614181 0.13392192 0.16342189
10.5 0.11597051 0.13371874 0.16311819

Table 4: HP service rate(ζ1) vs TC - X-ER

X-ER
ζ1 A-ER A-EX A-HE
10 287.97326332 298.59933362 316.43100759
11 287.74939522 298.08848910 315.15693318
12 287.58577777 297.70317492 314.18547489
13 287.46248681 297.40469160 313.42429235
14 287.36716153 297.16827941 312.81429994
15 287.29182156 296.97748060 312.31615614
16 287.23113722 296.82099764 311.90277542
17 287.18144377 296.69085871 311.55497162
18 287.14015651 296.58130309 311.25881669
19 287.10541130 296.48808035 311.00398146

Table 5: HP service rate(ζ1) vs TC - X-EX

X-EX
ζ1 A-ER A-EX A-HE
10 288.98571417 299.98654358 318.45145147
11 288.70159130 299.40909492 317.07970441
12 288.49311376 298.97229601 316.03161949
13 288.33556222 298.63313169 315.20927312
14 288.21349742 298.36397016 314.54968265
15 288.11689338 298.14638167 314.01074509
16 288.03902055 297.96767769 313.56338397
17 287.97523158 297.81888191 313.18695269
18 287.92223650 297.69349308 312.86643407
19 287.87765496 297.58670481 312.59067408
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Table 6: HP service rate(ζ1) vs TC - X-HE

X-HE
ζ1 A-ER A-EX A-HE
10 295.87738733 307.40357235 328.41423547
11 295.31869946 306.58861243 326.77655347
12 294.89650447 305.96029062 325.50031090
13 294.56917993 305.46410267 324.48262461
14 294.30990735 305.06435501 323.65537379
15 294.10075941 304.73681683 322.97187661
16 293.92937439 304.46453218 322.39919670
17 293.78699896 304.23532420 321.91350697
18 293.66729077 304.04024987 321.49719185
19 293.56556118 303.87261147 321.13697796
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0.12
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0.18
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Figure 4: Retrial rate(χ) vs Eorb - A-HE
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8. Conclusion

The present study inv estigated a retrial inv entor y queuing system that incor porates MMAP
arriv als for HP and LP customers, ser vices, vacations, and repairs, all of which follo w phase-type
distribution, (s, S) replenishment inv entor y policy , working breakdo wn, and closedo wn. We
examined the system’s stability criteria as well as the inv ariant probability vector. We analyzed
the activ e period and also offered cost evaluations and system perfor mance measur es. Emplo ying
numeric values of arriv als and ser vices in this model, we computed the average size of HP
customers in the system for dif ferent values of repair rate and the total cost of the system for
dif ferent values of ser vice rate. The tw o-dimensional plots sho w the average size of LP customers
in the orbit for dif ferent values of retrial rate. The average size of HP customers in the system
for various values of vacation and ser vice rates is depicted in the three-dimensional graphs.
Every table and graph sho ws the stability of the system. We also expand our resear ch to include
multi-ser vers with tw o commodity inv entor y queueing systems.
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Abstract

A common topic in the context of its application in today’s business contexts is inventory modelling
and management. It is well-known that deterioration has a big impact on inventory management. One of
the most frequent supply chain concerns is the deterioration of items during transit from a supplier’s
storehouse to a retailer’s storehouse. In light of this, a two-level supply chain inventory model for decaying
goods is developed with two warehouse (storehouse) facilities for retailers, namely Owned Warehouse
(OW) and Rented Warehouse (RW), assuming deterioration both during carrying from a supplier’s
storehouse to a retailer’s storehouses and in the retailer’s storehouses themselves. Also, we are assuming
the selling price and time sensitive demand. We are developed this model under inflation. Shortages are
not allowed. The main objective of this study is to determine the optimal ordering policy in order to
maximizes the retailer’s profit per unit of time. The applicability of our suggested model is investigated
using a numerical example and with the support of MATLAB programming software (version: R2021b).
Sensitivity analysis is used to examine the effects of changing the values of system parameters. Graphical
representations are also shown in this paper.

Keywords: Two-warehouse, Demand based on timing and selling price, Inflation, Deterioration
during carrying and Optimization.

1. Introduction and literature survey

Design and production operations plays an important role in supply chain inventory management.
Two-warehouse inventory management is a useful for optimising discrete item design and produc-
tion operations. It enables producers to customise their manufacturing and distribution processes
based on unique product quality, demand patterns, and lead times, resulting in increased oper-
ational efficiency and customer satisfaction. Deterioration is a key factor in both deterministic
and probabilistic inventory models of the classical type. Profit changes anti-proportionally to
the decline rate, meaning that if the deterioration rate rises, the retailer’s profit falls, and if the
deterioration rate falls, the retailer’s profit rises. In the current analysis of an inventory model,
the rate of deterioration cannot be disregarded. Deterioration is defined as the loss of the initial
product’s marginal values as well as damage, decay, disappearance, obsolescence and harm to
utility. Poswal, P., et al. [47] and Mahata, S. and Debnath, B.K. [51] are also constructing an
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inventory model based on certain novel assumptions. Kumar, A., et al. [49], Kumar, K., et al. [50],
Kundu, T. and Islam, S. [52], Yusuf T.I., et al. [53] and Kumar, P., et al. [54] have also implemented
optimisation approaches in various domains.
Inventory management is essential for preventing waste, maintaining product quality, and guar-
anteeing timely component delivery in the mechanical and electrical industries when it comes to
perishable or deteriorating products. Here are a few specific applications for deteriorating goods
in these industries: Temperature-controlled storage, management of humidity, First In First Out
(FIFO), tracking of expiration dates, real-time monitoring, frequent quality checks, appropriate
packaging, cooperation with suppliers, shortened storage durations, customised storage solutions,
emergency response plan, waste reduction techniques, and continuous improvement. A study
on the application of manufacturing in the Malaysian electrical and electronics industries was
conducted by Wong, Y.C., et al. [55]. Basdere, B., et al. [56] Electronic and electrical product
disassembly factories to recover resources in material and product cycles. Colledani, M., et al.
[57] Manufacturing system design and management for superior product quality. Yusuf T., et al.
[53] studied about analysis of the parameters relating to manufacturing flexibility and efficient
performance.
Several kinds of realistic assumptions are taken into account when developing this work. Dete-
rioration during carrying is one such sensible supposition. A portion of the entire order spoils
during carrying for a variety of causes. Long distances travelled by the carrying vehicle (such kind
of justification is appropriate for medicine, blood, radioactive elements, vaccine, fruits, vegetables,
etc.), weather conditions while carrying (such kind of justification is appropriate for sugar, salt,
vegetables, fruit, fish, meat, eggs, etc.), carelessness while loading and unloading (such kind of
justification is the primary cause of an untrained labour force, and such kind of justification is
appropriate for any kind of product), etc. are some possible reasons. A lot of study has already
been done in inventory control and inventory management systems that take deterioration into
consideration as a crucial factor. Many researchers in the past, including Ghare and Schrader
[1] and Aggrawal and Jaggi [5], accepted that once things are received, they begin to deteriorate.
The analyses of the development of the deteriorating inventory literature were given by some
researchers, including Bakker et al. [12] and Yadav et al. [10].
Another significant factor related to an inventory system is the item’s demand. One of the
modelling community’s major concerns has been it. In order to reflect practical scenarios, a
variety of inventory models have been built and explored over time for various item types, taking
into account various demand patterns. The demand is influenced by a wide range of variables,
including quality, stock, various promotional deals, service quality, etc. One of these crucial
factors that greatly influences customer’s demand is selling price. The majority of the products
are evidently price dependent. Some goods are extremely sensitive, while others are not. As a
consequence, when an item’s selling price increases, demand for that item declines, and when
it decreases, demand for that item increases. Demand obviously declines as the selling price
rises. On the other hand, a cheap selling price for some goods might make consumers wonder
about their freshness and quality. The demand is also influenced by time. According to some
researchers, demand can be a time- based function, while others contend that a quadratic function
of time would be more suitable. The market demand in the earlier instance varies dramatically
over time, while the market demand in the later case changes gradually over time. In especially
for products like vegetables, fruits, sweets, etc., these situations rarely correspond to actual market
scenarios. Thus, it appears that a demand function with a linear time dependence is more accurate
and a better representation of the changing market needs over time. (An in-depth analysis of the
time-dependent linear demand rate pattern is provided in [45]). A large number of inventory
management models are informed by the realistic feature that are lower selling prices result in
higher sales for many decaying products. Mondal et al. [7] established a selling price-dependent
inventory model based on customer’s demand. You [8] optimized the product’s selling price
to maximize the average profit of a manufacturing company. Maihami and Kamalabadi [11]
investigated the impact of time and selling price on customer demands in an inventory system.
Sarkar et al. [17] considered price and time- based demand in their manufacturing inventory
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system under reliability and inflation. Manna et al. [29] conducted additional research on the
impact of advertising and selling price on the rate of demand in a manufacturing inventory
model. In the past few years, Kumar et al. [36], Yadav et al. [32], Yadav and Swami [33], Aditi
and Jaggi [37], Gautam et al. [34] and Yadav and Swami [26] are used price sensitive demand or
time sensitive demand in their research.
Another crucial factor of an inventory system is inflation. The total price of products and services
rises as a result of inflation over time. When prices rise overall, each unit of currency may
purchase fewer products and services. Therefore, inflation denotes a decline in the buying power
of money, or a loss of real value in the internal medium of exchange and unit of account of the
economy. In 1975, Buzacott [2] constructed the first Economic Order Quantity (EOQ) model that
took inflationary effects into account, and it was at this time that he first introduced inventory
models with inflation. The inventory model with inflation is then suggested by Harold and
Thomas [4]. In the past few years, Inventory models Kausar et al. [38], Tiwari et al. [25], Yadav et
al. [23], Yadav and Swami [27] and the Yadav et al. [24] have been proposed in an inflationary
context.
Another crucial component of inventory management is deciding where to store the goods. The
development of traditional inventory models took into account only one storage facility with
infinite capacity. Typically, this storing space is referred to as an owned warehouse. (OW). In
actual market situations, however, a merchant may choose to buy more goods than his storage
capacity at once due to a price reduction offered for bulk purchases, a high reordering cost, high
demand for a product, or seasonal products. Consequently, a second storage space is leased
in order to store extra items. The owned warehouse (i.e., OW) is nearby and is known as the
rented warehouse (i.e., RW), which we typically presume to have unlimited capacity. Typically,
the carrying cost in RW is greater than that in OW. So, in order to lower inventory expenses, RW
items are released first, followed by OW items. The two-warehouse inventory approach was first
presented by Hartley [3]. A two-storage stock model for degradation goods with time-sensitive
demand was then put forth by Bhunia and Maiti [6]. Yang [9] provided some consideration to the
two-storage model with incomplete backlogs for deteriorating products and a constant demand
rate under inflation. In the recent few years, Swati et al. [13], Chaman and Singh [14], Yadav et
al. [21], Hatibaruah and Saha [46], Yadav and Swami [30], Nath and Sen [39], Yadav et al. [43],
Vandana and Das [44] and Aarya, D.D., et al. [48] are developed inventory models under two
storage facility.

Table 1: The comparison of our current work with previously published work

Source Demand Deterioration Warehouses Preservation Technology Inflation Deterioration during carrying

Ghiami et al. [15] Stock dependent Yes Single No No No

Rizwanullah et al. [35] Stock dependent Yes Two No Yes No

Tayal et al. [16] Selling price Yes Single Yes Yes No
& time dependent

Tiwari et al. [41] Constant Yes Two No No No

Saha and Stock and Yes Single No No No
Chakrabarti [28] advertisement dependent

Momeni et al. [31] Stock and selling Yes Single No No No
price dependent

Mahata and Debnath [42] Selling price dependent Yes Single Yes No Yes

Bhunia et al. [19] Time, selling price and Yes Two No No No
advertisement dependent

Palanivel et al. [20] Stock dependent Yes Two No Yes No

Jiangtao et al. [18] Stock dependent Yes Single No No No

Huang et al. [40] Selling price Yes Single No Yes No
& stock dependent

Akhtar et al. [45] Selling price Yes Single No No No
& time dependent

Present paper Selling price Yes Two No Yes Yes
& time dependent
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2. Presumptions and notations

2.1. Presumptions

The following presumptions were used in the formulation of the mathematical model.

1. We know that selling price and time have an impact on market demand. As a result of
this finding, we share Akhtar, et al. [45] and Aarya, D.D., et al. [48] view that demand is a
function of both time and selling price-dependent.

2. Demand rate function is f (p, t) = a − bp + ct, where a, b, c > 0 are constants.

3. We consider the deterioration during carrying same as Mahata and Debnath [42].

4. We are assuming constant rate of deterioration, which is θ(0 < θ << 1) in supplier’s
storehouse and γ(0 < γ << 1) in retailer’s storehouses..

5. Planning horizon is infinite.

6. There is no lead time.

7. In retailer’s storehouses, OW capacity is limited but RW capacity is deemed boundless same
as Vandana and Das [44] and Aarya, D.D., et al. [48].

8. We are assuming constant holding cost in both the storehouses.

9. Both the time and the expense of transportation are insignificant.

10. We consider the inflation for developed this model same as Palanivel et al. [20] and Huang
et al. [40].

11. There is no item replacement or repair.

12. Stock out are not allowed.

2.2. Notations

Table 2 is provided a description of the notations utilised for the constructed mathematical model.

Table 2: Notations

Notation Units Description

a Constant Coefficient of demand function
b Constant Coefficient of demand function
c Constant Coefficient of demand function
θ Constant Rate of deterioration during carrying.
γ Constant Rate of deterioration in retailer’s warehouses.
Q Units The quantity of orders made each cycle
M Units Deteriorating items quantity due to carrying
W Units Retailer’s Owned Warehouse capacity
S − W Units Retailer’s Rented Warehouse
t1 Weeks The stock arrived in retailer’s warehouses at this time.
I(t) Units Inventory level at time t.
h $/Unit Holding cost per unit..
β $/Units Deterioration cost per unit.
r Constants Inflation rate.
α $/Units Cost of purchasing per unit.
TAIPF $/Cycle The total average inventory profit function

Table 3: Decision-makingparameters

Notation Units Description

p $/Units Selling price of each product, where p > α.
T Weeks Length of the cycle..
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3. Mathematical Model Formulation

In the starting, Q units of deteriorating goods were ordered by the retailer from supplier. Thus,
Q represents the inventory quantity at time zero. The inventory level steadily drops M at the
time t = t1 due to the deterioration rate θ while during carrying from the supplier’s storehouse
to retailer’s storehouses (i.e., RW and OW). At the time interval t ∈ [t1, t2], the joint impact of
deterioration and demand decreases the inventory/stock level in RW of the retailer’s storehouse
to drop until it reaches zero. Also, at the time interval t ∈ [t1, t2], only the effect of deterioration
decreases the inventory level in OW of the retailer’s storehouse. Again, at the time interval
t ∈ [t2, T], the joint impact of deterioration and demand decreases the inventory/stock level in
OW of the retailer’s storehouse to drop until it reaches zero (See fig.1).

Figure 1: A graphical representation of a deteriorated inventory model with two warehouses

The stock level at t = 0 to t = T is characterised in the differential equations as follows:

dI1(t)
dt

+ θ I1(t) = − f (p, t); t ∈ [0, t1] (1)

with the boundary conditions (B.C.) I1(t1) = S and I1(0) = Q.

dI2(t)
dt

+ γI2(t) = − f (p, t); t ∈ [t1, t2] (2)

with the boundary conditions (B.C.) I2(t2) = 0 and I2(t1) = S − W.

dI3(t)
dt

+ γI3(t) = 0; t ∈ [t1, t2] (3)

with the boundary conditions (B.C.) I3(t1) = W.

dI4(t)
dt

+ γI4(t) = − f (p, t); t ∈ [t2, T] (4)

with the boundary conditions (B.C.) I4(T) = 0.

The equations (5), (6), (7) and (8) are the solutions of equations (1), (2), (3) and (4), respec-
tively:

I1(t) =
1
θ2

[
c + θ2e(t1−t)θ

(
S +

(a − bp + ct1)

θ
− c

θ2

)]
− (a − bp + ct)

θ
(5)

I2(t) =
1

γ2

[
c + γ2e(t2−t)γ

(
(a − bp + ct2)

γ
− c

γ2

)]
− (a − bp + ct)

γ
(6)
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I3(t) = We(t1−t)γ (7)

I4(t) =
1

γ2

[
c + γ2e(T−t)γ

(
(a − bp + cT)

γ
− c

γ2

)]
− (a − bp + ct)

γ
(8)

From the equations (7) and (8), using the continuity at t = t2 , we get

W = e(t2−t1)γ

{
1

γ2

[
c + γ2e(T−t2)γ

(
(a − bp + cT)

γ
− c

γ2

)]
− (a − bp + ct2)

γ

}
(9)

From the equations (7) and (9), we get

I3(t) = e(t2−t1)γ

{
1

γ2

[
c + γ2e(T−t2)γ

(
(a − bp + cT)

γ
− c

γ2

)]
− (a − bp + ct2)

γ

}
e(t1−t)γ (10)

Using I2(t) = S − W in equation (6), we get

S = W +
1

γ2

[
c + γ2e(t2−t1)γ

(
(a − bp + ct2)

γ
− c

γ2

)]
− (a − bp + ct1)

γ
(11)

From the equations (9) and (11), we get

S = e(t2−t1)γ

{
1

γ2

[
c + γ2e(T−t2)γ

(
(a − bp + cT)

γ
− c

γ2

)]
− (a − bp + ct2)

γ

}
+

1
γ2

[
c + γ2e(t2−t1)γ

(
(a − bp + ct2)

γ
− c

γ2

)]
− (a − bp + ct1)

γ
(12)

Using I1(0) = Q in equation (5), we get

Q =
1
θ2

[
c + θ2et1θ

(
S +

(a − bp + ct1)

θ
− c

θ2

)]
− (a − bp)

θ
(13)

Since M = Q − S , So from equations (12) and (13), we get

M =
1
θ2

[
c + θ2et1θ

(
S +

(a − bp + ct1)

θ
− c

θ2

)]
− (a − bp)

θ

−
{

e(t2−t1)γ

{
1

γ2

[
c + γ2e(T−t2)γ

(
(a − bp + cT)

γ
− c

γ2

)]
− (a − bp + ct2)

γ

}

+
1

γ2

[
c + γ2e(t2−t1)γ

(
(a − bp + ct2)

γ
− c

γ2

)]
− (a − bp + ct1)

γ

}
(14)

Next, we compute the associated costs and profit as follows:

1. The Ordering cost:
OC = A (15)

2. The Holding cost:

HC = h
[ ∫ t2

t1

I2(t)e−rtdt +
∫ t2

t1

I3(t)e−rtdt +
∫ T

t2

I4(t)e−rtdt
]
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HC =

{
h
{

1
γ

[
c
(
(1 + rT)

r2erT − (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

erT − 1
ert2

)
− c

rγ2

(
1

erT − 1
ert2

)

−
(

aeTγe−T(r+γ) − aeTγe−t2(r+γ)

γ(r + γ)

)
+ eTγ

(
ce−T(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−

(
pbe−rT − pbe−rt2

rγ

)
+

bpeγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)
− TceγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)}
− h

{
1
γ

[
c
(
(1 + rt1)

r2ert1
− (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

ert1
− 1

ert2

)
− c

rγ2

(
1

ert1
− 1

ert2

)
−

(
aet2γe−t1(r+γ) − aet2γe−t2(r+γ)

γ(r + γ)

)
+ et2γ

(
ce−t1(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−
(

pbe−rt1 − pbe−rt2

rγ

)
+

bpeγt2

γ(r + γ)

(
1

et1(r+γ)
− 1

et2(r+γ)

)
− t2ceγt2

γ(r + γ)

(
1

et1(r+γ)
− 1

et2(r+γ)

)}
+

h
γ2(r + γ)

[(
1

et2(r+γ)
− 1

et1(r+γ)

)(
c(eTγ − et2γ)− aγ(eTγ − et2γ)

+ bpγ(eTγ − et2γ) + (cγt2et2γ − TcγeTγ)

)]}
(16)

3. The Deterioration cost:

DC = γβ

[ ∫ t2

t1

I2(t)e−rtdt +
∫ t2

t1

I3(t)e−rtdt +
∫ T

t2

I4(t)e−rtdt
]

DC =

{
γβ

{
1
γ

[
c
(
(1 + rT)

r2erT − (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

erT − 1
ert2

)
− c

rγ2

(
1

erT − 1
ert2

)

−
(

aeTγe−T(r+γ) − aeTγe−t2(r+γ)

γ(r + γ)

)
+ eTγ

(
ce−T(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−

(
pbe−rT − pbe−rt2

rγ

)
+

bpeγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)
− TceγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)}
− γβ

{
1
γ

[
c
(
(1 + rt1)

r2ert1
− (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

ert1
− 1

ert2

)
− c

rγ2

(
1

ert1
− 1

ert2

)
−

(
aet2γe−t1(r+γ) − aet2γe−t2(r+γ)

γ(r + γ)

)
+ et2γ

(
ce−t1(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−
(

pbe−rt1 − pbe−rt2

rγ

)
+

bpeγt2

γ(r + γ)

(
1

et1(r+γ)
− 1

et2(r+γ)

)
− t2ceγt2

γ(r + γ)

(
1

et1(r+γ)
− 1

et2(r+γ)

)}
+

β

γ2(r + γ)

[(
1

et2(r+γ)
− 1

et1(r+γ)

)(
c(eTγ − et2γ)− aγ(eTγ − et2γ)

+ bpγ(eTγ − et2γ) + (cγt2et2γ − TcγeTγ)

)]}
(17)

4. The Purchasing cost:

PC = α · Q = α · 1
θ2

[
c + θ2et1θ

(
S +

(a − bp + ct1)

θ
− c

θ2

)]
− (a − bp)

θ
(18)

5. The Sales Revenue:

SR = p
∫ T

t1

f (p, t)dt =
p(2a + Tc − 2bp + ct1)(T − t1)

2
(19)
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Thus, we compute the total profit per unit time by the following equation:

TAIPF(p, T) =
1
T
[SR − OC − HC − DC − PC]

TAIPF(p, T) =
1
T

{
p(2a + Tc − 2bp + ct1)(T − t1)

2
− A

−
{
(h + γβ)

{
1
γ

[
c
(
(1 + rT)

r2erT − (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

erT − 1
ert2

)
− c

rγ2

(
1

erT − 1
ert2

)

−
(

aeTγe−T(r+γ) − aeTγe−t2(r+γ)

γ(r + γ)

)
+ eTγ

(
ce−T(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−

(
pbe−rT − pbe−rt2

rγ

)
+

bpeγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)
− TceγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)}
− (h + γβ)

{
1
γ

[
c
(
(1 + rt1)

r2ert1
− (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

ert1
− 1

ert2

)
− c

rγ2

(
1

ert1
− 1

ert2

)
−

(
aet2γe−t1(r+γ) − aet2γe−t2(r+γ)

γ(r + γ)

)
+ et2γ

(
ce−t1(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−

(
pbe−rt1 − pbe−rt2

rγ

)
+

bpeγt2

γ(r + γ)

(
1

et1(r+γ)
− 1

et2(r+γ)

)
− t2ceγt2

γ(r + γ)

(
1

et1(r+γ)
− 1

et2(r+γ)

)}
+

h + β

γ2(r + γ)

[(
1

et2(r+γ)
− 1

et1(r+γ)

)(
c(eTγ − et2γ)− aγ(eTγ − et2γ)

+ bpγ(eTγ − et2γ) + (cγt2et2γ − TcγeTγ)

)]}

− α · 1
θ2

[
c + θ2et1θ

(
S +

(a − bp + ct1)

θ
− c

θ2

)]
− (a − bp)

θ

}
(20)

Let t1 = kt2, 0 < k < 1, then we get equation (21) from equation (20).

TAIPF(p, T) =
1
T

{
p(2a + Tc − 2bp + ckt2)(T − kt2)

2
− A−

{
(h+γβ)

{
1
γ

[
c
(
(1 + rT)

r2erT − (1 + rt2)

r2ert2

)]

+
a

rγ

(
1

erT − 1
ert2

)
− c

rγ2

(
1

erT − 1
ert2

)
−
(

aeTγe−T(r+γ) − aeTγe−t2(r+γ)

γ(r + γ)

)
+ eTγ

(
ce−T(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−

(
pbe−rT − pbe−rt2

rγ

)
+

bpeγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)
− TceγT

γ(r + γ)

(
1

eT(r+γ)
− 1

et2(r+γ)

)}
− (h + γβ)

{
1
γ

[
c
(
(1 + rkt2)

r2erkt2
− (1 + rt2)

r2ert2

)]
+

a
rγ

(
1

erkt2
− 1

ert2

)
− c

rγ2

(
1

erkt2
− 1

ert2

)
−

(
aet2γe−kt2(r+γ) − aet2γe−t2(r+γ)

γ(r + γ)

)
+ et2γ

(
ce−kt2(r+γ) − ce−t2(r+γ)

γ2(r + γ)

)
−

(
pbe−rkt2 − pbe−rt2

rγ

)
+

bpeγt2

γ(r + γ)

(
1

ekt2(r+γ)
− 1

et2(r+γ)

)
− t2ceγt2

γ(r + γ)

(
1

ekt2(r+γ)
− 1

et2(r+γ)

)}
+

h + β

γ2(r + γ)

[(
1

et2(r+γ)
− 1

ekt2(r+γ)

)(
c(eTγ − et2γ)− aγ(eTγ − et2γ)

+ bpγ(eTγ − et2γ)+ (cγt2et2γ −TcγeTγ)

)]}
− α · 1

θ2

[
c+ θ2ekt2θ

(
S+

(a − bp + ckt2)

θ
− c

θ2

)]
− (a − bp)

θ

}
(21)
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4. Solution procedure

In this section, we explore the concavity of the objective function. Tiwari et al. [22] is also used
the following technique for optimization in their research article. The necessary criteria must be
satisfied in order to attain a maximum total profit:

∂TAIPF(p, T)
∂p

= 0,
∂TAIPF(p, T)

∂T
= 0 (22)

Two equations are derived from equation (22). The optimal values of p and T (namely, p∗ and T∗

) are determined by solving these two equations, which include two unknown variables, p and T ,
the subsequent sufficient conditions are also satisfied by it.

The conditions as mention below that must be satisfied in order to maximize TAIPF(p, T)
using the hessian matrix HM, a matrix of 2nd order partial derivatives:

H =


∂2TAIPF(p,T)

∂p2
∂2TAIPF(p,T)

∂p∂T

∂2TAIPF(p,T)
∂T∂p

∂2TAIPF(p,T)
∂T2

 ,

D11 =
∂2TAIPF(p, T)

∂p2 < 0, D22 = det(HM) > 0.

Here, D11 and D22 are the minors of the hessian matrix HM. Figure 2 displays the whole solution
strategy for our proposed model, which was derived using MATLAB software (version: R2021b).

5. Numerical illustration

To maximize the total average profit function TAIPF(p, T), the present model seeks to identify
the p and T optimal values. Since TAIPF(p, T) generated in equation (21) is to find the best
values for the decision variables p and T, it is extremely difficult to calculate a complex function
analytically. The model is solved with the help of the following algorithm.

5.1. Algorithm

1. Fix the values of the parameters a, b, c, θ, t2, γ, S, α, β, h, r, A, k.

2. Build the function TAIPF(p, T) given by equation (21).

3. Maximize TAIPF(p, T) subject to the constraints 0 < t1 < t2 < T and 0 < α < p.

4. Calculate the optimum values p∗, T∗, t∗1 , Q∗ and TAIPF∗.

5.2. Example

A numerical example is given in this section to show how the model works. The following
parameters values are used as input:

a = 75, b = 1.5, c = 2.1, θ = 0.46, t2 = 4.0 weeks, γ = 0.44, S = 900 units,

α = $1.1/unit, β = $1.8/unit, h = $3.6/unit, r = 0.85, A = $110, k = 0.55.

The optimal solution obtained is as below:

p∗ = $32.4827/unit, T∗ = 10.6011 weeks, t∗1 = 2.2000 weeks,

Q∗ = 2586.3 units, TAIPF∗ = $550.0893/cycle.
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Figure 2: A flowchart depicting our established model solving process.

6. Sensitivity analysis

Sensitivity analysis is used in this part to investigate how changes in the parameter’s values affect
the optimum values. In order to do these studies, one parameter was changed by ±5% and ±10%
at a time while remaining at its original value for the other parameters. The following table 3 is
demonstrate the outcomes of the sensitivity analysis.

Table 4: Sensitivity analysis with respect to above example

Parameters % % change in optimal value

Change p∗ T∗ t∗1 Q∗ TAIPF∗

a -10% 29.9669 10.5885 2.2000 2572.1 400.1475
-5% 31.2235 10.5938 2.2000 2579.2 473.2606
+5% 33.7443 10.6103 2.2000 2593.3 630.6352
+10% 35.0079 10.6211 2.2000 2600.4 714.9006

b -10% 35.9273 10.7299 2.2000 2587.1 664.1233
-5% 34.1133 10.6628 2.2000 2586.7 603.9984
+5% 31.0093 10.5443 2.2000 2585.8 501.4878
+10% 29.6713 10.4918 2.2000 2585.4 457.4537

c -10% 31.9951 10.5684 2.2000 2588.0 523.7440
-5% 32.2385 10.5847 2.2000 2587.1 536.8524
+5% 32.7277 10.6176 2.2000 2585.4 563.4554
+10% 32.9733 10.6341 2.2000 2584.5 576.9513
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Table 5: Sensitivity analysis with respect to above example (Continue)

Parameters % % change in optimal value

Change p∗ T∗ t∗1 Q∗ TAIPF∗

θ -10% 32.3843 10.5333 2.2000 2342.1 575.5644
-5% 32.4326 10.5667 2.2000 2461.1 563.1258
+5% 32.5348 10.6366 2.2000 2717.9 536.4270
+10% 32.5889 10.6731 2.2000 2856.2 522.1102

t2 -10% 32.2278 9.9178 1.9800 2331.5 542.8833
-5% 32.3541 10.2592 2.0900 2455.7 546.6066
+5% 32.6138 10.9435 2.3100 2723.6 553.3205
+10% 553.3205 11.2863 2.4200 2868.0 556.2894

γ -10% 32.7035 11.4222 2.2000 2585.0 606.0342
-5% 32.5851 10.9900 2.2000 2585.7 577.2419
+5% 32.3940 10.2492 2.2000 2586.8 524.3797
+10% 32.3168 9.9289 2.2000 2587.2 499.9510

α -10% 32.3676 10.5285 2.2000 2586.9 577.0201
-5% 32.4255 10.5652 2.2000 2586.6 563.5307
+5% 32.5394 10.6363 2.2000 2585.9 536.6945
+10% 32.5955 10.6708 2.2000 2585.6 523.3453

β -10% 32.4765 10.6361 2.2000 2586.3 553.6050
-5% 32.4796 10.6185 2.2000 2586.3 551.8408
+5% 32.4859 10.5839 2.2000 2586.2 548.3502
+10% 32.4891 10.5668 2.2000 2586.2 546.6234

h -10% 32.4551 10.7659 2.2000 2586.4 566.4975
-5% 32.4687 10.6816 2.2000 2586.3 558.1543
+5% 32.4973 10.5241 2.2000 2586.2 542.2818
+10% 32.5122 10.4503 2.2000 2586.1 534.7136

r -10% 32.5857 10.1147 2.2000 2585.7 499.6508
-5% 32.5293 10.3579 2.2000 2586.0 525.3019
+5% 32.4454 10.8445 2.2000 2586.5 574.0624
+10% 32.4164 11.0879 2.2000 2586.6 597.2693

A -10% 32.4794 10.5985 2.2000 2586.3 551.1270
-5% 32.4811 10.5998 2.2000 2586.3 550.6081
+5% 32.4844 10.6025 2.2000 2586.3 549.5705
+10% 32.4861 10.6038 2.2000 2586.2 549.0518

k -10% 32.2278 9.9178 1.9800 2331.5 542.8833
-5% 32.3541 10.2592 2.0900 2455.7 546.6066
+5% 32.6138 10.9435 2.3100 2723.6 553.3205
+10% 32.7473 11.2863 2.4200 2868.0 556.2894

Following are a few insights drawn from the sensitivity analysis’s observations.

1. If we increase in a, then the total average inventory profit TAIPF is increases, because
demand is increases. Simultaneously selling price, total cycle length T and total quantity Q
are increases (See figure 7).

2. If we increase in b , then the total average inventory profit TAIPF is decreases, because
demand is decreases. Simultaneously selling price, total cycle length T and total quantity Q
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are decreases.

3. If we increase in c , then the total average inventory profit TAIPF is increases, because
demand is increases. Simultaneously selling price and total cycle length T are increases,
and total quantity Q is decreases.

4. If we increase in θ (deterioration during carrying), then the total average inventory profit
TAIPF is decreases, because the associated cost is increases. Simultaneously selling price,
total cycle length T and total quantity Q are increases (See figure 4).

5. If we increase in γ, then the total average inventory profit TAIPF is decreases, because
the deterioration in retailer’s warehouses are increases, so that associated inventory cost is
increases. Simultaneously selling price, total cycle length T are decreases, and total quantity
Q is increases.

6. If we increase in r, then the total average inventory profit TAIPF is increases, because
selling price will be decreases, so that demand will be increases. If demand will be increase,
then the total average inventory profit is increases. Simultaneously the total cycle length T
and total quantity Q are increases.

7. If we increase in α, β and h , then the total average inventory profit TAIPF is decreases,
because associated inventory costs are increases. Simultaneously, selling price p is increases
and the total quantity Q is decreases.

Figure 3: Concavity of TAIPF(p, T) with respect to p and T
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Figure 4: Variation between Profit vs. Deterioration during carrying (θ)

Figure 5: Variation between Profit vs. Selling price (p)
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Figure 6: Variation between Profit vs. Purchasing cost (α)

Figure 7: Variation between Profit vs. Constant part of demand function (a)

7. Conclusion and future directions

In this study, the carrying of decaying goods from the supplier™s storehouse to the retailer™s
storehouses and deterioration in the retailer™s storehouses with time and selling price incumbent
demand under inflation have both been addressed in a two-level supply chain inventory model.
We are presuming that retailers have two warehouses, named as OW and RW. We are taking
a steady rate of decline into account. In such a scenario, shortages are not permitted. This
study aims to find the optimal selling price and cycle length by implementing an algorithm that
maximizes the total average inventory profit per unit of time. Considering deterioration during
carrying is the most important part of this article. Many researchers have not yet taken into
account that part of this article. Finally, the applicability of the proposed model is demonstrated
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with a numerical example and pictorial representation. A sensitivity analysis of important
parameters is provided with the help of MATLAB software (version: R2021b).
The proposed model can also be modified to take into consideration different types of variable
demands. It is also possible to recommend future research, such as investigating payment policies
and preservation technologies.
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Abstract 

This paper introduces and thoroughly examines the Exponentiated Gompertz Inverse 

Rayleigh (EtGoIr) Distribution, a four-parameter extension of the Gompertz Inverse 

Rayleigh distribution. The primary focus is on its application to biomedical datasets, 

shedding light on its mathematical and statistical properties. Some properties of the 

distribution that were derived include the quantile function, median, moments, incomplete 

moments, Rényi entropy, and probability weighted moments. The model parameters were 

estimated using the method of maximum likelihood. A simulation study was conducted to 

investigate the consistency of the proposed model. The outcome of the investigation revealed 

that the model demonstrates consistency, as evidenced by the reduction in both root mean 

square error (RMSE) and bias as sample sizes increase. To showcase the practical relevance 

of the EtGoIr distribution, the paper applies the model to three distinct biomedical datasets. 

The results highlight its enhanced flexibility, demonstrating superior fit compared to its 

counterpart. 

 Keywords: Exponentiated G, MLE, Moment, Renyi Enropy, Biomedical 

I. Introduction

Statistical theory continually evolves to meet the demands of modeling complex natural phenomena 

effectively. Traditional probability distributions have long served as foundational tools, yet the 

complexities of modern biomedical datasets often necessitate the development of novel models to 

extract deeper insights. This necessity is particularly pronounced in biomedical research, where 

conventional distributions struggle to capture the intricacies of physiological measurements, disease 

outcomes, and survival times across various medical conditions. Recent advancements in 

distribution theory have underscored the importance of innovative models for accommodating the 

skewness prevalent in the aforementioned datasets. This skewness poses a significant challenge to 

conventional distributions, prompting researchers to explore extensions of established models to 

better capture these complexities. Notable among these extensions are the works of [1] – [9]. 
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In this study, we focus on extending the Gompertz inverse Rayleigh (GoIR) distribution, 

introduced by [10], to create a more adaptable model. We investigate the exponentiated (Et) family 

of distributions, as proposed by [11], to achieve this extension. By combining the GoIR distribution  

with the Et family, our aim is to develop a versatile model capable of accurately fitting real-world 

datasets, particularly in biomedical science applications. 

The cumulative distribution function (cdf) and probability density function (pdf) of the Et family are 

given respectively as: 

𝐹(𝑥) = [𝐺(𝑥)]𝜃 ;                     (1) 

𝑓(𝑥) = 𝜃𝑔(𝑥)[𝐺(𝑥)]𝜃−1 : 𝜃 > 0   (2) 

where 𝐺(𝑥)and 𝑔(𝑥) are the cdf and pdf of the baseline distribution. 

The cdf and pdf of GoIR distribution taken as baseline are given as: 

𝐺(𝑥) = 1 − 𝑒
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 ; 𝜃 > 0, 𝛽 > 0, 𝛾 > 0, 𝜎 > 0  (4) 

The motivation for this research arises from the recognition that traditional distributions 

often fall short in accommodating the complexities of biomedical datasets, especially those 

exhibiting skewness. By extending the GoIR distribution, we seek to contribute to the development 

of hybrid distributions that better reflect the intricacies of real-world data. 

II. Methods

2.1 Derivation of Exponentiated Gompertz Inverse Rayleigh (EtGoIR)  

Distribution 

This section introduces a new model called the EtGoIR distribution. The cdf of the EtGoIR 

distribution is derived by substituting equation (3) into equation (1), as follows: 

𝐹(𝑥) =

{

1 − 𝑒
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}

𝜃

 (5) 

On differentiating equation (5) with respect to x, we obtain pdf of EtGoIR distribution given as: 

 𝑓(𝑥) = 2𝜃𝛽𝛾2𝑥−3𝑒−(
𝛾

𝑥
)
2

[1 − 𝑒−
(
𝛾

𝑥
)
2

]
−𝜎−1

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

  (6) 

The pdf plot of the EtGoIR distribution is given in Figure 1 below. 
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Figure 1:  pdf plot of EtGoIR distribution 

2.2 Expansion of Density 

Using the generalized binomial expansion given as 

(1 − 𝑦)𝜌−1 =∑
(−1)𝑖Γ(𝜌)

𝑖! Γ(𝜌 − 𝑖)
𝑦𝑖

∞

𝑖=0

  (7) 

Applying equation (7) on the last term in equation (6), we have 

{

1 − 𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

=∑
(−1)𝑖Γ(𝜌)

𝑖! Γ(𝜌 − 𝑖)

∞

𝑖=0
[

𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑖

Where 

𝑒{−𝑣𝑦
𝑛} =∑

(−1)𝑗𝑣𝑗

𝑗!
𝑦𝑣𝑗

∞

𝑗=0

  (8) 

and 

𝑒{−𝑣𝑦
𝑛} =∑

𝑣𝑗

𝑗!
𝑦𝑣𝑗

∞

𝑗=0

  (9) 

Therefore, 

𝑒
{
𝛽
𝜎
𝑦𝑖}
=∑

(
𝛽
𝜎
)
𝑗

𝑗!
𝑦𝑗

∞

𝑗=0

 

where 

𝑦𝑗 = {1 − (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝜎

}

𝑗

=∑(
𝑗
𝑘
) (−1)𝑘 [1 − 𝑒

−(
𝛾
𝑥
)
2

]
−𝜎𝑘∞

𝑘=0

Substituting back all the expansions into equation (6), we have 
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𝑓(𝑥) = 2𝛽𝜃𝛾2∑∑∑∑
(−1)𝑖+𝑘+𝑙 (

𝛽
𝜎
)
𝑗

(
𝑗 + 1
𝑘
) Γ(−𝜎(𝐾 + 1))Γ(𝜃)

𝑖! 𝑗! 𝑙! Γ(−𝜎(𝐾 + 1) − 𝑚)Γ(𝜃 − 𝑖)

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

𝑥−3  (10) 

𝑓(𝑥) = 𝜓𝑥−3 [𝑒
−(
𝛾
𝑥
)
2

]
𝑚+1

where  

𝜓 = 2𝛽𝜃𝛾2∑∑∑∑
(−1)𝑖+𝑘+𝑙 (

𝛽
𝜎
)
𝑗

(
𝑗 + 1
𝑘
)Γ(−𝜎(𝐾 + 1))Γ(𝜃)

𝑖! 𝑗! 𝑙! Γ(−𝜎(𝐾 + 1) −𝑚)Γ(𝜃 − 𝑖)

∞

𝑙=0

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

2.3 Properties of EtGoIR Distribution 

This section derives some statistical properties of the EGILx distribution including moments, 

survival function, hazard function, quantile functions, and order statistics. 

2.3.1 Quantile function 

The quantile function is the inverse of the cdf of a distribution and is used in simulation studies. It 

is also applied as a measure of the spread of a distribution. The quantile function is obtained using: 

𝑄(𝑢) = 𝐹−1(𝑢)                                (11) 

Applying equation (13) to the cdf of the new model, we have the quantile function given as 

𝑥 = 𝛾

{
 
−𝑙𝑜𝑔

[

1 − (1 −
𝜎𝑙𝑜𝑔(1−𝑢

1
𝜃)

𝛽
)

−(
1


)

]}

−(
1

2
)

 (12) 

2.3.2 Median 

Median of EtGoIR distribution is obtained by setting u =0.5 in equation (12) and it is given as 

𝑥𝑚𝑒𝑑𝑖𝑎𝑛 = 𝛾

{
 
−𝑙𝑜𝑔

[

1− (1 −
𝜎𝑙𝑜𝑔(1−0.5

1
𝜃)

𝛽
)

−(
1


)

]}

−(
1

2
)

 (13) 

2.3.3 Moments 

𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑦)𝑑𝑥

∞

0

  (14) 

𝐸(𝑋𝑟) = 𝜓∫ 𝑥𝑟−3 [𝑒
−(
𝛾
𝑥
)
2

] 𝑑𝑥

∞

0

  (15) 

On solving the integral part in equation (15), we have 

𝐸(𝑋𝑟) = 𝜓 [
𝛾𝑟Γ(1−

𝑟

2
)

(𝑘+1)
1−
𝑟
2

]  (16) 

When r=1 in equation (16), we have mean of EtGoIR distribution
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2.3.4 Incomplete Moments 

The 𝑟𝑡ℎ (r > 0) incomplete moments for the EtGoIR distributions follow from equation (10) as 

𝜇̇𝑟(𝑢) = ∫𝜓𝑥
𝑟−3𝑒−(𝑚+1 )

(
𝛾
𝑥
)
2

𝑑𝑥

𝑢

0

 

Let 𝑡 = (𝑚 + 1 ) (
𝛾

𝑥
)
2

⇒ 𝑥 = (
(𝑚+1 )𝛾2

𝑡
)

1

2

When 𝑥 = 0  ⇒ t = 0 , 𝑎𝑛𝑑 𝑖𝑓  𝑥 = 𝑢 ⇒   𝑡 = (𝑚 + 1 ) (
𝛾

𝑢
)
2

Then  

𝜇̇𝑟(𝑢) =
𝜓

2((𝑚+1 )𝛾2)
1−
𝑟
2

𝛾 (1 −
𝑟

2
, (𝑚 + 1 )𝛾2)   (17) 

2.3.5 Rényi Entropy 

Define the Rényi entropy of the EtGoIR distributions with the following formula [12] 

𝑇𝑅(Ƞ) =
1

1 − Ƞ
𝑙𝑜𝑔∫ 𝑓Ƞ(𝑥)𝑑𝑥

∞

0

  , Ƞ > 0,Ƞ ≠ 1 

By equation (6) we find 𝑓(𝑥)Ƞ: 

 

2 2

2 2
1 1 1 1 1

2 3( ) 2 1 1

x x
e e

x x
f x x e e e e

 

 

 
  

  


      

 
   
      

          
      
   

            
                                                                   

 
 

   
 
 

 1 



 
 
 
 
 
 
 
 
 

By generalized binomial series and exponential expansion, we get 

{

1 − 𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

}

Ƞ(𝜃−1)

=∑
Γ(Ƞ(𝜃 − 1) + 𝑖)

𝑖! ΓȠ(𝜃 − 1))

∞

𝑖=0

𝑒

𝛽𝑖
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

And 

𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)(Ƞ+𝑖)

=∑
𝑗𝑧𝛽𝑧(Ƞ + 𝑖)𝑧

𝑧!𝜎𝑧

∞

𝑧=0

(1 − (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝜎

)

𝑧

Then 

𝑓(𝑥)Ƞ = ∑
Γ(Ƞ(𝜃 − 1) + 𝑖)𝑗𝑧𝛽𝑧(Ƞ + 𝑖)𝑧

𝑖! ΓȠ(𝜃 − 1))𝑧! 𝜎𝑧

∞

𝑖=𝑧=0

(1 − (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝜎

)

𝑧

Again using a generalized binomial, we get 

𝑓(𝑥)Ƞ = ₩𝑥−3Ƞ𝑒
−(

𝛾

𝑥
)
2
(Ƞ+𝑞)  (18) 

Where ₩ =∑
2𝜃Ƞ𝛽Ƞ𝛾2ȠΓ(Ƞ(𝜃 − 1) + 𝑖)𝑗𝑧𝛽𝑧(Ƞ + 𝑖)𝑧(−1)𝑝Γ((𝜎 + 1)Ƞ + 𝜎𝑝 + 𝑞)

𝑖! ΓȠ(𝜃 − 1))𝑧! 𝜎𝑧𝑞! Γ((𝜎 + 1)Ƞ + 𝜎𝑝)

∞

𝑖=0

(
𝑧

𝑝
) 

By substituting equation (18) into the equation above, we get: 

𝑇𝑅(Ƞ) =
1

1 − Ƞ
𝑙𝑜𝑔∫ ₩𝑥−3Ƞ𝑒

−(
𝛾
𝑥
)
2
(Ƞ+𝑞)

𝑑𝑥

∞

0
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The last integral, we get 

𝑇𝑅(Ƞ) =
1

1−Ƞ
log (

₩Γ(
3

2
(Ƞ−1)+1)

2((Ƞ+𝑞 )𝛾2)
1
2
(3Ƞ+1)

)  (19) 

2.3.6 Probability Weighted Moments 

The probabilistic weighted moment (𝜑,Ƞ)𝑡ℎfor EtGoIR distributions can be expressed as follows: 

𝜌(𝜑,Ƞ) = 𝐸 (𝑋
𝜑(𝐹Ƞ(𝑋))) = ∫ 𝑥𝜑

∞

−∞

𝐹Ƞ(𝑥)𝑓(𝑥)𝑑𝑥 

By equation (5), we can find 𝐹Ƞ(𝑥): 

𝐹(𝑥)Ƞ =

{

1− 𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

}

𝜃Ƞ

By generalized binomial series: 

{

1 − 𝑒

𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

}

𝜃Ƞ

=∑(−1)𝑗
∞

𝑗=0

(
𝜃Ƞ

𝑗
) 𝑒

𝑗𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

And using exponential expansion 

𝑒

𝑗𝛽
𝜎
(1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

)

=∑
𝑗𝑟𝛽𝑟

𝑟! 𝜎𝑟

∞

𝑟=0

(1 − (1 − 𝑒−
(
𝛾
𝑥
)
2

)
−𝜎

)

𝑟

Then 

𝐹(𝑥)Ƞ = ∑
(−1)𝑗𝑗𝑟𝛽𝑟

𝑟! 𝜎𝑟

∞

𝑗=𝑟=0

(
𝜃Ƞ

𝑗
)(1 − (1 − 𝑒−

(
𝛾
𝑥
)
2

)
−𝜎

)

𝑟

And using generalized binomial 

(1 − (1 − 𝑒−
(
𝛾
𝑥
)
2

)
−𝜎

)

𝑟

=∑(−1)𝑠
∞

𝑠=0

(
𝑟

𝑠
)(1 − 𝑒−

(
𝛾
𝑥
)
2

)
−𝑟𝜎

And  (1 − 𝑒
−(
𝛾
𝑥
)
2

)
−𝑟𝜎

= ∑
Γ(𝑟𝜎 + 𝑤)

𝑤! Γ(𝑟𝜎)

∞

𝑤=0

𝑒
−(
𝛾
𝑥
)
2
𝑤

Then 

𝐹(𝑥)Ƞ = ₭𝑒−
(
𝛾

𝑥
)
2
𝑤  (20) 

Where ₭ = ∑
(−1)𝑗+𝑠𝑗𝑟𝛽𝑟Γ(𝑟𝜎 +𝑤)

𝑟!𝜎𝑟𝑤! Γ(𝑟𝜎)

∞

𝑗=𝑟=𝑠=𝑤=0

(
𝜃Ƞ

𝑗
) (
𝑟

𝑠
) 

By substituting equation (20) into the equation above, we get: 

𝜌(𝜑,Ƞ) = ₭𝜓 ∫ 𝑥𝜑−3

∞

−∞

𝑒
−(𝑤+𝑚+1 )(

𝛾
𝑥
)
2

𝑑𝑥 

Let 𝑢 = (𝑤 +𝑚 + 1 ) (
𝛾

𝑥
)
2

then 

𝜌(𝜑,Ƞ) =
₭𝜓Γ(1−

𝜑

2
)

2((𝑤+𝑚+1 )𝛾2)
1−
𝜑
2

(21)
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2.3.7 Survival function 

𝑆(𝑥) = 1 − 𝐹(𝑥)  (22) 

𝑆(𝑥) = 1 −

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

 (23) 

2.3.8 Hazard function 

𝐻(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
 (24) 

𝐻(𝑥) =

2𝜃𝛽𝛾2𝑥−3𝑒
−(
𝛾
𝑥)
2

[1−𝑒
−(
𝛾
𝑥)
2

]

−𝜎−1

𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

1−

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃  (25) 

The hazard plot of the EtGoIR distribution is given in Figure 2 below. 

Figure 2: plot of hazard function of EtGoIR distribution 

2.3.9 Cumulative hazard function 

𝐶(𝑥) = −log [𝑆(𝑥)]  (26) 

𝐶(𝑥) = −𝑙𝑜𝑔

[

1 −

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

]

(27)
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2.3.10 Reverse hazard function 

𝑅(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
 (28) 

𝑅(𝑥) =

2𝜃𝛽𝛾2𝑥−3𝑒
−(
𝛾
𝑥)
2

[1−𝑒
−(
𝛾
𝑥)
2

]

−𝜎−1

𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

{

1−𝑒

(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃   (29)   

2.3.11 Order Statistics 

The pdf of the rth order statistics of 𝑋𝑟:𝑛is given as: 

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑(−1)𝑖[𝐹(𝑥)]𝑟+𝑖−1
𝑛−𝑟

𝑖=0

𝑓(𝑥)  (30) 

Inserting equation (5) and equation (6) into equation (30), we have 

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟,𝑛−𝑟+1)
∑ (−1)𝑖

[{

1− 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃

]

𝑟+𝑖−1

𝑛−𝑟
𝑖=0 2𝜃𝛽𝛾2𝑥−3𝑒−

(
𝛾

𝑥
)
2

[1 −

𝑒−
(
𝛾

𝑥
)
2

]
−𝜎−1

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

{

1 − 𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃−1

On bringing the like terms together, we have 
 

2 2

2 2

( ) 1

1 1 1 1 1
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0

2
( ) ( 1) 1 1

( , 1)

x x

r i

e e

n r
x xi

r n
i

f x x e e e e
B r n r

 

 



 


  


 

   
       
   

 
      
                    

                                 



 
 

         
     

 
  

          (31) 

Using the generalized binomial expansion on the last term in equation (31), we have 

{

1 − 𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

}

𝜃(𝑟+𝑖)−1

=∑
(−1)𝑗Γ(𝜃(𝑟 + 𝑖))

𝑗! Γ(𝜃(𝑟 + 𝑖) − 𝑗)

∞

𝑗=0
[

𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑗

Substituting back into equation (31), we have 

𝑓𝑟:𝑛(𝑥) =
2𝜃𝛽𝛾2

𝐵(𝑟,𝑛−𝑟+1)
∑ ∑

(−1)𝑖+1Γ(𝜃(𝑟+𝑖))

𝑗!Γ(𝜃(𝑟+𝑖)−𝑗)
∞
𝑗=0

𝑛−𝑟
𝑖=0 𝑥−3𝑒

−(
𝛾

𝑥
)
2

[1 − 𝑒
−(

𝛾

𝑥
)
2

]
−𝜎−1

[

𝑒
(
𝛽

𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑗+1

  (32) 

Also, expanding the last term in equation (32), we have 

[

𝑒
(
𝛽
𝜎
){1−(1−𝑒

−(
𝛾
𝑥)
2

)

−𝜎

}

]

𝑗+1

=∑(−1)𝑘 (
𝑗 + 1
𝑘
) 1 − (1− 𝑒

−(
𝛾
𝑥
)
2

)
−𝜎𝑘∞

𝑘=0
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𝑓𝑟:𝑛(𝑥) =
2𝜃𝛽𝛾2

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑∑∑

(−1)𝑖+𝑗+1 (
𝑗 + 1
𝑘
)Γ(𝜃(𝑟 + 𝑖))

𝑗! Γ(𝜃(𝑟 + 𝑖) − 𝑗)

∞

𝑘=0

∞

𝑗=0

𝑛−𝑟

𝑖=0

𝑥−3𝑒
−(
𝛾
𝑥
)
2

[1 − 𝑒
−(
𝛾
𝑥
)
2

]
−𝜎(𝑘+1)−1

 (33) 

[1 − 𝑒
−(
𝛾
𝑥
)
2

]
−𝜎(𝑘+1)−1

=∑
(−1)𝑖Γ(−𝜎(𝑘 + 1))

𝑙! Γ(−𝜎(𝑘 + 1) − 𝑙)

∞

𝑖=0

[𝑒
−(
𝛾
𝑥
)
2

]
𝑖

Putting all the expansions together, we have the rth order statistics of EtGoIR distribution given as: 

𝑓𝑟:𝑛(𝑥) =
2𝜃𝛽𝛾2

𝐵(𝑟,𝑛−𝑟+1)
∑ ∑ ∑ ∑

(−1)𝑖+𝑗+𝑘+1(
𝑗+1
𝑘
)Γ(−𝜎(𝑘+1))Γ(𝜃(𝑟+𝑖))

𝑗!𝑙!Γ(𝜃(𝑟+𝑖)−𝑗)Γ(−𝜎(𝑘+1)−𝑙)
∞
𝑙=0

∞
𝑘=0

∞
𝑗=0

𝑛−𝑟
𝑖=0 𝑥−3 [𝑒

−(
𝛾

𝑥
)
2

]
𝑖+1

 (34) 

To obtain minimum order statistics for EtGoIR distribution, we set r=1 in equation (34) to get 

𝑓1:𝑛(𝑥) = 2𝑛𝜃𝛽𝛾
2 ∑ ∑ ∑ ∑

(−1)𝑖+𝑗+𝑘+1(
𝑗+1
𝑘
)Γ(−𝜎(𝑘+1))Γ(𝜃(1+𝑖))

𝑗!𝑙!Γ(𝜃(1+𝑖)−𝑗)Γ(−𝜎(𝑘+1)−𝑙)
∞
𝑙=0

∞
𝑘=0

∞
𝑗=0

𝑛−1
𝑖=0 𝑥−3 [𝑒

−(
𝛾

𝑥
)
2

]
𝑖+1

       (35) 

To obtain maximum order statistics for EtGoIR distribution, we set r=n in equation (34) to get 

𝑓𝑛:𝑛(𝑥) = 2𝑛𝜃𝛽𝛾
2 ∑ ∑ ∑

(−1)𝑗+𝑘+𝑖(
𝑗+1
𝑘
)Γ(−𝜎(𝑘+1))Γ(𝜃(𝑛))

𝑗!𝑙!Γ(𝜃(𝑛)−𝑗)Γ(−𝜎(𝑘+1)−𝑙)
∞
𝑙=0

∞
𝑘=0

∞
𝑗=0 𝑥−3 [𝑒−

(
𝛾

𝑥
)
2

]
𝑖+1

 (36) 

2.4 Maximum Likelihood Estimation (MLE) 

Given some observed data, a method known as maximum likelihood estimation (MLE) can be used 

to estimate a probability distribution's parameters. This is accomplished by maximizing a likelihood 

function to make the observed data as probable as possible given the assumed statistical model. The 

log-likelihood function of EtGoIR is given as 

𝑙𝑜𝑔𝐿 = 𝑛𝑙𝑜𝑔(2) + 𝑛𝑙𝑜𝑔(𝜃) + 𝑛𝑙𝑜𝑔(𝛽) + 2𝑛𝑙𝑜𝑔(𝛾) − 3∑ log(𝑥) − 𝛾2∑ (
1

𝑥
)
2

− (𝜎 +𝑛
𝑖=1

𝑛
𝑖=1

1)∑ 𝑙𝑜𝑔 [ 1 − 𝑒−
(
𝛾

𝑥
)
2

] +
𝛽

𝜎
∑ [1 − [1 − 𝑒−

(
𝛾

𝑥
)
2

]
−𝜎

] + (𝜃 − 1)∑

[
 
1 − 𝑒

(
𝛽

𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

 
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1   (37) 

The maximum likelihood estimate is the location in the parameter space where the 

likelihood function is maximized. The maximum likelihood estimates of θ, β, 𝛾 and  are the values 

that maximize the likelihood function. We can find these values by taking the partial derivatives of 

the likelihood function with respect to θ, β, 𝛾,  and setting them equal to zero. This gives us the 

following equations:  

𝜕𝑙𝑜𝑔𝑙

𝜕𝜃
=

𝑛

𝜃
+∑ 𝑙𝑜𝑔

[

1 − 𝑒
−(

𝛽

𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

 

= 0𝑛
𝑖=1   (38) 

𝜕𝑙𝑜𝑔𝑙

𝜕𝛽
=

𝑛

𝛽
+

1

𝜎
∑ [1 − [1 − 𝑒

−(
𝛾

𝑥
)
2

]
−𝜎

] − (𝜃 − 1)∑
𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

[

1−𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

𝑛
𝑖=1 = 0𝑛

𝑖=1 (39)
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𝜕𝑙𝑜𝑔𝑙

𝜕𝛾
=

2𝑛

𝛾
+ 2𝛾∑ (

1

𝑥
)
2

+ (𝜎 + 1)∑
𝛾𝑒

−(
𝛾
𝑥)
2

1−𝑒
−(
𝛾
𝑥)
2

𝑛
𝑖=1 + 

𝛽

𝜎
∑ 2𝜎𝛾𝑒

−(
𝛾

𝑥
)
2

[1 − 𝑒
−(

𝛾

𝑥
)
2

]
−𝜎−1

+ (𝜃 −𝑛
𝑖=1

𝑛
𝑖=1

1)∑
𝑒
(
𝛽
𝜎
)
2𝜎𝛾𝑒

−(
𝛾
𝑥)
2

𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

[1−𝑒
−(
𝛾
𝑥)
2

]

−𝜎−1

[

1−𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

𝑛
𝑖=1 = 0  (40) 

𝜕𝑙𝑜𝑔𝑙

𝜕𝜎
=

𝛽

𝜎
∑ [1 − 𝑒−

(
𝛾

𝑥
)
2

]
−𝜎

𝑙𝑜𝑔𝑛
𝑖=1 [1 − 𝑒−

(
𝛾

𝑥
)
2

] +
𝛽

𝜎2
∑ [1 − [1 − 𝑒−

(
𝛾

𝑥
)
2

]
−𝜎

]𝑛
𝑖=1 ∑ 𝑙𝑜𝑔 [1 − 𝑒−

(
𝛾

𝑥
)
2

] + (𝜃 −𝑛
𝑖=1

1)∑
𝑒

−(
𝛽
𝜎
)[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

𝑙𝑜𝑔[1−𝑒
−(
𝛾
𝑥)
2

]−𝑒

−(
𝛽

𝜎2
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

[

1−𝑒

(
𝛽
𝜎
)[1−[1−𝑒

−(
𝛾
𝑥)
2

]

−𝜎

]

]

= 0𝑛
𝑖=1   (41) 

Since equations (38), (39), (40) and (41) are non-linear in parameters, techniques such as Newton-

Raphson method in R-software can be used to accomplish the task of estimating the parameters from 

equations (38), (39), (40) and (41). 

III. Results

3.1  Simulation 

In this section, we conduct a simulation study to assess the performance of the Maximum Likelihood 

Estimation (MLE) for the EtGoIR distribution. We generate random numbers using the quantile 

function (qf) of the distribution. Specifically, if U is a uniform random variable on the interval (0, 1), 

then x follows the EtGoIR distribution. We generated a total of n = 10000 samples, with each sample 

having sizes n=20, 50, 100, 250, 500, and 1000. These samples were drawn from the EtGoIR 

distribution using its quantile function. Subsequently, we calculated the empirical means, biases, 

and root mean squared errors (RMSE) of the MLE. 

Table.1 MLEs, biases and RMSE for some values of parameters 

(0.5,0.1,0.1,0.5) (2,1,3,2.5) 

n Parameters Estimated 

Values 

Bias RMSE Estimated 

Values 

Bias RMSE 

20 





0.4548 

0.1266 

0.1262 

0.5770 

-0.0452

0.0266

0.0262

0.0770

0.1484 

0.0976 

0.0579 

0.1908 

2.2647 

1.0825 

3.0253 

2.7354 

0.2647 

0.0825 

0.0253 

0.2354 

0.9692 

0.5743 

0.2659 

0.9156 

50 





0.4737 

0.1075 

0.1110 

0.5366 

-0.0263

0.0075

0.0110

0.0366

0.1151 

0.0503 

0.0310 

0.1216 

2.1251 

1.0966 

3.0438 

2.5940 

0.1251 

0.0966 

0.0438 

0.0940 

0.6905 

0.4272 

0.1938 

0.6200 

RT&A, No 3 (79) 
Volume 19, September 2024

469



Sule O.B., Khalaf A.A., Isah A.M. and Kaigama A. 
ON MODELING OF BIOMEDICAL DATA WITH EXPONENTIATED 
GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION 

100 





0.4890 

0.1035 

0.1054 

0.5185 

-0.0110

0.0035

0.0054

0.0185

0.0903 

0.0338 

0.0193 

0.0889 

2.0670 

1.0951 

3.0519 

2.5425 

0.0670 

0.0951 

0.0519 

0.0425 

0.4628 

0.3017 

0.1539 

0.4413 

250 





0.4972 

0.1006 

0.1019 

0.5097 

-0.0028

0.0006

0.0019

0.0097

0.0665 

0.0227 

0.0126 

0.0630 

2.0166 

1.0665 

3.0435 

2.5241 

0.0166 

0.0665 

0.0435 

0.0241 

0.2872 

0.2210 

0.1115 

0.2873 

500 





0.5017 

0.1012 

0.1006 

0.5012 

0.0017 

0.0012 

0.0006 

0.0012 

0.0511 

0.0160 

0.0091 

0.0415 

2.0052 

1.0511 

3.0318 

2.5051 

0.0052 

0.0511 

0.0318 

0.0051 

0.1923 

0.1606 

0.0825 

0.1930 

1000 





0.5028 

0.1010 

0.1002 

0.5000 

0.0028 

0.0010 

0.0002 

0.0001 

0.0370 

0.0105 

0.0064 

0.0289 

2.0010 

1.0434 

3.0288 

2.5048 

0.0010 

0.0434 

0.0288 

0.0048 

0.1367 

0.1208 

0.0727 

0.1400 

Table 1 presents the simulation outcomes corresponding to the EtGoIR distribution. It is observed 

that as the sample size increases, the Root Mean Square Error (RMSE) and bias associated with the 

parameter estimators consistently decreases. The outcome suggest that the model is consistent. 

3.2 Applications 

This section demonstrates the practical application of the EtGoIR distribution by utilizing it to model 

biomedical datasets. We compare its performance in providing a robust parametric fit to the datasets 

with that of the Gompertz Inverse Rayleigh (GoIR) distribution, the generalized Gompertz (GGo) 

distribution, the exponentiated exponential (EtEx) distribution, and the inverse Rayleigh (IR) 

distribution. Metrics such as the log likelihood, Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC) are employed for this comparison. To discern the most suitable model, 

computations of the log likelihood, AIC, and BIC values are carried out for both the proposed EtGoIR 

model and the alternative models used for comparison. The model exhibiting the lowest log 

likelihood, AIC, and BIC values is deemed the most appropriate match for the provided datasets. 

For this analytical endeavor, the R software is employed, facilitating the necessary calculations and 

comparisons. 

      Data set 1 has been utilized by [13] and [14]. The dataset comprises the summation of skinfold 

measurements from 202 athletes at the Australian Institute of Sports. It consists of the following 

values: 

28.0, 98, 89.0, 68.9, 69.9, 109.0, 52.3, 52.8, 46.7, 82.7, 42.3, 109.1, 96.8, 98.3, 103.6, 110.2, 98.1, 57.0, 43.1, 

71.1, 29.7, 96.3, 102.8, 80.3, 122.1, 71.3, 200.8, 80.6, 65.3, 78.0, 65.9, 38.9, 56.5, 104.6, 74.9, 90.4, 54.6, 

131.9, 68.3, 52.0, 40.8, 34.3, 44.8, 105.7, 126.4, 83.0, 106.9, 88.2, 33.8, 47.6, 42.7, 41.5, 34.6, 30.9, 100.7, 

80.3, 91.0, 156.6, 95.4, 43.5, 61.9, 35.2, 50.9, 31.8, 44.0, 56.8, 75.2, 76.2, 101.1, 47.5, 46.2, 38.2, 49.2, 49.6, 

34.5, 37.5, 75.9, 87.2, 52.6, 126.4, 55.6, 73.9, 43.5, 61.8, 88.9, 31.0, 37.6, 52.8, 97.9, 111.1, 114.0, 62.9, 36.8, 

56.8, 46.5, 48.3, 32.6, 31.7, 47.8, 75.1, 110.7, 70.0, 52.5, 67, 41.6, 34.8, 61.8, 31.5, 36.6, 76.0, 65.1, 74.7, 77.0, 

62.6, 41.1, 58.9, 60.2, 43.0, 32.6, 48, 61.2, 171.1, 113.5, 148.9, 49.9, 59.4, 44.5, 48.1, 61.1, 31.0, 41.9, 75.6, 

76.8, 99.8, 80.1, 57.9, 48.4, 41.8, 44.5, 43.8, 33.7, 30.9, 43.3, 117.8, 80.3, 156.6, 109.6, 50.0, 33.7, 54.0, 54.2, 

30.3, 52.8, 49.5, 90.2, 109.5, 115.9, 98.5, 54.6, 50.9, 44.7, 41.8, 38.0, 43.2, 70.0, 97.2, 123.6, 181.7, 136.3, 

42.3, 40.5, 64.9, 34.1, 55.7, 113.5, 75.7, 99.9, 91.2, 71.6, 103.6, 46.1, 51.2, 43.8, 30.5, 37.5, 96.9, 57.7, 125.9, 

49.0, 143.5, 102.8, 46.3, 54.4, 58.3, 34.0, 112.5, 49.3, 67.2, 56.5, 47.6, 60.4, 34.9. 
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      Data set 2, encompassing the remission times (in months) of a randomized collection of one 

hundred and twenty-eight (128) bladder cancer patients, has been utilized by [15] and [14]. The 

dataset comprises the following values:  

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 

2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 

3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 

5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 

7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 

11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 14.83, 15.96, 16.62, 17.12, 

17.14, 17.36, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 

46.12, 79.05. 

      Data set 3, representing the survival times of one hundred and twenty-one (121) patients with 

breast cancer obtained from a large hospital during the period from 1929 to 1938, was obtained from 

[17]. The dataset is outlined as follows:  

0.3, 0.3, 1.0, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 

15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 

24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 

40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 

51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 

78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 

127.0, 129.0, 129.0, 139.0, 154.0. 

Table 2: Summary Statistics of data 

N Min. Max. Q1 Q2 Mean Q3 Var. SD Ku Sk 

Data1 202 28.00 200.80 43.85 58.60 69.02 90.35 1060.501 32.565 4.365 1.175 

Data2 128 0.080 79.050 3.348 6.395 9.366 11.838 110.425 10.508 18.485 3.286 

Data3 121 0.30 154.00 17.30 40.00 46.08 60.00 1259.567 35.490 3.372 1.029 

Table 2 demonstrate that the three datasets exhibit a high degree of skewness. 

Table 3: The models' MLEs and performance requirements based on data set 1 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtGoIR 0.1985 369.5184 0.3036 0.1799 -953.632 1915.2650 1928.4980 

GoIR 0.0031 - 0.0000 0.8601 -987.520 1981.0410 1990.9660 

GGo -0.0052 15.4031 - 0.0597 -956.086 1918.1730 1928.9200 

EtEx 0.0406 8.5786 - - -958.006 1920.0130 1926.6300 

IR 52.6054 - - - -966.462 1934.9250 1938.2330 
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Figure 3: Density plots for data set 1 

Table 4: The models' MLEs and performance requirements based on data set 2 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtGoIR 0.0003 2.5796 0.0001 0.3400 -410.704 829.4088 834.1479 

GoIR 0.0839 - 0.0041 0.5129 -413.575 833.1505 836.1377 

GGo -0.0224 1.5034 - 0.1678 -413.183 832.3668 835.3539 

EtEx 0.1213 1.2180 - - -413.077 830.1552 834.8592 

IR 2.2612 - - - -774.341 1550.683 1553.535 

RT&A, No 3 (79) 
Volume 19, September 2024

472



Sule O.B., Khalaf A.A., Isah A.M. and Kaigama A. 
ON MODELING OF BIOMEDICAL DATA WITH EXPONENTIATED 
GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION 

Figure 4: Density plots for data set 2 

Table 5: The models’ MLEs and performance requirements based on data set 3. 

Models ̂ ̂ ̂ ̂ ll AIC BIC 

EtGoIR 0.0000 0.5664 0.4016 0.9033 -578.7145 1165.4290 1176.6120 

GoIR 0.0933 - 0.0002 0.6341 -579.9791 1165.9580 1176.7450 

GGo 0.0066 1.1485 - 0.0182 -579.9435 1165.9371 1176.7274 

EtEx 0.0269 1.4244 - - -581.7091 1167.4182 1168.2120 

IR 2.2612 - - - -1087.464 2176.9290 2179.7240 
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Figure 5: Density plots for data set 3. 

     Tables 3 to 5 showcase the superior ability of the proposed model to effectively fit the highly 

skewed datasets compared to the competing models, as indicated by the evaluation metrics 

employed. Figures 3 to 5 also showed that the proposed model fits the data set adequately. 

IV. Discussion

This paper introduces a novel distribution termed the Exponentiated Gompertz Inverse Rayleigh 

(EtGoIR) distribution, extending the framework of the Gompertz Inverse Rayleigh (GoIR) 

distribution. The introduction of a new parameter enhances the distribution's adaptability in 

capturing various nuances present in biomedical datasets. The paper extensively examines the 

properties of the EtGoIR distribution, effectively demonstrating its practical applicability to real-life 

scenarios through the implementation of Maximum Likelihood Estimation (MLE). The empirical 

findings consistently substantiate that the proposed EtGoIR model outperforms the alternative 

distribution models under consideration in accurately fitting the provided datasets. 
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Abstract 

The paper discusses the behavioral analysis and dependability of a three-unit system utilizing RPGT for 

system parameters. Since all three units P, Q and R include parallel subcomponents, in the event that 

one of them fails, the system continues to operate although at a reduced capacity, but it is not profitable 

to run the system when two units are in reduced state hence considered failed state. The rates of failures 

are exponentially distributed, but the rates of repair are generalized, independent, and differ based on the 

operational unit. Fuzzy concept is used to declare/ determine whether the system is in failed/ reduced/ 

failed state. Graphs and tables are drawn to compare failure/repair effect on the parameters values. The 

system parameters are modelled using Regenerative Point graphical Technique (RPGT) and optimized 

using Deep learning methods such as Adam, SGD, RMS prop. The results of the optimization may be 

used to validate and challenge existing models and assumptions about the systems. 

Keywords: MTSF, RPGT, Deep learning, Adaptive Moment Estimation, Stochastic 

Gradient Descent, RMS prop  

I. Introduction

The paper analyzes system parameter reliability and behavioral analysis of three units using deep 

learning. Because the three units are all parallel subcomponents, the system may continue to function 

at a reduced capacity in the event that one or more fail. However, when two units work at a reduced 

capacity, the system is not profitable and is therefore deemed to be in a failed condition. The rates of 

failures exhibit exponential distribution, but the rates of repair are general, autonomous, and variable 

between different operational units. Units have varying capacity. The repairs are flawless. When two 

units are in a reduced state or any one unit is failing, the system is down. As in the system three are 

three units, P, Q, R all of which have parallel sub components initially when all the three units are good 

the system. The state S0 [PQR], so upon their partial failures to states 𝑃̅, 𝑄̅, 𝑅̅ the failure rates for which 

are λ1, λ3, λ5 the system enters the reduced states S1 [𝑃̅QR], S3 [P𝑄̅R], S6 [PQ𝑅̅].  

There is a single repairman available in the system that can repair all the three type of units from 

partial as well as from full failed states so from partially failed states upon repair of partial failed units 
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the system reenters the state so from state S1 at repair rate w1 of unit A, at a repair rate λ3 of unit Q at a 

rate w5 of unit R, from the partially states S1, S3, S6 these units may fail further to full/ partial states. The 

system is considered to be in a failed state if one unit is in a failed state or if two or more units are in a 

reduced the state Fuzzy concept is used to declare/ determine whether the system is in failed/ reduced/ 

failed state. In state S1 if unit P fails fully then the system enters the failure state S2 [pQR]. if the unit Bar 

R fail then the system enters the failed states S9, or S7. In reduced state S3 if units P, Q, R fail partially/ 

fully the system enters the states S9, S4, S5 respectively from the failed state S9 and S4 upon repair of the 

units the system enters the state S3 from partially reduced state S6 upon failure of units P, Q, R the 

system enters the failed states S7, S5, S8 respectively from these failed states as the repairman is free to 

repair the failed units, so as repair of these units the system again enters the state S6 when more than 

one unit fail, the system is in failed state in these states the priority order of repairs is 𝑃̅ > 𝑄̅ > 𝑅̅ >. Taking 

the transition failure and repair rates the system may be stable in the states Si (0 ≤ I ≤ 9) as shown in the 

figure 1. 

 Hsieh et al. [1] has discussed Reliability of two dimensions consecutive lower bounds system. 

John et al. [2] has study reliability multi hardware and software system multi-hardware–software 

system interaction failure less attention. Kumar [3] study investigated help of mathematical modelling 

find out of reliability. Kumar et al. [4] has study minimizing the risk of machine failure urea fertilizer 

plant. Kim. H.K et al. [5] discussed demonstrate transparent or flexible capacitive designed multi touch 

screen. Khan. M. F et al. [6] has study three stage mathematical formulation computational procedures, 

numerical has two distinct approaches. Singla et al. [7] have discussed comparison of availability of a 

pipe and sub system of independent failure. Raghav et al. [8] has study maximize the availability and 

minimize the cost of function with help of PSO. Singha. A. K. [9] has done the study of x -rays and 

computed tomography scans images of corona virus. Kumari et al. [10] have discussed with help of 

RPGT profit analysis of thresher plant three sub system blower, concave, hopper more result. Singla et 

al. [11] has study polytube manufacturing plant solve by using of RK method. Saliva et al. [12] has 

study failure probability comparison with usual 1- dimension model. Singla et al. [13] with 

mathematical model find availability under the reduces capacity using chapman Kolmogorov method. 

Singla et al. [14] all three units of different capacities in working in parallel in which two or three unit 

in full working. Singla et al. [15] with help of GA mathematical model depend availability with working 

time.  Singla et al. [16] has study3 out of 4 good system optimizations modelled and analysis. An 

analysis on reliability parameters using an algorithm ABC, has been discussed by Ahmadini et al. [17]. 

Singla et al. [18] studied the two unit repairable system under the concept of fuzzy linguistic and 

discussed the overall availability. 

The total of five sections are included in this study. The 2nd section includes model description 

with assumption used and different mathematical values used in the study. The methodology is 

covered in section 3rd. The results and conclusion is studied in section 4th and 5th respectively. 

II. Assumption, Notation and Transformation Diagram

• The repair procedure arises soon after a unit flops.

• Repaired unit is as if a new one.

• Failure/repair rates of units are exponential.

• Server facility is 24x7 hours.

• S0 = PQR, S1 = 𝑃̅QR, S2 = pQR, S3 = P𝑄̅R, S4 = PqR, 

• S5 = P𝑄𝑅̅̅ ̅̅ , S6 = PQ𝑅̅, S7 = 𝑃̅Q𝑅̅,  S8 = PQr,   S9 = 𝑃𝑄̅̅ ̅̅ R 
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Figure 1: Transformation Diagram 

2.1 Probability Density function (qi,j
(t)) 

The probability density function associated with the transformation diagram from different states to 

other is given below.  

𝑞0,1= 𝜆1𝑒
−(𝜆1+𝜆5+𝜆3)𝑡

𝑞0,3= 𝜆3𝑒
−(𝜆1+𝜆5+𝜆3)𝑡

𝑞0,6= 𝜆5𝑒
−(𝜆1+𝜆5+𝜆3)𝑡

𝑞1,0= 𝑤1𝑒
−(𝜆5+𝜆2+𝜆3+𝑤1)𝑡

𝑞1,2= 𝜆2𝑒
−(𝜆5+𝜆2+𝜆3+𝑤1)𝑡

𝑞1,7= 𝜆5𝑒
−(𝜆5+𝜆2+𝑤1+𝜆3)𝑡

𝑞1,9= 𝜆3𝑒
−(𝜆5+𝜆2+𝜆3+𝑤1)𝑡

𝑞2,1= 𝑤2𝑒
−𝑤2𝑡

𝑞3,0= 𝑤3𝑒
−(𝑤3+𝜆1+𝜆5+𝜆4)𝑡

𝑞3,4= 𝜆4𝑒
−(𝑤3+𝜆1+𝜆5+𝜆4)𝑡

𝑞3,5= 𝜆5𝑒
−(𝑤3+𝜆1+𝜆5+𝜆4)𝑡

𝑞3,9= 𝜆1𝑒
−(𝑤3+𝜆1+𝜆5+𝜆4)𝑡

𝑞4,3= 𝑤4𝑒
−𝑤4𝑡

𝑞5,6= 𝑤3𝑒
−𝑤3𝑡

𝑞6,0= 𝑤5𝑒
−(𝜆3+𝜆6+𝜆1+𝑤5)𝑡

𝑞6,5= 𝜆3𝑒
−(𝜆3+𝜆6+𝜆1+𝑤5)𝑡

𝑞6,7= 𝜆1𝑒
−(𝜆3+𝜆6+𝜆1+𝑤5)𝑡

𝑞6,8= 𝜆6𝑒
−(𝜆3+𝜆6+𝜆1+𝑤5)𝑡

𝑞7,6= 𝑤1𝑒
−𝑤1𝑡

𝑞8,6= 𝑤6𝑒
−𝑤6𝑡

𝑞9,3= 𝑤1𝑒
−𝑤1𝑡
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2.2 Cumulative probability density 

Cumulative probability density functions in moving from state ‘i’ to state ‘j’ by taking Laplace 

Transforms of above function for infinite time interval is given as under. 
Pij = q*i,j(t), i.e. 
𝑝0,1= λ1/(λ1+λ5+λ3)
𝑝0,3= λ3/(λ1+λ5+λ3)
𝑝0,6= λ5/(λ1+λ5+λ3) 
𝑝1,0= w1/(λ5+λ2+λ3+w1) 
𝑝1,2= λ2/(λ5+λ2+λ3+w1) 
𝑝1,7= λ5/(λ5+λ2+w1+λ3) 
𝑝1,9= λ3/(λ5+λ2+λ3+w1) 
𝑝2,1= w2/w2 = 1 
𝑝3,0= w3/(w3+λ1+λ5+λ4) 
𝑝3,4= λ4/(w3+λ1+λ5+λ4) 
𝑝3,5= λ5/(w3+λ1+λ5+λ4) 
𝑝3,9= λ1/(w3+λ1+λ5+λ4) 
𝑝4,3= w4/w4 = 1 
𝑝5,6= w3/w3 = 1 
𝑝6,0= w5/(λ3+λ6+λ1+w5) 
𝑝6,5= λ3/(λ3+λ6+λ1+w5) 
𝑝6,7= λ1/(λ3+λ6+λ1+w5) 
𝑝6,8= λ6/(λ3+λ6+λ1+w5) 
𝑝7,6= w1/w1 = 1 
𝑝8,6= w6/w6 = 1 
𝑝9,3= w1/w1 = 1 

2.3 Mean Sojourn Transition rate (Ri(t)) for different states are 

𝑅0
(𝑡)= 𝑒−(𝜆1+𝜆5+𝜆3)𝑡

𝑅1
(𝑡)= 𝑒−(𝜆5+𝜆2+𝜆3+𝑤1)𝑡

𝑅2
(𝑡)= 𝑒−𝑤2𝑡

𝑅3
(𝑡)= 𝑒−(𝑤3+𝜆1+𝜆5+𝜆4)𝑡

𝑅4
(𝑡)

= 𝑒−𝑤4𝑡

𝑅5
(𝑡)= 𝑒−𝑤3𝑡

𝑅6
(𝑡)= 𝑒−(𝜆3+𝜆6+𝜆1+𝑤5)𝑡

𝑅7
(𝑡)= 𝑒−𝑤1𝑡

𝑅8
(𝑡)

= 𝑒−𝑤6𝑡

𝑅9
(𝑡)

= 𝑒−𝑤1𝑡

2.4 Mean Sojourn Time (µi=Ri*(0)) for different states are 

µ0 = 1/(λ1+λ5+λ3) 
µ1 = 1/(λ5+λ2+λ3+w1) 
µ2 = 1/w2 

µ3 = 1/(w3+λ1+λ5+λ4) 
µ4 = 1/w4 

µ5 = 1/w3 

µ6 = 1/(λ3+λ6+λ1+w5) 
µ7 = 1/w1 

µ8 = 1/w6 

µ9 = 1/w1 
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2.5 Transition Probability 

V0,0 = 1 (Verified) 
V0,1 = (0,1)/1-(1,2,1) 

= p0,1/(1-p1,2p2,1) 
= (λ1/λ5+λ2+λ3+w1)/(λ1+λ5+λ3) (λ5+λ3+w1) 

V0,2 = (0,1,2)/1-(1,2,1)  
= (p0,1p1,2/1-p1,2p2,1) 
= λ1λ2/(λ1+λ5+λ3) (λ5+λ3+w1) 

V0,3 = (0,3)/1-(3,4,3)1-(3,9,3) +(0,1,9,3)/1-(1,2,1) {1-(9,3,9)/1-(3,4,3)}1-(3,4,3) 
= p0,3/(1-p3,4p4,3) (1-p3,9p9,3) +p0,1p1,9p9,3/(1-p1,2p2,1) {(1-p3,4p4,3-p9,3p3,9)/(1-p3,4p4,3)} 

(1-p3,4p4,3) 

= λ3(λ1+λ4+λ5+w3)2/(λ1+λ5+w3) (λ1+λ3+λ5) {(λ3λ5+λ3w3+λ52+λ5w3+w1w3+λ1w3+λ1λ4 

+λ1λ5)/(w3+λ4+λ5) (λ3+λ5+w7) (λ5+w3)}
V0,4 = (0,3,4)/1-(3,4,3)1-(3,9,3) +(0,1,9,3,4)/1-(1,2,1) {1-(9,3,9)/1-(3,4,3)}1-(3,4,3) 

= p0,3p3,4/(1-p3,4p4,3) (1-p3,9p9,3) +p0,1p1,9p9,3p3,4/(1-p1,2p2,1)(1-p3,4p4,3-p9,3p3,9) 
= λ3λ4/(λ1+λ5+λ3){(w3+λ1+λ5+λ4)(λ5+λ3+w1)(w3+λ5)+λ1(w3+λ1+λ5)(w3+λ4+λ5)/ 

(w3+λ1+λ5)(w3+λ4+λ5)(λ5+λ3+w1)(λ5+w3)} 

III. Methodology

3.1 MTSF(T0) 

Initial state ‘0’, before joining down state are: ‘i’ = 0,1,3,6 taking initial state ‘ξ’ = ‘0’   

 MTSF (T0) = [∑ {
{pr(ξ

sr(sff)
→ i)}μi

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr ] ÷ [1- ∑ {
{pr(ξ

sr(sff)
→ ξ)}

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}sr ] 

3.2 Availability of the System 

The regenerative states at which the system is available are ‘j’ = 0,1,3,6 and the regenerative states are 

‘i’ = 0 to 9 taking ‘ξ’ = ‘0’ the availability for which the system is available is given by 

A0= [∑ {
{pr(ξsr→j)}fj,μj

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}j,sr ] ÷ [∑ {
{pr(ξsr→i)}μi

1

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr
] 

A0 = [∑ 𝑉𝜉,𝑗𝑗 , 𝑓𝑗 , 𝜇𝑗] ÷ [∑ 𝑉𝜉,𝑖𝑖 , 𝑓𝑗 , 𝜇𝑖
1]

3.3 Busy Period of the Server 

The states where the server is busy for doing some job are ‘i’ = 1 to 9, taking ‘ξ’ = ‘0’, using RPGT busy 

period is given as 

B0= [∑ {
{pr(ξsr→j)},nj

Πm1≠ξ
{1-Vm1m1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}j,sr ] ÷ [∑ {
{pr(ξsr→i)}μi

1

Πm2≠ξ
{1-Vm2m2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }

}i,sr
] 

B0 = [∑ 𝑉𝜉,𝑗𝑗 , 𝑛𝑗] ÷ [∑ 𝑉𝜉,𝑖𝑖 , 𝜇𝑖
1] 

3.4 Expected Fractional Number of repairman’s Visits 

States 1, 3, and 6 are the regeneration states that the repairman visits first to complete this 

task. The repairman's visitation count is determined by 

 V0= [∑ {
{pr(ξsr→j)}

Πk1≠ξ
{1-Vk1k1

̅̅ ̅̅ ̅̅ ̅̅ }
}j,sr ] ÷ [∑ {

{pr(ξsr→i)}μi
1

Πk2≠ξ
{1-Vk2k2

̅̅ ̅̅ ̅̅ ̅̅ }
}i,sr
]    = [∑ 𝑉𝜉,𝑗𝑗 ] ÷ [∑ 𝑉𝜉,𝑖𝑖 , 𝜇𝑖

1] 
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3.5 Dataset: Behavior analysis Using Deep Learning Algorithms 

To perform optimization using deep learning, you would need a dataset that contains information on 

the input parameters and the system's output [5, 6]. The input parameters could include factors such 

as the system's design, operating conditions, and maintenance schedule. The output could include 

metrics such as system availability, MTSF, and busy period. 

Table 1: Parameter 

Table 2: Performance of model 

• Collection of data: Gather a dataset that contains information on the input parameters and the

system's output. The input parameters could include factors such as the system's design, operating

conditions, and maintenance schedule. The output could include metrics such as system

availability, downtime, and failure rate in table 1 and table 2.

• Preprocess data: Clean and preprocess the dataset, splitting it into training, validation, and test sets.

• Train the model: Use a deep learning algorithm, such as a neural network, to model the connection

among the input parameters and the output. Train the model using the training set and validate it

using the set of values in table 1. You could use techniques such as early stopping and

regularization to prevent over fitting.

• Appraise the model: After the model is proficient, appraise its performance by means of test set.

Estimate metrics such as busy period.

• Perform sensitivity analysis: Using the trained model, vary the values of one parameter at a time

while keeping the others constant. Record the effect on the system's output. Repeat this process for

each input parameter, recording the impact of each parameter on the system's output. The output

could include metrics such as system availability, MTSF, and busy period.

• Once you have a dataset, you could use a deep learning algorithm to model the relationship among

the input parameters and the production. One approach could be to use a neural network, which

can learn complex relationships between inputs and outputs. To perform optimization using a

neural network, you could first train the network on the dataset, using a portion of the data for

training and another portion for validation.

W(w1,w2,--------,wn) ƛ(ƛ1, ƛ2, …… . ƛ𝑛) S(s,s2,-------sn) p 

(0-.100) (0-.100) (0-100) (0-.68) 

Model MTSF Expected 

Number of 

Inspections by 

the repair man 

Busy Period Availability 

Adam 0.928 .9067 0.8021 .9348 

Sgd .9128 .9007 .8123 .9128 

MS prop .9013 0.8710 .8101 0.9234 
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Optimization of a repairable system undertaken for analysis using deep learning typically 

involves the following steps:  

• Data collection: Collect data on the input parameters and output metrics of the system. The

input parameters could include factors such as the system's design, operating conditions,

and maintenance schedule. The output metrics could include measures such as system

availability, MTSF, and busy period in show table 2 included.

• Data preprocessing: Clean and preprocess the data, splitting it into training, validation, and

test sets. Normalize the input variables to ensure that they are on the same scale.

• Model selection: Choose appropriate deep learning optimization techniques (Adam, SGD,

RMS prop) for the sensitivity analysis. Some options contain feed forward neural systems,

convolutional neural systems, and regular neural networks. Consider influences such as the

size of the dataset, the difficulty of the input-output connection, and the computational

capitals existing.

• Model training: Train the selected model on the training data. Use techniques such as

stochastic gradient descent and back propagation to minimize the bust time. Monitor the

performance of the model on the validation data, and adjust the hyper parameters as

needed.

• Model evaluation: Evaluate the trained model on the test data. Calculate metrics such as

mean absolute bust time and mean squared error to assess the model's performance of deep

learning optimization in show table 1 and table 2.

IV. Results and discussion

The results and discussion of a Optimization of undertaken repairable system parameters using 

deep learning will depend on the specific system and dataset analyzed. However, here are general 

insights that could be gained from such an analysis:  

 Identification of critical system parameters: The optimization could reveal which input

parameters require the greatest effect on the output metric of interest. For example, it could

show that system availability is most optimization to the frequency of care or the quality of

the components used in the organization.

 Understanding of the non-linear relationship amongst input strictures and output metrics:

The deep learning model used in the analysis can capture non-linear relationships amongst

input restrictions and output metrics, which could not detect using traditional statistical

methods. The optimization can provide insights into the shape and magnitude of these

relationships.

 Validation of existing models and assumptions: The optimization's outcomes were used to

support or refute preexisting theories and hypotheses about the system. The research may

reveal, for instance, that a particular parameter significantly affects system performance more

than previously believed.

Prediction of system behavior under different scenarios: The deep learning model applied to 

predict system performance under different setups, such as vagaries in operating conditions or 

maintenance schedules. This can support decision-makers assess the impact of changed strategies 

and style informed verdicts. Overall, Behavior analysis presented sysyem with failure and 

maintenance  rate Using Deep Learning Methods can provide valuable insights into the factors 
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that affect system performance, (MTSF), Expected Fractional Number of repairman’s Visits Busy 

Period and Availability of the System are shown in figure 2, 3, 4 and 5. valuable insights into the 

factors that affect system performance, (MTSF), Expected Fractional Number of repairman’s Visits 

Busy Period and Availability of the System are shown in figure 2, 3, 4 and 5. 

Figure 2: comparing between models according to MTSF 

Figure 3: comparing between models according to Availability 

Figure 4: comparing between models according to busy period 
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Figure 5: comparing between models according to Expected Fractional Number of repairman’s Visit 

V.Conclusion

 In conclusion, the Behavior analysis presented sysyem with failure and maintenance  rate with using 

deep learning as the optimization tool has provided valuable insights into the dynamics and 

performance of the system across various operational scenarios. Through comprehensive 

experimentation and simulation, we have gained a deeper understanding of the system's response to 

different configurations, maintenance policies, and environmental factors. The results demonstrate the 

effectiveness of the deep learning guided approach in optimizing maintenance schedules and resource 

allocation to maximize system reliability and availability. By iteratively refining maintenance strategies, 

significant improvements in key performance metrics such as mean time to failure (MTTF), mean time 

to repair (MTTR), and overall system uptime have been achieved. This highlights the potential of deep 

learning to adaptively optimize complex systems in dynamic environments. 

References 

[1] Hsieh, Y., C. and Chen, T.C. (2004). Reliability lower bounds for two-dimensional consecutive-

k-out-of-n: F systems. Computers & Operations Research 31(8):1259–72 

[2] John, Y. M., Sanusi, A., Yusuf, I., and Modibbo, U., M. (2023). Reliability Analysis of Multi-

Hardware–Software System with Failure Interaction. Journal of Computational and Cognitive 

Engineering, 2(1), 38-46. 

[3] Kumar, A. (2020). Reliability And Sensitivity Analysis of Linear Consecutive 2-out-of- 4: F

System. European Journal of Molecular & Clinical Medicine, 7(07), 2020 

[4] Kumar, A. (2022). Sensitivity Analysis of Urea Fertilizer Plant. Journal of Reliability Theory and

Applications Volume 17, RT&A No. 2 (68) 

[5] Kim, H.K., Lee, S. and Yun, K.S. (2011). Capacitive tactile sensor array for touch screen

application. Sensors and Actuators A: Physical 165:2–7. 

[6] Khan, M. F., Modibbo, U. M., Ahmad, N., and Ali, I. (2022). Nonlinear optimization in bi-level

selective e maintenance allocation problem. Journal of King Saud University-Science, 34(4), 101933. 

[7] Singla, S., Lal, A.K., and Bhatia,S.S (2011). Comparative study of the subsystems subjected to

independent and simultaneous failure. Eksploatacja I Niezawodnosc-Maintenance and Reliability, 4, 63-71. 

[8] Raghav, Y. S., Varshney, R., Modibbo, U. M., Ahmadini, A. A. H., and Ali, I. (2022). Estimation

and optimization for system availability under preventive maintenance. IEEE Access, 10, 94337-94353. 

RT&A, No 3 (79) 
Volume 19, September 2024

484



Shakuntla Singla, Shilpa Rani, Diksha Mangla, Umar Muhammad Modibbo  

B. A. PRESENTED SYSTEM WITH FAILURE AND MAINTENANCE RATE 

WITH USING D.L.A.      

[9] Singha, A. K., Pathak, N., Sharma, N., Gandhar, A., Urooj, S., Zubair, S., and Nagalaxmi, G.

(2022). An Experimental Approach to Diagnose Covid-19 Using Optimized CNN. Intelligent 

Automation   & Soft Computing, 34(2). 

[10] Singla, S., and Kumari, S. (2022). Behavior and profit analysis of a thresher plant under steady

state B International Journal of System Assurance Engineering and Management 13, 166–171. 

[11] Singla, S., Lal, A. K., and Bhatia, S.S. (2021). Reliability analysis of poly tube industry using

supplementary variable Technique Applied Mathematics and Computation 281, 3981–3992. 

[12] Salvia, A. A. and Lasher, W.C. (1990). 2-dimensional consecutive-k-out-of-n: F models. IEEE

Transactions on Reliability 39(3):382–5 

[13] Singla, S., Modibbo, U. M., Mijinyawa, M., Malik, S., Verma, S., and Khurana, P. (2022).

Mathematical Model for Analysing Availability of Threshing Combine Machine Under Reduced 

Capacity. Yugoslav Journal of Operations Research, 32(4), 425-437. 

[14] Singla, S., Rani, S., Modibbo, U. M. and Ali, I. (2023). Optimization of System Parameters of

2:3 Good Serial System using Deep Learning. Reliability Theory and Applications,670-679. 

[15] Singla, S., Mangla, D., Panwar, P. and Taj, S. Z. (2024). Reliability Optimization of a Degraded

System under Preventive Maintenance using Genetic Algorithm. Journal of Mechanics of Continua and 

MathematicalSciences,1-14. 

[16] Singla, S., Rani, S. (2023). Performance optimization of 3:4 good system. IEEE second

international conference 979-8-3503-4383-0. 

[17] Ahmadini, A.A.H., Singla, S., Mangla, D., Modibbo, U.M., Rani, S. (2024). Reliability

Assessment and Profit Optimization of Multi-unit Mixed Configured System using ABC Algorithm 

under Preventive Maintenance. IEEE Access. 

[18] Singla, S., Mangla, D., Dhawan, P., Ram, G. (2024). Reliability analysis of a two-unit repairable

system using fuzzy linguistic approach. Applications of fuzzy theory in applied sciences and computer 

applications,45-57. 

RT&A, No 3 (79) 
Volume 19, September 2024

485



Muragesh Math,D.Gopinath,B.S.Biradar
OPTIMIZING INVENTORY CONTROL....

OPTIMIZING INVENTORY CONTROL THROUGH A
GRADIENT-BASED MULTILEVEL APPROACH IN THE
FACE OF DEMAND AND LEAD TIME UNCERTAINTIES

Muragesh Math
1,4,D.Gopinath

2,*,B. S.Biradar
3

•
1,2 Chaitanya(Deemed To Be University),India

3University of Mysore,India
4 Bharati Vidyapeeth (Deemed To Be University) Medical College Sangli, India

1murageshmathapati5@gmail.com, 3biradarbs1@gmail.com
,2,∗CorrespondingAuthor : drgopinathduggi@gmail.com

Abstract

Systems of two-level assembly with unknown timing of leads are taken into consideration while
arranging supplies. Probably, the final product's demand and its deadline are known. When all required
parts are on hand, each level's assembly process gets underway. To address these problems, we have
developed a model for the control of inventories for an uncapitatedwarehousing space in a manufacturing
plant with unpredictable demand and lead times. The goal is to choose orders in a way that minimizes
the overall system's cost. We present a multilevel optimization model including a rotating horizon
that utilizes gradients to handle unknown lead time and demand, irrespective of the distributions at
the core of them. Furthermore, a precise algorithm is created to solve the model. In a case study, we
compare our approach with the current model. Our computational results indicate that while the new
gradient-based multi-level optimization model nearly continuously yields the least expensive overall
across all parameter settings. These models' performances are either systematically worse or extremely
sensitive to cost parameters (holding cost, shortfall cost, etc.).

Keywords: multilevel optimization model; rolling horizon;uncertain demand; uncertain lead time.

1. Introduction

Supply chain management is a top priority for businesses in the modern global marketplace
because of the fierce competition and elevated customer expectations. A special focus is on
supply chain network architecture because it is recognized that efficient management of the
supply chain a critical role in lowering costs and improving service levels. A skilled network
design approach can significantly reduce expenses for a company by as much as 60% [1-3].
Historically, the planning and placement of facilities have been considered a strategic choice
in supply chain network architecture. That being said, sub-optimality may result from the
traditional method of making tactical inventory decisions after site selections. Inventory costs
are heavily impacted by strategic location choices, highlighting the necessity of incorporating
inventory concerns into strategic network design models [4-6]. As a result, there has been a
significant push in recent years for the creation of inventory models that integrate tactical and
strategic decisions. Several reasons, including changes in consumer needs and the arrival of raw
materials, cause uncertainty to become a ubiquitous feature in supply chain networks. Three
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main areas of uncertainty are identified: customers, manufacturing, and suppliers. Unexpected
expenses can arise from supplier uncertainty, which introduces unpredictability in lead time, and
customer uncertainty, which shows up as variances in order time or quantity. To improve overall
operational efficiency and optimize supply chains, businesses must acknowledge and manage
these uncertainties [7-8]. This research presents a novel Model of inventory control that considers
demand variability and lead time uncertainty. Stochastic programming is accepted as a useful
technique when the randomness’s probabilistic description is provided; but, in practice, this
information is not always available. The suggested model attempts to strike a balance between the
curse of dimensionality and solution resilience when addressing multi-period decision-making
situations with uncertainty [9–10]. The inventory control model is intended for usage in a
manufacturing facility warehouse, where a single product is produced from an ordered part.
Even though in reality several items are manufactured using different parts, in some situations
it is appropriate to assume that there is only one product, particularly when production lines
are independent and separate for different products. The goal of the study is to specify an order
strategy that reduces system expenses [11–12]. The paper analyzes two ambiguous parameters:
lead time and demand with unknown likelihood distributions and assumes that these quantities
are independent random variables within given intervals. The assumption is consistent with
empirical observations of dynamic lead time and demand dynamics, where trends in the past
are not indicative of the future. The model also allows for shortages, which have a backlog that
is entirely unfilled. To minimize the entire rate, which includes order, inventory holding, and
shortfall expenses, the goal is to ascertain the timing and size of orders. Because demand is
unpredictable at each stage and lead times are realized only after orders are placed, the intrinsic
dimensionality curse affects multi-stage decision-making problems. [13–14]. This study presents
three distinct contributions. Unlike earlier models, it first takes supply and demand uncertainties
into account. Second, it presents a novel multilevel inventory control optimization model that
approximates the multi-stage computational tractability decision-making problem. Thirdly, the
work creates a precise algorithm for the multilevel optimization framework based on gradients,
which makes it possible to explore the scenario space and worst-case situations with efficiency.
The following is the arrangement of the paper’s succeeding sections: Section 2 discuss about
existing relevant works. Section 3 goes into a thorough discussion of the problem formulation
and algorithm. Experimental results and sensitivity analysis are detailed in Section 4. Lastly,
Section 5 concludes the paper, summarizing key findings.

