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Abstract 

This article deals with the three node series queues with encouraged arrival. We increase the expected 

number of subscribers by using encouraged arrival in this study. Performance metrics is developed by 

analytic method. After developing the governing-equations and utilizing the Burke’s theorem, we 

resolve the steady-state probabilities and performance metrics of the three-node series queuing system. 

The study of learning series queues has received substantial interest in a variety of sectors, including 

manufacturing lines, computer systems, tollgates, telecommunications, and others. Researchers are 

becoming interested in the series queuing model because of its real-world application. A series queue is 

a line that runs through a chain of service stations, with subscribers always going along a single track 

from station to station studied a finite series queue and the view of approximate decomposition. 

Keywords: Series queues, Burke’s theorem, Encouraged arrival, Governing equations. 

I. INTRODUCTION

This article deals with the three node series queues with encouraged arrival. A series queue is a line 

that runs through a chain of service stations, with subscribers always going along a single track from 

station to station studied a finite series queue and the view of approximate decomposition. A queue 

with the Poisson input and exponential service, and disclosed that the exit also Poisson with similar 

constraint as in input considered [4]. A double-node series queue with general arrivals and analyzed 

the performance metrics of a limited series queueing system analyzed [14]. An approximation 

method have predicted [3]. An admission control policy by learning a two-phase with no-space series 

queueing system analyzed in [5]. A limited series queue by utilizing the idea of critical paths 

discussed in [11]. Markovian modeling, they have attained the expected, variance of subscribers 

queue length and expected subscribers delay in the series queue analysed in [13]. They also governed 

the generating function for attaining the subscriber’s queue-size distribution. A double-stage series 

retrial queueing model with a batch arrival process and attained results studied [10]. Using a fuzzy 

simulation results with the optimization of a series queue is analyzed in [1]. The server assigning 

problem without buffers series queueing system considered in [12]. In view of input flow Markovian 

and service is generalized distribution with multiple stages with heterogeneous subscribers in [9]. 

They derived performance metrics and also solved the condition of ergodicity. Utilizing matrix-

analytic technique has analyzed a series queueing system with heterogeneous servers in [7]. They 

estimated obvious outcomes for performance indices has taken into attention a series queue with 

double heterogeneous service providers and also obtained a closed form solution in [6].The 

performance metrics of multi-service provider series queues in which input is Markovian and service 

is phase-type discussed in [2]. An M/M/1/N encouraged arrival quality control queueing system 

discussed in [15]. The research is systematized as in the following sections: Introduction in section 1. 
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Model description is in section 2. Governing equations are in section 4. Burke’s theorem in section 5. 

Section 6 contains Performance measures.  Numerical examples are solved in section 7. Results are 

in section 8. Conclusions are concluded in section 9. 

II. MODEL DESCRIPTION

A series queueing model with 3 service nodes is considered with a Poisson input λ the subscribers from 

external arrive to the node T1. After concluding the service at the nodeT1, the subscribers will go to the 

node T2 from the node T2 for getting service, in front of the node T3 they join queue. The subscribers 

leave the system only after the achievement of service at node T3. The queue assumed to be unlimited 

in capacity and at nodes T1, T2 and T3 service-time follows exponential distributions with parameters 

µa, µb and µc. It is distinguished that one subscriber can access service from each node at once. 

Figure 1: Three - Phase Series Queue 

To estimate the steady-state probability P, K, L, M nodes of K subscribers at T1 and M subscribers 

respectively at nodes T2 and T3. Where K, L, M ≥ 0. Utilizing the state-transition figures the 

governing equations can be written (fig.2 and fig.3). 

Figure 2.1: represents that from state(0,0,1) only the (0,0,0)th state can be attained. 

