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Abstract 

Aim: To provide a new Liu regression procedure for predictive modeling in cases of 

multicollinearity and with/without outliers. Methods: Regression analysis is employed in many 

statistical research domains for both estimation and prediction. Liu and Robust Estimators were 

developed in a classical linear regression model to address the issues of multicollinearity and 

outliers, respectively. In order to jointly handle the issues of multicollinearity and outliers, this 

research paper explores a new Robust Liu regression estimator based on the MM estimator, which 

is then demonstrated using real and simulated data sets. The performances of various regression 

estimators such as Least Square, Ridge, Liu and the Robust Liu are compared based on the Mean 

Square Error criterion. Findings: According to the computed error measure, the study concludes 

that the Robust Liu regression estimator provides more reliable results than the other mentioned 

regression procedures in situations where datasets have both multicollinearity and outliers. 

Keywords: Regression, Multicollinearity, Outliers, Liu, Robust Liu 

I. Introduction

The Least Squares estimator is frequently utilized to predict the parameters of a regression model, 

provided that all the assumptions of the model are fully satisfied. Multicollinearity and outliers are 

the issues that could skew the outcomes of this approach. When there is a significant correlation 

between the independent variables, the situation is called multicollinearity, defined by Farrar and 

Glauber [7]. It will increase the error values and thus making the estimator not good. An outlier is a 

unique observation in the data. It causes the estimator to become inefficient and modifies the 

regression coefficients' sign. The existence of outliers, according to Chatterjee and Hadi [4], may 

leads to influence the parameter estimation and inaccurate predictions for traditional approaches. 

Ridge and Liu regression procedures were developed to overcome multicollinearity. When the 

data deviates from key assumptions, robust regression offers an alternative to the classical 

regression model. This research described a regression technique with a better estimate when 

multicollinearity and outliers are present in the dataset.  

The rest of the paper is organized as follows. Various regression estimators like Least 

Squares, Ridge, Liu and Robust Liu are explained briefly in section 2. A numerical study is carried 
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out based on real and simulated datasets to compare the Mean Square Error of different regression 

estimators in section 3 and section 4 will give the conclusion. 

II. Regression Procedures

Regression analysis serves as a means to glean insights from data by identifying relationships 

between the response and predictor variables, as outlined by Draper and Smith [6]. These 

methodologies within machine learning manifest in various forms, selected based on the nature of 

the dataset. It stands as the primary approach for addressing machine learning challenges through 

data modeling. This study encompasses Least Squares, Ridge, Liu and Robust Liu methods, 

comparing mean square error measures of different real and simulated datasets having the presence 

of both outliers and multicollinearity. Outliers in the actual data are detected and removed using 

Cook’s distance, with the analysis conducted utilizing R software. 

 Least Squares Estimator 

The Least Squares (LS) is a standard approach in regression analysis for estimating the 

parameters of a linear model. This method is employed to forecast the dependent variable (y) 

using several predictor variables (X). It stands as the widely utilized and optimal linear unbiased 

estimator, when all the suppositions of the classical regression model are satisfied. The standard 

model of LS with k independent variables is represented as follows. 

 𝑦 = 𝑋𝛽 + 𝜀          (1) 

here, 𝑦 is an (𝑚×1) vector of response variables, 𝑋 is an (𝑚×𝑘) matrix of predictors, 𝛽 is a (𝑘×1) 

vector of unknown regression parameters, and 𝜖 is an (𝑚×1) vector of residuals assumed to be 

independently and identically distributed as normal with a mean of zero and a fixed variance 𝜎2. 

The LS estimator for the unknown parameter is given by 

𝛽𝐿𝑆̂ =  (𝑋′𝑋)−1(𝑋′𝑦)  (2) 

The performance of the LS estimator  𝛽𝐿𝑆̂ becomes statistically insignificant when

multicollinearity exists among the explanatory variables. 

 Ridge Estimator 

Ridge regression estimator was provided by Hoerl and Kennard [9] to deal with the 

problem of multicollinearity. It gives a biased estimator and will depend on the ridge constant k 

which is used for minimizing the bias. The complexity parameter k needs to be selected 

appropriately in order to optimize the prediction accuracy. Hoerl et al. [10] find out a formula for 

the calculation of an optimal ridge constant k such that 

𝑘 =
𝑝𝜎̂2

∑ β𝑖
̂2𝑝

𝑖=1

 (3)

where 𝑝 is number of independent variables, 𝜎̂2 is the estimated variance and β
𝑖

̂  is an LS

regression parameter of canonical form. Ridge regression is depend on this constant 𝑘 and will 

give a biased estimator as given below. 