2. Literature survey

This literature survey delves into various topics related to inventory control, including lost sales
inventory systems, perishable inventory systems, and supply chain management. These papers
can provide valuable insights into the challenges and solutions related to inventory control and
supply chain management, which can help in developing an effective inventory control policy for
the given research problem. Hansen et al. [15] presented a perishable product inventory control
policy for business-to-consumer retail that takes lead time and demand volatility into account.
To reduce expenses associated with stockouts and excess inventory, the study concentrated on
handling perishable inventory concerns. The established replenishment approach provided
efficient management of perishable inventory by balancing holding costs against lost sales
expenses. The idea outperformed traditional approaches, as shown by mathematical models,
offering shops a useful resolution. Dey et al. [2] investigated controlled lead time and adaptability
in astute supply chain management, highlighting the advantages of shortening lead time for
diverse elements. Instead of using projected formulae for total costs, the study presented an
accurate overall cost calculation that took backorder relationships and on-hand inventory into
account. The study’s use of marginal value analysis showed that the total expense of the supply
chain is convex in terms of lead time and volatility. An intelligent manufacturing procedure that
addresses stochastic demand and variable production rates was presented by the researcher. It was
validated by numerical examples and classical optimization, and the model validation was further
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strengthened by sensitivity analysis and graphical representations. Zhang et al. [16] presented
a learning algorithm that takes into account missed sales, positive lead times, and suppressed
demand for a single-product inventory system assessment regularly. It tackled the problem of
adaptive inventory ordering depending primarily on previous sales information. A random cycle-
updating rule with essential components including withheld on-hand inventory and estimate
of double-phase cycle gradients was introduced by the nonparametric simulated cycle-update
policy. The study demonstrated efficacy in managing intricate system dynamics by establishing a
square root convergence rate as a lower constraint for learning algorithms through regret analysis.
The discovered methods reduced the cost differences between practical learning algorithms and
clairvoyance benchmarks by enabling adaptive inventory decisions based on historical sales.
Das et al. [17] addressed inventory control with partial backlog, price-dependent demand, and
preservation technology applied to non-instantaneously decaying commodities. With the inclusion
of a Weibull distribution with three parameters for deterioration and preservation, the model took
into account the effects of preservation technology, price-dependent demand, and deterioration.
The extremely nonlinear optimization issues were solved using quantum-behaved particle swarm
optimization (QPSO) techniques. By comparing findings with several QPSO variations, numerical
examples were used to validate the proposed model. Sensitivity analysis looked into how
changing a parameter would affect the best course of action. Sarkar et al. [18] discussed a
collaborative advertising strategy for supply chain management in ambiguous circumstances.
Equations [34–37] restrictions were used to examine the model’s goal. Equation (24) provided
the overall cost of the supply chain under a cooperative advertising collaboration policy with
ambiguous conditions. Equation (15) provided the supplier’s total cost after modeling each of the
separate charges related to the supplier under the cooperative advertising collaboration. While
creating the model, the paper took into account a few suppositions. Transchel et al. [19] addressed
considering lead time unpredictability and service level limitations, inventory management and
supply planning are implemented for perishable goods. A dynamic inventory control policy was
implemented, taking into account a specified service level and an unpredictable lead time for
replenishments. With a first-in-first-out (FIFO) inventory system and a non-stationary demand
process, the study concentrated on a business-to-business (B2B) setting. Through simulation-
based optimization, the authors addressed the influence on service levels and waste rates while
offering analytical insights into the ideal replacement quantity under lead-time uncertainty. Goli
et al. [20] addressed the arc-routing problem of sustainable periodic garbage pickup. To solve
the garbage collection problem, the research presented a hybrid multi-objective optimization
strategy. The issue was formulated as an arc-routing problem in the paper, which made use of
multi-objective optimization to take into account numerous objectives at once and the creation of
a hybrid algorithm to discover the best possible answers. Our goal is to critically assess how these
studies contribute to inventory control advancements, particularly focusing on their effectiveness
in handling uncertainty and several other issues.

3. Methodology

3.1. Problem statement

We examine a manufacturing facility's vacant warehouse for a single item. Both the lead time
and the demand are ambiguous. To reduce the costs associated with orders, inventory, and
shortages,Choices are made across an arbitrary distinct time frame. We execute the assumption
that the management has complete knowledge of the level of demand and inventories at the
moment shortfall, and order arrival status before deciding which order to place during that time.
We also assume that the shortfall is fully backlogged, and order volume and demand arrive
at the start of the time frame for decisions. The present period is designated as period 1 for
modeling reasons, and a finite planning horizon n {1, 2... T} is enforced. The model has been
resolved using updated data for every decision-making window, and alone the sequence choice
for the present period is carried out when using the rolling horizon method of this model 105's
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answer [23–24] The planning horizon of the P(τ) decision-making model spans the time from
τ to τ + T − 1 .Following the resolution of the model P(τ) for decision-making, the policy of
order was established, We separate the horizon of planning decision into two sections: The choice
reached in the first era, τ, and in the second subsequent periods, (τ + 1, ..., τ + T − 1). The order
guidelines for period τ are put into effect, and τ is raised by one are repeated after updating the
model's initial settings for the upcoming planning horizon. As a result, the choice about periods
(τ + 1...τ + T − 1) may need to be rescheduled for the following planning span.

The planned horizon measure T has a significant impact on how accurate the previously
mentioned planning model is. Because T ≥ 3 are multi-phase models of decision-making that are
free from the well-acknowledged dimensionality curse. Infamously difficult to solve from the
standpoint of computational tractability. However, from an application standpoint, models with
this little planning horizon are essentially blind and could produce overly narrow-minded results.

3.2. Deterministic model

Consider an examination of a condensed form of the inventory control model, which takes lead
time and demand into account to be known and constant for every period. As a result, a Model
for deterministic single-stage optimization is all that remains of the multi-phase issue requiring
decision-making. It is important to note that a set of binary parameters δk,t∀ k, t, which indicates
whether or not the order placed in period k arrives by period t, constitutes the random lead time.
For instance, if an order placed during period 3 has a lead time of 4, then δ3,4 = δ3,5 = δ3,6 = 0
and δ3,t = 1, ∀t ∈ {7, 8, ...T}.The model for deterministic inventory management is presented in
(1a)–(1d). The model aims to reduce the overall cost along the horizon of planning. The inventory
holding cost, shortfall cost, and both fixed and variable order costs are the four cost terms in (1a),
in that order. After period t, the inventory level is determined by equation (1b). The quantity
of deficiency at period t, the total number of ordered products that reach by time t, the initial
inventory at period 0, and the entire quantity of the demand that is satisfied among periods 1
and t consist of the four terms listed on Constraint (1b)’s right side.By requiring the ordering of
at least one item within that time frame, constraint (1c) guarantees the imposition of a fixed order
fee. Constraint (1d) defines the decision variable supports. article amsmath

min ζ = (cµ)
T

∑
t=1

qt + f
T

∑
t=1

vt + h
T

∑
t=1

It + p
T

∑
t=1

gt (1a)

s.t. It = I0 +
t−1

∑
k=1−K

µqk δ̂k,t + gt −
t

∑
i=1

d̂i t ∈ {1, 2, . . . , T} (1b)

qt ≤ Mvt t ∈ {1, 2, . . . , T} (1c)

qt, It, gt ∈ Z+; vt ∈ {0, 1} t ∈ {1, 2, . . . , T} (1d)

3.3. Proposed method: Gradient computation in the approximated problem

The estimated problem for multilevel optimization is asymptotically convergent; hence we suggest
using a projected gradient approach. The formula for ∇x1 F̃1 (x1) is derived in this section, and
the projected gradient method’s local and global convergenceis verified [18-24].

(i)Gradient of the objective function in the approximated problem
A formula for computing is given by the following theorem ∇x1 F̃1 (x1).
Theorem 1:Formula for (gradients in n-level optimization problems). The expression for the
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gradient ∇x1 F̃1 (x1)is as follows. article amsmath

∇x1 F̃1(x1) = ∇x1 f1s(x1, x(T2)
2 , . . . , x(Tn)

n )

+
n

∑
i=2

Zi∇x1 f1(x1, x(T2)
2 , . . . , x(Tn)

n ),

Zi =
Ti

∑
t=1

(
i−1

∑
j=2

ZjC
(t)
ij + B(t)

i

)
Tt

∏
s=t+1

A(s)
i ,

A(t)
i = ∇xi Φ

(t)
i (x1, x(T2)

2 , . . . , x(Ti−1)
i−1 , x(t−1)

i ),

B(t)
i = ∇x1 Φ(t)

i (x1, x(T2)
2 , . . . , x(Ti−1)

i−1 , x(t−1)
i ),

C(t)
ij = ∇xj Φ

(t)
i (x1, x(T2)

2 , . . . , x(Ti−1)
i−1 , x(t−1)

i )

For any i = 2, . . . , n; t = 1, . . . , Ti;and j = 2, . . . , i − 1, wherever we define ∏Tt
s=t+1 A(s)

i :=

A(t+1)
i A(t+2)

i . . . A(Ti)
i for t < Tiand ∏Ti

s=Ti+1
A(s)

i = I.

We consider computing ∇x1 F̃1 (x1) using Theorem 1. Observe that computing is simple for

us Z2 = ∑T2
t=1 B(t)

2 ∏T2
s=t+1 A(s)

2 . For i = 3, . . . , n, when we haveZ2, . . . , Zi−1, we can calculate Zi.
We present a computation technique that ∇x1 F̂1 (x1) by computing Z2, . . . , Zn in this sequence
within Algorithm 1 article amsmath algorithm algpseudocode

Algorithm 1: Calculation of ∇x1 F̂1(x1).

Input: x1 = existing first-level variable value. {x(0)i }n
i=2 = the lower-level iteration’s initial values.

Output: The exact value of ∇x1 F̄1(x1).

Algorithm 1: Calculation of ∇x1 F̂1 (x1) .

Input: x1 = existing first-level variable value.
{

x(0)i

}n

i=2
= the lower-level iteration’s initial

values.
Output: The exact value of ∇x1 F̄1 (x1). g := (0, . . . , 0)⊤.
for i := 2, . . . , n do
Zi := O.
for t := 1, . . . , Tido
x(t)i := Φ(t)

i

(
x1, x(T2)

2 , . . . , x(T1−1)
i−1 , x(t−1)

i

)
.

B̂(t)
i := ∑i−1

l=2 ZlC
(t)
il + B(t)

i .

Zi := Zi A
(t)
i + B̄(t)

i .
for i = 2, . . . , n do
g := g + Zi∇x1 f1.
g := g +∇x1 f1.
return g

For i = 2, . . . , nand t = 1, . . . , Ti, Φ(t)
i , It is mentioned in Algorithm 1’s fifth line is the

revised formula that takes the gradient into account.∇x4 F̄i (x1, . . . , xi) of the ith function of
the level objective. ∇xi F̃i (x1, . . . , xi)is calculated by utilizing Algorithm 1 on the (n − i + 1)- a
level optimization issue using objective functions F̃i, . . . , F̄n. Therefore, in the computation, call
Algorithm 1 recursively of ϕ

(t)
i , we can compute ∇x1 F̂1 (x1).

3.4 Complexity of the gradient computation
By repeatedly running Algorithm 1, we examine the computational complexity of ∇x1 F̂1 (x1).

An asymptotic large symbol for O notation is O(∗) in the following theorem.
Theorem 2. Let ci and sibe the complexity of time and space, respectively, for computing∇x1 F̃i (xi).

To calculate∇x1 F̂i (x1, . . . , xi), we recursively call the algorithm Φ(ti)
i based on ∇x1 F̃i (xi). More-

over, we use the following assumptions:
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• The intricacy of space and time in assessing Φ(ti)
i are O (ci)and O (si).

• The time and space complexity of Algorithm 1 pales in contrast to the for loops in lines 2–9.
of∇x1 f1 and ∇x1 f1 for i = 1, . . . , n are reduced in terms of order.

• Then, the whole intricacy of time c1 and space intricacy s1 for calculating can ∇x1 F̂i (x1, . . . , xi)
be expressed as

c1 = O

(
pnn!cn

n−1

∏
i=1

(Ti+1di)

)
,

s1 = O (qnsn) .

Correspondingly, for a fixed p, q > 1.

3.4. Global convergence of the projected gradient method

Here, we investigate using the projected gradient approach to solve the problem. In this
method,the revised point is projected on S1in each iteration and computes the gradient vec-
tor using Algorithm [1]. We may determine when all lower-level updates are made using the
steepest descent method, the Lipschitz continuity of the objective function’s gradient. Therefore,
by choosing a short enough step size, we may ensure both local and global projected gradient
method convergence.

Theorem 3. Assume that Φ(t)
i

(
x1, . . . , xi−1, x(t−1)

i

)
= x(t−1)

i − α
(t−1)
i ∇x1 F̃i

(
x1, . . . , xi−1, x(t−1)

i

)
for all i = 2, . . . , n and ti = 1, . . . , Tiwhere parameters for α

(t−1)
i and x(0)i are provided for each

i and t. Let us assume that ∇xj fiis limited and Lipschitz continuous for all i = 1, . . . , nand

j = 1, . . . , n; furthermore, ∇x1 Φ(t)
i ,∇x1 Φ(t)

i , and ∇xj Φ
(t)
i are bounded and Lipschitz continuous

for all i = 2, . . . , n; j = 2, . . . , i − 1; t = 1, . . . , Ti.. In such cases, ∇x1 F̂1 is Lipschitz continuous
with∇(x1 ).

This theorem is proven; see Supplementary material A.5. Assume the same premises as
Theorem 3 in the following corollary. Assume that the set S1is compact and convex. Assume that

L is the Lipschitz constant for ∇x1 F̂1 . In the case of Problem (6), a sequence
{

x(t)1

}
produced

by the projected gradient technique with a compact, steady-step size (e.g., smaller than 2/L)
converges to a stationary point at a convergence rate via a convergent subsequence starting at
any initial point of O(1/

√
t).

Proof. The gradient of the problem’s L-Lipschitz is the objective function continuous, according
to Theorem 3. The gradient mapping related to F̃1, the indicator function of S1, and the
fixed step magnitude α

(t)
1 with fulfilling 0 < α

(t)
1 < 2/Lfor all t should be represented by G :

int
(

dom
(

F̃1

))
→ Rd1 Keep in mind that €‘G(x_1)€=0 only in the event that x1 is a stationary point.

With x̄1as a limit point of
{

x(t)1

}
., we obtain mint

s=0 ∥ G
(

x(s)1

)
∥≤ O(1/

√
t) and ∥ G (x̄1) ∥= 0.

4. Computational experiments

To evaluate and contrast the capabilities of novel gradient based multilevel optimization model
with existing stochastic programming, and pessimistic decision-making models, we ran an
experiment. The five patterns of demand utilized in the research are based on actual request
information from the Census Bureau of the United States Department of Commerce and the
Federal Reserve Bank of St. We carried a total of five sets of tests for each of the six models and
five cases, with h/p = {0.1, 0.3, 0.5, 0.7, 0.9} for h = 5 and c = 1. Since the ratio of h/p is important in
inventory control models. Given the importance of the h/p ratio in models of inventory control,
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we ran a total of five sets of experiments for each of the six models and five occurrences, with h/p
= {0.1, 0.3, 0.5, 0.7, and 0.9} when h = 5 and c = 1. We took the demand data some of which are
expressed in millions of dollars and created random lead-time estimates. We divided the values
by the price of one unit to translate them to the number of units and assure uniformity. It's also
believed that period 1 will not see any orders placed, but that period 1's initial inventory will be
enough to meet demand for the first two periods. It is significant to highlight that the computer
system using MATLAB (R2022a) software was able to generate the numerical results and tables
following the specifications.

Simulation results
According to simulation data, for various h/p ratios, the gradient-based multilevel model has

a lower total cost on average less optimistic than other models of decision-making, such as the
stochastic programming model. We performed five instances of a sensitivity analysis using various
cost parameter choices for each model, and the results are displayed in Figure 1. The combination
of the cost factors h and p is shown in this figure. One instance is represented by each graph
column, and the first row displays the pattern of demand for every case. The cost parameter
configurations for various h/p ratios are shown in the following graph rows. The difference
between each model and the ideal model is shown bythe bars' vertical axis, which is computed
by dividing each model's answer by the perfect model's solution minus one. Consequently, a
smaller value implies the model's output is more similar to the perfect model. For instance, in
the graph where h/p = 0.5, the multilevel optimization model's solution is 1.39e7, whereas the
perfect model's solution is 0.85e7. Consequently, the multilevel model's value of the bar chart
on this graph is (1:39e7/0:85e7) - 1 = 64%. Overall parameter settings and instances, the average
difference between our model and the ideal model is 71.4%, 84.7%, and 79.5%, respectively.

To demonstrate the extent to which the multilevel model's total cost is superior to or inferior
to other models, we also provide the numerical experiment's results from a different angle. The
multilevel model's relative performance is assessed using the ratio R = 100 in comparison to
the stochastic programming and pessimistic techniques for making decisions. The expression
"multi" denotes the average overall price of the multilevel model, whereas "mdl" represents the
average overall expense of the pessimistic models or stochastic programming, across five instances.
In Figure 2, we conspire and display the outcomesof the overall cost-performance ratio. The
multilevel model performs better than the comparison model if there is a good performance ratio;
hence, a greater percentage indicates an improved comparative performance of the multilevel
model. For example, the multilevel model's average overall cost is 10.6% lower than that of the
stochastic programming and pessimistic models when h/p = 0.3. For example, for h/p = 0.3, the
multilevel model's average total cost beats the probabilistic and stochastic programming models
by 2.6% and 10.6%, respectively. When h/p is raised, the pessimistic model performs worse. By
projectingit usually has a larger inventory level to minimize lead times and future needs; hence,
raising h/p raises the model's overall cost.

Several performance metrics in use now have different service levels. We examined the single
service level—the multilevel, pessimistic models, and stochastic programming fill rate. The
proportion of client orders that are fulfilled right away from available stock is known as the fill
rate. Reducing the h/p ratio generally improves it. Figure 3 shows the average percentage of fills
of five instances for each model. The pessimistic model's fill rates are 97% in all possible combos
of h and p. The fill rates of the stochastic programming model and the multilevel optimization
model are nearly equal at 98% when the expense of a shortage is extremely significant, that is, h/p
= 0.1. Nevertheless, the multilevel optimization model's fill rate decreases by only 2%, while the
stochastic programming model's fill rate falls to 85% when the shortage cost is reduced.

While the multilevel optimization model responds to adjustments to shortages cost extra
subtly and effectively than the stochastic model, figure 3 shows the outcomes suggest that the
multilevel optimization model is not the stochastic model, sensitive to scarcity cost. We divided
the overall cost into the costs associated with shortages and inventory holding to explain this
finding. Table 1 summarizes the percentage shifts in shortage and inventory levels for each of
the five cases when the h/p ratio rises from 0.1 to 0.9. Percentages that are positive or negative
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Figure 1: The comparison of multilevel optimization, stochastic programming, Pessimistic models under h/p= {0.9,
0.7, 0.5, 0.3, 0.1}

denote growth or decrease, accordingly. The multilevel model decreased the average inventory
level each period (and the related inventory cost) by 22% to get the benefits of the decreased
shortfall cost when the shortage cost decreased (the h/p ratio increased from 0.1 to 0.9) in Example
1 in Table 1. The fill rate decreased by 2% as a result, and the average shortage level rose by
160% (from 0.34 to 0.90 units each period). However, because of the sharp decline in shortfall cost
per unit, the shortfall cost was drastically reduced by 71%. However, there was a more notable
reaction from the stochastic model to the lower shortage cost. 51% less inventory meant a 14%
lower fillrate, an increase in the scarcity level of 961% (from 0.35 to 3.70 units each period), and
an 18% increase in the cost of shortages. These adjustments result in a 36% and 31% reduction in
the multilevel optimization model's total amount of inventory held and shortfall cost, respectively,
and the stochastic programming model. The average percentages for five cases are reported in
the final two rows of Table 1.
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Figure 2: Retaining and scarcity costs' effects on the multi-level model's (multi) relative performance ratio concerning
other models (model). * (mdl - multi)/mdl is the performance ratio, or R = 100.

Figure 3: Effects of holding and shortage expenses on fill rate

Table 1: Inventory, shortage level, cost, and fill rate change when the h/p ratio rises from 0.1 to 0.9.

Example Type Inventory
Cost

Shortage
Cost

Inventory
Level

Shortage
Level

Fill-
rate

Total
Inventory
and
Shortage
Cost

1 Multi-level -22% -71% -22% 160% -2% -36%
Stochastic -51% 18% -51% 961% -14% -31%

2 Multi-level -14% -69% -14% 175% -2% -27%
Stochastic -50% 26% -50% 1032% -15% -27%

3 Multi-level -14% -75% -14% 126% -2% -32%
Stochastic -47% 28% -47% 1056% -14% -25%

4 Multi-level -26% -67% -26% 200% -3% -35%
Stochastic -41% -19% -41% 631% -13% -32%

5 Multi-level -17% -83% -17% 51% -1% -38%
Stochastic -30% -4% -30% 762% -9% -22%

Average Multi-level -19% -73% -19% 143% -2% -34%
Stochastic -44% 10% -44% 888% -13% -27%
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In conclusion, the thorough comparison of the multilevel model with other methods shows
its reliable performance, resilience, and sophisticated reaction to changing circumstances. These
results further our knowledge of efficient inventory control techniques and offer practitioners and
researchers insightful information for enhancing supply chain management in practical settings.

5. Conclusion

In this research, we suggest an innovative method for dealing with unpredictability in a manufac-
turing facility that places fresh orders in response to demand. There is a backlog of shortages,
and the lead time and demand are unreliable metrics. Selecting orders in a way that minimizes
the overall cost is the goal. Three new insights are added to the literature by this work. Ini-
tially, we consider two distinct types of uncertainty arising from lead time and demand. The
majority of previously suggested models concentrated on one of these two, but they are still
highly ambiguous due to the interactions between the two sources and the other. Second, as
a trade-off between computational tractability and accurately representing the multiple-phase
decision-making process under uncertainty, we suggest a multilevel Inventory control problem
optimization model. Third, we design a precise algorithm for the multilevel optimization model
that effectively searches in the worst instance, without counting all possible outcomes in the
vast scenario space using Bender's decomposition foundation. The results imply that in reaction
to the variety of cost factors, the multilevel optimization model operates more adaptable. The
performance of the model of stochastic programming is primarily dependent on distributional
knowledge and historical data; however, it attempts to strike a trade-off between holding costs
and shortage. Concerning the cost parameters, the suggested multilevel optimization model auto-
matically modifies its optimal ordering methods to produce the lowest (or nearly the lowest) total
cost across all parameter configurations. Furthermore, the outcomes demonstrate that in terms
of fill rate and total cost, the multilevel optimization model performs better than the stochastic
programming model under various cost parameter values. The moderate model is nearly always
in the middle of the results of the pessimistic and optimistic models, which are dependent on the
cost factors. On the other hand, the multilevel optimization model finds the lowest (or nearly the
lowest) total expense for every parameter configuration by automatically modifying its optimal
ordering methods based on the cost parameters. There are various limitations to this study that
point to potential areas for future investigation. In the suggested model, for instance, a single
item created from a single component is assumed. If this supposition were to be relaxed, a
more intricate model reflecting the ambiguity and interdependency of several components on the
supply and demand sides would be necessary. Moreover, the decision-maker may choose to ship
particular components or goods as a batch to reduce transportation costs by incorporating fixed
and variable transportation costs into the model.
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Abstract

In this paper, a 4-parameter Exponentiated Skew Laplace distribution is defined and studied.
Various statistical properties including its moment generating function, characteristics function,
hazard function, and reliability function of the proposed ESLD were derived. The estimation of its
parameters was carried out using the maximum likelihood method of estimation. The performance of
the proposed ESLD compared with other similar distributions was demonstrated empirically with
daily returns of S & P 500 between 2/02/24 and 28/03/2024 and daily returns of Bitcoin between
2/02/24 and 1/04/24 as obtained from Yahoo Finance. The fitness performance of the proposed
distribution was evaluated based on log-likelihood, AIC, and BIC. Results obtained show that the
proposed ESLD reported the highest log likelihood as well as the lowest AIC and BIC in the two
data sets. This study therefore underscores the superiority of the proposed distribution over the
some of the similar existing distributions.

Keywords: Skew Laplace, Exponentiated, Distribution, Reliability function,
Maximum Likelihood

I. Introduction

The Laplace distribution also commonly known as the double exponential distribution is named
after Pierre Simon Laplace. The growing popularity of the Laplace-based models as described by
Lakshmi and Sebastian [1] is due to the properties of the sharp peak at the mode, heavier than
normal distribution making it an asymmetric distribution Laplace distribution as described by
Nadarajah and Kotz [2] is a tractable lifetime model with applications in various areas including
telecommunication, biological sciences, engineering, and life testing among other areas of human
endaviours. Despite the significance of this distribution in probabilistic modelling, the Laplace
distribution lacks a skewness parameter and hence not be able to account for skewness in data. To
overcome this challenge, the Laplace distribution as noted by Kotz et al., [3] and Safavinejad et
al.,[4]) was extended by adding a skewness parameter. This extension therefore gave rise to the
skew Laplace distribution.
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The use Skew-Laplace distribution in Economics, Finance and Engineering has been
emphasized by Puig and Stephens [5] while Julia and Vives-Rego [6] used Skew Laplace
distribution to analyze bacterial sizes in axenic cultures. The skew Laplace distribution has been
applied to different areas of research. This is due to its flexibility to model real data that exhibit
skewness. Skew Laplace distribution has also been used in probabilistic modelling of financial
data. For instance, Jing et al. [7] applied asymmetric Laplace to currency exchange rates in
Australia, Canada, European and United Kingdom. Similarly, Shi et al. [8] used the asymmetric
Laplace distribution in portfolio selection. The use of Skew Laplace distribution can also be
extended to cryptocurrencies and stock data because of its ability to capture skewed data as
cryptocurrencies and stocks have some stylized properties which include departure from
normality, price jumps, and high volatility patterns.

In this study, a new form of skew Laplace distribution of Safavinejad et al. [4] is proposed,
and some of the statistical properties are proposed with application to real data. The fitness
performance of the proposed ESLD compared to some existing distributions will also be
investigated in this study. This study adopts the method of exponentiation introduced by Gupta et
al. [9] in generating the proposed Exponentiated Skew Laplace Distribution (ESLD). In the
exponentiation method, only one shape parameters is introduced into the parent distribution. This
method has been used by Agboola et al., [10], Oguntunde et al., [11], Nadarajah and Bakar [12],
Datta and Datta [13], Andrade et al., [14], Adubisi et al., [15] among others to generate more flexible
distribution.

II. Methods

Exponentiated Skew Laplace Distribution (ESLD)
The probability density function (pdf) and the Cumulative Density Function (CDF) of the Skewed
Laplace Distribution (SLD) are defined in (1) and (2) as follows:
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Safavinejad et al. [ 4]
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 x , 0 , 0,,  ,  
Safavinejad et al. [4]
where,  is a scale parameter,  location parameter and skewness parameter.
The probability density function of an Exponentiated generation distribution is given as:

  1( ) ( )g x F x f x  , 0 (3)

The Cumulative Density Function is given as:

   ( )G x F x  (4)

Where, ( )f x is the density function of the Skewed Laplace Distribution (SLD) and ( )F x is its
corresponding cumulative density function.
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Substituting for ( )f x in (3) and ( )F x in (4) give the pdf and the CDF of the proposed
Exponentiated Skew Laplace Distribution.
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Theorem 1
A random variable X is said to follow an Exponentiated Skew Laplace Distribution (ESLD), if its
probability density function can be expressed as:
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0,  , 0 , x    ,
Proof

The purpose of this proof is to show that the proposed ESLD is a probability density function.
Since, it a continuous distribution function, then

( ) 1g x dx




 (8)
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Splitting the expression in equation (9) into two parts as follows:
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Solving for g1.
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when, x   , 0z  and when, x  , z 
 


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Therefore,

( ) 1 1g x dx
  
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
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              . (16)

This implies that the proposed ESLD is a probability density function.
When 1  , the ESLD in (7) reduces to Skew Laplace distribution
When 1 , the ESLD in (5) reduces to Laplace distribution.

Figure 1: Plot of pdf of the proposed Exponentiated Skewed Laplace distribution (ESLD).
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Figure 2: Plot of the CDF of the proposed distribution ESLD.

Asymptotic Behaviour of the Proposed ESLD
Theorem 2
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Theorem 4
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The proof of the Theorems 3 and 4 indicate that the proposed distribution satisfied the property of
the limiting property a probability density function and cumulative density function respectively.

Statistical Properties of the proposed ESLD
Moment Generating Function of the Proposed ESLD

Suppose that X is a random variable that follows ESLD with parameters   ,,, , the moment
generation function is given as:
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Characteristic Function of the Proposed ESLD
Suppose that X is a random variable that follows ESLD with parameters  a,,,  , the

characteristic function, ( )x t is given by:
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Proof
By definition,
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Since the mgf of the ESLD has been obtained and presented in (40), then, it is easy to obtain its
characteristic function and it is given by:
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Hazard Function of ESLD

The Hazard function by definition is given as:
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T. K. Samson,Ch. E. Onwukwe, E. I. Enang
THE EXPONENTIATED SKEW LAPLACE DISTRIBUTION: 
PROPERTIES AND APPLICATIONS

RT&A, No 3 (79) 
Volume 19, September 2024

504



Where, H(x) is the hazard function while g(x) and G(x) are the probability density function and
cumulative density function respectively.
Hence, the Hazard function of the proposed ESLD can be expressed as:
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Reliability Function

The reliability function of the ESLD is given by:

( ) 1 ( )R x G x  (54)
Hence,
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Parameter Estimation for the ESLD.
The estimation of the parameter of the ESLD defined in (5) will be estimated using the Method of
Maximum Likelihood derived below:
Let X1, X2,..., Xn be a random sample of size n from Exponentiated Skew Laplace Distribution
(ESLD). Then the likelihood function is given by:
For, x
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Taking the natural log of both sides.
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Taking the natural log of both sides.
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Hence, the Log Likelihood of the proposed Exponentiated Skew Laplace Distribution (ESLD) is
given as:
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Differentiating log L(x) in (57) with respect to each of the parameter in the model and setting
them to zero give the estimate of each of the parameter. This was done in R software using the
appropriate optimization function.

III. Results

Applications to Real Data
The empirical application of the proposed ESLD was carried out using two sets of real life data.
The first data is the daily returns of S& P 500 between 2/02/2024 and 28/03/2024 as obtained from
Yahoo finance. The second data set is on the daily returns of Bitcoin between 2/02/2024 and
01/04/2024 which was also obtained from the Yahoo finance website (www.yahoofinance. com).
Daily closing returns series were computed from daily closing prices using the formula below:

T. K. Samson,Ch. E. Onwukwe, E. I. Enang
THE EXPONENTIATED SKEW LAPLACE DISTRIBUTION: 
PROPERTIES AND APPLICATIONS

RT&A, No 3 (79) 
Volume 19, September 2024

506



100log
1











t

t
t DCP
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Where, DCRt is the closing returns at the day t while DCPt and DCPt-1 are the closing prices at the
present day and previous day respectively.
The fitness performance of the proposed ESLD was compared with that of similar distributions
such as the skew Laplace distribution and Laplace distribution using Akaike Information Criteria
(AIC) and Bayesian Information Criteria (BIC) as defined below:

)ln(22 LLkAIC  (69)

)log(2 nkLLBIC  (70)
Where, n is the number of observations, k is the number of parameters and LL is the log-

likelihood.

Data set 1

Data set 2

Table 1: Summary statistics for the data set
Data set n Min. Max. Mean SD Skewness
Data set 1
(S&P 500)

39 -0.60 0.91 .0763 .29451 .268

Data set II
(Bitcoin)

60
-3.78 4.02 .3484 1.42987 .013

SD- Standard deviation.

0.46 -0.14 0.10 0.36 0.02 0.25 -0.04 -0.60 0.41 0.25
-0.21 -0.26 0.05 0.91 0.02 -0.16 0.07 -0.07 0.23 0.35
-0.05 -0.44 0.22 0.45 -0.28 -0.05 0.48 -0.08 -0.12 -0.28
0.27 0.24 0.38 0.14 -0.06 -0.13 -0.12 0.37 0.05

0.11 -0.20 -0.42 0.08 0.43 1.23 0.95 1.73 0.57 0.47
1.47 -0.19 1.78 0.09 0.19 -0.42 0.39 -0.29 0.42 -0.37
-0.45 -0.49 0.71 0.14 2.28 2.00 3.94 -0.92 0.87 -0.29
0.79 3.41 -2.98 1.54 0.54 0.88 0.13 0.33 1.91 -0.39
0.96 -1.01 -1.23 -2.64 2.00 -0.54 -3.78 4.02 -1.58 -1.15
0.19 2.10 1.73 0.02 -0.33 0.80 -0.53 -0.15 1.04 -1.01
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Table 2: Results of the estimated parameters as well as the goodness fit for the proposed distribution and other
similar distribution

ESLD- Exponentiated skew Laplace Distribution, SLD- Skew Laplace Distribution, LD- Laplace
Distribution, SGED- Skew Generalized Error Distribution.

Result presented in Table 3 show the parameter estimates of the proposed ESLD and
compared to other related probability distribution (Skew Laplace distribution and Laplace
distribution) as well as their fitness performance. Result of the LogLikelihood shows that among
these distributions, the proposed ESLD reported the highest LogLikelihood in the two real data
compared with other competing distributions. Similarly, the AIC and BIC reported by the
proposed ESLD is lower than that of Skew Laplace distribution and Laplace distribution for both
the two data set. These result show better fitness performance of the proposed ESLD than both
Skew Laplace distribution and Laplace distribution in modelling financial data.

IV. Discussion
This study improve on the robustness of the Skew Laplace distribution introduced by Safavinejad
et al. [4] by introducing additional shape parameter using the method of exponentiation. We
derived some of the statistical properties of the proposed Skew Laplace Distribution (ESLD) after
ensuring that the proposed ESLD satisfied the properties of a statistical distribution. Some of the
statistical properties of the proposed ESLD derived include: moment generating function,
characteristic function, hazard function and reliability function. The estimation of its parameters
was carried out using the maximum likelihood. The performance of the proposed ESLD compared
with other similar distributions were demonstrated empirically with returns from S & P 500
(Dataset 1) and returns from Bitcoin (Dataset 2). The findings suggest that the new distribution
outperforms the existing models considered, indicating its better representation and flexibility
when compared with some existing models. This findings show that the ELSD outperformed
Skew Laplace Distribution (SLD) which indicates that the use of the method of exponentiation
improve the performance of distribution. This is corroborated by that of other studies, Agboola et
al., [10], Oguntunde et al., [11], Nadarajah and Bakar [12], Datta and Datta [13], Andrade et al., [14]
and Adubisi et al., [15] which also found that exponentiated distribution performed better than
their parent distributions.

Dataset Distributions     LL AIC BIC
I ESLD -0.060 0.134 0.368 1.052 -5.431 18.862 17.975

SLD -0.061 0.102 0.348 - -7.938 21.876 20.649
LD 0.048 0.233 - - -9.247 22.494 21.677

II ESLD 0.103 0.431 0.462 1.203 -98.346 204.691 203.804
SLD 0.111 0.505 0.442 - -103.041 212.082 211.417
LD 0.189 1.034 - -103.620 211.240 210.796
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Abstract 

This paper introduces and discusses the novel asymmetric class of distributions that have the name 

inverse power Lomax power series (IPLPS). This class of distributions is produced by combining the 

inverse power Lomax with the power series distributions. This combined approach provides an 

opportunity for the creation of flexible distributions with significant physical implications in many 

fields, like biology and engineering. The IPLPS distributions encompass several new compound 

distributions as sub-models along with a new class of compound distributions. Many statistical 

features, including moments, quantile function, conditional moments, inverse moments, uncertainty 

measures, and probability-weighted moments, are obtained. As a special model of the generated class, 

the parameters of the inverse power Lomax Poisson distribution are estimated by different methods, 

including least squares, Cramér von Mises, maximum likelihood, and weighted least squares. 

Through an extensive simulation analysis, the execution of different parameter estimation techniques 

for the inverse power Lomax Poisson model is performed to show its validity based on its mean 

squared error and absolute bias. Two real datasets are utilized to show the practicality of the newly 

generated model. Results show that the inverse power Lomax Poisson distribution provides the most 

fitted model for these datasets in comparison to other distributions such as power Lomax, Marshall-

Olkin power Lomax, power Lomax Poisson, and Topp-Leone Lomax distributions. 

Keywords: Power series distributions, inverse power Lomax distribution, moments, 

compounding, Havrda and Charvat measure, Cramér von Mises.  

1. Introduction

Recent academic focus has shifted towards the creation of new univariate distributions. 

Univariate distributions, whether for theoretical, practical, or combined purposes, hold significant 

importance in statistical and related fields. Analyzing the reliability of experimental failure 

components is a primary objective. It's often assumed that these failures occur due to certain 

processes, yet a thorough investigation into the causes of component failure seems lacking; see 

Barreto-Souza et al. [1]. Consider a system's lifetime composed of N components, and N is the 

discrete random variable that follows geometric, Poisson, logarithmic, or binomial distributions.  
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Power series (PS) is the general form of these chosen distributions. For further information on 

the PS class of distributions, refer to Noack [2]. Suppose that X denotes the continuous random 

variable for each component. Consequently, the random variable X= Min(X1,X2,…,XN) or X= 

Max(X1,X2,…,XN) signifies any component lifetimes depending on whether they are arranged in a 

series or in parallel structure, respectively. 

 Suppose that the random variable N associated with the PS class of distributions, characterized 

by a probability mass function, is given by: 

( ) , 1, 2,.......
( )

n
na

P N n n
C




= = =

where 0na  only dependent on n, and 
1

( ) n
n

n

C a 


=

=   is finite. 

Several compound lifetime models have been created by combining several lifetime 

distributions with the PS class of distributions. For instance, the exponential PS [3], the Weibull-PS 

[4], Lindley-PS [5], exponential Pareto-PS [6], Burr XII-PS [7], exponentiated power Lindley-PS [8], 

generalized Burr XII-PS [9], odd log-logistic-PS [10], Topp-Leone generalized exponential-PS [11], 

power function-PS [12], inverse gamma-PS [13], inverse exponentiated Lomax-PS [14], beta 

exponential-PS [15],  unit exponentiated half logistic-PS [16], inverted Nadarajah-Haghighi-PS [17], 

power quasi Lindley-PS [18], unit Burr XII-PS [19], unit Gompertz-PS [20], log-logistic modified 

Weibull-PS [21],  power inverted Topp-Leone- PS [22] distributions, among others. 

Numerous writers have highlighted the significance and usefulness of inverted distributions in 

many fields, including engineering, economics, and medicine. In this work, the inverse power 

Lomax (IPL) distribution with three parameters, which was recently presented by Hassan and Abd-

Allah [23], attracts our attention. The probability density function (PDF) and the cumulative 

distribution function (CDF) of the IPL distribution, having , 0,   as shape parameters, and its 

scale parameter 0,   is defined, respectively, as follows: 

( 1)

( 1)( ) 1 ; 0,
x

g x x x






 

− +
−

− +
 

= +   
 

(1) 

and, 

( ) 1 ; 0.
x

G x x






−
− 

= +   
 

(2) 

Due to the IPL distribution's non-monotonic failure rate, it offers greater flexibility, making it more 

appropriate for various practical data modeling and analytic applications. Hassan and Abd-Allah 

[23] looked at a few statistical characteristics and provided estimators of the parameters in censored

samples. Shi and Shi [24] studied how to statistically estimate parameters of the IPL distribution

when employing progressive first-failure censoring. The inference of the IEL distribution based on

generalized order statistics was discussed by Nassr et al. [25].

This paper's primary objective is to create a novel asymmetric compound class of distributions 

that is produced by combining the IPL and PS distributions to analyze a system with parallel 

components; this system is known as the inverse power Lomax power series (IPLPS). We are 

introducing this class due to the following:    

▪ To design several distinct models with different symmetric and asymmetric density

and hazard rate functions (HRFs) shapes.

▪ To go over a few of its statistical characteristics, including moments, quantile function

(QF), conditional moments, uncertainty measures, inverse moments, and probability-

weighted moments (PWMs).
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▪ To estimate the IPLPS class of distribution parameters, some estimation techniques are

taken into consideration, such as weighted least squares (WLS), maximum likelihood

(ML), Cramér von Mises (CM), and least squares (LS).

▪ To evaluate the effectiveness of various estimates using specific metrics, a dedicated

simulation study is conducted for one special model, namely the IPL Poisson (IPLP)

distribution.

▪ The IPLP distribution, as a sub-model within this class, demonstrates superiority over

certain other distributions, as revealed through an analysis of two real-data

applications.

This paper’s contents are arranged as follows. The IPLPS distributions are introduced in Section 

2. Many structural properties of the class are provided in Section 3. Section 4 provides certain

examples of the suggested distributions. Parameter estimators for the IPLPS class using different

classical methods are shown in Section 5, while Section 6 provides simulation studies. Section 7

presents the application of the suggested distribution’s particular case, whereas Section 8 offers

concluding findings.

2. Construction of the IPLPS Class

The IPLPS class is introduced in this section. This class of distributions is motivated by a key 

assumption that renders it suitable for application in each survival and reliability study. Specifically, 

it assumes that a device’s failure arises from the presence of an unspecified number of initial faults, 

denoted as N, of the same type. These faults remain undetected until they lead to failure and are 

subsequently fixed. 

If we consider Xi, i=1,…,N to represent the time until device failure caused by the 𝑖th defect 

supposing that these Xi’s are independent and identically distributed (iid) IPL random variables, 

independent of N, then a truncated PS random variable, a distribution within the IPLPS class, can 

be utilized to model the time until the last failure. This proposed class of distributions can effectively 

model systems with parallel components, as many biological and industrial applications frequently 

do. Currently, let us explore a parallel of N iid random variables from the IPL distribution, denoted 

as Xi, where i=1,…,N. 

Assuming that X=max 1
{ }N

i i
X

= be iid breakdown times of N items connected at a parallel 

structure, then the conditional CDF of X N is introduced as: 

 ( ) ( ) 1 ,

n
n

X N n
x

F x G x






−
−

=

 
= = +  

 

where G(.) is the CDF (2) of the IPL distribution. The joint CDF is given as follows: 

|( , ) ( ) ( ) 1 .
( )
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n
X N n

a x
P X x N n P N n F x

C




 

−
−

=
 
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 

  . 

Hence, the IPLPS class is represented by the marginal CDF of X, which takes the form: 

1

1
( ; ) 1 1 ,

( ) ( )

n
n

n

n

a x x
F x C

C C

 
 
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   

− − − −
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    

 (3) 

where, ( , , , )     denotes the set of parameters, , 0,   represent scale parameters and, 

, 0    indicate shape parameters. Another simplified form for (3) is as follows: 

 
1

( ; ) ( ; ) ; 0,
( )

F x C k x x
C

 


=  (4)
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   where, ( ; ) 1 .
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−
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  Also, the PDF of the IPLPS class of distributions can be 

introduced by: 

 
1

1( ; ) 1 ( ; ) ; 0.
( )

x
f x x C k x x

C
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


 

  

− −
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− −
 
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(5) 

The survival function and HRF associated to the IPLPS distribution are expressed as follows, 

respectively: 

 ( ; )
,

( )
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C k x

C
F x
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 = −

and, 

 
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Proposition: When θ approaches zero, the IPL distribution appears as a limiting special case of 

the IPLPS distributions  

Proof:    If 𝜃 approaches zero, then 
1

1 1
1

0 2

0 1 1
1

0 2

1 lim 1

lim ( ; ) 1 ,

1 lim

n

n
n

n

n
n

n

x x
a na

x
F x

a na

 
 

 






 






−
− −− −

− −
−+→ −=

+→ − −

+→ =

      
   + + +                 

= = +  
 

+





which represents the CDF (2) of the IPL distribution. 

Lemma 1: For the IPLPS class of distributions, the density function can be expressed as an infinite 

mixture of IPL distributions with parameters ( , , )n   ,  

1

( ; ) ( ) ( ; , , ).

n

f x P N n g x n   


=

= =

Proof:  The following is an alternative form for the PDF given in Equation (5): 

( 1)
( 1)
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(6) 

where, ( ; , , )g x n    refers to the IPL distribution's density function (1) with parameters ( , , ).n    

3. Some Statistical Properties

Here, several distinct statistical features of the IPLPS distributions are derived, which may 

include the quantile function, 𝑟th moment and inverse moment, PWMs, conditional moments, and 

entropy measures.  

3.1 Quantile Function 

The QF of the IPLPS class of X, denoted by ( )1( ) ,ux Q u F u−= =  is represented as follows:
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 
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1 ( )
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(7) 

Particularly, the median, denoted by m, of the IPLPS distribution, is derived by letting 𝑢 = 0.5 in 

Equation (7). 

3.2 Moments and Inverse Moments 

Most important properties for any distribution are concluded using ordinary moments. The rth 

moment of X can be introduced by using Equation (6) as follows: 
( 1)

( 1)

1 0

( ) 1 .

n

r
r
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n x
P N n x dx
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 

After simplification, the 𝑟th moment of the IPLPS distribution, can be written as: 

1

( ) 1 , , , 1,2,...

r

r

n

r r
n P N n n r r   

 
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 
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where, B(.,.) denotes the beta function. For r=1 in Equation (8), the mean of the IPLPS distribution is 

given.  Also, we can get the IPLPS moment generating function from the moments by the following 

equation: 

0 0 1
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 Furthermore, the 𝑟th inverse moment for the IPLPS distribution is derived using Equation (6) which 

leads to: 

1
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3.3 Conditional Moments 

Studying the conditional moments is very important in lifetime models. The conditional 

moments of the IPLPS distribution, defined by ( )| ,rE X X t can be introduced by the following

lemma. 

Lemma 3.1: Supposing that X has the IPLPS ( ; )x  , the rth conditional moment of X, is obtained such 

that:  

1

1

( )
1 , , 1 ,
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r r

n

n P N n r r t
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where B(.,.) refers to the incomplete beta function. 

Proof: Since 

( ) 1
| ( ; ) .
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r r

r

t

M E X X t x f x dx
F t






=  = 

Hence, by inserting the PDF (4) in rM then 
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( 1)

1

1

( )
1 .

( ; )

n

r
r

n t

n P N n x
M x dx

F t






  

− + −
− −

=

 =
= +  

 
 

By simplifying, then the rth conditional moment of the IPLPS class of distributions can be rewritten 

as, 

( )

( )
1

1 1
1

1 10

( ) ( )
1 1 , , 1 ,

( ; ) ( ; )

t r
r n

r r r
n n

n P N n n P N n r r t
M z z dz n

F t F t

 
 


 

 


     

−
+ − − + −

= =

  = =  = − =  − + +   
  

 

where B (.,., x) is the incomplete beta function and ( ; )F x  represents the IPLPS survival function. 

3.4 Probability-Weighted Moments 

  Greenwood et al. [26] were the first to propose the PWM approach, with the main goal being the 

derivation of quantiles and parameter estimators for several generalized distributions that are only 

analytically represented in reverse form. Eventually, for a random variable X, the PWM is expressed 

by the following equation: 

( ), [ ( ) ] ( ) ( ) .
rs r s

s r E X F x x f x F x dx



−

= =     (9) 

Substituting Equations (4) and (5) in Equation (9) we get: 

 

 
 ( )

1

1
, 1

0

( ; )
1 ( ; ) .

( )

rs
s r r

C k xx
x x C k x dx

C







 
  

− − −
− −

+

 
= +  

 
 (10) 

An expansion for  ( )( ; )
r

C k x   can be written as follows: 

( )   ( ) ( )

   

   

1

1

22 3

1 1

1
1

10

( ; ) ( ; ) ( ; )

1 ( ; ) ( ; ) ...

( ; ) ( ; ) , , 1,2,3,...

r
r n r r

n

n

r

r
r m m

m m

m

C k x a k x a k x

a a
k x k x

a a

a
a k x c k x c m

a

  

 

 



=


+

=

  
= =    
  

 
 + + + 
 

  
= = = 

  





(11) 

After that, using the Gradshteyn and Ryzhik [27] relation, which states that; for any positive integer 

m, the following expansion, for a positive integer r, is used:  

,

0 0

,

r

m m
m r m

m m

c w d w
 

= =

 
  =
 
 
  (12) 

 where ,0 1, 1rd t=   and the coefficients 1
, ,

1

( ( 1) ) .
t

r t m r t m

m

d t m r t c d−
−

=

= + −  Then, using expansion 

(12) in (11) provides the following:

( )  ,1
0

( ; ) ( ; ) .
r m rr

r m

m

C k x a d k x 


+

=

=       (13) 

In addition, 

    1

1

( ; ) ( ; ) .
n

n

n

C k x na k x 


−

=

 =  (14)
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Assuming that 1,z n= −  then Equation (14) is rewritten in this form: 

    1
1

10

( ; ) ( 1) ( ; ) , .
z z

z z

z

a
C k x a b z k x b

a
 


+

=

 = + = (15) 

Hence, the PWM of the IPLPS class of distributions is represented by placing Equations (13) and (15) 

into (10) and after some simplification, 

 

( 1) 1
1

1 1
, 1 ,1

, 0 0

( 1) 1 .
( )

r m z
r m z

r s
s r r m zr

m z

x
a d b z x dx

C







 

− + + + −+ + + −
+ − −

+
=

 
= + +  

 
 

Hence, 

*
,

, 0

1 , ( 1) , .s r

m z

s s
A B r m z s  

 



=

 
= − + + + +  

 


where, 
 

1 1
1 ,*

1

( 1)
,

( )

s

r m z r
r m z

r

a d b z
A

C

 



−

+ + + +

+

+
= and  B (.,.) is the beta function. 

3.6 Entropy Measures 

Entropy serves as a metric for quantifying the uncertainty within data and finds applications 

across diverse fields such as science, physics, and engineering. Essentially, higher entropy values 

indicate greater uncertainty within the data. In this sub-section, expressions for certain entropy 

measures within the IPLPS class are derived. Let X refers to random variable drawn from IPLPS 

distributions, so the Rényi entropy (RE) can be represented by the following equation: 

0

1
log ( ; ) , 1, 0.

1
RI f x dx   



 
 =  

−  
 
 (16) 

Suppose ( )( )
0

; ,IP f x dx






=  then by using PDF (5) and expansion (14) in integral IP, we have 

( )

 
 

( 1)
1( 1)

10

1 ( ; ) ,
( )

n
n

n

x
IP x na k x dx

C

  
 






 

− + −
−− +

=

  
= +    

    
 (17) 

But     1 1
1

11 0

( ; ) ( ; ) , ( 1), 1,2,..
n m m

n m m
n m

a
na k x a c k x c m m

a

 

 
 

− +• •

= =

   
= = + =   

      
 

According to Ref. [27], the previous equation can be expressed as: 

   1
,1

1 0

( ; ) ( ; ) .
n m

n m

n m

na k x a d k x




 

 
−

= =

 
= 

  
  (18) 

By using Equation (18) in the last term in (17), then 

( )

( )

0

1

1
1 ,

( 1) 1 ( 1) 1
, ,

.
( )

m

m

m
m

m

IP B m

a d

C


  





   
  

 

   





=

−

−

 + − + −
=  + + − 

 

 =



(19) 

Hence, by substituting (19) in Equation (16), the RE of the IPLPS class of distributions takes the 

following form:
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0

1 ( 1) 1 ( 1) 1
( ) log , .

1
R m

m

I B m
   

   
  



=

  + − + −
=  + + −  

−    


Tsallis entropy (TE), introduced by Tsallis [28] as a thermodynamic measure, has a wide 

application across various real-world domains. Generally, TE offers intriguing explanations in 

physical, chemical, and biological phenomena. The TE measure is represented as: 

0

1
1 ( ) , 1, 0.

1
TEI f x dx  



 
 = −  

−  
 



Using the similar procedure discussed above, the TE is given by: 

0

1 ( 1) 1 ( 1) 1
1 , ( 1) .

1
TE m

m

I B m
   

  
  



=

   + − + −
  = −  + + −  −     



4. Special Sub-Models

Here, certain special cases of this class are introduced. Graphs depicting the PDF and HRF are 

presented to showcase the IPLP distribution' flexibility for some chosen values for the parameters. 

• If 1 = , the IPLPS class offers the inverse Lomax PS class of distributions (new-class).

• Letting ( ) 1C e = − , the IPLPS distribution turns to the IPLP distribution.

• Supposing that 1 = , ( ) 1C e = − and  the IPLPS distribution provides the IL Poisson (ILP)

distribution (new).

• Setting ( ) log(1 )C  = − − , the IPLPS class becomes the IPL logarithmic (IPLL) distribution

(new).

• By putting 1, = and ( ) log(1 )C  = − − , the IPLPS distribution provides the IL logarithmic

(ILL) distribution (Buzaridah et al. [29]).

• Considering that 1( ) (1 )C    −= − , the IPLPS distribution introduces the IPL geometric

(IPLG) distribution (new).

• By letting 1, =  and 1( ) (1 ) ,C    −= −  the IPLPS distribution presents the IL geometric

(ILG) distribution (new).

• Substituting ( ) (1 ) 1mC  = − − , that yields the IPL binomial (IPLB) distribution (new).

• Taking 1, =  besides ( ) (1 ) 1,mC  = − −  it gives the IL binomial (ILB) distribution.

The IPLP Distribution 

By setting 1( )C e −= , and ( )C e =  in (4) and (5), the PDF and CDF of the IPLP distribution 

is obtained by:   

( )

1

1 ( ; )
1 1 ; 0,

1
( ; ) k xx

x e x
e

f x




 







− −
−

− −
 
+   

−  
=

( ; )

1
1

; 0,
1

( ; )
k xe

x
e

F x





−


−
=

where, ,  denote the shape parameters and ,  refer to the scale parameters. The HRF of the IPLP 

distribution is given as follows: 
1

1 ( ; )

1
( ; )

1 ; 0.( ; )
k x

k x

x e x
x

e e
H x


  

 






− −
− − − 

+    −   

=

The PDF and HRF plots for the IPLP distribution are given in Figure 1. 
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Figure 1: PDF and HRF plots for specific parameter values of the IPLP distribution. 

Figure 1 indicates that the IPLP distribution's density may exhibit reversed-J, skewed to the right, or 

unimodal shapes. Moreover, the HRF can take on increasing, decreasing, upside down, or reversed 

J-shaped forms at different parameter values. This suggests that the IPLP distribution is versatile for

fitting datasets with diverse shapes.

5. Parameter Estimation

Here, the parameter estimation for the IPLPS distributions is discussed by applying the ML, LS, 

WLS, and CM methods. 

5.1 Maximum Likelihood Estimators 

Let x1, x2, …, xn be a simple random sample from the IPLPS class of distributions with a set of 

parameters ( ), , , .
T

    = The likelihood function of this sample, denoted by nL  based on the 

observed random sample of size 𝑛 from density (5) is given by: 

( )
1

1

1

1 ( ; ) .
( )

n n

n ii
i

x
L x C k x

C







  

− −
−

− −

=

  
= +    

   


The log-likelihood, say log ,nL , can be expressed as: 

( ) ( )

( )( )

1 1

1

log log log ( ) ( 1) log ( 1) log 1

log ( ; ) ,

n n
i

n i

i i

n

i

i

x
L n n C x

C k x


    





−

= =

=

 
= − − + − + +  

 

+

 



(20) 

Hence, by differentiating (20) with respect to , ,    and ,  respectively, yields 

( )

( )1 1

( ; )log
log 1 1 log 1 ,

( ; )

n n
in i i i

ii i

x x xC k xL n

C k x


  

 

     

−
− − −

= =

           = − + − + +
     

     

 

( )

( )

1

1 1 1

( 1) log log ( ; )log
log 1 ,

( ; )

n n n
i i in i i i

i
ii i ii

x x x x C k x xL n
x

C k xx


  



  

    

− −
− − −

−
= = =

 +  = − − + +
   +  

  

( )

( )

1

22
1 1

( ; )log
( 1) 1 ,

( ; )

n n
in i i

ii ii

x xC k xL n

C k xx


 



 


    

− −
− −

−
= =

   = − + + + +
  +  

 

and, 
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( )

( )1

( ; )log ( )
1 .

( ) ( ; )

n
in i

ii

xC k xL n nC

C C k x






    

−
−

=

   = − + +
  

 



Then the ML estimates (MLEs) for the parameters , ,    and ,  denoted by ˆ ˆˆ , ,    and ˆ, can be 

derived by setting ( ) , ( ), ( )n n nL L L        and ( )nL   to be zero and solving these

equations numerically. 

5.2 Least Squares and Weighted Least Squares Estimators 

Consider x (1), x(2), …, x(n) refers to an observed ordered sample and x1, x2, …, xn represents n random 

samples from the IPLPS distribution. Johnson et al. [30] claimed that the distribution's expectation 

and variance are determined independently of the unknown parameter by  

( )( )( ) ,
1

i
i

E F X
n

=
+

 and, ( )( ) 2

( 1)
( ) ,

( 1) ( 2)
i

i n i
Var F X

n n

− +
=

+ +

where ( )( )iF X indicates the CDF of any given distribution and X(i) denotes the statistic of order i. 

So, the LS estimates (LSEs) and WLS estimates (WLSEs) can be given by the minimization of the sum 

of all squared errors 

( )
2

( ) ( )

1

( ) ( ; ) ( ; ) .
n

i i i

i

H v F x E F x  

=

 = −
 

The LSEs and WLSEs of , ,   and , are produced by the minimization of the preceding function 

2

( )

1

( ; )
( ) .

( ) 1

n
i

i

i

C k x i
H v

C n





=

   
   = −

  + 
  

 (21) 

Based on Equation (21), the LSEs 1 1 1
ˆ ˆˆ , ,    and 1̂ are provided by using 1,iv = while the WLSE 

2 2 2
ˆ ˆˆ , ,   and 2̂ are obtained by putting 

( ) ( )

( )

2
1 2

.
1

i
n n

v
i n i

+ +
=

− +

These estimates can be given by solving each of the following equations numerically. 

( )
( )

( )
1 ( )

1

( ; )( )
, 0,

( ) 1

n i
i i

i

C k xH i
v x

C n


 

 
=

 
 = − =

 + 
 



( )
( )

( )
2 ( )

1

( ; )( )
, 0,

( ) 1

n i
i i

i

C k xH i
v x

C n


 

 
=

 
 = − =

 + 
 



( )
( )

( )
3 ( )

1

( ; )( )
, 0,

( ) 1

n i
i i

i

C k xH i
v x

C n


 

 
=

 
 = − =

 + 
 



( )
( )

( )
4 ( )

1

( ; )( )
, 0,

( ) 1

n i
i i

i

C k xH i
v x

C n


 

 
=

 
 = − =

 + 
 



where, 

( ) ( )
1 ( ) ( )( , ) 1 log 1 ( , ),

( )

i i
i i

x x
x C x

C


 


  

  

−
− −   

    = − + +
   
   
   

1

( )
2 ( ) ( ) ( )( )

( , ) 1 ln ( , ),
( )

i
i i ii

x
x x x C x

C





  

  

− −
−

−
 
  = +
 
 
 
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5.3 Cramèr –von-Mises Estimators 

This method can be defined as a type of estimator that relies on minimal distance principles 

since it relies on the disparity between the empirical distribution function and the CDF estimate. 

According to Macdonald [31], in this method, the CM estimator`s are presented as the minimization 

of the given equation with respect to , , ,   and , respectively, 

( )
2

( )

1

( , )1 2 1
( ) .

12 ( ) 2

n i

i

C k x i
H

n C n





=

 −
 = + −
 
 



The CM estimates (CMEs) 3 3 3
ˆ ˆˆ , , ,   and 3̂ can be obtained by differentiating the previous 

equation with respect to , , ,   , respectively, and equating it to zero. 

6. Simulation Study

      For each estimation problem, the investigation of the estimator's properties is very important. 

Analytical study of the obtained expressions for the estimators can't be effective due to their 

complexity. As a result, a numerical study will be established, handling the estimates' sampling 

distribution independently. This estimation is conducted in order to assess the estimators presented 

at the preceding section. All calculations are produced by using the Mathematica11.3 program. The 

performances of the different estimates will be compared according to their absolute bias (AB) and 

mean squared error (MSE). These numerical procedures will be shown by steps below: 

Step 1: 1000 random samples given the sizes of 50, 100, 150, and 200 are conducted from the inverse 

power Lomax Poisson distribution. 

Step 2: Four cases of parameter values have been selected such that: 

 Case 1 ( )0.2, 0.5, 0.5, 0.5    = = = = , Case 2 ( )0.1, 0.7, 0.5, 0.5    = = = =  , 

Case 3 ( )0.35, 0.75, 0.5, 0.5 ,    = = = = Case 4 ( )0.7, 0.25, 0.5, 0.5 .    = = = =    

Step 3: The MLEs, LSEs, WLSEs, and CMEs are derived for each unknown parameter. 

Step 4: The ABs and MSEs of different estimates of unknown parameters are calculated. 

The results are written down in Tables A.1 to A.4 (Appendix A). By the help of these tables, the 

following conclusions can be concluded to predict the performance for all these different estimates 

• For fixed value of   = 0.5 and = 0.5, ABs and MSEs for each  estimates and   estimate

values in the MLEs decrease while sample size increases (see Table A.1).

• For fixed values of   and, the MSEs of CMEs for and   are decreasing and the sample

size will be increasing in the same time (see Table A.3).

• For 0.75, = and for fixed values of  and , the MSEs of the WLSEs increase as the sample

size increases (see Table A.2).

• By increasing the sample size, the ABs of MLEs at 0.35 = and 0.75 = decrease

consistently, for fixed values for  and   as shown in Table A.3.
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• At n = 50 and 0.5, =  the MSEs have the smallest values for all different sets of parameters

at 0.35 = and 0.75 = , as indicated in Table A.4.

• As the sample size increases, it is evident through all estimation methods that both MSEs

and ABs decrease, as demonstrated in Table A.1 for instance.

• Almost in all cases, the estimated MSEs of the MLEs are the smallest compared to other

estimation methods across all parameter values.

7. Data Analysis

This section presents the application of the IPLP model on two real data sets, illustrating its 

practical adaptability and utility. The IPLP distribution is contrasted with alternative models 

including the power Lomax (PL) [32], PL Poisson (PLP) [33], Topp-Leone Lomax (TLLO) [34], and 

Marshall Olkins PL (MOPL) [35] distributions for two real datasets. 

      The first dataset has been introduced by Murthy et al. [36], represents 84 observations recording 

the failure time for specific aircraft windshield model. The dataset is as follows: 

0.04 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 

2.61 3.478 0.557 1.911 2.625 4.57 1.652 2.3 3.344 4.602 

1.757 3.578 0.943 1.912 2.632 3.595 1.07 1.914 2.646 3.699 

1.124 1.981 2.661 3.779 1.248 2.01 2.224 3.117 4.485 1.652 

2.229 3.166 2.688 3.924 1.281 2.038 2.823 4.035 1.281 2.085 

2.89 4.121 1.303 2.089 2.902 4.167 1.432 4.376 1.615 2.223 

3.114 4.449 1.619 2.097 2.934 4.24 1.48 2.135 2.962 4.255 

1.505 2.154 2.964 4.278 1.506 2.19 3 4.305 1.568 2.194 

3.103 2.324 3.376 4.663 

To examine the utility of the proposed models, various criteria measures, including -2Log-likelihood 

(L*), Akaike information criterion (A*), Bayesian information criterion (B*), consistent Akaike 

information criterion (C*), the Kolmogorov-Smirnov distance (K*) and its p-value (K*-PV), and CM 

statistics (W*) are evaluated. In general, the smaller the value of these statistics, a better fit model for 

the data will be found.  Table 1 offers MLEs for all models that are suggested, and Table 2 lists several 

goodness of fitting metrics.  

Table 1: MLEs for all parameters of the models fitted to first dataset 

Model ̂ ̂ ̂ ̂

IPLP 0.1987 4.4769 0.011 3.9019 

PL 22.4127 2.3992 270.085 ____ 

PLP 121.997 1.6083 332.485 3.1412 

TLLO 3.7045 4.1343 0.1044 ____ 

MOPL 7.5277 1.417 7.5784 18.0908 

Table 2: Statistical metrics for all models according to the first dataset 

Model L* A* B* C* K* W* K*-PV 

IPLP 310.726 318.726 319.232 328.449 0.06679 0.05164 0.823436 

PL 524.280 530.279 530.579 537.572 0.0717773 0.06906 0.752356 

PLP 544.968 552.968 553.475 562.692 0.0713355 0.05521 0.758912 

TLLO 464.11 470.11 470.41 477.403 0.132497 0.38564 0.095490 

MOPL 616.978 624.978 625.484 634.701 0.0706109 0.05595 0.769575 

Table 2 clearly indicates that among all the models fitted, the IPLP model exhibits the lowest values 

for statistical measures. Hence, it could be regarded as the best model. Figure 2 illustrates non-

parametric plots for the first dataset, encompassing total time on test (TTT), box plot, and percentile- 

percentile (PP) plots. Furthermore, Figure 3 presents the estimated cumulative and density functions  
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for the fitted models. 

Figure 2: The TTT plot, Box plot, and PP-plot for first data 

Figure 3: Estimated CDF and PDF for the models fitted to the first dataset. 

Depending on Figure 3, the IPLP distribution provides the closest fit to the provided data, and then 

it is the best model among the other models to analyze these data. 

Data 2: This dataset represents 63 aircraft windshield service times, presented by Murthy et al. [36]. 

The data can be shown as follows:  

0.046 1.436 2.592 0.14 1.492 2.6 0.15 1.58 2.67 0.248 

1.719 2.717 0.28 1.794 2.819 0.313 1.915 2.82 0.389 1.92 

2.878 0.487 1.963 2.95 0.622 1.978 3.003 0.9 2.053 3.102 

0.952 2.065 3.304 0.996 2.117 3.483 1.003 2.137 3.5 1.01 

2.141 3.622 1.085 2.163 3.665 1.092 2.183 3.695 1.152 2.24 

4.015 1.183 2.341 4.628 1.244 2.435 4.806 1.249 2.464 4.881 

1.262 2.543 5.14  
Table 3 lists the MLEs for all models that are suggested, while Table 4 gives the numerical values of 

the statistical metrics.   

Table 3: MLEs for the unknown parameters of the models fitted to the second dataset 

Model ̂ ̂ ̂ ̂

IPLP 0.2238 3.8211 0.0233 2.0577 

PL 108.647 1.6327 422.985 ______ 

PLP 131.468 1.3335 256.861 1.8047 

TLLO 1.9449 4.5615 0.0834 ______ 

MOPL 0.7228 3.1157 0.0161 69.0443 
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Table 4: Statistical metrics for the proposed models according to the second dataset 

Model L* A* B* C* K* W* K*-PV 

IPLP 536.838 544.839 545.529 553.411 0.0684147 0.056686 0.909991 

PL 633.596 639.596 640.002 646.025 0.109307 0.0945244 0.409648 

PLP 545.928 553.928 554.617 562.5 0.0898046 0.0571536 0.656499 

TLLO 569.62 575.62 576.026 582.049 0.145844 0.273631 0.123926 

MOPL 542.74 550.74 551.429 559.312 0.137781 0.204885 0.166429 

Results in Table 4 show the utility of the IPLP model as it has the lowest L*, A*, B*, C*, K*, and W* 

values and has the greatest K*-PV compared to the others, which indicates that the IPLP distribution 

is the best model. In addition, Figures 4 and 5 give TTT Plot, box plot, and PP-plot, along with the 

estimated cumulative and densities of the fitted models plot as well, respectively, for the data. 

Figure 4: The TTT plot, box plot and PP-plot for second data 

Figure 5: The estimated CDF and PDF for the models fitted to the second dataset 

Figure 5 demonstrates that the IPLP distribution closely aligns with the histogram, indicating its 

superiority over other models for analyzing this data. 

8. Concluding Remarks

A novel asymmetric four-parameter IPLPS class of distributions formed by combining the inverse 

power Lomax and power series distributions is introduced in this paper. This blending technique 

enables the creation of adaptable distributions with significant implications across diverse fields 

such as engineering and biology. The IPLPS class includes a new compound class and many novel  
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compound distributions, which come as new sub-models. Expressions for the QF, conditional 

moments, inverse moments, PWMs, and uncertainty measures are constructed. Estimation of model 

parameters is carried out using WLS, ML, CVM, and LS techniques. We assess and compare several 

parameter estimators for the IPLP distribution using an in-depth simulation study. Additionally, we 

demonstrate the efficacy of the proposed model using two real datasets, where it exhibits superior 

fit compared to alternative models. 

Appendix A: Tables 

Table A.1: Results of simulation study of different estimates for the IPLP distribution: Case 1 

Case 1 ( )0.2, 0.5, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.006745 0.077041 0.029852 0.115995 

MSE 0.007617 0.041746 0.120200 0.197901 

LS 
AB 0.430544 0.487070 0.144346 0.113605 

MSE 0.269951 0.238003 0.140357 0.146791 

WLS 
AB 0.288091 0.441809 0.096579 0.384180 

MSE 0.149819 0.215351 0.123369 0.789747 

CM 
AB 0.339837 0.487085 0.131450 0.304000 

MSE 0.174023 0.238043 0.114371 0.620196 

100 

ML 

AB 0.000455 0.057409 0.001818 0.076642 

MSE 0.004357 0.023858 0.083599 0.185695 

SE 0.000066 0.000143 0.000289 0.000424 

LS 

AB 0.447667 0.491493 0.156331 0.123996 

MSE 0.281292 0.241848 0.137407 0.143057 

SE 0.000284 0.000017 0.000336 0.000357 

WLS 

AB 0.279684 0.461081 0.073950 0.399205 

MSE 0.145609 0.221363 0.119117 0.831226 

SE 0.000259 0.000094 0.000337 0.000819 

CM 
AB 0.334056 0.493331 0.132073 0.361127 

MSE 0.162428 0.243538 0.102497 0.692470 

150 

ML 

AB 0.000429 0.034402 0.004477 0.047673 

MSE 0.002593 0.013023 0.065901 0.178032 

SE 0.000051 0.000109 0.000257 0.000419 

LS 
AB 0.444868 0.494006 0.155821 0.116442 

MSE 0.270110 0.244186 0.128611 0.130407 

WLS 
AB 0.296139 0.462616 0.085070 0.348997 

MSE 0.152255 0.222201 0.115882 0.733505 

CM 
AB 0.343748 0.493717 0.146006 0.373102 

MSE 0.166483 0.244084 0.097878 0.750284 

200

ML 
AB 0.001551 0.023436 0.012966 0.031401 

MSE 0.002002 0.009062 0.056420 0.170785 

LS 
AB 0.452990 0.494879 0.168071 0.114122 

MSE 0.275720 0.244991 0.131350 0.134244 

WLS 
AB 0.300224 0.468995 0.087634 0.360930 

MSE 0.155801 0.226458 0.117244 0.801838 

CM 
AB 0.338092 0.495897 0.128463 0.359770 

MSE 0.163050 0.245969 0.094788 0.693901 
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Table A.2: Results of simulation study of different estimates for the IPLP distribution: Case 2 

Case 2 ( )0.1, 0.7, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.002242 0.091436 0.052315 0.088154 

MSE 0.001661 0.047267 0.112424 0.190250 

LS 
AB 0.514374 0.688831 0.134479 0.098571 

MSE 0.348814 0.475298 0.140524 0.136474 

WLS 
AB 0.382270 0.650093 0.080623 0.348311 

MSE 0.215249 0.443329 0.119549 0.738434 

CM 
AB 0.408666 0.690469 0.107712 0.382826 

MSE 0.221501 0.477186 0.104083 0.756821 

100 

ML 
AB 0.000734 0.064783 0.027290 0.064352 

MSE 0.000925 0.032769 0.087944 0.176691 

LS 
AB 0.549471 0.692815 0.168821 0.119962 

MSE 0.383591 0.480338 0.142214 0.142375 

WLS 
AB 0.356645 0.660133 0.060534 0.444925 

MSE 0.191185 0.447833 0.117684 0.891369 

CM 
AB 0.425101 0.694151 0.110837 0.335976 

MSE 0.234942 0.481978 0.100780 0.717249 

150 

ML 
AB 0.001048 0.047594 0.030172 0.060538 

MSE 0.000739 0.026150 0.076517 0.168294 

LS 
AB 0.548601 0.694918 0.164571 0.123721 

MSE 0.378798 0.483023 0.138253 0.138424 

WLS 
AB 0.363182 0.662171 0.067058 0.387271 

MSE 0.191053 0.449580 0.114219 0.801316 

CM 
AB 0.433434 0.695742 0.138198 0.388423 

MSE 0.236302 0.484116 0.098432 0.783373 

200 

ML 
AB 0.000355 0.035961 0.024822 0.018055 

MSE 0.000581 0.021184 0.065165 0.162195 

LS 
AB 0.557505 0.695863 0.168104 0.133845 

MSE 0.390652 0.484309 0.138774 0.144132 

WLS 
AB 0.358781 0.670564 0.063388 0.438549 

MSE 0.190053 0.454457 0.111519 0.828456 

CM 
AB 0.421589 0.696359 0.125404 0.424671 

MSE 0.228737 0.484958 0.102214 0.859722 
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Table A.3: Results of simulation study of different estimates for the IPLP distribution: Case 3 

Case 3 ( )0.35, 0.75, 0.5, 0.5   = = = =

n Method Measure    

50 

ML 
AB 0.028882 0.038793 0.041519 0.097016 

MSE 0.021385 0.024007 0.093766 0.205833 

LS 
AB 0.330981 0.720645 0.172635 0.214191 

MSE 0.200888 0.522177 0.156952 0.153552 

WLS 
AB 0.171788 0.664002 0.111915 0.315342 

MSE 0.094188 0.468671 0.125394 0.676175 

CM 
AB 0.200807 0.723881 0.139624 0.297306 

MSE 0.094502 0.526193 0.108873 0.592616 

100 

ML 
AB 0.011510 0.032625 0.034154 0.045939 

MSE 0.010988 0.017202 0.073926 0.191679 

LS 
AB 0.343760 0.730998 0.176993 0.239639 

MSE 0.204578 0.535951 0.150556 0.161608 

WLS 
AB 0.183232 0.681750 0.121003 0.315958 

MSE 0.096159 0.485995 0.114875 0.638105 

CM 
AB 0.196654 0.733830 0.131675 0.316076 

MSE 0.088577 0.539333 0.100398 0.589016 

150 

ML 
AB 0.009429 0.021253 0.021613 0.045372 

MSE 0.008488 0.012985 0.061332 0.185365 

LS 
AB 0.347205 0.736845 0.183141 0.228068 

MSE 0.198331 0.543845 0.142716 0.156601 

WLS 
AB 0.158364 0.678758 0.094665 0.387196 

MSE 0.091379 0.481589 0.118032 0.745790 

CM 
AB 0.197847 0.737241 0.133215 0.322106 

MSE 0.088204 0.544097 0.096084 0.576261 

200 

ML 
AB 0.005265 0.018039 0.032937 0.005198 

MSE 0.005849 0.010298 0.052733 0.183501 

LS 
AB 0.330284 0.738295 0.161452 0.216034 

MSE 0.183964 0.545553 0.130130 0.155453 

WLS 
AB 0.181529 0.692042 0.112438 0.315812 

MSE 0.096914 0.492804 0.114267 0.617612 

CM 
AB 0.185704 0.739790 0.125346 0.377463 

MSE 0.083501 0.541593 0.094968 0.691230 
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Table A.4: Results of simulation study of different estimates for the IPLP distribution: Case 4 
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Abstract 

This paper introduces a new statistical distribution called length biased quasi suja distribution (LBQS). 

It explores its properties, including moments, moment generating function(MGF), characteristic 

function(CF), harmonic mean, reliability, hazard rate and reverse hazard rate. Order statistics of the 

above distribution is obtained. Furthermore, the paper also examines various entropy which measures 

the randomness of system, like Renyi entropy and Tsalli’s entropy. It also evaluates Bonferroni and 

Lorenz curves which are useful in measuring the inequality. It also discusses parameter estimation 

techniques specifically maximum likelihood estimation and likelihood ratio testing. Moreover, a 

simulation study has been conducted to demonstrate how well the distribution would perform in real-life 

situation. The validity of the distribution is also demonstrated with real-world data example of failure 

data, highlighting its potential for practical applications in data analysis. 

Key words: Length biased quasi suja distribution, Moments, Entropy, Estimation, Simulation 

1. Introduction

The weighted distributions are applied in various research areas related to biomedicine, reliability, 

ecology and branching processes. A number of continuous distributions are used like Weibull, lindley, 

exponential, lognormal and gamma for modelling this type of data. If x is the original observation with 

its pdf f(x), then in case of any bias in sampling appropriate weighted function, say w(x) which is a 

function of random variable will be introduced to model the situation. This concept of weighted 

distributions was given by Fisher [7] to model the ascertainment bias. Later Rao [13] developed this 

concept in a unified manner while modelling the statistical data when the standard distributions were 

not appropriate to record these observations with equal probabilities. As a result, weighted models 

were formulated in such situations to record the observations according to some weighted function. 

The weighted distribution reduces to length biased distribution when the weight function considers 

only the length of the units. The concept of length biased sampling was first introduced by Cox [5]. 

Weighted distributions are applied in various research areas related to reliability, biomedicine, ecology 

and branching processes. Dey et al [6] discussed weighted exponential distribution with its properties 

and different methods of estimation. Kilany [12] have obtained the weighted version of lomax 

distribution. Ahmad et al [1] have obtained the length biased weighted version of lomax distribution 

with properties and applications. Khan et al. [11] discussed the weighted modified weibull distribution. 

Rather and Subramanian [17] discussed the characterization and estimation of length biased weighted 

generalized uniform distribution. Recently Rather and Subramanian [19] also discussed on weighted 
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Sushila distribution with properties and applications. Ganaie R.A et. al [9] studied about how Uma 

distribution is applicable in engineering sciences. Saraja V D et al. [20] explored the length biased 

Tornumonkpe distribution, their properties, estimations and practical applications. Rashid Ganaie A 

et.al [16] formulated exponentiated ADYA distribution and studied their properties and applications. 

A new generalization of Akshaya distribution with applications in engineering science was studied by 

Rather and Subramanian [18]. Rather and Ozel [14] modelled Weighted Power Lindley distribution and 

its application on Life time data.  

Recently, Shanker [21] proposed a one parameter distribution suja distribution and studied its 

statistical properties, estimation of parameter using method of moment and method of maximum 

likelihood and applications to some real lifetime data and observed that Suja distribution gives much 

closer fit than several one parameter lifetime distributions. Recently, Al Omari and Alsmairan [2] 

obtained length-biased Suja distribution and studied its statistical properties and applications. Al-

Omari et al [3] proposed power length-biased suja distribution and discussed its properties and 

applications.  Alsmairan I. K [4] derived weighted suja distribution and discussed its statistical 

properties and applications to ball bearings data in safety engineering. Todoka et al [22] have studied 

on the cdf of various modifications of suja distribution and discussed their applications in the field of 

analysis of computer- virus propagation and debugging theory. 

In this paper, we proposed length biased quasi suja distribution. The quasi suja distribution, 

introduced by Shanker et al in [15], is a recently obtained two-parameter model for extreme right 

skewed data which contains suja distribution as particular case designed for various applications in 

engineering and medical sciences. Validity and significance of proposed model in modelling lifetime 

data was better than quasi suja distribution, exponential distribution, Lindley and erlang truncated 

exponential distribution.  

The paper is classified into following sections: Section 2 defines the proposed length biased 

quasi suja distribution and reliability. Some structural properties are discussed in Section 3. The 

likelihood ratio test is given in Section 4. Then, Renyi and Tsalli’s entropy measures of the LBQS 

distribution are obtained in Section 5. Section 6 describes the method of obtaining order statistics. 

Income distribution curve and estimation of parameters is discussed in section 7 and 8 respectively. 

Simulation study is shown in section 9. Finally, fitted the distribution to the real-life data and found to 

be fitting good compared to various other models. 

2. Length biased quasi suja distribution (LBQS)

2.1 Density and cumulative density functions 

The probability density function (pdf) and cumulative distribution function (cdf) of quasi suja 

distribution with parameters α and θ is defined by 
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Suppose X is a non -negative random variable with pdf f(x). Let w(x) be the non-negative weight 

function, then the pdf of the weighted random variable 𝑋𝑤 is given by 

( )
( )

0= x,
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where w(x) is a non-negative weight function and ( ) = dxxfxwxwE )()()(  

For different weighted models, we have different choices of the weight function w(x). when w(x) = xc, 

the resulting distribution is termed as weighted distribution. In this paper, we are finding the length 

biased version of quasi suja distribution, so we will take c = 1 in weights xc, in order to get the length 

biased quasi suja distribution and its probability density function (pdf) is given by: 

)x(E
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using (1) we get        

dx)x(fx)x(E 


=

0

     
( )24

120
3

3

+

+
=  (3) 

substituting equations (1) and (3) in (2) we obtain the density function of length biased quasi suja 

distribution as follows 
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and the cumulative distribution function (cdf) of LBQS distribution is obtained by  
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on simplification, the cdf of LBQS distribution is given by 
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 Graphs for the pdf and cdf of the LBQS distribution for several values of parameters are showed in 

Fig. 1 and Fig. 2. 
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Fig.1:  pdf plot of LBQS distribution Fig.2: cdf plot of LBQS distribution 

2.2   Survival, Hazard and Reversed hazard functions 

In this section, we discuss about the survival function, hazard and reverse hazard functions of the 

LBQS distribution. 

The survival function or the reliability function of the LBQS distribution is given by 
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The hazard function is also known as the hazard rate function, instantaneous failure rate or force of 

mortality and is given for LBQS distribution as 
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The reverse hazard function of the LBQS distribution is given by 
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Fig. 3 and Fig. 4 represent graphs for the Survival function and Hazard rate function respectively of 

the LBQS distribution for several values of parameters. 
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3. Structural Properties

In this section, we investigate various structural properties of the LBQS distribution. Let X denotes the 

random variable of LBQS distribution with parameters α, θ and then its rth order moment E(Xr) about 

origin is given by 

dx)x(fx)X(E l
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After simplifying the expression, we get 
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Putting r=1, we get the expected value of LBQS distribution as follows 
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Fig.3: Survival plot of LBQS distribution Fig.4: Hazard rate plot of LBQS distribution 

RT&A, No 3 (79) 
Volume 19, September 2024

534



Vidya Yerneni, Aafaq A. Rather  

EXPLORING LENGTH BIASED QUASI SUJA DISTRIBUTION … 

3.1 Harmonic mean 

The harmonic mean of LBQS distributed random variable X can be written as 
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3.2 Moment generating function (MGF) and Characteristic function 

Let X have a LBQS distribution, then the MGF of X is obtained as 
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Similarly, we obtained characteristic function of the LBQS distribution as follows 
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4. Likelihood Ratio Test

Suppose X be a random sample from the LBQS distribution. We use the following hypothesis 

 𝐻𝑜: 𝑓(𝑥)=𝑓 (𝑥; α, 𝜃) against 𝐻1: 𝑓(𝑥)=𝑓l (𝑥; α, 𝜃)   

to test whether the random sample of size n comes from the quasi suja (QS) distribution or the LBQS 

distribution. The test statistic used is 
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5. Entropy Measures

The idea of entropy is important in various areas such as probability and statistics, physics, 

communication theory and economics. Entropy measures quantify the diversity, uncertainty, or 

randomness of a system. Entropy of a random variable X is a measure of variation of the uncertainty. 

5.1 Renyi Entropy 

The Renyi entropy is important in ecology and statistics as index of diversity. It was proposed by 

Renyi. The Renyi entropy of order β for a random variable X is given by 
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5.2 Tsalli’s Entropy 
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6. Order Statistics

Consider X(1), X(2), ...,X(n) be the order statistics of a random sample X1, X2, ..., Xn drawn from the 

continuous population with pdf f(x) and cdf Fx(x), then the pdf of rth order statistic X(r) is given by 
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Using Equations (4) and (5) in Equation (7), the pdf of rth order statistic X(r) of the LBQS distribution is 

given by 
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  pdf of first order statistics is given by 
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7. Income Distribution Curve

The bonferroni and the Lorenz curves are not only used in economics in order to study the income and 

poverty, but it is also being used in other fields like reliability, medicine, insurance and demography. 

The bonferroni and lorenz curves are given by 
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8. Estimation

In this section, we will discuss the maximum likelihood estimators (MLE’s) of the parameters of the 

LBQS distribution. Consider X1, X2, ..., Xn be the random sample of size n from the LBQS distribution, 

then the likelihood function is given by 
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Differentiating (8) w.r.t θ and α we get the following likelihood equations 
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Because of the complicated form of the likelihood equations, algebraically it is very difficult to solve 

the system of nonlinear equations. Therefore, we use R-software for estimating the required 

parameters.  

9. Simulation Study

In this section, a simulation study is conducted to examine the performance of maximum likelihood 

estimators of the LBQS distributions using R-software. We generated random number for different 

sample sizes and different parameter values. We examined the mean estimates, biases, mean square 

errors and variances of the MLE’s. The simulation results for different parameter values of LBQS 

distribution is presented in table 1. It reveals from the table that as the sample size increases, biases, 

MSEs and variances of the MLE’s of the parameters become smaller respectively. Fig. 5, Fig. 6, Fig.7, 

Fig. 8, Fig.9, Fig.10, Fig.11 and Fig. 12 shows histogram graphs of simulated data. 

Table 1: The biases variances and MSEs of LBQS distribution for different parameter values 

n θ=2 α=8 

Bias Variance MSE Bias Variance MSE 

20 -0.1663918 0.07275417 0.1004404 9.1904 113.4698 197.9333 

30 -0.02764637 0.09921434 0.09997866 4.44103 79.39125 99.114 

50 -0.07826967 0.04104919 0.04717534 5.231117 48.07655 75.44114 

80 -

0.0005882063 

0.0192557 0.01925604 1.946187 26.27957 30.06722 

100 -0.06645069 0.0126943 0.01710999 2.637763 18.40008 25.35787 

200 0.0317005 0.00394192 0.004946842 -0.8056873 7.551154 8.200286 

300 -0.003812567 0.004438482 0.004453018 0.7725432 4.295084 4.891907 

θ=3 α=0.8 

Bias Variance MSE Bias Variance MSE 

20 0.1077014 0.1079198 0.1195194 0.10619 0.7403965 0.7516728 

30 0.05250122 0.08043579 0.08319217 -0.095104 0.3896097 0.3896097 

50 0.01232364 0.07130409 0.07145596 -0.1934582 0.256577 0.2940031 

80 0.07141307 0.03529702 0.04039685 -0.1773731 0.2315595 0.2630207 

100 0.03355058 0.01024581 0.01137146 0.01653806 0.05744206 0.05771557 

200 -0.02356278 0.01017962 0.01073482 0.009685886 0.05365214 0.05374595 

300 0.01235768 0.00395297 0.004105682 -0.03921203 0.0146893 0.01622688 

θ=6 α=0.3 

Bias Variance MSE Bias Variance MSE 

20 -0.2409736 0.8117087 0.869777 0.4400109 0.6451856 0.8387952 

30 0.2179345 0.4019304 0.4494258 -0.03356909 0.04080886 0.04193574 

50 0.2340156 0.3274527 0.382216 0.00622955 0.03390483 0.03394364 

80 0.15726 0.08666046 0.1113912 -0.02508142 0.01842258 0.01905166 

100 -0.1231709 0.06968093 0.08485199 0.02899184 0.01667758 0.01751811 

200 0.07676134 0.06580578 0.07169809 0.0002268879 0.007942669 0.007942721 

300 0.023855 0.0234289 0.02399796 0.009857188 0.005338747 0.005435911 

θ=8 α=0.5 

Bias Variance MSE Bias Variance MSE 

20 1.798051 6.027411 9.260398 0.01659618 0.3433603 0.3436357 

30 0.5363827 2.157112 2.444818 0.04257179 0.2365076 0.23832 
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, 

50 0.7529427 1.423766 1.990688 -0.1185865 0.09495143 0.1090142 

80 0.6645098 0.729458 1.171031 -0.1246661 0.04489143 0.06043306 

100 0.1758446 0.4423283 0.4732496 -0.02355057 0.05949109 0.06004572 

200 0.1146044 0.1470872 0.1602214 -0.03848292 0.01408208 0.01556301 

300 0.1408959 0.06484056 0.08469221 -0.04973074 0.007839619 0.01031277 

 Fig.5: Simulation histogram when n=20, θ=2, α=8 Fig.6: Simulation histogram when n=300, θ=2, α=8 

Fig.7: Simulation histogram when  n=20, θ=3, α=0.8 Fig. 8: Simulation histogram when n=300, θ=3, α=0.8 
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Fig.9: Simulation histogram when n=20, θ=6, α=0.3 Fig. 10: Simulation histogram when n=300, θ=6, α=0.3 

Fig.11: Simulation histogram when n=20, θ=8, α=0.5 Fig.12: Simulation histogram when n=300, θ=8, α=0.5 

10. Application

In this section we fitted LBQS distribution on a real-life time data set and compared the model with 

various distributions namely, Quasi Suja (QS), Exponential, Lindley, Erlang truncated exponential 

(ETE) distribution. 

The data set is the period between failures for three repairable objects. This data set is provided in 

Hassan A.S [10] and explored later by Gadde S. R [8] 

1.43, 1.23, 1.46, 0.11, 0.94, 0.30, 0.71, 4.36, 1.82, 0.77, 0.40, 2.37, 2.63, 1.74, 0.63, 1.49, 4.73, 1.23, 3.46, 2.23, 

1.24, 2.46, 0.45, 1.97, 0.59, 0.70, 1.86, 0.74, 1.06, 1.17. 

In order to compare LBQS distribution with the above-mentioned distributions, we consider the criteria 

like Bayesian information criterion (BIC), Akaike information criterion (AIC), Akaike information 

criterion corrected (AICC) and -2 logL. Better distribution is said to be the one which has lower values 

of AIC, BIC, AICC and -2logL. These criteria can be calculated by using the following formulae. 

1

12
AICICC222

−−

+
+=−=−=

kn

)k(k
A,LlognlogkBIC,LlogkAIC
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k is the number of parameters; n is the sample size and -2logL is the maximized value of log likelihood 

function. They are calculated for above mentioned data set and showed in table 2. 

Table 2: Parameter estimations and goodness of fit test statistics 

Fig. 13: Density curve of data set 

Data 

set 

Distributions Parameters MLE 

(Standard 

error) 

-2logL AIC BIC AICC 

1 

LBQS α 3.06130 

(2.37265) 

79.26209 83.26209 86.06448 83.706 

θ 1.29691 

(.16734) 

QS α 0.29151 

(0.29806) 

86.74344 90.74344 93.54584 91.632 

θ 2.72816 

(0.34681) 

ETE β 1.02149 

(78.67718) 

86.01075 90.01075 92.81315 90.455 

θ 1.00673 

(133.7592) 

Exponential θ 0.64822 

(0.11835) 

86.01075 88.01075 89.41195 88.153 

Lindley θ 0.9762395 

(0.1345043) 

83.09456 85.09456 86.49576 85.238 
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 From table 2 and density curve of data shown in Fig.13, it is evident that the LBQS distribution 

leads to better fit than the Quasi Suja, Exponential, Lindley, ETE distributions. 

11. Conclusion

In this paper, a new modification of quasi suja distribution is executed namely length biased  quasi suja 

distribution with two parameters and its different statistical properties are discussed and investigated. 

The distribution is generated by using the length biased technique and taking the two-parameter quasi 

suja distribution as the base distribution. The parameters of the executed distribution are obtained by 

using the maximum likelihood estimator. Finally, the usefulness of newly introduced distribution is 

discussed by applying the to real life data set and the result of the data set witnessed that the length 

biased quasi suja distribution fits better than the quasi suja, exponential, erlang truncated exponential, 

and lindley distributions. 
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Abstract 

When the weight function depends on the lengths of the units of interest, the resulting distribution is 

called length biased. Length biased distribution is thus a special case of the more general form, known as 

weighted distribution. In this study, we introduce a novel probability distribution named the Length-

Biased Sabur distribution (LBSD). This new distribution enhances the traditional Sabur distribution by 

incorporating a weighted transformation approach. The paper investigates the probability density 

function (pdf) and the cumulative distribution function (cdf) associated with the LBSD. A thorough 

examination of the distinctive structural properties of the proposed model is conducted, covering the 

survival function, conditional survival function, hazard function, cumulative hazard function, mean 

residual life, moments, moment generating function, characteristic function, likelihood ratio test, ordered 

statistics, entropy measures, and Bonferroni and Lorenz curve. 

Key words: Sabur distribution, Length biased, Weighted transformation, Reliability analysis, 

Maximum likelihood estimator, Ordered statistics 

1. Introduction

Weighted distributions occur when observations from a stochastic process are recorded with unequal 

probabilities, determined by a specific weighting function. When the weight function depends on the 

lengths of the units of interest, the resulting distribution is called length biased. Length biased 

distribution is thus a special case of the more general form, known as weighted distribution. The 

concept of length-biased distribution finds various applications in biomedical area such as family 

history and disease survival and intermediate events and latency period of AIDS due to blood 

transfusion [2]. The study of human families and wildlife populations was the subject of an article 

developed by Patil and Rao [8]. Patil, et al. [9] presented a list of the most common forms of the weight 

function useful in scientific and statistical literature as well as some basic theorems for weighted 

distributions and length-biased as special case. They arrived at the conclusion that the length biased 

version of some mixture of discrete distributions arises as a mixture of the length biased version of 

these distributions. Gupta R.D and Kundu D. [3] studied a new class of weighted exponential 

distribution which has applications in many fields such as: ecology, social and behavioural sciences 

and species abundance studies. Gupta R.C and Kirmani S. [2], studied the role of weighted distributions 

in stochastic modelling. Much work was done to characterize relationships between original 

distributions and their length biased version. A table for some basic distributions and their length 

biased forms is given by Patil and Rao [8] such as lognormal, Gamma, Pareto, Beta distribution. Khatree 

[4] presented a useful result by giving a relationship between the original random variable X and its

length biased version Y. Recently Mudasir and S.P. Ahmad [5] studied the length biased Nakagami

distribution. In subsequent years, Rather and Subramanian [10] explored the length-biased Erlang
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truncated exponential distribution, highlighting its practical applications, Rather and Ozel [11] 

introduced a new length-biased power Lindley distribution with applications.  

2. Probability density function   and cumulative distribution function

The probability density function (pdf) of the Sabur distribution with two parameters α and β   is 

defined as 

𝑓(𝑥, 𝛼, 𝛽) =
𝛽2

𝛼𝛽+𝛽2+1
(𝛼 + 𝛽 +

𝛽

2
𝑥2)𝑒−𝛽𝑥   x > 0, α  β  > 0  (1) 

Suppose X is a non-negative random variable with pdf f(x). Let w(x) be the non-negative weight 

function, then the pdf of the weighted random variable Xw is given by  

𝑓𝑤(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤(𝑥))
, 𝑥 > 0           (2) 

Where w(x) is a non-negative weight function and 

E(w(x)) = ∫ 𝑤(𝑥)𝑓(𝑥)dx  𝑎𝑛𝑑  𝑤(𝑥) = 𝑥𝑐  

In this paper , we will consider the weight function was w(x) = x ,  where c=1  and using the definition 

of weighted distribution, the pdf of the LBSD on is given as 

𝑓𝑤(𝑥) =  
𝑥 𝑓(𝑥)

𝐸(𝑤(𝑥))
(3) 

Expected value is defined as 

𝐸(𝑥) = ∫ 𝑥

∞

0

 𝑓(𝑥)𝑑𝑥 

𝐸 (𝑥) =
(𝛼𝛽+𝛽2+3)

𝛽(𝛼𝛽+𝛽2+1)
(4) 

Substituting equation (1) and (3) in equation (2) we obtain the density function of LBSD as follows 

𝑓𝑤(𝑥, 𝛽, 𝛼)  =  
𝑥𝛽3(𝛼+𝛽+

𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
(5) 

And the cumulative density function (cdf) of LBSD is obtained by 

 𝐹𝑤(𝑥) = ∫ 𝑓𝑤(𝑥)𝑑𝑥 

𝑥

0

𝐹𝑤(𝑥)  =  ∫
𝑥𝛽3(𝛼+𝛽+

𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)

𝑥

0

 𝑑𝑥  (6) 

After simplification, the cdf of the LBSD is given by 

𝐹𝑤(𝑥) =
2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)

2(𝛼𝛽+𝛽2+ 3)
(7) 

Fig. 1 and Fig. 2 visually illustrates the pdf and cdf of LBSD. 
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Fig. 1 : pdf plot of LBSD Fig. 2 : cdf plot of LBSD 

3. Survival, Hazard and Reversed Hazard Functions

In this section we discuss about the survival function, hazard and reverse hazard functions of the 

LBSD. The survival function or the reliability function of is given by 

𝑆(𝑥)  =  1 − 𝐹𝑤(𝑥)   (8) 

𝑆(𝑥) =   1 − (
2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)

2(𝛼𝛽+𝛽2+3)
)          (9) 

The hazard function is also known as the hazard rate function, instantaneous failure rate or force of 

mortality and is given for the LBSD as  

ℎ(𝑥)  =  
𝑓𝑤(𝑥) 

𝑠(𝑥)
(10) 

ℎ(𝑥)  =

𝑥𝛽3(𝛼+𝛽+
𝛽
2𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)

1− (
2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)

2(𝛼𝛽+𝛽2+3)
) 

(11) 

ℎ(𝑥)  =
2𝑥𝛽3(𝛼+𝛽+

𝛽

2
𝑥2)𝑒−𝛽𝑥

2(𝛼𝛽+𝛽2+3)−2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)
(12) 

   The reverse hazard function of the LBSD is given by 

ℎ𝑟(𝑥) =
 𝑓𝑤(𝑥)

𝐹𝑤(𝑥)
  (13) 

ℎ𝑟(𝑥) =
2𝑥𝛽3(𝛼+𝛽+

𝛽

2
𝑥2)𝑒−𝛽𝑥

2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)
(14) 

Fig. 3 and Fig. 4 depicts the graphical survival function and Hazard function plot of LBSD. 
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Fig. 3: Survival function plot of LBSD 
Fig. 4: Hazard function plot of LBSD 

4. Structural properties

In this section we investigate various structural properties of the LBSD 

Let X denote the random variable of LBSD with parameters α , β, then its r th order moment E(xr) 

about origin is given by 

𝐸(𝑥𝑟) = 𝜇𝑟′ = ∫ 𝑥𝑟𝑓𝑤(𝑥)
∞

0
𝑑𝑥     (15) 

𝐸(𝑥𝑟) = ∫ xr∞

0

𝑥𝛽3(𝛼+𝛽+
𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
 𝑑𝑥 (16) 

After simplifying the expression, we get 

𝐸(𝑥𝑟) =
2β(α+β)Γ(r+2)+Γ(r+4)

2βr(αβ+β2+3)
(17) 

Putting r=1, we get the expected value of LBSD as follows 

𝐸(𝑥) =
2β(α+β)+12

β(αβ+β2+3)
(18) 

Put r=2, we obtained second moment as 

𝐸(𝑥2) =
6β(α+β)+60

β2(αβ+β2+3)
 (19) 

The variance of LBSD is calculated as 

𝑉(𝑥)  = 𝐸(𝑥2) − [𝐸(𝑥)]2 

𝑉(𝑥) =
6β(α+β)+60

β2(αβ+β2+3)
− [

2β(α+β)+12

β(αβ+β2+3)
]

2

(20) 

4.1 Harmonic mean 

The harmonic mean of the LBSD of random variable X can be written as 
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𝐻 = 𝐸 (
1

𝑥
) =  ∫

1

𝑥

∞

0

𝑓𝑤(𝑥)𝑑𝑥 

𝐻 = ∫
1

𝑥

∞

0

𝑥𝛽3(𝛼+𝛽+
𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
𝑑𝑥 (21) 

After simplification we get 

H =
β(β2+αβ+1) 

(β2+αβ+3)
(22) 

4.2 Moment generating function and characteristic function 

Let X have a LBSD, then the Moment generating function of X is obtained as 

𝑀𝑋(𝑡) =  𝐸(𝑒𝑡𝑥) = ∫ 𝑒𝑡𝑥

∞

0

𝑓𝑤(𝑥)𝑑𝑥 

Using Tayler’s series, we obtain 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑥) = ∫ (1 + 𝑡𝑥 +
(𝑡𝑥)2

2!
+. . )

∞

0

𝑓𝑤(𝑥)𝑑𝑥 

𝑀𝑋(𝑡) = ∫ ∑
𝑡𝑖

𝑖!
𝑥𝑖

∞

𝑖=0

∞

0

𝑓𝑤(𝑥)𝑑𝑥 

𝑀𝑋(𝑡) = ∑
𝑡𝑗

𝑗!