Figure 2.2: represent that only the (K,0,0)th state can be reached only from the states (K-1,0,0)th or (K,0,1)th 

and arrival to the (K,0,0)th state becomes the (K+1,0,0)th state and the departure (K,0,0)th state becomes (K-

1,1,0)th state 
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Figure 2.3: Presents the (0,0,M)th state can be reached only from the states  (0,1,M-1)th or (0,0,M+1)th state  and 

arrival to the (0,0,M)th state becomes the (1,0,M)th state and the departure of (0,0,M)th state becomes (0,0,M-1)th state 

Figure 2.4: Presents the (0,L,0)th state can be reached only from the states (1,L-1,0)th or (0,L,1)th and arrival to 

the (0,L,0)th state becomes the (1,L,0)th state and the departure of (0,L,0)th state becomes (0,L-1,1)th state  

Figure 2.5: Presents  the (K,L,0)th state can be reached only from the states (K-1,L,0)th or (K+1,L-1,0)th or 

(K,L,1) and arrival to the (K,L,0)th state becomes the (K+1,L,0)th state and the departure of (K,L,0)th state 

becomes (K-1,L+1,0)th state or 

(K,L-1,1)th state 

 Figure 2: State Transition Diagram 

Figure 2 represents that from state (0,0,1) only the  (0,0,0)th state can be attained. 

The only state (1,0,0)  into which the middle state (0,0,0) can traverse and the mid state cannot 

traverse to any other state expect (1,0,0)th state . 

Similarly from (M-1,0,0) and (M,0,1) states, only the (M,0,0)th state can be reached. 

 The subscribers can move either to state (M+1,0,0)th  or to (M-1,1,0) state from the (M,0,0)th state. 
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Figure 3.1: Presents (K,0,M)th state can be reached only from the states (K-1,0,M)th or (K,1,M-1)th or (K,0,M-

1) and arrival to the (K,0,M)th state becomes the (K+1,0,M)th state and the departure of (K,0,M)th state becomes

(K-1,1,M)th state or (K,0,M-1)th state 

Figure 3.2:Presents  the (0,L,M)th state can be reached only from the states (1,L-1,M)th or (0,L+1,M-1)th or 

(0,L,M+1) and arrival to the (0,L,M)th state becomes the (1,L,M)th state and the departure of (0,L,M)th state 

becomes (0,L-1,M+1)th state or (0,L,M-1)th state . 

Figure 3.3: Presents  the (K,L,M)th state can be reached only from the states (K-1,L,M)th or (K+1,L-1,M)th or 

(K,L,M+1)th or (K,L+1,M-1)th  and arrival to the (K,L,M)th state becomes the (K+1,L,M)th state and the 

departure of (K,L,M)th state becomes (K-1,L+1,M)th state or (K,L-1,M+1)th state or (K,L,M-1)th state. 
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III. NOTATIONS

The notations are used to formulate the series queue with 3-nodes T1, T2, T3. Where PK,L,M denotes 

the steady-state probabilities that there are K number of subscribers at node T1, L-number of 

subscribers in T2 and M-subscribers in T3. States of the model are given by (K, L, M). 

PK − Probability that there are K subscribers at the node T1 

PL − Probability that there are L subscribers at the node T2 

PM − Probability that M subscribers at the node T3 

P0,0,0 − Probability that no subscribers at any node T1, T2 and T3. 

PK,0,0 − The probability that K subscribers at node T1 and no subscribers at nodes T2 and T3. 

P0,L,0 − Probability that no subscribers at node T1 and T3, but L subscribers are at node T2. 

P0,0,M − Probability that no subscribers at node T1 and T2, but M subscribers are at node T3. 

PK,L,0 − Probability that K subscribers at node T1 and L subscribers at node T2 no subscribers at node 

T3. 

PK,0,M - Probability K subscribers are at node T1 and no subscribers at node T2 and also M subscribers 

at node T3. 

P0,L,M − Probability that no subscribers at node T1, but L subscribers at node T2 and M subscribers at 

node T3. 

PK,L,M − Probability that k subscribers at node T1, L subscribers at node T2 and M subscribers at T3. 

