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Abstract

The Lehmann type-II Perk distribution is a flexible statistical model with a wide range of appli-
cations in fields such as reliability analysis, survival modeling, and data fitting. This distribution
is notable for its distinct properties, including specific patterns in hazard rates and implications
for stochastic ordering. Estimating the distribution parameters is essential for effective model
fitting and making inferences. The parameters are estimated using the maximum likelihood
estimation method, and confidence intervals are determined using normal approximation. To
evaluate the performance of these estimation methods, Monte-Carlo simulation studies are
conducted, demonstrating their accuracy and efficiency. The Lehmann type-II Perk distribution
provides a robust framework for analyzing complex data sets and deriving reliable statistical
conclusions.

Keywords: Lehmann type-II Perk distribution, survival function, hazard function, maximumlikeli-
hood estimates, confidence length, Monte-Carlo simulation.

1. Introduction

Researchers in the scientific community have widely embraced Lehmann’s [6] type-I (L-I) and
type-II (L-II) lifetime models as straightforward and practical tools. Lehmann’s type-I (L-I) model
is commonly associated with the Power function (PF) distribution, which has garnered significant
attention for its simplicity and utility. Additionally, Gupta et al. [8] applied the L-I model to the
exponential distribution. The appeal of the PF distribution’s simplicity and versatility has led re-
searchers to explore its various applications, extensions, and generalizations across different scientific
domains. Furthermore, Cordeiro and De Castro [9] introduced the Lehmann Type-II (L-II) G class
through a dual transformation. Cordeiro et al. [5] developed the Lehman type II distribution as a
hybrid of the generalized exponentiated distribution. This distribution’s closed-form characteristics
facilitate the derivation and examination of numerous properties. Researchers have extensively
employed both the L-I and L-II approaches in the literature to investigate novel features of classical
and modified models. In recent studies, Arshad et al. [12] delved into the development of the L-II G
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family, focusing on a bathtub-shaped failure rate model and its application using engineering data.
Balogun et al. [14] introduced a potentiated lifetime model exhibiting a bathtub-shaped hazard
rate function, termed the Kumaraswamy modified size-biased Lehmann Type-II (Kum–MSBL–II)
distribution. Ogunde et al. [1] defined and studied a new generalization of the Frechet distribution,
known as the Lehmann Type II Frechet Poisson distribution. Tomazella et al. [23] explored various
mathematical properties of the L-II Frechet distribution and its application to aircraft maintenance
data, while Awodutire et al. [16] discussed multiple statistical measures of the L-II generalized half
logistic distribution, examining its application in sports data. In a different context, Badmus et
al. [13] investigated the weighted Weibull distribution via the L-II approach and its application in
textile engineering data. Meanwhile, Ogunde et al. [2] extended the Gumbel type-II distribution
using the exponentiated L-II G class and applied it to biology data.

The Perks distribution, originally proposed by Perks in [15], is a four-parameter model that
also serves as an extension of the Gompertz-Makeham distribution. Researchers in the field have
actively explored modifications and generalizations of this model within the literature. Richards,
in both [18] and [19], introduced parametric survival models based on the Perks I distribution.
Haberman and Renshaw, in [10], conducted a study focused on parametric mortality projection
using the Perks distribution as a foundation. Chaudhary and Kumar, in [4], delved into Bayesian
analysis of the Perks distribution employing Markov Chain Monte Carlo techniques. In [24], Zeng
et al. examined both four and five-parameter Perks mortality equations to model bathtub-shaped
failure rates. In another extension of the Perks distribution, Singh and Choudhary [21] introduced
the exponentiated Perks distribution, while Chaudhary [3] presented the Perks-II distribution. Most
recently, Gonzalez et al. [7] conducted a study on the additive Perks distribution and explored its
application in the realm of reliability analysis.