∞

𝑗=0

𝐸(𝑥𝑗)𝑑𝑥 

𝑀𝑋(𝑡) = ∑
𝑡𝑗

𝑗!

∞

𝑗=0

2𝛽(𝛼+𝛽)𝛤𝑗+2 + 𝛤𝑗+4 

2𝛽𝑗(𝛼𝛽+𝛽2+3)
(23) 

Similarly, the characteristic function of LBSD   of random variable X can obtained as 

𝛷𝑋(𝑡) = 𝑀𝑋(𝑖𝑡) = ∑
(𝑖𝑡)𝑗

𝑗!

∞

𝑗=0

2𝛽(𝛼+𝛽)(𝛤𝑗+2 )+( 𝛤𝑗+4)

2𝛽𝑗(𝛼𝛽+𝛽2+3)
(24) 

5. Likelihood Ratio Test

Let X1, X2, X3….be a random sample from the LBSD, we use the hypothesis 

𝐻0 ∶  𝑓(𝑥) = 𝑓(𝑥: 𝛼, 𝛽)   𝑎𝑔𝑎𝑖𝑛𝑠𝑡  𝐻1: 𝑓(𝑥) = 𝑓𝑤(𝑥: 𝛼, 𝛽, 1) 

In order to test whether the random sample of size n comes from the Sabur distribution or weighted 

Sabur distribution, we will use following statistics  

𝛥 =
𝐿1

𝐿0

= ∏
𝑓𝑤(𝑥; 𝛼, 𝛽, 1)

𝑓(𝑥; 𝛼, 𝛽)

𝑛

𝑖=1
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𝛥 = ∏
𝑥𝛽(𝛼𝛽+𝛽2+1)

(𝛼𝛽+𝛽2+3)

𝑛

𝑖=1
(25) 

𝛥 = 𝐴𝑛 ∏ 𝑥𝑖
𝑛
𝑖=1      where 

𝐴 =
𝛽(𝛼𝛽+𝛽2+1)

(𝛼𝛽+𝛽2+3)
(26) 

 We reject the null hypothesis, if 

𝛥 = 𝐴𝑛 ∏ 𝑥𝑖
𝑛
𝑖=1 > k

𝛥∗ = ∏ 𝑥𝑖
𝑛
𝑖=1   > k 𝐴𝑛

For large sample size n, 2log 𝛥 is distributed as chi square distribution with one degree of freedom 

and also p-value is obtained from the chi-square distribution. Thus we reject the null hypothesis, 

when  the probability value is given by  

 𝑃(𝛥∗ >  𝑎∗) 

Where 𝑎∗ is less than a specified level of significance and ∏ 𝑥𝑖
𝑛
𝑖=1   is the observed value of the statistics 

𝛥∗. 

6. Entropy Measures

The concept of entropy is important in different areas such as probability and statistics, physics, 

communication theory and economics. Entropy measures quantify the diversity, uncertainty or 

randomness of a system. Entropy of a random variable X is measure of variation of the uncertainty. 

6.1   Renyi Entropy 

It was proposed by Renyi(1957). The Renyi entropy of order 𝜉 for a random variable X is given by 

𝑒(𝜉) =
1

1 − 𝜉
log (∫ 𝑓𝜉(𝑥)

∞

0

𝑑𝑥)   where  𝜉 > 0 𝑎𝑛𝑑 𝜉 ≠  1 

𝑒(𝜉) =
1

1−𝜉
log (∫ (

𝑥𝛽3(𝛼+𝛽+
𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
)

𝜉∞

0

𝑑𝑥) (27) 

After simplifying the equation we get 

𝑒(𝜉) =
1

1−𝜉
log ((

𝛽3

(𝛼𝛽+𝛽2+3)
)

𝜉

∑ (
𝜉
𝑖
)

∞

𝑖=0
(𝛼 + 𝛽)𝜉−𝑖 (

𝛽

2
)

𝑖 𝛤(𝜉+2𝑖+1)

𝛽𝜉𝜉+2𝑖+1 ) (28) 

6.2 Tsallis Entropy

A generalization of Boltzman-Gibbs(B-G) statistical mechanics initiated by Tsallis has focussed a great 

deal to attention. This generalization of B-G statistics was proposed firstly by introducing the 

mathematical expression of Tsallis entropy (Tsallis, 1988) for a continuous random variable. Tsallis 

entropy of order λ of the weighted Sabur distribution is given by 
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𝑆𝜆 =
1

𝜆 − 1
(1 − ∫ 𝑓𝜆(𝑥)

∞

0

𝑑𝑥) 

𝑆𝜆 =
1

𝜆−1
(1 − ∫ (

𝑥𝛽3(𝛼+𝛽+
𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
)

𝜆∞

0

𝑑𝑥) (29) 

After simplifying the expression, we get 

𝑆𝜆 =
1

𝜆−1
[(1 − (

𝛽3

(𝛼𝛽+𝛽2+3)
)

𝜆

) ∑ (
𝜆
𝑖

)
∞

𝑖=0
(𝛼 + 𝛽)𝜆−𝑖 (

𝛽

2
)

𝑖 𝛤(𝜆+2𝑖+1)

𝛽𝜆(𝜆+2𝑖+1)
 ]  (30) 

7. Order Statistics

Let X(1), X(2), X(3)…...X(n) be the order statistics of a random sample X1,X2,X3…Xn drawn from the 

continuous population with pdf  𝑓𝑥(𝑥) and cdf 𝐹𝑥(𝑥) then the pdf of r th order statistic X (r) is given by 

𝑓𝑥(𝑟)(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓𝑥(𝑥)[𝐹𝑥(𝑥)]𝑟−1[1 − 𝐹𝑥(𝑥)]𝑛−𝑟

Substituting   equation (4) and (5) in equation (6) , the pdf of order statistics X(r) of the weighted 

Sabur distribution is given by 

𝑓𝑥(𝑟)(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
(

𝑥𝛽3 (𝛼 + 𝛽 +
𝛽

2
𝑥2) 𝑒−𝛽𝑥

(𝛼𝛽 + 𝛽2 + 3)
) × (

2𝛽(𝛼 + 𝛽)𝛾(2, 𝛽𝑥) + 𝛾(4, 𝛽𝑥)

2(𝛼𝛽 + 𝛽2 + 3)
)

𝑟−1

× (1 − (
2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)

2(𝛼𝛽+𝛽2+3)
))

𝑛−𝑟

(31) 

Therefore, the pdf of the higher order statistics X(n) can be obtained as 

𝑓𝑥(𝑛)(𝑥) = 𝑛 (
𝑥𝛽3(𝛼+𝛽+

𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
) × (

2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)

2(𝛼𝛽+𝛽2+3)
)

𝑛−1

(32) 

And the pdf of the first order statistics X(1)   can be obtained as 

𝑓𝑥(1)(𝑥) = 𝑛 (
𝑥𝛽3(𝛼+𝛽+

𝛽

2
𝑥2)𝑒−𝛽𝑥

(𝛼𝛽+𝛽2+3)
) × (1 − (

2𝛽(𝛼+𝛽)𝛾(2,𝛽𝑥)+𝛾(4,𝛽𝑥)

2(𝛼𝛽+𝛽2+3)
))

𝑛−1

(33) 

8. Income Distribution Curve

The Bonferroni and the Lorenz curves are not only used in economics in order to study the income 

and poverty, but it is also being used in other fields like reliability, medicine and demography. The 

Bonferroni and Lorenz curves are given by 

𝐵(𝑝) =
1

𝑝𝜇1
′ ∫ 𝑥

𝑞

0
𝑓(𝑥)𝑑𝑥    and 
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𝐿(𝑝) = 𝑃𝐵(𝑝) =
1

𝜇1
′

∫ 𝑥

𝑞

0

𝑓(𝑥)𝑑𝑥 

Here, we define the first raw moments as 

𝜇′
1

=
2β(α+β)+12

β(αβ+β2+3)
(34) 

And q = 𝐹−1(𝑝), Then we have 

𝐵(𝑝)  =  
2𝛽(𝛼+𝛽)𝛾(3,𝛽𝑞)+𝛾(5,𝛽𝑞)

2𝑝(2𝛽(𝛼+𝛽)+12)
(35) 

𝐿(𝑝) = 𝑃𝐵(𝑝)  =  
2𝛽(𝛼+𝛽)𝛾(3,𝛽𝑞)+𝛾(5,𝛽𝑞)

2(2𝛽(𝛼+𝛽)+12)
(36) 

9. Estimation

We will discuss the maximum likelihood estimators (MLEs) of the LBSD. Consider X1,X2,X3…, Xn be the 

random sample of size n from the LBSD, then the likelihood function is given by 

𝐿(𝑥;  𝛼, 𝛽) = ∏ 𝑥𝑖
𝑛
𝑖=1

𝛽3(𝛼+𝛽+
𝛽

2
𝑥𝑖

2)𝑒−𝛽𝑥𝑖

(𝛼𝛽+𝛽2+3)
 (37) 

𝐿(𝑥;  𝛼, 𝛽) =
𝛽3𝑛

(𝛼𝛽+𝛽2+3)𝑛
∏ 𝑥𝑖

𝑛
𝑖=1 (𝛼 + 𝛽 +

𝛽

2
𝑥𝑖

2) 𝑒−𝛽𝑥𝑖  (38) 

The loglikelihood function is obtained as 

𝐿𝑜𝑔 𝐿 =  3𝑛𝑙𝑜𝑔𝛽 −  𝑛𝑙𝑜𝑔(𝛼𝛽 + 𝛽2 + 3) + 𝑙𝑜𝑔∑𝑥𝑖 + ∑𝑙𝑜𝑔(𝛼 + 𝛽 +
𝛽

2
∑𝑥𝑖

2)  − 𝛽∑𝑥𝑖 (39) 

The MLEs of α, β can be obtained by differentiating Log L with respect to α, β and must satisfy the 

normal equation. 

𝜕𝑙𝑜𝑔 𝐿

𝜕𝛽
= −

3𝑛

𝛽
 −

𝑛(𝛼+2𝛽)

(𝛼𝛽+𝛽2+3)
+ ∑

(1+
𝑥𝑖

2

2
)

(𝛼+𝛽+
𝛽

2
𝑥𝑖

2)

𝑛

𝑖=1

− ∑𝑥𝑖 =  0 (40) 

𝜕𝑙𝑜𝑔 𝐿

𝜕𝛼
= [−

𝑛𝛽

(𝛼𝛽+𝛽2+3)
+ ∑

1

𝛼+𝛽+
𝛽

2
∑𝑥𝑖

2

𝑛

𝑖=1

]   = 0 (41) 

To obtain confidence interval we use the asymptotic normality results.  We have that, if 𝜆̂ = (𝛼̂, 𝛽̂, 𝑐̂) 

denotes the MLE of  𝜆 = (𝛼, 𝛽, 𝑐)   we can state the results as follows 

(𝜆̂  − 𝜆)  → 𝑁3(0, 𝐼−1(𝜆))

Where I(𝜆) is Fisher’s Information matrix given by 

𝐼(𝜆) = −
1

𝑛
 (

𝐸(
𝜕2log𝑙

𝜕𝛼2 ) 𝐸(
𝜕log𝑙

𝜕𝛽𝜕𝛼
)

𝐸(
𝜕log𝑙

𝜕𝛽𝜕𝛼
) 𝐸(

𝜕2log𝑙

𝜕𝛽2 )
) (42)

RT&A, No 3 (79) 
Volume 19, September 2024

552



Suvarna Ranade, Aafaq A. Rather  

A NEW GENERALIZATION OF SABUR DISTRIBUTION 

Here we define 

𝜕2log𝐿

𝜕𝛽2 =  −
3𝑛

𝛽2 − 𝑛 (
−𝛼2−2𝛼𝛽−2𝛽2+6

(𝛼𝛽+𝛽2+3)2 ) −
(1+

1

2
∑𝑥𝑖

2)
2

(𝛼+𝛽+
𝛽

2
∑𝑥𝑖

2)2
(43)

𝜕2log𝐿

𝜕𝛼2 =
𝑛𝛽
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10. Conclusion

In this paper, we introduce a novel extension of the Sabur distribution by incorporating a weighted 

transformation approach. This extension builds upon the existing two-parameter Sabur distribution, 

resulting in a three-parameter model known as the Length-Biased Sabur distribution. We conduct a 

comprehensive analysis of this new distribution, exploring its mathematical formulation and statistical 

properties in detail. Parameter estimation is performed using maximum likelihood estimation 

techniques.  
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Abstract 

The paper shows the need for comprehensive research into energy security problems to assess the 

possibilities of interconnected operation of all energy industries with the view to identifying the 

implications for consumers of energy resources in the event of emergencies in one or several industries 

at the same time. The paper presents a methodological framework and features of modeling the 

interrelated operation of the industries in current context and a model developed for these studies. 

The results of experimental studies using the developed methodology are shown through the analysis 

of several critical situations (threats to energy security) of various nature. 

Keywords: energy security; critical situations; economic and mathematical model. 

I. Introduction

Ensuring energy security and maintaining reliability of fuel and energy supply are crucial in 

today’s social and economic landscape. Energy security (ES) is of utmost importance for protecting 

the citizens, society, the state, and the economy from the threat of a shortage when meeting their 

energy needs with economically affordable energy resources of high quality and from the threats of 

potential disruption of constant energy supply [1, 2]. Essentially, we are discussing the importance 

of maintaining the balance between the supply and demand of different kinds of fuel and energy 

when various kinds of threats that affect the energy sector and lead to a decrease in the supply of 

consumers with energy resources come into being [3]. 

Energy systems form the energy sector of a country or individual regions. The fuel and energy 

sector of the country is one of the largest intersectoral complexes, including formally independent 

industries, such as electric power, thermal power, coal, oil, oil refining and gas industries, which are 

united technologically and territorially [4,5, 6]. At the present level of consideration, it is crucial to 

highlight and incorporate renewable energy, cooling energy, water management system, and water 

supply system into the structure of the energy sector. 

The primary objectives of the energy security research are to predict the conditions for the 

operation and expansion of fuel and energy systems  and the development of the energy sector as a 

whole in the context of possible critical situations  and emergencies; to provide state estimation 

under these conditions and to identify "bottlenecks" in fuel and energy systems, and in the energy 
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supply to the consumer; to choose possible alternatives and specific measures to prevent critical 

situations and emergencies in these systems and at energy facilities, or reduce their negative impact 

to an acceptable level [7, 8]. In the current context, it is imperative to enhance the existing 

methodological, modeling, and software tools and develop new ones for conducting such studies, 

since the concept of risk of critical and emergency situations and their consequences is becoming 

increasingly prominent. Of particular importance is analysis of potential threats, the development 

of disturbance scenarios (critical situations and emergencies) based on the analysis results, and the 

related modeling problems [8]. 

Assessment of the energy security level normally rests on two methods: an indicator-based 

method, which is the primary and simplest way of assessing the level of energy security, and a 

method based on mathematical modeling of the interconnected operation of energy systems. The 

second method is used to investigate and assess the impact of energy security threats on the 

reliability of energy supply to consumers with adequate mathematical models of energy components 

and systems. 

The indicator-based method has found wide application in the analysis of the energy security 

level in many countries, since the indicators obtained are the most understandable and minimal 

effort is required to determine them. Despite its simplicity, this method is quite effective for energy 

security assessment. 

In Russia, since the 1990s, the indicator-based  method of analysis has been widely developed 

in the works performed by the research team of L.A. Melentiev Energy Systems Institute of the 

Siberian Branch of the Russian Academy of Sciences, which focused on the energy security studies 

for the country and its regions [9-14]. These works offered a wide set of parameters (indicators) to 

characterize the state and conditions for the expansion and operation of individual energy systems 

and the levels of threats to energy security [10]. The developed system of indicators was applied to 

assess the state of energy security of Russia’s regions [11, 12]. A methodology developed for the 

indicator-based analysis determines: 

a) a set of energy security indicators at the federal level;

b) a procedure for obtaining the numerical value of each indicator from this set;

c) a procedure for determining threshold values for each indicator at issue [13].

The impact of energy security threats on the reliability of fuel and energy supply to consumers 

was also assessed using the method of indicator-based analysis [14]. 

  Researchers in other countries use the method of indicator-based analysis to assess the level 

of energy security based on the indicators established for their country. Eighteen indicators are used 

for China [15]. They are categorized into three areas: energy supply, economic-technical, and 

environmental. The studies carried out for six countries of the Caspian Sea basin (Azerbaijan, Iran, 

Kazakhstan, Uzbekistan, Turkmenistan, Russia) aim to analyze the level of energy security [16] for 

each country individually and collectively based on three dimensions: resources and dependency, 

intensity and sustainability, cost and poverty. 

At the same time, the indicator-based analysis is static and yields an assessment of the 

indicators for a specific time span, neglecting the influence of the dynamics of processes in the energy 

sector and the influence of the system-wide effect from the mutually coordinated operation of energy 

systems. Therefore, studies of the interrelated operation of energy industries and their modeling to 

assess the impact of energy security threats on reliability of energy supply are of greatest interest. 

Modeling the interconnected operation of industry systems can be divided into two categories: 

modeling of concentrated nodes, this modeling concept is also called the concept of an energy hub, 

and detailed modeling of energy systems, which either partially or fully considers the transmission 

links between individual nodes. 

Studies based on the concept of energy hubs [17-19] normally present an energy hub model 

involving interaction of three types of energy resources (heat, electricity, and gas). These studies also 
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take into account renewable generation and the possibility of using energy storage systems (ESS). 

Particular interactions of energy flows are considered, for example, modeling the interdependence 

of the gas and electric power industries [20]. The main difference between the models lies in the 

description of the production capacities of the region for the processing and storage of energy 

resources in the form of energy nodes or hubs. For example, regional condensing power plants 

(CPPs), combined heat and power plants (CHPPs) and boiler houses are combined into an energy 

hub to generate heat and electricity. This method of description offers a convenient scheme for 

presenting the initial data and simplifies the architecture of the corresponding software, which 

provides a gain in time during distributed computing. In this case, the focus is on simplification of 

calculations but without sufficient consideration of the links between industries as an interconnected 

system. 

The second approach to modeling the interrelated operation of various sectoral systems is more 

preferable for investigating energy security problems and analyzing threats to the normal 

functioning and expansion of sectoral energy systems. The analysis of the current state of research 

in this area helped identify the following areas: 1) research on the conceptual area of the energy 

security problem in terms of reliable energy supply and 2) research on modeling energy systems and 

energy sector. 

The papers [21-26] present the results of studies that involve assessing the possibilities of 

network flow modeling of resource supply processes with a sharp deterioration in the properties of 

the energy infrastructure. These works examine  power supply options in geographically distributed 

systems after destructive impacts. The studies focus on the conditions of regulatory restrictions on 

accidents, in contrast to the research  presented in this paper, which considers all possible emergency 

situations, analyzes threats and their manifestations, evaluates the operating conditions of sectoral 

systems in this context, assesses the reliability of supplying the consumer with energy resources (in 

the form of undersupplied amounts). 

The studies presented in [27] are also close in their formulation of the problem. They are aimed 

at solving the security problem for a group of target objects that receive energy resources from the 

network infrastructure in case of a negative impact on the network components. The problem solved 

however belongs to the industry level of the hierarchy. At the same time, a comprehensive 

assessment of energy facilities with their mutually coordinated operation within a single system is 

not carried out. 

Of some interest are studies related to the energy independence of countries importing energy 

resources, and the related issues of creating reserves of these energy resources and diversifying them 

in the event of supply disruptions. In these studies [28], a quantitative model of the energy security 

of the country (China) is proposed to calculate the optimal scale of strategic reserves of oil and 

alternative fuels (for example, coal-fired methanol). The developed model mainly focuses on cost-

benefit analysis, including the economic costs of creating such reserves and reserves of alternative 

fuels, and thereby increasing the energy security of the country. The results of experimental 

calculations for China show that the creation of strategic oil reserves and alternative fuels have a 

positive effect on energy security, and alternative fuel is an additional way to reduce the negative 

consequences of rising oil prices and related economic losses. This approach can be used when 

creating structural redundancy in case of emergencies affecting the energy supply of consumers. 

There are important developments in modeling energy systems and energy sector, with two 

classes of models to be distinguished: 1) simulation ones that optimize the technological structure of 

the energy industry; 2) economic or macroeconomic ones, in which energy is presented as a sector 

of the economy as a whole. 

The main representatives of simulation class models are MARKAL (MARKet ALlocation), 

EFOM (Energy Flow Optimization Model), MESSAGE (Model for Energy Supply Strategy 

Alternatives and their General Environmental Impacts), and others [29-32]. 
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The MESSAGE model is the most widespread. It was developed by the International Institute 

for Applied Systems Analysis (IIASA) with the view to planning and projecting  the expansion of 

energy systems. This modeling system is intended for medium- and long-term expansion planning 

of energy systems, energy policy analysis, and design of development scenarios. This tool allows 

comparing alternative energy technologies and build the most appropriate scenario for the 

development of the energy system. It also enables comparison of alternative scenarios for the 

development of the energy system in terms of environmental impact. The linear programming 

method is used to find the optimal solution in MESSAGE. The selection criterion is the minimum of 

the reduced system costs. According to the objectives to be accomplished, this model tool is focused 

on a time interval under average statistical conditions of development. Therefore, it cannot be used 

to study the response of sectoral systems to disturbing influences when threats to the normal 

functioning of industry systems and consumer systems materialize, which is proposed to be used in 

this article. 

The main representative of the second class is the National Energy Modeling System (NEMS) 

developed by the US Department of Energy [33]. 

This system models the US economy with the allocation of energy as a separate sector. This 

model makes projections for energy production, import, processing, consumption and prices, given 

the macroeconomic and financial indices of the world market for energy resources; supports the 

choice of certain technologies, their quantitative and qualitative characteristics. Adaptation of this 

modeling system to  assessing the behavior of the energy industries and the consumer sector in 

critical  situations is not possible for the following reasons: 

- The considered time intervals do not coincide;

- The insufficiently detailed representation of the energy industries in the complex;

- The impossibility of determining the shortage of energy resources in the event of emergencies

in the energy industries. 

The most representative domestic development in the field of energy system modeling is the 

SCANER model-information system developed at the Energy Research Institute of the Russian 

Academy of Sciences [34]. This is a unique tool for systems research into the development of Russia’s 

energy sector as an important part of the national economy, and global energy markets in the 

medium and long term (until 2030-2050). SCANER combines powerful analytical tools, about twenty 

mathematical models for comprehensive projection and optimization of the national and global 

energy development for the main stages of energy conversion - from production (about 20 types of 

primary energy resources) to consumer use (10 main energy carriers). The analyzed tool is aimed at 

studying the prospects for the development of the country's energy economy under normal 

operating conditions, considering the influence of global factors. At the same time, the reliability of 

power supply is taken into account according to average statistical standards, leaving extreme 

situations out of consideration. It is problematic to use it to investigate the mutually coordinated 

operation of energy industries in critical situations, since this tool does not determine the impact of 

energy shortages on the reliability of fuel and energy supply to the consumer. 

The presented developments and models focus on solving the problems of long-term planning 

of the power industry under normal operating conditions with a horizon of up to 15-20 years. The 

studies conducted and described in this paper stand out by their emphasis on assessing the behavior 

of energy systems in the face of energy security threats and optimizing the interrelated operation of 

energy systems in the event of emergencies to provide reliable energy supply to consumers. 

Modern conditions for the advancement of information technologies, the emergence of high-

performance computing tools, as well as the intelligentization of energy systems and the need for 

their functioning in a digital economy, on the one hand, impose special requirements on the 

modeling and computing tools to be used. On the other hand, they provide opportunities to enhance 

the adequacy and correctness of modeling the real-world systems by considering the inertia of 
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processes, the dynamics of unfolding critical situations in the models designed to optimize energy 

systems within the energy sector; by taking into consideration non-linearity in terms of the adequacy 

of the representation of processes in energy systems to improve the accuracy of decisions made. 

This paper aims to present a methodological tool for modeling the interlinked operation of 

energy systems within the energy sector for examining energy security problems and illustrating the 

outcomes achieved by applying the developed models.  

II. Methodology for integrated modeling of energy systems to solve the energy

security problems. 

To investigate the problems of energy security in today’s context, it is proposed to develop new 

and improve (adapt) existing mathematical models and methods of the interrelated operation of 

large energy systems within energy sector under various operating conditions. The use of an 

enhanced modeling system will make it possible to assess the possibilities of providing consumers 

with energy resources when various threats to energy security materialize. 

The general scheme of tasks to be accomplished when assessing the effect of  threats on the state 

of energy security is shown in Figure1. 

Figure 1. General scheme of energy security research 

The initial basis for the research is the technical and economic characteristics of energy facilities 

and reporting data on the state of energy systems, the findings of the energy development research 

providing the rationale for the choice of a long-term strategy and the formulation of an energy 

policy. Based on the adopted socio-economic program for the future development of the national 

economy, which determines the demand for fuel and energy resources, an analysis and assessment 

of energy consumption levels is made considering energy conservation. 

Following the above characteristics and analysis of energy security threats, the design 
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conditions are established for a computational experiment, which is carried out using models of 

energy systems. 

Models of energy systems represent a system of economic and mathematical models for 

assessing the territorial and production structure of the energy sector, in terms of energy security 

requirements [35]. These models can be used in two modes: 

- in the mode of determining the optimal development of energy technologies (given structural

redundancy in the form of capacity reserves, fuel reserves, interchangeability of energy resources) 

and the optimal distribution of consumed energy resources, 

- in the mode of identifying undersupply of energy resources (shortage in fuel and energy

resources) in the country as a whole and in individual regions. 

The structure of the energy sector is shown in Figure 2. Technologically, it consists of the 

modules of industry-specific subsystems of the energy sector (gas, coal, oil refining (in terms of fuel 

oil supply), electricity, and thermal power industries), and a module of consumers (consumption of 

energy resources at various types of power plants and boiler houses for generating electricity and 

heat, and other consumers, with separately allocated export consumers). This version does not 

include energy storage systems, water management and water supply systems. 

Figure 2. Territorial, temporal and technological structure of models 

The mathematical description of the model is represented by balance equations and constraints 

on variables and the corresponding objective function. 

0
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

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0    Yt    Rt, (3) 

where  t  is consumer category;   Х  is the desired vector, with the components characterizing 

the intensity of using technological methods for operation of energy facilities (extraction, processing, 

conversion and transportation of energy resources); Yt is the desired vector with the components 

characterizing the volumes of individual types of fuel and energy consumed by certain categories of 

consumers (t); A is matrix of input-output ratios of production (extraction, processing, conversion) 

and transportation of individual types of fuel and energy (inputs - output); D is a vector that 

determines the technically possible intensity of using individual technological and production 
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methods; Rt is a vector with components equal to the volumes of specified consumption of individual 

types of fuel and energy by individual categories of consumers. 

The objective function has the following form: 





Т

t

tt grХC
1

),(),(  min.          (4) 

 The first component of such an objective function reflects the costs associated with the 

operation of the industries within the energy sector, its constituent energy systems and subsystems, 

and capital investments for their development. Here C is the vector of unit costs for individual 

technological methods of operation of existing, reconstructed or modernized, as well as newly 

constructed energy facilities. 

The second component is the damage from shortages for each type of fuel and energy for each 

of the selected consumer categories. The magnitude of the energy resource shortage (gt) for 

consumers of category t corresponds to the difference (Rt  Уt). Vector rt consists of components 

conventionally called “specific damages.” The cost assessment of the real (full) amount of damage 

caused by a shortage poses certain difficulties due to the various manifestations of the consequences 

of a shortage of energy resources, which cannot always be identified and quantified. In this case, this 

difficulty is (rather conventionally) overcome by introducing a scale of priorities in meeting the 

demand of the consumer of the categories at issue for certain fuel and energy types. 

The final implementation of the models includes a financial module that describes the 

investment costs for reconstruction, modernization of existing facilities, decommissioning of 

obsolete equipment, and commissioning of new facilities at energy facilities. With these models, it is 

also possible to take account of the development dynamics, which allows tracking such features of 

the multi-stage development process of the energy sector as: 

• commissioning of new production facilities;

• dismantling and conservation of old facilities,

• reconstruction of facilities with a change in the flow diagram.

Consideration of dynamics is implemented in the form of T independent static modules, each

of which describes all the territorial and technological links of the energy sector for stage t of the 

considered period. Dynamic connections between modules are built using equations that formulate 

for all xi facilities of the energy sector the condition for the continuity of their productive capacities 

at various stages of the considered period. This condition for the first stage is written as 
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and for subsequent stages, it is written in the form of equations 
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where 0iP is productive capacity of technology (facility i) by the beginning of the considered

period, 
n

itх 1 is productive capacity of a new part of technology (facility i) in stage  t-1,

o

itх is productive capacity of the operating part of the technology (facility i) in stage t, 

c

itx is  conservation of part of facility i in stage t,

d

itx is  liquidation of part of  facility i  in stage t. 

For the convenience of building the connections, equation (6) is divided into two parts 
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where Zit-1  is  an intermediate variable characterizing the overall performance of facility  i at 

the beginning of stage t. It takes into account the retirement of capacities in stage t and the 
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introduction of new capacities in the stage t+1. 

In general, these models are used to determine the following characteristics (indices): 

- the size of undersupply (shortage) in certain types of energy resources for the categories of

consumers at issue, selected territorial entities and the entire country, as the value of discrepancy 

between set demand and feasibility of producing this type of energy resource (considering such 

factors as the reserves, the possibilities of replacing this type of energy resource in other consumers, 

etc.); 

- changes in the capacity of transportation links, which are determined by comparing the

relevant indicators of the considered option with the original one; 

- rational use of production capacities of energy facilities, and the distribution of certain types

of energy resources according to selected categories of consumers. 

The backbone module in the energy sector model is the one of electricity and heat industry, 

therefore, correct modeling of the facilities that constitute the system boosts the adequacy of the 

model. 

The developed modeling system consists of industry models connected by information flows 

and an integrating model of the energy sector as a whole. This system makes it possible to enhance 

the existing practice of assessing the materialization of energy security threats through: 

- identifying the mutual influence of energy systems on each other and comprehensively

assessing the impact of energy security threats; 

- considering the dynamics of the development of critical situations in the models of

optimization of energy systems within the energy sector; 

- taking into account the load curve, which imposes requirements of the consumer on industry

systems; 

- taking into consideration nonlinearity in terms of the adequacy of the representation of

processes in energy systems to improve the accuracy of decisions made (in models of industry 

systems); 

- allowing for natural factors in terms of their impact on the operation of renewable energy

sources (periods of low water for hydropower plants, cloudy days for solar power plants, low-wind 

periods for wind turbines); 

- considering the influence of inertia in the gas, coal, and oil refining industries on the

development of emergencies in them and relate them with their unfolding in the electricity industry, 

which is a backbone for the energy sector. 

- taking into account the specific features of the mutual influence of the gas and electricity

industries when meeting the conditions for the reliability of gas and electricity supply to the 

production facilities of these industries; 

- taking into consideration the specific features of the mutual influence of the oil/oil refining

and electricity industries when meeting the conditions for the reliability of electricity and oil 

products supply to the production facilities of these industries. 

III. Case study. Assessment of a shortage caused by critical situations in

energy systems. 

There are many energy security threats of which the natural and technology-driven are the most 

common ones. We will analyze the materialization of several of them in a real energy sector. 

  For countries with harsh climatic conditions, a particularly urgent threat is the threat of a sharp 

cooling. Critical situations in the fuel and energy supply arise from the rapid and widespread 

cooling that can envelop vast areas of the country. At the same time, depending on the climatic 

conditions of a particular region and the type of consumers, the maximum seasonal heating loads 
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can deviate from the average annual values by a significant amount, up to 20-30%. The threat of a 

cold snap is extremely relevant for Russia. Modeling and analysis of the threat of a sharp cooling 

and its implications will be made on the example of the Russian energy sector. The calculations 

assumed a decrease in the average outdoor air temperature during one quarter of the heating season 

in the European part of Russia by 2°C versus the long-term average, which will lead to an increase 

in the demand for boiler and furnace fuel by about 8% (Critical situation (CS)1). 

One of the most dangerous (in terms of consequences) situations in the gas supply system is the 

possibility of damage to transcontinental gas pipelines. This threat is especially acute with a large 

share of gas in the production of electricity and heat, which is typical of some regions of Russia. The 

possibility of failure of one of the main gas pipeline sections was considered as the design conditions 

for a critical situation in the gas supply system. This situation, given the restoration work leads to a 

decline in gas supply to some regions of Russia by 5% per quarter (CS 2). 

In the oil system, it is important to analyze the impact of a decrease in the fuel oil supply from 

regions where large oil refining capacities are concentrated and possible complications of a various 

nature, including socio-political ones. At the same time, disturbances were introduced into the 

model in the form of a decrease in the fuel oil supply by 8% of its total production during the 

analyzed period (CS 3). 

In coal supply, a potentially dangerous situation is when a high proportion of coal comes from 

one source. In this case, the design conditions provide for a 30% reduction in coal supplies to power 

plants in one of Russia’s regions and a similar reduction in coal supplies from another region (CS 4). 

Currently, one of the dangerous factors for reliable fuel and energy supply is the imbalance of 

some regional electric power systems. Therefore, consideration was given to the consequences of the 

rupture of backbone ties in the electric power industry. In addition to this, a possible reduction of 

30% in the capacity of nuclear power plants in one of the energy systems was introduced (CS 5). 

 Furthermore, the issue of potential overlap between the aforementioned disruptions (CS 6) 

and the potential utilization of additional reserves of fuel oil and coal equivalent to a 10-day demand 

(CS 7) was considered. While it is highly improbable for all critical situations to overlap, this 

circumstance provides a valuable opportunity to evaluate the limitations of the energy sector in 

meeting the fuel and energy demands of consumers. In addition, it emphasizes the importance of 

mutual reservation of energy systems and regions in the face of a global deterioration in energy 

conditions. The diagram for the formation of emergency situations is shown in Fig. 3.  

Figure 3. Scheme of formation of critical  situations. 
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An analysis of calculations based on the generated scenarios of critical situations indicates that 

the most significant situations in terms of their consequences for consumers of energy resources 

proved to be those with cooling (CS 1) and mutual overlap of critical situations (CS 6). A good 

example is the shortage observed in the case of a decrease in fuel supplies and other disturbances 

(CS 1-CS7) (Fig. 4). 

Figure 4. Electricity shortage in critical situations №№ 1-7, % of the needs. 

Disturbing impacts caused by a combination of critical situations (CS6) had a greater impact on 

the systems of coal, electricity, and heat supply. The overall shortage of coal in the country amounted 

to about 11% of its total consumption, electricity and heat shortage was about 6% (Fig.5). 

Figure 5. Shortage of energy resources in CS, % of the needs. 

There is no shortage of resources in gas and fuel oil systems, but there has been a decrease in 

gas and fuel oil consumption at power plants and boiler houses. This led to a greater consumption 

of coal for the production of heat and electricity, resulting in a significant shortage of this fuel. This 

is explained by the fact that the closing type of fuel in this implementation of the model is coal.  

The cooling and rupture of links in the electric power system and the reduction in the power of 

nuclear power plants, assumed in the calculations (CS 5), resulted in a shortage of electricity 

throughout country by about 7% (with the full use of the available backup generating capacities of 
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thermal power plants). 

The introduction of additional fuel reserves (coal and fuel oil) into the model in the amount of 

a 10-day demand (CS 7) reduced the shortage of coal to 10%. This was achieved by redistributing 

electricity generation between gas-oil and coal-fired thermal power plants, i.e., additional fuel oil 

resources were used at thermal power plants, which freed up coal to partially compensate for the 

coal shortage of consumers in non-energy industries. 

The involvement of additional fuel reserves in the supply of electricity and heat did not cause 

changes and the shortage amounted to the same value. This is explained by the fact that all the 

reserves of thermal power plants were used to compensate for the growth in demand for energy 

resources and the decrease in the power of nuclear power plants. In this case, the increase in fuel 

resources without additional commissioning of generating capacities of power plants did not lead 

to additional generation of electrical and thermal energy.  

In the context of Critical Situation 6 (CS 6), coal shortage was observed in almost all regions. 

However, after the creation of 10-day fuel reserves, this shortage has decreased in many regions. 

The performed experimental calculations have demonstrated the effectiveness of energy 

security research based on modeling of the energy security threats. A preliminary assessment of the 

fuel and energy supply to consumers under various critical situations showed a rather high degree 

of sensitivity of the model to changes in parameters and the possibility of its effective use for this 

kind of research. 

IV. Conclusion

Assessing the energy security and reliability of fuel and energy supply in the context of current 

social and economic development in different countries is crucial and highly relevant. This is 

because the functioning of all life-sustaining systems and structures relies heavily on a reliable 

energy supply. 

The energy security research requires an adequate dedicated modeling system for analyzing 

the interrelated operation of energy systems in the event of materialization of energy security 

threats. The paper presents a methodological framework of such a system and the methodological 

features of modeling the interlinked work of industries in today’s context. The developed system is 

designed to conduct experimental research to find ways to provide consumers with energy resources 

without a shortage when functioning under normal conditions and in critical situations. 

The experimental part illustrates the results of case studies on the application of the presented 

methodological tool to real energy systems with the view to analyzing several different critical 

situations (energy security threats). These are a severe drop in temperature, damage to 

transcontinental gas pipelines, a decrease in the supply of fuel oil, the termination of coal supply 

from the dominant source, rupture of backbone connections in the electric power system, overlap of 

all the listed situations and overlap with one compensatory measure. The findings of all cases show 

the high performance and efficiency of the proposed methodological tool for the energy security 

research.  
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Abstract

In this paper, we consider the problem of estimation of parameters of the Kumaraswamy exponential
distribution using progressive type-I interval censored data. The maximum likelihood estimators (MLEs)
of the parameters are obtained. As it is observed that there is no closed-form solutions for the MLEs, we
implement the Expectation-Maximization (EM) algorithm for the computation of MLEs. Bayes estimators
are also obtained using different loss functions such as the squared error loss function and the LINEX
loss function. For the Bayesian estimation, Lindley’s approximation method has been applied. To evaluate
the performance of the various estimators developed, we conduct an extensive simulation study. The
different estimators and censoring schemes are compared based on average bias and mean squared error.
A real data set is also taken into consideration for illustration.

Keywords: Maximum likelihood estimate, EM algorithm, Bayesian inference, Lindley’s approxi-
mation

1. Introduction

In life testing experiment and survival analysis, the test units may leave the experiment before
failure due to restriction of time, budget cost or accidental breakage. A censored sample refers to
data that was gathered from such cases but may not be complete. Over the last few decades, a
number of censoring methodologies have been developed for the analysis of such situations. In
the exiting literature, two commonly used traditional censoring schemes are type-I and type-II,
in which experiment is terminated after a prescribed time point and number of failures, respec-
tively. However, neither of these two censoring strategies permit the experimenter to remove
live units from the experiment prior to its termination time. To remove the units in between the
experiments, the idea of progressive censoring was developed by [7]. It is further observed that,
in many practical situations it is not possible for the experimenter to continuously observe the
life test units to observe the precise failure lifetimes. For example, in medical and clinical trials,
specific information regarding the patient survival lifetime for those diagnosed with a particular
treatment may not be available. In such cases, the failure lifetimes are often observed in the
intervals, known as interval censoring. However, this censoring does not allow to remove the units
in between the experiments. The concept of progressive type-I interval censoring, incorporating
the principles of type-I, progressive, and interval censoring schemes, was introduced by [2]. In
this type of censoring, items can be withdrawn between two successive time points that have
been prescheduled.

The progressive type-I interval censored sample is gathered in the following manner. Assume
that n units are placed on a life test at the time t0 = 0. Units are inspected at m predefined
times t1, t2, ..., tm, with tm being the experiment’s scheduled finish time. At the ith inspection
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time ti, i = 1, ..., m, the number Xi , of failures within (ti−1, ti] is recorded and Ri surviving units
are randomly removed from the life test. The number of surviving units at time t1, ..., tm is a
random variable, hence the number of removals R1, ..., Rm can be estimated as a percentage of the
remaining surviving units. Specifically, ⌊qi× (number of surviving units at time ti)⌋ remaining
surviving units are eliminated from the life test with pre-specified values of q1, ..., qm−1 and
qm = 1, where ⌊w⌋ = the largest integer less than or equal to w. Alternatively, R1, R2, ..., Rm can
be pre-specified non-negative integers, with Robs

i = min(Ri, number of surviving units at time
ti), i = 1, 2, ..., m − 1, and Robs

m = number of surviving units at time tm. Data observed under this
censoring scheme can be represented as (Xi, Ri, ti)

m
i=1. If F(x, θ) is the cumulative distribution

function (cdf) of the population from which the progressive type-I censored sample is taken, then
the likelihood function of θ can be constructed as follows (see, [2])

L(θ) ∝
m

∏
i=1

[F(ti, θ)− F(ti−1, θ)]Xi [1 − F(ti, θ)]Ri , (1)

where t0 = 0.

In the recent past, several authors studied progressive type-I interval censored sampling schemes
under various circumstances. The maximum likelihood estimates of the parameters of the
exponentiated Weibull family and their asymptotic variances were obtained by [4]. Optimally
spaced inspection times for the log-normal distribution were determined by [12], while different
estimation methods based on progressive type-I interval censoring were considered for the
Weibull distribution by [17] and for the Generalized exponential distribution by [6]. The statistical
inference under this censoring for Inverse Weibull distribution was further discussed by [19].
Bayesian inference under this censoring has been discussed by [3] for Dagum distribution.
In this paper, we consider progressive type-I interval censored sample taken from a Kumaraswamy
exponential (KE) distribution with probability density function (pdf) given by

f (x) = βλe−x(1 − e−x)β−1(1 − (1 − e−x)β)λ−1, x > 0 . (2)

The cdf corresponding to the above pdf is given by

F(x) = 1 − (1 − (1 − e−x)β)λ, x > 0 , (3)

where β > 0, λ > 0 are two shape parameters. Through out the paper, we use the notation
KE(β, λ) to denote Kumaraswamy exponential distribution with shape parameters β and λ. The
KE distribution is a generalisation of the exponential distribution that was created as a model
for issues in environmental studies and survival analysis. Several studies on Kumaraswamy
distribution and its generalisations have been published in recent years. An exponentiated
Kumaraswamy distribution and its properties were considered and discussed by [11].The Ku-
maraswamy linear exponential distribution with four parameters was introduced by [9], who
also derived some of its mathematical properties. The maximum likelihood estimation of the
unknown parameters for the Kumaraswamy exponential distribution was considered by [1]. The
exponentiated Kumaraswamy exponential distribution and its characterization properties were
introduced by [18]. The estimation of parameters for the Kumaraswamy exponential distribution
under a progressive type-II censored scheme was considered by [5].

The structure of this paper is outlined as follows. The maximum likelihood estimators of
KE(β, λ) parameters are obtained in Section 2. In this section, estimators are also obtained using
EM algorithm. In Section 3, Bayes estimates for β and λ are obtained for different loss functions
such as squared error and LINEX. Here, Lindley’s approximation method is used to evaluate these
Bayes estimates. In Section 4, a simulation study is carried out for analysing the properties of
various estimators developed in this paper. In Section 5, a real data is considered for illustration.
Finally, in Section 6, we present some concluding remarks.
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2. Maximum Likelihood Estimation

Let (Xi, Ri, ti) , i = 1, 2, · · · n be a progressively type-I interval censored sample taken from the
KE(β, λ) distribution defined in (2), then by using (1), the likelihood function is given by

L(β, λ) ∝
m

∑
i=1

[[
1 − (1 − e−ti−1)β

]λ
−
[
1 − (1 − e−ti )β

]λ
]Xi
[[

1 − (1 − e−ti )β
]λ
]Ri

. (4)

Then the log-likelihood function is given by

l(β, λ) = ln L(β, λ) =
m

∑
i=1

Xi ln
[
[1 − (1 − e−ti−1)β

]λ
−
[
1 − (1 − e−ti )β]λ

]
+

m

∑
i=1

Ri ln
[
1 − (1 − e−ti )β

]λ
. (5)

The MLEs of β and λ are the solutions to the following normal equations

m

∑
i=1

Ri λ[1 − Zβ
i ]

λZβ
i ln Zi

[1 − Zβ
i ]

λ
= −

m

∑
i=1

Xi

[
λ[1 − Zβ

i ]
λ−1Zβ

i ln Zi − λ[1 − Zβ
i−1]

λ−1Zβ
i−1 ln Zi−1

]
[(1 − Zβ

i )
λ − (1 − Zβ

i−1)
λ]

(6)

and

m

∑
i=1

Ri λ[1 − Zβ
i ]

λln(1 − Zβ
i )

[1 − Zβ
i ]

λ
= −

m

∑
i=1

Xi

[
(1 − Zβ

i )
λln(1 − Zβ

i )− (1 − Zβ
i−1)

λ ln(1 − Zβ
i )
]

[(1 − Zβ
i )

λ − (1 − Zβ
i−1)

λ]
, (7)

where Zβ
i = (1 − e−ti ).

As the above equations have no closed form solutions, the MLEs can be obtained through an
iterative numerical methods such as Newton-Raphson method. Since the MLEs are obtained
using numerical method, in the following subsection, the EM algorithm is used to find the MLEs
of β and λ.

2.1. EM Algorithm

The Expectation-Maximization (EM) algorithm is a broadly applicable method of iterative comput-
ing of maximum likelihood estimates and useful in a variety of incomplete-data scenarios where
methods like the Newton-Raphson method may prove to be more difficult. The expectation step,
also known as the E-step, and the maximisation step, often known as the M-step, are two steps
that comprise each iteration of the EM algorithm. Therefore, the algorithm is known as the EM
algorithm, and its detailed development can be found in [8]. The EM algorithm for finding MLEs
of the parameter of the two-parameter Kumaraswamy exponential distribution is as follows.
Let ψi,j, j = 1, 2, .....Xi, be the survival times of the units failed within subinterval (ti−1ti] and
ψ∗

i,j, j = 1, 2, .....Ri be the durations of survival for those units withdrawn at ti for i = 1, 2, 3, ...m,
then the log likelihood function, ln(Lc), based on the lifetimes of all n items (complete sample)
from the two-parameter KE(β, λ) distribution is given by

ln(Lc) =
m

∑
i=1

[
Xi

∑
j=1

log( f (ψi,j, θ)) +
Ri

∑
j=1

log( f (ψ∗
i,j, θ))

]
,
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ln(Lc) = [ln(β) + ln(λ)]
m

∑
i=1

[Xi + Ri]−
m

∑
i=1

[
Xi

∑
j=1

ψi,j +
Ri

∑
j=1

ψ∗
i,j

]
+

(β − 1)
m

∑
i=1

[
Xi

∑
j=1

ln(1 − e−ψi,j) +
Ri

∑
j=1

ln(1 − e−ψ∗
i,j)

]
+

(λ − 1)
m

∑
i=1

[
Xi

∑
j=1

ln
[
1 − (1 − e−ψi,j)β

]
+

Ri

∑
j=1

ln
[
1 − (1 − e−ψ∗

i,j)β
]]

, (8)

where ∑m
i=1(Xi + Ri) = n

Taking the derivatives of (8) with respect to β and λ, respectively, the following normal equations
are obtained:

n
β
=(λ − 1)

m

∑
i=1

 Xi

∑
j=1

(1 − e−ψi,j)βln(1 − e−ψi,j)[
1 − (1 − e−ψi,j)β

]
+

m

∑
i=1

 Xi

∑
j=1

(1 − e−ψ∗
i,j)βln(1 − e−ψ∗

i,j)[
1 − (1 − e−ψ∗

i,j)β
]


−

m

∑
i=1

[
Xi

∑
j=1

ln(1 − e−ψi,j) +
Ri

∑
j=1

ln(1 − e−ψ∗
i,j)

]
(9)

and

n
λ
= −

m

∑
i=1

[
Xi

∑
j=1

ln
[
1 − (1 − e−ψi,j)β

]
+

Ri

∑
j=1

ln
[
1 − (1 − e−ψ∗

i,j)β
]]

. (10)

The lifetimes of Xi failures in the ith interval (ti−1, ti] are independent and follow a doubly trun-
cated Kumaraswamy exponential distribution from left at ti−1 and right at ti, while the lifetimes
of the Ri censored items at the time ti are independent and follow a truncated Kumaraswamy
exponential distribution from the left at ti, i = 1, 2, ...m.

For the EM algorithm, the following expected values of a doubly truncated Kumaraswamy ex-
ponential random variable Y, from a on the left and b on the right with 0 < a < b ≤ ∞ are needed.

Eβ,λ

[
ln(1 − e−Y)|Y ∈ [a, b)

]
=
∫ b

a

ln(1 − e−y) f (y; β, λ)dy
F(b : β, λ)− F(a; β, λ)

,

Eβ,λ

[
ln
[
1 − (1 − e−Y)β

]
|Y ∈ [a, b)

]
=
∫ b

a

ln
[
1 − (1 − e−y)β

]
f (y; β, λ)dy

F(b : β, λ)− F(a; β, λ)

and

Eβ,λ

[
(1 − e−Y)βln(1 − e−Y)[

1 − (1 − e−Y)β
] |Y ∈ [a, b)

]
=
∫ b

a

(1 − e−Y)βln(1 − e−Y)[
1 − (1 − e−Y)β

] f (y; β, λ)dy

F(b : β, λ)− F(a; β, λ)
.

The iterative process that results in the EM algorithm is as follows:

Step 1: Given starting values of β and λ, say β(0) and λ(0) and set k=0.

Step 2: In the (k + 1)th iteration, the following conditional expectations are computed by the
E-step. For i = 1, 2, · · · , m
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E1i = E ˆβ(k), ˆλ(k)

[
ln(1 − e−Y)|Y ∈ [ti−1, ti)

]
,

E2i = E ˆβ(k), ˆλ(k)

[
ln(1 − e−Y)|Y ∈ [ti, ∞)

]
,

E3i = E ˆβ(k), ˆλ(k)

[
ln[1 − (1 − e−Y)β̂(k) ]|Y ∈ [ti−1, ti)

]
,

E4i = E ˆβ(k), ˆλ(k)

[
ln[1 − (1 − e−Y)β̂(k) ]|Y ∈ [ti, ∞)

]
,

E5i = E ˆβ(k), ˆλ(k)

[
(1 − e−Y)β̂(k) ln(1 − e−Y)

[1 − (1 − e−Y)β̂(k) ]
|Y ∈ [ti−1, ti)

]
and

E6i = E ˆβ(k), ˆλ(k)

[
(1 − e−Y)β̂(k) ln(1 − e−Y)

[1 − (1 − e−Y)β̂(k) ]
|Y ∈ [ti, ∞)

]
.

Then, the likelihood equations (9) and (10) are respectively given by

n
β
= (λ − 1)

m

∑
i=1

[XiE5i + RiE6i]−
m

∑
i=1

[XiE1i + RiE2i] (11)

and
n
λ
= −

m

∑
i=1

[XiE3i + RiE4i] . (12)

Step 3: The M-step requires to solve the equations (11) and (12) and obtains the next values,
ˆβ(k+1) and ˆλ(k+1), of β and λ, respectively, as follows:

ˆβ(k+1) =
n

(λ̂(k+1) − 1)∑m
i=1 [XiE5i + RiE6i]− ∑m

i=1 [XiE1i + RiE2i]

and
ˆλ(k+1) = − n

∑m
i=1 [XiE3i + RiE4i]

.

Step 4: Checking for convergence; if convergence happens, then the current ˆβ(k+1) and ˆλ(k+1) are
the approximated maximum likelihood estimates of β and λ via EM algorithm. If the convergence
doesn’t happens, then set k = k + 1 and go to step 2.

3. Bayesian Estimation

In this section, Bayesian estimation of parameters of KE(β, λ) are obtained under both symmetric
and assymetric loss functions.

The squared error is a symmetric loss function and is defined as

L1(δ, δ̂) = (δ̂ − δ)2,

where δ̂ is the estimate of parameter δ.

An asymmetric loss function is the LINEX loss function, defined as

L2(δ, δ̂) ∝ eh(δ̂−δ) − h(δ̂ − δ)− 1, h ̸= 0 .
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We assume that the prior distributions for β and λ follow independent gamma distributions given
by

π1(β|a, b) ∝ βa−1e−bβ, β > 0, a > 0, b > 0,

and
π2(λ|c, d) ∝ λc−1e−dλ, λ > 0, c > 0, d > 0 .

In addition, the hyper-parameters a, b, c, and d represent the prior knowledge of the unknown
parameters.

The joint prior distribution of β and λ is of the form

π(β, λ) ∝ βa−1e−bβλc−1e−dλ, β > 0, λ > 0 . (13)

Then, the posterior density of (β, λ) is given by

π∗(β, λ| x) =
L(β, λ| x)π(β, λ)∫ ∞

0

∫ ∞
0 L(β, λ)π(β, λ| x)dλ dβ

. (14)

The Bayes estimates of β and λ against the loss function L1 are respectively obtained as

β̂SB = E(β|x) =

∫
β

∫
λ β l(β, λ)π(β, λ)dλdβ∫

β

∫
λ l(β, λ)π(β, λ)dλdβ

(15)

and

λ̂SB = E(λ|x) =

∫
β

∫
λ λ l(β, λ)π(β, λ)dλdβ∫

β

∫
λ l(β, λ)π(β, λ)dλdβ

. (16)

The Bayes estimates of β under the loss function L2 is obtained as

β̂LB = −1
h

log E(e−hβ|x), h ̸= 0,

where

E(e−hβ|x) =

∫
β

∫
λ e−hβl(β, λ)π(β, λ)dλdβ∫
β

∫
λ l(β, λ)π(β, λ)dλdβ

. (17)

The Bayes estimates of λ under the loss function L2 is obtained as

λ̂LB = −1
h

log E(e−hλ|x), h ̸= 0,

where

E(e−hλ|x) =

∫
β

∫
λ e−hλl(β, λ)π(β, λ)dλdβ∫
β

∫
λ l(β, λ)π(β, λ)dλdβ

. (18)

The ratios of integrals given in equations (15), (16), (17) and (18) cannot be obtained in a closed
form. Thus, [13] approximation method for evaluating the ratio of two integrals have been used.
This has been adopted by several researchers, such as [10], [5], to obtain the approximate Bayes
estimates.
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3.1. Lindley approximation method

Since all estimates have the forms of ratios of two integrals, to obtain these estimates numerically,
we use the Lindley’s approximation method. Since Bayes estimates of β and λ depend on the
ratio of two integrals, we define,

I(x) =

∫ ∞
0

∫ ∞
0 u(β, λ)el(β,λ|x)+ρ(β,λ)dβdλ∫ ∞
0

∫ ∞
0 el(β,λ|x)+ρ(β,λ)dβdλ

, (19)

where u(β, λ) is function of β and λ only and l(β, λ|x) is the same as logL(β, λ|x) and ρ(β, λ) =
log π(β, λ). Then by Lindley’s method, I(x) can be approximated as

Î(x) =u(β̂, λ̂) +
1
2
[(

ˆuββ + 2ûβρ̂β

)
ˆσββ +

(
ˆuλβ + 2ûλρ̂β

)
ˆσλβ+(

ˆuβλ + 2ûβρ̂λ

)
ˆσβλ + ( ˆuλλ + 2ûλρ̂λ) ˆσλλ

]
+

1
2

[(
ûβ ˆσββ + ûλ ˆσβλ

) ( ˆlβββ ˆσββ + ˆlβλβ ˆσβλ + ˆlλββ ˆσλβ + ˆlλλβ ˆσλλ

)
+
(
ûβ ˆσλβ + ûλ ˆσλλ

) ( ˆlλββ ˆσββ + ˆlβλλ ˆσβλ + ˆlλβλ ˆσλβ + ˆlλλλ ˆσλβ

)]
, (20)

where β̂ and λ̂ are the ML estimators of β and λ, respectively. Also, uββ is the second derivative
of the function u(β, λ) with respect to β and ˆuββ is the same expression evaluated at (β̂, λ̂) . Other
expressions are given by

lββ =
∂2l(β, λ)

∂β2

=
m

∑
i=1

Xi


(

∂2Fi
∂β2 − ∂2Fi−1

∂β2

)
(Fi − Fi−1)

−

(
∂Fi
∂β − ∂Fi−1

∂β

)2

(Fi − Fi−1)
2

+ Ri

 − ∂3Fi
∂β3

(1 − Fi)
−

(
∂Fi
∂β

)2

(1 − Fi)
2




lλλ =
∂2l(β, λ)

∂λ2

=
m

∑
i=1

Xi


(

∂2Fi
∂λ2 − ∂2Fi−1

∂λ2

)
(Fi − Fi−1)

−

(
∂Fi
∂λ − ∂Fi−1

∂λ

)2

(Fi − Fi−1)
2

+ Ri

 − ∂3Fi
∂λ3

(1 − Fi)
−

(
∂Fi
∂λ

)2

(1 − Fi)
2




lβλ =
∂2l(β, λ)

∂λ2

=
m

∑
i=1

Xi


(

∂2Fi
∂β∂λ − ∂2Fi−1

∂β∂λ

)
(Fi − Fi−1)

−

(
∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2

+

Ri

 − ∂2Fi
∂β∂λ

(1 − Fi)
−

(
∂Fi
∂β

) (
∂Fi
∂λ

)
(1 − Fi)

2

 (21)
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lλβ =
∂2l(β, λ)

∂λ2

=
m

∑
i=1

Xi


(

∂2Fi
∂β∂λ − ∂2Fi−1

∂β∂λ

)
(Fi − Fi−1)

−

(
∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2

+

Ri

 − ∂2Fi
∂β∂λ

(1 − Fi)
−

(
∂Fi
∂β

) (
∂Fi
∂λ

)
(1 − Fi)

2

 . (22)

From equations (21) and (22), we have

lβββ =
∂3l(β, λ)

∂β3

=
m

∑
i=1

Xi

 ∂3Fi
∂β3 − ∂3Fi−1

∂β3

Fi − Fi−1
−

3
(

∂2Fi
∂β2 − ∂2Fi−1

∂β2

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2 +

2
(

∂Fi
∂β − ∂Fi−1

∂β

)3

(Fi − Fi−1)
3


−Ri

 ∂3Fi
∂β3

1 − Fi
+

3
(

∂2Fi
∂β2

) (
∂Fi
∂β

)
(1 − Fi)

2 +
2
(

∂Fi
∂β

)3

(1 − Fi)
3


 ,

lλλλ =
∂3l(β, λ)

∂λ3

=
m

∑
i=1

Xi

 ∂3Fi
∂λ3 − ∂3Fi−1

∂λ3

Fi − Fi−1
−

3
(

∂2Fi
∂λ2 − ∂2Fi−1

∂λ2

) (
∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)2 +

2
(

∂Fi
∂λ − ∂Fi−1

∂λ

)3

(Fi − Fi−1)
3


−Ri

 ∂3Fi
∂λ3

1 − Fi
+

3
(

∂2Fi
∂λ2

) (
∂Fi
∂λ

)
(1 − Fi)

2 +
2
(

∂Fi
∂λ

)3

(1 − Fi)
3


 ,

lλββ =
∂3l(β, λ)

∂λ∂β2

=
m

∑
i=1

Xi

 ∂3Fi
∂λ∂β2 −

∂3Fi−1
∂λ∂β2

Fi − Fi−1
−

(
∂2Fi
∂β2 − ∂2Fi−1

∂β2

) (
∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)2

−
2
(

∂Fi
∂β − ∂Fi−1

∂β

) (
∂2Fi
∂λ∂β − ∂2Fi−1

∂λ∂β

)
(Fi − Fi−1)

2 +
2
(

∂Fi
∂β − ∂Fi−1

∂β

)2 ( ∂Fi
∂λ − ∂Fi−1

∂λ

)
(Fi − Fi−1)

3


−Ri

 ∂3Fi
∂λ∂β2

1 − Fi
+

(
∂2Fi
∂β2

) (
∂Fi
∂λ

)
(1 − Fi)

2 + 2

(
∂Fi
∂β

) (
∂2Fi
∂λ∂β

)
(1 − Fi)

3 +
2
(

∂Fi
∂β

)2 ( ∂Fi
∂λ

)
(1 − Fi)

3


 ,
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lβλβ =
∂3l(β, λ)

∂λ∂β2

=
m

∑
i=1

Xi

 ∂3Fi
∂β∂λ∂β − ∂3Fi−1

∂β∂λ∂β

Fi − Fi−1
−

(
∂2Fi
∂β∂λ − ∂2Fi−1

∂β∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)2

−


(

∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂2Fi
∂β2 − ∂2Fi−1

∂β

)
+
(

∂2Fi
∂λ∂β − ∂2Fi−1

∂λ∂β

) (
∂Fi
∂β − ∂Fi−1

∂β

)
(Fi − Fi−1)

2


−

2
(

∂Fi
∂λ − ∂Fi−1

∂λ

) (
∂Fi
∂β − ∂Fi−1

∂β

)2

(Fi − Fi−1)2


+ Ri

−
∂3Fi

∂β∂λ∂β2

1 − Fi
+

(
∂2Fi
∂β∂λ

) (
∂Fi
∂β

)
(1 − Fi)

2

−


(

∂Fi
∂β

) (
∂2Fi
∂λ∂β

)
(1 − Fi)

3 +

(
∂Fi
∂β

) (
∂Fi
∂λ

)
(1 − Fi)

2

+

2
(

∂Fi
∂λ

) (
∂Fi
∂λ

)2(
1 − F3

i
)


 .

Let ui = 1 − e−ti . Then

∂Fi
∂β

= λ
[
1 − uβ

i

]λ−1
uβ

i ln ui

∂2Fi
∂β2 = λ

[
1 − uβ

i

]λ−1
uβ

i (ln ui)
2 − λ (λ − 1)

[
1 − uβ

i

]λ−2 (
uβ

i ln ui

)2

∂3Fi
∂β3 = λ

[
1 − uβ

i

]λ−1
uβ

i (ln ui)
3 + uβ

i (ln ui)
2 λ (λ − 1)

[
1 − uβ

i

]λ−2

∂Fi
∂λ

= −λ
[
1 − uβ

i

]λ−1

∂2Fi
∂λ2 = −λ(λ − 1)

[
1 − uβ

i

]λ−2

∂3Fi
∂λ3 = −λ(λ − 1)(λ − 2)

[
1 − uβ

i

]λ−3

− 2λ (λ − 1)
[
1 − uβ

i

]λ−2
uβ

i (ln ui)
3 + λ (λ − 1) (λ − 2)

[
1 − uβ

i

]λ−3 (
uβ

i ln ui

)3

∂2Fi
∂β∂λ

= λ (λ − 1)
[
1 − uβ

i

]λ−2
uβ

i ln ui

∂3Fi
∂β2∂λ

= λ (λ − 1)
[
1 − uβ

i

]λ−2
uβ

i (ln ui)
2 − λ (λ − 1)

[
1 − uβ

i

]λ−3 (
uβ

i ln ui

)2

∂3Fi
∂β∂λ2 = λ (λ − 1) (λ − 2)

[
1 − uβ

i

]λ−3
uβ

i ln ui

∂2Fi
∂λ∂β

= λ (λ − 1)
[
1 − uβ

i

]λ−2
uβ

i ln ui

∂3Fi
∂β∂λ∂β

= λ (λ − 1)
[
1 − uβ

i

]λ−2
uβ

i (ln ui)
2 − λ (λ − 1) (λ − 2)

[
1 − uβ

i

]λ−3
uβ

i ln ui

∂3Fi
∂λ∂β2 = λ (λ − 1)

[
1 − uβ

i

]λ−2
uβ

i (ln ui)
2 − λ (λ − 1) (λ − 2)

[
1 − uβ

i

]λ−3 (
uβ

i ln ui

)2
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Also,
ρ(β, λ) ∝ (c − 1)logβ − dβ + (b − 1)logλ − aλ . (23)

Thus,

ρ̂β =
c − 1

β̂
− d

and
ρ̂λ =

b − 1
λ̂

− a .

Here (
σ̂ββ σ̂βλ

σ̂λβ σ̂λλ

)
= -

(
l̂ββ l̂βλ

l̂λβ l̂λλ

)−1

We now determine the approximate Bayes estimates of β and λ under various loss functions
using the above-mentioned equations. First, we derive the Bayes estimates for β and λ under
the squared error loss function L1. For estimating β, we take u(β, λ) = β. Therefore uβ = 1 and
uββ = uλ = uλλ = uβλ = uλβ = 0. Then the Bayes estimate of β under the loss function L1 is
obtained as

β̂SB =β̂ + 0.5[2β̂βσ̂ββ + 2β̂λσ̂βλ + σ̂ββ l̂βββ+

σ̂ββσ̂βλ l̂βλβ + 2σ̂ββσ̂λβ l̂λββ + σ̂λβσ̂λλ l̂λλλ] .

To estimate λ, we take u(β, λ) = λ. Thus uλ = 1 and uβ = uββ = uλλ = uλβ = uβλ = 0. Then the
Bayes estimate of λ under the loss function L1 can be determined as

λ̂SB =λ̂ + 0.5[2β̂βσ̂λβ + 2β̂λσ̂λλ + σ̂ββσ̂βλ l̂βββ+

σ̂2
βλ l̂βλβ + σ̂βλσ̂λβ l̂λββ + σ̂ββσ̂λλ l̂λββ + σ̂2

λλ l̂λλλ] .

Now, we obtain the Bayes estimates of β and λ under LINEX loss function L2. For estimating
β, we take u (β, λ) = e−hβ. Thus uβ = −he−hβ, uββ = h2e−hβ and uλ = uλλ = uλβ = uβλ = 0.
Therefore, Bayes estimate of β under the loss function L2 is obtained as

β̂LB = −1
h

log[E(e−hβ|x)] , (24)

where

E(e−hβ|x) =e−hβ̂ + 0.5[ûββσ̂ββ + ûλ(2β̂λσ̂ββ + 2β̂λσ̂λ + σ̂2
ββ l̂βββ+

σ̂ββσ̂βλ l̂βλβ + 2σ̂βββσ̂λβ l̂λββ] , (25)

To estimate λ, we take u(β, λ) = e−hλ. Thus, uλ = −he−hλ, uλλ = h2e−hλ and uβ = uββ = uλβ =
uβλ = 0. Therefore, the Bayes estimate of λ under the loss function L2 is obtained as

λ̂LB = −1
h

log[E(e−hλ|x)] , (26)

where

E(e−hλ|x) =e−hλ̂ + 0.5
[
ûλλσ̂λλ + ûλ

(
2β̂βσ̂λβ + 2β̂λσ̂λλ + σ̂ββσ̂βλ l̂βββ+

σ̂2
βλ ł̂βλβ + σ̂βλσ̂λβ ł̂λββ + σ̂λλσ̂ββ l̂λββ + σ̂2

λλ l̂λλλ

)]
. (27)
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4. Simulation Study

A simulation study is carried out in this section to investigate the behaviours of the proposed
methods of estimation for the KE distribution. Five different censoring schemes are suggested to
generate progressive type-I interval censored data from the KE distribution, and a comparison
of all the estimating techniques mentioned above will be addressed. The simulation is run
in R programming. The different censoring schemes used to compare the performance of the
estimation procedures is given in the following table.

Scheme n m q(i)
i

1 75 10 (0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 1)
2 75 12 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
3 100 15 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25

0.25, 0.25, 0.25, 1)
4 100 20 (0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
5 100 25 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Here, for the censoring scheme 1, the first few intervals are lighter, and the remaining intervals
are heavier. Schemes 2 and 5 represent conventional interval censoring, in which no removals are
made prior to the end of the experiment, scheme 3 is the reverse of scheme 1, and censoring in
scheme 4 occurs only at the beginning and end. For various combinations of n, m, and various
censoring schemes, the performance of each estimators is numerically compared in terms of their
bias and mean square error (MSE) values. The bias and MSE of the MLE’s and the estimates
obtained using the EM algorithm are given in Table 1.

For Bayes estimation, we considered both informative and non-informative priors for the un-
known parameters. For informative prior, we consider two priors; Prior 1 and Prior 2. The
hyper-parameters for Prior 1 and Prior 2 are chosen in such a way that mean of the prior dis-
tribution is equal to the parameter value and variance of the prior distribution is high (Prior 1)
and low (Prior 2). The values of hyper-parameters we considered for different choices of the
parameters β and λ are given below.

Parameter Prior Hyper parameters
β/λ a/c b/d

1.25 Prior 1 1.25 1
Prior 2 2.5 2

1.5 Prior 1 1.5 1
Prior 2 3 2

1.75 Prior 1 1.75 1
Prior 2 3.5 2

2 Prior 1 1 0.5
Prior 2 4 2
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We use h = 1 to evaluate Bayes estimators under the LINEX loss function L2. In each case,
we have assessed bias and MSE based on 500 iterations. We repeat the simulation study for
various values of β and λ also. The bias and MSE for the estimate of β for both informative and
non-informative priors are given in Table 2. Table 3 provides the bias and MSE for the estimate of
λ for both informative and non-informative priors.

The tabulated values shows that all of the estimates do improve with a higher value of n. From
Table 1, regarding MSE and Bias, we found that the estimates based on the censoring schemes
2 and 5 give the better estimates of β and λ, followed by the scheme 4. In case of maximum
likelihood estimation given in table 1, as n increases the MSE of estimates decrease as expected.
Also, we can see that bias and MSEs of the estimates of β and λ via EM algorithm are smaller
than bias and MSEs of the corresponding MLEs. Also the Bayes estimators based on informative
prior perform much better than the MLEs in terms of biases and MSEs. From the tables 1, 2 and
3, it is clear that the bias and MSE of Bayes estimators under informative prior are smaller than
those of MLE’s.

As expected, the Bayes estimators based on informative prior perform much better than the Bayes
estimators based on non-informative prior in terms of biases and MSEs. From Tables 2 and 3,
one can see that for β and λ, estimators based on informative priors perform better to those of
non-informative priors in terms of bias and MSE. Also, among the Bayes estimators of β, the
estimator under the LINEX loss function performs better. Again, when compared to squared
error loss functions, estimators of λ under the LINEX loss function have the least bias and MSE.

Table 1: Bias and MSE of parameters under different censoring schemes for different values of β and λ

β̂ λ̂

(β, λ) n m c.s MLE EM MLE EM

Bias MSE Bias MSE Bias MSE Bias MSE

10 1 -0.3509 0.1807 -0.3055 0.0956 -0.4086 0.3751 -0.3131 0.3318
12 2 -0.2609 0.1073 -0.1063 0.0268 -0.2298 0.1260 -0.1192 0.1057

(1.25,1.5) 75 15 3 -0.3948 0.2090 -0.3129 0.0985 -0.6539 0.7903 -0.2564 0.7338
20 4 -0.2811 0.1276 -0.2259 0.0631 -0.2734 0.2140 -0.1871 0.2175
25 5 -0.2725 0.1174 -0.2195 0.0495 -0.2567 0.1782 -0.1691 0.1555
10 1 -0.3487 0.1360 -0.3160 0.0772 -0.1784 0.2405 -0.1686 0.1903
12 2 -0.0542 0.0394 -0.0528 0.0901 -0.1275 0.1113 -0.1136 0.0511

(1.75,2) 100 15 3 -0.3526 0.1757 -0.3016 0.0912 -0.3358 0.3049 -0.2373 0.2762
20 4 -0.1386 0.0538 -0.1029 0.0558 -0.1628 0.1496 -0.1421 0.1040
25 5 -0.0982 0.0501 -0.0898 0.0242 -0.1422 0.1386 -0.1315 0.0757
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5. Illustrations using real data

In this section, a real-life data is utilised to demonstrate the inference methods proposed in this
paper. The data was previously studied by [14] and [15].
The data shows the running and failure times for a sample of devices from the larger system’s
eld-tracking research. The failure times are:
2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61,
2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66.
The data was also previously considered by [16] and fitted for KE(β, λ) distribution. For evaluating
the goodness of fit, they used the Anderson-Darling test. The Anderson-Darling test statistic has
a value of 2.00757 and the related P-value is 0.0913729. Based on the aforementioned estimation
procedures, we have obtained the estimates of β and λ, which is included in Table 4.

Table 4: Estimates of β and λ for the real data

Bayes

n m Censoring scheme MLE EM SE LINEX

30 5 q = (0.25, 0.25, 0.5, 0.5, 1) β 1.2857 1.5756 1.5875 1.5173
Xi = (8, 3, 4, 1, 4) λ 0.5192 0.5739 0.5324 0.5338
Ri = (2, 1, 3, 4, 0)

30 7 q = (0.5, 0, 0, 0, 0, 0, 1) β 1.1000 1.3050 0.9374 0.9214
Xi = (7, 3, 3, 2, 3, 5, 0) λ 0.5355 0.5784 0.5875 0.5866
Ri = (3, 0, 0, 0, 0, 4, 0)

30 12 q = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) β 0.8453 1.1082 0.7944 0.7866
Xi = (5, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4) λ 0.4445 0.4961 0.4869 0.4346
Ri = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5)

6. Conclusion

In this paper, we considered the problem of estimation of parameters of Kumaraswamy-exponential
distribution based on progressive type-I interval censored sample. The maximum likelihood esti-
mators of the parameters β and λ were obtained. Since the MLEs of the unknown parameters of
the distribution does not admit closed form, we employed the EM algorithm approach. The Bayes
estimators were also obtained using different loss functions such as squared error loss function
and LINEX loss function. To evaluate the Bayes estimators, Lindley’s approximation method was
applied. Based on simulation study, we have the following conclusions. We observed that the
performance of EM algorithm was quite satisfactory. In addition, it was found that for both β and
λ, the bias and MSE of the Bayes estimators under an informative prior are smaller than those of
MLEs. The performance of Informative prior was better than the Non-informative prior both β
and λ in terms of bias and MSE values. For both β and λ, Bayes estimators under LINEX loss
function perform better with regard to bias and MSE. The estimation methods employed in this
paper were also illustrated using real data sets.
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Abstract

In this article the single-server queue situation described with batch arrivals, a mandatory first service
and a choice of second service are provided to the customers. A general distribution governs the service
times, whereas a compound Poisson distribution follows customer arrivals. Although each new customer
requests the first mandatory service, only some of them choose the optional second service. Customers
who are dissatisfied with mandatory service are more likely to get the required services later on. After
every service is finished, the server might choose to go on Bernoulli vacation. Time dependent probability
generating functions are constructed in terms of Laplace transforms using the supplementary variable
approach, and explicit results are obtained for the steady state. Additionally, mean waiting time and
mean queue length expressions are examined. The graphical and numerical representations improve
comprehension of the results even further.

Keywords: Optional second service, Feedback, Bernoulli vacation

1. Introduction

Queueing system is useful in a wide range of scenarios. Wireless networks, supermarkets,
restaurants, hospitals, modulation lines, and communication systems all use queueing systems.
There will always be lines. People are permitted to wait in line if a service time exceeds the pace of
arrivals. Recently, there have been several contributions on taking the M/G/1 queue with second
optional service into consideration. These kinds of queue situations arise in daily life. An optional
second service is part of a single-server queueing system that has been studied by Madan [11].
Madheswari and Suganthi [17] have discussed an M/G/1 orbital queue with an optional service
and beginning failures. The retrial time distribution is assumed to be exponential. Chowdary and
Paul [7] have explained a customers arrival in batches with an optional second service within an
N-policy framework. A batch arrival and single server with two service phases (the second of
which is optional) and working breakdown has been developed by Somasundaram et al. [22] The
system’s performance, steady state outcomes, and optimization analysis are examined and also
discusses how the concept to be applied to cellular networks and how crucial it is to take server
failures into account while providing services.

Queueing systems with feedback is allow customers to return to the same server for re-service
with certain probability. Li and Jinting [10] have suggested the implementation of a single server
orbital queue featuring numerous optional services and feedback options. Varalakshmi et al. [24]
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added to the idea of instant feedback in a unique way. After service completion, if a customer
need further service, they will instantly get the another service. A two-phase M/G/1 queueing
model with instantaneous feedback only for finite number of customers was studied by Kalidass
and Kasturi [8]. Moreover, there are several real-world situations where an orbital queue with
feedback arises.

Queueing models with vacations have been examined by several researchers. Maragatha-
sundari and Srinivasan [15] investigated the M/G/1 queue models with a single vacation in
a transient study. Madan [12] examined a single server queue that required mandatory server
shutdowns. In the industrial business, Karpagam et al. [9] examined a bulk queueing system
with rework that had a single vacation and beginning failure. Thangaraj and Vanitha [23] have
studied two stages of service, with single server and single arrival subject to compulsory server
vacation and random breakdown.

A batch arrival and single server queueing model with balking and vacation was studied by
Charan et al. [21]. Customers may leave the system when server is busy or on vacation. Ayyappan
and Deepa [3] discovered batch arrival bulk service queuing system with mandatory and optional
repair process. They formulate for the number of performance metrics, including expected queue
length, expected waiting time and idle duration. A single server retrial queue with working
vacations under multiple vacation policy, vacation interruptions, breakdown and impatient of
the customers was examined by Rajadurai et al. [18]. In this study, server breakdown due to the
arrival of negative consumers. Shanmugasundaram and Sivaram [20] discussed a single server
queue that includes feedback for a client and sever vacation. The steady-state probability and
some importance measures were obtained in this investigation. A two-stage batch arrival queue
system with reneging during vacation and breakdown times was presented by Baruah et al. [16].

Vacations can be categorized into various types, which are single vacations, multiple vacations,
compulsory vacations, modified vacations, J-vacations, Bernoulli vacations, modified Bernoulli
vacations, working vacations, multiple working vacations etc., Numerous of studies have used
the Bernoulli vacation as a parameter while analyzing queueing models. Arivudainambi and
Gowsalya [1] analysed an M/G/1 retrial queue with staring failure and vacation scheduled on
Bernoulli type. An M[X]G/1 retrial queue was studied by Madhu and Kaur [13], who combined
Bernoulli feedback, optional service, and the Bernoulli vacation idea for an unreliable server. A
retrial queue with batch arrivals was studied by Madhu et al. [14]. Bernoulli vacation was used
to provide the server with the opportunity to take a rest during both service phases.

Arivudainambi and Gowsalya [2] developed a Bernoulli vacation schedule and two types of
service for a retrial queueing system. The study covered the growing applications in teletraffic
theory, client-server communication, etc. A discrete time retrial queue with Bernoulli vacation,
preemptive resume priority, general Bernoulli feedback, and retrial periods was analysed by Chen
et al. [6]. This study indicates that if the server becomes idle after service, it will either wait for
a customer or initiate a single vacation. A repairable queue model with Bernoulli vacation and
a two-phase service structure was created by Wang and Li [26]. An M[X]/G/1 feedback retrial
queue with two-phase service, Bernoulli vacation, delayed repair, and orbit search was analyzed
by Chandrasekaran et al. [5].

Ayyappan and Somasundaram [4] analyzed a two-stage retrial G-queue with Bernoulli
vacation, working breakdown, and discretionary priority services. During the first stage of this
investigation, incoming priority units are free to disrupt service; however, during the second stage,
they are not allowed to do so. A modified Bernoulli vacation of batch arrival and retrial queue
with balking customers due to beginning failure was communicated by Rajam and Uma [19].
There are several uses for this model in the fields of healthcare, mail, manufacturing, production
lines, and communication networks. A retrial queue with feedback, working breakdowns, and
Bernoulli vacation was examined by Varalakshmi and Rajadurai [25].

In this paper, we study an M[X]/G/1 queue with feedback, optional second service, and
Bernoulli vacations where the second service stage is optional and the first service stage is
mandatory. Customers might choose to try again if they are not satisfied with the service they
received re-service after the first stage. The server can also take a Bernoulli vacation when each
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service is finished.
The primary goal of this inquiry is to ascertain average customer wait times and queue lengths,

which are crucial metrics for assessing the system effectiveness. The study comprehensive outline
is given in the parts that follow. The mathematical model description, integrating the essential
presumptions, is presented in Section 2. Section 3, explores real-world examples and applications.
Section 4, presents a series of equations that define the model governing the system. Section
5, deduces time-dependent solutions, while Section 6 concentrates on figuring out steady-state
outcomes. Some important performance metrics are calculated in Section 7. Section 8, follows
provides graphical representations and numerical results.

2. Methods

Diagrammatic representation of this model

• Customers use a compound Poisson process to enter the system in batches of different
sizes. ⋋Ckdt (where k = 1, 2, 3, . . . ) represents the likelihood that a batch of consumers of
size k would join the system during a short time interval (t, t + dt). The probabilities are
∑∞

k=1 Ck = 1 and 0 ≤ Ck ≤ n.
• The single server provides each customer with the first mandatory service. Let r1(V) stand

for the first service time density function and ℜ1(V) for the distribution function.
• Following the fulfillment of the mandatory service, the customer dissatisfaction of service,

there is a probability ’p’ that they will receive their standard service again. Alternatively,
the customer may permanently exit the system with a probability ’q=1-p’.

• Customers might choose to proceed with a second optional service after completing their
mandatory service. With the probability ’r’, if they desire the optional service they will
immediately get the service again or else with probability ’1-r’ the customer may leave the
system.

• Consider ℜ2(V) as the distribution function and let r2(V) represent the density function
specifically associated with the second optional service.

• The likelihood that the ith service will be completed within the time range [ℓ, ℓ + dℓ],
provided that ℓ has elapsed, is expressed by the equation µi(ℓ)dℓ.

µi(ℓ) =
ri(ℓ)

1 −ℜi(ℓ)
i = 1, 2...

and therefore
ri(v) = µi(v)e−

∫ v
0 µi(ℓ)dℓ i=1,2,....

• Following the completion of each service, either the server may go for Bernoulli vacation
with probability ’θ’ or stay in the system to serve the next customer with a probability of
’1-θ’. If the queue length is > 0, the server will start the next service; else, it remains idle.

• The system follows first-come, first-served queue discipline.
• Let v(ℓ) be the vacation density function and M(ℓ) be the distribution function.
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γ(ℓ) =
v(ℓ)

1 −M(ℓ)

and therefore
v(s) = γ(s)e−

∫ ∞
0 γ(ℓ)dℓ

• All stochastic processes involved are mutually independent.

3. Application of the Model

This model is useful in many different kinds of real-world situations. Take a scenario where a
consumer goes to a bank to get money from the cashier. Should the client be dissatisfied with
draw the amount, he might request another service. Upon receiving the money, the customer’s
choice is taken into account while making a passbook entry. Following the end of each customer’s
service, the cashier may choose to work on other duties (Bernoulli vacation).

4. System-governing definitions and equations.

H(1)
n (ℓ, t) and H(2)

n (ℓ, t) reflects the probability that, at time ’t’ with elapsed service time ’ℓ’,
the server is active and occupied with service, excluding the one customer being serviced at the
server station and ’n’ (≥ 0) customers in the queue.

Mn(ℓ, t) reflects the probability that the server is on vacation with an elapsed vacation time
’ℓ’ while there are n(≥ 0) customers in the queue.

I(t) reflects the probability that the system has no customers at time ’t’ and the server is idle
but available.

The following differential-difference equations are framed based on the model defined:

∂

∂ℓ
H(1)

n (ℓ, t)+
∂

∂t
H(1)

n (ℓ, t) = −(⋋+ µ1(ℓ))H
(1)
n (ℓ, t)+⋋(1 − δn0)

n

∑
k=1

ckH
(1)
n−k(ℓ, t) (1)

∂

∂ℓ
H(2)

n (ℓ, t)+
∂

∂t
H(2)

n (ℓ, t) = −(⋋+ µ2(ℓ))H
(2)
n (ℓ, t)+⋋(1 − δn0)

n

∑
k=1

ckH
(2)
n−k(ℓ, t) (2)

∂

∂ℓ
Mn(ℓ, t)+

∂

∂t
Mn(ℓ, t) = −(⋋+ γ(ℓ))Mn(ℓ, t)+⋋(1 − δn0)

n

∑
k=1

ckMn−k(ℓ, t) (3)

d
dt
I(t) = −⋋I(t) + (1 − r)(1 − θ)

∫ ∞

0
H(1)

0 (ℓ, t)µ1(ℓ)dℓ+ (1 − θ)
∫ ∞

0
H(2)

0 (ℓ, t)µ2(ℓ)dℓ (4)

Equations (1) to (4) must be solved under the following boundary conditions:

H(1)
n (0, t) =⋋cn+1I(t) + p

∫ ∞

0
H(1)

n (ℓ, t)µ1(ℓ)dℓ+ q(1 − r)(1 − θ)
∫ ∞

0
H(1)

n+1(ℓ, t)µ1(ℓ)dℓ

+ (1 − θ)
∫ ∞

0
H(2)

n+1(ℓ, t)µ2(ℓ)dℓ+
∫ ∞

0
Mn+1(ℓ, t)γ(ℓ)dℓ

(5)

H(2)
n (0, t) = rq

∫ ∞

0
H(1)

n (ℓ, t)µ1(ℓ)dℓ (6)

Mn(0, t) = θ
∫ ∞

0
H(2)

n (ℓ, t)µ2(ℓ)dℓ+ θ(1 − r)q
∫ ∞

0
H(1)

n (ℓ, t)µ1(ℓ)dℓ (7)

The initial conditions are
I(0) = 1,H(1)(0) = H(2)(0) = M(0) = 0 (8)
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5. The Time-Dependent Solution for Generating Queue Functions:

We establish the probability generating functions as follows:

H(1)
q (ℓ, z, t) =

∞

∑
n=0

znH(1)
n (ℓ, t) (9)

H(2)
q (ℓ, z, t) =

∞

∑
n=0

znH(2)
n (ℓ, t) (10)

Mq(ℓ, z, t) =
∞

∑
n=0

znMn(ℓ, t) (11)

C(z) =
∞

∑
k=1

zkck(t) (12)

By taking the Laplace transforms of Equations (1) through (7) and applying Equation (8), we
derive:

∂

∂ℓ
H̄(1)

n (ℓ,℘)+(℘+⋋+ 1(ℓ))H̄
(1)
n (ℓ,℘)=⋋(1 − δn0)

n

∑
k=1

ckH̄
(1)
n−k(ℓ,℘) (13)

∂

∂ℓ
H̄(2)

n (ℓ,℘)+(℘+⋋+ 2(ℓ))H̄
(2)
n (ℓ,℘)=⋋(1 − δn0)

n

∑
k=1

ckH̄
(2)
n−k(ℓ,℘) (14)

∂

∂ℓ
M̄n(ℓ,℘)+(℘+⋋+ γ(ℓ))M̄n(ℓ,℘)=⋋(1 − δn0)

n

∑
k=1

ckM̄n−k(ℓ,℘) (15)

(℘+⋋)Ī(℘) =1 + (1 − p)(1 − r)(1 − θ)
∫ ∞

0
H̄(1)

0 (ℓ,℘)µ1(ℓ)dℓ+ (1 − θ)
∫ ∞

0
H̄(2)

0 (ℓ,℘)µ2(ℓ)dℓ

+
∫ ∞

0
M̄0(ℓ,℘)γ(ℓ)dℓ

(16)

H̄(1)
n (0,℘) =⋋cn+1Ī(℘) + p

∫ ∞

0
H̄(1)

n (ℓ,℘)µ1(ℓ)dℓ+ q(1 − r)(1 − θ)
∫ ∞

0
H̄(1)

n+1(ℓ,℘)µ1(ℓ)dℓ

+ (1 − θ)
∫ ∞

0
H̄(2)

n+1(ℓ,℘)µ2(ℓ)dℓ+
∫ ∞

0
M̄n+1(ℓ,℘)γ(ℓ)dℓ

(17)

H̄(2)
n (0,℘) = rq

∫ ∞

0
H̄(1)

n (ℓ,℘)µ1(ℓ)dℓ (18)

M̄n(0,℘) = θ
∫ ∞

0
H̄(2)

n (ℓ,℘)µ2(ℓ)dℓ+ θ(1 − r)q
∫ ∞

0
H̄(1)

n (ℓ,℘)µ1(ℓ)dℓ (19)

Equations (13) multiplied by suitable powers of z, summed over n, and simplified using (9).
Following algebraic computations, we obtain:

∂

∂ℓ
H̄(1)

q (ℓ, z,℘)+(℘+ [⋋(1 − C(z)] + µ1(ℓ))H̄
(1)
q (ℓ, z,℘)=0 (20)

By using (10) and carrying out similar procedures on (14), we derive:

∂

∂ℓ
H̄(2)

q (ℓ, z,℘)+(℘+ [⋋(1 − C(z)] + µ2(ℓ))H̄
(2)
q (ℓ, z,℘)=0 (21)

By using (11) and carrying out similar procedures on (15), we derive:

∂

∂ℓ
M̄q(ℓ, z,℘)+(℘+ [⋋(1 − C(z)] + γ(ℓ))M̄q(ℓ, z,℘)=0 (22)

The two sides of equation (17) are then multiplied by z, the sum over n from 0 to ∞, we get
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H̄(1)
q (0, z,℘) =⋋C(z)Ī(℘) + pz

∫ ∞

0
H̄(1)

q (ℓ, z,℘)µ1(ℓ)dℓ+ (1 − p)(1 − r)(1 − θ)[ ∫ ∞

0
H̄(1)

q (0, z,℘)µ1(ℓ)dℓ−
∫ ∞

0
H̄(1)

0 (ℓ,℘)µ1(ℓ)dℓ
]

+ (1 − θ)

[ ∫ ∞

0
H̄(2)

q (0, z,℘)µ2(ℓ)dℓ−
∫ ∞

0
H̄(2)

0 (ℓ,℘)µ2(ℓ)dℓ
]

+

[ ∫ ∞

0
M̄q(0, z,℘)γ(ℓ)dℓ−

∫ ∞

0
M̄0(ℓ,℘)γ(ℓ)dℓ

]
(23)

By carrying out analogous procedures on equations (18) and (19), we obtain

H̄(2)
q (0, z, s) = r(1 − p)

∫ ∞

0
H̄(1)

q (ℓ, z, s)µ1(ℓ)dℓ (24)

M̄q(0, z,℘) = θ
∫ ∞

0
H̄(2)

q (ℓ, z,℘)µ2(ℓ)dℓ+ θ(1 − r)(1 − p)
∫ ∞

0
H̄(1)

q (ℓ, z,℘)µ1(ℓ)dℓ (25)

Using equation (16) in (23), we get

zH̄(1)
q (0, z,℘) =1 − (℘+⋋(1 − C(z))Ī(℘)) + pz

∫ ∞

0
H̄(1)

q (ℓ, z,℘)µ1(ℓ)dℓ

+ (1 − p)(1 − r)(1 − θ)
∫ ∞

0
H̄(1)

q (ℓ, z,℘)µ1(ℓ)dℓ

+ (1 − θ)
∫ ∞

0
H̄(2)

q (ℓ, z,℘)µ2(ℓ)dℓ+
∫ ∞

0
M̄q(ℓ, z,℘)γ(ℓ)dℓ

(26)

Integrating equation (20), (21) and (22), from 0 to ℓ yields

H̄(1)
q (ℓ, z,℘) = H̄(1)

q (0, z,℘)e−(℘+⋋(1−C(z))ℓ−
∫ ℓ

0 µ1(t)dt (27)

H̄(2)
q (ℓ, z,℘) = H̄(2)

q (0, z,℘)e−(s+⋋(1−C(z))ℓ−
∫ ℓ

0 µ2(t)dt (28)

M̄q(ℓ, z,℘) = M̄q(0, z,℘)e−(℘+⋋(1−C(z))ℓ−
∫ ℓ

0 γ(t)dt (29)

Integrating equation (27) to (29) by parts with respect to x yields, we get

H̄(1)
q (z,℘) = H̄(1)

q (0, z,℘)

[
1 − ℜ̄1[ f (z,℘)]

[ f (z,℘)]

]
(30)

where
ℜ̄1[ f (z,℘)] =

∫ ∞

0
e− f (z,℘)ℓdℜ1(ℓ)

H̄(2)
q (z,℘) = H̄(2)

q (0, z,℘)

[
1 − ℜ̄2[ f (z,℘)]

[ f (z,℘)]

]
(31)

where
ℜ̄2[ f (z,℘)] =

∫ ∞

0
e− f (z,℘)ℓdℜ2(ℓ)

M̄q(z,℘) = M̄q(0, z,℘)

[
1 − M̄[ f (z,℘)]

[ f (z,℘)]

]
(32)

where
M̄[ f (z,℘)] =

∫ ∞

0
e− f (z,℘)ℓdH(ℓ)

where f (z,℘) = ℘+⋋(1 − C(z))
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Now, by multiplying µ1(ℓ) by both sides of equation (27), µ2(ℓ) by (28), & γ(ℓ) by (29), &
integrating over ℓ, we get

∫ ∞

0
H̄(1)

q (ℓ, z,℘)µ1(ℓ)dℓ = H̄(1)
q (0, z,℘)ℜ̄1[ f (z,℘)] (33)

∫ ∞

0
H̄(2)

q (ℓ, z,℘)µ2(ℓ)dℓ = H̄(2)
q (0, z,℘)ℜ̄2[ f (z,℘)] (34)∫ ∞

0
M̄q(ℓ, z,℘)γ(ℓ) = M̄q(0, z,℘)M̄[ f (z,℘)] (35)

Substituting equation (34) in (24), we obtain

H̄(2)
q (0, z,℘) = r(1 − p)H̄(2)

q (0, z,℘)ℜ̄1[ f (z,℘)] (36)

Similarly using equation (33) and (34) in (25), we get

M̄q(0, z,℘) =θ(1 − r)qH̄(1)
q (0, z,℘)ℜ̄1[ f (z,℘)] + θrH̄(1)

q (0, z,℘)ℜ̄1[ f (z,℘)]ℜ̄2[ f (z,℘)] (37)

Using equation (33), (34) and (35) in (26) and solving H̄q(0, z,℘)

H̄(1)
q (0, z,℘) =

f (z,℘)Ī(℘)[
z− ℜ̄1[ f (z,℘)]pz+ q(1 − r)(1 − θ) + (1 − θ)r(1 − p)ℜ̄2[ f (z,℘)]

+ θ(1 − r)(1 − p)M̄[ f (z,℘)] + rθ(1 − p)ℜ̄2[ f (z,℘)]M̄[ f (z,℘)]

] (38)

Equation (30), (31) and (32) becomes

H̄(1)
q (z,℘) = H̄(1)

q (0, z,℘)

[
1 − ℜ̄1[ f (z,℘)]

f (z,℘)

]
(39)

H̄(2)
q (z,℘) = r(1 − p)H̄(1)

q (0, z,℘)ℜ̄1[ f (z,℘)]

[
1 − ℜ̄2[ f (z,℘)]

f (z,℘)

]
(40)

M̄q(z,℘) ={θ(1 − r)(1 − p)M̄(1)
q (0, z,℘)ℜ̄1[ f (z,℘)]

+ θr(1 − p)H̄(1)
q (0, z,℘)ℜ̄1[ f (z,℘)]}

[
1 − M̄[ f (z,℘)]

f (z,℘)

]
(41)

6. The steady-state results

The steady-state probability distribution for our queueing model is what we want to achieve.
We exclude the time argument ’t’ from the time-dependent analysis in order to get the steady-state
probability. This can be made easier by applying the well-known Tauberian property.

lim
℘→0

℘ f̄ (℘) = lim
t→∞

f (t) (42)

We will use the normalizing condition

H(1)
q (1) +H(2)

q (1) +Mq(1) + I = 1 (43)

The probability generating function of the queue size P(z) irrespective of the state of the system.
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P(z) = H(1)
q (z) +H(2)

q (z) +Mq(z)

= H(1)
q (0, z)

[
1 −ℜ1[ f (z)]

f (z)

]
+H(2)

q (0, z)

[
1 −ℜ2[ f (z)]

f (z)

]
+Mq(0, z)

[
1 −M[ f (z)]

(z)

]
(44)

where H(1)
q (z), H(2)

q (z) and Mq(z) are given by the following equations.

H(1)
q (z) = H(1)

q (z, 0)

[
1 −ℜ1[ f (z)]

f (z)

]
(45)

H(2)
q (z) = r(1 − p)H(1)

q (z, 0)ℜ1[ f (z)]

[
1 −ℜ2([ f (z)])

f (z)

]
(46)

Mq(z) = H(1)
q (z, 0)

{
θ(1 − r)(1 − p)ℜ1[ f (z)]

[
1 −M[ f (z)]

f (z)

]

+ θr(1 − p)ℜ1[ f (z)]ℜ2[ f (z)]

[
1 −M[ f (z)]

f (z)

] } (47)

P(z) =

[
I{[1 −ℜ1[ f (z)]] + Ψθr[ℜ2[ f (z)]][1 −M[ f (z)]]

+ θ(1 − r)Ψ[1 −M[ f (z)]] + Ψr[1 −ℜ1[f(z)]]}

]
[
z− rΨ(1 − θ)ℜ2[ f (z)]− Ψθrℜ2[ f (z)]M[ f (z)]

−ℜ1[ f (z)]pz − (1 − r)Ψ(1 − θ)− θΨ(1 − r)M[ f (z)]

] (48)

where

Ψ = (1 − p)ℜ1[ f (z)]

Observing that for z=1, P(z) takes on an indeterminate form of 0/0, we apply L’Hopital’s rule on
equation (44) using the fact ℜ1(0) = 1, ℜ2(0) = 1, M(0) = 1, −M′(0) = E(v), −ℜ′

i(0) = E(ℜi),
and ℜ′′

i (0) = E(ℜ2
i ). We get,

P(1) =
I[⋋[−E(X)]]{E(ℜ1) + rE(ℜ2)(1 − p) + (1 − p)E(V)θ}

−⋋[E(X)] + (1 − p){E(ℜ1)p + (1 − p)E(ℜ1) + r(1 − p)E(ℜ2) + θ(1 − p)E(V)} (49)

Therefore adding I to equation (49), we get

I =
−⋋[E(X)] + (1 − p){E(ℜ1) + r(1 − p)E(ℜ2) + θ(1 − p)E(V)}
−2⋋[E(X)] + (1 − p){E(ℜ1) + r(1 − p)E(ℜ2) + θ(1 − p)E(V)} (50)

Consequently, The system’s utilization factor is established by

ρ = 1 − I

where ρ < 1 is the stability condition under which steady state exists, for the model.

7. Performance metrics

Let Lq be the mean number of customers in the queue. Following this,

Lq =
d
dt
P(z)

∣∣∣∣∣
z=1

Lq = lim
z→1

d
dt
P(z)
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= lim
z→1

[ℜ′(z)ℵ′′(z)− ℵ′(z)ℜ′′(z)]

2[ℜ′(z)]2

=
[ℜ′(1)ℵ′′(1)− ℵ′(1)ℜ′′(1)]

2[ℜ′(1)]2
(51)

where,
ℵ′(1) = I[⋋[−E(X)][E(ℜ1) + rE(ℜ2)(1 − p) + θ(1 − p)E(V)]

ℵ′′(1) =− I[[⋋2[E(X)]2[E(ℜ1)
2 + r(1 − p)[2E(ℜ1)E(ℜ2) + E(ℜ2)

2]

+ θ(1 − p)[2E(ℜ1)E(V) + E(V)2] + θr(1 − p)[2E(ℜ2)E(V)]]

−⋋[E(X2)][E(ℜ1) + r(1 − p)E(ℜ2) + θ(1 − p)E(V)]]

ℜ′(1) = −⋋ [E(X)] + (1 − p)[E(ℜ1) + r(1 − p)E(ℜ2) + θ(1 − p)E(V)]

ℜ′′(1) =⋋ [E(X)][2E(ℜ1)p −⋋2[E(X)]2[E(ℜ1)
2 + r(1 − p)[E(ℜ2)

2 + 2E(ℜ1)E(ℜ2)]

+ θ(1 − p)[E(v)2 + 2E(ℜ1)E(ℜ2)]] + θr(1 − p)[2E(ℜ2)E(V)]]

−⋋[E(X2)][E(ℜ1) + r(1 − p)[E(ℜ2)] + θ(1 − p)E(V)]

Let Wq be the mean time while customers in the line have been waiting.
By using Little’s formula

Wq =
Lq

⋋
(52)

8. The numerical results

In this section, we shows various factors affect system performance metrics using MATLAB.
We assume that vacation and service time are exponentially distributed. All the parameter values
are selected to satisfy the stability condition.

