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Abstract 

Unmanned aerial vehicle systems offer a significant impact for the prediction of disaster 

identification and management by integrating both statistical and neural network techniques. 

Existing disaster response systems primarily rely on manual reporting or satellite imagery which 

are prone to delays and inefficiencies. The present study presents a statistical modelling using 

structural equation model integrated with deep learning-based model to enhance prediction 

accuracy. The model takes input variables such as unmanned aerial vehicle altitude, speed, area 

coverage, temperature, and population density to predict a disaster index. The structural equation 

model analysis revealed that all the input variables unmanned aerial vehicle altitude, speed, area 

coverage, temperature, and population density have a significant impact on disaster index. The 

proposed multi-layer perceptron model achieves an overall r2 score of 0.86, demonstrating its 

effectiveness in differentiating disaster severity. The study concludes that integrating unmanned 

aerial vehicle systems with statistical and deep learning techniques for disaster index is a feasible 

and impactful solution to mitigate human and economic losses during extreme events. 

Keywords: Unmanned aerial vehicle data, Disaster Index, Multi-class regression 

approach, Metrological parameters, Multi-Layer Perceptron model 

I. Introduction

Natural and man-made disasters are persistent global challenges, threatening lives, 

infrastructure, and economies. Floods, fires, and traffic accidents are among the most frequent and 
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devastating disasters, causing immense destruction each year [1-3]. The unpredictability and 

intensity of such events have underscored the need for faster, more efficient disaster identification 

and response systems. Traditionally, manual reporting and satellite imagery have been used to 

assess disaster damage and manage emergency responses [4,5]. However, these methods often 

suffer from delays, inaccuracies, and inefficiencies due to their dependence on human intervention 

or the long revisit times associated with satellite imagery. This delay in identifying and assessing 

the severity of disasters can lead to a slow response, resulting in more casualties and greater 

economic loss [6]. Therefore, there is an urgent need to develop advanced systems that can quickly 

and accurately identify and assess the severity of disasters in real time. 

In recent years, Unmanned Aerial Vehicle (UAV) systems have emerged as a revolutionary 

tool for disaster management [7]. UAVs offer several advantages, including rapid deployment, 

high maneuverability, and the ability to capture detailed images of disaster-stricken areas from 

various angles. UAVs can operate in challenging environments where traditional systems struggle, 

such as during adverse weather conditions or in remote areas [8]. These aerial systems provide 

real-time data that can be analyzed to determine the extent of damage, allowing emergency 

services to respond more effectively [9]. Ample research focused on analyzing the factor affecting 

severity of disaster using statistical models [10-11]. But these statistical models came with certain 

limitations such as low accuracy and robustness [12]. Nowadays with the advancement of AI 

techniques, the deep learning techniques have got special attention for prediction problem. 

Existing research has used deep learning techniques are widely used for other domain applications 

such as Environment, Banking, and Tourism [13-15]. While UAV technology is advancing, there is 

still a significant research gap in integrating UAV data with advanced deep learning models to 

improve disaster identification, particularly in assessing the severity of disasters. 

The deep learning techniques contain several techniques such as Multi-Layer Perceptron 

(MLP), Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and Long-Short 

Term Memory (LSTM). One of the main challenges in disaster identification is the ability to classify 

the severity of a disaster. Most of the disaster severity is classified into low, moderate, and extreme 

based on the available data. The present study is a regression problem statement. Most of the 

current systems are limited to binary classifications, such as flooded versus non-flooded areas, 

without further granularity which are mostly analyzed by the help of CNN technique [16, 17]. 

While these approaches can be useful for simple disaster identification, they lack the depth needed 

for effective resource allocation and emergency response. A more nuanced understanding of the 

disaster’s severity would enable emergency services to prioritize high-risk areas and allocate 

resources more efficiently, ultimately saving more lives and reducing economic losses. 

Therefore, the present study uses MLP model for the prediction of disaster severity as the 

problem is a regression problem. The proposed model integrates both statistical methods i.e. 

structural equation model and deep learning techniques, specifically MLP, to analyze disaster 

severity. By incorporating variables such as UAV altitude, speed, area coverage, temperature, and 

population density, the model aims to predict a Disaster Index, which classifies the severity of the 

disaster into three categories: low, moderate, and extreme. The ability to accurately classify 

disaster severity will greatly enhance decision-making processes, enabling authorities to prioritize 

emergency responses based on real-time data. This makes UAV-based deep learning systems 

highly efficient for disaster identification, especially in regions prone to frequent disasters such as 

floods, fires, and traffic accidents. Table 1 shows some more recent literature review of various 

research on the impact of various UAVs parameters for the prediction of risk assessment using 

statistical modeling and artificial intelligence techniques. 