The distribution function of the Lehmann type-II is given by

𝐹 (𝑥) = 1 − (1 − 𝐺(𝑥))𝛼 , 𝑥 > 0, 𝛼 > 0. (1)

The distribtion function of the perk II is given by

𝐺(𝑥) = 1 −
(︂

1 + 𝛼

1 + 𝛼𝑒𝛽𝑥

)︂ 1
𝛽

, 𝑥 > 0, 𝛼, 𝛽 > 0. (2)

𝐹𝐿𝑃 𝑀 (𝑥) = 1 −
(︂

1 + 𝛼

1 + 𝛼𝑒𝛽𝑥

)︂ 𝛾
𝛽

, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0. (3)

which is a three parameter Lehmann type-II Perk distribution. The corresponding density is
given by

𝑓𝐿𝑃 𝑀 (𝑥) = 𝛼𝛾 (1 + 𝛼)
𝛾
𝛽 𝑒𝛽𝑥

[︂
1

1 + 𝛼𝑒𝛽𝑥

]︂1+ 𝛾
𝛽

, 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0. (4)

and 𝑓𝐿𝑃 𝑀 (𝑥) = 0 otherwise. A plots of the density function is shown in Figure 1.

2. Properties

This section studies various properties such as the survival and hazard function, quantile function.

2.1. Survival and hazard function
The survival function of the density given in Eq. (5) as

𝑆𝐿𝑃 𝑀 (𝑥) =

(︂
1 + 𝛼

1 + 𝛼𝑒𝛽𝑥

)︂ 𝛾
𝛽

(5)
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Figure 1: Few shapes of Lehmann II Perks distribution.

Figure 2: Survival shapes of Lehmann II Perks distribution

and the hazard function as ℎ𝐿𝑃 𝑀 (𝑥) = 𝑓𝐿𝑃 𝑀 (𝑥)
𝑆𝐿𝑃 𝑀 (𝑥)

, and hence

ℎ𝐿𝑃 𝑀 (𝑥) = 𝛼𝛾

[︂
𝑒𝛽𝑥

1 + 𝛼𝑒𝛽𝑥

]︂
(6)

The different shapes of the survival and hazard function are given in the Figure 2 and 3.

2.2. The Quantile function
The quantile function 𝑄(𝑢) is defines

𝑄(𝑢) = 𝐹 −1(𝑢) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑢}, 0 ≤ 𝑢 ≤ 1 (7)

The cumulative distribution function 𝐹 (𝑥) is defined as 𝐹 (𝑥) = 1 − 𝑆(𝑥). Let’s consider 𝐹 (𝑥) = 𝑢,
resulting in the following expression for 𝑥:

𝑥 =
1
𝛽

ln 1
𝛼

⎡⎣ 1 + 𝛼

(1 − 𝑢)
𝛽
𝛾

− 1

⎤⎦ (8)
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Figure 3: Hazard shapes of Lehmann II Perks distribution

2.3. Likelihood ratio ordering
For two random variables 𝑋1 and 𝑋2 where 𝑋1 is larger than 𝑋2 in likelihood ratio ordering,
denoted by 𝑋1 ≥𝑙𝑟 𝑋2, if 𝑓𝑋1 (𝑥)

𝑓𝑋2 (𝑥)
is an increasing function in 𝑥, where 𝑓𝑋1(𝑥) and 𝑓𝑋2(𝑥) are

density function of 𝑋1 and 𝑋2 respectively. Consider that 𝑋1 and 𝑋2 are independent random
variables following Lehmann type-II Perks distribution with parameters (𝛼, 𝛽, 𝛾1) and (𝛼, 𝛽, 𝛾2)
respectively and for 𝛾1 ≤ 𝛾2. Then

𝑓𝑋1(𝑥)

𝑓𝑋2(𝑥)
=

𝛾1
𝛾2

(1 + 𝛼)
𝛾1−𝛾2

𝛽

(︁
1 + 𝛼𝑒𝛽𝑥

)︁ 𝛾2−𝛾1
𝛽 . (9)

Further we can have,

𝜕

𝜕𝑧

𝑓𝑋1(𝑥)