Table 1: Service rate effectiveness

µ1 I Lq Wq

11 0.5118 0.0174 0.0348
12 0.5508 0.0167 0.0335
13 0.5838 0.0159 0.0318
14 0.6121 0.0150 0.0300
15 0.6367 0.0141 0.0282
16 0.6581 0.0132 0.0265

From table 1, shows that idle time increase, mean waiting time and mean queue length
decreases while service rate increase.
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Figure 1: Service rate vs Idle

Figure 1 clearly demonstrates that as the mandatory service times increase, the idle time also
increases.
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Figure 2: Service rate vs Queue length

Figure 2 clearly demonstrates that as the mandatory service times increase, the mean queue
length decreases.
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Figure 3: Service rate vs Waiting time

Figure 3 indicates that as the mandatory service times increase, the mean waiting time of
customers in the queue decreases.

9. CONCLUSION

We analyzed an MX/G/1 queueing system with optional second service, feedback, and
Bernoulli vacation. Key performance indicators are obtained by applying the supplementary
variable approach. Numerical outcomes validate using analytical results. Both the mean waiting
time and mean queue length decrease while increase in service rate. For instance, if service rates
rise in the banking industry, this model helps reduce customer mean waiting times and mean
queue length.
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Abstract

This article presents the introduction of a novel univariate probability distribution termed the inverted
Dagum distribution. Extensive analysis of the statistical properties of this distribution, including the
hazard function, survival function, Renyi’s entropy, quantile function, and the distribution of the order
statistics, was conducted. Parameter estimation of the model was performed utilizing the maximum
likelihood method, with the consistency of the estimates validated through Monte Carlo simulation.
Furthermore, the applicability of the proposed distribution was demonstrated through the analysis of two
real datasets.

Keywords: Dagum distribution, Inverse transformation, Maximum likelihood estimation, Monte
Carlo Simulation, COVID-19 data

1. INTRODUCTION

Dagum distribution was named after Camilo Dagum who proposed it in the 1970s to fit wealth
and income data as well as accommodate heavy-tailed models. Dagum distribution can be of
two forms (the three-parameter and the four-parameter) respectively referred to as Dagum type I
distribution [1] and Dagum type II distribution [2].

Definition: A random variable is said to have type I Dagum distribution with parameter if its
cumulative density function and probability density function are given by:

FαDD (x; θ, α, λ) =
[
1 + λx−α

]−θ x > 0 (1)

fαDD (x; θ, α, λ) = θαλx−α−1(1 + λx−α
)−θ−1 (2)

Where α, θ, λ > 0 . With λ is the scale parameter and α, θ are the two shape parameters.
The latter controls the tail weight and the former controls the size of the distribution. It can be
observed that for θ = 1 , Eq. 1 becomes the log-logistic distribution proposed by [3]. It can also
be observed that Eq. 1 is a Burr III distribution with an additional λ . One crucial characteristic
possessed by Dagum distribution is that, in addition to its flexibility, its hazard function can be
decreased, up-side down, bathtub, and then up-side bathtub shaped [4]. A lot of researchers
utilized this behavior to study the Dagum distribution in several fields. An extensive review of the
Dagum distribution and its application was detailed in [6] and [7]. The parameters of the Dagum
distribution with censored samples was studied by [5] while [8] utilized TL-moments for similar
purpose. Some classs of weighted Dagum and related distributions were proposed by [10] and
the five-parameter beta-Dagum by [4]. Considering the properties of McDonald, Kumaraswamy
and Dagum distribution, two new hybrid distributions called Mc-Dagum and Kum-Dagum
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distributions were proposed by [10]. Numerous ways of extending well-known distributions were
suggested by applied statisticians. An extended Dagum, distribution was proposed by [17]. The
distribution of the reciprocal of any well-known distribution are their corresponding inverted
distributions. This had received numerous attentions from researchers in the field of distribution
theory. Few of these works are; inverted gamma by [12], inverted exponential by [19], inverted
Weibull by [20] to mention a few. In this paper, we proposed an inverted Dagum distribution.
Some statistical properties of the proposed distribution were derived. A simulation study is
further performed to check the flexibility and usefulness of the proposed distribution.

2. METHODS

2.1. Proposed Distribution

Motivated by [10] and the literature cited therein, we proposed an Inverted Dagum Distribution
(IDD). A random variable X is said to have an Inverted Dagum Distribution, if the following
transformation is applicable X = 1

Y . Where Y is the Dagum distribution random variable with
pdf and cdf expressed respectively in Eq. 1 and Eq. 2. By applying cdf technique:

FY(y) = P(Y ≤ y) = P
(

X >
1
y

)
= 1 − P

(
X ≤ 1

y

)
(3)

The pdf and cdf of the proposed distribution can be expressed as;

FIDD(x; θ, α, λ) = 1 − [1 + λxα]−θ (4)

f IDD(x; θ, α, λ) = θαλxα−1(1 + λxα)−θ−1 x > 0 (5)

2.2. Some Mathematical properties

Here, some important Mathematical and Statistical properties of the proposed inverted Dagum
distribution like quantile function, hazard function, moments, moment generating function,
Renyi’s entropy were presented.

2.2.1 Quantile Function

Let X be a random variable with pdf given in Eq.(5). The quantile function of X (the proposed
distribution) can be expressed as;

Q(u; θ, α, λ) =

{
λ−1

[
(1 − u)−

1
θ − 1

]} 1
α

(6)

2.2.2 Moments

The moments of any distribution tell a lot about its features. Characteristics like tendency,
skewness, dispersion, kurtosis etc can be observed through moments. If the random variable X
has an inverted Dagum distribution, then its rth moment about zero can be expressed as;

E (Xr) =

∞∫
0

xr f (x)dx (7)

= θαλ2−r
∞∫

0

(λxα)r−1(1 + λxα)−((r+1)+(θ−r)) (8)
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= θαλ2−rB(1 + r, θ − r) (9)

From Eq. (13), the mean and the variance of IDD can be expressed respectively as;

E(X) = θαλB(2, θ − 1) (10)

Variance = E
(

X2
)
− [E(X)]2 (11)

= θαB(3, θ − 2)− [θαλB(2, θ − 1)]2 (12)

2.2.3 Moment Generating Function

Many important features and characteristics of a distribution can be observed through its moment-
generating function (mgf). Let X be a random variable having an inverted Dagum distribution
with pdf given in Eq.(5), using the definition of moment generating function of X utilizing Eq, (5)
we have;

MX(t) = E
[
etx] = ∞∫

0
etx f (x)dx

= θλα
∞∫
0

etxxα−1(1 + λxα)−θ−1dx

= θλα
∞∫
0

∞
∑

k=0

tkxk

k! xα−1(1 + λxα)−θ−1dx

= θα
∞

∑
k=0

λ2−ktk

k!

∞∫
0

(λxα)k−1(1 + λxα)−((r+1)+(θ−r)dx (13)

Eq. (13) can be expressed in a more compact form as;

MX(t) = θαMk(λ)B((r + 1), (θ − r)) (14)

Where; Mk(λ) =
∞
∑

k=0

λ2−ktk

k!

2.2.4 Survival Function

Let X be a random variable having an inverted Dagum distribution, its survival function is given
by;

RX(x; θ, α, λ) = 1 − FI DD(x; θ, α, λ) (15)

= [1 + λxα]−θ (16)

2.2.5 Hazard Function

The reliability characteristics of a system can be checked through its hazard rate function. The
hazard rate function of the inverted Dagum distribution is given by;

hX(x; θ, α, λ) =
f (x; θ, α, λ)

1 − FX(x; θ, α, λ)
(17)

= θαλxα−1(1 + λxα)−1 (18)

RT&A, No 3 (79) 
Volume 19, September 2024

597



Osi, A. A., Ahmad, S. S.and Ibrahim, Z. M.
INVERTED DAGUM DISTRIBUTION

2.2.6 Renyi’s Entropy

This is the measure of the variation of the uncertainty of the distribution. A large value of entropy
indicates the greater uncertainty in the data. Renyi’s Entropy is defined as:

τR(γ) =
1

1 − γ
log

 ∞∫
0

f γ(x)dx

 (19)

From Eq. (5) we have:

f γ(x) = (θα)γλγxγ(α−1) [
(1 + λxα)−γ(1+θ)

]
(20)

2.2.7 Order Statistics

Suppose X1, X2, ..., Xn are random samples having an inverted Dagum distribution. Let X1:n ≤
X2:n ≤ ... ≤ Xn:n denote the order statistics corresponding to the samples. The pdf and cdf of the
order statistics are given as;

fr:n(t) =
θαλxα−1n!

(r − 1)!(n − r)!

n

∑
i=k

(−1)n
(

n − r
u

)
(1 + λxα

i )
−θ−1[1 − (1 − λxα)]r−1+u (21)

Fr:n(x) =
n

∑
i=k

n−r

∑
u=0

(−1)u
(

n
l

)(
n − r

u

) [
1 − (1 + λxα)−θ

]l+u
(22)

2.2.8 Estimation

Here method of maximum likelihood method is used to estimate the parameters of the proposed
inverted Dagum distribution. The likelihood function is given by;

L (θ, λ, α) = (θλα)n
n

∏
i=1

xα−1
i (1 + λxα

i )
−θ−1 (23)

The log-likelihood function is;

ln L (θ, λ, α) = n log θ + n log α + n log λ + (α − 1)
n

∑
i=1

log xi − (θ + 1)
n

∑
i=1

log (1 + λxα
i ) (24)

The log-likelihood function is maximized by differentiating Eq. (24) w.r.t to the parameters
which yields;

∂

∂θ
ln L(θ, λ, α) =

n
θ
−

n

∑
i=1

ln (1 + λxα
i ) = 0 (25)

∂

∂α
ln L(θ, λ, α) =

n
α
+

n

∑
i=1

ln xi − (θ + 1)
n

∑
i=1

αλxα−1
i

1 + λxα
i
= 0 (26)

∂

∂λ
ln L(θ, λ, α) =

n
λ
− (θ + 1)

n

∑
i=1

xα
i

1 + λxα
i
= 0 (27)

The maximum likelihood estimates of the parameters can be obtained by solving the non-linear
equations (25), (26), and (27) numerically.

Fig. 1 and Fig.3 display the density and CDF plots of IDD as it can be observed the density
exhibits right-skewed and reverse J-shaped while Fig. 2 and Fig. 4 show the hazard function and
survival function plots respectively. the hazard has increasing, decreasing, and bathtub shapes.
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h

Figure 1: The IDD pdf plot

3. RESULTS AND DISCUSSION

3.1. Simulation

Here, we performed a numerical simulation study to assess the performance of the MLE procedure
for estimating IDD parameters based on the Monte Carlo simulation method. A random sample
of size n = 50, 100, 250, 500and1000 with 10000 replicate was generated from IDD using the

quantile function τ =
[

1
λ (1 − u)−θ − 1

] 1
α , where u is uniform (0,1). Two sets of values of the

parameters θ = 0.5, α = 4 λ = 0.1 and θ = 1.5, α = 1 λ = 2 were considered. In both cases,
considered. The emphirical results is presented in table 1 and table 2 which show that for both
cases ML estimate are consistant as the root mean square errror (RMSE) and the average bias
(BIAS) decreases as the sample size increases. i.e the Ml estimates converge to the true value of
the parameter of IDD.

Table 1: MEANS, BIAS and RMSE of α = 4.0, θ = 0.5 and λ = 0.1

n α θ λ
MEANS BIAS RMSE MEANS BIAS RMSE MEANS BIAS RMSE

20 4.5416 0.5416 1.5253 0.6184 0.1184 0.4057 0.1054 0.0054 0.1250
50 4.2997 0.2997 1.0773 0.5442 0.0442 0.2325 0.1004 0.0004 0.0549
100 4.1918 0.1918 0.7441 0.5125 0.1497 0.1497 0.0999 -0.0001 0.0375
250 4.0669 0.0669 0.4564 0.5069 0.0069 0.0942 0.0995 -0.0005 0.0224
500 4.0366 0.0366 0.3143 0.5018 0.0018 0.0664 0.1002 0.0002 0.0149

1000 4.0163 0.0163 0.2159 0.5014 0.0014 0.0462 0.1004 0.0004 0.0109

3.2. Applications

In this section, we apply IDD to two-lifetime datasets. We employed several information criteria
and the goodness of ft statistics that allowed us to compare the fits of the IDD with seven different
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Figure 2: The IDD hazard function plot

existing distributions.
The first data set consists of the daily new fatalities caused by COVID-19 in New Jersey, USA,

from March 12, 2020, to July 25, 2021, as retrieved from https://www.worldometers.info/coronavirus/usa/new-
jersey/. The data are "1, 1, 2, 5, 2, 6, 5, 8, 19, 21, 22, 31, 37, 24, 42, 79, 100, 206, 124, 226, 81, 98, 259,
308, 222, 263, 284, 189, 106, 409, 398, 409, 365, 260, 150, 198, 425, 352, 413, 214, 279, 86, 121, 449,
372, 518, 352, 231, 162, 74, 386, 318, 297, 171, 150, 165, 88, 226, 210, 248, 231, 126, 121, 94, 161, 176,
120, 151, 111, 64, 18, 48, 162, 81, 141, 115, 84, 24, 58, 139, 114, 87, 73, 80, 87, 88, 112, 97, 56, 108, 42,
56, 63, 62, 41, 38, 29, 14, 36, 55, 52, 33, 45, 34, 27, 5, 17, 41, 52, 24, 22, 23, 50, 64, 106, 31, 50, 6, 30,
23, 43, 31, 20, 20, 5, 2, 2, 23, 33, 18, 13, 17, 16, 18, 15, 9, 10, 6, 3, 6, 3, 13, 3, 10, 11, 2, 5, 4, 15, 2, 31, 9,
7, 9, 1, 2, 2, 7, 2, 6, 8, 4, 3, 7, 5, 15, 9, 6, 5, 3, 22, 7, 11, 5, 9, 4, 4, 5, 8, 9, 4, 5, 4, 2, 1, 3, 9, 10, 3, 5, 4,
13, 7, 3, 3, 3, 4, 3, 7, 5, 7, 3, 7, 2, 1, 17, 12, 4, 4, 2, 4, 3, 18, 16, 17, 8, 12, 2, 10, 17, 15, 10, 6, 9, 1, 2, 16,
23, 16, 10, 12, 4, 10, 22, 12, 19, 25, 28, 15, 14, 38, 36, 36, 24, 32, 17, 16, 46, 59, 36, 27, 38, 11, 20, 84,
56, 62, 45, 42, 23, 15, 87, 111, 77, 59, 61, 29, 24, 86, 125, 66, 51, 50, 28, 26, 106, 139, 81, 47, 23, 19, 39,
115, 188, 82, 106, 32, 34, 38, 120, 124, 110, 99, 86, 173, 113, 34, 113, 87, 24, 16, 51, 136, 86, 109, 59, 17,
22, 132, 115, 81, 82, 72, 29, 30, 70, 109, 100, 93, 77, 24, 23, 93, 147, 79, 64, 47, 13, 13, 31, 135, 89, 62,
50, 24, 17, 104, 99, 69, 46, 46, 14, 21, 48, 128, 42, 30, 36, 16, 17, 45, 133, 46, 40, 34, 15, 22, 41, 79, 31,
27, 31, 40, 7, 61, 50, 38, 28, 24, 7, 15, 82, 75, 30, 24, 11, 9, 14, 51, 49, 34, 42, 33, 12, 25, 50, 59, 47, 43,
40, 9, 18, 45, 65, 30, 27, 39, 13, 19, 61, 49, 20, 25, 34, 12, 16, 42, 49, 33, 27, 22, 11, 10, 28, 43, 25, 26,
20, 9, 14, 23, 32, 23, 17, 14, 7, 9, 25, 34, 14, 12, 16, 6, 5, 7, 28, 6, 12, 8, 6, 5, 1, 31, 6, 2, 2, 3, 5, 11, 12, 7,
4, 4, 2, 3, 15, 18, 6, 12, 4, 3, 3, 6, 13, 5, 5, 5, 1, 4, 13, 3, 3, 5, 4, 4, 7, 11, 2, 2, 5, 3, 6, 12, 5, 2, 4, 5, 2, 4, 6,
3, 2, 5, 7, 3, 1, 8, 11, 4, 7, 5, 5, 4, 9, 6, 7, 9".

Table 3 lists ML estimates of the parameters together with the values of information criteria; the
Akaike Information Criteria (AIC), the Consistent Akaike Information Criteria, and the Bayesian
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h

Figure 3: The IDD cdf Plot

h

Figure 4: The IDD Survival Function plot
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Table 2: MEANS, BIAS and RMSE of α = 1.0, θ = 1.5 and λ = 2.0

n α θ λ
MEANS BIAS RMSE MEANS BIAS RMSE MEANS BIAS RMSE

20 1.0820 0.0820 0.2427 1.8485 0.3485 0.9268 2.4032 0.4032 1.8064
50 1.0343 0.0343 0.1533 1.6827 0.1827 0.6381 2.3160 0.3160 1.5318
100 1.0189 0.0189 0.1066 1.5963 0.0963 0.4689 2.1882 0.1882 1.0169
250 1.0073 0.0073 0.0746 1.5592 0.0592 0.3407 2.0970 0.0970 0.7676
500 1.0036 0.0036 0.0553 1.5287 0.0287 0.2552 2.0712 0.0712 0.5735

1000 1.0015 0.0015 0.0397 1.5168 0.0168 0.1811 2.0389 0.0389 0.4127

Information Criteria. It can be observed that the IDD provides a better fit in comparison with
seven competitors; the Weibull Weibull Distribution (WW), the Beta Exponentiated Exponential
(BEE), the Beta Gamma Distribution (BGA), the Weibull Exponential (WE), the Inverse Weibull
(IW), the Inverse Rayleigh (IR) and the Inverse Exponential (IE). Because the IDD has a lower
value for all information criteria. Hence, we can conclude that the IDD gives a better fit to
the COVID-19 dataset than the other probability distributions considered in the study. Table 4
displays the goodness of fit statistics; the Anderson Darling (A∗), the Cramer-Von Mises (W∗),
and Kolmogorov-Smirnov (KS) statistics with its p-value. The proposed distribution appears to be
a very competitive model for these data since the values of the investigated metrics are lower and
the probability value of Kolmogorov-Smirnov statistics is larger than those of the other models.

Table 3: the model parameters MLE estimates and information criteria for the dataset two.

Model α θ λ β AIC CAIC BIC
IDD - 1.097 1.393 0.0213 4935.08 4935.12 4947.76
WW - 3.7360 0.1490 0.3920 4980.01 4980.05 4992.69
BEE 0.2510 0.4350 0.0317 3.1370 4968.67 4968.75 4985.59
BGA 0.0602 3.5560 8.5420 0.0220 50.94.17 5094.25 5111.09
WE - - 0.5280 0.0090 5111.31 5119.76 5114.62
IW - - 6.0356 0.7537 4964.96 4964.99 4973.42
IR - - 24.1579 - 6463.86 6463.87 6468.08
IE - - 8.9379 - 5048.32 5048.33 5052.55

Table 4: The test results for the Goodness-of-fit for dataset two.

Model A∗ W∗ KS KS p-value
IDD 2.404 0.333 0.056 0.082
WW 5.835 0.858 0.081 0.003
BEE 4.811 0.677 0.084 0.002
BGA 11.688 1.761 0.177 <0.0001
WE 13.177 2.017 0.183 <0.0001
IW 5.771 0.936 0.082 0.002
IR 16.032 2.661 0.514 <0.0001
IE 8.041 1.316 0.193 0.081

The second dataset comprises 100 observations of the breaking stress of carbon fibers provided
by [21]. the data are "0.920, 0.9280, 0.997, 0.9971, 1.0610, 1.117, 1.1620, 1.183, 1.187, 1.1920, 1.196,
1.2130, 1.215, 1.2199, 1.220, 1.2240, 1.225, 1.2280, 1.237, 1.240, 1.244, 1.259, 1.2610, 1.263, 1.276,
1.310, 1.3210, 1.3290, 1.3310, 1.337, 1.351, 1.359, 1.388, 1.4080, 1.449, 1.4497, 1.450, 1.459, 1.471,
1.475, 1.477, 1.480, 1.489, 1.501, 1.507, 1.515, 1.530, 1.5304, 1.533, 1.544, 1.5443, 1.552, 1.556, 1.5620,
1.566, 1.585, 1.586, 1.599, 1.602, 1.6140, 1.6160, 1.617, 1.6280, 1.6840, 1.7110, 1.7180, 1.733, 1.7380,
1.7430, 1.7590, 1.777, 1.7940, 1.799, 1.806, 1.814, 1.814, 1.8160, 1.8280, 1.830, 1.884, 1.892, 1.944,
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1.972, 1.9840, 1.987, 2.02, 2.0304, 2.0290, 2.0350, 2.0370, 2.0430, 2.0460, 2.0590, 2.111, 2.165, 2.686,
2.778, 2.972, 3.504, 3.863, 5.3060".

Table 5 shows the statistics of AIC, CAIC, and BIC for all models investigated. When
compared to the values of the other models, the IDD values are lower, demonstrating that this
new distribution is a very competitive model for this data. Table 6 reveals that the IDD has the
highest KS p-value and the lowest KS, A∗, and W∗ values for the carbon fibers dataset. This
demonstrates that the IDD distribution is superior at fitting this dataset.

Table 5: the model parameters MLE estimates and information criteria for the dataset two.

Model α θ λ β AIC CAIC BIC
IDD - 9.9065 0.5073 0.0577 111.88 112.13 119.72
WW - 5.557 0.332 0.564 196.20 196.45 204.04
BEE 14.951 0.8590 4.0340 10.8910 119.40 119.81 129.86
BGA 10.6136 0.4324 5.6310 7.5055 122.65 123.07 133.11
WE - - 1.4008 0.3543 216.18 216.30 221.41
IW - - 4.3427 4.3754 112.54 112.66 117.77
IR - - 2.2095 - 183.67 183.71 186.29
IE - - 1.5317 - 304.42 304.03 307.03

Table 6: The test results for the Goodness-of-fit for dataset two.

Model A∗ W∗ KS KS p-value
IDD 0.497 0.067 0.070 0.704
WW 6.323 1.031 0.206 0.003
BEE 0.854 0.107 0.086 0.4444
BGA 1.022 0.123 0.097 0.298
WE 7.943 1.348 0.244 <0.0001
IW 0.805 0.116 0.089 0.399
IR 0.713 0.087 0.327 <0.0001
IE 0.986 0.121 0.447 <0.0001

4. Conclusion

In this work, we presented a new univariate continuous distribution called the inverted Dagum
distribution by taking the transformation of the reciprocal of the random variable of the Dagum
distribution on the ground of the type I Dagum distribution. After introducing the distribution,
we obtained its basic properties like rth moments, mean, moment generating function, quantile
function, hazard function, survival function, Renyi entropy, and order statistics. The maximum
likelihood method was used to provide the estimates of the model parameters. We also provided
the density hazard rate plots of the distribution with some assumed values. Additionally, a
simulation study was performed to show the ML estimates are consistence as the number as
sample size increases the estimates converge to the actual values of the parameters. Our empirical
analysis of two real datasets shows that the proposed distribution outperforms the well-known
distribution based on goodness of fit metrics and information criteria.
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Abstract 

When calculating risk and making decisions, investors and financial institutions heavily rely on the 

modeling of asset return volatility. For the exponentiated generalized autoregressive conditional 

heteroscedasticity (EGARCH) model, we created a unique innovation distribution in this study called 

the type-II-Topp-Leone-exponentiated-Gumbel (TIITLEGU) distribution. The key mathematical 

characteristics of the distribution were determined, and Monte Carlo experiments were used to 

estimate the parameters of the novel distribution using maximum likelihood estimation (MLE) 

procedure. The performance of the EGARCH (1,1) model with TIITLEGU distributed innovation 

density in relation to other innovation densities in terms of volatility modeling is examined through 

applications using two Nigerian shock returns. The results of the diagnostic tests indicated that, with 

the exception of the EGARCH (1,1)-Johnson (SU) reparametrized (JSU) innovation density, the fitted 

models have been sufficiently specified. The parameters for the EGARCH (1,1) model with different 

innovation densities are significant at various levels. Furthermore, in out-of-sample prediction, the 

fitted EGARCH (1,1)-TIITLEGU innovation density performed better than the EGARCH (1,1)-

existing innovation densities. As a result, it is decided that the EGARCH-TIITLEGU model is the most 

effective for analyzing Nigerian stock market volatility. 

Keywords: EGARCH, Innovations density, Maximum likelihood estimation, 

Simulation. 

I. Introduction

The Nigerian stock market has grown in terms of the number of stock exchanges and other financial 

intermediaries, the number of listed stocks, trading volumes, market capitalization, investor 

population, stock exchange turnover, and stock price indexes over time. The stock market's 

performance is a key measure of a country's progress and development. Because it reflects the 

potential viability and financial strength of corporate entities registered on the stock exchange, the 

stock market is one of the yardsticks for assessing an economy's growth and development. However, 

the state of investor confidence in different economic sectors is reflected in the stock market. It shows 

hopes for the stability of the financial system and reflects the strength of the producing sector [1-2]. 

A survey of pertinent literature reveals that while predicting stock market volatility, academics have 

neglected to account for the contributions of alternate innovation distributions. Since financial time 

series have leptokurtic and autocorrelation characteristics, mis-specification may result from 

applying the incorrect innovation density in the EGARCH volatility model. Additionally, an 
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erroneous innovation density specification can result in a significant loss of efficiency for the relevant 

estimators, an invalid risk assessment, incorrectly priced options, and an improper valuation of 

Value-at-Risk (VaR). 

In making financial decisions such as portfolio selection, risk management, and option pricing, 

financial return volatility is an important metric to consider. Therefore, in order to model and 

anticipate the volatility of asset returns, it is imperative to create a model with strongly driven 

conditional innovation density. According to [3], a suitable volatility model is one that both 

accurately represents the disturbance term's heteroscedasticity and reflects the stylized facts that are 

present in stock return series. Financial institutions usually employ generalized autoregressive 

conditional heteroskedasticity (GARCH) models to predict return volatility for stocks, bonds, and 

market indexes, while they can also be used to analyze other types of financial data, such as 

macroeconomic data. In order to aid in their decisions about asset allocation, hedging, risk 

management, and portfolio optimization, they use the information that is produced to estimate the 

returns of current investments, help decide pricing, and assess which assets may yield larger returns 

[4]. However, these returns exhibit leverage effects, heavy tail, volatility clustering, significant 

skewness and excess leptokurtic behaviours which the symmetric GARCH model with normal 

distributed innovations in most cases fail to capture [5-7]. Despite the skewed form and appealing 

characteristics of the student-t in GARCH models, the tail behaviour is still too short to adequately 

describe skewness and fat tails in asset returns [8-9]. According to [10], volatility models that do not 

allow for conditional variance asymmetry typically result in inaccurate volatility estimations and 

projections. To address this flaw in GARCH's treatment of financial time series, the asymmetric 

exponential GARCH model was developed using the generalized error distributed innovation. 

Specifically, to accommodate asymmetric impacts between asset returns that are positive and 

negative [10-11]. Few studies had been done on returns volatility modeling utilizing the EGARCH 

model with common innovation densities, which raises questions about the choice of innovation 

densities [11-17]. 

Quite a few academics have focused on establishing novel distributions for volatility model 

innovations, and have conducted various studies in this area of altering the innovation density of 

the EGARCH volatility model. [18] advocated the use of the beta-student-t distribution for the 

EGARCH model in the estimation of volatility. [19] discovered that more flexible GARCH-type 

models are sufficiently acceptable in predicting volatility for all density assumptions. Using 

simulated and actual data, the Bayesian analysis of a stochastic model with generalized hyperbolic 

skew Student-t distribution. [20] proposed the EGARCH model with the beta-skew Student-t 

density for predicting daily volatility. [21] discovered that using leptokurtic distributions in 

GARCH-type models helped them produce more accurate volatility projections. [22-23] evaluated 

the daily volatility of stock index returns using a new generalization of the skew Student-t 

distribution, and demonstrated that it performed better than some innovation densities. [2] and [24] 

proposed the exponentiated half-logistic skew-t and generalized odd generalized skew-t densities 

for evaluating the daily volatility of bitcoin, Nigeria inflation and first bank Nigeria stock returns, 

and found that it performed better than other innovation densities in the GARCH-type models. [7] 

proposed the GARCH model with the exponentiated Gumbel density for predicting daily return 

volatility of the S&P 500 index. [9] proposed the odd generalized exponential Laplace density for 

evaluating the daily volatility of the Nigeria stock exchange, and found that it performed better than 

other innovation densities in the GARCH-type models. These models informed entrepreneur and 

investors on volatile nature of stock prices and bitcoin rates. However, developing robust 

distributions remains critical in improving the accuracy of the monetary risk system. Therefore, this 

research set out to propose a new innovation density for the asymmetric EGARCH model by 

introducing a novel distribution. This research is focused on the distinctiveness of the structural 

properties of the novel distribution and modification of the distributional assumption of the 
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innovations of the EGARCH volatility model. 

The article is arranged as follows: Section 2 presents the developed novel distribution and its 

standardized form. Section 3 presents the properties of the novel distribution. Section 4 presents the 

maximum likelihood estimation procedure and Monte-Carlo simulation process. Section 5 presents 

the EGARCH model with the novel innovation density function including methods for selecting 

models and appraising predictions. Section 6 reports the empirical results of both estimation and 

forecast assessment, and conclusion in Section 7. 

2. Distribution Genesis

The cumulative distribution function (cdf) of the Type II Topp Leone (TIITL-G) family of 

distributions developed by [25] is specified as 

𝐹(𝑥) = 1 − [1 − 𝐺2(𝑥)]𝜃                (1) 

and the corresponding probability density function (pdf) is  

𝑓(𝑥) = 2𝜃𝑔(𝑥)𝐺(𝑥)[1 − 𝐺2(𝑥)]𝜃−1              (2) 

where 𝜃 > 0 is the shape parameter, 𝐺(𝑥) and 𝑔(𝑥) are the baseline cdf and pdf, respectively. The 

cdf of the baseline distribution titled the exponentiated Gumbel (EGU) distribution introduced by 

[26] is specified as

𝐺(𝑥) = 1 − {1 − 𝑒
[−𝑒

(−
𝑥−𝜇
𝜎 )

]
}

𝛼

,   (3) 

and the pdf is given as 

𝑔(𝑥) =
𝛼

𝜎
{1 − 𝑒

[−𝑒
(−

𝑥−𝜇
𝜎 )

]
}

𝛼−1

𝑒
[−𝑒

(−
𝑥−𝜇
𝜎 )

]
𝑒

(−
𝑥−𝜇

𝜎
)
,   (4) 

where 𝛼 > 0, 𝜎 > 0, 𝜇 ∈ ℛ  are shape, scale and location parameters, and 𝑥 ∈ ℛ .  

The cdf and pdf of the type II Topp Leone exponentiated Gumbel (TIITLEGU) model derived by 

inserting Equations (3) and (4) into Equations (1) and (2), respectively, are specified as 

𝐹(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = 1 − {1 − [Θ(𝑥)]2}𝜃 ,  (5) 

𝑓(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = 2𝜃Φ(𝑥){1 − [Θ(𝑥)]2}𝜃−1, (6) 

Hither, the pdf and cdf of the EGU are represented with Φ(𝑥) and Θ(𝑥). 𝛼 > 0, 𝜃 > 0, 𝜎 > 0 are the 

shape and scale parameters, and 𝜇 ∈ ℛ is the location parameter. More so, the survival and hazard 

rate functions are specified as follows 

𝑆(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = {1 − [Θ(𝑥)]2}𝜃  (7) 

ℎ(𝑥; 𝛼, 𝜃, 𝜇, 𝜎) = 2𝜃Φ(𝑥)Θ(𝑥){1 − [Θ(𝑥)]2}−1, (8) 

Figures 1 depicts that the TIITLEGU density function can be very useful in describing symmetric, 

heavy-tailed, unimodality, leptokurtic and skew patterns of most data sets. Hence, a viable 

alternative innovation density for increasing the accuracy of the EGARCH volatility model 

prediction. 

2.1 Standardized TIITLEGU Model 

The standardized TIITLEGU model is obtained via the transformation 𝜀𝑡 = 𝑧√ℎ𝑡
2, where 𝐸(𝑧𝑡) = 0 and

𝑣𝑎𝑟(𝑧𝑡) = 1. The random variable 𝑧𝑡 can be expressed as 𝑧𝑡 =
(𝑥𝑡−𝜇)

√ℎ𝑡
2

=
𝜀𝑡

√ℎ𝑡
2
, then  

𝒹𝑧𝑡

𝒹𝜀𝑡
=

1

√ℎ𝑡
2
. Therefore, 

the standardized TIITLEGU density function is 

𝑓(𝜀𝑡; 𝛼, 𝜃, ℎ𝑡) =
2𝛼𝜃

(ℎ𝑡
2)

1
2

𝜂𝛼−1(1 − 𝜂)𝑒
(−

𝜀𝑡

ℎ𝑡
2)

(1 − 𝜂𝛼)[1 − (1 − 𝜂𝛼)2]𝜃−1 1

(ℎ𝑡
2)

1
2

    (9) 

where 𝜂 = 1 − 𝑒−𝑒
(−

𝜀𝑡
ℎ𝑡
2)

, 𝜇 and √ℎ𝑡
2 denote the mean and standard deviation. The standardized
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TIITLEGU is the novel hybrid distributed innovation function for the EGARCH volatility model. 

Figure 1: The TIITLEGU density function (pdf) plots with selected parameter values. 

3. Properties of the TIITLEGU Model

3.1 Quantile and Median Functions 

The quantile function (qf) of the TIITLEGU model derived by inverting Eq. (5) is specified as 

𝑄(𝑢) = −𝜎 log [− log(1 − {1 − [1 − (1 − 𝑢)
1

𝜃]

1

2
}

1

𝛼

)] + 𝜇 (10) 

where 𝑢 ∼ Uniform(0,1). The median (M) of the TIITLEGU model is specified as 

𝑀 = −𝜎 log [− log(1 − {1 − [1 − (0.5)
1

𝜃]

1

2
}

1

𝛼

)] + 𝜇 (11) 

By means of the quantile function in Eq (10), various quantile measures can be estimated. 

3.2 Raw-Moment and Moment-Generating-Function 

The raw-moment (rm) of the TIITLEGU model is derived using the expansion series approach. Let 𝑋 ∼

𝑇𝐼𝐼𝑇𝐿𝐸𝐺𝑈(𝑥; 𝛼, 𝜃, 𝜇, 𝜎), the rth raw-moment of X is specified as  

𝜇𝑟́ = ∫ 𝑥𝑟+∞

0
𝑓(𝑥; 𝛼, 𝜃, 𝜇, 𝜎)𝑑𝑥         (12) 

The expanded form of the TIITLEGU pdf using the series expansion is 

𝑓(𝑥) = ∑ 𝜔𝑚𝑒−(𝑚+1)
𝑥−𝜇

𝜎∞
𝑚=0 (13) 

where 𝜔𝑚 =
2𝛼𝜃

𝜎
∑

(−1)𝑖+𝑗+𝑘+𝑚(𝑘+1)𝑚(
𝜃−1

𝑖
)(

2𝑖−1
𝑗

)(
𝛼(𝑗+1)−1

𝑘
)

𝑚!

∞
𝑖,𝑗,𝑘=0

By inserting the expanded form in Eq. (13) into Eq. (12), we have 

𝜇𝑟́ = ∑ 𝜔𝑚
∞
𝑚=0 ∫ 𝑥𝑟+∞

0
𝑒−(𝑚+1)

𝑥−𝜇

𝜎 𝑑𝑥,  (14) 

Let, 
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𝑧 = (𝑚 + 1)
𝑥−𝜇

𝜎
⇒ 𝑥 =

𝑧

−
𝜇

𝜎
(𝑚+1)

, 

𝑑𝑥

𝑑𝑧
=

1

−
𝜇

𝜎
(𝑚+1)

⇒ 𝑑𝑥 =
1

−
𝜇

𝜎
(𝑚+1)

𝑑𝑧, 

Hence, the rm of the TIITLEGU is specified as 

𝜇𝑟́ = ∑ 𝜔𝑚
∞
𝑚=0 ∫ (

𝑧

−
𝜇

𝜎
(𝑚+1)

)
𝑟

+∞

0
𝑒−𝑧 1

−
𝜇

𝜎
(𝑚+1)

𝑑𝑧,         (15) 

Simplifying Eq. (15) leads to 

𝜇𝑟́ = ∑ 𝜔𝑚
∞
𝑚=0 (−

𝜇

𝜎
(𝑚 + 1))

−𝑟−1

∫ (𝑧)𝑟+∞

0
𝑒−𝑧𝑑𝑧,         (16) 

Using the gamma integral representation Γ(𝛼 + 1) = ∫ (𝑦)𝛼+∞

0
𝑒−𝑦𝑑𝑦. Therefore, the rm of the 

TIITLEGU is specified as 

𝜇𝑟́ = ∑ 𝜔𝑚
∞
𝑚=0

Γ(𝑟+1)

(−
𝜇

𝜎
(𝑚+1))

𝑟+1 (17) 

where 𝜔𝑚 =
2𝛼𝜃

𝜎
∑

(−1)𝑖+𝑗+𝑘+𝑚(𝑘+1)𝑚(
𝜃−1

𝑖
)(

2𝑖−1
𝑗

)(
𝛼(𝑗+1)−1

𝑘
)

𝑚!

∞
𝑖,𝑗,𝑘=0 .

Table 1 reports the first four raw-moments, standard-deviation (SD), dispersion index (DI) and 

coefficient of variation (CV) for the TIITLEGU model utilizing Eq. (17) with fixed 𝜇 = 0, 𝜎 = 1. 

Table 1: Summary statistics for the TIITLEGU model 

𝜇𝑟́ 𝛼 = 1.5, 𝜃 = 1.5 𝛼 = 2.5, 𝜃 = 2.0 𝛼 = 3.3, 𝜃 = 3.5 𝛼 = 3.7, 𝜃 = 3.7 

𝜇1́ 0.4810 0.0969 0.0057 0.0022 

𝜇2́ 0.5850 0.0577 0.0016 0.0006 

𝜇3́ 0.9590 0.0472 0.0006 0.0002 

𝜇4́ 1.9600 0.0483 0.0003 0.0000 

SD 0.5950 0.2200 0.0396 0.0244 

DI 0.7350 0.4990 0.2750 0.2710 

CV 1.2400 2.2700 6.9500 11.1000 

Additionally, the moment generating function (mgf) of the TIITLEGU is specified as 

𝑀𝑟(𝑡) = ∑ ∑ 𝜔𝑚
∞
𝑚=0

Γ(𝑟+1)𝑡𝑟

(−
𝜇

𝜎
(𝑚+1))

𝑟+1
𝑟!

∞
𝑟=0 (18) 

where 𝜔𝑚 =
2𝛼𝜃

𝜎
∑

(−1)𝑖+𝑗+𝑘+𝑚(𝑘+1)𝑚(
𝜃−1

𝑖
)(

2𝑖−1
𝑗

)(
𝛼(𝑗+1)−1

𝑘
)

𝑚!

∞
𝑖,𝑗,𝑘=0 . 

3.3 Order Statistics 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 denote a random sample from the TIITLEGU and 𝑥1:𝑛 < 𝑥2:𝑛 < ⋯ < 𝑥𝑛:𝑛 be the order 

statistics obtained from the sample. The pth order statistics (os) is specified as 

𝑓𝑝:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑝,𝑛−𝑝+1)
[𝐹(𝑥)]𝑝−1[1 − 𝐹(𝑥)]𝑛−𝑝      (19) 

By inserting Eqs. (5) and (6) into Eq. (19), we have 

𝑓𝑝:𝑛(𝑥) =
2𝜃Φ(𝑥){1−[Θ(𝑥)]2}

𝜃−1

𝐵(𝑝,𝑛−𝑝+1)
[1 − {1 − [Θ(𝑥)]2}𝜃]

𝑝−1
[1 − (1 − {1 − [Θ(𝑥)]2}𝜃)]

𝑛−𝑝
(20) 

Simplifying Eq. (20), the os of the TIITLEGU is specified as 

𝑓𝑝:𝑛(𝑥) =
2𝜃Φ(𝑥){1−[Θ(𝑥)]2}

𝜃(𝑛−𝑝+1)−1

𝐵(𝑝,𝑛−𝑝+1)
[1 − {1 − [Θ(𝑥)]2}𝜃]

𝑝−1
(21) 

The minimum and maximum order statistics is derived by inserting 𝑝 = 1 and p = n into Eq. (21). 

4. Estimation and Simulation Study

4.1 Maximum Likelihood Estimation 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 denote the observed random-values from the 𝑇𝐼𝐼𝑇𝐿𝐸𝐺𝑈(𝑥; 𝛼, 𝜃, 𝜇, 𝜎). Assuming that 
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𝜇 = 0, 𝜎 = 1, without loss of generality, the log-likelihood-function (LL) is specified as 

𝐿𝐿(𝜃, 𝛼 ) = 𝑛 log 2 + 𝑛 log 𝜃 + 𝑛 log 𝛼 + (𝛼 − 1)∑ log{𝜂𝑖}
𝑛
𝑖=1 + ∑ log{1 − 𝜂𝑖}

𝑛
𝑖=1  

+∑ 𝑥𝑖
𝑛
𝑖=1 + ∑ log(1 − 𝜂𝑖

𝛼)𝑛
𝑖=1 + (𝜃 − 1) ∑ log[1 − (1 − 𝜂𝑖

𝛼)2]𝑛
𝑖=1 (22) 

where 𝜂𝑖 = 1 − 𝑒[−𝑒(−𝑥)]. Differentiating Eq. (22) with respect to 𝜃 and 𝛼 gives the follows:
𝜕𝐿𝐿

𝜕𝜃
=

𝑛

𝜃
+ ∑ log[1 − (1 − 𝜂𝑖

𝛼)2]𝑛
𝑖=1

𝜕𝐿𝐿

𝜕𝛼
=

𝑛

𝛼
+ ∑ log{𝜂𝑖}

𝑛
𝑖=1 − ∑

𝜂𝑖
𝛼log{𝜂𝑖}

1−𝜂𝑖
𝛼

𝑛
𝑖=1 + (𝜃 − 1) ∑

2(1−𝜂𝑖
𝛼)𝜂𝑖

𝛼log{𝜂𝑖}

1−(1−𝜂𝑖
𝛼)

2
𝑛
𝑖=1

In this study, R-programming (optim function) is used in finding the maximum likelihood (ML) 

estimates (𝜃̂, 𝛼̂)  of the TIITLEGU parameters. 

4.2 Simulation-Study 

The simulation process for the ML is obtainable as follows: N = 10,000 samples (replicates) are 

generated from the TIITLEGU model with sizes n’ = 20,50, 150, 250, 500 and 1000 using R-

programming. The precision of the ML estimates is evaluated via the mean estimates (MEs), absolute 

bias (Absbias), mean square errors (MSEs) and root mean square roots (RMSEs). The MLE is a 

suitable technique for estimating the TIITLEGU parameters Based on the simulation study. The results 

reported in Table 2 indicate that the parameter estimates are quite stable and very close to the true 

parameter values for the various sample sizes. The ME tend to be closer to the true values of the 

parameter with minimum MSEs, and RMSEs values as the sample size increases. 

Table 2: Numerical values of MEs, Absbias, MSEs and RMSEs 

𝛼 = 1.5, 𝜃 = 1.5 𝛼 = 3.5, 𝜃 = 3.3 

n' Par. ME Absbias MSE RMSE n' Par. ME Absbias MSE RMSE 

20 𝛼 1.7238 0.2238 2.1842 1.4779 20 𝛼 3.7210 0.4210 8.8988 2.9831 

𝜃 3.1475 1.6475 10.9000 3.3015 𝜃 7.2017 3.7017 51.1596 7.1526 

50 𝛼 1.6239 0.1239 1.0649 1.0320 50 𝛼 3.5275 0.2275 4.4887 2.1187 

𝜃 2.4156 0.9156 4.5588 2.1351 𝜃 5.7094 2.2094 23.6443 4.8625 

150 𝛼 1.5312 0.0312 0.3634 0.6029 150 𝛼 3.3703 0.0703 1.8493 1.3599 

𝜃 1.8985 0.3985 1.3260 1.1515 𝜃 4.6138 1.1138 8.9932 2.9989 

250 𝛼 1.5156 0.0156 0.2146 0.4633 250 𝛼 3.3349 0.0349 1.1736 1.0833 

𝜃 1.7484 0.2484 0.7015 0.8375 𝜃 4.2532 0.7532 5.2725 2.2962 

500 𝛼 1.5089 0.0089 0.1105 0.3323 500 𝛼 3.3155 0.0155 0.6437 0.8023 

𝜃 1.6267 0.1267 0.3019 0.5495 𝜃 3.9323 0.4323 2.6383 1.6243 

1000 𝛼 1.5033 0.0033 0.0561 0.2368 1000 𝛼 3.3028 0.0028 0.3303 0.5747 

𝜃 1.5653 0.0653 0.1336 0.3655 𝜃 3.7293 0.2293 1.1773 1.0850 

𝛼 = 2.0, 𝜃 = 2.5 𝛼 = 4.1, 𝜃 = 4.5 

n' Par. ME Absbias MSE RMSE n' Par. ME Absbias MSE RMSE 

20 𝛼 2.8662 0.3662 6.1123 2.4723 20 𝛼 5.0225 0.5225 15.9168 3.9896 

𝜃 4.2505 2.2505 19.2609 4.3887 𝜃 8.4532 4.3532 69.0055 8.3070 

50 𝛼 2.6997 0.1997 2.9340 1.7129 50 𝛼 4.7706 0.2706 8.0638 2.8397 

𝜃 3.2939 3.2939 8.5372 2.9218 𝜃 6.8341 2.7341 35.0702 5.9220 

150 𝛼 2.5439 0.0439 1.0106 1.0053 150 𝛼 4.5916 0.0916 3.5820 1.8926 

𝜃 2.5848 0.5848 2.7012 1.6435 𝜃 5.5217 1.4217 13.8556 3.7223 

250 𝛼 2.5253 0.0253 0.6185 0.7865 250 𝛼 4.5407 0.0407 2.2462 1.4987 

𝜃 2.3669 0.3669 1.4303 1.1959 𝜃 5.0808 0.9808 8.5140 2.9179 

500 𝛼 2.5110 0.0110 0.3252 0.5702 500 𝛼 4.5209 0.0209 1.2639 1.1243 

𝜃 2.1968 0.1968 0.6399 0.7999 𝜃 4.6527 0.5527 4.0301 2.0075 

1000 𝛼 2.5028 0.0028 0.1635 0.4043 1000 𝛼 4.5031 0.0031 0.6643 0.8150 

𝜃 2.1011 0.1011 0.2767 0.5260 𝜃 4.4001 0.3001 1.8519 1.3608 
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5. EGARCH-Model

The asymmetric EGARCH model introduced by [10] is considered as a variate of the ARCH/GARCH 

model introduced by [3] and [27] for modeling time-varying volatility. The EGARCH differ from the 

symmetric GARCH variance structure given that the natural log variance is used in other for the 

parameters to be unrestricted and can take negative values while guaranteeing a positive conditional 

variance. Moreso, the EGARCH model includes the asymmetric impact of positive and negative 

shocks on volatility. The return of daily prices of assets is represented by 𝑟𝑡 and the EGARCH (1,1) 

model is defined as: 
𝑟𝑡 = 𝜇 + 𝜀𝑡 ,

𝜀𝑡 = 𝑧𝑡√ℎ𝑡
2,   𝑧𝑡 ∼ 𝑖. 𝑖. 𝑑,

log ℎ𝑡
2 = 𝜆0 + 𝛽1 log ℎ𝑡−1

2 + 𝜆1
𝜀𝑡−1

√ℎ𝑡−1
2

+ 𝛾1 |
𝜀𝑡−1

√ℎ𝑡−1
2

| 

(23) 

where 𝜆0 > 0, 𝜆1 > 0, 𝛽1 > 0 are the model parameters, 𝑧𝑡 is the conditional innovation density with 

𝐸(𝑧𝑡) = 0 and 𝑣𝑎𝑟(𝑧𝑡) = 1, 𝜇𝑡 is the conditional mean, 𝛾1 is the leverage parameter, log ℎ𝑡
2 is

conditional log variance at present day 𝑡, 𝜀𝑡−1 and log ℎ𝑡−1
2  are the error and conditional log variance

at preceding day 𝑡 − 1, respectively. The commonly utilized conditional innovation densities are 

well described in the literature. 

5.1 The Novel Conditional Innovation Density 

The log-likelihood (LL) function of the standardized TIITLEGU model presented in Eq. (9), is specified 

as 

𝐿𝐿(𝜗) = 𝑛 log 2 + 𝑛 log 𝜃 + 𝑛 log 𝛼 −
𝑛

2
log ℎ𝑡

2 + (𝛼 − 1) ∑ log{𝜂𝑡}
𝑛
𝑡=1 + ∑ log{1 − 𝜂𝑡}

𝑛
𝑡=1 +

∑ log [𝑒
(

𝜀𝑡

ℎ𝑡
2)

]𝑛
𝑡=1 + ∑ log(1 − 𝜂𝑡

𝛼)𝑛
𝑡=1 + (𝜃 − 1) ∑ log[1 − (1 − 𝜂𝑡

𝛼)2]𝑛
𝑡=1 −

𝑛

2
log ℎ𝑡

2 (24) 

where 𝜗 = (𝛼, 𝜃, ℎ𝑡), 𝛼, 𝜃 are the shape parameters and ℎ𝑡 is the EGARCH volatility model with 

vector parameters and 𝜂𝑡 = 1 − 𝑒[
 
 −𝑒

(−
𝜀𝑡
ℎ𝑡
2)

]. 

5.2 Model Selection Criteria 

The modified Akaike information criteria (AIC) and Bayesian information criteria (BIC) proposed 

by [28] are utilized in selecting the best model under the conditional innovation densities. The 

modified AIC and BIC criteria are given by 

𝐴𝐼𝐶 =
2𝑘

𝑁
−

2𝐿𝐿

𝑁
(25) 

𝐵𝐼𝐶 =
𝑘 log𝑒(𝑁)

𝑁
−

2𝐿𝐿

𝑁
(26) 

where k   is the total number of estimated parameters, the estimated log-likelihood value and sample 

size are denoted by 𝐿𝐿  and 𝑁, respectively. The EGARCH model with the least AIC and BIC values 

is regarded as the most suitable model under the specified innovation density. 

5.3 Forecasts Performance 

The forecasts performance of the EGARCH models is appraised using the mean square error (MSE), 

root mean square root (RMSE), and mean absolute error (MAE). The performance measures for the 

volatility forecasts are given by 
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𝑀𝑆𝐸 =
1

𝑁
∑ (ℎ𝑡̂ − ℎ𝑡)

2𝑁
𝑡=1 (27) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ℎ𝑡̂ − ℎ𝑡)

2𝑁
𝑡=1 (28) 

𝑀𝑆𝐸 =
1

𝑁
∑ |ℎ𝑡̂ − ℎ𝑡|

𝑁
𝑡=1 (29) 

Where ℎ𝑡̂ and ℎ𝑡 represent the volatility forecast and realized volatility, and

𝑁 is the sample size. The model with the least performance measures is regarded as the most 

appropriate for predicting the volatility of the daily log-returns. 

6. Empirical Results

6.1 Data Report 

To appraise the performance of the novel distributed innovation density in the EGARCH model, the 

United bank of Africa (UBA) and Total energies Nigeria (TEN) stock prices log-returns are utilized. 

The UBA dataset consists 5468 daily log-returns from 1/2/2000 to 5/1/2024 and TEN datasets consist 

5510 daily returns from 2/1/2001 to 5/1/2024. The estimation process is executed using 5218 daily log-

returns from 1/2/2000 to 30/12/2022 for the UBA while 5268 daily returns from 2/1/2001 to 30/12/2022 

for the TEN. The forecast evaluation of the models is carried-out with 250 daily returns from 3/1/2023 

to 5/1/2024 for both UBA and TEN. The summary statistics of the daily returns for the estimation 

processes are reported in Table 2. More so, the graphical plots of the daily returns, squared-returns 

and absolute-returns with their respective sample autocorrelation function (ACF) for both UBA and 

TEN are depicted in Figures 3 and 4.  

Tables 2 reports positive skewness and high excess kurtosis, leading to large Jarque-Bera 

(JB) statistic (p < 0.001) signifying that the daily returns for the estimation process have non-

normality characteristics. Figure 2 displays the density function of a normal distribution that has the 

same mean and standard deviation as those of the UBA and TEN return series. The plots provide a 

visual check of the normality assumption for the daily returns. The deviation between the solid 

(return series) and dashed line (Normal distribution) indicates that the daily returns are not 

normally distributed.  

Figure 2:  Empirical density function of the UBA and TEN daily returns. 

Further, the ARCH Lagrange-multiplier (LM) and Ljung Box-Q tests at lag 10, indicates the incidence 

of conditional heteroscedasticity and autocorrelation in the returns while the Augmented Dickey-

Fuller (ADF) test with its p-value indicates that the returns for the UBA and TEN are stationary.  
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Table 2: Summary statistics for the daily returns 

UBA returns (Estimation process) 

Number of 

observations 

Mean Median Minimum Maximum Std Dev. 

5218 -0.004 0.000 -204.521 206.978 5.005 

Skewness Kurtosis Jarque-Bera ARCH (10) Q (10) ADF test 

0.087 1096.432 26157 (< 0.0001) 894.89 (< 0.0001) 901.99 (< 0.0001) -24.7 (<0.01)

TEN returns (Estimation process) 

Number of 

observations 

Mean Median Minimum Maximum Std Dev. 

5268 0.022 0.000 -231.941 235.569 6.790 

Skewness Kurtosis Jarque-Bera ARCH (10) Q (10) ADF test 

0.999 1027.144 23175 (< 0.0001) 107.55 (< 0.0001) 117.84 (< 0.0001) -27.5 (<0.01)

Figure 3:  UBA daily returns, squared returns, absolute returns and sample autocorrelations. 

6.2 Parameters Estimation of the EGARCH (1,1) Model 

The EGARCH (1,1) model specified in Eq. (22) is estimated under ten different innovation densities: 

normal (NORM), student-t (ST), generalized error (GE), skew normal (SNORM), skew student-t 

(SST), skew generalized error (SGE), generalized hyperbolic (GHYP), Johnson (SU) reparametrized 

(JSU), Normal inverse Gaussian (NIG) and the novel type II Topp Leone exponentiated Gumbel 

(TIITLEGU). Tables 3 and 4 reports the estimated parameters of the EGARCH (1,1) models. The rugarch 

package in R-programming is used in estimating the parameters of the EGARCH-NORM, EGARCH-

ST, EGARCH-GE, EGARCH-SNORM, EGARCH-SST, EGARCH-SGE, EGARCH-GHYP, EGARCH-

JSU and EGARCH-NIG while the Optim function in R-programming is utilized to maximize the log-

likelihood function of EGARCH-TIITLEGU. As reported in Table 5, the EGARCH-TIITLEGU model has 

the highest log-likelihood (LL) value and exhibits superior fit to the standardized residuals compare 

to others for both return series.  
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Figure 4:  TEN daily returns, squared returns, absolute returns and sample autocorrelations. 

Table 3: EGARCH Model Parameter Estimates with Innovation Densities (UBA returns). 

Model 
Cond. 

Distr. 
𝜆0 𝜆1 𝛽1 𝛾1 Ghlambda Skew Shape1 Shape2 

EGARCH 

(1,1) 
NORM 0.5707‘***’ -0.0581‘***’ 0.7492‘***’ 0.4881‘***’ - - - 

STD 0.4320‘***’ 0.0960‘’ 0.888‘***’ 2.1239‘***’ - 2.1000‘***’ - 

GED 8.5262‘***’ 1.2433 0.1171 6.5026‘***’ - 0.1019‘***’ - 

SNORM 0.5680‘***’ -0.0488‘***’ 0.7488‘***’ 0.4867‘***’ 0.9781‘***’ - - 

SSTD 0.6725‘***’ 0.2855‘’ 0.8914‘***’ 6.3057‘***’ 1.0003‘***’ 2.0100‘***’ - 

SGED 1.6151‘***’ 0.7086‘***’ 0.3730‘***’ 3.6658‘***’ 1.0005‘***’ 0.3956‘***’ - 

GHYP 0.0240‘***’ 0.0524‘***’ 0.9858‘***’ 0.2100‘***’ -0.9677‘***’ -0.0547 0.2500‘***’ - 

JSU 0.2856‘’ 0.0571‘***’ 0.8828‘***’ 1.1730‘***’ 0.0001 0.8269‘***’ - 

NIG 0.7949‘***’ 0.3175‘***’ 0.9532‘***’ 4.3156‘***’ 0.0172 0.0100‘***’ - 

TIITLEGU 
2.327e-

10‘’ 

3.929e-

10‘’ 
0.9828‘***’ 0.7799‘***’ - 1.9433‘***’ 3.5128‘***’ 

Significance levels: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’, 1 

Table 4: EGARCH Model Parameter Estimates with Innovation Densities (TEN returns). 

Model 
Cond. 

Distr. 
𝜆0 𝜆1 𝛽1 𝛾1 Ghlambda Skew Shape1 Shape2 

EGARCH 

(1,1) 
NORM 0.4283‘***’ -0.0869‘***’ 0.7781‘***’ 0.2932‘***’ - - - 

STD -0.0587 0.2583‘***’ 0.8234‘***’ 0.6745‘***’ - 2.1000‘***’ - 

GED 1.3745‘***’ 0.0974 -0.1137‘***’ 1.1712‘***’ - - 0.1024‘***’ - 

SNORM 0.4296‘***’ -0.0858‘***’ 0.7765‘***’ 0.3024‘***’ 0.9552‘***’ - - 

SSTD 0.2775‘***’ 0.7821‘***’ 0.8283‘***’ 1.8532‘***’ 1.0011‘***’ 2.0100‘***’ - 

SGED 0.6894‘***’ 0.0739‘***’ 0.2451‘***’ 0.0659‘***’ 1.1175‘***’ 0.3868‘***’ - 

GHYP -0.0226‘***’ -0.0294‘***’ 0.9880‘***’ 0.0905‘***’ -02818‘***’ 0.0025 0.2500‘***’ - 

JSU 0.4089‘***’ -0.0000 0.3658‘***’ -0.0000 0.2953‘***’ 0.2616‘***’ - 

NIG -0.0434‘***’ 0.0071‘***’ 1.0000‘***’ 0.0177‘***’ -0.0071 0.0100‘***’ - 

TIITLEGU 0.0552‘***’ 0.0579‘***’ 0.5195‘***’ 1.5234‘***’ - 5.2086‘***’ 9.8771‘***’ 

Significance levels: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’, 1 

Tables 3 and 4 reports that the parameter estimates of the EGARCH conditional variance 

specifications are highly statistically significant and 
1
  is highly significant which shows that the 
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daily log-returns have leverage effect. Therefore, the impact of the shocks is asymmetric in nature 

that is, the impact of positive shocks on volatility are higher than negative shocks of the similar size. 

The AIC and BIC values also reported in Table 5 suggest that the EGARCH-TIITLEGU model is best 

for investigating the volatility of the Nigerian stock market. 

Table 5: Comparison of the Innovation Densities for estimated models. 

Model 
Innovation 

Dist. 

Log-

Likelihood 
AIC BIC 

Log-

Likelihood 
AIC BIC 

(UBA Returns). (TEN Returns). 

EGARCH 

(1,1) 
NORM -12581.400 4.8242 4.8305 -11134.030 4.4296 4.461 

STD -11070.810 4.2456 4.2532 -8291.421 3.3071 3.3149 

GED -5747.029 2.2051 2.2126 19540.740 -7.7859 -7.7781

SNORM -12578.510 4.8235 4.8310 -11124.140 4.4361 4.4439

SSTD -11046.030 4.2365 4.2453 -8173.160 3.2603 3.2694

SGED -10738.730 4.1187 4.1275 -4397.584 1.7555 1.7646

GHYP -10923.350 4.1899 4.1999 -8299.449 3.3111 3.3215

JSU -11066.350 4.2443 4.2531 9042.654 -3.6013 -3.5922

NIG -10092 3.8709 3.8797 -4979.278 1.9874 1.9965

TIITLEGU 13546.100 -5.1894 -5.1806 25184.930 -9.5588 -9.5501
Note(s):  Bolded values indicate the highest log-likelihood value, and the least AIC and BIC values 

Tables 6 and 7 reports the diagnostic tests results for the EGARCH (1,1) model under the various 

innovation densities. From Table 6, the Ljung Box-Q statistic (p > 0.05) specifies that the squared 

standardized residuals from the EGARCH-TIITLEGU model exhibit no sign of serial-correlation. 

Likewise, the ARCH-LM statistic (p > 0.05) indicates that the standardized residuals from the 

EGARCH-TIITLEGU model exhibit no additional conditional heteroscedasticity, that is, the 

conditional variance equation are correctly specified. Therefore, the results disclose that 

standardized TIITLEGU density is an improved distributed innovation function for the EGARCH (1,1) 

model. 

Table 6: Estimated EGARCH (1,1) models diagnostic tests (UBA returns). 

Model 
Innovation 

Dist. 

Ljung-Box 

Q-Statistic
p-value

ARCH-LM 

Statistic 
p-value

EGARCH 

(1,1) 
NORM 0.007 0.999 0.007 0.999 

STD 0.008 0.999 0.008 0.999 

GED 0.010 0.999 0.010 0.999 

SNORM 0.007 0.999 0.007 0.999 

SSTD 0.008 0.999 0.008 0.999 

SGED 0.007 0.999 0.007 0.999 

GHYP 0.066 0.999 0.067 0.999 

JSU 0.008 0.999 0.008 0.999 

NIG 0.021 0.999 0.021 0.999 

TIITLEGU 0.013 0.999 0.013 0.999 
Note(s): Significance level: 0.05 = . 
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Table 7: Estimated EGARCH (1,1) models diagnostic tests (TEN returns). 

Model 
Innovation 

Dist. 

Ljung-Box 

Q-Statistic
p-value

ARCH-LM 

Statistic 
p-value

EGARCH 

(1,1) 
NORM 0.021 0.999 0.021 0.999 

STD 0.091 0.999 0.092 0.999 

GED 5.936 0.981 5.923 0.981 

SNORM 0.021 0.999 0.020 0.999 

SSTD 0.088 0.999 0.088 0.999 

SGED 0.010 0.999 0.010 0.999 

GHYP 0.045 0.999 0.046 0.999 

JSU 1251.5 2.2E-16 2317.7 2.2E-16 

NIG 0.477 0.999 0.474 0.999 

TIITLEGU 0.039 0.999 0.039 0.999 
Note(s): Significance level: 0.05 = . 

6.3 Forecasts Evaluation of the EGARCH Models 

The forecast evaluation metrics for the out-of-sample are reported in Table 8, and the least MSE, 

RMSE and MAE values belong to the EGARCH-TIITLEGU model. Therefore, the EGARCH-TIITLEGU 

model is statistically efficient and displays superior capability in forecasting the volatility of the 

Nigerian stock market relative to other models. 

Table 8: Forecasts evaluation metrics of the estimated EGARCH (1,1) models. 

Model 
Innovatio

n Dist. 
MSE RMSE MAE MSE RMSE MAE 

(UBA returns) (TEN returns) 

EGARCH 

(1,1) 
NORM 8.155 2.856 1.752 1.731 1.316 0.213 

STD 8.151 2.855 1.751 1.733 1.316 0.197 

GED 8.151 2.855 1.751 1.733 1.316 0.197 

SNORM 8.121 2.849 1.752 1.730 1.315 0.267 

SSTD 8.151 2.855 1.751 1.733 1.316 0.197 

SGED 8.150 2.855 1.751 1.777 1.332 0.354 

GHYP 8.159 2.856 1.753 1.733 1.316 0.197 

JSU 8.151 2.855 1.751 1.733 1.316 0.198 

NIG 8.151 2.855 1.751 1.733 1.316 0.197 

TIITLEGU 8.050 2.837 1.736 1.547 1.244 0.182 
Note(s): Bolded values indicate the conditional distribution with the least MSE, RMSE and MAE. 

7. Conclusion

The estimation of the TIITLEGU model parameters using the MLE procedure, and introduction as a 

novel distributed innovation function for the EGARCH-volatility model is considered. The density 

and cumulative functions, failure rate function, quantile function, standardized density function and 

other mathematical properties are derived. Monte-Carlo experiments are carried out to study the 

performance of the MLE procedure. The experiments results indicate that the MLE is asymptotically 

unbiased and consistent given that the ME tend to be closer to the true values of the parameter with 

minimum MSEs, and RMSEs as the sample size increases. 

Additionally, the standardized TIITLEGU density is presented as a novel distributed 

innovation function for the EGARCH volatility model for investigating the volatility of the Nigerian 
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stock market via the UBA and TEN returns. The empirical findings showed that the EGARCH-

TIITLEGU model has the highest log-likelihood, and least AIC and BIC values. Equally, the EGARCH-

TIITLEGU model has the least forecast evaluation metrics among other models. In conclusion, the 

EGARCH-TIITLEGU model is best for investigating the volatility of the Nigerian stock market. 
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Abstract 

For time-truncated life tests, this work defines single acceptance and double acceptance 

sampling plans assuming that the product's lifespan follows the Gamma Lindley 

distribution. The minimum sample size needed in a single acceptance sampling plan for lot approval 

is calculated for a range of parameter combinations and a fixed test termination time. This ensures 

the given average product life and the corresponding number of failures. Operational characteristic 

and producer risk values are also tabulated for these parameter values. Using a double acceptance 

sampling plan, the best first and second samples are obtained to ensure that the 

products specified average with a certain level of customer trust. Finally, under the same 

conditions, the minimum sample size obtained using these strategies are compared with 

other acceptance sampling plans. 

Keywords: Acceptance sampling plan, consumer’s risk, producer’s risk, time 

truncated life test, Gamma Lindley distribution. 

I. Introduction

A decision is made based on the quality of the samples after samples are removed from the lot and 

examined to determine whether the lot should be accepted. When inspecting the entire lot, it is 

usually not a good idea because it takes a long time and is very expensive. So, in order to minimize 

both producer and consumer risk, decisions are made, inspections are carried out, and samples are 

taken from the lot. The term acceptance sampling plan based on time truncated life tests refers to the 

fact that engineers typically incorporate the time parameter into the plan. There exist multiple 

methods for executing acceptance sampling plans that include time-truncated life tests. The two 

most widely used plans among the many that are available are the single acceptance and double 

acceptance sampling plans (SASP and DASP). Because of this, the two acceptance sampling plans 

are the primary subject of this work. 

It is known as a SASP when only one sample is selected for decision-making out of the entire 

lot. This plan involves running the test for a predetermined amount of time and counting the 

number of failures that occur during that time. For a lot to be accepted, the number of failures 

observed at the end of the predetermined time must be less than the acceptance number; if it 

is greater than the acceptance number, the lot is rejected. In order to determine the consumer 

risk for an acceptance number and a fixed time t, it is therefore necessary to determine the minimum 
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sample size required to guarantee the average life of the product at different probability values. A 

minimum sample size must be determined for both samples in a DASP, where the 

acceptance numbers for the first and second samples are fixed at zero and one, respectively. 

Numerous researchers have examined the SASP and DASP for a range of lifetime models whose 

lives follow a specific probability distribution. Among the works are those by Mahendra Saha et. Al. 

[1] who created SASP and DASP for time-truncated life tests based on transmuted Rayleigh

distribution (TRD), Amjad and Amer [2] who created an SASP based on time-truncated life tests

for an exponentiated Frechet distribution; Sridhar Babu et al., [3] who examined a DASP

for an exponentiated Frechet distribution with known shape parameters; Lio et. Al. [4]

examined SASP for time-truncated life tests for Birnbaum-Saunders distribution for percentiles;

Min and Gui [5] investigated SASP based on time-truncated life tests for Burr type X distribution;

Balakrishnan et al., [6] investigated the generalized Birnbaum-Saunders model's SASP based on

time-truncated life tests; Amjad and Obeidat [7] created an SASP using time-truncated life tests

based on the Tsallis-q-exponential distribution. Further, Sriramachandran [8] studied sampling plan

for truncated life test for Logistic family of distributions.

In order to analyse the lifetime data, Lindley [9] introduced a probability distribution that 

alternates between the gamma and exponential distributions in the appropriate ratio. 

The Lindley distribution has not been investigated since exponential and gamma distributions are 

applied independently in numerous statistical domains and are the subject of extensive research by 

researchers. Ghitany et al., [10] was the first to study the properties of Lindley distribution, which 

led to its popularity in data modelling. Numerous authors have also 

applied it to a variety of disciplines. Shanker et al., [11] also transformed the one parameter 

Lindley distribution into the two parameter Lindley distribution. SASP was created by Wu [12] for 

two parameter Lindley distribution, Deniz [13] described the discrete form of Lindley distribution 

and stated its properties, Ghitany et al [14] stated the two-parameter weighted Lindley distribution 

and its applications, Sihem [15] and Zeghdoudi [16] defined the Gamma Lindley distribution and 

studied its properties.  The article's goal is to create single acceptance and double acceptance 

sampling plans that take into account the Gamma Lindley distribution (GLD) for the average life of 

the product being tested. For a given consumer risk probability, the minimum sample size needed 

to guarantee a given average life is obtained is known as the single acceptance sampling plan. For 

this plan, the production risk and the OC values are also obtained. The zero-one model is used in 

the double acceptance sampling plan to determine the minimum sample size for the first and second 

samples for different probabilities in order to guarantee the consumer risk. The structure of 

this article is as follows: Section 2 elaborates on the GLD. The average life of the product is assumed 

to follow GLD in Section 3 when designing and deriving the SASP for time-truncated life tests. In 

Section 4, a DASP for time-truncated life tests is designed and derived with the assumption that the 

product lifetime follows GLD. The minimum sample size required to be inspected under the SASP 

is presented along with the OC value and producer risk. In Section 5, the plan proposed in this 

article is compared with other suitable acceptance sampling plan based on the minimum sample size 

to be inspected. Section 6 submits the conclusions from this article. 

II. Gamma Lindley Distribution Model

In lifetime data modelling, Lindley distribution is the special case of two parameter Lindley 

distribution (TPLD) studied by [11]. The probability density function (pdf) of TPLD is stated as: 

𝑓(𝜖; 𝜏, 𝜔) =
𝜏(𝜔+𝜏𝜖)

𝜔+1
𝑒−𝜏𝜖  (1)
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Hence, the corresponding cumulative distribution function (cdf) and the hazard rate function (hrf) 

of TPLD are stated as: 

𝐹(𝜖; 𝜏, 𝜔) = 1 −
1+𝜔+𝜏𝜖

𝜔+1
𝑒−𝜏𝜖   (2) 

ℎ(𝜖; 𝜏, 𝜔) =
𝜏(𝜔+𝜏𝜖)

1+𝜔+𝜏𝜖
 , ϵ > 0, 𝜏 > 0, 𝜔 > −1, 𝜔 > −𝜏𝜖    (3) 

[16] mixes the gamma distribution with two parameter Lindley distribution and formed a new

distribution called the GLD and studied all its properties.

The pdf of GLD is

𝑓(𝜀; 𝜏, 𝜔) = {
𝜏2((𝜔+𝜔𝜏−𝜏)𝜖+1)

𝜔(𝜏+1)
𝑒−𝜏𝜀 , 𝜖, 𝜏, 𝜔 > 0

0,   otherwise
 (4) 

The corresponding cdf and hrf are defined as 

𝐹(𝜖; 𝜏, 𝜔) = 1 −
((𝜏𝜔+𝜔−𝜏)(𝜏𝜖+1)+𝜏)

𝜔(𝜏+1)
𝑒−𝜏𝜖  (5) 

ℎ(𝜀; 𝜏, 𝜔) =
𝜏2((𝜔+𝜔𝜏−𝜏)𝜖+1)

((𝜏𝜔+𝜔−𝜏)(𝜏𝜖+1)+𝜏)
 (6) 

Table 1: Minimum sample size for different parameter value 

Parameter 

value P* c 

𝜀

𝜐0

0.628 0.942 1.257 2.356 3.141 

𝜏 =  0.5,
𝜔 =  1 

0.95 

0 6 4 3 2 1 

1 10 7 5 3 2 

2 14 9 7 4 4 

0.99 

0 9 6 4 2 2 

1 14 9 7 4 3 

2 18 11 9 5 4 

 𝜏 =  1,
𝜔 =  1 

0.95 

0 6 4 3 2 1 

1 10 6 5 3 3 

2 13 9 7 4 4 

0.99 

0 9 6 4 2 2 

1 13 9 7 4 3 

2 17 11 9 5 4 

𝜏 =  1,
𝜔 =  0.5 

0.95 

0 5 4 3 2 1 

1 9 6 5 3 3 

2 12 8 7 4 4 

0.99 

0 8 5 4 2 2 

1 12 8 6 4 3 

2 15 11 8 5 5 

The expected value and variance of GLD are derived as 

𝐸(𝑥) =
2𝜔(1+𝜏)−𝜏

𝜏𝜔(1+𝜏)
(7)
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𝑉𝑎𝑟(𝑥) =
−(−2𝜔𝜏+𝜏)2+(2+6𝜏)𝜔2−2𝜔(𝜔𝜏−3𝜔𝜏2+2𝜏2)

𝜔2𝜏2(1+𝜏)2   (8) 

The cdf, pdf and hrf of GLDs for different parameter values are presented in Figure 1 and 2. 

                   

            

 (a)  (b) 

     (c) 

Figure 1: (a) cdf, (b) pdf and (c) hrf of GLDs with parameters 𝜏 = 1 and 𝜔 = 0.5, 1, 2, 3, 6 𝑎𝑛𝑑 10. 

III. Design of Single Acceptance Sampling Plan (SASP) Based on Mean

When creating the SASP with time-truncated life tests, it was assumed that the products being 

studied would have an average lifespan of 𝜐. The above assumption is tested using the hypothesis 

test, where the product's precise average life, denoted by 𝜐0  and H0: 𝜐 ≥ 𝜐0, alternative hypothesis 

H1: 𝜐 < 𝜐0 .  The test's level of significance is defined as  𝜌∗  represents the consumer's confidence

level, the value 1 − 𝜌∗ is called the level of significance for the test. The application of the binomial 

distribution in this case is noteworthy because the sample size is noticeably large. As proposed by 

the plan; to locate the minimum sample size, we have to iterate the inequality 

∑ (
𝑛
𝑖

) 𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≤ 1 − 𝑝∗𝑐
𝑖=0 (9) 

where 𝜌 = 𝐹(𝜖; 𝜏, 𝜔)  as in (5). 
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        (a) (b) 

      (c) 

Figure 2: (a) cdf, (b) pdf and (c) hrf of GLDs with parameters 𝜔 = 1 and 𝜏 = 0.5, 1, 2, 3, 6 𝑎𝑛𝑑 10 

Minimum sample size for ε υ0⁄ = (0.628, 0.942, 1.257,2.356 and 3.141), ρ∗= 0.95 and 0.99 and for

the parameters 𝜏 =  0.5, 𝜔 =  1, 𝜏 =  1, 𝜔 =  1 𝑎𝑛𝑑 𝜏 =  1, 𝜔 =  0.5 are calculated and tabulated in 

the Table 1. The OC values of the plan give the probability of acceptance of the lot and it is stated as 

𝐿(p) = ∑ (
𝑛
𝑖

) 𝑝𝑖(1 − 𝑝)𝑛−𝑖𝑐
𝑖=0    (10) 

where 𝜌 = 𝐹(𝜖; 𝜏, 𝜔) in (5).  For the fixed acceptance number i.e. c=2 the OC values are calculated 

and the values are tabulated in the Table 2 for the parameters  𝜏 =  0.5, 𝜔 =  1,   𝜏 =  1, 𝜔 =

 1 𝑎𝑛𝑑 𝜏 =  1, 𝜔 =  0.5 respectively.  Next, it is necessary to reduce the producer’s risk and we should 

guarantee that rejection of good lot is minimum. By fixing the PR as 95%, the value of  ∈ 𝜐0
⁄  are

obtained for the plan.  The value obtained is the least number for which  𝜌 = 𝐹(𝜖; 𝜏, 𝜔)as in (5) 

satisfies the inequality 

∑ (
𝑛
𝑖

) 𝑝𝑖(1 − 𝑝)𝑛−𝑖 ≥ 0.95𝑐
𝑖=0 (11) 

The least values of ∈
𝜐0

⁄ which satisfies the equation (11) are determined and presented for the

proposed plan and presented in Table 3. 
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Table 2: OC values for the parameter value when c=2 

Parameter 

value 
P* 

𝜀

𝜐0
n 

𝜐

𝜐0

2 4 6 8 10 12 

𝜏 =  0.5,
𝜔 =  1 

0.95 

0.628 14 0.445 0.855 0.947 0.976 0.987 0.992 

0.942 9 0.449 0.864 0.952 0.979 0.989 0.993 

1.257 7 0.411 0.850 0.948 0.977 0.988 0.993 

2.356 4 0.391 0.843 0.947 0.977 0.989 0.993 

3.141 4 0.181 0.696 0.884 0.947 0.973 0.984 

0.99 

0.628 18 0.269 0.754 0.902 0.952 0.974 0.984 

0.942 11 0.300 0.785 0.919 0.962 0.979 0.988 

1.257 9 0.224 0.736 0.898 0.952 0.974 0.985 

2.356 5 0.196 0.716 0.893 0.951 0.974 0.985 

3.141 4 0.181 0.696 0.884 0.947 0.973 0.984 

𝜏 =  1,
𝜔 =  1 

0.95 

0.628 13 0.401 0.812 0.924 0.963 0.979 0.987 

0.942 9 0.380 0.805 0.922 0.962 0.979 0.987 

1.257 7 0.363 0.799 0.920 0.961 0.978 0.987 

2.356 4 0.387 0.816 0.929 0.967 0.982 0.989 

3.141 4 0.191 0.671 0.859 0.929 0.960 0.976 

0.99 

0.628 17 0.218 0.681 0.857 0.926 0.957 0.973 

0.942 11 0.236 0.704 0.871 0.934 0.962 0.977 

1.257 9 0.185 0.660 0.849 0.922 0.955 0.972 

2.356 5 0.193 0.676 0.860 0.930 0.960 0.976 

3.141 4 0.191 0.671 0.859 0.930 0.960 0.976 

𝜏 =  1,
𝜔 =  0.5 

0.95 

0.628 12 0.333 0.752 0.891 0.943 0.967 0.979 

0.942 8 0.368 0.775 0.902 0.950 0.971 0.982 

1.257 7 0.285 0.715 0.870 0.932 0.960 0.975 

2.356 4 0.362 0.765 0.896 0.946 0.969 0.980 

3.141 4 0.193 0.619 0.812 0.896 0.937 0.960 

0.99 

0.628 15 0.188 0.625 0.818 0.901 0.941 0.962 

0.942 11 0.155 0.585 0.793 0.885 0.931 0.951 

1.257 8 0.193 0.629 0.821 0.902 0.942 0.962 

2.356 5 0.174 0.602 0.803 0.891 0.935 0.957 

3.141 5 0.064 0.418 0.669 0.803 0.875 0.916 

IV. Design of Double Acceptance Sampling Plan (DASP)

DASP, or two-stage acceptance sampling, is the preferred method for providing greater protection 

to producers and consumers. Because a second sample is tested before a final decision is made on 

the lot, producers are given double protection, as the name suggests. As a result, it diminishes 

producer risk and offers complete protection to producers. The plan's parameters are as 

follows: the testing time t, the first sample size (n1), its acceptance number (c1), and the second 

sample size (n2). In order to approve the lot, the sample must substantiate the hypothesis 

that the sample mean exceeds the given mean. The lot will be turned down otherwise. The 

consumer's risk is now fixed at no more than (1-P*), where P* is the confidence level. 
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Then probability of acceptance of the lot is 

𝑃𝐴 = ∑ (
𝑛1
𝑖

)𝑐1
𝑖=0 𝑝𝑖(1 − 𝑝)𝑛1−𝑖 + ∑ (

𝑛1
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛1−𝑥 ∑ (
𝑛2
𝑗

)𝑐2
𝑗=0 𝑝𝑗(1 − 𝑝)𝑛2−𝑗𝑐2

𝑥=𝑐1+𝑖    (12) 

where p is defined in Equation (5) and depends on ratio 
𝜀

𝜐0
. As we are considering only zero-one 

failure form i.e., c1 =0 and c2 =1, the above Equation (13) for the considered GLD is given by 

Table 3: Minimum ratio when producer’s risk=95% 

Parameter 

value  
P* c 

𝜀

𝜐0

0.628 0.942 1.257 2.356 3.141 

     𝜏 =  0.5, 
 𝜔 =  1 

0.95 

0 41.49 41.82 42.17 53.46 37.04 

1 9.94 10.44 9.91 10.87 9.03 

2 6.12 5.90 6.08 6.12 8.15 

0.99 

0 61.90 62.23 55.80 53.46 71. 

1 13.89 13.42 13.93 14.77 14.49 

2 7.85 7.22 7.87 7.93 8.15 

  𝜏 =  1, 
 𝜔 =  1 

0.95 

0 55.33 55.44 55.60 69.76 47.04 

1 12.80 11.21 12.29 12.91 17.22 

2 7.11 7.19 7.25 6.86 9.15 

0.99 

0 82.88 82.99 73.98 69.76 93.00 

1 16.78 17.20 17.63 18.00 17.22 

2 9.43 8.93 9.59 9.14 9.15 

𝜏 =  1,
𝜔 =  0.5 

0.95 

0 61.22 73.46 73.52 91.86 61.24 

1 14.99 14.51 15.81 16.20 21.60 

2 8.42 8.00 9.12 8.24 10.99 

0.99 

0 97.95 91.83 98.02 91.86 122.47 

1 20.30 19.83 19.37 22.94 21.60 

2 10.73 11.47 10.67 11.23 14.97 

𝑃𝐴 = (1 − 𝑝)𝑛1[1 + 𝑛1𝑝(1 − 𝑝)𝑛2−1]  (13) 

where p is given by the equation (5). Our aim is to find the minimum sample size for the plan, for 

this we have to minimize the following equation:  

(1 − 𝑝)𝑛1[1 + 𝑛1𝑝(1 − 𝑝)𝑛2−1] ≤ 1 − 𝑃∗   (14) 

Now, for the given consumer’s confidence level P*, the minimum sample size for both the samples 

n1 and n2, which ensure 𝜐 ≥ 𝜐0, can be found by the solution of the following optimization problem, 

given as: 

𝑀𝑖𝑛 𝐴𝑆𝑁 =  𝑛1 + 𝑛1𝑛2𝑝(1 − 𝑝)𝑛1−1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (1 − 𝑝)𝑛1[1 + 𝑛1𝑝(1 − 𝑝)𝑛2−1] ≤ 1 − 𝑃∗,

1 ≤ 𝑛2 ≤ 𝑛1  

𝑛1, 𝑛2 𝑎𝑟𝑒 integers       (15)
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While solving the above optimization problem, it provides many solutions for both n1 and n2.  We 

take the solution which minimizes our objective function i.e.  our ASN as our best solution. 

Minimum sample size obtained for P* = 0.90, 0.95 and 0.99 and
ε

υ0
 = 0.628, 0.942, 1.257 and 2.356 are

presented in Table 4. 

V. Comparison of GLD With Other Models

Planning an acceptance sampling plan with a minimum sample size is considered more 

efficient because it will cut down on the amount of time and money spent on inspection, as desired 

by quality engineers. This section compares and provides the following Figures 3 and 4 for the GLD's 

CDF and PDF, as well as the two-parameter Lindley distribution (TPLD) and transmuted Rayleigh 

distribution (TRD). In addition, the following tables 11 and 12 list the minimal sample sizes that 

were obtained from this distribution under comparable conditions. The following 

observations about the sample size n are found in Table 1 to 3. 
● There is little variation in sample size n value when 𝜏 increases from 0.5 to 1, keeping

𝜔 = 1.
● There is a marginal shift in the sample size n value when  𝜏 = 1 and 𝜔 increases from 0.5

to 1
● Table 1 show that an increase in the value of c corresponds to an increase in the value of n.
● Table 4 indicates that the minimum sample size in a DASP when, 𝜏 = 1, 𝜔 = 0.5.
● When comparing GLD to TPLD and TRD, Table 5 indicates that the former requires the

smallest sample size.
● According to Table 6, the GLD for DASP requires the smallest sample size when compared

to TPLD and TRD.

Table 4: Minimum sample size for plan 

Parameter 

value 
P* 

𝜀

𝜐0

0.628 0.942 1.257 2.356 

(n1, n2) ASN (n1, n2) ASN (n1, n2) ASN (n1, n2) ASN 

    𝜏 = 0.5 
𝜔 = 1 

0.90 (6,3) 6.55 (4,2) 4.35 (3,1) 3.18 (2,1) 2.13 

0.95 (7,4) 7.51 (4,3) 4.53 (3,2) 3.37 (2,1) 2.13 

0.99 (10,5) 10.19 (6,3) 6.14 (4,3) 4.53 (3,1) 3.18 

 𝜏 = 1 
𝜔 = 1 

0.90 (5,4) 5.92 (4,1) 4.17 (3,1) 3.18 (2,1) 2.13 

0.95 (6,5) 6.79 (4,3) 4.53 (3,2) 3.37 (2,1) 2.13 

0.99 (9,5) 9.22 (6,3) 6.14 (4,3) 4.53 (3,1) 3.18 

𝜏 = 1 
 𝜔 = 0.5 

0.90 (5,2) 5.38 (4,1) 4.14 (3,1) 3.17 (2,1) 2.17 

0.95 (6,3) 6.36 (4,2) 4.29 (3,2) 3.35 (2,1) 2.17 

0.99 (8,5) 8.23 (5,4) 5.25 (4,3) 4.20 (3,1) 3.02 

Therefore, if quality engineers wish to check the lot with a minimum sample size, the GLD 

of the SASP and DASP are commendable. 
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     (a)                                                                                      (b) 

Figure 3: Comparison of (a) cdf and (b) pdf of GLD, TPLD and TRD when 𝜏 = 1 𝑎𝑛𝑑 𝜔 = 0.5 

Table 5: Comparison of single acceptance sampling plan when 𝜏 =  0.5, 𝜔 =  1 , P*=0.99 and c=0 

Distributions 

𝜀

𝜐0

0.628 0.942 1.257 

GLD 9 6 4 

TPLD 12 7 5 

TRD 16 8 3 

      (a)                                                                                                     (b) 

 Figure 4: Comparison of (a) cdf and (b) pdf of GLD, TPLD and TRD when 𝜏 = 0.5 𝑎𝑛𝑑 𝜔 = 1 

Table 6: Comparison of double acceptance sampling plan when 𝜏 =  0.5, 𝜔 =  1 , P*=0.99 and c1=0 and c2=1 

Distributions 

𝜀

𝜐0

0.628 0.942 1.257 

GLD (10,5) (6,3) (4,3) 

TPLD (12,6) (7,4) (5,3) 

TRD (16,17) (8,4) (3,2) 
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VI. Conclusion

Within this paper, time-truncated life tests based on GLD were suggested for SASP and DASP. We 

consider the zero-one model for the DASP. Different GLD parameter values are used to calculate the 

minimum sample size needed to ensure a given average product life, the minimum producer's risk, 

and the OC values. Tables for both plans display the results that were obtained. 

It was discovered that the suggested plan required the smallest sample size for both single and 

double acceptance sampling plans when it came to minimum sample size comparisons with TPLD 

and TRD. Based on how this suggested plan is used, future work may expand the scope to include 

additional plans. 
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Abstract 

In modern research, several brilliant minds investigate linear programming problems involving fuzzy 

variable quantities. Many researchers have turned to linear programming by fuzzy variables to address 

this problem. Various fuzzy simplex approaches have been developed, using ranking functions to 

handle fuzzy numbers. Results from this research suggest that linear ranking functions can provide a 

straightforward interpretation of problems involving linear programming by fuzzy variable quantities. 

To solve these types of problems, the Fuzzy Dual Simplex Tableau method is often applied, which 

proves useful for sensitivity analysis when modifications are made to the activity vectors of the 

fundamental columns. In this study, a numerical case is presented to demonstrate the potential benefits 

of this approach for future technologies. 

Keywords: Linear programming by fuzzy variable quantity, fuzzy numbers, ranking 

functions, fuzzy simplex and duality algorithms, and trapezoidal fuzzy numbers.  

I. Introduction

The fuzzy set model has proven useful in several areas, including simulation, artificial intelligence, 

control systems and organisational skills, scientific modelling, operations research, and 

manufacturing applications. The results of fuzzy mathematical programming problems have been the 

subject of extensive theoretical and computational research in recent years. On a more global scale, 

this concept was initially developed by [2] and presented the first-ever construction of fuzzy linear 

programming (FLP). Since then, various authors have investigated different FLP challenges and 

proposed various approaches to addressing them [3-6]. To address issues with fuzzy linear 

programming, several authors have turned to the method of fuzzy-number comparison. Methods that 

employ the idea of comparing fuzzy numbers with rank-order functions [2, 3, 6] have proven to be 

the most useful. Researchers have developed ranking functions to suit their purposes, but it is 

possible that these proposals are not necessarily based on industry-standard practices Fuzzy 

mathematical programming is reviewed in [7]. While there is a wealth of literature on modelling, 

publications on duality still need to be made available, leading to issues with a linear program in a 

fuzzy setting [7,8, 9] suggesting a primal-dual strategy utilizing linear ranking functions for resolving 
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linear programming with fuzzy variable quantities. Based on the duality outcomes published [4], this 

research provides an innovative fuzzy dual simplex strategy for solving fuzzy number linear 

programming problems. This method will benefit sensitivity analysis when the recent set of primary 

vectors rejection extended method is fundamental after difference due to changes in the elementary 

column. We base our method for solving FNLP problems on the linear rank functions initially 

introduced by [11] and exploited by in [4-6]. They point out that while trapezoidal fuzzy numbers 

were used to construct the procedure described in this research, linear ranking functions are only 

some of the options available. 

  Introduced a duality model to address issues with FVLP [4]. This inquiry emphasizes the 

problems associated with FVLPs. We, therefore, analyze the initial reactions to the theory and 

determine how people respond to the contrast presented by fuzzy numbers using a linear ranking 

function. Furthermore, a fuzzy elementary achievable resolution is suggested for FVLP problems and 

related optimality requirements, and a fuzzy dual simplex technique is projected to be useful in 

tackling FVLP concerns. 

The procedures to be followed in writing this paper include providing an overview of the 

basic concepts of fuzzy established models in Part 2, presenting a brief overview of linear 

programming using fuzzy numbers, discussing the issue and definition of the consistent dual 

dilemma in Section II&III, advancing a fuzzy dual technique based on the fuzzy simplex tableau for 

solving linear programming problems using fuzzy numbers in section IV, and presenting the final 

results in Section V. 

II. Preliminaries and fundamental concepts

The fundamental terms and symbols of the fuzzy established model are briefly covered 

(taken from [4]). 

I. Definition Assume ® as a collective set. 𝑎̅  are termed as fuzzy set of 𝑋 if 𝑎̅ is a set of well-

organized sets 𝑎̅ = {((𝑥, 𝜇𝑎̅(𝑥))/ 𝑥 ∈ ®}, wherever 𝜇𝑎̅(𝑥) is relationship function corresponding to  𝑎̅ ,

𝜇𝑎̅(𝑥) ∈ [0,1].

II. Definition The α-level related to a fuzzy set 𝑎̅  are termed for a normal set  [𝑎̅]𝛼for whom the

Maximum power of its relationship function tops the level α, [ 𝑎̅]𝛼 = {𝑥 ∈ ®|𝜇𝑎̅(𝑥)  ≥ 𝛼 }.

III. Definition Support for fuzzy set 𝑎̅   ∈ ® for 𝜇𝑎̅(𝑥) are positive, supp 𝑎̅ = {𝑥 ∈ ®|𝜇𝑎̅(𝑥) > 0) } .

IV. Definition Fuzzy set 𝑎̅ will be referred to as convex only in the case of  𝑥, 𝑦 ∈ ®,  𝜌 ∈

[0,1], 𝜇𝑎̅(𝜌𝑥 + (1 − 𝜌)𝑦) ≥ min{𝜇𝑎̅(𝑥), 𝜇𝑎̅(𝑦)}.

V. Definition A LR-type fixed fuzzy number [1] can be represented by 𝑎 ̅ = (𝑎𝐿 , 𝑎𝑈 , 𝛼, 𝛽)𝐿𝑅, only for

𝜇𝑎̅(𝑥) =

{

𝐿 (
𝑎𝐿−𝑥

𝛼
)   𝑓𝑜𝑟 𝑎𝐿 − 𝛼 ≤ 𝑥 ≤ 𝑎𝐿

1       𝑓𝑜𝑟 𝑎𝐿 ≤ 𝑥 ≤ 𝑎𝑈

𝑅 (
𝑥−𝑎𝐿

𝛽
)   𝑓𝑜𝑟 𝑎𝑈 ≤ 𝑥 ≤ 𝑎𝑈 + 𝛽

0  𝑒𝑙𝑠𝑒 

(1)
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𝜇𝑎̅(𝑥) =

{

𝑥−(𝑎𝐿−𝛼)

𝛼
  𝑓𝑜𝑟 𝑎𝐿 − 𝛼 ≤ 𝑥 ≤ 𝑎𝐿

1   𝑓𝑜𝑟 𝑎𝐿 ≤ 𝑥 ≤ 𝑎𝑈

(𝑎𝐿−𝛽)−𝑥

𝛽
 𝑓𝑜𝑟 𝑎𝑈 ≤ 𝑥 ≤ 𝑎𝑈 + 𝛽

0  𝑒𝑙𝑠𝑒 

 (2) 

I. Remark in case of 𝑎𝐿 =, 𝑎𝑈 = 𝑎 in TRFN 𝑎 ̅ = (𝑎𝐿 , 𝑎𝑈, 𝛼, 𝛽)𝐿𝑅 ,  a three-cornered fuzzy number

(TNF) can be accomplished, and denoted by 𝑎 ̅ = (𝑎, 𝛼, 𝛽).

Let  𝑎̅ = (𝑎𝐿 , 𝑎𝑈, 𝛼, 𝛽) and 𝑎 ̅ = (𝑏𝐿 , 𝑏𝑈, 𝛾, 𝜃)

Define, 
𝑥 > 0, 𝑥𝜖® ;   𝑥𝑎̅ =  (𝑥𝑎𝐿 , 𝑥𝑎𝑈 , 𝑥𝛼, 𝑥𝛽 ) 
𝑥 < 0, 𝑥𝜖® ;   𝑥𝑎̅ =  (𝑥𝑎𝑈 , 𝑥𝑎𝐿 , −𝑥𝛽,−𝑥𝛼) 
𝑎̅ + 𝑏̅ = (𝑎𝐿 + 𝑏𝐿 , 𝑎𝑈 + 𝑏𝑈, 𝛼 + 𝛾 , 𝛽 + 𝜃) 

I. Ranking functions

When faced with a fuzzy linear programming problem, one effective strategy is to make use 

of ranking functions that convey the impression of contrast between fuzzy numbers  [4-7]). It is 

possible to take a functional approach to the set of F® components by constructing a ranking function 

®:F® —®   

     𝑎̅ ≥ 𝑏̅  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ®(a̅) ≥ ®(b̅)  (3) 

       𝑎̅ > 𝑏̅  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ®(a̅) > ®(b̅)  (4) 

       𝑎̅ ≅ 𝑏̅  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ®(a̅) = ®(b̅)  (5) 

 𝑎̅ 𝑎𝑛𝑑 𝑏̅  𝜖 𝐹®, 𝑎̅ ≤ 𝑏̅ ↔  𝑏̅ ≤ 𝑎̅  
   ®(ka̅ + b̅) = k®(a̅) + ®(b̅)       (6) 

 𝑎̅ 𝑎𝑛𝑑 𝑏̅ 𝜖𝐹® ,  k ∈ ®. 

®(a̅) = cLa
L + cUa

U + cαα + cββ  (7) 

Wherever  𝑎̅ = (𝑎𝐿 , 𝑎𝑈 , 𝛼, 𝛽), and cL, cU, cα, cβ is a set of permanent numbers, minimum one  is non-

zero. However, only the computation of a a tiny portion of the available ranking functions for TFFVs 

for the sake of illustration. Listed below are second rank function proposed by [11]. 

𝑌2(𝑎̅) =
1

2
∫ {𝑖𝑛𝑓(𝑎̅)𝛼 + 𝑠𝑢𝑝(𝑎̅)𝛼}𝑑𝛼
1

0
  

𝑌2(𝑎̅) =
1

2
{𝑎𝐿 + 𝑎𝑈 +

𝛽−𝛼

2
}  (8) 

In their seminal work [6]  the two authors developed a ranking function that looks like this: 

𝐶𝑀1
𝜌(𝑎̅) = ∫ {𝜌 𝑖𝑛𝑓(𝑎̅)𝛼 + (1 − 𝜌)𝑠𝑢𝑝(𝑎̅)𝛼}𝑑𝛼

1

0

𝐶𝑀1
𝜌(𝑎̅) = 𝑎𝐿 + 𝜌 {(𝑎𝑈 − 𝑎𝐿) +

𝛼+𝛽

2
} −

𝛼

2
 (9) 

This is a representation of a 2nd rank function proposed by   [6] 

𝐶𝑀2
𝜌(𝑎̅) = ∫ 𝛼{𝜌 𝑖𝑛𝑓(𝑎̅)𝛼 + (1 − 𝜌)𝑠𝑢𝑝(𝑎̅)𝛼}𝑑𝛼

1

0

𝐶𝑀2
𝜌(𝑎̅) = 𝑎𝐿 + 𝜌 {(𝑎𝑈 − 𝑎𝐿) +

𝛼+𝛽

3
} −

𝛼

3
 (10) 

Fuzzy numbers in the context of probability assumption were ranked by [7] To grow this, assume 

there are two fuzzy numbers, 𝑎̅  , 𝑏̅. So, by expansion value given by Zadeh, crisp  𝑥 ≤ 𝑦   

    ®(a̅ ≤ b̅) =  sup
𝑥≤𝑦 

{min(μa̅(𝑥), μa̅(𝑦))} 
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 The truthfulness worth ®(a̅ ≤ b̅) which is additionally termed as ranking the option as the 

domination of term 𝑏̅ 𝑜𝑛 𝑎̅ and is symbolized as P (a̅ ≤ b̅). Next, describe a̅ ≤ b̅  ↔  P (a̅ ≤ b̅) ≤

P (a̅ ≤ a̅).  

Conclusion: When ranking fuzzy variables, we adopt the first class since any FVLP illustrations can 

be transformed into a crisp linear programming illustration by employing a linear ranking algorithm. 

For FLP resolution, we can also use existing dual simplex techniques, which we can apply in this 

context. 

III. Linear Programming with Fuzzy Variables

I. Definition According to research [5] following descriptions of FVLPs are correct:

    Min 𝑧̅  ≅ 𝑐𝑥̅ 

s.t. 𝐴𝑥̅ ≥ 𝑏̅   (11) 
𝑥̅ ≥ 0

𝑐 ∈ ®𝑛, 𝑥̅  ∈ (𝐹(®))
𝑛

, A ∈ ®m+n , 𝑏̅  ∈ (𝐹(®))
𝑚
.

II. Definition: A vector 𝑥̅  ∈ (𝐹(®))
𝑛

 provides practical result for Equivalence (11) ↔ 𝑥̅   fulfils the

problem's restraints.

III. Definition: An Variable result 𝑥̅∗ such as optimum result of Equation (5) only for, Ɐ such as

possible results 𝑥̅ of the Equation (11), 𝑐 𝑥̅∗  ≤ 𝑐𝑥̅. 