IV. GOVERNING EQUATIONS

By utilizing the transition figure in figure 2.1, 2.2, 2.3, 2.4, 2.5 and figure 3.1, 3.2, 3.3 we developed 

the steady state equations as below; 

𝜆(1 + 𝛾)𝑃0,0,0 = 𝜇c𝑃0,0,1          (1) 

(λ(1 + γ) + 𝜇c)𝑃0,0,𝑀 = λ(1 + γ)𝑃0,1,𝑀−1 + 𝜇a𝑃0,0,𝐿+1  (2) 

(λ(1 + γ) + 𝜇a)𝑃𝐾,0,0 = λ(1 + γ)𝑃𝐾−1,0,0 + 𝜇c𝑃𝐾,0,1    (3) 

(λ(1 + γ) + 𝜇b)𝑃0,𝐿,0 = 𝜇a𝑃1,𝐿−1,0 + 𝜇c𝑃0,𝐿,1            (4) 

(λ(1 + γ) + 𝜇a + 𝜇b)𝑃𝐾,𝐿,0 = 𝜆(1 + 𝛾)𝑃𝐾−1,𝐿,0 + 𝜇a𝑃𝐾+1,𝐿−𝑙,0 + 𝜇c𝑃𝐾,𝐿,1            (5) 

(λ(1 + γ) + 𝜇a + 𝜇c)𝑃𝑘,0,𝑚 =  𝜆(1 + 𝛾)𝑃𝐾−1,0,𝑀 + 𝜇b𝑃𝐾,1,𝑀−1  

+𝜇c𝑃𝐾,0,𝑀+1  (6) 

(λ(1 + γ) + 𝜇b + 𝜇c)𝑃0,𝑙,𝑚 =  𝜇a𝑃1,𝐿−1,𝑀 + 𝜇b𝑃0,𝐿+1,𝑀−1  + 𝜇c𝑃0,𝐿,𝑀+1   (7) 

(λ(1 + γ) + 𝜇a + 𝜇b + 𝜇c)𝑃𝐾,𝐿,𝑀 =  λ(1 + γ)𝑃𝐾−1,L,𝑀 + 𝜇a𝑃𝐾+1,𝐿−1,𝑀 

+𝜇c𝑃𝐾,𝐿,𝑀+1 + 𝜇b𝑃𝐾,𝐿+1,𝑀−1  (8) 

Moreover, the addition of entire probabilities must equal to one. i.e., 

         ∑  𝐾 ∑  𝐿 ∑  𝑀 𝑃𝐾,𝐿,𝑀 = 1 (9)
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Burke's theorem is used in this instance to solve the governing equations mentioned above. The 

following is the theorem's statement: 

V. BURKE'S THEOREM

Poisson arrival queue with single waiting queue with no departures, and exponentially distributed 

service times, the equilibrium distribution of the number of service accomplishments in a random 

time duration is equal as the arrival distribution, for every number of service providers. 

To illustrate the outcome, Burke developed the supposition that the span of the expected inter-

arrival 
1

λ(1+γ)
, there are c service providers with exponentially distributed mean rate 

1

μ
 and cμ > λ(1 +

γ). By utilizing the conventions in its place of verifying the equilibrium distribution of the number 

of subscribers completing service between an arbitrary duration of span t follow poisson with rate 

λ(1 + γ)t, Burke verified an equivalent output, that the time durations among successive service 

accomplishments are independent, exponentially distributed and it is identical as the inter-arrival 

times (visit [4]). 

The process of entering (arriving) at T2, which is identical to the process of leaving T1 

is also Poisson with parameter λ(1 + γ) from the theorem. In case of the service providers 

T2 and T3 same is detained. Hence, the queueing models are M/M/1 queueing system. so far  M/M/1 

queueing model is taken into account, now we govern the probability distribution for the three phase 

series queue by utilizing the Burke's theorem. 