𝑓𝑋2(𝑥)
= 𝛼𝛽𝑒𝛽𝑥 𝛾1

𝛾2

(𝛾2 − 𝛾1)

𝛽
(1 + 𝛼)

𝛾1−𝛾2
𝛽

(︁
1 + 𝛼𝑒𝛽𝑥

)︁ 𝛾2−𝛾1
𝛽 −1

(10)

For 𝛾1 ≤ 𝛾2, 𝑓𝑋1 (𝑥)

𝑓𝑋2 (𝑥)
is increasing and hence 𝑋1 ≥𝑙𝑟 𝑋2. Shaked and Shanthikumar [20] suggests

that likelihood ratio ordering implies hazard rate ordering and which implies stochastic ordering.
Thus for 𝛾1 ≤ 𝛾2, we have 𝑋1 ≥𝑙𝑟 𝑋2 ⇒ 𝑋1 ≥ℎ𝑟 𝑋2 ⇒ 𝑋1 ≥𝑠𝑡 𝑋2. This helps to understand one
random variable being "bigger" than the other, or in our case when 𝛾1 ≤ 𝛾2, 𝑋1 is "bigger" than 𝑋2.

2.4. Stress-strength reliability
Suppose 𝑋1 and 𝑋2 are independent random variables following Lehmann type-II Perks distribution
with parameters (𝛼, 𝛽, 𝛾1) and (𝛼, 𝛽, 𝛾2) respectively. Let 𝑓(𝑥) be the density function of 𝑋1 and
𝑔(𝑥) be the density function of 𝑋2. Then the stress-strength reliability is

𝑅 = Pr{𝑋1 > 𝑋2} =

∫︁ ∞

0
𝑓(𝑥1)

(︂∫︁ 𝑥1

0
𝑔(𝑥2)𝑑𝑥2

)︂
𝑑𝑥1

= 1 − 𝛼𝛾1 (1 + 𝛼)
𝛾1+𝛾2

𝛽

∫︁ ∞

0
𝑒𝛽𝑥1

[︂
1

1 + 𝛼𝑒𝛽𝑥1

]︂1+
(︀

𝛾1+𝛾2
𝛽

)︀
𝑑𝑥1

=
𝛾2

𝛾1 + 𝛾2
(11)

3. Maximum Likelihood Estimation

Let 𝑥1, 𝑥2, ..., 𝑥𝑛 be a simple random sample from the density in Eq. (4), then the log-likelihood
function is denoted by 𝐿(𝛼, 𝛽, 𝛾) is given by
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𝐿(𝛼, 𝛽, 𝛾) = 𝑛 ln 𝛼 + 𝑛 ln 𝛾 +
𝑛𝛾

𝛽
ln(1 + 𝛼)

+ 𝛽
𝑛∑︁

𝑖=1
𝑥𝑖 −

(︂
1 + 𝛾

𝛽

)︂ 𝑛∑︁
𝑖=1

ln
(︁

1 + 𝛼𝑒𝛽𝑥𝑖

)︁
(12)

To estimate the parameters 𝛼, 𝛽 and 𝛾 by equating the partial derivative of the equation obtained
in Eq. (12) with respect to each parameter to zero.

𝜕𝐿

𝜕𝛼
=

𝑛

𝛼
+

𝑛𝛾

𝛽 (1 + 𝛼)
−

(︂
1 + 𝛾

𝛽

)︂ 𝑛∑︁
𝑖=1

𝑒𝛽𝑥𝑖

1 + 𝛼𝑒𝛽𝑥𝑖
(13)

𝜕𝐿

𝜕𝛽
=

−𝑛𝛾

𝛽2 ln (1 + 𝛼) +
𝑛∑︁

𝑖=1
𝑥𝑖 −

(︂
1 + 𝛾

𝛽

)︂ 𝑛∑︁
𝑖=1

𝛼𝑥𝑖𝑒
𝛽𝑥𝑖

1 + 𝛼𝑒𝛽𝑥𝑖
+

𝛾

𝛽2

𝑛∑︁
𝑖=1

ln (14)