𝛽𝑅𝑖𝑑𝑔𝑒
̂  = (𝑋′𝑋 + 𝑘𝐼 )−1 (𝑋′𝑦) (4)
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 Liu Estimator 

Liu Estimator is a class of biased estimators used to deal with datasets having 

multicollinearity. It was introduced by Liu [12]. These estimators are depending upon a biasing 

parameter 𝑑 called the Liu parameter which lies between 0 and 1. The estimator of Liu regression 

is given by 

𝛽𝐿𝑖𝑢̂ = (𝑋′𝑋 + 𝐼𝑝 )−1(𝑋′𝑦 + 𝑑 𝛽𝐿𝑆̂)  (5) 

where 0 ≤ 𝑑 ≤ 1, 𝐼𝑝 is the identity matrix of order 𝑝 × 𝑝 and  𝛽𝐿𝑆̂ is the LS estimator. The biasing

parameter 𝑑 of Liu is computed by the formula, 

𝑑̂ = 1 − 𝜎̂2 [
∑

1

𝜆𝑖 (𝜆𝑖+1)

𝑝
𝑖=1

∑
𝛽𝑖̂

2

(𝜆𝑖+1)
2

𝑝
𝑖=1

]          (6) 

where, 𝜎̂2 and 𝛽𝑖̂
2
are the mean square error and the regression estimates computed via LS

respectively. 𝜆1, 𝜆2, …, 𝜆𝑝 are the eigen values of the matrix 𝑋′𝑋. 𝛽𝐿𝑖𝑢̂ is named as the Liu estimator

by Akdeniz and Kaciranlar [2]. The d value with minimum mean square error gives an efficient 

estimator as compared to other values . The R package liureg was developed by Muhammad 

Imdadullah et al. [15] provides the tools for the computation of the Liu estimator and the biasing 

parameter. 

 MM Estimator 

The MM estimator is a robust regression technique introduced by Yohai [23], used to 

estimate parameters in the presence of outliers. It is a modification of the M-estimator, designed to 

provide robustness and high efficiency. The construction of this estimator starts with an initial 

robust estimator as S estimator obtained using a robust method such as minimizing the scale of 

residuals. The MM estimator is defined as follows. 

𝛽𝑀𝑀̂ =  𝑎𝑟𝑔 min
𝛽

∑ 𝜌(
𝑟𝑖(𝛽)

𝑠

𝑛
𝑖=1 )         (7) 

where 𝑟𝑖(𝛽) are the residuals, s is a scale estimate based on the initial robust estimator, and ρ is a 

loss function like Tukey's biweight. 

 Robust Liu Estimator 

The objective of robust regression is to overcome some of the limitations of traditional 

regression analysis. The estimation and reference methods in robust regression should be straight 

forward to implement. Under a normal distribution without outliers, this robust method should 

yield results similar to those of LS. In this section, a new Robust Liu (RLiu) regression estimator 

was described to deal with the datasets having both multicollinearity and outliers by incorporating 

the properties of both Liu and MM regression procedures. The estimator of RLiu regression is 

given by 

𝛽𝑅𝐿𝑖𝑢̂ = (𝑋′𝑋 + 𝐼𝑝)
−1

(𝑋′𝑦 + 𝑑𝑀𝑀𝛽𝑀𝑀̂)  (8) 

where 0 ≤ 𝑑𝑀𝑀 ≤ 1, 𝐼𝑝 is the identity matrix of order 𝑝 × 𝑝,  𝛽𝑀𝑀̂ is the MM estimator. The biasing

parameter 𝑑𝑀𝑀of RLiu is computed by the formula, 
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𝑑𝑀𝑀̂ = 1 − 𝜎𝑀𝑀̂
2 [

∑
1

𝜆𝑖 (𝜆𝑖+1)

𝑝
𝑖=1

∑
𝛽𝑖̂

2

(𝜆𝑖+1)
2

𝑝
𝑖=1

]          (9) 

where, 𝜎𝑀𝑀̂
2 and 𝛽𝑖̂

2
are the mean square error and the regression estimates computed via MM

respectively. 𝜆1, 𝜆2, …, 𝜆𝑝 are the eigen values of the matrix 𝑋′𝑋.