PK − Probability that k number of subscribers at the node T1 

= [
𝜆(1 + 𝛾)

𝜇a

]

𝐾

[1 −
𝜆(1 + 𝛾)

𝜇a

]   (10) 

PL − Probability that l number of subscribers at the node T2 

= [
𝜆(1 + 𝛾)

𝜇b

]

𝐿

[1 −
𝜆(1 + 𝛾)

𝜇b

]   (11) 

PM − Probability that m number of subscribers at the node T3 

= [
𝜆(1 + 𝛾)

𝜇c

]

𝑀

[1 −
𝜆(1 + 𝛾)

𝜇c

]  (12) 

At each node T1, T2, T3 the number of subscribers are random variables which is independent, hence 

the probability of K amount of subscribers at node T1 and L number of subscribers at node T2 and m 

subscribers at node T3 are jointly assumed by, 

𝑃𝐾,𝐿,𝑀 = [
𝜆(1+𝛾)

𝜇a
]

𝐾

[1 −
𝜆(1+𝛾)

𝜇a
] [

𝜆(1+𝛾)

𝜇b
]

𝐿

[1 −
𝜆(1+𝛾)

𝜇b
] [

𝜆(1+𝛾)

𝜇c
]

𝑀

[1 −
𝜆(1+𝛾)

𝜇c
]  (13) 

where K, L, M ≥ 0 

VI. PERFORMANCE MEASURES

For analyzing the series queueing model performance, different performance measures are 

developed utilizing steady state probability distributions as- 

(i) The expected number of subscribers in the system
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𝐿= ∑  

𝐾

 𝐾𝑃𝐾 + ∑  

𝑙

 𝐿𝑃𝐿 + ∑  

𝑚

 𝑀𝑃𝑀

= ∑

∞

𝐾=0

 𝐾 [
𝜆(1 + 𝛾)

𝜇a

]

𝐾

[1 −
𝜆(1 + 𝛾)

𝜇a

] + ∑  

∞

𝐿=0

 𝐿 [
𝜆(1 + 𝛾)

𝜇b

]

𝐿

[1 −
𝜆(1 + 𝛾)

𝜇b

]

+ ∑

∞

𝑀=0

 𝑀 [
𝜆(1 + 𝛾)

𝜇c

]

𝑀

[1 −
𝜆(1 + 𝛾)

𝜇c

]

 =
𝜆(1 + 𝛾)

𝜇a − λ(1 + γ)
+

𝜆(1 + 𝛾)

𝜇b − λ(1 + γ)
+

𝜆(1 + 𝛾)

𝜇c − λ(1 + γ)

(ii) The expected waiting time of the subscribers in the system

 W =
1

𝜆(1 + 𝛾)
𝐿 

= 
1

𝜇a − λ(1 + γ)
+

1

𝜇b − λ(1 + γ)
+

1

𝜇c − λ(1 + γ)

(iii) The probability that the three service nodes are free

𝑃0,0,0 = [
𝜆(1 + 𝛾)

𝜇a

]

0

[1 −
𝜆(1 + 𝛾)

𝜇a

] [
𝜆(1 + 𝛾)

𝜇b

]

0

[1 −
𝜆(1 + 𝛾)

𝜇b

] [
𝜆(1 + 𝛾)

𝜇c

]

0

[1 −
𝜆(1 + 𝛾)

𝜇c

]

= [
𝜇a − λ(1 + γ)

𝜇a

] [
𝜇b − λ(1 + γ)

𝜇b

] [
𝜇c − λ(1 + γ)

𝜇c

]

(iv) The probability that K subscribers at node T1 and no subscribers at T2 and T3

𝑃𝐾,0,0 = [
𝜆(1 + 𝛾)

𝜇a

]

𝐾

[1 −
𝜆(1 + 𝛾)

𝜇a

] [
𝜆(1 + 𝛾)

𝜇b

]

0

[1 −
𝜆(1 + 𝛾)

𝜇b

] [
𝜆(1 + 𝛾)

𝜇c

]

0

[1 −
𝜆(1 + 𝛾)

𝜇c

]

= 𝜆(1 + 𝛾)𝐾 [
𝜇1 − λ(1 + γ)

𝜇a
𝐾+1

] [
𝜇b − λ(1 + γ)

𝜇b

] [
𝜇c − λ(1 + γ)

𝜇c

]