𝜕𝐿

𝜕𝛾
=

𝑛

𝛾
+

𝑛

𝛽
ln (1 + 𝛼) − 1

𝛽

𝑛∑︁
𝑖=1

ln
(︁

1 + 𝛼𝑒𝛽
∑︀𝑛

𝑖=1 𝑥𝑖

)︁
(15)

Now setting the above three Equations to zero, the maximum likelihood estimates of 𝛼, 𝛽, 𝛾 can be
obtained by solving the non-linear equations numerically using analytical methods like Newton-
Raphson algorithm. This can be done by using statistical package, R.

Under certain regulatory conditions, the estimator 𝜃 =
(︀
𝛼̂, 𝛽̂, 𝛾̂

)︀
is asymptotically normally

distributed with mean 𝜃 = (𝛼, 𝛽, 𝛾) and variance-covariance matrix 𝐶𝑜𝑣(𝜃) = 𝐼(𝜃)−1 where 𝐼(𝜃)

is the Fisher information matrix or the expected value of 𝐽(𝜃) = − 𝜕2𝑙
𝜕𝛼𝑖𝜕𝛼𝑗

is the (𝑖, 𝑗) element of
observed information matrix. The normal approximation of the MLEof 𝜃 can be used to construct
approximate confidence intervals of the parameters. The asymptotic distribution of

√
𝑛

(︀
𝜃 − 𝜃

)︀
is 𝑁3

(︀
0, 𝐼−1 (︀

𝜃
)︀)︀

. The asymptotic multivariate normal distribution can be used to construct
asymptotic confidence intervals for 𝛼, 𝛽 and 𝛾. The asymptotic 100 (1 − 𝜂)% confidence intervals
for 𝛼, 𝛽 and 𝛾 are respectively

(︁
𝛼̂ ± 𝑧 𝜂

2
𝑆.𝐸(𝛼̂)

)︁
,

(︁
𝛽̂ ± 𝑧 𝜂

2
𝑆.𝐸

(︀
𝛽̂

)︀)︁
and

(︁
𝛾̂ ± 𝑧 𝜂

2
𝑆.𝐸(𝛾̂)

)︁
, where

S.E.(.) is the square root of the diagonal element of 𝐼−1 (︀
𝜃
)︀

corresponding to each parameter and
𝑧 𝜂

2
is the quantile

(︀
1 − 𝜂

2
)︀

of the standard normal distribution.

4. Simulation study

Here, we used a simulation study to investigate the performance of the accuracy of point estimates
of the parameters of the Lehmann type-II Perk model (𝛼, 𝛽, 𝛾) distribution. The following steps
were followed:

• Specify the sample size n and the values of the parameters 𝛼, 𝛽, 𝛾.

• Generate 𝑈𝑖 ∼ Uniform(0, 1); 𝑖 = 1, 2, 3...., 𝑛.

• Set

𝑥 =
1
𝛽

ln 1
𝛼

⎡⎣ 1 + 𝛼

(1 − 𝑢)
𝛽
𝛾

− 1

⎤⎦ (16)

• Calculate the MLEs of the three parameters.

• Repeat steps 2-3, N times.

• Calculate the mean squared error (MSE) for each parameter.

Venugopal Haridoss, Sudheep Jose, Thomas Xavier
LEHMANN TYPE-II PERK DISTRIBTION: PROPERTIES AND APPLICATIONS

RT&A, No 4(80)

Volume 19, December, 2024

347



Figure 4: Bias, mean square error (MSE) and confidence length (C.L)
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Table 1: Bias, mean square error (MSE) and confidence length (C.L) of different set of parameters