IV. Definition: The FVLP problem:

   Min 𝑧̅ = 𝑐𝑥̅ 

s.t . 𝐴𝑥̅ = 𝑏̅           (12) 
𝑥̅ ≥ 0

where the problem's limitations are those specified by the (6) 

V. Definition: Let 𝐴 = [𝑎(𝑖,𝑗)]𝑚×𝑛 Assume 𝑟𝑎𝑛𝑘(𝐴) = 𝑚. Divider  𝐴 𝑎𝑠 [𝐵 𝑁], where 𝐵,𝑚 × 𝑛  is

Plural. Clearly stated that 𝑟𝑎𝑛𝑘(𝐵) = 𝑚.assume 𝑦𝐽 as result of  𝐵𝑦 = 𝑎𝑗

𝑥̅𝐵 = (𝑥𝐵1  , 𝑥𝐵2  , ……𝑥𝐵𝑚  , )
′
≅ 𝐵−1𝑏̅ , 𝑥̅𝑁 = 0̅                                                              (13)

is a solution of 𝐴𝑥̅ = 𝑏̅. 𝑋̅ = (𝑥̅𝐵
′ , 𝑥̅𝑁

′ )′. If 𝑥̅𝐵 ≥ 0̅, 𝑧̅ = 𝑐𝐵𝑥̅𝐵 ,  where  𝐶𝐵 = (𝐶𝐵1 , 𝐶𝐵2 , ……𝐶𝐵𝑚  )  The need for

conformity with non-elementary variables has 𝑥̅𝑗 , 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝐵𝑖 ,   𝑖 = 1, 2, …………𝑚, 

𝑧𝑗 = 𝐶𝐵𝑦𝑗 = 𝐶𝐵𝐵
−1𝑎𝑗  .

In this section, we detail some of the most salient findings concerning the development of a workable 

solution, the existence of unbounded conditions, and the presence of optimality situations [5] 

I. Theorem  in case we obtain an fuzzy elementary viable result related with an fuzzy objective

value 𝑧̅ ∋ 𝑧𝑘 − 𝑐𝑘 > 0  for some non-primary variable 𝑥̅𝑘 and 𝑦𝑘 ≤ 0, then it is probable to attain an

original fuzzy elementary feasible result consisting of an initial fuzzy objective value 𝑧 ̿𝑎𝑛𝑑  𝑧̿ ≤ 𝑧.̅

II. Theorem A result for illustration with a fuzzy elementary feasible is  𝑧𝑘 − 𝑐𝑘 < 0   with a few

complex variable quantity 𝑥̅𝑘 and 𝑦𝑘 ≤ 0, then the solution to the illustration (Equation 10) is limitless.

III. Theorem Optimality restrictions. If an elementary solution  𝑥̅𝐵 = 𝐵−1𝑏̅, 𝑥̅𝑁 = 0̅  are possible for 

Equation (10), 𝑧𝑗 − 𝑐𝑗  for the whole of  𝑗, 1 ≤ 𝑗 ≤ 𝑛

I. Duality

VI. Definition At (Mahdavi-Amiri and Nasseri, 2007), the FVLP illustrations’ dual (equation 9) is

described in the following,

    Max 𝑧̅ = 𝑤𝑏̅ 

s.t . 𝑤𝐴 ≤ 𝑐 (14)
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 𝑤 ≥ 0 

𝑤 = (𝑤1 , 𝑤2, … . 𝑤𝑚) ∈ ®
𝑛, includes a crisp variable quantity conforming to the

restrictions of Equation (9).  

Without going into proofs, we will list several important results about the FVLP problem and its dual, 

the DFVLP problem, as proven by [4] 

IV. Theorem If 𝑥0, 𝑤0 act as practical results for FVLP, DFVLP illustrations, correspondingly,

𝑐̅ 𝑥0 ≥ 𝑤0𝑏̅.

I. Corollary If 𝑥0, 𝑤0 act as practical results for FVLP, DFVLP illustrations, correspondingly, and

𝑐̅ 𝑥0 ≅ 𝑤0𝑏̅,.  𝑥0 and 𝑤0   are optimal solutions.

II. Corollary  If any DFVLP problems are boundless, therefore, additional issue has zero practical

result.

V. Theorem In case of FVLP, DFVLP illustrations can be solved optimally, then the two problems

can be solved optimally.

IV. A Fuzzy Dual Simplex Method

I. Primal optimality and dual feasibility

  FNLP 

 Min 𝑧̅ ≅ 𝑐̅𝑥           (15) 

     Subject to restrictions  𝐴̅𝑥 ≥ 𝑏̅ 
   𝑥 ≥ 0 

 Where  𝐴 = 𝛾(𝑎̅(𝑖,𝑗)) and   𝑏 = 𝛾(𝑏̅) = 𝛾(𝑏̅𝑖),  All 𝑖 = 1,2, … . . , 𝑚  𝑎𝑛𝑑  𝑗 = 1,2…… . 𝑛. 

nonnegative slack variables  𝑠𝑖  is 𝑖 = 1,2, … . . , 𝑚  We can reformat (16) as follows to account for the ith 

constraint. 

      Min 𝑧̅ ≅ 𝑐̅𝑥 + 0̅𝑠 

     Subject to restrictions  𝐴𝑥 − 𝑠𝑖 = 𝑏          (16) 
      𝑥 ≥ 0, 𝑠 ≥ 0   

    Where  𝑠 = (𝑠1, 𝑠2, … . . 𝑠𝑚)
′ 

 Define    𝑥̅𝜖®𝑛+𝑚    and 𝑐 ̿𝜖(𝐹(®))
𝑛+𝑚

    as

 𝑥̅j = {
𝑥j,   j=1,2,……….n

sj−n , j = n + 1,…… , n + m,
     (17) 

      c̿j = {
c̿j,       j=1,2,……….n

0̅ , j = n + 1,…… , n + m,
 (18) 

Let's pretend that there is a simple answer to (17):  𝑥̅B = B
−1b, let 𝑧𝑗 = 𝑐𝐵̅𝐵

−1𝑎𝑗  where 𝑐𝐵̅ =

(𝛾(𝑐̿))
𝐵
= (𝛾(𝑐̿))

𝐵1
, …… . . (𝛾(𝑐̿))

𝐵𝑚
. and aj as jth line as constant matrix  [A, I] = [γ(A̅)    I].

Table 4.1, wherever (𝑥̅B)r as 𝑥𝑟 𝑡ℎ elementary variable, 𝑦𝑗 = 𝐵
−1𝑎𝑗, and 𝛾(𝑧𝑗̅ − 𝑐𝑗̅) = 𝛾(𝑐𝐵̅)𝐵

−1𝑎𝑗 −

𝛾(𝑐𝑗̅) = 𝛾(𝑐𝐵̅)𝑦𝑗 − 𝛾(𝑐𝑗̅) is the real number consistent to 𝑧𝑗̅ − 𝑐𝑗̅ ≅ 𝑐𝐵̅𝑦𝑗 − 𝑐𝑗̅. Supposing as j = 1, …… , n +

m  ,thus, we get 𝑧𝑗̅ − 𝑐𝑗̿̅ ≤ 0̅   w = 𝑐𝐵̅𝐵
−1, where  w = (𝑤1 , 𝑤1 , ……𝑤𝑚 ). for j = 1, …… , n +m

 we have    𝑧𝑗̅ − 𝑐𝑗̅ ≤ 0  for  j = 1, …… , n ,waj − cj ≤ 0. then, 𝑤 ≥ 0  𝑧𝑗̅ − 𝑐𝑗̅ ≤ 0  for j = 1, …… , n + m →

wA ≤ c and w ≥ 0,  where w = 𝑐𝐵̅𝐵
−1. the simple FVLP problem.  

 𝑐̅𝑥̿ = 𝑐𝐵̅𝑏̿ = 𝑐𝐵̅𝐵
−1𝑏̅ = 𝑤𝑏̅ = 𝑤𝛾(𝑏̅) 
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II. Corollary proves x and was optimal results as the FVL, DFVLP illustrations, correspondingly.

Table 1: An example of a fuzzy dual practical simplex tableau 

Basis  𝑥̅1     ...  𝑥̅𝑘  ....  𝑥̅𝑛+𝑚 𝛾(𝑅. 𝐻. 𝑆) 

𝛾(𝑧̅) 𝛾(𝑧1̅ − 𝑐1̿)          ...  𝛾(𝑧𝑘̅ − 𝑐𝑘̿)  …  𝛾(𝑧𝑛̅+𝑚 − 𝑐𝑛̿+𝑚) 𝛾(𝑐𝐵̿𝑏) 

𝑧̅ (𝑧1̅ − 𝑐1̿)  …   𝛾(𝑧𝑘̅ − 𝑐𝑘̿)  …  (𝑧𝑛̅+𝑚 − 𝑐𝑛̿+𝑚) (𝑐𝐵̿𝑏) 
(𝑥̅𝐵)1 𝑦(1,1)             ...  𝑦(1,𝑘)           ...  𝑦(1,𝑛+𝑚)    𝛾(𝑏̿1) 

...
.. 

...
.. 

   

  …
.. 

(𝑥̅𝐵)𝑟 𝑦(𝑟,1)          .....  𝑦(𝑟,𝑘)             .....      𝑦(𝑟,𝑛+𝑚)      𝛾(𝑏̿2) 

…
 

…
 

…
 

(𝑥̅𝐵)𝑚 𝑦(𝑚,1)      .....  𝑦(𝑚,𝑘)          .....  𝑦(𝑚,𝑛+𝑚) 𝛾(𝑏̿𝑚) 

I. Lemma If there is a r such that in a fuzzy dual viable simplex tableau, then.

𝛾(𝑏̿𝑟) < 0, as well as a non-primitive index number j exists ∋   𝑦(𝑟,𝑗) < 0, the objective value

corresponding to fuzzy dual feasible tableau will not decrease when the turning column k is set to y

((r,k)).

Proof. A criteria for picking an complex variable for the input the base is required to guarantee for 

news fuzzy simplex tableau retains dual viability, that the newest objective value is not reducing. 

Let's pretend, for the moment, that column k is the crucial one. We obtain the following new zero 

rows after turning on the pivot y ((r,k)): 

(𝑧𝑗̅ − 𝑐𝑗̿)𝑁𝑒𝑤 = (𝑧𝑗̅ − 𝑐𝑗̿) −
(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑘)
 𝑦(𝑟,𝑗), 𝑗 = 1, … . . , 𝑛 + 𝑚,    𝑗 ≠ 𝐵𝑖           (19) 

(𝑧𝑗̅ − 𝑐𝑗̿)𝑁𝑒𝑤 ≤ 0̅ , 𝑗 ≠ 𝐵𝑖  (20) 

  Which, using (19), results in 
(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑘)
≤

(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑗)
 , for all 𝑗 ≠ 𝐵𝑖           (21) 

        To satisfy (20), it is sufficient to let.    

𝛾(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑘)
= min

𝑗≠𝐵𝑖
{
𝛾(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑗)
 𝑦(𝑟,𝑗) < 0}  (22) 

      (𝑤𝛾(𝑏̅))
𝑁𝑒𝑤

= 𝑤𝛾(𝑏̅) −
𝛾(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑘)
𝛾(𝑏̅𝑟) ≥ 𝑤𝛾(𝑏̅),   

𝛾(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑘)
𝛾(𝑏̅𝑟) ≤ 0. 

. 

I. Algorithm The fuzzy dual simplex method

• Assigned a base B to FNLP illustration for

 𝑧𝑗̅ − 𝑐𝑗̿ ≤ 0̅  Ɐ   𝑗 

• If 𝑏 ̿ ≥ 0, if the current solution is best, then do nothing; if not, pick row r from the pivot

table using 𝑏̿𝑟 < 0 (that is, 𝑟 so that (𝑏̿𝑟) < 0.

• If   𝑦(𝑟,𝑗) ≥ 0 for all 𝑗, if the minimal ratio test fails (the FNLP problem is infeasible), then

stop; otherwise, choose column k as the pivot.
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𝛾(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑘)
= min

𝑗≠𝐵𝑖
{
𝛾(𝑧̅𝑘−𝑐𝑘̿)

 𝑦(𝑟,𝑗)
 𝑦(𝑟,𝑗) < 0}. 

• Pivot on 𝑦(𝑟,𝑘) and proceed to (2).
I. Remark In (2), r so that is one possible proposition for a special of r.

 𝛾(𝑏̿𝑟) = min
1≤𝑖≤𝑚

{𝛾(𝑏̿𝑖)}. 

I. Numerical example

We examine the seeing instance, which may be explained using Maleki's method, to further our 

understanding of the aforesaid strategy  [5, 7]. Please take note that the linear ranking function on 

F(®) is modelled after the one proposed by Yager in this section. 

Minimum  𝑧 ≅ (1,3,1,1)𝑥1 + (2,4,1,1)𝑥1(3,5,1,1)𝑥3  

Subject to restrictions  

{

(0,2,
1

2
,
1

2
) 𝑥1 + (1,3,1,1)𝑥1 (0,2,

1

2
,
1

2
) 𝑥3 ≥ (2,4,1,1)

(1,3,1,1)𝑥1 − (0,2,
1

2
,
1

2
) 𝑥2 + (2,4,1,1)𝑥3 ≥ (3,5,1,1)

𝑥1, 𝑥2, 𝑥3 ≥ 0

 

The fuzzy coefficient matrix is ranked using the Yager function 𝐴̅ as well as fuzzy right-hand-cross 

vector 𝑏̅. Therefore, establishing slack of variable quantity 𝑥4 and𝑥5 the problem decreases to:

   Minimum  𝑧 ≅ (1,3,1,1)𝑥1 + (2,4,1,1)𝑥1(3,5,1,1)𝑥3 

Subject to restrictions  {
𝑥1 + 2𝑥2 + 𝑥3 − 𝑥4 = 3
2𝑥1 − 𝑥2 + 3𝑥3 − 𝑥5 = 4
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0

 

Now, 𝑥1 is an incoming variable, and 𝑥5 is an exit variable quantity. Then by rotating on 𝑦21 = −2, we 

attain the next tableau as 

Table 2: The first iteration 

Basic 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H. S 

𝛾(𝑧̅) 0 -4 -1 0 -1 4 

 𝑧̅  0̅ 
(−4,−4,

3

2
,
3

2
) 

(−3,1,2,2)  0̅ (−1,−1,0,0) (0,0,0,0) 

𝑥4 0 
−
5

2

1

2
1 

−
1

2
-1

𝑥1 1 
−
1

2

3

2
0 

−
1

2
2 

Table 3: The second iteration 

Basic 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 R.H.S 

𝛾(𝑧̅) 0 0 
−
9

5
−
8

5
−
1

5

28

5
 𝑧̅  0̅  0̅ 

(−
31

5
,
13

5
,
18

5
,
18

5
) (−

8

5
,−
8

5
, 0,0) (−

1

5
,−
1

5
, 0,0) (

11

5
, 9,
17

5
,
17

5
) 

𝑥4 0 1 
−
1

5
−
2

5

1

5

2

5
𝑥1 1 0 7

5
−
1

5
−
2

5

11

5
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To clarify, x2   ,an input variable  x4 as an output variable in this scenario. Updated data can be seen in 

Table 3 below. 

Hence the optimum solution attained by the fuzzy dual simplex is  𝑥1 =
11

5
,  𝑥2 =

2

5
, also the fuzzy

optimum estimate of the objective function is 𝑧̅ ≅ (
11

5
, 9,

17

5
,
17

5
).

V. Conclusion

In this study, we introduce the idea of a duality outcome in fuzzy variable linear 

programming problems using fuzzy dual simplex algorithms with generic linear ranking functions on 

fuzzy variables. In particular, we emphasize the proposed method for directly addressing fuzzy 

variable linear programming problems with the assistance of linear ranking functions. This method is 

applicable in linear programming and will prove useful in sensitivity analysis for basic column 

activity vectors. We use the fuzzy dual simplex approach to perform dual pivots and reach feasibility. 

Interesting studies will be possible in the future when the variables are also fuzzy integers. 
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Abstract 

This study presents a modified one-parameter Ailamujia distribution called the Entropy 

Transformed Ailamujia distribution (ETAD) is introduced to handle both symmetric and 

asymmetric lifetime data sets. The ETAD properties like order and reliability statistics, entropy, 

moment and moment generating function, quantile function, and its variability measures were 

derived. The maximum likelihood estimation (MLE) method was used in estimating the parameter 

of ETAD and through simulation at different sample sizes, the MLE was found to be consistent, 

efficient, and unbiased for estimating the ETAD parameter. The flexibility of ETAD was shown by 

fitting it to six different real lifetime data sets and compared it alongside seven competing one-

parameter distributions. The goodness of fit (GOF) results from Akaike information criteria, 

Bayesian information criteria, corrected Akaike information criteria, and Hannan-Quinn 

information criteria show that the ETAD was the best fit amongst all the seven competing 

distributions across all the six data sets. 

Keywords: Ailamujia distribution, Entropy Transformation, Maximum 

likelihood estimation, Goodness of fit, Information criteria 

I. Introduction

Modelling, organizing, as well as analyzing real life phenomenon is essential in the field of applied 

sciences such as engineering, medical sciences, finance, architecture, amongst others. Recently, 

progressive hybrid censoring scheme is becoming popular in a life testing problems and reliability 

analysis. Since there are so many data generation processes characterized under different systems 

and environments, no single probability model can perfectly be used to describe and model all the 

phenomena. Therefore, the consistency and accuracy of statistical analysis in highly influenced by 

the probability distribution or model adopted {[1], [2], [3], and [4]}. One remarkable method is 

accomplished by adding parameter(s) to an existing/traditional distribution [5]. Also, [6] 

introduced a new dimension of distribution, which discussed a new family of distribution, namely 

the Exponentiated Exponential distribution. Kumaraswamy-G proposed by [7] while [8], [9], and 

[10] introduced Logistic-X, New Sine Inverse Rayleigh, and New Sine Inverted Exponential

distributions, respectively. In each of the methods listed above, at least one parameter is added to

the existing distribution which thus adds to the complexity in obtaining the estimates of the

parameters for the new model. Considering the associated complexities, transformation techniques

were recommended which do not require the addition of parameters to the baseline distribution to

modify its flexibility and robustness [11]. In line with this system of modification, [12] proposed a
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probability distribution called the Entropy Transformed Weibull distribution and Entropy 

Transformed Rayleigh distribution was derived by [13]. In the same system of transformation, this 

paper introduced an Entropy Transformed Ailamujia Distribution (ETAD) which is a modification 

of the Ailamujia Distribution introduced by [14]. 

II. Methods

In this section, the ETAD and its application are presented. The Probability Density Function 

(PDF), Cumulative Distribution Function (CDF), reliability functions, variability measures and 

distribution shape, measures of uncertainty, and the estimation of the ETAD parameter using the 

maximum likelihood estimation technique are presented. Simulation and six (6) real life data sets 

are fitted to the ETAD and compared to seven (7) other competing one parameter distributions 

using the technique of information criteria. 

I. Entropy Transformed Ailamujia Distribution (ETAD)

Soleha & Sewilam [15] considered a random variable X which represents the appropriate runtime 

for any component, and they introduced the following expression  

     ( ) , 0g x F x R x lnR x x      (1) 

where, F(x) and R(x) are the cumulative and reliability function, respectively, of a positive 

continuous random variable X. They called g(x) an “Entropy Transformation” and this possibility 

is because the term R(x)lnR(x) is similar to the associated entropy expression for the density 

function of a continuous random variable X  

     dxxfxffH ln
0




 .    (2) 

Differentiating equation (1) with respect to x the PDF is obtained, its integral gives the CDF, and 

fixing the range validates the PDF:  

      1ln
0

'

0

'  


dxxRxRdxxg    (3) 

The CDF of the random variable X of Ailamujia distribution (AD) is given by [14]: 

    xexxF  2211  , 1,0  x     (4) 

The reliability function R(x) of AD is given as 

      xexxFxR  2211  , 1,0  x .    (5) 

Substituting equation (4) and (5) into equation (1) and take the derivative w.r.t x gives 

      2 2 2( ) 1 1 2 1 2 ln 1 2x x xg x x e x e x e               (6) 

However, from equation (3) it can be easily seen that the differentiation of equation (6) can be 

easily obtained as 

         2 2 2 2 2
( ) 1 2 ln 1 2 2 1 2 ( 2 ) ln 1 2

x x x x xd
g x x e x e e x e x e

dx

    
     

            
 

       
 

    2 2 2[2 2 4 ] ln 1 2x xe x x e           2 2 24 ln 1 2x xxe x e       (7) 

Let f (x) be g΄(x) then 

  2 2 2( ) 4 ln 1 2 0, 1x xf x xe x e x        

is the PDF of the ETAD. The corresponding CDF after integrating (7) is obtained as 

      22 1 ln 2 1 2 1xF x x e x x       . (8)
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The PDF and CDF plots at different values of θ are presented in Figure 1 and Figure 2, respectively. 

II. Linear Representation of ETAD

The ETAD is linearly represented for simplicity using the Taylor series expansion theorem at order 

four (4). Expanding the ln part of f (x) and let it be represented by t (x), thus 

      
 

 2 2

2

1
ln 2 1 2 1

2 1

x x

x

d d d
t x t x x e x e

dx dx x e dx

 


 



 


             

(9) 

  
 

  2 2 2 2 2

2

2 2 2 1 1 2 2 2 1

2 1 2 1

x x x x x

x

e x e e e x e

x e x

    



     

 

   



    
 

 
     (10) 

Figure 1: PDF Plots of ETAD  Figure 2: CDF Plots of ETAD 

By expansion equation (10) becomes 

 
24

0
2 1

x
t x

x




   


 (11) 

 
    
 

22 2
2

2

4 2 1 2 24
4

2 1 2 1 2 1

xd d x d x
t x

dx dx x dx x x

  


  

    
            

 (12) 

By expansion equation (12) becomes 

 
 

2
2

2

4
0 4

2 1
t

x





  


 (13) 

 
 

3 2

23

4

2 1

d d
t x

dx dx x





 
   

    
  

32 2

2

1
4 4 2 2 1 2

2 1

d
x

dx x
   




 

      
  

 (14) 

 3
3

12

16




x


 (15) 

By expansion equation (15) becomes 
3(0) 16t    (16) 

 
   

4 3
3

3 34

16 1
16

2 1 2 1

d d d
t x

dx dx dxx x




 

   
     

       

 (17) 

  
4316 3 2 1 2x  


  
 

4

4

96

2 1x




 


(18)
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By expansion equation (18) becomes 

  496t     (19) 

Therefore, 

 
0 1 2 4

2 3 40 0 3
0 4 16 96

0! 1!! 2! 3! 4!

x x x x x
t        

  2 2 3 3 4 4

2

0 2 2 67 4
n

t x x x  




       (20) 

The approximate and nth series expansion of (20) are given respectively as 

  2 2 3 3 4 4

2

0 2 3 4
n

t x x x  




    

and 

    
 

 
 2 1

2 2

0 2 1.5 1
n n n n

n n

t x
 

 

 

   .

Therefore, the linear representation of ETAD is given as 

    
 

 
 2 12 2 2 2 2 1 2

2

4 2 1.5 1 4 4
n nx n n x n n n n x

n n

n

f x xe x xe G x G x e
  

    


     



      
 

    
  (21) 

where,   
 

 
 2 1

2

2 1.5 1
n n

n

n

G


 



  . 

III. Some Properties of ETAD

The survival [S(x)], hazard [h(x)], and odd [O(x)] functions are presented as well as their respective 

plots follows.   

   1S x F X x        21 2 1 ln 2 1 2 1xx e x x         (22) 

 
 

 

 

 1

f x f x
h x

F x S x
 



 

    

2 2

2

4 ln 2 1

1 2 1 ln 2 1 2 1

x

x

x x e

x e x x





 

  





   
    

 (23) 

Odds function: 
 

 
( )

( )
1 ( )

F x F x
O x

F x S x
 



    
    

2

2

2 1 ln 2 1 2 1

1 2 1 ln 2 1 2 1

x

x

x e x x

x e x x





  

  





   


    
 (24) 

 Figure 3: Plot of S(x) at Different Parameter Values          Figure 4: Plot of h(x) at Different Parameter Values 
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Figure 5: Plot of O(x) at Different Parameter Values 

Quantile Function: the inverse of the CDF of ETAD gives the quantile function of ETAD, through 

the Lambert W function transformation it is expressed as  

1

1 010 1
10

2

u
W W e

x






  
    

    (25) 

IV. Moments and Moment Generating Function

Moments: This is an important property of a distribution that is used to getting some measures 

comprising of the mean, variance, etc. Suppose the random variable X ~ ETAD(x, θ), the 
thr

moment  r , can be obtained as

 rr xE  dxxfxr ,
0




  (26)

  xn

n

n exGxf  2124 

dxeGxx x

n

nnr

r

 212

0

4 



   



0

2124 dxexG xrn

n

n 

Let xu 2 ; dudu
dx

du




2

1
2  ;

2

du
dx  . Where ,0x 2 0 0u    ; As ,x

.u 
By substitution the following is obtained

 






0

1
2

22
4




du
euGu u

rn

n

n

r  
 

dueuG unn

n

rn







 11

0

2
11

24 

 
 

dueuG urnn

n

rn










0

12
21

24   
 

dueuG urnn

n

rn










0

1112
21

24 

 
 

 
224 2 2

n rn

r nG n r  
       .  (27)

The mean of ETAD, that is, E[x] is given as 

     224
22 

 rnG
rnn

nr 

       2124
212

1 
 nGxE

nn

n 
 

  






 


 12

3
n

n nG

(28)
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The population variance, 
2 of ETAD can be obtained as follows,

      22 xExExVar   (29)

     42

2

2
24


nn

nGxE 
     424 442   nG nnn

n       422 4242   nG nn

n

n 

   
 

 

 
 

2

2 2

( 2) 2 2 12

4 3( 4)
2 4

2 2 2
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n n n n

G n G nG n
G n
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  

                       

 
 
 

 
 

 
 

 
1 2 12

3 4 3 3
1

22 2 2

n n n
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Var x
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The Coefficient of Variance (CV) of ETAD can be obtained as follows 
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The Harmonic Mean (HM) of ETAD is obtained as follows
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The Mode (M) of ETAD can be obtained as follows 
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The Median can be derived by using equation (25) which is the derived quantile function of ETAD 

and fixing 5.0u , the median of ETAD is obtained as follows: 

1

1 0

0.5
10 1

10

2

W W e

x






  
    

    
  1

1 010 0.05 1

2

W W e






      (37) 

Skewness [SK]: The skewness of a probability distribution is a measure of symmetry and the lack of 

symmetry of the probability distribution. The ETAD SK is derived from the 3rd moment of the 

mean. 
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 (39) 

Kurtosis [KT]: The kurtosis measure whether or not the probability distribution is heavy-tailed. For 

ETAD the KT is derived from the 4th moment and is obtained as 
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Dispersion Index [DI]: It is simply defined as the variance divided by the mean. It tells how 

dispersed the mean is from the variance. The DI for the ETAD is obtained as  
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Moment Generating Function: The moment generating function of X, say  tM X , is 
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By substitution equation (43) becomes 
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V. Entropy

Suppose a random variable X  follows the ETA distribution, then the Renyi entropy (Renyi, 1961) 

which measures the uncertainty of information is expressed as  
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VI. ETAD Order statistics

Given an independence characteristic distribution of a random sample
1 2
; ;

n
X X X , this sample 

can be in ordered form as      1 2 n
X X X    or in a better notation,      1; 2; ;n n n n

X X X  

. These representations are called order statistics. The 
st1 order statistics,  1X  is the minimum, the

nd2 order statistics,  2X is the second while the 
thn order statistics,  nX is the maximum.

PDF of the 
thk order statistics of ETAD: Suppose a random sample nXXX ,, 21   from the ETAD is 

ordered as      nXXX  21 , then the PDF   Xf nn; of the 
thk order statistics can be define

as: 
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where,  XF  and  Xf  are the CDF and PDF respectively of the ETA distribution. Hence, for

easier simplification, the binomial expansion of    kn
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Substituting equation (50) into (49) to obtain 
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Substituting the PDF and CDF of ETA distribution into (52) we have 
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PDF of the Smallest and Largest Ordered Statistic 

To obtain the 
st1 or minimum order statistic, let 1k be substituted into equation (53) to give 
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Similarly, the 
thn order statistic or maximum order statistic is obtained by substituting k = n, to 

give 
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VII. Parameter Estimation using Maximum Likelihood Estimation

Suppose X1, X2, ..., Xn is a random sample with size n drawn from ETA distribution. The likelihood 

function  
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The parameter estimate ̂ of ETAD is obtained by differentiating equation (57) partially with 

respect to   and equate to zero. This implies, 
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Equation (59) clearly reveal that there is no close form expression for θ and this implies it can only 

be estimated through numerical methods using software like SAS, R, Maple, etc., for this research 

the R open source software was used. 

VIII. Goodness of Fit Test

The goodness of fit tests used are, Akaike IC (AIC), Bayesian IC (BIC), Corrected AIC (CAIC), and 

Hannan-Quinn IC (HQIC). Their respective formulas are presented as follows. 
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where, ll is the log-likelihood, n is the sample size, and k is the number of parameter to be 

estimated. 

III. Results

I. Simulation Study

The usefulness of simulation is to determine the efficiency and consistency of the estimate of MLE 

method. Using different parameters values and sample sizes (20-1500), the estimation methods 

used for the comparing are based on absolute bias (AB), variance (S2), standard error (SE), and root 

mean square error (RMSE). 
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Table 1 presents the simulation results for up to 1500 simulations at different parameter values. 

The results demonstrate that the MLE method is consistent and efficient. This is due to the fact that 
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as the sample size increases from 20 to 1500 the variance and RMSE decreases to the minimum. 

Table 1: Absolute Bias, Variance, Standard Error, and Root Mean Square Error 

Sample Size Parameter Value Estimate |Bias| Variance Standard Error RMSE 

20 0.1 0.1613 0.0613 0.0000 0.0000 0.0038 

20 0.3 0.5012 0.2012 0.0003 0.0039 0.0408 

20 0.5 0.8389 0.3389 0.0008 0.0063 0.1157 

20 0.7 1.1764 0.4764 0.0015 0.0087 0.2285 

40 0.1 0.1609 0.0609 0.0000 0.0000 0.0037 

40 0.3 0.4911 0.1911 0.0001 0.0016 0.0366 

40 0.5 0.8204 0.3204 0.0004 0.0032 0.1031 

40 0.7 1.1497 0.4497 0.0008 0.0045 0.2030 

80 0.1 0.1606 0.0606 0.0000 0.0000 0.0037 

80 0.3 0.4859 0.1859 0.0001 0.0011 0.0347 

80 0.5 0.8108 0.3108 0.0002 0.0016 0.0968 

80 0.7 1.1357 0.4357 0.0004 0.0022 0.1902 

100 0.1 0.1608 0.0608 0.0000 0.0000 0.0037 

100 0.3 0.4856 0.1856 0.0001 0.0010 0.0345 

100 0.5 0.8102 0.3102 0.0002 0.0014 0.0964 

100 0.7 1.1347 0.4347 0.0003 0.0017 0.1893 

150 0.1 0.1606 0.0606 0.0000 0.0000 0.0037 

150 0.3 0.4839 0.1839 0.0000 0.0000 0.0338 

150 0.5 0.8071 0.3071 0.0001 0.0008 0.0944 

150 0.7 1.1303 0.4303 0.0002 0.0012 0.1854 

250 0.1 0.1606 0.0606 0.0000 0.0000 0.0037 

250 0.3 0.4831 0.1831 0.0000 0.0000 0.0335 

250 0.5 0.8055 0.3055 0.0000 0.0000 0.0933 

250 0.7 1.1279 0.4279 0.0001 0.0006 0.1832 

500 0.1 0.1606 0.0606 0.0000 0.0000 0.0037 

500 0.3 0.4824 0.1824 0.0000 0.0000 0.0333 

500 0.5 0.8042 0.3042 0.0000 0.0000 0.0925 

500 0.7 1.1260 0.4260 0.0000 0.0000 0.1815 

750 0.1 0.1605 0.0605 0.0000 0.0000 0.0037 

750 0.3 0.4820 0.1820 0.0000 0.0000 0.0331 

750 0.5 0.8035 0.3035 0.0000 0.0000 0.0921 

750 0.7 1.1250 0.4250 0.0000 0.0000 0.1806 

1000 0.1 0.1605 0.0605 0.0000 0.0000 0.0037 

1000 0.3 0.4819 0.1819 0.0000 0.0000 0.0331 

1000 0.5 0.8033 0.3033 0.0000 0.0000 0.0920 

1000 0.7 1.1246 0.4246 0.0000 0.0000 0.1803 

1500 0.1 0.1605 0.0605 0.0000 0.0000 0.0037 

1500 0.3 0.4818 0.1818 0.0000 0.0000 0.0331 

1500 0.5 0.8030 0.3030 0.0000 0.0000 0.0918 

1500 0.7 1.1243 0.4243 0.0000 0.0000 0.1800 

II. Real Life Data Analysis

This research fitted six (6) real data sets to the ETAD and seven other competing distributions 

[Inverted Exponential Distribution (IED), Sine Exponential Distribution (SED), Ram Awadh 

Distribution (RAD), Prakaamy Distribution (PD), N-Sine Exponential Distribution (NSED), 

Exponential Distribution (ED), Ailamujia Distribution (AD)] for comparison. The data sets are 

nicotine measurement from different cigarettes brands [16], Carbon Fiber Tensile Strength of 

Length 20mm and 50mm [17], Survival Times of Growth Hormone Medication [18], Lung Cancer  
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Patients Tumours Size [19], and Glass Fiber Strength of 1.5cm [20]. The descriptive statistics, MLE, 

and GoF results are presented. 

Table 2: Descriptive Statistics 

Variable Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Sample size 346 69 66 35 76 63 

Maximum value 2 2.585 4.9 13.7 11.18 2.24 

Minimum Value 0.1 0.312 0.39 2.15 0.96 0.55 

Mean 0.8525 1.451 2.751 5.298 3.529 1.507 

Median 0.0041 1.49 2.035 4.51 2.7 1.54 

Variance 0.1192 0.245 0.7948 8.509 6.595 0.1051 

Table 3: The MLE Estimates for the Six Data Sets 

Distribution MLE 1 MLE 2 MLE 3 MLE 4 MLE 5 MLE 6 

IED 0.839 1.81 1.064 1.993 0.345 1.999 

SED 0.672 0.396 0.208 0.108 0.161 0.383 

RAD 1.993 0.755 1.763 1.114 1.548 1.997 

PD 1.927 0.401 1.879 1.117 1.589 2 

NSED 1.174 0.217 0.441 0.778 1.62 1.205 

ED 1.173 0.688 0.362 0.188 0.283 0.664 

AD 1.985 0.689 0.362 1.665 0.283 0.664 

ETAD 1.985 1.167 0.614 0.3204 0.32 1.122 

Table 4: Log-likelihood and Information Criteria for Data Set I 

ll AIC BIC CAIC HQIC Rank 

IED -467.823 937.646 941.492 937.657 939.177 5 

SED -273.346 548.692 552.539 548.704 550.224 3 

RAD -5076.81 10155.617 10159.464 10155.629 10157.149 6 

PD -693.204 1388.407 1392.254 1388.419 1389.939 7 

NSED -1267.3 2536.593 2540.440 2536.605 2538.125 8 

ED -290.826 583.652 587.498 583.663 585.183 4 

AD -193.354 388.708 392.554 388.720 390.240 2 

ETAD -144.56 291.119 294.965 291.130 292.650  1 

Table 5: Log-likelihood and Information Criteria for Data Set II 

ll AIC BIC CAIC HQIC Rank 

IED -89.1475 180.295 182.529 180.354 181.181 4 

SED -90.9535 183.907 186.141 183.967 184.793 5 

RAD -386.964 775.927 778.161 775.987 776.813 7 

PD -608.715 1219.429 1221.663 1219.488 1220.315 8 

NSED -60.315 122.630 124.864 122.690 123.517 2 

ED -94.7015 191.403 193.637 191.463 192.289 6 

AD -73.095 148.190 150.424 148.250 149.076 3 

ETAD -59.69 121.380 123.614 121.440 122.267  1 

Table 6: Log-likelihood and Information Criteria for Data Set III 

ll AIC BIC CAIC HQIC Rank 

IED -400.249 802.497 804.686 802.559 803.362 8 

SED -129.339 260.677 262.867 260.740 261.542 5 

RAD -104.968 211.936 214.126 211.999 212.801 4 

PD -100.044 202.088 204.278 202.151 202.953 2 

NSED -181.793 365.585 367.774 365.647 366.450 7 
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ED -132.995 267.989 270.178 268.051 268.854 6 

AD -112.004 226.008 228.197 226.070 226.873 3 

ETAD -98.697 199.394 201.584 199.457 200.259  1 

Table 7: Log-likelihood and Information Criteria for Data Set IV 

ll AIC BIC CAIC HQIC Rank 

IED -555.075 1112.150 1113.705 1112.271 1112.686 8 

SED -91.9045 185.809 187.364 185.930 186.346 5 

RAD -81.9755 165.951 167.506 166.072 166.487 4 

PD -81.9295 165.859 167.414 165.980 166.396 3 

NSED -307.259 616.518 618.073 616.639 617.055 2 

ED -93.4075 188.815 190.370 188.936 189.352 6 

AD -480 961.999 963.554 962.120 962.536 7 

ETAD -80.142 162.284 163.839 162.405 162.821 1 

Table 8: Log-likelihood and Information Criteria for Data Set V 

ll AIC BIC CAIC HQIC Rank 

IED -3948.32 7898.632 7900.963 7898.686 7899.563 8 

SED -169.826 341.651 343.982 341.705 342.582 3 

RAD -184.068 370.136 372.466 370.190 371.067 6 

PD -183.404 368.807 371.137 368.861 369.738 5 

NSED -910.383 1822.766 1825.097 1822.820 1823.698 7 

ED -171.901 345.802 348.133 345.856 346.734 4 

AD -159.121 320.241 322.572 320.295 321.173 2 

ETAD -80.142 162.284 163.839 162.405 162.821  1 

Table 9: Log-likelihood and Information Criteria for Data Set VI 

Ll AIC BIC CAIC HQIC Rank 

IED -70.438 142.876 145.019 142.942 143.719 3 

SED -84.9795 171.959 174.102 172.024 172.801 5 

RAD -110.009 222.017 224.160 222.082 222.860 7 

PD -107.312 216.623 218.767 216.689 217.466 6 

NSED -253.889 509.777 511.920 509.843 510.620 8 

ED -88.8305 179.661 181.804 179.726 180.504 4 

AD -66.3175 134.635 136.778 134.700 135.477 2 

ETAD -49.5355 101.071 103.214 101.136 101.914 1 

From the results presented in Table 4 to Table 9 clearly shows that the ETAD is more flexible and a 

better fit distribution compared to the other one-parameter lifetime distributions because its ll 

values is larger than the other distributions ll values and it’s AIC, BIC, CAIC, and HQIC values are 

smaller than that of the other seven competing distributions. To buttress these results, the fitted 

plots for the ETAD and the other competing distributions are presented below. Due to space, only 

very close competing distributions and our proposed distribution plots are presented in Figure 6 to 

Figure 8. 
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Figure 6: Density Plot for Sine Exponential Distribution 

Figure 7: Density Plot for Ailamujia Distribution 

Figure 8: Density Plot for Entropy Transformed Ailamujia Distribution 

From the plots presented, it clearly shows that the ETAD can flexibly fit right skewed and 

symmetric data sets well compared to the other seven competing distributions. 

IV. Conclusion

This study has been able to utilize a novel approach known as the entropy transformation (ET) in 
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modifying a distribution without adding any extra parameter to the original distribution. 

Illustratively, the Ailamujia distribution was modified using the ET to form ETAD and it was 

found to perform exceedingly better than the Ailamujia distribution and other six one-parameter 

competing distributions. This was observed from the information criteria results and the fitted 

plots to six different data sets from literature. The MLE was used to estimate the parameter of the 

distribution which is consistent in estimating the parameter as observed from the simulation 

results. 
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Abstract 

Due to a rise in competitiveness, it has become an intense concern to the manufacturers to monitor process 
dispersion to avoid low quality production. To ensure quality production, the control chart that gives early 
detection of change in the dispersion is always encouraged. Researchers have suggested various control charts based 
on different estimators of process dispersion. Recently, many synthetic control charts based on such estimators are 
put forth by researchers to effectively monitor the dispersion in the process. Modified Group Runs (MGR) control 
chart is an extension of synthetic charts with further enhancement in the detection ability.  In this paper, we 
propose a MGR control chart based on Downton’s estimator (D). Comparison of MGR control chart with synthetic 
chart based on estimator D reveals the enhanced performance of MGR-D chart.  
Keywords: Control chart, Process dispersion, Downton estimator, Modified group runs. 

I. Introduction

For optimizing the cost and resources constraints for the manufacturing processes, it is vital to monitor 
the changes in the process location and/or dispersion.  Control chart is a prominently used statistical 
process control tool to identify any change in the process parameters.  Shewhart [1] proposed the idea of 
control charts for monitoring the process, in which certain thresholds are set for a test statistic and 
process is said to be in control as long as test statistic falls within these threshold values. Bourke [2]) 
introduced the Conforming Run Length (CRL) chart for qualitative data. Wu and Spedding [3] 
introduced a synthetic control chart for monitoring process location as an enhancement to the Shewhart-
type control chart, which includes X  chart and CRL chart. When the dispersion of the underlying 
process is of interest, dispersion control charts are utilized.  Huang and Chen [4] extended the application 
of synthetic charts to monitor process dispersion by introducing the synthetic S chart, which combines S 
and CRL chart.  Chen and Huang [5] constructed synthetic R chart, which comprises of R and CRL chart. 
Synthetic charts have been observed to surpass Shewhart-type control charts in performance. The 
development of synthetic control charts is well documented by Davis and Woodall [6], Ghute and Shirke 
[7], Ghute and Shirke [8], Ghute and Shirke [9]. A detailed overview of synthetic charts is given by 
Rakitzis et al. [10]. 

Klein [11] proposed runs rule control chart to enhance the effectiveness of Shewhart control chart. 
These two approaches, synthetic as well as runs rule charts, are superior to Shewhart-type charts. 
Combining these two approaches, Gadre and Rattihalli [12] constructed Group Runs (GR) control chart 
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for monitoring the process mean. GR control charts are demonstrated to be more effective than synthetic 
charts. Gadre and Kakade [13] proposed a nonparametric GR chart to detect shifts in the process median. 
Gadre and Rattihalli [14] introduced the Modified Group Runs scheme for detecting changes in the mean 
of a normally distributed process. The MGR chart is found to be more efficient than Shewhart, synthetic, 
and GR charts. The development of GR and MGR control charts is well documented by Gadre and 
Kakade [15], Rakitzis et al. [10], Khilare and Shirke [16], Ghadge and Ghute [17]. 

Researchers have also sought to enhance the effectiveness of control charts by considering 
alternative charting statistics. Abbasi and Miller [18] constructed a chart based on statistic D to monitor 
the process variability. The statistic D is proposed by Downton [19] as an unbiased estimator of standard 
deviation for normally distributed process. It has been demonstrated that the D chart is as effective as the 
Shewhart S chart in identifying changes in the standard deviation of a normally distributed process. 
Gardi and Ghute [20] constructed D chart using runs rule, whereas Rajmanya and Ghute [21] developed 
synthetic D chart as a combination of D chart and CRL chart, which enhanced the performance of D chart. 
This paper attempts to improve the performance of synthetic D chart by using the idea of Modified 
Group Runs (MGR-D chart). 

The rest of the paper is structured as follows: The D chart and CRL chart are discussed in section 
2. In section 3, MGR-D chart is proposed for monitoring the process dispersion. The performance
evaluation and comparison of proposed chart with synthetic D chat is made in section 4. Conclusions are
given in the section 5.

II. The D chart

For normally distributed process, Downton [19] proposed an unbiased estimator D of process standard 
deviation σ. Let Xଵ , Xଶ, … , X୬ be a random sample of size n from N(μ, σଶ). Then Downton’s statistic D is 
given as 
D =

ଶ√஠

୬(୬ିଵ)
∑ ቂi −

ଵ

ଶ
(n + 1)ቃ X(୧)

୬
୧ୀଵ   (1) 

where X(୧) is the i୲୦(i = 1,2, … , n) order statistic for the given sample. Abbasi and Miler [18] developed 
Shewhart-type control chart based on the statistic  D and revealed that the D-chart is as effective as 
Shewhart S chart in discovering a dispersion change. The probabiity limits for D-chart were obtained 
using the distribution of Z = D

σൗ  . The Upper and Lower Control Limit (UCL and LCL) for the D chart  is 
given as 

 UCL = Zଵି஑D  with P(Z ≥ Zଵି஑) = 1 − α 

LCL = Z஑D with P(Z < Z஑) = α
ቋ  (2) 

Where Z஑  is α୲୦ quantile point of the distribution of Z  and α  is Type-I error probability, specified in 
advance. To monitor process dispersion, D-values are plotted on the chart. Decision regarding out-of-
control signal is taken based on whether a D-value goes beyond UCL, for the case of detecting positive 
shift or whether D-value is smaller than LCL, for the case of detecting negative shift.   

We assume that the process parameters μ and σଶ are known, that is, μ = μ଴ and σଶ = σ଴
ଶ are in-

control mean and variance of the process respectively. Let σଵ = δσ଴ (0 < 𝛿 ≠ 1) be the shifted value of 
standard deviation, with a shift of size δ. In order to detect a positive (negative) sift, that is, δ > 1 (𝛿 < 1) 
in the process standard deviation, an upper control limit kାσ଴ (a lower control limit kିσ଴) of D-chart is 
required, and a signal is given if D > kାσ଴ (D < kିσ଴). The average run length (ARL) is the average 
number of D samples required to identify a shift in σ of the D-chart. It is calculated as 
ARLୈ(δ) =

ଵ

୔(ஔ)
 (3) 

where P(δ) is the probability of detecting a shift δ in the process standard deviation. 
For  δ > 1,  
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P(δ) = P(D > kାσ଴ | σ = δσ଴) = P ቀZ > kା

δൗ ቁ = 1 − F(kା/δ)  (4) 
For δ < 1, 
P(δ) = P(D < kିσ଴  | σ = δσ଴) = PቀZ < kି

δൗ ቁ = Fቀkି

δൗ ቁ  (5) 
Where F(. ) denotes the cumulative distribution function. 
Conforming Run Length (CRL) chart 
For monitoring attribute characteristic, the conforming run length (CRL) chart is used, which detects shift 
in the fraction nonconforming p. The random variable CRL is defined as the number of conforming units 
between two successive nonconforming units including ending nonconforming unit. The distribution of 
CRL is as follows. 
F(CRL) = 1 − (1 − p)ୈ୐, CRL = 1,2,3, …  (6) 
where p is the probability of the nonconforming unit. If practitioner is only concerned with detection of 
an increase in p, the lower control limit (L) of the CRL chart serves the purpose. It is given by 
L =

୪୬(ଵି஑ి౎ై)

୪୬(ଵି୮బ)
  (7) 

Where αୈ୐ = 1 − (1 − p଴)୐ = F୮బ
(L) is the type-I error probability of the CRL chart and p଴ is the in-

control fraction nonconforming. If a sample CRL is not greater than L, it indicates the increase in fraction 
nonconforming and an out-of-control signal is issued. 
The ARL of such CRL chart is given by 

𝐴𝑅𝐿஼ோ௅ =
ଵ

ி಴ೃಽ(௅)
=

ଵ

ଵି(ଵି௣)ಽ
 (8) 

III. Modified Group Runs Control Chart

In this section, we present the design of modified group runs control chart based on Downton estimator 
D. Modified group runs control chart is the integration of D-chart and extended version of CRL chart. The
D chart has only upper control limit (UCL) and CRL chart has two limits, namely the warning limit Lଵ and
the lower limit Lଶ. Let Y୰ be the r୲୦group based CRL, then modified group runs control chart declares the
process as out-of-control if Yଵ ≤ Lଵ or for some r (> 1), Y୰ ≤ Lଵ and Y୰ାଵ ≤ Lଶ.
The steps for implementing the MGR-D chart are as follows:
1. Fix the UCL for the D chart and Lଵ and Lଶ of the CRL chart.
2. Select a subgroup of n items at each inspection point j and compute the chart statistic, say D୨

3. If D୨ ≤ UCL, then the subgroup is considered ‘conforming’ and control flow returns to step 2. Else the
subgroup is considered ‘nonconforming’ and control flow goes to the next step.

4. Check the number (CRL୧, i = 1,2, …) of subgroups between the current and previous nonconforming
groups.

5. If CRLଵ ≤ Lଶ or for some 𝑖 > 1, CRL୧ ≤ Lଵ and CRL୧ାଵ ≤ Lଶ, for i = 2,3, … for the first time, the process is
thought to be out-of-control, and control flow moves to the next step. Else flow returns to step 2.

6. Signal the out-of-control state.
7. An assignable cause should be identified and corrective action should be taken to remove it.

Let the expected number of subgroups needed to identify a shift of magnitude δ in process dispersion be 
ARL୑ୋୖ(δ). Following Gadre and Rattihalli (2004), the performance measure ARL୑ୋୖ(δ) for the MGR-D 
chart can be expressed as follows: 
For increase in the process dispersion, that is, when δ > 1, 

ARL୑ୋୖ(δ) =
ଵ

୔(ஔ)
×

ൣଵା୕(ஔ)ైమି୕(ஔ)ైభ൧

ൣଵି୕(ஔ)ైభ൧ൣଵି୕(ஔ)ైమ൧
 (9) 

Where Q(δ) = 1 − P(δ) and P(δ) is given in equation (4) when δ > 1and is given in equation (5) when 
δ < 1.  

RT&A, No 3 (79) 
Volume 19, September 2024

655



Chandrakant Gardi, Vikas Ghute 
MODIFIED GR CHART FOR DISPERSION 

For constructing MGR-D chart, the below ARL model is used. 
Minimize ARL୑ୋୖ(δ) 

Subject to ARL୑ୋୖ(0) ≥ τ 
where τ is the minimum required value of ARL୑ୋୖ(0). 

Optimal Design Procedure 
The optimal design procedure for MGR-D chart is given below: 
1. Specify subgroup size n, shift size δ∗  and in-control ARL as ARL଴.

2. Initialize Lଵ as 1.
3. InitializeLଶ as 1.
4. Obtain P(0) by solving Equation (9) numerically. From the obtained value of P(0), obtain kା

(or kି) using Equation (4) (or Equation (5)).
5. From the current values of Lଵ, Lଶand kା (or kି), obtain P(0) from Equation (4) (or Equation (5)).

Then compute ARL୑ୋୖ(δ) using Equation (9).
6. If ARL୑ୋୖ(δ) is reduced, then increase Lଵ by 1 and go back to step 4. Else go to the next step.
7. Mark the minimum ARL୑ୋୖ(δ) for current combination of Lଵ, Lଶ. If currently marked ARL୑ୋୖ(δ)

for (Lଵ, Lଶ) is less than previously marked ARL୑ୋୖ(δ), present pair of (Lଵ, Lଶ) is the optimum
value. Else increase Lଶ by 1, initialize Lଵ as 1 and go back to step 4.

IV. Performance Evaluation

 In this section the performance of proposed MGR-D chart is evaluated and is also compared with 
synthetic D chart. The comparison is made based on the Average Run Length (ARL). The underlying 
process is assumed to have normal distribution with mean 0 and variance 1. Since, the exact 
distribution of D statistic is not, we used simulation approach to obtain quantiles of distribution of D. 
We considered three different subgroup sizes as n = 5,8,10. For each subgroup size, 50000 subgroups 
were simulated. Based on D   statistic of these 50000 subgroups, required quantile points of the 
distribution of D were determined. This process was repeated 500 times and average of these 500 
quantiles was considered for obtaining control limits of the proposed chart. For fair comparison, all 
charts are fabricated such that in-control ARL remains the same as 200. The optimal design parameters 
Lଵ, Lଶ and kା(or kି) of proposed MGR-D chart are obtained for a pre-determined shift of size δ =

1.2 (δ = 0.8)  for positive (negative) shift in process deviation. The Lଵ is initiated as 1, and 
Lଶ is gradually incremented by 1, for each combination of (Lଵ, Lଶ), ARL is determined. Once the 
minimum ARL is achieved, the combination (Lଵ, Lଶ) is noted and Lଵis incremented by 1 and same 
process is repeated. If the minimum ARL for present combination of (Lଵ, Lଶ) is greater than that for the 
earlier combination of (Lଵ, Lଶ) , the earlier combination of (Lଵ, Lଶ)  is considered. That is, the 
combination of (Lଵ, Lଶ) at which ARL attains its minimum across  Lଵ as well as Lଶ. Table 1 gives a 
demonstration for obtaining the optimal parameters for n = 10 for detecting positive shift.  Here, the 
minimum ARL is 4.235941 and is attained at (Lଵ = 1, Lଶ = 13). 

Once the limits are set ensuring in-control ARL to be 200, out-of-control ARLs are determined for 
various shift sizes. For positive shift in the process dispersion, the shift sizes considered are δ =

1, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0 and that for negative shift in the process dispersion are 
δ = 0.9, 0.8, 0.7, 0.6, 0.5, 0.1 The ARL values are determined using simulation of size 50000 for various 
sample sizes as well as for different subgroup sizes. Table 2 presents these ARL values as well as ARL 
values for synthetic D chart for positive shift in process dispersion, whereas Table 3 provides ARLs for 
negative shift. Since out-of-control ARL values of MGR-D chart are smaller than that of the synthetic-
D chart for all considered shifts in the process standard deviation and considered subgroup sizes, the 

RT&A, No 3 (79) 
Volume 19, September 2024

656



Chandrakant Gardi, Vikas Ghute 
MODIFIED GR CHART FOR DISPERSION 

proposed MGR-D chart is very superior to synthetic D chart for shifts in either direction as well as for 
different subgroup sizes.    

 Table 1: Optimal Parameters for MGR-D chart. 
Lଵ Lଶ kା ARL Lଵ Lଶ kା ARL

1 1 1.229106 11.51437 2 1 1.257766 11.71673 
1 2 1.271325 8.132786 2 2 1.29923 8.422839 
1 3 1.295223 6.644562 2 3 1.32252 7.002282 
1 4 1.311976 5.79848 2 4 1.338762 6.204549 
1 5 1.324845 5.264146 2 5 1.351146 5.696124 
1 6 1.335386 4.913096 2 6 1.361216 5.359928 
1 7 1.344217 4.66926 2 7 1.369726 5.130402 
1 8 1.351881 4.502848 2 8 1.37713 4.97412 
1 9 1.358633 4.38984 2 9 1.38362 4.866527 
1 10 1.364715 4.316068 2 10 1.389399 4.794161 
1 11 1.370216 4.269155 2 11 1.394621 4.74751 
1 12 1.37528 4.244542 2 12 1.399379 4.721099 
1 13 1.379935 4.235941 2 13 1.403793 4.710871 
1 14 1.384273 4.239508 2 14 1.40785 4.711723 

Table 2: ARL comparison for positive shift in process dispersion. 

Shift 
(δ) 

n = 5 n = 8 n = 10 
Synthetic D 

chart 
MGR 

D Chart 
Synthetic 
D chart 

MGR 
D Chart 

Synthetic D 
chart 

MGR 
D Chart 

L = 17
kା = 1.843 

Lଵ = 1 
Lଶ = 24 

kା = 1.647 

L = 12
kା = 1.595 

Lଵ = 1 
Lଶ = 16 

kା = 1.448 

L = 12
kା = 1.519 

Lଵ = 1 
Lଶ = 13 

kା = 1.380 

1.0 
200 

(2.371) 
199.498 

(1.99014) 
200 

 (2.366) 
199.864 

(1.74324) 
201 

(2.388) 
199.787 

(1.63627) 

1.1 
43.92 

(0.560) 
22.1446 

(0.27269) 
32.80 

(0.422) 
16.271 

((0.17797) 
28.61 

 (0.366) 
14.3427 

(0.14795) 

1.2 
15.89 

(0.202) 
7.23788 

(0.05486) 
10.75 

(0.132) 
5.07486 

(0.03393) 
8.66 

(0.103) 
4.23606 

(0.02686) 

1.3 
8.34 

(0.093) 
4.45104 

(0.01932) 
5.27 

 (0.057) 
3.09928 

(0.01272) 
4.41 

(0.045) 
2.61958 

(0.00995) 

1.4 
5.38 

(0.055) 
3.32406 

(0.01248) 
3.44 

 (0.032) 
2.32074 

(0.00785) 
2.89 

(0.024) 
1.97842 

(0.00617) 

1.5 
3.92 

(0.036) 
2.68268 

(0.00952) 
2.56 

(0.028) 
1.89742 

(0.00585) 
2.16 

(0.016) 
1.62993 
(0.0045) 

2.0 
1.79 

(0.012) 
1.51418 

(0.00395) 
1.31 

(0.007) 
1.1828 

(0.00208) 
1.18 

(0.005) 
1.10386 

(0.00151) 
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Table 3: ARL comparison for negative shift in process dispersion. 

Shift 
(δ) 

n = 5 n = 8 n = 10 
Synthetic D 

chart 
MGR-D Chart 

Synthetic 
D chart 

MGR-D Chart 
Synthetic D 

chart 
MGR-D 
Chart 

L = 5
kି = 0.396 

Lଵ = 1 
Lଶ = 36 

kା = 0.423 

L = 7
kା = 0.516 

Lଵ = 1 
Lଶ = 18 

kା = 0.587 

L = 6
kା = 0.5757 

Lଵ = 1 
Lଶ = 13 

kା = 0.648 

1.0 200 
(2.433) 

200.11 
 (2.254) 

200 
(2.292) 

201.67 (1.829) 
200 

 (2.228) 
199.9 

(1.674) 

0.9 68.14 
(0.840) 

54.32 
(0.73) 

67.11 
(0.808) 

32.74 
(0.367) 

55.55 
(0.651) 

26.31 
 (0.271) 

0.8 30.20 
(0.382) 

16.33 
(0.194) 

22.28 
(0.291) 

7.57 
(0.067) 

15.47 
(0.198) 

5.47 
(0.042) 

0.7 15.98 
(0.201) 

7.56 
(0.045) 

8.00 
 (0.096) 

3.46 
(0.014) 

5.19 
(0.061) 

2.54 
(0.01) 

0.6 10.07 
(0.120) 

4.51 
(0.018) 

3.32 
 (0.033) 

2.05 
(0.007) 

2.28 
(0.019) 

1.55 
(0.004) 

0.5 6.99 
 (0.076) 

2.78 
(0.01) 

1.78 
 (0.012) 

1.34 
(0.003) 

1.35 
(0.007) 

1.13 
(0.002) 

0.1 2.78 
(0.023) 

1.00 
(0) 

1.00 
(0) 

1.00 
 (0) 

1.00 
(0) 

1.00 
 (0) 

V. Conclusions

In this paper, MGR-D control chart is proposed for monitoring changes in the process dispersion of 
normally distributed process. The proposed chart is based on Downton’s statistic 𝐷 and is an integration 
of D chart and an extended version of CRL chart.  The ARL comparison highlights that the proposed 
MGR-D chart performs better than the synthetic D chart.  
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Abstract 

In this article, we delve into the modeling and analysis of lifetimes, which hold substantial 

importance across various scientific and industrial fields. Our focus is on introducing a novel 

distribution termed the Type I Half-Logistic Exponentiated Frechet (TIHLEtF) Distribution, which 

is an extension of the Frechet distribution. We have derived a crucial representation of the density 

function for this distribution. Furthermore, we explore several statistical properties associated with 

the TIHLEtF distribution. These properties encompass explicit expressions for the quantile function, 

probability-weighted moments, moments, moments generating function, reliability function, hazard 

function, and order statistics. To estimate the model parameters, we employ the maximum likelihood 

estimation technique and present the results of a simulation study. To emphasize the superiority of 

our newly introduced distribution, we apply it to two real datasets. The outcomes of our analysis 

reveal that the TIHLEtF distribution outperforms the other considered distributions in terms of 

fitting the data in these real-world cases. 

Keywords Type I Half-Logistic Exponentiated-G, Frechet distribution, Quantile 

function, Hazard function, Maximum likelihood, Order Statistics 

I. Introduction

The Frechet distribution, often referred to as the type II extreme value distribution, plays a crucial 

role in various fields, including engineering, actuarial science, environmental studies, medical 

sciences, economics, finance, and insurance. It serves as a fundamental statistical tool in these 

disciplines. It was introduced by [10] as a means of modeling extreme values in data. Despite the 

widespread use of traditional probability distributions in these areas, there is a growing need for 

more flexible forms of these distributions, and the Frechet distribution is one such example that 

has been proposed to meet this need. It is a flexible tool for modeling data and is widely used in 

extreme value theory. Various researchers have proposed several modifications to the Frechet 

RT&A, No 3 (79) 
Volume 19, September 2024

660

mailto:olalekan4sure@gmail.com1*
mailto:sidoguwa@gmail.com
mailto:ensiliyu2@yahoo.co.uk
mailto:alharun2004@yahoo.com2


O.A. Bello, S.I. Doguwa, A. Yahaya, H.M. Jibril 
On the Flexibility of TIHLEtF Distribution 

distribution in recent literature. The exponentiated Frechet was first introduced by [16], followed 

by the beta Frechet proposed by [17], and the transmuted Frechet proposed by [13]. The gamma 

extended Frechet defined by [7], while [12] introduced the Marshall-Olkin Frechet. The 

Kumaraswamy Frechet proposed by [14], while [9] studied the transmuted exponentiated Frechet. 

[1] investigated the transmuted Marshall-Olkin Frechet, and [3] proposed the Kumaraswamy

Marshall-Olkin Frechet, [2] also studied the Weibull Frechet. A novel distribution family was

introduced by [4] in their recent study, which they have named Type I Half-Logistic

Exponentiated-G (TIHLEt-G). This distribution family is characterized by two positive shape

parameters, denoted by  and  , and can be applied to any arbitrary cumulative distribution

function (cdf)  ,H x  . The cumulative distribution function (cdf) and the probability density

function (pdf) for TIHLEt-G are given by 

1 [1 ( ; )]
( ; , , )

1 [1 ( ; )]
TIHLEt GF

H x
x

H x

 

 


  




 


 
,  0,x   , 0         (1) 

and 
1 1

( ; ) ( ; )

2

( ; )

2 ( ; ) [1 ]
( ; , , )

1 [1 ]

x x

TIHLEt G

x

h x H H
x

H
f

  

 

 



 
  

 






   

, 0,x  , 0            (2) 

The TIHLEt-G family of distributions is noteworthy due to several factors, as explained in 

[4]. This family of distributions offers increased flexibility in terms of kurtosis compared to 

conventional models. It also enables the creation of skewed distributions even for symmetrical 

ones and can produce heavy-tailed distributions that better fit real data. The TIHLEt-G family can 

generate symmetric, left-skewed, right-skewed, and reversed-J shaped distributions and allows for 

special models with different types of hazard rate functions. 

The Frechet distribution's cdf and pdf are provided as 

( )

( ; , )  ,      0,  , 0xH x e x


   


    (3) 

( )
1( ; , )  ,      0,  , 0xh x x e x


     


             (4) 

The rest of the paper is organized into several sections. The second section describes the 

materials and a method used to drive the pdf and cdf of Type I Half-Logistic Exponentiated 

Frechet (TIHLEtF) Distribution and presents the expansion of the density. In the third section, we 

explore the statistical properties of the distribution, including its moment, moment-generating 

function, probability-weighted moment, reliability function, hazard function, and quantile 

function. The fourth section derives order statistics. The fifth section describes how maximum 

likelihood estimation is used to estimate the unknown model parameters and presents the results 

of a simulation study. The sixth section demonstrates the flexibility of the TIHLEtF distribution 

using two real data sets. Finally, the paper concludes with a summary of the findings and some 

closing remarks in the seventh section. 

II. The Type I Half-Logistic Exponentiated Frechet (TIHLEtF) Distribution

A new model called the TIHLEtF model is introduced, where a random variable X is said to follow 

the TIHLEtF model if its cumulative distribution function (cdf) is obtained by using equation (3) in 

equation (1), which is defined as follows: 
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( )

( )

1 1

( ; , , , )  ,   0, , , , 0

1 1

x

TIHLEtF

x

e

F x x

e






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






       





  
   
     
  

   
   

      (5) 

and the pdf corresponding to equation (6) is 
2

1
( ) ( 1)( ) ( ) ( )

1( ; , , , ) 2 1 1 1x x x x
TIHLEtFf x x e e e e

   
    

  
     




    
 

    
       
     

(6) 

where   is a scale parameter and , ,    are shape parameters. 

Figure 1: Plots of  pdf of TIHLEtF distribution for different values of parameters 

III. Expansion of Density for TIHLEtF Distribution

In this section, we present an advantageous expansion of the pdf and cdf for the TIHLEtF 

distribution. As a result of the generalized binomial series being 

 
0

1
1 ( 1)

b i i

i

b i
z z

i






  
    

 
    (7) 

Moreover, by applying the binomial theorem from equation (7) to equation (6) 

( 1) 1
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( 1) 1
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Now, the pdf can be written as 

( 1)
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( ; , , , )

j
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i j

f x e

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where, 
1

1 ( 1) 1
2 ( 1)i j

p

i i
x

i j

 


    
    
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  

Furthermore, an expansion for the  ( ; , , , )
h

TIHLEtFF x     is produced, with h being an integer, 

and the binomial expansion is worked out once more. 
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The cdf can be written as: 
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where, 
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IV. Statistical Properties

We derived some statistical properties of the new distribution. 

I. Probability weighted moments

The probability-weighted moments (PWMs) were introduced by [11]. It is used to derive inverse 

form estimators for the parameters and quantiles of a distribution. The PWMs, is denoted by 

,r sK which can be derived for a random variable X using the following affiliations. 

,
0

[ ( ) ] ( ) ( )r s r s

r s E X F x xK f x F x dx


   (10)
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The PWMs of TIHLEtF distribution is developed by substituting (8) and (9) into (10), and 

substituting h with s, as proceed 
( 1 )

( )

,
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The PWMs of TIHLEtF can be written as proceed 
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II. Moments

Moments are fundamental to all statistical analysis, particularly in applications. So, for the new 

distribution, we determine the rth moment. 

0
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Using the important representation of the pdf as shown in equation (8), we have
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The rth moment of the TIHLEtF distribution can be expressed as follows 
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The expected value and the spread of the TIHLEtF distribution can be described by the following 
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III. Moment-generating function (mgf)

The Moment-Generating Function of x is expressed as follows: 

0
( ) ( )tx

xM t e f x dx


   (16) 

where the expansion of 
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The moment-generating function of TIHLEtF distribution can be represented as follows 
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IV. Reliability function

The reliability function provides the likelihood that an individual will endure beyond a designated 

time frame. This function is defined as follows: 
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V. Hazard function

The hazard function represents the likelihood of the event of interest happening within a relatively 

brief time period. It can be defined as follows: 
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 (19) 

VI. Quantile Function

The quantile function, also known as the inverse CDF, of the TIHLEtF distribution is obtained by 

using the CDF in equation (5) 

1
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The median of the TIHLEtF distribution can be derived by substituting U=0.5 in equation (20) as 

follows: 

1
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Q
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Figure 2: Plots of the hazard function of the TIHLEtF distribution for different parameter values. 
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VII. Order Statistics

Let 1 2 3, ,...,X X X be independent and identically distributed (i.i.d) random variables with their 

corresponding continuous distribution function ( )F x . Let 1: 2: :...n n n nX X X   the 

corresponding ordered random sample from the TIHLEtF distributions. Let : ( )r nF x and : ( )r nf x , 

1,2,3,...,r n denote the CDF and PDF of the 
thr order statistics :r nX respectively. The PDF of 

the 
thr order statistics of :r nX is given as: 

 
1

:

0

( )
( ; , , ) ( 1) ( )

( , 1)

n r
v rv

r n

v

n rf x
f x F x

vB r n r
  


 



 
   

   
  (22) 

The PDF of 
thr order statistic for TIHLEtF distribution is derived by substituting equation (8) and 

equation (9) into equation (22). Also replacing h with 1v r  in equation (9), so we 
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The PDF of minimum order statistic of the TIHLEtF distribution is obtained by setting r = 1 in 

equation (23) as 

1
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Also, the PDF of maximum order statistic of the TIHLEtF distribution is obtained by setting r = n in 

equation (23) as 

1
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 (25) 

V. Parameter Estimation

Given complete data, we investigate the maximum likelihood method to estimate the TIHLEtF 

distribution's unknown parameters. Maximum likelihood estimates (MLEs) are attractive because 

they can be used to produce confidence intervals and offer straightforward approximations that 

work well in finite samples. The resulting approximation for MLEs is simple to handle in 

distribution theory, both analytically and numerically. Let 1 2 3, , ,..., nx x x x be a random sample of 

size n from the TIHLEtF distribution. Then, the likelihood function based on the observed sample 

for the vector of the parameter ( , , , )T    is given by
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The components of the score vector  
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 (30) 

The MLEs are obtained by setting 
       

, , and
L L L L   

   

   

   
 to zero and solving these 

equations simultaneously. These equations cannot be solved analytically, so we have to appeal to 

numerical method. 

I. Simulation Study

In this section, a numerical analysis will be conducted to evaluate the performance of MLE for 

TIHLEtF Distribution.  

Table 1: MLEs, biases and RMSE for some values of parameters 

    (1.5,1,2,1.5)  (2,1,3,2.5) 

n Parameters Estimated 

Values 

Bias RMSE Estimated 

Values 

Bias RMSE 

20 







1.5650 

1.0471 

2.0348 

1.7878 

0.0650 

0.0471 

0.0348 

0.2878 

0.7475 

0.5045 

0.3533 

0.7086 

2.1548 

1.0385 

3.0465 

2.8275 

0.1548 

0.0385 

0.0465 

0.3275 

0.9708 

0.4666 

0.3439 

0.9009 

50 







1.5507 

1.0106 

2.0310 

1.6328 

0.0507 

0.0106 

0.0310 

0.1328 

0.5664 

0.3523 

0.2845 

0.4472 

2.1074 

1.0073 

3.0360 

2.6418 

0.1074 

0.0073 

0.0360 

0.1418 

0.7485 

0.3337 

0.2589 

0.5924 

100 





1.5251 

1.0024 

2.0271 

1.5729 

0.0251 

0.0024 

0.0271 

0.0729 

0.4358 

0.2587 

0.2265 

0.2982 

2.0546 

1.0024 

3.0456 

2.5830 

0.0546 

0.0024 

0.0456 

0.0830 

0.5630 

0.2520 

0.1937 

0.4288 

250 





1.5391 

1.0018 

2.0280 

1.5153 

0.0391 

0.0018 

0.0280 

0.0153 

0.3064 

0.1615 

0.1695 

0.1928 

2.0524 

1.0011 

3.0313 

2.5129 

0.0524 

0.0011 

0.0313 

0.0129 

0.3855 

0.1426 

0.1479 

0.2808 

500 





1.5269 

1.0004 

2.0284 

1.5034 

0.0269 

0.0004 

0.0284 

0.0034 

0.2273 

0.1024 

0.1306 

0.1372 

2.0285 

1.0002 

3.0251 

2.5062 

0.0285 

0.0002 

0.0251 

0.0062 

0.2806 

0.0983 

0.1162 

0.2051 

1000  1.5215 0.0215 0.1693 2.0275 0.0275 0.2059 
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




1.0001 

2.0182 

1.5012 

0.0001 

0.0182 

0.0012 

0.0729 

0.1014 

0.1005 

1.0000 

3.0206 

2.5013 

0.0000 

0.0206 

0.0013 

0.0693 

0.0868 

0.1446 

The presented table demonstrates that the biases and RMSE values converge towards zero. As the 

sample size increases, the estimations approach the original (true) values, indicating the efficiency 

and reliability of the estimates. 

VI. Applications to Real Data

We fit the TIHLEtF distribution to two real data sets and give a comparative study with the fits to 

the Exponentiated Half-Logistic Frechet (EHLF) distribution by [6], Kumaraswamy Exponentiated 

Frechet (KExF) distribution by [8], Gompertz Frechet (GoFr) distribution by [18], Exponentiated 

Frechet (ExFr) distribution by [16], and Frechet distribution by [10] as comparator distributions for 

illustrative purposes. 
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 (31) 

The KExF distribution by [8] 
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The GoFr distribution by [18] 
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The ExFr distribution by [16] 
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The Fr distribution by [10] 

( )
1( ; , ) xf x x e
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
   (35) 

The two datasets used to illustrate the application offer practical proof of the adaptability and 

appropriateness of the new proposed distribution. This distribution is shown to be the optimal 
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selection for modeling the datasets, distinct from the comparator distributions mentioned earlier. 

All calculations were conducted using the R programming language. 

Data set 1 

The first data set shown below represents the strength of carbon fibers tested under tension at 

gauge lengths of 10mm, previously used by [5]: 

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 

2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 

3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 

3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

Figure 3: Fitted pdfs for the TIHLEtF, EHLF, KExF,  GoFr,  ExFr and Fr distributions to the data set 1 

Table 2: The MLEs, log-likelihoods, and goodness of fit statistics of the models are based on the strength of carbon fibers 

tested under tension at gauge lengths of 10 mm (Data set 1). 

Distributions      LL AIC 

TIHLEtF 1.2456 3.7093 3.0756 3.1438 -56.4277 120.8555 

EHLF 22.4675 0.2832 19.1580 1.3491 -58.9236 125.8472 

KExF 2.4724 3.7429 2.0495 9.6236 0.4923 -60.2204 130.4407 

GoFr 5.3750 2.7756 3.3750 6.3750 -67.2387 142.4774 

ExFr 0.7937 5.8763 2.6529 -69.9499 145.8998 

Fr 2.7215 5.4345 -79.5116 155.0232 
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Maximum likelihood was employed to estimate the parameters of both the newly developed 

distribution and five other comparable distributions. The outcomes are presented in Table 2. 

Extremely, the newly proposed distribution exhibited the lowest AIC value based on the goodness 

of fit measure, closely followed by EHLF. Furthermore, the superiority of the proposed 

distribution over its competitors is reinforced by visually assessing the fit, as illustrated in Figure 3. 

This underscores the fact that the newly recommended distribution is the most appropriate choice 

for accurately representing the carbon fiber dataset among the mentioned distributions. 

Data set 2 

The second data set shown below represents the survival times of one hundred and twenty-one 

(121) patients with breast cancer obtained from a large hospital in a period from 1929 to 1938,

previously used by [19]:"

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4,  14.4, 14.8, 

15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 

24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 1.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 

40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 

51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 

69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 

126.0, 127.0, 129.0, 129.0, 139.0, 154.0. 

Figure 4: Fitted pdfs for the TIHLEtF, EHLF, KExF,  GoFr,  ExFr and Fr distributions to the data set 2 

Table 3: The MLEs, log-likelihoods, and goodness of fit statistics of the models based on the survival time of patients 

with breast cancer (Data 2). 

Distributions      LL AIC 

TIHLEtF 4.6372 6.6628 3.7129 0.4224 - 599.0163 1206.033 

EHLF 6.0551 0.1075 5.2159 0.1429 - 644.6529 1297.306 

KExF 0.0343 5.5835 0.2036 5.9722 13.1474 - 619.2298 1248.46 

GoFr 41.0479 59.0871 0.2511 0.5019 -1311.34 2630.68 

ExFr 1.3538 0.6216 18.0606 - 632.1718 1270.344 

Fr 16.8934 0.6524 -695.0586 1394.117 
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The parameters of the TIHLEtF distribution and five similar distributions were estimated using the 

maximum likelihood method, and the outcomes are detailed in Table 3. It's worth highlighting that 

the new distribution displayed the lowest AIC value when compared to the other options, which 

signifies that it is the most appropriate choice for modeling the survival time of patients with 

breast cancer based on the goodness of fit measure AIC. Additionally, a visual examination of the 

fit, as illustrated in Figure 4, reinforces the idea that the new distribution outperforms its rivals. 

VII. CONCLUSION

In our research, we have introduced and explored a novel statistical distribution known as the 

Type I Half-Logistic Exponentiated Frechet Distribution, building upon the distribution family 

introduced by [4]. This study delved into various statistical aspects of this newly introduced 

distribution. These aspects encompassed explicit quantile functions, probability-weighted 

moments, moments, moments generating functions, reliability functions, hazard functions, and 

order statistics. For parameter estimation, we utilized the maximum likelihood method. Our 

analysis also included simulations to assess the effectiveness of this newly proposed distribution. 

To underscore the significance and versatility of this innovative distribution, we compared it with 

well-established models using two authentic datasets. The outcomes of our investigation 

underscore the superiority of the new distribution in comparison to the other models under 

consideration. This implies that the proposed distribution shows promise for effectively modeling 

data across various applications. 
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Abstract

The objective of the study is to use Bayesian techniques to estimate the scale parameter of the 2Kth order
weighted Maxwell-Boltzmann distribution(KWMBD). This involved using various prior assumptions
such as extended Jeffrey’s, Hartigan’s , Inverse-gamma and Inverse-exponential, as well as different loss
functions including squared error loss function (SELF), precautionary loss function (PLF), Al Bayyati’s
loss function (ALBF), and Stein’s Loss Function (SLF).The maximum likelihood estimation (MLE) is
also obtained. We compared the performances of MLE and bayesian estimation under each prior and its
associated loss functions. And demonstrated the effectiveness of Bayesian estimation through simulation
studies and analyzing real-life datasets.

Keywords: 2Kth Order Weighted Maxw ell-Boltzmann Distribution, Prior Distribution, Loss
Function and Bayesian estimation.

1. Introduction

The Maxw ell-Boltzmann distribution, characterizes the probability distribution of speeds for
particles in a gas at various temperatur es. It provides a statistical frame work for understanding
the distribution of kinetic ener gies among particles, which makes it vital for modeling physical
systems and predicting their beha vior . Because of its practical significance, scientists and engineers
closely examine the Maxw ell-Boltzmann distribution to attain a deeper understanding of various
scientific phenomena and to create precise models of complex systems. Tyagi and Bhattachar ya
[15] were the first to explor e the Maxw ell distribution as a lifetime model, and introduced
considerations of Bayesian and minimum variance unbiased estimation methods for deter mining
its parameters and reliability function. Chatur vedi and Rani [6] deriv ed classical and Bayesian
estimators for the Maxw ell distribution by extending it with an additional parameter . Various
Statisticians and Mathematicians have carried out the Bayesian paradigm of Maxw ell-Boltzmann
distribution by using loss functions and prior distributions, See, Spiring and Yeung [14] , Rasheed
[11] , Reshi[13] , and Ahmad and Tripathi[1] .

The 2Kth order weighted maxw ell-Boltzmann distribution (KWMBD) is a flexible, symmetric
continuous univ ariate probability distribution suitable for modelling datasets of decr easing-
increasing, increasing and constant beha viour . The probability density functio n (pdf) of KWMBD
is giv en by:
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f (x) =
x2(k+1)α−(3+2k)e−

x2
2α2

2k+ 1
2 Γ(k + 3

2 )
x > 0, α > 0, k ∈ R. (1)

And, the corresponding cummulativ e distribution function (cdf) of KWMBD is giv en by:

F(x) = 1 −
Γ
(
(k + 3

2 ), x2

2α2

)
Γ(k + 3

2 )
x > 0, α > 0, k ∈ R. (2)
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Figure 1: Probability density plot and cumulative distribution plot of KWMBD for different combinations of parame-
ters.

2. Methodological Procedure

Bayesian appr oach utilizes prior beliefs, obser ved data, and a loss function to make decision
in a structur ed manner , and is consider ed mor e reliable for estimating distribution parameters
Compar ed to the classical appr oach, especially when the prior distribution accurately repr esents
the parameter ’s random beha vior . In Bayesian analysis, parameters are treated as uncertain
variables, allo wing prior knowledge to be incor porated into the analysis. This prior infor mation
is typically described using a probability distribution known as the prior distribution. Friesl
and Hurt[ 7] noted that emplo ying Bayesian theor y is a viable appr oach for incor porating prior
infor mation into the model, potentially impr oving the infer ence process and reflects the parame-
ter ’s beha vior . However, ther e are no strict rules for choosing one prior over another , frequently ,
prior distributions are selected based on an individual’s subjectiv e knowledge and beliefs . When
suf ficient infor mation about the parameter is available, infor mativ e priors are preferr ed; other -
wise, non-infor mativ e priors, such as the unifor m prior , are used. Aslam [4] demonstrated the
application of prior predictiv e distribution for deter mining the prior density . In this study , we
assume the parameter α follo ws an extension of Jeffrey’s prior proposed by Al-Kutobi[3] and α2

follo ws a inv erse-gamma prior and are giv en by:

2.1. Extension of Jeffrey’s prior

The prior , known as extension of Jeffrey’s prior is giv en by:

g(α) = [I(α)]c1 ; c1 ∈ R+
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wher e, I(α) = −nE{ d2

d2(α)
log f (x)} is fisher -infor mation matrix.

Thus, the resulting extension of Jeffrey’s-prior for KWMBD will be:

g(α) =
[

1
α2

]c1

; c1 ∈ R+ (3)

2.2. Inverse-gamma prior

The density of parameter α2 on assuming it to follo w Gamma (β, λ) distribution is giv en by:

g(α2) =
λβ

Γ(β)
(α2)−β−1e−

λ
α2 (4)

2.3. Loss functions

The idea of loss functions had been introduced first by Laplace, and later during the mid-20th
centur y it w as reintr oduced by Weiss[ 16] . Loss function, ser ves as a measur e of the discr epancy
betw een obser ved data and the values predicted by a statistical model. Decisions in Bayesian
infer ence, apart from relying on experimental data, are not entir ely contr olled by the loss function.
Moreover, the relationship betw een the loss function and the posterior probability is significant.
The choice of a loss function depends on the specific characteristics of the data and the goals of
the analysis. Han[ 9] pointed out that, in Bayesian analysis choosing the right loss function and
prior distribution is essential for making accurate statistical infer ences. The Bayesian estimator is
dir ectly impacted by the choice of loss function, while the parameters of the prior density function
may be affected by hyper parameters. Various symmetric and asymmetric loss functions have
been demonstrated to be effectiv e in resear ch conducted by Zellner [17] , Reshi [12] , and Ahmad
[2] , among others. In this study , we have explor ed squar ed error, precautionar y, Al-Ba yy ati’s,
and Stein’s loss functions to enhance the comparison of Baye’s estimators. And are giv en by:

2.3.1. Squar ed error loss function

The squar ed error loss function is giv en by:

lsq(α̂, α) = c(α̂ − α)2; c ∈ R+ (5)

2.3.2. Precautionar y loss function

The Precautionar y loss function is giv en by:

lpr(α̂, α) =
c(α̂ − α)2

α̂
(6)

2.3.3. Al-Ba yy ati’s loss function

The Al-Ba yy ati’s loss function is giv en by:

lAl(α̂, α) = αc2 (α̂ − α)2; c2 ∈ R+ (7)

2.3.4. Stein’s loss function

The Stein’s loss function is giv en by:

lSt(α̂, α) =
α̂

α
− log

(
α̂

α

)
− 1 (8)
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3. Parametric Estimation of KWMBD

In this section, we discuss the various estimation methods for KWMB Distribution.

3.1. Maximum Likelihood Estimation

Let x1, x2, x3, ..., xn be a random sample of size n from kth Order Weighted Maxw ell-Boltzmann
Distribution. Ther efor e the maximum likelihood estimator(MLE) of α is:

α̂ =

√
x2

i
n(2k + 3)

(9)

3.2. Baye’s Estimator under Extension of Jeffrey’s Prior

The Joint Probability Density Function of x and giv en α is giv en by:

L(x|α) =

n
∏
i=1

x2(k+1)
i α−n(3+2k)e

n
∑

i=1
x2

i

2α2(
2k+ 1

2

)n (
Γ
(
k + 3

2
))n

(10)

The posterior probability density function of α for giv en data x is giv en by:

π1(α|x) ∝ L(x|α)g(α)

π1(α|x) ∝

n
∏
i=1

x2(k+1)
i α−n(3+2k)e

n
∑

i=1
x2

i

2α2(
2k+ 1

2

)n (
Γ
(
k + 3

2
))n

1
α2c1

π1(α|x) = kα−n(3+2k)−2c1 e

n
∑

i=1
x2

i

2α2

wher e k is normalising constant independent of α and is giv en by:

k−1 =

∞∫
0

α−n(3+2k)−2c1 e

n
∑

i=1
x2

i

2α2 dα

k−1 =

(
n
∑

i=1
x2

i

)−n(3+2k)−2c1+1
2

Γ
(

n(3+2k)+2c1−1
2

)
2

−n(3+2k)−2c1+3
2

Ther efor e, the posterior probability density function is:

π1(α|x) =
2

−n(3+2k)−2c1+3
2 α−n(3+2k)−2c1 e

n
∑

i=1
x2

i

2α2(
n
∑

i=1
x2

i

)−n(3+2k)−2c1+1
2

Γ
(

n(3+2k)+2c1−1
2

) (11)

RT&A, No 3 (79) 
Volume 19, September 2024

678



Nuzhat Ahad, S.P.Ahmad, J.A. Reshi
BAYESIAN ANAL YSIS OF EXTENDED MAXWELL-BOL TZMANN
DISTRIBUTION USING SIMULA TED AND REAL-LIFE DATA SETS

3.2.1. Baye’s Estimator under squar ed error loss function

The Risk Function Under SELF is giv en by:

R(sq,ej)(α̂) =

∞∫
0

c(α̂ − α)2π1(α|x)dα

R(sq,ej)(α̂) = cα̂2 +

n
∑

i=1
x2

i

(n(3 + 2k) + 2c1 − 3)
− 2α̂c

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−2
2

)
Γ
(

n(3+2k)+2c1−1
2

) (12)

now, the Baye’s estimator is obtained by solving

d(R(sq,ej)(α̂))

dα̂
= 0

and, is giv en by:

α̂(ej,sq) =

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−2
2

)
Γ
(

n(3+2k)+2c1−1
2

) (13)

3.2.2. Baye’s Estimator under precautionar y Loss function

The Risk Function Under PLF is giv en by:

R(pre,ej)(α̂) =

∞∫
0

c
(α̂ − α)2

α̂
π1(α|x)dα

R(pre,ej)(α̂) = cα̂ + c

n
∑

i=1
x2

i

α̂(n(3 + 2k) + 2c1 − 3)
− 2c

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−2
2

)
Γ
(

n(3+2k)+2c1−1
2

) (14)

now, the Baye’s estimator is obtained by solving

d(R(pre,ej)(α̂))

dα̂
= 0

and, is giv en by:

α̂(pre,ej) =

√√√√√ n
∑

i=1
x2

i

(n(3 + 2k) + 2c1 − 3)
(15)

3.2.3. Baye’s Estimator under Al-Ba yy ati’s loss function

The Risk Function Under Al-Ba yy ati’s loss function is giv en by:

R(alb,ej)(α̂) =

∞∫
0

αc2 (α̂ − α)2π1(α|x)dα

R(alb,ej)(α̂) = α̂2


n
∑

i=1
x2

i

2


c2
2

+


n
∑

i=1
x2

i

2


c2−2

2

1
(n(3 + 2k) + 2c1 − c2 − 3)

− 2α̂


n
∑

i=1
x2

i

2


c2+1

2

Γ
(

n(3+2k)+2c1−c2−2
2

)
Γ
(

n(3+2k)+2c1−c2−1
2

)
(16)
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now, the Baye’s estimator is obtained by solving

d(R(alb,ej)(α̂))

dα̂
= 0

and, is giv en by:

α̂(alb,ej) =

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−c2−2
2

)
Γ
(

n(3+2k)+2c1−c2−1
2

) (17)

3.2.4. Baye’s Estimator under combination of Stein’s loss function

The Risk Function Under SLF is giv en by:

R(ste,ej)(α̂) =

∞∫
0

(
α̂

α
− log

(
α̂

α

)
− 1
)

π1(α|x)dα

R(ste,ej)(α̂) = α̂

√√√√√ 2
n
∑

i=1
x2

i

Γ
(

n(3+2k)+2c1
2

)
Γ
(

n(3+2k)+2c1−1
2

) − log(α̂)− m − 1 (18)

wher e, m is constant of integration.
Now, the Baye’s estimator is obtained by solving

d(R(ste,ej)(α̂))

dα̂
= 0

and, is giv en by:

α̂(ste,ej) =

√√√√√ n
∑

i=1
x2

i

2

Γ
(

n(3+2k)+2c1−1
2

)
Γ
(

n(3+2k)+2c1
2

) (19)

3.3. Baye’s Estimator under Inverse-Gamma Prior

The Joint Probability Density Function of x and giv en α2 is giv en by:

L(x|α2) =

n
∏
i=1

x2(k+1)
i (α2)

−n(3+2k)
2 e

n
∑

i=1
x2

i

2α2(
2k+ 1

2

)n (
Γ
(
k + 3

2
))n

(20)

The posterior probability density function of α2 for giv en data x is giv en by:

π2(α
2|x) ∝ L(x|α2)g(α2)

π2(α
2|x) ∝

n
∏
i=1

x2(k+1)
i (α2)

−n(3+2k)
2 e

n
∑

i=1
x2

i

2α2(
2k+ 1

2

)n (
Γ
(
k + 3

2
))n

λβ

Γ(β)
(α2)−β−1e−

λ
α2

π2(α
2|x) = k(α2)

−n(3+2k)−2β−2
2 e


n
∑

i=1
x2

i
2 +λ

 1
α2
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wher e k is normalising constant independent of α and is giv en by:

k−1 =

∞∫
0

(α2)
−n(3+2k)−2β−2

2 e


n
∑

i=1
x2

i
2 +λ

 1
α2

dα2

k−1 =
Γ
(

n(3+2k)+2β
2

)
 n

∑
i=1

x2
i

2 + λ


n(3+2k)+2β

2

Ther efor e, the posterior probability density function is:

π2(α
2|x) =

 n
∑

i=1
x2

i

2 + λ


n(3+2k)+2β

2

(α2)
−n(3+2k)−2β−2

2 e


n
∑

i=1
x2

i
2 +λ

 1
α2

Γ
(

n(3+2k)+2β
2

) (21)

3.3.1. Baye’s Estimator under squar ed error loss function

The Risk Function Under SELF is giv en by:

R(sq,igp)(α̂
2) =

∞∫
0

c(α̂2 − α2)2π2(α
2|x)d(α2)

R(sq,igp)(α̂
2) = c(α̂2)2 +

 n
∑

i=1
x2

i

2 + λ

2

(
n(3+2k)+2β−2

2

) (
n(3+2k)+2β−4

2

) − α̂2c

 n
∑

i=1
x2

i

2 + λ


(

n(3+2k)+2β−2
2

) (22)

now, the Baye’s estimator is obtained by solving

R(sq,igp)(α̂
2)

d(α̂2)
= 0

and, is giv en by:

α̂(sq,igp) =

√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


(n(3 + 2k) + 2β − 2)

(23)

3.3.2. Baye’s Estimator under precautionar y Loss function

The Risk Function Under PLF is giv en by:

R(pre,igp)(α̂
2) =

∞∫
0

c
(α̂2 − α2)2

α̂2
π2(α

2|x)dα2

R(pre,igp)(α̂
2) = cα̂2 + c

1
α̂2

 n
∑

i=1
x2

i

2 + λ

2

(
(n(3+2k)+2β−2)(n(3+2k)+2β−4)

4

) − 2c

 n
∑

i=1
x2

i

2 + λ


(

n(3+2k)+2β−2
2

) (24)
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now, the Baye’s estimator is obtained by solving

d(R(pre,igp)(α̂
2))

dα̂2
= 0

and, is giv en by:

α̂(pre,igp) =

√√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


√
(n(3 + 2k) + 2β − 2)(n(3 + 2k) + 2β − 4))

(25)

3.3.3. Baye’s Estimator under Al-Ba yy ati’s loss function

The Risk Function Under Al-Ba yy ati’s loss function is giv en by:

R(alb,igp)(α̂
2) =

∞∫
0

(α2)c2 (α̂2 − α2)2π2(α
2|x)dα2

R(alb,igp) (α̂
2 ) = (α̂2 )4


n
∑

i=1
x2

i
2 + λ


c2

Γ
(

n(3+2k)+2β−2c2
2

)
Γ
(

n(3+2k)+2β
2

) +


n
∑

i=1
x2

i
2 + λ


c2+2

Γ
(

n(3+2k)+2β−2c2−4
2

)
Γ
(

n(3+2k)+2β
2

) − 2α̂2


n
∑

i=1
x2

i
2 + λ


c2+1

Γ
(

n(3+2k)+2β−2c2−2
2

)
Γ
(

n(3+2k)+2β
2

) (26)

now, the Baye’s estimator is obtained by solving

d(R(alb,igp)(α̂
2))

dα̂2
= 0

and, is giv en by:

α̂(alb,igp) =

√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


(n(3 + 2k) + 2β − 2)

(27)

3.3.4. Baye’s Estimator under combination of Stein’s loss function

The Risk Function Under SLF is giv en by:

R(s,igp)(α̂
2) =

∞∫
0

(
α̂2

α2 − log

(
α̂2

α2

)
− 1

)
π2(α

2|x)dα2

R(s,igp)(α̂
2) = α̂2 (n(3 + 2k) + 2β)

2

 n
∑

i=1
x2

i

2 + λ

 − log(α̂)− m − 1 (28)

wher e, m is constant of integration.
Now, the Baye’s estimator is obtained by solving

d(R(s,igp)(α̂
2))

dα̂2
= 0

and, is giv en by:

α̂(ste,igp) =

√√√√√√√ 2

 n
∑

i=1
x2

i

2 + λ


(n(3 + 2k) + 2β)

(29)
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Table 1: Baye’s Estimation under Hartigan’s Prior Distribution and Different Combinations of Loss Functions.

Prior Loss Function Baye’s Estimator

Hartigan’s (i.e.c1 = 3/ 2) Squar ed-err or

√
n
∑

i=1
x2

i

2
Γ
(

n(3+2k)+1
2

)
Γ
(

n(3+2k)+2
2

)

Precautionar y

√
n
∑

i=1
x2

i

(n(3+2k))

Al-Ba yy ati’s

√
n
∑

i=1
x2

i

2
Γ
(

n(3+2k)−c2+1
2

)
Γ
(

n(3+2k)−c2+1
2

)

Stein’s

√
n
∑

i=1
x2

i

2
Γ
(

n(3+2k)+2
2

)
Γ
(

n(3+2k)+3
2

)

Table 2: Baye’s Estimation under Inverse-Exponential Prior Distributions and Different Combinations of Loss
Functions.

Prior Loss Function Baye’s Estimator

Inverse-Exponential (i.e.β = 1) Squar ed-err or

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


(n(3+2k))

Precautionar y

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


√

(n(3+2k))(n(3+2k)−2))

Al-Ba yy ati’s

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


(n(3+2k))

Stein’s

√√√√√√ 2


n
∑

i=1
x2

i
2 +λ


(n(3+2k)+2)

3.4. Simulation Study

We conducted simulation studies using R softw are, generated samples of sizes n=10, 50, and 100
to obser ve the effect of small, medium, and large samples on the estimators of scale parameter α
of the 2kth order weighted Maxw ell Boltzmann distribution. Each process is replicated 500 times
to examine the perfor mance of the ML Es and Bayesian estimators under dif ferent priors such as
the extension of Jeffrey’s prior , Hartigan’s prior , inv erse-Gamma prior , and inv erse-exponential
prior , across dif ferent loss functions in ter ms of average estimates, biases, variances, and mean
squar ed errors by considering dif ferent parameter combinations.The results are presented in the
tables belo w:
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Table 3: Average estimate, Bias, Variance and Mean Squared Error under Extension of Jeffrey’s prior.

n α k c1 c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 2 5 Estimate 2.97912 2.87293 2.90732 3.27915 2.80839
Bias -0.02088 -0.12707 -0.09268 0.27915 -0.19161

Variance 0.23825 0.22157 0.22691 0.28866 0.21173
MSE 0.23869 0.23772 0.23549 0.36658 0.24844

50 3 -0.5 2 5 Estimate 3.00890 2.98656 2.99396 3.06295 2.97196
Bias 0.00890 -0.01344 -0.00604 0.06295 -0.02804

Variance 0.04693 0.04624 0.04647 0.04864 0.04579
MSE 0.04701 0.04642 0.04645 0.05260 0.04658

100 3 -0.5 2 5 Estimat e 3.00411 2.99291 2.99663 3.03075 2.98551
Bias 0.00411 -0.00709 -0.00337 0.03075 -0.01449

Variance 0.02164 0.02148 0.02153 0.02203 0.02137
MSE 0.02166 0.02153 0.02154 0.02297 0.02158

10 4 0.1 1.2 3 Estimate 3.96513 3.94644 3.97758 4.14350 3.88675
Bias -0.03487 -0.05356 -0.02242 0.14350 -0.11325

Variance 0.25397 0.25158 0.25557 0.27733 0.24403
MSE 0.25518 0.25445 0.25620 0.29792 0.25685

50 4 0.1 1.2 3 Estimate 4.00312 3.99937 4.00563 4.03732 3.98695
Bias 0.00312 -0.00063 0.00563 0.03732 -0.01305

Variance 0.05165 0.05155 0.05172 0.05254 0.05123
MSE 0.05166 0.05155 0.05175 0.05393 0.05140

100 4 0.1 1.2 3 Estimate 3.99978 3.99790 4.00103 4.01676 3.99168
Bias -0.00022 -0.00210 0.00103 0.01676 -0.00832

Variance 0.02381 0.02379 0.02382 0.02401 0.02371
MSE 0.02381 0.02379 0.02382 0.02429 0.02378

Table 4: Average estimate, Bias, Variance and Mean Squared Error under Hartigan’s prior.

n α k c1 c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 1.5 5 Estimate 2.98117 2.94416 2.98117 3.38551 2.87491
Bias -0.01883 -0.05584 -0.01883 0.38551 -0.12509

Variance 0.20672 0.20162 0.20672 0.26660 0.19225
MSE 0.20708 0.20474 0.20708 0.41521 0.20789

50 3 -0.5 1.5 5 Estimate 2.99573 2.98825 2.99573 3.06548 2.97350
Bias -0.00427 -0.01175 -0.00427 0.06548 -0.02650

Variance 0.04357 0.04335 0.04357 0.04562 0.04292
MSE 0.04359 0.04349 0.04359 0.04991 0.04363

100 3 -0.5 1.5 5 Estimat e 2.99912 2.99537 2.99912 3.03344 2.98793
Bias -0.00088 -0.00463 -0.00088 0.03344 -0.01207

Variance 0.02168 0.02163 0.02168 0.02218 0.02152
MSE 0.02168 0.02165 0.02168 0.02330 0.02167

10 4 0.1 1.5 3 Estimate 3.96310 3.93226 3.96310 4.12731 3.87314
Bias -0.03690 -0.06774 -0.03690 0.12731 -0.12686

Variance 0.25001 0.24614 0.25001 0.27116 0.23879
MSE 0.25137 0.25073 0.25137 0.28737 0.25489

50 4 0.1 1.5 3 Estimate 3.99271 3.98647 3.99271 4.02426 3.97411
Bias -0.00729 -0.01353 -0.00729 0.02426 -0.02589

Variance 0.04954 0.04939 0.04954 0.05033 0.04908
MSE 0.04959 0.04957 0.04959 0.05092 0.04975

100 4 0.1 1.5 3 Estimate 4.00132 3.99819 4.00132 4.01704 3.99197
Bias 0.00132 -0.00181 0.00132 0.01704 -0.00803

Variance 0.02222 0.02219 0.02222 0.02240 0.02212
MSE 0.02222 0.02219 0.02222 0.02269 0.02218

α̂mle= Estimate under maximum likelihood estimation, α̂sq= Bayes estimate under squar ed
error loss function, α̂pre= Bayes estimate under precautionar y loss function, α̂alb= Bayes estimate
under Al-Ba yy ati’s loss function, α̂ste= Bayes estimate under Stein’s loss function.
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Table 5: Average estimate, Bias, Variance and Mean Squared Error under Inverse-Gamma prior.

n α k β λ c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 1.5 3.5 5 Estimate 2.96815 2.95500 3.02987 4.08292 2.82360
Bias -0.03185 -0.04500 0.02987 1.08292 -0.17640

Variance 0.22183 0.20296 0.21337 0.38746 0.18531
MSE 0.22284 0.20498 0.21426 1.56018 0.21642

50 3 -0.5 1.5 3.5 5 Estimate 3.01586 3.01248 3.02758 3.17368 2.98309
Bias 0.01586 0.01248 0.02758 0.17368 -0.01691

Variance 0.04434 0.04357 0.04400 0.04835 0.04272
MSE 0.04459 0.04372 0.04476 0.07852 0.04301

100 3 -0.5 1.5 3.5 5 Estimate 3.00761 3.00593 3.01346 3.08362 2.99109
Bias 0.00761 0.00593 0.01346 0.08362 -0.00891

Variance 0.02039 0.02021 0.02031 0.02127 0.02001
MSE 0.02045 0.02024 0.02049 0.02826 0.02009

10 4 0.1 1.2 3 3 Estimate 3.96991 3.96910 4.03283 4.39706 3.85199
Bias -0.03009 -0.03090 0.03283 0.39706 -0.14801

Variance 0.24080 0.23493 0.24254 0.28833 0.22127
MSE 0.24171 0.23589 0.24361 0.44598 0.24318

50 4 0.1 1.2 3 3 Estimate 3.97652 3.97628 3.98878 4.05281 3.95172
Bias -0.02348 -0.02372 -0.01122 0.05281 -0.04828

Variance 0.05037 0.05013 0.05044 0.05207 0.04951
MSE 0.05092 0.05069 0.05056 0.05486 0.05184

100 4 0.1 1.2 3 3 Estimate 4.00210 4.00195 4.00822 4.03995 3.98952
Bias 0.00210 0.00195 0.00822 0.03995 -0.01048

Variance 0.02531 0.02525 0.02533 0.02573 0.02509
MSE 0.02531 0.02525 0.02534 0.02733 0.02520

Table 6: Average estimate, Bias, Variance and Mean Squared Error under Inverse-Exponential prior.

n α k β λ c2 Criterion α̂mle α̂sq α̂pre α̂alb α̂ste

10 3 -0.5 1 3.5 5 Estimate 2.93546 2.99603 3.07599 4.23702 2.85660
Bias -0.06454 -0.00397 0.07599 1.23702 -0.14340

Variance 0.22744 0.21819 0.23000 0.43639 0.19836
MSE 0.23161 0.21821 0.23577 1.96661 0.21892

50 3 -0.5 1 3.5 5 Estimate 2.98571 2.99747 3.01265 3.15961 2.96794
Bias -0.01429 -0.00253 0.01265 0.15961 -0.03206

Variance 0.04084 0.04052 0.04093 0.04502 0.03973
MSE 0.04105 0.04053 0.04109 0.07050 0.04076

100 3 -0.5 1 3.5 5 Estimate 2.99384 2.9997 3.00724 3.07762 2.98481
Bias -0.00616 -0.0003 0.00724 0.07762 -0.01519

Variance 0.02369 0.0236 0.02372 0.02484 0.02336
MSE 0.02373 0.0236 0.02377 0.03087 0.02360

10 4 0.1 1 3 3 Estimate 3.96977 3.99370 4.05866 4.43061 3.87445
Bias -0.03023 -0.00630 0.05866 0.43061 -0.12555

Variance 0.25840 0.25532 0.26369 0.31424 0.24030
MSE 0.25931 0.25536 0.26713 0.49966 0.25606

50 4 0.1 1 3 3 Estimate 3.99208 3.99679 4.00938 4.07391 3.97204
Bias -0.00792 -0.00321 0.00938 0.07391 -0.02796

Variance 0.05112 0.05100 0.05132 0.05298 0.05037
MSE 0.05118 0.05101 0.05140 0.05845 0.05115

100 4 0.1 1 3 3 Estimate 3.99707 3.99942 4.00569 4.03745 3.98698
Bias -0.00293 -0.00058 0.00569 0.03745 -0.01302

Variance 0.02562 0.02559 0.02567 0.02608 0.02543
MSE 0.02563 0.02559 0.02570 0.02749 0.02560

From the results of simulation tables 3,4,5, and 6 , conclusions are dra wn regar ding the
perfor mance and beha vior of the estimators under dif ferent priors, which are summarized belo w.