The novelty of this research lies in its multi-class regression approach for disaster severity, in 

contrast to the binary classification models used in most previous studies [32, 33]. By focusing on 

the severity levels (low, moderate, and extreme), the model offers a more comprehensive analysis, 
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which is crucial for emergency response and resource allocation. Additionally, the use of both 

statistical and deep learning methods enhances the model’s robustness and generalizability across 

different disaster scenarios. The findings of this study will have significant implications for regions 

prone to frequent natural and man-made disasters, particularly in the context of improving 

emergency response times and resource allocation. 

Table 1: Literature review of the various studies conducted for the assessment of risk. 

Author(s) Country Parameters Conclusion 

[18] Saudi Arabia UAV altitude, area coverage 

Demonstrated the effectiveness of 

UAV in flood risk assessment in 

urban areas. 

[19] Kuwait 
UAV data, field survey, and 

satellite image 

Proposed a model strategic plan to 

diminish flood vulnerability. 

[20] China 
Multiple source satellite 

datasets 

Found that UAVs provide significant 

advantages in flood monitoring by 

noisy learning method. 

[21] India 
Topography, forest, soil, and 

geologic factor 

Developed a deep learning model 

yielding a high accuracy for landslide 

identification. 

[22] Italy Technical features of UAV 

Established a correlation between 

UAV flight parameters and disaster 

mapping accuracy. 

[23-26] 

Multiple 

sampling 

locations 

Environmental factors, sun 

glint, vegetation 

Highlighted the impact of 

environmental parameters on UAV 

image quality. 

[27] Dubai Image data from UAVs 

Achieved high accuracy (85.4%) in 

vegetation cover accuracy using UAV 

imagery with DL techniques. 

[28] 
Indus River, 

Pakistan 
UAV-based aerial imagery 

CNN model achieved an accuracy of 

91% for flood detection. 

[29] 
China–Russia 

Border 

Humidity, temperature, 

precipitation, and wind 

speed 

Heilongjiang province is best suited 

place to travel during summer. 

[30] USA 

Population density, tropical 

cyclones, annual variation of 

mortality, and topography 

Topography and population density 

has a direct correlation for Flood-

induced mortality. 

[31] 
Not 

mentioned 

Coverage area, height, 

velocity 

Particle swarm optimization (PSO) 

was used to obtain the severity of the 

disaster. 

II. Methods and Material

I. Study Area

Jeddah city, situated within three primary sub-basins (northern, middle, and southern), serves 

as a focal point for this case study due to its susceptibility to flash floods. The northern sub-basin 

comprises several wadis, including Wadi Daghbaj, Wadi Brayman, Wadi Muraygh, Wadi Quraa, 

Wadi Ghaia, and Wadi Um Hablain. The middle sub-basin encompasses Wadi Mraikh and Wadi 

Bani Malik, while the southern sub-basin includes Wadi Qaws, Wadi Methweb, Asheer, Wadi Al 
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Khomra, and Wadi Ghulail. As of 2022, Jeddah city had an estimated population of 4.78 million 

residents. Bordered to the west by the Red Sea and to the east by mountain ranges with a 

maximum elevation of 675 meters, the drainage area delineated by a 30-meter Digital Elevation 

Model (DEM) covers approximately 1,821 km² [34]. The city's residential zones, located on the 

coastal plain, are vulnerable to the impacts of flash floods originating from the adjacent mountains. 

The topography of the Jeddah watershed reveals two distinct geomorphological units: the coastal 

plain and the mountainous regions that surround the city. Despite Jeddah’s arid climate, it is 

recurrently affected by flash floods, with significant events recorded multiple times. Notably, on 

November 25, 2009, flash floods severely impacted urban areas, leading to extensive damage to 

infrastructure, buildings, vehicles, and roads, resulting in approximately 113 fatalities.  Another 

destructive event occurred in 2011, further highlighting the flood risk in the region. The watershed 

has various drainage channels that traverse neighborhoods such as Al-Harazat, King Abdul Aziz 

University, Al-Haramin Highway, Al-Mesaid, Queza, and Al-Sawaid, all of which experienced 

substantial effects from the 2009 flash flood incident. Figure 1 shows the conceptual framework of 

the present study. 