(v) The probability that no subscribers at nodes T1 and T3 and L number of subscribers at node T2

𝑃0,𝐿,0 = [
𝜆(1 + 𝛾)

𝜇a

]

0

[1 −
𝜆(1 + 𝛾)

𝜇a

] [
𝜆(1 + 𝛾)

𝜇b

]

𝐿

[1 −
𝜆(1 + 𝛾)

𝜇b

] [
𝜆(1 + 𝛾)

𝜇c

]

0

[1 −
𝜆(1 + 𝛾)

𝜇c

]

= 𝜆(1 + 𝛾)𝐿 [
𝜇a − λ(1 + γ)

𝜇a

] [
𝜇b − λ(1 + γ)

𝜇b
𝐿+1 ] [

𝜇c − λ(1 + γ)

𝜇3

]

(vi) The probability that zero subscribers at nodes T1 and T2 and M subscribers at node T3

𝑃0,0,𝑀 = [
𝜆(1 + 𝛾)

𝜇a

]

0

[1 −
𝜆(1 + 𝛾)

𝜇a

] [
𝜆(1 + 𝛾)

𝜇b

]

0

[1 −
𝜆(1 + 𝛾)

𝜇b

] [
𝜆(1 + 𝛾)

𝜇c

]

𝑀

[1 −
𝜆(1 + 𝛾)

𝜇c

]

= 𝜆(1 + 𝛾)𝑀 [
𝜇a − λ(1 + γ)

𝜇a

] [
𝜇b − λ(1 + γ)

𝜇b

] [
𝜇c − λ(1 + γ)

𝜇c
𝑀+1

]

(vii) The Probability that K, M subscribers at nodes T1 and T2 respectively and no subscribers at node
T3

𝑃𝐾,0,𝑀 = 𝜆(1 + 𝛾)𝐾+𝑀 [
𝜇a − λ(1 + γ)

𝜇a
𝐾+1

] [
𝜇b − λ(1 + γ)

𝜇b

] [
𝜇c − λ(1 + γ)

𝜇c
𝑀+1

] 

(viii) The Probability that K, L, zero subscribers at nodes T, T2T3 respectively

𝑃𝐾,𝐿,0 = 𝜆(1 + 𝛾)𝐾+𝑙 [
𝜇a − λ(1 + γ)

𝜇a
𝐾+1 ] [

𝜇b − λ(1 + γ)

𝜇b
𝐿+1 ] [

𝜇c − λ(1 + γ)

𝜇c
] 

(ix) The Probability that 0, L, M subscribers at nodes T, T2T3 respectively
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𝑃0,𝐿,𝑀 = 𝜆(1 + 𝛾)𝐿+𝑀 [
𝜇a − λ(1 + γ)

𝜇a

] [
𝜇b − λ(1 + γ)

𝜇b
𝐿+1 ] [

𝜇c − λ(1 + γ)

𝜇c
𝑀+1

] 

(x) The Probability that K, L, M subscribers at nodes T1, T2T3 respectively

𝑃𝐾,𝐿,𝑀 = 𝜆(1 + 𝛾)𝐾+𝐿+𝑀 [
𝜇a − λ(1 + γ)

𝜇a
𝐾+1

] [
𝜇b − λ(1 + γ)

𝜇b
𝐿+1 ] [

𝜇c − λ(1 + γ)

𝜇c
𝑀+1

] 

(xi) At the nodes T1, T2 and T3 the probability that the subscribers h,l is where h>K, and i>L and j>M

is given by

𝑃ℎ>𝐾,𝑖>𝐿,𝑗>𝑀 = ∑

∞

ℎ=𝐾+1

 𝑃ℎ ⋅ ∑

∞

𝑖=𝐿+1

 𝑃𝑖 ⋅ ∑

∞

𝑗=𝑀+1

 𝑃𝑗

= [
𝜆(1 + 𝛾)

𝜇a
]

𝐾+1

⋅ [
𝜆(1 + 𝛾)

𝜇b
]

𝐿+1

⋅ [
𝜆(1 + 𝛾)