• The perfor mances of the Bayesian and MLEs become better when the sample size increases.

• It has been obser ved that Bayesian estimation, outperfor ms MLE estimation.
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• In ter ms of MSE,in most cases the bayesian estimation under squar ed error loss function
giv es smaller MSEs as compar ed to other loss functions.

3.5. Fitting of real life data-set

For illustrativ e pur poses, we analyze three dif ferent types of real datasets. The dataset I consists
of tensile strength measur ements (in GPA) from 69 carbon fibers tested under tension at gauge
lengths of 20mm. These measur ements were initially reported by Bader and Priest [5] . The
datasets II consists of an accelerated life test conducted on 59 conductors, with failur e times
measur ed in hours. Reported first by Johnston[ 10] . The dataset III comprises times betw een
arriv als of 25 customers at a facility and reported first Grubbs[ 8] . Our objectiv e is to evaluate
and contrast the perfor mance of KWMBD estimates using mle and baysian estimation.

Table 7: Average estimate,Mean Squared Error, AIC, BIC for posterior distribution under different priors for dataset I.

criterion MLE Ex-Jef freys Prior Hartigan’s Prior I-Gamma Prior I- Exponential Prior

Estimate 2.5001 2.4390 2.4911 2.4144 2.4819
MSE 0.2440 0.2418 0.24320 0.2430 0.2426
AIC 228.6145 197.1729 198.5274 196.5776 198.2806
BIC 230.8486 199.4070 200.7615 198.8117 200.5147

Table 8: Estimates and MSE for Extension of Jeffrey’s and Inverse-Gamma Priors with different loss functions for
dataset I.

α̂mle priors α̂sq α̂pre α̂alb α̂ste

Estimate MSE Estimate MSE Estimate MSE Estimate MSE Estimate MSE
2.5001 0.2440 EX-Jef frey’s Prior 2.4390 0.2418 2.4475 0.2417 2.4911 0.2432 2.4224 0.2424

I-Gamma Prior 2.4391 0.2418 2.456 0.2416 2.5460 0.2506 2.4064 0.2436

Table 9: Average estimate,Mean Squared Error, AIC, BIC for posterior distribution under different priors for dataset
II.

criterion MLE Ex-Jef freys Prior Hartegan’s Prior I-Gamma Prior I- Exponential Prior

Estimate 7.16117 6.957312 7.129853 6.855565 7.077978
MSE 2.59377 2.561495 2.583413 2.576478 2.570564
AIC 319.9468 246.6048 247.7058 246.1869 247.3245
BIC 322.0243 248.6823 249.7833 248.2644 249.4021

Table 10: Estimates and MSE for Extension of Jeffrey’s and Inverse-Gamma Priors with different loss functions for
dataset II.

α̂mle priors α̂sq α̂pre α̂alb α̂ste

Estimate MSE Estimate MSE Estimate MSE Estimate MSE Estimate MSE
7.1612 2.5938 EX-Jef frey’s Prior 6.9577 2.5615 6.9858 2.5610 7.2538 2.6359 6.9027 2.5670

I-Gamma Prior 6.9370 2.5628 6.9931 2.5612 7.5631 2.9010 6.8294 2.5837
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Table 11: Average estimate,Mean Squared Error, AIC, BIC for posterior distribution under different priors for dataset
III.

criterion MLE Ex-Jef freys Prior Hartegan’s Prior I-Gamma Prior I- Exponential Prior
Estimate 4.0405 3.9242 4.0003 3.8025 3.9433

MSE 0.6053 0.6015 0.6010 0.6264 0.6003
AIC 108.1082 85.9577 86.3621 85.4566 86.0532
BIC 109.3270 87.1765 87.5810 86.6755 87.2721

Table 12: Estimates and MSE for Extension of Jeffrey’s and Inverse-Gamma Priors with different loss functions for
dataset III.

α̂mle priors α̂sq α̂pre α̂alb α̂ste

Estimate MSE Estimate MSE Estimate MSE Estimate MSE Estimate MSE
4.0405 0.6054 EX-Jef frey’s Prior 3.9242 0.6015 3.9621 0.5998 4.0811 0.6131 3.8522 0.6126

I-Gamma Prior 3.9070 0.6032 3.9829 0.6001 4.2331 0.6713 3.7699 0.6381

The results of tables 7 , 8 ,9 ,10 ,11 and 12 demonstrate that the estimation of parameters for
KWMBD under both priors ( Extension of Jeffrey’s and Inverse Gamma prior) and precautionar y
and squar e error loss function is better compar ed to the other three loss functions consider ed and
mle estimation, owing to its lower Mean Squar ed Error (MSE).

4. Conclusion

We compar ed estimation methods for the scale parameter α of the 2kth order weighted Maxw ell-
Boltzmann distribution, utilizing both Maximum Likelihood Estimation (MLE) and Bayesian
Estimation under various loss functions and prior distributions. This comparison is based on
the simulated data and real-life datasets. Results of simulated data reveal that as the sample
size increases, MSE decr eases. and the Bayesian Estimation outperfor ms Maximum Likelihood
Estimation (MLE). Further mor e, results from the real-life datasets demonstrate that the estima-
tion of parameters of KWMBD under both prior distributions and precautionar y loss function
and squar e error loss function yields better perfor mance, with smaller MSE compar ed to other
estimators.

Conflict of interest: The authors confir m that they have no conflicts of inter est to disclose
regar ding the publication of this paper .
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Abstract 

The paper aimed to propose a new Bayesian test method for establishing a non-inferiority measure 

between an active treatment (drug) and a new (cheaper) treatment using two independent binomial 

samples. A Bayesian test statistic was developed for testing non-inferiority between two 

independent binomial proportions. Conjugate Beta prior was assumed for the binomial proportions 

to elicit posterior from the same Beta family of distributions. The efficiency of this test method was 

established via power analysis and its ability to yield the nominal Type I error rate (alpha) in a 

detailed Monte-Carlo study. Results from this study showed that the proposed test method yielded 

higher powers and good estimates of the Type I error rate at the chosen sample sizes and varying 

non-inferiority margins (effect sizes). Thus, the new Bayesian test method is very efficient at 

detecting the significance of the non-inferiority margin between two independent binomial 

proportions when such is not negligible at all sample sizes. Further results showed that the size of 

the two population proportions being tested influences the power and the estimated nominal Type I 

error rate with an increase in power and a good estimate of Type I error rate achieved when both 

population proportions being tested are less than 0.5. It is therefore concluded that the new 

Bayesian test method can be employed whenever it is desirable to establish the existence of non-

inferiority or otherwise between a pair of (clinical) treatments (drugs). All the simulations and 

analyses were performed with the R statistical package. 

Keywords Non‐inferiority test, Test of proportion, Bayesian Inference, Conjugate 

prior, Power 
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1. Introduction

In pharmacological and drug discovery studies, the need for the development of new drugs to 

compete with some of the existing ones for a particular ill‐health condition is often desirable for 

many reasons. Clinicians and end‐users may prefer a new drug (or treatment) if significant 

advantages can be derived from its use such as having fewer side effects, being less toxic, being 

relatively cheaper, being relatively more convenient in its formulation and administration (e.g. 

tablets instead of infusion or infusion/drug instead of surgery) and so on (Yahya et al. [1]). 

Therefore, it is always a welcome development that improved, better, and (possibly) cheaper drugs 

or treatments are discovered and introduced for the treatment of various forms of ailments. 

In clinical trials, a new drug (or treatment) for a particular medical condition can only be 

accepted as being good if its performance is at least as good as an existing one (the active control). 

In other words, a new drug may be preferred if its performance is equivalent to or better than (not 

inferior to) the active control (Chen and Peace [2], Ng [3], Norleans [4]). This is the scenario that 

brought about the concept of non‐inferiority between two drugs or treatments in clinical trials.  

There are different methods for determining if a new drug (or treatment), often referred to as 

the test product, is as good as an existing one, most of which involve the use of statistical tools. 

Some of the procedures for determining if the performance of a new drug is not inferior to an 

existing one include superiority trials and non-inferiority trials (Lesaffre [5], Yahya and Jolayemi [6]).  

A superiority trial is used to prove that a new drug is better than an existing one, while a non‐

inferiority trial is used to show that the new drug is not (much) worse than the existing one 

(Kawasaki et al. [7]). Many clinical trials that compare a test product with an active comparator are 

designed as non-inferiority trials (Ng [3], EMA [8]). This is attributed to the fact that a placebo 

(controlled trial) is considered unethical or impractical (Temple [9]) among other reasons. In this 

study, our focus is much on non-inferiority trials based on nominal outcomes from two independent 

proportions, and a new test method to handle such a situation is proposed. 

The term ‘non-inferiority trial’ is commonly used to refer to a randomized clinical trial in which 

a new treatment is compared with a standard active treatment rather than a placebo or untreated 

control group (D’Agostino et al. [10], Pocock [11]). The non‐inferiority trial is a trial to show how 

an experimental treatment is statistically and clinically not inferior to the active control, see 

D’Agostino et al. [10]. In clinical trials, non‐inferiority tests are frequently used to demonstrate that 

the response for study drugs is not much worse than the response for reference drugs, see 

Kawasaki et al. [7], Kawasaki and Miyaoka [12]. 

1.1 Non‐Inferiority Tests 

A non-inferiority test is used to indicate whether the responses from new drugs are clinically 

not much worse than the response to active control. It is often conducted in clinical trials. Many 

clinical trials that compare a test product with an active comparator or control are designed as non‐

inferiority trials. A non‐inferiority trial is sometimes stated as being to demonstrate that the test 

product is not inferior to the active control. However, only a superiority trial can demonstrate this. 

A non‐inferiority trial aims to demonstrate that the test product is not worse than the active control 

by more than a pre‐specified threshold, often called the non-inferiority margin, Δ, see  Ng [3], EMA 

[8], D’Agostino et al. [10]. 

Non-inferiority studies are typically confirmatory trials that employ a randomized parallel‐

group design with an active control group. Some trials also include a placebo control group. The 

placebo is used to validate the study and to demonstrate the superiority of the test treatment to the 
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placebo (Garrett [13]). Non‐inferiority methods are frequently used in more serious, acute, and 

sometimes life‐threatening situations such as oncology and infectious diseases, see Garrett [13].  

Without loss of generality, a non‐inferiority test is used to indicate whether the responses 

from a new drug are clinically not much worse than the responses from the active control (an 

existing drug) as it is often conducted in clinical trials. Thus, a prior judgment is made that, for the 

new treatment to be of merit, it only needs to be as good as the active control regarding 

appropriate outcome measure(s) of response, see Pocock [11]. 

Non‐inferiority tests are examples of directional (one‐sided) tests. There are many forms of 

this test depending on the form of the response. The non-inferiority tests for two‐sample designs in 

which the outcome is a continuous normal random variable were carried out using the two‐sample 

t‐test procedure and the analysis of variance (ANOVA) k-sample F‐test procedure when there are 

more than two samples (Yahya and Jolayemi [6]). When the response or outcome is binary, the 

non‐inferiority test procedure, which is the main focus of this study, involves determining if the 

difference between two binomial proportions is beyond a specified non‐inferiority margin Δ. 

1.2 Non‐Inferiority Test Between Two Independent Proportions 

The responses from non‐inferiority studies can be binary, for example, cure or no cure, alive 

or dead, cancerous or non‐cancerous, and so on. When this is the case, the test product group and 

active control group are referred to as two independent binominal samples. The non‐inferiority 

tests for this case are carried out using the tests for the differences between two proportions. For 

instance, suppose that the current drug (treatment) for a given disease works 80% of the time. 

Suppose also that this treatment is either too expensive or occasionally exhibits serious side effects 

or that its administration is considered quite tedious (e.g. surgery) and a new promising treatment 

or drug has been developed to the point where it can be tested. One of the questions that must be 

answered is whether the new treatment is as good as the current treatment. In other words, do at 

least 80% of treated subjects respond positively to the new treatment?  

Due to the many benefits (being cheaper, having relatively fewer side effects, and being very 

easy to administer) of the new treatment, clinicians would be willing to adopt the new treatment 

even if it is slightly less effective than the current treatment by some small tolerable margin. In 

order words, it is of interest to determine how much less effective the new treatment can be 

relative to the existing one (the active control) for which the new treatment can still be confidently 

adopted. This is called the non-inferiority margin of the new drug compared to the existing one (Ng 

[3], Yahya and Jolayemi [12]). The non‐inferior margin represents how much worse the new 

treatment can be compared with the standard treatment, yet still, be considered ‘similar’ or ‘not 

worse’ than the standard treatment, Leung et al. [14]. In essence, there is a performance level of the 

new treatment as compared to the existing active control treatment below or above which is no 

longer considered ignorable. 

In the above example, suppose it was found that the performance rate of the new drug is 75% 

among the population of users and this was considered acceptable by the clinicians and other users 

due to its numerous attendant benefits over the existing treatment. This simply shows that the non-

inferiority margin of the new drug is 5%, i.e. Δ = 5% and the new treatment is thus, considered non‐

inferior to the existing treatment. Thus, the drug developers need to design an experiment to test 

the hypothesis that the response rate of the new drug (treatment) is at least 0.75. In other words, 

the test hypothesis problem here is to establish whether the non‐inferiority margin of 5% is 

exceeded by the new drug or not. 

Different test methods have been proposed for establishing non‐inferiority between a pair of 

two independent population proportions if such exists. Most of these methods were developed 

through the frequentist techniques while a few had appeared within the Bayesian framework. In 
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this work, a new Bayesian test method for testing the difference between two population 

proportions within the context of the non‐inferiority formulation is proposed. In the development 

of this new test method, the emphasis is more on the effect sizes rather than the p‐values of the 

statistical tests as opined by Leung et al. [14]. 

2. Methods

Let ��  be an independent Bernoulli random variable that indicates whether a clinician or 

patient prefers treatment/drug � with the associated probability of success ��, while � = 1 for the 

existing active treatment and � = 2 for the new treatment. Therefore, in a total of �� end‐users of 

treatment/drug �, the random variable ∑ ���
��

���
 that represents the number of end‐users that 

preferred treatment/drug � is distributed Binomial with parameters �� and ��. That is, 

∑ ���
��

���
~���(��,��). The sample estimate of ��  is obtained as ��� =

∑ ���
��
�� �

��
, � = 1,2. For simplicity, 

the terms ‘treatment’ and ‘drug’ shall be used interchangeably in the subsequent discussions to 

represent the existing or the new clinical treatment adopted or preferred by the end‐users.  

To establish the efficiency of the new drug relative to the existing drug within the context of 

non‐inferiority, the hypothesis of non‐inferiority between the two drugs in terms of their relative 

preferences by end‐users is constructed around the two independent population proportions 

��(for existing drug) and �� (for new drug), and the non‐inferiority margin ∆� as follows: 

��: �� ≥ �� + ∆�  against  ��: �� < �� + ∆�   (1) 

The inequality statement �� ≥ �� + ∆� in the null hypothesis �� simply indicates that the 

proportion (��) of users that preferred the new drug is only up to the proportion (��) of those that 

preferred the existing drug by a margin of the non‐inferiority parameter value ∆�.   

Therefore, if the null hypothesis �� is not rejected by the test, it simply shows that the new 

drug is not inferior to the existing drug an indication that the non‐inferiority margin ∆� is 

negligible. However, a rejection of the null hypothesis �� in favour of the alternative hypothesis �� 

is a strong indication that the new drug is superior (more preferred by users) to the existing drug. 

Hence, the non‐inferiority margin ∆�, which has contributed significantly to the rejection of �� is 

not negligible. 

Without loss of generality, the hypothesis set in (1) can be re‐expressed as follows (with the 

null hypothesis �� indicating no difference between the treatment and the active control groups): 

  ��: �� − �� = ∆�  against  ��: �� − �� < ∆�   (2) 

Some of the existing methods for testing the non‐inferiority hypothesis set in (2) include the z‐

test with a pooled variance given by  

  �� =
(���� ���)� ∆�

��
�

��
� 

�

��
����(�� ��� )

~�(0,1)   (3) 

where, ��� is computed as ��� =
∑ ���
��
��� � ∑ ���

��
���

��� ��
.

Another test statistic for hypothesis in (2) is the Wald statistic, Ward and Ahlquist [15] given by: 

 �� =
(���� ���)� ∆�

�
���(�� ���)

��
 � 

���(�� ���)

��

~�(0,1)    (4)
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It has been indicated in some studies that the performance of the Wald statistic suffers when 

the sample size is small, Di‐Caterina and Kosmidis [16]. However, Munzel and Hsuschke [17] have 

shown the framework of the non‐inferiority test for ordered categorical data. When the number of 

categories is two, it can be regarded as a problem of the difference between two proportions. 

Hence, the Wald test statistic is derived by extending the method proposed by Munzel and 

Hsuschke [17] to the non‐inferiority test for deriving the difference between two proportions. 

In this paper, an attempt is made to extend the Wald‐test procedures from a Bayesian 

perspective.   

2.1.  The Posterior Distribution of Bayesian Binomial Proportions 

The posterior distribution �(�|�)is defined as: 

�(�|�)=
�(�/�)×�(�)

∫ �(�/�)×�(�) ���

 (5) 

Given that �(�)= ��(1 − �)���,� = 0,1; then, the likelihood distribution function �(�/�)is 

defined by   

  �(�/�)= ∏ ���(1 − �)�����
���  

       →                                                    �(�/�)= �∑��(1 − �)��∑��       (6) 

Therefore, the Maximum Likelihood Estimator (MLE) of � is given by 

 MLE (�)= �� = 
∑��

�
     (7) 

Assuming a conjugate beta prior for the likelihood in order to ascertain the same class of the 

posterior, the prior distribution, �(�) is defined as; 

�(�)=
�����(���)����

�(��)×�(��)
Γ(�� + ��) , 0 < � < 1     (8) 

Therefore, the posterior distribution �(�|�) is determined using (5) as 

�(�|�)=
�∑��(1 − �)��∑�� ×

�����(1 − �)����

Γ(��)× Γ(��)
 Γ(�� + ��)

∫ �∑��(1 − �)��∑�� ×
�����(1 − �)����

Γ(��)× Γ(��)
 Γ(�� + ��) ��

�

�

�(�|�)=
�∑��(1 − �)��∑�� × �����(1 − �)����

∫ �∑��(1 − �)��∑�� × �����(1 − �)���� ��
�

�

 �(�|�)=
����∑����(���)�����∑����

∫ ����∑����(���)�����∑���� ��
�
�

 (9) 

Recall from the Beta function that, 

  ∫ ����∑����(1 − �)�����∑���� ��
�

�
=

�(���∑����)×�(�����∑����)

�(���������)
    (10)
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Therefore, the prior distribution in (10) becomes; 

    �(�|�)= ����∑����(1 − �)�����∑���� ×
�(���∑����)×�(�����∑����)

�(���������)
   (11) 

Thus, 

 �(�|�) ~ ����(�� + ∑ �� ,�� + � − ∑��); 0 < � < 1       (12) 

If we let � = �� + ∑��; � = �� + � − ∑�� in (11) and (12), the posterior mean, �(�|�) and 

posterior variance, ���(�|�) can be obtained as; 

  �(�|�)=
�

���
 (13) 

 ���(�|�)= 
��

(���)�(�����)
  (14) 

2.2   Prior Elicitation 

2.2.1   Choosing a Conjugate Prior by Matching Location and Scale Parameters 

Given that the ����(�,�) family of distributions is the conjugate family for ��������(�,�) 

distribution, the posterior will be a member of the same family, with the parameters updated by 

simple rules. Then, we can find the posterior without integration. Note that, the beta distribution 

can have many shapes. Therefore, the prior chosen should correspond to one’s belief. We suggest 

choosing a ����(��,��) that matches one’s prior belief about the mean (location) and standard 

deviation (scale).  

Let �� be the prior mean for the proportion and let ��
� be the prior variance for the proportion. 

But, we know that the mean of ����(�,�) distribution is 
�

���
. If this is set to equal to what the prior 

belief about the mean of the proportion is, we have; 

  �� =
��

�����
      (16) 

Also, the variance of the ����(�,�) distribution is 
��

(���)�(�����)
. This shall be set to equal to the

prior belief about the variance for the proportion to have:  

  ��
� =

����

(�����)
�(�������)

 (17) 

Note that �� =
��

�����
 from (16), this implies that 1 − �� =

��

�����
. Substituting these in (17) to 

have; 

��
� =

��(����)

�������
 (18) 

Solving equations (16) and (18) for �� and �� gives the ����(��,��) prior parameters. 

Proof: Given that �~����(�,�) then, 

�(�)=
�

���
;   ���(�)=

��

(���)�(�����)
(19)

RT&A, No 3 (79) 
Volume 19, September 2024

694



W. B, Yahya, C. P. Ezenweke, O. R. Olaniran, I. A. Adeniyi, K. Jimoh, R.
B. Afolayan, M. K. Garba, I. Ahmed 
BAYESIAN NON‐INFERIORITY TEST …

Solving for �� in terms of �� and �� from (16) gives 

�� =
����

����
    (20) 

Substituting (20) in (18) and solving for �� gives 

 ��
� =

��(1 − ��)

����
1 − ��

+ �� + 1

��
�    =

��(1 − ��)

���� + �� − ���� + 1 − ��
1 − ��

 

��
�    =

��(1 − ��)

�� + 1 − ��
1 − ��

 

��
�    = ��(1 − ��)×

1 − ��
�� + 1 − ��

��
�    =

��(1 − ��)
�

�� + 1 − ��
��
�(�� + 1 − ��)   = ��(1 − ��)

� 

����
� + ��

� − ��
��� = ��(1 − ��)

� 
����

� + ��
�(1 − ��)= ��(1 − ��)

� 

����
� = ��(1 − ��)

� − ��
�(1 − ��) 

�� =
��(1 − ��)

� − ��
�(1 − ��)

��
�  

�� =
(����)[��(����)���

�]

��
�  (21) 

Substituting �� in (21) into (20) to have 

�� =

(1 − ��)[��(1 − ��)− ��
�]

��
� ��

1 − ��

�� =
��(1 − ��)[��(1 − ��)− ��

�]

(1 − ��)��
�  

�� =
��[��(����)���

�]

��
�  (22) 

Therefore, the posterior mean, �� and posterior variance, ���
� are determined as follows. We recall 

from (13) and (14) that  

�(�|�)=
�

� + �
= ��  

and 

�(�|�)= 
��

(� + �)�(� + � + 1)

respectively. 

→  �(�|�)=
�

� + �
×

�

� + �
×

1

� + � + 1
= ���

� 

Also, recall that � = �� + ∑��; � = �� + � − ∑��  then, by proper substitution, we have that 
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�� =
�� + ∑ ��

�� + ∑ �� + �� + � − ∑��

 → �� =
�� + ∑ ��
�� + �� + �

   (23) 

���
� =

�� + ∑��
�� + ∑�� + �� + � − ∑��

×
�� + � − ∑��

�� + ∑�� + �� + � − ∑��
×

1

�� + ∑�� + �� + � − ∑�� + 1

 → ���
� =

�� + ∑ ��
�� + �� + �

×
�� + � − ∑��
�� + �� + �

×
1

�� + �� + � + 1
   (24) 

By substituting (21) and (22) in (23) for �� and �� the Bayesian posterior mean of binomial 

proportion � is determined as follows; 

�� =

��[��(1 − ��)− ��
�]

��
� + ∑��

��[��(1 − ��)− ��
�]

��
� +

(1 − ��)[��(1 − ��)− ��
�]

��
� + �

�� =
��[��(1 − ��)− ��

�] + ��
� ∑��

��[��(1 − ��)− ��
�] + ��(1 − ��)

� − ��
�(1 − ��)+ ��

��

�� =
��[��(1 − ��)− ��

�] + ��
� ∑��

[��(1 − ��)− ��
�][�� + (1 − ��)] + ��

��

→    �� =
��[��(1 − ��)− ��

�] + ��
� ∑ ��

��(1 − ��)+ ��
�(� − 1)

           (25) 

Also, the Bayesian posterior variance ���
� of binomial proportion � is derived by substituting (21) 

and (22) in (24) as  

���
� =

��(1 − ��)��
�

[��(1 − ��)− ��
�] + ��

�� + ��
�

→    ���
� =

��(1 − ��)��
�

��(1 − ��)+ ���
�    (26) 

where �� = 
∑��

�
 as given in (7). 

2.3   Proposed Bayesian Non‐inferiority Test of Two Independent Binomial 

population proportions 

Following the above Bayesian estimates of mean and variance of a binomial proportion, the 

proposed Bayesian non‐inferiority test statistic for testing the hypothesis set  

��: �� − �� = ∆�  against  ��: �� − �� < ∆� 

as earlier stated in (2) is; 

   �� =
��� − ��� − ∆�

�����
� + ����

�

~�(0,1)    (27) 

where 

   ��� =
���[���(1 − ���)− ���

� ] + ���
� ∑���

���(1 − ���)+ ���
� (�� − 1)

   (28) 

   ��� =
���[���(1 − ���)− ���

� ] + ���
� ∑ ���

���(1 − ���)+ ���
� (�� − 1)

(29)
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 �����
� =

���(1 − ���)× ���
�

���(1 − ���)+ ���
� ��

    (30) 

 �����
� =

���(1 − ���)× ���
�

���(1 − ���)+ ���
� ��

   (31) 

and ��� =
�

��
∑ ���
��
���

,� = 1,2. 

2.4  Decision Rule 

The decision rule for the test function is to reject �� if ��� < −���� where ���� is the quantile of the 

standard normal distribution at Type I error rate �. 

If the null hypothesis �� is not rejected by the test function (27), it simply shows that the new 

drug is not inferior to the existing drug an indication that the non‐inferiority margin ∆� is 

negligible. However, a rejection of the null hypothesis �� in favour of the alternative hypothesis �� 

by the test is a strong indication that the new drug is superior (more preferred by users) to the 

existing drug. Hence, the non‐inferiority margin ∆�, which has contributed significantly to the 

rejection of �� is not negligible. 

2.5  The Power and Type I Error Rate (�) of the Proposed Bayesian Non‐    

inferiority Test 

In computing the power and nominal Type I error rate of the proposed Bayesian Non‐inferiority 

test method, we consider the hypothesis of the non‐inferiority test stated in (2), its test statistic as 

well as its decision rule.  The hypothesis set to test is 

��: �� − �� = ∆�  against  ��: �� − �� < ∆�  

with the proposed test statistic for the above test according to (27) is of the form 

 �� =
∆���∆�

��(∆��)
~�(0,1)   (32) 

where ∆��= ��� − ��� and ��(∆��) is the standard error of ∆��. The decision rule for the test function as 

earlier stated is to reject �� if ��� < −���� where ���� is the quantile of the standard normal 

distribution at Type I error rate �. Note that, ���∆��� = �����
� + ����

� . 

2.5.1  Power Computation 

The power of the statistical test of size � for testing the null hypothesis �� against the alternative 

set �� is the probability that the test rejects �� when �� is true. That is; 

 Power= �[���� �������� ������� ��|�� �� ����] 

Therefore, given the above decision rule for testing the hypothesis (2) above at some specified 

Type I error rate �, the power of the test is defined by 

Power = �[���� < −����|�� �� ����] 
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→ Power = � �
∆���∆�

��(∆��)
< −����|�� − �� < ∆��    (33) 

Suppose ∆� is the true difference between the two proportions �� and �� for the alternative 

hypothesis �� to be true, hence, the test hypothesis (2) can be re‐expressed as  

         ��: �� − �� = ∆�  against  ��: �� − �� = ∆�, with ∆�< ∆�. 

The expression for power of the test in (33) then becomes;  

 Power = � �
∆���∆�

��(∆��)
< −����|∆��  (34) 

Thus, we have; 

Power = � �
∆���∆�

��(∆��)
< − �����

Power = � �
∆��

��(∆��)
< − ���� +

∆�

��(∆��)
� 

→ Power = � �� < −���� +
∆�

��(∆��)
� 

∴    Power = Φ �−���� +
∆�

��(∆��)
�  (35) 

where Φ is the cumulative distribution function of the normal density and ��(∆��) is the standard 

error of ∆��= ��� − ���. From (30) and (31), ��(∆��) is computed by  

���∆��� = �
���(1 − ���)× ���

�

���(1 − ���)+ ���
� ��

+
���(1 − ���)× ���

�

���(1 − ���)+ ���
� ��

Therefore, the power of the proposed Bayesian non‐inferiority test is given by (35). 

2.5.2  Nominal Type I Error Rate Computation 

The Type I error rate of a statistical test � is the probability that the test function rejects the null 

hypothesis �� when �� is actually true. Let the actual size alpha level of the test be denoted by ��. 

This can be computed by; 

 �� = � �
∆���∆�

��(∆��)
< −����|∆��  (36) 

where ∆� is the null difference. Thus, we have that; 

�� = � �
∆�� − ∆�

��(∆��)
< −�����

�� = � �
∆��

��(∆��)
< −���� +

∆�

��(∆��)
� 

→ �� = � �� < −���� +  
∆�

��(∆��)
� 

∴ ��  = Φ �−���� +  
∆�

��(∆��)
�  (37) 

Thus, the power function and the estimator of the significance level � for the proposed Bayesian 

test statistic considered in this paper are presented in Table 1. 

RT&A, No 3 (79) 
Volume 19, September 2024

698



W. B, Yahya, C. P. Ezenweke, O. R. Olaniran, I. A. Adeniyi, K. Jimoh, R.
B. Afolayan, M. K. Garba, I. Ahmed 
BAYESIAN NON‐INFERIORITY TEST …

Table 1: The Power function (ZB-Power) and estimator of the Nominal Type I error rate � (ZB-Alpha (�))of the 

proposed Bayesian test for two independent Binomial Proportions. 

Description Estimator 

ZB‐Alpha (�) Φ�−����+∆� ÷ �
���(1 − ���)× ���

�

���(1 − ���)+ ���
� n�

+
���(1 − ���)× ���

�

���(1 − ���)+ ���
� n�

� 

ZB‐Power Φ�−����+∆� ÷ �
���(1 − ���)× ���

�

���(1 − ���)+ ���
� n�

+
���(1 − ���)× ���

�

���(1 − ���)+ ���
� n�

� 

3. Simulation Study

3.1 Simulation Scheme 

The data utilized for this work were simulated using the R statistical package (R Core Team 

[18]). Two independent binomial random variables �� and �� were generated at different sample 

sizes � = 20,40,   .  .  . ,200 using varying probabilities of success �� and �� with varying effect size 

∆� where ��  = �� + ∆�. The Power (%) and the nominal size � (%) values of the proposed test 

statistic were computed using 10,000 iterations of the basic experiment. The implementation of the 

Bayesian methodology is in two phases:  

1. Obtaining the Bayesian estimate of ��� and ��� by updating the data using conjugate

beta‐prior.

2. Estimating the corresponding Power (%) and the nominal size � (%) values of the

proposed Bayesian test statistic.

Recall that the non‐inferiority hypothesis test is given as ��:  �� − �� = ∆�   vs. ��:   �� − �� < ∆�. 

The section that follows presents the results for different values of �� and �� at various 

sample sizes. 

4. Results

The results of the proposed non‐inferiority test between two binomial proportions are 

presented in phases based on the different parameters combinations as provided under the 

simulation scheme.   

Table 2 presents the estimated power of the proposed Bayesian test first at the effect size 

∆�= 0.05 but under two different sizes of proportion pairs (�� = 0.2,�� = 0.25 ) and (�� = 0.6,

�� = 0.65) with the associated Bayesian test statistics ZB1 and ZB2 respectively at varying sample 

sizes. Table 2 equally presents the results of the estimated powers of the proposed test at the effect 

size ∆�= 0.1 and under two different sizes of proportion pairs (�� = 0.2,�� = 0.3 ) and (�� = 0.6,

�� = 0.7 ) with the associated Bayesian test statistics ZB3 and ZB4 respectively also at varying 

sample sizes. Expectedly, it can be observed that the power of the proposed Bayesian test method 

increases as the sample size increases. 
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Table 2: The Power (in %) of the proposed Binomial Non-inferiority Test (ZB) at various sample sizes (n), with the 
following test parameters; �� = 0.2,�� = 0.25, effect size ∆�= 0.05 for test ZB1; �� = 0.6,�� = 0.65 effect size 

∆�= 0.05 for test ZB2; �� = 0.2,�� = 0.3, effect size ∆�= 0.1 for test ZB3; �� = 0.6,�� = 0.7 effect size ∆�= 0.1 for  
test ZB4. 

Power of Bayesian Non‐Inferiority Tests 

Sample 

Size (n) 

Effect Size ∆�= 0.05 Effect Size ∆�= 0.1 

��� 

(��,��)= (0.2,0.25) 

��� 

(��,��)= (0.6,0.65) 

��� 

(��,��)= (0.2,0.3) 

��� 

(��,��)= (0.6,0.7) 

20 21.91 16.35 70.42 65.69 

40 34.92 28.16 85.01 79.77 

60 44.29 37.23 91.78 89.25 

80 50.86 43.48 96.16 93.90 

100 56.80 49.50 97.96 96.51 

120 64.02 55.29 99.03 98.17 

140 68.96 59.67 99.62 98.92 

160 73.81 65.24 99.77 99.28 

180 78.11 69.20 99.88 99.67 

200 81.25 71.57 99.96 99.86 

 

It can also be observed from the results in Table 2 that, the power of the test increases 

remarkably as the effect size ∆� increases. All these results are presented in the line graphs in Fig 1 

(left) in which the powers of the test were plotted against the various sample sizes under the two 

effect sizes chosen. 

Figure 1: The graphs of the estimated Powers (left) and nominal Type I error rate � (right) of the proposed Bayesian 
Non-inferiority test for two Independent Population Proportions at different sample sizes and varying effect sizes. 

Regarding the ability of the proposed test at returning the 5% nominal Type I error rate � set 

for it, it can be observed from Table 3 that the test returns nominal alpha values that are quite close 

to the 5% alpha level set for it at all the effect sizes most especially at higher sample sizes. 

However, the test under‐estimated this nominal 5% � level of the test as all the estimated nominal 

values are below the 5% line as shown in Fig. 1 (right).    
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Table 3: The estimated nominal Type I error rate � (in %) of the Proposed Binomial Non-inferiority Test (ZB) at 

various sample sizes (n), with the following test parameters; �� = 0.2,�� = 0.25, effect size ∆�= 0.05 for test ZB1; 

�� = 0.6,�� = 0.65 effect size ∆�= 0.05 for test ZB2; �� = 0.2,�� = 0.3, effect size ∆�= 0.1 for test ZB3; �� = 0.6,

�� = 0.7 effect size ∆�= 0.1 for test ZB4. 

Estimated  Nominal Type I Error Rate � (in %) of Bayesian Non-Inferiority Tests 

Sample 
Size (n) 

Effect Size ∆�= 0.05 Effect Size ∆�= 0.1 

��� 
(��,��)= (0.2,0.25) 

��� 
(��,��)= (0.6,0.65) 

��� 
(��,��)= (0.2,0.3) 

��� 
(��,��)= (0.6,0.7) 

20 1.91 0.71 2.17 0.83 
40 3.33 1.98 3.63 1.54 
60 3.28 2.77 3.47 2.65 
80 4.17 3.63 4.23 3.46 
100 4.00 3.90 4.06 3.66 
120 3.95 3.99 4.53 3.53 
140 4.54 4.11 4.75 3.78 
160 4.58 4.24 4.82 3.79 
180 4.47 3.94 4.68 3.68 
200 4.36 3.79 4.73 3.69 

5. Discussion of Results

In this paper, the Bayesian test statistic for testing the difference of two binomial proportions 

under the non‐inferiority condition was presented. The estimators of the power and significance 

level for the proposed Bayesian test were summarized in Table 1. Table 2 presents the empirical 

percentage power of the proposed test at varying sample sizes under the four scenarios considered 

while Table 3 presents the nominal Type I error rate of the test at various sample sizes under 

different effect sizes.  

The Bayesian test statistic of non‐inferiority ZB1 examines a test condition with a low effect 

size (∆�= 0.05) and relatively small sizes of the proportion pair (�� = 0.2,�� = 0.25 ). Under this 

scenario, the proposed Bayesian test method requires an average sample size of about 150 

observations to achieve an approximate 70% power as can be observed in Table 2 and Fig 1 (left).  

Unlike the test statistic ZB1, the Bayesian test statistic ZB2 examines a test condition with a low 

effect size (∆�= 0.05) but relatively large sizes of the proportion pair (�� = 0.6,�� = 0.65 ) in the 

hypothesis set to be tested. Here, the Bayesian test ZB2 requires more sample units in the 

neighborhood of 180 samples before it could achieve about 70% power. It can therefore be 

concluded that the size of the binomial proportion pair (��,��) influences the size of the power of 

the test. Thus, the smaller the sizes of the two population proportions ��  and �� being tested, the 

higher the power of the test. 

The Bayesian test statistic ZB3 unlike ZB1, examines a test condition with a relatively large 

effect size (∆�= 0.1) and smaller sizes of the proportion pair (�� = 0.2,�� = 0.3). Here, the 

proposed Bayesian test method achieved a reasonable power of about 70% even at a very small 

sample size as low as 20 samples as can be observed from the results in Table 1 and clearly shown 

by the power plot in Fig 1 (left). 

Finally, the Bayesian test statistic ZB4 in Table 2 tested a pair of relatively large binomial 

proportions (�� = 0.6,�� = 0.7) with the same effect size (∆�= 0.1) as used in ZB3 test. Given these 

parameters settings, the Bayesian test ZB4 requires more samples to attain the same feat of about 
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70% power achieved by ZB3 at a relatively smaller sample size simply due to an increase in the 

sizes of the two proportions �� and ��. In all cases considered, the power of the proposed Bayesian 

test increases as the sample size increases. 

To further examine the goodness of the proposed test method, its ability to retain its size � of 

5% set for it was evaluated. Table 3 presents the empirical percentage significance levels � 

returned by the test at varying sample sizes under the four parameters combinations considered. It 

could be observed from Table 3 that the empirical percentage significance levels � provided by the 

test are closer to the 5% nominal level set for it, especially at sample sizes 100 and above. Finally, 

all these results in Table 3 showed that the ability of the proposed Bayesian test method to commit 

the Type I error is lower than the 5% nominal level set for it. At all the sample sizes considered, the 

test under‐estimates the 5% nominal level set for it. 

6. Conclusion

In this work, an efficient Bayesian test method for testing non‐inferiority between two 

independent binomial proportions is proposed. The goodness of the proposed test method was 

assessed based on the power and the empirical Type I error rates provided by the test across the 

various sample sizes considered. Results in Table 2 clearly showed that the proposed test is quite 

efficient at detecting the significance of the non‐inferiority parameter value when such is not 

negligible in all sample sizes. 

Without loss of generality, the various results from power analysis and analysis of nominal 

Type I error rates reported by the test are a clear indication that the proposed Bayesian test method 

is quite efficient and good for testing and establishing non‐inferiority between two binomial 

population proportions. Besides the high power reported by the proposed test, the empirical levels 

of significance �� estimated by the test method that was closer to the 5% nominal level set for the 

test in all the cases considered also confirmed the goodness of the proposed Bayesian test method. 

It is therefore recommended that the proposed Bayesian test method be employed whenever it is 

desirable to establish the existence of non‐inferiority or otherwise between a pair of treatments in 

which the preference of users is of the essence.  
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Abstract 

This study explores the application of Bayesian and E-Bayesian techniques to estimate the scale 

parameter of the Exponentiated Inverse Rayleigh distribution. Bayesian estimates for the parameter 

are derived using an informative Gamma prior and evaluated under three distinct loss functions: De-

Groot, Squared Error, and Al-Bayyati loss functions. Various Properties of the E-Bayesian estimators 

under different loss functions have also been studied. To compare the effectiveness of E-Bayesian 

estimates against the Bayesian counterpart, a simulation study is conducted using MatLab. The 

various derived estimators were compared in terms of their Mean Squared Error. The results of a 

simulation study reveal that E-Bayesian estimates exhibit a smaller Mean Squared Error in 

comparison to Bayesian estimates, thereby demonstrating their enhanced efficiency. Among the E-

Bayesian estimates, the third one stands out as the most effective. Moreover, the analysis highlights 

that the Squared Error loss function outperforms the Al-Bayyati and De-Groot loss functions, 

exhibiting a smaller MSE. Furthermore, the efficacy of these estimators is demonstrated through an 

analysis of a real-life dataset. 

Keywords: Al-Bayyati loss function, De-Groot loss function, Exponentiated 

inverse Rayleigh distribution, Gamma prior, Squared error loss function. 

1. Introduction

The Exponentiated Inverse Rayleigh distribution (EIRD) finds extensive utility in life testing and 

reliability studies, playing a crucial role in domains like electronic component longevity and wind 

speed analysis. Its significance also extends to physics and signal processing, facilitating 

investigations into radiations, sounds, and light phenomena. This versatility prompts statisticians to 

frequently employ the EIRD across diverse datasets. 

Rehman and Dar [1] conducted a comprehensive examination of the Exponentiated Inverse Rayleigh 

distribution, delving into its mathematical properties and harnessing Bayesian estimation 

techniques for parameter estimation. The probability density function (PDF) and cumulative 

distribution function (CDF) of the EIRD, characterized by scale parameter θ and shape parameter α, 

are as follows:      

𝑓(𝑥, 𝜃, 𝛼) =
2𝛼𝜃𝑒

−
𝛼𝜃
𝑥2

𝑥3
 ; 𝑥 > 0, 𝛼 , > 0  (1) 

𝐹(𝑥, 𝜃, 𝛼) = 𝑒
−

𝛼𝜃

𝑥2  ; 𝑥 > 0, 𝛼 , 𝜃 > 0 (2)
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Numerous authors have explored the Inverse Rayleigh distribution (IRD) from various angles. Voda 

[2] delved into essential properties such as Maximum Likelihood Estimation (MLE), confidence

intervals, and hypothesis tests. Siddiqui [3] focused on the diverse practical applications of the

Inverse Rayleigh Distribution. Soliman et al. [4] utilized squared error and zero-one loss functions

to devise Bayesian estimators for IRD, centered around lower record values. Reshi et al. [5] tackled

parameter estimation for the Generalized Inverse Rayleigh distribution.

Dey [6] derived Bayes estimators for IRD parameters using distinct loss functions and a non-

informative prior. Sindhua et al. [7] explored Bayesian estimators and associated risks for IRD

parameters, emphasizing left-censored data and showcasing the efficacy of the gamma prior under

Quasi-Quadratic loss functions. Okasha [8] explored E-Bayesian estimation for the Lomax

distribution with type-II censored data.

This paper's objective is to conduct a statistical comparison between Bayesian estimators and

Expected Bayesian estimators for the Exponentiated Inverse Rayleigh distribution's scale parameter.

The analysis involves the utilization of gamma priors and different loss functions. The ensuing

layout of the paper is outlined as follows: Section 2 outlines the derivation of the likelihood function,

prior distribution, and posterior distribution. Section 3 presents Bayesian estimators for the EIRD

scale parameter using Al-Bayyati, Squared Error, and De-Groot loss functions. In Section 4, E-

Bayesian estimates are derived and their properties are examined. Section 5 is dedicated to a

simulation study comparing Bayes and E-Bayes estimates. Real data analysis is tackled in Section 6,

while Section 7 concludes by summarizing the findings.

2. Likelihood function, Prior and Posterior Distribution

2.1            Likelihood function 
Let 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size n drawn from EIRD. Then the likelihood function is 

given by  

 𝐿(𝑥, 𝜃) = 2𝑛𝛼𝑛𝜃𝑛 ∏
1

𝑥𝑖
3 𝑒−𝛼𝜃 ∑ 𝑥𝑖

−2𝑛
𝑖=1

𝑛

𝑖=1

 (3) 

In the context of Bayesian estimation, the selection of an appropriate prior holds paramount 

importance in parameter estimation. When a substantial understanding of the parameter(s) is 

available, the inclination is towards informative priors; however, when such knowledge is lacking, 

non-informative priors may be more appropriate. In this study, we opt for an informative prior, 

specifically the Gamma Prior, to derive the corresponding posterior distribution. 

2.2 Prior distribution 

The gamma distribution is employed as a conjugate prior distribution for the parameter θ. The 

subsequent Probability Density Function (PDF) is formulated using the shape parameter 'c' and the 

scale parameter 'r'.      

 ℎ(𝜃|𝑐, 𝑟) =
𝑟𝑐  𝜃𝑐−1𝑒−𝜃𝑟

𝛤𝑐
 ;  𝑐, 𝑟 > 0 , 𝜃 > 0  (4) 

2.3 Posterior distribution 

The posterior distribution for the parameter 𝜃 using (3) and (4), is given as 

 𝑔(𝑥, 𝜃) =
𝐿(𝑥, 𝜃) ∗ ℎ(𝜃)

∫ 𝐿(𝑥, 𝜃) ∗ ℎ(𝜃)𝑑𝜃
∞

0
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 =

2𝑛𝛼𝑛𝜃𝑛 ∏
1

𝑥𝑖
3 𝑒−𝛼𝜃 ∑ 𝑥𝑖

−2𝑛
𝑖=1𝑛

𝑖=1 ∗
𝑟𝑐  𝜃𝑐−1𝑒−𝜃𝑟

𝛤𝑐

∫ 2𝑛𝛼𝑛𝜃𝑛 ∏
1

𝑥𝑖
3 𝑒−𝛼𝜃 ∑ 𝑥𝑖

−2𝑛
𝑖=1𝑛

𝑖=1 ∗
𝑟𝑐  𝜃𝑐−1𝑒−𝜃𝑟

𝛤𝑐
𝑑𝜃

∞

0

      As a result, the posterior distribution of is equal to 

 =
𝜃(𝑛+𝑐)−1𝑒−𝜃{𝛼 ∑ 𝑥𝑖

−2+𝑟𝑛
𝑖=1 }

∫ 𝜃(𝑛+𝑐)−1𝑒−𝜃{𝛼 ∑ 𝑥𝑖
−2+𝑟𝑛

𝑖=1 }𝑑𝜃
∞

0

 𝑔(𝑥, 𝜃) =
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)
,    𝜃 > 0     𝑤ℎ𝑒𝑟𝑒 𝑆 = {𝛼 ∑ 𝑥𝑖

−2 + 𝑟
𝑛

𝑖=1
}  (5) 

3. Bayesian Estimation

In this section, we find the Bayes estimate of scale parameter of EIRD under three different loss 

functions as: 

3.1        Under the Al-Bayyati loss function 

Al-Bayyati [9] proposed a loss function, defined as 

𝐿(𝜃̂ , 𝜃) = 𝜃𝑑(𝜃̂ − 𝜃)2;  where 𝜃̂ is the estimate of 𝜃.  

By using the Al-Bayyati loss function, the bayes estimator is given as 

 𝐸{𝐿(𝜃̂ , 𝜃)} = ∫ 𝐿(𝜃̂ , 𝜃) ∗

∞

0

𝑔(𝑥, 𝜃)𝑑𝜃 

 = ∫ 𝜃𝑑(𝜃̂ − 𝜃)2 ∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

 = ∫ 𝜃𝑑(𝜃̂2 + 𝜃2 − 2𝜃̂𝜃)2 ∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

 = 𝜃̂2 ∫
𝑆𝑛+𝑐𝜃(𝑛+𝑐+𝑑)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 + ∫
𝑆𝑛+𝑐𝜃(𝑛+𝑐+𝑑+2)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 − 2𝜃̂ ∫
𝑆𝑛+𝑐𝜃̂(𝑛+𝑐+𝑑+1)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

𝑑𝜃 

By solving the above integral, finally we get 

 𝐸{𝐿(𝜃̂ , 𝜃)} = 𝜃̂2 ∗
𝛤(𝑛 + 𝑐 + 𝑑)

𝑆𝑑𝛤(𝑛 + 𝑐)
+

𝛤(𝑛 + 𝑐 + 𝑑 + 2)

𝑆𝑑+2𝛤(𝑛 + 𝑐)
− 2𝜃̂ ∗

𝛤(𝑛 + 𝑐 + 𝑑 + 1) 

𝑆𝑑+1𝛤(𝑛 + 𝑐)

And consequently, the Bayes estimator is 

𝜃̂𝐵𝐴 =
(𝑛+𝑐+𝑑)

𝑆
  (6) 

3.2           Under the Squared error loss function 

The Squared Error Loss Function [10] is defined as follows: 

   𝐿(𝜃̂ , 𝜃) = (𝜃̂ − 𝜃)2 

By using the Squared error loss function, the bayes estimator is given as 

 𝐸{𝐿(𝜃̂ , 𝜃)} = ∫ 𝐿(𝜃̂ , 𝜃) ∗

∞

0

𝑔(𝑥, 𝜃)𝑑𝜃 

 = ∫ (𝜃̂ − 𝜃)2 ∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 
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= ∫ (𝜃̂2 + 𝜃2 − 2𝜃̂𝜃)
2

∗
𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

By solving the above integral, finally we get 

𝐸{𝐿(𝜃̂ , 𝜃)}    = 𝜃̂2  +
𝛤(𝑛 + 𝑐 + 2)

𝑆2𝛤(𝑛 + 𝑐)
− 2𝜃

(𝑛 + 𝑐)

𝑆

And consequently, the Bayes estimator as 

𝜃̂𝐵𝑆 =
(𝑛+𝑐)

𝑆
  (7) 

3. 3        Under the De-Groot loss function 

The De-Groot loss function [11] is defined as follows: 

 𝐿(𝜃̂ , 𝜃) =
(𝜃̂ − 𝜃)2

𝜃̂2

By using the De-Groot loss function, the bayes estimator is given as 

 𝐸{𝐿(𝜃̂ , 𝜃)} = ∫ 𝐿(𝜃̂ , 𝜃) ∗

∞

0

𝑔(𝑥, 𝜃)𝑑𝜃 

 = ∫
(𝜃̂ − 𝜃)2

𝜃̂2
∗

𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

 =
1

𝜃̂2
∫(𝜃̂2 + 𝜃2 − 2𝜃̂𝜃)2 ∗

𝑆𝑛+𝑐𝜃(𝑛+𝑐)−1𝑒−𝑆𝜃

𝛤(𝑛 + 𝑐)

∞

0

 𝑑𝜃 

By solving the above integral, finally we get 

 𝐸{𝐿(𝜃̂ , 𝜃)} = 1 +
1

𝜃̂2

𝛤(𝑛 + 𝑐 + 2)

𝑆2𝛤(𝑛 + 𝑐)
−

2

𝜃̂

𝛤(𝑛 + 𝑐 + 1)

𝑆𝛤(𝑛 + 𝑐)

And consequently, the Bayes estimator as 

𝜃̂𝐵𝐷 =
(𝑛+𝑐+1)

𝑆
.    (8) 

4. E-Bayesian Estimation

According to Han [12], the prior parameters 'c' and 'r' should be chosen so that the prior given in (4) 

is a decreasing function of  𝜃. 
𝑑

𝑑𝜃
ℎ(𝜃|𝑐, 𝑟) =

𝑟𝑐  

𝛤𝑐
𝜃𝑐−2𝑒−𝜃𝑟{(𝑐 − 1) − 𝑟𝜃}, 

As a result, our prior distribution (4) becomes a decreasing function of 𝜃, for 0<c<1 and r>0. 

The E-Bayesian estimate of is calculated as follows: 

𝜃̂𝐸𝐵  = ∫ ∫ 𝜃̂𝐵𝐸 ∗ 𝜋(𝜃, 𝑐, 𝑟) ∗ drdc
𝑡

0

1

0

 

The intervals of integration for the first and second integrals correspond to the domains of the 

hyperparameters 'c' and 'r,' respectively, ensuring that our prior density function exhibits a 

decreasing trend with respect to 𝜃. The Bayesian estimate of 𝜃, denoted as 𝜃̂𝐸𝐵, is calculated utilizing 

three distinct loss functions. 

Subsequently, for the E-Bayesian estimates of 𝜃, we deliberate on the choice of prior distributions 

for the hyperparameters 'c' and 'r.' These distributions serve primarily to explore the influence of 

different prior choices on the E-Bayesian estimations of 𝜃. The hyperparameters 'c' and 'r' are 

governed by the following distributions 

𝜋1(𝜃, c, r) =
2(t − r)

t2
 ;    0 < 𝑐 < 1;    0 < 𝑟 < 𝑡 (9)
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𝜋2(𝜃, c, r) =
1

t
 ;   0 < 𝑐 < 1;    0 < 𝑟 < 𝑡  (10) 

𝜋3(𝜃, c, r) =
2r

t2
 ;    0 < 𝑐 < 1;    0 < 𝑟 < 𝑡  (11) 

Now follows the E- Bayesian estimates of the scale parameter of EIRD under proposed loss functions 

4.1     E-Bayesian estimation of 𝜃 under the Al-Bayyati loss function 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋1(𝜃, c, r), is provided by

𝜃̂𝐸𝐵𝐴1
= ∫ ∫ 𝜃̂𝐵𝐴

𝑡

0

∗

1

0

 𝜋1(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐 + 𝑑

𝑆
}

t

0

1

0

∗  {
2(t − r)

t2
} ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐 + 𝑑)𝑑𝑐 ∗ ∫ (

t − r

𝑆
)

t

0

1

0

∗ dr } 

On solving the above equation, we get 

𝜃̂𝐸𝐵𝐴1
  =

2𝑛 + 2𝑑 + 1

t2
∗ {(t + P) ∗ log (

t + P

P
) − 𝑡}  (12) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋2(𝜃, c, r), is provided by

𝜃̂𝐸𝐵𝐴2
= ∫ ∫ 𝜃̂𝐵𝐴

𝑡

0

∗

1

0

 𝜋2(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐 + 𝑑

𝑆
}

t

0

1

0

∗  
1

t
∗ drdc 

where 𝑃 = (𝛼 ∑ 𝑥𝑖
−2𝑛

𝑖=1 ) and ∫ (𝑛 + 𝑐 + 𝑑)𝑑𝑐
1

0
=

2𝑛+2𝑑+1

2

Hence, on solving we get 

𝜃̂𝐸𝐵𝐴2
=

2𝑛 + 2𝑑 + 1

2t
∗ {log (

t + P

P
)}  (13) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋3(𝜃, c, r), and is given by

𝜃̂𝐸𝐵𝐴3
= ∫ ∫ 𝜃̂𝐵𝐴

𝑡

0

∗

1

0

 𝜋3(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐 + 𝑑

𝑆
}

t

0

1

0

∗  
2r

t2
∗ drdc 

Hence on solving, we get 

𝜃̂𝐸𝐵𝐴3
=

(2𝑛 + 2𝑑 + 1)

𝑡2
∗ {P ∗ log (

P

t + P
) + t}  (14) 

4.2      E-Bayesian estimation of 𝜃 under the Squared error loss function

E-Bayesian estimate of the parameter 𝜃 under based on 𝜋1(𝜃, c, r), and is provided by

𝜃𝐸𝐵𝑆1
= ∫ ∫ 𝜃̂𝐵𝑆

𝑡

0

∗

1

0

 𝜋1(𝜃, c, r)drdc 

 = ∫ ∫ (
𝑛 + 𝑐

𝑆
)

𝑡

0

∗

1

0

 {
2(t − r)

t2
} ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐)𝑑𝑐 ∗ ∫ (

t − r

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 

Where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1
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On solving the above integrals, finally we get 

𝜃̂𝐸𝐵𝑆1
=

2𝑛 + 1

t2
∗ {(t + P) ∗ log (

t + P

P
) − 𝑡}  (15) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋2(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝑆2
= ∫ ∫ 𝜃̂𝐵𝑆

𝑡

0

∗

1

0

 𝜋2(𝜃, c, r)drdc 

= ∫ ∫ {
𝑛+𝑐

𝑆
}

t

0

1

0
∗  

1

t
∗ drdc 

=
1

t
{∫ (𝑛 + 𝑐)𝑑𝑐 ∗ ∫ (

1

𝑆
)

t

0

1

0

∗ dr } 

where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1

On solving the above integrals, finally we get 

𝜃̂𝐸𝐵𝑆2
=

2𝑛+1

2t
∗ {log (

t+P

P
)}   (16) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋3(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝑆3
= ∫ ∫ 𝜃̂𝐵𝑆

𝑡

0

∗

1

0

 𝜋3(𝜃, c, r)drdc 

 = ∫ ∫ {
𝑛 + 𝑐

𝑆
}

t

0

1

0

∗  
2r

t2
∗ drdc 

on solving the above intervals, finally we get 

𝜃̂𝐸𝐵𝑆3
= {(

2𝑛 + 1

t2
) ∗ {P ∗ log (

p

t + P
) + t }}  (17) 

4.3          E-Bayesian estimation of 𝜃 under the De-Groot loss function

E-Bayesian estimate of the parameter 𝜃 based on 𝜋1(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝐷1
= ∫ ∫ 𝜃̂𝐵𝐷

𝑡

0

∗

1

0

 𝜋1(𝜃, c, r)drdc 

𝜃̂𝐸𝐵𝐷1
= ∫ ∫ (

𝑛 + 𝑐 + 1

𝑆
)

𝑡

0

∗

1

0

 {
2(t − r)

t2
} ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐 + 1)𝑑𝑐 ∗ ∫ (

t − r

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 

Where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1

On solving the above integrals, we get 

𝜃̂𝐸𝐵𝐷1
=

(2𝑛+3)

t2 ∗ {(t + P) ∗ log (
t+P

P
) − 𝑡}  (18) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋2(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝐷2
= ∫ ∫ 𝜃̂𝐵𝐷

𝑡

0

∗

1

0

 𝜋2(𝜃, c, r)drdc 

= ∫ ∫ {
𝑛+𝑐+1

𝑆
}

t

0

1

0
∗  

1

t
∗ drdc 

 =
1

t
{∫ (𝑛 + 𝑐)𝑑𝑐 ∗ ∫ (

1

𝑆
)

t

0

1

0

∗ dr } 

 =
1

t
{∫ (𝑛 + 𝑐 + 1)𝑑𝑐 ∗ ∫ (

1

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 
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Where  𝑆 = {𝛼 ∑ 𝑥𝑖
−2 + 𝑟

𝑛

𝑖=1
}  𝑎𝑛𝑑 𝑃 = 𝛼 ∑ 𝑥𝑖

−2
𝑛

𝑖=1

𝜃̂𝐸𝐵𝐷2
=

(2𝑛 + 3)

2t
∗ {log (

t + P

P
)}  (19) 

E-Bayesian estimate of the parameter 𝜃 based on 𝜋3(𝜃, c, r), and is provided by

𝜃̂𝐸𝐵𝐷3
= ∫ ∫ 𝜃̂𝐵𝐷

𝑡

0
∗

1

0
 𝜋3(𝜃, c, r)drdc 

= ∫ ∫ {
𝑛+𝑐+1

𝑆
}

t

0

1

0
∗  

2r

t2 ∗ drdc 

 =
2

t2
{∫ (𝑛 + 𝑐 + 1)𝑑𝑐 ∗ ∫ (

r

𝑃 + 𝑟
)

t

0

1

0

∗ dr } 

=
2

t2 {
2𝑛+3

2
∗ {t − P ∗ log (

t+P

P
) }} 

On solving the above intervals, finally we get 

𝜃̂𝐸𝐵𝐷3
= {

(2𝑛 + 3)

t2
∗ {P ∗ log (

p

t + P
) + t }}  (20) 

4.4         Properties of E-Bayesian estimates under Different Loss Functions 

In this section, we will discuss the relationship amongst the different E-Bayesian estimators obtained 

under the Al-Bayyati loss function i.e, 𝜃̂𝐸𝐵𝐴1
, 𝜃̂𝐸𝐵𝐴2

, 𝜃̂𝐸𝐵𝐴3 
(𝑖 = 1,2,3) 

Theorem 4.1 E-Bayesian estimators obtained under the Al-Bayyati loss function will follow the 

following results:  

(i) 𝜃̂𝐸𝐵𝐴3
< 𝜃̂𝐸𝐵𝐴2

< 𝜃̂𝐸𝐵𝐴1

(ii) lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐴2

  ) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴3
  )

Proof (i) From  (12) and (13), we get 

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

=
(2𝑛+2𝑑+1)

t2 ∗ {(t + P) ∗ log (
t+P

P
) − 𝑡} −

2𝑛+2𝑑+1

2t
∗ {log (

t+P

P
)} 

      =
(2𝑛 + 2𝑑 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (21) 

From (13) and (14), we get 

𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

=
(2𝑛+2𝑑+1)

2t
∗ {log (

t+P

P
)} −

(2𝑛+2𝑑+1)

𝑡2 ∗ {t − P ∗ log (
t+P

P
)} 

 =
(2𝑛 + 2𝑑 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (22) 

Since log (1 +
t

P
) = {

t

P
−

t2

2P2 +
t3

3P3 − ⋯ … }

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

=
(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
− ⋯ … }

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

> 0 

hence      

𝜃̂𝐸𝐵𝐴1
> 𝜃̂𝐸𝐵𝐴2

 (23) 

Similarly, 

𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

=
(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
− ⋯ … }

𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

> 0, and 

hence  

𝜃̂𝐸𝐵𝐴2
> 𝜃̂𝐸𝐵𝐴3

 (24) 

Combining (23) and (24), we get 

𝜃̂𝐸𝐵𝐴3
< 𝜃̂𝐸𝐵𝐴2

< 𝜃̂𝐸𝐵𝐴1

Proof (ii): From (21) and (22), we get 

𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

= 𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

(2𝑛 + 2𝑑 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1} 

After taking the limit, we get 
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lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

) = lim
𝑃→∞

(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
… … } 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

) = lim
𝑃→∞

(2𝑛 + 2𝑑 + 1)

t
{

t2

12P2
+

t3

6P3
… … } 

On solving the above , we have 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
− 𝜃̂𝐸𝐵𝐴2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴2
− 𝜃̂𝐸𝐵𝐴3

) = 0

Hence 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐴2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐴3
)

Now we will discuss the relationship amongst the different E-Bayesian estimators obtained under 

the Square Error loss function i.e, 𝜃̂𝐸𝐵𝑆1
, 𝜃̂𝐸𝐵𝑆2

, 𝜃̂𝐸𝐵𝑆3 
(𝑖 = 1,2,3) 

Theorem 4.2 E-Bayesian estimators obtained under the Squared Error loss function will follow the 

following results:  

(i) 𝜃̂𝐸𝐵𝑆3
< 𝜃̂𝐸𝐵𝑆2

< 𝜃̂𝐸𝐵𝑆1

(ii) lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝑆2

  ) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆3
  ) 

Proof (i): From (15) and (16), we get 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

=
2𝑛 + 1

t2
∗ {(t + P) ∗ log (

t + P

P
) − 𝑡} −

2𝑛 + 1

2t
∗ {log (

t + P

P
)} 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

=
(2𝑛 + 1)

t
∗ {log (

t + P

P
) (

P

t
+

1

2
) − 1}  (25) 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

> 0 

𝜃̂𝐸𝐵𝑆1
> 𝜃̂𝐸𝐵𝑆2

 (26) 

Similarly, from (16) and (17), we get 

𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

=
(2𝑛 + 1)

2t
∗ {log (

t + P

P
)} −

(2𝑛 + 1)

𝑡2
∗ {t − P ∗ log (

t + P

P
)} 

𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

=
(2𝑛 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (27) 

𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

> 0 

    𝜃̂𝐸𝐵𝑆2
> 𝜃̂𝐸𝐵𝑆3

 (28) 

Combining (26) and (28), we get 

𝜃̂𝐸𝐵𝑆3
< 𝜃̂𝐸𝐵𝑆2

< 𝜃̂𝐸𝐵𝑆1

Proof (ii): From (25) and (27), we get 

𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

=
(2𝑛 + 1)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1} = 𝜃̂𝐸𝐵𝑆2

− 𝜃̂𝐸𝐵𝑆3

After taking the limit, we get 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

) = lim
𝑃→∞

(2𝑛 + 1)

t
{

t2

12P2
+

t3

6P3
− ⋯ … } = 0

and 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

) = lim
𝑃→∞

(2𝑛+1)

t
{

t2

12P2 +
t3

6P3 − ⋯ … } = 0

On solving, we have 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
− 𝜃̂𝐸𝐵𝑆2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆2
− 𝜃̂𝐸𝐵𝑆3

) = 0

hence 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝑆2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝑆1
)

Now we will discuss the relationship amongst the different E-Bayesian estimators obtained under 

the De-Groot loss function i.e, 𝜃̂𝐸𝐵𝑆1
, 𝜃̂𝐸𝐵𝑆2

, 𝜃̂𝐸𝐵𝑆3 
(𝑖 = 1,2,3) 

Theorem 4.3 E-Bayesian estimators obtained under the Square Error loss function will follow the 

following results:  

(i)𝜃̂𝐸𝐵𝐷3
< 𝜃̂𝐸𝐵𝐷2

< 𝜃̂𝐸𝐵𝐷1

(ii) lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐷2

  ) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷3
 ) 
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Proof (i): From (18) and (19), we get 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

=
2𝑛+3

t2 ∗ {(t + P) ∗ log (
t+P

P
) − 𝑡} −

2𝑛+3

2t
∗ {log (

t+P

P
)} 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

=
(2𝑛 + 3)

t
∗ {log (

t + P

P
) (

P

t
+

1

2
) − 1}  (29) 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

> 0 

𝜃̂𝐸𝐵𝐷1
> 𝜃̂𝐸𝐵𝐷2

 (30) 

Similarly, from eq. (19) and (20), we get 

𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

=
(2𝑛 + 3)

2t
∗ {log (

t + P

P
)} −

(2𝑛 + 3)

𝑡2
∗ {t − P ∗ log (

t + P

P
)} 

𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

=
(2𝑛 + 3)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1}  (31) 

𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

> 0 

𝜃̂𝐸𝐵𝐷2
> 𝜃̂𝐸𝐵𝐷3

 (32) 

Combining (30) and (32), we get 

𝜃̂𝐸𝐵𝐷3
< 𝜃̂𝐸𝐵𝐷2

< 𝜃̂𝐸𝐵𝐷1

    Proof (ii): From (29) and (31), we get 

𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

=
(2𝑛 + 3)

t
{log (1 +

t

P
) (

P

t
+

1

2
) − 1} = 𝜃̂𝐸𝐵𝐷2

− 𝜃̂𝐸𝐵𝐷3
 

After taking the limit , we get 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

) = lim
𝑃→∞

(2𝑛 + 3)

t
{

t2

12P2
+

t3

6P3
− ⋯ … } = 0

And 

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

) = lim
𝑃→∞

(2𝑛 + 3)

t
{

t2

12P2
+

t3

6P3
− ⋯ … } = 0

On solving, we have 

lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
− 𝜃̂𝐸𝐵𝐷2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷2
− 𝜃̂𝐸𝐵𝐷3

) = 0

 lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷1
) = lim

𝑃→∞
(𝜃̂𝐸𝐵𝐷2

) = lim
𝑃→∞

(𝜃̂𝐸𝐵𝐷3
)

Hence the proof is complete. 

The part (a)  of theorem 4.(i), 4.(ii) and 4.(iii) shows that with different priors (9)-(11) of the 

parameters c and r, the associated E-Bayesian estimate 𝜃̂𝐸𝐵𝐴𝑖
, 𝜃̂𝐸𝐵𝐷𝑖

, 𝑎𝑛𝑑 𝜃̂𝐸𝐵𝑆𝑖
; (i=1,2,3) are different.

The property (b) of  the theorems shows that 𝜃̂𝐸𝐵𝐴𝑖
, 𝑐; (i=1,2,3) are asymptotically equivalent to each

other as ∑ 𝑥𝑖
−2𝑛

𝑖=1 → ∞, that means 𝜃̂𝐸𝐵𝐴𝑖
; (i=1,2,3) are all close to each other when ∑ 𝑥𝑖

−2𝑛
𝑖=1  is

sufficiently large and 𝜃̂𝐸𝐵𝐷𝑖
, 𝑎𝑛𝑑 𝜃̂𝐸𝐵𝑆𝑖

; (𝑖 = 1,2,3) are also close to each other.

5. Simulation Study

In order to compare the performance of Bayesian and E-Bayesian techniques of estimation, a 

simulation study was conducted using MatLab. We chose a sample of size of n=20, 50, 70, 100, 120 

to represent small, medium and large data set. The following steps were conducted: 

1. The shape (α) and scale (𝜃) parameters has been fixed at 0.5 and 0.25 respectively.

2. For given value of t, we generate c and r from uniform and gamma distribution

respectively.

3. For given value of α and 𝜃, we generate a random sample of different sizes from

Exponentiated inverse Rayleigh distribution (EIRD) using the quantile function.

4. The above steps are iterated 1000 times to find the MSE of Bayesian and E-Bayesian

estimates of scale parameter using different loss functions.
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5. The MSE for Bayesian and E-Bayesian estimates under different loss function are shown in

table 1.

6. The MSE of 𝜃 for Bayesian and E-Bayesian estimation under different loss functions are

also illustrated in Figure 1, 2 and 3.

Table 1: Mean Squared Error (MSE) of  𝜃 under different loss functions for 𝛼 = 0.25, 𝜃 = 0.5 , 𝑡 = 1.5, 𝑑 =

3. 

 n 𝜃𝐵𝐴 𝜃𝐸𝐵𝐴1
𝜃𝐸𝐵𝐴2

𝜃𝐸𝐵𝐴3
𝜃𝐵𝑆 𝜃𝐸𝐵𝑆1

𝜃𝐸𝐵𝑆2
𝜃𝐸𝐵𝑆3

𝜃𝐵𝐷 𝜃𝐸𝐵𝐷1
𝜃𝐸𝐵𝐷2

𝜃𝐸𝐵𝐷3

  20 0.1357 0.1315 0.1304 0.1294 0.1029 0.0994 0.0987 0.0979 0.1134 0.1096 0.1087 0.1079 

  50 0.0958 0.0948 0.0945 0.0942 0.0854 0.0844 0.0842 0.0839 0.0888 0.0878 0.0876 0.0873 

  70 0.0735 0.0727 0.0725 0.0724 0.0677 0.0668 0.0667 0.0666 0.0696 0.0688 0.0686 0.0685 

100 0.0604 0.0599 0.0599 0.0598 0.0569 0.0565 0.0564 0.0563 0.0581 0.0576 0.0576 0.0575 

120 0.0546 0.0543 0.0543 0.0542 0.0519 0.0517 0.0517 0.0516 0.0528 0.0526 0.0525 0.0525 

Figure 1: MSE of Bayesian and E-Bayesian estimates of  𝜃 under Al-Bayyati loss function. 

RT&A, No 3 (79) 
Volume 19, September 2024

713



R. KUMAR, H. SHARMA, A. KAUR, R. GUPTA
BAYESIAN AND E-BAYESIAN ESTIMATION…

Figure2: MSE of Bayesian and E-Bayesian estimates of 𝜃 under Squared error loss function. 

Figure 3: MSE of Bayesian and E-Bayesian estimates of 𝜃 under De-Groot loss function. 
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6. Real Data Analysis

The dataset was sourced from [13], comprising monthly actual tax revenues in Egypt spanning fro

m January 2006 to November 2010. The data, expressed in 1000 million Egyptian pounds, are as foll

ows: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 

15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 1

1.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8. The Kolmogorov-Smirnov (K-S

) statistic's value is 0.082194, with an associated p-value of 0.8203. This suggests that the Exponentia

ted Inverse Rayleigh Distribution (EIRD) is the best fit for this dataset. Based on this data, the Maxi

mum Likelihood estimates yield 𝜃̂ = 8.9362 and 𝛼̂= 9.8028. Figure 4 and 5 displays the histogram an

d the estimated Cumulative Distribution Function (CDF) of the EIRD for the dataset, while the esti

mated Bayesian and E-Bayesian values are presented in Table 2. 

Figure 4: Histogram and the fitted density for the monthly actual taxes revenue. 

Figure 5: Plot for the ECDF of the EIRD model. 
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Table 2: Bayesian and E-Bayesian estimates of  𝜃 based on real dataset. 

𝜃𝐵𝐴 𝜃𝐸𝐵𝐴1
𝜃𝐸𝐵𝐴2

𝜃𝐸𝐵𝐴3
𝜃𝐵𝑆 𝜃𝐸𝐵𝑆1

𝜃𝐸𝐵𝑆2
𝜃𝐸𝐵𝑆3

𝜃𝐵𝐷 𝜃𝐸𝐵𝐷1
𝜃𝐸𝐵𝐷2

𝜃𝐸𝐵𝐷3

94.257 129.236 95.558 71.446 89.769 123.032 90.971 68.017 91.265 125.100 92.500 69.160 

7. Conclusion

This paper focuses on employing Bayesian and E-Bayesian methods to estimate the scale parameter 

of the Exponentiated Inverse Rayleigh distribution (EIRD) through the use of diverse loss functions. 

Additionally, certain properties of the E-Bayesian estimates are explored. Notably, the results of a 

simulation study reveal that E-Bayesian estimates exhibit a smaller Mean Squared Error (MSE) in 

comparison to Bayesian estimates, thereby demonstrating their enhanced efficiency. Among the E-

Bayesian estimates, the third one stands out as the most effective. 

Moreover, the analysis highlights that the Squared Error loss function outperforms the Al-Bayyati 

and De-Groot loss functions, exhibiting a smaller MSE. The conclusions drawn from the simulation 

study are further substantiated by validating the findings through a real-life dataset. 
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Abstract 

In the present stimulated business environment, power sector is playing a major role in the 

economic growth of India. During the last 20 years, the country had been facing a poor supply of 

energy and this supply-demand gap is increasing continuously. So, it is important for power plants 

to improve its power generation capacity drastically by reducing the failure rate. In the present 

paper, to analyze the causes of poor availability, thermal power plant has divided into six different 

systems and a system comprising of waste gases heating system has been considered. With the help 

of transition diagram, mathematical equations have been used to find out the availability. After 

analyzing, it was found that the value of availability is very low and boiler tube failure is one of the 

most critical factors for this low availability of system. Economizer zone has identified having long 

existence time of failures and frequency of occurrence is very high. So, minimizing the failure rate 

with the help of a proper maintenance schedule will result in decreasing the shutdown period of the 

plant and increasing the system availability.

Keywords: Thermal Power Plant; Performance Evaluation; Availability, Boiler; 

Tube Failure; Economizer 

I. Introduction

In today’s competitive world, it becomes necessary that thermal power plant will be available for 

long run without any failure. In India, total installed capacity of electricity generation is 3,30,354 

MW while total thermal installed capacity  is 2,20,456  MW i.e. 66.8% of the total installed capacity 

(refer table 1). The major contribution almost 59% in thermal installed capacity is coal fired thermal 

power plant. For continuous power production, boiler becomes the backbone of a thermal power 

plant. Boiler tube failure is one of the critical problems which are facing the thermal power plant 

and influence the rate of power generation. This loss of generation increases the operating cost of 

plant and significant amount of water is being waste. Availability analysis gives the necessary 

information about various parameters of the system. 
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Table 1: Installed Capacity for Different Source of Fuel 

Fuel Used Installed Capacity (MW) % of Total 

Total Thermal 2,20,456 66.8 % 

Coal 1,94,433 58.9 % 

Gas 25,185 7.6 % 

Oil 838 0.3 % 

Hydro 44,614 13.5 % 

Nuclear 6,780 2.1 % 

Renewable Energy Sources 58,303 17.7 % 

Total 3,30,354 

II. Literature Review

 From last decades, Complexity in the industries is increasing day by day, so many researchers 

using Markov Method for the performance evaluation of complex system in process industry.  

Tsarouhas [1] computed the parameters on which the reliability of the machine of the ice cream 

plant is dependent. Dai et al. [2] presented as a model for a system which is centralized 

heterogeneously widely used in distributed system design. With the help of this model the 

reliability of the distributed service is find out to provide a best service in a distributed 

environment. Gupta et al [3] studied the critical components on which the reliability of the plant is 

mainly dependent and on the basis of these components, a Decision Support system for for 

minimizing the failure rate of the industry has been decided. Gupta [4] discussed the DSS and 

performance modelling for a subsystem of feed water in a system of thermal power plant by using 

performance Modelling and analysis.  With the help of a transition diagram, differential equations 

are generated and then study state probabilities are applied to find out the performance level for 

the combination of different failure and repair rate of all the sub-system. Using Markov process 

and probability theory, Gupta [5, 8] found the availability and reliability of a system of a thermal 

power plant. The author found that the reliability or availability decreases with increasing failure 

rate while the availability improves with increasing the repair rate for different  sub-systems. On 

the basis of this, author made a maintenance policy for all the subsystems of a thermal power 

plant.  To evaluate the reliability parameter, Gupta [6] expressed the mathematical formulation 

and expression for mission reliability and availability of a complex polymer powder production 

system with more realistic and practical assumption. Swiderski et al. [7] discussed the models of 

semi-Markov and Markov as best conventional tools to evaluate the availability and reliability of 

each subsystem of the full system. Kumar [9] developed a mathematical model based on the 

Markov birth-death process and developed differential equations based on probabilistic approach 

and solved these equations recursively. Khanduja et al. [10-11] developed a system for 

performance evaluation with the help of mathematical formulation and this performance 

evaluation deals with quantitative analysis of all critical factors which affects the maintenance 

decision support system of a paper plant. Lai et al. [12] designed a Markov based model and 

derived the equations to obtain the steady-state availability by considering both software and 

hardware failures. Kumar et al. [13-15] studied the behavior of a thermal power plant to improve 

the performance by minimizing the failure rate so that all the systems in thermal power plant can 

be function effectively. Sabouhi [16] proposed reliability oriented analysis to drive the 
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mathematical expression for the analysis of availability of the critical component of the plant so 

that an effective maintenance plan can be scheduled. Hassan et al. [17] purposed a stochastic 

model for liquefied natural gas plant using Markov analysis. Parkash and Tiwari [18-19] suggested 

a approach which can helps both engineers and managers to enhance the performability of the 

system by utilizing the best combination of failure and repair rates. 

III. Availability Analysis of Waste Gases System of a Thermal Power Plant

The flow diagram of thermal power plant consisting of waste gases system (refer figure 1) shows 

that flue or waste gases from furnace flow upward and this waste heat is utilized in superheater, 

economizer and air preheater to raise the temperature of some extent of steam, feed water and air. 

Figure 1: Flow Diagram of Waste Gases Heating System 

To find the availability, this system is divided further in four different subsystems. 

Subsystem A: it consists of furnace, superheater, economizer and air preheater andarranged in 

series to establish a single subsystem. 

Subsystem B: It consists of two electrostatic precipitator (ESP) which makes a single subsystem. 

Subsystem C: Two forced draught fans working in parallel consists a subsystem. 

Subsystem D: Three induced draught fans (ID Fan) arranged in parallel, creating one subsystem. 

The table 2 shows some notation which are used to construct the transition diagram as shown in 

figure 2. 
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Table 2: Notation Used 

Full capacity States (without standby) A2,A4,A5,A6 

One unit of subsystem A1andA3 are in failed state and 

the system is working in full capacity with stand by unit.

A1
⃰and A3

⃰ 

Failed states a1,a2,a3,a4,a5,a6 

Reduced capacity states A4 

Failure rates αi
,  i=1to6

Repair rates βi,  i=1to6 

System Working at Full Capacity 

System Working at Reduced Capacity 

System in Failed State 

I. Performance Modelling of Waste Gases System

The mathematical equations are derived using Chapman–Kolmogorov equation with the help of 

transition diagram.  
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Figure 2: Transition Diagram of Waste Gases Heating System 

IV. Steady State Availability of Waste Gases System

By putting derivatives = 0 as t→ in equations 1 to 7 and solved by recursive method, the 

following values obtained of all 23 states probabilities (P0 to P22) in terms of full working state 

probability i.e. P0. 

0121 PCP = 0132 PCP = 0143 PCP = 0114 PCP =
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Table 3 shows the variation of system availability with different possible combination of failure 

and repair rates for waste gases heating system.  System availability decreases (0.9402 - 0.7985) 

appreciably by 14.2 % with increasing the failure rate from 0.005 (once in 200 hrs) to 0.040 (once in 

25 hrs). Similarly other values show the decreasing trend of availability. Correspondingly, repair 

rate also effect the value of availability, as repair rate increases from 0.10 (once in 10 hrs) to 0.50 

RT&A, No 3 (79) 
Volume 19, September 2024

722



Pardeep Kumar, Vipin Kumar Sharma, Dinesh Kumar 

AVAILABILITY ANALYSIS FOR IDENTIFICATION OF CRITICAL 

FACTOR OF A THERMAL POWER PLANT  

(once in 2 hrs), the system availability increases (0.9784-0.9402) drastically by 3.82 %. 

Table 3: Availability Matrix for Waste Gases Heating System 

λ1 

↓ 

β1 

→ 
0.1 0.2 0.3 0.4 0.5 

Constant 

values 

0.005 0.9402 0.9596 0.9676 0.9712 0.9784 λ2 = 0.010, 

λ3 = 0.0033, 

λ4 = 0.005, 

β2 = 0.20, 

β3 = 0.25, 

 β4 = 0.20 

0.0066 0.9298 0.9424 0.9639 0.9701 0.9731 

0.100 0.9192 0.9322 0.9412 0.9565 0.9698 

0.020 0.9085 0.9408 0.9533 0.9599 0.9653 

0.040 0.7985 0.9164 0.9398 0.9492 0.9619 

This table also shows that the failure rate influences the availability of the system. System 

availability can be improved by decreasing the failure rate. Maintenance data shows that boiler 

tube failure is one of the most critical reasons for low availability of waste gases heating system.  

V. Results

The performance evaluation of waste gases heating system has been done with the help of 

simulation modeling. Table 3 showed the variation in the system performance with the variation in 

failure and repair rates of its different components. The various availability levels (Av.) for 

different combinations of failure and repair rates were also calculated and found that availability 

of system decreases appreciably as failure rate increases. To improve the availability of the system 

it becomes essential that reduces the significant causes of failure. 
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Abstract 

In the field of information theory, different uncertainty measures have been introduced by various 

researchers. These measures are widely used in reliability and survival studies. In this article, we 

introduce two new weighted uncertainty measures which are known as weighted R-Norm entropy 

(WRNE) and weighted R-Norm residual entropy (WRNRE). WRNE and WRNRE are “length-

biased” shift-dependent uncertainty measures in which higher weight is assigned to large values of 

the observed random variable. Several important properties of these measures are studied. Some 

significant characterization results and the relationships of WRNRE with other reliability measures 

are presented. We also show that the survival function is uniquely determined by the WRNRE. 

Finally, based on a real life data set of bladder cancer patients, we illustrate the importance of 

WRNE and WRNRE. 

Keywords: Weighted entropy, weighted R-Norm entropy, hazard rate function, 

mean residual life function and characterization results. 

1. Introduction

A very important concept that has attracted the attention of researchers in the field of 

information theory is the measurement of uncertainty of probability distributions. The 

fundamental uncertainty measure (UM) which is well known by means of applications not only in 

the field of information theory but also in different other research fields is the Shannon’s entropy 

[1]. Let 𝑌 be an absolutely continuous non-negative r.v with p.d.f 𝑓(𝑦), then the Shannon’s entropy 

(SE) is defined as 

𝐻𝑌(𝑓) = −∫ 𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦 = −𝐸[log 𝑓(𝑦)]
∞

0
 .   (1) 

Throughout this article, the notations r.v and p.d.f represent an absolutely continuous non-

negative random variable and a probability density function respectively. 

For a lifetime component that has survived up to an age 𝑡0, the SE is not a useful technique for 

measuring the uncertainty about its residual life. So, the concept of residual entropy was proposed 

by Ebrahimi [2] and is defined as 

𝐻𝑌(𝑓; 𝑡0) = −∫
𝑓(𝑦)

𝐹(𝑡0)
log

𝑓(𝑦)

𝐹(𝑡0)
𝑑𝑦

∞

𝑡0
,  (2) 

where, 𝐹̅(𝑡0) = 1 − 𝐹(𝑡0) is the survival function (s.f) of the r.v 𝑌. 
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The above UM’s have been widely used in different research fields, but these UM’s consider 

that a lifetime system or component serves the same in its whole life from the aspects of some 

given qualitative characteristic set by the experimenter. Due to this drawback, these UM’s provide 

the same importance to the occurrence of every event of a probabilistic experiment and therefore 

these measures take the designation of shift-independent UM’s. But in our real life, there exist 

several situations where the shift-dependent UM’s are desirable. So, with the contribution of Belis 

and Guiasu [3], the first shift-dependent UM, simply known as weighted entropy was introduced 

and is defined as 

𝐻𝑌
𝑤(𝑓) = −∫ 𝑤(𝑦)𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦

∞

0

 = −∫ 𝑦𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦
∞

0
 ,     (3) 

where, the factor 𝑦 in the integrand of (3) represents the weight which linearly emphasizes the 

occurrence of the event {𝑌 = 𝑦} and therefore yields a shift-dependent UM. 

Similarly, Di Crescenzo and Longobardi [4] have extended the UM (3) to its dynamic 

(residual) version and therefore proposed the concept of weighted residual entropy as follows 

𝐻𝑌
𝑤(𝑓; 𝑡0) = −∫ 𝑦

𝑓(𝑦)

𝐹(𝑡0)
log

𝑓(𝑦)

𝐹(𝑡0)
𝑑𝑦

∞

𝑡0
.  (4) 

It is clear from the available literature that the classical SE has been generalized in different 

ways by introducing some additional parameters to it. A well-known generalization that plays a 

very important role in different sciences is the concept of R-Norm entropy introduced by Boekee 

and Lubee [5]. For more work and applications of R-Norm entropy, one can see Kumar and 

Choudhary [6] and Kumar et al. [7]. The continuous version of R-Norm entropy (RNE) was given 

by Nanda and Das [8] and is given by 

𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − {∫ 𝑓𝑅∞

0
(𝑦)𝑑𝑦}

1

𝑅] , 𝑅 > 0(≠ 1).  (5) 

Similarly, analogous to (2), Nanda and Das [8] have extended the R-Norm entropy to its 

dynamic (residual) version, known as R-Norm residual entropy for the residual lifetime 𝑌 − 𝑡0|𝑌 >

𝑡0 and is defined as 

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 − {∫ (

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
}

1

𝑅
] , 𝑅 > 0(≠ 1).        (6) 

From the recent literature, it is seen that the measurement of uncertainty (entropy) of 

probability distributions is widely being used in the research work of various researchers with 

respect to different sciences. After the existence of fundamental UM’s, the various researchers have 

introduced their weighted versions (1.e weighted entropies) for measuring the uncertainty of such 

real life problems which are best fitted by weighted probability distributions. The researchers who 

have been attracted in the recent past by the concept of weighted entropy and therefore introduced 

some new flexible  weighted UM’s are: Bhat et al. [9], Bhat and Baig [10], Bhat et al. [11],  Khammar 

and Jahanshahi [12], Kayal [13], Mirali and Baratpour [14], Nair et al. [15], Rajesh et al. [16], 

Nourbakhsh and Yari [17], Misagh et al. [18], Misagh and Yari [19] etc. Motivated with this 

research literature and the usefulness of R-Norm entropy and R-Norm residual entropy, here in 

this article, we introduce the concept of weighted R-Norm entropy and weighted R-Norm residual 

entropy. The article is continued as follows: In section 2, we consider the weighted R-Norm 

entropy (WRNE) in the form of its definition and several important properties. The section 3 

studies the dynamic (residual) version of WRNE, known as weighted R-Norm residual entropy 
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(WRNRE) and also presents various significant characterization results of this UM. The various 

important properties of WRNRE and also its relationship with other well-known reliability 

measures are focused in section 4. The section 5 presents an application of the WRNE and WRNRE 

by using a real life data. Finally, in the last section, some concluding remarks are illustrated. 

2. Weighted R-Norm Entropy (WRNE)

Analogous to (3), here in this section, we generate a new weighted UM which is actually the 

weighted version of R-Norm entropy (5) and is known as weighted R-Norm entropy (WRNE). 

Definition 2.1 The WRNE for a r.v 𝑌 having p.d.f 𝑓(𝑦) denoted by 𝐻(𝑌,𝑅)
𝑤 (𝑓) is defined as

𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (∫ (𝑦𝑓(𝑦))

𝑅
𝑑𝑦

∞

0
)

1

𝑅
] , 𝑅 > 0(≠ 1),   (7) 

where, the factor 𝑦 in the integrand is defined in (3). 

 The following example makes it clear that two different probability distributions can have the 

same RNE’s, but unequal WRNE’s. 

Example 2.1. Let 𝑌 and 𝑍 be two r.v’s with pdf’s 

     𝑓𝑌(𝑡) = {
𝑡

2
, 0 < 𝑡 < 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑔𝑍(𝑡) = {

1 −
𝑡

2
, 0 < 𝑡 < 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

By using (5), we obtain that 

𝐻(𝑌,𝑅)(𝑓) = 𝐻(𝑍,𝑅)(𝑔) =
𝑅

𝑅−1
[1 − (

2

𝑅+1
)

1

𝑅
]. 

But, the WRNE’s of 𝑌 and 𝑍 are not identical as follow 

𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (

2𝑅

2𝑅+1
)

1

𝑅
] and  𝐻(𝑍,𝑅)

𝑤 (𝑔) =
𝑅

𝑅−1
[1 − {2𝑅+1𝐵(𝑅 + 1, 𝑅 + 1)}

1

𝑅], 

where, 

𝐵(𝛼, 𝛽) = ∫ 𝑢𝛼−1(1 − 𝑢)𝛽−1𝑑𝑢 =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
, 𝛼, 𝛽 > 0

1

0
. 

Hence, even though 𝐻(𝑌,𝑅)(𝑓) = 𝐻(𝑍,𝑅)(𝑔), but 𝐻(𝑌,𝑅)
𝑤 (𝑓) ≠ 𝐻(𝑍,𝑅)

𝑤 (𝑔), ∀ 𝑅 > 0(≠ 1).

Lemma 2.1. If 𝑈 = 𝑐𝑌, with 𝑐 > 0, then 

𝐻(𝑈,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
(1 − 𝑐

1

𝑅) + 𝑐
1

𝑅𝐻(𝑌,𝑅)
𝑤 (𝑓).

Example 2.2. Let 𝑓(𝑦) be the p.d.f of a r.v 𝑌 distributed as: 

(a) Uniformly over [𝑚, 𝑛] with 𝑓(𝑦) =
1

𝑛−𝑚
, 𝑚 < 𝑦 < 𝑛, then 

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − (𝑛 − 𝑚)

1−𝑅

𝑅 ] and 𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (

𝑛𝑅+1−𝑚𝑅+1

(𝑛−𝑚)𝑅
)

1

𝑅
]. 

(b) Exponentially with 𝑓(𝑦) = 𝜂𝑒−𝜂𝑦 , 𝑦 > 0, 𝜂 > 0, then
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 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − (

𝜂𝑅−1

𝑅
)

1

𝑅
] and 𝐻(𝑌,𝑅)

𝑤 (𝑓) =
𝑅

𝑅−1
[1 − (

Γ(𝑅+1)

𝜂𝑅𝑅+1)

1

𝑅
]. 

(c) Gamma with 𝑓(𝑦) =
1

Γ(𝜂)
𝑒−𝑦𝑦𝜂−1, 0 < 𝑦 < ∞, 𝜂 > 0, then 

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 −

1

(Γ(𝜂))
𝑅 (

Γ((𝜂−1)𝑅+1)

𝑅(𝜂−1)𝑅+1 )

1

𝑅
] and 𝐻(𝑌,𝑅)

𝑤 (𝑓) =
𝑅

𝑅−1
[1 −

1

(Γ(𝜂))
𝑅 (

Γ(𝜂𝑅+1)

𝑅𝜂𝑅+1 )

1

𝑅
]. 

(d) Weibull with 𝑓(𝑦) = 𝜂𝑦𝜂−1𝑒−𝑦𝜂
, 𝑦 > 0, 𝜂 > 0, then

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1

[
 
1 − {

𝜂𝑅−1Γ((1−
1

𝜂
)(𝑅−1)+1)

𝑅
(𝑅−1)(1−

1
𝜂)+1

}

1

𝑅

]

 

and 𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1
[1 − (

𝜂𝑅−1Γ(𝑅+
1

𝜂
)

𝑅
𝑅+

1
𝜂

)

1

𝑅

] . 

(e) Rayleigh with 𝑓(𝑦) = 𝜂𝑦𝑒−
𝜂

2
𝑦2

, 𝑦 ≥ 0, 𝜂 > 0, then 

 𝐻(𝑌,𝑅)(𝑓) =
𝑅

𝑅−1
[1 − (

(2𝜂)
𝑅−1

2 Γ(
𝑅+1

2
)

(√𝑅)
𝑅+1 )

1

𝑅

] and 𝐻(𝑌,𝑅)
𝑤 (𝑓) =

𝑅

𝑅−1

[

1 − {
Γ(𝑅+

1

2
)(

22𝑅−1

𝜂
)

1
2

𝑅
𝑅+

1
2

}

1

𝑅

]

 

. 

Theorem 2.1. Let 𝑌 be a r.v having SE 𝐻𝑌(𝑓), then 

𝐻(𝑌,𝑅)
𝑤 (𝑓) ≤

𝑅

𝑅−1
[1 − 𝑒𝑥𝑝 (

(1−𝑅)

𝑅
𝐻𝑌(𝑓) + 𝐸(log 𝑌))]. 

Proof. By applying the log-sum inequality, we have 

∫ 𝑓(𝑦) log
𝑓(𝑦)

(𝑦𝑓(𝑦))
𝑅 𝑑𝑦 ≥ ∫ 𝑓(𝑦)𝑑𝑦 log

∫ 𝑓(𝑦)𝑑𝑦
∞
0

∫ (𝑦𝑓(𝑦))
𝑅
𝑑𝑦

∞
0

∞

0

∞

0
 

= − log∫ (𝑦𝑓(𝑦))
𝑅
𝑑𝑦

∞

0
.

Due to (7) and after simple simplification, we obtain the desired result. 

3. Weighted R-Norm Residual Entropy (WRNRE)

This section presents the weighted R-Norm entropy for residual lifetimes by utilizing the 

equation (7) which is the weighted version of (6). Some important characterization results of this 

UM are also discussed. 

Definition 3.1 For a r.v 𝑌 having p.d.f 𝑓(𝑦) and s.f 𝐹̅(𝑡0), the WRNRE of order 𝑅 at time 𝑡0 > 0 is 

defined as 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {∫ (𝑦

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
}

1

𝑅
] , 𝑅 > 0(≠ 1). (8) 

Here, we study the expressions of WRNRE of some well-known lifetime distributions. 

Example 3.1. If a r.v 𝑌 has the p.d.f 𝑓(𝑦) and s.f 𝐹̅(𝑡0) as: 

(a)  𝑓(𝑦) =
1

𝑑−𝑐
, 𝑐 < 𝑦 < 𝑑 and 𝐹̅(𝑡0) =

𝑑−𝑡0

𝑑−𝑐
, then
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𝐻(𝑌,𝑅)(𝑦; 𝑡0) =
𝑅

𝑅−1
[1 − (𝑑 − 𝑡0)

1−𝑅

𝑅 ]    and    𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {

𝑑𝑅+1−𝑡0
𝑅+1

(𝑑−𝑡0)𝑅(𝑅+1)
}

1

𝑅
]. 

(b) 𝑓(𝑦) = 𝜂𝑒−𝜂𝑦 , 𝑦 > 0, 𝜂 > 0 and 𝐹̅(𝑡0) = 𝑒−𝜂𝑦, then

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
(1 −

𝜂
𝑅−1
𝑅

𝑅
)    and    𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) =
𝑅

𝑅−1
[1 − (

Γ(𝑅+1,𝜂𝑅𝑡0)

𝜂𝑒−𝜂𝑅𝑡0𝑅𝑅+1)

1

𝑅
]. 

(c) 𝑓(𝑦) =
𝜂𝜇

Γ(𝜇)
𝑒−𝜂𝑦𝑦𝜇−1, 0 < 𝑦 < ∞, 𝜂, 𝜇 > 0 and 𝐹̅(𝑡0) =

Γ(𝜇,𝜂𝑡0)

Γ(𝜇)
, then 

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 −

𝜂𝜇

Γ(𝜇,𝜂𝑡0)
{
Γ(𝑅(𝜇−1)+1,𝜂𝑅𝑡0)

(ηR)R(μ−1)+1 }

1

𝑅
] 

and 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 −

𝜂

Γ(𝜇,𝜂𝑡0)
{
Γ(𝑅𝜇+1,𝜂𝑅𝑡0)

(𝜂𝑅)𝑅𝜇+1 }

1

𝑅
]. 

(d) 𝑓(𝑦) = 𝜂𝑦𝜂−1𝑒−𝑦𝜂
, 𝑦 > 0, 𝜂 > 0 and  𝐹̅(𝑡0) = 𝑒−𝑦𝜂

, then

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 −

𝜂
𝑅−1
𝑅 𝑒𝑡0

𝜂

𝑅
𝜂(𝑅+1)−𝑅

𝜂𝑅

{Γ (
𝑅(𝜂−1)+1

𝜂
, 𝑅𝑡0

𝜂
)}

1

𝑅
] 

and 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {

𝜂𝑅−1Γ(𝑅+
1

𝜂
.𝑅𝑡0

𝜂
)

𝑅
𝜂𝑅+1

𝜂 𝑒−𝑅𝑡0
𝜂

}

1

𝑅

]. 