Figure 1: Conceptual framework of present study. 
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II. Data Collection

The UAV data, including altitude, speed, temperature, humidity, area coverage, and

population data, were taken into account from the different sources such as: The National Centre 

for Meteorology (NCM), Saudi Arabia and Shuttle Radar Topography Mission (SRTM) [35-37]. The 

only feature that has been taken based on the severity is disaster index. This feature has been 

divided into three subcategories such as low, moderate, and high. Table 2 presents the standard 

deviation and mean of the data used for modelling and prediction. UAVs equipped with sensors 

gather altitude, speed, and area coverage data, providing quantitative information on UAV flight 

dynamics and coverage area. 

Table 2: Statistical parameters of the data used in the study. 

Variable Mean Standard Deviation 

UAV Altitude (m) 130 25 

UAV Speed (m/s) 10.5 2.5 

Area Coverage (km²) 1.75 0.4 

Temperature (°C) 28 3 

Humidity (%) 45 8 

Population Density 

(people/km²) 
2600 800 

Disaster Index (0-1) 0.68 0.1 

III. SEM Modelling

SEM is a statistical technique that enables the analysis of complex relationships between the

constructs [38]. In the present study, SEM is used to model the relationships between multiple 

factors influencing variables, such as UAV altitude, speed, area coverage, temperature, and 

population density on disaster index. SEM allows for the simultaneous examination of direct and 

indirect effects among these variables, providing deeper insights into their collective impact on the 

disaster index. In SEM analysis, two models are used to predict disaster index i.e. measurement 

model and structural equation model. Measurement model also known as inner model is used to 

check the reliability and validity of the constructs whereas the structural equation model which is 

known as outer model is used to analyze the significant impact of independent constructs on 

disaster index. 

IV. Hypothesis Testing

The study utilizes five set of hypotheses for the prediction of disaster index as shown in

Figure 2. The hypothesis uses UAV altitude, speed, coverage area, temperature, and population 

density for the prediction of disaster index. 

• H1: UAV altitude (m) has a significant effect on Disaster Index.

• H2: UAV speed (m/s) has a significant effect on Disaster Index.

• H3: Area coverage (km2) has a significant effect on Disaster Index.

• H4: Temperature (0C) has a significant effect on Disaster Index.

• H5: Population density (people/km2) has a significant effect on disaster index.
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Figure 2: Various hypothesis for the present study. 

V. Data Pre-processing

Data pre-processing is a crucial step to prepare the UAV images and auxiliary datasets for

input into the deep learning model. The regression data was splitted in the ratio of 75:25 (training: 

testing). The pre-processing involves resizing images to ensure uniform dimensions, typically 𝐻×𝑊 

(height and width), and applying geometric transformations to correct for distortions [3]. 

Normalization is performed to scale pixel values between 0 and 1, ensuring that the model training 

is not biased by large numerical values. For input variables like temperature, humidity, and 

population density, standardization is applied: 

𝑋 , = (𝑋 − μ)/σ               (1) 

where X is the original value, μ is the mean, and σ is the standard deviation, ensuring all 

features are on a comparable scale. 

VI. Multi-Layer Perceptron (MLP)

The MLP model is a type of feed-forward neural network that maps input variables to output

RT&A, No 4(80) 

Volume 19, December, 2024 

73



Kamal, M., Khan, M.F., and Khan S. 
STATISTICAL AND DEEP-LEARNING BASED DISASTER IDENTIFICATION 

MODELLING USING UAV SYSTEMS FOR EMERGENCY RESPONSE 

variables by learning complex non-linear relationships [39]. An MLP consists of an input layer, one 

or more hidden layers, and an output layer, where each layer contains multiple neurons. Each 

neuron in a layer performs a weighted sum of its inputs, applies an activation function, and passes 

the result to the next layer. Figure 3 shows the architecture of MLP model. For each neuron 𝑗 in a 

hidden or output layer, the neuron computes: 

𝑧𝑗 =  ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1       (2) 

where 𝑥𝑖 is the input from the previous layer, 𝑤𝑖𝑗  represents the weight connecting input 𝑖 to 

neuron 𝑗, and 𝑏𝑗 is the bias term. The result 𝑧𝑗 is then passed through an activation function 𝑓 to 

introduce non-linearity 𝑎𝑗 = 𝑓(𝑧𝑗). Common activation functions include the ReLU function 𝑓(𝑧) =

𝑚𝑎𝑥 (0, 𝑧) for hidden layers and a linear function for regression tasks in the output layer. 