𝜇c
]

𝑀+1

= 
𝜆(1 + 𝛾)𝑘+𝑙+𝑚+3

𝜇a
𝐾+1 ⋅ 𝜇b

𝐿+1 ⋅ 𝜇c
𝑀+1

(xii) The expected number of subscribers in the queue

𝐿Q = ∑

∞

𝐾=1

  (𝐾 − 1)𝑃𝐾 + ∑  

∞

𝐿=1

  (𝑖 − 1)𝑃𝑖 + ∑

∞

𝑀=1

  (𝑀 − 1)𝑃𝑀

= 
𝜆(1 + 𝛾)

𝜇a

⋅
𝜆(1 + 𝛾)

𝜇a − λ(1 + γ)
+

𝜆(1 + 𝛾)

𝜇b

⋅
𝜆(1 + 𝛾)

𝜇b − λ(1 + γ)
+

𝜆(1 + 𝛾)

𝜇c

⋅
𝜆(1 + 𝛾)

𝜇c − λ(1 + γ)

= (𝜆(1 + 𝛾))2 [
1

𝜇a(𝜇b − λ(1 + γ))
+

1

𝜇b(𝜇b − λ(1 + γ))
+

1

𝜇c(𝜇c − λ(1 + γ))
]

(xiii) The expected waiting time of a subscribers in the queue

𝑊Q =
𝐿𝑞

𝜆(1 + 𝛾)

𝑊Q = λ(1 + γ) [
1

𝜇a(𝜇a − λ(1 + γ))
+

1

𝜇𝑏(𝜇b − λ(1 + γ))
+

1

𝜇c(𝜇c − λ(1 + γ))
] 

VII. NUMERICAL EXAMPLES

In this section, to formulate the series queue with 3-nodes T1, T2, T3. The steady-state probabilities 

that there are K number of subscribers at node T1, L-number of subscribers in T2 and M-subscribers 

in T3. States of the model are given by (K, L, M).The performance of the queuing system is examined 

numerically in relation to the parameters 𝜆(1 + 𝛾). Where 𝛾 =10% and 20%. Since Little’s law values 

for the chosen parameter values are displayed in the table as a distinct column 

Table1: Represents the value of L and W when 𝛾=0.0 

Λ L W L =λ(1 + γ)W 

1 0.869 0.869 0.869 

1.1 0.9849 0.8954 0.9849 

1.2 1.1080 0.9233 1.1080 

1.3 1.2391 0.9531 1.2391 

1.4 1.3790 0.9850 1.3790 

1.5 1.5286 1.0190 1.5286 
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Table2: Represents the value of L and W when 𝛾=0.1 

Figure 4: plot against L and 𝜆 

Figure5: plot against W and 𝜆 

VIII. RESULTS AND DISCUSSIONS

In table 1, the values of L and W increases when we increase the arrival rate λ with γ =0. Table 2, the 

values of L and W increases when we increase the arrival rate λ with γ =0.1. Table 3, the system of L 

and W increases when we increase the arrival rate λ with γ =0.2. Figure 4, When γ =0.2 (20%) we got 

maximum value of L than in table 1 and table 2. Figure 5, the results of W for different values of  γ=0 

to 0.2. 

IX. CONCLUSIONS

In terms of operations management, planning, outlining, and execution, this study is quite helpful. 

Developing services for customers, and other areas. We increased the expected number of 

subscribers in the system. We developed the performance metrics by applying Burke's theorem. We 

enlarged the system size by using encouraged arrival discounts. Increasing the service subscribers 

will surely improve the company’s revenue. We can further extend this article by increasing the 

number of servers and adding optimal cost to study the behavior of the series queues. 

Λ L W L=λ(1 + γ)W 

1 0.9849 0.8954 0.9849 

1.1 1.1207 0.9262 1.1207 

1.2 1.2663 0.9593 1.2663 

1.3 1.4228 0.9950 1.4228 

1.4 1.5914 1.0334 1.5914 

1.5 1.7736 1.0745 1.7736 
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