(e) 𝑓(𝑦) = 𝜂𝑦𝑒−
𝜂

2
𝑦2

, 𝑦 ≥ 0, 𝜂 > 0 and 𝐹̅(𝑡0) = 𝑒−
𝜂

2
𝑦2

, then 

𝐻(𝑌,𝑅)(𝑓; 𝑡0) =
𝑅

𝑅−1
[1 − 𝑒

𝜂

2
𝑡0
2

{(
(2𝜂)𝑅−1

𝑅𝑅+1 )

1

2
Γ (

𝑅+1

2
,
𝜂𝑅

2
𝑡0
2)}

1

𝑅

] 

and 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − 𝑒

𝜂

2
𝑡0
2

{Γ (𝑅 +
1

2
,
𝜂𝑅

2
𝑡0
2) (

22𝑅−1

𝜂𝑅2𝑅+1)

1

2𝑅
}

1

𝑅

]. 

where, Γ(𝛽, 𝛼𝑧) = 𝛼𝛽 ∫ 𝑒−𝛼𝑢𝑢𝛽−1𝑑𝑢, 𝛼, 𝛽 > 0
∞

𝑧
 is an upper incomplete gamma function. 

Theorem 3.1 Let 𝑌 be a r.v having WRNRE and RNRE 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) and 𝐻(𝑌,𝑅)(𝑓; 𝑡0) respectively.

Then for all 𝑡0 > 0, wehave 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {𝑡0

𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)(𝑓; 𝑡0))

𝑅

+∫ 𝑧𝑅−1 (
𝐹(𝑧)

𝐹(𝑡0)
)

𝑅∞

𝑧=𝑡0
(𝑅 − (𝑅 − 1)𝐻(𝑌,𝑅)(𝑓; 𝑧)) 𝑑𝑧}

1

𝑅

]. 

Proof. 
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∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 = ∫ (∫ 𝑅𝑧𝑅−1𝑑𝑧
𝑦

0
) (

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅∞

𝑡0

∞

𝑡0
𝑑𝑦 

 = 𝑅 ∫ [∫ 𝑧𝑅−1𝑑𝑧 + ∫ 𝑧𝑅−1𝑑𝑧
𝑦

𝑡0

𝑡0
0

] (
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
 

= 𝑡0
𝑅 ∫ (

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 + 𝑅 ∫ 𝑧𝑅−1 (∫ (
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑦=𝑧
)

∞

𝑧=𝑡0

∞

𝑡0
𝑑𝑧.  (9) 

From (6), we have 

∫ (
𝑓(𝑦)

𝐹̅(𝑡0)
)

𝑅∞

𝑡0
𝑑𝑦 = (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)(𝑓; 𝑡0))

𝑅

.  (10) 

and 

∫ 𝑓𝑅(𝑦)𝑑𝑦 = 𝐹̅𝑅(𝑡0)
∞

𝑡0
(1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)(𝑓; 𝑡0))

𝑅

.  (11) 

Using (9), (10) and (11) in (8), the required result will be obtained. 

The following theorem shows that 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) determines the s.f 𝐹̅(𝑡0) uniquely.

Theorem 3.2. Let 𝑌 be a r.v having p.d.f 𝑓(𝑦), s.f 𝐹̅(𝑡0) and WRNRE 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) < ∞,∀ 𝑅 > 0(≠ 1)

respectively. If 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) is increasing in 𝑡0, then 𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) uniquely determines the

corresponding s.f 𝐹̅(𝑡0). 

Proof. Rewriting (8) as 

1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = (∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦
∞

𝑡0
)

1

𝑅
.  (12) 

Differentiating (12) both sides w.r.t 𝑡0, we have 

(1−𝑅)

𝑅

𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) =
1

𝑅
(∫ (𝑦

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅∞

𝑡0
𝑑𝑦)

1−𝑅

𝑅
[𝑅ℎ𝐹(𝑡0) ∫ (𝑦

𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 − 𝑡0
𝑅ℎ𝐹

𝑅(𝑡0)
∞

𝑡0
],        (13) 

where, ℎ𝐹(𝑡0) =
𝑓(𝑡0)

𝐹(𝑡0)
 represents the hazard rate of 𝑌. Using (12), we can rewrite (13) as 

𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

ℎ𝐹
𝑅(𝑡0) − {𝑅 − (𝑅 − 1)𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}ℎ𝐹(𝑡0) − (𝑅 − 1)
𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 0 .

          (14) 

For fixed 𝑡0 > 0, ℎ𝐹(𝑡0)  ia a solution of 𝜓(𝑥) = 0, where 

𝜓(𝑥) = 𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

𝑥𝑅 − 𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)) 𝑥 − (𝑅 − 1)
𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 0 .

Differentiating 𝜓(𝑥) w.r.t 𝑥, we have 

𝜕

𝜕𝑥
𝜓(𝑥) = 𝑅𝑡0

𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

𝑥𝑅−1 − 𝑅 (1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)) .

Also, 

𝜕2

𝜕𝑥2 𝜓(𝑥) = 𝑅(𝑅 − 1)𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

𝑥𝑅−2 . 

Now, 
𝜕

𝜕𝑋
𝜓(𝑥) = 0 gives 
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𝑥 = (
𝑅−(𝑅−1)𝐻(𝑌,𝑅)

𝑤 (𝑓;𝑡0)

𝑅𝑡0
)

𝑅

𝑅−1

= 𝑥0  (say). 

Case I. Let 𝑅 > 1, then 
𝜕2

𝜕𝑥2 𝜓(𝑥0) > 0. Thus, 𝜓(𝑥) attains minimum at  𝑥0. Also, 𝜓(0) < 0 and 𝜓(∞) 

= ∞. Further, we can also observe it that 𝜓(𝑥) first decreases for 0 < 𝑥 < 𝑥0 and then increases for 

𝑥 > 𝑥0. So, 𝑥 = ℎ𝐹(𝑡0) is the unique solution to 𝜓(𝑥) = 0. 

Case II. Let 𝑅 < 1, then 
𝜕2

𝜕𝑥2 𝜓(𝑥0) < 0. Thus, 𝜓(𝑥) attains maximum at 𝑥0. Also, 𝜓(0) > 0 and 

𝜓(∞) = −∞. Further, we can easily see it that 𝜓(𝑥) first increases for 0 < 𝑥 < 𝑥0 and then decreases 

for 𝑥 > 𝑥0. So, 𝑥 = ℎ𝐹(𝑡0) is the unique solution to 𝜓(𝑥) = 0. By combining both the cases, it is 

concluded that 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) uniquely determines ℎ𝐹(𝑡0),  which in turns determines 𝐹̅(𝑡0).

4. Properties and Inequalities of 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0)

In this section, we study some interesting properties and inequalities of WRNRE. 

Definition 4.1. A r.v 𝑌 is said to be smaller than in WRNRE of order 𝑅 (denoted by𝑌 𝑊𝑅𝑁𝑅𝐸
≤

𝑍), if 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≤ 𝐻(𝑍,𝑅)

𝑤 (𝑓; 𝑡0), 𝑡0 > 0.

Definition 4.2. A r.v 𝑌 or a s.f 𝐹̅ has increasing (decreasing) R-Norm entropy for residual life 

IWRNERL (DWRNERL), if 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) is increasing (decreasing) in 𝑡0, 𝑡0 > 0.

Lemma 4.1. If 𝑍 = 𝜆𝑌, with 𝜆 > 0 is a constant, then 

𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−−1
(1 − 𝜆

1

𝑅) + 𝜆
1

𝑅𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝜆
). 

Proof.  

𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {∫ (𝑧

𝑓(𝑧)

𝑃𝑟(𝑍>𝑡0)
)

𝑅

𝑑𝑧
∞

𝑡0
}

1

𝑅
], 

where, 𝑓(𝑧) is the p.d.f of 𝑍. 

Setting 𝑍 = 𝜆𝑌, we obtain 

𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) =

𝑅

𝑅−1
[1 − {∫ 𝜆 (𝑦

𝑓(𝑦)

𝐹(
𝑡0
𝜆

)
)

𝑅

𝑑𝑦
∞
𝑡0
𝜆

}

1

𝑅

]. 

By using (8), we obtain the required result. 

Theorem 4.1. For two r.v’s 𝑌 and 𝑍, let us define 𝑋1 = 𝛼1𝑌 and 𝑋2 = 𝛼2𝑍, with 𝛼1, 𝛼2 > 0. Let 

𝑌 𝑊𝑅𝑁𝑅𝐸
≤

𝑍 and 𝛼1 ≤ 𝛼2. Then 𝑋1
𝑊𝑅𝑁𝑅𝐸

≤
𝑋2, if 𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) or 𝐻(𝑍,𝑅)
𝑤 (𝑓; 𝑡0) is decreasing in 𝑡0 > 0.

Poof.  Suppose 𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) is decreasing in 𝑡0.

Now, 𝑌 𝑊𝑅𝑁𝑅𝐸
≤

𝑍 implies 

𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝛼2
) ≤ 𝐻(𝑍,𝑅)

𝑤 (𝑓;
𝑡0

𝛼2
) . (15)
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Further, since
𝑡0

𝛼1
≥

𝑡0

𝛼2
, we have 

𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝛼1
) ≤ 𝐻(𝑌,𝑅)

𝑤 (𝑓;
𝑡0

𝛼2
) .  (16) 

From (15) and (16), we get 

𝐻(𝑌,𝑅)
𝑤 (𝑓;

𝑡0

𝛼1
) ≤ 𝐻(𝑍,𝑅)

𝑤 (𝑓;
𝑡0

𝛼2
).     (17) 

Using Lemma 4.1 in (17), we obtain 𝑋1
𝑊𝑅𝑁𝑅𝐸

≤
𝑋2. 

Theorem 4.2. Let 𝑌 be a r.v with support (0,𝑚],𝑚 > 0, p.d.f 𝑓(𝑦) and s.f 𝐹̅(𝑡0), 𝑡0 > 0, then for 𝑅 >

0(≠ 1), the following inequality holds 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥

𝑅

𝑅−1
[1 − 𝑒𝑥𝑝 {

∫ (𝑦
𝑓(𝑦)

𝐹̅(𝑡0)
)
𝑅

log(𝑦
𝑓(𝑦)

𝐹̅(𝑡0)
)
𝑅
𝑑𝑦

𝑚
𝑡0

𝑅 ∫ (𝑦
𝑓(𝑦)

𝐹̅(𝑡0)
)
𝑅
𝑑𝑦

𝑚
𝑡0

+ log(𝑚 − 𝑡0)}].

Proof.  Using log-sum inequality and (8), we have 

∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

log (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 ≥ ∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅

𝑑𝑦 log
∫ (𝑦𝑓(𝑦))

𝑅
𝑑𝑦

𝑚
𝑡0

∫ (𝐹(𝑡0))
𝑅
𝑑𝑦

𝑚
𝑡0

𝑚

𝑡0

𝑚

𝑡0
 

= ∫ (𝑦
𝑓(𝑦)

𝐹(𝑡0)
)

𝑅𝑚

𝑡0
𝑑𝑦 [log {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
𝑅

− log(𝑚 − 𝑡0)] .

After simple calculations, we can easily obtain the required result. 

Theorem 4.3. If 𝑌 is IWRNERL (DWRNERL) and 𝑅 > 0(≠ 1), then 

ℎ𝐹(𝑡0) ≤ (≥) [
𝑅

𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
𝑅

]

1

𝑅−1
. 

Proof. From (14), we have 

(𝑅 − 1)
𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 𝑡0
𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0))
1−𝑅

ℎ𝐹
𝑅(𝑡0) − 𝑅 (1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)) ℎ𝐹(𝑡0).

Since 𝑌 is IWRNERL (DWRNERL), therefore 

ℎ𝐹(𝑡0) [𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
1−𝑅

ℎ𝐹
𝑅−1(𝑡0) − 𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}] ≥ (≤)0 .

which leads to 

ℎ𝐹(𝑡0) ≤ (≥) [
𝑅

𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
𝑅

]

1

𝑅−1
. 

Theorem 4.4. If 𝐹̅ is IWRNERL (DWRNERL), then 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥ (≤)

𝑅

𝑅−1

[

1 − 𝑡0 {
(1+

𝜕

𝜕𝑡0
𝛿𝐹(𝑡0))

𝑅−1

𝛿𝐹(𝑡0)
}

1

𝑅

]

 

 , 

where 𝛿𝐹(𝑡0) is the mean residual life function of 𝑌. 

RT&A, No 3 (79) 
Volume 19, September 2024

732



Bilal and Baig 
WEIGHTED R-NORM ENTROPY FOR LIFETIME DISTRIBUTIONS… 

Proof. From (14), we have 

𝜕

𝜕𝑡0
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) =
1

𝑅−1
[𝑡0

𝑅 {1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
1−𝑅

ℎ𝐹
𝑅(𝑡0) − 𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)} ℎ𝐹
𝑅(𝑡0)].

Since, 𝐹̅ is IWRNERL and 𝑅 > 0(≠ 1), therefore, we have 

𝑡0
𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}
1−𝑅

ℎ𝐹
𝑅(𝑡0) − 𝑅 {1 −

(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)} ℎ𝐹(𝑡0).

which gives 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥

𝑅

(𝑅−1)
[1 − 𝑡0 (

ℎ𝐹
𝑅−1(𝑡0)

𝑅
)

1

𝑅
]. 

Using ℎ𝐹(𝑡0) =
1+

𝜕

𝜕𝑡0
𝛿𝐹(𝑡0)

𝛿𝐹(𝑡0)
, we get 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≥

𝑅

𝑅−1
[1 − 𝑡0 {

1

𝑅
(

1+
𝜕

𝜕𝑡0
𝛿𝐹(𝑡0)

𝜕

𝜕𝑡0
𝛿𝐹(𝑡0)

)

𝑅−1

}

1

𝑅

]. 

The proof of DWRNERL is similar. 

Theorem 4.5.  Let 𝑌 be the lifetime of a system with p.d.f 𝑓(𝑦) and s.f 𝐹̅(𝑡𝑜), 𝑡0 > 0, then for 𝑅 >

0(≠ 1), we have 

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) ≤

𝑅

𝑅−1
[1 − 𝑒𝑥𝑝 {𝑅 ∫

𝑓(𝑦)

𝐹(𝑡0)
log 𝑦𝑑𝑦 + (1 − 𝑅)𝐻𝑌(𝑓; 𝑡0)

∞

𝑡0
}] .        (18) 

Proof. From log-sum inequality, we have 

∫ 𝑓(𝑦) log
𝑓(𝑦)

(𝑦
𝑓(𝑦)

𝐹̅(𝑡0)
)
𝑅

∞

𝑡0
𝑑𝑦 ≥ ∫ 𝑓(𝑦)𝑑𝑦 log

∫ 𝑓(𝑦)𝑑𝑦
∞
𝑡0

∫ (𝑦
𝑓(𝑦)

𝐹̅(𝑡0)
)
𝑅
𝑑𝑦

∞
𝑡0

∞

𝑡0

= 𝐹̅(𝑡0) [log 𝐹̅(𝑡0) − 𝑅 log {1 −
(𝑅−1)

𝑅
𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0)}]. (19) 

where (19) is obtained from (8). 

The L.H.S of (19) leads to 

(1 − 𝑅) ∫ 𝑓(𝑦) log 𝑓(𝑦)𝑑𝑦 − 𝑅 ∫ 𝑓(𝑦) log 𝑦𝑑𝑦 + 𝑅𝐹̅(𝑡0) log 𝐹̅(𝑡0)
∞

𝑡0

∞

𝑡0
.  (20) 

Using (20) in (19), we obtain (18). 

5. Application

In this section, we demonstrate a real life data set to analyze the performance of WRNE and 

WRNRE in practice. The data set represents the remission times (in months) of a random sample of 

 128 bladder cancer patients given in Lee and Wang [20] and is given as follows: 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 

5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 
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9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 

34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 

2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 

6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 

8.65, 12.63, 22.69. 

According to Afaq et al. [21] this data set is best fitted by length biased Lomax distribution 

(LBLD). So, for computing the uncertainty of this data set, the simple entropy techniques are not 

appropriate. Therefore, it is necessary to apply the weighted entropy techniques rather than the 

simple entropy. For the weighted entropy, here we must consider the parameters of the Lomax 

distribution (LD) not of the LBLD. The MLE’s of the parameters of LD having p.d.f 𝑓(𝑦) =

𝛼

𝛽
(1 +

𝑦

𝛽
)

−(𝛼+1)

, 𝑦 > 0, 𝛼, 𝛽 > 0 from this data set are obtained as: 𝛼 = 8.43 (shape parameter) and 

𝛽 = 70.29 (scale parameter) respectively. Now, for 𝛼 = 8.43, 𝛽 = 70.29, 𝑅 = 2 and 𝑡0 = 5, the values 

of WRNE and WRNRE are obtained as: 𝐻(𝑌,𝑅)
𝑤 (𝑓) = 1.028 and 𝐻(𝑌,𝑅)

𝑤 (𝑓; 𝑡0) = 0.585. Similarly, for

the same values of 𝛼 and 𝛽, if we take 𝑅 = 4 and 𝑡0 = 10,  we can obtain 𝐻(𝑌,𝑅)
𝑤 (𝑓) = 1.111 and

𝐻(𝑌,𝑅)
𝑤 (𝑓; 𝑡0) = 1.015 respectively.

6. Conclusion

In this article, we considered weighted R-Norm entropy of order 𝑅 and also its dynamic 

(residual) version. These are shift-dependent uncertainty measures which assign the higher weight 

to the larger values of the observed random variable. We have also studied the various significant 

properties of these measures. Some of the important relationships of the proposed dynamic 

measure with hazard rate and mean residual life functions have been discussed. Finally, we have 

illustrated the importance of the proposed measures with the help of a real life data set. 
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Abstract

To obtain reliable estimates of population parameters, data that is sampled for estimation must accurately
represent the underlying population. Sampled data that is representative of the underlying population
depends also on the sampling technique that was used in obtaining them. This is very important since
sampling bias could lead to over or under estimation of parameters. Ranked Set Sampling is considered to
be a better alternative to the classical sampling designs in obtaining such data. Ranked Set Sampling
is designed to minimize the number of measured observations required to achieve a desired precision in
making inferences, and thus it is more economical to use for the purposes of estimation, compared to the
classical sampling designs. This is also an added advantage in cases where it is difficult to obtain data.
Many estimators have been developed recently for the estimation of finite population mean under ranked
set sampling. This paper aims to improve estimation by modifying an existing estimator using a simple
linear combination of the known population mean, square root of the known coefficient of variation, and
the known median of an auxiliary variable. The theoretical properties of the proposed estimator, such
as the bias and mean squared error were derived up to the first order of approximation, using Taylor’s
expansion. The bias, mean squared error, absolute relative bias, and the relative efficiency were used as
means of evaluation and comparison between the proposed modified estimator and its competitors. The
R software was used to aid computations. Empirical applications to real data showed that the proposed
modified estimator is superior to the competing estimators that were compared since it has least bias, the
least mean squared error, the least absolute relative bias, and the highest relative efficiency in all sample
sizes that were considered. The bias and mean squared error of the modified estimator under Ranked Set
Sampling was found to be smaller than those of the existing estimators that were compared. Hence it is
more efficient and capable of providing reliable estimates than the existing estimators that were compared
and so we recommend that it should be used in survey estimations.

Keywords: Ranked Set Sampling, Ratio Estimator, Bias, Mean Squared Error, Auxiliary Variable

1. Introduction

Over the years, researchers have been preoccupied with the development of new estimators for
finite heterogeneous population mean with the aim of reducing the associated bias and MSE
of existing estimators to the barest minimum [1, 5, 9, 16]. For reliable estimates, data that is
employed for estimation must be representative of the underlying population. Sampled data
that is representative of the underlying population depends also on the sampling method [18].
Sampling bias could lead to over or under estimation of population parameters. Consequently,
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one field of interest currently has been in the area of identifying designs that generate repre-
sentative samples for super populations. Estimation of finite population mean has been based
disproportionately on the classical sampling designs, especially simple random sampling (SRS).
However, the SRS procedure as noted by [3] is incapable of generating representative samples for
certain populations. The consequence, as noted by [10] is that, a specific sample which is not truly
representative of the underlying population can possibly be included for estimation, and that can
lead to unreliable estimates. Therefore, to improve accuracy and precision in the estimation of
finite population mean, sampling procedures which do not suffer such weaknesses as the SRS
must be considered. Among the sampling methods, the Ranked Set Sampling (RSS) technique is
a good alternative to SRS for obtaining data that are truly representative of the population under
study [2]. The goal of RSS is to collect observations that are more likely to span the full range
of values in the population and therefore produces more representative samples than SRS [10].
RSS was first introduced by [12] and was used to estimate pasture yield. RSS was introduced
for circumstances where difficulty exist in taking actual measurements for sample units. [17]
established the statistical methodology for RSS.

The procedure for obtaining a ranked set sample is briefly outlined by the following steps:

1. Randomly select a sample of size m2 from the targeted population.

2. Distribute the m2 selected units in m sets, each of size m.

3. Rank the units within each set with respect to the attribute of interest, using the judgement
of an expert or by the aid of an auxiliary variable that is correlated with the study variable.

4. Select the ith ranked unit from the ith set for actual measurement of the attribute of interest,
in the order i = 1, 2, 3, ..., m.

5. Repeat steps i to iv for r cycles if it is desired to obtain a sample of size, n = mr.

RSS is preferred when mechanisms are readily available for ranking a set of sample units, whether
by the use of an auxiliary variable, or by the use of the judgement of an expert. [7] proved that the
ranked set sample mean is an unbiased estimator for population mean, even in cases of imperfect
ranking. [10] adduced that an auxiliary variable, X could be used to rank any variable under
study, Y in cases where judgement ranking of Y is difficult. Consequently, a lot of estimators have
been developed under RSS, employing a variety of auxiliary variables for ranking.

[16] introduced the classical ratio estimator under RSS. Several other authors have since extended
the work of [16], employing a variety of auxiliary variables. [11] suggested a modified ratio
estimator for population mean under RSS utilizing the quartile deviations and the known mean
of an auxiliary variable. [4] proposed a generalized ratio estimator for population mean under
RSS using the known population mean of an auxiliary variable and some pre-assigned constants.
[13] suggested a modified ratio-cum-product estimator for finite population mean under RSS
using the known population information on the mean, the coefficients of variation and of kurtosis
of an auxiliary variable under RSS. [15] proposed a ratio-type estimator for population mean
under RSS, using the known population mean and quartiles of an auxiliary variable. [8] proposed
a ratio-type estimator under RSS based on known population mean and population deciles of an
auxiliary variable.[9] proposed a generalised ratio-type estimator based on RSS, employing known
parameters of the population such as the coefficients of variation, kurtosis and skewness as well
as the mean of the auxiliary variable. [14] suggested a ratio type estimator of population mean
based on RSS employing the known coefficient of variation, known median, as well as the known
population mean of the auxiliary variable. These estimators were more efficient and superior
to their competitors. Not withstanding, the existing estimators wield significant biases and are
fraught with large mean squared errors. Therefore, this study sought to improve estimation by
modifying an existing estimator of finite population mean that was based on RSS.
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2. Review of Existing Estimators

Suppose the study variable Y and the auxiliary variable, X are positively correlated. Then [16]
expressed the classical ratio estimator of population mean under RSS as

ȳR,RSS = ȳ[n]

(
X̄

x̄(n)

)
(2.1)

where

Bias (ȳR,RSS) = Ȳ
[
θ
(

C2
x − ρCxCy

)
−
(

W2
x(i) −Wyx(i)

)]
(2.2)

MSE (ȳR,RSS) = Ȳ2
[
θ
(

C2
x − 2ρCxCy + C2

y

)
−
(

W2
x(i) − 2Wyx(i) + W2

y[i]

)]
(2.3)

Through out of this study,

W2
x(i) =

1
r

m
∑

i=1

(
µx(i)−X̄

mX̄

)2
, W2

y[i] =
1
r

m
∑

i=1

(
µy[i]−Ȳ

mȲ

)2
, Wyx(i) =

m
∑

i=1

(µy[i]−Ȳ)(µx(i)−X̄)
m2rȲX̄ , θ = 1

mr , C2
x = s2

x
X̄2

and C2
y =

s2
y

Ȳ2 .

[13] modified the classical ratio estimator of population mean under RSS respectively using Cx
and β2(x) as

ȳM1,RSS = ȳ[n]

[
X̄ + Cx

x̄(n) + Cx

]
(2.4)

and

ȳM2, RSS = ȳ[n]

[
X̄Cx + β2(x)

x̄(n)Cx + β2(x)

]
. (2.5)

with the respective biases

B (ȳM1,RSS) = Ȳ
[
θ
(

ϕ2C2
x − ϕρCxCy

)
−
(

ϕ2W2
x(i) − ϕWyx(i)

)]
(2.6)

B (ȳM2,RSS) = Ȳ
[
θ
(

υ2C2
x − υρCxCy

)
−
(

υ2W2
x(i) − υWyx(i)

)]
(2.7)

and the respective MSEs

MSE (ȳM1, RSS) = Ȳ2
[
θ
(

ϕ2C2
x + C2

y − 2ϕρCxCy

)
−
(

ϕ2W2
x(i) + W2

y[i] − 2ϕWyx(i)

)]
(2.8)

MSE (ȳM2, RSS) = Ȳ2
[
θ
(

υ2C2
x + C2

y − 2υρCxCy

)
−
(

υ2W2
x(i) + W2

y[i] − 2υWyx(i)

)]
(2.9)

where

ϕ =
X̄

X̄ + Cx

υ =
X̄Cx

X̄Cx + β2 (x)

[14] used the coefficient of variation (Cx) and the median of an auxiliary variable (Md) to propose
a ratio-type estimator of population mean as

ȳP, RSS = ȳ[n]

[
X̄ + Cx Md

x̄(n) + Cx Md

]
. (2.10)
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with the respective bias and MSE as

B (ȳP,RSS) = Ȳ
[
θ
(

λ2C2
x − λρCxCy

)
−
(

λ2W2
x(i) − λWyx(i)

)]
(2.11)

and

MSE (ȳP, RSS) = Ȳ2
[
θ
(

λ2C2
x + C2

y − 2λρCxCy

)
−
(

λ2W2
x(i) + W2

y[i] + 2λWyx(i)

)]
(2.12)

where

λ =
X̄

X̄ + Cx Md

3. The Proposed Estimator

Motivated by [14], this study proposes modified ratio-type estimator for finite population mean
under Ranked Set Sampling, which utilizes the coefficient of variation (Cx) and the median (Md)
of the employed auxiliary variable as

ȳB,RSS = ȳ[n]

[
X̄ + Md

√
Cx

x̄(n) + Md
√

Cx

]
. (3.1)

Using large sample properties, the following assumptions are made: ȳ[n] = Ȳ (1 + e0) and
x̄(n) = X̄ (1 + e1), where E (e0) = E (e1) = 0.
Therefore, equation (3.1) evolves as

ȳB,RSS = ȳ[n]

[
X̄ + Md

√
Cx

X̄ (1 + e1) + Md
√

Cx

]
= ȳ[n]

[
X̄ + Md

√
Cx

X̄ + Md
√

Cx + X̄e1

]

= ȳ[n]

 1

1 +
(

X̄
X̄+Md

√
Cx

)
e1


= ȳ[n]

(
1

1 + ωe1

)
where

ω =
X̄

X̄ + Md
√

Cx
.

Now,

ȳB, RSS = ȳ[n]

(
1

1 + ωe1

)
= Ȳ (1 + e0) (1 + ωe1)

−1.

Assuming |ωe1| < 1 and using Taylor’s expansion to the second order,

ȳB, RSS = Ȳ (1 + e0)
(

1−ωe1 + ω2e2
1 + ...

)
= Ȳ

(
1−ωe1 + ω2e2

1 + e0 −ωe0e1 + ...
)

.

Therefore the bias of the proposed estimator is obtained as

B (ȳB, RSS) = Ȳ
[
ω2E

(
e2

1

)
−ωE (e0e1)

]
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⇒ B (ȳB, RSS) = Ȳ
[
ω2
(

θC2
x −W2

x(i)

)
−ω

(
θρCxCy −Wyx(i)

)]
= Ȳ

[
θ
(

ω2C2
x −ωρCxCy

)
−
(

ω2W2
x(i) −ωWyx(i)

)]
(3.2)

The mean squared error of the proposed estimator is obtained as

MSE (ȳB, RSS) = Ȳ2
[
ω2E

(
e2

1

)
− 2ωE (e0e1) + E

(
e2

0

)]
.

⇒ MSE (ȳB, RSS) = Ȳ2
[
ω2
(

θC2
x −W2

x(i)

)
+
(

θC2
y −W2

y[i]

)
− 2ω

(
θρCxCy −Wyx(i)

)]
= Ȳ2

[
θ
(

ω2C2
x + C2

y − 2ωρCxCy

)
−
(

ω2W2
x(i) + W2

y[i] − 2ωWyx(i)

)]
(3.3)

4. Efficiency Comparison

The proposed estimator, ȳB, RSS was compared to the RSS estimators of [13] and that of [14]. The
proposed estimator, ȳB, RSS is more efficient than the estimator of [14] if

MSE (ȳB, RSS) < MSE (ȳP,RSS)

⇒ ω2
(

θC2
x −W2

x(i)

)
− 2ω

(
θρCxCy −Wyx(i)

)
< λ2

(
θC2

x −W2
x(i)

)
− 2λ

(
θρCxCy −Wyx(i)

)
⇒
(

ω2 − λ2
) (

θC2
x −W2

x(i)

)
< 2 (ω− λ)

(
θρCxCy −Wyx(i)

)
Hence, provided ω < λ, the proposed estimator is more efficient than the estimator of [14] if

ρ <
(ω + λ)

(
θC2

x −W2
x(i)

)
+ 2Wyx(i)

2θCxCy
(4.1)

where ρ is the correlation coefficient between the auxiliary variable X and the study variable Y.
Let P = θC2

x −W2
x(i), Q = 2Wyx(i) and R = 2θCxCy. Then the proposed estimator, ȳB,RSS is

respectively more efficient than ȳM1,RSS and ȳM2,RSS if

ρ < [P (ω + ϕ) + Q] /R and ρ < [P (ω + υ) + Q] /R,

where

ω =
X̄

X̄ + Md
√

Cx
, ϕ =

X̄
X̄ + Cx

, υ =
X̄Cx

X̄Cx + β2 (x)
.

5. Empirical Application

The dataset that was used for evaluating the estimators is taken from page 34 of [6] and a general
description is given below.

X : Weekly family income.
Y : Weekly family expenditure.
Objective: To estimate mean weekly family expenditure.
N = 33, X̄ = 72.5454, Ȳ = 27.4909, ρ = 0.2521, Md = 69, β2(x) = 2.1429, Cx = 0.1436, Cy =
0.3629
The ARB of the various proposed estimators were obtained by the formula

ARB =

∣∣∣∣ Bias (ȳi)

Bias (ȳR,RSS)

∣∣∣∣ , (5.1)

where i = (M1,RSS), (M2,RSS), (P,RSS), (B,RSS).
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The Percent Relative Efficiency (PRE) of an estimator ȳi compared to the classical ratio estimator
ȳR of [5], was obtained by

PRE =
MSE (ȳR)

MSE (ȳi)
× 100, (5.2)

where i = (M1,RSS), (M2,RSS), (P,RSS), (B,RSS).

Six ranked set sample sizes were considered with the data for different set sizes m and the
corresponding number of cycles r and the results displayed in Tables 1 to 6. For each case,
corresponding values of W2

x(i), W2
y[i] and Wyx(i) were determined for the sample size n = m× r.

For sample size n = 9, where m = 3 and r = 3, then W2
x(i) = 0.0012, W2

y[i] = 0.0064, Wyx(i) = 0.0028
and the corresponding performance of the various estimators is displayed in Table 1.

Table 1: m=3, r=3

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0668 9.0725 1.0000 100.0

ȳM1, RSS 0.0667 9.0653 0.9985 100.1
ȳM2, RSS 0.0562 8.6695 0.8413 104.6
ȳP, RSS 0.0556 8.6428 0.8323 105.0
ȳB, RSS 0.0433 8.1567 0.6482 111.2

If n = 12 where m = 3, r = 4, then W2
x(i) = 0.0009, W2

y[i] = 0.0050, Wyx(i) = 0.0021 and the
performance of the various estimators is displayed in Table 2.

Table 2: m=3, r=4

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0501 6.6533 1.0000 100.0

ȳM1, RSS 0.0450 6.6478 0.8982 100.1
ȳM2, RSS 0.0418 6.3319 0.8343 105.1
ȳP, RSS 0.0417 6.3310 0.8323 105.1
ȳB, RSS 0.0325 5.9664 0.6487 111.5

If n = 15 where m = 3, r = 5, then W2
x(i) = 0.0007, W2

y[i] = 0.0040, Wyx(i) = 0.0017 and the
performance of the various estimators is displayed in Table 3.

Table 3: m=3, r=5

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0412 5.3680 1.0000 100.0

ȳM1, RSS 0.0411 5.3635 0.9976 100.1
ȳM2, RSS 0.0346 5.1103 0.8398 105.0
ȳP, RSS 0.0343 5.1031 0.8325 105.2
ȳB, RSS 0.0267 4.8055 0.6481 111.7

If n = 16 where m = 4, r = 4, then W2
x(i) = 0.0008, W2

y[i] = 0.0044, Wyx(i) = 0.0019 and the
performance of the various estimators is displayed in Table 4.
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Table 4: m=4, r=4

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0431 4.8955 1.0000 100.0

ȳM1, RSS 0.0429 4.8908 0.9954 100.1
ȳM2, RSS 0.0367 4.5020 0.8515 108.7
ȳP, RSS 0.0364 4.5020 0.8445 108.7
ȳB, RSS 0.0291 4.2936 0.6752 114.1

For n = 20 where m = 4, r = 5, then W2
x(i) = 0.0006, W2

y[i] = 0.0036, Wyx(i) = 0.0015 and the
performance of the various estimators is displayed in Table 5.

Table 5: m=4, r=5

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0350 3.8559 1.0000 100.0

ȳM1, RSS 0.0349 3.8521 0.9971 100.1
ȳM2, RSS 0.0310 3.6368 0.8857 106.0
ȳP, RSS 0.0296 3.6292 0.8457 106.3
ȳB, RSS 0.0234 3.3685 0.6686 114.5

If n = 25 where m = 5, r = 5, then W2
x(i) = 0.0006, W2

y[i] = 0.0033, Wyx(i) = 0.0013 and the
performance of the various estimators is displayed in Table 6.

Table 6: m=5, r=5

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0275 2.8278 1.0000 100.0

ȳM1, RSS 0.0274 2.8248 0.9963 100.1
ȳM2, RSS 0.0239 2.6750 0.8691 105.7
ȳP, RSS 0.0235 2.6487 0.8545 106.8
ȳB, RSS 0.0190 2.4400 0.6909 115.9

6. Conclusion

The study modified the ratio estimator of [14] and derived the theoretical properties of the
modified estimator up to order O

(
n−1). The modified estimator was compared to the all the RSS

estimators that were considered by [14] using the classical RSS ratio estimator of [16] as the basis
of comparison. Ranked Set Samples various sizes were considered to test the performance of the
various estimators and all sizes, the propsed modified estimator had the last bias and MSE. Com-
pared to the classical RSS ratio estimator of [16], the efficiency of the proposed modified estimator
ranged from 11% to 16% whilst the efficiency of the estimator of [14] ranged from 5% to 8%. The
bias of the proposed modified estimator was also the least in all the sample combinations that
were considered. This study therefore recommend the use of improved estimator for estimation
since it can provide more efficient and more accurate estimates, compared to its competitors.
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Abstract

In this study, we derive Bayes’ estimators for the unknown parameters of the Inverse Gompertz Distribu-
tion (IGD) using three alternative loss functions: the Squared Error Loss Function (SELF), the Entropy
Loss Function (ELF), and the Linex Loss Function. Closed-form formulas for Bayes estimators are not
possible when both parameters are unknown, hence Lindley’s approximation (L-Approximation) is used
for computation. We examine the performance of these estimators using their simulated hazards and
assess their effectiveness in parameter estimation. It was discovered that as the sample size increases,
parameter estimations became more precise and accurate across all functions. However, ELF consistently
has lower MSE values than SELF and LINEX, indicating better parameter estimation. This pattern was
also seen in the estimation of the hazard function, where ELF regularly beat SELF and LINEX, implying
more efficient parameter estimation overall.

Keywords: Likelihood Function, Prior Distribution, Posterior Distribution, Bayes Estimates,
Lindle y Appr oximation

1. Introduction

Gompertz [1] proposed a probability distribution with tw o parameters, which is widely used in
sur viv al analysis to repr esent human mortality and beha vioral sciences data. This distribution, a
generalization of the exponential distribution, has many practical uses, particularly in medical
and actuarial studies. It has considerable similarities to well-kno wn distributions such as the
Gumbel, Weibull, generalized logistic, exponential, and double exponential distributions [2].

However, the Gompertz distribution (GD) only sho ws an increasing failur e rate, restricting
its potential to repr esent occurr ences across several fields. As a result, many authors have
contributed to methodological studies and characterizations of this distribution to addr ess real-
world challenges in a variety of fields, including medical sciences, economics, beha vioral sciences,
engineering, biological studies, actuarial science, envir onmental studies, and lifetime analysis.

The Gompertz distribution and its variants have been the subject of extensiv e resear ch. Read
[3] offers a fundamental overvie w of the Gompertz distribution, including its featur es and
applications in statistical fields. Makany [4] explor es the theor etical foundations of Gompertz’s
cur ve and provides insights into its mathematical repr esentation. Franses [5] discusses practical
issues of fitting Gompertz cur ves to actual data. Wu and Lee [6] inv estigate combinations of
Gompertz distributions, offering a frame work for defining complicated systems. El-Gohar y et al.
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[7] introduce the gene ralized Gompertz distribution, which impr oves modeling flexibility . The
beta-Gompertz distribution, proposed by Jafari et al. [8], enhances the flexibility of data captur e.
Khan et al. [9] introduce the transmuted Gompertz distribution, which can accommodate a
wider range of data patter ns. El-Bassiouny et al. [10, 11] study mixtur e models that combine the
Gompertz distribution with other distributions to impr ove applicability in reliability and sur viv al
analysis. Rasool et al. [12] introduced the McDonald Gompertz distribution, which impr oves
its ability to captur e complicated data patter ns. [13] introduced Topp-Leone Inverse Gompertz
Distribution with dif ferent estimation procedur es and application. Sanku et al. [14] assess and
compar e various estimating methodologies for the Gompertz distribution, assisting resear chers
and practitioners in selecting rele vant methods.

2. Inverse Gompertz Distribution

The random variable X is said to have an Inverse Gaussian Distribution (IGD) with shape
parameter λ and scale parameter γ, if its cumulativ e distribution function (CDF) is giv en by

F(x) = e−
λ
γ

(
e

γ
x −1

)
, x > 0, λ, γ > 0 (1)

The probability density function (PDF) of the Inverse Gaussian Distribution (IGD) is expr essed as

f (x) =
λ

x2 e−
λ
γ

(
e

γ
x −1

)
+ γ

x (2)

Further mor e, the reliability function is provided as follo ws:

R(x) = 1 − e
− λ

γ

(
e

γ
t −1

)
(3)

The quantile function for the IGD distribution can be expr essed as

q =
γ

ln(1 − γ
λ ln q)

, 0 < q < 1. (4)

Figure 1: PDF of the IGD
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Figure 2: CDF of the IGD

3. Bayesian Estimation Techniques

Let x = (x1, x2, . . . xn) be a random variable with parameters λ and γ having a size n. From
the bayes’ the posterior probability density function of the parameters λ and γ giv en x can be
expr essed as

Pr(λ, γ, η|x) = π(λ, γ)l(λ, γ)∫ ∫ ∫
π(λ, γ)l(λ, γ)∂(λ, γ)

(5)

wher e l(λ, γ) is the likelihood and (λ, γ) is the prior probability distribution.

3.1. Likelihood Function

Giv en a series of obser vations x = (x1, x2, . . . xn) with parameters λ and γ having a size n for IG
distribution (2), the likelihood function can be expr essed as

l =
λn

∑ x2 e−
λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x ) (6)

The log likelihood of IG distribution can be expr essed as

L = log l = n log λ + ∑
(γ

x

)
− 2 ∑ log (x)− λ

γ ∑
(

e
γ
x − 1

)
(7)

The maximum likelihood estimator of the shape and scale parameters for the parameters λ and γ
is obtained by dif ferentiating the (7) on parameters λ and γ. The maximum likelihood dif ferential
equations are:

d L
dλ

=
1
λ
−

n

∑
i=1

(
e

γ
xi − 1

)
1
γ

(8)

d L
dγ

=
n

∑
i=1

1
xi

+
λ ∑n

i=1

(
exp

(
γ
xi

)
− 1
)

γ2 −
λ ∑n

i=1

(
exp

(
γ
xi

)
xi

)
γ

(9)

Analytical solutions to equations (8) and (9) are not viable. The estimated values for the
parameters λ and γ can be deriv ed numerically using an iterativ e appr oach known as the Ne wton-
Raphson method [15, 17, 16]. The Fisher infor mation matrix elements for parameters λ and γ can
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be repr esented as follo ws:

Jk =

 ∂2 l(λ,γ)
∂λ2

∂2 l(λ,γ)
∂λ∂γ

∂2 l(λ,γ)
∂λ∂γ

∂2 l(λ,γ)
∂γ2

 (10)

The Jacobian matrix must be a non-singular symmetric matrix so its inv erse must exist. So, using
the Ne wton Raphson method we have[

λk+1
γk+1

]
=

[
λk
γk

]
− Jk

−1

[
∂l(λ,γ)

∂λ
∂l(λ,γ)

∂γ

]
(11)

with error ter m ϵ being the absolute dif ferences betw een the new and the previous value of λ
and γ in the iterativ e algorithm. That is

ϵ

[
ϵk+1(λ)
ϵk+1(γ)

]
=

[[
λk+1
γk+1

]
−
[

λk
γk

]]
(12)

wher e λk and γk are the initial values of λ and γ respectiv ely. .
wher e

Lλλ =
d2 L
dλ2 = − 1

λ2 (13)

Lγγ =
d2 L
dγ2 = −2 ·

λ ∑n
i=1

(
exp

(
γ
xi

)
− 1
)

γ3 +

2 · λ ∑n
i=1

(
exp

(
γ
xi

)
xi

)
γ2 −

λ ∑n
i=1

(
exp

(
γ
xi

)
x2

i

)
γ

(14)

Lλγ =
d2 L

dλdγ
=

d2 L
dγdλ

=
−n + ∑n

i=1 exp
(

γ
xi

)
γ2 −

n

∑
i=1

 exp
(

γ
xi

)
xi

 · 1
γ

(15)

3.2. Prior Distribution

From (6), it can obser ved that ther e is no proper conjugate distribution for the parameters λ
and γ. Ther efor e, we will consider the use of independent gamma prior distribution for the
scale with parameters a1 and b1 and shape parameters a2 and b2. That is λ ∼ Gamma(a1, b1) and
γ ∼ Gamma(a2, b2). The joint prior distribution can be expr essed as

π(λ, γ) ∝ λa1−1γa2−1e−b1λe−b2γ (16)

wher e a1, a2, b1 and b2 are hyper parameters.

3.3. Posterior Distribution

To obtain the posterior distribution for the IG distribution, we combine (6) and (16) and can be
expr essed as

P(λ, γ|X) = k−1λa1+n−1γa2−1 ∑ x−2e−
λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ (17)

wher e

k =
∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ
∂λ∂γ

Analytical solutions for λ and γ from the posterior equation (17) are not viable due to its
complicated natur e, necessitating the use of numerical appr oaches such as Gibbs sampling,
Metr opolis-Hastings, EM algorithm, Lindle y appr oximation, among others. In this study , we will
use the Lindle y appr oximation appr oach to obtain Bayesian estimates of λ and γ.
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3.4. Loss Functions

The squar ed error is commonly emplo yed as a loss function, however, its symmetric natur e
may not be acceptable in estimating issues with asymmetric losses. This disparity is especially
pronounced in disciplines such as life testing and reliability estimation. In response, asymmetric
loss functions, such as Varian’s LINEX loss function [18], have gained popularity . [19] inv estigated
the featur es of the LINEX loss function and disco vered that the squar ed error loss is a specific
instance of it. Another useful option is the entr opy loss function.

In recent years, many authors have used Bayesian estimation for estimating the parameters of
distributions. Examples include the works of Ahmed et al. [20], Basu & Ebrahimi [21], Nassar &
Eissa [22], Pande y [23], Roio [24], Soliman et al. [31, 32, 33], Singh et al. [30, 25, 26], Adegoke et
al [27], Ogunsany a et al. [28], Nzei et al. [29] , and others.

We achie ve the appr opriate Bayesian estimates by using predefined loss functions such squar ed
error, LINEX, and entr opy, which are defined as follo ws:

LS(d̂(θ), d(θ)) = (d̂(θ)− d(θ))2,

LL(d̂(θ), d(θ)) = eh(d̂(θ)−d(θ)) − h(d̂(θ)− d(θ))− 1, h ̸= 0,

LE(d̂(θ), d(θ)) ∝

(
d̂(θ)
d(θ)

)w

− w log

(
d̂(θ)
d(θ)

)
− 1, w ̸= 0,

We get the desir ed Bayesian estimates.Her e, d̂(θ) is an estimate of d(θ). In the Bayesian paradigm,
an optimal estimate for a certain loss function can be obtained by minimizing the average risk
of d̂(θ) relativ e to a weight function, also known as the prior distribution of θ. The Bayesian
estimate, d̂BS, under the loss LS, corresponds to the posterior mean of d(θ). by applying specified
loss functions: squar ed error, LINEX, and entr opy, which are described as follo ws. The Bayesian
estimate of d(θ) for the loss function LL is provided as:

d̂BL = − 1
h

log
(

Eθ

[
e−hθ |x

])
the equiv alent estimate for the loss function LE is as follo ws:

d̂BE =
(
Eθ(θ

−w|x)
)− 1

w

giv en that the corresponding expectations Eθ(·) exist. We use loss functions LS, LL, and LE to
get Bayesian estimates of λ, γ, θ, the reliability function R(t), and the hazar d function h(t).

Initially , we compute the Bayesian estimate for λ under the loss function LS using the posterior
distribution P(λ, γ|x). This estimate is calculated as:

λ̂BS = k−1
∫ ∞

0

∫ ∞

0
λa1+nγa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ
∂λ∂γ (18)

For the LL loss function, the Bayesian estimate for λ is as follo ws:

λ̂BL = − 1
h

log
(

E
[
e−hλ|x

])
h ̸= 0

wher e

Eλ

[
e−hλ|x

]
= k−1

∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ−hλ
∂λ∂γ (19)

Finally , when considering the loss function LE, we deter mine that

λ̂BE =
(
E(λ−w|x)

)− 1
w
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wher e

Eλ(λ
−w|x) = k−1

∫ ∞

0

∫ ∞

0
λa1+n−w−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ
∂λ∂γ (20)

Similarly , we proceed to deriv e Bayesian estimates for γ under the specified loss functions.
Assuming that λ and γ are unkno wn, we obtain equations for Bayesian estimates of the

reliability function R(t) in a similar manner . For the loss function LS it is giv en as

R̂(t) = k−1
∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ

1 − e
− λ

γ

(
e

γ
t −1

) ∂λ∂γ

(21)
For the LL loss function,w e have

R̂(t)BL = − 1
h

log
(

E
[
e−hR(t)|x

])
h ̸= 0

wher e

Eλ

[
e−hR(t)|x

]
= k−1

∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γe
−h

1−e
− λ

γ

(
e

γ
t −1

)
∂λ∂γ

(22)
Finally , for the loss function LE, it is found that

λ̂BE =
(
E(R(t)−w|x)

)− 1
w

R̂(t)BE = k−1
∫ ∞

0

∫ ∞

0
λa1+n−1γa2−1 ∑ x−2e−

λ
γ ∑

(
e

γ
x −1

)
+∑( γ

x )−b1λ−b2γ

1 − e
− λ

γ

(
e

γ
t −1

)−w

∂λ∂γ

(23)

3.5. Lindle y Appr oximation

In the preceding section, we deriv ed Bayes estimators for λ, γ, and θ using various loss functions,
such as squar ed error, linex, and entr opy. It is worth noting that these estimators are expr essed
as ratios of tw o integrals, which resist simplification into closed for ms. Nonetheless, using the
methods de veloped by Lindle y [34], these Bayes estimators can be estimated to a for m de void of
integrals. In practice, this strategy produces simple Bayes estimators that are easy to implement.
Consider the ratio of the integral I(X),

I(x) = E[u(λ, γ|x)] =
∫ ∫

u(λ, γ)eL(λ,γ)+G(λ,γ)dλdγ∫ ∫
eL(λ,γ)+ρ(λ,γ)dλdγ

, (24)

wher e:

• u(λ, γ) is a function of λ and γ only;

• L(λ, γ) is the log of likelihood;

• ρ(λ, γ) is the log of joint prior of λ and γ.
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This can be evaluated as

I(x) =u(λ̂, γ̂) +
1
2
[
(ûγγ + 2ûγ p̂γ)σ̂γγ + (ûλγ + 2ûλ p̂γ)σ̂λγ

+(ûγλ + 2ûγ p̂λ)σ̂γλ + (ûλλ + 2ûλ p̂λ)σ̂λλ

]
+

1
2
[
(ûγσ̂γγ + ûλσ̂γλ)(Lγγγσ̂γγ + Lγλγσ̂γλ

+Lλγγσ̂λγ + Lλλγσ̂λλ) + (ûγσ̂λγ + ûλσ̂λλ)(Lλγγσ̂γγ

+Lγλλσ̂γλ + Lλγλσ̂λγ + Lλλλσ̂λλ)
]

(25)

wher e:

• λ̂ = MLE of λ;

• γ̂ = MLE of γ;

• ûγ = ∂u(λ̂,γ̂)
∂γ , ûλ = ∂u(λ̂,γ̂)

∂λ , ûγλ = ∂2u(λ̂,γ̂)
∂γ∂λ , ûλγ = ∂2u(λ̂,γ̂)

∂λ∂γ ;

• ûγγ = ∂2u(λ̂,γ̂)
∂γ2 , ûλλ = ∂2u(λ̂,γ̂)

∂λ2 ;

• L̂λγγ = L̂γλγ = L̂γγλ = ∂3 L(λ̂,γ̂)
∂γ∂γ̂∂λ̂

, L̂γγγ = ∂3 L(λ̂,γ̂)
∂γ∂γ̂∂γ̂ , L̂λλλ = ∂3 L(λ̂,γ̂)

∂λ∂λ̂∂λ̂
;

• L̂γλλ = L̂λλγ = L̂λγλ = ∂3 L(λ̂,γ̂)
∂γ∂λ̂∂λ̂

;

• p̂λ = ∂π(λ̂,γ̂)
∂λ , p̂γ = ∂π(λ̂,γ̂)

∂γ .

wher e
Lλλγ = 0; Lλλλ =

2
λ3 (26)

Lγγλ = −2 ·
−n + ∑n

i=1 exp
(

γ
xi

)
γ3 +

2 · ∑n
i=1

(
exp

(
γ
xi

)
xi

)
γ2 −

∑n
i=1

(
exp

(
γ
xi

)
x2

i

)
γ

(27)

Lγγγ = 6 ·
λ ∑n

i=1

(
exp

(
γ
xi

)
− 1
)

γ4 − 6 ·
λ ∑n

i=1

(
exp

(
γ
xi

)
xi

)
γ3 + 3 ·

λ ∑n
i=1

(
exp

(
γ
xi

)
x2

i

)
γ2 −

λ ∑n
i=1

(
exp

(
γ
xi

)
x3

i

)
γ

(28)

log π(λ, γ) = (a1 − 1) ∗ log (λ) + (a2 − 1) ∗ log (γ)− b1λ − b2γ

ρλ =
a1 − 1

λ
− b1; ργ =

a2 − 1
γ

− b2

3.5.1 Bayes estimates of the parameters of IGD and its reliability

To obtain the bayes estimate under SELF for λ̂, u(λ̂, γ̂) = λ̂, uλλ = uλγ = uγγ = uγλ = uγ = 0
and uλ = 1. Substituting these values into (25), we have

λ̂BS = λ̂ + p̂λσ̂λλ +
1
2

Lλλλσ̂λλ (29)

also to obtain the bayes estimate under SELF for γ̂, u(λ̂, γ̂) = γ̂, uλλ = uλγ = uγγ = uγλ = uλ = 0
and uγ = 1. Substituting these values into (25), we have

γ̂BS = γ̂ + p̂γσ̂γγ +
1
2

σ̂γγLγγγσ̂γγ (30)
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To obtain the bayes estimate of λ̂ under the ELF, u(λ̂, γ̂) = λ−w, then uλ = −wλ̂−w−1, uλλ =
w(w + 1)λ̂−w−2 and uλγ = uγγ = uγλ = uγ = 0. Substituting these values into (25), we have

λ̂BE = λ̂−w +
1
2
[σ̂λλ (ûλλ + 2ûλρλ)] +

1
2
[(ûλσ̂λλ (Lλλλσ̂λλ)] (31)

also to obtain the bayes estimate of γ̂ under the ELF, u(λ̂, γ̂) = γ−w, then uγ = −wλ̂−w−1,
uγγ = w(w + 1)λ̂−w−2 and uλγ = uλλ = uγλ = uγ = 0. Substituting these values into (25), we
have

γ̂BE = γ̂−w +
1
2
[σ̂γγ (ûγγ + 2ûγργ)] +

1
2
[(ûγσ̂γγ (Lγγγσ̂γγ)] (32)

To obtain the bayes estimate of λ under the LLF, u(λ̂, γ̂) = e−hλ, then uλ = −he−hλ, uλλ = h2e−hλ

and uλγ = uγγ = uγλ = uγ = 0. Substituting these values into (25), we have

λ̂BL = e−hλ +
1
2
[σ̂λλ (ûλλ + 2ûλρλ)] +

1
2
[(ûλσ̂λλ (Lλλλσ̂λλ)] (33)

also to obtain the bayes estimate of γ under the LLF, u(λ̂, γ̂) = e−hγ, then uγ = −he−hλ,
uγγ = h2e−hλ. and uλγ = uλλ = uγλ = uγ = 0. Substituting these values into (25), we have

γ̂BL = e−hγ +
1
2
[σ̂γγ (ûγγ + 2ûγργ)] +

1
2
[(ûγσ̂γγ (Lγγγσ̂γγ)] (34)

Under the SELF the bayes estimates for the reliability of IGD can be obtained by equating

u = 1 − e
− λ

γ

(
e

γ
t −1

)
; uλ =

(e
γ
t − 1) · e−

λ
γ (e

γ
t −1)

γ

uγ = −
(

λ(e
γ
t − 1)
γ2 − λe

γ
t

γt

)
· e−

λ
γ (e

γ
t −1); uλλ = − (e

γ
t − 1)2 · e−

λ
γ (e

γ
t −1)

γ2

uγγ = −
(
−2

λ(e
γ
t − 1)
γ3 + 2

λe
γ
t

γ2t
− λe

γ
t

γt2

)
e−

λ
γ (e

γ
t −1) −

(
λ(e

γ
t − 1)
γ2 − λe

γ
t

γt

)2

e−
λ
γ (e

γ
t −1)

uλγ = uγλ = − (e
γ
t − 1) · e−

λ
γ (e

γ
t −1)

γ2 +
e

γ
t · e−

λ
γ (e

γ
t −1)

γt
+

(e
γ
t − 1) ·

(
λ(e

γ
t −1)
γ2 − λe

γ
t

γt

)
· e−

λ
γ (e

γ
t −1)

γ

and substituting the values into (25). We have

I(x) =u(λ̂, γ̂) +
1
2
[(ûγγ + 2ûγ p̂γ)σ̂γγ + (ûλλ + 2ûλ p̂λ)σ̂λλ]

+
1
2
[
(ûγσ̂γγ)(Lγγγσ̂γγ + Lλλγσ̂λλ) + (ûλσ̂λλ)(Lλγγσ̂γγ

+Lλλλσ̂λλ)] .

(35)

Similarly , we can evaluate the Bayes estimators for the reliability function using the ELF and LLF.

3.6. Simulation Study

In this part, we undertake a simulation resear ch to estimate the parameters and reliability of
the Inverse Gamma (IG) distribution across several λ and γ combinations: (0.9, 0.6), (1.0, 1.0),
(1.0, 0.7), and (1.2, 0.8). The population parameter is created with R programming version
4.3.1. Sampling distributions are calculated for various sample sizes n = [30, 50, 100, 500] using
R = 1000 replications.T ables 1 and 2 sho w the calculated estimates and mean squar e errors (MSE)
in brackets.

RT&A, No 3 (79) 
Volume 19, September 2024

751



Adegoke, Abimbola, Oladoja, Oyebanjo & Obisesan
BAYESIAN ESTIMA TION OF PARAMETERS AND RELIABILITY
CHARACTERISTICS IN THE INVERSE GOMPER TZ DISTRIBUTION

Table 1: Bayes estimates for different parameter values under the SELF, ELF and LINEX

SELF ELF LINEX
λ̂BS γ̂BS λ̂BE γ̂BE λ̂BL γ̂BL

n =30 λ = 0.9
γ = 0.6
h = 0.6
w= -0.5
a1 = 1
a2 = 1
b1 = 1

b2 = 0.5

0.9300
(0.0077)

0.7191
(0.1106)

0.8560
(0.0027)

0.8274
(0.0884)

0.6464
(0.0646)

0.6600
(0.0182)

n =50 0.9524
(0.0061)

0.6090
(0.0430)

0.8626
(0.0018)

0.7691
(0.0475)

0.6465
(0.0647)

0.6988
(0.0172)

n = 100 0.967
(0.0059)

0.6103
(0.0273)

0.8689
(0.0011)

0.7744
(0.0417)

0.6414
(0.0670)

0.6964
(0.0139)

n = 500 0.9859
(0.0076

0.6026
(0.0050)

0.8759
(0.0005)

0.775
(0.0327)

0.6373
(0.0690)

0.6971
(0.0103)

n =30 λ = 1.0
γ = 1.0
h = -0.1
w = 0.5
a1 = 0.5
a2 = 0.5
b1 = 0.5
b2 = 0.5

1.0589
(0.2014)

1.2097
(0.3130)

1.2692
(0.0623)

0.9871
(0.0775)

1.1225
(0.1425)

1.1300
(0.0203)

n =50 1.0731
(0.1880)

1.0216
(0.1199)

1.2397
(0.0728)

1.0376
(0.0482)

1.1253
(0.1404)

1.1081
(0.0131)

n = 100 1.0956
(0.1654)

1.0206
(0.0760)

1.2359
( 0.0723)

1.0171
(0.0226)

1.1277
(0.1385)

1.1078
(0.0125)

n = 500 1.1195
(0.1448)

1.0051
(0.01408)

1.2265
(0.0752)

1.0021
(0.0033)

1.1307
(0.1363)

1.1058
(0.0113)

n =30 λ = 1.0
γ = 0.7
h = 0.1

w = -0.8
a1 = 1
a2 = 1

b1 = 0.5
b2 = 0.5

1.4021
.2226)

0.8344
(0.1419)

1.2489
(0.0903)

0.8529
(0.1103)

0.8726
(0.0166)

0.9204
(0.04964)

n =50 1.4760
(0.2700)

0.7099
(0.0553)

1.2998
(0.1089)

0.7538
(0.0441

0.8666
(0.0180)

0.9317
(0.0541)

n = 100 1.4773
0.2530)

0.7113
(0.0350)

1.3025
(0.1025)

0.7575
(0.0288)

0.8662
(0.018)

0.9315
0.0538)

n = 500 1.4968
(0.2519)

0.7030
(0.0065)

1.3174
( 0.1029)

0.7536
(0.0076)

0.8644
(0.0184)

0.9321
(0.0539)

n =30 λ = 1.2
γ = 0.8
h = -0.2
w = -0.9
a1 = 1
a2 = 1
b1 = 1
b2 = 1

0.9083
(0.1015)

0.9659
(0.2014)

0.8734
(0.1193)

0.9612
(0.1689)

1.2290
(0.0016)

1.217
(0.1844)

n =50 0.8943
(0.1192)

0.8157
(0.0772)

0.8592
(0.1357)

0.8283
( 0.0662)

1.2290
(0.0019)

1.1788
(0.1478)

n = 100 0.9272
(0.0853

0.8157)
(0.0488

0.8867
(0.1067

0.8299
(0.0418)

1.2373
(0.0018)

1.1782
(0.1458)

n = 500 0.9533
(0.0618)

0.8039
.0090)

0.9077
(0.0863)

0.8211
(0.0080)

1.245
(0.0020)

1.1746
(0.1408)
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Table 2: Bayes estimates for the hazard function under the SELF, ELF and LINEX

R̂(t)BS R̂(t)BE R̂(t)BL

n =30 λ = 0.9
γ = 0.6
h = 0.6
w= -0.5
a1 = 1
a2 = 1
b1 = 1

b2 = 0.5
t =1

0.5728
(0.1114)

0.7343
(0.0288)

0.7212
(0.0326)

n =50 0.5499
(0.1256)

0.7208
(0.0328)

0.7304
(0.0291)

n = 100 0.5517
(0.1230)

0.7214
(0.0323)

0.7301
(0.0290)

n = 500 0.5501
(0.1227)

0.7206
(0.0322)

0.7309
(0.0286)

n =30 λ = 1.0
γ = 1.0
h = -0.1
w = 0.5
a1 = 0.5
a2 = 0.5
b1 = 0.5
b2 = 0.5

t = 2

0.3971
( 1.218)

1.6789
(0.0375)

1.0409
(0.2107)

n =50 0.36002
(0.2917)

1.9986
(1.2129)

1.0371
(0.0188)

n = 100 0.36199
(0.2895)

1.9976
(1.2085)

1.0373
(0.0188)

n = 500 0.3650
(0.2862)

1.9876
(1.1837)

1.0376
(0.0189)

n =30 λ = 1
γ = 0.7
h = 0.1

w = -0.8
a1 = 1
a2 = 1

b1 = 0.5
b2 = 0.5

t =3

0.4004
(0.3605)

0.4639
(0.2881)

0.9609
(0.0015)

n =50 0.4051
(0.3542)

0.4674
(0.2838)

0.9605
(0.0015)

n = 100 0.4077
(0.3511)

0.4696
(0.2813)

0.9603
(0.0015)

n = 500 0.4124
(0.3452)

0.4738
(0.2768)

0.9598
(0.0016)

n =30 λ = 1.2
γ = 0.8
h = -0.2
w = -0.9
a1 = 1
a2 = 1
b1 = 1
b2 = 1
t = 5

0.1776
(1.046)

0.2037
(0.9935)

0.9656
(0.0549)

n =50 0.1695
(1.063)

0.1950
(1.011)

0.9672
(0.0542)

n = 100 0.1741
(1.0529)

0.1995
(1.0015)

0.9664
(0.0545)

n = 500 0.1771
(1.0464)

0.2021
(0.9957)

0.9659
(0.0548)

Table 1 sho ws Bayesian estimates for various parameter values using three loss functions:
SELF, ELF, and LINEX , with varied sample sizes. Each cell includes the estimated value of
parameters (λ̂ and γ̂) with their standar d errors in par entheses. Generally , as the sample size
grows, the estimates get mor e precise, as evidenced by decr easing standar d errors. The three loss
functions act dif ferently depending on the parameter values. However, it is clear that the ELF
loss function consistently produces estimates with fewer standar d errors than SELF and LINEX,
implying greater perfor mance in parameter estimation. This trend persists across a wide range
of sample sizes and parameter values, demonstrating the efficiency of the ELF loss function in
Bayesian estimation.

Table 2 sho ws Bayesian estimates of the hazar d function for three dif ferent loss functions:
SELF, ELF, and LINEX, across a range of sample sizes and parameter values. Increasing sample
sizes often results in lower mean squar ed error (MSE) across all three functions, indicating better
parameter estimate accuracy . However, perfor mance dif ferences exist amongst the loss algorithms
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at dif ferent parameter settings. with example, with λ = 0.9, γ = 0.6, h = 0.6, w = −0.5, a1 = 1,
a2 = 1, b1 = 1, and b2 = 0.5, the ELF loss function consistently produces the lowest MSE
compar ed to SELF and LINEX. This patter n holds true across other parameter settings, implying
that the ELF function outperfor ms the MSE.

3.7. Real life Application

In this section, we look at the dataset published by Balakrishnan et al. [35], which includes
134entries repr esenting scor es on the General Rating of Affectiv e Symptoms for Preschoolers
(GRASP) scale. Using Bayesian appr oaches, we obtain the parameter estimates and reliability
ratings for the Inverse Gamma (IG) distribution over a variety of loss functions.

Table 3: Bayes estimate for the parameter of IGD under different loss functions when a1 = 1, a2 = 1, b1 = 0.5 and
b2 = 0.5

SELF
ELF

w = -0.7
ELF

w = 1.2
LINEX
h = -0.5

LINEX
h = 0.5

λ̂ 0.2959 0.2962 0.29226 0.3520 0.3812
γ̂ 153.1028 152.3344 161.8959 156.055 156.0564

Table 4: Bayes estimate for the reliability function under different loss functions for different parameter values

a1 = a2 = 1 , b1 = b2 = 0.5 a1 = a2 = 1 , b1 = b2 = 1

SELF t = 1 0.3820 0.3804
t = 5 0.3805 0.3789

ELF
w = -1.5

t = 1 0.3821 0.3811

w = 1.5
t = 5 0.3830 0.3799

LINEX
h = 1
t =1 0.3678 0.3651

h = -1
t =5 0.3679 0.3645

Table 3 sho ws the the Bayes estimates for the param eters of IG distribution under dif ferent
loss functions. Also, Table 4 displa y the reliability estimates under dif ferent loss functions and
parameter values.

4. Conclusion

Table 1 compar es Bayesian parameter estimation for three dif ferent loss functions: SELF, ELF, and
LINEX. Overall, as sample size grows, parameter estimates become mor e precise and accurate
across all loss functions. However, the ELF loss function consistently produces lower mean
squar ed error (MSE) values than SELF and LINEX, indicating mor e effectiv e parameter estimation.
This sho ws that the ELF loss function may perfor m better in ter ms of balancing precision and
accuracy , making it an attractiv e option for Bayesian parameter estimation applications. Table 2
shows Bayesian estimates for the hazar d function using three alter nativ e loss functions: SELF, ELF,
and LINEX. It demonstrates how the perfor mance of these estimators fluctuates with sample size
and parameter values. In general, as sample size increases, mean squar ed error (MSE) decr eases
across all three loss functions, indicating that parameter estimations are mor e accurate and precise.
The ELF loss function regularly produces lower MSE values than SELF and LINEX, indicating
mor e efficient parameter estimation.
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Abstract 

 The search for a statistical distribution for modelling the reliability data from reliability 

engineering is challenging and the main cause is the stochastic nature of the data and the presence 

of skewness, kurtosis and over-dispersion. During recent decades several one and two-parameter 

statistical distributions have been proposed in statistics literature but all these distributions were 

unable to capture the nature of data due to the presence of skewness, kurtosis and over-dispersion in 

the data. In the present paper, two-parameter Aradhana distribution, which includes one parameter 

Aradhana distribution as a particular case, has been proposed. Using convex combination approach 

of deriving a new statistical distribution, a two- parameter Aradhana distribution has been 

proposed. Various interesting and useful statistical properties including survival function, hazard 

function, reverse hazard function, mean residual life function, stochastic ordering, deviation from 

mean and median, stress-strength reliability, Bonferroni and Lorenz curve and their indices have 

been discussed. The raw moments, central moments and descriptive measures based on moments of 

the proposed distribution have been obtained. The estimation of parameters using the maximum 

likelihood method has been explained. The simulation study has been presented to know the 

performance in terms of consistency of maximum likelihood estimators as the sample size increases 

and. The goodness of test of the proposed distributions has been tested using the values of Akaike 

Information criterion and Kolmogorov-Smirnov statistics. Finally, two examples of real lifetime 

datasets from reliability engineering have been presented to demonstrate its applications and the 

goodness of fit, and it shows a better fit over two-parameter generalized Aradhana distribution, 

quasi Aradhana distribution, new quasi Aradhana distribution, Power Aradhana distribution, 

weighted Aradhana distribution, gamma distribution and Weibull distribution. The flexibility, 

tractability and usefulness of the proposed distribution show that it is very much useful for 

modelling reliability data from reliability engineering. As this is a new distribution and it has wide 

applications, it will draw the attention of researchers in reliability engineering and biomedical 

sciences to search many more applications in the future.  

Keywords: Aradhana distribution, reliability properties, maximum likelihood 

estimation, applications. 
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I. INTRODUCTION

Shanker [1] proposed the Aradhana distribution, a one parameter lifetime distribution designed to 

characterize lifetime data originating from the fields of biomedical sciences and engineering. This 

distribution is characterized by its probability density function (pdf) and cumulative distribution 

function (cdf) as 

( )
3

2

2
( ; ) 1 ; 0, 0

2 2

xf x x e x
 

 

−= +  
+ +

2

( 2 2)
( ; ) 1 1 ; 0, 0

2 2

xx x
F x e x  

 
 

−+ + 
= − +   + + 

It has been shown by Shanker [1] that in most of the real lifetime datasets it exhibited 

superior fit in comparison to exponential, Lindley [2], Shanker and Akash distributions introduced 

by Shanker [3,4]. The Aradhana distribution is a convex combination of exponential ( ) , gamma

( )2, and gamma ( )3, distributions with their proportions 
2

2 2

2
,

2 2 2 2

 

   + + + +
and 

2

2

2 2 + +

respectively. 

The mean and variance of Aradhana distribution are 

( )

2

2

4 6
( )

2 2
E X

 

  

+ +
=

+ +
and 

( )

4 3 2

2
2 2

8 24 24 12
( )

2 2
Var X

   

  

+ + + +
=

+ +
. 

Important statistical properties of Aradhana distribution including shapes for varying 

values of parameter, moments related measures, hazard function, mean residual life function, 

stochastic ordering, mean deviations, distribution of order Statistics, Bonferroni and Lorenz 

curves, Renyi entropy measure and stress-strength reliability have been discussed and also studied 

estimation of parameter and applications of Aradhana distribution for modelling lifetime data by 

Shanker [1].  

Shanker et al [5] have introduced a quasi Aradhana distribution (QAD) with its pdf and 

cdf as 

( )
2

2
( , , ) ; 0, 0, 0
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. 

The detailed studies on various statistical properties, estimation of parameters and applications of 

QAD are available in Shanker et al [5]. Anthony and Elangovan [6] discussed the length-biased 

version of QAD and study its properties and applications. Further, Anthony and Elangovan [7] 

proposed a new generalization of QAD by introducing an additional parameter in the QAD and 

study its statistical properties and applications.  

Shanker et al [8] proposed a new quasi Aradhana distribution defined by its pdf and cdf 

( )
3

2
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= − +    

+ + 
. 

The detailed studies on various statistical properties, estimation of parameters and 

applications of NQAD are available in Shanker et al [8]. 

In this paper an attempt has been made to suggest a two-parameter Aradhana distribution 

and study its statistical properties, estimation of parameters and applications. The whole paper is 

divided into eleven sections. Section one is introductory in nature. Section 2 deals with the 

derivation of pdf and cdf of a two-parameter Aradhana distribution and the behaviors of its pdf 
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and cdf. Descriptive measures based on moments have been discussed in section three. Reliability 

properties of the distribution have been studied in section four. Deviation from mean and median, 

Bonferroni and Lorenz curves, stress-strength reliability have been discussed in sections five, six 

and seven, respectively. Maximum likelihood estimation and simulation study of the proposed 

distribution are given in sections eight and nine respectively. Finally, the applications and 

concluding remarks are presented in section ten and eleven, respectively.  

II. A TWO-PARAMETER ARADHANA DISTRIBUTION

A two-parameter Aradhana distribution (ATPAD) can be defined by its pdf and cdf 

( ) ( )
3

2

2 2
; , ; 0, 0, 0

2 2

xf x x e x
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  

−
+ + 

= − +    
+ + 

Aradhana distribution with parameter , gamma ( )3, distribution and exponential 

distribution are special cases of ATPAD for ( )1 = , ( )0 =  and  → . The behavior of the pdf 

and the cdf of ATPAD for different values of parameters are shown in figures 1 and 2 

respectively. 

Figure 1: pdf of ATPAD for different values of parameters 
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Figure 2: cdf of ATPAD for different values of parameters 

III. DESCRIPTIVE MEASURES

The r th moment about origin of ATPAD can be obtained as 
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Substituting 1,2,3,4r =  in the above expression, the first four moments about origin (raw

moments) of ATPAD can be obtained as 
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The central moments, using relationship between central moments and raw moments, can thus be 

obtained as 
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Thus, the coefficient of variation (C.V), coefficient of skewness ( )1 , coefficient of kurtosis ( )2 , 

and index of dispersion ( ) of ATPAD are obtained as 
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The graphical relationship between mean and variance of ATPAD to see the over-dispersion, equi-

dispersion and under-dispersion are shown in the following figure 3.  

3: 

Figure 3: Mean and variance of ATPAD 

Behavior of coefficient of variation, skewness, kurtosis and index of dispersion of ATPAD shown in 

figure 4. 
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Figure 4: Behaviors of coefficient of variation, skewness, kurtosis and index of dispersion of ATPAD 
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IV. SOME RELIABILITY PROPERTIES

I. Survival Function

The survival function of ATPAD can be obtained as 

( ) ( )2 2

2 2

2 2 2 2
( ; , ) 1 ( ; , ) ; 0, 0, 0

2 2

xx x e
S x F x x

     
     

  

− + + + + +
 

= − =   
+ +

II. Hazard Function and Mean Residual Life Function

The hazard function of ATPAD can be obtained as 
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The mean residual life function of ATPAD can be obtained as 
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The graphical representation of hazard function and mean residual life function are presented in 

the figure 5 and 6 respectively. From the figure 5 it is cleared that all values of the parameters   

and  hazard function is monotonically increasing. From the figure 6 it is cleared that for all 

values of the parameters   and  mean residual life function is monotonically decreasing. 

Figure 5: Hazard function of ATPAD for various values of the parameters 

RT&A, No 3 (79) 
Volume 19, September 2024

763



R. Shanker, N. K. Soni, R. Shanker, M. Ray and H. R. Prodhani
A TWO-PARAMETER ARADHANA DISTRIBUTION WITH…

Figure 6: Mean residual life function of ATPAD for various values of the parameters 

III. Reverse Hazard Function

Reverse hazard function of ATPAD can be obtained as 

        ( )
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IV. Stochastic Ordering

In probability theory and statistics, a stochastic order quantifies the concept of one random 

variable being bigger than another. A random variable X  is said to be smaller than a random 

variable Y in the: 

i. Stochastic order ( )X Yst  if ( ) ( )F x F yX Y  for all x

ii. Hazard rate order ( )X Yhr  if ( ) ( )h x h yX Y  for all x

iii. Mean residual life order ( )X Ymrl  if ( ) ( )m x m yX Y  for all x

iv. Likelihood ratio order ( )X Ylr  if  
( )

( )

f xX

f yY

 decrease in x

The following results due to Shaked and Shantikumar [9] are well known for establishing 

stochastic ordering of distributions 
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Theorem:  Let ~X ATPAD ( )1 1,  and ~Y ATPAD ( )2 2,  . , If 1 2  and 1 2  or 1 2 = and

1 2  then lrX Y  hence hrX Y , mrlX Y and stX Y . 

Proof:  We have 
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Thus, If 1 2   and 1 2   or 1 2 = and 1 2     ,
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. This means lrX Y

hence hrX Y , mrlX Y and stX Y . 

V. DEVIATION FROM MEAN AND MEDIAN

The amount of scatter in a population is an evidently measured to some extent by the totality of 

deviations from the mean and median. These are known as the mean deviation about the mean 

and mean deviation about median and are defined by 
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Thus 1( )x  and 2 ( )x of ATPAD are obtained as 
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VI. BONFERRONI AND LORENZ CURVES

The Bonferroni and Lorenz curves [10] and Bonferroni and Gini indices have applications not only 

in economics to study income and poverty, but also in other fields like reliability, demography, 

insurance and medicine. The Bonferroni and Lorenz curves are defined as  
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and 
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respectively or equivalently. 

The Bonferroni and Gini indices are obtained as 
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Using the pdf of ATPAD, we get 
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Finally, after little algebraic simplification, the Bonferroni and Gini indices of ATPAD are obtained 

as 

( ) ( ) ( ) 
( )

3 3 2 2 2 2 2 2

2 2

2 3 4 6 4 6

4 6

q

B
q q q e          

  

−

=
+ + + + + + + +

+ +

( ) ( ) ( ) 
( )

3 3 2 2 2 2 2 2

2 2

2 2 3 4 6 4 6
1

4 6

q

G
q q q e          

  

−

=
+ + + + + + + +

−
+ +

VII. STRESS-STRENGTH RELIABILITY

The stress-strength reliability of a component illustrates the life of the component which has 

random strength X  that is subjected to a random stress Y . When the stress of the component Y  

applied to it exceeds the strength of the component X , the component fails instantly, and the 

component will function satisfactorily until X Y . Therefore, )(R P Y X=  is a measure of the 

component reliability and is known as stress-strength reliability in statistical literature. It has 

extensive applications in almost all areas of knowledge especially in engineering such as 

structures, deterioration of rocket motors, static fatigue of ceramic components, aging of concrete 

pressure vessels, etc.   

( )
0

|(Y X) ( )X xYR X X xP P f x d


  == = 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )( )

( )( )( )

2 2

2 2 1 2 2 2 1 2

22 2 2

2 1 2 2 2 1 2 2 2 2 1 2
3

1 322 2 2

2 2 2 1 1 2 2 2 2 1 2

42 2 2

1 2 2 2 2 1 2

52 2 2 2

1 1 1 1 2 2 2 2 1 2

24 48 1

2 4 1 2 2

2 1 2 2

2 2
1

2 2 2 2

       

           


          

      

         

 + + + +
 
 + + + + + + +
 
 + + + + + +
 
 
+ + + +  

= −
+ + + + +

RT&A, No 3 (79) 
Volume 19, September 2024

766



R. Shanker, N. K. Soni, R. Shanker, M. Ray and H. R. Prodhani
A TWO-PARAMETER ARADHANA DISTRIBUTION WITH…

VIII. ESTIMATION AND INFERENCE

Let 1 2( , ,..., )nx x x be a random sample from ATPAD ( , )  , the likelihood function L and the log-

likelihood function, log L are given by 

( )
2

3
2

2 2
12 2

n
n x

i

i

L x e 


  

−

=

 
= + 

+ + 


( ) ( )2 2

1

log 3 log log 2 2 2 log
n

i

i

L n n x n x     
=

= − + + + + −

The maximum likelihood estimates (MLEs) ̂  and  ̂  of   and   are then the solutions of the 

following non-linear equations  

( )
2 2

2 1log 3
0

2 2

nL n
n x
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x

 

    =

+
= − + =

 ++ +


These two natural log likelihood equations do not seem to be solved directly. However, the 

Fisher’s scoring method can be applied to solve these equations. We have 
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The following equations can be solved for MLEs ̂  and  ̂  of   and  of ATPAD 
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IX. THE SIMULATION STUDY

In this section, we carried out simulation study to examine the performance of maximum 

likelihood estimators of the ATPAD. We examined the mean estimates, biases (B), mean square 

errors (MSEs) and variances of the MLEs. The mean, bias, MSE and variance are computed using 

the formulae 

1

1 ˆ
n

i

i

Mean H
n =

=  , ( )
1

1 ˆ
n

i

i

B H H
n =

= − , ( )
2

1

1 ˆ
n

i

i

MSE H H
n =

= − , 2Variance MSE B= −

where ,H  = and ˆˆ ˆ,i iH  = .  

The simulation results for different parameter values of ATPAD are presented in tables 1 and 2 

respectively. The steps for simulation study are as follows: 

a. Data is generated using the acceptance-rejection method of simulation. The acceptance-

rejection method is a commonly used approach in simulation studies to generate random

samples from a target distribution when inverse transform method of simulation is not

feasible or efficient. Acceptance rejection method for generating random samples from the
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ATPAD consists of following steps. 

i. Generate a random variable Y distributed as exponential ( )

ii. Generate U distributed as Uniform ( )0,1

iii. If 
( )

( )

f y
U

M g y
 , then set X Y= (“accept the sample”); otherwise (“reject the sample”) 

and if reject then repeat the process: step (i-iii) until getting the required samples.

Where M is a constant.

b. The sample sizes are taken as 50,100,150,200n =

c. The parameter values are set as values 0.2 = , 1.8 = and 0.2 = , 4.0 =

d. Each sample size is replicated 10000 times

The results obtained in Tables 1 and 2 show that as the sample size increases, biases, MSEs

and variances of the MLEs of the parameters become smaller respectively. This result is in line 

with the first-order asymptotic theory. 

Table-1: The Mean values, Biases, MSEs and Variances of ATPAD for parameter 0.2 = , 1.8 =

Parameters Sample Size Mean Bias MSE Variance 

̂ 20 0.20148 0.00148 0.000004212 0.000002011 

40 0.20094 0.00094 0.000002244 0.000001354 

50 0.20083 0.00083 0.000002477 0.000002009 

100 0.20081 0.00081 0.000002422 0.000001785 

150 0.20079 0.00079 0.000002254 0.000001591 

200 0.20068 0.00068 0.000002251 0.000001557 

̂ 20 1.72273 -0.07726 0.127852500 0.121882500 

40 1.76513 -0.03486 0.062430860 0.061215480 

50 1.77232 -0.02767 0.051223530 0.050457760 

100 1.78933 -0.01066 0.026087550 0.025973800 

150 1.79298 -0.00701 0.017392750 0.017343480 

200 1.78781 -0.00121 0.015850450 0.025702030 

Table-2: The Mean values, Biases, MSEs and Variances of ATPAD for parameter 0.2 = , 4.0 =

Parameters Sample Size Mean Bias MSE Variance 

̂ 20 0.20138 0.001380 0.00000342 0.000001517 

40 0.20110 0.001107 0.00000242 0.000001195 

50 0.20107 0.001077 0.00000224 0.000001082 

100 0.20107 0.001074 0.00000223 0.000001084 

150 0.20096 0.000963 0.00000206 0.000001139 

200 0.20074 0.000742 0.00000173 0.000001799 

̂ 20 4.01832 0.018320 0.00659461 0.00625895 

40 4.00915 0.009156 0.00329730 0.00321346 

50 4.00726 0.007266 0.00263803 0.00258523 

100 4.00484 0.004849 0.00175868 0.00173517 

150 4.00364 0.003640 0.00141901 0.00140576 

200 4.00363 0.003630 0.00131901 0.00130576 
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X. APPLICATIONS

The following real lifetime datasets have been considered for testing the goodness of fit of ATPAD 

over the other two-parameter lifetime distributions. The goodness of fit based on K-S statistic, 

fitted plots of considered distributions for the datasets, p-p plots of considered distributions for the 

datasets and total time in test (TTT) plots for the datasets and the ATPAD confirm that among all 

considered distributions, ATPAD provides much closure fit.  

Data set-1: This censored tri-modal data contains 30 items that is tested when test is stopped 

after 20-th failure. The following data discussed by Murthy et al [11] and the values are: 

0.0014, 0.0623, 1.3826, 2.0130, 2.5274, 2.8221, 3.1544, 4.9835, 5.5462, 5.8196, 5.8714, 

7.4710, 7.5080, 7.6667, 8.6122, 9.0442, 9.1153, 9.6477, 10.1547, 10.7582. 

Description of the data set-1 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.0014 2.7484 5.8455 5.7081 8.7202 10.7582 

Figure 7: TTT- plot of the observed dataset 1 and simulated data of ATPAD respectively 

Data set-2: The following skewed to right, a complete set of data, discussed by Murthy et 

al [11], and reports the failure time of 20 electric bulbs and the observations are: 

1.32, 12.37, 6.56, 5.05, 11.58, 10.56, 21.82, 3.60, 1.33, 12.62, 5.36, 7.71, 3.53, 19.61, 36.63, 0.39, 

21.35, 7.22, 12.42, 8.92. 

Description of the data set-2 

Min. 1st Qu. Median Mean 3rd Qu. Max. 

0.390 4.688 8.315 10.498 12.470 36.630 
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Figure 8: TTT- plot of the observed dataset 2 and simulated data of ATPAD respectively 

In order to compare lifetime distributions, values of 2 log L− , Akaike Information Criterion (AIC), 

Kolmogorov-Smirnov Statistics (K-S) and the corresponding probability value (p-value) for the 

above data set has been computed. The formulae for computing AIC and K-S are as follows:  

2 2klA ogIC L= +− ,    ( ) ( )0| |n
x

D Sup F x F x= −  

where, k = number of parameters,  n = sample size, ( )nF x =  empirical cdf of considered 

distribution and  ( )0F x = cdf of considered distribution 

The distribution corresponding to the lower values of 2 log L− , AIC and K-S Statistics is the best fit 

distribution. The MLEs of parameters of the considered distributions along with their standard 

error, 2log L− , AIC, K-S and p-value of the considered distributions for datasets 1 and 2 are 

presented in tables 3 and 4 respectively. 

Table 3: ML estimates, Standard errors, 2 log L− , AIC, K-S and p-value of the considered distributions for the 

dataset-1 

Distribution ML estimates 

̂ ( )ˆSE 

̂ ( )ˆSE 

2 log L− AIC K-S p-value

ATPAD 0.3896 (0.0806) 

2.4576 (1.9436) 

105.8912 109.8912 0.1837 0.5105 

GAD 0.3896 (0.0806) 

0.4068 (0.3217) 

105.8912 109.8912 0.1949 0.4341 

QAD 0.3896 (0.0806) 

0.9577 (0.6199) 

105.8912 109.8912 0.1971 0.3908 

NQAD 0.3896 (0.0806) 

0.1585 (0.1518) 

105.8912 109.8912 0.1930 0.4696 

PAD 0.5935 (0.1558) 

0.8366 (0.1394) 

106.0269 110.0269 0.1915 0.4687 

WAD 0.4535 (0.1142) 

0.0100 (0.5170) 

107.4734 111.4734 0.1902 0.4346 

GD 0.1513 (0.0552) 

0.8637 (0.2373) 

109.3792 113.3792 0.2530 0.1624 

WD 0.1469 (0.0721) 

1.0892 (0.2209) 

109.5036 113.5036 0.9000 0.0000 
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Table 4: ML estimates, Standard errors, 2 log L− , AIC, K-S and p-value of the considered distributions for the

dataset-2

Distributions ML estimates 

̂ ( )ˆSE 

̂   ( )ˆSE 

2 log L− AIC K-S p-value

ATPAD 0.1866 (0.0565) 

8.1128(9.4833) 

132.9421 136.9421 0.1220 0.9276 

GAD 0.1867 (0.0565) 

0.1232 (0.1440) 

132.9421 136.9421 0.1355 0.8570 

QAD 0.1866 (0.0565) 

1.5147 (1.3803) 

132.9421 136.9421 0.1307 0.8972 

NQAD 0.1869 (0.0558) 

0.0231 (0.0329) 

132.9421 136.9421 0.1459 0.8073 

PAD 0.4421 (0.1225) 

0.7755 (0.1097) 

133.1672 137.1672 0.1343 0.8711 

WAD 0.2625 (0.0710) 

0.0100 (0.6242) 

137.0825 141.0825 0.1425 0.8289 

GD 0.1272(0.0438) 

1.3361 (0.3811) 

133.0916 137.0916 0.1340 0.8729 

WD 0.1000 (0.0776) 

1.0150 (0.2550) 

134.0518 138.0518 0.9830 0.000 

From Table-3 and 4 we observed that the ATPAD has the same  2 log L− , AIC  values but least K-S 

values as compared to GAD (Generalized Aradhana Distribution) of Daniel and Shanker [12] and , 

QAD (Quasi Aradhana Distribution), NQAD (New Quasi Aradhana distribution) and has the least 

2 log L− , AIC, K-S values as compared to PAD (Power Aradhana distribution) of Shanker and

Shukla [13], WAD (Weighted Aradhana distribution) by Ganaie et al [14] and subsequently critical 

study done by Shanker et al [15],  GD (gamma Distribution ) and WD (Weibull distribution) by 

Weibull [16]. 

Hence, we may conclude that ATPAD provides the better fit than GAD, QAD, NQAD, PAD, 

WAD, GD and WD. Further, it is also clear from the fitted plot and P-P plot of two dataset of 

considered distributions in figure 9, 10 and 11, that ATPAD provides a much better fit over GAD, 

QAD, NQAD, PAD, WAD, GD and WD.  

Figure 9: Fitted plot of the considered distribution for the data set-1 and data set-2 
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Figure 10: P-P plot for considerd distributions of the data set-1 
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Figure 11: P-P plot for considerd distributions of the data set-2 

XI. CONCLUSION AND FUTURE WORKS

In this paper, a two-parameter Aradhana distribution which includes Aradhana distribution, 

gamma distribution and exponential distribution are proposed. Its moments and statistical 

properties including survival function, hazard function, mean residual life function, reverse 

hazard function, stochastic ordering have been discussed. Deviations from mean and median, 

Bonferroni and Lorenz curve and their indices, stress strength reliability have also been discussed. 

The parameters of this distribution have been estimated using maximum likelihood estimation. To 

know the performance of maximum likelihood estimates of parameters, a simulation study has 

been presented. Finally, two examples of real lifetime datasets have been considered for 
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applications and compared with GAD, QAD, NQAD, PAD, WAD, GD and WD. It has been found 

that ATPAD provide the best fit than the GAD, QAD, NQAD, PAD, WAD, GD and WD. As this is 

a new two-parameter lifetime distribution, it has the possibility of extension by adding more 

parameter in the distribution to see its performance over other lifetime distributions of same 

parameter. Further, Bayesian method of estimation and ranked set sampling method of estimation 

can also be considered in future to see the efficiency of these two methods of estimation over the 

classical maximum likelihood estimation.  
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Abstract

Reliability Acceptance sampling plan is used to assess whether to accept or reject a product depending on
its lifetime. An inspection carried out for the purpose of determining if lifetime inspections are performing
properly can be tested by submitting a truncated lifetime test. In this paper describes a new approach on
Conditional Repetitive Group Sampling Plan based on Truncated life test is proposed and the lifetime
follows an Exponentiated Generalized Frechet Distribution. For each consumer risk, it is determined
whether minimum sample sizes are required to assert a percentile life. It is calculated that the operating
characteristic function values of the sampling plans as well as the producer’s risk ratio corresponding to
the sampling plans. The results are illustrated with numerical examples and a real-world data set is used
to demonstrate the impact and performance of the suggested acceptance sampling plans.

Keywords: Conditional Repetitive Group Sampling Plan, Exponentiated Generalized Frechet
Distribution, Producer‘s risk, percentile life.

1. Introduction

Quality items always need greater attention and must maintain the manufacturers’ standards
in the highly competitive worldwide market. In order to monitor the product quality, which is
among the most important operations in industries, outgoing or incoming products are checked
thoroughly. A method of quality control which uses statistical methods is known as statistical
quality control. It may be categorized into process control and product control. Acceptance
sampling is one of the statistical methods of statistical quality control. It is used to determine
whether to accept or reject a decision based on the inspection of a sample of items from the lot.
Reliability Acceptance sampling plan is used to determine to accept or reject based on lifetime
of product. Truncated life test is adopted at which the test will terminated at a certain point
of time in the sense that observing the lifetime of the products until it fails is not possible. It
helps to minimize the inspection of time and cost. In acceptance sampling based on truncated
life tests have the following assumptions: (i) the units are destructible or are degraded after the
life test, and (ii) there are several distributions that model the product life reasonably well. The
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purpose of truncated life test used to save the inspection time and cost. A truncated life test may
be conducted to determine the smallest sample size to ensure a certain percentile life of products
when the life test is terminated at a preassigned time t0, and the number of failures observed does
not exceed a given acceptance number. For example, some production companies that routinely
inspect and sample their products based on their production stages before they are released to
market. Accepted lots are sent on for further processing, while rejected lots are either reworked or
scrapped. The sampling plan process are carried out throughout the production process to ensure
that the product meets the desired specifications. Regular audits are also conducted to make
sure all quality standards are consistently met. Finally, customer feedback is used to improve the
production process.

An Exponentiated Generalized Frechet Distribution is used in this paper to calculate a
Conditional Repetitive Group Sampling plan based on a truncated life test. As part of acceptance
sampling plans, it is important to find the minimum sample size, operating characteristics
function, and producer’s risk that exceeds the specified life of the product. Using the reliable
life criterion as a basis for selecting the parameters of the plan, a methodological procedure is
proposed for selecting the parameters of the plan with the desired discrimination protecting
the interests of the producer and the consumer in terms of the acceptable reliable life and the
unacceptable reliable life. As a measure of discrimination, the operating ratio is used to design
the proposed reliability sampling plan.

In Reliability Acceptance Sampling Plan based on truncated life test using various distribution
of review of literature given below: Epstein [5] has developed truncate life test in the Exponential
cases. Goode and kao [6] have developed Sampling Plans Based on the Weibull Distribution.
Gupta [7]has designed the life test sampling plans for Normal and Lognormal Distributions.
Rosaiah and kantam [11] have progressed an acceptance sampling based on the Inverse Rayleigh
Distribution. Rosaiah.et.al [12] have described the source of reliability of test plans for Exponenti-
ated Log-Logistic Distribution. Balakrishnan et.al [4] have designed an acceptance sampling plan
from truncated life tests based on the Generalized Birnbaum-Saunders Distribution. Aslam.et.al
[3] have designed acceptance sampling plan using generalized exponential Distribution. Pradeepa
Veerakumari.et.al [10] have developed for Exponentiated Rayleigh Distribution. Kaviyarasu
et.al[9] have developed for Weibull-Poisson Distribution.

Robert Sherman [14] has introduced an inspection procedure and developed Repetitive Group
Sampling (RGS) plans. Shankar and Mohapatra [13] have introduced the GERT Analysis of
Conditional Repetitive Group Sampling Plan. Anburajan and Ramaswamy[2] have developed a
Conditional Repetitive Group Sampling plan based on Truncated life test using Various distribu-
tions. Jayalakshmi and Kavyamani [8] have designed the Quick Switching conditional Repetitive
Group Sampling Plan through quality decision Region.

Abd-Elfattah et.al [1] have developed a statistical distribution of Exponentiated Generalized
Frechet Distribution. The real time application of Exponentiated Generalized Frechet Distributions
are reliability studies, hydrology, finance and so on.

2. Exponentiated Generalized Frechet Distribution

The Cumulative Distribution Function of Exponentiated Generalized Frechet distribution is

F(x) =
[

1 −
(

1 − exp−
{(σ

x

)λ
})α]β

(1)

The Probability density function of Exponentiated Generalized Frechet distribution is

f (x) = αβλσλx−(λ−1) exp
[
−
(σ

x

)λ
]{

1 − exp
[
−
(σ

x

)λ
]}α−1 {

1 −
[

1 − exp
(
−
(σ

x

)λ
)]α}β−1

(2)
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Where, α, β, λ are Shape parameters and σ be a Scale parameter.
Pr(T ≤ tq) = q

tq = σ

[
− ln

(
1 −

(
1 − (1 − u)

1
β

) 1
α

)]− 1
λ

φq =

[
− ln

(
1 −

(
1 − (1 − u)

1
β

) 1
α

)]− 1
λ

(3)

Replacing the scale parameter σ in equation (1) then we get Cumulative Distribution function for
Exponentiated Generalized Frechet distribution is

F(x) =

[
1 −

(
1 − exp−

{(
σ

φqδq

)λ
})α]β

(4)

Taking a first derivative of partial differentiation with respect to δq, we get

∂F(t, δq)

∂δq
=

e
− 1

φqδq

φqδ2
q

β

1 −
(

1 − exp

{
−
(

1
φqδq

)λ
}α]β−1

−α

[
1 − exp

{
−
(

1
φqδq

)λ
)]α−1

· −λ exp

{
−
(

1
φqδq

)λ−1
} (5)

∂F(t,δq)
∂δq

> 0.The cumulative distribution function F(t, δq) is a non- decreasing function of δq.

3. Conditional Repetitive Group Sampling Plan (CRGS) Based on

Truncated Life Test

Conditional Repetitive Group sampling plan is the extension of Repetitive Group Sampling plan.
The following notations similar to those of Sherman (1965), the proposed conditional RGS plan is
carried out through the following steps:

3.1. Conditions for the application of CRGS

• The production is steady, so the results of previous, present, and future lots can be used as
broad indicators of a process that will continue into the future.

• It is possible to submit isolated lots or a series of lots.

• Inspection is by attributes, when lot quality is defined as the proportion of defective.

• Variation in lot quality may exist.

• Lot has at least one defective unit.

• Lots submitted for inspection may be of low quality.

3.2. Operating procedure of Conditional Repetitive Group Sampling plan

• Step 1: Draw a random sample of size n and determine the number of defectives d found
therein.

• Step 2: Accept the lot, if d ≤ c1. Reject the lot, if d > c2.
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• Step 3: If c1 < d ≤ c2, repeat the steps (1), (2) and (3) provided previous ’i’ lots are accepted
(i.e. in each of the previous ’i’ lots d ≤ c1); otherwise reject the lot.

The proposed plan parameters are (n, c1, c2, i, t
tq
) Where, i=acceptance criterion, Figure 1 repre-

Figure 1: Flow Chart of operating procedure of Conditional Repetitive Group Sampling Plan based on Truncated Life
Test

sents the Operating Procedure of Conditional Repetitive Group Sampling Plan based on Truncated
Life test.We have used binomial models to determine the number of samples. The Operating
Characteristics function of Conditional Repetitive Group Sampling Plan is,

L(P) =
P1

1 − P3Pi
1

(6)

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
ni
)

pi(1 − p)i
]i (7)

Where,

P1 =
c1

∑
i=0

(
n
i

)
pi(1 − p)i

P2 = 1 −
c2

∑
i=0

(
n
i

)
pi(1 − p)i

P3 = 1 − P1 − P2

(8)

The failure probability is expressed as ’p’. As a result of the cumulative distribution function
of the lifetime distributions, these failure probabilities can be determined. These probabilities can
then be used to estimate the percentile lifetime of a product. They can also be used to assess the
reliability of a product, as well as the risk of failure.
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3.3. Minimum Sample Size

Our sampling plan parameters are (n, c1, c2, i, t
tq
) for a given Probability of acceptance P*. We

determine that acceptable exhaust sized lots are possible, as well as that the binomial distribution
may be used. The study is designed to determine the minimum sample size ‘n‘ necessary to
ensure that tq < t0

q.

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
n
i

)
pi(1 − p)i

]i ≤ 1−P∗

(9)
Where, P* is the Probability of acceptance.

The minimum sample size n is determined by calculating the binomial distribution, where n
is the number of samples, c1 is the number of successes in n trials, c2 is the number of failures in
n trials, i is the acceptance criterion and t

tq
is the number of successes that are expected in n trials.

As shown in Table 1, the Exponentiated Generalized Frechet Distribution requires a minimum
sample size n to exceed the actual 50th percentile value.

Table 1: The minimum sample size n for the specified 50th percentile value of the Exponentiated Generalized Frechet
Distribution exceeding the actual 50th percentile value , with probability p∗ and acceptance number c using
binomial approximation.

P∗ i c1 c2

t
tq
0.9 1 1.1 1.2 1.3

0.75

1 0 1 19 3 1 1 1
1 0 2 20 3 2 2 2
1 1 1 36 5 3 2 2
1 1 2 37 5 3 2 2
1 1 3 38 5 3 3 3
3 0 1 20 2 1 1 1
3 0 2 21 3 2 2 2
3 1 1 37 5 3 2 2
3 1 2 38 6 3 2 2
3 1 3 40 7 5 3 3

0.90

1 0 1 30 4 2 1 1
1 0 2 32 6 4 2 2
1 1 1 51 7 4 2 2
1 1 2 53 7 5 2 2
1 1 3 54 7 3 3 3
3 0 1 30 4 2 1 1
3 0 2 32 5 2 2 2
3 1 1 52 7 3 2 2
3 1 2 53 8 6 2 2
3 1 3 54 9 7 3 3

0.95

1 0 1 39 5 3 1 1
1 0 2 40 6 4 2 2
1 1 1 63 8 4 3 3
1 1 2 64 9 5 4 3
1 1 3 65 10 7 4 3
3 0 1 41 6 3 2 2
3 0 2 42 7 3 2 2
3 1 1 64 9 4 3 2
3 1 2 65 10 6 4 3
3 1 3 66 12 7 4 3

0.99

1 0 1 60 7 3 2 2
1 0 2 62 8 4 2 2
1 1 1 88 11 5 3 3
1 1 2 89 12 6 4 3
1 1 3 90 13 7 5 4
3 0 1 62 8 3 2 2
3 0 2 65 10 6 2 2
3 1 1 89 12 5 3 3
3 1 2 90 13 6 4 3
3 1 3 92 15 7 4 3
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3.4. Operating Characteristic Function

The operating characteristic curve plots the relationship between the probability of acceptance of
a product and the specified lifetime of that product. It is required that the operating characteristic
function of the Conditional Repetitive Group sampling plan satisfy the following equation,

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
n
i

)
pi(1 − p)i

]i (10)

Where, p = F(t, δ) and δ can be indicated as a function of δ = t
tq

∴ p = F
(

t
tq

· 1
dq

)
(11)

Where dq =
tq

t0
q
.