The goal of training an MLP is to minimize the difference between the predicted outputs and 

the actual values (e.g., Disaster Index). This is achieved by optimizing the loss function, often 

Mean Squared Error (MSE) in regression: 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1  (3) 

where 𝑦𝑖  is the actual value, 𝑦̂𝑖 is the predicted value, and 𝑁 is the number of samples. 

The training process involves backpropagation and gradient descent to adjust the weights and 

biases to minimize the loss function. By iterating through multiple epochs of training, the MLP 

model learns to approximate the mapping from inputs to outputs, enabling it to make accurate 

predictions on new data. 

The algorithm used in the study for the prediction of disaster index is illustrated below: 

1. Input: X= {xi ∣i= 1, 2 ,…, N} ⊳ Input samples including UAV altitude, speed, area coverage,

temperature, humidity, and population density

2. Ci ← Classifier input features

3. Y ← ytrain, ytest  ⊳ True labels for Disaster Index for training and test sets

4. X ← xtrain, xtest  ⊳ Split data into training and testing

5. S ← No. of samples ⊳ Total number of samples

6. C ← Model complexity (hidden layers, neurons) ⊳ Define MLP architecture

7. Reg ← MLP regressor ⊳ MLP model for regression

8. L ← Loss function (Mean Squared Error)

9. Train ← Train model with xtrain ⊳ Fit MLP model to training data

10. Evaluate ← Evaluate model with xtest, ytest

11. Prediction ← MLP(xtest) ⊳ Predict Disaster Index for test samples

12. Calculate Metrics ← MSE, MAE, R2

13. Plot ← Observed vs. Predicted plot

14. While L(x) is not minimized:

15. If Loss > threshold:

Adjust parameters ← Fine-tune MLP architecture or learning rate 

Else 

Stop Training 

      Return Final Model 
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Figure 3: Architecture of MLP model. 

III. Results and Discussion

The present research organized all indicators into six constructs: UAV altitude, UAV speed, 

area coverage, temperature, population density, and Disaster Index. To assess the reliability and 

validity of these variables, a measurement model was employed. 

Table 3: Reliability and Validity test of the hypothesis. 

Latent Variable Cronbach's Alpha 
Composite Reliability 

(CR) 

Average Variance 

Extracted (AVE) 

UAV Altitude 1 1 1 

UAV Speed 1 1 1 

Area Coverage 1 1 1 

Temperature 1 1 1 

Population Density 1 1 1 
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Figure 4: The SEM model. 

Confirmatory factor analysis was executed using SmartPLS 4.0 software to evaluate the 

measurement properties of the items concerning their designated factors. Indicators with a 

standard loading below 0.05 were excluded from the measurement model. The results derived 

from the measurement model are presented in Table 3. It is evident that all indicators achieved a 

significance level of 0.001 and a standard loading exceeding 0.5. The reliability of the latent 

variables was confirmed as the Cronbach's alpha, composite reliability (CR), and average variance 

extracted (AVE) values all exceeded the thresholds of 0.7, 0.6, and 0.5, respectively. The values of 

all the constructs were 1 only because there was only one indicator to represent the construct. As 

demonstrated in Table 3, all six constructs (UAV altitude, UAV speed, area coverage, temperature, 

population density, and Disaster Index) met these criteria, indicating conformity with the 

requirements for convergent validity. 

The SmartPLS 4.0 bootstrapping method was employed to evaluate and analyze the 

interrelationships among the constructs. The SEM model was constructed using a set of six 

constructs and six indicators. Additionally, the structural model was utilized to examine the path 

relationships among these variables. The findings from the structural path model are detailed in 

Table 4. The path coefficient serves as a statistical indicator that estimates both the strength and 

direction of the relationship between two latent variables. For a significant relationship to be 

established between the latent variables, the path coefficient must exceed 0.2 at a 95% confidence 

interval. Figure 4 illustrates that all path coefficients achieved a significance level of 0.001. Mean, 

standard deviation, t-value, and p-values were assessed to determine the significant relationships 

among the variables. It was found that Population Density (t: 6.1), Altitude (t: 5.24) significantly 
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influenced Disaster Index.  Furthermore, Speed (t: 4.73), Area Coverage (t: 4.91), and Temperature 

(t: 3.45) exhibited significant effects on Disaster Index. 

Table 4: SEM model statistics for the prediction of disaster index. 

Hypothesis Mean 
Standard 

Deviation 
t-value p-value

Significant 

Effect? 