Sample Size 𝛼̂ (Bias) 𝛽̂ (Bias) 𝛾̂ (Bias) 𝛼̂ (MSE) 𝛽̂ (MSE) 𝛾̂ (MSE) 𝛼̂ (C.L) 𝛽̂ (C.L) 𝛾̂ (C.L)
SET-1
20 -0.0278 -0.7736 -0.0066 0.0054 0.9552 0.0430 0.0699 0.0544 0.0162
30 -0.0151 -0.4347 0.0043 0.0038 0.4505 0.0245 0.0122 0.0122 0.0122
50 -0.0026 -0.2762 0.0139 0.0027 0.2311 0.0166 0.0100 0.0100 0.0100
100 0.0049 -0.2086 0.0165 0.0016 0.1314 0.0090 0.0073 0.0073 0.0073
SET-2
20 -0.0428 -0.4639 0.0823 0.0048 0.3628 0.0822 0.0215 0.0215 0.0215
30 -0.0257 -0.3422 0.0623 0.0034 0.2380 0.0500 0.0168 0.0168 0.0168
50 -0.0089 -0.2217 0.0619 0.0021 0.1266 0.0379 0.0140 0.0140 0.0140
100 0.0018 -0.1427 0.0593 0.0011 0.0535 0.0180 0.0094 0.0094 0.0094
SET-3
20 -0.1749 -0.2284 0.1278 0.0496 0.4697 0.0839 0.0222 0.0222 0.0222
30 -0.1321 -0.1534 0.1008 0.0370 0.3589 0.0605 0.0192 0.0192 0.0192
50 -0.0751 0.0645 0.1161 0.0224 0.2412 0.0468 0.0156 0.0156 0.0156
100 -0.0245 0.0249 0.1072 0.0112 0.1244 0.0319 0.0122 0.0122 0.0122
SET-4
20 0.1151 -0.5313 0.0416 0.0188 0.8283 0.0049 0.0196 0.1115 0.0102
30 0.0203 -0.4140 0.0353 0.0154 0.7922 0.0040 0.0095 0.0515 0.0045
50 0.0127 0.0826 0.0163 0.0113 0.6858 0.0017 0.0022 0.0022 0.0022
100 0.0052 0.3295 0.0066 0.0076 0.6524 0.0005 0.0016 0.0005 0.0005

The comparison is based on MSEs and C.L. The MSEs and C.L were computed by generating
one thousand replications of sample size 𝑛 = 20, 30, 50, 100 from the Lehmann II Perks model with
different parameter values. The required results are obtained based on the different combinations
of the model parameters place in SET-1 (𝛼 = 0.1, 𝛽 = 3, 𝛾 = 1), SET-2 (𝛼 = 0.1, 𝛽 = 2, 𝛾 = 1),
SET-3 (𝛼 = 0.3, 𝛽 = 2, 𝛾 = 1) and SET-4 (𝛼 = 0.1, 𝛽 = 3, 𝛾 = 0.2), which are shown in Tables 1.
Figures 4 displays the bias, mean squared error and confidence length for different sample sizes.
The assessment based on simulation study is that the MSEs for each parameter decreases with
increasing sample size. Moreover, we observe that the confidence lengths also decrease with an
increase in the sample size. We used the nlm() package in R to obtain the parameter estimates.
All the analyses are conducted using the statistical package, R Studio (version 2023.06.0).

5. Data analysis: Conductors’ failure data

This section is devoted to the model comparison between the proposed Lehmann II Perk model
(LPM) and some other models. The following data set has been used in order to assess the
goodness-offit of the considered models. The data present hours to failure of 59 test conductors of
400 micrometer length, reported by Schafft et al. [19]. All specimens ran to failure at a certain
high temperature and current density. All 59 specimens were tested under the same temperature
and current density. 6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129,
11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532,
9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033,
10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071,
10.491, 5.923. We comapre the developed distribution with the following distributions:

1. The Perks distribution (PD) proposed by Perks [15], with density function

𝑓1(𝑥) = 𝛼𝜆𝑒𝜆𝑥 (1 + 𝛼)

(1 + 𝛼𝑒𝜆𝑥)
2 (17)

where 𝑥, 𝛼, 𝜆 > 0 and 𝑓1(𝑥) = 0 otherwise.