The operating characteristic curve helps to identify the optimal sample size for a sampling
plan. It can also be used to compare different sampling plans and determine which one is
more efficient. Table 2 represents the values of operating Characteristic function for using the
acceptance numbers c1 = 0, c2 = 2 and i=1,3 .

3.5. Producer‘s Risk Ratio

A producer’s risk is explained as the probability of rejecting a lot when a lot has a rejection rate
tq > t0

q. Consider the case of a given producer‘s risk, say α . Table 3 represents the minimum
ratio of true lifetime to specified lifetime for the acceptability of a lot with producer‘s risk of 0.05.
Producer‘s risk ratio, which is based on the Conditional Repetitive Group Sampling plan in the
ratio of the specified lifetime to the actual lifetime. It must meet the following conditions:

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
n
i

)
pi(1 − p)i

]i > 1 − α

(12)
Where, p = F( t

tq
. 1
dq
)

4. Applications

4.1. Numerical Illustration

We consider the inspector wants to conduct the inspection for lifetime of battery in Laptop and he
suggests to use the Exponentiated Generalized Frechet distribution with pre-determined known
shape parameters are α = 3, β = 6 and λ = 6. Figure 2 represents the images of battery for Laptop.
The investigator wants to run the experiment for 2700 hours, but the laboratory has testers to
true percentile life time t0.50 = 3000 hours, c1 = 0, c2 = 2, i=3 α = 0.05,β = 0.10,then,ϕ = 1.7045 is
computed from the equation get under the percentile estimator and the minimum ratio and the
minimum sample size is n=3 get the information from the Table 1.
The probability of acceptance is given by (n, c1, c2, i, t/t0.50) = (3, 0, 2, 31.1) with p∗ = 0.95 under

the Exponentiated Generalized Frechet distribution.

Table 4 represents the Operating Characteristic values with p* = 0.95 under Exponentiated
Generalized Frechet Distribution. Figure 3 represents the Operating Characteristic curve for
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Table 2: Operating Characteristic values for Conditional Repetitive Group sampling Plan (n, c1 = 0, c2 = 2, t/t0.50)
for a given p∗ under Exponentiated Generalized Frechet distribution.

P∗ i n t
tq

tq/t0
q

1 1.1 1.2 1.25 1.3 1.4

0.75

1 20 0.9 0.2498 0.9997 1.0000 1.0000 1.0000 1.0000
1 3 1 0.1399 0.9112 1.0000 1.0000 1.0000 1.0000
1 2 1.1 0.0271 0.3108 0.9950 0.9998 1.0000 1.0000
1 2 1.2 0.0019 0.0342 0.6472 0.9113 0.9994 1.0000
1 2 1.3 0.0001 0.0031 0.1227 0.3108 0.8845 0.9985
1 21 0.9 0.2020 0.9991 0.1000 0.1000 0.1000 0.1000
3 3 1 0.1268 0.8199 0.9999 1.0000 1.0000 1.0000
3 2 1.1 0.0264 0.2552 0.9862 0.9995 1.0000 1.0000
3 2 1.2 0.0019 0.0342 0.6472 0.9113 0.9994 1.0000
3 2 1.3 0.0001 0.0031 0.1227 0.3108 0.8845 0.9985

0.90

1 32 0.9 0.0906 0.9993 1.0000 1.0000 1.0000 1.0000
1 6 1 0.0161 0.7092 0.9999 1.0000 1.0000 1.0000
1 4 1.1 0.0006 0.0662 0.9802 0.9994 1.0000 1.0000
1 2 1.2 0.0019 0.0342 0.6472 0.9113 0.9994 1.0000
1 2 1.3 0.0001 0.0031 0.1227 0.3108 0.8845 0.9985
3 34 0.9 0.0868 0.9981 0.1000 0.1000 0.1000 0.1000
3 5 1 0.0319 0.6520 0.9999 1.0000 1.0000 1.0000
3 2 1.1 0.0264 0.2552 0.9862 0.9995 1.0000 1.0000
3 2 1.2 0.0019 0.0331 0.5159 0.8191 0.9984 1.0000
3 2 1.3 0.0001 0.0031 0.1108 0.2552 0.7781 0.9958

0.95

1 40 0.9 0.0479 0.9989 1.0000 1.0000 1.0000 1.0000
1 6 1 0.0161 0.7092 0.9999 1.0000 1.0000 1.0000
1 4 1.1 0.0006 0.0662 0.9802 0.9994 1.0000 1.0000
1 2 1.2 0.0019 0.0342 0.6472 0.9113 0.9994 1.0000
1 2 1.3 0.0001 0.0031 0.1227 0.3108 0.8845 0.9985
3 42 0.9 0.0404 0.9967 0.1000 0.1000 0.1000 0.1000
3 7 1 0.0080 0.5148 0.9999 1.0000 1.0000 1.0000
3 3 1.1 0.0043 0.1268 0.8704 0.9990 1.0000 1.0000
3 2 1.2 0.0019 0.0331 0.5159 0.8191 0.9984 1.0000
3 2 1.3 0.0001 0.0031 0.1108 0.2552 0.7781 0.9985

0.99

1 62 0.9 0.0087 0.9975 1.0000 1.0000 1.0000 1.0000
1 8 1 0.0040 0.5695 0.9999 1.0000 1.0000 1.0000
1 4 1.1 0.0006 0.0662 0.9802 0.9994 1.0000 1.0000
1 2 1.2 0.0019 0.0342 0.6472 0.9113 0.9994 1.0000
1 2 1.3 0.0001 0.0031 0.1227 0.3108 0.8845 0.9985
3 89 0.9 0.9985 0.9999 0.1000 0.1000 0.1000 0.1000
3 12 1 0.0090 0.7167 1.0000 1.0000 1.0000 1.0000
3 6 1.1 0.0033 0.1114 0.9984 0.9999 1.0000 1.0000
3 4 1.2 0.0005 0.0208 0.6963 0.9618 0.9999 1.0000
3 3 1.3 0.0003 0.0091 0.2604 0.5284 0.9808 0.9999
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Table 3: Minimum ratio of true lifetime to specified lifetime for the acceptability of a lot with producer‘s risk of 0.05

P∗ i c1 c2

t
tq

0.9 1 1.1 1.2 1.3

0.75

1 0 1 1.0307 1.0792 1.1147 1.2160 1.3175
1 0 2 1.0290 1.0747 1.1600 1.2655 1.3710
1 1 1 1.0297 1.0684 1.1401 1.1995 1.2992
1 1 2 1.0232 1.0531 1.1161 1.1563 1.2528
1 1 3 1.0211 1.0477 1.1098 1.2105 1.3115
3 0 1 1.0388 1.0741 1.1406 1.2443 1.3478
3 0 2 1.0390 1.0905 1.1801 1.2874 1.3946
3 1 1 1.0304 1.0686 1.1399 1.1993 1.2994
3 1 2 1.0275 1.0711 1.1290 1.1811 1.2796
3 1 3 1.0278 1.0772 1.1652 1.2295 1.3320

0.90

1 0 1 1.0546 1.1130 1.1929 1.2560 1.3606
1 0 2 1.0529 1.1224 1.2192 1.2966 1.4047
1 1 1 1.0521 1.1085 1.1922 1.2817 1.3885
1 1 2 1.0421 1.0888 1.1788 1.1913 1.2907
1 1 3 1.0381 1.1071 1.1343 1.2375 1.3406
3 0 1 1.0618 1.1251 1.2101 1.2832 1.3901
3 0 2 1.0620 1.1309 1.2087 1.3187 1.4286
3 1 1 1.0526 1.1086 1.1747 1.2465 1.3503
3 1 2 1.0457 1.1015 1.1976 1.2156 1.3166
3 1 3 1.0446 1.1038 1.2026 1.2562 1.3611

0.95

1 0 1 1.0678 1.1330 1.2271 1.2788 1.3854
1 0 2 1.0651 1.1343 1.2332 1.3146 1.4244
1 1 1 1.0650 1.1271 1.2101 1.3031 1.4117
1 1 2 1.0524 1.1092 1.1913 1.2846 1.3664
1 1 3 1.0486 1.1071 1.2014 1.2759 1.3575
3 0 1 1.0760 1.1496 1.2416 1.3379 1.4493
3 0 2 1.0751 1.1520 1.2403 1.3364 1.4477
3 1 1 1.0654 1.1311 1.2104 1.3031 1.3790
3 1 2 1.0560 1.1192 1.2088 1.2951 1.3807
3 1 3 1.0544 1.1232 1.2127 1.2916 1.3773

0.99

1 0 1 1.0912 1.1652 1.2550 1.3542 1.4675
1 0 2 1.0890 1.1642 1.2603 1.3513 1.4624
1 1 1 1.0883 1.1624 1.2525 1.3416 1.4538
1 1 2 1.0710 1.1377 1.2232 1.3130 1.3994
1 1 3 1.0653 1.1328 1.2222 1.3036 1.3910
3 0 1 1.0978 1.1757 1.2679 1.3695 1.4850
3 0 2 1.0974 1.1768 1.2885 1.3690 1.4838
3 1 1 1.0876 1.1636 1.2506 1.3412 1.4534
3 1 2 1.0729 1.1439 1.2307 1.3196 1.4107
3 3 3 1.0714 1.1455 1.2327 1.3162 1.4069
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Figure 2: Image of laptop battery

Table 4: (n, c1, c2, i, t
t0.50

) = (3, 0, 2, 3, 1.1) with p∗ = 0.95 under Exponentiated Generalized Frechet Distribution

t0.50
t0
0.50

1 1.1 1.2 1.25 1.3 1.4

L(p) 0.0043 0.1268 0.8904 0.9790 1.0000 1.0000

truncated lifetest using Exponentiated Generalized Frechet distribution.
It reveals that if the true 50th percentile is almost equal to the true 50th percentile (t0.50/t0

0.50 =
1.2) the producer‘s risk nearly 0.9957 (1-0.0043). The producer‘s risk is an almost nearly equal to
Zero whenever the actual 50th percentile is greater than or equal to 1.2 times the specified 50th

percentile.

4.2. Real Data Study

According to Lawless (2012), consider the real data study for lifetime for brake pads to pre-
determine the minimum of thickness of product. In this study follows lifetime distribution of
Exponentiated Generalized Frechet Distribution with known shape Parameters. The values of
data as follows:

First, we check the goodness of fit for given data. The Kolmogorov-Smirnov test, Anderson-
Darling test, Shapiro-Wilk‘s normality test, Histogram, box-plot and the Q-Q plot are all consid-
ered for goodness of fit.

Figure 7 graphically represents the Histogram satisfies the Normality of the given data. We
get the result of Kolmogorov Smirnov test statistic is 0.999, Anderson Darling test is 0.94590 and
the Shapiro-Wilk test is 0.95462. Figure 6 represents the graphically satisfies the Q-Q plot and

38.7, 49.2, 42.4, 73.8, 46.7 ,44.1, 61.9, 39.3, 49.8, 46.3, 56.2,
50.5, 54.9, 54, 49.2, 44.8, 72.2, 107.8, 81.6, 45.2, 124.6, 64,
83, 143.6, 43.4, 69.6, 74.8, 32.9, 51.5, 31.8, 77.6, 63.7, 83,

24.8, 68.8, 68.8, 89.1, 65, 65.1, 59.3, 53.9, 79.4, 47.4, 61.4,
72.8, 61.4, 72.8, 54, 37.2, 44.2, 50.8, 65.5, 86.7, 43.8, 100.6,
67.6, 89.5, 60.3, 103.6, 82.6, 88, 42.4, 68.9, 95.7, 78.1, 83.6,
18.6, 92.6, 42.4, 34.3, 105.6, 68.9, 78.7, 165.5, 79.5, 55, 46.8,

124.5, 92.5, 110, 101.2, 59.4, 27.8, 33.6, 69, 75.2, 58.4, 105.6,
56.2, 55.9, 83.8, 123.5, 69, 101.9, 87.6, 38.8, 74.7
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Figure 3: Operating Characteristic Curve for Exponentiated Generalized Frechet Distribution

Figure 5 represents the box plot of the given data. Hence, the data provides reasonable goodness
of fits for data set.

Assume that the inspector wants to inspect the lifetime of brake pad and he interested to using
Double Sampling plan follows lifetime as Exponentiated Generalized Frechet Distribution. He
wants to conduct the runtime of experiment is 2600hrs but the laboratory has the testers to true
percentile life time t0.10 = 2450 hrs. c1 = 0, c2 = 2, Producer‘s Risk (α) = 0.05, Consumer‘s Risk
(β) = 0.10, i=1 then, ϕ = 1.704 is computed from the equation get under the percentile estimator
and the minimum ratio, t/tq = 1 and minimum sample size is n =7 get the information from the
Table 1. The probability of acceptance is characterized by ((n, c1, c2, i, t/t0.50) = (7, 0, 2, 3, 1) with
P∗ = 0.95 under Exponentiated Generalized Frechet the values of tables are given. Since there
were no items with a failure time less than or equal to 2600 hours in the given sample of n= 7
observations, the experimenter would accept the lot, assuming the 50th percentile lifetime t0.50 of
at least 2450 hours with a confidence level of P¯ = 0.95.

5. Construction of tables

Step 1: Find the value of ϕ for fixing the values of parameters are λ, β,α and q=0.50.Set the
evaluated ϕ=1.0745, c1 = 0, 1, c2 = 1, 2, 3 and t

tq
= 0.9, 1,1.1, 1.2, 1.3 and 1.4.

Step 2: Find the minimum value of n satisfying

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
n
i

)
pi(1 − p)i

]i ≤ 1−P∗

Step 3: Find the operating characteristic function of the Conditional Repetitive Group sampling
plan must satisfy,

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
n
i

)
pi(1 − p)i

]i
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Figure 4: Image of brakepads

Figure 5: Box Plot

Where dq =
tq

t0
q
. Set the evaluated tq

t0
q
=1,1.1, 1.2, 1.25, 1.3 and 1.4.

Step 4: Find the minimum ratio for the acceptability of a lot with producer‘s risk must satisfy the
condition is,

L(P) =
∑c1

i=0

(
n
i

)
pi(1 − p)i

1 −
[

∑c2
i=0

(
n
i

)
pi(1 − p)i − ∑c1

i=0

(
n
i

)
pi(1 − p)i

] [
∑c1

i=0

(
n
i

)
pi(1 − p)i

]i > 1 − α

Where, p = F( t
tq

. 1
dq
)
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Figure 6: Q-Q plot

Figure 7: Histogram

6. Conclusion

In this article deals with Conditional Repetitive Group Sampling plan are designed when the life-
times of the items follow Exponentiated Generalized Frechet Distribution. Conditional Repetitive
group sampling plan is quite flexible and reliable.This sampling plan can also be used to increase
the accuracy of the life tests. It can also help to reduce the sample size, which in turn can help
reduce the costs associated with the life tests. According to the results of this study, as the time
termination ratio increase, the sample size decreases. Further, it has been shown that there is an
increase in the operating characteristic values when the quality is improved. So, it is strongly
suggested that industrial practitioners test electrical components using the proposed plan. This
plan is also cost-effective and efficient, making it an ideal choice for industrial practitioners. It
can be easily adjusted to fit different production requirements. The study will also concentrate
the effectiveness of the sampling plan in terms of accuracy and precision. Finally, the study will
provide recommendations for future research.
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Abstract

In this article we, proposed a new two parameter distribution called inverted power modified Lindley
distribution. The main objective is to introduce an extension to inverted modified Lindley distribution as
an alternative to the inverted exponential, inverted gamma and inverted modified Lindley distributions,
respectively. The proposed distribution is more flexible than the above mentioned distributions in
terms of its hazard rate function. In the part of estimation of the proposed model, we first utilize
the maximum likelihood (ML) estimator and parametric bootstrap confidence intervals, viz., standard
bootstrap, percentile bootstrap, bias-corrected percentile (BCPB), bias-corrected accelerated bootstrap
(BCAB) from the classical point of view as well the Bayesian estimation under different loss functions,
squared error loss function, modified squared error loss function, and Bayes credible interval as to obtain
the model parameter based on order statistics. A simulation study is carried out to check the efficiency of
the classical and the Bayes estimators in terms of mean squared errors and posterior risks, respectively.
Two real life data sets, have been analyzed for order statistics to demonstrate how the proposed methods
may work in practice.

Keywords: Inverted modified Lindley distribution, moments, maximum likelihood estimator,
order statistics, bootstrap confidence intervals, Bayes estimators.

1. Introduction

The inverted modified Lindley (IML) distribution is one of the most famous one-parameter
distributions used for modeling count data, whish was introduced by [5] as a mixture of inverted
exponential and inverted gamma distributions with mixing proportion θ/(1 + θ), to illustrate
diference between fiducial distribution and posterior distribution. [5] pointed out IML distribution
outperforms the classical inverse Lindley distribution for some real data sets. They studied many
properties of this distribution such as moments and inverse moments and also, noted down that
the first four moments of this distribution. Furthermore, the IML distribution does not provide a
reasonable parametric fit for modeling phenomenon with non-monotone failure rates, such as the
upside-down bathtub failure rates, which are common in reliability and biological studies. For
example, such failure rates curves can be observed in the course of a disease whose mortality
reaches a peak after some finite period and then declines gradually.

Several generalizations of Lindley distribution have been attempted by many researchers in
the existing literature such as [18] studied the generalized Lindley, [3] proposed an extended
Lindley, [10] proposed the power Lindley distribution, [2] introduced the exponentiated power
Lindley distribution, [4] proposed exponential Poisson Lindley distribution, [1] proposed a
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new weighted Lindley distribution, [12] proposed Wrapped Lindley distribution, [7] proposed
alpha power transformed inverse Lindley distribution, [7] proposed alpha-power transformed
Lindley distribution, [6] proposed a new modified Lindley distribution without considering
any special function or additional parameters. Recently, [13] introduced power modified Lindly
(PML) distribution. They showed that PML distribution provides better fit than Lindley, Weibull,
gamma, generalized exponential (GE) and power Lindley (PL) distributions and it was suitable
for modeling constant, increasing, decreasing and unimodal shaped hazard rate function.

Many researchers considered the inverted modified Lindley (IML) distribution in their studies.
For example, [14] studied the moments of order statistics and also estimation of the parameters by
using maximum likelihood methods, [15] have established relations for moments of generalized
order statistics and also proposed the estimation procedures under complete and censored data.
This study presents a one parameter extension of the IML distribution by [5]. The presented
distribution shows the flexible shapes of the density and hazard functions and gives better fits
than some well-known lifetime distributions, such as inverted modified Lindley, Modified Lindley
and Lindley distributions. In this article, we propose a three-parameter distribution, referred to
as inverted power modified Lindley (IPML) distribution using a similar idea [18], which is the
linear combination of inverted power exponential and inverted power gamma distribution. We
are motivated to introduce the IPML distribution because (i) it contain lots of aforementioned
of known lifetime models; (ii) it is capable of modelling monotonically increasing, decreasing,
hazard rates; (iii) it can be viewed as a suitable model for fitting the skewed data which may not
be properly fitted by other common distributions and can also be used in a variety of problems
in various areas such as public health, biomedical studies, environmental studies and industrial
reliability and survival analysis; and, (iv) Three real life data applications show that it compares
well with other competing lifetime distributions in modelling lifetime data.

The objective of this paper is three fold: First, we obtain the estimates of model param-
eters based on maximum likelihood method of estimation. The performance of the MLE is
demonstrated in terms of their mean squared errors (MSEs) based on simulated samples and for
different sample sizes through a simulation study. The second objective is to obtain four bootstrap
confidence intervals (BCIs) of model parameters based on MLE. The performances of the BCIs
are demonstrated in terms of their estimated coverage probabilities (CPs) and average widths
(AWs). The third objective is to obtain Bayes estimates (BEs) of the model parameters under four
loss functions (symmetric as well as asymmetric loss functions).

The rest of the paper is organized as follows: In Section 2, we described proposed model
PIML. In Section 3, dealt with some statistical and mathematical properties of PIML distribution.
Section 4 described the MLE and BCIs, namely, standard bootstrap (SB), percentile bootstrap (PB),
bias-corrected percentile bootstrap (BCPB) and bias-corrected accelerated bootstrap (BCAB) based
on MLE have been discussed. Also, we derive the Bayes estimators of the model parameters
under four loss functions. In Section 5, a Monte Carlo simulation study has been carried out
to assess the performances of the above cited classical and Bayes estimators in terms of their
MSEs. Also, we assess the performances of different BCIs and Bayes credible intervals in terms of
coverage probabilities (CPs) and average widths (AWs). For illustrative purposes, two real data
sets are analyzed in Section 6. Finally, concluding remarks are given in Section 7.

2. Model description

The one parameter inverted modified Lindley (IML) distribution proposed by [5] with cumulative
distribution function (CDF)

F(y) =
(

1 +
η

1 + η

1
y

e−η/y
)

e−η/y, y > 0, η > 0.

Now, we introduce a skewness parameter to the inverted modified Lindley distribution using
a similar idea to [9], [10], [16] and [13] i.e., X = Y1/τ , τ > 0 and to obtain a power inverted
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modified Lindley (PIML) distribution. The CDF of the two parameter PIML distribution is given
by

F(x) =
(

1 +
η

1 + η

1
xτ

e−η/xτ
)

e−η/xτ
, x > 0, η > 0, τ > 0, (1)

and the corresponding probability density function (PDF) given by

f (x) =
η

1 + η

τe−2η/xτ

xτ+1

(
(1 + η)eη/xτ

+
2η

xτ
− 1
)

, x > 0, η > 0, τ > 0, (2)

The corresponding survival function for a specified value X = x is obtained as

S(x) = 1 − F(x) = 1 −
(

1 +
η

1 + η

1
xτ

e−η/xτ
)

e−η/xτ
, x > 0, η > 0, τ > 0, (3)

Thus, we can also express the corresponding hazard rate function (HRF) for specified X = x as

h(x) =

η
1+η

τ e−2η/xτ

xτ+1

[
(1 + η)eη/xτ

+ 2η
xτ − 1

]
1 −

(
1 + η

1+η
1

xτ e−η/xτ
)

e−η/xτ
, x > 0, η > 0, τ > 0, (4)

Figure 1: PDF and HRF of the PIML distribution.

From the Figure 1, it is clear that the PDF and HRF of the PIML distribution is right skewed
distribution and initially increasing and then decreasing behaviour for the considered parameters
values and for specified time. The corresponding cumulative hazard rate function is defined by

C(x) = − log S(x) = − log
{

1 −
(

1 +
η

1 + η

1
xτ

e−η/xτ
)

e−η/xτ
}

, x > 0, η > 0, τ > 0. (5)

When τ = 1, the PIML distribution reduces to IML distribution. An advantage of the definition
of f (x) is that we can write it as a linear combination of well established PDFs as

f (x) = f1(x) +
1

2(1 + η)
( f2(x)− f3(x)), (6)

where, f1(x) is inverted exponential with parameter (η, τ), f2(x) is inverted gamma with parame-
ter (2η, 2τ) and f3(x) is inverted exponential with parameter (2η, τ)

f1(x) =
τηe−η/xτ

xτ+1 , f2(x) =
(2η)2τ

x2τ+1 e−2η/xτ
and f3(x) =

2ητ

xτ+1 e−2η/xτ
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3. Statistical and mathematical properties of PIML distribution

Here, we have discussed and derived several mathematical and statistical properties,which are
given in the following subsections.

3.1. Moments and moment generating function

Let X be a random variable from PIML distribution with PDF given in (2), then its moments is
given by the following

µ′
r =

∫ ∞

0
xr f (x)dx =

∫ ∞

0
xr η

1 + η

τe
−2η
xτ

xτ+1

(
(1 + η)e

η
xτ +

2η

xτ
− 1
)

dx

=
∫ ∞

0
xr−τ−1τηe

−η
xτ dx +

1
2(1 + η)

(∫ ∞

0
τ(2η)2xr−2τ−1e

−2η
xτ −

∫ ∞

0
τ(2η)xr−τ−1e

−2η
xτ

)
dx

= ηr/τΓ
(

1 − r
τ

)(
1 − 2r/τ−1

1 + η

( r
τ

))
. (7)

Also, the first four inverse moments are given by

E(Y−1) =
1

η1/τ
Γ
(

1 +
1
τ

)(
1 +

1

2
1
τ +1(1 + η)

(
1
τ

))

E(Y−2) =
1

η2/τ
Γ
(

1 +
2
τ

)(
1 +

1

2
2
τ +1(1 + η)

(
2
τ

))

E(Y−3) =
1

η3/τ
Γ
(

1 +
3
τ

)(
1 +

1

2
3
τ +1(1 + η)

(
3
τ

))

E(Y−4) =
1

η4/τ
Γ
(

1 +
4
τ

)(
1 +

1

2
4
τ +1(1 + η)

(
4
τ

))
.

Table 1 presents the numerical values of these inverse moments for various values of
For any t < η, the moment generating function of PIML distribution can be computed as

Mx(t) =
∫ ∞

0
etx f (x)dx =

∞

∑
p=0

tp

p!
ηp/τΓ

(
1 − p

τ

)(
1 − 2p/τ−1

1 + η
(

p
τ
)

)
.

The characteristic function of PML distribution, ϕ(t) = E(eitx), and the cumulant generating
function of X, K(t) = log ϕ(t), are given by

ϕx(t) =
∞

∑
p=0

(it)p

p!
ηp/τΓ

(
1 − p

τ

)(
1 − 2p/τ−1

1 + η
(

p
τ
)

)
,

and

K(t) = log

(
∞

∑
p=0

(it)p

p!
(η)p/τ

)
+ log

(
Γ(1 − p

τ
)

(
1 − 2p/τ−1

1 + η
(

p
τ
)

))
.
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Table 1: Numerical values related to the moments of the PIML distribution for different values of parameters τ and η.

τ η E(Y−1) E(Y−2) E(Y−3) E(Y−4)
Sim. Exact Sim. Exact Sim. Exact Sim. Exact

2 0.1 3.2638 3.2529 12.3493 12.2727 52.6211 52.1709 248.0657 245.4545
1 0.9622 0.9646 1.1202 1.1250 0.5104 0.5115 2.2327 2.2500
2 0.6637 0.6636 0.5413 0.5417 1.4967 1.5056 0.5392 0.5417
3 0.5332 0.5343 0.3526 0.3542 0.2712 0.2728 0.2347 0.2361
4 0.4585 0.4588 0.2621 0.2625 0.1746 0.1750 0.1309 0.1313
5 0.4074 0.4080 0.2076 0.2083 0.1235 0.1242 0.0829 0.0833

10 0.2843 0.2848 0.1020 0.1023 0.0429 0.0431 0.0203 0.0205
15 0.2312 0.2314 0.0677 0.0677 0.0232 0.0233 0.0090 0.0090
30 0.1631 0.1627 0.0338 0.0336 0.0082 0.0082 0.0023 0.0022

3 0.1 2.1535 2.1552 4.9804 4.9901 12.2332 12.2727 31.6766 31.8211
1 0.9525 0.9520 0.9985 0.9975 1.1270 1.1250 1.3522 1.3481
2 0.7387 0.7400 0.6071 0.6085 0.5407 0.5417 0.5138 0.5142
3 0.6388 0.6396 0.4553 0.4568 0.3523 0.3542 0.2911 0.2934
4 0.5778 0.5774 0.3738 0.3733 0.2630 0.2625 0.1979 0.1974
5 0.5332 0.5337 0.3190 0.3195 0.2079 0.2083 0.1451 0.1454

10 0.4196 0.4195 0.1983 0.1982 0.1024 0.1023 0.0567 0.0566
15 0.3648 0.3651 0.1501 0.1504 0.0676 0.0677 0.0326 0.0327
30 0.2890 0.2886 0.0944 0.0941 0.0337 0.0336 0.0130 0.0129

3.2. Conditional moment, mean deviation, mean residual life and Bonferroni
and Lorenz curves

For the PML distribution, it can be easily seen that the conditional moments E[Xn|X > t], can be
written as E[Xn|X > t] = 1

S(x)µ′
n(t), where

µ
′
n(t) = E(Xn) =

∫ ∞

t
xn f (x)dx =

∫ ∞

t
xn η

1 + η

τe
−2η
xτ

xτ+1

(
(1 + η)e

η
xτ +

2η

xτ
− 1
)

dx

= τη
∫ ∞

t
xn−τ−1e

−η
xτ dx +

τ η

(1 + η)

(
2η
∫ ∞

t
xn−2τ−1e

−2η
xτ dx −

∫ ∞

t
xn−τ−1e

−2η
xτ

)
dx

= ηn/τγ
( η

tτ
, 1 − n

τ

)
+

ηn/τ 2n/τ−1

1 + η

(
γ

(
2η

tτ
, 2 − n

τ

)
− γ

(
2η

tτ
, 1 − n

τ

))
. (8)

The MRL function in terms of the first conditional moment as

η1(t) = E[X|x > t] =
µ′

1(t)
S(x)

,

where µ′
1(t) can be obtained from (8) where n = 1.

If we denote the median by M, then the mean deviations from the mean and the median
can be calculated as

δµ′
1
= 2µ′

1F(µ′
1)− 2µ′

1 + 2
∫ ∞

µ′
1

x f (x)dx = 2µ′
1F(µ′

1)− 2µ′
1

+ τη2(1 + η)i+1 ∑
(k,l)∈J

∞

∑
r=0

r

∑
i=0

i

∑
z=0

z+1

∑
y=0

(
k + l
r + 1

)(
r
i

)(
i
z

)(
z + 1

y

)

× (r + 1)Wk,l
(−1)r+iηzΓ( 1

τ + y + 1, µ′
1)

(1 + η)i+1[ηi + η]
1
τ +y+1

.
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Similarly, the mean deviation of median (δM) is obtained as follows

δM = 2MF(M)− M − µ′
1 + 2

∫ ∞

M
x f (x)dx

and by using the steps used to solve the integral , we get

δM = 2MF(M)− M − µ′
1 + 2τη2 ∑

(k,l)∈J

∞

∑
r=0

r

∑
i=0

i

∑
z=0

z+1

∑
y=0

(
k + l
r + 1

)(
r
i

)(
i
z

)(
z + 1

y

)

× (r + 1)Wk,l
(−1)r+iηzΓ( 1

τ + y + 1, µ′
1)

(1 + δ)i+1[ηi + η]
1
τ +y+1

.

respectively. Where µ′
1(µ) and µ′

1(M) can obtained from (8). Also, F(µ) and F(M) are easily
calculated from (1).

The Bonferroni and Lorenz curves are defined as

B(P) =
1

Pµ

∫ Q

0
x f (x)dx and L(P) =

1
µ

∫ Q

0
x f (x)dx,

respectively, where Q = F−1(P). The Bonferroni and Gini indices are defined by

B = 1 −
∫ 1

0
B(P)dP and G = 1 − 2

∫ 1

0
L(P)dP,

respectively. If X has the pdf in (2), then one can obtain Bonferroni curve of the MPL distribution
as By replacing n=1 and t=q in (8) we get-

B(P) =
η1/τ

Pµ

(
Γ
(

η

qτ
, 1 − 1

τ

)
+

η1/τ21/τ−1

1 + η

(
Γ
(

2η

qτ
, 2 − 1

τ

)
− Γ

(
2η

qτ
, 1 − 1

τ

)))
(9)

and the Lorenz curves L(p) = pB(p).

3.3. Entropy

If X is a continuous random variable having probability density function f (.), then Renyi entropy
is defined as

Rr =
1

1 − r
log
(∫ ∞

0
f r(x)dx

)
, r ̸= 1, r > 0

=
1

1 − r
log

(
τr−1 η

1−r
τ

r

∑
i=0

i

∑
j=0

(−1)j
(

r
i

)(
i
j

)
2i−j Γ(i − j + r + r−1

τ )

(1 + η)i(r + i)i−j+r− r−1
τ

)
. (10)

The r-entropy, say Ir(x), is defined by

Ir(x) =
1

1 − r
log
(

1 −
∫ ∞

0
f r(x)dx

)
, r ̸= 1, r > 0

and then it follows from equation (10).
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3.4. Stress-strength Reliablity

The stress-strength reliability for PIML random variables X ∼ PIML(τ1, η1) and Y ∼ PIML(τ2, η2)
is given by

R = P(X2 < X1) =
∫ ∞

0
F2(x) f1(x)dx = 1 −

∫ ∞

0
F2(x) f1(x)dx

= 1 −
(

∞

∑
i=0

(−1)i

i!

(
η2

(η1)τ2/τ1

)i
Γ
(

iτ2
τ1

+ 1
)
+

1
2(1 + η1)

∞

∑
i=0

(−1)i

i!

 η2

(2η1)
τ2
τ1

i

× Γ
(

iτ2

τ1
+ 2
)
− 1

2(1 + η1)

∞

∑
i=0

(−1)i

i!

(
η2

(2η1)τ2/τ1

)i
Γ
(

iτ2

τ1
+ 1
)

+

(
η2

1 + η2

)(
1

ητ2/τ1
1

)
∞

∑
i=0

(−1)i

i!

(
2η2

(η1)τ2/τ1

)i
Γ
(
(i + 1)τ2

τ1
+ 1
)

+

(
η1η2

(1 + η1)(1 + η2)

)
1

(2η1)
τ2
τ1
+1

∞

∑
i=0

(−1)i

i!

(
2η2

(2η1)τ2/τ1

)i
Γ
(
(i + 1)τ2

τ1
+ 2
)

−
(

η2

2(1 + η1)(1 + η2)

)
1

(2η1)τ2/τ1

∞

∑
i=0

(−1)i

i!

(
2η2

(2η1)τ2/τ1

)i
Γ
(
(i + 1)τ2

τ1
+ 1
))

.

3.5. Order statistics

Let X1, X2, · · · , Xn be a random sample of size n from the PIML distribution and X(1), X(2), · · · , X(n)
be the corresponding order statistics. The probability density function of the rth order statistics is
obtained as follow:

fr:n(x) =
n!

(r − 1)!(n − r)!
[F(x)]r−1[1 − F(x)]n−r f (x).

For the PIML distribution, the pdf of rth order statistic is obtained as

fr:n(x) =
n!

(r − 1)!(n − r)!

n−r

∑
i=0

r+i−1

∑
j=0

(
n − r

i

)(
r + i − 1

j

)
(−1)i

(
η

1 + η

)j+1 1
xτ(j+1)

× e
−2η(j+1)

xτ e
−η(r+i−1)

xτ

(
(1 + η)e

η
xτ +

2η

xτ
− 1
)

.

The rth ordered moment is obtained as

µr:n(x) =
∫ ∞

0
x fr:n(x)dx =

n!
(r − 1)!(n − r)!

n−r

∑
i=0

r+i−1

∑
j=0

(
n − r

i

)(
r + i − 1

j

)
(−1)i

×
(

η

1 + η

)j+1
(
(1 + η)

η
τ j−1

τ +1

Γ
(

τ j−1
τ + 1

)
(2j + r + i)

τ j−1
τ +1

+
2

η
τ j−1

τ +1

Γ
(

τ j−1
τ +

)
(2j + r + i + 1)

τ j−1
τ +2

− 1

η
τ j−1

τ +1

1

(2j + r + i + 1)
τ j−1

τ +1
Γ
(

τ j − 1
τ

+ 1
))

.

4. Parametric estimation of the parameters of PIML distribution

Here, in this Section, we have derived the classical and the Bayesian point and interval estimation
of the model parameters, respectively.
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4.1. Classical estimation

Let x1, x2, · · · , xn be a random sample of size n from the PIML distribution. Then, the likelihood
function is given by

L =
n

∏
i=1

f (xi) =
n

∏
i=1

τη

1 + η

e−2η/xτ
i

xτ+1
i

(
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
)

=
τnηn

(1 + η)n e
−2η ∑n

i=1
1

xτ
i

n

∏
i=1

(
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
) n

∏
i=1

1
xτ+1

i

The corresponding log-likelihood function is

ln L = n ln(τ) + n ln (η)− n ln (1 + η)− 2η
n

∑
i=1

1
xτ

i
+

n

∑
i=1

ln
(
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
)
−

n

∑
i=1

ln(xτ+1
i )

The maximum likelihood estimates of η and τ can be obtained by solving the following non-linear
equations:

∂ ln L
∂η

=
n

η(1 + η)
− 2

n

∑
i=1

1
xτ

i
+

n

∑
i=1

xτ
i eη/xτ

i + (1 + η)eη/xτ
i + 2

xτ
i (1 + η)eη/xτ

i + 2η − xτ
i

= 0,

∂ln L
∂τ

=
n
τ
+ 2η

n

∑
i=1

xτ
i ln (xi)−

n

∑
i=1

x2τ
i η(1 + η)eη/xτ

i ln(xi) + 2ηx2τ
i ln(xi)

xτ
i (1 + η)eη/xτ

i + 2η − xτ
i

−
n

∑
i=1

ln(xi) = 0.

To solve the above equations, non-linear optimization methods such as the quasi-Newton algo-
rithm can be used to obtain the MLEs of τ and η and are denoted by τ̂mle and η̂mle. To estimate δ
and γ, we use two methods of estimation, namely maximum likelihood method and Bayesian
method. Bayesian estimation method will be discussed in the subsequent Section.

Bootstrap confidence interval

Here, we provide a detailed method for constructing the CIs based on bootstrap method. Here,
we consider four CIs based on bootstrap methods: (i) standard bootstrap (SB), (ii) percentile
bootstrap (PB), (iii) bias-corrected percentile bootstrap (BCPB), and (iv) bias-corrected accelerated
bootstrap (BCAB). Below, we provide the algorithm for construction of the bootstrap CIs based
on method of maximum likelihood.

1. Let (X1, X2, ..., Xn) be a random sample of size n drawn from PIML(η, τ). (η̂mle, τ̂mle) of
(η, τ). A bootstrap sample of size n is obtained from the original sample by multiplying 1/n
as mass at each point, denoted by (X∗

1 , X∗
2 , ..., X∗

n).

2. Compute the MLEs (η̂∗
mle, τ̂∗

mle) of (η, τ). The M-th bootstrap estimator of (η, τ) are computed
as

η̂
∗(M)
mle = η̂mle

(
X∗(M)

1 , X∗(M)
2 , ..., X∗(M)

n

)
τ̂
∗(M)
mle = τ̂mle

(
X∗(M)

1 , X∗(M)
2 , ..., X∗(M)

n

)
3. There are total number of nn re-samples. From these re-samples, the entire collection of

R values of η̂∗
mle, τ̂∗

mle from smallest to largest would constitute an empirical bootstrap
distribution as: {

η̂
∗(I)
mle ; I = 1(1)R

}
{

τ̂
∗(I)
mle ; I = 1(1)R

}
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SB

Let

¯̂η∗
mle =

1
R

R

∑
I=1

η̂
∗(I)
mle , s(η̂∗

mle) =

√√√√ 1
(R − 1)

R

∑
I=1

(
η̂
∗(I)
mle − ¯̂η∗

mle

)2
,

¯̂τ∗
mle =

1
R

R

∑
I=1

τ̂
∗(I)
mle , s(τ̂∗

mle) =

√√√√ 1
(R − 1)

R

∑
I=1

(
τ̂
∗(I)
mle − ¯̂τ∗

mle

)2

be the sample means and standard deviations of
{

η̂
∗(I)
mle ; I = 1(1)R

}
,
{

τ̂
∗(I)
mle ; I = 1(1)R

}
, respec-

tively. Then, 100(1 − γ)% SB confidence interval of (η, τ) are given as:{
¯̂η∗
mle − Z(γ/2) × s(η̂∗

mle), ¯̂η∗
mle + Z(γ/2) × s(τ̂∗

mle)
}

,{
¯̂τ∗
mle − Z(γ/2) × s(τ̂∗

mle), ¯̂τ∗
mle + Z(γ/2) × s(τ̂∗

mle)
}

,

where Z(γ/2) is obtained by using upper (γ/2)-th point of the standard normal deviate.

PB

Let η̂
∗(ξ)
mle , τ̂

∗(ξ)
mle are the ξ percentile of

{
η̂
∗(I)
mle ; I = 1(1)R

}
,
{

η̂
∗(I)
mle ; I = 1(1)R

}
, respectively. Then,

a 100(1 − γ)% PB confidence interval of (τ, η) are given as:{
τ̂
∗(R×(γ/2))
mle , τ̂

∗(R×(1−γ/2))
mle

}
,{

η̂
∗(R×(γ/2))
mle , η̂

∗(R×(1−γ/2))
mle

}
,

respectively.
To study the different confidence intervals, we consider their estimated average widths (AWs)

and coverage probabilities (CPs) for each of the considered methods and are given as

AW(τ) =

K
∑

i=1
(Ucli − Lcli)

K
and CP(τ) =

number (Lcl ≤ τ ≤ Ucl)

K
,

AW(η) =

K
∑

i=1
(Ucli − Lcli)

K
and CP(η) =

number (Lcl ≤ η ≤ Ucl)

K
.

4.2. Bayesian estimation

As a powerful and valid alternative to classical estimation, the Bayesian approach suggests a
procedure to combine the observed information with the prior knowledge. Here, for the purpose
of framing the Bayesian analysis, we set assumptions as:

τ ∼ Gamma(τ0, τ1), η ∼ Gamma(η0, η1).

We now consider several (symmetric and asymmetric) loss functions (LS), namely, SELF, WSELF,
MSELF, and PLF. These loss functions with corresponding Bayesian estimators (BS) and posterior
risks (PR) are provided in Table 2.
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Table 2: Five loss functions with corresponding BS and PR.

LS: L(ψ, δ) BS of parameter ψB PR of parameter ρψ

SELF = (ψ − d)2 E(ψ|x) Var(ψ|x)

WSELF = (ψ−d)2

ψ (E(ψ−1|x))−1 E(ψ|x)− (E(ψ−1|x))−1

MSELF =
(

1 − d
ψ

)2 E(ψ−1|x)
E(ψ−2|x) 1 − E(ψ−1|x)2

E(ψ−2|x)

PLF = (ψ−d)2

d

√
E(ψ2|x) 2

(√
E(ψ2|x)− E(ψ|x)

)

Posterior distributions

The joint prior distribution of parameters τ and η under the independent prior distributions

τ ∼ Gamma(τ0, τ1), η ∼ Gamma(η0, η1),

is given as

π(τ, η) =
ττ0

1 η
η0
1

Γ(τ0)Γ(η0)
ττ0−1ηη0−1e−(τ1τ+η1η), (11)

where all the hyper-parameters τ0, τ1, η0 and η1 are positive. Now, let ζ be

ζ(τ, η) = ττ0−1ηη0−1e−(τ1τ+η1η), τ > 0, η > 0,

then, the joint posterior distribution is proportional to the joint prior distribution π(τ, η) and a
given likelihood function L(data) as

π∗(τ, η|data) ∝ π(τ, η)L(data). (12)

In the case of PML distribution, the exact joint posterior PDF of parameters τ and η, is given by

π∗(τ, η|x) = CL(x, Υ)ζ(τ, η) (13)

where

L(x; Υ) =
τnηn

(1 + η)n e
−2η ∑n

i=1
1

xτ
i

n

∏
i=1

[
(1 + η)eη/xτ

i +
2η

xτ
i
− 1
] n

∏
i=1

1
xτ+1

i

, (14)

Υ = (τ, η) and K is normalizing constant and is given by

C−1 =
∫ ∞

0

∫ ∞

0
L(x, Υ)ζ(τ, η)∂η∂τ.

Consequently, the marginal posterior PDF for the elements of vector Υ with Υ = (Υ1, Υ2) = (τ, η),
is given by

π(Υi|x) =
∫ ∞

0
π∗(Υ|x)∂Υj, (15)

where i, j = 1, 2, i ̸= j and Υi is the ith element of vector parameter Υ.

Generating posterior samples

Let f (x|υ) be a general PDF that is labeled with parameter vector υ = (υ1, υ2, ..., υp). Based on a

given sample x and initial parameter vector υ0 = (υ
(0)
1 , υ

(0)
2 , ..., υ

(0)
p ), the Gibbs sampler gives the

values for each iteration with p steps by extracting a new value for each parameter from its full
conditional PDF. In symbols, the steps for each iteration (iteration l), are as follows:
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• Set an initial parameter vector (υ(0)1 , υ
(0)
2 , ..., υ

(0)
p )

• Extract υl
1 from π

(
υ1|υl−1

2 , υl−1
3 , ..., υl−1

p , x
)

• Extract υl
2 from π

(
υ2|υl

1, υl−1
3 , ..., υl−1

p , x
)
; and so on down to

• Extract υl
p from π

(
υp|υl

1, υl
2, ..., υl

p−1, x
)
.

Making use the above GS algorithm, the posterior samples of the parameters τ and η of PML
distribution are generated from the full conditional posterior PDFs

π
(
τ|ηk−1, x

)
∝ ττ0+n−1e−τ1τ

n

∏
i=1

(
(1 + η)xτ−1eηxτ

i + 2ηx2τ−1
i − xτ−1

i

)
e−2ηxτ

i

and

π
(
η|τk−1, x

)
∝

ηη0+n+1 e−η1η(
1 + η

)n

n

∏
i=1

(
(1 + η)xτ−1eηxτ

i + 2ηx2τ−1
i − xτ−1

i

)
e−2ηxτ

i ,

respectively.

5. Comparison via Monte-Carlo Simulation

Here, we have carried out a Monte Carlo simulation study to compare the performances of the
classical and the Bayesian methods of estimation of the parameters (τ, η) of PIML distribution. The
performance of the estimates (classical as well as Bayes) are compared in terms of their MSEs and
posterior risks, respectively. Also, we have obtained four BCIs, namely, SB, PB, BCPB and BCAB
and high posterior density (HPD) credible intervals, respectively. The performance of the CIs are
compared in terms of their AWs and CPs. Here, for the simulation study, we have considered the
sample sizes n = 20, 30, 50, 100 and (τ, η) = (0.5, 2.0), (1.0, 2.0), (0.5, 3.0), (1.0, 3.0), (2.0, 2.0),
respectively. For each of the designs, R = 1, 000 bootstrap samples each of size n are drawn from
the original sample and replicated K = 1, 000 times.

This section presents Monte Carlo simulation results to assess the performance of MLE
mentioned in the previous section. First, we generate different samples with size n from (1) based
upon the inversion method. We compute the mean square errors (MSEs) and biases of the MLEs
of the parameters based on N = 10, 000 iterations. The results are summed up in Table 2 for some
selected parameter values and several sample sizes, n. The results in Table 2 indicate that the
MSEs and biases of the MLEs decrease when the sample size n increases. So, the MLEs of the
parameters are consistent.

5.1. Simulation results using mean squared errors, Bayes risks and nominal
coverage probability as the criterion.

This section is devoted to calculate posterior risk values of Bayes estimators under different
loss functions based on Monte Carlo simulation. We generated samples of different sizes
n = {30, 50, 75, 100} from the PIML distribution for true value of parameters (i) (τ, η) = (2, 0.5)
and (ii) (τ, η) = (1, 2). Table 3 reports the posterior risk values of Bayes estimators under prior
distributions defined in (11) and the aforementioned five loss functions as shown in Table 1. These
results provided by considering hyper parameters values as (τ0, τ1) = (2, 1), (η0, η1) = (4, 2)
for case (i) and (τ0, τ1) = (10, 1), (η0, η1) = (1, 2) and for case (ii) based on 10000 replicates
with 1000 burn-in of MCMC procedure in Open BUGS software. It is evident from Table 4 that
with increasing sample size n, the posterior risk decreases and this confirms the consistency
property. We also observe that as n increases, Bayes estimate of τ based on KL loss function
provide superior performance than other Bayes estimates whereas Bayes estimate of η based on
PL loss function perform better than other loss functions as η decreases.
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Table 4: Posterior risk values of Bayesian estimators under different loss functions based on simulation data set for
different sample sizes.

n Loss (τ, η) = (2, 0.5) (τ, η) = (1, 2)
function rτ̂ rη̂ rτ̂ rη̂

20 SELF 0.183806 0.009075 0.042515 0.154721
WSELF 0.071691 0.026926 0.030225 0.077895
MSELF 0.030278 0.098003 0.022891 0.043705
PLF 0.068412 0.025424 0.029432 0.075577

30 SELF 0.065705 0.007869 0.026909 0.085396
WSELF 0.033654 0.017964 0.021658 0.046136
MSELF 0.018129 0.046110 0.018359 0.026846
PLF 0.032622 0.017514 0.021233 0.045574

50 SELF 0.035856 0.007735 0.014231 0.051113
WSELF 0.020319 0.011983 0.011751 0.027568
MSELF 0.011905 0.019580 0.009982 0.015532
PLF 0.020002 0.011839 0.011603 0.027314

100 SELF 0.024259 0.003219 0.010833 0.029405
WSELF 0.011909 0.006025 0.008129 0.015245
MSELF 0.005946 0.011653 0.006210 0.008089
PLF 0.011784 0.005991 0.008063 0.015200

6. Applications

In this section, we examine the versatility of the PIML model in comparison with the inverted
modified Lindley (IML), modified Lindley (ML) and inverse Lindley (IL) distributions by usage
of three real data sets presented below, which are available in [5]. The box plot of the considered
data set are displyed in Figure 2. To check the validity of the considered data sets with the
proposed model, the goodness-of-fit statistics is considered. Here, we have used built-in package
fitdistrplus of the R open source software (see, Ihaka and Gentleman (1996)) for goodness-of-fit
test. And we derived the unknown parameters by the maximum likelihood estimation (MLE)
method, log likelihood function evaluated at the MLEs (l̂), the values of the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), the values of the Kolmogorov“Smirnov
(K“S) statistic, the corresponding p values and the values of the Anderson-Darling (AD) and
Cram©r von Mises (CM) are compared with IML, IL and also are reported in Table 5.

Data set I: This first data set has been analyzed by [19]. The Open University (1993), which
relates to the prices of the 31 various children’s wooden toys on sale in a Sufolk craft shop in
April 1991, is the source of the first data set. Originally, the data set is: 4.2, 1.12, 1.39, 2, 3.99, 2.15,
1.74, 5.81, 1.7, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3, 12.2, 7.36, 4.75, 11.59, 8.69, 9.8, 1.85, 1.99,
1.35, 10, 0.65, 1.45.

Data set II: The second data set, which was obtained from [17], includes the intervals between
failures for repairable items and the data set is: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59,
0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97,
1.86, 1.17.

Data set III: The third actual data set includes 30 iterations of [11] reported March precipitation
figures for Minneapolis/St. Paul (in inches). The set of data is: 0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47,
1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
1.89, 0.9, 2.05.
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Figure 2: Box plot of the considered data sets I, II and III [[5]].

Table 5: The model fitting summary of the considered data sets I, II and III.

Distribution n (τ̂, η̂) −l̂ AIC BIC KS Statistic p-value AD CM
Data Set I

PIML 30 (1.093,2.233) 73.011 150.023 152.825 0.1017 0.9154 0.4138 0.0546
IML 30 (2.1537) 73.187 148.375 149.776 0.1225 0.7589 0.4082 0.0487
ML 30 (0.2825) 73.00 148.000 149.4016 0.18521 0.2548 0.9004 0.1556
L 30 (0.3999) 73.232 148.464 149.865 0.1832 0.2661 0.8631 0.1478

Data Set II
PIML 30 (0.955,0.941) 45.227 94.454 97.257 0.12767 0.7124 0.9657 0.1387
IML 30 (0.9201) 45.301 92.603 94.004 0.1404 0.5951 0.9454 0.1405
ML 30 (0.7302) 40.749 83.499 84.901 0.0979 0.9355 0.4283 0.0629
L 30 (0.9767) 41.537 85.0740 86.4752 0.1278 0.7108 0.7125 0.1111

Data Set III
PIML 30 (1.362,1.222) 41.608 87.216 90.018 0.1392 0.6058 0.6605 0.0985
IML 30 (1.2473) 43.868 89.736 91.137 0.1974 0.1925 1.391 0.217
ML 30 (0.6644) 41.945 85.889 87.291 0.1566 0.4532 1.1278 0.1723
L 30 (0.9096) 43.1437 88.2874 89.6886 0.1882 0.2383 1.5908 0.2618
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The MLEs of the parameters given in Table 5. The widths of the BCIs and the Bayes estimates
as well as Bayes credible intervals of the model parameters are given in Tables 6 and 5, respectively.

7. Concluding Remarks

In this article, we have proposed a new probability distribution, namely, PIML distribution
by considering the IML distribution. Different statistical characteristics have been deliberated.
Maximum likelihood estimates of the models parameters as well bootstrap confidence intervals
from classical point of view and the Bayes estimates have been obtained. The consistency of the
point and interval estimates have been shown through the simulation study in terms of mean
squared errors, average widths and corresponding coverage probabilities. With the lowest values
of AIC, BIC, AD, CM, KS and highest values of KS p values among all the competitive models,
viz., L, ML and IML, the PIML distribution has been choden the best fitted model to fit the
considered three data sets.
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Abstract

We investigate a continuous review inventory queuing system in the present study that has two
heterogeneous servers: Server-2, which is reliable, and Server-1, which is unreliable. An exponentially
distributed random time is used to describe the repair process when server-1 has an interruption. On the
other hand, server-2 is completely dependable, but it goes on vacation when the system is empty. These
two goods can be reordered under ordering regulations. To ensure customer satisfaction, an emergency
replenishment of one item with no lead time occurs when the on-hand inventory level falls to zero. We
use the matrix analytic approach for the QBD process under a steady-state probability vector. We also
take into account the overall cost and the busy time. Furthermore, numerical data shows the benefits of
the suggested approach in a range of random circumstances.

Keywords: Markovian arrival process, PH-distribution, multiple vacation, two commodity,
working breakdown, emergency replenishment.

AMS Subject Classification (2010): 60K25, 68M30, 90B22.

1. Introduction

Substitution methods are essential for reducing client losses in an inventory-based organization.
While the demand-driven item’s stock-out time, emergency replenishment may be utilized.
Stockouts may be managed and frequently avoided by employing excellent inventory management
methods such as accurate demand forecasts, establishing reorder points, utilizing buffers and
safety stock, and discovering stockout trends and emergency orders using inventory management
software. In circumstances where stockouts are beyond a retailer’s control, it’s necessary to take
efforts to save expenses and prevent dissatisfied consumers, such as proposing or inventing a
product substitute or finding an alternate supplier.

The study [8] examined a (0, S) in a service facility with multiple server vacations and
impatient clients.The combined probability distribution of the inventory level and the number
of customers in the waiting area is calculated under steady-state scenarios. A few system
performance metrics are obtained, and the total estimated cost rate is computed. The two-
commodity (TC) inventory system, in which commodities are split into primary and supplemental
products, was examined by Jeganathan et al. [13]. They examined an individual reordering
strategy for a single commodity inventory with no replenishment period and another commodity
utilised for the (s,Q) policy. An inventory queuing system with Poisson arrival, randomly
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distributed service times, zero lead times, requiring one item per client, and limited waiting room
capacity was studied by Berman and Sapna [3].

Kalyanaraman and Senthilkumar [7] studied two heterogeneous server Markovian queues,
with the first server’s service mode altering at a threshold. If both servers are idle, the consumer
will be served by the faster server. Using MAP arrival and group services, Chakravarthy et al. [4]
investigated the multi-server finite capacity model. They proved that the invariant distribution
of the sojourn time is phase-type if the inter-arrival durations are as well. They also developed
mathematical approaches for determining the invariant density of waiting queue size. Yang et
al. [15] examined a Markovian queue with two servers, malfunctions, and leaves of absence.
They used the usual particle swarm optimization technique for numerical analysis, developed a
heuristic cost model, and investigated their system using the matrix approach.

In a recent article, Laxmi and Soujanya [11] discussed QIS with multiple server working
vacations. They consider both working vacation and multiple vacation, and numerically ana-
lyze the system to determine the best strategy. An (s, Q) replenishment technique was used by
Manikandan and Nair [12] to assess a single server QIS while taking breaks and interruptions into
consideration. Performance data are examined, the steady-state probability vector is calculated,
and the stability condition of the system is established. A busy period analysis and a derived
stationary waiting time distribution for the queue are included in the study.

Yadavalli et al. [16] used a finite source QIS with interruption to conduct research on two
heterogeneity servers. Jeganathan et al. [6] studied a Markovian inventory system with two
queues and customers jockeying. Yadavalli and Jeganathan [17] investigate the impact of two
servers and partial vacations on inventory systems. Suganya et al. [14] proposed an inventory
system with numerous server vacations, as opposed to partial ones.They did, however, take
into account the Markovian Arrival Process (MAP) of clients. A queueing model subject to a
single server that can offer two types of heterogeneous services, closedown, vacation, setup,
immediate feedback, breakdown, and repair was determined by Ayyappan and Gowthami [2].
Ayyappan and Karpagam [1] have discussed a classical model with unreliable server, vacation and
immediate feedback. They have assumed that the unsatisfied customers will be given re-service
immediately without any delay. They have found the PGF of the size of the waiting line and some
interesting performance measures.

2. Model Description

We investigate the two server inventory queueing model, where customers arrive at the system
based on MAP. The parameter matrices D0 and D1 indicate that no customers have arrived at
the system and that customers have arrived, respectively. Dimension m is used by the matrices
D0 and D1. We examine two different kinds of heterogeneous servers here: One among them
does not go on vacation and the other one goes for a vacation after service completion. That is,
the server-1 will always be there in the system but the server-2 will move forward to vacation
after service completion to the customers. The service rendering by the server-1 during normal
mode with representations (γ1, U1) of dimension n1 such that U0

1 + U1e = 0. Likewise, The
service rendering by the server-2 during normal mode is follows the PH-type with representation
(γ2, U2) and of dimension n2 such that U0

2 +U2e = 0. During the server-1 providing service to the
customers who may struck with breakdown and the system has an option: continue delivering
slow service to current customer. During the working breakdown period, the server provide slow
service to current customer and service times are phase type distributed with notation (γ1, θ1U1);
0 < θ1 < 1 of order n1 and rate is µbd = [γ1(−θ1U1)

−1e]−1.

After service completion during this working breakdown period, the system automatically
enters a repair phase. The server will begin a rejuvenating service for the customer, after the repair
process. After service completion, no customer in the system server-2 go for multiple vacation. At
the end of a vacation, when the customers are staying in the system then the server-2 is provided
normal service. Otherwise, server-2 takes another vacation immediately. After received service
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from the service station, the satisfied customer would left out of the system with probability
pi, for i = 1, 2 and if the customer is not satisfied with probability qi, for i=1,2 then they will
get feedback immediately that is, the instantaneous feedback will offer by the same server. The
breakdown and repair times of server-1 follows an exponentially distributed with parameter
ψ and τ respectively. We analyse a stochastic inventory system with two distinct goods in
stock: server-1 (I-commodity) and server-2 (II-commodity). The maximal storage capacity for the
commodity ith is Si (i = 1, 2). The initial commodity with zero lead time follows a (0, S1) ordering
strategy. When the on-hand inventory level of the second commodity falls below a predetermined
level, s2, an order for S2 units is made. The lead time for this order is exponentially distributed
with parameter β. Furthermore, suppose an emergency replenishment of one item with zero lead
time occurs when the on-hand inventory level falls to zero. Emergency replenishment is included
into the system to ensure client happiness. The server-2 does not offer feedback service during
emergency replenishment. The schematic picture of this model is provided in Figure 1.

Figure 1: Schematic representation

3. Analysis

In the following section, we establish the queueing-inventory system’s transition rate matrix. As-
sume that N(t), J1(t), J2(t), I1(t), I2(t), S1(t), S2(t), M(t) described total customers in the system,
status of server-1, status of server-2, stock level for commodity I, stock level for commodity II,
service phase for server-1, service phase for server-2, arrival phases, respectively.

J1(t) =


0, server-1 is idle ,
1, server-1 is busy ,
2, server-1 is busy in WBD mode,
3, server-1 is repair,
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J2(t) =

{
0, server-2 is vacation,
1, server-2 is busy in normal mode,

Consider X(t) = {N(t), J1(t), J2(t), I1(t), I2(t), S1(t), S2(t), M(t)} is a CTMC with state space

Φ = ϕ(0)
⋃

ϕ(1)
∞⋃

i=1

ϕ(i). (1)

where

ϕ(0) ={(0, 0, 0, u1, u2, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u5 ≤ m}
∪ {(0, 3, 0, u1, u2, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u5 ≤ m}

ϕ(1) ={(1, 0, 1, u1, u2, u4, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u4 ≤ n2, 1 ≤ u5 ≤ m}
∪ {(1, 1, 0, u1, u2, u3, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u3 ≤ n1, 1 ≤ u5 ≤ m}
∪ {(1, 2, 0, u1, u2, u3, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u3 ≤ n1, 1 ≤ u5 ≤ m}
∪ {(1, 3, 0, u1, u2, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u5 ≤ m}
∪ {(1, 3, 1, u1, u2, u4, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u4 ≤ n2, 1 ≤ u5 ≤ m}

and for i ≥ 2,
ϕ(i) ={(i, 1, 0, u1, u2, u3, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u3 ≤ n1, 1 ≤ u5 ≤ m}

∪ {(i, 1, 1, u1, u2, u3, u4, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u3 ≤ n1, 1 ≤ u4 ≤ n2, 1 ≤ u5 ≤ m}
∪ {(i, 2, 0, u1, u2, u3, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u3 ≤ n1, 1 ≤ u5 ≤ m}
∪ {(i, 2, 1, u1, u2, u3, u4, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u3 ≤ n1, 1 ≤ u4 ≤ n2, 1 ≤ u5 ≤ m}
∪ {(i, 3, 0, u1, u2, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u5 ≤ m}
∪ {(i, 3, 1, u1, u2, u4, u5) : 1 ≤ u1 ≤ S1, 1 ≤ u2 ≤ S2, 1 ≤ u4 ≤ n2, 1 ≤ u5 ≤ m}

Notations:

• ⊗ - Kronecker product of two matrices of different dimensions.

• ⊕ - Kronecker sum of two matrices of different dimensions.

• e - Column vector has an suitable size with each of its entries as 1.

• e0 - e2S1S2m.

• e1 - e2S1S2n1m+2S1S2n2m+S1S2m.

• e2 - e2S1S2n1m+2S1S2n1n2m+S1S2n2m+S1S2m.

• Ij - Square matrix with jxj size with diagonal entries as 1.

• 0 - It denotes zero matrices in the suitable order.

3.1. Construction of the QBD process for our Model

The generator matrix of the Markov chain under (s, S) policy is given by:

Q =



A00 A01 0 0 0 0 . . . . . .
A10 A11 A12 0 0 0 . . . . . .
0 A21 F1 F0 0 0 . . . . . .
0 0 F2 F1 F0 0 . . . . . .
0 0 0 F2 F1 F0 . . . . . .
...

...
...

. . . . . . . . . . . . . . .


.
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The entries in the block matrices of Q are defined as follows:

A00 =

[
A11

00 0
A21

00 A22
00

]
, A11

00 = IS1 ⊗ P1, A22
00 = IS1 ⊗ P2,

P1 =



C1 0 0 . . . 0 0 . . . 0 C2
0 C1 0 . . . 0 0 . . . 0 C2
0 0 C1 . . . 0 0 . . . 0 C2
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C1 0 . . . 0 C2
0 0 0 . . . 0 C3 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C3 0
0 0 0 . . . 0 0 . . . 0 C3


, P2 =



C5 0 0 . . . 0 0 . . . 0 C6
0 C5 0 . . . 0 0 . . . 0 C6
0 0 C5 . . . 0 0 . . . 0 C6
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C5 0 . . . 0 C6
0 0 0 . . . 0 C7 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C7 0
0 0 0 . . . 0 0 . . . 0 C7


,

C1 = D0 − βIm, C2 = βIm, C3 = D0, C4 = IS2 ⊗ τ Im, C5 = D0 − (τ + β)Im, C6 = βIm,
C7 = D0 − τ Im,

A21
00 =



C4 0 0 . . . 0 0
0 C4 0 . . . 0 0
0 0 C4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C4 0
0 0 0 . . . 0 C4


, A01 =

[
0 A12

01 0 0 0
0 0 0 A24

01 0

]
,

A12
01 =



C8 0 0 . . . 0 0
0 C8 0 . . . 0 0
0 0 C8 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C8 0
0 0 0 . . . 0 C8


, A24

01 =



C9 0 0 . . . 0 0
0 C9 0 . . . 0 0
0 0 C9 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C9 0
0 0 0 . . . 0 C9


,

C8 = IS2 ⊗ γ1 ⊗ D1, C9 = IS2 ⊗ D1,

A10 =


A11

10 0
A21

10 0
0 A32

10
0 0
0 A52

10

 , A11
10 = IS1 ⊗ C10, A21

10 =

[
0 C11

IS1−1 ⊗ C11 0

]
, A32

10 =

[
0 C12

IS1−1 ⊗ C12 0

]
,

A52
10 = IS1 ⊗ C13, C10 =

[
U0

2 ⊗ Im 0
IS2−1 ⊗ q2U0

2 ⊗ Im 0

]
, C11 = IS2 ⊗ q1U0

1 ⊗ Im,

C12 = IS2 ⊗ θ1U0
1 ⊗ Im, C13 =

[
U0

2 ⊗ Im 0
IS2−1 ⊗ q2U0

2 ⊗ Im 0

]
,

A11 =


A11

11 0 0 0 0
0 A22

11 A23
11 0 0

0 0 A33
11 0 0

0 A42
11 0 A44

11 A45
11

A51
11 0 0 0 A55

11

 , A11
11 = IS1 ⊗ P3, A22

11 =



P4 0 0 . . . 0 P5
P5 P4 0 . . . 0 0
0 P5 P4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . P4 0
0 0 0 . . . P5 P4


,
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P3 =



C14 0 0 . . . 0 0 . . . 0 C15
C16 C14 0 . . . 0 0 . . . 0 C15
0 C16 C14 . . . 0 0 . . . 0 C15
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C14 0 . . . 0 C15
0 0 0 . . . C16 C17 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C17 0
0 0 0 . . . 0 0 . . . C16 C17


, C14 = U2 ⊕ D0 − βIn2m, C15 = βIn2m,

C16 = p2U0
2 γ2 ⊗ Im, C17 = U2 ⊕ D0, P4 =



C18 0 0 . . . 0 0 . . . 0 C19
0 C18 0 . . . 0 0 . . . 0 C19
0 0 C18 . . . 0 0 . . . 0 C19
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C18 0 . . . 0 C19
0 0 0 . . . 0 C20 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C20 0
0 0 0 . . . 0 0 . . . 0 C20


,

C18 = U1 ⊕ D0 − (β + ψ)In1m, C19 = βIn1m, C20 = U1 ⊕ D0, P5 = IS2 ⊗ p1U0
1 γ1 ⊗ Im,

A23
11 =



C21 0 0 . . . 0 0
0 C21 0 . . . 0 0
0 0 C21 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C21 0
0 0 0 . . . 0 C21


, C21 = IS2 ⊗ en1 ⊗ γ1 ⊗ ψIm,

A33
11 = IS1 ⊗ P6, A42

11 =



C25 0 0 . . . 0 0
0 C25 0 . . . 0 0
0 0 C25 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C25 0
0 0 0 . . . 0 C25


, A44

11 = IS1 ⊗ P7,

P6 =



C22 0 0 . . . 0 0 . . . C23
0 C22 0 . . . 0 0 . . . C23
0 0 C22 . . . 0 0 . . . C23
...

...
...

. . .
...

...
...

...
0 0 0 . . . C22 0 . . . C23
0 0 0 . . . 0 C24 . . . 0
...

...
...

. . .
...

...
...

...
0 0 0 . . . 0 0 . . . 0
0 0 0 . . . 0 0 . . . C24


, P7 =



C26 0 0 . . . 0 0 . . . C27
0 C26 0 . . . 0 0 . . . C27
0 0 C26 . . . 0 0 . . . C27
...

...
...

. . .
...

...
...

...
0 0 0 . . . C26 0 . . . C27
0 0 0 . . . 0 C28 . . . 0
...

...
...

. . .
...

...
...

...
0 0 0 . . . 0 0 . . . 0
0 0 0 . . . 0 0 . . . C28


,

C22 = θU1 ⊕ D0 − βIn1m, C23 = βIn1m, C24 = θU1 ⊕ D0, C25 = IS2 ⊗ γ1 ⊗ τ Im,
C26 = D0 − (τ + η + β)Im, C27 = βIm, C28 = D0 − (τ + η)Im,
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A45
11 =



C29 0 0 . . . 0 0
0 C29 0 . . . 0 0
0 0 C29 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C29 0
0 0 0 . . . 0 C29


, A51

11 =



C30 0 0 . . . 0 0
0 C30 0 . . . 0 0
0 0 C30 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C30 0
0 0 0 . . . 0 C30


,

C29 = IS2 ⊗ γ2 ⊗ η Im, C30 = IS2 ⊗ In2 ⊗ τ Im, A55
11 = IS1 ⊗ P7,

P7 =



C31 0 0 . . . 0 0 . . . 0 C32
C33 C31 0 . . . 0 0 . . . 0 C32
0 C33 C31 . . . 0 0 . . . 0 C32
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C31 0 . . . 0 C32
0 0 0 . . . C33 C34 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C34 0
0 0 0 . . . 0 0 . . . C33 C34


,

where
C31 = U2 ⊕ D0 − (τ + β)In2m, C32 = βIn2m, C33 = p2U0

2 γ2 ⊗ Im, C34 = U2 ⊕ D0 − τ In2m,

A12 =


0 A12

12 0 0 0 0
A21

12 0 0 0 0 0
0 0 A33

12 0 0 0
0 0 0 0 A45

12 0
0 0 0 0 0 A55

12

 , A12
12 =



C35 0 0 . . . 0 0
0 C35 0 . . . 0 0
0 0 C35 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C35 0
0 0 0 . . . 0 C35


,

A21
12 =



C36 0 0 . . . 0 0
0 C36 0 . . . 0 0
0 0 C36 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C36 0
0 0 0 . . . 0 C36


, C35 = IS2 ⊗ γ1 ⊗ In2 ⊗ D1, C36 = IS2 ⊗ In1 ⊗ D1,

A33
12 =



C37 0 0 . . . 0 0
0 C37 0 . . . 0 0
0 0 C37 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C37 0
0 0 0 . . . 0 C37


, A45

12 =



C38 0 0 . . . 0 0
0 C38 0 . . . 0 0
0 0 C38 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C38 0
0 0 0 . . . 0 C38


,

C37 = IS2 ⊗ In1 ⊗ D1, C38 = IS2 ⊗ D1, A45
12 =



C39 0 0 . . . 0 0
0 C39 0 . . . 0 0
0 0 C39 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C39 0
0 0 0 . . . 0 C39


,
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C39 = IS2 ⊗ In2 ⊗ D1, A21 =



0 A12
21 0 0 0

A21
21 A22

21 0 0 0
0 0 0 A34

21 0
0 0 A43

21 0 A45
21

0 0 0 0 0
0 0 0 0 A65

21

 , A12
21 =

[
0 C40

IS1−1 ⊗ C40 0

]
,

A21
21 = IS1 ⊗ C41, A22

21 =

[
0 C42

IS1−1 ⊗ C42 0

]
, C40 = IS2 ⊗ q1U0

1 γ1 ⊗ Im,

C41 =

[
en1 ⊗ U0

2 γ1 ⊗ Im 0
IS2−1 ⊗ en1 ⊗ q2U0

2 γ1 ⊗ Im 0

]
, C42 = IS2 ⊗ en2 ⊗ q1U0

1 γ2 ⊗ Im, A34
21 =

[
0 C43

IS1−1 ⊗ C43 0

]
,

A43
21 = IS1 ⊗ C44, A45

21 =

[
0 C45

IS1−1 ⊗ C45 0

]
, A65

21 = IS1 ⊗ C46, C43 = IS2 ⊗ θU0
1 ⊗ Im,

C44 =

[
In1 ⊗ U0

2 ⊗ Im 0
IS2−1 ⊗ In1 ⊗ q2U0

2 ⊗ Im 0

]
, C45 = IS2 ⊗ θU0

1 ⊗ In2m, C46 =

[
U0

2 γ2 ⊗ Im 0
IS2−1 ⊗ q2U0

2 γ2 ⊗ Im 0

]
,

F1 =



F11
1 F12

1 F13
1 0 0 0

0 F22
1 F23

1 0 0 0
0 0 F33

1 F34
1 0 0

0 0 0 F44
1 0 0

F51
1 0 0 0 F55

1 F56
1

0 F62
1 0 0 0 F66

1

 , F11
1 =



P8 0 0 . . . 0 P9
P9 P8 0 . . . 0 0
0 P9 P8 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . P8 0
0 0 0 . . . P9 P8


,

P8 =



C47 0 0 . . . 0 0 . . . 0 C48
0 C47 0 . . . 0 0 . . . 0 C48
0 0 C47 . . . 0 0 . . . 0 C48
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C47 0 . . . 0 C48
0 0 0 . . . 0 C49 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C49 0
0 0 0 . . . 0 0 . . . 0 C49


, P9 = IS2 ⊗ p1U0

1 γ1 ⊗ Im,

C47 = U1 ⊕ D0 − (η + β + ψ)In1m, C48 = βIn1m, C49 = U1 ⊕ D0 − (η + ψ)In1m,

F12
1 =



C50 0 0 . . . 0 0
0 C50 0 . . . 0 0
0 0 C50 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C50 0
0 0 0 . . . 0 C50


, F13

1 =



C51 0 0 . . . 0 0
0 C51 0 . . . 0 0
0 0 C51 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C51 0
0 0 0 . . . 0 C51


,

C50 = IS2 ⊗ In1 γ2 ⊗ η Im, C51 = IS2 ⊗ en1 ⊗ γ1 ⊗ ψIm,

F22
1 =



P10 0 0 . . . 0 P11
P11 P10 0 . . . 0 0
0 P11 P10 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . P10 0
0 0 0 . . . P11 P10


, F24

1 =



C57 0 0 . . . 0 0
0 C57 0 . . . 0 0
0 0 C57 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C57 0
0 0 0 . . . 0 C57


,
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P10 =



C52 0 0 . . . 0 0 . . . 0 C53
C54 C52 0 . . . 0 0 . . . 0 C53
0 C54 C52 . . . 0 0 . . . 0 C53
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C52 0 . . . 0 C52
0 0 0 . . . C54 C55 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C55 0
0 0 0 . . . 0 0 . . . C54 C55


, P11 =



C56 0 0 . . . 0 0
0 C56 0 . . . 0 0
0 0 C56 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C56 0
0 0 0 . . . 0 C56


,

where
C52 = U1 ⊕ U2 ⊕ D0 − (ψ + β)In1n2m, C53 = βIn1n2m, C54 = In1 ⊗ p2U0

2 γ2 ⊗ Im,
C55 = U1 ⊕ U2 ⊕ D0 − ψIn1n2m, C56 = IS2 ⊗ p1U0

1 γ1 ⊗ In2m, C57 = IS2 ⊗ en1 ⊗ γ1 ⊗ ψIn2m,
F33

1 = IS1 ⊗ P12,

P12 =



C58 0 0 . . . 0 0 . . . 0 C59
0 C58 0 . . . 0 0 . . . 0 C59
0 0 C58 . . . 0 0 . . . 0 C59
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C58 0 . . . 0 C59
0 0 0 . . . 0 C60 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C60 0
0 0 0 . . . 0 0 . . . 0 C60


,

C58 = θU1 ⊕ D0 − (η + β)In1m, C59 = βIn1m, C60 = θU1 ⊕ D0 − η In1m,

F34
1 =



C61 0 0 . . . 0 0
0 C61 0 . . . 0 0
0 0 C61 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C61 0
0 0 0 . . . 0 C61


, F44

1 =



C62 0 0 . . . 0 0 . . . 0 C63
C64 C62 0 . . . 0 0 . . . 0 C63
0 C64 C62 . . . 0 0 . . . 0 C63
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C62 0 . . . 0 C63
0 0 0 . . . C64 C65 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C65 0
0 0 0 . . . 0 0 . . . C64 C65


,

where
C61 = IS2 ⊗ In1 ⊗ γ2 ⊗ η Im, C62 = θU1 ⊕ U2 ⊕ D0 − βIn1n2m, C63 = βIn1n2m,
C64 = In1 ⊗ p2U0

2 γ2 ⊗ Im, C65 = θU1 ⊕ U2 ⊕ D0,

F51
1 =



C66 0 0 . . . 0 0
0 C66 0 . . . 0 0
0 0 C66 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C66 0
0 0 0 . . . 0 C66


, F55

1 = IS1 ⊗ P13,

F56
1 =



C70 0 0 . . . 0 0
0 C70 0 . . . 0 0
0 0 C70 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C70 0
0 0 0 . . . 0 C70


, P13 =



C67 0 0 . . . 0 0 . . . 0 C68
0 C67 0 . . . 0 0 . . . 0 C68
0 0 C67 . . . 0 0 . . . 0 C68
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C67 0 . . . 0 C68
0 0 0 . . . 0 C69 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C69 0
0 0 0 . . . 0 0 . . . 0 C69


,

where
C66 = IS2 ⊗ γ1 ⊗ τ Im, C67 = D0 − (τ + η + β)Im, C68 = βIm, C69 = D0 − (η + τ)Im,
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C70 = IS2 ⊗ γ2 ⊗ η Im, F62
1 =



C71 0 0 . . . 0 0
0 C71 0 . . . 0 0
0 0 C71 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C71 0
0 0 0 . . . 0 C71


, C71 = IS2 ⊗ γ1 ⊗ τ In2m,

F66
1 =



C72 0 0 . . . 0 0 . . . 0 C73
C74 C72 0 . . . 0 0 . . . 0 C73
0 C74 C72 . . . 0 0 . . . 0 C73
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . C72 0 . . . 0 C73
0 0 0 . . . C74 C75 . . . 0 0
...

...
...

. . .
...

...
...

...
...

0 0 0 . . . 0 0 . . . C75 0
0 0 0 . . . 0 0 . . . C74 C75


,

where
C72 = U2 ⊕ D0 − (τ + β)In2m, C73 = βIn2m, C74 = p2U0

2 γ2 ⊗ Im, C75 = U2 ⊕ D0 − τ In2m,

F0 =



F11
0 0 0 0 0 0
0 F22

0 0 0 0 0
0 0 F33

0 0 0 0
0 0 0 F44

0 0 0
0 0 0 0 F55

0 0
0 0 0 0 0 F66

0

 , F11
0 =



C76 0 0 . . . 0 0
0 C76 0 . . . 0 0
0 0 C76 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C76 0
0 0 0 . . . 0 C76


,

F22
0 =



C77 0 0 . . . 0 0
0 C77 0 . . . 0 0
0 0 C77 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C77 0
0 0 0 . . . 0 C77


, C76 = IS2 ⊗ In1 ⊗ D1, C77 = IS2 ⊗ In1n2 ⊗ D1,

F33
0 =



C78 0 0 . . . 0 0
0 C78 0 . . . 0 0
0 0 C78 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C78 0
0 0 0 . . . 0 C78


, F44

0 =



C79 0 0 . . . 0 0
0 C79 0 . . . 0 0
0 0 C79 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C79 0
0 0 0 . . . 0 C79


,

where
C78 = IS2 ⊗ In1 ⊗ D1, C79 = IS2 ⊗ In1n2 ⊗ D1

F55
0 =



C80 0 0 . . . 0 0
0 C80 0 . . . 0 0
0 0 C80 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C80 0
0 0 0 . . . 0 C80


, F66

0 =



C81 0 0 . . . 0 0
0 C81 0 . . . 0 0
0 0 C81 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . C81 0
0 0 0 . . . 0 C81


,

C80 = IS2 ⊗ D1, C81 = IS2 ⊗ In2 ⊗ D1,
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F2 =



F11
2 0 0 0 0 0
0 F22

2 0 0 0 0
0 0 0 0 F35

2 0
0 0 0 F44

2 0 0
0 0 0 0 0 0
0 0 0 0 0 F66

2

 , F11
2 =

[
0 C82

IS1−1 ⊗ C82 0

]
,

F22
2 =



P14 0 0 . . . 0 P15
P15 P14 0 . . . 0 0
0 P15 P14 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . P14 0
0 0 0 . . . P15 P14


,

where

C82 = IS2 ⊗ q1U0
1 γ1 ⊗ Im, P14 =

[
In1 ⊗ U0

2 γ2 ⊗ Im 0
IS2−1 ⊗ In1 ⊗ q2U0

2 γ2 ⊗ Im 0

]
, P15 = IS2 ⊗ q1U0

1 γ1 ⊗ In2m,

F35
2 =

[
0 C83

IS1−1 ⊗ C83 0

]
, F44

2 =

[
0 C84

IS1−1 ⊗ C84 0

]
, F66

2 = IS2 ⊗ C85,

where

C83 = IS2 ⊗ θU0
1 ⊗ Im, C84 = IS2 ⊗ θU0

1 ⊗ In2m, C85 =

[
U0

2 γ2 ⊗ Im 0
IS2−1 ⊗ q2U0

2 γ2 ⊗ Im 0

]
.

3.2. Stability condition

To discuss the stability condition, we first consider the generator matrix F = F0 + F1 + F2. The
vector χ is the invariant vector of the matrix F. Then, relations χF = 0 and χe = 1 and The
LIQBD fashion with infinitesimal generator Q is stable if and only if

χF0e < χF2e.

The stability obtained after some mathematical rearranging is shown below:

χ0[eS1S2n1 ⊗ D1em] + χ1[eS1S2n1n2 ⊗ D1em] + χ2[eS1S2n1 ⊗ D1em] + χ3[eS1S2n1n2 ⊗ D1em]

+ χ4[eS1S2 ⊗ D1em] + χ5[eS1S2n2 ⊗ D1em] < χ0[eS2 ⊗ q1U0
1 ⊗ em]

+ χ1

(
eS1 ⊗ [(en1 ⊗ U0

2 ⊗ em + q1U0
1 ⊗ en2m) + eS2−1 ⊗ (en1 q2U0

2 ⊗ em + q1U0
1 ⊗ en2m)]

)
+ χ2[eS1S2 ⊗ θU0

1 ⊗ en1m] + χ3[eS1S2 ⊗ θU0
1 ⊗ en2m]

+ χ5

(
eS1 ⊗ [U0

2 ⊗ em + eS2−1 ⊗ q2U0
2 ⊗ em]

)
.

3.3. The steady state probability vector

Let X be the steady state probability vector of the infintesimal generator Q of the process
{X(t): t ≥ 0}. The subdivision of X = (x0, x1, x2, ...), where x0 is of dimension 2(S1S2m), x1 is
of dimension 2(S1S2n2m) + 2(S1S2n1m) + S1S2m and x2, x3, ... are of dimension 2(S1S2n1m) +
2(S1S2n1n2m) + S1S2m + S1S2n2m. As X is a vector satisfies the relation

XQ = 0 and Xe = 1.

The probability vector X follows a matrix geometric structure under the steady state is

xj = x2Rj−1, j ≥ 3 (2)
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where R is the quadratic equation’s lowest non-negative solution

R2F2 + RF1 + F0 = 0

and the vector x0, x1andx2 are obtained with the help of succeeding equations:

x0 A00 + x1 A10 = 0, (3)

x0 A01 + x1 A11 + x2 A21 = 0, (4)

x1 A12 + x2[F1 + RF2] = 0, (5)

subject to a condition normalization

x0e0 + x1e1 + x2[I − R]−1e2 = 1. (6)

Computing the rate matrix R is necessary before attempting to solve the set of equations men-
tioned above. However, [9] used Logarithmic reduction approach, an algorithm that makes it
simple to produce R.

4. System characteristics

• Probability of the system is empty:

Pempty = x0e0.

• The probability of the server-1 is idle:

Pidle =
S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

x000u1u2u5 +
S1

∑
u1=1

S2

∑
u2=1

n2

∑
u4=1

m

∑
u5=1

x101u1u2u4u5 .

• The probability of the server-2 is on vacation:

Pvac =
S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

x000u1u2u5 +
S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

x030u1u2u5

+
S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

x110u1u2u3u5 +
S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

x120u1u2u3u5

+
S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

x130u1u2u5 +
∞

∑
i=2

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

xi10u1u2u3u5

+
∞

∑
i=2

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

xi20u1u2u3u5 +
∞

∑
i=2

S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

xi30u1u2u5 .

• The probability of the server-1 is offering service in normal mode:

PS1B =
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

xi10u1u2u3u5 +
∞

∑
i=2

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

n2

∑
u4=1

m

∑
u5=1

xi11u1u2u3u4u5 .

• The probability of the server-1 is offering service in working breakdown:

PS1WBD =
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

xi20u1u2u3u5 +
∞

∑
i=2

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

xi21u1u2u3u4u5 .
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• The probability of the server-2 is offering service in normal mode:

PS2B =
S1

∑
u1=1

S2

∑
u2=1

n2

∑
u4=1

m

∑
u5=1

x101u1u2u4u5 +
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

n2

∑
u4=1

m

∑
u5=1

xi31u1u2u4u5

+
∞

∑
i=2

S1

∑
u1=1

S2

∑
u2=1

n1

∑
u3=1

n2

∑
u4=1

m

∑
u5=1

xi21u1u2u3u4u5 .

• The probability of the server-1 is on Repair:

PS1R =
S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

x030u1u2u5 +
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

m

∑
u5=1

xi30u1u2u5

+
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

n2

∑
u4=1

m

∑
u5=1

xi31u1u2u4u5 .

• Expected number of customers in the system:

Esystem =
∞

∑
i=1

ixie = x1e1 + x2[2(I − R)−1 + R(I − R)−2]e2.

• Expected first inventory level:

EIL1 =
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

u1xi(u1, u2)

• Expected first inventory level:

EIL2 =
∞

∑
i=1

S1

∑
u1=1

S2

∑
u2=1

u2xi(u1, u2)

• Expected reorder rate with first commodity

ERR1 =
∞

∑
i=1

S2

∑
u2=1

n1

∑
u3=1

m

∑
u5=1

[xi101u2u3u5(U
0
1 γ1 ⊗ Im)e + xi201u2u3u5(θU0

1 ⊗ Im)e]

+
∞

∑
i=2

S2

∑
u2=1

n1

∑
u3=1

n2

∑
u4=1

m

∑
u5=1

xi111u2u3u4u5(U
0
1 γ1 ⊗ In2m)e

+
∞

∑
i=2

S2

∑
u2=1

n1

∑
u3=1

n2

∑
u4=1

m

∑
u5=1

xi211u2u3u4u5(U
0
1 γ1 ⊗ In2m)e.

• Expected reorder rate with second commodity

ERR2 =
S1

∑
u1=1

n2

∑
u4=1

m

∑
u5=1

x101u1(s2+1)u5
(U0

2 ⊗ Im)e

+
∞

∑
i=2

S2

∑
u2=1

n1

∑
u3=1

n2

∑
u4=1

m

∑
u5=1

[xi11u1(s2+1)u3u4u5
+ xi21u1(s2+1)u3u4u5

](In1 ⊗ U0
2 γ2 ⊗ Im)e

+
∞

∑
i=1

S2

∑
u2=1

n2

∑
u4=1

m

∑
u5=1

xi31u1(s2+1)u4u5
(U0

2 γ2 ⊗ In2m)e.
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5. Cost Analysis

The cost function for our model was created with the premise that each cost element (per
unit of time) correlates to a distinct system measure.

• CI1 - the first item in inventory with a cost per unit

• CI2 - the second item in the inventory with a cost per unit

• CH - storing a customer’s cost in the system for each unit of time.

• CR1 -setup costs for each order of the primary item

• CR2 - Setup costs for each order of complimentary items

TC = CI1 EIL1 + CI2 EIL2 + CHEsystem + CR1 ERR1 + CR2 ERR2

6. Numerical Implementation

To compute numerical outcomes, we have employed diverse MAP demonstrations for the incom-
ing arrival in a manner that ensures their mean values are 1, as recommended by [5].

• Erlang arrival (ERA):

D0 =

[
−2 2
0 −2

]
D1 =

[
0 0
2 0

]
• Exponential arrival (EXA):

D0 = [−1]D1 = [1]

• Hyper exponential arrival (HEXA):

D0 =

[
−1.90 0

0 −0.19

]
D1 =

[
1.710 0.190
0.171 0.019

]
• MAP-Negative Correlation arrival (MNCA):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258


• MAP-Positive Correlation arrival (MPCA):

D0 =

 −1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

 D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539


Consider the following PH-distributions for the service and repair progression:

• Erlang service (ERS):

γ = [1, 0] U =

[
−2 2
0 −2

]
• Exponential service (EXS):

γ = [1] U = [−1]

• Hyper exponential service (HEXS):

γ = [0.8, 0.2] U =

[
−2.8 0

0 −0.28

]
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6.1. Illustrative 1

We examine the consequence of the service rate of server-2 (µ2) versus the expected system size
(Esystem) in the Table 1-3. We fix λ = 1, µ1 = 12, η = 1, β = 1, ψ = 1, τ = 2, S1 = 4, S2 = 6,
s2 = 3, p1 = 0.5, q1 = 1 − p1, p2 = 0.5, q2 = 1 − p2, θ = 0.6, such that the system remains stable.
The observation from Table 1-3 as follows:

• While we maximize the service rate of the server-2 then the corresponding Esystem decreases
with the combination of arrival and service times.

• From the point of view of arrival times, Esystem decreases highly for HYPA and decreases
slowly for ERLA while an increase the server-2’s service rate. However, consider the
service times, Esystem decreases highly in ERLS and decreases slowly in HYPS with the
combination of EXPA, MNCA and MPCA, but in the case of ERLA and HYPA, Esystem
decreases slowly in EXPS and decreases fastly in HYPS.

6.2. Illustration 2

With the support of the Tables 4-6, we visualize the influence of the service rate (µ2) of the
server-2 upon the probability of server-2 is undergoing vacation (Pvac). Fix λ = 1, µ1 = 12, η = 1,
β = 1, ψ = 1, τ = 2, S1 = 4, S2 = 6, s2 = 3, p1 = 0.5, q1 = 1 − p1, p2 = 0.5, q2 = 1 − p2, θ = 0.6,
so that the stability condition is satisfied.

• Observation of Tables 4-6 discloses the fact that Pvac maximizes while maximizing the
service rate of the server for the distinct feasible ordering of service and arrival times.

• This is because an increase in service rate leads to a decrease in the duration of service time
respectively. As a result, the server will be getting more chances to go on vacation. Besides,
the increment rate is higher in the case of HYPA and lower in the case of ERLA. In the
same way, from the service time point of view, the increment rate is rapid for HYPS and
gradual for ERLS.

6.3. Illustrative 3

With the support of Tables 7-9, we visualize the impact of the repair rate of the server-1(τ) on the
Probability of server-1 being busy(PS1B). Fix λ = 1, µ1 = 12, µ2 = 10, η = 1, β = 1, ψ = 1, S1 = 4,
S2 = 6, s2 = 3, p1 = 0.5, q1 = 1 − p1, p2 = 0.5, q2 = 1 − p2, θ = 0.6, so that the stability condition
is satisfied.

• From Table 7-9, we may view that as the repair rate of server-1(τ) increases, (PS1B) increases
for all possible groupings of service and arrival times.

• An increase in repair rate implies that the server takes minimum time to complete the repair
process.

• As a result, the server will get more time to serve the customer and so (PS1B) increases.
Hence, the system can focus on decreasing the time taken to repair the failed server for its
optimal utilization. Moreover, the speed of increment of (PS1B) is high for ERLA and low
for HYPA. In the same way, it is high for ERLS and low for HYPS.

RT&A, No 3 (79) 
Volume 19, September 2024

819



G. AYYAPPAN, N. ARULMOZHI
A MAP/PH1, PH2/2 INVENTORY SYSTEM...

Table 1: Server-2 service rate (µ2) vs Esystem - ERLS

µ2 ERLA EXPA HYPA MNCA MPCA
8.0 0.197384249 0.224815927 0.2713795337 0.290089474 4.308746051
8.5 0.196918323 0.224009689 0.269865612 0.288694105 4.167282560
9.0 0.196498144 0.223275819 0.268486466 0.287407096 4.034807543
9.5 0.196117354 0.222604963 0.267225347 0.286215133 3.910580674

10.0 0.195770689 0.221989289 0.266068055 0.285107103 3.793926042
10.5 0.195453765 0.221422194 0.265002498 0.284073649 3.684228530
11.0 0.195162900 0.220898080 0.264018333 0.283106828 3.580929431
11.5 0.194894989 0.220412169 0.263106672 0.282199845 3.483521781
12.0 0.194647394 0.219960366 0.262259844 0.281346850 3.391545721
12.5 0.194417864 0.219539139 0.261471205 0.280542773 3.304584052

Table 2: Server-2 service rate (µ2) vs Esystem - EXPS

µ2 ERLA EXPA HYPA MNCA MPCA
8.0 0.202436650 0.229325675 0.276190307 0.288189790 4.284049580
8.5 0.201923153 0.228463897 0.274610523 0.286720757 4.143969323
9.0 0.201458764 0.227678126 0.273168421 0.285367819 4.012769799
9.5 0.201036863 0.226958737 0.27184722 0.284116698 3.889718360

10.0 0.200651935 0.226297636 0.270632665 0.282955451 3.774147068
10.5 0.200299357 0.225687981 0.269512585 0.281874005 3.665448646
11.0 0.199975227 0.225123948 0.268476541 0.280863797 3.563071842
11.5 0.199676236 0.224600554 0.267515540 0.279917499 3.466516647
12.0 0.199399561 0.224113511 0.266621796 0.279028795 3.375329599
12.5 0.199142780 0.223659113 0.265788546 0.278192214 3.289099329

Table 3: Server-2 service rate (µ2) vs Esystem - HYPS

µ2 ERLA EXPA HYPA MNCA MPCA
8.0 0.227728762 0.247910753 0.291707349 0.281256741 4.144213513
8.5 0.226937445 0.246779024 0.289865528 0.279466679 4.010955831
9.0 0.226211855 0.245738665 0.288170867 0.277819490 3.886146349
9.5 0.225544345 0.244779141 0.286606470 0.276298631 3.769067923

10.0 0.224928388 0.243891462 0.285157942 0.274889987 3.659073727
10.5 0.224358381 0.243067914 0.283812936 0.273581450 3.555580430
11.0 0.223829490 0.242301839 0.282560799 0.272362579 3.458061772
11.5 0.223337523 0.241587463 0.281392290 0.271224328 3.366042632
12.0 0.222878828 0.240919754 0.280299352 0.270158822 3.279093637
12.5 0.222450210 0.240294308 0.279274929 0.269159176 3.196826301
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Table 4: Server-2 service rate (µ2) vs Pvac - ERLS

µ2 ERLA EXPA HYPA MNCA MPCA
8.0 0.992696356 0.988326139 0.981073741 0.978176264 0.960252482
8.5 0.993059887 0.988853514 0.981898129 0.979032770 0.961666866
9.0 0.993389158 0.989334618 0.982654586 0.979817153 0.962989215
9.5 0.993688677 0.989775249 0.983350966 0.980538758 0.964227717

10.0 0.993962221 0.990180294 0.983993994 0.981205329 0.965389685
10.5 0.994212971 0.990553889 0.984589456 0.981823341 0.966481656
11.0 0.994443622 0.990899561 0.985142349 0.982398253 0.967509488
11.5 0.994656468 0.991220336 0.985657014 0.982934708 0.968478435
12.0 0.994853476 0.991518816 0.986137231 0.983436680 0.969393223
12.5 0.995036336 0.991797261 0.986586309 0.983907592 0.970258104

Table 5: Server-2 service rate (µ2) vs Pvac - EXPS

µ2 ERLA EXPA HYPA MNCA MPCA
8.0 0.991933009 0.987434189 0.980074405 0.976954919 0.960264988
8.5 0.992324808 0.987994543 0.980928958 0.977881661 0.961679429
9.0 0.992680715 0.988506494 0.981713965 0.978729839 0.963001556
9.5 0.993005319 0.988976019 0.982437430 0.979509541 0.964239645

10.0 0.993302482 0.989408162 0.983106196 0.980229156 0.965401072
10.5 0.993575474 0.989807206 0.983726147 0.980895720 0.966492420
11.0 0.993827078 0.990176811 0.984302365 0.981515186 0.967519581
11.5 0.994059676 0.990520121 0.984839265 0.982092622 0.968487832
12.0 0.994275317 0.990839849 0.985340695 0.982632376 0.969401917
12.5 0.994475769 0.991138351 0.985810023 0.983138200 0.970266099

Table 6: Server-2 service rate (µ2) vs Pvac - HYPS

µ2 ERLA EXPA HYPA MNCA MPCA
8.0 0.987301352 0.982924032 0.975917875 0.971500408 0.960007628
8.5 0.987838969 0.983624068 0.976870150 0.972668334 0.961435754
9.0 0.988334016 0.984269283 0.977749342 0.973743753 0.962769344
9.5 0.988791273 0.984865824 0.978563672 0.974737072 0.964017128

10.0 0.989214835 0.985418958 0.979320150 0.975657230 0.965186832
10.5 0.989608227 0.985933220 0.980024790 0.976511937 0.966285315
11.0 0.989974506 0.986412541 0.980682791 0.977307876 0.967318682
11.5 0.990316333 0.986860343 0.981298668 0.978050865 0.968292380
12.0 0.990636036 0.987279615 0.981876366 0.97874599 0.969211284
12.5 0.990935659 0.987672986 0.982419347 0.979397714 0.970079769
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Table 7: Server-1 repair rate (τ) vs PS1B - ERLS

τ ERLA EXPA HYPA MNCA MPCA
2.1 0.141008388 0.13790536 0.13246213 0.130940643 0.075845503
2.2 0.141253797 0.138188589 0.132887094 0.131195807 0.075919075
2.3 0.141473036 0.138443996 0.133273312 0.131426853 0.07598541
2.4 0.141669716 0.138675233 0.133625511 0.131636941 0.076045499
2.5 0.141846844 0.138885360 0.133947705 0.131828717 0.076100165
2.6 0.142006944 0.139076961 0.134243323 0.132004409 0.076150095
2.7 0.142152144 0.139252229 0.134515310 0.132165904 0.076195868
2.8 0.142284249 0.139413038 0.134766207 0.132314815 0.076237974
2.9 0.142404799 0.139560993 0.134998218 0.132452523 0.076276831
3.0 0.142515115 0.139697482 0.135213260 0.132580217 0.076312796

Table 8: Server-1 repair rate (τ) vs PS1B - EXPS

τ ERLA EXPA HYPA MNCA MPCA
2.1 0.138021661 0.134843332 0.129303375 0.127808856 0.074550912
2.2 0.138263883 0.135118502 0.129710507 0.128054649 0.074624807
2.3 0.138480662 0.135366864 0.130080690 0.128277310 0.074691540
2.4 0.138675482 0.135591923 0.130418429 0.128479865 0.074752084
2.5 0.138851247 0.135796620 0.130727549 0.128664843 0.074807246
2.6 0.139010396 0.135983435 0.131011317 0.128834378 0.074857702
2.7 0.139154988 0.136154477 0.131272540 0.128990278 0.074904020
2.8 0.139286770 0.136311545 0.131513638 0.129134086 0.074946683
2.9 0.139407235 0.136456186 0.131736709 0.129267126 0.074986104
3.0 0.139517664 0.136589733 0.131943580 0.129390538 0.075022635

Table 9: Server-1 repair rate (τ) vs PS1B - HYPS

τ ERLA EXPA HYPA MNCA MPCA
2.1 0.121762987 0.118860529 0.113611432 0.112325780 0.067357513
2.2 0.121967364 0.119083143 0.113924156 0.112523046 0.067428853
2.3 0.122151232 0.119284568 0.114208672 0.112702075 0.067493742
2.4 0.122317344 0.119467554 0.114468443 0.112865232 0.067553018
2.5 0.122468001 0.119634405 0.114706401 0.113014495 0.067607384
2.6 0.122605135 0.119787070 0.114925047 0.113151535 0.067657429
2.7 0.122730382 0.119927203 0.115126525 0.113277768 0.067703651
2.8 0.122845133 0.120056218 0.115312681 0.113394403 0.067746476
2.9 0.122950579 0.120175328 0.115485115 0.113502478 0.067786270
3.0 0.123047742 0.120285582 0.115645216 0.113602890 0.067823346

7. Conclusion

In this study, we explain inventory management at service facilities using two types of servers:
reliable servers and unreliable servers. Under steady-state conditions, matrix analytic techniques
are used to determine the number of customers in the system, the server status, and the inventory
level. Measures of important system features are derived in the steady state. We determined
the optimality of this model by numerical analysis. As a result, this approach is appropriate
for situations involving working vacation allocation when the server is reliable and for service
disruption, or emergency vacation where the other server is unreliable.
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