H1: Altitude → Disaster 

Index 
0.65 0.12 5.24 < 0.001 Yes 

H2: Speed → Disaster 

Index 
0.58 0.15 4.73 < 0.001 Yes 

H3: Area Coverage → 

Disaster Index 
0.63 0.13 4.91 < 0.001 Yes 

H4: Temperature → 

Disaster Index 
0.6 0.14 3.45 0.002 Yes 

H5: Population Density 

→ Disaster Index
0.67 0.11 6.1 < 0.001 Yes 

Table 5: Performance matrix of MLP model. 

Metric Training Set Testing Set 

Mean Squared Error (MSE) 0.0052 0.0068 

Mean Absolute Error (MAE) 0.058 0.062 

R2 Score 0.89 0.86 

Table 5 shows the performance metrics for the MLP model on both training and testing 

demonstrate its predictive accuracy in assessing disaster index. The Mean Squared Error (MSE) 

values of 0.0052 for the training set and 0.0068 for the testing set indicate that the model achieves 

low average squared errors, showing it effectively minimizes large prediction deviations. The 

Mean Absolute Error (MAE) values of 0.058 for training and 0.062 for testing further confirm the 

model's accuracy by providing insight into the average absolute difference between predicted and 

actual values. Additionally, the R² Score values of 0.89 for training and 0.86 for testing imply that 

the model explains a high proportion of the variance in disaster severity, with only minor 

overfitting or under-fitting present. Together, these metrics suggest that the MLP model 

generalizes well to unseen data and is reliable for predicting disaster severity based on UAV 

parameters and environmental conditions. 

Figure 5 illustrates the relationships between various parameters related to UAV-based 

disaster identification, including altitude, UAV speed, area coverage, temperature, humidity, 

population density, and the disaster index. Each cell shows the correlation coefficient between two 

variables, with values closer to 1 indicating a strong positive correlation and values closer to -1 

indicating a strong negative correlation. For example, the disaster index has a strong positive 

correlation with altitude (0.97), temperature (0.95), and population density (0.96). This suggests 

that as altitude, temperature, or population density increase, the disaster index also tends to 

increase. Additionally, UAV speed and area coverage have a strong correlation (0.94), indicating 

that faster UAV speeds tend to be associated with larger areas covered. These insights can help in 

fine-tuning UAV parameters for better disaster identification and emergency response 

effectiveness. 
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Figure 5: Correlation matrix between the variables 

Table 6 presents a sensitivity analysis of various variables contributing to the disaster index 

specific to flood severity in Jeddah City, Saudi Arabia. This disaster index measures the potential 

impact of flooding through multiple influencing factors. Among the variables listed, altitude 

exhibits the highest sensitivity at a value of 23.5, indicating that changes in altitude significantly 

affect flood severity; areas at lower elevations are more susceptible to flooding risks due to greater 

water accumulation. The speed of water flow during floods shows even greater sensitivity, with a 

value of 32.8, suggesting that faster water flow can lead to more severe flooding and greater 

damage to infrastructure. Area coverage, with a sensitivity value of 12.3, indicates a moderate 

impact on flood severity, where larger flooded areas could imply extensive effects on communities 

and ecosystems; however, its lower sensitivity compared to altitude and speed suggests that 

changes in area coverage have a less pronounced effect. Temperature and humidity follow, with 

sensitivity values of 10.5 and 4.9, respectively. While temperature influences rainfall intensity and 

snowmelt, making it significant in the flood context, humidity seems to have a minor effect on the 

disaster index. Lastly, population density, with a sensitivity of 16.0, reflects the impact of how 

population distribution can modify disaster consequences—higher population density typically 

results in greater impacts, as more individuals are exposed to potential flood hazards. 

Table 6: Sensitivity analysis of the disaster index. 

Variables Sensitivity 

Altitude 23.5 

Speed 32.8 

Area Coverage 12.3 

Temperature 10.5 

Humidity 4.9 

Population Density 16.0 
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IV. Limitations and Scope of Future Work

The limitations and scope of future work are as follows: 

▪ One limitation of this study is the reliance on historical data for model training, which may

introduce biases based on past disaster events. Such biases can limit the model's ability to

generalize and accurately predict disaster scenarios that differ significantly from those

previously encountered. Additionally, the statistical assumptions inherent in SEM may not

always hold true in the complex and dynamic environment of disaster management.