III. Experimental Results

Table 1: Computed MSE under various regression methods (Real Data) 

 Methods 

Datasets  LS      Ridge  Liu   RLiu 

Case 1:Prostate Cancer  0.46  0.46 

 (1.5)  (0.33) 

 0.16  0.14 

(0.13)  0.12 

Case 2:Hald  3.68  3.32 

(2.57)  (2.46) 

 1.19  0.14 

(1.02)  (0.89) 

(.)Without outlier 

Table 2: Computed MSE under various regression methods (Simulation Data) 

   Methods  

n  Contamination LS  Ridge  Liu   RLiu 

50  0% 

      5% 

     10% 

     15% 

11.15  10.59 

15.20  15.08 

17.40  17.17 

19.17  19.07 

 9.24  8.44 

10.46  4.88 

14.31  13.42 

12.19  11.99 

100  0% 

      5% 

     10% 

      15% 

200  0% 

      5% 

     10% 

      15% 

12.31  12.13 

12.78  12.68 

12.62  12.44 

18.88  18.42 

15.43  15.41 

17.01  16.67 

14.76  14.29 

15.68  15.40 

 4.53  4.41 

5.96  5.42 

4.99  4.82 

7.06  5.73 

 3.17  3.04 

3.14  2.99 

 3.17  2.87 

 3.02  2.98 

This section presents numerical analyses conducted on both real and simulated datasets. The first 

real dataset explained in case 1 exhibits moderate multicollinearity with outliers. The second 

dataset presented in case 2 displays high multicollinearity along with the presence of outliers. 

Outliers in the actual datasets were detected and eliminated using Cook’s distance method 

introduced by Cook [5], and the analyses were performed using R software. A statistical technique 

called the Variance Inflation Factor (VIF) by Frisch [8] can detect and measure the amount of 

multicollinearity in a multiple regression model. The VIF assesses how much the regressors 

collectively impact the variance of each term within the model. The computed MSE measures of 

different regression estimators are summarized and presented in tables. 

Case1. Prostate Cancer Dataset: The data come from a study that looked at how males 

undergoing radial prostatectomy correlated their level of prostate-specific antigen with several 
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clinical measures. This data set has 97 observations. There are seven independent variables namely 

lweight (log of prostate weight), age, lbph (log of benign prostatic hyperplasia amount), svi 

(seminal vesicle invasion), lcp (log of capsular penetration), gleason (Gleason score), lpsa (log of 

prostate specific antigen) and one dependent variable lcavol (log of cancer volume). Seven outliers 

are found in this dataset. Since the VIFs of the independent variables are in between 1 and 5, there 

is an indication of moderate multicollinearity.  

Case 2. Hald Data: Woods et al [22] was introduced the Hald or Portland Cement Data. 

This data frame contains 13 observations with four independent variables. They are tricalcium 

aluminate (X1), tricalcium silicate (X2), tetracalcium aluminoferrite (X3) and β-dicalcium silicate 

(X4). The response variable Y is the evolved heat after 180 days in a cement mix. Since the VIFs of 

this Hald data set was greater than 10, the explanatory variables are highly correlated. As a result, 

the dataset has high multicollinearity. Also this data set has one outlier. The computed Mean 

Square Error (MSE) based on with and without outliers of different estimators in Cases 1 and 2 is 

given in Table 1.   
Simulation studies were carried out to examine the efficiency of different regression 

estimators. In the study, the data was generated from a multivariate normal distribution with 

mean 𝜇 = [0]px1and the variance ∑ = [𝜎𝑖𝑗] for the level of correlation, 𝜌 = 0.90 and number of 

variables 𝑝 = 5. Different levels of contamination (0%, 5%, 10%, and 15%) were studied for sample 

size 𝑛 = 50, 100,200. The performance of various regression procedures were compared using the 

MSE criterion and the results obtained for different number of observations with various levels of 

contamination are shown in Table 2. 

The results obtained from Table 1 and Table 2 show that the error values for different estimators 

are slightly different from each other. Also the RLiu estimator has the smallest MSE of all others. 

Hence Robust Liu (RLiu) estimator is more efficient than the other estimators in the case of 

datasets having indication of multicollinearity and has outliers. 

IV. Conclusion

Statistical learning techniques are crucial in various research fields, with regression analysis being 

a prominent method. Traditional linear regression often falls short when data deviates from its 

assumptions, necessitating alternative approaches. This paper explores several regression 

methods, including Least Squares, Ridge, Liu, and Robust Liu, and assesses their performance 

across different real and simulated datasets. The study addresses issues of multicollinearity and 

outliers by calculating Mean Square Error (MSE). The findings indicate that the Robust Liu 

regression method provides better estimates for datasets having both multicollinearity and/or 

outliers. This approach can be particularly advantageous for researchers employing machine 

learning techniques that need to account for these factors. 
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