2. Exponentiated Perks distribution (EPD) introduced by Sigh B. and Choudhary N. [21], with
density function
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Table 2: Goodness of fit for Conductors’ failure data.

Model 𝛼 𝛽 𝜆 K-S statistic p value AIC
LPM 0.00028 1.2427 0.9341 0.0507 0.9962 228.74
PD 0.0052 - 0.7576 0.1134 0.4043 237.20
EPD 0.0029 2.10 0.9990 0.0673 0.9356 230.03
EED 35.0200 - 0.5797 0.1045 0.5065 235.08
EWD 2.72400 2:92 0.1655 0.0648 0.9518 228.59
GRD 6.4000 - 0.2200 0.0719 0.8990 227.74

𝑓2(𝑥) = 𝛼𝛽𝜆𝑒𝜆𝑥 (1 + 𝛼)

(1 + 𝛼𝑒𝜆𝑥)
2

[︂
1 −

(︂
1 + 𝛼

1 + 𝛼𝑒𝜆𝑥

)︂]︂𝛽−1
(18)

where 𝑥, 𝛼, 𝛽, 𝜆 > 0 and 𝑓2(𝑥) = 0 otherwise.

3. Exponentiated exponential distribution (EED) introduced by Gupta et.al.[8], with density
function

𝑓3(𝑥) = 𝛼𝜆
(︁

1 − 𝑒−𝜆𝑥
)︁𝛼−1

𝑒−𝜆𝑥 (19)

where 𝑥, 𝛼, 𝜆 > 0 and 𝑓3(𝑥) = 0 otherwise.

4. Exponentiated Weibull distribution (EWD) introduced by Mudholkar and Srivastava [11],
with density function

𝑓4(𝑥) = 𝛼𝛽𝜆𝛽𝑥𝛽−1
[︁
1 − 𝑒𝑥𝑝(−𝜆𝑥)𝛽

]︁𝛼−1
𝑒𝑥𝑝(−𝜆𝑥)𝛽 (20)

where 𝑥, 𝛼, 𝛽, 𝜆 > 0 and 𝑓4(𝑥) = 0 otherwise.

5. Generalized Rayleigh distribution (GRD) introduced by surles and padgett [22], with density
function

𝑓5(𝑥) = 2𝛼𝜆2𝑥𝑒−(𝜆𝑥)2 (︁
1 − 𝑒−(𝜆𝑥)2

)︁𝛼−1
(21)

where 𝑥, 𝛼, 𝜆 > 0 and 𝑓5(𝑥) = 0 otherwise.

(a) Total time test plot for conductors failure data. (b) Histogram and fit for Conductors’ failure data

Figure 5: Comparison of TTT plot and histogram for conductors’ failure data.
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The total time on the test plot (TTT) of the data shown in Figure 5a suggests an increasing
hazard rate. Now, we demonstrate the fit of LPM in comparison to other considered distributions
for the above data sets. For each distribution, the unknown parameters are estimated by the method
of maximum likelihood. Table 2 presents the parameter estimates, Kolmogorov-Smirnov statistic,
𝑝-value, and the Akaike information criterion value for the models. The best model is the one with
the minimum value for the Akaike information criterion and the Kolmogorov-Smirnov statistic.
It is observed that the developed distribution provides the best fit with a Kolmogorov-Smirnov
statistic of 0.0507 and a 𝑝-value of 0.9962. Additionally, the Akaike information criterion value
is the lowest for the developed distribution when compared to the models discussed in Singh B
and Chaudhary N. [21] (Table 2). This explains the flexibility of the LPM distribution. Figure 5b
displays the histogram and the fit plot for the Conductors’ failure data.

6. CONCLUSION

We have studied the properties of the Lehmann II Perk model. Using maximum likelihood method
we computed the estimates. To assess the performance of the estimates are evaluated through
Monte-Carlo simulation. We have compared the fit of the developed distribution with other models
in the literature for the conductor’s failure data and found it to be better. Furthermore, for future
research, we can consider studying more properties of this distribution and explore different methods
of estimation, such as the Bayesian method.
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