▪ Another limitation is the potential for sensor inaccuracies in the UAV systems utilized in data

collection. Factors such as environmental conditions and technical malfunctions can lead to

variability in the input variables, thereby affecting the reliability and precision of the

predictions made by the models. This variability necessitates careful calibration and

validation of the UAV systems to ensure consistency in the data used for analysis.

▪ Furthermore, the study focuses primarily on specific input variables, such as altitude, speed,

and population density, which may not encompass all critical factors influencing disaster

severity. Variables like socioeconomic factors, infrastructure resilience, and local governance

mechanisms are also significant in real-world disaster scenarios but were not included in the

current modeling approach. Ignoring these additional variables could limit the

comprehensiveness of the disaster index and its applicability in diverse contexts.

▪ Lastly, the proposed deep learning model, while demonstrating a high 𝑟2 score, may exhibit

overfitting if not appropriately regularized. Overfitting can lead to a model that performs well

on training data but poorly in real-world applications, where new, unseen data may differ

from the training set. Continuous monitoring and updating of the model based on incoming

data will be necessary to maintain its accuracy and reliability over time.

V. Conclusion

The present study demonstrates the potential of integrating statistical mode with deep 

learning techniques, specifically MLP for the prediction of efficient disaster severity. The disaster 

severity was classified into three levels: low, moderate, and extreme. The structural equation 

model demonstrates that Altitude, Speed, Area Coverage, Temperature, and Humidity has a 

significant impact on the disaster index with a p-values less than 0.001. All of the significant 

variables are taken as the input variables for the MLP model. The MLP model achieves an r2 score 

of 0.86 for the prediction of disaster severity. The study highlights several limitations, including 

challenges related to data acquisition and the generalizability of the model to diverse 

environments. The current model focuses primarily on data, and incorporating other data sources 

such as ground-based sensors or weather information could improve its robustness. Additionally, 

the sensitivity analysis shows that UAV speed plays an important predictor of disaster index. 

Future research should address these limitations by expanding the model’s capabilities to handle 

multimodal data and adapt to changing conditions in real-time. In conclusion, this study provides 

a strong foundation for the use of UAV based deep learning systems in disaster management, 

particularly for emergency response and resource allocation. The high regression accuracy and 

real-time decision-making potential of this model make it a valuable tool for disaster identification. 

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Saudi 

Electronic University for funding this research work through the project number (8398). 

RT&A, No 4(80) 

Volume 19, December, 2024 

79



Kamal, M., Khan, M.F., and Khan S. 
STATISTICAL AND DEEP-LEARNING BASED DISASTER IDENTIFICATION 

MODELLING USING UAV SYSTEMS FOR EMERGENCY RESPONSE 

Acknowledgments: The authors thank to the Deanship of Scientific Research at Saudi 

Electronic University for funding this research work through the project number (8398). 

References 
[1] Adelekan, I. O. (2020). Urban dynamics, everyday hazards and disaster risks in Ibadan,

Nigeria. Environment and Urbanization, 32(1), 213-232.

[2] Sharma, S. C. (1994). Disaster management. KHANNA PUBLISHING HOUSE.

[3] Tiwari, S. K., Kumaraswamidhas, L. A., Patel, R., Garg, N., & Vallisree, S. (2024). Traffic noise

measurement, mapping, and modeling using soft computing techniques for mid-sized smart

Indian city. Measurement: Sensors, 33, 101203.

[4] Puttinaovarat, S., & Horkaew, P. (2020). Internetworking flood disaster mitigation system

based on remote sensing and mobile GIS. Geomatics, Natural Hazards and Risk, 11(1), 1886-

1911.

[5] Mazzoglio, P., Ajmar, A., Schumann, G. J., Balbo, S., Boccardo, P., Perez, F., & Borgogno-

Mondino, E. (2021). Satellite-based approaches in the detection and monitoring of selected

hydrometeorological disasters. The Increasing Risk of Floods and Tornadoes in Southern

Africa, 19-37.

[6] Dell'Acqua, F., & Gamba, P. (2012). Remote sensing and earthquake damage assessment:

Experiences, limits, and perspectives. Proceedings of the IEEE, 100(10), 2876-2890.

[7] Bushnaq, O. M., Mishra, D., Natalizio, E., & Akyildiz, I. F. (2022). Unmanned aerial vehicles

(UAVs) for disaster management. In Nanotechnology-Based Smart Remote Sensing Networks

for Disaster Prevention (pp. 159-188). Elsevier.

[8] Nikhil, N., Shreyas, S. M., Vyshnavi, G., & Yadav, S. (2020, August). Unmanned aerial

vehicles (UAV) in disaster management applications. In 2020 Third International Conference

on Smart Systems and Inventive Technology (ICSSIT) (pp. 140-148). IEEE.

[9] Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system for

disaster and crisis management in smart cities. Electronics, 12(4), 1051.

[10] Kakooei, M., & Baleghi, Y. (2017). Fusion of satellite, aircraft, and UAV data for automatic

disaster damage assessment. International journal of remote sensing, 38(8-10), 2511-2534.

[11] Hayajneh, A. M., Zaidi, S. A. R., McLernon, D. C., Di Renzo, M., & Ghogho, M. (2018).

Performance analysis of UAV enabled disaster recovery networks: A stochastic geometric

framework based on cluster processes. IEEE Access, 6, 26215-26230.

[12] Tiwari, S. K., Kumaraswamidhas, L. A., Gautam, C., & Garg, N. (2022). An auto-encoder

based LSTM model for prediction of ambient noise levels. Applied Acoustics, 195, 108849.

[13] Tiwari, S. K., Kumaraswamidhas, L. A., Prince, Kamal, M., & Rehman, M. U. (2023). A hybrid

deep leaning model for prediction and parametric sensitivity analysis of noise annoyance.

Environmental Science and Pollution Research, 30(17), 49666-49684.

[14] Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning

approach. Annals of tourism research, 75, 410-423.

[15] Hassani, H., Huang, X., Silva, E., & Ghodsi, M. (2020). Deep learning and implementations in

banking. Annals of Data Science, 7, 433-446.

[16] Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster

management: Application of integrated aerial imagery and convolutional neural network for

flood detection. Sustainability, 13(14), 7547.

[17] Lohumi, K., & Roy, S. (2018, December). Automatic detection of flood severity level from

flood videos using deep learning models. In 2018 5th International Conference on Information

and Communication Technologies for Disaster Management (ICT-DM) (pp. 1-7). IEEE.

RT&A, No 4(80) 

Volume 19, December, 2024 

80



Kamal, M., Khan, M.F., and Khan S. 
STATISTICAL AND DEEP-LEARNING BASED DISASTER IDENTIFICATION 

MODELLING USING UAV SYSTEMS FOR EMERGENCY RESPONSE 

[18] Hussain Shah, S. M., Yassin, M. A., Abba, S. I., Lawal, D. U., Hussein Al-Qadami, E. H., Teo,

F. Y., ... & Aljundi, I. H. (2023). Flood Risk and Vulnerability from a Changing Climate

Perspective: An Overview Focusing on Flash Floods and Associated Hazards in Jeddah.

Water, 15(20), 3641.

[19] Hassan, A., Albanai, J. A., Al-Ali, J., Fayad, M., A. Atalla, M., Abdelkarim, A., & Badawy, H.

(2024). Assessment of flash flood risks in the desert cities: a case study on Sabah Al-Ahmad,

Kuwait. Journal of Water and Climate Change, jwc2024191.

[20] Zhang, L., & Xia, J. (2021). Flood detection using multiple Chinese satellite datasets during

2020 China summer floods. Remote Sensing, 14(1), 51.

[21] Pradhan, A. M. S., & Kim, Y. T. (2020). Rainfall-induced shallow landslide susceptibility

mapping at two adjacent catchments using advanced machine learning algorithms. ISPRS

International Journal of Geo-Information, 9(10), 569.

[22] Boccardo, P., Chiabrando, F., Dutto, F., Giulio Tonolo, F., & Lingua, A. (2015). UAV

deployment exercise for mapping purposes: Evaluation of emergency response applications.

Sensors, 15(7), 15717-15737.

[23] Zeng, C., Richardson, M., & King, D. J. (2017). The impacts of environmental variables on

water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-based

spectrometer system. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 217-230.

[24] El Hoummaidi, L., Larabi, A., & Alam, K. (2021). Using unmanned aerial systems and deep

learning for agriculture mapping in Dubai. Heliyon, 7(10).

[25] Khan, S., Alourani, A., Mishra, B., Ali, A., & Kamal, M. (2022). Developing a credit card fraud

detection model using machine learning approaches. International Journal of Advanced

Computer Science and Applications, 13(3).

[26] Wasiq, M., Kamal, M., & Ali, N. (2023). Factors influencing green innovation adoption and its

impact on the sustainability performance of small-and medium-sized enterprises in Saudi

Arabia. Sustainability, 15(3), 2447.

[27] Zeraibi, A., Jahanger, A., Usman, M., Balsalobre-Lorente, D., Adebayo, T. S., & Kamal, M.

(2024). The role of fiscal decentralization and technological innovations in curbing sulfur

dioxide emissions: formulating SDGs policies for China. Environment, Development and

Sustainability, 26(8), 19659-19684.

[28] Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in disaster

management: Application of integrated aerial imagery and convolutional neural network for

flood detection. Sustainability, 13(14), 7547.

[29] Zhou, Y., Wang, J., Grigorieva, E., Egidarev, E., & Zhang, W. (2020). Comprehensive Spatio-

Temporal Analysis of Travel Climate Comfort Degree and Rainstorm-Flood Disaster Risk in

the China–Russia Border Region. Sustainability, 12(8), 3254.

[30] Hu, P., Zhang, Q., Shi, P., Chen, B., & Fang, J. (2018). Flood-induced mortality across the

globe: Spatiotemporal pattern and influencing factors. Science of the Total Environment, 643,

171-182.

[31] Munawar, H. S., Hammad, A. W., & Waller, S. T. (2022). Disaster region coverage using

drones: Maximum area coverage and minimum resource utilisation. Drones, 6(4), 96.

[32] Pereira, J., Monteiro, J., Silva, J., Estima, J., & Martins, B. (2020). Assessing flood severity from

crowdsourced social media photos with deep neural networks. Multimedia Tools and

Applications, 79(35), 26197-26223.

[33] Lohumi, K., & Roy, S. (2018, December). Automatic detection of flood severity level from

flood videos using deep learning models. In 2018 5th International Conference on Information

and Communication Technologies for Disaster Management (ICT-DM) (pp. 1-7). IEEE.

RT&A, No 4(80) 

Volume 19, December, 2024 

81



Kamal, M., Khan, M.F., and Khan S. 
STATISTICAL AND DEEP-LEARNING BASED DISASTER IDENTIFICATION 

MODELLING USING UAV SYSTEMS FOR EMERGENCY RESPONSE 

[34] Youssef, A. M., Sefry, S. A., Pradhan, B., & Alfadail, E. A. (2016). Analysis on causes of flash

flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote

sensing data and GIS. Geomatics, Natural Hazards and Risk, 7(3), 1018-1042.

[35] https://www.my.gov.sa/wps/portal/snp/agencies/agencyDetails/AC040/!ut/p/z0/04_Sj9CPykss

y0xPLMnMz0vMAfIjo8zivQIsTAwdDQz9LQwNzQwCnS0tXPwMvYwNDAz0g1Pz9L30o_Ar

AppiVOTr7JuuH1WQWJKhm5mXlq8f4ehsYGKgX5DtHg4A39XO3w!!/

[36] https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-

topography-mission-srtm-1

[37] https://www.stats.gov.sa/en

[38] Tiwari, S. K., Kumaraswamidhas, L. A., & Garg, N. (2023). Assessment of noise pollution and

associated subjective health complaints in Jharia Coalfield, India: A structural equation model

analysis. Noise Mapping, 10(1), 20220172.

[39] Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta

numerica, 8, 143-195.

RT&A, No 4(80) 

Volume 19, December, 2024 

82

https://www.my.gov.sa/wps/portal/snp/agencies/agencyDetails/AC040/!ut/p/z0/04_Sj9CPykssy0xPLMnMz0vMAfIjo8zivQIsTAwdDQz9LQwNzQwCnS0tXPwMvYwNDAz0g1Pz9L30o_ArAppiVOTr7JuuH1WQWJKhm5mXlq8f4ehsYGKgX5DtHg4A39XO3w!!/
https://www.my.gov.sa/wps/portal/snp/agencies/agencyDetails/AC040/!ut/p/z0/04_Sj9CPykssy0xPLMnMz0vMAfIjo8zivQIsTAwdDQz9LQwNzQwCnS0tXPwMvYwNDAz0g1Pz9L30o_ArAppiVOTr7JuuH1WQWJKhm5mXlq8f4ehsYGKgX5DtHg4A39XO3w!!/
https://www.my.gov.sa/wps/portal/snp/agencies/agencyDetails/AC040/!ut/p/z0/04_Sj9CPykssy0xPLMnMz0vMAfIjo8zivQIsTAwdDQz9LQwNzQwCnS0tXPwMvYwNDAz0g1Pz9L30o_ArAppiVOTr7JuuH1WQWJKhm5mXlq8f4ehsYGKgX5DtHg4A39XO3w!!/
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.stats.gov.sa/en



